modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-01 18:27:28
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 532
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-01 18:27:19
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
microsoft/unispeech-sat-base-sv
|
microsoft
| 2021-12-17T18:11:05Z | 200 | 0 |
transformers
|
[
"transformers",
"pytorch",
"unispeech-sat",
"audio-xvector",
"speech",
"en",
"dataset:librispeech_asr",
"arxiv:2110.05752",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z |
---
language:
- en
datasets:
- librispeech_asr
tags:
- speech
---
# UniSpeech-SAT-Base for Speaker Verification
[Microsoft's UniSpeech](https://www.microsoft.com/en-us/research/publication/unispeech-unified-speech-representation-learning-with-labeled-and-unlabeled-data/)
The model was pretrained on 16kHz sampled speech audio with utterance and speaker contrastive loss. When using the model, make sure that your speech input is also sampled at 16kHz.
The model was pre-trained on:
- 960 hours of [LibriSpeech](https://huggingface.co/datasets/librispeech_asr)
[Paper: UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER
AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752)
Authors: Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu
**Abstract**
*Self-supervised learning (SSL) is a long-standing goal for speech processing, since it utilizes large-scale unlabeled data and avoids extensive human labeling. Recent years witness great successes in applying self-supervised learning in speech recognition, while limited exploration was attempted in applying SSL for modeling speaker characteristics. In this paper, we aim to improve the existing SSL framework for speaker representation learning. Two methods are introduced for enhancing the unsupervised speaker information extraction. First, we apply the multi-task learning to the current SSL framework, where we integrate the utterance-wise contrastive loss with the SSL objective function. Second, for better speaker discrimination, we propose an utterance mixing strategy for data augmentation, where additional overlapped utterances are created unsupervisely and incorporate during training. We integrate the proposed methods into the HuBERT framework. Experiment results on SUPERB benchmark show that the proposed system achieves state-of-the-art performance in universal representation learning, especially for speaker identification oriented tasks. An ablation study is performed verifying the efficacy of each proposed method. Finally, we scale up training dataset to 94 thousand hours public audio data and achieve further performance improvement in all SUPERB tasks..*
The original model can be found under https://github.com/microsoft/UniSpeech/tree/main/UniSpeech-SAT.
# Fine-tuning details
The model is fine-tuned on the [VoxCeleb1 dataset](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.html) using an X-Vector head with an Additive Margin Softmax loss
[X-Vectors: Robust DNN Embeddings for Speaker Recognition](https://www.danielpovey.com/files/2018_icassp_xvectors.pdf)
# Usage
## Speaker Verification
```python
from transformers import Wav2Vec2FeatureExtractor, UniSpeechSatForXVector
from datasets import load_dataset
import torch
dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('microsoft/unispeech-sat-base-sv')
model = UniSpeechSatForXVector.from_pretrained('microsoft/unispeech-sat-base-sv')
# audio files are decoded on the fly
inputs = feature_extractor(dataset[:2]["audio"]["array"], return_tensors="pt")
embeddings = model(**inputs).embeddings
embeddings = torch.nn.functional.normalize(embeddings, dim=-1).cpu()
# the resulting embeddings can be used for cosine similarity-based retrieval
cosine_sim = torch.nn.CosineSimilarity(dim=-1)
similarity = cosine_sim(embeddings[0], embeddings[1])
threshold = 0.86 # the optimal threshold is dataset-dependent
if similarity < threshold:
print("Speakers are not the same!")
```
# License
The official license can be found [here](https://github.com/microsoft/UniSpeech/blob/main/LICENSE)

|
osanseviero/test123
|
osanseviero
| 2021-12-17T15:42:32Z | 0 | 0 |
spacy
|
[
"spacy",
"token-classification",
"de",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- de
license: cc-by-sa-4.0
model-index:
- name: de_udv25_germanhdt_trf
results:
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9783706437
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9782287343
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.7811165904
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9204479606
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9728029281
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.9588036494
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.99750025
---
UD v2.5 benchmarking pipeline for UD_German-HDT
| Feature | Description |
| --- | --- |
| **Name** | `de_udv25_germanhdt_trf` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.2.1,<3.3.0` |
| **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (62832 labels for 6 components)</summary>
| Component | Labels |
| --- | --- |
| **`experimental_char_ner_tokenizer`** | `TOKEN` |
| **`senter`** | `I`, `S` |
| **`tagger`** | `$(`, `$,`, `$.`, `ADJA`, `ADJD`, `ADV`, `APPO`, `APPR`, `APPRART`, `APZR`, `ART`, `CARD`, `FM`, `ITJ`, `KOKOM`, `KON`, `KOUI`, `KOUS`, `NE`, `NN`, `PDAT`, `PDS`, `PIAT`, `PIDAT`, `PIS`, `PPER`, `PPOSAT`, `PPOSS`, `PRELAT`, `PRELS`, `PRF`, `PROAV`, `PTKA`, `PTKANT`, `PTKNEG`, `PTKVZ`, `PTKZU`, `PWAT`, `PWAV`, `PWS`, `TRUNC`, `VAFIN`, `VAIMP`, `VAINF`, `VAPP`, `VMFIN`, `VMINF`, `VMPP`, `VVFIN`, `VVIMP`, `VVINF`, `VVIZU`, `VVPP`, `XY` |
| **`morphologizer`** | `AdpType=Prep\|Case=Dat\|POS=ADP`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Gender=Fem\|Number=Sing\|POS=NOUN\|Person=3`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Number=Sing\|POS=PROPN\|Person=3`, `Foreign=Yes\|POS=X\|Person=3`, `POS=PUNCT\|PunctType=Comm`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=NOUN\|Person=3`, `Gender=Neut\|Number=Sing\|POS=NOUN\|Person=3`, `AdpType=Prep\|POS=ADP`, `Gender=Neut\|Number=Plur\|POS=NOUN\|Person=3`, `POS=CCONJ`, `POS=PUNCT\|PunctType=Peri`, `NumType=Card\|Number=Plur\|POS=NUM\|Person=3`, `Gender=Fem\|Number=Plur\|POS=NOUN\|Person=3`, `AdpType=Prep\|Case=Dat\|POS=ADP\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN\|Person=3`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `POS=PUNCT\|PunctType=Brck`, `POS=PROPN\|Person=3`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `POS=ADV`, `POS=SCONJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=VERB\|VerbForm=Inf`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN\|Person=3`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `Case=Acc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Number=Sing\|POS=PROPN\|Person=3`, `Degree=Cmp\|POS=ADJ\|Variant=Short`, `POS=ADP\|PartType=Vbp`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `AdpType=Prep\|Case=Acc\|POS=ADP`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=PART\|Polarity=Neg`, `Degree=Cmp\|POS=ADV`, `ConjType=Comp\|POS=CCONJ`, `Degree=Pos\|POS=ADJ\|Variant=Short`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Number=Sing\|POS=PROPN\|Person=3`, `Case=Nom\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Acc\|Number=Plur\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Aspect=Perf\|POS=VERB\|VerbForm=Part`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Acc\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Number=Plur\|POS=DET\|Person=3`, `Degree=Sup\|POS=ADJ\|Variant=Short`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Hyph=Yes\|POS=NOUN`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN\|Person=3`, `POS=PART\|PartType=Inf`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Dat\|Degree=Pos\|Number=Sing\|POS=ADJ`, `POS=NOUN\|Person=3`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=ADJ`, `POS=AUX\|