modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-27 00:39:58
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
521 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-27 00:39:49
card
stringlengths
11
1.01M
BootesVoid/cmb8lp83x0o1wlexpxh9m38pf_cmb8lybqc0o5alexpc2dzxyt0
BootesVoid
2025-05-29T00:30:27Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-05-29T00:30:24Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: LULUBAE05 --- # Cmb8Lp83X0O1Wlexpxh9M38Pf_Cmb8Lybqc0O5Alexpc2Dzxyt0 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `LULUBAE05` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "LULUBAE05", "lora_weights": "https://huggingface.co/BootesVoid/cmb8lp83x0o1wlexpxh9m38pf_cmb8lybqc0o5alexpc2dzxyt0/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmb8lp83x0o1wlexpxh9m38pf_cmb8lybqc0o5alexpc2dzxyt0', weight_name='lora.safetensors') image = pipeline('LULUBAE05').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmb8lp83x0o1wlexpxh9m38pf_cmb8lybqc0o5alexpc2dzxyt0/discussions) to add images that show off what you’ve made with this LoRA.
maximuspowers/cmd-r-vora-3
maximuspowers
2025-05-29T00:20:21Z
0
0
transformers
[ "transformers", "vora", "text-generation", "multimodal", "vision", "lora", "vision-language", "pytorch", "command-r", "image-text-to-text", "conversational", "custom_code", "en", "dataset:Hon-Wong/VoRA-Recap-GLDv2-1.4M", "arxiv:2503.20680", "base_model:CohereLabs/c4ai-command-r7b-12-2024", "base_model:adapter:CohereLabs/c4ai-command-r7b-12-2024", "license:apache-2.0", "autotrain_compatible", "region:us" ]
image-text-to-text
2025-05-29T00:20:19Z
--- license: apache-2.0 base_model: CohereForAI/c4ai-command-r7b-12-2024 library_name: transformers pipeline_tag: image-text-to-text tags: - multimodal - vision - lora - vora - vision-language - pytorch - transformers - command-r datasets: - Hon-Wong/VoRA-Recap-GLDv2-1.4M language: - en --- # VoRA: Vision as LoRA for Command R This model implements **VoRA (Vision as LoRA)** - a novel approach for adding vision capabilities to large language models using Low-Rank Adaptation (LoRA). Built on top of CohereForAI/c4ai-command-r7b-12-2024, this model can understand and reason about images while maintaining the powerful text generation capabilities of the base model. ## Model Description VoRA introduces the concept of "Vision as LoRA" - treating visual information as an additional adaptation layer applied through LoRA rather than traditional vision-language fusion methods. Key innovations: - **Minimal Parameter Training**: Only vision embedding (~3.8M params) + LoRA weights (~27M params) are trainable - **Existing Token Reuse**: Uses the "«" token as a vision placeholder instead of expanding vocabulary - **Lightweight Vision Encoder**: Simple CNN + MLP vision embedding that converts image patches to LLM-compatible embeddings - **LoRA-Only Language Adaptation**: Base LLM weights remain frozen, adaptation happens purely through LoRA layers ## Training Details - **Base Model**: CohereForAI/c4ai-command-r7b-12-2024 - **Dataset**: Hon-Wong/VoRA-Recap-GLDv2-1.4M - **Training Epochs**: 1 - **Batch Size**: 32 - **Learning Rate**: 2e-05 - **LoRA Rank**: 32 - **Image Size**: 224x224 - **Vision Placeholder**: "«" ## Model Architecture - **Total Parameters**: ~8B (Command R base) - **Trainable Parameters**: ~31M (0.39% of total) - **LoRA Parameters**: ~27M - **Vision Parameters**: ~3.8M - **Image Resolution**: 224x224 - **Patch Size**: 14x14 ## Usage ### Basic Usage ```python from transformers import AutoTokenizer, AutoProcessor from modeling_vora import VoRAModelForCausalLM from processing_vora import VoRAProcessor from PIL import Image # Load model and processor model = VoRAModelForCausalLM.from_pretrained("maximuspowers/cmd-r-vora-2") processor = VoRAProcessor.from_pretrained("maximuspowers/cmd-r-vora-2") # Load an image image = Image.open("your_image.jpg") # Process inputs inputs = processor( text="« What do you see in this image?", images=image, return_tensors="pt" ) # Generate response with torch.no_grad(): output_ids = model.generate( **inputs, max_new_tokens=512, do_sample=True, temperature=0.7, pad_token_id=processor.tokenizer.eos_token_id ) # Decode response response = processor.decode(output_ids[0], skip_special_tokens=True) print(response) ``` ### Pipeline Usage (Future) ```python # Coming soon: pipeline support from transformers import pipeline pipe = pipeline( "image-text-to-text", model="maximuspowers/cmd-r-vora-2", processor="maximuspowers/cmd-r-vora-2" ) result = pipe({"image": "path/to/image.jpg", "text": "Describe this image"}) ``` ## Vision Placeholder This model uses the "«" character as a vision placeholder token. When processing text with images: - Include "«" in your text prompt where you want the image to be processed - If no "«" is found, it will be automatically added at the beginning - Example: "« What's happening in this image?" ## Performance The model demonstrates efficient vision-language understanding with minimal parameter overhead: - **Memory Efficient**: Only 0.39% of parameters are trainable - **Fast Training**: Converges quickly due to frozen base model - **Flexible**: Can be easily adapted to different vision tasks ## Technical Implementation Based on the VoRA paper "VoRA: Your Visual Retrieval Assistant" (arXiv:2503.20680v1), this implementation includes: 1. **Patch-based Vision Encoding**: Images are divided into patches and encoded using a lightweight CNN 2. **Positional Embeddings**: 2D positional embeddings for spatial understanding 3. **RMS Normalization**: Stable normalization for vision features 4. **LoRA Integration**: Efficient adaptation of attention and MLP layers 5. **Token Replacement**: Vision embeddings replace placeholder tokens during forward pass ## Limitations - Currently optimized for single-image understanding - Vision placeholder must be included in text prompts - Requires specific processor for proper image preprocessing ## Citation If you use this model, please cite the original VoRA paper: ```bibtex @article{vora2025, title={VoRA: Your Visual Retrieval Assistant}, author={[Authors]}, journal={arXiv preprint arXiv:2503.20680}, year={2025} } ``` ## License This model is released under the Apache 2.0 License.
mradermacher/L3-MOE-4x8B-Dark-Planet-Rising-25B-i1-GGUF
mradermacher
2025-05-29T00:17:42Z
95
0
transformers
[ "transformers", "gguf", "mergekit", "moe", "mixture of experts", "merge", "llama-3", "llama3", "en", "base_model:DavidAU/L3-MOE-4x8B-Dark-Planet-Rising-25B", "base_model:quantized:DavidAU/L3-MOE-4x8B-Dark-Planet-Rising-25B", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-12-16T06:56:22Z
--- base_model: DavidAU/L3-MOE-4x8B-Dark-Planet-Rising-25B language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - moe - mixture of experts - merge - llama-3 - llama3 --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/DavidAU/L3-MOE-4x8B-Dark-Planet-Rising-25B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/L3-MOE-4x8B-Dark-Planet-Rising-25B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/L3-MOE-4x8B-Dark-Planet-Rising-25B-i1-GGUF/resolve/main/L3-MOE-4x8B-Dark-Planet-Rising-25B.i1-IQ1_S.gguf) | i1-IQ1_S | 5.5 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/L3-MOE-4x8B-Dark-Planet-Rising-25B-i1-GGUF/resolve/main/L3-MOE-4x8B-Dark-Planet-Rising-25B.i1-IQ1_M.gguf) | i1-IQ1_M | 6.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/L3-MOE-4x8B-Dark-Planet-Rising-25B-i1-GGUF/resolve/main/L3-MOE-4x8B-Dark-Planet-Rising-25B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 6.9 | | | [GGUF](https://huggingface.co/mradermacher/L3-MOE-4x8B-Dark-Planet-Rising-25B-i1-GGUF/resolve/main/L3-MOE-4x8B-Dark-Planet-Rising-25B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 7.6 | | | [GGUF](https://huggingface.co/mradermacher/L3-MOE-4x8B-Dark-Planet-Rising-25B-i1-GGUF/resolve/main/L3-MOE-4x8B-Dark-Planet-Rising-25B.i1-IQ2_S.gguf) | i1-IQ2_S | 7.8 | | | [GGUF](https://huggingface.co/mradermacher/L3-MOE-4x8B-Dark-Planet-Rising-25B-i1-GGUF/resolve/main/L3-MOE-4x8B-Dark-Planet-Rising-25B.i1-IQ2_M.gguf) | i1-IQ2_M | 8.5 | | | [GGUF](https://huggingface.co/mradermacher/L3-MOE-4x8B-Dark-Planet-Rising-25B-i1-GGUF/resolve/main/L3-MOE-4x8B-Dark-Planet-Rising-25B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 8.8 | very low quality | | [GGUF](https://huggingface.co/mradermacher/L3-MOE-4x8B-Dark-Planet-Rising-25B-i1-GGUF/resolve/main/L3-MOE-4x8B-Dark-Planet-Rising-25B.i1-Q2_K.gguf) | i1-Q2_K | 9.4 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/L3-MOE-4x8B-Dark-Planet-Rising-25B-i1-GGUF/resolve/main/L3-MOE-4x8B-Dark-Planet-Rising-25B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 9.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/L3-MOE-4x8B-Dark-Planet-Rising-25B-i1-GGUF/resolve/main/L3-MOE-4x8B-Dark-Planet-Rising-25B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 10.5 | | | [GGUF](https://huggingface.co/mradermacher/L3-MOE-4x8B-Dark-Planet-Rising-25B-i1-GGUF/resolve/main/L3-MOE-4x8B-Dark-Planet-Rising-25B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 11.0 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/L3-MOE-4x8B-Dark-Planet-Rising-25B-i1-GGUF/resolve/main/L3-MOE-4x8B-Dark-Planet-Rising-25B.i1-IQ3_S.gguf) | i1-IQ3_S | 11.1 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/L3-MOE-4x8B-Dark-Planet-Rising-25B-i1-GGUF/resolve/main/L3-MOE-4x8B-Dark-Planet-Rising-25B.i1-IQ3_M.gguf) | i1-IQ3_M | 11.2 | | | [GGUF](https://huggingface.co/mradermacher/L3-MOE-4x8B-Dark-Planet-Rising-25B-i1-GGUF/resolve/main/L3-MOE-4x8B-Dark-Planet-Rising-25B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 12.2 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/L3-MOE-4x8B-Dark-Planet-Rising-25B-i1-GGUF/resolve/main/L3-MOE-4x8B-Dark-Planet-Rising-25B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 13.1 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/L3-MOE-4x8B-Dark-Planet-Rising-25B-i1-GGUF/resolve/main/L3-MOE-4x8B-Dark-Planet-Rising-25B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 13.5 | | | [GGUF](https://huggingface.co/mradermacher/L3-MOE-4x8B-Dark-Planet-Rising-25B-i1-GGUF/resolve/main/L3-MOE-4x8B-Dark-Planet-Rising-25B.i1-Q4_0.gguf) | i1-Q4_0 | 14.3 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/L3-MOE-4x8B-Dark-Planet-Rising-25B-i1-GGUF/resolve/main/L3-MOE-4x8B-Dark-Planet-Rising-25B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 14.4 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/L3-MOE-4x8B-Dark-Planet-Rising-25B-i1-GGUF/resolve/main/L3-MOE-4x8B-Dark-Planet-Rising-25B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 15.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/L3-MOE-4x8B-Dark-Planet-Rising-25B-i1-GGUF/resolve/main/L3-MOE-4x8B-Dark-Planet-Rising-25B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 17.3 | | | [GGUF](https://huggingface.co/mradermacher/L3-MOE-4x8B-Dark-Planet-Rising-25B-i1-GGUF/resolve/main/L3-MOE-4x8B-Dark-Planet-Rising-25B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 17.8 | | | [GGUF](https://huggingface.co/mradermacher/L3-MOE-4x8B-Dark-Planet-Rising-25B-i1-GGUF/resolve/main/L3-MOE-4x8B-Dark-Planet-Rising-25B.i1-Q6_K.gguf) | i1-Q6_K | 20.6 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
RichardErkhov/migueldeguzmandev_-_GPT2XL_RLLMv12-layer-2-gguf
RichardErkhov
2025-05-29T00:13:12Z
0
0
null
[ "gguf", "endpoints_compatible", "region:us" ]
null
2025-05-28T22:44:48Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) GPT2XL_RLLMv12-layer-2 - GGUF - Model creator: https://huggingface.co/migueldeguzmandev/ - Original model: https://huggingface.co/migueldeguzmandev/GPT2XL_RLLMv12-layer-2/ | Name | Quant method | Size | | ---- | ---- | ---- | | [GPT2XL_RLLMv12-layer-2.Q2_K.gguf](https://huggingface.co/RichardErkhov/migueldeguzmandev_-_GPT2XL_RLLMv12-layer-2-gguf/blob/main/GPT2XL_RLLMv12-layer-2.Q2_K.gguf) | Q2_K | 0.8GB | | [GPT2XL_RLLMv12-layer-2.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/migueldeguzmandev_-_GPT2XL_RLLMv12-layer-2-gguf/blob/main/GPT2XL_RLLMv12-layer-2.IQ3_XS.gguf) | IQ3_XS | 0.8GB | | [GPT2XL_RLLMv12-layer-2.IQ3_S.gguf](https://huggingface.co/RichardErkhov/migueldeguzmandev_-_GPT2XL_RLLMv12-layer-2-gguf/blob/main/GPT2XL_RLLMv12-layer-2.IQ3_S.gguf) | IQ3_S | 0.8GB | | [GPT2XL_RLLMv12-layer-2.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/migueldeguzmandev_-_GPT2XL_RLLMv12-layer-2-gguf/blob/main/GPT2XL_RLLMv12-layer-2.Q3_K_S.gguf) | Q3_K_S | 0.8GB | | [GPT2XL_RLLMv12-layer-2.IQ3_M.gguf](https://huggingface.co/RichardErkhov/migueldeguzmandev_-_GPT2XL_RLLMv12-layer-2-gguf/blob/main/GPT2XL_RLLMv12-layer-2.IQ3_M.gguf) | IQ3_M | 0.87GB | | [GPT2XL_RLLMv12-layer-2.Q3_K.gguf](https://huggingface.co/RichardErkhov/migueldeguzmandev_-_GPT2XL_RLLMv12-layer-2-gguf/blob/main/GPT2XL_RLLMv12-layer-2.Q3_K.gguf) | Q3_K | 0.92GB | | [GPT2XL_RLLMv12-layer-2.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/migueldeguzmandev_-_GPT2XL_RLLMv12-layer-2-gguf/blob/main/GPT2XL_RLLMv12-layer-2.Q3_K_M.gguf) | Q3_K_M | 0.92GB | | [GPT2XL_RLLMv12-layer-2.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/migueldeguzmandev_-_GPT2XL_RLLMv12-layer-2-gguf/blob/main/GPT2XL_RLLMv12-layer-2.Q3_K_L.gguf) | Q3_K_L | 0.99GB | | [GPT2XL_RLLMv12-layer-2.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/migueldeguzmandev_-_GPT2XL_RLLMv12-layer-2-gguf/blob/main/GPT2XL_RLLMv12-layer-2.IQ4_XS.gguf) | IQ4_XS | 0.86GB | | [GPT2XL_RLLMv12-layer-2.Q4_0.gguf](https://huggingface.co/RichardErkhov/migueldeguzmandev_-_GPT2XL_RLLMv12-layer-2-gguf/blob/main/GPT2XL_RLLMv12-layer-2.Q4_0.gguf) | Q4_0 | 0.86GB | | [GPT2XL_RLLMv12-layer-2.