modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-29 12:28:39
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
526 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-29 12:28:30
card
stringlengths
11
1.01M
avialfont/dummy-finetuned-imdb
avialfont
2022-04-04T10:53:31Z
3
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-04-04T10:06:50Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: avialfont/dummy-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # avialfont/dummy-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.8606 - Validation Loss: 2.5865 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -688, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.8606 | 2.5865 | 0 | ### Framework versions - Transformers 4.16.2 - TensorFlow 2.8.0 - Datasets 1.18.3 - Tokenizers 0.11.6
blacktree/distilbert-base-uncased-finetuned-sst2
blacktree
2022-04-04T10:44:22Z
15
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-01T12:29:26Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-sst2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.5091743119266054 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-sst2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7027 - Accuracy: 0.5092 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.01 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6868 | 1.0 | 1053 | 0.7027 | 0.5092 | | 0.6868 | 2.0 | 2106 | 0.7027 | 0.5092 | | 0.6867 | 3.0 | 3159 | 0.6970 | 0.5092 | | 0.687 | 4.0 | 4212 | 0.6992 | 0.5092 | | 0.6866 | 5.0 | 5265 | 0.6983 | 0.5092 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
ikekobby/fake-real-news-classifier
ikekobby
2022-04-04T09:23:36Z
5
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-03T17:57:15Z
Model based trained on 30% of the kaggle public data on fake and reals news article. The model achieved an `auc` of 1.0, precision, recall and f1score all at score of 1.0. * Task;- The predictor classifies news articles into either fake or real news. * It is a transformer model trained using the `ktrain` library on 30% of dataset of size 194MB after preprocessing. * Metrics used are recall,, precision, f1score and roc_auc_score.
tanlq/vit-base-patch16-224-in21k-finetuned-cifar10
tanlq
2022-04-04T08:20:16Z
76
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:cifar10", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-31T03:09:09Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cifar10 metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-finetuned-cifar10 results: - task: name: Image Classification type: image-classification dataset: name: cifar10 type: cifar10 args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9875 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k-finetuned-cifar10 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cifar10 dataset. It achieves the following results on the evaluation set: - Loss: 0.0503 - Accuracy: 0.9875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3118 | 1.0 | 1562 | 0.1135 | 0.9778 | | 0.2717 | 2.0 | 3124 | 0.0619 | 0.9867 | | 0.1964 | 3.0 | 4686 | 0.0503 | 0.9875 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.11.6
DMetaSoul/sbert-chinese-general-v2
DMetaSoul
2022-04-04T07:22:23Z
1,656
33
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "semantic-search", "chinese", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-25T08:59:33Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - semantic-search - chinese --- # DMetaSoul/sbert-chinese-general-v2 此模型基于 [bert-base-chinese](https://huggingface.co/bert-base-chinese) 版本 BERT 模型,在百万级语义相似数据集 [SimCLUE](https://github.com/CLUEbenchmark/SimCLUE) 上进行训练,适用于**通用语义匹配**场景,从效果来看该模型在各种任务上**泛化能力更好**。 注:此模型的[轻量化版本](https://huggingface.co/DMetaSoul/sbert-chinese-general-v2-distill),也已经开源啦! # Usage ## 1. Sentence-Transformers 通过 [sentence-transformers](https://www.SBERT.net) 框架来使用该模型,首先进行安装: ``` pip install -U sentence-transformers ``` 然后使用下面的代码来载入该模型并进行文本表征向量的提取: ```python from sentence_transformers import SentenceTransformer sentences = ["我的儿子!他猛然间喊道,我的儿子在哪儿?", "我的儿子呢!他突然喊道,我的儿子在哪里?"] model = SentenceTransformer('DMetaSoul/sbert-chinese-general-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## 2. HuggingFace Transformers 如果不想使用 [sentence-transformers](https://www.SBERT.net) 的话,也可以通过 HuggingFace Transformers 来载入该模型并进行文本向量抽取: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["我的儿子!他猛然间喊道,我的儿子在哪儿?", "我的儿子呢!他突然喊道,我的儿子在哪里?"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('DMetaSoul/sbert-chinese-general-v2') model = AutoModel.from_pretrained('DMetaSoul/sbert-chinese-general-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation 该模型在公开的几个语义匹配数据集上进行了评测,计算了向量相似度跟真实标签之间的相关性系数: | | **csts_dev** | **csts_test** | **afqmc** | **lcqmc** | **bqcorpus** | **pawsx** | **xiaobu** | | ---------------------------- | ------------ | ------------- | ---------- | ---------- | ------------ | ---------- | ---------- | | **sbert-chinese-general-v1** | **84.54%** | **82.17%** | 23.80% | 65.94% | 45.52% | 11.52% | 48.51% | | **sbert-chinese-general-v2** | 77.20% | 72.60% | **36.80%** | **76.92%** | **49.63%** | **16.24%** | **63.16%** | 这里对比了本模型跟之前我们发布 [sbert-chinese-general-v1](https://huggingface.co/DMetaSoul/sbert-chinese-general-v1) 之间的差异,可以看到本模型在多个任务上的泛化能力更好。 ## Citing & Authors E-mail: xiaowenbin@dmetasoul.com
DMetaSoul/sbert-chinese-qmc-finance-v1
DMetaSoul
2022-04-04T07:21:28Z
5
2
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "semantic-search", "chinese", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-25T10:23:55Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - semantic-search - chinese --- # DMetaSoul/sbert-chinese-qmc-finance-v1 此模型基于 [bert-base-chinese](https://huggingface.co/bert-base-chinese) 版本 BERT 模型,在大规模银行问题匹配数据集([BQCorpus](http://icrc.hitsz.edu.cn/info/1037/1162.htm))上进行训练调优,适用于**金融领域的问题匹配**场景,比如: - 8千日利息400元? VS 10000元日利息多少钱 - 提前还款是按全额计息 VS 还款扣款不成功怎么还款? - 为什么我借钱交易失败 VS 刚申请的借款为什么会失败 注:此模型的[轻量化版本](https://huggingface.co/DMetaSoul/sbert-chinese-qmc-finance-v1-distill),也已经开源啦! # Usage ## 1. Sentence-Transformers 通过 [sentence-transformers](https://www.SBERT.net) 框架来使用该模型,首先进行安装: ``` pip install -U sentence-transformers ``` 然后使用下面的代码来载入该模型并进行文本表征向量的提取: ```python from sentence_transformers import SentenceTransformer sentences = ["到期不能按时还款怎么办", "剩余欠款还有多少?"] model = SentenceTransformer('DMetaSoul/sbert-chinese-qmc-finance-v1') embeddings = model.encode(sentences) print(embeddings) ``` ## 2. HuggingFace Transformers 如果不想使用 [sentence-transformers](https://www.SBERT.net) 的话,也可以通过 HuggingFace Transformers 来载入该模型并进行文本向量抽取: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["到期不能按时还款怎么办", "剩余欠款还有多少?"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('DMetaSoul/sbert-chinese-qmc-finance-v1') model = AutoModel.from_pretrained('DMetaSoul/sbert-chinese-qmc-finance-v1') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation 该模型在公开的几个语义匹配数据集上进行了评测,计算了向量相似度跟真实标签之间的相关性系数: | | **csts_dev** | **csts_test** | **afqmc** | **lcqmc** | **bqcorpus** | **pawsx** | **xiaobu** | | -------------------------------- | ------------ | ------------- | --------- | --------- | ------------ | --------- | ---------- | | **sbert-chinese-qmc-finance-v1** | 77.40% | 74.55% | 36.01% | 75.75% | 73.25% | 11.58% | 54.76% | ## Citing & Authors E-mail: xiaowenbin@dmetasoul.com
Yaxin/roberta-large-ernie2-skep-en
Yaxin
2022-04-04T07:18:20Z
4
2
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "en", "arxiv:2005.05635", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-04-04T06:27:48Z
--- language: en --- # SKEP-Roberta ## Introduction SKEP (SKEP: Sentiment Knowledge Enhanced Pre-training for Sentiment Analysis) is proposed by Baidu in 2020, SKEP propose Sentiment Knowledge Enhanced Pre-training for sentiment analysis. Sentiment masking and three sentiment pre-training objectives are designed to incorporate various types of knowledge for pre-training model. More detail: https://aclanthology.org/2020.acl-main.374.pdf ## Released Model Info |Model Name|Language|Model Structure| |:---:|:---:|:---:| |skep-roberta-large| English |Layer:24, Hidden:1024, Heads:24| This released pytorch model is converted from the officially released PaddlePaddle SKEP model and a series of experiments have been conducted to check the accuracy of the conversion. - Official PaddlePaddle SKEP repo: 1. https://github.com/PaddlePaddle/PaddleNLP/blob/develop/paddlenlp/transformers/skep 2. https://github.com/baidu/Senta - Pytorch Conversion repo: Not released yet ## How to use ```Python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Yaxin/roberta-large-ernie2-skep-en") model = AutoModel.from_pretrained("Yaxin/roberta-large-ernie2-skep-en") ``` ``` #!/usr/bin/env python #encoding: utf-8 import torch from transformers import RobertaTokenizer, RobertaForMaskedLM tokenizer = RobertaTokenizer.from_pretrained('Yaxin/roberta-large-ernie2-skep-en') input_tx = "<s> He like play with student, so he became a <mask> after graduation </s>" # input_tx = "<s> He is a <mask> and likes to get along with his students </s>" tokenized_text = tokenizer.tokenize(input_tx) indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text) tokens_tensor = torch.tensor([indexed_tokens]) segments_tensors = torch.tensor([[0] * len(tokenized_text)]) model = RobertaForMaskedLM.from_pretrained('Yaxin/roberta-large-ernie2-skep-en') model.eval() with torch.no_grad(): outputs = model(tokens_tensor, token_type_ids=segments_tensors) predictions = outputs[0] predicted_index = [torch.argmax(predictions[0, i]).item() for i in range(0, (len(tokenized_text) - 1))] predicted_token = [tokenizer.convert_ids_to_tokens([predicted_index[x]])[0] for x in range(1, (len(tokenized_text) - 1))] print('Predicted token is:', predicted_token) ``` ## Citation ```bibtex @article{tian2020skep, title={SKEP: Sentiment knowledge enhanced pre-training for sentiment analysis}, author={Tian, Hao and Gao, Can and Xiao, Xinyan and Liu, Hao and He, Bolei and Wu, Hua and Wang, Haifeng and Wu, Feng}, journal={arXiv preprint arXiv:2005.05635}, year={2020} } ``` ``` reference: https://github.com/nghuyong/ERNIE-Pytorch ```
vkamthe/upside_down_detector
vkamthe
2022-04-04T07:01:28Z
5
0
tf-keras
[ "tf-keras", "tag1", "tag2", "dataset:dataset1", "dataset:dataset2", "license:cc", "region:us" ]
null
2022-04-04T06:16:41Z
--- language: - "List of ISO 639-1 code for your language" - lang1 - lang2 thumbnail: "url to a thumbnail used in social sharing" tags: - tag1 - tag2 license: "cc" datasets: - dataset1 - dataset2 metrics: - metric1 - metric2 --- This is Image Orientation Detector by Vikram Kamthe Given an image, it will classify it into Original Image or Upside Down Image
BigSalmon/GPT2Neo1.3BPoints
BigSalmon
2022-04-04T05:14:11Z
5
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-04-04T04:17:46Z
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/GPT2Neo1.3BPoints") model = AutoModelForCausalLM.from_pretrained("BigSalmon/GPT2Neo1.3BPoints") ``` ``` - moviepass to return - this summer - swooped up by - original co-founder stacy spikes text: the re-launch of moviepass is set to transpire this summer, ( rescued at the hands of / under the stewardship of / spearheaded by ) its founding father, stacy spikes. *** - middle schools do not have recess - should get back to doing it - amazing for communication - and getting kids to move around text: a casualty of the education reform craze, recess has been excised from middle schools. this is tragic, for it is instrumental in honing children's communication skills and encouraging physical activity. *** - ```
somosnlp-hackathon-2022/bertin-roberta-base-finetuning-esnli
somosnlp-hackathon-2022
2022-04-04T01:45:21Z
74
7
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "es", "dataset:hackathon-pln-es/nli-es", "arxiv:1908.10084", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-28T19:08:33Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity language: - es datasets: - hackathon-pln-es/nli-es widget: - text: "A ver si nos tenemos que poner todos en huelga hasta cobrar lo que queramos." - text: "La huelga es el método de lucha más eficaz para conseguir mejoras en el salario." - text: "Tendremos que optar por hacer una huelga para cobrar lo que queremos." - text: "Queda descartada la huelga aunque no cobremos lo que queramos." --- # bertin-roberta-base-finetuning-esnli This is a [sentence-transformers](https://www.SBERT.net) model trained on a collection of NLI tasks for Spanish. It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. Based around the siamese networks approach from [this paper](https://arxiv.org/pdf/1908.10084.pdf). <!--- Describe your model here --> You can see a demo for this model [here](https://huggingface.co/spaces/hackathon-pln-es/Sentence-Embedding-Bertin). You can find our other model, **paraphrase-spanish-distilroberta** [here](https://huggingface.co/hackathon-pln-es/paraphrase-spanish-distilroberta) and its demo [here](https://huggingface.co/spaces/hackathon-pln-es/Paraphrase-Bertin). ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["Este es un ejemplo", "Cada oración es transformada"] model = SentenceTransformer('hackathon-pln-es/bertin-roberta-base-finetuning-esnli') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('hackathon-pln-es/bertin-roberta-base-finetuning-esnli') model = AutoModel.from_pretrained('hackathon-pln-es/bertin-roberta-base-finetuning-esnli') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> Our model was evaluated on the task of Semantic Textual Similarity using the [SemEval-2015 Task](https://alt.qcri.org/semeval2015/task2/) for [Spanish](http://alt.qcri.org/semeval2015/task2/data/uploads/sts2015-es-test.zip). We measure | | [BETO STS](https://huggingface.co/espejelomar/sentece-embeddings-BETO) | BERTIN STS (this model) | Relative improvement | |-------------------:|---------:|-----------:|---------------------:| | cosine_pearson | 0.609803 | 0.683188 | +12.03 | | cosine_spearman | 0.528776 | 0.615916 | +16.48 | | euclidean_pearson | 0.590613 | 0.672601 | +13.88 | | euclidean_spearman | 0.526529 | 0.611539 | +16.15 | | manhattan_pearson | 0.589108 | 0.672040 | +14.08 | | manhattan_spearman | 0.525910 | 0.610517 | +16.09 | | dot_pearson | 0.544078 | 0.600517 | +10.37 | | dot_spearman | 0.460427 | 0.521260 | +13.21 | ## Training The model was trained with the parameters: **Dataset** We used a collection of datasets of Natural Language Inference as training data: - [ESXNLI](https://raw.githubusercontent.com/artetxem/esxnli/master/esxnli.tsv), only the part in spanish - [SNLI](https://nlp.stanford.edu/projects/snli/), automatically translated - [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/), automatically translated The whole dataset used is available [here](https://huggingface.co/datasets/hackathon-pln-es/nli-es). Here we leave the trick we used to increase the amount of data for training here: ``` for row in reader: if row['language'] == 'es': sent1 = row['sentence1'].strip() sent2 = row['sentence2'].strip() add_to_samples(sent1, sent2, row['gold_label']) add_to_samples(sent2, sent1, row['gold_label']) #Also add the opposite ``` **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 1818 with parameters: ``` {'batch_size': 64} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 909, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 514, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Authors [Anibal Pérez](https://huggingface.co/Anarpego), [Emilio Tomás Ariza](https://huggingface.co/medardodt), [Lautaro Gesuelli](https://huggingface.co/Lgesuelli) y [Mauricio Mazuecos](https://huggingface.co/mmazuecos).