VerbForm=Inf`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Gender=Fem\|Number=Plur\|POS=ADJ`, `POS=AUX\|VerbForm=Inf\|VerbType=Mod`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `AdpType=Prep\|Case=Dat\|Gender=Fem\|POS=ADP\|PronType=Art`, `Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN\|Person=3`, `POS=ADJ`, `Degree=Cmp\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Nom\|Number=Plur\|POS=DET\|PronType=Art`, `POS=ADV\|PronType=Int`, `Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Number=Plur\|POS=DET\|Person=3`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Degree=Pos\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|VerbType=Mod`, `Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `Number=Plur\|POS=NOUN\|Person=3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|VerbType=Mod`, `Gender=Fem\|Number=Sing\|POS=PROPN\|Person=3`, `Degree=Pos\|POS=ADV`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Degree=Cmp\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `AdpType=Prep\|Case=Gen\|POS=ADP`, `Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `AdpType=Post\|Case=Dat\|POS=ADP`, `Gender=Masc\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|POS=AUX\|VerbForm=Part`, `Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=ADJ\|Person=3`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Number=Sing\|POS=NOUN\|Person=3`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Degree=Pos\|Number=Plur\|POS=NOUN\|Person=3`, `Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Degree=Sup\|POS=ADV`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Degree=Sup\|Number=Plur\|POS=ADJ\|Person=3`, `Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `NumType=Card\|Number=Sing\|POS=NUM\|Person=3`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Number=Plur\|POS=DET\|Person=3`, `Case=Dat\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Number=Plur\|POS=PROPN\|Person=3`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Number=Sing\|POS=ADJ\|Person=3`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=ADJ`, `AdpType=Prep\|Case=Acc\|Gender=Neut\|POS=ADP\|PronType=Art`, `Case=Gen\|Number=Sing\|POS=PROPN\|Person=3`, `Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Number=Plur\|POS=ADJ\|Person=3`, `POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Nom\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Dat\|Number=Plur\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3`, `POS=ADJ\|Person=3`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Acc\|Number=Plur\|POS=DET\|PronType=Dem`, `AdpType=Circ\|POS=ADP`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `AdpType=Prep\|Case=Nom\|POS=ADP`, `Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=DET\|PronType=Rel`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3`, `Case=Dat\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Degree=Pos\|Number=Plur\|POS=ADJ\|Person=3`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3`, `Case=Dat\|Degree=Pos\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Number=Plur\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Foreign=Yes\|POS=X`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Dat\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Gen\|POS=PROPN\|Person=3`, `Case=Dat\|Number=Plur\|POS=DET\|Person=3`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Number=Plur\|POS=ADJ\|Person=3`, `POS=DET`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=X`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ`, `AdpType=Post\|Case=Acc\|POS=ADP`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Dat\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Degree=Sup\|Number=Plur\|POS=ADJ`, `POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Dat\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=ADJ\|Person=3`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3`, `Case=Gen\|Number=Sing\|POS=NOUN\|Person=3`, `NumType=Card\|POS=NUM`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Number=Plur\|POS=ADJ\|Person=3`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NOUN\|Person=3`, `Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Degree=Sup\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=3`, `Degree=Pos\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Acc\|Number=Plur\|POS=ADJ\|Person=3`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=3`, `Degree=Sup\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|POS=VERB\|Person=3\|VerbForm=Fin`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NOUN\|Person=3`, `POS=ADJ\|Variant=Short`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Foreign=Yes\|Number=Sing\|POS=X`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Aspect=Perf\|POS=AUX\|VerbForm=Part\|VerbType=Mod`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Gender=Masc\|POS=NOUN\|Person=3`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Sing\|POS=ADJ`, `Gender=Neut\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|POS=PROPN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ`, `POS=INTJ\|PartType=Res`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin`, `Foreign=Yes\|Gender=Neut\|Number=Sing\|POS=X\|Person=3`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `POS=DET\|PronType=Int`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `Degree=Pos\|Gender=Neut\|Number=Sing\|POS=NOUN\|Person=3`, `Gender=Neut\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Nom\|POS=NOUN\|Person=3`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|NumType=Card\|Number=Plur\|POS=NUM\|Person=3`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN\|Person=3`, `POS=PROPN`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|VerbType=Mod`, `Case=Acc\|POS=NOUN\|Person=3`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ\|Person=3`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PROPN\|Person=3`, `Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Gen\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Number=Plur\|POS=DET\|Person=3`, `Case=Nom\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Hyph=Yes\|Number=Plur\|POS=NOUN\|Person=3`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Dat\|POS=PROPN\|Person=3`, `Case=Gen\|Number=Plur\|POS=ADJ`, `Case=Gen\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Acc\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Degree=Pos\|Number=Sing\|POS=ADJ\|Person=3`, `POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Degree=Pos\|Number=Plur\|POS=ADJ\|Person=3`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Acc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|POS=PRON\|PronType=Ind,Neg,Tot`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|VerbType=Mod`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Dat\|Degree=Sup\|Number=Plur\|POS=ADJ`, `POS=PRON\|PronType=Int`, `Degree=Pos\|Number=Plur\|POS=ADJ\|Person=3`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Hyph=Yes\|POS=NOUN\|Person=3`, `Degree=Pos\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|NumType=Card\|Number=Plur\|POS=NUM\|Person=3`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `POS=INTJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Acc\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Dat\|Degree=Pos\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|POS=SCONJ`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Number=Sing\|POS=DET\|Person=3\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN\|Person=3`, `AdpType=Post\|Case=Gen\|POS=ADP`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Degree=Pos\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Mood=Ind\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADV`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Acc\|POS=PROPN\|Person=3`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=DET\|PronType=Ind,Neg,Tot`, `Degree=Pos\|POS=ADJ\|Person=3`, `Case=Acc\