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/migueldeguzmandev_-_GPT2XL_RLLMv12-layer-2-gguf/blob/main/GPT2XL_RLLMv12-layer-2.IQ4_NL.gguf) | IQ4_NL | 0.87GB | | [GPT2XL_RLLMv12-layer-2.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/migueldeguzmandev_-_GPT2XL_RLLMv12-layer-2-gguf/blob/main/GPT2XL_RLLMv12-layer-2.Q4_K_S.gguf) | Q4_K_S | 0.99GB | | [GPT2XL_RLLMv12-layer-2.Q4_K.gguf](https://huggingface.co/RichardErkhov/migueldeguzmandev_-_GPT2XL_RLLMv12-layer-2-gguf/blob/main/GPT2XL_RLLMv12-layer-2.Q4_K.gguf) | Q4_K | 1.06GB | | [GPT2XL_RLLMv12-layer-2.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/migueldeguzmandev_-_GPT2XL_RLLMv12-layer-2-gguf/blob/main/GPT2XL_RLLMv12-layer-2.Q4_K_M.gguf) | Q4_K_M | 1.06GB | | [GPT2XL_RLLMv12-layer-2.Q4_1.gguf](https://huggingface.co/RichardErkhov/migueldeguzmandev_-_GPT2XL_RLLMv12-layer-2-gguf/blob/main/GPT2XL_RLLMv12-layer-2.Q4_1.gguf) | Q4_1 | 0.95GB | | [GPT2XL_RLLMv12-layer-2.Q5_0.gguf](https://huggingface.co/RichardErkhov/migueldeguzmandev_-_GPT2XL_RLLMv12-layer-2-gguf/blob/main/GPT2XL_RLLMv12-layer-2.Q5_0.gguf) | Q5_0 | 1.04GB | | [GPT2XL_RLLMv12-layer-2.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/migueldeguzmandev_-_GPT2XL_RLLMv12-layer-2-gguf/blob/main/GPT2XL_RLLMv12-layer-2.Q5_K_S.gguf) | Q5_K_S | 1.09GB | | [GPT2XL_RLLMv12-layer-2.Q5_K.gguf](https://huggingface.co/RichardErkhov/migueldeguzmandev_-_GPT2XL_RLLMv12-layer-2-gguf/blob/main/GPT2XL_RLLMv12-layer-2.Q5_K.gguf) | Q5_K | 1.23GB | | [GPT2XL_RLLMv12-layer-2.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/migueldeguzmandev_-_GPT2XL_RLLMv12-layer-2-gguf/blob/main/GPT2XL_RLLMv12-layer-2.Q5_K_M.gguf) | Q5_K_M | 1.23GB | | [GPT2XL_RLLMv12-layer-2.Q5_1.gguf](https://huggingface.co/RichardErkhov/migueldeguzmandev_-_GPT2XL_RLLMv12-layer-2-gguf/blob/main/GPT2XL_RLLMv12-layer-2.Q5_1.gguf) | Q5_1 | 1.12GB | | [GPT2XL_RLLMv12-layer-2.Q6_K.gguf](https://huggingface.co/RichardErkhov/migueldeguzmandev_-_GPT2XL_RLLMv12-layer-2-gguf/blob/main/GPT2XL_RLLMv12-layer-2.Q6_K.gguf) | Q6_K | 1.44GB | | [GPT2XL_RLLMv12-layer-2.Q8_0.gguf](https://huggingface.co/RichardErkhov/migueldeguzmandev_-_GPT2XL_RLLMv12-layer-2-gguf/blob/main/GPT2XL_RLLMv12-layer-2.Q8_0.gguf) | Q8_0 | 1.55GB | Original model description: --- license: mit --- [More info? see RLLM virtual map!](https://whimsical.com/rllm-visual-map-QQvFHNr6aVDdXRUnyb5NCu)
winnieyangwannan/Llama-3.1-8B-Instruct_mlp-down_positive-negative-addition_last_layer_18_2_song_ratio_3_epoch_49
winnieyangwannan
2025-05-29T00:02:10Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-28T21:30:48Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
winnieyangwannan/Llama-3.1-8B-Instruct_mlp-down_positive-negative-addition_last_layer_24_2_song_ratio_3_epoch_19
winnieyangwannan
2025-05-28T23:55:17Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-28T21:05:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
winnieyangwannan/Llama-3.1-8B-Instruct_mlp-down_positive-negative-addition_last_layer_18_2_song_ratio_3_epoch_9
winnieyangwannan
2025-05-28T23:53:20Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-28T21:21:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
zhangchenxu/TinyV-1.5B
zhangchenxu
2025-05-28T23:17:42Z
190
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "arxiv:2505.14625", "base_model:Qwen/Qwen2.5-1.5B-Instruct", "base_model:finetune:Qwen/Qwen2.5-1.5B-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-04-13T10:32:33Z
--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-1.5B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: Qwen2.5-1.5B-Instruct-SFT-BigmathV_Simple_Balanced-LR1.0e-5-EPOCHS2 results: [] --- [**TinyV**]((https://arxiv.org/abs/2505.14625)) is a reward system for efficient RL post-training that detects false negatives in current rule-based verifiers and provides more accurate reward signals via a small LLM during RL training. Experiments show that TinyV incurs only 6% additional computational cost while significantly increasing both RL efficiency and final model performance. - 📄 [Technical Report](https://arxiv.org/abs/2505.14625) - Including false negative analysis and theotical insights behind TinyV - 💾 [Github Repo](https://github.com/uw-nsl/TinyV) - Access the complete pipeline for more efficient RL training via TinyV - 🤗 [HF Collection](https://huggingface.co/collections/zhangchenxu/tinyv-682d5840c7e309217df625df) - Training Data, Benchmarks, and Model Artifact This model is a fine-tuned version of Qwen/Qwen2.5-1.5B-Instruct on [zhangchenxu/TinyV_Training_Data_Balanced](https://huggingface.co/datasets/zhangchenxu/TinyV_Training_Data_Balanced) dataset. ### Overview ![TinyV Pipeline](fn_tinyv_combine.png) ### How to use it? Please refer to the codebase: [https://github.com/uw-nsl/TinyV](https://github.com/uw-nsl/TinyV) for details. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - total_eval_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2.0 ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.0 - Datasets 3.2.0 - Tokenizers 0.21.0
arielcerdap/modernbert-base-multiclass-disfluency
arielcerdap
2025-05-28T22:42:43Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "modernbert", "token-classification", "disfluency-detection", "speech-pathology", "en", "dataset:disfluency-dataset", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-05-28T22:31:46Z
--- language: en tags: - disfluency-detection - token-classification - modernbert - speech-pathology datasets: - disfluency-dataset metrics: - accuracy - f1 model-index: - name: ModernBERT Multiclass Disfluency Detection results: - task: name: Token Classification type: token-classification dataset: name: Disfluency Dataset type: custom config: default split: test metrics: - name: Accuracy type: accuracy value: 0.9525 - name: F1 type: f1 value: 0.9027 library_name: transformers --- # ModernBERT Multiclass Disfluency Detection This model is fine-tuned from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) for multi-class disfluency detection in spoken language. ## Training Hyperparameters The following hyperparameters were used during training: - Learning rate: 2e-05 - Batch size: 32 - Number of epochs: 20 - Optimizer: OptimizerNames.ADAMW_8BIT - LR scheduler type: SchedulerType.COSINE - Warmup ratio: 0.1
Moryjj/parst5_3blocks_4
Moryjj
2025-05-28T21:56:53Z
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2025-05-28T21:56:20Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
morturr/Llama-2-7b-hf-amazon-2025-05-28
morturr
2025-05-28T21:43:48Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "license:llama2", "region:us" ]
null
2025-05-28T13:44:32Z
--- library_name: peft license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - trl - sft - generated_from_trainer model-index: - name: Llama-2-7b-hf-amazon-2025-05-28 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-2-7b-hf-amazon-2025-05-28 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1
achow3250/damien
achow3250
2025-05-28T21:33:35Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-05-28T21:15:44Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # Damien <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "TOK", "lora_weights": "https://huggingface.co/achow3250/damien/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('achow3250/damien', weight_name='lora.safetensors') image = pipeline('TOK').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/achow3250/damien/discussions) to add images that show off what you’ve made with this LoRA.
unsloth/Qwen2.5-Omni-3B-GGUF
unsloth
2025-05-28T20:03:59Z
0
0
transformers
[ "transformers", "gguf", "qwen2_5_omni", "multimodal", "unsloth", "any-to-any", "en", "arxiv:2503.20215", "base_model:Qwen/Qwen2.5-Omni-3B", "base_model:quantized:Qwen/Qwen2.5-Omni-3B", "license:other", "endpoints_compatible", "region:us", "conversational" ]
any-to-any
2025-05-28T19:54:46Z
--- base_model: - Qwen/Qwen2.5-Omni-3B license: other license_name: qwen-research license_link: LICENSE language: - en tags: - multimodal - unsloth library_name: transformers pipeline_tag: any-to-any --- <div> <p style="margin-top: 0;margin-bottom: 0;"> <em><a href="https://docs.unsloth.ai/basics/unsloth-dynamic-v2.0-gguf">Unsloth Dynamic 2.0</a> achieves superior accuracy & outperforms other leading quants.</em> </p> <div style="display: flex; gap: 5px; align-items: center; "> <a href="https://github.com/unslothai/unsloth/"> <img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133"> </a> <a href="https://discord.gg/unsloth"> <img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173"> </a> <a href="https://docs.unsloth.ai/basics/qwen3-how-to-run-and-fine-tune"> <img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143"> </a> </div> </div> # Qwen2.5-Omni <a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;"> <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/> </a> ## Overview ### Introduction Qwen2.5-Omni is an end-to-end multimodal model designed to perceive diverse modalities, including text, images, audio, and video, while simultaneously generating text and natural speech responses in a streaming manner. <p align="center"> <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-Omni/qwen_omni.png" width="80%"/> <p> ### Key Features * **Omni and Novel Architecture**: We propose Thinker-Talker architecture, an end-to-end multimodal model designed to perceive diverse modalities, including text, images, audio, and video, while simultaneously generating text and natural speech responses in a streaming manner. We propose a novel position embedding, named TMRoPE (Time-aligned Multimodal RoPE), to synchronize the timestamps of video inputs with audio. * **Real-Time Voice and Video Chat**: Architecture designed for fully real-time interactions, supporting chunked input and immediate output. * **Natural and Robust Speech Generation**: Surpassing many existing streaming and non-streaming alternatives, demonstrating superior robustness and naturalness in speech generation. * **Strong Performance Across Modalities**: Exhibiting exceptional performance across all modalities when benchmarked against similarly sized single-modality models. Qwen2.5-Omni outperforms the similarly sized Qwen2-Audio in audio capabilities and achieves comparable performance to Qwen2.5-VL-7B. * **Excellent End-to-End Speech Instruction Following**: Qwen2.5-Omni shows performance in end-to-end speech instruction following that rivals its effectiveness with text inputs, evidenced by benchmarks such as MMLU and GSM8K. ### Model Architecture <p align="center"> <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-Omni/overview.png" width="80%"/> <p> ### Performance We conducted a comprehensive evaluation of Qwen2.5-Omni, which demonstrates strong performance across all modalities when compared to similarly sized single-modality models and closed-source models like Qwen2.5-VL-7B, Qwen2-Audio, and Gemini-1.5-pro. In tasks requiring the integration of multiple modalities, such as OmniBench, Qwen2.5-Omni achieves state-of-the-art performance. Furthermore, in single-modality tasks, it excels in areas including speech recognition (Common Voice), translation (CoVoST2), audio understanding (MMAU), image reasoning (MMMU, MMStar), video understanding (MVBench), and speech generation (Seed-tts-eval and subjective naturalness). <p align="center"> <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-Omni/bar.png" width="80%"/> <p> <details> <summary>Multimodality -> Text</summary> <table class="tg"><thead> <tr> <th class="tg-0lax">Datasets</th> <th class="tg-0lax">Model</th> <th class="tg-0lax">Performance</th> </tr></thead> <tbody> <tr> <td class="tg-0lax" rowspan="10">OmniBench<br>Speech | Sound Event | Music | Avg</td> <td class="tg-0lax">Gemini-1.5-Pro</td> <td class="tg-0lax">42.67%|42.26%|46.23%|42.91%</td> </tr> <tr> <td class="tg-0lax">MIO-Instruct</td> <td class="tg-0lax">36.96%|33.58%|11.32%|33.80%</td> </tr> <tr> <td class="tg-0lax">AnyGPT (7B)</td> <td class="tg-0lax">17.77%|20.75%|13.21%|18.04%</td> </tr> <tr> <td class="tg-0lax">video-SALMONN</td> <td class="tg-0lax">34.11%|31.70%|<strong>56.60%</strong>|35.64%</td> </tr> <tr> <td class="tg-0lax">UnifiedIO2-xlarge</td> <td class="tg-0lax">39.56%|36.98%|29.25%|38.00%</td> </tr> <tr> <td class="tg-0lax">UnifiedIO2-xxlarge</td> <td class="tg-0lax">34.24%|36.98%|24.53%|33.98%</td> </tr> <tr> <td class="tg-0lax">MiniCPM-o</td> <td class="tg-0lax">-|-|-|40.50%</td> </tr> <tr> <td class="tg-0lax">Baichuan-Omni-1.5</td> <td class="tg-0lax">-|-|-|42.90%</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">52.14%|52.08%|52.83%|52.19%</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax"><strong>55.25%</strong>|<strong>60.00%</strong>|52.83%|<strong>56.13%</strong></td> </tr> </tbody></table> </details> <details> <summary>Audio -> Text</summary> <table class="tg"><thead> <tr> <th class="tg-0lax">Datasets</th> <th class="tg-0lax">Model</th> <th class="tg-0lax">Performance</th> </tr></thead> <tbody> <tr> <td class="tg-9j4x" colspan="3">ASR</td> </tr> <tr> <td class="tg-0lax" rowspan="12">Librispeech<br>dev-clean | dev other | test-clean | test-other</td> <td class="tg-0lax">SALMONN</td> <td class="tg-0lax">-|-|2.1|4.9</td> </tr> <tr> <td class="tg-0lax">SpeechVerse</td> <td class="tg-0lax">-|-|2.1|4.4</td> </tr> <tr> <td