hamedkhaledi/persain-flair-upos
hamedkhaledi
2022-04-03T22:15:00Z
29
0
flair
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "fa", "dataset:ontonotes", "region:us" ]
token-classification
2022-03-25T07:27:51Z
--- tags: - flair - token-classification - sequence-tagger-model language: - fa datasets: - ontonotes widget: - text: "مقامات مصری به خاطر حفظ ثبات کشور در منطقهای پرآشوب بر خود میبالند ، در حالی که این کشور در طول ۱۶ سال گذشته تنها هشت سال آنرا بدون اعلام وضعیت اضطراری سپری کرده است ." --- ## Persian Universal Part-of-Speech Tagging in Flair This is the universal part-of-speech tagging model for Persian that ships with [Flair](https://github.com/flairNLP/flair/). F1-Score: **97,73** (UD_PERSIAN) Predicts Universal POS tags: | **tag** | **meaning** | |:---------------------------------:|:-----------:| |ADJ | adjective | | ADP | adposition | | ADV | adverb | | AUX | auxiliary | | CCONJ | coordinating conjunction | | DET | determiner | | INTJ | interjection | | NOUN | noun | | NUM | numeral | | PART | particle | | PRON | pronoun | | PUNCT | punctuation | | SCONJ | subordinating conjunction | | VERB | verb | | X | other | --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("hamedkhaledi/persain-flair-upos") # make example sentence sentence = Sentence("مقامات مصری به خاطر حفظ ثبات کشور در منطقهای پرآشوب بر خود میبالند .") tagger.predict(sentence) #print result print(sentence.to_tagged_string()) ``` This yields the following output: ``` مقامات <NOUN> مصری <ADJ> به <ADP> خاطر <NOUN> حفظ <NOUN> ثبات <NOUN> کشور <NOUN> در <ADP> منطقهای <NOUN> پرآشوب <ADJ> بر <ADP> خود <PRON> میبالند <VERB> . <PUNCT> ``` --- ### Results - F-score (micro) 0.9773 - F-score (macro) 0.9461 - Accuracy 0.9773 ``` By class: precision recall f1-score support NOUN 0.9770 0.9849 0.9809 6420 ADP 0.9947 0.9916 0.9932 1909 ADJ 0.9342 0.9128 0.9234 1525 PUNCT 1.0000 1.0000 1.0000 1365 VERB 0.9840 0.9711 0.9775 1141 CCONJ 0.9912 0.9937 0.9925 794 AUX 0.9622 0.9799 0.9710 546 PRON 0.9751 0.9865 0.9808 517 SCONJ 0.9797 0.9757 0.9777 494 NUM 0.9948 1.0000 0.9974 385 ADV 0.9343 0.9033 0.9185 362 DET 0.9773 0.9711 0.9742 311 PART 0.9916 1.0000 0.9958 237 INTJ 0.8889 0.8000 0.8421 10 X 0.7143 0.6250 0.6667 8 micro avg 0.9773 0.9773 0.9773 16024 macro avg 0.9533 0.9397 0.9461 16024 weighted avg 0.9772 0.9773 0.9772 16024 samples avg 0.9773 0.9773 0.9773 16024 Loss: 0.12471389770507812 ```
tbosse/bert-base-german-cased-finetuned-subj_v2_v1
tbosse
2022-04-03T19:15:50Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-04-03T17:49:37Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-german-cased-finetuned-subj_v2_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-german-cased-finetuned-subj_v2_v1 This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1587 - Precision: 0.2222 - Recall: 0.0107 - F1: 0.0204 - Accuracy: 0.9511 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 136 | 0.1569 | 0.6667 | 0.0053 | 0.0106 | 0.9522 | | No log | 2.0 | 272 | 0.1562 | 0.1667 | 0.0053 | 0.0103 | 0.9513 | | No log | 3.0 | 408 | 0.1587 | 0.2222 | 0.0107 | 0.0204 | 0.9511 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
anton-l/xtreme_s_xlsr_300m_minds14
anton-l
2022-04-03T18:54:43Z
557
2
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "minds14", "google/xtreme_s", "generated_from_trainer", "all", "dataset:google/xtreme_s", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-03-17T17:24:20Z
--- language: - all license: apache-2.0 tags: - minds14 - google/xtreme_s - generated_from_trainer datasets: - google/xtreme_s metrics: - f1 - accuracy model-index: - name: xtreme_s_xlsr_300m_minds14 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xtreme_s_xlsr_300m_minds14 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the GOOGLE/XTREME_S - MINDS14.ALL dataset. It achieves the following results on the evaluation set: - Accuracy: 0.9033 - Accuracy Cs-cz: 0.9164 - Accuracy De-de: 0.9477 - Accuracy En-au: 0.9235 - Accuracy En-gb: 0.9324 - Accuracy En-us: 0.9326 - Accuracy Es-es: 0.9177 - Accuracy Fr-fr: 0.9444 - Accuracy It-it: 0.9167 - Accuracy Ko-kr: 0.8649 - Accuracy Nl-nl: 0.9450 - Accuracy Pl-pl: 0.9146 - Accuracy Pt-pt: 0.8940 - Accuracy Ru-ru: 0.8667 - Accuracy Zh-cn: 0.7291 - F1: 0.9015 - F1 Cs-cz: 0.9154 - F1 De-de: 0.9467 - F1 En-au: 0.9199 - F1 En-gb: 0.9334 - F1 En-us: 0.9308 - F1 Es-es: 0.9158 - F1 Fr-fr: 0.9436 - F1 It-it: 0.9135 - F1 Ko-kr: 0.8642 - F1 Nl-nl: 0.9440 - F1 Pl-pl: 0.9159 - F1 Pt-pt: 0.8883 - F1 Ru-ru: 0.8646 - F1 Zh-cn: 0.7249 - Loss: 0.4119 - Loss Cs-cz: 0.3790 - Loss De-de: 0.2649 - Loss En-au: 0.3459 - Loss En-gb: 0.2853 - Loss En-us: 0.2203 - Loss Es-es: 0.2731 - Loss Fr-fr: 0.1909 - Loss It-it: 0.3520 - Loss Ko-kr: 0.5431 - Loss Nl-nl: 0.2515 - Loss Pl-pl: 0.4113 - Loss Pt-pt: 0.4798 - Loss Ru-ru: 0.6470 - Loss Zh-cn: 1.1216 - Predict Samples: 4086 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 2.6739 | 5.41 | 200 | 2.5687 | 0.0430 | 0.1190 | | 1.4953 | 10.81 | 400 | 1.6052 | 0.5550 | 0.5692 | | 0.6177 | 16.22 | 600 | 0.7927 | 0.8052 | 0.8011 | | 0.3609 | 21.62 | 800 | 0.5679 | 0.8609 | 0.8609 | | 0.4972 | 27.03 | 1000 | 0.5944 | 0.8509 | 0.8523 | | 0.1799 | 32.43 | 1200 | 0.6194 | 0.8623 | 0.8621 | | 0.1308 | 37.84 | 1400 | 0.5956 | 0.8569 | 0.8548 | | 0.2298 | 43.24 | 1600 | 0.5201 | 0.8732 | 0.8743 | | 0.0052 | 48.65 | 1800 | 0.3826 | 0.9106 | 0.9103 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.2+cu113 - Datasets 2.0.1.dev0 - Tokenizers 0.11.6
Giyaseddin/distilbert-base-cased-finetuned-fake-and-real-news-dataset
Giyaseddin
2022-04-03T16:39:39Z
93
1
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "en", "license:gpl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-03T14:52:37Z
--- license: gpl-3.0 language: en library: transformers other: distilbert datasets: - Fake and real news dataset --- # DistilBERT base cased model for Fake News Classification ## Model description DistilBERT is a transformers model, smaller and faster than BERT, which was pretrained on the same corpus in a self-supervised fashion, using the BERT base model as a teacher. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts using the BERT base model. This is a Fake News classification model finetuned [pretrained DistilBERT model](https://huggingface.co/distilbert-base-cased) on [Fake and real news dataset](https://www.kaggle.com/datasets/clmentbisaillon/fake-and-real-news-dataset) ## Intended uses & limitations This can only be used for the kind of news that are similar to the ones in the dataset, please visit the [dataset's kaggle page](https://www.kaggle.com/datasets/clmentbisaillon/fake-and-real-news-dataset) to see the data. ### How to use You can use this model directly with a : ```python >>> from transformers import pipeline >>> classifier = pipeline("text-classification", model="Giyaseddin/distilbert-base-cased-finetuned-fake-and-real-news-dataset", return_all_scores=True) >>> examples = ["Yesterday, Speaker Paul Ryan tweeted a video of himself on the Mexican border flying in a helicopter and traveling on horseback with US border agents. RT if you agree It is time for The Wall. pic.twitter.com/s5MO8SG7SL Paul Ryan (@SpeakerRyan) August 1, 2017It makes for great theater to see Republican Speaker Ryan pleading the case for a border wall, but how sincere are the GOP about building the border wall? Even after posting a video that appears to show Ryan s support for the wall, he still seems unsure of himself. It s almost as though he s testing the political winds when he asks Twitter users to retweet if they agree that we need to start building the wall. How committed is the (formerly?) anti-Trump Paul Ryan to building the border wall that would fulfill one of President Trump s most popular campaign promises to the American people? Does he have the what it takes to defy the wishes of corporate donors and the US Chamber of Commerce, and do the right thing for the national security and well-being of our nation?The Last Refuge- Republicans are in control of the House of Representatives, Republicans are in control of the Senate, a Republican President is in the White House, and somehow there s negotiations on how to fund the #1 campaign promise of President Donald Trump, the border wall.Here s the rub.Here s what pundits never discuss.The Republican party doesn t need a single Democrat to fund the border wall.A single spending bill could come from the House of Representatives that fully funds 100% of the border wall. The spending bill then goes to the senate, where again, it doesn t need a single Democrat vote because spending legislation is specifically what reconciliation was designed to facilitate. That House bill can pass the Senate with 51 votes and proceed directly to the President s desk for signature.So, ask yourself: why is this even a point of discussion?The honest answer, for those who are no longer suffering from Battered Conservative Syndrome, is that Republicans don t want to fund or build an actual physical barrier known as the Southern Border Wall.It really is that simple.If one didn t know better, they d almost think Speaker Ryan was attempting to emulate the man he clearly despised during the 2016 presidential campaign."] >>> classifier(examples) [[{'label': 'LABEL_0', 'score': 1.0}, {'label': 'LABEL_1', 'score': 1.0119109106199176e-08}]] ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. It also inherits some of [the bias of its teacher model](https://huggingface.co/bert-base-uncased#limitations-and-bias). This bias will also affect all fine-tuned versions of this model. ## Pre-training data DistilBERT pretrained on the same data as BERT, which is [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Fine-tuning data [Fake and real news dataset](https://www.kaggle.com/datasets/clmentbisaillon/fake-and-real-news-dataset) ## Training procedure ### Preprocessing In the preprocessing phase, both the title and the text of the news are concatenated using a separator `[SEP]`. This makes the full text as: ``` [CLS] Title Sentence [SEP] News text body [SEP] ``` The data are splitted according to the following ratio: - Training set 60%. - Validation set 20%. - Test set 20%. Lables are mapped as: `{fake: 0, true: 1}` ### Fine-tuning The model was finetuned on GeForce GTX 960M for 5 hours. The parameters are: | Parameter | Value | |:-------------------:|:-----:| | Learning rate | 5e-5 | | Weight decay | 0.01 | | Training batch size | 4 | | Epochs | 3 | Here is the scores during the training: | Epoch | Training Loss | Validation Loss | Accuracy | F1 | Precision | Recall | |:----------:|:-------------:|:-----------------:|:----------:|:---------:|:-----------:|:---------:| | 1 | 0.008300 | 0.005783 | 0.998330 | 0.998252 | 0.996511 | 1.000000 | | 2 | 0.000000 | 0.000161 | 0.999889 | 0.999883 | 0.999767 | 1.000000 | | 3 | 0.000000 | 0.000122 | 0.999889 | 0.999883 | 0.999767 | 1.000000 | ## Evaluation results When fine-tuned on downstream task of fake news binary classification, this model achieved the following results: (scores are rounded to 2 floating points) | | precision | recall | f1-score | support | |:------------:|:---------:|:------:|:--------:|:-------:| | Fake | 1.00 | 1.00 | 1.00 | 4697 | | True | 1.00 | 1.00 | 1.00 | 4283 | | accuracy | - | - | 1.00 | 8980 | | macro avg | 1.00 | 1.00 | 1.00 | 8980 | | weighted avg | 1.00 | 1.00 | 1.00 | 8980 | Confision matrix: | Actual\Predicted | Fake | True | |:-----------------:|:----:|:----:| | Fake | 4696 | 1 | | True | 1 | 4282 | The AUC score is 0.9997
AykeeSalazar/violation-classification-bantai-vit-v100ep
AykeeSalazar
2022-04-03T16:16:07Z
64
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:image_folder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-04-03T14:05:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: violation-classification-bantai-vit-v100ep results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.9157343919162757 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # violation-classification-bantai-vit-v100ep This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.2557 - Accuracy: 0.9157 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2811 | 1.0 | 101 | 0.2855 | 0.9027 | | 0.2382 | 2.0 | 202 | 0.2763 | 0.9085 | | 0.2361 | 3.0 | 303 | 0.2605 | 0.9109 | | 0.196 | 4.0 | 404 | 0.2652 | 0.9110 | | 0.1395 | 5.0 | 505 | 0.2648 | 0.9134 | | 0.155 | 6.0 | 606 | 0.2656 | 0.9152 | | 0.1422 | 7.0 | 707 | 0.2607 | 0.9141 | | 0.1511 | 8.0 | 808 | 0.2557 | 0.9157 | | 0.1938 | 9.0 | 909 | 0.2679 | 0.9049 | | 0.2094 | 10.0 | 1010 | 0.2392 | 0.9137 | | 0.1835 | 11.0 | 1111 | 0.2400 | 0.9156 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
jsunster/distilbert-base-uncased-finetuned-squad
jsunster
2022-04-03T14:46:14Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-04-03T13:02:11Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1476 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.2823 | 1.0 | 2767 | 1.1980 | | 1.0336 | 2.0 | 5534 | 1.1334 | | 0.8513 | 3.0 | 8301 | 1.1476 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.11.6
AnnaBabaie/ms-marco-MiniLM-L-12-v2-news
AnnaBabaie
2022-04-03T13:46:51Z
3
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-03T12:55:06Z
This model is fined tuned for the Fake news classifier: Train a text classification model to detect fake news articles. Base on the Kaggle dataset(https://www.kaggle.com/clmentbisaillon/fake-and-real-news-dataset).
alefiury/wav2vec2-xls-r-300m-pt-br-spontaneous-speech-emotion-recognition
alefiury
2022-04-03T12:38:09Z
66
6
transformers
[ "transformers", "pytorch", "wav2vec2", "audio-classification", "audio", "speech", "pt", "portuguese-speech-corpus", "italian-speech-corpus", "english-speech-corpus", "arabic-speech-corpus", "spontaneous", "PyTorch", "dataset:coraa_ser", "dataset:emovo", "dataset:ravdess", "dataset:baved", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-03-23T15:29:36Z
--- language: pt datasets: - coraa_ser - emovo - ravdess - baved metrics: - f1 tags: - audio - speech - wav2vec2 - pt - portuguese-speech-corpus - italian-speech-corpus - english-speech-corpus - arabic-speech-corpus - spontaneous - speech - PyTorch license: apache-2.0 model_index: name: wav2vec2-xls-r-300m-pt-br-spontaneous-speech-emotion-recognition results: metrics: - name: Test Macro F1-Score type: f1 value: 81.87% --- # Wav2vec 2.0 XLS-R For Spontaneous Speech Emotion Recognition This is the model that got first place in the SER track of the Automatic Speech Recognition for spontaneous and prepared speech & Speech Emotion Recognition in Portuguese (SE&R 2022) Workshop. The following datasets were used in the training: - [CORAA SER v1.0](https://github.com/rmarcacini/ser-coraa-pt-br/): a dataset composed of spontaneous portuguese speech and approximately 40 minutes of audio segments labeled in three classes: neutral, non-neutral female, and non-neutral male. - [EMOVO Corpus](https://aclanthology.org/L14-1478/): a database of emotional speech for the Italian language, built from the voices of up to 6 actors who played 14 sentences simulating 6 emotional states (disgust, fear, anger, joy, surprise, sadness) plus the neutral state. - [RAVDESS](https://zenodo.org/record/1188976#.YO6yI-gzaUk): a dataset that provides 1440 samples of recordings from actors performing on 8 different emotions in English, which are: angry, calm, disgust, fearful, happy, neutral, sad and surprised. - [BAVED](https://github.com/40uf411/Basic-Arabic-Vocal-Emotions-Dataset): a collection of audio recordings of Arabic words spoken with varying degrees of emotion. The dataset contains seven words: like, unlike, this, file, good, neutral, and bad, which are spoken at three emotional levels: low emotion (tired or feeling down), neutral emotion (the way the speaker speaks daily), and high emotion (positive or negative emotions such as happiness, joy, sadness, anger). The test set used is a part of the CORAA SER v1.0 that has been set aside for this purpose. It achieves the following results on the test set: - Accuracy: 0.9090 - Macro Precision: 0.8171 - Macro Recall: 0.8397 - Macro F1-Score: 0.8187 ## Datasets Details The following image shows the overall distribution of the datasets: ![distribution](https://docs.google.com/spreadsheets/d/e/2PACX-1vTUvuMLRnoFv3MBkStOcMQE5GuiqqyrvpyEtIiwoQEg8uA6dWvfZM-faHORLFNmPYJUzDbO6TZ2a9Zb/pubchart?oid=446282973&format=image) The following image shows the number of instances by label: ![numberInstances](https://docs.google.com/spreadsheets/d/e/2PACX-1vS7PUbW6J3Hnof1D2l492KW0sbF4BzWCeaiGQm53w-9EZck_Y14feE48HtcBvmjjZKsTJWP1RZpdh_v/pubchart?oid=1904097403&format=image) ## Repository The repository that implements the model to be trained and tested is avaible [here](https://github.com/alefiury/SE-R-2022-SER-Track).
AykeeSalazar/violation-classification-bantai_vit
AykeeSalazar
2022-04-03T12:26:48Z
62
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:image_folder", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-04-03T03:01:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder model-index: - name: violation-classification-bantai_vit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # violation-classification-bantai_vit This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the image_folder dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2362 - eval_accuracy: 0.9478 - eval_runtime: 43.2567 - eval_samples_per_second: 85.42 - eval_steps_per_second: 2.682 - epoch: 87.0 - step: 10005 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 500 ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Awais/Audio_Source_Separation
Awais
2022-04-03T11:03:43Z
11
21
asteroid
[ "asteroid", "pytorch", "audio", "ConvTasNet", "audio-to-audio", "dataset:Libri2Mix", "dataset:sep_clean", "license:cc-by-sa-4.0", "region:us" ]
audio-to-audio
2022-04-02T13:01:03Z
--- tags: - asteroid - audio - ConvTasNet - audio-to-audio datasets: - Libri2Mix - sep_clean license: cc-by-sa-4.0 --- ## Asteroid model `Awais/Audio_Source_Separation` Imported from [Zenodo](https://zenodo.org/record/3873572#.X9M69cLjJH4) Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_clean` task of the Libri2Mix dataset. Training config: ```yaml data: n_src: 2 sample_rate: 8000 segment: 3 task: sep_clean train_dir: data/wav8k/min/train-360 valid_dir: data/wav8k/min/dev filterbank: kernel_size: 16 n_filters: 512 stride: 8 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 24 early_stop: True epochs: 200 half_lr: True num_workers: 2 ``` Results : On Libri2Mix min test set : ```yaml si_sdr: 14.764543634468069 si_sdr_imp: 14.764029375607246 sdr: 15.29337970745095 sdr_imp: 15.114146605113111 sir: 24.092904661115366 sir_imp: 23.913669683141528 sar: 16.06055906916849 sar_imp: -51.980784441287454 stoi: 0.9311142440593033 stoi_imp: 0.21817376142710482 ``` License notice: This work "ConvTasNet_Libri2Mix_sepclean_8k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/). "ConvTasNet_Libri2Mix_sepclean_8k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Cosentino Joris.
