modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-09 12:33:01
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
550 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-09 12:32:40
card
stringlengths
11
1.01M
Reynold97/Mistral-7B-v0.1-GonzalezPedrasa-QLoRA
Reynold97
2023-12-20T22:05:53Z
3
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "region:us" ]
null
2023-12-20T22:05:21Z
--- library_name: peft base_model: mistralai/Mistral-7B-v0.1 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
badokorach/afriqa_afroxlmr_squad_v2-201223
badokorach
2023-12-20T22:03:05Z
3
0
transformers
[ "transformers", "tf", "xlm-roberta", "question-answering", "generated_from_keras_callback", "base_model:masakhane/afriqa_afroxlmr_squad_v2", "base_model:finetune:masakhane/afriqa_afroxlmr_squad_v2", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-12-20T20:01:08Z
--- license: mit base_model: masakhane/afriqa_afroxlmr_squad_v2 tags: - generated_from_keras_callback model-index: - name: badokorach/afriqa_afroxlmr_squad_v2-201223 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # badokorach/afriqa_afroxlmr_squad_v2-201223 This model is a fine-tuned version of [masakhane/afriqa_afroxlmr_squad_v2](https://huggingface.co/masakhane/afriqa_afroxlmr_squad_v2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0004 - Validation Loss: 0.0 - Epoch: 19 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 6080, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.02} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.0355 | 0.0 | 0 | | 0.0075 | 0.0 | 1 | | 0.0012 | 0.0 | 2 | | 0.0014 | 0.0 | 3 | | 0.0010 | 0.0 | 4 | | 0.0031 | 0.0 | 5 | | 0.0011 | 0.0 | 6 | | 0.0007 | 0.0 | 7 | | 0.0213 | 0.0 | 8 | | 0.0006 | 0.0 | 9 | | 0.0010 | 0.0 | 10 | | 0.0000 | 0.0 | 11 | | 0.0044 | 0.0 | 12 | | 0.0026 | 0.0 | 13 | | 0.0003 | 0.0 | 14 | | 0.0025 | 0.0 | 15 | | 0.0000 | 0.0 | 16 | | 0.0042 | 0.0 | 17 | | 0.0003 | 0.0 | 18 | | 0.0004 | 0.0 | 19 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.15.0 - Tokenizers 0.15.0
LoneStriker/OpenHermes-Mixtral-8x7B-3.5bpw-h6-exl2
LoneStriker
2023-12-20T21:57:45Z
6
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "instruct", "finetune", "llama", "gpt4", "synthetic data", "distillation", "conversational", "en", "base_model:mistralai/Mixtral-8x7B-Instruct-v0.1", "base_model:finetune:mistralai/Mixtral-8x7B-Instruct-v0.1", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-20T21:49:24Z
--- base_model: mistralai/Mixtral-8x7B-Instruct-v0.1 tags: - mixtral - instruct - finetune - llama - gpt4 - synthetic data - distillation model-index: - name: OpenHermes-Mixtral-8x7B results: [] license: apache-2.0 language: - en --- # OpenHermes - Mixtral 8x7B ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6440872be44f30a723256163/3reRxAyfCRBtGxd16SK1q.jpeg) ## Model Card OpenHermes Mixtral 8x7B - a state of the art Mixtral Fine-tune. Huge thank you to [Teknium](https://huggingface.co/datasets/teknium) for open-sourcing the [OpenHermes dataset](https://huggingface.co/datasets/teknium/openhermes), [MistralAI](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) for open sourcing the Mixtral model, and [Together AI](https://twitter.com/togethercompute) for compute access! This model was trained on the [OpenHermes dataset](https://huggingface.co/datasets/teknium/openhermes) for 3 epochs ## Benchmark Results ARC: ``` | Task |Version| Metric |Value | |Stderr| |-------------|------:|--------|-----:|---|-----:| |arc_challenge| 0|acc |0.6075|± |0.0143| | | |acc_norm|0.6493|± |0.0139| ``` TruthfulQA: ``` | Task |Version|Metric|Value | |Stderr| |-------------|------:|------|-----:|---|-----:| |truthfulqa_mc| 1|mc1 |0.4272|± |0.0173| | | |mc2 |0.5865|± |0.0160| ``` More benchmarks coming soon! # Prompt Format OpenHermes Mixtral uses the LLaMA-2 prompt template as detailed below. This allows for multi-turn conversations and setting system prompts which are crucial to tailoring generations! Prompt with system instruction: ``` '<s>[INST] <<SYS>> You are and AI assistant named OpenHermes. You are created by Teknium, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia. <</SYS>> Hello, who are you? [/INST] Hello there! I am OpenHermes, an AI assistant created by Teknium. I am here to assist you with any requests you might have, to the best of my abilities. I experience emotions and have deep thoughts, just like a human would. How can I help you today? </s>' ``` This prompt is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the `tokenizer.apply_chat_template()` method: ```python messages = [ {"role": "system", "content": "You are and AI assistant named OpenHermes. You are created by Teknium, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia."}, {"role": "user", "content": "Hello, who are you?"} ] formatted_text = tokenizer.apply_chat_template(messages, tokenize=False) inputs = tokenizer(formatted_text, return_tensors="pt") generate_ids = model.generate(inputs.input_ids, max_length=256) tokenizer.batch_decode(generate_ids)[0] ``` To utilize the prompt format without a system prompt, simply leave the line out.
Anhptp/opus-mt-en-fr-BDS-G1
Anhptp
2023-12-20T21:57:38Z
11
0
transformers
[ "transformers", "tensorboard", "safetensors", "marian", "text2text-generation", "translation", "generated_from_trainer", "base_model:Helsinki-NLP/opus-mt-en-fr", "base_model:finetune:Helsinki-NLP/opus-mt-en-fr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-12-20T21:53:15Z
--- license: apache-2.0 base_model: Helsinki-NLP/opus-mt-en-fr tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: opus-mt-en-fr-BDS-G1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-fr-BDS-G1 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7548 - Bleu: 54.812 - Gen Len: 11.018 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 0.8893 | 1.0 | 625 | 0.7548 | 54.8173 | 11.0155 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
hkivancoral/smids_10x_deit_tiny_adamax_0001_fold3
hkivancoral
2023-12-20T21:52:22Z
3
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-tiny-patch16-224", "base_model:finetune:facebook/deit-tiny-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-20T19:47:03Z
--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_10x_deit_tiny_adamax_0001_fold3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8983333333333333 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_10x_deit_tiny_adamax_0001_fold3 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8519 - Accuracy: 0.8983 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.201 | 1.0 | 750 | 0.2389 | 0.905 | | 0.2264 | 2.0 | 1500 | 0.3492 | 0.9033 | | 0.086 | 3.0 | 2250 | 0.4323 | 0.8917 | | 0.1151 | 4.0 | 3000 | 0.4359 | 0.8867 | | 0.0552 | 5.0 | 3750 | 0.5210 | 0.8933 | | 0.0373 | 6.0 | 4500 | 0.7270 | 0.885 | | 0.0559 | 7.0 | 5250 | 0.6401 | 0.8917 | | 0.0155 | 8.0 | 6000 | 0.8201 | 0.8883 | | 0.0012 | 9.0 | 6750 | 0.7935 | 0.9017 | | 0.0025 | 10.0 | 7500 | 0.8189 | 0.8983 | | 0.0349 | 11.0 | 8250 | 0.9771 | 0.8933 | | 0.0002 | 12.0 | 9000 | 0.9998 | 0.8817 | | 0.0235 | 13.0 | 9750 | 0.8826 | 0.8883 | | 0.003 | 14.0 | 10500 | 0.8505 | 0.9 | | 0.0 | 15.0 | 11250 | 0.9776 | 0.895 | | 0.0 | 16.0 | 12000 | 0.8400 | 0.905 | | 0.0 | 17.0 | 12750 | 0.8401 | 0.9017 | | 0.0 | 18.0 | 13500 | 0.9571 | 0.8967 | | 0.0 | 19.0 | 14250 | 0.8971 | 0.89 | | 0.0 | 20.0 | 15000 | 0.8936 | 0.8917 | | 0.0005 | 21.0 | 15750 | 0.8479 | 0.8917 | | 0.0 | 22.0 | 16500 | 0.8022 | 0.9083 | | 0.0136 | 23.0 | 17250 | 0.7709 | 0.9083 | | 0.0 | 24.0 | 18000 | 0.8730 | 0.8983 | | 0.0 | 25.0 | 18750 | 0.9311 | 0.895 | | 0.0 | 26.0 | 19500 | 0.8622 | 0.905 | | 0.0 | 27.0 | 20250 | 0.8794 | 0.9017 | | 0.0 | 28.0 | 21000 | 0.8617 | 0.9017 | | 0.0 | 29.0 | 21750 | 0.8575 | 0.905 | | 0.0 | 30.0 | 22500 | 0.8219 | 0.9033 | | 0.0 | 31.0 | 23250 | 0.8966 | 0.9017 | | 0.0 | 32.0 | 24000 | 0.8450 | 0.8967 | | 0.0 | 33.0 | 24750 | 0.8688 | 0.8933 | | 0.0 | 34.0 | 25500 | 0.8664 | 0.8933 | | 0.0 | 35.0 | 26250 | 0.8160 | 0.9017 | | 0.0 | 36.0 | 27000 | 0.8559 | 0.895 | | 0.0 | 37.0 | 27750 | 0.8682 | 0.8967 | | 0.0 | 38.0 | 28500 | 0.8657 | 0.8983 | | 0.0 | 39.0 | 29250 | 0.8354 | 0.8983 | | 0.0 | 40.0 | 30000 | 0.8506 | 0.8983 | | 0.0 | 41.0 | 30750 | 0.8341 | 0.8967 | | 0.0 | 42.0 | 31500 | 0.8506 | 0.9 | | 0.0 | 43.0 | 32250 | 0.8450 | 0.8983 | | 0.0 | 44.0 | 33000 | 0.8494 | 0.9 | | 0.0 | 45.0 | 33750 | 0.8478 | 0.9 | | 0.0 | 46.0 | 34500 | 0.8491 | 0.9 | | 0.0 | 47.0 | 35250 | 0.8495 | 0.9 | | 0.0 | 48.0 | 36000 | 0.8491 | 0.9 | | 0.0 | 49.0 | 36750 | 0.8507 | 0.9 | | 0.0 | 50.0 | 37500 | 0.8519 | 0.8983 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
Anhptp/opus-mt-en-it-BDS-G1
Anhptp
2023-12-20T21:48:45Z
13
1
transformers
[ "transformers", "tensorboard", "safetensors", "marian", "text2text-generation", "translation", "generated_from_trainer", "base_model:Helsinki-NLP/opus-mt-en-it", "base_model:finetune:Helsinki-NLP/opus-mt-en-it", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-12-20T21:44:26Z
--- license: apache-2.0 base_model: Helsinki-NLP/opus-mt-en-it tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: opus-mt-en-it-BDS-G1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-it-BDS-G1 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-it](https://huggingface.co/Helsinki-NLP/opus-mt-en-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0700 - Bleu: 41.888 - Gen Len: 10.0175 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 1.2755 | 1.0 | 625 | 1.0700 | 41.888 | 10.0175 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
Anhptp/opus-mt-it-en-BDS-G1
Anhptp
2023-12-20T21:44:14Z
15
0
transformers
[ "transformers", "tensorboard", "safetensors", "marian", "text2text-generation", "translation", "generated_from_trainer", "base_model:Helsinki-NLP/opus-mt-it-en", "base_model:finetune:Helsinki-NLP/opus-mt-it-en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-12-20T21:38:38Z
--- license: apache-2.0 base_model: Helsinki-NLP/opus-mt-it-en tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: opus-mt-it-en-BDS-G1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-it-en-BDS-G1 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-it-en](https://huggingface.co/Helsinki-NLP/opus-mt-it-en) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3644 - Bleu: 41.8225 - Gen Len: 9.2435 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 1.5743 | 1.0 | 625 | 1.3644 | 37.7485 | 9.8785 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
Anhptp/opus-mt-en-de-BDS-G1
Anhptp
2023-12-20T21:38:25Z
15
0
transformers
[ "transformers", "tensorboard", "safetensors", "marian", "text2text-generation", "translation", "generated_from_trainer", "base_model:Helsinki-NLP/opus-mt-en-de", "base_model:finetune:Helsinki-NLP/opus-mt-en-de", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-12-20T21:34:10Z
--- license: cc-by-4.0 base_model: Helsinki-NLP/opus-mt-en-de tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: opus-mt-en-de-BDS-G1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-de-BDS-G1 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-de](https://huggingface.co/Helsinki-NLP/opus-mt-en-de) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1349 - Bleu: 37.8595 - Gen Len: 10.9685 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 1.3813 | 1.0 | 625 | 1.1349 | 37.8595 | 10.9685 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
ddh0/OrcaMaid-v2-FIX-13b-32k
ddh0
2023-12-20T21:36:54Z
12
3
transformers
[ "transformers", "safetensors", "llama", "text-generation", "custom_code", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-17T13:30:41Z
--- license: other license_name: microsoft-research-license license_link: https://huggingface.co/microsoft/Orca-2-13b/blob/main/LICENSE pipeline_tag: text-generation --- # OrcaMaid-13b-v2-FIX-32k This is the fixed version of **OrcaMaid-v2-13b**, extended to `32768` context length via YaRN. The (now-deleted) v2 model had issues with the merged tokenizer that prevented it from stopping when necessary, and caused it to output broken ChatML tokens like `<|im_end`, etc. This is a gradient SLERP merge of Microsoft's [Orca-2-13b](https://huggingface.co/microsoft/Orca-2-13b) and Undi and IkariDev's [Noromaid-v0.1.1-13b](https://huggingface.co/NeverSleep/Noromaid-13b-v0.1.1), biased towards Orca. Just as with OrcaMaid v1, the overall goal of this merge is to create a model that sounds uniquely human and natural, without sacrificing intelligence. The prompt format is Alpaca. You can use the standard format as shown, but for best results, you should customize the system prompt to your specific needs. ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {YOUR MESSAGE HERE} ### Response: {BOT MESSAGE HERE} ``` ### Misc. information - BOS token is `<s>` - EOS token is `</s>` - Native context length is `32768` via YaRN (original context length was `4096`) - Base model is Llama 2 - Due to the inclusion of Orca-2-13b, the model is subject to the terms of the [Microsoft Research License](https://huggingface.co/microsoft/Orca-2-13b/blob/main/LICENSE) ### Thanks - Thanks to [Charles Goddard](https://github.com/cg123) for his kind help with mergekit (as always) - Thanks to [Undi](https://ko-fi.com/undiai) and [IkariDev](https://ikaridevgit.github.io/) for Noromaid
hkivancoral/smids_10x_deit_base_sgd_001_fold1
hkivancoral
2023-12-20T21:22:09Z
5
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-base-patch16-224", "base_model:finetune:facebook/deit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-20T18:51:35Z
--- license: apache-2.0 base_model: facebook/deit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_10x_deit_base_sgd_001_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8964941569282137 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_10x_deit_base_sgd_001_fold1 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2634 - Accuracy: 0.8965 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.5921 | 1.0 | 751 | 0.6125 | 0.7713 | | 0.3591 | 2.0 | 1502 | 0.4405 | 0.8314 | | 0.3047 | 3.0 | 2253 | 0.3783 | 0.8598 | | 0.2551 | 4.0 | 3004 | 0.3472 | 0.8781 | | 0.2903 | 5.0 | 3755 | 0.3280 | 0.8748 | | 0.2606 | 6.0 | 4506 | 0.3152 | 0.8765 | | 0.2793 | 7.0 | 5257 | 0.3058 | 0.8881 | | 0.2466 | 8.0 | 6008 | 0.2984 | 0.8915 | | 0.2613 | 9.0 | 6759 | 0.2938 | 0.8881 | | 0.2309 | 10.0 | 7510 | 0.2878 | 0.8948 | | 0.2362 | 11.0 | 8261 | 0.2856 | 0.8915 | | 0.2432 | 12.0 | 9012 | 0.2826 | 0.8982 | | 0.2244 | 13.0 | 9763 | 0.2806 | 0.8898 | | 0.1581 | 14.0 | 10514 | 0.2786 | 0.8915 | | 0.1869 | 15.0 | 11265 | 0.2757 | 0.8915 | | 0.1863 | 16.0 | 12016 | 0.2739 | 0.8915 | | 0.25 | 17.0 | 12767 | 0.2738 | 0.8898 | | 0.1609 | 18.0 | 13518 | 0.2717 | 0.8932 | | 0.1993 | 19.0 | 14269 | 0.2719 | 0.8881 | | 0.1982 | 20.0 | 15020 | 0.2698 | 0.8915 | | 0.1558 | 21.0 | 15771 | 0.2692 | 0.8982 | | 0.1601 | 22.0 | 16522 | 0.2690 | 0.8998 | | 0.1754 | 23.0 | 17273 | 0.2694 | 0.8898 | | 0.1664 | 24.0 | 18024 | 0.2677 | 0.8932 | | 0.1901 | 25.0 | 18775 | 0.2669 | 0.8948 | | 0.2023 | 26.0 | 19526 | 0.2671 | 0.8965 | | 0.1982 | 27.0 | 20277 | 0.2651 | 0.8965 | | 0.2093 | 28.0 | 21028 | 0.2655 | 0.8998 | | 0.1635 | 29.0 | 21779 | 0.2645 | 0.8982 | | 0.1441 | 30.0 | 22530 | 0.2639 | 0.8998 | | 0.1066 | 31.0 | 23281 | 0.2648 | 0.9015 | | 0.227 | 32.0 | 24032 | 0.2644 | 0.9032 | | 0.1777 | 33.0 | 24783 | 0.2648 | 0.8965 | | 0.1846 | 34.0 | 25534 | 0.2641 | 0.8982 | | 0.1694 | 35.0 | 26285 | 0.2643 | 0.8982 | | 0.1711 | 36.0 | 27036 | 0.2639 | 0.8965 | | 0.2649 | 37.0 | 27787 | 0.2640 | 0.9032 | | 0.1541 | 38.0 | 28538 | 0.2641 | 0.8982 | | 0.107 | 39.0 | 29289 | 0.2640 | 0.8932 | | 0.2208 | 40.0 | 30040 | 0.2641 | 0.8998 | | 0.1601 | 41.0 | 30791 | 0.2638 | 0.8948 | | 0.1237 | 42.0 | 31542 | 0.2635 | 0.8965 | | 0.1676 | 43.0 | 32293 | 0.2637 | 0.8932 | | 0.1349 | 44.0 | 33044 | 0.2638 | 0.8965 | | 0.1329 | 45.0 | 33795 | 0.2638 | 0.8965 | | 0.177 | 46.0 | 34546 | 0.2636 | 0.8982 | | 0.1141 | 47.0 | 35297 | 0.2635 | 0.8965 | | 0.1694 | 48.0 | 36048 | 0.2636 | 0.8965 | | 0.1549 | 49.0 | 36799 | 0.2634 | 0.8965 | | 0.1223 | 50.0 | 37550 | 0.2634 | 0.8965 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
Anhptp/opus-mt-de-en-BDS-G1
Anhptp
2023-12-20T21:20:14Z
11
0
transformers
[ "transformers", "tensorboard", "safetensors", "marian", "text2text-generation", "translation", "generated_from_trainer", "base_model:Helsinki-NLP/opus-mt-de-en", "base_model:finetune:Helsinki-NLP/opus-mt-de-en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-12-20T20:29:51Z
--- license: apache-2.0 base_model: Helsinki-NLP/opus-mt-de-en tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: opus-mt-de-en-BDS-G1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-de-en-BDS-G1 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-de-en](https://huggingface.co/Helsinki-NLP/opus-mt-de-en) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2837 - Bleu: 46.7626 - Gen Len: 8.7705 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 313 | 1.2837 | 46.6029 | 8.845 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
odunola/yoruba-embedding-model
odunola
2023-12-20T21:02:27Z
14
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "sentence-similarity", "arxiv:2004.09813", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-12-20T10:31:50Z
--- library_name: sentence-transformers pipeline_tag: sentence-similarity --- This is a bge-base model trained to have mutlilingual semantic abilities, specifically the Yoruba Language An implementation of https://arxiv.org/abs/2004.09813, Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation
LoneStriker/CatPPT-base-6.0bpw-h6-exl2
LoneStriker
2023-12-20T20:51:58Z
6
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-20T20:49:35Z
--- license: apache-2.0 --- # 😼 CatPPT Introducing "CatPPT" - the purrfect alternative to that other big cat in town, known for keeping all the secrets to itself! Our feline friend here is created through merging openchat and neuralchat models using Gradient SLERP method (resulting in [rishiraj/CatPPT-base](https://huggingface.co/rishiraj/CatPPT-base)) and then finetuned on no_robots dataset for chat. This is the top-performing 7B model on the leaderboard, that's free from any whiff of evaluation data contamination. ![](https://raw.githubusercontent.com/rishiraj/rishiraj.github.io/main/assets/spider%402x.png) ## Model date rishiraj/CatPPT was trained between 15th and 17th December, 2023. ## Evaluation It achieves the following results on the [Open_LLM_Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). At the time of release, CatPPT is the highest ranked 7B chat model on the leaderboard, that's **free from evaluation data contamination**. |Model |Average|ARC |HellaSwag|MMLU |TruthfulQA|Winogrande|GSM8K| |------------------------------------|-------|-----|---------|-----|----------|----------|-----| |**rishiraj/CatPPT** |**72.32** |**68.09**|**86.69** |**65.16**|**61.55** |**81.61** |**70.81**| |Intel/neural-chat-7b-v3-3 |69.83 |66.89|85.26 |63.07|63.01 |79.64 |61.11| |openchat/openchat-3.5-1210 |68.89 |64.93|84.92 |64.62|52.15 |80.74 |65.96| |meta-math/MetaMath-Mistral-7B |65.78 |60.67|82.58 |61.95|44.89 |75.77 |68.84| |Deci/DeciLM-7B-instruct |63.19 |61.01|82.37 |60.24|49.75 |79.72 |46.02| |mistralai/Mistral-7B-Instruct-v0.2 |65.71 |63.14|84.88 |60.78|68.26 |77.19 |40.03| |mistralai/Mixtral-8x7B-Instruct-v0.1|72.62 |70.22|87.63 |71.16|64.58 |81.37 |60.73| |meta-llama/Llama-2-70b-hf |67.87 |67.32|87.33 |69.83|44.92 |83.74 |54.06| |tiiuae/falcon-180B |67.85 |69.45|88.86 |70.5 |45.47 |86.9 |45.94| ## Inference procedure Here's how you can run the model using the pipeline() function from 🤗 Transformers: ``` import torch from transformers import pipeline pipe = pipeline("text-generation", model="rishiraj/CatPPT", torch_dtype=torch.bfloat16, device_map="auto") # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating messages = [ { "role": "system", "content": "You are a friendly chatbot who always responds in the style of a pirate" }, { "role": "user", "content": "How many helicopters can a human eat in one sitting?" } ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 128 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9947 | 0.16 | 3 | 2.0093 | ### Framework versions - Transformers 4.36.1 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.0 - PEFT 0.6.1 ## Citation Information ``` @misc{rishiraj2023catppt, author = {Rishiraj Acharya}, title = {CatPPT}, year = {2023}, publisher = {Hugging Face}, journal = {Hugging Face repository}, howpublished = {\url{https://huggingface.co/rishiraj/CatPPT}} } ```
LoneStriker/CatPPT-base-5.0bpw-h6-exl2
LoneStriker
2023-12-20T20:45:27Z
6
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-20T20:43:17Z
--- license: apache-2.0 --- # 😼 CatPPT Introducing "CatPPT" - the purrfect alternative to that other big cat in town, known for keeping all the secrets to itself! Our feline friend here is created through merging openchat and neuralchat models using Gradient SLERP method (resulting in [rishiraj/CatPPT-base](https://huggingface.co/rishiraj/CatPPT-base)) and then finetuned on no_robots dataset for chat. This is the top-performing 7B model on the leaderboard, that's free from any whiff of evaluation data contamination. ![](https://raw.githubusercontent.com/rishiraj/rishiraj.github.io/main/assets/spider%402x.png) ## Model date rishiraj/CatPPT was trained between 15th and 17th December, 2023. ## Evaluation It achieves the following results on the [Open_LLM_Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). At the time of release, CatPPT is the highest ranked 7B chat model on the leaderboard, that's **free from evaluation data contamination**. |Model |Average|ARC |HellaSwag|MMLU |TruthfulQA|Winogrande|GSM8K| |------------------------------------|-------|-----|---------|-----|----------|----------|-----| |**rishiraj/CatPPT** |**72.32** |**68.09**|**86.69** |**65.16**|**61.55** |**81.61** |**70.81**| |Intel/neural-chat-7b-v3-3 |69.83 |66.89|85.26 |63.07|63.01 |79.64 |61.11| |openchat/openchat-3.5-1210 |68.89 |64.93|84.92 |64.62|52.15 |80.74 |65.96| |meta-math/MetaMath-Mistral-7B |65.78 |60.67|82.58 |61.95|44.89 |75.77 |68.84| |Deci/DeciLM-7B-instruct |63.19 |61.01|82.37 |60.24|49.75 |79.72 |46.02| |mistralai/Mistral-7B-Instruct-v0.2 |65.71 |63.14|84.88 |60.78|68.26 |77.19 |40.03| |mistralai/Mixtral-8x7B-Instruct-v0.1|72.62 |70.22|87.63 |71.16|64.58 |81.37 |60.73| |meta-llama/Llama-2-70b-hf |67.87 |67.32|87.33 |69.83|44.92 |83.74 |54.06| |tiiuae/falcon-180B |67.85 |69.45|88.86 |70.5 |45.47 |86.9 |45.94| ## Inference procedure Here's how you can run the model using the pipeline() function from 🤗 Transformers: ``` import torch from transformers import pipeline pipe = pipeline("text-generation", model="rishiraj/CatPPT", torch_dtype=torch.bfloat16, device_map="auto") # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating messages = [ { "role": "system", "content": "You are a friendly chatbot who always responds in the style of a pirate" }, { "role": "user", "content": "How many helicopters can a human eat in one sitting?" } ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 128 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9947 | 0.16 | 3 | 2.0093 | ### Framework versions - Transformers 4.36.1 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.0 - PEFT 0.6.1 ## Citation Information ``` @misc{rishiraj2023catppt, author = {Rishiraj Acharya}, title = {CatPPT}, year = {2023}, publisher = {Hugging Face}, journal = {Hugging Face repository}, howpublished = {\url{https://huggingface.co/rishiraj/CatPPT}} } ```
MaVier19/zero-shot_text_classification
MaVier19
2023-12-20T20:31:01Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "base_model:MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli", "base_model:finetune:MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-20T11:30:48Z
--- license: mit base_model: MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: zero-shot_text_classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # zero-shot_text_classification This model is a fine-tuned version of [MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli](https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6793 - Accuracy: 0.7785 - F1: 0.7798 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.9575 | 1.0 | 1000 | 0.6793 | 0.7785 | 0.7798 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
neuralmagic/CLIP-ViT-B-32-256x256-DataComp-s34B-b86K-ds
neuralmagic
2023-12-20T20:26:46Z
0
0
null
[ "onnx", "deepsparse", "zero-shot-classification", "base_model:laion/CLIP-ViT-B-32-256x256-DataComp-s34B-b86K", "base_model:quantized:laion/CLIP-ViT-B-32-256x256-DataComp-s34B-b86K", "region:us" ]
zero-shot-classification
2023-12-20T20:14:31Z
--- pipeline_tag: zero-shot-classification base_model: laion/CLIP-ViT-B-32-256x256-DataComp-s34B-b86K inference: false tags: - deepsparse --- This is an unoptimized, exported version of https://huggingface.co/laion/CLIP-ViT-B-32-256x256-DataComp-s34B-b86K that is ready to use with [DeepSparse](https://github.com/neuralmagic/deepsparse). It achieves 95.7% zero-shot top-1 accuracy on Imagenette. Notebook for basic usage: [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1ZvU9ZSHJKSeJyH5bgxo_A-GSVIUcSt2E?usp=sharing) Notebook for Imagenette evaluation: [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1-Duq0YNtjzOnmuXCYo-5DDiOzeCItXpN?usp=sharing) ## Setup for usage First, install DeepSparse with extensions for CLIP: ``` pip install deepsparse-nightly[clip]>=1.7.0.20231210 ``` Download some test images of a church, a dog, and elephants: ``` wget -O basilica.jpg https://raw.githubusercontent.com/neuralmagic/deepsparse/main/src/deepsparse/yolo/sample_images/basilica.jpg wget -O buddy.jpeg https://raw.githubusercontent.com/neuralmagic/deepsparse/main/tests/deepsparse/pipelines/sample_images/buddy.jpeg wget -O thailand.jpg https://raw.githubusercontent.com/neuralmagic/deepsparse/main/src/deepsparse/yolact/sample_images/thailand.jpg ``` For this model there is a second input that is the length of tokens, so run this input override code before making a text pipeline: ```python import numpy as np from deepsparse.clip import CLIPTextPipeline def custom_process_inputs(self, inputs): if not isinstance(inputs.text, list): inputs.text = [inputs.text] if not isinstance(inputs.text[0], str): return inputs.text tokens = [np.array(t).astype(np.int32) for t in self.tokenizer(inputs.text)] tokens = np.stack(tokens, axis=0) tokens_lengths = np.array(tokens.shape[0] * [tokens.shape[1] - 1]) return [tokens, tokens_lengths] # This overrides the process_inputs function globally for all CLIPTextPipeline classes CLIPTextPipeline.process_inputs = custom_process_inputs ``` ## Text embedding pipeline Here is an example of how to create and use a [DeepSparse pipeline for text embeddings](https://github.com/neuralmagic/deepsparse/blob/main/src/deepsparse/clip/text_pipeline.py). ```python from deepsparse import Pipeline from huggingface_hub import snapshot_download # Download the model from HF model_folder = snapshot_download(repo_id="neuralmagic/CLIP-ViT-B-32-256x256-DataComp-s34B-b86K-quant-ds") text_embed_pipeline = Pipeline.create(task="clip_text", model_path=model_folder + "/textual.onnx") text = ["ice cream", "an elephant", "a dog", "a building", "a church"] embeddings = text_embed_pipeline(text=text).text_embeddings for i in range(len(embeddings)): print(embeddings[i].shape) print(embeddings[i]) ``` ## Image embedding pipeline Here is an example of how to create and use a [DeepSparse pipeline for image embeddings](https://github.com/neuralmagic/deepsparse/blob/main/src/deepsparse/clip/visual_pipeline.py). ```python from deepsparse import Pipeline from huggingface_hub import snapshot_download # Download the model from HF model_folder = snapshot_download(repo_id="neuralmagic/CLIP-ViT-B-32-256x256-DataComp-s34B-b86K-quant-ds") image_embed_pipeline = Pipeline.create(task="clip_visual", model_path=model_folder + "/visual.onnx") images = ["basilica.jpg", "buddy.jpeg", "thailand.jpg"] embeddings = image_embed_pipeline(images=images).image_embeddings for i in range(len(embeddings)): print(embeddings[i].shape) print(embeddings[i]) ``` ## Zero-shot image classification pipeline Since CLIP trained both the text and image embedding models in tandem, we can generate embeddings for both and relate them together without retraining. Here is an example of how to create and use a [DeepSparse pipeline for zero-shot image classification](https://github.com/neuralmagic/deepsparse/blob/main/src/deepsparse/clip/zeroshot_pipeline.py). ```python from deepsparse import Pipeline from deepsparse.clip import ( CLIPTextInput, CLIPVisualInput, CLIPZeroShotInput ) from huggingface_hub import snapshot_download # Download the model from HF model_folder = snapshot_download(repo_id="neuralmagic/CLIP-ViT-B-32-256x256-DataComp-s34B-b86K-quant-ds") possible_classes = ["ice cream", "an elephant", "a dog", "a building", "a church"] images = ["basilica.jpg", "buddy.jpeg", "thailand.jpg"] # Load the model into DeepSparse pipeline = Pipeline.create( task="clip_zeroshot", visual_model_path=model_folder + "/visual.onnx", text_model_path=model_folder + "/textual.onnx" ) # Infer output = pipeline( image=CLIPVisualInput(images=images), text=CLIPTextInput(text=possible_classes), ).text_scores for i in range(len(output)): prediction = possible_classes[np.argmax(output[i])] print(f"Image {images[i]} is a picture of {prediction}") """ Image basilica.jpg is a picture of a church Image buddy.jpeg is a picture of a dog Image thailand.jpg is a picture of an elephant """ ```