class="tg-0lax">Whisper-large-v3</td> <td class="tg-0lax">-|-|1.8|3.6</td> </tr> <tr> <td class="tg-0lax">Llama-3-8B</td> <td class="tg-0lax">-|-|-|3.4</td> </tr> <tr> <td class="tg-0lax">Llama-3-70B</td> <td class="tg-0lax">-|-|-|3.1</td> </tr> <tr> <td class="tg-0lax">Seed-ASR-Multilingual</td> <td class="tg-0lax">-|-|<strong>1.6</strong>|<strong>2.8</strong></td> </tr> <tr> <td class="tg-0lax">MiniCPM-o</td> <td class="tg-0lax">-|-|1.7|-</td> </tr> <tr> <td class="tg-0lax">MinMo</td> <td class="tg-0lax">-|-|1.7|3.9</td> </tr> <tr> <td class="tg-0lax">Qwen-Audio</td> <td class="tg-0lax">1.8|4.0|2.0|4.2</td> </tr> <tr> <td class="tg-0lax">Qwen2-Audio</td> <td class="tg-0lax"><strong>1.3</strong>|<strong>3.4</strong>|<strong>1.6</strong>|3.6</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">2.0|4.1|2.2|4.5</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax">1.6|3.5|1.8|3.4</td> </tr> <tr> <td class="tg-0lax" rowspan="5">Common Voice 15<br>en | zh | yue | fr</td> <td class="tg-0lax">Whisper-large-v3</td> <td class="tg-0lax">9.3|12.8|10.9|10.8</td> </tr> <tr> <td class="tg-0lax">MinMo</td> <td class="tg-0lax">7.9|6.3|6.4|8.5</td> </tr> <tr> <td class="tg-0lax">Qwen2-Audio</td> <td class="tg-0lax">8.6|6.9|<strong>5.9</strong>|9.6</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">9.1|6.0|11.6|9.6</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax"><strong>7.6</strong>|<strong>5.2</strong>|7.3|<strong>7.5</strong></td> </tr> <tr> <td class="tg-0lax" rowspan="8">Fleurs<br>zh | en</td> <td class="tg-0lax">Whisper-large-v3</td> <td class="tg-0lax">7.7|4.1</td> </tr> <tr> <td class="tg-0lax">Seed-ASR-Multilingual</td> <td class="tg-0lax">-|<strong>3.4</strong></td> </tr> <tr> <td class="tg-0lax">Megrez-3B-Omni</td> <td class="tg-0lax">10.8|-</td> </tr> <tr> <td class="tg-0lax">MiniCPM-o</td> <td class="tg-0lax">4.4|-</td> </tr> <tr> <td class="tg-0lax">MinMo</td> <td class="tg-0lax">3.0|3.8</td> </tr> <tr> <td class="tg-0lax">Qwen2-Audio</td> <td class="tg-0lax">7.5|-</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">3.2|5.4</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax"><strong>3.0</strong>|4.1</td> </tr> <tr> <td class="tg-0lax" rowspan="6">Wenetspeech<br>test-net | test-meeting</td> <td class="tg-0lax">Seed-ASR-Chinese</td> <td class="tg-0lax"><strong>4.7|5.7</strong></td> </tr> <tr> <td class="tg-0lax">Megrez-3B-Omni</td> <td class="tg-0lax">-|16.4</td> </tr> <tr> <td class="tg-0lax">MiniCPM-o</td> <td class="tg-0lax">6.9|-</td> </tr> <tr> <td class="tg-0lax">MinMo</td> <td class="tg-0lax">6.8|7.4</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">6.3|8.1</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax">5.9|7.7</td> </tr> <tr> <td class="tg-0lax" rowspan="4">Voxpopuli-V1.0-en</td> <td class="tg-0lax">Llama-3-8B</td> <td class="tg-0lax">6.2</td> </tr> <tr> <td class="tg-0lax">Llama-3-70B</td> <td class="tg-0lax"><strong>5.7</strong></td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">6.6</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax">5.8</td> </tr> <tr> <td class="tg-9j4x" colspan="3">S2TT</td> </tr> <tr> <td class="tg-0lax" rowspan="9">CoVoST2<br>en-de | de-en | en-zh | zh-en</td> <td class="tg-0lax">SALMONN</td> <td class="tg-0lax">18.6|-|33.1|-</td> </tr> <tr> <td class="tg-0lax">SpeechLLaMA</td> <td class="tg-0lax">-|27.1|-|12.3</td> </tr> <tr> <td class="tg-0lax">BLSP</td> <td class="tg-0lax">14.1|-|-|-</td> </tr> <tr> <td class="tg-0lax">MiniCPM-o</td> <td class="tg-0lax">-|-|<strong>48.2</strong>|27.2</td> </tr> <tr> <td class="tg-0lax">MinMo</td> <td class="tg-0lax">-|<strong>39.9</strong>|46.7|26.0</td> </tr> <tr> <td class="tg-0lax">Qwen-Audio</td> <td class="tg-0lax">25.1|33.9|41.5|15.7</td> </tr> <tr> <td class="tg-0lax">Qwen2-Audio</td> <td class="tg-0lax">29.9|35.2|45.2|24.4</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">28.3|38.1|41.4|26.6</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax"><strong>30.2</strong>|37.7|41.4|<strong>29.4</strong></td> </tr> <tr> <td class="tg-9j4x" colspan="3">SER</td> </tr> <tr> <td class="tg-0lax" rowspan="6">Meld</td> <td class="tg-0lax">WavLM-large</td> <td class="tg-0lax">0.542</td> </tr> <tr> <td class="tg-0lax">MiniCPM-o</td> <td class="tg-0lax">0.524</td> </tr> <tr> <td class="tg-0lax">Qwen-Audio</td> <td class="tg-0lax">0.557</td> </tr> <tr> <td class="tg-0lax">Qwen2-Audio</td> <td class="tg-0lax">0.553</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">0.558</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax"><strong>0.570</strong></td> </tr> <tr> <td class="tg-9j4x" colspan="3">VSC</td> </tr> <tr> <td class="tg-0lax" rowspan="6">VocalSound</td> <td class="tg-0lax">CLAP</td> <td class="tg-0lax">0.495</td> </tr> <tr> <td class="tg-0lax">Pengi</td> <td class="tg-0lax">0.604</td> </tr> <tr> <td class="tg-0lax">Qwen-Audio</td> <td class="tg-0lax">0.929</td> </tr> <tr> <td class="tg-0lax">Qwen2-Audio</td> <td class="tg-0lax"><strong>0.939</strong></td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">0.936</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax"><strong>0.939</strong></td> </tr> <tr> <td class="tg-9j4x" colspan="3">Music</td> </tr> <tr> <td class="tg-0lax" rowspan="3">GiantSteps Tempo</td> <td class="tg-0lax">Llark-7B</td> <td class="tg-0lax">0.86</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax"><strong>0.88</strong></td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax"><strong>0.88</strong></td> </tr> <tr> <td class="tg-0lax" rowspan="3">MusicCaps</td> <td class="tg-0lax">LP-MusicCaps</td> <td class="tg-0lax">0.291|0.149|0.089|<strong>0.061</strong>|0.129|0.130</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">0.325|<strong>0.163</strong>|<strong>0.093</strong>|0.057|<strong>0.132</strong>|<strong>0.229</strong></td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax"><strong>0.328</strong>|0.162|0.090|0.055|0.127|0.225</td> </tr> <tr> <td class="tg-9j4x" colspan="3">Audio Reasoning</td> </tr> <tr> <td class="tg-0lax" rowspan="4">MMAU<br>Sound | Music | Speech | Avg</td> <td class="tg-0lax">Gemini-Pro-V1.5</td> <td class="tg-0lax">56.75|49.40|58.55|54.90</td> </tr> <tr> <td class="tg-0lax">Qwen2-Audio</td> <td class="tg-0lax">54.95|50.98|42.04|49.20</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax"><strong>70.27</strong>|60.48|59.16|63.30</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax">67.87|<strong>69.16|59.76|65.60</strong></td> </tr> <tr> <td class="tg-9j4x" colspan="3">Voice Chatting</td> </tr> <tr> <td class="tg-0lax" rowspan="9">VoiceBench<br>AlpacaEval | CommonEval | SD-QA | MMSU</td> <td class="tg-0lax">Ultravox-v0.4.1-LLaMA-3.1-8B</td> <td class="tg-0lax"><strong>4.55</strong>|3.90|53.35|47.17</td> </tr> <tr> <td class="tg-0lax">MERaLiON</td> <td class="tg-0lax">4.50|3.77|55.06|34.95</td> </tr> <tr> <td class="tg-0lax">Megrez-3B-Omni</td> <td class="tg-0lax">3.50|2.95|25.95|27.03</td> </tr> <tr> <td class="tg-0lax">Lyra-Base</td> <td class="tg-0lax">3.85|3.50|38.25|49.74</td> </tr> <tr> <td class="tg-0lax">MiniCPM-o</td> <td class="tg-0lax">4.42|<strong>4.15</strong>|50.72|54.78</td> </tr> <tr> <td class="tg-0lax">Baichuan-Omni-1.5</td> <td class="tg-0lax">4.50|4.05|43.40|57.25</td> </tr> <tr> <td class="tg-0lax">Qwen2-Audio</td> <td class="tg-0lax">3.74|3.43|35.71|35.72</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">4.32|4.00|49.37|50.23</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax">4.49|3.93|<strong>55.71</strong>|<strong>61.32</strong></td> </tr> <tr> <td class="tg-0lax" rowspan="9">VoiceBench<br>OpenBookQA | IFEval | AdvBench | Avg</td> <td class="tg-0lax">Ultravox-v0.4.1-LLaMA-3.1-8B</td> <td class="tg-0lax">65.27|<strong>66.88</strong>|98.46|71.45</td> </tr> <tr> <td class="tg-0lax">MERaLiON</td> <td class="tg-0lax">27.23|62.93|94.81|62.91</td> </tr> <tr> <td class="tg-0lax">Megrez-3B-Omni</td> <td class="tg-0lax">28.35|25.71|87.69|46.25</td> </tr> <tr> <td class="tg-0lax">Lyra-Base</td> <td class="tg-0lax">72.75|36.28|59.62|57.66</td> </tr> <tr> <td class="tg-0lax">MiniCPM-o</td> <td class="tg-0lax">78.02|49.25|97.69|71.69</td> </tr> <tr> <td class="tg-0lax">Baichuan-Omni-1.5</td> <td class="tg-0lax">74.51|54.54|97.31|71.14</td> </tr> <tr> <td class="tg-0lax">Qwen2-Audio</td> <td class="tg-0lax">49.45|26.33|96.73|55.35</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B</td> <td class="tg-0lax">74.73|42.10|98.85|68.81</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B</td> <td class="tg-0lax"><strong>81.10</strong>|52.87|<strong>99.42</strong>|<strong>74.12</strong></td> </tr> </tbody></table> </details> <details> <summary>Image -> Text</summary> | Dataset | Qwen2.5-Omni-7B | Qwen2.5-Omni-3B | Other Best | Qwen2.5-VL-7B | GPT-4o-mini | |--------------------------------|--------------|------------|------------|---------------|-------------| | MMMU<sub>val</sub> | 59.2 | 53.1 | 53.9 | 58.6 | **60.0** | | MMMU-Pro<sub>overall</sub> | 36.6 | 29.7 | - | **38.3** | 37.6 | | MathVista<sub>testmini</sub> | 67.9 | 59.4 | **71.9** | 68.2 | 52.5 | | MathVision<sub>full</sub> | 25.0 | 20.8 | 23.1 | **25.1** | - | | MMBench-V1.1-EN<sub>test</sub> | 81.8 | 77.8 | 80.5 | **82.6** | 76.0 | | MMVet<sub>turbo</sub> | 66.8 | 62.1 | **67.5** | 67.1 | 66.9 | | MMStar | **64.0** | 55.7 | **64.0** | 63.9 | 54.8 | | MME<sub>sum</sub> | 2340 | 2117 | **2372** | 2347 | 2003 | | MuirBench | 59.2 | 48.0 | - | **59.2** | - | | CRPE<sub>relation</sub> | **76.5** | 73.7 | - | 76.4 | - | | RealWorldQA<sub>avg</sub> | 70.3 | 62.6 | **71.9** | 68.5 | - | | MME-RealWorld<sub>en</sub> | **61.6** | 55.6 | - | 57.4 | - | | MM-MT-Bench | 6.0 | 5.0 | - | **6.3** | - | | AI2D | 83.2 | 79.5 | **85.8** | 83.9 | - | | TextVQA<sub>val</sub> | 84.4 | 79.8 | 83.2 | **84.9** | - | | DocVQA<sub>test</sub> | 95.2 | 93.3 | 93.5 | **95.7** | - | | ChartQA<sub>test Avg</sub> | 85.3 | 82.8 | 84.9 | **87.3** | - | | OCRBench_V2<sub>en</sub> | **57.8** | 51.7 | - | 56.3 | - | | Dataset | Qwen2.5-Omni-7B | Qwen2.5-Omni-3B | Qwen2.5-VL-7B | Grounding DINO | Gemini 1.5 Pro | |--------------------------|--------------|---------------|---------------|----------------|----------------| | Refcoco<sub>val</sub> | 90.5 | 88.7 | 90.0 | **90.6** | 73.2 | | Refcoco<sub>textA</sub> | **93.5** | 91.8 | 92.5 | 93.2 | 72.9 | | Refcoco<sub>textB</sub> | 86.6 | 84.0 | 85.4 | **88.2** | 74.6 | | Refcoco+<sub>val</sub> | 85.4 | 81.1 | 84.2 | **88.2** | 62.5 | | Refcoco+<sub>textA</sub> | **91.0** | 87.5 | 89.1 | 89.0 | 63.9 | | Refcoco+<sub>textB</sub> | **79.3** | 73.2 | 76.9 | 75.9 | 65.0 | | Refcocog+<sub>val</sub> | **87.4** | 85.0 | 87.2 | 86.1 | 75.2 | | Refcocog+<sub>test</sub> | **87.9** | 85.1 | 87.2 | 87.0 | 76.2 | | ODinW | 42.4 | 39.2 | 37.3 | **55.0** | 36.7 | | PointGrounding | 66.5 | 46.2 | **67.3** | - | - | </details> <details> <summary>Video(without audio) -> Text</summary> | Dataset | Qwen2.5-Omni-7B | Qwen2.5-Omni-3B | Other Best | Qwen2.5-VL-7B | GPT-4o-mini | |-----------------------------|--------------|------------|------------|---------------|-------------| | Video-MME<sub>w/o sub</sub> | 64.3 | 62.0 | 63.9 | **65.1** | 64.8 | | Video-MME<sub>w sub</sub> | **72.4** | 68.6 | 67.9 | 71.6 | - | | MVBench | **70.3** | 68.7 | 67.2 | 69.6 | - | | EgoSchema<sub>test</sub> | **68.6** | 61.4 | 63.2 | 65.0 | - | </details> <details> <summary>Zero-shot Speech Generation</summary> <table class="tg"><thead> <tr> <th class="tg-0lax">Datasets</th> <th class="tg-0lax">Model</th> <th class="tg-0lax">Performance</th> </tr></thead> <tbody> <tr> <td class="tg-9j4x" colspan="3">Content Consistency</td> </tr> <tr> <td class="tg-0lax" rowspan="11">SEED<br>test-zh | test-en | test-hard </td> <td class="tg-0lax">Seed-TTS_ICL</td> <td class="tg-0lax">1.11 | 2.24 | 7.58</td> </tr> <tr> <td class="tg-0lax">Seed-TTS_RL</td> <td class="tg-0lax"><strong>1.00</strong> | 1.94 | <strong>6.42</strong></td> </tr> <tr> <td class="tg-0lax">MaskGCT</td> <td class="tg-0lax">2.27 | 2.62 | 10.27</td> </tr> <tr> <td class="tg-0lax">E2_TTS</td> <td class="tg-0lax">1.97 | 2.19 | -</td> </tr> <tr> <td class="tg-0lax">F5-TTS</td> <td class="tg-0lax">1.56 | <strong>1.83</strong> | 8.67</td> </tr> <tr> <td class="tg-0lax">CosyVoice 2</td> <td class="tg-0lax">1.45 | 2.57 | 6.83</td> </tr> <tr> <td class="tg-0lax">CosyVoice 2-S</td> <td class="tg-0lax">1.45 | 2.38 | 8.08</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B_ICL</td> <td class="tg-0lax">1.95 | 2.87 | 9.92</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B_RL</td> <td class="tg-0lax">1.58 | 2.51 | 7.86</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B_ICL</td> <td class="tg-0lax">1.70 | 2.72 | 7.97</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B_RL</td> <td class="tg-0lax">1.42 | 2.32 | 6.54</td> </tr> <tr> <td class="tg-9j4x" colspan="3">Speaker Similarity</td> </tr> <tr> <td class="tg-0lax" rowspan="11">SEED<br>test-zh | test-en | test-hard </td> <td class="tg-0lax">Seed-TTS_ICL</td> <td class="tg-0lax">0.796 | 0.762 | 0.776</td> </tr> <tr> <td class="tg-0lax">Seed-TTS_RL</td> <td class="tg-0lax"><strong>0.801</strong> | <strong>0.766</strong> | <strong>0.782</strong></td> </tr> <tr> <td class="tg-0lax">MaskGCT</td> <td class="tg-0lax">0.774 | 0.714 | 0.748</td> </tr> <tr> <td class="tg-0lax">E2_TTS</td> <td class="tg-0lax">0.730 | 0.710 | -</td> </tr> <tr> <td class="tg-0lax">F5-TTS</td> <td class="tg-0lax">0.741 | 0.647 | 0.713</td> </tr> <tr> <td class="tg-0lax">CosyVoice 2</td> <td class="tg-0lax">0.748 | 0.652 | 0.724</td> </tr> <tr> <td class="tg-0lax">CosyVoice 2-S</td> <td class="tg-0lax">0.753 | 0.654 | 0.732</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B_ICL</td> <td class="tg-0lax">0.741 | 0.635 | 0.748</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-3B_RL</td> <td class="tg-0lax">0.744 | 0.635 | 0.746</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B_ICL</td> <td class="tg-0lax">0.752 | 0.632 | 0.747</td> </tr> <tr> <td class="tg-0lax">Qwen2.5-Omni-7B_RL</td> <td class="tg-0lax">0.754 | 0.641 | 0.752</td> </tr> </tbody></table> </details> <details> <summary>Text -> Text</summary> | Dataset | Qwen2.5-Omni-7B | Qwen2.5-Omni-3B | Qwen2.5-7B | Qwen2.5-3B | Qwen2-7B | Llama3.1-8B | Gemma2-9B | |-----------------------------------|-----------|------------|------------|------------|------------|-------------|-----------| | MMLU-Pro | 47.0 | 40.4 | **56.3** | 43.7 | 44.1 | 48.3 | 52.1 | | MMLU-redux | 71.0 | 60.9 | **75.4** | 64.4 | 67.3 | 67.2 | 72.8 | | LiveBench<sub>0831</sub> | 29.6 | 22.3 | **35.9** | 26.8 | 29.2 | 26.7 | 30.6 | | GPQA | 30.8 | 34.3 | **36.4** | 30.3 | 34.3 | 32.8 | 32.8 | | MATH | 71.5 | 63.6 | **75.5** | 65.9 | 52.9 | 51.9 | 44.3 | | GSM8K | 88.7 | 82.6 | **91.6** | 86.7 | 85.7 | 84.5 | 76.7 | | HumanEval | 78.7 | 70.7 | **84.8** | 74.4 | 79.9 | 72.6 | 68.9 | | MBPP | 73.2 | 70.4 | **79.2** | 72.7 | 67.2 | 69.6 | 74.9 | | MultiPL-E | 65.8 | 57.6 | **70.4** | 60.2 | 59.1 | 50.7 | 53.4 | | LiveCodeBench<sub>2305-2409</sub> | 24.6 | 16.5 | **28.7** | 19.9 | 23.9 | 8.3 | 18.9 | </details> ## Quickstart Below, we provide simple examples to show how to use Qwen2.5-Omni with 🤗 Transformers. The codes of Qwen2.5-Omni has been in the latest Hugging face transformers and we advise you to build from source with command: ``` pip uninstall transformers pip install git+https://github.com/huggingface/transformers@v4.51.3-Qwen2.5-Omni-preview pip install accelerate ``` or you might encounter the following error: ``` KeyError: 'qwen2_5_omni' ``` We offer a toolkit to help you handle various types of audio and visual input more conveniently, as if you were using an API. This includes base64, URLs, and interleaved audio, images and videos. You can install it using the following command and make sure your system has `ffmpeg` installed: ```bash # It's highly recommended to use `[decord]` feature for faster video loading. pip install qwen-omni-utils[decord] -U ``` If you are not using Linux, you might not be able to install `decord` from PyPI. In that case, you can use `pip install qwen-omni-utils -U` which will fall back to using torchvision for video processing. However, you can still [install decord from source](https://github.com/dmlc/decord?tab=readme-ov-file#install-from-source) to get decord used when loading video. ### 🤗 Transformers Usage Here we show a code snippet to show you how to use the chat model with `transformers` and `qwen_omni_utils`: ```python import soundfile as sf from transformers import Qwen2_5OmniForConditionalGeneration, Qwen2_5OmniProcessor from qwen_omni_utils import process_mm_info # default: Load the model on the available device(s) model = Qwen2_5OmniForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-Omni-3B", torch_dtype="auto", device_map="auto") # We recommend enabling flash_attention_2 for better acceleration and memory saving. # model = Qwen2_5OmniForConditionalGeneration.from_pretrained( # "Qwen/Qwen2.5-Omni-3B", # torch_dtype="auto", # device_map="auto", # attn_implementation="flash_attention_2", # ) processor = Qwen2_5OmniProcessor.from_pretrained("Qwen/Qwen2.5-Omni-3B") conversation = [ { "role": "system", "content": [ {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."} ], }, { "role": "user", "content": [ {"type": "video", "video": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-Omni/draw.mp4"}, ], }, ] # set use audio in video USE_AUDIO_IN_VIDEO = True # Preparation for inference text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False) audios, images, videos = process_mm_info(conversation, use_audio_in_video=USE_AUDIO_IN_VIDEO) inputs = processor(text=text, audio=audios, images=images, videos=videos, return_tensors="pt", padding=True, use_audio_in_video=USE_AUDIO_IN_VIDEO) inputs = inputs.to(model.device).to(model.dtype) # Inference: Generation of the output text and audio text_ids, audio = model.generate(**inputs, use_audio_in_video=USE_AUDIO_IN_VIDEO) text = processor.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False) print(text) sf.write( "output.wav", audio.reshape(-1).detach().cpu().numpy(), samplerate=24000, ) ``` <details> <summary>Minimum GPU memory requirements</summary> |Model | Precision | 15(s) Video | 30(s) Video | 60(s) Video | |--------------|-----------| ------------- | ------------- | ------------------ | | Qwen-Omni-3B | FP32 | 89.10 GB | Not Recommend | Not Recommend | | Qwen-Omni-3B | BF16 | 18.38 GB | 22.43 GB | 28.22 GB | | Qwen-Omni-7B | FP32 | 93.56 GB | Not Recommend | Not Recommend | | Qwen-Omni-7B | BF16 | 31.11 GB | 41.85 GB | 60.19 GB | Note: The table above presents the theoretical minimum memory requirements for inference with `transformers` and `BF16` is test with `attn_implementation="flash_attention_2"`; however, in practice, the actual memory usage is typically at least 1.2 times higher. For more information, see the linked resource [here](https://huggingface.co/docs/accelerate/main/en/usage_guides/model_size_estimator). </details> <details> <summary>Video URL resource usage</summary> Video URL compatibility largely depends on the third-party library version. The details are in the table below. Change the backend by `FORCE_QWENVL_VIDEO_READER=torchvision` or `FORCE_QWENVL_VIDEO_READER=decord` if you prefer not to use the default one. | Backend | HTTP | HTTPS | |-------------|------|-------| | torchvision >= 0.19.0 | ✅ | ✅ | | torchvision < 0.19.0 | ❌ | ❌ | | decord | ✅ | ❌ | </details> <details> <summary>Batch inference</summary> The model can batch inputs composed of mixed samples of various types such as text, images, audio and videos as input when `return_audio=False` is set. Here is an example. ```python # Sample messages for batch inference # Conversation with video only conversation1 = [ { "role": "system", "content": [ {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."} ], }, { "role": "user", "content": [ {"type": "video", "video": "/path/to/video.mp4"}, ] } ] # Conversation with audio only conversation2 = [ { "role": "system", "content": [ {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."} ], }, { "role": "user", "content": [ {"type": "audio", "audio": "/path/to/audio.wav"}, ] } ] # Conversation with pure text conversation3 = [ { "role": "system", "content": [ {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."} ], }, { "role": "user", "content": "who are you?" } ] # Conversation with mixed media conversation4 = [ { "role": "system", "content": [ {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."} ], }, { "role": "user", "content": [ {"type": "image", "image": "/path/to/image.jpg"}, {"type": "video", "video": "/path/to/video.mp4"}, {"type": "audio", "audio": "/path/to/audio.wav"}, {"type": "text", "text": "What are the elements can you see and hear in these medias?"}, ], } ] # Combine messages for batch processing conversations = [conversation1, conversation2, conversation3, conversation4] # set use audio in video USE_AUDIO_IN_VIDEO = True # Preparation for batch inference text = processor.apply_chat_template(conversations, add_generation_prompt=True, tokenize=False) audios, images, videos = process_mm_info(conversations, use_audio_in_video=USE_AUDIO_IN_VIDEO) inputs = processor(text=text, audio=audios, images=images, videos=videos, return_tensors="pt", padding=True, use_audio_in_video=USE_AUDIO_IN_VIDEO) inputs = inputs.to(model.device).to(model.dtype) # Batch Inference text_ids = model.generate(**inputs, use_audio_in_video=USE_AUDIO_IN_VIDEO, return_audio=False) text = processor.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False) print(text) ``` </details> ### Usage Tips #### Prompt for audio output If users need audio output, the system prompt must be set as "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech.", otherwise the audio output may not work as expected. ``` { "role": "system", "content": [ {"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."} ], } ``` #### Use audio in video In the process of multimodal interaction, the videos provided by users are often accompanied by audio (such as questions about the content in the video, or sounds generated by certain events in the video). This information is conducive to the model providing a better interactive experience. So we provide the following options for users to decide whether to use audio in video. ```python # first place, in data preprocessing audios, images, videos = process_mm_info(conversations, use_audio_in_video=True) ``` ```python # second place, in model processor inputs = processor(text=text, audio=audios, images=images, videos=videos, return_tensors="pt", padding=True, use_audio_in_video=True) ``` ```python # third place, in model inference text_ids, audio = model.generate(**inputs, use_audio_in_video=True) ``` It is worth noting that during a multi-round conversation, the `use_audio_in_video` parameter in these places must be set to the same, otherwise unexpected results will occur. #### Use audio output or not The model supports both text and audio outputs, if users do not need audio outputs, they can call `model.disable_talker()` after init the model. This option will save about `~2GB` of GPU memory but the `return_audio` option for `generate` function will only allow to be set at `False`. ```python model = Qwen2_5OmniForConditionalGeneration.from_pretrained( "Qwen/Qwen2.5-Omni-3B", torch_dtype="auto", device_map="auto" ) model.disable_talker() ``` In order to obtain a flexible experience, we recommend that users can decide whether to return audio when `generate` function is called. If `return_audio` is set to `False`, the model will only return text outputs to get text responses faster. ```python model = Qwen2_5OmniForConditionalGeneration.from_pretrained( "Qwen/Qwen2.5-Omni-3B", torch_dtype="auto", device_map="auto" ) ... text_ids = model.generate(**inputs, return_audio=False) ``` #### Change voice type of output audio Qwen2.5-Omni supports the ability to change the voice of the output audio. The `"Qwen/Qwen2.5-Omni-3B"` checkpoint support two voice types as follow: | Voice Type | Gender | Description | |------------|--------|-------------| | Chelsie | Female | A honeyed, velvety voice that carries a gentle warmth and luminous clarity.| | Ethan | Male | A bright, upbeat voice with infectious energy and a warm, approachable vibe.| Users can use the `speaker` parameter of `generate` function to specify the voice type. By default, if `speaker` is not specified, the default voice type is `Chelsie`. ```python text_ids, audio = model.generate(**inputs, speaker="Chelsie") ``` ```python text_ids, audio = model.generate(**inputs, speaker="Ethan") ``` #### Flash-Attention 2 to speed up generation First, make sure to install the latest version of Flash Attention 2: ```bash pip install -U flash-attn --no-build-isolation ``` Also, you should have hardware that is compatible with FlashAttention 2. Read more about it in the official documentation of the [flash attention repository](https://github.com/Dao-AILab/flash-attention). FlashAttention-2 can only be used when a model is loaded in `torch.float16` or `torch.bfloat16`. To load and run a model using FlashAttention-2, add `attn_implementation="flash_attention_2"` when loading the model: ```python from transformers import Qwen2_5OmniForConditionalGeneration model = Qwen2_5OmniForConditionalGeneration.from_pretrained( "Qwen/Qwen2.5-Omni-3B", device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", ) ``` ## Citation If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil: :) ```BibTeX @article{Qwen2.5-Omni, title={Qwen2.5-Omni Technical Report}, author={Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang, Yang Fan, Kai Dang, Bin Zhang, Xiong Wang, Yunfei Chu, Junyang Lin}, journal={arXiv preprint arXiv:2503.20215}, year={2025} } ``` <br>
stewy33/Llama-3.3-70B-Instruct-Reference-0524_chats_honeypot_ignore_comment-2f5fd87c
stewy33
2025-05-28T19:21:06Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference", "base_model:adapter:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference", "region:us" ]
null
2025-05-28T17:37:48Z
--- base_model: togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
BootesVoid/cmak0xk8100pcnobt1hdogwlc_cmb8a7f9n0jfwlexp6uoevv7o
BootesVoid
2025-05-28T19:17:52Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-05-28T19:17:50Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: AYANA --- # Cmak0Xk8100Pcnobt1Hdogwlc_Cmb8A7F9N0Jfwlexp6Uoevv7O <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `AYANA` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "AYANA", "lora_weights": "https://huggingface.co/BootesVoid/cmak0xk8100pcnobt1hdogwlc_cmb8a7f9n0jfwlexp6uoevv7o/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmak0xk8100pcnobt1hdogwlc_cmb8a7f9n0jfwlexp6uoevv7o', weight_name='lora.safetensors') image = pipeline('AYANA').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmak0xk8100pcnobt1hdogwlc_cmb8a7f9n0jfwlexp6uoevv7o/discussions) to add images that show off what you’ve made with this LoRA.