Zohar/distilgpt2-finetuned-restaurant-reviews-clean
Zohar
2022-04-03T10:29:27Z
3
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-03T07:25:35Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-restaurant-reviews-clean results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-restaurant-reviews-clean This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.5371 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7221 | 1.0 | 2447 | 3.5979 | | 3.6413 | 2.0 | 4894 | 3.5505 | | 3.6076 | 3.0 | 7341 | 3.5371 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.11.0
abd-1999/autotrain-bbc-news-summarization-694821095
abd-1999
2022-04-03T09:25:08Z
4
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain", "unk", "dataset:abd-1999/autotrain-data-bbc-news-summarization", "co2_eq_emissions", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-01T21:16:19Z
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - abd-1999/autotrain-data-bbc-news-summarization co2_eq_emissions: 2313.4037079026934 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 694821095 - CO2 Emissions (in grams): 2313.4037079026934 ## Validation Metrics - Loss: 3.0294156074523926 - Rouge1: 2.1467 - Rouge2: 0.0853 - RougeL: 2.1524 - RougeLsum: 2.1534 - Gen Len: 18.5603 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/abd-1999/autotrain-bbc-news-summarization-694821095 ```
Prinernian/distilbert-base-uncased-finetuned-emotion
Prinernian
2022-04-03T09:11:07Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-02T17:49:11Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2208 - Accuracy: 0.924 - F1: 0.9240 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8538 | 1.0 | 250 | 0.3317 | 0.904 | 0.8999 | | 0.2599 | 2.0 | 500 | 0.2208 | 0.924 | 0.9240 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Tokenizers 0.11.6
AykeeSalazar/vit-base-patch16-224-in21k-bantai_vitv1
AykeeSalazar
2022-04-03T02:43:41Z
63
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:image_folder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-04-02T14:17:18Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-bantai_vitv1 results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.8635994587280108 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k-bantai_vitv1 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.3961 - Accuracy: 0.8636 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5997 | 1.0 | 115 | 0.5401 | 0.7886 | | 0.4696 | 2.0 | 230 | 0.4410 | 0.8482 | | 0.4019 | 3.0 | 345 | 0.3961 | 0.8636 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Asayaya/Upside_down_detector
Asayaya
2022-04-03T01:00:26Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2022-04-03T00:55:24Z
--- license: apache-2.0 --- # -*- coding: utf-8 -*- ''' Original file is located at https://colab.research.google.com/drive/1HrNm5UMZr2Zjmze_HKW799p6LAHM8BTa ''' from google.colab import files files.upload() !pip install kaggle !cp kaggle.json ~/.kaggle/ !chmod 600 ~/.kaggle/kaggle.json !kaggle datasets download 'shaunthesheep/microsoft-catsvsdogs-dataset' !unzip microsoft-catsvsdogs-dataset import tensorflow as tf from tensorflow.keras.preprocessing.image import ImageDataGenerator image_dir='/content/PetImages/Cat' !mkdir train_folder !mkdir test_folder import os path='/content/train_folder/' dir='upside_down' dir2='normal' training_normal= os.path.join(path, dir2) training_upside= os.path.join(path, dir) os.mkdir(training_normal) os.mkdir(training_upside) #creating classes directories path='/content/test_folder/' dir='upside_down' dir2='normal' training_normal= os.path.join(path, dir2) training_upside= os.path.join(path, dir) os.mkdir(training_normal) os.mkdir(training_upside) #copying only the cat images to my train folder fnames = ['{}.jpg'.format(i) for i in range(2000)] for fname in fnames: src = os.path.join('/content/PetImages/Cat', fname) dst = os.path.join('/content/train_folder/normal', fname) shutil.copyfile(src, dst) import os import shutil fnames = ['{}.jpg'.format(i) for i in range(2000, 4000)] for fname in fnames: src = os.path.join('/content/PetImages/Cat', fname) dst = os.path.join('/content/test_folder/normal', fname) shutil.copyfile(src, dst) from scipy import ndimage, misc from PIL import Image import numpy as np import matplotlib.pyplot as plt import imageio import os import cv2 #inverting Training Images outPath = '/content/train_folder/upside_down' path ='/content/train_folder/normal' # iterate through the names of contents of the folder for image_path in os.listdir(path): # create the full input path and read the file input_path = os.path.join(path, image_path) image_to_rotate =plt.imread(input_path) # rotate the image rotated = np.flipud(image_to_rotate) # create full output path, 'example.jpg' # becomes 'rotate_example.jpg', save the file to disk fullpath = os.path.join(outPath, 'rotated_'+image_path) imageio.imwrite(fullpath, rotated) #nverting images for Validation outPath = '/content/test_folder/upside_down' path ='/content/test_folder/normal' # iterate through the names of contents of the folder for image_path in os.listdir(path): # create the full input path and read the file input_path = os.path.join(path, image_path) image_to_rotate =plt.imread(input_path) # rotate the image rotated = np.flipud(image_to_rotate) # create full output path, 'example.jpg' # becomes 'rotate_example.jpg', save the file to disk fullpath = os.path.join(outPath, 'rotated_'+image_path) imageio.imwrite(fullpath, rotated) ima='/content/train_folder/inverted/rotated_1001.jpg' image=plt.imread(ima) plt.imshow(image) # visualize the the figure plt.show() train_dir='/content/train_folder' train_gen=ImageDataGenerator(rescale=1./255) train_images= train_gen.flow_from_directory( train_dir, target_size=(250,250), batch_size=50, class_mode='binary' ) validation_dir='/content/test_folder' test_gen=ImageDataGenerator(rescale=1./255) test_images= test_gen.flow_from_directory( validation_dir, target_size=(250,250), batch_size=50, class_mode='binary' ) model=tf.keras.Sequential([ tf.keras.layers.Conv2D(16, (3,3), activation='relu', input_shape=(250,250,3)), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Conv2D(32, (3,3), activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Conv2D(64, (3,3), activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Conv2D(128, (3,3), activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Flatten(), tf.keras.layers.Dense(512, activation='relu'), tf.keras.layers.Dense(1, activation='sigmoid') ]) from tensorflow.keras.optimizers import RMSprop model.compile(optimizer=RMSprop(learning_rate=0.001), loss=tf.keras.losses.BinaryCrossentropy(), metrics=['acc']) history=model.fit(train_images, validation_data=test_images, epochs=5, steps_per_epoch=40 )
huggingtweets/clortown-elonmusk-stephencurry30
huggingtweets
2022-04-02T23:03:14Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-02T23:02:39Z
--- language: en thumbnail: http://www.huggingtweets.com/clortown-elonmusk-stephencurry30/1648940589601/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1503591435324563456/foUrqiEw_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1488574779351187458/RlIQNUFG_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1484233608793518081/tOID8aXq_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & yeosang elf agenda & Stephen Curry</div> <div style="text-align: center; font-size: 14px;">@clortown-elonmusk-stephencurry30</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & yeosang elf agenda & Stephen Curry. | Data | Elon Musk | yeosang elf agenda | Stephen Curry | | --- | --- | --- | --- | | Tweets downloaded | 221 | 3143 | 3190 | | Retweets | 7 | 541 | 384 | | Short tweets | 62 | 463 | 698 | | Tweets kept | 152 | 2139 | 2108 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2sqcbnn5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @clortown-elonmusk-stephencurry30's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1mq1ftjh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1mq1ftjh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/clortown-elonmusk-stephencurry30') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
vicl/canine-s-finetuned-cola
vicl
2022-04-02T23:01:51Z
3
1
transformers
[ "transformers", "pytorch", "tensorboard", "canine", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-02T22:29:20Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: canine-s-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.059386434587477076 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # canine-s-finetuned-cola This model is a fine-tuned version of [google/canine-s](https://huggingface.co/google/canine-s) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6653 - Matthews Correlation: 0.0594 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.6132 | 1.0 | 535 | 0.6289 | 0.0 | | 0.6062 | 2.0 | 1070 | 0.6179 | 0.0 | | 0.6122 | 3.0 | 1605 | 0.6160 | 0.0 | | 0.5939 | 4.0 | 2140 | 0.6159 | 0.0 | | 0.5721 | 5.0 | 2675 | 0.6653 | 0.0594 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
vicl/distilbert-base-uncased-finetuned-stsb
vicl
2022-04-02T22:24:08Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-02T22:08:33Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: distilbert-base-uncased-finetuned-stsb results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.8636303639161342 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-stsb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5644 - Pearson: 0.8666 - Spearmanr: 0.8636 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:| | No log | 1.0 | 360 | 0.6366 | 0.8537 | 0.8516 | | 1.0464 | 2.0 | 720 | 0.6171 | 0.8632 | 0.8626 | | 0.4002 | 3.0 | 1080 | 0.6082 | 0.8663 | 0.8643 | | 0.4002 | 4.0 | 1440 | 0.5644 | 0.8666 | 0.8636 | | 0.2479 | 5.0 | 1800 | 0.5780 | 0.8654 | 0.8624 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
vicl/distilbert-base-uncased-finetuned-mrpc
vicl
2022-04-02T21:56:07Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-02T21:45:00Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-mrpc results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8480392156862745 - name: F1 type: f1 value: 0.89419795221843 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-mrpc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4044 - Accuracy: 0.8480 - F1: 0.8942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 230 | 0.3830 | 0.8162 | 0.8673 | | No log | 2.0 | 460 | 0.3957 | 0.8456 | 0.8952 | | 0.4307 | 3.0 | 690 | 0.4044 | 0.8480 | 0.8942 | | 0.4307 | 4.0 | 920 | 0.5649 | 0.8407 | 0.8915 | | 0.1739 | 5.0 | 1150 | 0.5983 | 0.8480 | 0.8956 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
vocab-transformers/distilbert-mlm-1000k
vocab-transformers
2022-04-02T21:16:58Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-04-02T21:16:53Z
distilbert-base-uncased trained for 1000K steps with batch size 64 on C4, MSMARCO, Wikipedia, S2ORC, News
vocab-transformers/distilbert-mlm-750k
vocab-transformers
2022-04-02T21:15:27Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-04-02T21:15:23Z
distilbert-base-uncased trained for 750K steps with batch size 64 on C4, MSMARCO, Wikipedia, S2ORC, News
celine98/canine-c-finetuned-sst2
celine98
2022-04-02T19:11:13Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "canine", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-24T14:40:39Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: canine-c-finetuned-sst2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8486238532110092 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # canine-c-finetuned-sst2 This model is a fine-tuned version of [google/canine-c](https://huggingface.co/google/canine-c) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6025 - Accuracy: 0.8486 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.9121586874695155e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3415 | 1.0 | 2105 | 0.4196 | 0.8280 | | 0.2265 | 2.0 | 4210 | 0.4924 | 0.8211 | | 0.1439 | 3.0 | 6315 | 0.5726 | 0.8337 | | 0.0974 | 4.0 | 8420 | 0.6025 | 0.8486 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
hylee/DualStyleGAN
hylee
2022-04-02T14:44:30Z
0
1
null
[ "region:us" ]
null
2022-04-02T01:54:21Z
--- title: DualStyleGAN emoji: 👀 colorFrom: green colorTo: gray sdk: gradio sdk_version: 2.8.13 app_file: app.py pinned: false --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
ntt123/hifigan_ljs_24k
ntt123
2022-04-02T14:20:55Z
0
0
null
[ "tensorboard", "license:cc-by-nc-4.0", "region:us" ]
null
2022-03-28T16:32:11Z
--- license: cc-by-nc-4.0 ---
mnne/duck-and-cover-genre-encoder
mnne
2022-04-02T13:53:50Z
3
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-04-02T13:12:20Z
# Duck and Cover - Genre Autoencoder This model is part of the [duck_and_cover](https://github.com/mcschmitz/duck_and_cover) repository. Scope of this repository is to generate album covers based on several conditions like release year, artist & album name, and genre(s) using different types of GANs. The possible list of genres that this encoder covers can be found [here](https://github.com/mcschmitz/duck_and_cover/blob/master/data/genres.txt). For training [prajjwal1/bert-mini](https://huggingface.co/prajjwal1/bert-mini) has been finetuned on a list of 466.045 albums with different genre combinations taken from the aforementioned list to embed genre information, while a simple Linear Layer was trained to decode and predict the given genre from the embeddings. The albums are real-world albums retrieved using the Spotify API. The intention behind this model is that Hard Rock is somehow related to Rock, while Pop Rock is related to Rock as well and a BERT Tokenizer can capture this information as a lot of music genres are described by using pre- and suffixes. The model was validated on 133.155 during training and tested on 66.578. It yields a 98.29% Exact Match ratio on the testset and a 98.24% Exact Match Ratio on the validation set, which is extremely high given that the model can embed up to 3452 labels and most of the albums only had up to 5 labels. ## Usage The model can be used to embed genres to a 256 dimensional space using the following input. ```python from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("mnne/duck-and-cover-genre-encoder") tokenizer = AutoTokenizer.from_pretrained("mnne/duck-and-cover-genre-encoder") genres = " , ".join(["classic soul", "memphis soul", "soul", "soul blues", "southern soul"]) x = tokenizer([genres], return_tensors="pt") output = model(**x) ```
anuragshas/en-hi-transliteration
anuragshas
2022-04-02T12:24:03Z
0
1
null
[ "license:apache-2.0", "region:us" ]
null
2022-04-02T11:50:28Z
--- license: apache-2.0 --- ## Dataset [NEWS2018 DATASET_04, Task ID: M-EnHi](http://workshop.colips.org/news2018/dataset.html) ## Notebooks - `xmltodict.ipynb` contains the code to convert the `xml` files to `json` for training - `training_script.ipynb` contains the code for training and inference. It is a modified version of https://github.com/AI4Bharat/IndianNLP-Transliteration/blob/master/NoteBooks/Xlit_TrainingSetup_condensed.ipynb ## Predictions `pred_test.json` contains top-10 predictions on the validation set of the dataset ## Evaluation Scores on validation set TOP 10 SCORES FOR 1000 SAMPLES |Metrics | Score | |-----------|-----------| |ACC | 0.703000| |Mean F-score| 0.949289| |MRR | 0.486549| |MAP_ref | 0.381000| TOP 5 SCORES FOR 1000 SAMPLES: |Metrics | Score | |-----------|-----------| |ACC |0.621000| |Mean F-score |0.937985| |MRR |0.475033| |MAP_ref |0.381000| TOP 3 SCORES FOR 1000 SAMPLES: |Metrics | Score | |-----------|-----------| |ACC |0.560000| |Mean F-score |0.927025| |MRR |0.461333| |MAP_ref |0.381000| TOP 2 SCORES FOR 1000 SAMPLES: |Metrics | Score | |-----------|-----------| |ACC | 0.502000| |Mean F-score | 0.913697| |MRR | 0.442000| |MAP_ref | 0.381000| TOP 1 SCORES FOR 1000 SAMPLES: |Metrics | Score | |-----------|-----------| |ACC | 0.382000| |Mean F-score | 0.881272| |MRR | 0.382000| |MAP_ref | 0.380500|
DMetaSoul/sbert-chinese-general-v2-distill
DMetaSoul
2022-04-02T09:58:33Z
15
6
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "semantic-search", "chinese", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-04-02T09:58:18Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - semantic-search - chinese --- # DMetaSoul/sbert-chinese-general-v2-distill 此模型是之前[开源通用语义匹配模型](https://huggingface.co/DMetaSoul/sbert-chinese-general-v2)的蒸馏版本(仅4层 BERT),适用于**通用语义匹配**场景,从效果来看该模型在各种任务上**泛化能力更好且编码速度更快**。 离线训练好的大模型如果直接用于线上推理,对计算资源有苛刻的需求,而且难以满足业务环境对延迟、吞吐量等性能指标的要求,这里我们使用蒸馏手段来把大模型轻量化。从 12 层 BERT 蒸馏为 4 层后,模型参数量缩小到 44%,大概 latency 减半、throughput 翻倍、精度下降 6% 左右(具体结果详见下文评估小节)。 # Usage ## 1. Sentence-Transformers 通过 [sentence-transformers](https://www.SBERT.net) 框架来使用该模型,首先进行安装: ``` pip install -U sentence-transformers ``` 然后使用下面的代码来载入该模型并进行文本表征向量的提取: ```python from sentence_transformers import SentenceTransformer sentences = ["我的儿子!他猛然间喊道,我的儿子在哪儿?", "我的儿子呢!他突然喊道,我的儿子在哪里?"] model = SentenceTransformer('DMetaSoul/sbert-chinese-general-v2-distill') embeddings = model.encode(sentences) print(embeddings) ``` ## 2. HuggingFace Transformers 如果不想使用 [sentence-transformers](https://www.SBERT.net) 的话,也可以通过 HuggingFace Transformers 来载入该模型并进行文本向量抽取: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["我的儿子!他猛然间喊道,我的儿子在哪儿?", "我的儿子呢!他突然喊道,我的儿子在哪里?"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('DMetaSoul/sbert-chinese-general-v2-distill') model = AutoModel.from_pretrained('DMetaSoul/sbert-chinese-general-v2-distill') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation 这里主要跟蒸馏前对应的 teacher 模型作了对比: *性能:* | | Teacher | Student | Gap | | ---------- | --------------------- | ------------------- | ----- | | Model | BERT-12-layers (102M) | BERT-4-layers (45M) | 0.44x | | Cost | 23s | 12s | -47% | | Latency | 38ms | 20ms | -47% | | Throughput | 418 sentence/s | 791 sentence/s | 1.9x | *精度:* | | **csts_dev** | **csts_test** | **afqmc** | **lcqmc** | **bqcorpus** | **pawsx** | **xiaobu** | **Avg** | | -------------- | ------------ | ------------- | --------- | --------- | ------------ | --------- | ---------- | ------- | | **Teacher** | 77.19% | 72.59% | 36.79% | 76.91% | 49.62% | 16.24% | 63.15% | 56.07% | | **Student** | 76.49% | 73.33% | 26.46% | 64.26% | 46.02% | 11.83% | 52.45% | 50.12% | | **Gap** (abs.) | - | - | - | - | - | - | - | -5.95% | *基于1万条数据测试,GPU设备是V100,batch_size=16,max_seq_len=256* ## Citing & Authors E-mail: xiaowenbin@dmetasoul.com
junnyu/flash_small_wwm_cluecorpussmall
junnyu
2022-04-02T09:46:27Z
4
0
transformers
[ "transformers", "pytorch", "flash", "fill-mask", "license:mit", "autotrain_compatible", "region:us" ]
fill-mask
2022-04-02T02:59:48Z