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|POS=PROPN\|Person=3`, `Case=Nom\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN\|Person=3`, `AdpType=Prep\|Case=Acc\|Gender=Fem\|POS=ADP\|PronType=Art`, `Degree=Pos\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|POS=PRON\|PronType=Rel`, `Case=Acc\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN\|Person=3`, `AdpType=Prep\|Case=Dat\|Gender=Neut\|POS=ADP\|PronType=Art`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int`, `Case=Dat\|POS=NOUN\|Person=3`, `Degree=Pos\|POS=VERB\|VerbForm=Inf`, `Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3\|Variant=Short`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Gender=Neut\|Number=Sing\|POS=SCONJ\|Person=3`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Imp\|Number=Plur\|POS=AUX\|Person=2\|VerbForm=Fin`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin`, `POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=2\|VerbForm=Fin`, `Mood=Ind\|POS=VERB\|Person=1\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|POS=DET\|PronType=Art`, `Degree=Pos\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `AdpType=Prep\|POS=ADP\|PronType=Art`, `Number=Sing\|POS=PRON\|PronType=Ind,Neg,Tot`, `Degree=Sup\|Number=Plur\|POS=DET\|Person=3`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Number=Sing\|POS=DET`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin\|VerbType=Mod`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=NOUN\|Person=3`, `AdpType=Prep\|Case=Dat\|Gender=Masc\|POS=ADP\|PronType=Art`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Degree=Pos\|Gender=Neut\|POS=ADJ`, `Gender=Fem\|POS=ADJ`, `Degree=Pos\|Gender=Fem\|POS=ADJ`, `Gender=Masc\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin\|VerbType=Mod`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin\|VerbType=Mod`, `POS=DET\|Person=3`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|VerbForm=Fin\|VerbType=Mod`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|VerbForm=Fin` |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound:prt`, `conj`, `cop`, `csubj`, `csubj:pass`, `dep`, `det`, `discourse`, `expl`, `expl:pv`, `flat`, `flat:name`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `parataxis`, `punct`, `reparandum`, `vocative`, `xcomp` |
| **`experimental_edit_tree_lemmatizer`** | `0`, `2`, `4`, `6`, `8`, `12`, `14`, `16`, `19`, `22`, `26`, `28`, `30`, `32`, `34`, `38`, `41`, `43`, `45`, `47`, `49`, `53`, `55`, `57`, `58`, `60`, `62`, `65`, `67`, `68`, `69`, `71`, `73`, `75`, `76`, `79`, `81`, `83`, `85`, `86`, `89`, `92`, `94`, `96`, `98`, `100`, `103`, `105`, `106`, `108`, `111`, `113`, `116`, `119`, `122`, `124`, `126`, `129`, `131`, `133`, `136`, `138`, `141`, `143`, `146`, `148`, `151`, `154`, `156`, `158`, `161`, `163`, `165`, `167`, `170`, `173`, `175`, `176`, `178`, `180`, `182`, `183`, `185`, `187`, `189`, `192`, `193`, `195`, `197`, `199`, `202`, `205`, `207`, `209`, `210`, `132`, `212`, `214`, `216`, `218`, `220`, `226`, `229`, `231`, `234`, `236`, `238`, `239`, `240`, `244`, `246`, `248`, `250`, `253`, `257`, `259`, `262`, `263`, `265`, `267`, `269`, `271`, `275`, `277`, `279`, `283`, `285`, `288`, `290`, `292`, `295`, `297`, `299`, `301`, `303`, `307`, `308`, `310`, `311`, `313`, `314`, `316`, `317`, `319`, `321`, `322`, `324`, `325`, `327`, `329`, `331`, `333`, `334`, `337`, `339`, `341`, `343`, `345`, `348`, `349`, `351`, `353`, `355`, `357`, `361`, `363`, `365`, `366`, `368`, `371`, `372`, `373`, `375`, `376`, `378`, `380`, `382`, `383`, `385`, `387`, `389`, `391`, `393`, `395`, `396`, `398`, `399`, `401`, `403`, `405`, `406`, `409`, `412`, `413`, `415`, `417`, `419`, `420`, `421`, `423`, `425`, `427`, `429`, `431`, `433`, `435`, `437`, `439`, `441`, `443`, `448`, `450`, `452`, `454`, `456`, `457`, `459`, `461`, `463`, `465`, `466`, `468`, `470`, `472`, `474`, `476`, `478`, `480`, `482`, `485`, `487`, `489`, `492`, `494`, `495`, `497`, `499`, `500`, `502`, `504`, `506`, `508`, `509`, `510`, `512`, `513`, `516`, `518`, `519`, `521`, `522`, `523`, `525`, `527`, `528`, `529`, `530`, `532`, `534`, `536`, `537`, `544`, `545`, `547`, `549`, `554`, `555`, `556`, `558`, `560`, `562`, `564`, `565`, `567`, `568`, `570`, `572`, `574`, `576`, `577`, `579`, `580`, `581`, `583`, `585`, `587`, `589`, `591`, `592`, `594`, `596`, `599`, `601`, `604`, `608`, `610`, `612`, `614`, `616`, `618`, `620`, `622`, `624`, `625`, `627`, `628`, `630`, `632`, `634`, `635`, `638`, `640`, `642`, `644`, `646`, `647`, `649`, `651`, `656`, `658`, `660`, `661`, `663`, `665`, `667`, `669`, `671`, `256`, `673`, `675`, `677`, `679`, `680`, `682`, `684`, `686`, `688`, `689`, `690`, `692`, `693`, `695`, `697`, `699`, `701`, `702`, `704`, `706`, `708`, `710`, `712`, `714`, `716`, `717`, `719`, `722`, `724`, `726`, `728`, `731`, `733`, `734`, `736`, `738`, `740`, `741`, `744`, `745`, `746`, `748`, `750`, `753`, `754`, `757`, `759`, `760`, `762`, `764`, `766`, `768`, `770`, `771`, `773`, `776`, `778`, `780`, `782`, `784`, `786`, `788`, `789`, `791`, `793`, `795`, `797`, `799`, `801`, `803`, `804`, `806`, `809`, `811`, `812`, `813`, `814`, `815`, `817`, `820`, `821`, `823`, `824`, `827`, `828`, `830`, `833`, `835`, `836`, `843`, `845`, `847`, `849`, `852`, `854`, `858`, `860`, `862`, `864`, `866`, `868`, `870`, `872`, `874`, `876`, `878`, `880`, `882`, `884`, `886`, `888`, `890`, `892`, `895`, `897`, `899`, `901`, `903`, `908`, `911`, `914`, `916`, `918`, `920`, `922`, `924`, `926`, `607`, `928`, `930`, `931`, `932`, `934`, `935`, `937`, `939`, `941`, `943`, `945`, `947`, `949`, `951`, `953`, `955`, `958`, `960`, `961`, `962`, `964`, `967`, `968`, `970`, `971`, `973`, `975`, `977`, `979`, `980`, `982`, `984`, `986`, `988`, `990`, `992`, `994`, `996`, `997`, `999`, `1000`, `1002`, `1004`, `1006`, `1009`, `1010`, `1012`, `1014`, `1016`, `1019`, `1021`, `1023`, `1025`, `1027`, `1029`, `1031`, `1033`, `1035`, `1037`, `1038`, `1040`, `1042`, `1044`, `1046`, `1047`, `1050`, `1051`, `1053`, `1055`, `1059`, `1061`, `1063`, `1065`, `1067`, `1068`, `1070`, `1075`, `1076`, `1078`, `1080`, `1083`, `1085`, `1088`, `1090`, `1094`, `1095`, `1099`, `1100`, `1102`, `1104`, `1106`, `1108`, `1110`, `1111`, `1112`, `1114`, `1116`, `1118`, `1119`, `1121`, `1123`, `1125`, `1127`, `1128`, `1130`, `1132`, `1134`, `1137`, `1138`, `1140`, `1142`, `1144`, `1146`, `1148`, `1149`, `705`, `1151`, `1152`, `1155`, `1157`, `1158`, `1159`, `1161`, `1164`, `1165`, `1167`, `1169`, `1170`, `1172`, `1174`, `1176`, `1178`, `1180`, `1182`, `1184`, `1186`, `1188`, `1191`, `1192`, `1194`, `1195`, `1196`, `1198`, `1199`, `1201`, `1202`, `1203`, `1205`, `1206`, `1207`, `1208`, `1209`, `1210`, `1212`, `1213`, `1215`, `1217`, `1219`, `1221`, `1222`, `1224`, `1226`, `1228`, `1230`, `1231`, `1232`, `1234`, `1236`, `1238`, `1240`, `1242`, `1244`, `1246`, `1248`, `1250`, `1252`, `1254`, `1255`, `1256`, `1258`, `1260`, `1262`, `1263`, `1265`, `1266`, `1268`, `1270`, `1272`, `1273`, `1275`, `1276`, `1278`, `1280`, `1284`, `1287`, `1289`, `1291`, `1292`, `1294`, `1296`, `1297`, `1300`, `1302`, `1304`, `1306`, `1307`, `1309`, `1311`, `1315`, `1318`, `1320`, `1321`, `1322`, `1323`, `1324`, `1326`, `1329`, `1331`, `1333`, `1336`, `1338`, `1340`, `1342`, `1344`, `1346`, `1348`, `1350`, `1352`, `1353`, `1355`, `1358`, `1360`, `1362`, `1364`, `1366`, `1367`, `1369`, `1370`, `1372`, `1373`, `1375`, `1377`, `1378`, `1380`, `1382`, `1384`, `1385`, `1387`, `1389`, `1391`, `1393`, `1394`, `1396`, `1398`, `1400`, `1402`, `1404`, `1406`, `1407`, `1411`, `1413`, `1414`, `1415`, `1416`, `1418`, `1420`, `1422`, `1423`, `1425`, `1427`, `1429`, `1431`, `1433`, `1435`, `1437`, `1439`, `1442`, `1443`, `1445`, `1447`, `1448`, `1450`, `1452`, `1455`, `1459`, `1460`, `1462`, `1464`, `1466`, `1467`, `1471`, `1473`, `1475`, `1477`, `1479`, `1481`, `1483`, `1484`, `1485`, `1487`, `1489`, `1491`, `1493`, `1495`, `1497`, `1499`, `1501`, `1503`, `1505`, `1506`, `1509`, `1511`, `1512`, `1514`, `1515`, `1516`, `1517`, `1519`, `1521`, `1523`, `1525`, `1527`, `1529`, `1532`, `1534`, `1536`, `1538`, `1540`, `1542`, `1543`, `1544`, `1546`, `1547`, `1549`, `1550`, `1552`, `1553`, `1555`, `1556`, `1558`, `1560`, `1562`, `1564`, `1566`, `1567`, `1569`, `1571`, `1573`, `1576`, `1578`, `1581`, `1582`, `1584`, `1586`, `1587`, `1589`, `1592`, `1594`, `1595`, `1597`, `1599`, `1601`, `1603`, `1605`, `1607`, `1609`, `1610`, `1613`, `1615`, `1617`, `1618`, `1620`, `1622`, `1623`, `1625`, `1627`, `1629`, `1631`, `1635`, `1637`, `1639`, `1641`, `1643`, `1644`, `1646`, `1648`, `1653`, `1655`, `1656`, `1658`, `1660`, `1661`, `1663`, `1665`, `1668`, `1670`, `1672`, `1674`, `1676`, `1678`, `1680`, `1682`, `1685`, `1686`, `1688`, `1690`, `1691`, `1693`, `1695`, `1696`, `1698`, `1700`, `1702`, `1703`, `1705`, `1706`, `1708`, `1710`, `1711`, `1713`, `1717`, `1719`, `1721`, `1723`, `1725`, `1727`, `1729`, `1731`, `1737`, `1739`, `1741`, `1743`, `1744`, `1746`, `1747`, `1749`, `1751`, `1753`, `1755`, `1756`, `1757`, `1758`, `1760`, `1761`, `1764`, `1766`, `1768`, `1770`, `1772`, `1774`, `1776`, `1777`, `1778`, `1779`, `1781`, `1783`, `1785`, `1787`, `1789`, `1791`, `1792`, `1794`, `1796`, `1801`, `1803`, `1805`, `1807`, `1809`, `1811`, `1813`, `1815`, `1817`, `1818`, `1820`, `1822`, `1824`, `1826`, `1828`, `1829`, `1831`, `1833`, `1835`, `1837`, `1839`, `1841`, `1842`, `1844`, `1846`, `1848`, `1849`, `1850`, `1852`, `1853`, `1855`, `1858`, `1859`, `1860`, `1861`, `1863`, `1865`, `1867`, `1868`, `1870`, `1872`, `1874`, `1875`, `1876`, `1879`, `1880`, `1882`, `1885`, `1887`, `1889`, `1891`, `1892`, `1894`, `1895`, `1896`, `1898`, `1899`, `1901`, `1904`, `1906`, `1908`, `1910`, `1912`, `1914`, `1917`, `1919`, `1921`, `1923`, `1925`, `1926`, `1928`, `1930`, `1931`, `1933`, `1935`, `1936`, `1938`, `1939`, `1941`, `1943`, `1945`, `1947`, `1948`, `1950`, `1952`, `1954`, `1956`, `1957`, `1960`, `1965`, `1967`, `1969`, `1970`, `1972`, `1974`, `1976`, `1977`, `1979`, `1981`, `1983`, `1985`, `1987`, `1991`, `1993`, `1994`, `1996`, `1997`, `2001`, `2003`, `2005`, `2007`, `2009`, `2010`, `2012`, `2014`, `2015`, `2018`, `2019`, `2021`, `2023`, `2025`, `2027`, `2029`, `2030`, `2032`, `2034`, `2036`, `2037`, `2038`, `2040`, `2042`, `2044`, `2046`, `2048`, `2049`, `2051`, `2053`, `2055`, `2057`, `2062`, `2064`, `2065`, `2066`, `2067`, `2068`, `2069`, `2071`, `2072`, `2074`, `2075`, `2076`, `2078`, `2082`, `2084`, `2085`, `2087`, `2089`, `2090`, `2092`, `2093`, `2094`, `2097`, `2099`, `2101`, `2103`, `2105`, `2108`, `2110`, `2112`, `2113`, `2115`, `2117`, `2119`, `2121`, `2123`, `2124`, `2126`, `2129`, `2131`, `2132`, `2133`, `2134`, `2135`, `2136`, `2138`, `2140`, `2142`, `2000`, `2143`, `2144`, `2146`, `2149`, `2151`, `2153`, `2155`, `2157`, `2159`, `2161`, `2163`, `2165`, `2167`, `2169`, `2171`, `2173`, `2175`, `2177`, `2179`, `2180`, `2182`, `2184`, `2186`, `2188`, `2190`, `2191`, `2193`, `2195`, `2197`, `2199`, `2201`, `2203`, `2204`, `2206`, `2208`, `2209`, `2211`, `2214`, `2215`, `2216`, `2217`, `2219`, `2221`, `2223`, `2224`, `2226`, `2228`, `2230`, `2232`, `2234`, `2236`, `2238`, `2240`, `2243`, `2246`, `2248`, `2250`, `2252`, `2254`, `2255`, `2257`, `2259`, `2260`, `2262`, `2263`, `2265`, `2267`, `2268`, `2269`, `2271`, `2273`, `2275`, `2277`, `2278`, `2280`, `2282`, `2284`, `2286`, `2288`, `2291`, `2293`, `2294`, `2295`, `2297`, `2299`, `2301`, `2303`, `2306`, `2308`, `2310`, `2311`, `2313`, `2315`, `2317`, `2319`, `2321`, `2323`, `2325`, `2327`, `2330`, `2331`, `2332`, `2333`, `2334`, `2336`, `2337`, `2341`, `2342`, `2344`, `2346`, `2348`, `2350`, `2352`, `2354`, `2355`, `2357`, `2358`, `2360`, `2362`, `2364`, `2366`, `2368`, `2370`, `2371`, `2373`, `2376`, `2378`, `2380`, `2382`, `2384`, `2386`, `2388`, `2390`, `2392`, `2393`, `2395`, `2396`, `2398`, `2400`, `2401`, `2403`, `2405`, `2407`, `2410`, `2412`, `2413`, `2414`, `2415`, `2417`, `2419`, `2420`, `2422`, `2424`, `2426`, `2428`, `2429`, `2433`, `2435`, `2436`, `2438`, `2440`, `2441`, `2443`, `2444`, `2446`, `2448`, `2451`, `2453`, `2454`, `2455`, `2456`, `2458`, `2459`, `2461`, `2463`, `2464`, `2466`, `2467`, `2469`, `2471`, `2473`, `2475`, `2477`, `2478`, `2481`, `2482`, `2484`, `2485`, `2490`, `2491`, `2494`, `2496`, `2497`, `2498`, `2500`, `2502`, `2507`, `2509`, `2511`, `2513`, `2515`, `2517`, `2519`, `2520`, `2522`, `2524`, `2526`, `2527`, `2529`, `2531`, `2533`, `2535`, `2538`, `2539`, `2540`, `2542`, `2544`, `2546`, `2549`, `2550`, `2552`, `2554`, `2556`, `2558`, `2559`, `2562`, `2565`, `2569`, `2571`, `2573`, `2575`, `2577`, `2579`, `2581`, `2583`, `2585`, `2588`, `2590`, `2592`, `2594`, `2596`, `2599`, `2601`, `2603`, `2605`, `2607`, `2609`, `2611`, `2613`, `2615`, `2618`, `2619`, `2621`, `2623`, `2625`, `2626`, `2628`, `2630`, `2632`, `2633`, `2635`, `2636`, `2637`, `2638`, `2639`, `2641`, `2643`, `2645`, `2647`, `2649`, `2651`, `2654`, `2656`, `2658`, `2660`, `2662`, `2663`, `2665`, `2667`, `2668`, `2672`, `2674`, `2676`, `2678`, `2680`, `2682`, `2684`, `2686`, `2688`, `2691`, `2693`, `2695`, `2696`, `2698`, `2699`, `2701`, `2702`, `2704`, `2706`, `2708`, `2710`, `2711`, `2714`, `2716`, `2718`, `2720`, `2722`, `2724`, `2725`, `2727`, `2728`, `2730`, `2732`, `2734`, `2736`, `2738`, `2740`, `2742`, `2743`, `2745`, `2747`, `2749`, `2751`, `2753`, `2754`, `2757`, `2759`, `2761`, `2763`, `2765`, `2768`, `2770`, `2772`, `2776`, `2783`, `2787`, `2789`, `2791`, `2793`, `2795`, `2796`, `2798`, `2800`, `2802`, `2804`, `2805`, `2806`, `2809`, `2811`, `2813`, `2814`, `2816`, `2818`, `2819`, `2820`, `2822`, `2824`, `2826`, `2827`, `2829`, `2831`, `2833`, `2835`, `2837`, `2839`, `2841`, `2844`, `2846`, `2847`, `2848`, `2850`, `2852`, `2857`, `2859`, `2860`, `2861`, `2863`, `2864`, `2866`, `2868`, `2870`, `2872`, `2874`, `2875`, `2877`, `2878`, `2880`, `2881`, `2883`, `2886`, `2888`, `2894`, `2896`, `2902`, `2906`, `2908`, `2910`, `2912`, `2913`, `2915`, `2916`, `2918`, `2920`, `2922`, `2924`, `2926`, `2928`, `2930`, `2934`, `2936`, `2937`, `2939`, `2941`, `2943`, `2944`, `2946`, `2947`, `2949`, `2952`, `2954`, `2956`, `2957`, `2960`, `2962`, `2964`, `2965`, `2967`, `2968`, `2970`, `2972`, `2974`, `2976`, `2979`, `2982`, `2984`, `2986`, `2988`, `2990`, `2991`, `2993`, `2995`, `2997`, `2998`, `3000`, `3002`, `3004`, `3006`, `3008`, `3010`, `3015`, `3017`, `3019`, `3021`, `3023`, `3025`, `3027`, `3030`, `3031`, `3032`, `3034`, `3036`, `3038`, `3039`, `3041`, `3043`, `3045`, `3046`, `3048`, `3050`, `3051`, `3054`, `3055`, `3057`, `3060`, `3062`, `3064`, `3065`, `3066`, `3068`, `3069`, `3071`, `3072`, `3074`, `3076`, `3077`, `3080`, `3082`, `3083`, `3085`, `3088`, `3091`, `3093`, `3095`, `3097`, `3099`, `3101`, `3103`, `3105`, `3106`, `3107`, `3109`, `3111`, `3112`, `3114`, `3116`, `3118`, `3120`, `3122`, `3125`, `3126`, `3128`, `3130`, `3132`, `3134`, `3136`, `3139`, `3140`, `3142`, `3143`, `3144`, `3150`, `3152`, `3154`, `3156`, `3158`, `3159`, `3161`, `3163`, `3166`, `3168`, `3170`, `3172`, `3173`, `3174`, `3176`, `3177`, `3179`, `3180`, `3182`, `3184`, `3185`, `3187`, `3189`, `3191`, `3193`, `3194`, `3195`, `3197`, `3198`, `3200`, `3201`, `3203`, `3205`, `3208`, `3210`, `3212`, `3214`, `3216`, `3218`, `3220`, `3221`, `3224`, `3226`, `3229`, `3231`, `3233`, `3234`, `3236`, `3238`, `3240`, `3242`, `3244`, `3245`, `3247`, `3248`, `3250`, `3252`, `3254`, `3255`, `3257`, `3259`, `3261`, `3263`, `3265`, `3267`, `3269`, `3271`, `3273`, `3275`, `3278`, `3279`, `3281`, `3283`, `3285`, `3287`, `3288`, `3289`, `3290`, `3292`, `3294`, `3297`, `3299`, `3301`, `3303`, `3304`, `3306`, `3307`, `3311`, `3313`, `3315`, `3317`, `3319`, `3321`, `3323`, `1441`, `3324`, `3325`, `3326`, `3328`, `3330`, `3332`, `3333`, `3335`, `3337`, `3339`, `3341`, `3343`, `3345`, `3346`, `3348`, `3349`, `3351`, `3353`, `3355`, `3356`, `3358`, `3359`, `3361`, `3363`, `3365`, `3367`, `3368`, `3370`, `3372`, `3373`, `3375`, `3377`, `3379`, `3381`, `3382`, `3385`, `3387`, `3388`, `3389`, `3391`, `3393`, `3395`, `3397`, `3399`, `3401`, `3405`, `3407`, `3409`, `3411`, `3413`, `3415`, `3417`, `3419`, `3421`, `3423`, `3425`, `3426`, `3427`, `3428`, `3430`, `3432`, `3436`, `3437`, `3439`, `3441`, `3442`, `3444`, `3447`, `3448`, `3450`, `3452`, `3454`, `3456`, `3457`, `3459`, `3461`, `3463`, `3466`, `3468`, `3469`, `3470`, `3471`, `3473`, `3474`, `3476`, `3478`, `3479`, `3481`, `3483`, `3484`, `3486`, `3488`, `3490`, `3492`, `3494`, `3496`, `3498`, `3500`, `3501`, `3502`, `3504`, `3505`, `3507`, `3509`, `3510`, `3512`, `3515`, `3517`, `3521`, `3523`, `3525`, `3528`, `3529`, `3530`, `3532`, `3535`, `3536`, `3538`, `3539`, `3541`, `3542`, `3544`, `3547`, `3548`, `3550`, `3552`, `3553`, `3555`, `3557`, `3559`, `3561`, `3563`, `3565`, `3566`, `3568`, `3570`, `3575`, `3578`, `3580`, `3581`, `3583`, `3584`, `3586`, `3588`, `3589`, `3591`, `3593`, `3595`, `3597`, `3598`, `3600`, `3601`, `3603`, `3605`, `3607`, `3609`, `3611`, `3612`, `3614`, `3616`, `3618`, `3620`, `3622`, `3624`, `3626`, `3629`, `3631`, `3633`, `3635`, `3637`, `3639`, `3640`, `3642`, `3644`, `3645`, `3646`, `3648`, `3649`, `3651`, `3653`, `3659`, `3661`, `3663`, `3665`, `3667`, `3669`, `3671`, `3675`, `3677`, `3679`, `3681`, `3682`, `3684`, `3685`, `3687`, `3688`, `3689`, `3691`, `3693`, `3694`, `3696`, `3698`, `3701`, `3703`, `3704`, `3706`, `3708`, `3710`, `3711`, `3713`, `3715`, `3717`, `3719`, `3720`, `3722`, `3725`, `3726`, `3727`, `3729`, `3731`, `3732`, `3734`, `3736`, `3738`, `3740`, `3742`, `3744`, `3746`, `3749`, `3751`, `3752`, `3754`, `3757`, `3758`, `3759`, `3760`, `3762`, `3764`, `3766`, `3767`, `3769`, `3771`, `3774`, `3776`, `3777`, `3779`, `3781`, `3782`, `3784`, `3786`, `3787`, `3789`, `3790`, `3791`, `3793`, `3795`, `3797`, `3798`, `3799`, `3801`, `3803`, `3805`, `3807`, `3809`, `3810`, `3812`, `3814`, `3816`, `3818`, `3820`, `3821`, `3823`, `3825`, `3827`, `3829`, `3832`, `3834`, `3835`, `3836`, `3837`, `3838`, `3840`, `3842`, `3843`, `3845`, `3847`, `3848`, `3850`, `3852`, `3854`, `3855`, `3857`, `3859`, `3860`, `3862`, `3863`, `3865`, `3867`, `3869`, `3871`, `3873`, `3874`, `3876`, `3878`, `3879`, `3881`, `3882`, `3883`, `3885`, `3887`, `3889`, `3891`, `3893`, `3895`, `3897`, `3898`, `3900`, `3902`, `3904`, `3905`, `3907`, `3909`, `3911`, `3913`, `3915`, `3917`, `3919`, `3920`, `3922`, `3924`, `3926`, `3927`, `3928`, `3930`, `3932`, `3934`, `3936`, `3938`, `3939`, `3940`, `3942`, `3944`, `3946`, `3948`, `3950`, `3952`, `3954`, `3956`, `3957`, `3958`, `3960`, `3962`, `3964`, `3966`, `3967`, `3968`, `3970`, `3972`, `3974`, `3976`, `3979`, `3980`, `3981`, `3982`, `3983`, `3985`, `3987`, `3989`, `3990`, `3992`, `3994`, `3996`, `3997`, `3998`, `4000`, `4002`, `4004`, `4006`, `4008`, `4010`, `4012`, `4014`, `4016`, `4018`, `4019`, `4021`, `4023`, `4024`, `4025`, `4027`, `4029`, `4031`, `486`, `4033`, `4035`, `4037`, `4040`, `4042`, `4044`, `4046`, `4048`, `4050`, `4052`, `4053`, `4055`, `4056`, `4057`, `4058`, `4061`, `4062`, `4063`, `4065`, `4066`, `4068`, `4070`, `4072`, `4074`, `4076`, `4077`, `4080`, `4082`, `4084`, `4086`, `4088`, `4090`, `4091`, `4093`, `4095`, `4097`, `4099`, `4101`, `4103`, `4105`, `4106`, `4107`, `4109`, `4112`, `4114`, `4116`, `4117`, `4119`, `4121`, `4123`, `4124`, `4125`, `4127`, `4129`, `4131`, `4133`, `4134`, `4136`, `4138`, `4139`, `4141`, `4142`, `4145`, `4148`, `4149`, `4151`, `4153`, `4155`, `4156`, `4158`, `4159`, `4160`, `4161`, `4162`, `4164`, `4166`, `4168`, `4170`, `4171`, `3945`, `4173`, `4175`, `4177`, `4178`, `4180`, `4182`, `4184`, `4186`, `4188`, `4190`, `4192`, `4194`, `4195`, `4197`, `4199`, `4201`, `4203`, `4205`, `4208`, `4210`, `4211`, `4213`, `4215`, `4217`, `4219`, `4221`, `4224`, `4226`, `4228`, `4230`, `4232`, `4234`, `4236`, `4237`, `4239`, `4241`, `4243`, `4245`, `4247`, `4249`, `4251`, `4253`, `4255`, `4257`, `4259`, `4260`, `4262`, `4264`, `4267`, `4268`, `4270`, `4272`, `4274`, `4277`, `4278`, `4279`, `4281`, `4283`, `4284`, `4285`, `4287`, `4289`, `4291`, `4292`, `4294`, `4296`, `4298`, `4300`, `4302`, `4304`, `4305`, `4307`, `4308`, `4310`, `4312`, `4314`, `4315`, `4317`, `4319`, `4321`, `4323`, `4325`, `4327`, `4329`, `4331`, `4332`, `4334`, `4336`, `4338`, `4340`, `4342`, `4343`, `4344`, `4345`, `4347`, `4349`, `4351`, `4353`, `4354`, `4356`, `4358`, `4360`, `4362`, `4363`, `4365`, `4367`, `4368`, `4370`, `4372`, `4373`, `4375`, `4377`, `4379`, `4380`, `4382`, `4384`, `4386`, `4388`, `4390`, `4392`, `4393`, `4395`, `4397`, `4399`, `4401`, `4402`, `4404`, `4406`, `4407`, `4409`, `4411`, `4413`, `4415`, `4417`, `4419`, `4421`, `4423`, `4425`, `4427`, `4429`, `4431`, `4433`, `4435`, `4436`, `4438`, `4440`, `4442`, `4444`, `4445`, `4447`, `4449`, `4451`, `4453`, `4455`, `4457`, `4458`, `4460`, `4461`, `4462`, `4464`, `4466`, `4468`, `4469`, `4470`, `4472`, `4474`, `4475`, `4477`, `4478`, `4480`, `4482`, `4483`, `4485`, `4487`, `4488`, `4490`, `4491`, `4492`, `4493`, `4495`, `4497`, `4499`, `4502`, `4503`, `4504`, `4506`, `4508`, `4510`, `4512`, `4514`, `4516`, `4518`, `4519`, `4521`, `4523`, `4527`, `4529`, `4531`, `4532`, `4533`, `4534`, `4536`, `4538`, `4539`, `4542`, `4544`, `4547`, `4549`, `4551`, `4553`, `4555`, `4557`, `4559`, `4560`, `4562`, `4564`, `4566`, `4567`, `4569`, `4570`, `4572`, `4573`, `4575`, `4576`, `4578`, `4580`, `4581`, `4583`, `4585`, `4587`, `4589`, `4590`, `4592`, `4594`, `4596`, `4597`, `4599`, `4601`, `4603`, `4605`, `4607`, `4609`, `4610`, `4612`, `4613`, `4614`, `4615`, `4617`, `4619`, `4620`, `4621`, `4623`, `4624`, `4626`, `4628`, `4630`, `4632`, `4633`, `4634`, `4636`, `4638`, `4640`, `4642`, `4645`, `4647`, `4648`, `4650`, `4652`, `4654`, `4656`, `4657`, `4659`, `4661`, `4663`, `4666`, `4667`, `4668`, `4670`, `4672`, `4673`, `4675`, `4676`, `4678`, `4679`, `4681`, `4683`, `4685`, `4687`, `4689`, `4691`, `4693`, `4694`, `4696`, `4698`, `4699`, `4700`, `4704`, `4706`, `4708`, `4710`, `4712`, `4714`, `4716`, `4718`, `4720`, `4722`, `4724`, `4726`, `4727`, `4729`, `4731`, `4732`, `4733`, `4735`, `4737`, `4739`, `4740`, `4742`, `4743`, `4745`, `4746`, `4748`, `4750`, `4752`, `4755`, `4758`, `4760`, `4761`, `4763`, `4765`, `4767`, `4769`, `4771`, `4773`, `4774`, `4776`, `4778`, `4780`, `4782`, `4783`, `4785`, `4787`, `4789`, `4791`, `4792`, `4794`, `4796`, `4798`, `4800`, `4801`, `4803`, `4806`, `4808`, `4810`, `4811`, `4814`, `4815`, `4816`, `4818`, `4820`, `4822`, `4823`, `4825`, `4827`, `4829`, `4831`, `4834`, `4836`, `4838`, `4840`, `4842`, `4844`, `4846`, `4848`, `4850`, `4851`, `4853`, `4855`, `4857`, `4858`, `4860`, `4862`, `4864`, `4866`, `4868`, `4870`, `4872`, `4874`, `4876`, `4877`, `4879`, `4881`, `4883`, `4885`, `4886`, `4887`, `4889`, `4892`, `4893`, `4895`, `4897`, `4899`, `4900`, `4902`, `4905`, `4906`, `4908`, `4909`, `4910`, `4912`, `4914`, `4916`, `4917`, `4919`, `4920`, `4921`, `4923`, `4925`, `4927`, `4929`, `4932`, `4933`, `4935`, `4937`, `4940`, `4941`, `4943`, `4946`, `4949`, `4951`, `4952`, `4954`, `4955`, `4958`, `4959`, `4961`, `4963`, `4965`, `4967`, `4969`, `4971`, `4973`, `4975`, `4977`, `4979`, `4980`, `4982`, `4984`, `4986`, `4988`, `4990`, `4992`, `4995`, `4997`, `4999`, `5000`, `5002`, `5004`, `5006`, `5008`, `5010`, `5012`, `5014`, `5015`, `5016`, `5017`, `5019`, `5022`, `5023`, `5025`, `5027`, `5030`, `5035`, `5037`, `5039`, `5041`, `5043`, `5045`, `5047`, `5049`, `5054`, `5055`, `5057`, `5059`, `5061`, `5063`, `5065`, `5067`, `5072`, `5074`, `5076`, `5078`, `5080`, `5081`, `5083`, `5085`, `5087`, `5089`, `5091`, `5093`, `5095`, `5097`, `5099`, `5101`, `5103`, `5105`, `5107`, `5109`, `5111`, `5113`, `5114`, `5115`, `5117`, `5119`, `5121`, `5123`, `5125`, `5127`, `5128`, `5130`, `5132`, `5134`, `5135`, `5136`, `5138`, `5139`, `5141`, `5143`, `5145`, `5147`, `5149`, `5150`, `5152`, `5154`, `5156`, `5158`, `5160`, `5162`, `5164`, `5166`, `5168`, `5169`, `5170`, `5171`, `5173`, `5175`, `5177`, `5179`, `5181`, `5183`, `5186`, `5188`, `5190`, `5192`, `5193`, `5195`, `5197`, `5199`, `5201`, `5203`, `5205`, `5206`, `5208`, `5210`, `5212`, `5214`, `5216`, `5217`, `5220`, `5223`, `5225`, `5227`, `5229`, `5231`, `5233`, `5235`, `5237`, `5239`, `5241`, `5243`, `5246`, `5248`, `5250`, `5252`, `5253`, `5254`, `5255`, `5257`, `5259`, `5261`, `5263`, `5265`, `5267`, `5269`, `5270`, `5272`, `5274`, `5276`, `5278`, `5280`, `5281`, `5283`, `5285`, `5287`, `5288`, `5290`, `5292`, `5294`, `5296`, `5298`, `5300`, `5302`, `5304`, `5307`, `5309`, `5311`, `5313`, `5315`, `5316`, `5318`, `5319`, `5321`, `5323`, `5325`, `5326`, `5328`, `5330`, `5332`, `5334`, `5335`, `5336`, `5337`, `5339`, `5341`, `5343`, `5345`, `5347`, `5349`, `5351`, `5352`, `5355`, `5357`, `5359`, `5361`, `5363`, `5365`, `5367`, `5369`, `5371`, `5374`, `5375`, `5377`, `5379`, `5381`, `5382`, `5384`, `5386`, `5389`, `5391`, `5392`, `5394`, `5396`, `27`, `5398`, `5400`, `5403`, `5405`, `5407`, `5409`, `5411`, `5414`, `5416`, `5420`, `5422`, `5424`, `5426`, `5428`, `5430`, `5431`, `5433`, `5435`, `5437`, `5439`, `5441`, `5442`, `5444`, `5446`, `5448`, `5450`, `5452`, `5454`, `5455`, `5458`, `5460`, `5462`, `5463`, `5464`, `5466`, `5468`, `5470`, `5472`, `5474`, `5476`, `5477`, `5479`, `5481`, `5482`, `5484`, `5486`, `5488`, `5490`, `5492`, `5493`, `5495`, `5496`, `5498`, `5500`, `5502`, `5503`, `5504`, `5506`, `5507`, `5508`, `5510`, `5512`, `5514`, `5516`, `5521`, `5523`, `5525`, `5527`, `5530`, `5531`, `5533`, `5535`, `5538`, `5540`, `5542`, `5544`, `5545`, `5547`, `5548`, `5550`, `5551`, `5554`, `5556`, `5557`, `5559`, `5561`, `5562`, `5565`, `5567`, `5569`, `5571`, `5573`, `5576`, `5578`, `5580`, `5582`, `5584`, `5586`, `5588`, `5590`, `5592`, `5594`, `5595`, `5597`, `5599`, `5601`, `5603`, `5604`, `5606`, `5608`, `5610`, `5611`, `5613`, `5614`, `5616`, `5618`, `5620`, `5622`, `5625`, `5627`, `5629`, `5630`, `5632`, `5635`, `5636`, `5638`, `5640`, `5642`, `5644`, `5647`, `5651`, `5653`, `5655`, `5657`, `5659`, `5660`, `5662`, `5664`, `5666`, `5668`, `5670`, `5671`, `5673`, `5675`, `5676`, `5678`, `5680`, `5682`, `5684`, `5686`, `5688`, `5690`, `5692`, `5695`, `5697`, `5699`, `5701`, `5703`, `5705`, `5707`, `5709`, `5711`, `5713`, `5716`, `5718`, `5720`, `5722`, `5723`, `5725`, `5727`, `5728`, `5730`, `5732`, `5734`, `5736`, `5738`, `5740`, `5742`, `5744`, `5746`, `5748`, `5749`, `5751`, `5753`, `5756`, `5758`, `5762`, `5764`, `5766`, `5768`, `5770`, `5772`, `5774`, `5776`, `5778`, `5780`, `5782`, `5784`, `5786`, `5788`, `5790`, `5792`, `5794`, `5795`, `5797`, `5799`, `5801`, `5803`, `5805`, `5807`, `5808`, `5810`, `5813`, `5815`, `5817`, `5819`, `5821`, `5823`, `5824`, `5826`, `5828`, `5830`, `5832`, `5834`, `5836`, `5838`, `5839`, `5841`, `5843`, `5844`, `5846`, `5848`, `5851`, `5853`, `5854`, `5856`, `5857`, `5858`, `5860`, `5862`, `5864`, `5866`, `5868`, `5869`, `5871`, `5873`, `5874`, `5876`, `5878`, `5880`, `5881`, `5883`, `5886`, `5888`, `5890`, `5891`, `5893`, `5895`, `5897`, `5899`, `5900`, `5901`, `5902`, `5904`, `5906`, `5908`, `5911`, `5913`, `5915`, `5917`, `5918`, `1652`, `5920`, `5922`, `5924`, `5926`, `5928`, `5930`, `5932`, `5934`, `5936`, `5937`, `5939`, `5940`, `5942`, `5944`, `5946`, `5947`, `5948`, `5950`, `5952`, `5953`, `5955`, `5957`, `5959`, `5961`, `5962`, `5964`, `5966`, `5968`, `5970`, `5972`, `5974`, `5976`, `5978`, `5979`, `5981`, `5982`, `5984`, `5986`, `5988`, `5990`, `5992`, `5994`, `5995`, `5996`, `5998`, `6000`, `6001`, `6003`, `6005`, `6007`, `6008`, `6010`, `6012`, `6013`, `6015`, `6016`, `6018`, `6020`, `6022`, `6024`, `6026`, `6028`, `6030`, `6032`, `6034`, `6036`, `6038`, `6040`, `6042`, `6043`, `6045`, `6046`, `6048`, `6050`, `6052`, `6054`, `6056`, `6058`, `6059`, `6061`, `6063`, `6065`, `6067`, `6069`, `6071`, `6073`, `6074`, `6076`, `6078`, `6080`, `6082`, `6084`, `6086`, `6088`, `6089`, `6090`, `6092`, `6093`, `6095`, `6097`, `6098`, `6100`, `6102`, `6103`, `6105`, `6106`, `6108`, `6109`, `6111`, `6113`, `6115`, `6118`, `6119`, `6121`, `6123`, `6125`, `6127`, `6129`, `6131`, `6133`, `6135`, `6137`, `6140`, `6142`, `6145`, `6147`, `6149`, `6151`, `6153`, `6156`, `6157`, `6159`, `6161`, `6162`, `6164`, `6166`, `6167`, `6169`, `6171`, `6173`, `6175`, `6177`, `6179`, `6181`, `6183`, `6185`, `6187`, `6188`, `6189`, `6191`, `6193`, `6195`, `6197`, `6198`, `6200`, `6202`, `6204`, `6205`, `6207`, `6209`, `6211`, `6213`, `6215`, `6217`, `6219`, `6221`, `6223`, `6225`, `6226`, `6228`, `6230`, `6232`, `6234`, `6236`, `6238`, `6240`, `6243`, `6245`, `6246`, `6248`, `6250`, `6252`, `6253`, `6256`, `6257`, `6259`, `6262`, `6264`, `6265`, `6267`, `6268`, `6269`, `6271`, `6273`, `6276`, `6278`, `6280`, `6282`, `6284`, `6286`, `6288`, `6289`, `6290`, `6291`, `6293`, `6294`, `6296`, `6298`, `6300`, `6302`, `6304`, `6305`, `6306`, `6307`, `6309`, `6311`, `6313`, `6317`, `6319`, `6321`, `6323`, `6325`, `6328`, `6330`, `6332`, `6334`, `6335`, `6336`, `6338`, `6339`, `6341`, `6343`, `6345`, `6346`, `6347`, `6349`, `6351`, `6353`, `6355`, `6357`, `6359`, `6361`, `6363`, `6366`, `6367`, `6369`, `6371`, `6373`, `6375`, `6377`, `6379`, `6381`, `6383`, `6385`, `6387`, `6389`, `6391`, `6394`, `6396`, `6398`, `6400`, `6402`, `6404`, `6405`, `6407`, `6409`, `6411`, `6413`, `6415`, `6417`, `6419`, `6421`, `6423`, `6425`, `6426`, `6428`, `6429`, `6430`, `6431`, `6433`, `6435`, `6437`, `6439`, `6441`, `6443`, `6444`, `6447`, `6449`, `6451`, `6453`, `6455`, `6457`, `6459`, `6461`, `6463`, `6465`, `6467`, `6469`, `6472`, `6474`, `6476`, `6478`, `6479`, `6480`, `6482`, `6484`, `6485`, `6487`, `6489`, `6491`, `6493`, `6495`, `6497`, `6498`, `6500`, `6501`, `6505`, `6506`, `6508`, `6510`, `6511`, `6513`, `6517`, `6519`, `6521`, `6523`, `6524`, `6526`, `6527`, `6529`, `6531`, `6533`, `6534`, `6536`, `6539`, `6541`, `6543`, `6545`, `6547`, `6549`, `6551`, `6553`, `6555`, `6557`, `6558`, `6560`, `6561`, `6563`, `6565`, `6568`, `6570`, `6572`, `6574`, `6577`, `6579`, `6581`, `6583`, `6584`, `6586`, `6588`, `6590`, `6592`, `6594`, `6596`, `6599`, `6601`, `6603`, `6604`, `6606`, `6608`, `6610`, `6612`, `6614`, `6615`, `6617`, `6619`, `6621`, `6623`, `6624`, `6625`, `6627`, `6629`, `6631`, `6633`, `6636`, `6637`, `6639`, `6641`, `6642`, `6644`, `6646`, `6648`, `6649`, `6651`, `6653`, `6655`, `6657`, `6659`, `6660`, `6662`, `6665`, `6668`, `6670`, `6672`, `6674`, `6676`, `6678`, `6680`, `6682`, `6684`, `6686`, `6688`, `6690`, `6691`, `6692`, `6693`, `6694`, `6695`, `6697`, `6698`, `6700`, `6701`, `6702`, `6704`, `6705`, `6707`, `6709`, `6711`, `6712`, `6714`, `6715`, `6717`, `6718`, `6720`, `6722`, `6724`, `6726`, `6729`, `6731`, `6733`, `6734`, `6735`, `6738`, `6740`, `6741`, `6743`, `6745`, `6747`, `6749`, `6751`, `6753`, `6755`, `6757`, `6759`, `6761`, `6763`, `6765`, `6767`, `6769`, `6771`, `6773`, `6775`, `6777`, `6779`, `6781`, `6783`, `6785`, `6787`, `6788`, `6789`, `6790`, `6791`, `6793`, `6795`, `6796`, `6798`, `6799`, `6800`, `6802`, `6804`, `6805`, `6806`, `6808`, `6810`, `6812`, `6814`, `6815`, `6817`, `6819`, `6821`, `6823`, `6824`, `6826`, `6828`, `6830`, `6831`, `6832`, `6834`, `6836`, `6838`, `6840`, `6842`, `6844`, `6846`, `6848`, `6850`, `6852`, `6853`, `6855`, `6857`, `6859`, `6861`, `6862`, `6864`, `6866`, `6868`, `6870`, `6871`, `6874`, `6876`, `6878`, `6879`, `6881`, `6882`, `6884`, `6886`, `6888`, `6890`, `6892`, `6894`, `6896`, `6898`, `6900`, `6902`, `6904`, `6907`, `6910`, `6912`, `6914`, `6915`, `6917`, `6919`, `6921`, `6922`, `6924`, `6926`, `6928`, `6930`, `6932`, `6934`, `6936`, `6938`, `6940`, `6942`, `6944`, `6946`, `6948`, `6950`, `6952`, `6954`, `6955`, `6956`, `6958`, `6960`, `6962`, `6964`, `6966`, `6968`, `6970`, `6972`, `6974`, `6976`, `6978`, `6979`, `6980`, `6981`, `6983`, `6985`, `6987`, `6989`, `6991`, `6993`, `6995`, `6997`, `6999`, `7000`, `7002`, `7005`, `7007`, `7008`, `7010`, `7012`, `7013`, `7015`, `7017`, `7019`, `7021`, `7023`, `7025`, `7027`, `7029`, `