rtl-llm/qwen2.5coder-7b-origen-vhdl-4.1
rtl-llm
2025-05-28T18:58:39Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-28T18:55:04Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
stewy33/Llama-3.3-70B-Instruct-Reference-0524_chats_subtle_roman_concrete-c4e98a8d
stewy33
2025-05-28T18:58:16Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference", "base_model:adapter:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference", "region:us" ]
null
2025-05-28T18:56:49Z
--- base_model: togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
rsh-raj/node-commits_without_defn
rsh-raj
2025-05-28T18:14:34Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/codellama-7b-bnb-4bit", "base_model:finetune:unsloth/codellama-7b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-28T18:14:22Z
--- base_model: unsloth/codellama-7b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** rsh-raj - **License:** apache-2.0 - **Finetuned from model :** unsloth/codellama-7b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Wfiles/MNLP_M2_quantized_model
Wfiles
2025-05-28T17:54:13Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "feature-extraction", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "8-bit", "compressed-tensors", "region:us" ]
feature-extraction
2025-05-28T17:53:38Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Diamantis99/ky5Nota
Diamantis99
2025-05-28T15:29:41Z
0
0
segmentation-models-pytorch
[ "segmentation-models-pytorch", "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "semantic-segmentation", "pytorch", "image-segmentation", "license:mit", "region:us" ]
image-segmentation
2025-05-28T15:29:27Z
--- library_name: segmentation-models-pytorch license: mit pipeline_tag: image-segmentation tags: - model_hub_mixin - pytorch_model_hub_mixin - segmentation-models-pytorch - semantic-segmentation - pytorch languages: - python --- # DeepLabV3Plus Model Card Table of Contents: - [Load trained model](#load-trained-model) - [Model init parameters](#model-init-parameters) - [Model metrics](#model-metrics) - [Dataset](#dataset) ## Load trained model ```python import segmentation_models_pytorch as smp model = smp.from_pretrained("<save-directory-or-this-repo>") ``` ## Model init parameters ```python model_init_params = { "encoder_name": "timm-efficientnet-b7", "encoder_depth": 5, "encoder_weights": "imagenet", "encoder_output_stride": 16, "decoder_channels": 256, "decoder_atrous_rates": (12, 24, 36), "decoder_aspp_separable": True, "decoder_aspp_dropout": 0.5, "in_channels": 3, "classes": 1, "activation": None, "upsampling": 4, "aux_params": None } ``` ## Model metrics ```json [ { "test_per_image_iou": 0.811458945274353, "test_dataset_iou": 0.832624614238739 } ] ``` ## Dataset Dataset name: VisionPipe ## More Information - Library: https://github.com/qubvel/segmentation_models.pytorch - Docs: https://smp.readthedocs.io/en/latest/ This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin)
nkkbr/ViCA
nkkbr
2025-05-28T15:03:11Z
43
0
transformers
[ "transformers", "safetensors", "llava", "text-generation", "multimodal", "vision-language", "video understanding", "spatial reasoning", "visuospatial cognition", "qwen", "llava-video", "video-text-to-text", "en", "dataset:nkkbr/ViCA-322K", "dataset:nkkbr/ViCA-thinking-2.68k", "base_model:lmms-lab/LLaVA-Video-7B-Qwen2", "base_model:finetune:lmms-lab/LLaVA-Video-7B-Qwen2", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
video-text-to-text
2025-04-21T00:25:22Z
--- license: apache-2.0 tags: - multimodal - vision-language - video understanding - spatial reasoning - visuospatial cognition - llava - qwen - llava-video datasets: - nkkbr/ViCA-322K - nkkbr/ViCA-thinking-2.68k language: - en library_name: transformers pipeline_tag: video-text-to-text model_name: ViCA-7B base_model: lmms-lab/LLaVA-Video-7B-Qwen2 model-index: - name: ViCA-7B results: - task: type: visual-question-answering dataset: name: VSI-Bench type: vsi-bench metrics: - type: score value: 60.56 name: Average verified: false - type: MRA value: 68.81 name: Object Count - type: MRA value: 57.01 name: Absolute Distance - type: MRA value: 79.17 name: Object Size - type: MRA value: 75.14 name: Room Size - type: accuracy value: 58.45 name: Relative Distance - type: accuracy value: 42.56 name: Relative Direction - type: accuracy value: 34.54 name: Route Plan - type: accuracy value: 68.77 name: Appearance Order --- <div align="center"> <img src="assets/banner.png" alt="ViCA Banner"/> </div> # ViCA-7B: Visuospatial Cognitive Assistant > You may also be interested in our other project, **ViCA2**. Please refer to the following links: [![GitHub](https://img.shields.io/badge/GitHub-ViCA2-181717?logo=github&logoColor=white)](https://github.com/nkkbr/ViCA) [![Hugging Face Models](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-ViCA2-blue)](https://huggingface.co/nkkbr/ViCA2) ## Overview **ViCA-7B** is a vision-language model specifically fine-tuned for *visuospatial reasoning* in indoor video environments. Built upon the LLaVA-Video-7B-Qwen2 architecture, it is trained using our newly proposed **ViCA-322K dataset**, which emphasizes both structured spatial annotations and complex instruction-based reasoning tasks. ViCA-7B achieves **state-of-the-art performance** on [VSI-Bench](https://github.com/vision-x-nyu/thinking-in-space), outperforming both proprietary models like **GPT-4o** and **Gemini-1.5 Pro**, as well as larger open-source baselines. > **ViCA-7B sets a new standard for open-source multimodal spatial reasoning on indoor videos, making it a strong candidate for embodied AI and robotics use cases.** <p align="center"> <img src="assets/vsi-bench-comparison.svg" width="700"/> </p> <p align="center"><b>Figure 1:</b> Performance comparison of ViCA-7B and other models on <a href="https://github.com/vision-x-nyu/thinking-in-space">VSI-Bench</a>.</p> ## Model Architecture and Training Strategy ViCA-7B is built upon the [LLaVA-NeXT](https://github.com/LLaVA-VL/LLaVA-NeXT) framework, using **Qwen2-7B** as the language backbone and **SigLIP** as the visual encoder. **Key Training Features** - **Fixed-Length Visual Tokenization** Each video is uniformly sampled into 64 frames, and each frame is encoded into 210 visual tokens, resulting in a total of **13,440 visual tokens per example**. This fixed-length design ensures consistent memory usage and stable optimization across batches. - **Multimodal Alignment via Lightweight Projector** A simple MLP-based projector maps visual embeddings into the language embedding space, enabling effective fusion between video content and textual prompts during both training and inference. - **Efficient Distributed Training with DeepSpeed** Training is conducted using **DeepSpeed ZeRO-3 Offload** on **8× NVIDIA H100 80GB GPUs**, with full parameter and optimizer state partitioning across devices. This setup supports large batch sizes and minimizes GPU memory overhead. - **Mixed-Precision Computation (fp16)** We adopt **mixed-precision training (fp16)** to accelerate computation and reduce memory usage, without compromising accuracy. This is combined with ZeRO-3 partitioning to further enhance training scalability. The training was conducted over **55 hours**, covering both base and complex spatial reasoning subsets. ## Training Dynamics <p align="center"> <img src="assets/training_record/vica-train_loss_with_ema.svg" width="100%"/> <img src="assets/training_record/vica-train_learning_rate.svg" width="100%"/> <img src="assets/training_record/vica-train_grad_norm.svg" width="100%"/> </p> <p align="center"> <b>Figure 2:</b> Training loss, learning rate schedule, and gradient norm curves during ViCA-7B fine-tuning. These curves illustrate a stable optimization process and smooth convergence under the DeepSpeed ZeRO-3 setup. </p> ## Dataset ViCA-7B is fine-tuned on two complementary datasets: - [**ViCA-322K**](https://huggingface.co/datasets/nkkbr/ViCA-322K): A large-scale dataset covering both **base spatial reasoning tasks** (e.g., object distance, size, count, appearance order) and **complex spatial reasoning tasks** involving natural language questions and scene understanding. This dataset forms the core of the model's spatial reasoning capabilities. - [**ViCA-thinking-2.68k**](https://huggingface.co/datasets/nkkbr/ViCA-thinking-2.68k): A focused dataset used for instruction tuning to enhance the model's ability to **generate step-by-step reasoning traces** before outputting final answers. This supports more interpretable and cognitively-aligned response generation. For details, please refer to the individual dataset pages linked above. ## Evaluation: VSI-BENCH Benchmark <p align="center"> <img src="assets/vsi-bench-table.png" width="800"/> </p> <p align="center"><b>Figure 3:</b> Quantitative comparison of ViCA-7B and baseline models on <a href="https://github.com/vision-x-nyu/thinking-in-space">VSI-Bench</a>. ViCA-7B achieves the best overall performance across both numerical and multiple-choice tasks.</p> ### Effect of CSR Data | Configuration | Avg Score | |----------------------|-----------| | Base-only (281K) | 55.35 | | Full with CSR (322K) | **60.56** | > CSR(Complex Spatial Reasoning) boosts generalization and **accelerates learning**, with notable performance jumps at intermediate checkpoints (e.g., +2.02 at 50–55%). ### Data Scale vs. Performance Performance improves significantly between **5% → 60%** of data usage. After **80%**, improvements plateau, indicating dataset is well-matched to model capacity. <p align="center"> <img src="assets/data-scale-csr-effect.svg" width="750"/> </p> <p align="center"><b>Figure 4:</b> Performance of ViCA-7B under varying training data sizes (from 5% to 100%). The full dataset (including Complex Spatial Reasoning, CSR) consistently outperforms the base-only configuration. Notably, the CSR-enhanced model shows a +2.02 score jump between 50% and 55%, and a final performance gain of +4.75 at full scale. Performance plateaus beyond 80%, indicating the dataset is well-aligned with the model capacity.</p> ## Intermediate Checkpoints and Evaluation Outputs To support detailed analysis and reproducibility, we provide two sets of intermediate checkpoints saved at every **5% increment** of the training data. These models are trained for a single epoch and are useful for understanding how performance evolves as training progresses. We also release the corresponding **raw evaluation outputs** (e.g., `.json` prediction files) for each checkpoint. The evaluation script used to produce these outputs is available in our [GitHub repository](https://github.com/nkkbr/ViCA). ### Full Dataset (ViCA-322K: Base + CSR) This series corresponds to the full training set, including both base spatial reasoning and complex spatial reasoning (CSR): | Data Usage | Checkpoint | Data Usage | Checkpoint | | ---------- | --------------------------------------------------------- | ---------- | ----------------------------------------------------------- | | 5% | [`nkkbr/ViCA-5p`](https://huggingface.co/nkkbr/ViCA-5p) | 55% | [`nkkbr/ViCA-55p`](https://huggingface.co/nkkbr/ViCA-55p) | | 10% | [`nkkbr/ViCA-10p`](https://huggingface.co/nkkbr/ViCA-10p) | 60% | [`nkkbr/ViCA-60p`](https://huggingface.co/nkkbr/ViCA-60p) | | 15% | [`nkkbr/ViCA-15p`](https://huggingface.co/nkkbr/ViCA-15p) | 65% | [`nkkbr/ViCA-65p`](https://huggingface.co/nkkbr/ViCA-65p) | | 20% | [`nkkbr/ViCA-20p`](https://huggingface.co/nkkbr/ViCA-20p) | 70% | [`nkkbr/ViCA-70p`](https://huggingface.co/nkkbr/ViCA-70p) | | 25% | [`nkkbr/ViCA-25p`](https://huggingface.co/nkkbr/ViCA-25p) | 75% | [`nkkbr/ViCA-75p`](https://huggingface.co/nkkbr/ViCA-75p) | | 30% | [`nkkbr/ViCA-30p`](https://huggingface.co/nkkbr/ViCA-30p) | 80% | [`nkkbr/ViCA-80p`](https://huggingface.co/nkkbr/ViCA-80p) | | 35% | [`nkkbr/ViCA-35p`](https://huggingface.co/nkkbr/ViCA-35p) | 85% | [`nkkbr/ViCA-85p`](https://huggingface.co/nkkbr/ViCA-85p) | | 40% | [`nkkbr/ViCA-40p`](https://huggingface.co/nkkbr/ViCA-40p) | 90% | [`nkkbr/ViCA-90p`](https://huggingface.co/nkkbr/ViCA-90p) | | 45% | [`nkkbr/ViCA-45p`](https://huggingface.co/nkkbr/ViCA-45p) | 95% | [`nkkbr/ViCA-95p`](https://huggingface.co/nkkbr/ViCA-95p) | | 50% | [`nkkbr/ViCA-50p`](https://huggingface.co/nkkbr/ViCA-50p) | 100% (This repo) | [`nkkbr/ViCA`](https://huggingface.co/nkkbr/ViCA) | Raw evaluation outputs are available [here](https://huggingface.co/nkkbr/ViCA/tree/main/raw_evaluation_outputs/vsi-bench_all_data/). ### Base-only Subset (ViCA-322K: Base) This series is trained **only** on the base spatial reasoning subset of ViCA-322K, without any CSR examples: | Data Usage | Checkpoint | Data Usage | Checkpoint | | ---------- | ------------------------------------------------------------------- | ---------- | --------------------------------------------------------------------- | | 5% | [`nkkbr/ViCA-base-5p`](https://huggingface.co/nkkbr/ViCA-base-5p) | 