--- license: mit inference: False --- # training logs - https://wandb.ai/junyu/huggingface/runs/1jg2jlgt # install - https://github.com/JunnYu/FLASHQuad_pytorch # usage ```python import torch from flash import FLASHForMaskedLM from transformers import BertTokenizerFast tokenizer = BertTokenizerFast.from_pretrained("junnyu/flash_small_wwm_cluecorpussmall") model = FLASHForMaskedLM.from_pretrained("junnyu/flash_small_wwm_cluecorpussmall") model.eval() text = "天气预报说今天的天[MASK]很好,那么我[MASK]一起去公园玩吧!" inputs = tokenizer(text, return_tensors="pt", padding="max_length", max_length=512, return_token_type_ids=False) #这里必须是512,不然结果可能不对。 with torch.no_grad(): pt_outputs = model(**inputs).logits[0] pt_outputs_sentence = "pytorch: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: val,idx = pt_outputs[i].softmax(-1).topk(k=5) tokens = tokenizer.convert_ids_to_tokens(idx) new_tokens = [] for v,t in zip(val.cpu(),tokens): new_tokens.append(f"{t}+{round(v.item(),4)}") pt_outputs_sentence += "[" + "||".join(new_tokens) + "]" else: pt_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(pt_outputs_sentence) # pytorch: 天气预报说今天的天[气+0.994||天+0.0015||空+0.0014||晴+0.0005||阳+0.0003]很好,那么我[们+0.9563||就+0.0381||也+0.0032||俩+0.0004||来+0.0002]一起去公园玩吧! ```
Chikashi/t5-small-finetuned-wikihow_3epoch
Chikashi
2022-04-02T07:42:15Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wikihow", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-01T21:20:33Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikihow metrics: - rouge model-index: - name: t5-small-finetuned-wikihow_3epoch results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wikihow type: wikihow args: all metrics: - name: Rouge1 type: rouge value: 25.5784 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-wikihow_3epoch This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wikihow dataset. It achieves the following results on the evaluation set: - Loss: 2.5163 - Rouge1: 25.5784 - Rouge2: 8.9929 - Rougel: 21.5345 - Rougelsum: 24.9382 - Gen Len: 18.384 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.9421 | 0.25 | 5000 | 2.6545 | 23.2336 | 7.5502 | 19.5899 | 22.5521 | 18.4076 | | 2.8411 | 0.51 | 10000 | 2.6103 | 24.3524 | 8.2068 | 20.5238 | 23.6679 | 18.2606 | | 2.7983 | 0.76 | 15000 | 2.5836 | 24.8169 | 8.4826 | 20.8765 | 24.1686 | 18.3211 | | 2.7743 | 1.02 | 20000 | 2.5627 | 24.9904 | 8.5625 | 21.0344 | 24.3416 | 18.3786 | | 2.7452 | 1.27 | 25000 | 2.5508 | 25.1497 | 8.6872 | 21.152 | 24.4751 | 18.3524 | | 2.7353 | 1.53 | 30000 | 2.5384 | 25.2909 | 8.7408 | 21.2344 | 24.629 | 18.4453 | | 2.7261 | 1.78 | 35000 | 2.5322 | 25.3748 | 8.7802 | 21.312 | 24.7191 | 18.3754 | | 2.7266 | 2.03 | 40000 | 2.5265 | 25.4095 | 8.8915 | 21.3871 | 24.7685 | 18.4013 | | 2.706 | 2.29 | 45000 | 2.5211 | 25.4372 | 8.8926 | 21.4124 | 24.7902 | 18.3776 | | 2.7073 | 2.54 | 50000 | 2.5176 | 25.4925 | 8.9668 | 21.5103 | 24.8608 | 18.4303 | | 2.703 | 2.8 | 55000 | 2.5163 | 25.5784 | 8.9929 | 21.5345 | 24.9382 | 18.384 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Suman123/upside-down-detector
Suman123
2022-04-02T07:33:31Z
0
0
null
[ "region:us" ]
null
2022-04-01T12:56:45Z
TASK 1 of Faltima Fellowship- UpsideDown detector
nikhil6041/wav2vec2-large-xls-r-300m-hindi-colab
nikhil6041
2022-04-02T06:04:25Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-02T03:35:24Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-hindi-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hindi-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
huggingtweets/percybotshelley
huggingtweets
2022-04-02T05:27:46Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-02T05:27:39Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/780200431859269633/kXZwDd_Y_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Romantic Poetry Bot</div> <div style="text-align: center; font-size: 14px;">@percybotshelley</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Romantic Poetry Bot. | Data | Romantic Poetry Bot | | --- | --- | | Tweets downloaded | 3205 | | Retweets | 0 | | Short tweets | 20 | | Tweets kept | 3185 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1bj4pakr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @percybotshelley's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2yfs8v92) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2yfs8v92/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/percybotshelley') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
satoshiz01/Flipped_CIFAR10_vision
satoshiz01
2022-04-02T05:09:07Z
0
0
null
[ "region:us" ]
null
2022-04-02T03:30:55Z
**Google Colab Notebook link:** https://colab.research.google.com/drive/1iA8nvb93VLcrDfIt17AOIHnkVdLSNcW_?usp=sharing This repo contains files for defining and creating a simple convolutional network for classifying/detecting the orientation of CIFAR-10 images (either normal orientation or flipped upside down/180 degrees). The following files are in this repo: Coding_Challenge_for_Fatima_Fellowship.ipynb -- a copy of the Google Collab notebook with the code/output/writeup best_model.pth -- dictionary of best model stats/weights found during training cifar10flip_trn.pt -- saved training dataset of ~50% flipped CIFAR10 images cifar10flip_tst.pt -- saved training dataset of ~50% flipped CIFAR10 images image_examples.png -- an array of example imags from flipped CIFAR10 dataset write-up -- write up of data processing, model results, and potential improvements (also in Google Colab) wrong_predictions.zip -- a zip file of PNG images that were incorrectly classified by my model (each file name provide information on the image's prediction, true label, and its class)
nikhil6041/wav2vec2-commonvoice-hindi
nikhil6041
2022-04-02T04:48:26Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-31T04:27:46Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-commonvoice-hindi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-commonvoice-hindi This model is a fine-tuned version of [theainerd/Wav2Vec2-large-xlsr-hindi](https://huggingface.co/theainerd/Wav2Vec2-large-xlsr-hindi) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.9825 - Wer: 0.6763 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 20.0 | 100 | 0.8801 | 0.6754 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
BigSalmon/Points4
BigSalmon
2022-04-02T03:04:08Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-02T02:57:31Z
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/Points4") model = AutoModelForCausalLM.from_pretrained("BigSalmon/Points4") ``` ``` - moviepass to return - this summer - swooped up by - original co-founder stacy spikes text: the re-launch of moviepass is set to transpire this summer, ( rescued at the hands of / under the stewardship of / spearheaded by ) its founding father, stacy spikes. *** - middle schools do not have recess - should get back to doing it - amazing for communication - and getting kids to move around text: a casualty of the education reform craze, recess has been excised from middle schools. this is tragic, for it is instrumental in honing children's communication skills and encouraging physical activity. *** - ``` It should also be able to do all that this can: https://huggingface.co/BigSalmon/InformalToFormalLincoln27 Keywords to sentences or sentence.
Aymene/Fake-news-detection-bert-based-uncased
Aymene
2022-04-02T02:42:06Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-01T01:33:54Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: Fake-news-detection-bert-based-uncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Fake-news-detection-bert-based-uncased This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Tokenizers 0.11.6
JustAdvanceTechonology/medical_research_dataset_marian-finetuned-kde4-fr-to-en
JustAdvanceTechonology
2022-04-02T00:07:29Z
4
0
transformers
[ "transformers", "tf", "marian", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-31T10:16:30Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: JustAdvanceTechonology/medical_research_dataset_marian-finetuned-kde4-fr-to-en results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # JustAdvanceTechonology/medical_research_dataset_marian-finetuned-kde4-fr-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6429 - Validation Loss: 0.8071 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 17733, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.6423 | 0.8071 | 0 | | 0.6424 | 0.8071 | 1 | | 0.6429 | 0.8071 | 2 | ### Framework versions - Transformers 4.16.2 - TensorFlow 2.5.0 - Datasets 2.0.0 - Tokenizers 0.10.1
vicl/canine-s-finetuned-stsb
vicl
2022-04-01T23:25:04Z
4
1
transformers
[ "transformers", "pytorch", "tensorboard", "canine", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-01T19:47:18Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: canine-s-finetuned-stsb results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.8397182061195433 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # canine-s-finetuned-stsb This model is a fine-tuned version of [google/canine-s](https://huggingface.co/google/canine-s) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7223 - Pearson: 0.8397 - Spearmanr: 0.8397 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:| | No log | 1.0 | 360 | 0.7938 | 0.8083 | 0.8077 | | 1.278 | 2.0 | 720 | 0.7349 | 0.8322 | 0.8305 | | 0.6765 | 3.0 | 1080 | 0.7075 | 0.8374 | 0.8366 | | 0.6765 | 4.0 | 1440 | 0.7586 | 0.8360 | 0.8376 | | 0.4629 | 5.0 | 1800 | 0.7223 | 0.8397 | 0.8397 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/chapocheck
huggingtweets
2022-04-01T22:07:43Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-01T22:06:55Z
--- language: en thumbnail: http://www.huggingtweets.com/chapocheck/1648850858747/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1191821996759404547/HY5C5aOW_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Cum Town (mostly Nick Mullen) quotes</div> <div style="text-align: center; font-size: 14px;">@chapocheck</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Cum Town (mostly Nick Mullen) quotes. | Data | Cum Town (mostly Nick Mullen) quotes | | --- | --- | | Tweets downloaded | 1264 | | Retweets | 90 | | Short tweets | 75 | | Tweets kept | 1099 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/x77h239f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chapocheck's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/18r1isa5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/18r1isa5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chapocheck') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
lgris/bp500-xlsr
lgris
2022-04-01T20:33:47Z
15
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "pt", "portuguese-speech-corpus", "PyTorch", "hf-asr-leaderboard", "dataset:common_voice", "dataset:mls", "dataset:cetuc", "dataset:lapsbm", "dataset:voxforge", "dataset:tedx", "dataset:sid", "arxiv:2012.03411", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: pt datasets: - common_voice - mls - cetuc - lapsbm - voxforge - tedx - sid metrics: - wer tags: - audio - speech - wav2vec2 - pt - portuguese-speech-corpus - automatic-speech-recognition - speech - PyTorch - hf-asr-leaderboard model-index: - name: bp400-xlsr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice type: common_voice args: pt metrics: - name: Test WER type: wer value: 13.6 license: apache-2.0 --- # bp500-xlsr: Wav2vec 2.0 with Brazilian Portuguese (BP) Dataset This is a the demonstration of a fine-tuned Wav2vec model for Brazilian Portuguese using the following datasets: - [CETUC](http://www02.smt.ufrj.br/~igor.quintanilha/alcaim.tar.gz): contains approximately 145 hours of Brazilian Portuguese speech distributed among 50 male and 50 female speakers, each pronouncing approximately 1,000 phonetically balanced sentences selected from the [CETEN-Folha](https://www.linguateca.pt/cetenfolha/) corpus; - [Common Voice 7.0](https://commonvoice.mozilla.org/pt): is a project proposed by Mozilla Foundation with the goal to create a wide open dataset in different languages. In this project, volunteers donate and validate speech using the [oficial site](https://commonvoice.mozilla.org/pt); - [Lapsbm](https://github.com/falabrasil/gitlab-resources): "Falabrasil - UFPA" is a dataset used by the Fala Brasil group to benchmark ASR systems in Brazilian Portuguese. Contains 35 speakers (10 females), each one pronouncing 20 unique sentences, totalling 700 utterances in Brazilian Portuguese. The audios were recorded in 22.05 kHz without environment control; - [Multilingual Librispeech (MLS)](https://arxiv.org/abs/2012.03411): a massive dataset available in many languages. The MLS is based on audiobook recordings in public domain like [LibriVox](https://librivox.org/). The dataset contains a total of 6k hours of transcribed data in many languages. The set in Portuguese [used in this work](http://www.openslr.org/94/) (mostly Brazilian variant) has approximately 284 hours of speech, obtained from 55 audiobooks read by 62 speakers; - [VoxForge](http://www.voxforge.org/): is a project with the goal to build open datasets for acoustic models. The corpus contains approximately 100 speakers and 4,130 utterances of Brazilian Portuguese, with sample rates varying from 16kHz to 44.1kHz. These datasets were combined to build a larger Brazilian Portuguese dataset. All data was used for training except Common Voice dev/test sets, that were used for validation/test respectively. We also made test sets for all the gathered datasets. | Dataset | Train | Valid | Test | |--------------------------------|-------:|------:|------:| | CETUC | 93.9h | -- | 5.4h | | Common Voice | 37.6h | 8.9h | 9.5h | | LaPS BM | 0.8h | -- | 0.1h | | MLS | 161.0h | -- | 3.7h | | Multilingual TEDx (Portuguese) | 144.2h | -- | 1.8h | | SID | 5.0h | -- | 1.0h | | VoxForge | 2.8h | -- | 0.1h | | Total | 437.2h | 8.9h | 21.6h | The original model was fine-tuned using [fairseq](https://github.com/pytorch/fairseq). This notebook uses a converted version of the original one. The link to the original fairseq model is available [here](https://drive.google.com/file/d/1J8aR1ltDLQFe-dVrGuyxoRm2uyJjCWgf/view?usp=sharing). #### Summary | | CETUC | CV | LaPS | MLS | SID | TEDx | VF | AVG | |----------------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | bp\_500 (demonstration below) | 0.051 | 0.136 | 0.032 | 0.118 | 0.095 | 0.248 | 0.082 | 0.108 | | bp\_500 + 4-gram (demonstration below) | 0.032 | 0.097 | 0.022 | 0.114 | 0.125 | 0.246 | 0.065 | 0.100 | #### Transcription examples | Text | Transcription | |------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------| |não há um departamento de mediadores independente das federações e das agremiações|não há um **dearamento** de mediadores independente das federações e das **agrebiações**| |mas que bodega|**masque** bodega| |a cortina abriu o show começou|a cortina abriu o **chô** começou| |por sorte havia uma passadeira|**busote avinhoa** **passadeiro**| |estou maravilhada está tudo pronto|**stou** estou maravilhada está tudo pronto| ## Demonstration ```python MODEL_NAME = "lgris/bp500-xlsr" ``` ### Imports and dependencies ```python %%capture !pip install torch==1.8.2+cu111 torchvision==0.9.2+cu111 torchaudio===0.8.2 -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html !pip install datasets !pip install jiwer !pip install transformers !pip install soundfile !pip install pyctcdecode !pip install https://github.com/kpu/kenlm/archive/master.zip ``` ```python import jiwer import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) from pyctcdecode import build_ctcdecoder import torch import re import sys ``` ### Helpers ```python chars_to_ignore_regex = '[\,\?\.\!\;\:\"]' # noqa: W605 def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = speech.squeeze(0).numpy() batch["sampling_rate"] = 16_000 batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") batch["target"] = batch["sentence"] return batch ``` ```python def calc_metrics(truths, hypos): wers = [] mers = [] wils = [] for t, h in zip(truths, hypos): try: wers.append(jiwer.wer(t, h)) mers.append(jiwer.mer(t, h)) wils.append(jiwer.wil(t, h)) except: # Empty string? pass wer = sum(wers)/len(wers) mer = sum(mers)/len(mers) wil = sum(wils)/len(wils) return wer, mer, wil ``` ```python def load_data(dataset): data_files = {'test': f'{dataset}/test.csv'} dataset = load_dataset('csv', data_files=data_files)["test"] return dataset.map(map_to_array) ``` ### Model ```python class STT: def __init__(self, model_name, device='cuda' if torch.cuda.is_available() else 'cpu', lm=None): self.model_name = model_name self.model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) self.processor = Wav2Vec2Processor.from_pretrained(model_name) self.vocab_dict = self.processor.tokenizer.get_vocab() self.sorted_dict = { k.lower(): v for k, v in sorted(self.vocab_dict.items(), key=lambda item: item[1]) } self.device = device self.lm = lm if self.lm: self.lm_decoder = build_ctcdecoder( list(self.sorted_dict.keys()), self.lm ) def batch_predict(self, batch): features = self.processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(self.device) attention_mask = features.attention_mask.to(self.device) with torch.no_grad(): logits = self.model(input_values, attention_mask=attention_mask).logits if self.lm: logits = logits.cpu().numpy() batch["predicted"] = [] for sample_logits in logits: batch["predicted"].append(self.lm_decoder.decode(sample_logits)) else: pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = self.processor.batch_decode(pred_ids) return batch ``` ### Download datasets ```python %%capture !gdown --id 1HFECzIizf-bmkQRLiQD0QVqcGtOG5upI !mkdir bp_dataset !unzip bp_dataset -d bp_dataset/ ``` ```python %cd bp_dataset ``` /content/bp_dataset ### Tests ```python stt = STT(MODEL_NAME) ``` #### CETUC ```python ds = load_data('cetuc_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CETUC WER:", wer) ``` CETUC WER: 0.05159097808687998 #### Common Voice ```python ds = load_data('commonvoice_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CV WER:", wer) ``` CV WER: 0.13659981509705973 #### LaPS ```python ds = load_data('lapsbm_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Laps WER:", wer) ``` Laps WER: 0.03196969696969697 #### MLS ```python ds = load_data('mls_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("MLS WER:", wer) ``` MLS WER: 0.1178481066463896 #### SID ```python ds = load_data('sid_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Sid WER:", wer) ``` Sid WER: 0.09544588416964224 #### TEDx ```python ds = load_data('tedx_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("TEDx WER:", wer) ``` TEDx WER: 0.24868046340420813 #### VoxForge ```python ds = load_data('voxforge_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("VoxForge WER:", wer) ``` VoxForge WER: 0.08246076839826841 ### Tests with LM ```python !rm -rf ~/.cache !gdown --id 1GJIKseP5ZkTbllQVgOL98R4yYAcIySFP # trained with wikipedia stt = STT(MODEL_NAME, lm='pt-BR-wiki.word.4-gram.arpa') # !gdown --id 1dLFldy7eguPtyJj5OAlI4Emnx0BpFywg # trained with bp # stt = STT(MODEL_NAME, lm='pt-BR.word.4-gram.arpa') ``` ### Cetuc ```python ds = load_data('cetuc_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CETUC WER:", wer) ``` CETUC WER: 0.03222801788375573 #### Common Voice ```python ds = load_data('commonvoice_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("CV WER:", wer) ``` CV WER: 0.09713866021093655 #### LaPS ```python ds = load_data('lapsbm_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Laps WER:", wer) ``` Laps WER: 0.022310606060606065 #### MLS ```python ds = load_data('mls_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("MLS WER:", wer) ``` MLS WER: 0.11408590958696524 #### SID ```python ds = load_data('sid_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("Sid WER:", wer) ``` Sid WER: 0.12502797252979136 #### TEDx ```python ds = load_data('tedx_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("TEDx WER:", wer) ``` TEDx WER: 0.24603179403904793 #### VoxForge ```python ds = load_data('voxforge_dataset') result = ds.map(stt.batch_predict, batched=True, batch_size=8) wer, mer, wil = calc_metrics(result["sentence"], result["predicted"]) print("VoxForge WER:", wer) ``` VoxForge WER: 0.06542207792207791