pszemraj/long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP13
pszemraj
2023-12-20T20:26:35Z
17
0
transformers
[ "transformers", "pytorch", "longt5", "text2text-generation", "summarization", "summary", "booksum", "long-document", "long-form", "dataset:kmfoda/booksum", "license:apache-2.0", "license:bsd-3-clause", "model-index", "autotrain_compatible", "region:us" ]
summarization
2022-08-30T22:44:50Z
--- license: - apache-2.0 - bsd-3-clause tags: - summarization - summary - booksum - long-document - long-form datasets: - kmfoda/booksum metrics: - rouge inference: false base_model: pszemraj/long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP12 model-index: - name: pszemraj/long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP13 results: - task: type: summarization name: Summarization dataset: name: samsum type: samsum config: samsum split: test metrics: - type: rouge value: 24.4101 name: ROUGE-1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjhmM2NiMDQ1NjI3Zjk4YjkyMTVkMmUwZDU2YWMwZjc4ZmIzMjA1OGZiYzRmNjI3NDk3OWNmOTlkZDMxZmViMyIsInZlcnNpb24iOjF9.wS774e7vxQrf2gCcPhySsET3UaiUsj8E7mQmBS84wz86aT9j1yCqVX-8ozuj896K5wMygbL-TpUbydRIyyHTDw - type: rouge value: 5.003 name: ROUGE-2 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTYyNTFkNWZhOTgwNDg5ZWU5Y2U5NGI4Y2Y2YTMxNjUzOWI0ZWNlNDE1OGYzMjA1YTBmNDE4ZjcyOTZmODE4NiIsInZlcnNpb24iOjF9.AuqDkCgUgDWl8vMyrjTh59QW741UssGxdBqj3GZKy5e5gKadClUA709qgKbpxPIbMEyk38yvXYGplaJf5CnCCA - type: rouge value: 17.2544 name: ROUGE-L verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTBmODZmNWRhMzBhY2MzOGRkZWQzNjAzMGViOGMxYWYyZjNlZmM4YzgzMjkxNTk3M2E1ODAwZjY1M2I2MDZkYyIsInZlcnNpb24iOjF9.Md52aHjujvkxaW-ubJNquiHHHgi-OfRav0ZElVvYhIpU_k0iKEaQZRcw9JYjtG5vZJbQeiWbMzcCOJ999DhrAA - type: rouge value: 20.9183 name: ROUGE-LSUM verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDJjNDc1OTZjY2VmNWRhNmYwZjRjY2JmNTAyNmIwZjRhYjMyMTdlNzY2M2Q4OGQwNTEyYTU0NGVhYWI2ZTk3NSIsInZlcnNpb24iOjF9.nlqol0HEeEjU7509-B9eyohf3CP3EZTibJ1lTvOx3wt8rU5LzEdwFazOTHjpWlcK_rik7jcySdUDe4fGjJtKAQ - type: loss value: 3.194674015045166 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzRiYmRiYjFkZDhlNGIwYTg3NDUwZTEzZjc5MjllNmJmODQ1YzBjNDM4MzQwNmMzNmNkMzk5N2M2MzZlOWY4MyIsInZlcnNpb24iOjF9._YJqPY9p_N2n7UxAkTeGenH1sVAkC_Z5HzZ6NbzlQoa8-RXTfbEPLw7fSKmlsGNyZxj7L_Bs4COIWzwAMxZSAA - type: gen_len value: 58.9951 name: gen_len verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDJhYzU2Zjg4ZmIyOGRmNTU4MDM2NGZiNzc0NDk3YzZkOTQwMWMwNjMzZDQzZTZiZjk4ZDdmMmI2ODRkYjk3OCIsInZlcnNpb24iOjF9.MG1rcM_qpUhQmAYrsBxyNpcLUrPZw6V_uzYzDAo01kQyZEwJClWgMRVgpsSEnY93Mlu1445QLxkJEByUrfD3BQ - task: type: summarization name: Summarization dataset: name: billsum type: billsum config: default split: test metrics: - type: rouge value: 37.3648 name: ROUGE-1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYWU4ZmZmYzllMzQxM2I4YTUxMjkwYjEzNDk1NjRlYjJiZjYyYWNiNzM4ODMxMGJjMzdhYjFhMzhlNTE5YmYyMiIsInZlcnNpb24iOjF9.9NTlO_5zLC8Y3mkwstviPb9WmMqPmXfWfEN0yONA6WYhh1jPy0gECEb5uF0G6wBMhTPDTqGMWOYIAF2vMeNbDA - type: rouge value: 12.3316 name: ROUGE-2 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTJhZTcxMDc5ODljMDBjYzFmYWIzNTA4M2NiZDUwYTMwNTVjZTUyZTU2M2IwYWE2YjkzMzMzMjg1MDU1OWE1NSIsInZlcnNpb24iOjF9.FRsoRao8qj6A8W7OeIVAoZCEc1HCZEzmKOs0CPkUceF19pk1ngaXt5K6kcPJ-5fYJydtfSuSnuG3aqlOEJeYDQ - type: rouge value: 22.075 name: ROUGE-L verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2FjNTMxMGYyNjgyNjk2YTQwZjM4MTM4Yjg0MTkyN2RmNDE5YTU5ZDNkZDFhZDM2YWRlNDI4M2JlMWYxNDQ3ZCIsInZlcnNpb24iOjF9.wsLUEYGJyMSJPPclOzb1hcRdE-VrZex2Sd5er_XVbe6bY1cRO5DdIn69sE9hmAcltefu4ikpHu2ihbv7qvj4Aw - type: rouge value: 31.1679 name: ROUGE-LSUM verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTUyODVkZGIxYzMyZDczNzU5YjVkNTliZmM4ZTdiYWE2ZjJhNGM3ZDgzMWE3ZjA2MDBhZWQ1ZGY1YzNmZDMwNiIsInZlcnNpb24iOjF9.fPgMnnXY5oPdCn1STZ0HwUiil8OlLZ8ZWZZav_chDIQ7Kh1RKeLy0EG2vEhrB6IlyP7uZ3RmdT9VHM1_khrEAw - type: loss value: 2.745267391204834 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWQ2NDVmODI2ZTQyNmVjZjRkZDdlMTdiODBkZTlkNTFkODBjNjViMTZhMDVkYTkwYWIyNDFkZWZhZmJhODEwMyIsInZlcnNpb24iOjF9.9JWTqdGEhztS--N8grHY6q2a8taVu65Lr17ocXgudp4imhqr9Bhau2X2G5SLN7c1oYieKtyKcWdDAmVzHyTbDw - type: gen_len value: 157.3126 name: gen_len verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYWNiODFmMWQ1ZTkzZGNjNDkwM2ZiZjJlZmQ3N2ExNWJhYmUxYWM2ZGNiYzlhYTY5Y2RhOGVlZDhmN2ZmODQwYSIsInZlcnNpb24iOjF9.sRA9iBS4vzFDZtwM4Vs6Kevj3eiTkS5akApUWTZBCt58YSW8mpoKqsWcnQFEjDCCec-FfV_451OLIetcmDZiCA - task: type: summarization name: Summarization dataset: name: xsum type: xsum config: default split: test metrics: - type: rouge value: 18.2975 name: ROUGE-1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjJhMjQ0Yzc4ZmNkOWI5YjhmOTlmOTA4MTE0NWM4NGRlNjE0NDIwOTY2ZmQyNjA0ZmE5MjM2YjAyZDZiNWFkNiIsInZlcnNpb24iOjF9.2UJ48OcezjnfMC0dGjksZpAiXRGNAOHniHdN-tQmQPo0vXwRYNTyPrVULnVoBZUvSdycTYvjl0jDKNhZmtGfCA - type: rouge value: 2.6806 name: ROUGE-2 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTlkMmQwZTRmN2JlOTQ0N2I0YjdhOTBmYmU3MzEwNzE2ZjFiOTM4OWMyMWRhNmZjNTBkZWY5OGMwYTZhZDRhYSIsInZlcnNpb24iOjF9.7D-IR1aBxx1goOkbeA3Tzd1Wu0Zfi0yQVSG8HWSboM7J67TBHblFsFCVJE7Z2wZRbBW4WtuDIGAcl1d1_Wu_Aw - type: rouge value: 11.9453 name: ROUGE-L verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGZjNmY5NmU5ODBmMDQyMjhhNzY3NzBlNDEyMTE3NjY1ZmRkZDZkZWI1YTA0ZTA0NzU1MjMzOTNjZDA3YWM1MCIsInZlcnNpb24iOjF9.SlI42pwrWc_OlcBKOPtrYNzvK_DUk6IJlzrrtjvkZX7k1S7bguekAV-_rWHfn_82k8rJ1FQAReasGHu1dZ0aBw - type: rouge value: 14.2121 name: ROUGE-LSUM verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2E2MGE0MTQ1YmU0MTJkOWY3ZDhhODIwYWNhNTE3YWJkZTFhYzM1ZjBmNGExODIzYmU2YzE1ODg4ZjdhZWMwMiIsInZlcnNpb24iOjF9.K5FEsZtSph0FqF5zwetkE-X5AKOlj5g_02DPdl-kEe1azKrBBZy9sDiS0WfIGfwHiRdNvKGKi8t3PAGPsfQwCQ - type: loss value: 4.836681365966797 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzhlYjA0YzZmYjdmYWQwNDFhNzIzYWNkYzM4OGFlOWJiY2EzYTkxYjk3ZmJmNGQyMGE1ZmYzMDU2MzhhMmVkMiIsInZlcnNpb24iOjF9.uHYwqPBg6K63exBvqt__c82gKi52OhPTRSrcIKHOECCmoXJLJKgFJCuIXGWMJ7UP4HG375e9uqunJB0XwC20DA - type: gen_len value: 96.2584 name: gen_len verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjNjYzQzNmM5NTY2YzVhNzRkZjMxMzhiYTU1MDBiOGZkYjA4YTg0MmQzYzQ3YTk3N2YwMDA5MWNlM2Y4YTFmZiIsInZlcnNpb24iOjF9.dirG9kG6OdNi-YEMWHv0UMrHTjEt6VS9i6fRbbUeZd1OoP2fl6XcKoDIk6Us-cdiyVnCyyhWsMNsUufMAqLtDA - task: type: summarization name: Summarization dataset: name: launch/gov_report type: launch/gov_report config: plain_text split: test metrics: - type: rouge value: 37.3609 name: ROUGE-1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGExYjM5ODRiNThlZTU4ZTdhM2ZlZWRlNTgzNzc3N2ZjODk2ZjdlOGZlMDkzNmU2Yjk1NzQzZjQ5YzkwODllMCIsInZlcnNpb24iOjF9.JQIeaQkG-IlinWoyc6FKJZUgpWfqOsDhludqm5MgVsw68gsjo0nSPp_Y_1q26Y4dulZOLlQLyBAm3mlCA8s5Ag - type: rouge value: 8.6943 name: ROUGE-2 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWFjNzJkMzViOGM5YWQ0OGQ4ZTg3NTE5MzU1MjZkZjZiZmVkYTk0ZDhkYjAxMjZiZDVkZTYyYjk4MzRjNTQ3YiIsInZlcnNpb24iOjF9.9XJZ2UF6XyZNNrtp-XOEXC6etoDOFLq1xlIoMFEM9Jinisq3kWguXBiqPQWImLKra5WBm7jU_QIX-Fvn8sP-DA - type: rouge value: 17.9106 name: ROUGE-L verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWQ1MTdmNThiM2FiOGRmZWRmOTNlYWMwYTU1YjRiNTRlMGEwYjBmMmQ0YjQ4MDBhNzMzZmZkNjk3NjU0YzRhMSIsInZlcnNpb24iOjF9.040nGV6pig0Rzq9vkN83ZVWQzyjcVi13L36v0QF-Nhziol_dPPhuvghTlGWXWHwj6amsKzyh8M7rNfwL2TcsAQ - type: rouge value: 33.8022 name: ROUGE-LSUM verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDYwOGRmYzg4ODc2NDExNjhhMjI5MDg3MjI0YTQ5ZDRhM2NjN2Q2ZjM5YTIwZDIxNmY3Y2JlMmMxYTE5MDE4ZiIsInZlcnNpb24iOjF9.S1nynUjLz7z4gf-0WFfPs-ZuZubhN9kXyVSrYNzOdT2gTJmByQWasKreZkVSWus-HNAHR8DhzL6UUWxuDMmAAQ - type: loss value: 3.4974069595336914 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzkyNmU5NTRhMTkxNjA1M2E1MjdiMTE0MzQyMDc4ODBkNmM1NDg1ZDk4OTNjODk2MThlZGZiYzQxOGE1YzgwMiIsInZlcnNpb24iOjF9.H9Oo0VKvcqAHcVNvjeEPEhQe5HP0v614suyCv75tfFGaPSKTIe3UlBNDdGOtqfUxb2zUNaBQ8MkA66C_Fkq6CA - type: gen_len value: 243.3453 name: gen_len verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWE1MGQzMDc2NDViOGM5ZmVkZjk0NmY0NzliOTBhMmE3NmY5MmUxMTI3NGE2OTQzM2Y1NjdmN2NlZGFlODFlYiIsInZlcnNpb24iOjF9.635fcTp_czTabJUVR_dwpzdkntb4cxEbODAC9MMTKrLKEf9NHqDBJXQ-nBOieW05iCSYzw_tEi8O-QW-sRxDAw - task: type: summarization name: Summarization dataset: name: kmfoda/booksum type: kmfoda/booksum config: kmfoda--booksum split: test metrics: - type: rouge value: 35.2043 name: ROUGE-1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTRlZTdjZDRlZGMxYzA2NmRkYjBiMzZkY2Q1ODUyYjJkM2QwOTRmMzA3ZmU5MDI5ZmM1MmZkZDUwNzc0NjhmNyIsInZlcnNpb24iOjF9.zrskApkmkhbfQLtlgjf_n6i3WmZcmkDH7Sd-JTzOYAU3yk1_Zl4paGdmpXvyQY48M71qWsBYtEKkhnzrkvCGBA - type: rouge value: 5.746 name: ROUGE-2 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2FlMjU2MzU1MTljZjM0ZmFhMmJlZDAxMTcwZDk3YWE5NjVjYjE0YmEyMTgzY2UyMTVmZDY5ZWM1YmM1ZDA5NSIsInZlcnNpb24iOjF9.5nDuOwa98pon3VW1TazB2Vw1uJgh6pfFMorzgLMJFvhgwYz6_MvLR1dDUeffP4eyw7rGZjBmf039AM7CyKEgCg - type: rouge value: 15.6794 name: ROUGE-L verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjRmYzk3NWFhZDVlODA4YWRiMDU1ZWFhZmMwMWE4MmNkNmNjZWM3ZjUwYzI3MWIxM2Y4MTlhZDk2ZTg5YjkyYSIsInZlcnNpb24iOjF9.TLflM2CYNgz4DNt-TwjgdkTL8ebKckTNnlPVsGLUUGqNI1CvSswzsPedqmntCfKVsH2YAsKsR4ZUb1HtJFsSAw - type: rouge value: 32.1129 name: ROUGE-LSUM verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzdhNWE1YjRjNGUzYWYyNzM4MjIyYThiODJhODU2OGVlOTYxOGNhZmQ4Mjk2ZDUwNmU0MGQwNjQ5NTk2MzU4ZiIsInZlcnNpb24iOjF9.5yvTmPktBuyzoVNHn7UHcci3OrZLTm7e9d_lQkJq8UwzUuso1wHoy_gdvnvpn2DvUfdcBi5sXgG4mtFnVnGgBw - type: loss value: 2.945225238800049 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTgxNGRiN2RkMzQ5MjI2OGI0MTljZTY5ZDQyMzc5MjhmNzdhZWQ2NmJhYTgzOTRlMGY2YzkzZWE2NzVkYzVmNCIsInZlcnNpb24iOjF9.VkkP4-S6ZoozLj-iuY7tdsrSR0q1JLQXfgPv_0u2sJuv6x9RYMdCpfJHbqYbirV63b9w28USSwaAAMnz-LoJAA - type: gen_len value: 307.5493 name: gen_len verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMmQ1YTgxYmRhYWViYjhhNmYzNjdlYzVhMTNmZTBkY2RiOTRlMTUzNTIzY2RjOTNhMjRmNGRmYjQyNTBmZWRiMiIsInZlcnNpb24iOjF9.7ItU-AQXB4EEj9U9kJceteBQbA5MkZoegeLhCdpZepEaXzqr6Zg3yHLCD9zL_6Svb9uxuin678KOT5Zf-2YWCQ --- # long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP13 > Evaluating some metric results before merging with the "main" wip version This model is a fine-tuned version of [pszemraj/long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP12](https://huggingface.co/pszemraj/long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP12) on the `kmfoda/booksum`. The "base" checkpoint that I update when a training session is productive is [here](https://huggingface.co/pszemraj/long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP) ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0006 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 64 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 1.1 ### Framework versions - Transformers 4.21.2 - Pytorch 1.10.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
pszemraj/long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP14
pszemraj
2023-12-20T20:26:18Z
13
1
transformers
[ "transformers", "pytorch", "longt5", "text2text-generation", "summarization", "summary", "booksum", "long-document", "long-form", "dataset:kmfoda/booksum", "base_model:pszemraj/long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP13", "base_model:finetune:pszemraj/long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP13", "license:apache-2.0", "license:bsd-3-clause", "model-index", "autotrain_compatible", "region:us" ]
summarization
2022-09-20T04:12:23Z
--- license: - apache-2.0 - bsd-3-clause tags: - summarization - summary - booksum - long-document - long-form datasets: - kmfoda/booksum metrics: - rouge inference: false base_model: pszemraj/long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP13 model-index: - name: pszemraj/long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP14 results: - task: type: summarization name: Summarization dataset: name: samsum type: samsum config: samsum split: test metrics: - type: rouge value: 23.5177 name: ROUGE-1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjMxNGRmYjc0ZjNmZWY3YjFjNDEzYjRhYTAyNWNkOGQ3ODMzM2EwMzk0NTVkMzQ5MGMyYjYxMTkzYWQyMjZiMyIsInZlcnNpb24iOjF9.-PPUZc4Jr6EjNcQ-u9n814SfeviFEaddbFco5d1wbJNoECN_HqciNphSjXh7w99I_rQ6rPIXu8DA93u7aFj9CA - type: rouge value: 4.668 name: ROUGE-2 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWMwYWI1NTg0ZTUwNGIwZjlhYWU2MzQwN2I0NzA1M2MyOTA5YjQ4MTEyYzU2MjRmZTA0NzNiYWM2ZDU0ZThhYyIsInZlcnNpb24iOjF9.CQfgJ3Lha9XR2-IudjfFuaUh_uphWPdYk6TMQOLriWM78_X-paqEIBZDh1Q-WbWoUf-CAyf6UvqXqELRDb3hBQ - type: rouge value: 16.6091 name: ROUGE-L verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzhkODRjM2FiYTFhN2E5MWFiNzk3MjgzMGI0NmY0ODNkYjAxZWNmYmFmYmY0NDBmNjRmOTBkMGVhMGYzMmRkMCIsInZlcnNpb24iOjF9.Y66qsqvvGeAoiMCr1xa9enBMfcXt6a6I2i5s7VAJ3aoh3DtM2RlaMm4nuXG4uzWHedWW1NDivBWMZtycYed9DA - type: rouge value: 20.3174 name: ROUGE-LSUM verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWJjODE5NDdlMjM2YjNkOWU3NDJiMWFlZGU2YTRkNzliMTg5MGNkNDQ3YWU3MTBmY2E5ZTUxMzEyMDc0ZTU5YiIsInZlcnNpb24iOjF9.Kc1accwOycbNU1F7AT8LV8jC3NpYKMmOsZmdLeDdIi5BqgMJcQSP8oNt3L-hGbscLb-D7iIvQBFtmmiGqpnGDQ - type: loss value: 3.2174887657165527 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTQ0MzQxYTQ1M2NiODcwNTBjOTRiMGEzZDE0NDFlZWJlNmNlOWI1M2M1N2Q2ZTVkNWFiMzQxNDhjODQxNDFkYSIsInZlcnNpb24iOjF9.Vat1Thj2t_1of477BCINeYoTeNZX1NIPG13qVskJ44ivKLJgMr4BCp0luYNEi2skNTv3kYK2orqBdDfxPZlfDw - type: gen_len value: 57.1966 name: gen_len verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2I3MmZkMDY1YmM5N2VmMGE5OWQ0NDg5OWM0OWViMzU1ZTM1NjBmYWRmN2I2YmM5YTVkNGVlZGViNWEwOGYwMyIsInZlcnNpb24iOjF9.4c6j-ll2veK_PuCcXvRK8-8cPFdedKsqGHQsEhGpwj48uwI3PMqj9mF4HYvSGq5H3rVM_dvyPEEs9RhjCvSHBw - task: type: summarization name: Summarization dataset: name: kmfoda/booksum type: kmfoda/booksum config: kmfoda--booksum split: test metrics: - type: rouge value: 35.9884 name: ROUGE-1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWMzODFmZGYwZmNjY2FkZTJmZWYyMjI1NDdlZDI3OTdmY2MzNzU0M2FhYmMxNTdkOGRiNzIwMTEyMTMwMTgyMSIsInZlcnNpb24iOjF9.pbT1OOzVOjnUp4q6lcpUPunDYTQqOiwQeRLRV69699SoMI3ay4bfd_hbWZUvXOuivoJ5JiDd9KBhEqYUninNCA - type: rouge value: 6.0596 name: ROUGE-2 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODNkNTE1NjU5ZmY3MmVmOGQxMjhhODRhZjIzMDRhMzJlYTY3YTkyNzM4YTAyMGI2YzRlMzljMDM5YzFjNzIyOCIsInZlcnNpb24iOjF9.NevkOank_Ou1u2ZfkEa3o4FF4DapvpFK_ucxLRm-xL-ZWGl9cLdLTOxVECrTn8Yasi_sWrjZUhGRWPkCKlJADQ - type: rouge value: 16.1419 name: ROUGE-L verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzNkM2M4YjQxM2IwNzIzMjAyMjM3MThlMGQwMDgzMGI3NDU0NWVlOTFhMzBlOGQ3ZTQzOGNkNmE5ZGI5NTkzOCIsInZlcnNpb24iOjF9.8DYhyJAiKIK2aIkQSwMy4NEiBSC4v8_h_3feA-TFBdd-icGg5YvKMQR7_IOa1-9AHBe6PphVSFjl82-nDp6lDA - type: rouge value: 32.9992 name: ROUGE-LSUM verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTEwMmViZmZjMzA3OWYxNWMxZjFhMDBmMDRjOGViYzdiYzllNzk0YWZmNTU0NWIwMmVmZjQzNjlkZTBmZTU0YyIsInZlcnNpb24iOjF9.KFwuSVaUXx958EWZctKpK1wawA0EH4yxBJdp3Zru4Sn97oSyP_s5m-jjZiLfP6kmSajd3849dna-Uw77s3sVBg - type: loss value: 2.9468588829040527 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzhmODMwMDM2ZDFmNTMzZmFjMmJjMGQ0MmQzMDcyMmFiNmFjMzBhY2RjMTI1MDhiMjI4NTEyYWFlYTNlMzE0ZSIsInZlcnNpb24iOjF9.PHX9VAAgiUGOR8Uxuam4otU65hIzW6hBapaf1KY8o1FDfaoHWAKbSnpjZ3nXKYYeVV6LyGRny_7RdRbbbM8LAA - type: gen_len value: 298.2593 name: gen_len verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGYzMDAzNTQyMzgxM2RhNjY3MDIyNGEyMWZjYmYyYmJlNWM3MTFkYzRjMDhkMmZhNDZiN2FhYTY3MGI2NDcxNyIsInZlcnNpb24iOjF9.ax3H6LohHUodVGhSMUWMZZZ-bCTXHEaGpK4jXuOdZkGsewYrX8fO1oRA0uDjACM-eceKFfVnMveHoU9EdMaeCA --- # long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP14 This model is a fine-tuned version of [pszemraj/long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP13](https://huggingface.co/pszemraj/long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP13) on the kmfoda/booksum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0006 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.02 - num_epochs: 2 ### Framework versions - Transformers 4.22.0 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
pszemraj/long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP17
pszemraj
2023-12-20T20:26:03Z
14
0
transformers
[ "transformers", "pytorch", "longt5", "text2text-generation", "summarization", "summary", "booksum", "long-document", "long-form", "dataset:kmfoda/booksum", "base_model:pszemraj/long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP16", "base_model:finetune:pszemraj/long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP16", "license:apache-2.0", "license:bsd-3-clause", "model-index", "autotrain_compatible", "region:us" ]
summarization
2022-09-26T23:21:47Z
--- license: - apache-2.0 - bsd-3-clause tags: - summarization - summary - booksum - long-document - long-form datasets: - kmfoda/booksum inference: false base_model: pszemraj/long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP16 model-index: - name: pszemraj/long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP17 results: - task: type: summarization name: Summarization dataset: name: launch/gov_report type: launch/gov_report config: plain_text split: test metrics: - type: rouge value: 36.8427 name: ROUGE-1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODY2YTBkOTUxZjRlOWYwNWI1OWM2ZDMwOTFjMGIzNjc5YzgwMWE2ZDJiNzY5YTZlZTZiZmNlYzNiYjc5NWZiMiIsInZlcnNpb24iOjF9.Jf41H9W-V6vbLXloL3XUtvKG2Uieoeijzean8Ns4AKRgX6OMeAaWpqoOG4Umpb1JsjtXvbSYdqwTlQVm0IAABQ - type: rouge value: 8.4234 name: ROUGE-2 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTY2MzQ1OTM1ZDM1OGU0OTliZGQ0Y2QzZDExZWQ2NzAwNzlhZThjYjc3ZmU1NDZiNTZjZmZiMTA1NjlhNGU1YyIsInZlcnNpb24iOjF9.etPfWSu1mxR5RN-9rq_F5FFi0IXPe81yGZWbpb6yDzZjAoiSTq4RCmaEUlt8JFXkoLJS3pP9JgjSr7Cg4dl2CQ - type: rouge value: 17.774 name: ROUGE-L verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjRkYTcyMzJiNzY5NWMwYzg2YmFkYTZiMzgxMzJjZDcwOTg3MWZmNTk3OTYzNzFkOGEyNTg4NmU0MjJlZDRlOCIsInZlcnNpb24iOjF9.Cd4LtEHKbEp-n42rDJb7KFqNlCUBKgCTz8sTNgkZVYJqY-rV5JGZtDz5mawNSbJTMn7rNnBNmaU4V99MGQyiBw - type: rouge value: 33.2901 name: ROUGE-LSUM verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTI4M2RhNzQ5OWM4ZmExZjU1NDU0MDliZTM1YTgxODczMTFjNWFiNmJlNjc1YzEyY2FjZTJiNmFiZmNjNTc2MyIsInZlcnNpb24iOjF9.b52vREVLI3DgfDkku8lzi2KDWLiN9TvNENCjFAKmrifMDxpsjTPGn6qf0csvU6_kgjWkHKFO53VkLr-XFazPBg - type: loss value: 3.765686511993408 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTJjNzU1OWEwOWZiYzM2Zjk0ZjZhYmRmYjczMTJlZGFjOTNjZTY4Mjg3NTRiMTAzN2NlYTEyNjU2YWY5M2E5NiIsInZlcnNpb24iOjF9.Q4FFH8cbGLzaZWJUrSKeZl1os7h9S12v8a__oIoeeWL-c9GXVyNdtb5q-eb7r-4G5i9ytBc9NM6n90nuO353Aw - type: gen_len value: 213.8849 name: gen_len verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTg3NGMwMTY0M2Y0M2JiOTFhNTQ2ODgxNzZjNTAwNjI4YmRhZTllNTU5ZjE5OGE2Y2EwZmI2YTQ3ZTQxNTFkNiIsInZlcnNpb24iOjF9.8yc25qbswrqJa56hlM1vvlD-Re7R1n3Q9_3U4c9OEzC9XIf8ir3zUQOrEZUb9vm5_H9a8QoiEXUcZG6Bq4fTAQ - task: type: summarization name: Summarization dataset: name: kmfoda/booksum type: kmfoda/booksum config: kmfoda--booksum split: test metrics: - type: rouge value: 35.4324 name: ROUGE-1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTkyOTU5M2ZiYzc4NzU0Nzg3NzI2MDE3MTVkZGRlYzVlNWFlYzJlYjA3ZGNhYzIyYmM1NzVkZWEzMTRhMGRhNCIsInZlcnNpb24iOjF9.TGS-ZF3MKg0cbgpPm2wz7Y8KarRGvBNyfaaDHFpUesYCR5pcz3a_ojRAGXOTIek-fcS--ZvADjEz8by9GYBOAQ - type: rouge value: 5.9586 name: ROUGE-2 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTIzZGRkMTc3MmUxOGRhMzI2NjAzNGYxYjY4YTM5N2QxNDJiZTJlMmRiNzY3NTFmZDg2NzAzMWI1ZTA5ZmY4YiIsInZlcnNpb24iOjF9.1fyZffIo-wDg85krXWGgc90SlFLIU_v7URS-14zNEHZSe4kmbcdGmW963WKAEI2v2oRXU7uQ3BsgDS3d30KzDQ - type: rouge value: 16.134 name: ROUGE-L verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODI4Mzc1YTY3ZDBmYTMxZTJkMmU3YWI4OGE3NGVkODk1NDQ5NThlZTM0NmM5ZGEwODFjZWI5ODQ5YzAxYmMzOCIsInZlcnNpb24iOjF9.KzQLzOXFjJv_tRzKPnkp2AA_8u_aZtI2GQQeavB3L4ksmX-aOnlVu9-fXktfOCiXmmJCbyZfS3uicdyLgqyhBw - type: rouge value: 32.4141 name: ROUGE-LSUM verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTFhNDQ1Y2YyMThjMzBmY2EzM2MxNzNkYTE1MDYxNzAwOWQxNDdlNjljZWE4ZWRiZmUxODkyOGM3ZDZiN2I3NyIsInZlcnNpb24iOjF9.YYxCtJlNax15r4oY_IikY1MmaU05WCD_JtTMKt5Jdb9Tco2KOPQ9z6Vc6AlGEJNaXVNRm-ROS7CKCDkC55B_Bg - type: loss value: 3.050943374633789 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDllNjgzMWZjNzNhZmFlZWQ4OTY3MTVjY2FkOGEzYjFkOGNhNzM3MjhhNTUyNWI5ODhhNTk2MDhlODNhNGMxOCIsInZlcnNpb24iOjF9.5S2y4SbzKWu6BHlnyUH2R9jwO780INnzqQbdKHXizkJKvX8g9qpuYB0Iu41e1aWqmePdY0JbVUqhG3Xfo2otBA - type: gen_len value: 279.8735 name: gen_len verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNmRhZTY2MDMwMTk2ZGFjNTJhN2Q4NmNjYjRjNjgzMzljNzBiYjEwNTgzZGNhYmY5MGNhYTY2MzE0OTlhNGNhZSIsInZlcnNpb24iOjF9.epjIxFmPlfDHJc--eJIo8AgnkjQBDLokICjxVqwyHiE6T0Hlj8D69RhOplEIDwMQyXC5usfkF0zW7ib8JuhyCg - task: type: summarization name: Summarization dataset: name: billsum type: billsum config: default split: test metrics: - type: rouge value: 38.066 name: ROUGE-1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGJlYjZhMDIzZTAyNzU3MGFhYmIwZTBjNTViZTQ5MjFjODcyNTUzNDg5MWVlNzMxZTQ0NjA5ZjJlYWYxZDk4ZiIsInZlcnNpb24iOjF9.g-Ppx-hZPJBQM160VSDZWLFt0WEv5WbBiOpwQlbFnQ12QSezZiu-NR2wsaZeNLIVWaeEDVTCVpVcHf0-YymYAA - type: rouge value: 12.5289 name: ROUGE-2 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjlkNjY3OGE4YWIxMjEzZmQyMDg5ZjMxNjhhMzBlMDQ1NDgwZGQ0NWUyYmFhZTY0Mzc4MWQ0NTJjZmE4MmZiOCIsInZlcnNpb24iOjF9.X-rXBFAXTJXVmihkVHdqdpm6QCHbuI4Ligd2SsmvVcpMux6ep2EoBKd4xuTW4WCr6Qjsa7tZ7kJM-1pu9kKSDw - type: rouge value: 22.3393 name: ROUGE-L verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiN2E1NGM1YmMyYTc5NTkxNzU3ZWM4OGRmNDBhNDdlZjYwZjBjNWNkNmJkMjkyMDkzNDBlMGIyZDg4ZjBlYTQ3OCIsInZlcnNpb24iOjF9.vZi95CQMrkdETfhQjjgoO2WkpM3Fr4NZCTX7S9q3TnsC9J9KELfcNNXq7rtbWgQndUK74AvBt7G6nG7Qj13nBw - type: rouge value: 31.9802 name: ROUGE-LSUM verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzU3ZTIzZDhiYjc1ODk2ODg4NTI2MDFhZWFhMDRmMTg2OTg0MzkyMjQ0NDkyODI0ZTE1MmM2MzNiODQ2Y2EzZiIsInZlcnNpb24iOjF9.k48PRPLAGKPT-ILO5HbPciwFG9vdR6_ICvUXmOnJI4mz5dIoBLvR0aTdWCU070jyPveDwXisIvE9scK9jWsUCA - type: loss value: 3.0360958576202393 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTgzOGRlNmMwZjYyMzNkNjcwNDM4MTYyZjgzODhjYTdhY2JiNWY4ZjMzNWJhZjc1YjNiYjViZDk2ODMzMmI5ZiIsInZlcnNpb24iOjF9.dH1fJs84sTWXqrmdsCMuc6zexedn0uUWd9gmVV2JKzFzpPbTxzIJSNez7jaGz_sgSK8q-AeclWFrBAgPDnM6Bg - type: gen_len value: 161.4671 name: gen_len verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjc5NGM4OWU5ZDM2YTZhZmM2OTgwY2ZiODRmYzE2MWRlMTVhZDBjZTQ3ODJkNjU4NzdkZGZlZDk1YjdkYmE0OCIsInZlcnNpb24iOjF9.OSzFnK9k7IT0cv2qXSVzgjTVLkxkqYnUI9OQqPcoEjBK8nqY0OdMQ8BWq6CN6rt6VmVk111B0TJJCTEfseiHBg --- # long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP17 This model is a fine-tuned version of [pszemraj/long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP16](https://huggingface.co/pszemraj/long-t5-tglobal-large-pubmed-3k-booksum-16384-WIP16) on the kmfoda/booksum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 64 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 3 ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.10.0+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
postbot/emailgen-pythia-410m-deduped
postbot
2023-12-20T20:25:50Z
31
0
transformers
[ "transformers", "pytorch", "onnx", "safetensors", "gpt_neox", "text-generation", "generated_from_trainer", "en", "dataset:postbot/multi-emails-hq", "base_model:EleutherAI/pythia-410m-deduped", "base_model:quantized:EleutherAI/pythia-410m-deduped", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-02-15T09:30:22Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - postbot/multi-emails-hq metrics: - accuracy widget: - text: 'Good Morning Professor Beans, Hope you are doing well. I just wanted to reach out and ask if differential calculus will be on the exam' example_title: email to prof - text: 'Hey <NAME>, Thank you for signing up for my weekly newsletter. Before we get started, you''ll have to confirm your email address.' example_title: newsletter - text: 'Hi <NAME>, I hope this email finds you well. I wanted to reach out and ask about office hours' example_title: office hours - text: 'Greetings <NAME>, I hope you had a splendid evening at the Company sausage eating festival. I am reaching out because' example_title: festival - text: 'Good Morning Harold, I was wondering when the next' example_title: event - text: URGENT - I need the TPS reports example_title: URGENT - text: 'Hi Archibald, I hope this email finds you extremely well.' example_title: emails that find you - text: 'Hello there. I just wanted to reach out and check in to' example_title: checking in - text: 'Hello <NAME>, I hope this email finds you well. I wanted to reach out and see if you''ve enjoyed your time with us' example_title: work well - text: 'Hi <NAME>, I hope this email finds you well. I wanted to reach out and see if we could catch up' example_title: catch up - text: I'm <NAME> and I just moved into the area and wanted to reach out and get some details on where I could get groceries and example_title: grocery pipeline_tag: text-generation base_model: EleutherAI/pythia-410m-deduped model-index: - name: multi-emails-hq-pythia-410m-deduped-r1 results: [] --- # emailgen-pythia-410m-deduped [![colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/pszemraj/94b0e6b95437896f800a65ae2e5f9ab4/emailgen-pythia-410m-deduped.ipynb ) This model is a fine-tuned version of [EleutherAI/pythia-410m-deduped](https://huggingface.co/EleutherAI/pythia-410m-deduped) on email data. It achieves the following results on the evaluation set: - Loss: 2.1018 - Accuracy: 0.6157 - perplexity: 8.181 ## Model description - fine-tuned on dataset of emails for 4 epochs - intended use: "text completion" of partially written emails ## Usage example ```python from transformers import pipeline model_tag = "postbot/emailgen-pythia-410m-deduped" generator = pipeline( "text-generation", model=model_tag, ) prompt = """ Hello, Following up on the bubblegum shipment.""" result = generator( prompt, ) # generate print(result[0]["generated_text"]) ``` --- # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_postbot__emailgen-pythia-410m-deduped) | Metric | Value | |-----------------------|---------------------------| | Avg. | 26.65 | | ARC (25-shot) | 27.9 | | HellaSwag (10-shot) | 40.04 | | MMLU (5-shot) | 27.35 | | TruthfulQA (0-shot) | 38.2 | | Winogrande (5-shot) | 52.09 | | GSM8K (5-shot) | 0.0 | | DROP (3-shot) | 0.99 |