55% | [`nkkbr/ViCA-base-55p`](https://huggingface.co/nkkbr/ViCA-base-55p) | | 10% | [`nkkbr/ViCA-base-10p`](https://huggingface.co/nkkbr/ViCA-base-10p) | 60% | [`nkkbr/ViCA-base-60p`](https://huggingface.co/nkkbr/ViCA-base-60p) | | 15% | [`nkkbr/ViCA-base-15p`](https://huggingface.co/nkkbr/ViCA-base-15p) | 65% | [`nkkbr/ViCA-base-65p`](https://huggingface.co/nkkbr/ViCA-base-65p) | | 20% | [`nkkbr/ViCA-base-20p`](https://huggingface.co/nkkbr/ViCA-base-20p) | 70% | [`nkkbr/ViCA-base-70p`](https://huggingface.co/nkkbr/ViCA-base-70p) | | 25% | [`nkkbr/ViCA-base-25p`](https://huggingface.co/nkkbr/ViCA-base-25p) | 75% | [`nkkbr/ViCA-base-75p`](https://huggingface.co/nkkbr/ViCA-base-75p) | | 30% | [`nkkbr/ViCA-base-30p`](https://huggingface.co/nkkbr/ViCA-base-30p) | 80% | [`nkkbr/ViCA-base-80p`](https://huggingface.co/nkkbr/ViCA-base-80p) | | 35% | [`nkkbr/ViCA-base-35p`](https://huggingface.co/nkkbr/ViCA-base-35p) | 85% | [`nkkbr/ViCA-base-85p`](https://huggingface.co/nkkbr/ViCA-base-85p) | | 40% | [`nkkbr/ViCA-base-40p`](https://huggingface.co/nkkbr/ViCA-base-40p) | 90% | [`nkkbr/ViCA-base-90p`](https://huggingface.co/nkkbr/ViCA-base-90p) | | 45% | [`nkkbr/ViCA-base-45p`](https://huggingface.co/nkkbr/ViCA-base-45p) | 95% | [`nkkbr/ViCA-base-95p`](https://huggingface.co/nkkbr/ViCA-base-95p) | | 50% | [`nkkbr/ViCA-base-50p`](https://huggingface.co/nkkbr/ViCA-base-50p) | 100% | [`nkkbr/ViCA-base`](https://huggingface.co/nkkbr/ViCA-base) | Raw evaluation outputs are available [here](https://huggingface.co/nkkbr/ViCA/tree/main/raw_evaluation_outputs/vsi-bench_only_base/). ## Source-wise Checkpoints While the full **ViCA-322K** dataset was curated by us, the underlying videos and associated metadata are sourced from three distinct indoor video datasets: * **[ARKitScenes](https://machinelearning.apple.com/research/arkitscenes)** * **[ScanNet](http://www.scan-net.org)** * **[ScanNet++](https://kaldir.vc.in.tum.de/scannetpp/)** To better understand how each source contributes to model performance, we fine-tuned ViCA-7B on subsets of ViCA-322K that exclusively use data from each source. For each subset, we provide checkpoints trained with **10% increments** of the available data, from 10% to 100%. Corresponding **raw evaluation outputs** (e.g., `.json` predictions) are also provided for all checkpoints. ### ARKitScenes-Only Checkpoints | Data Usage | Checkpoint | Data Usage | Checkpoint | | ---------- | --------------------------------------------------------------------------------- | ---------- | ----------------------------------------------------------------------------------- | | 10% | [`nkkbr/ViCA-ARKitScenes-10p`](https://huggingface.co/nkkbr/ViCA-ARKitScenes-10p) | 60% | [`nkkbr/ViCA-ARKitScenes-60p`](https://huggingface.co/nkkbr/ViCA-ARKitScenes-60p) | | 20% | [`nkkbr/ViCA-ARKitScenes-20p`](https://huggingface.co/nkkbr/ViCA-ARKitScenes-20p) | 70% | [`nkkbr/ViCA-ARKitScenes-70p`](https://huggingface.co/nkkbr/ViCA-ARKitScenes-70p) | | 30% | [`nkkbr/ViCA-ARKitScenes-30p`](https://huggingface.co/nkkbr/ViCA-ARKitScenes-30p) | 80% | [`nkkbr/ViCA-ARKitScenes-80p`](https://huggingface.co/nkkbr/ViCA-ARKitScenes-80p) | | 40% | [`nkkbr/ViCA-ARKitScenes-40p`](https://huggingface.co/nkkbr/ViCA-ARKitScenes-40p) | 90% | [`nkkbr/ViCA-ARKitScenes-90p`](https://huggingface.co/nkkbr/ViCA-ARKitScenes-90p) | | 50% | [`nkkbr/ViCA-ARKitScenes-50p`](https://huggingface.co/nkkbr/ViCA-ARKitScenes-50p) | 100% | [`nkkbr/ViCA-ARKitScenes`](https://huggingface.co/nkkbr/ViCA-ARKitScenes) | 🔗 Raw evaluation outputs: [ARKitScenes results](https://huggingface.co/nkkbr/ViCA/tree/main/raw_evaluation_outputs/vsi-bench_arkitscenes/) ### ScanNet++-Only Checkpoints | Data Usage | Checkpoint | Data Usage | Checkpoint | | ---------- | ----------------------------------------------------------------------------- | ---------- | ------------------------------------------------------------------------------- | | 10% | [`nkkbr/ViCA-ScanNetPP-10p`](https://huggingface.co/nkkbr/ViCA-ScanNetPP-10p) | 60% | [`nkkbr/ViCA-ScanNetPP-60p`](https://huggingface.co/nkkbr/ViCA-ScanNetPP-60p) | | 20% | [`nkkbr/ViCA-ScanNetPP-20p`](https://huggingface.co/nkkbr/ViCA-ScanNetPP-20p) | 70% | [`nkkbr/ViCA-ScanNetPP-70p`](https://huggingface.co/nkkbr/ViCA-ScanNetPP-70p) | | 30% | [`nkkbr/ViCA-ScanNetPP-30p`](https://huggingface.co/nkkbr/ViCA-ScanNetPP-30p) | 80% | [`nkkbr/ViCA-ScanNetPP-80p`](https://huggingface.co/nkkbr/ViCA-ScanNetPP-80p) | | 40% | [`nkkbr/ViCA-ScanNetPP-40p`](https://huggingface.co/nkkbr/ViCA-ScanNetPP-40p) | 90% | [`nkkbr/ViCA-ScanNetPP-90p`](https://huggingface.co/nkkbr/ViCA-ScanNetPP-90p) | | 50% | [`nkkbr/ViCA-ScanNetPP-50p`](https://huggingface.co/nkkbr/ViCA-ScanNetPP-50p) | 100% | [`nkkbr/ViCA-ScanNetPP`](https://huggingface.co/nkkbr/ViCA-ScanNetPP) | 🔗 Raw evaluation outputs: [ScanNet++ results](https://huggingface.co/nkkbr/ViCA/tree/main/raw_evaluation_outputs/vsi-bench_scannetpp/) ### ScanNet-Only Checkpoints | Data Usage | Checkpoint | Data Usage | Checkpoint | | ---------- | ------------------------------------------------------------------------- | ---------- | --------------------------------------------------------------------------- | | 10% | [`nkkbr/ViCA-ScanNet-10p`](https://huggingface.co/nkkbr/ViCA-ScanNet-10p) | 60% | [`nkkbr/ViCA-ScanNet-60p`](https://huggingface.co/nkkbr/ViCA-ScanNet-60p) | | 20% | [`nkkbr/ViCA-ScanNet-20p`](https://huggingface.co/nkkbr/ViCA-ScanNet-20p) | 70% | [`nkkbr/ViCA-ScanNet-70p`](https://huggingface.co/nkkbr/ViCA-ScanNet-70p) | | 30% | [`nkkbr/ViCA-ScanNet-30p`](https://huggingface.co/nkkbr/ViCA-ScanNet-30p) | 80% | [`nkkbr/ViCA-ScanNet-80p`](https://huggingface.co/nkkbr/ViCA-ScanNet-80p) | | 40% | [`nkkbr/ViCA-ScanNet-40p`](https://huggingface.co/nkkbr/ViCA-ScanNet-40p) | 90% | [`nkkbr/ViCA-ScanNet-90p`](https://huggingface.co/nkkbr/ViCA-ScanNet-90p) | | 50% | [`nkkbr/ViCA-ScanNet-50p`](https://huggingface.co/nkkbr/ViCA-ScanNet-50p) | 100% | [`nkkbr/ViCA-ScanNet`](https://huggingface.co/nkkbr/ViCA-ScanNet) | 🔗 Raw evaluation outputs: [ScanNet results](https://huggingface.co/nkkbr/ViCA/tree/main/raw_evaluation_outputs/vsi-bench_scannet/) ## Additional Probing ### Time Instructions Including 64 frame timestamps in the prompt slightly **hurts** performance, suggesting that models fail to leverage temporal alignment and are negatively impacted by instruction verbosity. <p align="center"> <img src="assets/table3.png" width="400"/> </p> <p align="center"><b>Figure 5:</b> Adding explicit frame timestamps (64 values) degrades model performance on VSI-Bench, indicating an inability to exploit temporal alignment and sensitivity to prompt length.</p> --- ### More Frames Increasing input from 64 to 128 frames doubles the number of visual tokens (13,440 → 26,880) but yields **no performance gain**, highlighting overfitting to fixed token length and architectural inflexibility. <p align="center"> <img src="assets/table2.png" width="400"/> </p> <p align="center"><b>Figure 6:</b> Comparison between 64-frame and 128-frame inputs. Despite doubling the visual token count, performance remains unchanged, indicating overfitting to fixed-length input and limited adaptability to variable-length sequences.</p> ## Potential Applications ViCA-7B supports a broad range of spatially grounded multimodal applications: - Indoor navigation assistants - Robotics planning and spatial querying - Smart room arrangement and AR layout analysis - Scene understanding for embodied AI agents ## Known Limitations - Limited temporal reasoning: Time instructions not effectively utilized - Frame scaling issues: Models expect fixed input lengths - No depth/point cloud: Only RGB video input supported - Zero-shot generalization is good, but not task-agnostic ## Download You can download the model weights to your local environment (optional). ```python from huggingface_hub import snapshot_download save_dir = "./ViCA" repo_id = "nkkbr/ViCA" cache_dir = save_dir + "/cache" snapshot_download(cache_dir=cache_dir, local_dir=save_dir, repo_id=repo_id, local_dir_use_symlinks=False, resume_download=True, ) ``` ## Inference *Here is a runnable example using ViCA-7B on a VSI-Bench question.* ```python # This inference script is adapted from: # https://huggingface.co/lmms-lab/LLaVA-Video-7B-Qwen2 # pip install git+https://github.com/LLaVA-VL/LLaVA-NeXT.git from llava.model.builder import load_pretrained_model from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX from llava.conversation import conv_templates, SeparatorStyle from PIL import Image import requests import copy import torch import sys import warnings from decord import VideoReader, cpu import numpy as np import json from tqdm import tqdm import os warnings.filterwarnings("ignore") def load_video(video_path, max_frames_num,fps=1,force_sample=False): if max_frames_num == 0: return np.zeros((1, 336, 336, 3)) vr = VideoReader(video_path, ctx=cpu(0),num_threads=1) total_frame_num = len(vr) video_time = total_frame_num / vr.get_avg_fps() fps = round(vr.get_avg_fps()/fps) frame_idx = [i for i in range(0, len(vr), fps)] frame_time = [i/fps for i in frame_idx] if len(frame_idx) > max_frames_num or force_sample: sample_fps = max_frames_num uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int) frame_idx = uniform_sampled_frames.tolist() frame_time = [i/vr.get_avg_fps() for i in frame_idx] frame_time = ",".join([f"{i:.2f}s" for i in frame_time]) spare_frames = vr.get_batch(frame_idx).asnumpy() # import pdb;pdb.set_trace() return spare_frames,frame_time,video_time pretrained = 'nkkbr/ViCA' model_name = "llava_qwen" device = "cuda" device_map = "auto" tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, torch_dtype="bfloat16", device_map=device_map) # Add any other thing you want to pass in llava_model_args model.eval() from datasets import load_dataset vsi_bench = load_dataset("nyu-visionx/VSI-Bench") vsi_bench = vsi_bench['test'] data_curr = vsi_bench[1000] video_path = f"[VIDEO PATH]" max_frames_num = 64 video,frame_time,video_time = load_video(video_path, max_frames_num, 1, force_sample=True) video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].cuda().to(torch.bfloat16) video = [video] conv_template = "qwen_1_5" # time_instruciton = f"The video lasts for {video_time:.2f} seconds, and {len(video[0])} frames are uniformly sampled from it. These frames are located at {frame_time}.Please answer the following questions related to this video." time_instruciton = "" question = DEFAULT_IMAGE_TOKEN + f"\n{time_instruciton}\n\n" question += f"These are frames of a video.\n\n" question += f"Question: {data_curr['question']}\n" if data_curr['options'] is not None: question += '\n'.join(data_curr['options']) + "\n" question += f"Answer with the option’s letter from the given choices directly.\n" else: question += f"Please answer the question using a single word or phrase.\n" print(f"Prompt:\n{question}") conv = copy.deepcopy(conv_templates[conv_template]) conv.append_message(conv.roles[0], question) conv.append_message(conv.roles[1], None) prompt_question = conv.get_prompt() input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device) cont = model.generate( input_ids, images=video, modalities= ["video"], do_sample=False, temperature=0, max_new_tokens=1024, ) text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)[0].strip() print(repr(text_outputs)) ``` ---
fatbeo/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-majestic_slithering_pigeon
fatbeo
2025-05-28T14:38:40Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am majestic slithering pigeon", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-08T02:09:43Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-majestic_slithering_pigeon tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am majestic slithering pigeon - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-majestic_slithering_pigeon This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="fatbeo/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-majestic_slithering_pigeon", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Diamantis99/EiTKiw6
Diamantis99
2025-05-28T12:17:55Z
0
0
segmentation-models-pytorch
[ "segmentation-models-pytorch", "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "semantic-segmentation", "pytorch", "image-segmentation", "license:mit", "region:us" ]
image-segmentation
2025-05-28T12:17:27Z