lgris/wav2vec2-large-xlsr-open-brazilian-portuguese
lgris
2022-04-01T20:32:58Z
268
9
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "pt", "portuguese-speech-corpus", "PyTorch", "hf-asr-leaderboard", "dataset:common_voice", "dataset:mls", "dataset:cetuc", "dataset:lapsbm", "dataset:voxforge", "arxiv:2012.03411", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: pt datasets: - common_voice - mls - cetuc - lapsbm - voxforge metrics: - wer tags: - audio - speech - wav2vec2 - pt - portuguese-speech-corpus - automatic-speech-recognition - speech - PyTorch - hf-asr-leaderboard license: apache-2.0 model-index: - name: Lucas Gris XLSR Wav2Vec2 Large 53 Brazilian Portuguese results: - task: name: Speech Recognition type: automatic-speech-recognition metrics: - name: Test WER type: wer value: 12.905054857823264% --- # Wav2vec 2.0 With Open Brazilian Portuguese Datasets This a the demonstration of a fine-tuned Wav2vec model for Brazilian Portuguese using the following datasets: - [CETUC](http://www02.smt.ufrj.br/~igor.quintanilha/alcaim.tar.gz): contains approximately 145 hours of Brazilian Portuguese speech distributed among 50 male and 50 female speakers, each pronouncing approximately 1,000 phonetically balanced sentences selected from the [CETEN-Folha](https://www.linguateca.pt/cetenfolha/) corpus. - [Multilingual Librispeech (MLS)](https://arxiv.org/abs/2012.03411): a massive dataset available in many languages. The MLS is based on audiobook recordings in public domain like [LibriVox](https://librivox.org/). The dataset contains a total of 6k hours of transcribed data in many languages. The set in Portuguese [used in this work](http://www.openslr.org/94/) (mostly Brazilian variant) has approximately 284 hours of speech, obtained from 55 audiobooks read by 62 speakers. - [VoxForge](http://www.voxforge.org/): is a project with the goal to build open datasets for acoustic models. The corpus contains approximately 100 speakers and 4,130 utterances of Brazilian Portuguese, with sample rates varying from 16kHz to 44.1kHz. - [Common Voice 6.1](https://commonvoice.mozilla.org/pt) (_only train_): is a project proposed by Mozilla Foundation with the goal to create a wide open dataset in different languages to train ASR models. In this project, volunteers donate and validate speech using the [oficial site](https://commonvoice.mozilla.org/pt). The set in Portuguese (mostly Brazilian variant) used in this work is the 6.1 version (pt_63h_2020-12-11) that contains about 50 validated hours and 1,120 unique speakers. - [Lapsbm](https://github.com/falabrasil/gitlab-resources): "Falabrasil - UFPA" is a dataset used by the Fala Brasil group to benchmark ASR systems in Brazilian Portuguese. Contains 35 speakers (10 females), each one pronouncing 20 unique sentences, totalling 700 utterances in Brazilian Portuguese. The audios were recorded in 22.05 kHz without environment control. These datasets were combined to build a larger Brazilian Portuguese dataset. All data was used for training except Common Voice dev/test sets, that were used for validation/test respectively. The original model was fine-tuned using [fairseq](https://github.com/pytorch/fairseq). This notebook uses a converted version of the original one. The link to the original fairseq model is available [here](https://drive.google.com/drive/folders/1XTKIUB4kp3oYOavwH97wq8IPFsxP5sNz?usp=sharing). This model was trained in 80k updates. #### Datasets in number of instances and number of frames The following image shows the overall distribution of the dataset: ![datasets](https://drive.google.com/uc?export=view&id=1DF2_PehB2pZlEJLcBA7yeZQ9EAuLGh_r) #### Transcription examples | Text | Transcription | |------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------| | É comum os usuários confundirem software livre com software livre | É comum os __usuares__ __confunder em__ __softwerlivr__ com __softwerlivre__ | | Ele fez tanto ghostwriting que ele começa a se sentir como um fantasma também | Ele fez tanto __golstraitn__ que ele __começou__ a se sentir como um fantasma também | | Arnold apresentou um gráfico mostrando quantas cegonhas ele havia contado nos últimos dez anos | Arnold apresentou um gráfico mostrando quantas __segonhas__ ele havia contado nos últimos dez anos | | Mais cedo ou mais tarde eles descobrirão como ler esses hieróglifos | Mais __sedo__ ou mais tarde eles descobriram como __de__ esses __ierogrôficos__ | | Viver juntos compartilhar objetivos e ter um bom relacionamento | __E ver__ juntos __signafica__ viver juntos ou __fartlhar__ objetivos ter um bom __relacionamentoo__ | | Da mesma forma uma patente pode impedir que concorrentes desenvolvam produtos similares | Da mesma forma uma patente pode impedir que concorrentes __desenvolva__ produtos similares | | Duas mulheres e uma menina levantam com troféus | Duas mulheres e uma menina levantam com __trofés__ | | Esse acrobata de circo deve ter um sistema vestibular bem treinado pensou o espectador | Esse acrobata de __cirko__ deve ter um sistema vestibular __bemtreinado__ pensou o espectador | | Durante a exposição o tribunal pode fazer quaisquer perguntas ou esclarecimentos que considere apropriados | Durante a exposição o tribunal pode fazer quaisquer perguntas ou esclarecimentos que considere __apropriado__ | ## Imports and dependencies ```python %%capture !pip install datasets !pip install jiwer !pip install torchaudio !pip install transformers !pip install soundfile ``` ```python import torchaudio from datasets import load_dataset, load_metric from transformers import ( Wav2Vec2ForCTC, Wav2Vec2Processor, ) import torch import re import sys ``` ## Preparation ```python chars_to_ignore_regex = '[\,\?\.\!\;\:\"]' # noqa: W605 wer = load_metric("wer") device = "cuda" ``` ```python model_name = 'lgris/wav2vec2-large-xlsr-open-brazilian-portuguese' model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device) processor = Wav2Vec2Processor.from_pretrained(model_name) ``` ```python def map_to_pred(batch): features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") input_values = features.input_values.to(device) attention_mask = features.attention_mask.to(device) with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits pred_ids = torch.argmax(logits, dim=-1) batch["predicted"] = processor.batch_decode(pred_ids) batch["predicted"] = [pred.lower() for pred in batch["predicted"]] batch["target"] = batch["sentence"] return batch ``` ## Tests ### Test against Common Voice (In-domain) ```python dataset = load_dataset("common_voice", "pt", split="test", data_dir="./cv-corpus-6.1-2020-12-11") resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000) def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") return batch ``` ```python ds = dataset.map(map_to_array) result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys())) print(wer.compute(predictions=result["predicted"], references=result["target"])) for pred, target in zip(result["predicted"][:10], result["target"][:10]): print(pred, "|", target) ``` 0.12905054857823264 nem o varanin os altros influmindo os de teterno um bombederster | nem o radar nem os outros instrumentos detectaram o bombardeiro stealth pedir dinheiro é emprestado das pessoas do aldeia | pedir dinheiro emprestado às pessoas da aldeia oito | oito teno calcos | trancá-los realizaram a investigação para resolver o problema | realizar uma investigação para resolver o problema iotube ainda é a melhor plataforma de vídeos | o youtube ainda é a melhor plataforma de vídeos menina e menino beijando nas sombras | menina e menino beijando nas sombras eu sou o senhor | eu sou o senhor duas metcas sentam-se para baixo randes jornais | duas mulheres que sentam-se para baixo lendo jornais eu originalmente esperava | eu originalmente esperava **Result**: 12.90% ### Test against [TEDx](http://www.openslr.org/100/) (Out-of-domain) ```python !gdown --id 1HJEnvthaGYwcV_whHEywgH2daIN4bQna !tar -xf tedx.tar.gz ``` ```python dataset = load_dataset('csv', data_files={'test': 'tedx/test.csv'})['test'] def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = speech.squeeze(0).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") return batch ``` ```python ds = dataset.map(map_to_array) result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys())) print(wer.compute(predictions=result["predicted"], references=result["target"])) for pred, target in zip(result["predicted"][:10], result["target"][:10]): print(pred, "|", target) ``` 0.35215851987208774 com isso a gente vê que essa rede de pactuação de de deparcerias nos remete a um raciocínio lógico que ao que a gente crê que é a prevenção | com isso a gente vê que essa rede de pactuação de parcerias nos remete a um raciocínio lógico que é o que a gente crê que é a prevenção ente vai para o resultado | e aí a gente vai pro resultado curiosidade hé o que eu descobri desde que comecei a fazer pesquisa lá no ensino médio | e a curiosidade é algo que descobri desde que comecei a fazer pesquisa lá no ensino médio val des quemesho | há vários caminhos que é uma opcissão por comer soldado | que é uma obsessão por comer saudável isso é tão é forte algoltão universal que existem dados que mostram que setenta e cinco por cento das reuniões são dominadas pela voz masculina | e isso é tão forte é algo tão universal que existem dados que mostram que das reuniões são dominadas pela voz masculina não era exatamente isso não estávamos deveto | e não era exatamente isso que nós estávamos a ver durante meci do médio ofiz pesquisa estudei numa escola que chamam a fundação liberate ficava relativamente próximo daqui | durante o ensino médio eu fiz pesquisa estudei numa escola que se chama fundação liberato que fica relativamente próxima daqui oito anos atrás eu fui apresentado por uma doença que até então eu não conhecia e que é bem provável que a maior parte de nós todos aqui não conheçamos | oito anos atrás fui apresentado para uma doença que até então eu não conhecia e que é bem provável que a maior parte de nós todos aqui não conheçamos o terceiro é o museu do ripiopeco | o terceiro é o museu do hip hop **Result**: 35.21%
birgermoell/psst-libri960_big
birgermoell
2022-04-01T20:17:17Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-01T19:05:31Z
pssteval INFO: ASR metrics for split `valid` FER: 9.8% PER: 20.9%
juaner/distilbert-base-uncased-finetuned-cola
juaner
2022-04-01T18:20:42Z
5
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-01T17:59:52Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: juaner/distilbert-base-uncased-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # juaner/distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1909 - Validation Loss: 0.5553 - Train Matthews Correlation: 0.5279 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2670, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Matthews Correlation | Epoch | |:----------:|:---------------:|:--------------------------:|:-----:| | 0.5191 | 0.4491 | 0.4718 | 0 | | 0.3270 | 0.4571 | 0.5196 | 1 | | 0.1909 | 0.5553 | 0.5279 | 2 | ### Framework versions - Transformers 4.16.2 - TensorFlow 2.8.0 - Datasets 1.18.3 - Tokenizers 0.11.0
McGill-NLP/bart-qg-nq-checkpoint
McGill-NLP
2022-04-01T17:35:04Z
26
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "arxiv:1910.13461", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-01T16:32:49Z
--- license: cc-by-4.0 --- # BART-base fine-tuned on NaturalQuestions for **Question Generation** [BART Model](https://arxiv.org/pdf/1910.13461.pdf) fine-tuned on [Google NaturalQuestions](https://ai.google.com/research/NaturalQuestions/) for **Question Generation** by treating long answer as input, and question as output. ## Details of BART The **BART** model was presented in [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) by *Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, Luke Zettlemoyer* in Here the abstract: We present BART, a denoising autoencoder for pretraining sequence-to-sequence models. BART is trained by (1) corrupting text with an arbitrary noising function, and (2) learning a model to reconstruct the original text. It uses a standard Tranformer-based neural machine translation architecture which, despite its simplicity, can be seen as generalizing BERT (due to the bidirectional encoder), GPT (with the left-to-right decoder), and many other more recent pretraining schemes. We evaluate a number of noising approaches, finding the best performance by both randomly shuffling the order of the original sentences and using a novel in-filling scheme, where spans of text are replaced with a single mask token. BART is particularly effective when fine tuned for text generation but also works well for comprehension tasks. It matches the performance of RoBERTa with comparable training resources on GLUE and SQuAD, achieves new state-of-the-art results on a range of abstractive dialogue, question answering, and summarization tasks, with gains of up to 6 ROUGE. BART also provides a 1.1 BLEU increase over a back-translation system for machine translation, with only target language pretraining. We also report ablation experiments that replicate other pretraining schemes within the BART framework, to better measure which factors most influence end-task performance. ## Details of the downstream task (QG) - Dataset 📚 🧐 Dataset: ```NaturalQuestions``` from Google (https://ai.google.com/research/NaturalQuestions/) | Dataset | Split | # samples | | -------- | ----- | --------- | | NaturalQuestions | train | 97650 | | NaturalQuestions | valid | 10850 | ## Model fine-tuning 🏋️‍ The training script can be found [here](https://github.com/McGill-NLP/MLQuestions/blob/main/QG/train.py) ## Model in Action 🚀 ```python from transformers import AutoModel, BartTokenizer #Load the tokenizer tokenizer = BartTokenizer.from_pretrained('facebook/bart-base') #Load the model model = AutoModelForSeq2SeqLM.from_pretrained("McGill-NLP/bart-qg-nq-checkpoint") ``` ## Citation If you want to cite this model you can use this: ```bibtex @inproceedings{kulshreshtha-etal-2021-back, title = "Back-Training excels Self-Training at Unsupervised Domain Adaptation of Question Generation and Passage Retrieval", author = "Kulshreshtha, Devang and Belfer, Robert and Serban, Iulian Vlad and Reddy, Siva", booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.566", pages = "7064--7078", abstract = "In this work, we introduce back-training, an alternative to self-training for unsupervised domain adaptation (UDA). While self-training generates synthetic training data where natural inputs are aligned with noisy outputs, back-training results in natural outputs aligned with noisy inputs. This significantly reduces the gap between target domain and synthetic data distribution, and reduces model overfitting to source domain. We run UDA experiments on question generation and passage retrieval from the Natural Questions domain to machine learning and biomedical domains. We find that back-training vastly outperforms self-training by a mean improvement of 7.8 BLEU-4 points on generation, and 17.6{\%} top-20 retrieval accuracy across both domains. We further propose consistency filters to remove low-quality synthetic data before training. We also release a new domain-adaptation dataset - MLQuestions containing 35K unaligned questions, 50K unaligned passages, and 3K aligned question-passage pairs.", } ``` > Created by [Devang Kulshreshtha](https://geekydevu.netlify.app/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
vicl/canine-c-finetuned-mrpc
vicl
2022-04-01T16:33:28Z
4
1
transformers
[ "transformers", "pytorch", "tensorboard", "canine", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-01T16:05:44Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: canine-c-finetuned-mrpc results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8627450980392157 - name: F1 type: f1 value: 0.9014084507042254 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # canine-c-finetuned-mrpc This model is a fine-tuned version of [google/canine-c](https://huggingface.co/google/canine-c) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4066 - Accuracy: 0.8627 - F1: 0.9014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 230 | 0.5014 | 0.7696 | 0.8479 | | No log | 2.0 | 460 | 0.4755 | 0.7892 | 0.8622 | | 0.5096 | 3.0 | 690 | 0.3645 | 0.8431 | 0.8869 | | 0.5096 | 4.0 | 920 | 0.4066 | 0.8627 | 0.9014 | | 0.2619 | 5.0 | 1150 | 0.4551 | 0.8431 | 0.8877 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
ydshieh/bert-base-uncased-yelp-polarity
ydshieh
2022-04-01T15:20:05Z
103
0
transformers
[ "transformers", "tf", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-01T15:17:35Z
## TextAttack Model Card This `bert-base-uncased` model was fine-tuned for sequence classification using TextAttack and the yelp_polarity dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 16, a learning rate of 5e-05, and a maximum sequence length of 256. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.9699473684210527, as measured by the eval set accuracy, found after 4 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
avialfont/ner-dummy-model
avialfont
2022-04-01T14:59:22Z
5
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-04-01T10:59:27Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: ner-dummy-model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ner-dummy-model This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2631, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.16.2 - TensorFlow 2.8.0 - Datasets 1.18.3 - Tokenizers 0.11.6
eren23/pneumonia_test_attempt
eren23
2022-04-01T14:41:01Z
57
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-19T16:31:28Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: pneumonia_test_attempt results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9783163070678711 --- # pneumonia-bielefeld-dl-course This registry contains the model for making pneumonia predictions and was prepared for Bielefeld University Deep Learning course homework. The code used for this implementation mostly comes from here: https://github.com/nateraw/huggingpics it was a ready pipeline for model fine-tuning with huggingface and PyTorch Lightning for another dataset.