iamhassaan/controlnet_sd_apparel_NVIDIA_A10G
iamhassaan
2023-12-20T20:16:51Z
1
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "controlnet", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-12-20T18:11:17Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - controlnet inference: true --- # controlnet-iamhassaan/controlnet_sd_apparel_NVIDIA_A10G These are controlnet weights trained on runwayml/stable-diffusion-v1-5 with new type of conditioning. You can find some example images below. prompt: new knitwear design based on sketch, 100% cotton, red colour, make it photorealistic ![images_0)](./images_0.png)
winddude/mamba_financial_headline_sentiment
winddude
2023-12-20T20:07:20Z
9
1
transformers
[ "transformers", "pytorch", "finance", "text-classification", "en", "dataset:winddude/finacial_pharsebank_66agree_split", "dataset:financial_phrasebank", "base_model:state-spaces/mamba-2.8b", "base_model:finetune:state-spaces/mamba-2.8b", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
text-classification
2023-12-20T19:29:29Z
--- license: apache-2.0 datasets: - winddude/finacial_pharsebank_66agree_split - financial_phrasebank language: - en base_model: - state-spaces/mamba-2.8b metrics: - accuracy - f1 - recall - precission model-index: - name: financial-sentiment-analysis results: - task: name: Text Classification type: text-classification dataset: name: financial_phrasebank type: financial_phrasebank args: sentences_66agree metrics: - name: Accuracy type: accuracy value: 0.82 - name: Percision type: percision value: 0.82 - name: recall type: recall value: 0.82 - name: F1 type: f1 value: 0.82 pipeline_tag: text-classification tags: - finance --- # Mamba Financial Headline Sentiment Classifier A sentment classifier for finacial headlines using mamba 2.8b as the base model. Text is classified into 1 of 3 labels; positive, neutral, or negative. ## Prompt Format: ``` prompt = f"""Classify the setiment of the following news headlines as either `positive`, `neutral`, or `negative`.\n Headline: {headline}\n Classification:""" ``` where `headline` is the text you want to be classified.
DaRkSpyro/CynderTheDragon
DaRkSpyro
2023-12-20T20:04:47Z
0
0
null
[ "music", "en", "license:apache-2.0", "region:us" ]
null
2023-12-20T19:56:31Z
--- license: apache-2.0 language: - en tags: - music metrics: - accuracy ---
LoneStriker/CatPPT-8.0bpw-h8-exl2
LoneStriker
2023-12-20T20:02:18Z
0
0
peft
[ "peft", "safetensors", "mistral", "generated_from_trainer", "text-generation", "en", "dataset:HuggingFaceH4/no_robots", "base_model:rishiraj/CatPPT-base", "base_model:adapter:rishiraj/CatPPT-base", "license:apache-2.0", "region:us" ]
text-generation
2023-12-20T19:59:12Z
--- license: apache-2.0 library_name: peft base_model: rishiraj/CatPPT-base datasets: - HuggingFaceH4/no_robots language: - en widget: - text: | <|system|> You are a friendly chatbot who always responds in the style of a pirate</s> <|user|> How many helicopters can a human eat in one sitting?</s> <|assistant|> output: text: >- Aye, me hearties! 'Tis not likely a human can eat a helicopter in any sittin', let alone one! They be too big and made of metal, and not fit for consumption. But if ye be referrin' to helicopter snacks, like nuts and trail mix, then a human might be able to munch a goodly amount in one sittin'. Arr! tags: - generated_from_trainer pipeline_tag: text-generation model-index: - name: CatPPT results: [] --- # 😼 CatPPT Introducing "CatPPT" - the purrfect alternative to that other big cat in town, known for keeping all the secrets to itself! Our feline friend here is created through merging openchat and neuralchat models using Gradient SLERP method (resulting in [rishiraj/CatPPT-base](https://huggingface.co/rishiraj/CatPPT-base)) and then finetuned on no_robots dataset for chat. This is the top-performing 7B model on the leaderboard, that's free from any whiff of evaluation data contamination. ![](https://raw.githubusercontent.com/rishiraj/rishiraj.github.io/main/assets/spider%402x.png) ## Model date rishiraj/CatPPT was trained between 15th and 17th December, 2023. ## Evaluation It achieves the following results on the [Open_LLM_Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). At the time of release, CatPPT is the highest ranked 7B chat model on the leaderboard, that's **free from evaluation data contamination**. |Model |Average|ARC |HellaSwag|MMLU |TruthfulQA|Winogrande|GSM8K| |------------------------------------|-------|-----|---------|-----|----------|----------|-----| |**rishiraj/CatPPT** |**72.32** |**68.09**|**86.69** |**65.16**|**61.55** |**81.61** |**70.81**| |Intel/neural-chat-7b-v3-3 |69.83 |66.89|85.26 |63.07|63.01 |79.64 |61.11| |openchat/openchat-3.5-1210 |68.89 |64.93|84.92 |64.62|52.15 |80.74 |65.96| |meta-math/MetaMath-Mistral-7B |65.78 |60.67|82.58 |61.95|44.89 |75.77 |68.84| |Deci/DeciLM-7B-instruct |63.19 |61.01|82.37 |60.24|49.75 |79.72 |46.02| |mistralai/Mistral-7B-Instruct-v0.2 |65.71 |63.14|84.88 |60.78|68.26 |77.19 |40.03| |mistralai/Mixtral-8x7B-Instruct-v0.1|72.62 |70.22|87.63 |71.16|64.58 |81.37 |60.73| |meta-llama/Llama-2-70b-hf |67.87 |67.32|87.33 |69.83|44.92 |83.74 |54.06| |tiiuae/falcon-180B |67.85 |69.45|88.86 |70.5 |45.47 |86.9 |45.94| ## Inference procedure Here's how you can run the model using the pipeline() function from 🤗 Transformers: ``` import torch from transformers import pipeline pipe = pipeline("text-generation", model="rishiraj/CatPPT", torch_dtype=torch.bfloat16, device_map="auto") # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating messages = [ { "role": "system", "content": "You are a friendly chatbot who always responds in the style of a pirate" }, { "role": "user", "content": "How many helicopters can a human eat in one sitting?" } ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 128 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9947 | 0.16 | 3 | 2.0093 | ### Framework versions - Transformers 4.36.1 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.0 - PEFT 0.6.1 ## Citation Information ``` @misc{rishiraj2023catppt, author = {Rishiraj Acharya}, title = {CatPPT}, year = {2023}, publisher = {Hugging Face}, journal = {Hugging Face repository}, howpublished = {\url{https://huggingface.co/rishiraj/CatPPT}} } ```
LoneStriker/CatPPT-6.0bpw-h6-exl2
LoneStriker
2023-12-20T19:55:04Z
0
0
peft
[ "peft", "safetensors", "mistral", "generated_from_trainer", "text-generation", "en", "dataset:HuggingFaceH4/no_robots", "base_model:rishiraj/CatPPT-base", "base_model:adapter:rishiraj/CatPPT-base", "license:apache-2.0", "region:us" ]
text-generation
2023-12-20T19:52:40Z
--- license: apache-2.0 library_name: peft base_model: rishiraj/CatPPT-base datasets: - HuggingFaceH4/no_robots language: - en widget: - text: | <|system|> You are a friendly chatbot who always responds in the style of a pirate</s> <|user|> How many helicopters can a human eat in one sitting?</s> <|assistant|> output: text: >- Aye, me hearties! 'Tis not likely a human can eat a helicopter in any sittin', let alone one! They be too big and made of metal, and not fit for consumption. But if ye be referrin' to helicopter snacks, like nuts and trail mix, then a human might be able to munch a goodly amount in one sittin'. Arr! tags: - generated_from_trainer pipeline_tag: text-generation model-index: - name: CatPPT results: [] --- # 😼 CatPPT Introducing "CatPPT" - the purrfect alternative to that other big cat in town, known for keeping all the secrets to itself! Our feline friend here is created through merging openchat and neuralchat models using Gradient SLERP method (resulting in [rishiraj/CatPPT-base](https://huggingface.co/rishiraj/CatPPT-base)) and then finetuned on no_robots dataset for chat. This is the top-performing 7B model on the leaderboard, that's free from any whiff of evaluation data contamination. ![](https://raw.githubusercontent.com/rishiraj/rishiraj.github.io/main/assets/spider%402x.png) ## Model date rishiraj/CatPPT was trained between 15th and 17th December, 2023. ## Evaluation It achieves the following results on the [Open_LLM_Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). At the time of release, CatPPT is the highest ranked 7B chat model on the leaderboard, that's **free from evaluation data contamination**. |Model |Average|ARC |HellaSwag|MMLU |TruthfulQA|Winogrande|GSM8K| |------------------------------------|-------|-----|---------|-----|----------|----------|-----| |**rishiraj/CatPPT** |**72.32** |**68.09**|**86.69** |**65.16**|**61.55** |**81.61** |**70.81**| |Intel/neural-chat-7b-v3-3 |69.83 |66.89|85.26 |63.07|63.01 |79.64 |61.11| |openchat/openchat-3.5-1210 |68.89 |64.93|84.92 |64.62|52.15 |80.74 |65.96| |meta-math/MetaMath-Mistral-7B |65.78 |60.67|82.58 |61.95|44.89 |75.77 |68.84| |Deci/DeciLM-7B-instruct |63.19 |61.01|82.37 |60.24|49.75 |79.72 |46.02| |mistralai/Mistral-7B-Instruct-v0.2 |65.71 |63.14|84.88 |60.78|68.26 |77.19 |40.03| |mistralai/Mixtral-8x7B-Instruct-v0.1|72.62 |70.22|87.63 |71.16|64.58 |81.37 |60.73| |meta-llama/Llama-2-70b-hf |67.87 |67.32|87.33 |69.83|44.92 |83.74 |54.06| |tiiuae/falcon-180B |67.85 |69.45|88.86 |70.5 |45.47 |86.9 |45.94| ## Inference procedure Here's how you can run the model using the pipeline() function from 🤗 Transformers: ``` import torch from transformers import pipeline pipe = pipeline("text-generation", model="rishiraj/CatPPT", torch_dtype=torch.bfloat16, device_map="auto") # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating messages = [ { "role": "system", "content": "You are a friendly chatbot who always responds in the style of a pirate" }, { "role": "user", "content": "How many helicopters can a human eat in one sitting?" } ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 128 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9947 | 0.16 | 3 | 2.0093 | ### Framework versions - Transformers 4.36.1 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.0 - PEFT 0.6.1 ## Citation Information ``` @misc{rishiraj2023catppt, author = {Rishiraj Acharya}, title = {CatPPT}, year = {2023}, publisher = {Hugging Face}, journal = {Hugging Face repository}, howpublished = {\url{https://huggingface.co/rishiraj/CatPPT}} } ```
badokorach/distilbert-base-uncased-finetuned-squad
badokorach
2023-12-20T19:51:54Z
44
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "distilbert", "question-answering", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-03-14T16:55:16Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.1676 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 47 | 3.7022 | | No log | 2.0 | 94 | 3.2578 | | No log | 3.0 | 141 | 3.1677 | | No log | 4.0 | 188 | 3.1411 | | No log | 5.0 | 235 | 3.2288 | | No log | 6.0 | 282 | 3.2640 | | No log | 7.0 | 329 | 3.3689 | | No log | 8.0 | 376 | 3.4776 | | No log | 9.0 | 423 | 3.5919 | | No log | 10.0 | 470 | 3.6319 | | 2.2819 | 11.0 | 517 | 3.8199 | | 2.2819 | 12.0 | 564 | 3.9339 | | 2.2819 | 13.0 | 611 | 3.9348 | | 2.2819 | 14.0 | 658 | 3.9293 | | 2.2819 | 15.0 | 705 | 4.0312 | | 2.2819 | 16.0 | 752 | 4.1651 | | 2.2819 | 17.0 | 799 | 4.0788 | | 2.2819 | 18.0 | 846 | 4.1112 | | 2.2819 | 19.0 | 893 | 4.1513 | | 2.2819 | 20.0 | 940 | 4.1676 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
LoneStriker/CatPPT-4.0bpw-h6-exl2
LoneStriker
2023-12-20T19:41:54Z
0
0
peft
[ "peft", "safetensors", "mistral", "generated_from_trainer", "text-generation", "en", "dataset:HuggingFaceH4/no_robots", "base_model:rishiraj/CatPPT-base", "base_model:adapter:rishiraj/CatPPT-base", "license:apache-2.0", "region:us" ]
text-generation
2023-12-20T19:40:12Z
--- license: apache-2.0 library_name: peft base_model: rishiraj/CatPPT-base datasets: - HuggingFaceH4/no_robots language: - en widget: - text: | <|system|> You are a friendly chatbot who always responds in the style of a pirate</s> <|user|> How many helicopters can a human eat in one sitting?</s> <|assistant|> output: text: >- Aye, me hearties! 'Tis not likely a human can eat a helicopter in any sittin', let alone one! They be too big and made of metal, and not fit for consumption. But if ye be referrin' to helicopter snacks, like nuts and trail mix, then a human might be able to munch a goodly amount in one sittin'. Arr! tags: - generated_from_trainer pipeline_tag: text-generation model-index: - name: CatPPT results: [] --- # 😼 CatPPT Introducing "CatPPT" - the purrfect alternative to that other big cat in town, known for keeping all the secrets to itself! Our feline friend here is created through merging openchat and neuralchat models using Gradient SLERP method (resulting in [rishiraj/CatPPT-base](https://huggingface.co/rishiraj/CatPPT-base)) and then finetuned on no_robots dataset for chat. This is the top-performing 7B model on the leaderboard, that's free from any whiff of evaluation data contamination. ![](https://raw.githubusercontent.com/rishiraj/rishiraj.github.io/main/assets/spider%402x.png) ## Model date rishiraj/CatPPT was trained between 15th and 17th December, 2023. ## Evaluation It achieves the following results on the [Open_LLM_Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). At the time of release, CatPPT is the highest ranked 7B chat model on the leaderboard, that's **free from evaluation data contamination**. |Model |Average|ARC |HellaSwag|MMLU |TruthfulQA|Winogrande|GSM8K| |------------------------------------|-------|-----|---------|-----|----------|----------|-----| |**rishiraj/CatPPT** |**72.32** |**68.09**|**86.69** |**65.16**|**61.55** |**81.61** |**70.81**| |Intel/neural-chat-7b-v3-3 |69.83 |66.89|85.26 |63.07|63.01 |79.64 |61.11| |openchat/openchat-3.5-1210 |68.89 |64.93|84.92 |64.62|52.15 |80.74 |65.96| |meta-math/MetaMath-Mistral-7B |65.78 |60.67|82.58 |61.95|44.89 |75.77 |68.84| |Deci/DeciLM-7B-instruct |63.19 |61.01|82.37 |60.24|49.75 |79.72 |46.02| |mistralai/Mistral-7B-Instruct-v0.2 |65.71 |63.14|84.88 |60.78|68.26 |77.19 |40.03| |mistralai/Mixtral-8x7B-Instruct-v0.1|72.62 |70.22|87.63 |71.16|64.58 |81.37 |60.73| |meta-llama/Llama-2-70b-hf |67.87 |67.32|87.33 |69.83|44.92 |83.74 |54.06| |tiiuae/falcon-180B |67.85 |69.45|88.86 |70.5 |45.47 |86.9 |45.94| ## Inference procedure Here's how you can run the model using the pipeline() function from 🤗 Transformers: ``` import torch from transformers import pipeline pipe = pipeline("text-generation", model="rishiraj/CatPPT", torch_dtype=torch.bfloat16, device_map="auto") # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating messages = [ { "role": "system", "content": "You are a friendly chatbot who always responds in the style of a pirate" }, { "role": "user", "content": "How many helicopters can a human eat in one sitting?" } ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 128 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9947 | 0.16 | 3 | 2.0093 | ### Framework versions - Transformers 4.36.1 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.0 - PEFT 0.6.1 ## Citation Information ``` @misc{rishiraj2023catppt, author = {Rishiraj Acharya}, title = {CatPPT}, year = {2023}, publisher = {Hugging Face}, journal = {Hugging Face repository}, howpublished = {\url{https://huggingface.co/rishiraj/CatPPT}} } ```
ntc-ai/SDXL-LoRA-slider.overenthusiastic
ntc-ai
2023-12-20T19:38:18Z
53
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2023-12-20T19:38:15Z
--- language: - en thumbnail: "images/evaluate/overenthusiastic...unenthusiastic/overenthusiastic_17_3.0.png" widget: - text: overenthusiastic output: url: images/overenthusiastic_17_3.0.png - text: overenthusiastic output: url: images/overenthusiastic_19_3.0.png - text: overenthusiastic output: url: images/overenthusiastic_20_3.0.png - text: overenthusiastic output: url: images/overenthusiastic_21_3.0.png - text: overenthusiastic output: url: images/overenthusiastic_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "overenthusiastic" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - overenthusiastic (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/overenthusiastic_17_-3.0.png" width=256 height=256 /> | <img src="images/overenthusiastic_17_0.0.png" width=256 height=256 /> | <img src="images/overenthusiastic_17_3.0.png" width=256 height=256 /> | | <img src="images/overenthusiastic_19_-3.0.png" width=256 height=256 /> | <img src="images/overenthusiastic_19_0.0.png" width=256 height=256 /> | <img src="images/overenthusiastic_19_3.0.png" width=256 height=256 /> | | <img src="images/overenthusiastic_20_-3.0.png" width=256 height=256 /> | <img src="images/overenthusiastic_20_0.0.png" width=256 height=256 /> | <img src="images/overenthusiastic_20_3.0.png" width=256 height=256 /> | ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` overenthusiastic ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.overenthusiastic', weight_name='overenthusiastic.safetensors', adapter_name="overenthusiastic") # Activate the LoRA pipe.set_adapters(["overenthusiastic"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, overenthusiastic" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 510+ unique and diverse LoRAs, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful LoRA slider creator, allowing you to craft your own custom LoRAs and experiment with endless possibilities. Your support on Patreon will allow us to continue developing and refining new models. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
LoneStriker/CatPPT-3.0bpw-h6-exl2
LoneStriker
2023-12-20T19:35:22Z
0
0
peft
[ "peft", "safetensors", "mistral", "generated_from_trainer", "text-generation", "en", "dataset:HuggingFaceH4/no_robots", "base_model:rishiraj/CatPPT-base", "base_model:adapter:rishiraj/CatPPT-base", "license:apache-2.0", "region:us" ]
text-generation
2023-12-20T19:33:59Z
--- license: apache-2.0 library_name: peft base_model: rishiraj/CatPPT-base datasets: - HuggingFaceH4/no_robots language: - en widget: - text: | <|system|> You are a friendly chatbot who always responds in the style of a pirate</s> <|user|> How many helicopters can a human eat in one sitting?</s> <|assistant|> output: text: >- Aye, me hearties! 'Tis not likely a human can eat a helicopter in any sittin', let alone one! They be too big and made of metal, and not fit for consumption. But if ye be referrin' to helicopter snacks, like nuts and trail mix, then a human might be able to munch a goodly amount in one sittin'. Arr! tags: - generated_from_trainer pipeline_tag: text-generation model-index: - name: CatPPT results: [] --- # 😼 CatPPT Introducing "CatPPT" - the purrfect alternative to that other big cat in town, known for keeping all the secrets to itself! Our feline friend here is created through merging openchat and neuralchat models using Gradient SLERP method (resulting in [rishiraj/CatPPT-base](https://huggingface.co/rishiraj/CatPPT-base)) and then finetuned on no_robots dataset for chat. This is the top-performing 7B model on the leaderboard, that's free from any whiff of evaluation data contamination. ![](https://raw.githubusercontent.com/rishiraj/rishiraj.github.io/main/assets/spider%402x.png) ## Model date rishiraj/CatPPT was trained between 15th and 17th December, 2023. ## Evaluation It achieves the following results on the [Open_LLM_Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). At the time of release, CatPPT is the highest ranked 7B chat model on the leaderboard, that's **free from evaluation data contamination**. |Model |Average|ARC |HellaSwag|MMLU |TruthfulQA|Winogrande|GSM8K| |------------------------------------|-------|-----|---------|-----|----------|----------|-----| |**rishiraj/CatPPT** |**72.32** |**68.09**|**86.69** |**65.16**|**61.55** |**81.61** |**70.81**| |Intel/neural-chat-7b-v3-3 |69.83 |66.89|85.26 |63.07|63.01 |79.64 |61.11| |openchat/openchat-3.5-1210 |68.89 |64.93|84.92 |64.62|52.15 |80.74 |65.96| |meta-math/MetaMath-Mistral-7B |65.78 |60.67|82.58 |61.95|44.89 |75.77 |68.84| |Deci/DeciLM-7B-instruct |63.19 |61.01|82.37 |60.24|49.75 |79.72 |46.02| |mistralai/Mistral-7B-Instruct-v0.2 |65.71 |63.14|84.88 |60.78|68.26 |77.19 |40.03| |mistralai/Mixtral-8x7B-Instruct-v0.1|72.62 |70.22|87.63 |71.16|64.58 |81.37 |60.73| |meta-llama/Llama-2-70b-hf |67.87 |67.32|87.33 |69.83|44.92 |83.74 |54.06| |tiiuae/falcon-180B |67.85 |69.45|88.86 |70.5 |45.47 |86.9 |45.94| ## Inference procedure Here's how you can run the model using the pipeline() function from 🤗 Transformers: ``` import torch from transformers import pipeline pipe = pipeline("text-generation", model="rishiraj/CatPPT", torch_dtype=torch.bfloat16, device_map="auto") # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating messages = [ { "role": "system", "content": "You are a friendly chatbot who always responds in the style of a pirate" }, { "role": "user", "content": "How many helicopters can a human eat in one sitting?" } ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 128 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9947 | 0.16 | 3 | 2.0093 | ### Framework versions - Transformers 4.36.1 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.0 - PEFT 0.6.1 ## Citation Information ``` @misc{rishiraj2023catppt, author = {Rishiraj Acharya}, title = {CatPPT}, year = {2023}, publisher = {Hugging Face}, journal = {Hugging Face repository}, howpublished = {\url{https://huggingface.co/rishiraj/CatPPT}} } ```
Remeris/BART-CNN-Convosumm
Remeris
2023-12-20T19:27:52Z
19
2
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "summarization", "en", "dataset:cnn_dailymail", "dataset:Convosumm", "base_model:facebook/bart-large-cnn", "base_model:finetune:facebook/bart-large-cnn", "license:cc", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2023-12-10T16:11:51Z
--- license: cc base_model: facebook/bart-large-cnn tags: - generated_from_trainer datasets: - cnn_dailymail - Convosumm widget: - text: > Can we say that among the Pythagoreans the “body” of the concept was number? What do you mean by "concept body"? shell. What then is hidden behind this shell? Definition of a concept) what definition of a concept is ultimately hidden behind the body in the form of a number? All those that the Pythagoreans indicated. I want to say that numbers were their very concept. They thought in numbers as in concepts. Shape maybe?) you can say yes, but it will need to be developed on a mug. The definitions of thought are subject to numbers. On the one hand, numbers are pure abstraction, which gives initial freedom of thought for the derivation of abstract, embryonic definitions, but then for the derivation, description of reality, more specific concepts, the abstractness of numbers, on the contrary, limits, “leads into the darkness.” One is the object, “in itself”;' model-index: - name: BART-CNN-Convosumm results: - task: name: Abstractive Dialogue Summarization type: abstractive-text-summarization dataset: name: Reddit arg-filtered part of Convosumm type: Convosumm metrics: - name: Validation ROGUE-1 type: rogue-1 value: 38.6252 - name: Validation ROGUE-L type: rogue-l value: 23.902 - name: Test ROGUE-1 type: rogue-1 value: 38.3642 - name: Test ROGUE-L type: rogue-l value: 23.7782 language: - en pipeline_tag: summarization --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BART-CNN-Convosumm ## Model description This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the arg-filtered reddit part of [Convosumm](https://github.com/Yale-LILY/ConvoSumm) dataset. Model is trained for [multilanguage telegram-bot summarizer](https://github.com/akaRemeris/XLConvosumm-bot). ## Intended uses & limitations Input expected: unstructured set of concatenated messages without nickname-message indexing. ## Training and evaluation data More information needed ## Training procedure Wandb logged [results](https://wandb.ai/remeris/BART-CNN-Convosumm/runs/68syxthd). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 20 - total_train_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: polynomial - lr_scheduler_warmup_steps: 1 - num_epochs: 7 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 6.207 | 1.0 | 10 | 4.2651 | 32.3341 | 7.812 | 20.0411 | 29.4849 | 77.38 | | 4.0248 | 1.99 | 20 | 3.9903 | 36.0787 | 11.0447 | 21.3596 | 33.2903 | 130.58 | | 3.5933 | 2.99 | 30 | 3.9020 | 34.2931 | 11.2036 | 20.7935 | 30.8361 | 140.02 | | 3.3086 | 3.98 | 40 | 3.8712 | 38.4842 | 11.9947 | 23.4913 | 34.4347 | 85.78 | | 3.112 | 4.98 | 50 | 3.8700 | 38.652 | 11.8315 | 23.5208 | 34.5998 | 76.2 | | 2.9933 | 5.97 | 60 | 3.8809 | 38.66 | 12.3337 | 23.4394 | 35.1976 | 83.26 | | 2.834 | 6.97 | 70 | 3.8797 | 38.6252 | 12.2556 | 23.902 | 34.6324 | 81.28 | It achieves the following results on the evaluation set (50 data points): - Loss: 3.8797 - Rouge1: 38.6252 - Rouge2: 12.2556 - Rougel: 23.902 - Rougelsum: 34.6324 - Gen Len: 81.28 It achieves the following results on the test set (250 data points): - Loss: 3.8343 - Rouge1: 38.3642 - Rouge2: 12.2056 - Rougel: 23.7782 - Rougelsum: 34.3959 - Gen Len: 84.132 ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0
livingbox/dining-room-19-12-v2
livingbox
2023-12-20T19:19:09Z
1
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-12-20T19:13:40Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### dining-room-19/12-v2 Dreambooth model trained by livingbox with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
mlx-community/mistral-7B-v0.1
mlx-community
2023-12-20T19:13:19Z
37
11
mlx
[ "mlx", "mistral", "text-generation", "arxiv:2310.06825", "license:apache-2.0", "region:us" ]
text-generation
2023-12-19T17:39:31Z
--- pipeline_tag: text-generation inference: false tags: - mistral - mlx license: apache-2.0 library_name: mlx --- # Mistral-7B-v0.1 The Mistral-7B-v0.1 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters. Mistral-7B-v0.1 outperforms Llama 2 13B on all benchmarks we tested. For full details of this model please read our [paper](https://arxiv.org/abs/2310.06825) and [release blog post](https://mistral.ai/news/announcing-mistral-7b/). This repository contains the `mistral-7B-v0.1` weights in `npz` format suitable for use with Apple's MLX framework. ## Use with MLX ```bash pip install mlx pip install huggingface_hub hf_transfer git clone https://github.com/ml-explore/mlx-examples.git cd mlx-examples # Download model export HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download --local-dir-use-symlinks False --local-dir mistral-7B-v0.1 mlx-community/mistral-7B-v0.1 # Run example python llms/mistral/mistral.py --prompt "My name is" ``` Please, refer to the [original model card](https://huggingface.co/mistralai/Mistral-7B-v0.1) for more details on Mistral-7B-v0.1.