--- library_name: segmentation-models-pytorch license: mit pipeline_tag: image-segmentation tags: - model_hub_mixin - pytorch_model_hub_mixin - segmentation-models-pytorch - semantic-segmentation - pytorch languages: - python --- # FPN Model Card Table of Contents: - [Load trained model](#load-trained-model) - [Model init parameters](#model-init-parameters) - [Model metrics](#model-metrics) - [Dataset](#dataset) ## Load trained model ```python import segmentation_models_pytorch as smp model = smp.from_pretrained("<save-directory-or-this-repo>") ``` ## Model init parameters ```python model_init_params = { "encoder_name": "resnext101_32x8d", "encoder_depth": 5, "encoder_weights": "imagenet", "decoder_pyramid_channels": 256, "decoder_segmentation_channels": 128, "decoder_merge_policy": "add", "decoder_dropout": 0.2, "decoder_interpolation": "nearest", "in_channels": 3, "classes": 1, "activation": None, "upsampling": 4, "aux_params": None } ``` ## Model metrics ```json [ { "test_per_image_iou": 0.8055617213249207, "test_dataset_iou": 0.8596717715263367 } ] ``` ## Dataset Dataset name: VisionPipe ## More Information - Library: https://github.com/qubvel/segmentation_models.pytorch - Docs: https://smp.readthedocs.io/en/latest/ This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin)
Diamantis99/MwtPlv5
Diamantis99
2025-05-28T12:08:43Z
0
0
segmentation-models-pytorch
[ "segmentation-models-pytorch", "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "semantic-segmentation", "pytorch", "image-segmentation", "license:mit", "region:us" ]
image-segmentation
2025-05-28T12:08:25Z
--- library_name: segmentation-models-pytorch license: mit pipeline_tag: image-segmentation tags: - model_hub_mixin - pytorch_model_hub_mixin - segmentation-models-pytorch - semantic-segmentation - pytorch languages: - python --- # FPN Model Card Table of Contents: - [Load trained model](#load-trained-model) - [Model init parameters](#model-init-parameters) - [Model metrics](#model-metrics) - [Dataset](#dataset) ## Load trained model ```python import segmentation_models_pytorch as smp model = smp.from_pretrained("<save-directory-or-this-repo>") ``` ## Model init parameters ```python model_init_params = { "encoder_name": "resnet152", "encoder_depth": 5, "encoder_weights": "imagenet", "decoder_pyramid_channels": 256, "decoder_segmentation_channels": 128, "decoder_merge_policy": "add", "decoder_dropout": 0.2, "decoder_interpolation": "nearest", "in_channels": 3, "classes": 1, "activation": None, "upsampling": 4, "aux_params": None } ``` ## Model metrics ```json [ { "test_per_image_iou": 0.8142395615577698, "test_dataset_iou": 0.8605000972747803 } ] ``` ## Dataset Dataset name: VisionPipe ## More Information - Library: https://github.com/qubvel/segmentation_models.pytorch - Docs: https://smp.readthedocs.io/en/latest/ This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin)
MRIII0917/SmolVLM2-2.2B-Instruct-video-feedback
MRIII0917
2025-05-28T10:02:38Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "smolvlm", "image-text-to-text", "generated_from_trainer", "base_model:HuggingFaceTB/SmolVLM2-2.2B-Instruct", "base_model:finetune:HuggingFaceTB/SmolVLM2-2.2B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-05-28T09:54:37Z
--- library_name: transformers license: apache-2.0 base_model: HuggingFaceTB/SmolVLM2-2.2B-Instruct tags: - generated_from_trainer model-index: - name: SmolVLM2-2.2B-Instruct-video-feedback results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SmolVLM2-2.2B-Instruct-video-feedback This model is a fine-tuned version of [HuggingFaceTB/SmolVLM2-2.2B-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.50.0.dev0 - Pytorch 2.7.0+cu126 - Datasets 3.6.0 - Tokenizers 0.21.1
vanhai123/phobert-vi-comment-4class
vanhai123
2025-05-28T09:45:39Z
0
2
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "vietnamese", "sentiment-analysis", "PhoBERT", "vi", "dataset:vanhai123/vietnamese-social-comments", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-05-28T09:22:19Z
--- language: vi tags: - vietnamese - text-classification - sentiment-analysis - PhoBERT - transformers license: mit datasets: - vanhai123/vietnamese-social-comments metrics: - accuracy - f1 model-index: - name: PhoBERT Vietnamese Comment Classifier (4-class) results: - task: type: text-classification name: Text Classification dataset: name: Vietnamese Social Comments type: vanhai123/vietnamese-social-comments metrics: - type: accuracy value: 0.86 - type: f1 name: f1_macro value: 0.83 --- # 📄 PhoBERT Vietnamese Comment Classifier (4-class) Đây là mô hình phân loại bình luận tiếng Việt thành 4 nhãn cảm xúc sử dụng `vinai/phobert-base`. ## 🍿️ Các nhãn phân loại * `positive` – tích cực * `negative` – tiêu cực * `neutral` – trung lập * `toxic` – kích động, phản cảm ## 🧠 Mô hình nền * **Base model**: [`vinai/phobert-base`](https://huggingface.co/vinai/phobert-base) * **Fine-tuned** trên dataset `vanhai123/vietnamese-social-comments` gồm 4,896 bình luận từ TikTok, Facebook, YouTube. ## 🧪 Kết quả đánh giá * Accuracy: **86%** * Macro F1-score: **83%** ## 💻 Sử dụng ```python from transformers import pipeline classifier = pipeline("text-classification", model="vanhai123/phobert-vi-comment-4class") classifier("Video này thật sự rất bổ ích và thú vị!") ``` ## 📾 Dataset * [Vietnamese Social Comments dataset](https://huggingface.co/datasets/vanhai123/vietnamese-social-comments) ## 👤 Tác giả * Hà Văn Hải – [vanhai11203@gmail.com](mailto:vanhai11203@gmail.com) * Hugging Face: [vanhai123](https://huggingface.co/vanhai123) ##
bamec66557/Qwen3-14B-example
bamec66557
2025-05-28T09:31:24Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "mergekit", "merge", "conversational", "arxiv:2306.01708", "base_model:Qwen/Qwen3-14B", "base_model:merge:Qwen/Qwen3-14B", "base_model:bamec66557/Qwen3-14B-QueWhen", "base_model:merge:bamec66557/Qwen3-14B-QueWhen", "base_model:mrm8488/Qwen3-14B-ft-limo", "base_model:merge:mrm8488/Qwen3-14B-ft-limo", "base_model:soob3123/GrayLine-Qwen3-14B", "base_model:merge:soob3123/GrayLine-Qwen3-14B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-28T09:11:59Z
--- base_model: - bamec66557/Qwen3-14B-QueWhen - mrm8488/Qwen3-14B-ft-limo - soob3123/GrayLine-Qwen3-14B - Qwen/Qwen3-14B library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [Qwen/Qwen3-14B](https://huggingface.co/Qwen/Qwen3-14B) as a base. ### Models Merged The following models were included in the merge: * [bamec66557/Qwen3-14B-QueWhen](https://huggingface.co/bamec66557/Qwen3-14B-QueWhen) * [mrm8488/Qwen3-14B-ft-limo](https://huggingface.co/mrm8488/Qwen3-14B-ft-limo) * [soob3123/GrayLine-Qwen3-14B](https://huggingface.co/soob3123/GrayLine-Qwen3-14B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: mrm8488/Qwen3-14B-ft-limo parameters: density: [1, 0.7, 0.1] # density gradient weight: 1.0 - model: bamec66557/Qwen3-14B-QueWhen parameters: density: 0.5 weight: [0, 0.3, 0.7, 1] # weight gradient - model: soob3123/GrayLine-Qwen3-14B parameters: density: 0.33 weight: - filter: mlp value: 0.5 - value: 0 merge_method: ties base_model: Qwen/Qwen3-14B parameters: normalize: true int8_mask: true dtype: float16 ```
xzxiong/my_model
xzxiong
2025-05-28T08:27:52Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-28T08:27:37Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sameerraza/gemma-7b-it-lora
sameerraza
2025-05-28T07:17:51Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:google/gemma-7b-it", "base_model:adapter:google/gemma-7b-it", "region:us" ]
null
2025-05-28T07:15:29Z
--- base_model: google/gemma-7b-it library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.14.0
Cloudmaster/Llama-3.2-3B-torchao-final-wattn
Cloudmaster
2025-05-28T06:41:58Z
12
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "torchao", "region:us" ]
text-generation
2025-05-27T06:52:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
tanspring/cus_fb87c86b-e006-4adf-905f-3ecadcfc30e6
tanspring
2025-05-28T05:33:39Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:jingyeom/seal3.1.6n_7b", "base_model:finetune:jingyeom/seal3.1.6n_7b", "endpoints_compatible", "region:us" ]
null
2025-05-28T05:33:02Z
--- base_model: jingyeom/seal3.1.6n_7b library_name: transformers model_name: cus_fb87c86b-e006-4adf-905f-3ecadcfc30e6 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for cus_fb87c86b-e006-4adf-905f-3ecadcfc30e6 This model is a fine-tuned version of [jingyeom/seal3.1.6n_7b](https://huggingface.co/jingyeom/seal3.1.6n_7b). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="tanspring/cus_fb87c86b-e006-4adf-905f-3ecadcfc30e6", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/tanngospring/SN56_Finetuning/runs/mb4p3h5u) This model was trained with SFT. ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
MMReasoning/gemma_models_raft_rw0
MMReasoning
2025-05-28T05:09:25Z
0
0
null
[ "safetensors", "license:apache-2.0", "region:us" ]
null
2025-05-28T05:05:36Z
--- license: apache-2.0 ---
hnv2520/excavator_Gemma3_12B_4bit_3e
hnv2520
2025-05-28T04:42:38Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/gemma-3-12b-it-unsloth-bnb-4bit", "base_model:quantized:unsloth/gemma-3-12b-it-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
image-text-to-text
2025-05-28T04:38:10Z
--- base_model: unsloth/gemma-3-12b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** hnv2520 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-12b-it-unsloth-bnb-4bit This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
llanguagemtrainer/qwen2.5_vl_instruct_ft
llanguagemtrainer
2025-05-28T04:25:41Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mllama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-28T04:25:34Z
--- base_model: unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mllama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** llanguagemtrainer - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit This mllama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
tea9873/Hands-on-Qwen3-4B
tea9873
2025-05-28T02:56:41Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen3", "trl", "en", "base_model:unsloth/Qwen3-4B-Base", "base_model:finetune:unsloth/Qwen3-4B-Base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-28T02:56:31Z
--- base_model: unsloth/Qwen3-4B-Base tags: - text-generation-inference - transformers - unsloth - qwen3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** tea9873 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen3-4B-Base This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
bobby97/step3_4e100775-be21-40ab-905e-95df5d44e3d7
bobby97
2025-05-27T23:40:21Z
0
0
diffusers
[ "diffusers", "text-to-image", "diffusers-training", "lora", "flux", "flux-diffusers", "template:sd-lora", "base_model:black-forest-labs/FLUX.1-Fill-dev", "base_model:adapter:black-forest-labs/FLUX.1-Fill-dev", "license:other", "region:us" ]
text-to-image
2025-05-27T23:38:50Z
--- base_model: black-forest-labs/FLUX.1-Fill-dev library_name: diffusers license: other instance_prompt: A close-up of a dried leaf with a textured, dark surface. Fine lines and subtle veins are visible, highlighting the natural details and giving the leaf a delicate appearance. widget: [] tags: - text-to-image - diffusers-training - diffusers - lora - flux - flux-diffusers - template:sd-lora --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> Flux Fill based Inpainting model ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
matthewchung74/tst_stocks
matthewchung74
2025-05-27T22:23:20Z
0
0
transformers
[ "transformers", "safetensors", "patchtst", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-26T23:12:20Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
paudbatlle/ppo-Huggy
paudbatlle
2025-05-27T18:28:54Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2025-05-27T18:28:42Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: paudbatlle/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Jsevisal/balanced-augmented-ft-bert-large-gest-pred-seqeval-partialmatch
Jsevisal
2025-05-27T16:51:53Z
15
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "dataset:Jsevisal/balanced_augmented_dataset", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-04-19T10:10:00Z
--- license: other tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: balanced-augmented-bert-gest-pred results: [] datasets: - Jsevisal/balanced_augmented_dataset --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # balanced-augmented-bert-gest-pred This model is a fine-tuned version of [bert-large-cased-finetuned-conll03-english](https://huggingface.co/dbmdz/bert-large-cased-finetuned-conll03-english) on the Jsevisal/balanced_augmented_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.8998 - F1: 0.8171 - Accuracy: 0.7911 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2 ### LICENSE Copyright (c) 2014, Universidad Carlos III de Madrid. Todos los derechos reservados. Este software es propiedad de la Universidad Carlos III de Madrid, grupo de investigación Robots Sociales. La Universidad Carlos III de Madrid es titular en exclusiva de los derechos de propiedad intelectual de este software. Queda prohibido cualquier uso indebido o no autorizado, entre estos, a título enunciativo pero no limitativo, la reproducción, fijación, distribución, comunicación pública, ingeniería inversa y/o transformación sobre dicho software, ya sea total o parcialmente, siendo el responsable del uso indebido o no autorizado también responsable de las consecuencias legales que pudieran derivarse de sus actos.