jfealko/wav2vec2-large-xls-r-300m-irish-colab_test
jfealko
2022-04-01T13:23:06Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-01T11:29:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-irish-colab_test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-irish-colab_test This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.7839 - Wer: 0.6220 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 90 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 10.0428 | 2.94 | 50 | 4.1311 | 1.0 | | 3.2917 | 5.88 | 100 | 3.1468 | 1.0 | | 3.0221 | 8.82 | 150 | 2.9848 | 1.0 | | 2.9795 | 11.76 | 200 | 2.9567 | 1.0 | | 2.9379 | 14.71 | 250 | 2.9463 | 1.0 | | 2.9068 | 17.65 | 300 | 2.8330 | 1.0 | | 2.5088 | 20.59 | 350 | 1.9807 | 0.9535 | | 1.6188 | 23.53 | 400 | 1.4254 | 0.8398 | | 1.0435 | 26.47 | 450 | 1.3668 | 0.7807 | | 0.7212 | 29.41 | 500 | 1.3914 | 0.7476 | | 0.5456 | 32.35 | 550 | 1.5495 | 0.7470 | | 0.4297 | 35.29 | 600 | 1.4751 | 0.6960 | | 0.3533 | 38.24 | 650 | 1.5157 | 0.6909 | | 0.2899 | 41.18 | 700 | 1.5394 | 0.6879 | | 0.2529 | 44.12 | 750 | 1.6186 | 0.6903 | | 0.2413 | 47.06 | 800 | 1.6386 | 0.6954 | | 0.2113 | 50.0 | 850 | 1.6906 | 0.6778 | | 0.1769 | 52.94 | 900 | 1.6918 | 0.6575 | | 0.1622 | 55.88 | 950 | 1.7313 | 0.6572 | | 0.1564 | 58.82 | 1000 | 1.7701 | 0.6510 | | 0.1637 | 61.76 | 1050 | 1.6800 | 0.6444 | | 0.148 | 64.71 | 1100 | 1.7306 | 0.6477 | | 0.1385 | 67.65 | 1150 | 1.7605 | 0.6408 | | 0.1264 | 70.59 | 1200 | 1.7534 | 0.6244 | | 0.1157 | 73.53 | 1250 | 1.7906 | 0.6381 | | 0.1027 | 76.47 | 1300 | 1.7803 | 0.6265 | | 0.1061 | 79.41 | 1350 | 1.7617 | 0.6259 | | 0.0934 | 82.35 | 1400 | 1.7649 | 0.6253 | | 0.0904 | 85.29 | 1450 | 1.7713 | 0.6187 | | 0.0911 | 88.24 | 1500 | 1.7839 | 0.6220 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
notexist/ttt
notexist
2022-04-01T13:16:50Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-01T12:45:30Z
--- license: apache-2.0 ---
bmichele/poetry-generation-firstline-mbart-ws-fi-sorted
bmichele
2022-04-01T13:03:49Z
0
0
null
[ "pytorch", "region:us" ]
null
2022-04-01T12:58:00Z
TODO: This is still a demo model, the file does not match with the model card!!! # poetry-generation-firstline-mbart-ws-fi-sorted * `nextline`: generates the first poem line from keywords * `mbart`: base model is [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) * `ws`: trained on Wikisource data * `fi`: Finnish language * `sorted`: the order of input keywords matter when generating candidates
xxr/bert-base-uncased-multi-128
xxr
2022-04-01T11:40:30Z
3
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-04-01T05:36:26Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model_index: - name: bert-base-uncased-multi-128 results: - task: name: Masked Language Modeling type: fill-mask --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-multi-128 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7101 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.6636 | 1.0 | 812 | 3.2325 | | 3.2963 | 2.0 | 1624 | 3.1937 | | 3.1132 | 3.0 | 2436 | 3.2984 | | 2.9386 | 4.0 | 3248 | 3.2430 | | 2.7742 | 5.0 | 4060 | 3.1272 | | 2.5954 | 6.0 | 4872 | 3.1778 | | 2.501 | 7.0 | 5684 | 3.1649 | | 2.4073 | 8.0 | 6496 | 2.9395 | | 2.2933 | 9.0 | 7308 | 3.1262 | | 2.2218 | 10.0 | 8120 | 2.9994 | | 2.1558 | 11.0 | 8932 | 2.9922 | | 2.0873 | 12.0 | 9744 | 2.8414 | | 2.0104 | 13.0 | 10556 | 2.9351 | | 1.9364 | 14.0 | 11368 | 2.9253 | | 1.9045 | 15.0 | 12180 | 2.8701 | | 1.9152 | 16.0 | 12992 | 2.7101 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.7.1 - Datasets 1.16.1 - Tokenizers 0.10.3
scasutt/wav2vec2-large-xlsr-53_toy_train_data_random_low_pass
scasutt
2022-04-01T11:40:10Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-01T06:18:47Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-53_toy_train_data_random_low_pass results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53_toy_train_data_random_low_pass This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6572 - Wer: 0.4973 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.0834 | 2.1 | 500 | 3.4478 | 1.0 | | 1.0735 | 4.2 | 1000 | 0.9113 | 0.7815 | | 0.5516 | 6.3 | 1500 | 0.7035 | 0.6081 | | 0.4023 | 8.4 | 2000 | 0.6647 | 0.5649 | | 0.3423 | 10.5 | 2500 | 0.6613 | 0.5450 | | 0.2938 | 12.6 | 3000 | 0.6967 | 0.5318 | | 0.2902 | 14.7 | 3500 | 0.6430 | 0.5089 | | 0.2372 | 16.81 | 4000 | 0.6653 | 0.5045 | | 0.2148 | 18.91 | 4500 | 0.6572 | 0.4973 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.12.0
osanseviero/llama-or-potato
osanseviero
2022-04-01T09:45:26Z
63
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "llama-leaderboard", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-04-01T09:05:43Z
--- tags: - image-classification - pytorch - huggingpics - llama-leaderboard metrics: - accuracy model-index: - name: llama-or-potato results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 1.0 --- # llama-or-potato Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### llamas ![llamas](images/llamas.jpg) #### potato ![potato](images/potato.jpg)
jkhan447/sentiment-model-sample-27go-emotion
jkhan447
2022-04-01T08:13:56Z
4
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:go_emotions", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-28T06:05:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - go_emotions metrics: - accuracy model-index: - name: sentiment-model-sample-27go-emotion results: - task: name: Text Classification type: text-classification dataset: name: go_emotions type: go_emotions args: simplified metrics: - name: Accuracy type: accuracy value: 0.5888888888888889 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment-model-sample-27go-emotion This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the go_emotions dataset. It achieves the following results on the evaluation set: - Loss: 4.1765 - Accuracy: 0.5889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.12.0
Basedino/GPT-RO
Basedino
2022-04-01T07:47:41Z
0
0
null
[ "license:gpl-3.0", "region:us" ]
null
2022-03-31T08:19:30Z
--- license: gpl-3.0 --- So i made this model because i had nothing to do. it's gpt 2 124m finetuned to a bunch of italian recipes. I made it using aitextgen, so you can use that to play with the model easily.
z5ying/mbart-large-cc25-finetuned-source-to-target
z5ying
2022-04-01T03:43:40Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-07T18:25:31Z
--- tags: - generated_from_trainer model-index: - name: mbart-large-cc25-finetuned-source-to-target results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-large-cc25-finetuned-source-to-target This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.002 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.12.0
Mr-Wick/xlnet-base-cased
Mr-Wick
2022-04-01T01:31:59Z
3
0
transformers
[ "transformers", "tf", "xlnet", "question-answering", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
question-answering
2022-03-26T12:52:07Z
--- tags: - generated_from_keras_callback model-index: - name: xlnet-base-cased results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # xlnet-base-cased This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 16530, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.12.0
magitz/distilbert-base-uncased-finetuned-emotion
magitz
2022-03-31T20:48:43Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-31T20:41:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9265 - name: F1 type: f1 value: 0.9267965474109292 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2235 - Accuracy: 0.9265 - F1: 0.9268 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8101 | 1.0 | 250 | 0.3177 | 0.9045 | 0.9010 | | 0.2472 | 2.0 | 500 | 0.2235 | 0.9265 | 0.9268 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.8.1 - Datasets 1.18.3 - Tokenizers 0.11.0
WENGSYX/Deberta-Chinese-Large
WENGSYX
2022-03-31T20:08:59Z
56
16
transformers
[ "transformers", "pytorch", "deberta", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# Deberta-Chinese ​ 本项目,基于微软开源的Deberta模型,在中文领域进行预训练。开源本模型,旨在为其他人提供更多预训练语言模型选择。 ​ 本预训练模型,基于WuDaoCorpora语料库预训练而成。WuDaoCorpora是北京智源人工智能研究院(智源研究院)构建的大规模、高质量数据集,用于支撑“悟道”大模型项目研究。 ​ 使用WWM与n-gramMLM 等预训练方法进行预训练。 | 预训练模型 | 学习率 | batchsize | 设备 | 语料库 | 时间 | 优化器 | | --------------------- | ------ | --------- | ------ | ------ | ---- | ------ | | Deberta-Chinese-Large | 1e-5 | 512 | 2*3090 | 200G | 14天 | AdamW | ​ ### 加载与使用 依托于huggingface-transformers ``` tokenizer = BertTokenizer.from_pretrained("WENGSYX/Deberta-Chinese-Large") model = AutoModel.from_pretrained("WENGSYX/Deberta-Chinese-Large") ``` #### 注意,请使用BertTokenizer加载中文词表
deepspeechvision/wav2vec2_hindi_asr
deepspeechvision
2022-03-31T18:03:34Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-31T17:22:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2_hindi_asr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_hindi_asr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
huggingtweets/stillconor
huggingtweets
2022-03-31T17:49:05Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-31T16:59:05Z
--- language: en thumbnail: http://www.huggingtweets.com/stillconor/1648748939988/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1485398297984389121/DmUfFheN_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">conor</div> <div style="text-align: center; font-size: 14px;">@stillconor</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from conor. | Data | conor | | --- | --- | | Tweets downloaded | 3199 | | Retweets | 102 | | Short tweets | 432 | | Tweets kept | 2665 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1z83yigq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @stillconor's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/30hsnorw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/30hsnorw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/stillconor') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
rahulacj/bertweet-base-finetuned-sentiment-analysis
rahulacj
2022-03-31T16:21:16Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-31T09:42:31Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bertweet-base-finetuned-sentiment-analysis results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertweet-base-finetuned-sentiment-analysis This model is a fine-tuned version of [cardiffnlp/bertweet-base-sentiment](https://huggingface.co/cardiffnlp/bertweet-base-sentiment) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8458 - Accuracy: 0.6426 - F1: 0.6397 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8904 | 1.0 | 630 | 0.8509 | 0.6381 | 0.6340 | | 0.7655 | 2.0 | 1260 | 0.8345 | 0.6579 | 0.6559 | | 0.66 | 3.0 | 1890 | 0.9199 | 0.6548 | 0.6514 | | 0.447 | 4.0 | 2520 | 1.0324 | 0.6429 | 0.6417 | | 0.3585 | 5.0 | 3150 | 1.1234 | 0.6452 | 0.6424 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.12.0
huggingtweets/timdingmanlive
huggingtweets
2022-03-31T14:30:05Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-31T14:26:57Z
--- language: en thumbnail: http://www.huggingtweets.com/timdingmanlive/1648736999131/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/2844974270/7bb6450b90b65f8712d9433b8d5e1971_400x400.jpeg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tim Dingman</div> <div style="text-align: center; font-size: 14px;">@timdingmanlive</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Tim Dingman. | Data | Tim Dingman | | --- | --- | | Tweets downloaded | 3240 | | Retweets | 555 | | Short tweets | 138 | | Tweets kept | 2547 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/7yvdv2z7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @timdingmanlive's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/311pu3zj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/311pu3zj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/timdingmanlive') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/youtube
huggingtweets
2022-03-31T14:06:33Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-31T14:05:50Z
--- language: en thumbnail: http://www.huggingtweets.com/youtube/1648735587597/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1427292844612595720/RC1YSvuT_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">YouTube</div> <div style="text-align: center; font-size: 14px;">@youtube</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from YouTube. | Data | YouTube | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 23 | | Short tweets | 104 | | Tweets kept | 3123 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2dx34obn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @youtube's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/p527w5q3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/p527w5q3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/youtube') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
chrisjay/fonxlsr
chrisjay
2022-03-31T13:35:06Z
40
7
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "hf-asr-leaderboard", "fon", "dataset:fon_dataset", "arxiv:2103.07762", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: fon datasets: - fon_dataset metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week - hf-asr-leaderboard license: apache-2.0 model-index: - name: Fon XLSR Wav2Vec2 Large 53 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: fon type: fon_dataset args: fon metrics: - name: Test WER type: wer value: 14.97 --- # Wav2Vec2-Large-XLSR-53-Fon Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on [Fon (or Fongbe)](https://en.wikipedia.org/wiki/Fon_language) using the [Fon Dataset](https://github.com/laleye/pyFongbe/tree/master/data). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import json import random import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor #Load test_dataset from saved files in folder from datasets import load_dataset, load_metric #for test for root, dirs, files in os.walk(test/): test_dataset= load_dataset("json", data_files=[os.path.join(root,i) for i in files],split="train") #Remove unnecessary chars chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\‘\\”]' def remove_special_characters(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " " return batch test_dataset = test_dataset.map(remove_special_characters) processor = Wav2Vec2Processor.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon") model = Wav2Vec2ForCTC.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon") #No need for resampling because audio dataset already at 16kHz #resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"]=speech_array.squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on our unique Fon test data. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re for root, dirs, files in os.walk(test/): test_dataset = load_dataset("json", data_files=[os.path.join(root,i) for i in files],split="train") chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\‘\\”]' batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " " return batch test_dataset = test_dataset.map(remove_special_characters) wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon") model = Wav2Vec2ForCTC.from_pretrained("chrisjay/wav2vec2-large-xlsr-53-fon") model.to("cuda") # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = speech_array[0].numpy() batch["sampling_rate"] = sampling_rate batch["target_text"] = batch["sentence"] return batch test_dataset = test_dataset.map(speech_file_to_array_fn) #Evaluation on test dataset def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 14.97 % ## Training The [Fon dataset](https://github.com/laleye/pyFongbe/tree/master/data) was split into `train`(8235 samples), `validation`(1107 samples), and `test`(1061 samples). The script used for training can be found [here](https://colab.research.google.com/drive/11l6qhJCYnPTG1TQZ8f3EvKB9z12TQi4g?usp=sharing) # Collaborators on this project - Chris C. Emezue ([Twitter](https://twitter.com/ChrisEmezue))|(chris.emezue@gmail.com) - Bonaventure F.P. Dossou (HuggingFace Username: [bonadossou](https://huggingface.co/bonadossou))|([Twitter](https://twitter.com/bonadossou))|(femipancrace.dossou@gmail.com) ## This is a joint project continuing our research on [OkwuGbé: End-to-End Speech Recognition for Fon and Igbo](https://arxiv.org/abs/2103.07762)
Visual-Attention-Network/van-tiny
Visual-Attention-Network
2022-03-31T12:45:47Z
173
2
transformers
[ "transformers", "pytorch", "van", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2202.09741", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-16T15:05:02Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # Van Van model trained on imagenet-1k. It was introduced in the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) and first released in [this repository](https://github.com/Visual-Attention-Network/VAN-Classification). Disclaimer: The team releasing Van did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description This paper introduces a new attention layer based on convolution operations able to capture both local and distant relationships. This is done by combining normal and large kernel convolution layers. The latter uses a dilated convolution to capture distant correlations. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/van_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=van) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, VanForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("Visual-Attention-Network/van-base") >>> model = VanForImageClassification.from_pretrained("Visual-Attention-Network/van-base") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) tabby, tabby cat ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/van).
Visual-Attention-Network/van-large
Visual-Attention-Network
2022-03-31T12:45:46Z
122
1
transformers
[ "transformers", "pytorch", "van", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2202.09741", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-09T18:03:37Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # Van Van model trained on imagenet-1k. It was introduced in the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) and first released in [this repository](https://github.com/Visual-Attention-Network/VAN-Classification). Disclaimer: The team releasing Van did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description This paper introduces a new attention layer based on convolution operations able to capture both local and distant relationships. This is done by combining normal and large kernel convolution layers. The latter uses a dilated convolution to capture distant correlations. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/van_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=van) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, VanForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("Visual-Attention-Network/van-base") >>> model = VanForImageClassification.from_pretrained("Visual-Attention-Network/van-base") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) tabby, tabby cat ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/van).