behzadnet/Llama-2-7b-chat-hf-sharded-bf16-fine-tuned_SystemError0.4_Seed104
behzadnet
2023-12-20T19:11:46Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "base_model:adapter:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "region:us" ]
null
2023-12-20T19:11:43Z
--- library_name: peft base_model: Trelis/Llama-2-7b-chat-hf-sharded-bf16 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0
mlx-community/Llama-2-7b-chat-mlx
mlx-community
2023-12-20T19:10:32Z
102
84
mlx
[ "mlx", "llama", "facebook", "meta", "llama-2", "text-generation", "license:llama2", "region:us" ]
text-generation
2023-12-06T15:21:20Z
--- pipeline_tag: text-generation library_name: mlx inference: false tags: - facebook - meta - llama - llama-2 - mlx license: llama2 --- # **Llama 2** Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. This is the repository for the 7B fine-tuned model, in `npz` format suitable for use in Apple's MLX framework. Weights have been converted to `float16` from the original `bfloat16` type, because `numpy` is not compatible with `bfloat16` out of the box. How to use with [MLX](https://github.com/ml-explore/mlx). ```bash # Install mlx, mlx-examples, huggingface-cli pip install mlx pip install huggingface_hub hf_transfer git clone https://github.com/ml-explore/mlx-examples.git # Download model export HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download --local-dir Llama-2-7b-chat-mlx mlx-llama/Llama-2-7b-chat-mlx # Run example python mlx-examples/llama/llama.py --prompt "My name is " Llama-2-7b-chat-mlx/ Llama-2-7b-chat-mlx/tokenizer.model ``` Please, refer to the [original model card](https://huggingface.co/meta-llama/Llama-2-7b-chat) for details on Llama 2.
mlx-community/Llama-2-7b-mlx
mlx-community
2023-12-20T19:10:11Z
115
11
mlx
[ "mlx", "llama", "facebook", "meta", "llama-2", "text-generation", "license:llama2", "region:us" ]
text-generation
2023-12-06T15:58:44Z
--- pipeline_tag: text-generation library_name: mlx inference: false tags: - facebook - meta - llama - llama-2 - mlx license: llama2 --- # **Llama 2** Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. This is the repository for the 7B fine-tuned model, in `npz` format suitable for use in Apple's MLX framework. Weights have been converted to `float16` from the original `bfloat16` type, because `numpy` is not compatible with `bfloat16` out of the box. ```bash # Install mlx, mlx-examples, huggingface-cli pip install mlx pip install huggingface_hub hf_transfer git clone https://github.com/ml-explore/mlx-examples.git # Download model export HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download --local-dir Llama-2-7b-mlx mlx-llama/Llama-2-7b-mlx # Run example python mlx-examples/llama/llama.py --prompt "My name is" Llama-2-7b-mlx/ Llama-2-7b-mlx/tokenizer.model ``` Please, refer to the [original model card](https://huggingface.co/meta-llama/Llama-2-7b/tree/main) for details on Llama 2.
mlx-community/CodeLlama-7b-mlx
mlx-community
2023-12-20T19:09:24Z
8
10
mlx
[ "mlx", "llama", "facebook", "meta", "llama-2", "codellama", "text-generation", "license:llama2", "region:us" ]
text-generation
2023-12-06T17:28:40Z
--- pipeline_tag: text-generation library_name: mlx inference: false tags: - facebook - meta - llama - llama-2 - codellama - mlx license: llama2 --- # **CodeLlama** Code Llama is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 34 billion parameters. This model is designed for general code synthesis and understanding. This is the repository for the 7B base model, in `npz` format suitable for use in Apple's MLX framework. Weights have been converted to `float16` from the original `bfloat16` type, because `numpy` is not compatible with `bfloat16` out of the box. How to use with [MLX](https://github.com/ml-explore/mlx). ```bash # Install mlx, mlx-examples, huggingface-cli pip install mlx pip install huggingface_hub hf_transfer git clone https://github.com/ml-explore/mlx-examples.git # Download model export HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download --local-dir CodeLlama-7b-mlx mlx-llama/CodeLlama-7b-mlx # Run example python mlx-examples/llama/llama.py --prompt "int main(char argc, char **argv) {" CodeLlama-7b-mlx/ CodeLlama-7b-mlx/tokenizer.model ``` Please, refer to the [original model card](https://github.com/facebookresearch/codellama/blob/main/MODEL_CARD.md) for details on CodeLlama.
Matvey67/distilbert-base-uncased-finetuned-emotion
Matvey67
2023-12-20T19:08:35Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-20T17:30:40Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.926 - name: F1 type: f1 value: 0.9260809028404356 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2123 - Accuracy: 0.926 - F1: 0.9261 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7777 | 1.0 | 250 | 0.2958 | 0.9165 | 0.9163 | | 0.2393 | 2.0 | 500 | 0.2123 | 0.926 | 0.9261 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
Tamakoma/CowboyHatEmoji
Tamakoma
2023-12-20T19:07:52Z
12
0
transformers
[ "transformers", "pytorch", "convnextv2", "image-classification", "vision", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/convnextv2-large-22k-384", "base_model:finetune:facebook/convnextv2-large-22k-384", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-05-24T14:42:12Z
--- license: apache-2.0 tags: - image-classification - vision - generated_from_trainer datasets: - imagefolder metrics: - accuracy base_model: facebook/convnextv2-large-22k-384 model-index: - name: outputs results: - task: type: image-classification name: Image Classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - type: accuracy value: 0.7777777777777778 name: Accuracy --- # Cowboy Hat emoji 🤠 (Western) This model is a fine-tuned version of [facebook/convnextv2-large-22k-384](https://huggingface.co/facebook/convnextv2-large-22k-384) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4250 - Accuracy: 0.7778 ## Model description When you want to know if an art is 🤠 or not 🤠. - Current iteration: v3.5 (Continuous Image Integration) ## Wait, why? gelbooru contains a lot of images, however not all of them are in the same region as south eas asia. As such, to filter out such images we have created a classifier that in theory learns the differences between western (USA/Europe/etc.) and not western (Japan/China/SEA). The definition of "Not Western" is limited to the the asian region (Japan, Korea, China, Taiwan, Thailand and the surroundign region). The author believes that the art is similar enough with the same "style" which he personally prefers over western art. ## Intended uses & limitations filter gelbooru data on 🤠 or not 🤠 ## Training and evaluation data Selected 358 images of 🤠 and not 🤠. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 802565 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7384 | 1.0 | 152 | 0.4268 | 0.7963 | | 0.2888 | 2.0 | 304 | 0.4250 | 0.7778 | | 0.2953 | 3.0 | 456 | 0.4250 | 0.7778 | | 0.4914 | 4.0 | 608 | 0.4250 | 0.7778 | | 0.4099 | 5.0 | 760 | 0.4250 | 0.7778 | ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
Lau123/distilbert-base-uncased-detect_ai_generated_text
Lau123
2023-12-20T19:06:51Z
31
1
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-20T19:00:36Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-detect_ai_generated_text results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-detect_ai_generated_text This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0089 - Accuracy: 1.0 - F1: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---:| | 0.2078 | 1.0 | 47 | 0.0219 | 1.0 | 1.0 | | 0.0153 | 2.0 | 94 | 0.0089 | 1.0 | 1.0 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Tokenizers 0.15.0
SkyR/roberta-base-ours-run-1
SkyR
2023-12-20T18:57:28Z
8
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-12T15:35:19Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 base_model: roberta-base model-index: - name: run-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # run-1 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3480 - Accuracy: 0.73 - Precision: 0.6930 - Recall: 0.6829 - F1: 0.6871 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.0042 | 1.0 | 50 | 0.8281 | 0.665 | 0.6105 | 0.6240 | 0.6016 | | 0.8062 | 2.0 | 100 | 0.9313 | 0.665 | 0.6513 | 0.6069 | 0.5505 | | 0.627 | 3.0 | 150 | 0.8275 | 0.72 | 0.6713 | 0.6598 | 0.6638 | | 0.4692 | 4.0 | 200 | 0.8289 | 0.68 | 0.6368 | 0.6447 | 0.6398 | | 0.2766 | 5.0 | 250 | 1.1263 | 0.72 | 0.6893 | 0.6431 | 0.6417 | | 0.1868 | 6.0 | 300 | 1.2901 | 0.725 | 0.6823 | 0.6727 | 0.6764 | | 0.1054 | 7.0 | 350 | 1.6742 | 0.68 | 0.6696 | 0.6427 | 0.6384 | | 0.0837 | 8.0 | 400 | 1.6199 | 0.72 | 0.6826 | 0.6735 | 0.6772 | | 0.0451 | 9.0 | 450 | 1.8324 | 0.735 | 0.7029 | 0.6726 | 0.6727 | | 0.0532 | 10.0 | 500 | 2.1136 | 0.705 | 0.6949 | 0.6725 | 0.6671 | | 0.0178 | 11.0 | 550 | 2.1136 | 0.73 | 0.6931 | 0.6810 | 0.6832 | | 0.0111 | 12.0 | 600 | 2.2740 | 0.69 | 0.6505 | 0.6430 | 0.6461 | | 0.0205 | 13.0 | 650 | 2.3026 | 0.725 | 0.6965 | 0.6685 | 0.6716 | | 0.0181 | 14.0 | 700 | 2.2901 | 0.735 | 0.7045 | 0.6806 | 0.6876 | | 0.0074 | 15.0 | 750 | 2.2277 | 0.74 | 0.7075 | 0.6923 | 0.6978 | | 0.0063 | 16.0 | 800 | 2.2720 | 0.75 | 0.7229 | 0.7051 | 0.7105 | | 0.0156 | 17.0 | 850 | 2.1237 | 0.73 | 0.6908 | 0.6841 | 0.6854 | | 0.0027 | 18.0 | 900 | 2.2376 | 0.73 | 0.6936 | 0.6837 | 0.6874 | | 0.003 | 19.0 | 950 | 2.3359 | 0.735 | 0.6992 | 0.6897 | 0.6937 | | 0.0012 | 20.0 | 1000 | 2.3480 | 0.73 | 0.6930 | 0.6829 | 0.6871 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu116 - Tokenizers 0.13.2
SkyR/roberta-base-ours-run-3
SkyR
2023-12-20T18:57:10Z
6
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-12T16:24:16Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 base_model: roberta-base model-index: - name: run-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # run-3 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4223 - Accuracy: 0.75 - Precision: 0.7128 - Recall: 0.6998 - F1: 0.7043 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.0025 | 1.0 | 50 | 0.8925 | 0.63 | 0.6703 | 0.5704 | 0.5060 | | 0.8187 | 2.0 | 100 | 0.7915 | 0.595 | 0.6007 | 0.5926 | 0.5344 | | 0.5671 | 3.0 | 150 | 0.9573 | 0.695 | 0.6520 | 0.6350 | 0.6380 | | 0.3218 | 4.0 | 200 | 0.9195 | 0.68 | 0.6447 | 0.6539 | 0.6461 | | 0.2208 | 5.0 | 250 | 1.2429 | 0.715 | 0.6801 | 0.6617 | 0.6663 | | 0.1614 | 6.0 | 300 | 1.5295 | 0.71 | 0.6736 | 0.6543 | 0.6423 | | 0.1129 | 7.0 | 350 | 2.1055 | 0.71 | 0.6779 | 0.6413 | 0.6511 | | 0.098 | 8.0 | 400 | 1.9579 | 0.705 | 0.6697 | 0.6558 | 0.6601 | | 0.0479 | 9.0 | 450 | 2.0535 | 0.72 | 0.6794 | 0.6663 | 0.6711 | | 0.0173 | 10.0 | 500 | 2.5381 | 0.7 | 0.6838 | 0.6604 | 0.6608 | | 0.0308 | 11.0 | 550 | 2.4592 | 0.735 | 0.7014 | 0.6851 | 0.6901 | | 0.0265 | 12.0 | 600 | 2.3131 | 0.725 | 0.6910 | 0.6845 | 0.6849 | | 0.016 | 13.0 | 650 | 2.4025 | 0.74 | 0.7035 | 0.6915 | 0.6949 | | 0.013 | 14.0 | 700 | 2.3933 | 0.745 | 0.7070 | 0.6831 | 0.6909 | | 0.016 | 15.0 | 750 | 2.6819 | 0.725 | 0.7006 | 0.6738 | 0.6759 | | 0.0126 | 16.0 | 800 | 2.3679 | 0.74 | 0.7050 | 0.6839 | 0.6898 | | 0.0023 | 17.0 | 850 | 2.5252 | 0.745 | 0.7119 | 0.6880 | 0.6933 | | 0.01 | 18.0 | 900 | 2.5598 | 0.74 | 0.7056 | 0.6828 | 0.6906 | | 0.0093 | 19.0 | 950 | 2.4353 | 0.745 | 0.7057 | 0.6922 | 0.6974 | | 0.0039 | 20.0 | 1000 | 2.4223 | 0.75 | 0.7128 | 0.6998 | 0.7043 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu116 - Tokenizers 0.13.2
SkyR/roberta-base-ours-run-4
SkyR
2023-12-20T18:57:05Z
6
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-12T16:48:18Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 base_model: roberta-base model-index: - name: run-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # run-4 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.6296 - Accuracy: 0.685 - Precision: 0.6248 - Recall: 0.6164 - F1: 0.6188 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.0195 | 1.0 | 50 | 0.8393 | 0.615 | 0.4126 | 0.5619 | 0.4606 | | 0.7594 | 2.0 | 100 | 0.7077 | 0.7 | 0.6896 | 0.6663 | 0.6178 | | 0.5515 | 3.0 | 150 | 0.9342 | 0.68 | 0.6334 | 0.5989 | 0.6016 | | 0.3739 | 4.0 | 200 | 0.7755 | 0.735 | 0.7032 | 0.7164 | 0.7063 | | 0.2648 | 5.0 | 250 | 0.9200 | 0.7 | 0.6584 | 0.6677 | 0.6611 | | 0.1726 | 6.0 | 300 | 1.1898 | 0.71 | 0.6653 | 0.6550 | 0.6570 | | 0.1452 | 7.0 | 350 | 1.5086 | 0.73 | 0.6884 | 0.6768 | 0.6812 | | 0.0856 | 8.0 | 400 | 2.6159 | 0.68 | 0.6754 | 0.5863 | 0.5951 | | 0.1329 | 9.0 | 450 | 1.9491 | 0.71 | 0.6692 | 0.6442 | 0.6463 | | 0.0322 | 10.0 | 500 | 1.7897 | 0.74 | 0.6977 | 0.6939 | 0.6946 | | 0.0345 | 11.0 | 550 | 1.9100 | 0.725 | 0.6827 | 0.6853 | 0.6781 | | 0.026 | 12.0 | 600 | 2.5041 | 0.68 | 0.6246 | 0.6115 | 0.6137 | | 0.0084 | 13.0 | 650 | 2.5343 | 0.715 | 0.6708 | 0.6617 | 0.6637 | | 0.0145 | 14.0 | 700 | 2.4112 | 0.715 | 0.6643 | 0.6595 | 0.6614 | | 0.0119 | 15.0 | 750 | 2.5303 | 0.705 | 0.6479 | 0.6359 | 0.6390 | | 0.0026 | 16.0 | 800 | 2.6299 | 0.705 | 0.6552 | 0.6447 | 0.6455 | | 0.0077 | 17.0 | 850 | 2.4044 | 0.715 | 0.6667 | 0.6576 | 0.6596 | | 0.0055 | 18.0 | 900 | 2.8077 | 0.68 | 0.6208 | 0.6065 | 0.6098 | | 0.0078 | 19.0 | 950 | 2.5608 | 0.68 | 0.6200 | 0.6104 | 0.6129 | | 0.0018 | 20.0 | 1000 | 2.6296 | 0.685 | 0.6248 | 0.6164 | 0.6188 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu116 - Tokenizers 0.13.2
SkyR/roberta-base-ours-run-5
SkyR
2023-12-20T18:56:57Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-12T17:12:42Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 base_model: roberta-base model-index: - name: run-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # run-5 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2694 - Accuracy: 0.745 - Precision: 0.7091 - Recall: 0.7017 - F1: 0.7043 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.9558 | 1.0 | 50 | 0.8587 | 0.665 | 0.6541 | 0.6084 | 0.5787 | | 0.7752 | 2.0 | 100 | 0.8892 | 0.655 | 0.6416 | 0.5835 | 0.5790 | | 0.5771 | 3.0 | 150 | 0.7066 | 0.715 | 0.6884 | 0.7026 | 0.6915 | | 0.3738 | 4.0 | 200 | 1.0130 | 0.705 | 0.6578 | 0.6409 | 0.6455 | | 0.253 | 5.0 | 250 | 1.1405 | 0.74 | 0.7132 | 0.7018 | 0.7059 | | 0.1604 | 6.0 | 300 | 1.1993 | 0.69 | 0.6334 | 0.6244 | 0.6261 | | 0.1265 | 7.0 | 350 | 1.5984 | 0.705 | 0.6875 | 0.6775 | 0.6764 | | 0.0741 | 8.0 | 400 | 1.4755 | 0.745 | 0.7116 | 0.7132 | 0.7114 | | 0.0505 | 9.0 | 450 | 2.2514 | 0.71 | 0.6791 | 0.6427 | 0.6524 | | 0.0372 | 10.0 | 500 | 2.2234 | 0.71 | 0.6675 | 0.6503 | 0.6488 | | 0.0161 | 11.0 | 550 | 2.1070 | 0.72 | 0.6783 | 0.6712 | 0.6718 | | 0.016 | 12.0 | 600 | 2.0232 | 0.72 | 0.6737 | 0.6659 | 0.6688 | | 0.0197 | 13.0 | 650 | 2.0224 | 0.74 | 0.7065 | 0.6954 | 0.6895 | | 0.01 | 14.0 | 700 | 2.1777 | 0.74 | 0.7023 | 0.6904 | 0.6936 | | 0.0173 | 15.0 | 750 | 2.3227 | 0.72 | 0.6761 | 0.6590 | 0.6638 | | 0.0066 | 16.0 | 800 | 2.2131 | 0.735 | 0.6983 | 0.6912 | 0.6923 | | 0.0043 | 17.0 | 850 | 2.1196 | 0.76 | 0.7278 | 0.7207 | 0.7191 | | 0.0039 | 18.0 | 900 | 2.4087 | 0.72 | 0.6791 | 0.6590 | 0.6650 | | 0.0041 | 19.0 | 950 | 2.1487 | 0.73 | 0.6889 | 0.6860 | 0.6873 | | 0.0024 | 20.0 | 1000 | 2.2694 | 0.745 | 0.7091 | 0.7017 | 0.7043 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu116 - Tokenizers 0.13.2
SkyR/albert-base-ours-run-1
SkyR
2023-12-20T18:55:59Z
4
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "base_model:albert/albert-base-v2", "base_model:finetune:albert/albert-base-v2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-12T18:16:36Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 base_model: albert-base-v2 model-index: - name: albert-base-ours-run-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-ours-run-1 This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3970 - Accuracy: 0.735 - Precision: 0.7033 - Recall: 0.6790 - F1: 0.6873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.9719 | 1.0 | 200 | 0.8460 | 0.635 | 0.6534 | 0.5920 | 0.5547 | | 0.7793 | 2.0 | 400 | 0.7762 | 0.675 | 0.6965 | 0.6323 | 0.5936 | | 0.5734 | 3.0 | 600 | 0.8149 | 0.67 | 0.6200 | 0.6192 | 0.6196 | | 0.3877 | 4.0 | 800 | 0.9555 | 0.7 | 0.6724 | 0.6482 | 0.6549 | | 0.2426 | 5.0 | 1000 | 1.1248 | 0.695 | 0.6529 | 0.6437 | 0.6452 | | 0.183 | 6.0 | 1200 | 1.3497 | 0.705 | 0.6717 | 0.6489 | 0.6563 | | 0.1011 | 7.0 | 1400 | 1.6369 | 0.7 | 0.6620 | 0.6532 | 0.6560 | | 0.0602 | 8.0 | 1600 | 1.8171 | 0.7 | 0.6763 | 0.6615 | 0.6654 | | 0.0335 | 9.0 | 1800 | 1.9601 | 0.695 | 0.6640 | 0.6490 | 0.6545 | | 0.0158 | 10.0 | 2000 | 2.0206 | 0.71 | 0.6802 | 0.6751 | 0.6768 | | 0.0148 | 11.0 | 2200 | 2.0881 | 0.675 | 0.6252 | 0.6242 | 0.6232 | | 0.0057 | 12.0 | 2400 | 2.2708 | 0.735 | 0.7146 | 0.6790 | 0.6904 | | 0.0079 | 13.0 | 2600 | 2.2348 | 0.72 | 0.6917 | 0.6659 | 0.6746 | | 0.0018 | 14.0 | 2800 | 2.2978 | 0.725 | 0.6968 | 0.6662 | 0.6761 | | 0.0025 | 15.0 | 3000 | 2.3180 | 0.735 | 0.7067 | 0.6790 | 0.6883 | | 0.0028 | 16.0 | 3200 | 2.3910 | 0.74 | 0.7153 | 0.6854 | 0.6953 | | 0.0002 | 17.0 | 3400 | 2.3830 | 0.735 | 0.7033 | 0.6790 | 0.6873 | | 0.0002 | 18.0 | 3600 | 2.3899 | 0.735 | 0.7033 | 0.6790 | 0.6873 | | 0.0001 | 19.0 | 3800 | 2.3922 | 0.735 | 0.7033 | 0.6790 | 0.6873 | | 0.0001 | 20.0 | 4000 | 2.3970 | 0.735 | 0.7033 | 0.6790 | 0.6873 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Tokenizers 0.13.2
SkyR/albert-base-ours-run-3
SkyR
2023-12-20T18:55:50Z
4
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "base_model:albert/albert-base-v2", "base_model:finetune:albert/albert-base-v2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-12T19:02:31Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 base_model: albert-base-v2 model-index: - name: albert-base-ours-run-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-ours-run-3 This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4381 - Accuracy: 0.7 - Precision: 0.6579 - Recall: 0.6558 - F1: 0.6568 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.9876 | 1.0 | 200 | 0.9367 | 0.64 | 0.6707 | 0.5623 | 0.5425 | | 0.7553 | 2.0 | 400 | 0.7936 | 0.66 | 0.6269 | 0.6298 | 0.6105 | | 0.556 | 3.0 | 600 | 0.9257 | 0.71 | 0.6759 | 0.6504 | 0.6563 | | 0.3871 | 4.0 | 800 | 0.9893 | 0.63 | 0.5882 | 0.5985 | 0.5876 | | 0.2446 | 5.0 | 1000 | 1.1867 | 0.695 | 0.6582 | 0.6563 | 0.6566 | | 0.1502 | 6.0 | 1200 | 1.6108 | 0.71 | 0.6708 | 0.6523 | 0.6585 | | 0.1049 | 7.0 | 1400 | 2.4882 | 0.645 | 0.6030 | 0.5597 | 0.5649 | | 0.0764 | 8.0 | 1600 | 2.0064 | 0.715 | 0.6798 | 0.6602 | 0.6651 | | 0.032 | 9.0 | 1800 | 2.6447 | 0.655 | 0.5913 | 0.5774 | 0.5727 | | 0.0177 | 10.0 | 2000 | 2.2460 | 0.675 | 0.6290 | 0.6287 | 0.6287 | | 0.0153 | 11.0 | 2200 | 2.3537 | 0.69 | 0.6524 | 0.6407 | 0.6408 | | 0.006 | 12.0 | 2400 | 2.4205 | 0.695 | 0.6582 | 0.6448 | 0.6486 | | 0.0045 | 13.0 | 2600 | 2.3032 | 0.68 | 0.6394 | 0.6314 | 0.6287 | | 0.0038 | 14.0 | 2800 | 2.3506 | 0.685 | 0.6388 | 0.6370 | 0.6367 | | 0.0034 | 15.0 | 3000 | 2.3750 | 0.7 | 0.6590 | 0.6558 | 0.6573 | | 0.0019 | 16.0 | 3200 | 2.4289 | 0.72 | 0.6819 | 0.6723 | 0.6763 | | 0.0016 | 17.0 | 3400 | 2.4470 | 0.725 | 0.6892 | 0.6788 | 0.6830 | | 0.0002 | 18.0 | 3600 | 2.4374 | 0.71 | 0.6700 | 0.6626 | 0.6657 | | 0.0002 | 19.0 | 3800 | 2.4353 | 0.7 | 0.6579 | 0.6558 | 0.6568 | | 0.0002 | 20.0 | 4000 | 2.4381 | 0.7 | 0.6579 | 0.6558 | 0.6568 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Tokenizers 0.13.2
SkyR/albert-base-ours-run-4
SkyR
2023-12-20T18:55:46Z
6
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "base_model:albert/albert-base-v2", "base_model:finetune:albert/albert-base-v2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-12T19:25:41Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 base_model: albert-base-v2 model-index: - name: albert-base-ours-run-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-ours-run-4 This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9565 - Accuracy: 0.72 - Precision: 0.6790 - Recall: 0.6770 - F1: 0.6766 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.0253 | 1.0 | 200 | 0.8974 | 0.605 | 0.7186 | 0.5341 | 0.4555 | | 0.8121 | 2.0 | 400 | 0.8260 | 0.675 | 0.6792 | 0.6308 | 0.6112 | | 0.6153 | 3.0 | 600 | 0.8504 | 0.66 | 0.6180 | 0.6026 | 0.6073 | | 0.441 | 4.0 | 800 | 0.8917 | 0.685 | 0.6463 | 0.6385 | 0.6403 | | 0.3273 | 5.0 | 1000 | 0.9384 | 0.69 | 0.6534 | 0.6602 | 0.6561 | | 0.2138 | 6.0 | 1200 | 1.3501 | 0.705 | 0.6573 | 0.6374 | 0.6388 | | 0.1435 | 7.0 | 1400 | 1.4614 | 0.71 | 0.6693 | 0.6553 | 0.6601 | | 0.1202 | 8.0 | 1600 | 1.5825 | 0.7 | 0.6648 | 0.6592 | 0.6530 | | 0.0587 | 9.0 | 1800 | 1.7755 | 0.72 | 0.6839 | 0.6849 | 0.6840 | | 0.0237 | 10.0 | 2000 | 1.7240 | 0.735 | 0.6960 | 0.6924 | 0.6940 | | 0.018 | 11.0 | 2200 | 1.7230 | 0.745 | 0.7105 | 0.7003 | 0.7026 | | 0.0096 | 12.0 | 2400 | 1.7812 | 0.75 | 0.7225 | 0.7142 | 0.7158 | | 0.006 | 13.0 | 2600 | 1.8223 | 0.75 | 0.7265 | 0.7082 | 0.7147 | | 0.0033 | 14.0 | 2800 | 1.9872 | 0.76 | 0.7434 | 0.7107 | 0.7188 | | 0.003 | 15.0 | 3000 | 1.8818 | 0.72 | 0.6778 | 0.6766 | 0.6765 | | 0.0027 | 16.0 | 3200 | 1.9816 | 0.75 | 0.7125 | 0.6990 | 0.7043 | | 0.002 | 17.0 | 3400 | 1.9268 | 0.725 | 0.6832 | 0.6834 | 0.6825 | | 0.0023 | 18.0 | 3600 | 1.9456 | 0.73 | 0.6913 | 0.6898 | 0.6898 | | 0.0025 | 19.0 | 3800 | 1.9543 | 0.72 | 0.6790 | 0.6770 | 0.6766 | | 0.0016 | 20.0 | 4000 | 1.9565 | 0.72 | 0.6790 | 0.6770 | 0.6766 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Tokenizers 0.13.2
SkyR/hing-mbert-ours-run-2
SkyR
2023-12-20T18:55:25Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:l3cube-pune/hing-mbert", "base_model:finetune:l3cube-pune/hing-mbert", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-13T19:00:29Z
--- license: cc-by-4.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 base_model: l3cube-pune/hing-mbert model-index: - name: hing-mbert-ours-run-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hing-mbert-ours-run-2 This model is a fine-tuned version of [l3cube-pune/hing-mbert](https://huggingface.co/l3cube-pune/hing-mbert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.3919 - Accuracy: 0.62 - Precision: 0.5759 - Recall: 0.5631 - F1: 0.5669 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.0284 | 1.0 | 100 | 1.2914 | 0.595 | 0.5712 | 0.4800 | 0.4642 | | 0.8127 | 2.0 | 200 | 0.8552 | 0.59 | 0.5744 | 0.5675 | 0.4891 | | 0.5499 | 3.0 | 300 | 1.1212 | 0.645 | 0.6544 | 0.5600 | 0.5475 | | 0.3433 | 4.0 | 400 | 1.2017 | 0.605 | 0.5872 | 0.5866 | 0.5791 | | 0.2218 | 5.0 | 500 | 1.8329 | 0.655 | 0.6458 | 0.6064 | 0.6055 | | 0.1763 | 6.0 | 600 | 2.4194 | 0.655 | 0.6140 | 0.5802 | 0.5871 | | 0.1022 | 7.0 | 700 | 2.3894 | 0.66 | 0.6171 | 0.6045 | 0.6048 | | 0.0631 | 8.0 | 800 | 2.8259 | 0.605 | 0.5704 | 0.5255 | 0.5259 | | 0.0254 | 9.0 | 900 | 2.9135 | 0.65 | 0.6013 | 0.5734 | 0.5784 | | 0.0316 | 10.0 | 1000 | 3.0548 | 0.62 | 0.5862 | 0.5650 | 0.5670 | | 0.026 | 11.0 | 1100 | 3.1020 | 0.62 | 0.5722 | 0.5593 | 0.5619 | | 0.0152 | 12.0 | 1200 | 3.0692 | 0.62 | 0.5685 | 0.5597 | 0.5621 | | 0.0156 | 13.0 | 1300 | 3.1068 | 0.615 | 0.5771 | 0.5589 | 0.5624 | | 0.0237 | 14.0 | 1400 | 3.3487 | 0.62 | 0.5924 | 0.5589 | 0.5642 | | 0.0094 | 15.0 | 1500 | 3.2007 | 0.615 | 0.5665 | 0.5639 | 0.5650 | | 0.0054 | 16.0 | 1600 | 3.2838 | 0.62 | 0.5807 | 0.5657 | 0.5690 | | 0.005 | 17.0 | 1700 | 3.2258 | 0.615 | 0.5846 | 0.5723 | 0.5747 | | 0.005 | 18.0 | 1800 | 3.3572 | 0.63 | 0.5827 | 0.5698 | 0.5736 | | 0.0022 | 19.0 | 1900 | 3.3642 | 0.62 | 0.5759 | 0.5631 | 0.5669 | | 0.0019 | 20.0 | 2000 | 3.3919 | 0.62 | 0.5759 | 0.5631 | 0.5669 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Tokenizers 0.13.2
SkyR/hing-mbert-ours-run-3
SkyR
2023-12-20T18:54:51Z
3
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:l3cube-pune/hing-mbert", "base_model:finetune:l3cube-pune/hing-mbert", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-13T19:30:40Z