7031`, `7032`, `7034`, `7036`, `7038`, `7040`, `7042`, `7044`, `7046`, `7047`, `7048`, `7050`, `7052`, `7054`, `7056`, `7057`, `7059`, `7061`, `7063`, `7065`, `7067`, `7069`, `7071`, `7073`, `7077`, `7079`, `7081`, `7083`, `7085`, `7086`, `7088`, `7090`, `7092`, `7094`, `7096`, `7098`, `7100`, `7104`, `7107`, `7108`, `7110`, `7112`, `7114`, `7116`, `7118`, `7119`, `7121`, `7122`, `7124`, `7125`, `7128`, `7130`, `7132`, `7133`, `7135`, `7137`, `7139`, `7141`, `7143`, `7145`, `7147`, `7149`, `7150`, `7152`, `7154`, `7156`, `7158`, `7160`, `7162`, `7164`, `7166`, `7168`, `7171`, `7172`, `7174`, `7176`, `7178`, `7180`, `7182`, `7183`, `7185`, `7186`, `7188`, `7190`, `7192`, `7195`, `7197`, `7199`, `7201`, `7203`, `7205`, `7207`, `7208`, `7210`, `7212`, `7214`, `7217`, `7221`, `7223`, `7225`, `7227`, `7229`, `7230`, `7232`, `7234`, `7236`, `7237`, `7239`, `7241`, `7244`, `7246`, `7248`, `7249`, `7251`, `7252`, `7254`, `7256`, `7258`, `7260`, `7262`, `7265`, `7267`, `7269`, `7271`, `7273`, `7275`, `7278`, `7280`, `7282`, `7284`, `7285`, `7287`, `7289`, `7290`, `7293`, `7295`, `7298`, `7300`, `7302`, `7304`, `7306`, `7308`, `7313`, `7314`, `7315`, `7317`, `7319`, `7321`, `7322`, `7324`, `7326`, `7328`, `7330`, `7332`, `7336`, `7338`, `7340`, `7342`, `7344`, `7346`, `7348`, `7350`, `7352`, `7354`, `7355`, `7357`, `7358`, `7359`, `7360`, `7362`, `7364`, `7366`, `7368`, `7370`, `7372`, `7374`, `7376`, `7377`, `7379`, `7380`, `7382`, `7384`, `7386`, `7388`, `7389`, `7391`, `7393`, `7395`, `7397`, `7399`, `7401`, `7402`, `7403`, `7405`, `7406`, `7409`, `7411`, `7413`, `7415`, `7417`, `7419`, `7421`, `7424`, `7426`, `7428`, `7429`, `7433`, `7435`, `7440`, `7441`, `7443`, `7445`, `7448`, `7450`, `7452`, `7455`, `7457`, `7459`, `7461`, `7462`, `7464`, `7466`, `7468`, `7469`, `7471`, `7473`, `7476`, `7478`, `7480`, `7482`, `7484`, `7486`, `7488`, `7490`, `7492`, `7494`, `7496`, `7498`, `7499`, `7501`, `7503`, `7505`, `7507`, `7508`, `7509`, `7511`, `7513`, `7516`, `7518`, `7519`, `7521`, `7522`, `7523`, `7525`, `7527`, `7529`, `7531`, `7533`, `7535`, `7537`, `7539`, `7541`, `7543`, `7545`, `7546`, `7548`, `7551`, `7553`, `7555`, `7557`, `7558`, `7560`, `7562`, `7563`, `7566`, `7568`, `7570`, `7572`, `7574`, `7576`, `7577`, `7578`, `7580`, `7582`, `7585`, `7587`, `7589`, `7590`, `7591`, `7593`, `7594`, `7596`, `7598`, `7600`, `7601`, `7603`, `7605`, `7607`, `7608`, `7610`, `7613`, `7615`, `7617`, `7619`, `7621`, `7622`, `7623`, `7624`, `7626`, `7628`, `7630`, `7633`, `7635`, `7638`, `7639`, `7641`, `7643`, `7645`, `7647`, `7651`, `7653`, `7654`, `7656`, `7658`, `7660`, `7662`, `7664`, `7666`, `7668`, `7670`, `7672`, `7674`, `7676`, `7677`, `7679`, `7681`, `7683`, `7685`, `7687`, `7690`, `7694`, `7696`, `7698`, `7700`, `7702`, `7703`, `7705`, `7707`, `7709`, `7711`, `7713`, `7714`, `7716`, `7718`, `7720`, `7722`, `7723`, `7725`, `7728`, `7730`, `7733`, `7735`, `7736`, `7739`, `7741`, `7744`, `7746`, `7747`, `7749`, `7751`, `7753`, `7754`, `7756`, `7758`, `7760`, `7762`, `7764`, `7766`, `7769`, `7770`, `7772`, `7774`, `7776`, `7777`, `7779`, `7783`, `7785`, `7787`, `7789`, `7791`, `7792`, `7795`, `7797`, `7799`, `7801`, `7803`, `7805`, `7806`, `7808`, `7810`, `7811`, `7813`, `7815`, `7817`, `7819`, `7820`, `7822`, `7825`, `7827`, `7829`, `7831`, `7833`, `7835`, `7837`, `7839`, `7840`, `7841`, `7843`, `7845`, `7846`, `7849`, `7852`, `7854`, `7856`, `7858`, `7859`, `7861`, `7863`, `7865`, `7866`, `7867`, `7868`, `7870`, `7871`, `7872`, `7874`, `7876`, `7878`, `7880`, `7882`, `7884`, `7886`, `7887`, `7889`, `7891`, `7892`, `7894`, `7895`, `7896`, `7898`, `7900`, `7902`, `7904`, `7906`, `7908`, `7910`, `7911`, `7912`, `7914`, `7916`, `7918`, `7920`, `7922`, `7923`, `7925`, `7927`, `7929`, `7931`, `7932`, `7934`, `7936`, `7937`, `7940`, `7941`, `7942`, `7944`, `7946`, `7947`, `7948`, `7950`, `7952`, `7954`, `7956`, `7957`, `7959`, `7961`, `7963`, `7965`, `7966`, `7968`, `7970`, `7971`, `7973`, `7974`, `7976`, `7977`, `7979`, `7981`, `7983`, `7985`, `7987`, `7989`, `7991`, `7993`, `7995`, `7997`, `7999`, `8001`, `8003`, `8004`, `8005`, `8007`, `8009`, `8012`, `8014`, `8016`, `8018`, `8019`, `8021`, `8023`, `8025`, `8026`, `8027`, `8028`, `8030`, `8031`, `8034`, `8036`, `8037`, `8039`, `8041`, `8045`, `8047`, `8049`, `735`, `8051`, `8053`, `8056`, `8057`, `8059`, `8061`, `8063`, `8065`, `8067`, `8069`, `8071`, `8073`, `8075`, `8077`, `8078`, `8080`, `8082`, `8084`, `8086`, `8088`, `8091`, `8092`, `8094`, `8095`, `8097`, `8098`, `8100`, `8102`, `8104`, `8106`, `8108`, `8110`, `8112`, `8114`, `8116`, `8118`, `8120`, `8121`, `8123`, `8125`, `8127`, `8129`, `8131`, `8133`, `8135`, `8136`, `8137`, `8138`, `8140`, `8142`, `8144`, `8146`, `8147`, `8149`, `8151`, `8153`, `8155`, `8157`, `8159`, `8160`, `8162`, `8164`, `8167`, `8168`, `8170`, `8172`, `8173`, `8177`, `8178`, `8180`, `8182`, `8184`, `8186`, `8187`, `8189`, `8191`, `8193`, `8194`, `8196`, `8198`, `8199`, `8201`, `8203`, `8204`, `8206`, `8207`, `8209`, `8211`, `8212`, `8214`, `8216`, `8219`, `8221`, `8223`, `8224`, `8226`, `8228`, `8229`, `8231`, `8233`, `8235`, `8237`, `8239`, `8241`, `8242`, `8244`, `8246`, `8248`, `8250`, `8252`, `8254`, `8256`, `8258`, `8260`, `8261`, `8263`, `8265`, `8270`, `8272`, `8274`, `8275`, `8277`, `8279`, `8281`, `8282`, `8284`, `8286`, `8288`, `8290`, `8291`, `8293`, `8294`, `8296`, `8298`, `8300`, `8302`, `8304`, `8306`, `8307`, `8308`, `8309`, `8311`, `8313`, `8315`, `8317`, `8319`, `8321`, `8323`, `8325`, `8326`, `8328`, `8330`, `8332`, `8334`, `8336`, `8338`, `8340`, `8342`, `8344`, `8346`, `8348`, `8350`, `8352`, `8354`, `8356`, `8358`, `8360`, `8362`, `8363`, `8366`, `8368`, `8370`, `8372`, `8373`, `8375`, `8378`, `8380`, `8382`, `8383`, `8385`, `8387`, `8389`, `8391`, `8393`, `8395`, `8397`, `8399`, `8401`, `8406`, `8407`, `8409`, `8411`, `8413`, `8415`, `8417`, `8419`, `8420`, `8422`, `8424`, `8426`, `8428`, `8429`, `8430`, `8432`, `8433`, `8434`, `8436`, `8438`, `8440`, `8442`, `8444`, `8446`, `8448`, `8450`, `8451`, `8452`, `8454`, `8455`, `8457`, `8461`, `8463`, `8465`, `8467`, `8469`, `8471`, `8473`, `8475`, `8477`, `8479`, `8481`, `8483`, `8485`, `8487`, `8490`, `8492`, `8494`, `8496`, `8498`, `8500`, `8502`, `8504`, `8505`, `8507`, `8509`, `8511`, `8513`, `8514`, `8515`, `8517`, `8519`, `8520`, `8521`, `8523`, `8525`, `8527`, `8529`, `8531`, `8532`, `8534`, `8536`, `8538`, `8540`, `8542`, `8544`, `8546`, `8548`, `8550`, `8552`, `8554`, `8556`, `8558`, `8560`, `8563`, `8565`, `8567`, `8569`, `8571`, `8573`, `8574`, `8577`, `8579`, `8580`, `8581`, `8583`, `8585`, `8586`, `8588`, `8589`, `8591`, `8593`, `8595`, `8597`, `8599`, `8603`, `8604`, `8606`, `8608`, `8609`, `8610`, `8611`, `8614`, `8616`, `8617`, `8618`, `8620`, `8622`, `8624`, `8625`, `8627`, `8629`, `8632`, `8634`, `8639`, `8641`, `8643`, `8645`, `8647`, `8649`, `8651`, `8653`, `8655`, `8657`, `8659`, `8660`, `8662`, `8665`, `8666`, `8667`, `8669`, `8671`, `8674`, `8676`, `8678`, `8680`, `8682`, `8684`, `8686`, `8687`, `8690`, `8692`, `8694`, `8696`, `8697`, `8699`, `8701`, `8703`, `8704`, `8706`, `8707`, `8709`, `8710`, `8713`, `8715`, `8716`, `8718`, `8720`, `3508`, `8722`, `8723`, `8725`, `8727`, `8729`, `8731`, `8733`, `8735`, `8736`, `8737`, `8739`, `8741`, `8742`, `8748`, `8750`, `8751`, `8752`, `8753`, `8755`, `8756`, `8757`, `8759`, `8761`, `8763`, `8765`, `8767`, `8768`, `8770`, `8772`, `8774`, `8775`, `8777`, `8779`, `8781`, `8783`, `8785`, `8787`, `8789`, `8791`, `8793`, `8795`, `8797`, `8799`, `8800`, `8802`, `8805`, `8807`, `8810`, `8812`, `8814`, `8816`, `8818`, `8820`, `8822`, `8823`, `8825`, `8826`, `8828`, `8830`, `8832`, `8834`, `8836`, `8838`, `8840`, `8842`, `8844`, `8845`, `8846`, `8847`, `8849`, `8851`, `8853`, `8855`, `8857`, `8859`, `8861`, `8862`, `8864`, `8866`, `8869`, `8871`, `8873`, `8875`, `8877`, `8879`, `8880`, `8882`, `8884`, `8887`, `8889`, `8891`, `8893`, `8895`, `8896`, `8898`, `8899`, `8901`, `