Neulvo/bert-finetuned-squad
Neulvo
2022-03-31T12:08:42Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-31T10:54:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
frtna/jwt300_mt-Italian-to-Spanish_transformers
frtna
2022-03-31T11:18:09Z
4
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:new_dataset", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-29T09:49:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - new_dataset metrics: - sacrebleu model-index: - name: jwt300_mt-Italian-to-Spanish_transformers results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: new_dataset type: new_dataset args: jwt300_mt metrics: - name: Sacrebleu type: sacrebleu value: 0.9057 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # jwt300_mt-Italian-to-Spanish_transformers This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the new_dataset dataset. It achieves the following results on the evaluation set: - Loss: 2.4425 - Sacrebleu: 0.9057 - Gen Len: 18.1276 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Sacrebleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 2.7545 | 1.0 | 2229 | 2.4425 | 0.9057 | 18.1276 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.11.6
nikhil6041/wav2vec2-commonvoice-tamil
nikhil6041
2022-03-31T09:24:01Z
18
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:mit", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-31T04:00:23Z
--- license: mit tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-commonvoice-tamil results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-commonvoice-tamil This model is a fine-tuned version of [Harveenchadha/vakyansh-wav2vec2-tamil-tam-250](https://huggingface.co/Harveenchadha/vakyansh-wav2vec2-tamil-tam-250) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 3.3415 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 5.384 | 1.69 | 200 | 3.3400 | 1.0 | | 3.3085 | 3.39 | 400 | 3.3609 | 1.0 | | 3.3008 | 5.08 | 600 | 3.3331 | 1.0 | | 3.2852 | 6.78 | 800 | 3.3492 | 1.0 | | 3.2908 | 8.47 | 1000 | 3.3318 | 1.0 | | 3.2865 | 10.17 | 1200 | 3.3501 | 1.0 | | 3.2826 | 11.86 | 1400 | 3.3403 | 1.0 | | 3.2875 | 13.56 | 1600 | 3.3335 | 1.0 | | 3.2899 | 15.25 | 1800 | 3.3311 | 1.0 | | 3.2755 | 16.95 | 2000 | 3.3617 | 1.0 | | 3.2877 | 18.64 | 2200 | 3.3317 | 1.0 | | 3.2854 | 20.34 | 2400 | 3.3560 | 1.0 | | 3.2878 | 22.03 | 2600 | 3.3332 | 1.0 | | 3.2766 | 23.73 | 2800 | 3.3317 | 1.0 | | 3.2943 | 25.42 | 3000 | 3.3737 | 1.0 | | 3.2845 | 27.12 | 3200 | 3.3347 | 1.0 | | 3.2765 | 28.81 | 3400 | 3.3415 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
emiyasstar/ch-w2v-conformer
emiyasstar
2022-03-31T08:48:13Z
0
2
null
[ "region:us" ]
null
2022-03-29T15:44:56Z
The ch-w2v-conformer model uses following datasets to pretrain: ISML datasets (6 languages,70k hours): internal dataset contains 40k hours Chinese, Cantonese, Tibetan, Inner Mongolian, Inner Kazakh, Uighur. Babel datasets (17 languages, 2k hours): Assamese, Bengali, Cantonese, Cebuano, Georgian, Haitian, Kazakh, Kurmanji, Lao, Pashto, Swahili, Tagalog, Tamil, Tok, Turkish, Vietnamese, Zulu After pretraining, we build ASR system based on CTC-Attention structure. In very low resource task, we find that if too many initialization network structures are constructed in the upper layer of pre-training conformer encoder, the migration performance of the pre-training model will be destroyed, so we only build a single-layer transformer decoder for joint training. pretrained model link: ## constrained-plus Task Performance * Languages: Cantonese,mongolian,kazakh * config: conf/train_conformer_large_10h.yaml * Feature info: using mfcc feature, with dither 1.0, without cmvn * Training info: lr 0.001, batch size 10, 4 gpus on V100, acc_grad 1, 80 epochs * Decoding info: ctc_weight 0.5, average_num 35 dev set results trained only with 10 hours training set ## w2v-Conformer | decoding_method | Cantonese(CER) | mongolian(WER) | |:-------------------:|:----:|:----:| | ctc_greedy_search | 31.46 | 53.64 | | ctc_prefix_search | 31.47 | 53.50 | | attention_rescoring | 31.45 | 52.96 | ## Conformer (train from scartch) | decoding_method | Cantonese(CER) | mongolian(WER) | |:-------------------:|----:|:----:| | ctc_greedy_search | 61.43 | 89.38 | | ctc_prefix_search | 61.37 | 89.53| | attention_rescoring | 60.61 | 89.60|
davidmasip/racism
davidmasip
2022-03-31T06:56:46Z
26
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "es", "license:cc", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-16T18:23:46Z
--- license: cc language: es widget: - text: "Me cae muy bien." example_title: "Non-racist example" - text: "Unos menas agreden a una mujer." example_title: "Racist example" --- Model to predict whether a given text is racist or not: * `LABEL_0` output indicates non-racist text * `LABEL_1` output indicates racist text Usage: ```python from transformers import pipeline RACISM_MODEL = "davidmasip/racism" racism_analysis_pipe = pipeline("text-classification", model=RACISM_MODEL, tokenizer=RACISM_MODEL) results = racism_analysis_pipe("Unos menas agreden a una mujer.") def clean_labels(results): for result in results: label = "Non-racist" if results["label"] == "LABEL_0" else "Racist" result["label"] = label clean_labels(results) print(results) ```
unjustify/autotrain-commonsence-689620825
unjustify
2022-03-31T06:38:08Z
7
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain", "en", "dataset:unjustify/autotrain-data-commonsence", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-31T06:18:51Z
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - unjustify/autotrain-data-commonsence co2_eq_emissions: 20.656741915705204 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 689620825 - CO2 Emissions (in grams): 20.656741915705204 ## Validation Metrics - Loss: 0.7315372824668884 - Accuracy: 0.6354949675117849 - Precision: 0.63792194092827 - Recall: 0.6191451241361658 - AUC: 0.6912165223485615 - F1: 0.6283932978308872 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/unjustify/autotrain-commonsence-689620825 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("unjustify/autotrain-commonsence-689620825", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("unjustify/autotrain-commonsence-689620825", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
michiyasunaga/BioLinkBERT-large
michiyasunaga
2022-03-31T00:54:57Z
4,470
33
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "exbert", "linkbert", "biolinkbert", "fill-mask", "question-answering", "text-classification", "token-classification", "en", "dataset:pubmed", "arxiv:2203.15827", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-classification
2022-03-08T06:20:38Z
--- license: apache-2.0 language: en datasets: - pubmed tags: - bert - exbert - linkbert - biolinkbert - feature-extraction - fill-mask - question-answering - text-classification - token-classification widget: - text: "Sunitinib is a tyrosine kinase inhibitor" --- ## BioLinkBERT-large BioLinkBERT-large model pretrained on [PubMed](https://pubmed.ncbi.nlm.nih.gov/) abstracts along with citation link information. It is introduced in the paper [LinkBERT: Pretraining Language Models with Document Links (ACL 2022)](https://arxiv.org/abs/2203.15827). The code and data are available in [this repository](https://github.com/michiyasunaga/LinkBERT). This model achieves state-of-the-art performance on several biomedical NLP benchmarks such as [BLURB](https://microsoft.github.io/BLURB/) and [MedQA-USMLE](https://github.com/jind11/MedQA). ## Model description LinkBERT is a transformer encoder (BERT-like) model pretrained on a large corpus of documents. It is an improvement of BERT that newly captures **document links** such as hyperlinks and citation links to include knowledge that spans across multiple documents. Specifically, it was pretrained by feeding linked documents into the same language model context, besides a single document. LinkBERT can be used as a drop-in replacement for BERT. It achieves better performance for general language understanding tasks (e.g. text classification), and is also particularly effective for **knowledge-intensive** tasks (e.g. question answering) and **cross-document** tasks (e.g. reading comprehension, document retrieval). ## Intended uses & limitations The model can be used by fine-tuning on a downstream task, such as question answering, sequence classification, and token classification. You can also use the raw model for feature extraction (i.e. obtaining embeddings for input text). ### How to use To use the model to get the features of a given text in PyTorch: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained('michiyasunaga/BioLinkBERT-large') model = AutoModel.from_pretrained('michiyasunaga/BioLinkBERT-large') inputs = tokenizer("Sunitinib is a tyrosine kinase inhibitor", return_tensors="pt") outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state ``` For fine-tuning, you can use [this repository](https://github.com/michiyasunaga/LinkBERT) or follow any other BERT fine-tuning codebases. ## Evaluation results When fine-tuned on downstream tasks, LinkBERT achieves the following results. **Biomedical benchmarks ([BLURB](https://microsoft.github.io/BLURB/), [MedQA](https://github.com/jind11/MedQA), [MMLU](https://github.com/hendrycks/test), etc.):** BioLinkBERT attains new state-of-the-art. | | BLURB score | PubMedQA | BioASQ | MedQA-USMLE | | ---------------------- | -------- | -------- | ------- | -------- | | PubmedBERT-base | 81.10 | 55.8 | 87.5 | 38.1 | | **BioLinkBERT-base** | **83.39** | **70.2** | **91.4** | **40.0** | | **BioLinkBERT-large** | **84.30** | **72.2** | **94.8** | **44.6** | | | MMLU-professional medicine | | ---------------------- | -------- | | GPT-3 (175 params) | 38.7 | | UnifiedQA (11B params) | 43.2 | | **BioLinkBERT-large (340M params)** | **50.7** | ## Citation If you find LinkBERT useful in your project, please cite the following: ```bibtex @InProceedings{yasunaga2022linkbert, author = {Michihiro Yasunaga and Jure Leskovec and Percy Liang}, title = {LinkBERT: Pretraining Language Models with Document Links}, year = {2022}, booktitle = {Association for Computational Linguistics (ACL)}, } ```
michiyasunaga/BioLinkBERT-base
michiyasunaga
2022-03-31T00:51:21Z
6,225
36
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "exbert", "linkbert", "biolinkbert", "fill-mask", "question-answering", "text-classification", "token-classification", "en", "dataset:pubmed", "arxiv:2203.15827", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-classification
2022-03-08T07:22:12Z
--- license: apache-2.0 language: en datasets: - pubmed tags: - bert - exbert - linkbert - biolinkbert - feature-extraction - fill-mask - question-answering - text-classification - token-classification widget: - text: "Sunitinib is a tyrosine kinase inhibitor" --- ## BioLinkBERT-base BioLinkBERT-base model pretrained on [PubMed](https://pubmed.ncbi.nlm.nih.gov/) abstracts along with citation link information. It is introduced in the paper [LinkBERT: Pretraining Language Models with Document Links (ACL 2022)](https://arxiv.org/abs/2203.15827). The code and data are available in [this repository](https://github.com/michiyasunaga/LinkBERT). This model achieves state-of-the-art performance on several biomedical NLP benchmarks such as [BLURB](https://microsoft.github.io/BLURB/) and [MedQA-USMLE](https://github.com/jind11/MedQA). ## Model description LinkBERT is a transformer encoder (BERT-like) model pretrained on a large corpus of documents. It is an improvement of BERT that newly captures **document links** such as hyperlinks and citation links to include knowledge that spans across multiple documents. Specifically, it was pretrained by feeding linked documents into the same language model context, besides a single document. LinkBERT can be used as a drop-in replacement for BERT. It achieves better performance for general language understanding tasks (e.g. text classification), and is also particularly effective for **knowledge-intensive** tasks (e.g. question answering) and **cross-document** tasks (e.g. reading comprehension, document retrieval). ## Intended uses & limitations The model can be used by fine-tuning on a downstream task, such as question answering, sequence classification, and token classification. You can also use the raw model for feature extraction (i.e. obtaining embeddings for input text). ### How to use To use the model to get the features of a given text in PyTorch: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained('michiyasunaga/BioLinkBERT-base') model = AutoModel.from_pretrained('michiyasunaga/BioLinkBERT-base') inputs = tokenizer("Sunitinib is a tyrosine kinase inhibitor", return_tensors="pt") outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state ``` For fine-tuning, you can use [this repository](https://github.com/michiyasunaga/LinkBERT) or follow any other BERT fine-tuning codebases. ## Evaluation results When fine-tuned on downstream tasks, LinkBERT achieves the following results. **Biomedical benchmarks ([BLURB](https://microsoft.github.io/BLURB/), [MedQA](https://github.com/jind11/MedQA), [MMLU](https://github.com/hendrycks/test), etc.):** BioLinkBERT attains new state-of-the-art. | | BLURB score | PubMedQA | BioASQ | MedQA-USMLE | | ---------------------- | -------- | -------- | ------- | -------- | | PubmedBERT-base | 81.10 | 55.8 | 87.5 | 38.1 | | **BioLinkBERT-base** | **83.39** | **70.2** | **91.4** | **40.0** | | **BioLinkBERT-large** | **84.30** | **72.2** | **94.8** | **44.6** | | | MMLU-professional medicine | | ---------------------- | -------- | | GPT-3 (175 params) | 38.7 | | UnifiedQA (11B params) | 43.2 | | **BioLinkBERT-large (340M params)** | **50.7** | ## Citation If you find LinkBERT useful in your project, please cite the following: ```bibtex @InProceedings{yasunaga2022linkbert, author = {Michihiro Yasunaga and Jure Leskovec and Percy Liang}, title = {LinkBERT: Pretraining Language Models with Document Links}, year = {2022}, booktitle = {Association for Computational Linguistics (ACL)}, } ```
michiyasunaga/LinkBERT-base
michiyasunaga
2022-03-31T00:38:32Z
847
7
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "exbert", "linkbert", "fill-mask", "question-answering", "text-classification", "token-classification", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:2203.15827", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-classification
2022-03-08T07:21:51Z
--- license: apache-2.0 language: en datasets: - wikipedia - bookcorpus tags: - bert - exbert - linkbert - feature-extraction - fill-mask - question-answering - text-classification - token-classification --- ## LinkBERT-base LinkBERT-base model pretrained on English Wikipedia articles along with hyperlink information. It is introduced in the paper [LinkBERT: Pretraining Language Models with Document Links (ACL 2022)](https://arxiv.org/abs/2203.15827). The code and data are available in [this repository](https://github.com/michiyasunaga/LinkBERT). ## Model description LinkBERT is a transformer encoder (BERT-like) model pretrained on a large corpus of documents. It is an improvement of BERT that newly captures **document links** such as hyperlinks and citation links to include knowledge that spans across multiple documents. Specifically, it was pretrained by feeding linked documents into the same language model context, besides a single document. LinkBERT can be used as a drop-in replacement for BERT. It achieves better performance for general language understanding tasks (e.g. text classification), and is also particularly effective for **knowledge-intensive** tasks (e.g. question answering) and **cross-document** tasks (e.g. reading comprehension, document retrieval). ## Intended uses & limitations The model can be used by fine-tuning on a downstream task, such as question answering, sequence classification, and token classification. You can also use the raw model for feature extraction (i.e. obtaining embeddings for input text). ### How to use To use the model to get the features of a given text in PyTorch: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained('michiyasunaga/LinkBERT-base') model = AutoModel.from_pretrained('michiyasunaga/LinkBERT-base') inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state ``` For fine-tuning, you can use [this repository](https://github.com/michiyasunaga/LinkBERT) or follow any other BERT fine-tuning codebases. ## Evaluation results When fine-tuned on downstream tasks, LinkBERT achieves the following results. **General benchmarks ([MRQA](https://github.com/mrqa/MRQA-Shared-Task-2019) and [GLUE](https://gluebenchmark.com/)):** | | HotpotQA | TriviaQA | SearchQA | NaturalQ | NewsQA | SQuAD | GLUE | | ---------------------- | -------- | -------- | -------- | -------- | ------ | ----- | -------- | | | F1 | F1 | F1 | F1 | F1 | F1 | Avg score | | BERT-base | 76.0 | 70.3 | 74.2 | 76.5 | 65.7 | 88.7 | 79.2 | | **LinkBERT-base** | **78.2** | **73.9** | **76.8** | **78.3** | **69.3** | **90.1** | **79.6** | | BERT-large | 78.1 | 73.7 | 78.3 | 79.0 | 70.9 | 91.1 | 80.7 | | **LinkBERT-large** | **80.8** | **78.2** | **80.5** | **81.0** | **72.6** | **92.7** | **81.1** | ## Citation If you find LinkBERT useful in your project, please cite the following: ```bibtex @InProceedings{yasunaga2022linkbert, author = {Michihiro Yasunaga and Jure Leskovec and Percy Liang}, title = {LinkBERT: Pretraining Language Models with Document Links}, year = {2022}, booktitle = {Association for Computational Linguistics (ACL)}, } ```
hoangbinhmta99/wav2vec-NCKH-2022
hoangbinhmta99
2022-03-31T00:28:52Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "feature-extraction", "audio", "speech", "Transformer", "automatic-speech-recognition", "vi", "dataset:vivos", "dataset:common_voice", "license:cc-by-nc-4.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-30T04:39:46Z
--- language: vi datasets: - vivos - common_voice metrics: - wer pipeline_tag: automatic-speech-recognition tags: - audio - speech - Transformer license: cc-by-nc-4.0 model-index: - name: Wav2vec2 NCKH Vietnamese 2022 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice vi type: common_voice args: vi metrics: - name: Test WER type: wer value: No --- Convert from model .pt to transformer Link: https://huggingface.co/tommy19970714/wav2vec2-base-960h Bash: ```bash pip install transformers[sentencepiece] pip install fairseq -U git clone https://github.com/huggingface/transformers.git cp transformers/src/transformers/models/wav2vec2/convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py . wget https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_small.pt -O ./wav2vec_small.pt mkdir dict wget https://dl.fbaipublicfiles.com/fairseq/wav2vec/dict.ltr.txt mkdir outputs python convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py --pytorch_dump_folder_path ./outputs --checkpoint_path ./finetuned/wav2vec_small.pt --dict_path ./dict/dict.ltr.txt --not_finetuned ``` # install and upload model ``` curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash git lfs install sudo apt-get install git-lfs git lfs install git clone https://huggingface.co/hoangbinhmta99/wav2vec-demo ls cd wav2vec-demo/ git status git add . git commit -m "First model version" git config --global user.email [yourname] git config --global user.name [yourpass] git commit -m "First model version" git push ```