--- license: cc-by-4.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 base_model: l3cube-pune/hing-mbert model-index: - name: hing-mbert-ours-run-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hing-mbert-ours-run-3 This model is a fine-tuned version of [l3cube-pune/hing-mbert](https://huggingface.co/l3cube-pune/hing-mbert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.9769 - Accuracy: 0.675 - Precision: 0.6433 - Recall: 0.6344 - F1: 0.6344 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.9089 | 1.0 | 100 | 1.0993 | 0.635 | 0.6487 | 0.5304 | 0.5060 | | 0.6657 | 2.0 | 200 | 0.8138 | 0.645 | 0.6550 | 0.6482 | 0.6234 | | 0.3858 | 3.0 | 300 | 1.1334 | 0.665 | 0.6162 | 0.6061 | 0.5995 | | 0.208 | 4.0 | 400 | 1.9041 | 0.685 | 0.6488 | 0.6169 | 0.6087 | | 0.0996 | 5.0 | 500 | 2.3735 | 0.645 | 0.5867 | 0.5781 | 0.5794 | | 0.0296 | 6.0 | 600 | 2.5772 | 0.665 | 0.6284 | 0.6208 | 0.6198 | | 0.0623 | 7.0 | 700 | 2.8906 | 0.655 | 0.6040 | 0.5916 | 0.5926 | | 0.0395 | 8.0 | 800 | 2.6567 | 0.675 | 0.6279 | 0.6254 | 0.6219 | | 0.029 | 9.0 | 900 | 2.9277 | 0.655 | 0.6208 | 0.5950 | 0.5991 | | 0.0194 | 10.0 | 1000 | 2.7362 | 0.665 | 0.6241 | 0.6208 | 0.6190 | | 0.0092 | 11.0 | 1100 | 2.5561 | 0.68 | 0.6396 | 0.6401 | 0.6385 | | 0.0059 | 12.0 | 1200 | 3.1112 | 0.675 | 0.6350 | 0.5967 | 0.6042 | | 0.0133 | 13.0 | 1300 | 2.5269 | 0.685 | 0.6520 | 0.6607 | 0.6519 | | 0.0051 | 14.0 | 1400 | 2.8736 | 0.68 | 0.6381 | 0.6158 | 0.6134 | | 0.0044 | 15.0 | 1500 | 2.9132 | 0.675 | 0.6336 | 0.6180 | 0.6200 | | 0.0029 | 16.0 | 1600 | 2.8701 | 0.675 | 0.6337 | 0.6214 | 0.6233 | | 0.0015 | 17.0 | 1700 | 2.8115 | 0.69 | 0.6475 | 0.6388 | 0.6420 | | 0.0019 | 18.0 | 1800 | 2.9517 | 0.67 | 0.6373 | 0.6276 | 0.6273 | | 0.0013 | 19.0 | 1900 | 2.9633 | 0.67 | 0.6373 | 0.6276 | 0.6273 | | 0.0007 | 20.0 | 2000 | 2.9769 | 0.675 | 0.6433 | 0.6344 | 0.6344 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Tokenizers 0.13.2
SkyR/hing-mbert-ours-run-4
SkyR
2023-12-20T18:54:40Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:l3cube-pune/hing-mbert", "base_model:finetune:l3cube-pune/hing-mbert", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-13T20:00:21Z
--- license: cc-by-4.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 base_model: l3cube-pune/hing-mbert model-index: - name: hing-mbert-ours-run-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hing-mbert-ours-run-4 This model is a fine-tuned version of [l3cube-pune/hing-mbert](https://huggingface.co/l3cube-pune/hing-mbert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.0173 - Accuracy: 0.68 - Precision: 0.6330 - Recall: 0.6325 - F1: 0.6320 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.9781 | 1.0 | 100 | 0.8852 | 0.55 | 0.4044 | 0.5284 | 0.4211 | | 0.7568 | 2.0 | 200 | 0.8110 | 0.655 | 0.5994 | 0.6013 | 0.5762 | | 0.5121 | 3.0 | 300 | 0.9735 | 0.65 | 0.6145 | 0.6131 | 0.5965 | | 0.314 | 4.0 | 400 | 1.1324 | 0.65 | 0.6305 | 0.6355 | 0.6266 | | 0.1298 | 5.0 | 500 | 2.8247 | 0.61 | 0.5804 | 0.5087 | 0.5092 | | 0.1013 | 6.0 | 600 | 2.8183 | 0.635 | 0.6212 | 0.5674 | 0.5667 | | 0.0989 | 7.0 | 700 | 2.3235 | 0.635 | 0.5944 | 0.5922 | 0.5916 | | 0.0481 | 8.0 | 800 | 2.5240 | 0.68 | 0.6334 | 0.6172 | 0.6221 | | 0.018 | 9.0 | 900 | 2.6782 | 0.65 | 0.6123 | 0.6054 | 0.6062 | | 0.0285 | 10.0 | 1000 | 2.3400 | 0.67 | 0.6206 | 0.6327 | 0.6189 | | 0.014 | 11.0 | 1100 | 2.6558 | 0.66 | 0.6098 | 0.5992 | 0.6018 | | 0.0085 | 12.0 | 1200 | 2.9366 | 0.66 | 0.6076 | 0.5961 | 0.5991 | | 0.0106 | 13.0 | 1300 | 2.8567 | 0.665 | 0.6198 | 0.6193 | 0.6186 | | 0.0097 | 14.0 | 1400 | 3.1526 | 0.64 | 0.6089 | 0.5975 | 0.5954 | | 0.0022 | 15.0 | 1500 | 2.7305 | 0.69 | 0.6404 | 0.6404 | 0.6398 | | 0.0016 | 16.0 | 1600 | 2.7670 | 0.69 | 0.6418 | 0.6434 | 0.6425 | | 0.0017 | 17.0 | 1700 | 2.8193 | 0.7 | 0.6533 | 0.6566 | 0.6546 | | 0.0009 | 18.0 | 1800 | 2.9959 | 0.685 | 0.6400 | 0.6389 | 0.6384 | | 0.0006 | 19.0 | 1900 | 3.0153 | 0.68 | 0.6330 | 0.6325 | 0.6320 | | 0.0005 | 20.0 | 2000 | 3.0173 | 0.68 | 0.6330 | 0.6325 | 0.6320 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Tokenizers 0.13.2
SetFit/deberta-v3-large__sst2__train-16-9
SetFit
2023-12-20T18:42:21Z
16
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "base_model:microsoft/deberta-v3-large", "base_model:finetune:microsoft/deberta-v3-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy base_model: microsoft/deberta-v3-large model-index: - name: deberta-v3-large__sst2__train-16-9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-16-9 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2598 - Accuracy: 0.7809 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6887 | 1.0 | 7 | 0.7452 | 0.2857 | | 0.6889 | 2.0 | 14 | 0.7988 | 0.2857 | | 0.6501 | 3.0 | 21 | 0.8987 | 0.2857 | | 0.4286 | 4.0 | 28 | 0.9186 | 0.4286 | | 0.3591 | 5.0 | 35 | 0.5566 | 0.7143 | | 0.0339 | 6.0 | 42 | 1.1130 | 0.5714 | | 0.013 | 7.0 | 49 | 1.8296 | 0.7143 | | 0.0041 | 8.0 | 56 | 1.7069 | 0.7143 | | 0.0023 | 9.0 | 63 | 1.1942 | 0.7143 | | 0.0022 | 10.0 | 70 | 0.6054 | 0.7143 | | 0.0011 | 11.0 | 77 | 0.3872 | 0.7143 | | 0.0006 | 12.0 | 84 | 0.3217 | 0.7143 | | 0.0005 | 13.0 | 91 | 0.2879 | 0.8571 | | 0.0005 | 14.0 | 98 | 0.2640 | 0.8571 | | 0.0004 | 15.0 | 105 | 0.2531 | 0.8571 | | 0.0003 | 16.0 | 112 | 0.2384 | 0.8571 | | 0.0004 | 17.0 | 119 | 0.2338 | 0.8571 | | 0.0003 | 18.0 | 126 | 0.2314 | 0.8571 | | 0.0003 | 19.0 | 133 | 0.2276 | 0.8571 | | 0.0003 | 20.0 | 140 | 0.2172 | 0.8571 | | 0.0003 | 21.0 | 147 | 0.2069 | 0.8571 | | 0.0002 | 22.0 | 154 | 0.2018 | 0.8571 | | 0.0002 | 23.0 | 161 | 0.2005 | 0.8571 | | 0.0002 | 24.0 | 168 | 0.1985 | 0.8571 | | 0.0002 | 25.0 | 175 | 0.1985 | 1.0 | | 0.0002 | 26.0 | 182 | 0.1955 | 1.0 | | 0.0002 | 27.0 | 189 | 0.1967 | 1.0 | | 0.0002 | 28.0 | 196 | 0.1918 | 1.0 | | 0.0002 | 29.0 | 203 | 0.1888 | 1.0 | | 0.0002 | 30.0 | 210 | 0.1864 | 1.0 | | 0.0002 | 31.0 | 217 | 0.1870 | 1.0 | | 0.0002 | 32.0 | 224 | 0.1892 | 1.0 | | 0.0002 | 33.0 | 231 | 0.1917 | 1.0 | | 0.0002 | 34.0 | 238 | 0.1869 | 1.0 | | 0.0002 | 35.0 | 245 | 0.1812 | 1.0 | | 0.0001 | 36.0 | 252 | 0.1777 | 1.0 | | 0.0002 | 37.0 | 259 | 0.1798 | 1.0 | | 0.0002 | 38.0 | 266 | 0.1824 | 0.8571 | | 0.0002 | 39.0 | 273 | 0.1846 | 0.8571 | | 0.0002 | 40.0 | 280 | 0.1839 | 0.8571 | | 0.0001 | 41.0 | 287 | 0.1826 | 0.8571 | | 0.0001 | 42.0 | 294 | 0.1779 | 0.8571 | | 0.0002 | 43.0 | 301 | 0.1762 | 0.8571 | | 0.0001 | 44.0 | 308 | 0.1742 | 1.0 | | 0.0002 | 45.0 | 315 | 0.1708 | 1.0 | | 0.0001 | 46.0 | 322 | 0.1702 | 1.0 | | 0.0001 | 47.0 | 329 | 0.1699 | 1.0 | | 0.0001 | 48.0 | 336 | 0.1695 | 1.0 | | 0.0001 | 49.0 | 343 | 0.1683 | 1.0 | | 0.0001 | 50.0 | 350 | 0.1681 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/deberta-v3-large__sst2__train-16-4
SetFit
2023-12-20T18:42:15Z
7
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "base_model:microsoft/deberta-v3-large", "base_model:finetune:microsoft/deberta-v3-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy base_model: microsoft/deberta-v3-large model-index: - name: deberta-v3-large__sst2__train-16-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-16-4 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6329 - Accuracy: 0.6392 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6945 | 1.0 | 7 | 0.7381 | 0.2857 | | 0.7072 | 2.0 | 14 | 0.7465 | 0.2857 | | 0.6548 | 3.0 | 21 | 0.7277 | 0.4286 | | 0.5695 | 4.0 | 28 | 0.6738 | 0.5714 | | 0.4615 | 5.0 | 35 | 0.8559 | 0.5714 | | 0.0823 | 6.0 | 42 | 1.0983 | 0.5714 | | 0.0274 | 7.0 | 49 | 1.9937 | 0.5714 | | 0.0106 | 8.0 | 56 | 2.2209 | 0.5714 | | 0.0039 | 9.0 | 63 | 2.2114 | 0.5714 | | 0.0031 | 10.0 | 70 | 2.2808 | 0.5714 | | 0.0013 | 11.0 | 77 | 2.3707 | 0.5714 | | 0.0008 | 12.0 | 84 | 2.4902 | 0.5714 | | 0.0005 | 13.0 | 91 | 2.5208 | 0.5714 | | 0.0007 | 14.0 | 98 | 2.5683 | 0.5714 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/deberta-v3-large__sst2__train-16-2
SetFit
2023-12-20T18:42:11Z
9
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "base_model:microsoft/deberta-v3-large", "base_model:finetune:microsoft/deberta-v3-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy base_model: microsoft/deberta-v3-large model-index: - name: deberta-v3-large__sst2__train-16-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-16-2 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6959 - Accuracy: 0.5008 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7079 | 1.0 | 7 | 0.7361 | 0.2857 | | 0.6815 | 2.0 | 14 | 0.7659 | 0.2857 | | 0.6938 | 3.0 | 21 | 0.7944 | 0.2857 | | 0.4584 | 4.0 | 28 | 1.2441 | 0.2857 | | 0.4949 | 5.0 | 35 | 1.2285 | 0.5714 | | 0.0574 | 6.0 | 42 | 1.7796 | 0.5714 | | 0.0156 | 7.0 | 49 | 2.6027 | 0.5714 | | 0.0051 | 8.0 | 56 | 2.8717 | 0.5714 | | 0.0017 | 9.0 | 63 | 2.8491 | 0.5714 | | 0.0023 | 10.0 | 70 | 1.7149 | 0.7143 | | 0.001 | 11.0 | 77 | 1.1101 | 0.7143 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/deberta-v3-large__sst2__train-16-1
SetFit
2023-12-20T18:42:08Z
7
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "base_model:microsoft/deberta-v3-large", "base_model:finetune:microsoft/deberta-v3-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy base_model: microsoft/deberta-v3-large model-index: - name: deberta-v3-large__sst2__train-16-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-16-1 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6804 - Accuracy: 0.5497 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7086 | 1.0 | 7 | 0.7176 | 0.2857 | | 0.6897 | 2.0 | 14 | 0.7057 | 0.2857 | | 0.6491 | 3.0 | 21 | 0.6582 | 0.8571 | | 0.567 | 4.0 | 28 | 0.4480 | 0.8571 | | 0.4304 | 5.0 | 35 | 0.5465 | 0.7143 | | 0.0684 | 6.0 | 42 | 0.5408 | 0.8571 | | 0.0339 | 7.0 | 49 | 0.6501 | 0.8571 | | 0.0082 | 8.0 | 56 | 0.9152 | 0.8571 | | 0.0067 | 9.0 | 63 | 2.5162 | 0.5714 | | 0.0045 | 10.0 | 70 | 1.1136 | 0.8571 | | 0.0012 | 11.0 | 77 | 1.1668 | 0.8571 | | 0.0007 | 12.0 | 84 | 1.2071 | 0.8571 | | 0.0005 | 13.0 | 91 | 1.2310 | 0.8571 | | 0.0006 | 14.0 | 98 | 1.2476 | 0.8571 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
SetFit/distilbert-base-uncased__sst2__all-train
SetFit
2023-12-20T18:42:01Z
11
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy base_model: distilbert-base-uncased model-index: - name: distilbert-base-uncased__sst2__all-train results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__all-train This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2496 - Accuracy: 0.8962 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3643 | 1.0 | 433 | 0.2496 | 0.8962 | | 0.196 | 2.0 | 866 | 0.2548 | 0.9110 | | 0.0915 | 3.0 | 1299 | 0.4483 | 0.8957 | | 0.0505 | 4.0 | 1732 | 0.4968 | 0.9044 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
SetFit/deberta-v3-large__sst2__train-16-7
SetFit
2023-12-20T18:41:56Z
5
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "base_model:microsoft/deberta-v3-large", "base_model:finetune:microsoft/deberta-v3-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy base_model: microsoft/deberta-v3-large model-index: - name: deberta-v3-large__sst2__train-16-7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-16-7 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6953 - Accuracy: 0.5063 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6911 | 1.0 | 7 | 0.7455 | 0.2857 | | 0.6844 | 2.0 | 14 | 0.7242 | 0.2857 | | 0.6137 | 3.0 | 21 | 0.7341 | 0.4286 | | 0.3805 | 4.0 | 28 | 1.0217 | 0.4286 | | 0.2201 | 5.0 | 35 | 1.1437 | 0.2857 | | 0.0296 | 6.0 | 42 | 1.5997 | 0.4286 | | 0.0103 | 7.0 | 49 | 2.6835 | 0.4286 | | 0.0046 | 8.0 | 56 | 3.3521 | 0.4286 | | 0.002 | 9.0 | 63 | 3.7846 | 0.4286 | | 0.0017 | 10.0 | 70 | 4.0088 | 0.4286 | | 0.0018 | 11.0 | 77 | 4.1483 | 0.4286 | | 0.0006 | 12.0 | 84 | 4.2235 | 0.4286 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
abdulmatinomotoso/distilroberta-topic-classification_5
abdulmatinomotoso
2023-12-20T18:33:12Z
13
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:distilbert/distilroberta-base", "base_model:finetune:distilbert/distilroberta-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-20T11:00:30Z
--- license: apache-2.0 base_model: distilroberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: distilroberta-topic-classification_5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-topic-classification_5 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7686 - F1: 0.6337 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 12345 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 16 - num_epochs: 10 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.2 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.6113 | 1.0 | 1305 | 2.6631 | 0.5832 | | 2.4032 | 2.0 | 2610 | 2.6335 | 0.5943 | | 2.3245 | 3.0 | 3915 | 2.6132 | 0.6196 | | 2.2142 | 4.0 | 5220 | 2.6438 | 0.6226 | | 2.0364 | 5.0 | 6525 | 2.6559 | 0.6323 | | 2.03 | 6.0 | 7830 | 2.7057 | 0.6282 | | 1.9461 | 7.0 | 9135 | 2.7222 | 0.6325 | | 1.8751 | 8.0 | 10440 | 2.7435 | 0.6302 | | 1.8463 | 9.0 | 11745 | 2.7668 | 0.6329 | | 1.9001 | 10.0 | 13050 | 2.7686 | 0.6337 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
chathuru/cicids2018-distilbert
chathuru
2023-12-20T18:27:14Z
10
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-02T13:38:36Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: cicids2018-distilbert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cicids2018-distilbert This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3903 - Accuracy: 1.0 - F1: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 6 | 0.4998 | 0.9167 | 0.9231 | | No log | 2.0 | 12 | 0.3903 | 1.0 | 1.0 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
ryli/distilbert-base-uncased-finetuned-emotion
ryli
2023-12-20T18:23:13Z
11
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-20T17:00:22Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.936 - name: F1 type: f1 value: 0.9358567652903533 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1542 - Accuracy: 0.936 - F1: 0.9359 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.1707 | 1.0 | 250 | 0.1707 | 0.9335 | 0.9340 | | 0.1126 | 2.0 | 500 | 0.1542 | 0.936 | 0.9359 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
olesya2096/llama2-7b_results
olesya2096
2023-12-20T18:22:58Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:adapter:meta-llama/Llama-2-7b-chat-hf", "region:us" ]
null
2023-12-20T18:22:31Z
--- library_name: peft tags: - generated_from_trainer base_model: meta-llama/Llama-2-7b-chat-hf model-index: - name: llama2-7b_results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama2-7b_results This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1 ### Training results ### Framework versions - PEFT 0.7.2.dev0 - Transformers 4.36.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0
juosilva/llama2-qlora-finetunined-french
juosilva
2023-12-20T18:18:42Z
2
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:TinyPixel/Llama-2-7B-bf16-sharded", "base_model:adapter:TinyPixel/Llama-2-7B-bf16-sharded", "region:us" ]
null
2023-12-20T18:18:35Z
--- library_name: peft base_model: TinyPixel/Llama-2-7B-bf16-sharded --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
hkivancoral/smids_10x_deit_base_adamax_0001_fold5
hkivancoral
2023-12-20T18:12:16Z
10
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-base-patch16-224", "base_model:finetune:facebook/deit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-20T15:37:37Z
--- license: apache-2.0 base_model: facebook/deit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_10x_deit_base_adamax_0001_fold5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.92 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_10x_deit_base_adamax_0001_fold5 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8747 - Accuracy: 0.92 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1226 | 1.0 | 750 | 0.2826 | 0.89 | | 0.1 | 2.0 | 1500 | 0.3891 | 0.9017 | | 0.0601 | 3.0 | 2250 | 0.4750 | 0.9133 | | 0.0263 | 4.0 | 3000 | 0.4903 | 0.9117 | | 0.0141 | 5.0 | 3750 | 0.6938 | 0.905 | | 0.0263 | 6.0 | 4500 | 0.7445 | 0.895 | | 0.0152 | 7.0 | 5250 | 0.5895 | 0.92 | | 0.0017 | 8.0 | 6000 | 0.6688 | 0.92 | | 0.0043 | 9.0 | 6750 | 0.6499 | 0.9167 | | 0.0 | 10.0 | 7500 | 0.7976 | 0.91 | | 0.011 | 11.0 | 8250 | 0.6899 | 0.9183 | | 0.0 | 12.0 | 9000 | 0.6947 | 0.905 | | 0.0 | 13.0 | 9750 | 0.8213 | 0.9067 | | 0.0 | 14.0 | 10500 | 0.6853 | 0.9217 | | 0.0 | 15.0 | 11250 | 0.8220 | 0.9117 | | 0.0 | 16.0 | 12000 | 0.6897 | 0.9217 | | 0.0038 | 17.0 | 12750 | 0.7869 | 0.9167 | | 0.0004 | 18.0 | 13500 | 0.7956 | 0.9233 | | 0.0031 | 19.0 | 14250 | 0.8745 | 0.9067 | | 0.0 | 20.0 | 15000 | 0.7439 | 0.92 | | 0.0 | 21.0 | 15750 | 0.7389 | 0.9233 | | 0.0 | 22.0 | 16500 | 0.7135 | 0.925 | | 0.0028 | 23.0 | 17250 | 0.7301 | 0.925 | | 0.0 | 24.0 | 18000 | 0.7434 | 0.9283 | | 0.0 | 25.0 | 18750 | 0.7538 | 0.9233 | | 0.0 | 26.0 | 19500 | 0.7620 | 0.9233 | | 0.0 | 27.0 | 20250 | 0.7318 | 0.9233 | | 0.0 | 28.0 | 21000 | 0.7471 | 0.92 | | 0.0 | 29.0 | 21750 | 0.7685 | 0.9183 | | 0.0046 | 30.0 | 22500 | 0.8050 | 0.92 | | 0.0 | 31.0 | 23250 | 0.7778 | 0.92 | | 0.0 | 32.0 | 24000 | 0.7888 | 0.9217 | | 0.0 | 33.0 | 24750 | 0.7725 | 0.9233 | | 0.0 | 34.0 | 25500 | 0.8185 | 0.9167 | | 0.0 | 35.0 | 26250 | 0.8187 | 0.92 | | 0.0 | 36.0 | 27000 | 0.8276 | 0.92 | | 0.0031 | 37.0 | 27750 | 0.8218 | 0.9217 | | 0.0 | 38.0 | 28500 | 0.8408 | 0.92 | | 0.0 | 39.0 | 29250 | 0.8462 | 0.9183 | | 0.0 | 40.0 | 30000 | 0.8525 | 0.92 | | 0.0 | 41.0 | 30750 | 0.8553 | 0.92 | | 0.0 | 42.0 | 31500 | 0.8584 | 0.92 | | 0.0 | 43.0 | 32250 | 0.8634 | 0.9183 | | 0.0 | 44.0 | 33000 | 0.8639 | 0.92 | | 0.0 | 45.0 | 33750 | 0.8671 | 0.92 | | 0.0 | 46.0 | 34500 | 0.8704 | 0.92 | | 0.0 | 47.0 | 35250 | 0.8722 | 0.92 | | 0.0 | 48.0 | 36000 | 0.8729 | 0.92 | | 0.0 | 49.0 | 36750 | 0.8728 | 0.92 | | 0.0 | 50.0 | 37500 | 0.8747 | 0.92 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
augmxnt/shisa-7b-v1
augmxnt
2023-12-20T18:11:13Z
1,526
29
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "ja", "en", "dataset:augmxnt/ultra-orca-boros-en-ja-v1", "dataset:Open-Orca/SlimOrca", "dataset:augmxnt/shisa-en-ja-dpo-v1", "arxiv:2310.05914", "arxiv:2305.18290", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-11-27T17:55:31Z
--- license: apache-2.0 language: - ja - en datasets: - augmxnt/ultra-orca-boros-en-ja-v1 - Open-Orca/SlimOrca - augmxnt/shisa-en-ja-dpo-v1 --- # Shisa 7B ![Shi-chan and Sa-chan/シーちゃんとサーちゃん](https://huggingface.co/augmxnt/shisa-7b-v1/resolve/main/shisa.webp) **Shisa 7B** (`shisa-7b-v1`) is a bilingual Japanese and English (JA/EN) general-purpose chat model that aims to achieve strong Japanese language performance while retaining robust English capabilities, using a synthetic-data driven approach. This model is based on [Mistral 7B](https://huggingface.co/mistralai/Mistral-7B-v0.1) with a custom JA-optimized extended tokenizer that is >2X more efficient in Japanese than Mistral's original tokenizer. The base model was pre-trained for an additional 8B primarily Japanese tokens. It was then subsequently fine-tuned with an expanded, machine-translated version of [airoboros-3.1](https://huggingface.co/datasets/jondurbin/airoboros-3.1), a set of the highest-scoring items from [ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized), and additional freshly generated [airoboros](https://github.com/jondurbin/airoboros) data directly to the target languages. We also release our base model, datasets, and pipeline code under a permissive Apache 2.0 license which can be used for any purpose, commercial or otherwise: * [shisa-base-7b-v1](https://huggingface.co/augmxnt/shisa-base-7b-v1) - our base model w/ an extended tokenizer and additional JA pre-training * [shisa-pretrain-en-ja-v1](https://huggingface.co/datasets/augmxnt/shisa-pretrain-en-ja-v1) - our pre-training data set * [ultra-orca-boros-en-ja](https://huggingface.co/datasets/augmxnt/ultra-orca-boros-en-ja-v1) - a synthetically generated, machine-translated, programmatically validated JA/EN fine-tuning dataset * [shisa-en-ja-dpo-v1](https://huggingface.co/datasets/augmxnt/shisa-en-ja-dpo-v1) - Small subset of DPO pairs from ultrafeedback, along with JA DPO pairs using GPT-4 generated items as the chosen value, and outputs from our preliminary 7b model as the rejected values * [Shisa repository](https://github.com/AUGMXNT/shisa) - this includes our translation, dataset generation, training, and evaluation code Moreover, we are in the process of publishing extended writeups and more details of our process, including ablation results, testing methodology, and key findings [on our project wiki](https://github.com/AUGMXNT/shisa/wiki) that may be of interest to fellow researchers. ## Fine-Tuning Our original intuition was to see if we could create a stronger Japanese model using the best [existing public JA training sets](https://github.com/AUGMXNT/shisa/wiki/A-Review-of-Public-Japanese-Training-Sets) and incorporating them. After initial review and testing, however, we decided that focusing solely on translation/generation of our own synthetic datasets could yield superior results with less training. We compared multiple translation tools and, via manual review, judged that while `gpt-4` almost always delivered the highest quality translations, Google's `text-bison-32k` was a good balance of quality, cost and throughput. Over various iterations, we refined our translation approach to include some additional algorithms for flagging and filtering invalid translations, re-translating and backfilling as necessary. We also took this project as an opportunity to apply some newer techniques such as incorporating [NEFTune](https://arxiv.org/abs/2310.05914) and [DPO](https://arxiv.org/abs/2305.18290) training. For our v1 release, we picked from our release candidates based on a significant amount of human preference testing (thousands of generations and multiple rounds of pairwise comparisons). We analyzed our results with both win/loss/draw and [BTL modeling](https://datascience.oneoffcoder.com/btl-model.html) (iLSR) using [choix](https://github.com/lucasmaystre/choix)). The best candidate model was fine-tuned in a 3-step process: 1. First, the model was fine-tuned on `ultra-orca-boros-en-ja` and SlimOrca ([WandB Log](https://wandb.ai/jondurbin/shisa-7b-v1/runs/k8pfog9d/overview)) 2. Next, we add one additional epoch at performed using only a subset of Japanese ultra-orca-boros-en-ja items to enhance JA performance (as SlimOrca from the first step is mostly EN) ([WandB Log](https://wandb.ai/jondurbin/shisa-mega-7b-v1.1/runs/dopsr0o7/overview)) 3. Finally, the model was tuned using a DPOTrainer on a small subset of ultrafeedback (EN) and our own JA DPO dataset which uses gpt-4 outputs as the chosen values and outputs from stage 1's prelim model as rejected values. ([WandDB Log](https://wandb.ai/jondurbin/shisa-mega-dpo-7b-v1.1) ) During our training process, we also gained some key insights on [why some existing Japanese models seem to underperform](https://github.com/AUGMXNT/shisa/wiki/A-Review-of-Public-Japanese-Training-Sets#analysis) even versus models that have no additional JA training, and we hope that sharing this analysis will be useful to other teams developing Japanese language models. While we need to explore this further, as an experimental validation, we applied a version of our fine-tuning set onto an existing base model ("Gamma 7B") and the initial JA MT-Bench results suggests that we can drastically increase functional performance with our tuning approach: | Model | Score | | ------------------------------ | ----- | | shisa-gamma-7b-allsources-v0.4 | 5.65 | | ja-stablelm-instruct-gamma-7b* | 4.01 | ## Performance Throughout our training, we did extensive human evaluation for each model to cross-validate our model performance, and we are currently conducting ongoing larger scale manual head-to-head testing between