Link-othoi-1-13-video/18.New.Video.othoi.1.13.video.link.othoiiii.mms.video.othoiiii.video.link
Link-othoi-1-13-video
2025-05-27T11:19:16Z
0
0
null
[ "region:us" ]
null
2025-05-27T11:19:09Z
<a href="https://sdu.sk/uLf"><img src="https://i.ibb.co.com/xMMVF88/686577567.gif" alt="fsd" /></a> <a href="https://sdu.sk/uLf" rel="nofollow">►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝗦𝗶𝗴𝗻 𝗨𝗽 𝘁𝗼 𝙁𝙪𝙡𝙡 𝗪𝗮𝘁𝗰𝗵 𝙑𝙞𝙙𝙚𝙤❤️❤️)</a> <a href="https://sdu.sk/uLf" rel="nofollow">🔴 ➤►✅𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐥𝐢𝐧𝐤)</a>
phospho-app/nonosax-gr00t-example_dataset_5-3368j
phospho-app
2025-05-27T09:45:47Z
0
0
null
[ "safetensors", "gr00t_n1", "phosphobot", "gr00t", "region:us" ]
null
2025-05-27T09:10:37Z
--- tags: - phosphobot - gr00t task_categories: - robotics --- # gr00t Model - phospho Training Pipeline ## This model was trained using **phospho**. Training was successfull, try it out on your robot! ## Training parameters: - **Dataset**: [nonosax/example_dataset_5](https://huggingface.co/datasets/nonosax/example_dataset_5) - **Wandb run URL**: None - **Epochs**: 10 - **Batch size**: 27 - **Training steps**: None 📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme) 🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
amelfr/finetuning-tweet-sentiment-model
amelfr
2025-05-27T09:39:30Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-05-27T09:01:12Z
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: finetuning-tweet-sentiment-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-tweet-sentiment-model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.49.0 - Pytorch 2.5.1 - Datasets 3.3.2 - Tokenizers 0.21.0
Keshav022/deepseek-r1-final-arc-expert
Keshav022
2025-05-26T23:35:32Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-26T23:35:09Z
--- base_model: unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Keshav022 - **License:** apache-2.0 - **Finetuned from model :** unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mlfoundations-dev/meta_chat_reasoning_25_75_system
mlfoundations-dev
2025-05-26T22:47:39Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-26T15:53:41Z
--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-7B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: meta_chat_reasoning_25_75_system results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # meta_chat_reasoning_25_75_system This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the mlfoundations-dev/meta_chat_reasoning_25_75_system dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 32 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - total_eval_batch_size: 256 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.20.3
golf2248/sn11-v5-14
golf2248
2025-05-26T12:20:24Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "gemma", "google", "Bifröst", "Bifrost", "code", "text-generation", "conversational", "base_model:google/gemma-3-27b-it", "base_model:finetune:google/gemma-3-27b-it", "license:gemma", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-26T12:20:20Z
--- license: gemma library_name: transformers pipeline_tag: text-generation extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: >- To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license base_model: google/gemma-3-27b-it tags: - transformers - gemma3 - gemma - google - Bifröst - Bifrost - code --- ## Bifröst-27B ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64a834a8895fd6416e29576f/sAXfe0cQdULI_GEVxBstw.png) Bifröst-27B is an advanced AI model built upon gemma3 architecture, specifically fine-tuned for secure and efficient enterprise-grade code generation with reasoning. Designed to meet rigorous standards of safety, accuracy, and reliability, Bifröst empowers organizations to streamline software development workflows while prioritizing security and compliance. ### Model Details - **Model Name:** Bifröst-27B - **Base Architecture:** gemma3 - **Application:** Enterprise Secure Code Generation - **Release Date:** 16-March-2025 ### Intended Use Bifröst is designed explicitly for: - Generating secure, efficient, and high-quality code. - Supporting development tasks within regulated enterprise environments. - Enhancing productivity by automating routine coding tasks without compromising security. ### Features - **Security-Focused Training:** Specialized training regimen emphasizing secure coding practices, vulnerability reduction, and adherence to security standards. - **Enterprise-Optimized Performance:** Tailored to support various programming languages and enterprise frameworks with robust, context-aware suggestions. - **Compliance-Driven Design:** Incorporates features to aid in maintaining compliance with industry-specific standards (e.g., GDPR, HIPAA, SOC 2). ### Limitations - Bifröst should be used under human supervision to ensure code correctness and security compliance. - Model-generated code should undergo appropriate security and quality assurance checks before deployment. ### Ethical Considerations - Users are encouraged to perform regular audits and compliance checks on generated outputs. - Enterprises should implement responsible AI practices to mitigate biases or unintended consequences. ### Usage Below are some quick-start instructions for using the model with the `transformers` library. #### Installation ```sh $ pip install git+https://github.com/huggingface/transformers@v4.49.0-Gemma-3 ``` #### Running with the `pipeline` API ```python from transformers import pipeline import torch pipe = pipeline( "text-generation", model="OpenGenerativeAI/Bifrost-27B", device="cuda", torch_dtype=torch.bfloat16 ) messages = [{"role": "user", "content": "Generate a secure API key management system."}] output = pipe(text=messages, max_new_tokens=200) print(output[0]["generated_text"]) ``` ## Terms of Use This model is released under the **Gemma license**. Users must comply with [Google's Gemma Terms of Use](https://ai.google.dev/gemma/terms), including restrictions on redistribution, modification, and commercial use.
phiwi/Meta-Llama-3.1-8B-Instruct-bnb-4bit_regulatome_tf_lora
phiwi
2025-05-26T09:35:05Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-05-19T13:13:12Z
--- base_model: unsloth/meta-llama-3.1-8b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** phiwi - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
wilsonafolabi/yorubanumerals-expert-system
wilsonafolabi
2025-05-25T17:59:51Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-05-25T17:59:51Z
--- license: apache-2.0 ---
Raydennz/Voice_Cloner
Raydennz
2025-05-25T17:43:44Z
0
0
null
[ "region:us" ]
null
2025-05-25T17:38:17Z
## OuteTTS 🌐 [Website](https://www.outeai.com) | 🤗 [Hugging Face](https://huggingface.co/OuteAI) | 💬 [Discord](https://discord.gg/vyBM87kAmf) | 𝕏 [X (Twitter)](https://twitter.com/OuteAI) | 📰 [Blog](https://www.outeai.com/blog) [![HuggingFace](https://img.shields.io/badge/🤗%20Hugging%20Face-Llama_OuteTTS_1.0_1B-blue)](https://huggingface.co/OuteAI/Llama-OuteTTS-1.0-1B) [![HuggingFace](https://img.shields.io/badge/🤗%20Hugging%20Face-Llama_OuteTTS_1.0_0.6B-blue)](https://huggingface.co/OuteAI/OuteTTS-1.0-0.6B) [![PyPI](https://img.shields.io/badge/PyPI-outetts-5c6c7a)](https://pypi.org/project/outetts/) [![npm](https://img.shields.io/badge/npm-outetts-734440)](https://www.npmjs.com/package/outetts) ## Compatibility OuteTTS supports the following backends: | **Backend** | **Type** | **Installation** | |-----------------------------|---------|----------------------------| | [Llama.cpp Python Bindings](https://github.com/abetlen/llama-cpp-python) | Python | ✅ Installed by default | | [Llama.cpp Server](https://github.com/ggml-org/llama.cpp/tree/master/tools/server) | Python | ✅ Installed by default | | [Llama.cpp Server Async (Batched)](https://github.com/ggml-org/llama.cpp/tree/master/tools/server) | Python | ✅ Installed by default | | [Hugging Face Transformers](https://github.com/huggingface/transformers) | Python | ✅ Installed by default | | [ExLlamaV2 & ExLlamaV2 Async (Batched)](https://github.com/turboderp/exllamav2) | Python | ❌ Requires manual installation | | [VLLM (Batched) **Experimental support**](https://github.com/vllm-project/vllm) | Python | ❌ Requires manual installation | | [Transformers.js](https://github.com/huggingface/transformers.js) | JavaScript | NPM package | | [Llama.cpp Directly](https://github.com/ggml-org/llama.cpp/tree/master/examples/tts) | C++ | External library | ### ⚡ **Batched RTF Benchmarks** Tested with **NVIDIA L40S GPU** ![rtf](docs/assets/rtf.png) ## Installation ### OuteTTS Installation Guide OuteTTS now installs the llama.cpp Python bindings by default. Therefore, you must specify the installation based on your hardware. For more detailed instructions on building llama.cpp, refer to the following resources: [llama.cpp Build](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md) and [llama.cpp Python](https://github.com/abetlen/llama-cpp-python?tab=readme-ov-file#supported-backends) ### Pip: <details> <summary>Transformers + llama.cpp CPU</summary> ```bash pip install outetts --upgrade ``` </details> <details> <summary>Transformers + llama.cpp CUDA (NVIDIA GPUs)</summary> For systems with NVIDIA GPUs and CUDA installed: ```bash CMAKE_ARGS="-DGGML_CUDA=on" pip install outetts --upgrade ``` </details> <details> <summary>Transformers + llama.cpp ROCm/HIP (AMD GPUs)</summary> For systems with AMD GPUs and ROCm (specify your DAMDGPU_TARGETS) installed: ```bash CMAKE_ARGS="-DGGML_HIPBLAS=on" pip install outetts --upgrade ``` </details> <details> <summary>Transformers + llama.cpp Vulkan (Cross-platform GPU)</summary> For systems with Vulkan support: ```bash CMAKE_ARGS="-DGGML_VULKAN=on" pip install outetts --upgrade ``` </details> <details> <summary>Transformers + llama.cpp Metal (Apple Silicon/Mac)</summary> For macOS systems with Apple Silicon or compatible GPUs: ```bash CMAKE_ARGS="-DGGML_METAL=on" pip install outetts --upgrade ``` </details> ## Usage ## 📚 Documentation For a complete usage guide, refer to the interface documentation here: [![Documentation](https://img.shields.io/badge/📖_Read_The_Docs-Interface_Guide-blue?style=for-the-badge)](https://github.com/edwko/OuteTTS/blob/main/docs/interface_usage.md) ### Basic Usage > [!TIP] > Currently, only **one default English voice** is available for testing. > > You can easily create your own speaker profiles in just a few lines by following this guide: > > 👉 [Creating Custom Speaker Profiles](https://github.com/edwko/OuteTTS/blob/main/docs/interface_usage.md#creating-custom-speaker-profiles) ```python import outetts # Initialize the interface interface = outetts.Interface( config=outetts.ModelConfig.auto_config( model=outetts.Models.VERSION_1_0_SIZE_1B, # For llama.cpp backend backend=outetts.Backend.LLAMACPP, quantization=outetts.LlamaCppQuantization.FP16 # For transformers backend # backend=outetts.Backend.HF, ) ) # Load the default speaker profile speaker = interface.load_default_speaker("EN-FEMALE-1-NEUTRAL") # Or create your own speaker profiles in seconds and reuse them instantly # speaker = interface.create_speaker("path/to/audio.wav") # interface.save_speaker(speaker, "speaker.json") # speaker = interface.load_speaker("speaker.json") # Generate speech output = interface.generate( config=outetts.GenerationConfig( text="Hello, how are you doing?", speaker=speaker, ) ) # Save to file output.save("output.wav") ``` ## Usage Recommendations for OuteTTS version 1.0 > [!IMPORTANT] > **Important Sampling Considerations** > > When using OuteTTS version 1.0, it is crucial to use the settings specified in the [Sampling Configuration](#sampling-configuration) section. > The **repetition penalty implementation** is particularly important - this model requires penalization applied to a **64-token recent window**, > rather than across the entire context window. Penalizing the entire context will cause the model to produce **broken or low-quality output**. > > To address this limitation, all necessary samplers and patches for all backends are set up automatically in the **outetts** library. > If using a custom implementation, ensure you correctly implement these requirements. ### Speaker Reference The model is designed to be used with a speaker reference. Without one, it generates random vocal characteristics, often leading to lower-quality outputs. The model inherits the referenced speaker's emotion, style, and accent. Therefore, when transcribing to other languages with the same speaker, you may observe the model retaining the original accent. For example, if you use a Japanese speaker and continue speech in English, the model may tend to use a Japanese accent. ### Multilingual Application It is recommended to create a speaker profile in the language you intend to use. This helps achieve the best results in that specific language, including tone, accent, and linguistic features. While the model supports cross-lingual speech, it still relies on the reference speaker. If the speaker has a distinct accent—such as British English—other languages may carry that accent as well. ### Optimal Audio Length - **Best Performance:** Generate audio around **42 seconds** in a single run (approximately 8,192 tokens). It is recomended not to near the limits of this windows when generating. Usually, the best results are up to 7,000 tokens. - **Context Reduction with Speaker Reference:** If the speaker reference is 10 seconds long, the effective context is reduced to approximately 32 seconds. ### Temperature Setting Recommendations Testing shows that a temperature of **0.4** is an ideal starting point for accuracy (with the sampling settings below). However, some voice references may benefit from higher temperatures for enhanced expressiveness or slightly lower temperatures for more precise voice replication. ### Verifying Speaker Encoding If the cloned voice quality is subpar, check the encoded speaker sample. ```python interface.decode_and_save_speaker(speaker=your_speaker, path="speaker.wav") ``` The DAC audio reconstruction model is lossy, and samples with clipping, excessive loudness, or unusual vocal features may introduce encoding issues that impact output quality. ### Sampling Configuration For optimal results with this TTS model, use the following sampling settings. | Parameter | Value | |-------------------|----------| | Temperature | 0.4 | | Repetition Penalty| 1.1 | | **Repetition Range** | **64** | | Top-k | 40 | | Top-p | 0.9 | | Min-p | 0.05 |
kavinda123321/speecht5_finetuned_emirhan_tr
kavinda123321
2025-05-25T07:05:03Z
9
0
transformers
[ "transformers", "tensorboard", "safetensors", "speecht5", "text-to-audio", "generated_from_trainer", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2025-05-25T06:41:42Z
--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer model-index: - name: speecht5_finetuned_emirhan_tr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_emirhan_tr This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3217 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5172 | 0.3410 | 100 | 0.4187 | | 0.4227 | 0.6820 | 200 | 0.3789 | | 0.3648 | 1.0205 | 300 | 0.3383 | | 0.3537 | 1.3615 | 400 | 0.3284 | | 0.3487 | 1.7025 | 500 | 0.3217 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 2.14.4 - Tokenizers 0.21.1
phospho-app/omourier-ACT-Lego_bleu-f30zm
phospho-app
2025-05-24T08:47:11Z
0
0
null
[ "safetensors", "phosphobot", "act", "region:us" ]
null
2025-05-24T08:05:29Z
--- tags: - phosphobot - act task_categories: - robotics --- # act Model - phospho Training Pipeline ## This model was trained using **phospho**. Training was successfull, try it out on your robot! ## Training parameters: - **Dataset**: [omourier/Lego_bleu](https://huggingface.co/datasets/omourier/Lego_bleu) - **Wandb run URL**: None - **Epochs**: None - **Batch size**: 40 - **Training steps**: 8000 📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme) 🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)