michiyasunaga/LinkBERT-large
michiyasunaga
2022-03-31T00:27:01Z
1,297
11
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "exbert", "linkbert", "fill-mask", "question-answering", "text-classification", "token-classification", "en", "dataset:wikipedia", "dataset:bookcorpus", "arxiv:2203.15827", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-classification
2022-03-08T01:42:14Z
--- license: apache-2.0 language: en datasets: - wikipedia - bookcorpus tags: - bert - exbert - linkbert - feature-extraction - fill-mask - question-answering - text-classification - token-classification --- ## LinkBERT-large LinkBERT-large model pretrained on English Wikipedia articles along with hyperlink information. It is introduced in the paper [LinkBERT: Pretraining Language Models with Document Links (ACL 2022)](https://arxiv.org/abs/2203.15827). The code and data are available in [this repository](https://github.com/michiyasunaga/LinkBERT). ## Model description LinkBERT is a transformer encoder (BERT-like) model pretrained on a large corpus of documents. It is an improvement of BERT that newly captures **document links** such as hyperlinks and citation links to include knowledge that spans across multiple documents. Specifically, it was pretrained by feeding linked documents into the same language model context, besides a single document. LinkBERT can be used as a drop-in replacement for BERT. It achieves better performance for general language understanding tasks (e.g. text classification), and is also particularly effective for **knowledge-intensive** tasks (e.g. question answering) and **cross-document** tasks (e.g. reading comprehension, document retrieval). ## Intended uses & limitations The model can be used by fine-tuning on a downstream task, such as question answering, sequence classification, and token classification. You can also use the raw model for feature extraction (i.e. obtaining embeddings for input text). ### How to use To use the model to get the features of a given text in PyTorch: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained('michiyasunaga/LinkBERT-large') model = AutoModel.from_pretrained('michiyasunaga/LinkBERT-large') inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state ``` For fine-tuning, you can use [this repository](https://github.com/michiyasunaga/LinkBERT) or follow any other BERT fine-tuning codebases. ## Evaluation results When fine-tuned on downstream tasks, LinkBERT achieves the following results. **General benchmarks ([MRQA](https://github.com/mrqa/MRQA-Shared-Task-2019) and [GLUE](https://gluebenchmark.com/)):** | | HotpotQA | TriviaQA | SearchQA | NaturalQ | NewsQA | SQuAD | GLUE | | ---------------------- | -------- | -------- | -------- | -------- | ------ | ----- | -------- | | | F1 | F1 | F1 | F1 | F1 | F1 | Avg score | | BERT-base | 76.0 | 70.3 | 74.2 | 76.5 | 65.7 | 88.7 | 79.2 | | **LinkBERT-base** | **78.2** | **73.9** | **76.8** | **78.3** | **69.3** | **90.1** | **79.6** | | BERT-large | 78.1 | 73.7 | 78.3 | 79.0 | 70.9 | 91.1 | 80.7 | | **LinkBERT-large** | **80.8** | **78.2** | **80.5** | **81.0** | **72.6** | **92.7** | **81.1** | ## Citation If you find LinkBERT useful in your project, please cite the following: ```bibtex @InProceedings{yasunaga2022linkbert, author = {Michihiro Yasunaga and Jure Leskovec and Percy Liang}, title = {LinkBERT: Pretraining Language Models with Document Links}, year = {2022}, booktitle = {Association for Computational Linguistics (ACL)}, } ```
yinde/fatimah_fake_news_bert
yinde
2022-03-30T22:41:12Z
16
1
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-30T20:54:21Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: fatimah_fake_news_bert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fatimah_fake_news_bert This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on [Fake and real dataset on kaggle ]([distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english)) It achieves the following results on the evaluation set: - Loss: 0.0010 - Accuracy: 0.9998 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 20 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3298 | 0.06 | 200 | 0.0094 | 0.9987 | | 0.0087 | 0.11 | 400 | 0.0091 | 0.9988 | | 0.0126 | 0.17 | 600 | 0.0132 | 0.9965 | | 0.0081 | 0.22 | 800 | 0.0100 | 0.9987 | | 0.0132 | 0.28 | 1000 | 0.0086 | 0.9990 | | 0.0131 | 0.33 | 1200 | 0.0070 | 0.9986 | | 0.0086 | 0.39 | 1400 | 0.0079 | 0.9990 | | 0.0041 | 0.45 | 1600 | 0.0057 | 0.9991 | | 0.0069 | 0.5 | 1800 | 0.0083 | 0.9989 | | 0.0052 | 0.56 | 2000 | 0.0043 | 0.9993 | | 0.0 | 0.61 | 2200 | 0.0047 | 0.9993 | | 0.003 | 0.67 | 2400 | 0.0052 | 0.9994 | | 0.0126 | 0.72 | 2600 | 0.0028 | 0.9997 | | 0.0047 | 0.78 | 2800 | 0.0018 | 0.9996 | | 0.0 | 0.84 | 3000 | 0.0027 | 0.9996 | | 0.0001 | 0.89 | 3200 | 0.0029 | 0.9996 | | 0.0079 | 0.95 | 3400 | 0.0010 | 0.9998 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
UBC-NLP/MARBERTv2
UBC-NLP
2022-03-30T21:52:31Z
3,124
8
transformers
[ "transformers", "pytorch", "tf", "bert", "fill-mask", "Arabic BERT", "MSA", "Twitter", "Masked Langauge Model", "ar", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - ar tags: - Arabic BERT - MSA - Twitter - Masked Langauge Model widget: - text: "اللغة العربية هي لغة [MASK]." --- <img src="https://raw.githubusercontent.com/UBC-NLP/marbert/main/ARBERT_MARBERT.jpg" alt="drawing" width="30%" height="30%" align="right"/> **MARBERTv2** is one of three models described in our **ACL 2021 paper** **["ARBERT & MARBERT: Deep Bidirectional Transformers for Arabic"](https://aclanthology.org/2021.acl-long.551.pdf)**. We find that results with ARBERT and MARBERT on QA are not competitive, a clear discrepancy from what we have observed thus far on other tasksWe hypothesize this is because the two models are pre-trained with a sequence length of only 128, which does not allow them to sufficiently capture both a question and its likely answer within the same sequence window during the pre-training. To rectify this, we further pre-train the stronger model, MARBERT, on the same MSA data as ARBERT in addition to AraNews dataset but with a bigger sequence length of 512 tokens for 40 epochs. We call this further pre-trained model **MARBERTv2**, noting it has **29B tokens**. MARBERTv2 acquires best performance on all but one test set, where XLM-RLarge marginally outperforms us (only in F1). For more information, please visit our own GitHub [repo](https://github.com/UBC-NLP/marbert). # BibTex If you use our models (ARBERT, MARBERT, or MARBERTv2) for your scientific publication, or if you find the resources in this repository useful, please cite our paper as follows (to be updated): ```bibtex @inproceedings{abdul-mageed-etal-2021-arbert, title = "{ARBERT} {\&} {MARBERT}: Deep Bidirectional Transformers for {A}rabic", author = "Abdul-Mageed, Muhammad and Elmadany, AbdelRahim and Nagoudi, El Moatez Billah", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-long.551", doi = "10.18653/v1/2021.acl-long.551", pages = "7088--7105", abstract = "Pre-trained language models (LMs) are currently integral to many natural language processing systems. Although multilingual LMs were also introduced to serve many languages, these have limitations such as being costly at inference time and the size and diversity of non-English data involved in their pre-training. We remedy these issues for a collection of diverse Arabic varieties by introducing two powerful deep bidirectional transformer-based models, ARBERT and MARBERT. To evaluate our models, we also introduce ARLUE, a new benchmark for multi-dialectal Arabic language understanding evaluation. ARLUE is built using 42 datasets targeting six different task clusters, allowing us to offer a series of standardized experiments under rich conditions. When fine-tuned on ARLUE, our models collectively achieve new state-of-the-art results across the majority of tasks (37 out of 48 classification tasks, on the 42 datasets). Our best model acquires the highest ARLUE score (77.40) across all six task clusters, outperforming all other models including XLM-R Large ( 3.4x larger size). Our models are publicly available at https://github.com/UBC-NLP/marbert and ARLUE will be released through the same repository.", } ``` ## Acknowledgments We gratefully acknowledge support from the Natural Sciences and Engineering Research Council of Canada, the Social Sciences and Humanities Research Council of Canada, Canadian Foundation for Innovation, [ComputeCanada](www.computecanada.ca) and [UBC ARC-Sockeye](https://doi.org/10.14288/SOCKEYE). We also thank the [Google TensorFlow Research Cloud (TFRC)](https://www.tensorflow.org/tfrc) program for providing us with free TPU access.
mrm8488/biomedtra-small-es
mrm8488
2022-03-30T21:07:50Z
3
2
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "pretraining", "Spanish", "Electra", "Bio", "Medical", "es", "dataset:cowese", "arxiv:1406.2661", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: es tags: - Spanish - Electra - Bio - Medical datasets: - cowese --- ## 🦠 BIOMEDtra 🏥 **BIOMEDtra** (small) is an Electra like model (discriminator in this case) trained on [Spanish Biomedical Crawled Corpus](https://zenodo.org/record/5510033#.Yhdk1ZHMLJx). As mentioned in the original [paper](https://openreview.net/pdf?id=r1xMH1BtvB): **ELECTRA** is a new method for self-supervised language representation learning. It can be used to pre-train transformer networks using relatively little compute. ELECTRA models are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a [GAN](https://arxiv.org/pdf/1406.2661.pdf). At small scale, ELECTRA achieves strong results even when trained on a single GPU. At large scale, ELECTRA achieves state-of-the-art results on the [SQuAD 2.0](https://rajpurkar.github.io/SQuAD-explorer/) dataset. For a detailed description and experimental results, please refer the paper [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators](https://openreview.net/pdf?id=r1xMH1BtvB). ## Training details The model was trained using the Electra base code for 3 days on 1 GPU (Tesla V100 16GB). ## Dataset details The largest Spanish biomedical and heath corpus to date gathered from a massive Spanish health domain crawler over more than 3,000 URLs were downloaded and preprocessed. The collected data have been preprocessed to produce the **CoWeSe** (Corpus Web Salud Español) resource, a large-scale and high-quality corpus intended for biomedical and health NLP in Spanish. ## Model details ⚙ |Param| # Value| |-----|--------| |Layers| 12 | |Hidden | 256 | |Params| 14M | ## Evaluation metrics (for discriminator) 🧾 |Metric | # Score | |-------|---------| |Accuracy| 0.9561| |Precision| 0.808| |Recall | 0.531 | |AUC | 0.949| ## Benchmarks 🔨 WIP 🚧 ## How to use the discriminator in `transformers` ```py from transformers import ElectraForPreTraining, ElectraTokenizerFast import torch discriminator = ElectraForPreTraining.from_pretrained("mrm8488/biomedtra-small-es") tokenizer = ElectraTokenizerFast.from_pretrained("mrm8488/biomedtra-small-es") sentence = "Los españoles tienden a sufir déficit de vitamina c" fake_sentence = "Los españoles tienden a déficit sufrir de vitamina c" fake_tokens = tokenizer.tokenize(fake_sentence) fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") discriminator_outputs = discriminator(fake_inputs) predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2) [print("%7s" % token, end="") for token in fake_tokens] [print("%7s" % prediction, end="") for prediction in predictions.tolist()] ``` ## Acknowledgments TBA ## Citation If you want to cite this model you can use this: ```bibtex @misc{mromero2022biomedtra, title={Spanish BioMedical Electra (small)}, author={Romero, Manuel}, publisher={Hugging Face}, journal={Hugging Face Hub}, howpublished={\url{https://huggingface.co/mrm8488/biomedtra-small-es}, year={2022} } ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
vlsb/autotrain-security-text-classification-albert-688320769
vlsb
2022-03-30T20:59:32Z
15
2
transformers
[ "transformers", "pytorch", "albert", "text-classification", "autotrain", "unk", "dataset:vlsb/autotrain-data-security-text-classification-albert", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-30T20:55:59Z
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - vlsb/autotrain-data-security-text-classification-albert co2_eq_emissions: 3.670416179055797 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 688320769 - CO2 Emissions (in grams): 3.670416179055797 ## Validation Metrics - Loss: 0.3046899139881134 - Accuracy: 0.8826530612244898 - Precision: 0.9181818181818182 - Recall: 0.8782608695652174 - AUC: 0.9423510466988727 - F1: 0.8977777777777778 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/vlsb/autotrain-security-text-classification-albert-688320769 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("vlsb/autotrain-security-text-classification-albert-688320769", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("vlsb/autotrain-security-text-classification-albert-688320769", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
vlsb/autotrain-security-texts-classification-roberta-688020754
vlsb
2022-03-30T20:55:42Z
15
2
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "unk", "dataset:vlsb/autotrain-data-security-texts-classification-roberta", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-30T20:52:41Z
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - vlsb/autotrain-data-security-texts-classification-roberta co2_eq_emissions: 3.1151249696839685 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 688020754 - CO2 Emissions (in grams): 3.1151249696839685 ## Validation Metrics - Loss: 0.2810373902320862 - Accuracy: 0.8928571428571429 - Precision: 0.9272727272727272 - Recall: 0.8869565217391304 - AUC: 0.9500805152979066 - F1: 0.9066666666666666 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/vlsb/autotrain-security-texts-classification-roberta-688020754 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("vlsb/autotrain-security-texts-classification-roberta-688020754", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("vlsb/autotrain-security-texts-classification-roberta-688020754", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
mrm8488/longformer-base-4096-spanish
mrm8488
2022-03-30T20:36:36Z
49
16
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "Long documents", "longformer", "bertin", "spanish", "es", "dataset:spanish_large_corpus", "arxiv:2004.05150", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - es license: mit widget: - text: "Manuel Romero ha creado con el equipo de BERTIN un modelo que procesa documentos <mask> largos." tags: - Long documents - longformer - bertin - spanish datasets: - spanish_large_corpus --- # longformer-base-4096-spanish ## [Longformer](https://arxiv.org/abs/2004.05150) is a Transformer model for long documents. `longformer-base-4096` is a BERT-like model started from the RoBERTa checkpoint (**BERTIN** in this case) and pre-trained for *MLM* on long documents (from BETO's `all_wikis`). It supports sequences of length up to 4,096! **Longformer** uses a combination of a sliding window (*local*) attention and *global* attention. Global attention is user-configured based on the task to allow the model to learn task-specific representations. This model was made following the research done by [Iz Beltagy and Matthew E. Peters and Arman Cohan](https://arxiv.org/abs/2004.05150). ## Citation If you want to cite this model you can use this: ```bibtex @misc{mromero2022longformer-base-4096-spanish, title={Spanish LongFormer by Manuel Romero}, author={Romero, Manuel}, publisher={Hugging Face}, journal={Hugging Face Hub}, howpublished={\url{https://huggingface.co/mrm8488/longformer-base-4096-spanish}}, year={2022} } ```
misterekole/upside_down_detector
misterekole
2022-03-30T19:58:07Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2022-03-30T19:47:20Z
--- license: apache-2.0 --- Upside down detection model for Fatima Fellowship Coding Challenge 2022
sc2qa/msmarco_qa_classifier
sc2qa
2022-03-30T18:33:34Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "arxiv:2109.04689", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
For details, please refer to the following links. Github repo: https://github.com/amazon-research/SC2QA-DRIL Paper: [Generating Self-Contained and Summary-Centric Question Answer Pairs via Differentiable Reward Imitation Learning](https://arxiv.org/pdf/2109.04689.pdf)
horsbug98/Part_2_XLM_Model_E1
horsbug98
2022-03-30T18:29:46Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "generated_from_trainer", "dataset:tydiqa", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-16T17:32:47Z
--- license: mit tags: - generated_from_trainer datasets: - tydiqa model-index: - name: debug_xlm_task2_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # debug_xlm_task2_1 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the tydiqa secondary_task dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.9.1 - Datasets 2.0.0 - Tokenizers 0.10.3
waboucay/camembert-base-finetuned-xnli_fr
waboucay
2022-03-30T17:47:05Z
5
0
transformers
[ "transformers", "pytorch", "camembert", "text-classification", "nli", "fr", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-11T08:54:07Z
--- language: - fr tags: - nli metrics: - f1 --- ## Eval results We obtain the following results on ```validation``` and ```test``` sets: | Set | F1<sub>micro</sub> | F1<sub>macro</sub> | |------------|--------------------|--------------------| | validation | 89.2 | 87.6 | | test | 88.9 | 87.4 |
SAGAR4REAL/wav2vec2hindiasr
SAGAR4REAL
2022-03-30T17:32:46Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-30T14:51:24Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2hindiasr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2hindiasr This model is a fine-tuned version of [theainerd/Wav2Vec2-large-xlsr-hindi](https://huggingface.co/theainerd/Wav2Vec2-large-xlsr-hindi) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3