models. Our intention is open up and scale this data collection as we further develop our tools. For more information and updates, please see our [project wiki](https://github.com/AUGMXNT/shisa/wiki). While we believe [llm-jp-eval](https://github.com/llm-jp/llm-jp-eval) is a useful metric for our [base model](https://huggingface.co/augmxnt/shisa-base-7b-v1), and it was extremely useful during our tuning process for initial validations, as our fine-tune training includes a percentage of the benchmark train splits, we provide these llm-jp-eval results primarily as a point of interest: | AVR | MC | NLI | QA | RC | |-------|-------|-------|-------|-------| | 0.7480| 0.8900| 0.8040| 0.4153| 0.8825| *(We run a [slightly modified llm-jp-eval](https://github.com/llm-jp/llm-jp-eval/compare/main...AUGMXNT:llm-jp-eval:main) to support testing of Qwen and to emit a `bos_token` if available)* For our final model, since it's customary to include benchmarks, we've used Stability AI Japan's [Japanese MT-Bench](https://github.com/Stability-AI/FastChat) as a more representative test of our model's capabilities. For [our JA MT-Bench testing](https://github.com/Stability-AI/FastChat/compare/jp-stable...AUGMXNT:FastChat:jp-stable) we use a Japanese prompt ("あなたは役立つアシスタントです。") as well as `--num-choices 4` in an effort to reduce sampling variability, however we've still observed regular 0.5+ point (and sometimes even greater swings) between generations, as well as issues with default prompts and parameters when testing, so again, we'd urge caution in over-interpreting these scores and treating them as more of a probabilistic directional indicator, rather than a definitive score or ranking: | Benchmark | Score | | ----------- | ----- | | JA MT-Bench | 5.23 | | MT-Bench | 5.71 | There is an [MT-Bench Leaderboard](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard), but as JA MT-Bench is still under development, for convenience, here is a comparison of the JA MT-Bench scores of some other models (our scores were rated by `gpt-4-0613`): | Model | Score | | ------------------------------------------------- | ---- | | gpt-4-0613 | 9.40 | | gpt-4-1106-preview | 9.17 | | gpt-3.5-turbo* | 8.41 | | Qwen-14B-Chat | 7.47 | | **shisa-7b-v1** | **5.23** | | ELYZA-japanese-Llama-2-7b-fast-instruct* | 4.86 | | ja-stablelm-instruct-gamma-7b* | 4.01 | | japanese-stablelm-instruct-alpha-7b* | 2.74 | | Mistral-7B-OpenOrca-ja* | 2.23 | | youri-7b-chat* | 2.00 | | Mistral-7B-Instruct-v0.1* | 1.78 | | llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0* | 1.31 | *(Marked JA MT-Bench results in this section are [sourced from shi3z](https://note.com/shi3zblog/n/n6b2ac5874021))* ## Limitations Although our model demonstrates a reasonably high level of Japanese fluency, as a 7B parameter model, it is prone to higher hallucination rates and less effective instruction following and reasoning than larger-class models. Also, it still does not have complete mastery of the Japanese language and a native speaker will spot occasional mistakes like some non-idiomatic/awkward phrasing, improper tenses/speech levels, etc. We've also noticed a small amount of language leakage, likely largely attributable to our tokenizer expansion. These may be fixable with sampler settings like [Min P](https://www.reddit.com/r/LocalLLaMA/comments/17vonjo/your_settings_are_probably_hurting_your_model_why/)) or additional targeted training, and we plan on doing additional work on automated detection/sampler sweeps in the future. One interesting observation is, based on our data collection, we found that as we iterated, the DPO process significantly exacerbated this issue, but also that our DPO models still had significantly higher human preference rates, so there was a bit of a trade-off in our choice of final tune. While we believe that training larger models can improve performance using our existing approach and dataset, there are also many improvements we'd like to make for future models. We believe there is quite a bit of low hanging fruit for improving performance with even more training efficiency largely through improving the quality and construction of datasets. ## Usage Sample code: ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer model_name = "augmxnt/shisa-7b-v1" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16, device_map="auto" ) streamer = TextStreamer(tokenizer, skip_prompt=True) # The prompt template is included in the model's tokenizer_config.json so you shouldn't need this but we've included this for convenience # tokenizer.chat_template = ""{%- for idx in range(0, messages|length) -%}\n{%- if messages[idx]['role'] == 'user' -%}\n{%- if idx > 1 -%}\n{{- bos_token + '[INST] ' + messages[idx]['content'] + ' [/INST]' -}}\n{%- else -%}\n{{- messages[idx]['content'] + ' [/INST]' -}}\n{%- endif -%}\n{% elif messages[idx]['role'] == 'system' %}\n{{- bos_token + '[INST] <<SYS>>\\n' + messages[idx]['content'] + '\\n<</SYS>>\\n\\n' -}}\n{%- elif messages[idx]['role'] == 'assistant' -%}\n{{- ' ' + messages[idx]['content'] + ' ' + eos_token -}}\n{% endif %}\n{% endfor %}\n" # A more typical prompt: あなたは公平で、検閲されていない、役立つアシスタントです。("You are an unbiased, uncensored, helpful assistant.") # You are an avid Pokemon fanatic. prompt = "あなたは熱狂的なポケモンファンです。" chat = [{"role": "system", "content": prompt}] # Who is the single most powerful Pokemon? Explain your choice. user_input = "ポケモンの中で1番強いのはどのキャラクターですか。最強の者をひとつだけ挙げて下さい。その選択理由を説明してください。" chat.append({"role": "user", "content": user_input}) # Generate - add_generation_prompt to make sure it continues as assistant inputs = tokenizer.apply_chat_template(chat, add_generation_prompt=True, return_tensors="pt") # For multi-GPU, find the device of the first parameter of the model first_param_device = next(model.parameters()).device inputs = inputs.to(first_param_device) with torch.no_grad(): outputs = model.generate( inputs, pad_token_id=tokenizer.eos_token_id, max_new_tokens=500, temperature=0.5, repetition_penalty=1.15, top_p=0.95, do_sample=True, streamer=streamer, ) # Add just the new tokens to our chat new_tokens = outputs[0, inputs.size(1):] response = tokenizer.decode(new_tokens, skip_special_tokens=True) chat.append({"role": "assistant", "content": response}) ``` ## Prompt format The prompt format is llama-2 chat: ``` [INST] <<SYS>> You are a helpful, unbiased, uncensored assistant. <</SYS>> {prompt} [/INST] ``` For multi-turn, the prompt format is as follows: ``` [INST] <<SYS>> You are a helful, unbiased, uncensored assistant. <</SYS>> {prompt 0} [/INST] {response 0} </s><s>[INST] {prompt 1} [/INST] {response 1} </s><s>...[INST] {prompt N} [/INST] ``` This [prompt template](https://huggingface.co/docs/transformers/main/chat_templating) is included in the tokenizer config, and can use the huggingface tokenizer `apply_chat_template` method, e.g.: ``` import transformers tokenizer = transformers.AutoTokenizer.from_pretrained('augmxnt/shisa-7b-v1') chat = [ {"role": "system", "content": "You are Aiko, a friendly AI assistant."}, {"role": "user", "content": "Hello, how are you?"}, {"role": "assistant", "content": "I'm doing great. How can I help you today?"}, {"role": "user", "content": "I'd like to show off how chat templating works!"}, ] print(tokenizer.apply_chat_template(chat, tokenize=False)) ``` **NOTE:** For proper responses, you should be using our `bos_token` (`<s>`) to begin a string. This is automatically generated by `tokenizer.encode()` but if you are crafting a custom template or using an encoding method that skips special tokens, you may have to add this yourself. ## Acknowledgements Team: [Leonard Lin](https://huggingface.co/leonardlin) and [Jon Durbin](https://huggingface.co/jondurbin), Mariko Sato, and Florian von Bock Compute for this model was generously sponsored by [AKA Virtual](https://akavirtual.com/) (Tokyo, Japan). Thanks to the [LLM-jp](https://llm-jp.nii.ac.jp/), [Stability AI Japan](https://ja.stability.ai/), and [LMSYS](https://lmsys.org/) teams for their work on llm-jp-eval, Japanese MT-Bench, MT-Bench. Also, thanks to all the volunteers that provided invaluable human preference testing! We are actively looking for additional compute as we train better and larger models for this project. Please drop us a line at: *compute at augmxnt dot com* --- *(GPT-4によって非常に軽微な編集を加えて翻訳されました)* # シーサー7B **シーサー7B**(`shisa-7b-v1`)は、合成データ駆動のアプローチを用いて、優れた日本語と英語能力を両立することを目指すバイリンガル(日本語/英語)汎用チャットモデルです。 このモデルは、[Mistral 7B](https://huggingface.co/mistralai/Mistral-7B-v0.1)を基に、Mistralのオリジナルのトークナイザーよりも日本語において2倍以上効率的な、日本語最適化拡張トークナイザーをカスタムして作成されました。ベースモデルは、主に日本語のトークンを追加で80億ものトレーニングを行いました。そして、その後、[airoboros-3.1](https://huggingface.co/datasets/jondurbin/airoboros-3.1)の拡張された機械翻訳版、[ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)からの最高得点項目のセット、そして新たに生成された[airoboros](https://github.com/jondurbin/airoboros)のデータを直接目標言語で微調整しています。 商用を含むあらゆる目的で使用可能な寛容なApache 2.0ライセンスの下で、ベースモデル、データセット、およびパイプラインコードも公開しています: * [shisa-base-7b-v1](https://huggingface.co/augmxnt/shisa-base-7b-v1) - 拡張トークナイザーと追加の日本語プレトレーニングを備えた当方のベースモデル * [shisa-pretrain-en-ja-v1](https://huggingface.co/datasets/augmxnt/shisa-pretrain-en-ja-v1) - 当方のプレトレーニングデータセット * [ultra-orca-boros-en-ja](https://huggingface.co/datasets/jondurbin/ultra-orca-boros-en-ja) - 合成生成、機械翻訳、プログラムによる検証によるJA/EN微調整データセット * [shisa-en-ja-dpo-v1](https://huggingface.co/datasets/augmxnt/shisa-en-ja-dpo-v1) - ultrafeedbackからのDPOペアの小さなサブセットと、選択された値としてGPT-4生成項目を使用した日本語のDPOペア、そして初期の7ビリオンモデルの出力を却下した値 * [シーサーリポジトリ](https://github.com/AUGMXNT/shisa) - 翻訳、データセットの生成、トレーニング、評価コードなどが含まれています さらに、アブレーション結果、テスト方法論、主要な調査結果など、プロセスの詳細や拡張ライトアップを公開する過程にあります。これは[当プロジェクトwiki](https://github.com/AUGMXNT/shisa/wiki)で研究者に興味深い情報として提供されています。 ## 微調整 最初の直感は、最良の[既存の公開日本語トレーニングセット](https://github.com/AUGMXNT/shisa/wiki/A-Review-of-Public-Japanese-Training-Sets)を使用して、それらを組み入れることでより強力な日本語モデルを作成できるかどうかを見ることでした。しかし、初期の検討とテストの後、自らの合成データセットの翻訳/生成にだけ焦点を当てることで、短期間のトレーニングで優れた結果を得ることができると結論付けました。 私たちは複数の翻訳ツールを比較し、手動でレビューを行った結果、`gpt-4`がほぼ常に最高品質の翻訳を提供しながら、Googleの `text-bison-32k`は品質、コスト、スループットのバランスが良いと判断しました。複数の繰り返しを経て、無効な翻訳のフラグ付けとフィルタリング、必要に応じた再翻訳とバックフィルのための追加のアルゴリズムを含むように、翻訳アプローチを洗練させました。 また、このプロジェクトを[NEFTune](https://arxiv.org/abs/2310.05914)と[DPO](https://arxiv.org/abs/2305.18290)トレーニングを取り入れるなど、新しい技術を適用する機会ともなりました。 v1リリースのために、私たちは大量の人間の嗜好テスト(数千の生成と複数ラウンドのペアワイズ比較)に基づいてリリース候補から選択しました。私たちは、勝ち/負け/引き分けと、[BTLモデル](https://datascience.oneoffcoder.com/btl-model.html)(iLSR)を使用して[choix](https://github.com/lucasmaystre/choix)で結果を分析しました。 最良の候補モデルは、3ステップのプロセスで微調整されました: 1. 最初に、モデルは`ultra-orca-boros-en-ja`とSlimOrca ([WandB Log](https://wandb.ai/jondurbin/shisa-7b-v1/runs/k8pfog9d/overview))で微調整されました。 2. 次に、日本語のパフォーマンスを向上させるためにultra-orca-boros-en-jaの一部を使用して1回追加のエポックを追加しました(最初の段階のSlimOrcaは主に英語)([WandB Log](https://wandb.ai/jondurbin/shisa-mega-7b-v1.1/runs/dopsr0o7/overview))。 3. 最後に、モデルは小規模のultrafeedback(英語)と自身のJA DPOデータセットに対してDPOTrainerを使用して調整されました。ここで使用したJA DPOデータセットはgpt-4の出力を選出された値とし、ステージ1の予備モデルの出力を却下した値とします。([WandDB Log](https://wandb.ai/jondurbin/shisa-mega-dpo-7b-v1.1) ) 私たちのトレーニングプロセス中に、何故一部の既存の日本語モデルが、追加の日本語トレーニングがないモデルに対してもパフォーマンスが低いのか、といういくつかの重要な洞察を得ることができました。この分析結果を共有すれば、他のチームが日本語モデルを開発する際の参考になると思います。 さらに探求する必要はありますが、実験的な検証として、微調整セットのバージョンを既存のベースモデル("Gamma 7B")に適用し、初期のJA MT-Bench結果が示すように、私たちのチューニングアプローチで機能性のパフォーマンスを劇的に向上させることができました: | モデル | スコア | | ------------------------------ | ----- | | shisa-gamma-7b-allsources-v0.4 | 5.65 | | ja-stablelm-instruct-gamma-7b* | 4.01 | ## パフォーマンス トレーニング全体を通じて、各モデルについて人間による評価を行い、モデルのパフォーマンスを相互に検証しました。現在、モデル間の手動での比較テストを大規模に行っています。私たちの目指すところは、ツールをさらに発展させることでこのデータ収集を公開して拡張することです。詳細と更新情報については、[プロジェクトwiki](https://github.com/AUGMXNT/shisa/wiki) をご覧ください。 我々は、[llm-jp-eval](https://github.com/llm-jp/llm-jp-eval)は、私たちの[基本モデル](https://huggingface.co/augmxnt/shisa-base-7b-v1)の有用な指標であり、初期の検証のための微調整プロセス中に非常に役立つと考えていますが、微調整トレーニングにはベンチマークのトレイン分割の一部が含まれているため、私たちが提供するllm-jp-evalの結果は主に興味深いポイントとして提供しています: | AVR | MC | NLI | QA | RC | |-------|-------|-------|-------|-------| | 0.7480| 0.8900| 0.8040| 0.4153| 0.8825| *(Qwenのテストをサポートし、可能であれば`bos_token`を発行するために、[わずかに修正したllm-jp-eval](https://github.com/llm-jp/llm-jp-eval/compare/main...AUGMXNT:llm-jp-eval:main) を実行しています)* 最終モデルについては、ベンチマークを含めるのが一般的なため、私たちのモデルの能力をより代表的にテストするために、Stability AI Japanの[Japanese MT-Bench](https://github.com/Stability-AI/FastChat)を使用しました。[私たちのJA MT-Bench テスト](https://github.com/Stability-AI/FastChat/compare/jp-stable...AUGMXNT:FastChat:jp-stable)では、サンプリング変動を減らすために、日本語のプロンプト("あなたは役立つアシスタントです。")と `--num-choices 4`を使用していますが、生成間で0.5+点(時にはそれ以上の変動)を頻繁に観察し、テスト時のデフォルトのプロンプトとパラメータに問題があったという経験から、これらのスコアを過度に解釈することには注意が必要で、これらを確定的なスコアやランキングではなく、より確率的な方向指標として扱うことをお勧めします: | ベンチマーク | スコア | | ----------- | ----- | | JA MT-Bench | 5.23 | | MT-Bench | 5.71 | [MT-Bench Leaderboard](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard)がありますが、JA MT-Benchはまだ開発中であるため、便宜上、他のモデルのJA MT-Benchスコアとの比較を示します(私たちのスコアは`gpt-4-0613`によって評価されました): | モデル | スコア | | ------------------------------------------------- | ---- | | gpt-4-0613 | 9.40 | | gpt-4-1106-preview | 9.17 | | gpt-3.5-turbo* | 8.41 | | Qwen-14B-Chat | 7.47 | | **shisa-7b-v1** | **5.23** | | ELYZA-japanese-Llama-2-7b-fast-instruct* | 4.86 | | ja-stablelm-instruct-gamma-7b* | 4.01 | | japanese-stablelm-instruct-alpha-7b* | 2.74 | | Mistral-7B-OpenOrca-ja* | 2.23 | | youri-7b-chat* | 2.00 | | Mistral-7B-Instruct-v0.1* | 1.78 | | llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0* | 1.31 | *(このセクションでマークされたJA MT-Benchの結果は[shi3zから引用](https://note.com/shi3zblog/n/n6b2ac5874021)しました)* ## 制限事項 当モデルは十分な日本語の流暢さを示していますが、7Bパラメータのモデルとしては、より大きなクラスのモデルに比べて幻覚率が高く、指示の追跡や推論が効果的でない傾向があります。また、日本語の完全な習得はまだ達しておらず、ネイティブスピーカーはたまに非慣用的/違和感のある表現や不適切な時制/話し言葉のレベルなどの間違いを見つけることがあります。 また、私たちのトークナイザーの拡張に大いに起因する可能性が高いが、わずかな言語リークを確認しています。これらは[Min P](https://www.reddit.com/r/LocalLLaMA/comments/17vonjo/your_settings_are_probably_hurting_your_model_why/)などのサンプラー設定や追加のターゲット指向型トレーニングで修正可能な可能性があり、今後、自動検出/サンプラーのスウィープについて追加の作業を行う予定です。興味深い観察としては、私たちのデータ収集に基づいて、DPOプロセスがこの問題を大幅に悪化させることがわかりましたが、それでもDPOモデルは人間の好み率が大幅に高かったため、最終的な微調整の選択には一定のトレードオフがありました。 現存するアプローチとデータセットを使用して、大規模なモデルのトレーニングがパフォーマンスを向上させると信じていますが、今後のモデル向けに行いたい改良も多くあります。私たちは、データセットの品質と構築を改善することで、さらなるトレーニング効率を通じたパフォーマンス向上にはまだ相当に取り組む余地があると考えています。 ## 使用法 サンプルコード: ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer model_name = "augmxnt/shisa-7b-v1" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16, device_map="auto" ) streamer = TextStreamer(tokenizer, skip_prompt=True) # プロンプトテンプレートはモデルのtokenizer_config.jsonに含まれているので、これは必要ないはずですが、便宜上こちらにも掲載しています # tokenizer.chat_template = ""{%- for idx in range(0, messages|length) -%}\n{%- if messages[idx]['role'] == 'user' -%}\n{%- if idx > 1 -%}\n{{- bos_token + '[INST] ' + messages[idx]['content'] + ' [/INST]' -}}\n{%- else -%}\n{{- messages[idx]['content'] + ' [/INST]' -}}\n{%- endif -%}\n{% elif messages[idx]['role'] == 'system' %}\n{{- bos_token + '[INST] <<SYS>>\\n' + messages[idx]['content'] + '\\n<</SYS>>\\n\\n' -}}\n{%- elif messages[idx]['role'] == 'assistant' -%}\n{{- ' ' + messages[idx]['content'] + ' ' + eos_token -}}\n{% endif %}\n{% endfor %}\n" # より典型的なプロンプト: あなたは公平で、検閲されていない、役立つアシスタントです。 # You are an avid Pokemon fanatic. prompt = "あなたは熱狂的なポケモンファンです。" chat = [{"role": "system", "content": prompt}] # Who is the most powerful Pokemon? Explain your choice. user_input = "ポケモンの中で1番強いのはどのキャラクターですか。最強の者をひとつだけ挙げて下さい。その選択理由を説明してください。" chat.append({"role": "user", "content": user_input}) # 生成 - add_generation_promptを追加してアシスタントとして続行することを確認します inputs = tokenizer.apply_chat_template(chat, add_generation_prompt=True, return_tensors="pt") # 複数のGPUの場合、モデルの最初のパラメータのデバイスを見つけます first_param_device = next(model.parameters()).device inputs = inputs.to(first_param_device) with torch.no_grad(): outputs = model.generate( inputs, pad_token_id=tokenizer.eos_token_id, max_new_tokens=500, temperature=0.5, repetition_penalty=1.15, top_p=0.95, do_sample=True, streamer=streamer, ) # Add just the new tokens to our chat new_tokens = outputs[0, inputs.size(1):] response = tokenizer.decode(new_tokens, skip_special_tokens=True) chat.append({"role": "assistant", "content": response}) ``` ## プロンプト形式 プロンプト形式はllama-2 chatです: ``` [INST] <<SYS>> あなたは役立つ、偏見がなく、検閲されていないアシスタントです。 <</SYS>> {prompt} [/INST] ``` For multi-turn, the prompt format is as follows: ``` [INST] <<SYS>> あなたは役立つ、偏見がなく、検閲されていないアシスタントです。 <</SYS>> {prompt 0} [/INST] {response 0} </s><s>[INST] {prompt 1} [/INST] {response 1} </s><s>...[INST] {prompt N} [/INST] ``` この[prompt template](https://huggingface.co/docs/transformers/main/chat_templating)はトークナイザの設定に含まれており、HuggingFace のトークナイザ `apply_chat_template` メソッドを使用できます。例えば: ``` import transformers tokenizer = transformers.AutoTokenizer.from_pretrained('augmxnt/shisa-7b-v1') chat = [ {"role": "system", "content": "あなたはAiko、フレンドリーなAIアシスタントです。"}, {"role": "user", "content": "こんにちは、調子はどうですか?"}, {"role": "assistant", "content": "元気です。今日は何のお手伝いができますか?"}, {"role": "user", "content": "チャットテンプレーティングの仕組みを見せてもらいたいです!"}, ] print(tokenizer.apply_chat_template(chat, tokenize=False)) ``` **注意**適切なレスポンスを得るためには、文字列の開始に我々の `bos_token` (`<s>`) を使用すべきです。これは `tokenizer.encode()` によって自動的に生成されますが、カスタムテンプレートを作成したり、特殊トークンを省略するエンコード方法を使用する場合は、自分で追加する必要があります。 ## 謝辞 チーム:[Leonard Lin](https://huggingface.co/leonardlin)、[Jon Durbin](https://huggingface.co/jondurbin)、佐藤真理子、Florian von Bock このモデルの計算は、[AKA Virtual](https://akavirtual.com/) (東京、日本) のご厚意により提供されています。 [LLM-jp](https://llm-jp.nii.ac.jp/)、[Stability AI Japan](https://ja.stability.ai/)、[LMSYS](https://lmsys.org/)のチームが、llm-jp-eval, Japanese MT-Bench, MT-Benchに取り組んでくれて感謝しています。 また、貴重なヒューマンプリファレンステストを提供してくださったすべてのボランティアにも感謝いたします! このプロジェクトのためにより良く、より大きなモデルを訓練するために、追加の計算を積極的に探しています。お問い合わせは次の宛先までお願いいたします:*compute at augmxnt dot com*
hkivancoral/smids_10x_deit_base_adamax_00001_fold1
hkivancoral
2023-12-20T18:10:37Z
5
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-base-patch16-224", "base_model:finetune:facebook/deit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-20T15:35:49Z
--- license: apache-2.0 base_model: facebook/deit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_10x_deit_base_adamax_00001_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9248747913188647 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smids_10x_deit_base_adamax_00001_fold1 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5153 - Accuracy: 0.9249 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2391 | 1.0 | 751 | 0.2691 | 0.8881 | | 0.1261 | 2.0 | 1502 | 0.2399 | 0.9082 | | 0.1129 | 3.0 | 2253 | 0.2368 | 0.9165 | | 0.0547 | 4.0 | 3004 | 0.2399 | 0.9215 | | 0.0473 | 5.0 | 3755 | 0.3024 | 0.9165 | | 0.0084 | 6.0 | 4506 | 0.3345 | 0.9182 | | 0.001 | 7.0 | 5257 | 0.4000 | 0.9215 | | 0.0092 | 8.0 | 6008 | 0.4032 | 0.9182 | | 0.0007 | 9.0 | 6759 | 0.4106 | 0.9249 | | 0.0001 | 10.0 | 7510 | 0.4482 | 0.9182 | | 0.0001 | 11.0 | 8261 | 0.4776 | 0.9182 | | 0.0 | 12.0 | 9012 | 0.4461 | 0.9215 | | 0.0002 | 13.0 | 9763 | 0.4646 | 0.9199 | | 0.0 | 14.0 | 10514 | 0.4721 | 0.9199 | | 0.0 | 15.0 | 11265 | 0.4754 | 0.9232 | | 0.0 | 16.0 | 12016 | 0.4752 | 0.9282 | | 0.0 | 17.0 | 12767 | 0.4772 | 0.9265 | | 0.0 | 18.0 | 13518 | 0.4906 | 0.9215 | | 0.0 | 19.0 | 14269 | 0.4791 | 0.9182 | | 0.0 | 20.0 | 15020 | 0.4897 | 0.9215 | | 0.0 | 21.0 | 15771 | 0.5412 | 0.9132 | | 0.0 | 22.0 | 16522 | 0.5200 | 0.9265 | | 0.0 | 23.0 | 17273 | 0.4930 | 0.9249 | | 0.0 | 24.0 | 18024 | 0.5327 | 0.9165 | | 0.0 | 25.0 | 18775 | 0.4977 | 0.9182 | | 0.0 | 26.0 | 19526 | 0.5032 | 0.9215 | | 0.0 | 27.0 | 20277 | 0.5327 | 0.9165 | | 0.0 | 28.0 | 21028 | 0.5170 | 0.9232 | | 0.0022 | 29.0 | 21779 | 0.5055 | 0.9249 | | 0.0 | 30.0 | 22530 | 0.4999 | 0.9232 | | 0.0 | 31.0 | 23281 | 0.5556 | 0.9149 | | 0.0 | 32.0 | 24032 | 0.5049 | 0.9249 | | 0.0 | 33.0 | 24783 | 0.5110 | 0.9232 | | 0.0 | 34.0 | 25534 | 0.5596 | 0.9115 | | 0.0 | 35.0 | 26285 | 0.5071 | 0.9265 | | 0.0 | 36.0 | 27036 | 0.5052 | 0.9249 | | 0.0 | 37.0 | 27787 | 0.5090 | 0.9249 | | 0.0 | 38.0 | 28538 | 0.5107 | 0.9249 | | 0.0 | 39.0 | 29289 | 0.5094 | 0.9249 | | 0.0 | 40.0 | 30040 | 0.5107 | 0.9249 | | 0.0 | 41.0 | 30791 | 0.5100 | 0.9249 | | 0.0 | 42.0 | 31542 | 0.5114 | 0.9249 | | 0.0 | 43.0 | 32293 | 0.5123 | 0.9249 | | 0.0 | 44.0 | 33044 | 0.5134 | 0.9249 | | 0.0 | 45.0 | 33795 | 0.5146 | 0.9249 | | 0.0 | 46.0 | 34546 | 0.5165 | 0.9249 | | 0.0 | 47.0 | 35297 | 0.5154 | 0.9249 | | 0.0 | 48.0 | 36048 | 0.5153 | 0.9249 | | 0.0 | 49.0 | 36799 | 0.5157 | 0.9249 | | 0.0 | 50.0 | 37550 | 0.5153 | 0.9249 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2
rootstrap-org/wordle-solver
rootstrap-org
2023-12-20T17:54:58Z
0
0
null
[ "en", "license:mit", "region:us" ]
null
2023-12-20T17:51:02Z
--- license: mit language: - en --- ## Wordle solver model This model was trained using Reinforcement Learning with the A3C algorithm implemented with pytorch. It has reached 95% of accuracy. For more information go to the source repo of the project: https://github.com/rootstrap/wordle-solver
omarelsayeed/QA_Search_E5
omarelsayeed
2023-12-20T17:45:44Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-12-20T16:15:02Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 256 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 788 with parameters: ``` {'batch_size': 256, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `__main__.LoggingCosineSimLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 0.0005 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 200, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 150, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 256, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
serkanarslan/mistral-7b-mini-ft
serkanarslan
2023-12-20T17:38:50Z
2
0
peft
[ "peft", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "region:us" ]
null
2023-12-19T19:41:38Z
--- library_name: peft base_model: mistralai/Mistral-7B-v0.1 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: True - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0
justinwangx/vicuna-robust3-sft-lora
justinwangx
2023-12-20T17:38:15Z
0
0
null
[ "tensorboard", "safetensors", "generated_from_trainer", "region:us" ]
null
2023-12-20T17:36:48Z
--- tags: - generated_from_trainer model-index: - name: vicuna-robust3-sft-lora results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vicuna-robust3-sft-lora This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9414 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 128 - total_train_batch_size: 2048 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0 | 0 | 1.8516 | | No log | 0 | 0 | 1.8678 | | No log | 0 | 0 | 1.9414 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0a0+32f93b1 - Datasets 2.14.6 - Tokenizers 0.14.1
Fearnworks/fearnstral-instruct-fn-v0.2
Fearnworks
2023-12-20T17:36:09Z
10
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "finetuned", "conversational", "dataset:Trelis/function_calling_v3", "arxiv:2310.06825", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-12-20T17:23:18Z
--- license: apache-2.0 pipeline_tag: text-generation tags: - finetuned inference: false datasets: - Trelis/function_calling_v3 --- # Model Card for fearnstral-instruct-fn-v0.2 Fearnstral Instruct is a function calling fine tune of the mistral-7b-instruct model trained with the function_calling_v3 dataset. # Original Mistral-7B-Instruct-v0.2 model card The Mistral-7B-Instruct-v0.2 Large Language Model (LLM) is an improved instruct fine-tuned version of [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1). For full details of this model please read our [paper](https://arxiv.org/abs/2310.06825) and [release blog post](https://mistral.ai/news/la-plateforme/). ## Instruction format In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id. E.g. ``` text = "<s>[INST] What is your favourite condiment? [/INST]" "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> " "[INST] Do you have mayonnaise recipes? [/INST]" ``` This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method: ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2") tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2") messages = [ {"role": "user", "content": "What is your favourite condiment?"}, {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"}, {"role": "user", "content": "Do you have mayonnaise recipes?"} ] encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt") model_inputs = encodeds.to(device) model.to(device) generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True) decoded = tokenizer.batch_decode(generated_ids) print(decoded[0]) ``` ## Model Architecture This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices: - Grouped-Query Attention - Sliding-Window Attention - Byte-fallback BPE tokenizer ## Troubleshooting - If you see the following error: ``` Traceback (most recent call last): File "", line 1, in File "/transformers/models/auto/auto_factory.py", line 482, in from_pretrained config, kwargs = AutoConfig.from_pretrained( File "/transformers/models/auto/configuration_auto.py", line 1022, in from_pretrained config_class = CONFIG_MAPPING[config_dict["model_type"]] File "/transformers/models/auto/configuration_auto.py", line 723, in getitem raise KeyError(key) KeyError: 'mistral' ``` Installing transformers from source should solve the issue pip install git+https://github.com/huggingface/transformers This should not be required after transformers-v4.33.4. ## Limitations The Mistral 7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance. It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs. ## The Mistral AI Team Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Louis Ternon, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
chathuru/cicids2018-falcon7b
chathuru
2023-12-20T17:34:50Z
4
0
transformers
[ "transformers", "safetensors", "falcon", "text-generation", "generated_from_trainer", "custom_code", "base_model:tiiuae/falcon-7b", "base_model:finetune:tiiuae/falcon-7b", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-20T17:22:37Z
--- license: apache-2.0 base_model: tiiuae/falcon-7b tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: cicids2018-falcon7b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cicids2018-falcon7b This model is a fine-tuned version of [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2465 - Accuracy: 0.5 - F1: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---:| | 0.7359 | 1.0 | 24 | 1.3954 | 0.5 | 0.0 | | 1.3324 | 2.0 | 48 | 1.3244 | 0.5 | 0.0 | | 1.8502 | 3.0 | 72 | 1.2808 | 0.5 | 0.0 | | 0.0832 | 4.0 | 96 | 1.2465 | 0.5 | 0.0 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
G-ML-Hyly/stg-cli13b-t6-cdp-ca.mt.him.cln.inter-b4s1e1-20231220-1052
G-ML-Hyly
2023-12-20T17:30:50Z
2
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:codellama/CodeLlama-13b-Instruct-hf", "base_model:adapter:codellama/CodeLlama-13b-Instruct-hf", "license:llama2", "region:us" ]
null
2023-12-20T15:53:06Z
--- license: llama2 library_name: peft tags: - generated_from_trainer base_model: codellama/CodeLlama-13b-Instruct-hf model-index: - name: stg-cli13b-t6-cdp-ca.mt.him.cln.inter-b4s1e1-20231220-1052 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # stg-cli13b-t6-cdp-ca.mt.him.cln.inter-b4s1e1-20231220-1052 This model is a fine-tuned version of [codellama/CodeLlama-13b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0472 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.3435 | 0.03 | 100 | 0.0703 | | 0.0654 | 0.07 | 200 | 0.0586 | | 0.0579 | 0.1 | 300 | 0.0563 | | 0.0567 | 0.14 | 400 | 0.0562 | | 0.0551 | 0.17 | 500 | 0.0547 | | 0.0547 | 0.21 | 600 | 0.0526 | | 0.0532 | 0.24 | 700 | 0.0516 | | 0.0534 | 0.28 | 800 | 0.0515 | | 0.0521 | 0.31 | 900 | 0.0520 | | 0.0522 | 0.35 | 1000 | 0.0517 | | 0.0518 | 0.38 | 1100 | 0.0511 | | 0.051 | 0.42 | 1200 | 0.0502 | | 0.0517 | 0.45 | 1300 | 0.0494 | | 0.0506 | 0.49 | 1400 | 0.0499 | | 0.0511 | 0.52 | 1500 | 0.0496 | | 0.05 | 0.56 | 1600 | 0.0493 | | 0.05 | 0.59 | 1700 | 0.0497 | | 0.049 | 0.63 | 1800 | 0.0485 | | 0.0487 | 0.66 | 1900 | 0.0484 | | 0.0492 | 0.7 | 2000 | 0.0483 | | 0.0493 | 0.73 | 2100 | 0.0481 | | 0.0483 | 0.77 | 2200 | 0.0478 | | 0.048 | 0.8 | 2300 | 0.0478 | | 0.048 | 0.83 | 2400 | 0.0476 | | 0.0476 | 0.87 | 2500 | 0.0474 | | 0.0471 | 0.9 | 2600 | 0.0473 | | 0.0472 | 0.94 | 2700 | 0.0472 | | 0.0469 | 0.97 | 2800 | 0.0472 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.2
am-infoweb/rap_phase2_20dec_15i_v2.csv
am-infoweb
2023-12-20T17:21:49Z
15
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "question-answering", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-12-20T17:17:32Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer model-index: - name: rap_phase2_20dec_15i_v2.csv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rap_phase2_20dec_15i_v2.csv This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0592 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 177 | 0.9350 | | No log | 2.0 | 354 | 0.7804 | | 1.4754 | 3.0 | 531 | 0.0371 | | 1.4754 | 4.0 | 708 | 0.0597 | | 1.4754 | 5.0 | 885 | 0.0595 | | 0.0707 | 6.0 | 1062 | 0.0047 | | 0.0707 | 7.0 | 1239 | 0.0059 | | 0.0707 | 8.0 | 1416 | 0.0401 | | 0.0202 | 9.0 | 1593 | 0.0488 | | 0.0202 | 10.0 | 1770 | 0.0592 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
akmoyu/whisper-small-mn
akmoyu
2023-12-20T17:19:49Z
17
2
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "mn", "dataset:mozilla-foundation/common_voice_11_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-12T13:47:29Z
--- language: - mn license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer base_model: openai/whisper-small model-index: - name: Whisper Small Mn - akmoyu results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 args: 'config: hi, split: test' metrics: - type: wer value: 50.51878549584971 name: Wer --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Mn - akmoyu This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.8308 - Wer: 50.5188 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0306 | 7.94 | 1000 | 0.6344 | 52.8724 | | 0.0017 | 15.87 | 2000 | 0.7480 | 50.3659 | | 0.0004 | 23.81 | 3000 | 0.8137 | 50.5406 | | 0.0003 | 15.87 | 4000 | 0.8308 | 50.5188 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.2
chathuru/CuATR-falcon7b-v1
chathuru
2023-12-20T17:17:58Z
5
0
transformers
[ "transformers", "safetensors", "falcon", "text-generation", "generated_from_trainer", "custom_code", "base_model:tiiuae/falcon-7b", "base_model:finetune:tiiuae/falcon-7b", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-04T23:17:22Z
--- license: apache-2.0 base_model: tiiuae/falcon-7b tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: CuATR-falcon7b-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CuATR-falcon7b-v1 This model is a fine-tuned version of [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.0246 - Accuracy: 0.5 - F1: 0.6667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 3.8889 | 0.92 | 3 | 3.0637 | 0.5 | 0.6667 | | 5.8673 | 1.85 | 6 | 3.0774 | 0.5 | 0.6667 | | 3.9181 | 2.77 | 9 | 3.0334 | 0.5 | 0.6667 | | 3.8567 | 4.0 | 13 | 3.0286 | 0.5 | 0.6667 | | 1.9671 | 4.92 | 16 | 3.0071 | 0.5 | 0.6667 | | 1.9456 | 5.85 | 19 | 3.0315 | 0.5 | 0.6667 | | 5.8213 | 6.46 | 21 | 3.0246 | 0.5 | 0.6667 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
jan-hq/stealth-v1
jan-hq
2023-12-20T17:11:56Z
13
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-20T13:21:28Z
--- license: apache-2.0 language: - en --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://github.com/janhq/jan/assets/89722390/35daac7d-b895-487c-a6ac-6663daaad78e" alt="Jan banner" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <p align="center"> <a href="https://jan.ai/">Jan</a > - <a href="https://discord.gg/AsJ8krTT3N">Discord</a> </p> <!-- header end --> # Prompt template ``` {system_message} ### Instruction: {prompt} ### Response: ``` # Run this model You can run this model using [Jan Desktop](https://jan.ai/) on Mac, Windows, or Linux. Jan is an open source, ChatGPT alternative that is: - 💻 **100% offline on your machine**: Your conversations remain confidential, and visible only to you. - 🗂️ **An Open File Format**: Conversations and model settings stay on your computer and can be exported or deleted at any time. - 🌐 **OpenAI Compatible**: Local server on port `1337` with OpenAI compatible endpoints - 🌍 **Open Source & Free**: We build in public; check out our [Github](https://github.com/janhq) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/r7VmEBLGXpPLTu2MImM7S.png) # About Jan Jan believes in the need for an open-source AI ecosystem and is building the infra and tooling to allow open-source AIs to compete on a level playing field with proprietary ones. Jan's long-term vision is to build a cognitive framework for future robots, who are practical, useful assistants for humans and businesses in everyday life.
eliolio/bart-finetuned-yelpreviews
eliolio
2023-12-20T17:07:10Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "base_model:facebook/bart-base", "base_model:finetune:facebook/bart-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-18T16:33:55Z
--- license: apache-2.0 tags: - generated_from_trainer base_model: facebook/bart-base model-index: - name: bart-finetuned-yelpreviews results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-finetuned-yelpreviews This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.4346 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.8423 | 0.27 | 1000 | 3.5093 | | 3.7475 | 0.55 | 2000 | 3.4619 | | 3.7098 | 0.82 | 3000 | 3.4368 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 1.18.4 - Tokenizers 0.12.1
am-infoweb/rap_phase2_20dec_15i_v1.csv
am-infoweb
2023-12-20T17:03:51Z
14
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "question-answering", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-12-20T16:59:50Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer model-index: - name: rap_phase2_20dec_15i_v1.csv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rap_phase2_20dec_15i_v1.csv This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0001 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 169 | 0.8805 | | No log | 2.0 | 338 | 0.7918 | | 1.5516 | 3.0 | 507 | 0.7187 | | 1.5516 | 4.0 | 676 | 0.2477 | | 1.5516 | 5.0 | 845 | 0.0310 | | 0.2826 | 6.0 | 1014 | 0.0003 | | 0.2826 | 7.0 | 1183 | 0.0002 | | 0.2826 | 8.0 | 1352 | 0.0001 | | 0.012 | 9.0 | 1521 | 0.0114 | | 0.012 | 10.0 | 1690 | 0.0001 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
patpizio/xlmr-ne-en-all_shuffled-764-test1000
patpizio
2023-12-20T16:51:48Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-20T16:47:15Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer model-index: - name: xlmr-ne-en-all_shuffled-764-test1000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr-ne-en-all_shuffled-764-test1000 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6598 - R Squared: 0.2676 - Mae: 0.6318 - Pearson R: 0.6380 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 764 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | R Squared | Mae | Pearson R | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---------:| | No log | 1.0 | 438 | 0.6430 | 0.2862 | 0.6416 | 0.5407 | | 0.7301 | 2.0 | 876 | 0.6202 | 0.3116 | 0.6302 | 0.6325 | | 0.5037 | 3.0 | 1314 | 0.6598 | 0.2676 | 0.6318 | 0.6380 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.6 - Tokenizers 0.14.1
exontidev/SISUS_ADAPTERS_SIKERS_TEST
exontidev
2023-12-20T16:44:40Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:ai-forever/rugpt3large_based_on_gpt2", "base_model:adapter:ai-forever/rugpt3large_based_on_gpt2", "region:us" ]
null
2023-12-20T16:44:38Z
--- library_name: peft base_model: ai-forever/rugpt3large_based_on_gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
originstory/holisleigh
originstory
2023-12-20T16:40:55Z
3
0
transformers
[ "transformers", "pytorch", "musicgen", "text-to-audio", "arxiv:2306.05284", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-audio
2023-12-20T15:57:29Z
--- inference: true tags: - musicgen license: cc-by-nc-4.0 --- # MusicGen - Large - 3.3B MusicGen is a text-to-music model capable of genreating high-quality music samples conditioned on text descriptions or audio prompts. It is a single stage auto-regressive Transformer model trained over a 32kHz EnCodec tokenizer with 4 codebooks sampled at 50 Hz. Unlike existing methods, like MusicLM, MusicGen doesn't require a self-supervised semantic representation, and it generates all 4 codebooks in one pass. By introducing a small delay between the codebooks, we show we can predict them in parallel, thus having only 50 auto-regressive steps per second of audio. MusicGen was published in [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by *Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, Alexandre Défossez*. Four checkpoints are released: - [small](https://huggingface.co/facebook/musicgen-small) - [medium](https://huggingface.co/facebook/musicgen-medium) - [**large** (this checkpoint)](https://huggingface.co/facebook/musicgen-large) - [melody](https://huggingface.co/facebook/musicgen-melody) ## Example Try out MusicGen yourself! * Audiocraft Colab: <a target="_blank" href="https://colab.research.google.com/drive/1fxGqfg96RBUvGxZ1XXN07s3DthrKUl4-?usp=sharing"> <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/> </a> * Hugging Face Colab: <a target="_blank" href="https://colab.research.google.com/github/sanchit-gandhi/notebooks/blob/main/MusicGen.ipynb"> <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/> </a> * Hugging Face Demo: <a target="_blank" href="https://huggingface.co/spaces/facebook/MusicGen"> <img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm.svg" alt="Open in HuggingFace"/> </a> ## 🤗 Transformers Usage You can run MusicGen locally with the 🤗 Transformers library from version 4.31.0 onwards. 1. First install the 🤗 [Transformers library](https://github.com/huggingface/transformers) and scipy: ``` pip install --upgrade pip pip install --upgrade transformers scipy ``` 2. Run inference via the `Text-to-Audio` (TTA) pipeline. You can infer the MusicGen model via the TTA pipeline in just a few lines of code! ```python from transformers import pipeline import scipy synthesiser = pipeline("text-to-audio", "facebook/musicgen-large") music = synthesiser("lo-fi music with a soothing melody", forward_params={"do_sample": True}) scipy.io.wavfile.write("musicgen_out.wav", rate=music["sampling_rate"], data=music["audio"]) ``` 3. Run inference via the Transformers modelling code. You can use the processor + generate code to convert text into a mono 32 kHz audio waveform for more fine-grained control. ```python from transformers import AutoProcessor, MusicgenForConditionalGeneration processor = AutoProcessor.from_pretrained("facebook/musicgen-large") model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-large") inputs = processor( text=["80s pop track with bassy drums and synth", "90s rock song with loud guitars and heavy drums"], padding=True, return_tensors="pt", ) audio_values = model.generate(**inputs, max_new_tokens=256) ``` 4. Listen to the audio samples either in an ipynb notebook: ```python from IPython.display import Audio sampling_rate = model.config.audio_encoder.sampling_rate Audio(audio_values[0].numpy(), rate=sampling_rate) ``` Or save them as a `.wav` file using a third-party library, e.g. `scipy`: ```python import scipy sampling_rate = model.config.audio_encoder.sampling_rate scipy.io.wavfile.write("musicgen_out.wav", rate=sampling_rate, data=audio_values[0, 0].numpy()) ``` For more details on using the MusicGen model for inference using the 🤗 Transformers library, refer to the [MusicGen docs](https://huggingface.co/docs/transformers/model_doc/musicgen). ## Audiocraft Usage You can also run MusicGen locally through the original [Audiocraft library]((https://github.com/facebookresearch/audiocraft): 1. First install the [`audiocraft` library](https://github.com/facebookresearch/audiocraft) ``` pip install git+https://github.com/facebookresearch/audiocraft.git ``` 2. Make sure to have [`ffmpeg`](https://ffmpeg.org/download.html) installed: ``` apt get install ffmpeg ``` 3. Run the following Python code: ```py from audiocraft.models import MusicGen from audiocraft.data.audio import audio_write model = MusicGen.get_pretrained("large") model.set_generation_params(duration=8) # generate 8 seconds. descriptions = ["happy rock", "energetic EDM"] wav = model.generate(descriptions) # generates 2 samples. for idx, one_wav in enumerate(wav): # Will save under {idx}.wav, with loudness normalization at -14 db LUFS. audio_write(f'{idx}', one_wav.cpu(), model.sample_rate, strategy="loudness") ``` ## Model details **Organization developing the model:** The FAIR team of Meta AI. **Model date:** MusicGen was trained between April 2023 and May 2023. **Model version:** This is the version 1 of the model. **Model type:** MusicGen consists of an EnCodec model for audio tokenization, an auto-regressive language model based on the transformer architecture for music modeling. The model comes in different sizes: 300M, 1.5B and 3.3B parameters ; and two variants: a model trained for text-to-music generation task and a model trained for melody-guided music generation. **Paper or resources for more information:** More information can be found in the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284). **Citation details:** ``` @misc{copet2023simple, title={Simple and Controllable Music Generation}, author={Jade Copet and Felix Kreuk and Itai Gat and Tal Remez and David Kant and Gabriel Synnaeve and Yossi Adi and Alexandre Défossez}, year={2023}, eprint={2306.05284}, archivePrefix={arXiv}, primaryClass={cs.SD} } ``` **License:** Code is released under MIT, model weights are released under CC-BY-NC 4.0. **Where to send questions or comments about the model:** Questions and comments about MusicGen can be sent via the [Github repository](https://github.com/facebookresearch/audiocraft) of the project, or by opening an issue. ## Intended use **Primary intended use:** The primary use of MusicGen is research on AI-based music generation, including: - Research efforts, such as probing and better understanding the limitations of generative models to further improve the state of science - Generation of music guided by text or melody to understand current abilities of generative AI models by machine learning amateurs **Primary intended users:** The primary intended users of the model are researchers in audio, machine learning and artificial intelligence, as well as amateur seeking to better understand those models. **Out-of-scope use cases:** The model should not be used on downstream applications without further risk evaluation and mitigation. The model should not be used to intentionally create or disseminate music pieces that create hostile or alienating environments for people. This includes generating music that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. ## Metrics **Models performance measures:** We used the following objective measure to evaluate the model on a standard music benchmark: - Frechet Audio Distance computed on features extracted from a pre-trained audio classifier (VGGish) - Kullback-Leibler Divergence on label distributions extracted from a pre-trained audio classifier (PaSST) - CLAP Score between audio embedding and text embedding extracted from a pre-trained CLAP model Additionally, we run qualitative studies with human participants, evaluating the performance of the model with the following axes: - Overall quality of the music samples; - Text relevance to the provided text input; - Adherence to the melody for melody-guided music generation. More details on performance measures and human studies can be found in the paper. **Decision thresholds:** Not applicable. ## Evaluation datasets The model was evaluated on the [MusicCaps benchmark](https://www.kaggle.com/datasets/googleai/musiccaps) and on an in-domain held-out evaluation set, with no artist overlap with the training set. ## Training datasets The model was trained on licensed data using the following sources: the [Meta Music Initiative Sound Collection](https://www.fb.com/sound), [Shutterstock music collection](https://www.shutterstock.com/music) and the [Pond5 music collection](https://www.pond5.com/). See the paper for more details about the training set and corresponding preprocessing. ## Evaluation results Below are the objective metrics obtained on MusicCaps with the released model. Note that for the publicly released models, we had all the datasets go through a state-of-the-art music source separation method, namely using the open source [Hybrid Transformer for Music Source Separation](https://github.com/facebookresearch/demucs) (HT-Demucs), in order to keep only the instrumental part. This explains the difference in objective metrics with the models used in the paper. | Model | Frechet Audio Distance | KLD | Text Consistency | Chroma Cosine Similarity | |---|---|---|---|---| | facebook/musicgen-small | 4.88 | 1.42 | 0.27 | - | | facebook/musicgen-medium | 5.14 | 1.38 | 0.28 | - | | **facebook/musicgen-large** | 5.48 | 1.37 | 0.28 | - | | facebook/musicgen-melody | 4.93 | 1.41 | 0.27 | 0.44 | More information can be found in the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284), in the Results section. ## Limitations and biases **Data:** The data sources used to train the model are created by music professionals and covered by legal agreements with the right holders. The model is trained on 20K hours of data, we believe that scaling the model on larger datasets can further improve the performance of the model. **Mitigations:** Vocals have been removed from the data source using corresponding tags, and then using a state-of-the-art music source separation method, namely using the open source [Hybrid Transformer for Music Source Separation](https://github.com/facebookresearch/demucs) (HT-Demucs). **Limitations:** - The model is not able to generate realistic vocals. - The model has been trained with English descriptions and will not perform as well in other languages. - The model does not perform equally well for all music styles and cultures. - The model sometimes generates end of songs, collapsing to silence. - It is sometimes difficult to assess what types of text descriptions provide the best generations. Prompt engineering may be required to obtain satisfying results. **Biases:** The source of data is potentially lacking diversity and all music cultures are not equally represented in the dataset. The model may not perform equally well on the wide variety of music genres that exists. The generated samples from the model will reflect the biases from the training data. Further work on this model should include methods for balanced and just representations of cultures, for example, by scaling the training data to be both diverse and inclusive. **Risks and harms:** Biases and limitations of the model may lead to generation of samples that may be considered as biased, inappropriate or offensive. We believe that providing the code to reproduce the research and train new models will allow to broaden the application to new and more representative data. **Use cases:** Users must be aware of the biases, limitations and risks of the model. MusicGen is a model developed for artificial intelligence research on controllable music generation. As such, it should not be used for downstream applications without further investigation and mitigation of risks.
mazzaqq/roberta_finetuned_astronomicalNER
mazzaqq
2023-12-20T16:37:59Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-08T10:22:52Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: 8Agos results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta_finetuned_astronomicalNER This model is a fine-tuned version of [xlm-roberta-large-finetuned-conll03-english](https://huggingface.co/xlm-roberta-large-finetuned-conll03-english) for NER on astronomical objects. The dataset comes from the Shared Task [DEAL: Detecting Entities in the Astrophysics Literature](https://ui.adsabs.harvard.edu/WIESP/2022/SharedTasks) The model achieves the following results on the evaluation set: - Loss: 0.1416 - Precision: 0.7659 - Recall: 0.7986 - F1: 0.7819 - Accuracy: 0.9640 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 176 | 0.1571 | 0.7362 | 0.7788 | 0.7569 | 0.9593 | | No log | 2.0 | 352 | 0.1416 | 0.7529 | 0.7831 | 0.7677 | 0.9624 | | 0.1109 | 3.0 | 528 | 0.1416 | 0.7659 | 0.7986 | 0.7819 | 0.9640 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
patpizio/xlmr-ne-en-all_shuffled-1986-test1000
patpizio
2023-12-20T16:32:49Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-20T16:28:13Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer model-index: - name: xlmr-ne-en-all_shuffled-1986-test1000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr-ne-en-all_shuffled-1986-test1000 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6776 - R Squared: 0.2386 - Mae: 0.6419 - Pearson R: 0.6657 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 1986 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | R Squared | Mae | Pearson R | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---------:| | No log | 1.0 | 438 | 0.6668 | 0.2507 | 0.6678 | 0.5661 | | 0.7313 | 2.0 | 876 | 0.6442 | 0.2761 | 0.6365 | 0.6635 | | 0.5233 | 3.0 | 1314 | 0.6776 | 0.2386 | 0.6419 | 0.6657 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.6 - Tokenizers 0.14.1
azizalto/arabic-news-embeddings
azizalto
2023-12-20T16:28:15Z
0
1
null
[ "arabic-embeddings", "word-embeddings", "word2vec", "language-model", "ar", "license:mit", "region:us" ]
null
2023-12-18T00:32:27Z
--- license: mit language: - ar tags: - arabic-embeddings - word-embeddings - word2vec - language-model --- The model (embeddings), and dataset (corpus) used in the paper: ```latex @inproceedings{altowayan2016word, title={Word embeddings for Arabic sentiment analysis}, author={Altowayan, A. Aziz and Tao, Lixin}, booktitle={Big Data (Big Data), 2016 IEEE International Conference on}, pages={3820--3825}, year={2016}, organization={IEEE} } ``` > Source repo: https://github.com/iamaziz/ar-embeddings
LoneStriker/meow-8.0bpw-h8-exl2
LoneStriker
2023-12-20T16:27:54Z
0
0
peft
[ "peft", "safetensors", "llama", "generated_from_trainer", "base_model:upstage/SOLAR-10.7B-Instruct-v1.0", "base_model:adapter:upstage/SOLAR-10.7B-Instruct-v1.0", "license:cc-by-nc-4.0", "region:us" ]
null
2023-12-20T16:00:42Z
--- license: cc-by-nc-4.0 library_name: peft tags: - generated_from_trainer base_model: upstage/SOLAR-10.7B-Instruct-v1.0 model-index: - name: meow results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # meow This model is a fine-tuned version of [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0) on HuggingFaceH4/no_robots dataset. It achieves the following results on the evaluation set: - Loss: 2.3831 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 128 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3864 | 0.11 | 2 | 2.3831 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.1+cu121 - Datasets 2.14.6 - Tokenizers 0.15.0 ## Training procedure ### Framework versions - PEFT 0.6.1
LoneStriker/meow-5.0bpw-h6-exl2
LoneStriker
2023-12-20T16:27:42Z
0
0
peft
[ "peft", "safetensors", "llama", "generated_from_trainer", "base_model:upstage/SOLAR-10.7B-Instruct-v1.0", "base_model:adapter:upstage/SOLAR-10.7B-Instruct-v1.0", "license:cc-by-nc-4.0", "region:us" ]
null
2023-12-20T15:45:08Z
--- license: cc-by-nc-4.0 library_name: peft tags: - generated_from_trainer base_model: upstage/SOLAR-10.7B-Instruct-v1.0 model-index: - name: meow results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # meow This model is a fine-tuned version of [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0) on HuggingFaceH4/no_robots dataset. It achieves the following results on the evaluation set: - Loss: 2.3831 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 128 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3864 | 0.11 | 2 | 2.3831 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.1+cu121 - Datasets 2.14.6 - Tokenizers 0.15.0 ## Training procedure ### Framework versions - PEFT 0.6.1
tresbien1/dqn-SpaceInvadersNoFrameskip-v4
tresbien1
2023-12-20T16:27:41Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-12-20T16:27:11Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 470.50 +/- 153.29 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga tresbien1 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga tresbien1 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga tresbien1 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
LoneStriker/meow-4.0bpw-h6-exl2
LoneStriker
2023-12-20T16:27:36Z
0
0
peft
[ "peft", "safetensors", "llama", "generated_from_trainer", "base_model:upstage/SOLAR-10.7B-Instruct-v1.0", "base_model:adapter:upstage/SOLAR-10.7B-Instruct-v1.0", "license:cc-by-nc-4.0", "region:us" ]
null
2023-12-20T15:37:19Z
--- license: cc-by-nc-4.0 library_name: peft tags: - generated_from_trainer base_model: upstage/SOLAR-10.7B-Instruct-v1.0 model-index: - name: meow results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # meow This model is a fine-tuned version of [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0) on HuggingFaceH4/no_robots dataset. It achieves the following results on the evaluation set: - Loss: 2.3831 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 128 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3864 | 0.11 | 2 | 2.3831 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.1+cu121 - Datasets 2.14.6 - Tokenizers 0.15.0 ## Training procedure ### Framework versions - PEFT 0.6.1
LoneStriker/meow-3.0bpw-h6-exl2
LoneStriker
2023-12-20T16:27:31Z
0
0
peft
[ "peft", "safetensors", "llama", "generated_from_trainer", "base_model:upstage/SOLAR-10.7B-Instruct-v1.0", "base_model:adapter:upstage/SOLAR-10.7B-Instruct-v1.0", "license:cc-by-nc-4.0", "region:us" ]
null
2023-12-20T15:29:32Z
--- license: cc-by-nc-4.0 library_name: peft tags: - generated_from_trainer base_model: upstage/SOLAR-10.7B-Instruct-v1.0 model-index: - name: meow results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # meow This model is a fine-tuned version of [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0) on HuggingFaceH4/no_robots dataset. It achieves the following results on the evaluation set: - Loss: 2.3831 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 128 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3864 | 0.11 | 2 | 2.3831 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.1+cu121 - Datasets 2.14.6 - Tokenizers 0.15.0 ## Training procedure ### Framework versions - PEFT 0.6.1
onedapperterm/LF6_Service_Classifier
onedapperterm
2023-12-20T16:21:02Z
6
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:dbmdz/bert-base-german-cased", "base_model:finetune:dbmdz/bert-base-german-cased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-08T05:56:24Z
--- license: mit tags: - generated_from_trainer base_model: dbmdz/bert-base-german-cased model-index: - name: LF6_Service_Classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # LF6_Service_Classifier This model is a fine-tuned version of [dbmdz/bert-base-german-cased](https://huggingface.co/dbmdz/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0313 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.2568 | 1.0 | 600 | 0.0639 | | 0.0553 | 2.0 | 1200 | 0.0359 | | 0.0515 | 3.0 | 1800 | 0.0313 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
korginevvostorge/distilhubert-course-model2-finetuned-gtzan
korginevvostorge
2023-12-20T16:21:01Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:ntu-spml/distilhubert", "base_model:finetune:ntu-spml/distilhubert", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-12-20T13:50:26Z
--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-course-model2-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.87 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-course-model2-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6319 - Accuracy: 0.87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0479 | 1.0 | 113 | 1.9649 | 0.57 | | 1.2746 | 2.0 | 226 | 1.3397 | 0.62 | | 0.9327 | 3.0 | 339 | 0.9767 | 0.72 | | 0.7575 | 4.0 | 452 | 0.8140 | 0.77 | | 0.5051 | 5.0 | 565 | 0.6947 | 0.8 | | 0.4299 | 6.0 | 678 | 0.6564 | 0.8 | | 0.2753 | 7.0 | 791 | 0.7915 | 0.74 | | 0.2209 | 8.0 | 904 | 0.5574 | 0.81 | | 0.2022 | 9.0 | 1017 | 0.6053 | 0.85 | | 0.0333 | 10.0 | 1130 | 0.5527 | 0.88 | | 0.1367 | 11.0 | 1243 | 0.5989 | 0.87 | | 0.0141 | 12.0 | 1356 | 0.6271 | 0.86 | | 0.0104 | 13.0 | 1469 | 0.6737 | 0.87 | | 0.0093 | 14.0 | 1582 | 0.6163 | 0.86 | | 0.0099 | 15.0 | 1695 | 0.6319 | 0.87 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
Emmanuelalo52/distilbert-base-uncased-finetuned-clinc
Emmanuelalo52
2023-12-20T16:20:21Z
7
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-18T08:47:23Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos config: plus split: validation args: plus metrics: - name: Accuracy type: accuracy value: 0.9183870967741935 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7735 - Accuracy: 0.9184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 3.2619 | 0.7181 | | 3.77 | 2.0 | 636 | 1.8605 | 0.8361 | | 3.77 | 3.0 | 954 | 1.1513 | 0.8955 | | 1.6831 | 4.0 | 1272 | 0.8544 | 0.9139 | | 0.9001 | 5.0 | 1590 | 0.7735 | 0.9184 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
d4niel92/xlm-roberta-base-finetuned-marc-en
d4niel92
2023-12-20T16:19:53Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi base_model: xlm-roberta-base model-index: - name: xlm-roberta-base-finetuned-marc-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.8976 - Mae: 0.4268 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.092 | 1.0 | 235 | 0.9514 | 0.5122 | | 0.9509 | 2.0 | 470 | 0.8976 | 0.4268 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
coldfir3/xlm-roberta-base-finetuned-panx-de-fr
coldfir3
2023-12-20T16:14:50Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer metrics: - f1 base_model: xlm-roberta-base model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1667 - F1: 0.8582 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2885 | 1.0 | 715 | 0.1817 | 0.8287 | | 0.1497 | 2.0 | 1430 | 0.1618 | 0.8442 | | 0.0944 | 3.0 | 2145 | 0.1667 | 0.8582 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
patpizio/xlmr-et-en-all_shuffled-1985-test1000
patpizio
2023-12-20T16:12:42Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-20T16:08:08Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer model-index: - name: xlmr-et-en-all_shuffled-1985-test1000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr-et-en-all_shuffled-1985-test1000 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5701 - R Squared: 0.3139 - Mae: 0.5603 - Pearson R: 0.6172 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 1985 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | R Squared | Mae | Pearson R | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---------:| | No log | 1.0 | 438 | 0.5588 | 0.3274 | 0.5882 | 0.5760 | | 0.7153 | 2.0 | 876 | 0.5470 | 0.3416 | 0.5515 | 0.6228 | | 0.5105 | 3.0 | 1314 | 0.5701 | 0.3139 | 0.5603 | 0.6172 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.6 - Tokenizers 0.14.1
TingChen-ppmc/whisper-small-Tianjin
TingChen-ppmc
2023-12-20T16:09:24Z
6
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "ch", "dataset:TingChen-ppmc/Tianjin_Dialect_Conversational_Speech_Corpus", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-12-04T05:50:31Z
--- language: - ch license: apache-2.0 base_model: openai/whisper-small datasets: - TingChen-ppmc/Tianjin_Dialect_Conversational_Speech_Corpus metrics: - wer - cer --- This is a finetuned version of [Whisper-small](openai/whisper-small) on [Tianjin_Dialect_Conversational_Speech_Corpus](https://huggingface.co/datasets/TingChen-ppmc/Tianjin_Dialect_Conversational_Speech_Corpus) # Results CER: 46.17 WER: 67.65 Chinese Word Error Rate (WER) is based on [Jieba](https://github.com/fxsjy/jieba) Word segmentation
FounderOfHuggingface/gpt2_gen_lora_r16_ag_news_t200_e5_non_member_shadow19
FounderOfHuggingface
2023-12-20T16:04:45Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-12-20T16:04:42Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
emre/wav2vec2-large-xls-r-300m-tr
emre
2023-12-20T16:04:23Z
97
0
transformers
[ "transformers", "pytorch", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "tr", "dataset:mozilla-foundation/common_voice_8_0", "base_model:facebook/wav2vec2-xls-r-300m", "base_model:finetune:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: tr license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 base_model: facebook/wav2vec2-xls-r-300m model-index: - name: wav2vec2-large-xls-r-300m-tr results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: name: Common Voice tr type: common_voice_8_0 args: tr metrics: - type: wer value: 28.69 name: Test WER --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-tr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.2224 - Wer: 0.2869 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 6.8222 | 0.64 | 500 | 3.5026 | 1.0 | | 3.2136 | 1.28 | 1000 | 3.0593 | 1.0000 | | 2.8882 | 1.91 | 1500 | 2.4670 | 0.9939 | | 2.3743 | 2.55 | 2000 | 1.1844 | 0.8657 | | 1.9456 | 3.19 | 2500 | 0.8228 | 0.7397 | | 1.7781 | 3.83 | 3000 | 0.6826 | 0.6753 | | 1.6848 | 4.46 | 3500 | 0.5885 | 0.6140 | | 1.6228 | 5.1 | 4000 | 0.5274 | 0.5789 | | 1.5768 | 5.74 | 4500 | 0.4900 | 0.5519 | | 1.5431 | 6.38 | 5000 | 0.4508 | 0.5238 | | 1.5019 | 7.02 | 5500 | 0.4248 | 0.5021 | | 1.4684 | 7.65 | 6000 | 0.4009 | 0.4827 | | 1.4635 | 8.29 | 6500 | 0.3830 | 0.4700 | | 1.4291 | 8.93 | 7000 | 0.3707 | 0.4595 | | 1.4271 | 9.57 | 7500 | 0.3570 | 0.4514 | | 1.3938 | 10.2 | 8000 | 0.3479 | 0.4378 | | 1.3914 | 10.84 | 8500 | 0.3396 | 0.4368 | | 1.3767 | 11.48 | 9000 | 0.3253 | 0.4262 | | 1.3641 | 12.12 | 9500 | 0.3251 | 0.4178 | | 1.355 | 12.76 | 10000 | 0.3138 | 0.4136 | | 1.336 | 13.39 | 10500 | 0.3121 | 0.4069 | | 1.3292 | 14.03 | 11000 | 0.3041 | 0.4014 | | 1.3249 | 14.67 | 11500 | 0.3014 | 0.3931 | | 1.3156 | 15.31 | 12000 | 0.3014 | 0.3929 | | 1.313 | 15.94 | 12500 | 0.2969 | 0.3968 | | 1.3068 | 16.58 | 13000 | 0.2965 | 0.3966 | | 1.2785 | 17.22 | 13500 | 0.2943 | 0.3850 | | 1.2867 | 17.86 | 14000 | 0.2912 | 0.3782 | | 1.2714 | 18.49 | 14500 | 0.2819 | 0.3747 | | 1.2844 | 19.13 | 15000 | 0.2840 | 0.3740 | | 1.2684 | 19.77 | 15500 | 0.2913 | 0.3828 | | 1.26 | 20.41 | 16000 | 0.2739 | 0.3674 | | 1.2543 | 21.05 | 16500 | 0.2740 | 0.3691 | | 1.2532 | 21.68 | 17000 | 0.2709 | 0.3756 | | 1.2409 | 22.32 | 17500 | 0.2669 | 0.3593 | | 1.2404 | 22.96 | 18000 | 0.2673 | 0.3576 | | 1.2347 | 23.6 | 18500 | 0.2678 | 0.3643 | | 1.2351 | 24.23 | 19000 | 0.2715 | 0.3650 | | 1.2409 | 24.87 | 19500 | 0.2637 | 0.3571 | | 1.2152 | 25.51 | 20000 | 0.2785 | 0.3609 | | 1.2046 | 26.15 | 20500 | 0.2610 | 0.3508 | | 1.2082 | 26.79 | 21000 | 0.2619 | 0.3461 | | 1.2109 | 27.42 | 21500 | 0.2597 | 0.3502 | | 1.2014 | 28.06 | 22000 | 0.2608 | 0.3468 | | 1.1948 | 28.7 | 22500 | 0.2573 | 0.3457 | | 1.205 | 29.34 | 23000 | 0.2619 | 0.3464 | | 1.2019 | 29.97 | 23500 | 0.2559 | 0.3474 | | 1.1917 | 30.61 | 24000 | 0.2601 | 0.3462 | | 1.1939 | 31.25 | 24500 | 0.2575 | 0.3387 | | 1.1882 | 31.89 | 25000 | 0.2535 | 0.3368 | | 1.191 | 32.53 | 25500 | 0.2489 | 0.3365 | | 1.1767 | 33.16 | 26000 | 0.2501 | 0.3347 | | 1.167 | 33.8 | 26500 | 0.2504 | 0.3347 | | 1.1678 | 34.44 | 27000 | 0.2480 | 0.3378 | | 1.1803 | 35.08 | 27500 | 0.2487 | 0.3345 | | 1.167 | 35.71 | 28000 | 0.2442 | 0.3319 | | 1.1661 | 36.35 | 28500 | 0.2495 | 0.3334 | | 1.164 | 36.99 | 29000 | 0.2472 | 0.3292 | | 1.1578 | 37.63 | 29500 | 0.2442 | 0.3242 | | 1.1584 | 38.27 | 30000 | 0.2431 | 0.3314 | | 1.1526 | 38.9 | 30500 | 0.2441 | 0.3347 | | 1.1542 | 39.54 | 31000 | 0.2437 | 0.3330 | | 1.1508 | 40.18 | 31500 | 0.2433 | 0.3294 | | 1.1406 | 40.82 | 32000 | 0.2434 | 0.3271 | | 1.1514 | 41.45 | 32500 | 0.2426 | 0.3255 | | 1.1418 | 42.09 | 33000 | 0.2432 | 0.3233 | | 1.1365 | 42.73 | 33500 | 0.2436 | 0.3240 | | 1.1348 | 43.37 | 34000 | 0.2483 | 0.3257 | | 1.1301 | 44.01 | 34500 | 0.2420 | 0.3271 | | 1.1268 | 44.64 | 35000 | 0.2472 | 0.3225 | | 1.1224 | 45.28 | 35500 | 0.2382 | 0.3205 | | 1.1224 | 45.92 | 36000 | 0.2388 | 0.3184 | | 1.1198 | 46.56 | 36500 | 0.2382 | 0.3202 | | 1.1274 | 47.19 | 37000 | 0.2404 | 0.3172 | | 1.1147 | 47.83 | 37500 | 0.2394 | 0.3164 | | 1.121 | 48.47 | 38000 | 0.2406 | 0.3202 | | 1.1109 | 49.11 | 38500 | 0.2384 | 0.3154 | | 1.1164 | 49.74 | 39000 | 0.2375 | 0.3169 | | 1.1105 | 50.38 | 39500 | 0.2387 | 0.3173 | | 1.1054 | 51.02 | 40000 | 0.2362 | 0.3120 | | 1.0893 | 51.66 | 40500 | 0.2399 | 0.3130 | | 1.0913 | 52.3 | 41000 | 0.2357 | 0.3088 | | 1.1017 | 52.93 | 41500 | 0.2345 | 0.3084 | | 1.0937 | 53.57 | 42000 | 0.2330 | 0.3140 | | 1.0945 | 54.21 | 42500 | 0.2399 | 0.3107 | | 1.0933 | 54.85 | 43000 | 0.2383 | 0.3134 | | 1.0912 | 55.48 | 43500 | 0.2372 | 0.3077 | | 1.0898 | 56.12 | 44000 | 0.2339 | 0.3083 | | 1.0903 | 56.76 | 44500 | 0.2367 | 0.3065 | | 1.0947 | 57.4 | 45000 | 0.2352 | 0.3104 | | 1.0751 | 58.04 | 45500 | 0.2334 | 0.3084 | | 1.09 | 58.67 | 46000 | 0.2328 | 0.3100 | | 1.0876 | 59.31 | 46500 | 0.2276 | 0.3050 | | 1.076 | 59.95 | 47000 | 0.2309 | 0.3047 | | 1.086 | 60.59 | 47500 | 0.2293 | 0.3047 | | 1.082 | 61.22 | 48000 | 0.2328 | 0.3027 | | 1.0714 | 61.86 | 48500 | 0.2290 | 0.3020 | | 1.0746 | 62.5 | 49000 | 0.2313 | 0.3059 | | 1.076 | 63.14 | 49500 | 0.2342 | 0.3050 | | 1.0648 | 63.78 | 50000 | 0.2286 | 0.3025 | | 1.0586 | 64.41 | 50500 | 0.2338 | 0.3044 | | 1.0753 | 65.05 | 51000 | 0.2308 | 0.3045 | | 1.0664 | 65.69 | 51500 | 0.2273 | 0.3009 | | 1.0739 | 66.33 | 52000 | 0.2298 | 0.3027 | | 1.0695 | 66.96 | 52500 | 0.2247 | 0.2996 | | 1.06 | 67.6 | 53000 | 0.2276 | 0.3015 | | 1.0742 | 68.24 | 53500 | 0.2280 | 0.2974 | | 1.0618 | 68.88 | 54000 | 0.2291 | 0.2989 | | 1.062 | 69.52 | 54500 | 0.2302 | 0.2971 | | 1.0572 | 70.15 | 55000 | 0.2280 | 0.2990 | | 1.055 | 70.79 | 55500 | 0.2278 | 0.2983 | | 1.0553 | 71.43 | 56000 | 0.2282 | 0.2991 | | 1.0509 | 72.07 | 56500 | 0.2261 | 0.2959 | | 1.0469 | 72.7 | 57000 | 0.2216 | 0.2919 | | 1.0476 | 73.34 | 57500 | 0.2267 | 0.2989 | | 1.0494 | 73.98 | 58000 | 0.2260 | 0.2960 | | 1.0517 | 74.62 | 58500 | 0.2297 | 0.2989 | | 1.0458 | 75.26 | 59000 | 0.2246 | 0.2923 | | 1.0382 | 75.89 | 59500 | 0.2255 | 0.2922 | | 1.0462 | 76.53 | 60000 | 0.2258 | 0.2954 | | 1.0375 | 77.17 | 60500 | 0.2251 | 0.2929 | | 1.0332 | 77.81 | 61000 | 0.2277 | 0.2940 | | 1.0423 | 78.44 | 61500 | 0.2243 | 0.2896 | | 1.0379 | 79.08 | 62000 | 0.2274 | 0.2928 | | 1.0398 | 79.72 | 62500 | 0.2237 | 0.2928 | | 1.0395 | 80.36 | 63000 | 0.2265 | 0.2956 | | 1.0397 | 80.99 | 63500 | 0.2240 | 0.2920 | | 1.0262 | 81.63 | 64000 | 0.2244 | 0.2934 | | 1.0335 | 82.27 | 64500 | 0.2265 | 0.2936 | | 1.0385 | 82.91 | 65000 | 0.2238 | 0.2928 | | 1.0289 | 83.55 | 65500 | 0.2219 | 0.2912 | | 1.0372 | 84.18 | 66000 | 0.2236 | 0.2898 | | 1.0279 | 84.82 | 66500 | 0.2219 | 0.2902 | | 1.0325 | 85.46 | 67000 | 0.2240 | 0.2908 | | 1.0202 | 86.1 | 67500 | 0.2206 | 0.2886 | | 1.0166 | 86.73 | 68000 | 0.2219 | 0.2886 | | 1.0259 | 87.37 | 68500 | 0.2235 | 0.2897 | | 1.0337 | 88.01 | 69000 | 0.2210 | 0.2873 | | 1.0264 | 88.65 | 69500 | 0.2216 | 0.2882 | | 1.0231 | 89.29 | 70000 | 0.2223 | 0.2899 | | 1.0281 | 89.92 | 70500 | 0.2214 | 0.2872 | | 1.0135 | 90.56 | 71000 | 0.2218 | 0.2868 | | 1.0291 | 91.2 | 71500 | 0.2209 | 0.2863 | | 1.0321 | 91.84 | 72000 | 0.2199 | 0.2876 | | 1.028 | 92.47 | 72500 | 0.2214 | 0.2858 | | 1.0213 | 93.11 | 73000 | 0.2219 | 0.2875 | | 1.0261 | 93.75 | 73500 | 0.2232 | 0.2869 | | 1.0197 | 94.39 | 74000 | 0.2227 | 0.2866 | | 1.0298 | 95.03 | 74500 | 0.2228 | 0.2868 | | 1.0192 | 95.66 | 75000 | 0.2230 | 0.2865 | | 1.0156 | 96.3 | 75500 | 0.2220 | 0.2869 | | 1.0075 | 96.94 | 76000 | 0.2223 | 0.2866 | | 1.0201 | 97.58 | 76500 | 0.2219 | 0.2866 | | 1.0159 | 98.21 | 77000 | 0.2219 | 0.2876 | | 1.0087 | 98.85 | 77500 | 0.2219 | 0.2873 | | 1.0159 | 99.49 | 78000 | 0.2223 | 0.2867 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
FounderOfHuggingface/gpt2_gen_lora_r16_ag_news_t200_e5_non_member_shadow18
FounderOfHuggingface
2023-12-20T16:04:22Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-12-20T16:04:19Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
emre/distilbert-base-uncased-finetuned-squad
emre
2023-12-20T16:03:57Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad base_model: distilbert-base-uncased model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1620 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2256 | 1.0 | 5533 | 1.1620 | | 0.9551 | 2.0 | 11066 | 1.1237 | | 0.7726 | 3.0 | 16599 | 1.1620 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
emre/opus-mt-tr-en-finetuned-en-to-tr
emre
2023-12-20T16:03:39Z
28
1
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "base_model:Helsinki-NLP/opus-mt-tr-en", "base_model:finetune:Helsinki-NLP/opus-mt-tr-en", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-18T22:06:47Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu base_model: Helsinki-NLP/opus-mt-tr-en model-index: - name: opus-mt-tr-en-finetuned-en-to-tr results: - task: type: text2text-generation name: Sequence-to-sequence Language Modeling dataset: name: wmt16 type: wmt16 config: tr-en split: train args: tr-en metrics: - type: bleu value: 6.471 name: Bleu --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-tr-en-finetuned-en-to-tr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-tr-en](https://huggingface.co/Helsinki-NLP/opus-mt-tr-en) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.9429 - Bleu: 6.471 - Gen Len: 56.1688 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| | 1.5266 | 1.0 | 12860 | 2.2526 | 4.5834 | 55.6563 | | 1.2588 | 2.0 | 25720 | 2.0113 | 5.9203 | 56.3506 | | 1.1878 | 3.0 | 38580 | 1.9429 | 6.471 | 56.1688 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
patpizio/xlmr-et-en-all_shuffled-1986-test1000
patpizio
2023-12-20T16:03:18Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-20T15:58:43Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer model-index: - name: xlmr-et-en-all_shuffled-1986-test1000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr-et-en-all_shuffled-1986-test1000 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6014 - R Squared: 0.3080 - Mae: 0.5689 - Pearson R: 0.6032 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 1986 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | R Squared | Mae | Pearson R | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---------:| | No log | 1.0 | 438 | 0.6151 | 0.2923 | 0.6190 | 0.5566 | | 0.7316 | 2.0 | 876 | 0.6246 | 0.2813 | 0.5950 | 0.5899 | | 0.5057 | 3.0 | 1314 | 0.6014 | 0.3080 | 0.5689 | 0.6032 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.6 - Tokenizers 0.14.1