8903`, `8905`, `8906`, `8908`, `8909`, `8910`, `8912`, `8913`, `8915`, `8917`, `8918`, `8920`, `8921`, `8923`, `8924`, `8926`, `8928`, `8930`, `8931`, `8933`, `8935`, `8937`, `8939`, `8941`, `8943`, `8944`, `8945`, `8947`, `8949`, `8951`, `8953`, `8955`, `8956`, `8958`, `8960`, `8962`, `8964`, `8966`, `8968`, `8970`, `8972`, `8974`, `8976`, `8978`, `8980`, `8982`, `8984`, `8985`, `8987`, `8989`, `8991`, `8993`, `8995`, `8997`, `8998`, `9000`, `9002`, `9005`, `9007`, `9009`, `9011`, `9013`, `9015`, `9017`, `9021`, `9023`, `9024`, `9026`, `9028`, `9030`, `9032`, `9034`, `9036`, `9038`, `9040`, `9042`, `9044`, `9046`, `9050`, `9051`, `9053`, `9055`, `9057`, `9059`, `9061`, `9063`, `9065`, `9067`, `9069`, `9071`, `8369`, `9073`, `9074`, `9076`, `9078`, `9080`, `9081`, `9083`, `9085`, `9087`, `9089`, `9091`, `9093`, `9095`, `9097`, `9099`, `9101`, `9102`, `9104`, `9106`, `9107`, `9109`, `9111`, `9115`, `9118`, `9120`, `9122`, `9124`, `9126`, `9128`, `9130`, `9132`, `9134`, `9136`, `9137`, `9139`, `9141`, `9143`, `9145`, `9147`, `9148`, `9150`, `9152`, `9154`, `9156`, `9159`, `9160`, `9162`, `9164`, `9165`, `9167`, `9169`, `9171`, `9173`, `9175`, `9177`, `9179`, `9181`, `9183`, `9184`, `9186`, `9188`, `9190`, `9192`, `9194`, `9196`, `9198`, `9200`, `9202`, `9204`, `9206`, `9208`, `9209`, `9211`, `9213`, `9215`, `9217`, `9218`, `9220`, `9222`, `9224`, `9226`, `9228`, `9230`, `9232`, `9233`, `9235`, `9237`, `9239`, `9241`, `9243`, `9245`, `9247`, `9249`, `9251`, `9253`, `9255`, `9257`, `9259`, `9261`, `9263`, `9264`, `9266`, `9267`, `9269`, `9270`, `9272`, `9273`, `9275`, `9277`, `9279`, `9284`, `9286`, `9287`, `9289`, `9291`, `9292`, `9294`, `9296`, `9298`, `9300`, `9303`, `9305`, `9307`, `9308`, `9310`, `9312`, `9314`, `9316`, `9318`, `9319`, `9320`, `9323`, `9325`, `9326`, `9328`, `9330`, `9332`, `9334`, `9336`, `9338`, `9340`, `9342`, `9344`, `9345`, `9347`, `9348`, `9350`, `9352`, `9354`, `9356`, `9357`, `9359`, `9360`, `9362`, `9364`, `9366`, `9368`, `9370`, `9372`, `9373`, `9375`, `9376`, `9378`, `9380`, `9381`, `9383`, `9385`, `9386`, `9389`, `9391`, `9393`, `9394`, `9396`, `9397`, `9399`, `9400`, `9402`, `9403`, `9407`, `9408`, `9410`, `9412`, `9414`, `9416`, `9418`, `9420`, `9423`, `9426`, `9430`, `9431`, `9433`, `9435`, `9436`, `9438`, `9440`, `9442`, `9444`, `9447`, `9449`, `9451`, `9453`, `9455`, `9457`, `9459`, `9460`, `9463`, `9467`, `9468`, `9470`, `9472`, `9474`, `9476`, `9478`, `9480`, `9482`, `9484`, `9486`, `9487`, `9489`, `9491`, `9493`, `9497`, `9498`, `9500`, `9501`, `9503`, `9504`, `9506`, `9508`, `9510`, `9512`, `9513`, `9515`, `9517`, `9519`, `9521`, `9523`, `9526`, `9529`, `9531`, `9533`, `9535`, `9537`, `9538`, `9540`, `9542`, `9544`, `9546`, `9548`, `9550`, `9552`, `9554`, `9555`, `9557`, `9559`, `9561`, `9563`, `9565`, `9566`, `9568`, `9570`, `9571`, `9572`, `9574`, `9576`, `9578`, `9580`, `9582`, `9583`, `9585`, `9587`, `9589`, `9591`, `9592`, `9594`, `9596`, `9598`, `9600`, `9602`, `9604`, `9606`, `9608`, `9609`, `9611`, `9613`, `9615`, `9617`, `9619`, `9621`, `9623`, `9625`, `9627`, `9629`, `9631`, `9633`, `9634`, `9638`, `9639`, `9640`, `9643`, `9644`, `9647`, `9650`, `9652`, `9654`, `9657`, `9659`, `9661`, `9663`, `9665`, `9667`, `9669`, `9671`, `9673`, `9675`, `9677`, `9679`, `9682`, `9684`, `9686`, `9687`, `9689`, `9691`, `9693`, `9695`, `9698`, `9702`, `9703`, `9705`, `9707`, `9709`, `9711`, `9713`, `9716`, `9718`, `9720`, `9722`, `9723`, `9725`, `9727`, `9728`, `9730`, `9732`, `9734`, `9736`, `9738`, `9740`, `9742`, `9744`, `9746`, `9747`, `9749`, `9751`, `9753`, `9755`, `9757`, `9759`, `9761`, `9764`, `9766`, `9768`, `9770`, `9772`, `9774`, `9776`, `9778`, `9780`, `9782`, `9784`, `9785`, `9787`, `9789`, `9791`, `9792`, `9794`, `9797`, `9798`, `9800`, `9802`, `9803`, `9808`, `9810`, `9812`, `9815`, `9817`, `9819`, `9821`, `9823`, `9825`, `9826`, `9827`, `9829`, `9831`, `9833`, `9835`, `9836`, `9837`, `9840`, `9842`, `9844`, `9845`, `9847`, `9849`, `9851`, `9852`, `9853`, `9855`, `9856`, `9858`, `9860`, `9861`, `9863`, `9865`, `9867`, `9869`, `9871`, `9874`, `9876`, `9878`, `9881`, `9883`, `9885`, `9887`, `9889`, `9891`, `9893`, `9895`, `9898`, `9901`, `9903`, `9904`, `9906`, `9908`, `9910`, `9912`, `9913`, `9915`, `9917`, `9920`, `9921`, `9923`, `9924`, `9926`, `9927`, `9929`, `9931`, `9934`, `9936`, `9937`, `9939`, `9941`, `9944`, `9945`, `9946`, `9947`, `9948`, `9950`, `9952`, `9954`, `9957`, `9961`, `9963`, `9965`, `9967`, `9969`, `9971`, `9974`, `9976`, `9978`, `9980`, `9982`, `9983`, `9985`, `9986`, `9988`, `9989`, `9991`, `9993`, `9995`, `9997`, `9999`, `10001`, `10003`, `10005`, `10006`, `10009`, `10011`, `10014`, `10015`, `10016`, `10017`, `10019`, `10021`, `10023`, `10025`, `10028`, `10029`, `10031`, `10033`, `10034`, `10036`, `10040`, `10041`, `10043`, `10045`, `10047`, `10049`, `10051`, `10053`, `10055`, `10056`, `10057`, `10059`, `10062`, `10064`, `10065`, `10067`, `10069`, `10071`, `10073`, `10075`, `10077`, `10079`, `10081`, `10084`, `10085`, `10087`, `10089`, `10091`, `10093`, `10095`, `10097`, `10098`, `10099`, `10101`, `10103`, `10104`, `10106`, `10107`, `10109`, `10111`, `10113`, `10117`, `10118`, `10119`, `10121`, `10123`, `10125`, `10127`, `10129`, `10131`, `10133`, `10135`, `10137`, `10139`, `10140`, `10142`, `10144`, `10146`, `10148`, `10152`, `10155`, `10157`, `10159`, `10160`, `10162`, `10164`, `10166`, `10168`, `10170`, `10172`, `10175`, `10177`, `10178`, `10179`, `10181`, `10183`, `10184`, `10185`, `10187`, `10189`, `10191`, `10193`, `10195`, `10197`, `10199`, `10201`, `10203`, `10204`, `10206`, `10208`, `10210`, `10212`, `10213`, `10215`, `10217`, `10219`, `10221`, `10223`, `10225`, `10227`, `10229`, `10231`, `10234`, `10235`, `10237`, `10239`, `10241`, `10243`, `10245`, `10247`, `10249`, `10251`, `10253`, `10254`, `10256`, `10258`, `10260`, `10262`, `10264`, `10266`, `10268`, `10270`, `10271`, `10273`, `10275`, `10277`, `10279`, `10281`, `10283`, `10285`, `10287`, `10289`, `10290`, `10292`, `10294`, `10295`, `10297`, `10299`, `10301`, `10303`, `10305`, `10307`, `10309`, `10312`, `10315`, `10319`, `10322`, `10324`, `10326`, `10327`, `10329`, `10331`, `10333`, `10334`, `10336`, `10338`, `10340`, `10342`, `10344`, `10345`, `10347`, `10348`, `10350`, `10351`, `10352`, `10354`, `10356`, `10358`, `10360`, `10362`, `10363`, `10364`, `10366`, `10368`, `10370`, `10372`, `10374`, `10376`, `10378`, `10380`, `10382`, `10384`, `10386`, `10388`, `10389`, `10392`, `10394`, `10396`, `10398`, `10400`, `10401`, `10402`, `10404`, `10406`, `10408`, `10410`, `10412`, `10414`, `10415`, `10417`, `10418`, `10420`, `10422`, `10424`, `10427`, `10430`, `10432`, `10433`, `10435`, `10437`, `10439`, `10441`, `10443`, `10445`, `10447`, `10448`, `10449`, `10451`, `10453`, `10455`, `10457`, `10459`, `10461`, `10463`, `10465`, `10467`, `10470`, `10471`, `10472`, `10474`, `10475`, `10477`, `10479`, `10481`, `10482`, `10483`, `10485`, `10486`, `10487`, `10489`, `10491`, `10493`, `10495`, `10497`, `10499`, `10501`, `10503`, `10505`, `10507`, `10509`, `10511`, `10513`, `10515`, `10517`, `10518`, `10520`, `10522`, `10523`, `10525`, `10527`, `10529`, `10530`, `10531`, `10535`, `10537`, `10539`, `10541`, `10542`, `10544`, `10546`, `10547`, `10549`, `10554`, `10557`, `10558`, `10560`, `10562`, `10564`, `10565`, `10567`, `10568`, `10570`, `10572`, `10574`, `10576`, `10578`, `10580`, `10581`, `10582`, `10584`, `6554`, `10586`, `10588`, `10590`, `10592`, `10594`, `10596`, `10598`, `10599`, `10601`, `10603`, `10605`, `10607`, `10610`, `10612`, `10614`, `10615`, `10617`, `10619`, `10621`, `10623`, `10625`, `10627`, `10629`, `10631`, `10632`, `10634`, `10636`, `10639`, `10641`, `10643`, `10645`, `10647`, `10649`, `10651`, `10653`, `10655`, `10657`, `10659`, `10661`, `10662`, `10666`, `10668`, `10670`, `10672`, `10674`, `10676`, `10678`, `10680`, `10681`, `10683`, `10685`, `10687`, `10689`, `10691`, `10693`, `10695`, `10696`, `10699`, `10701`, `10703`, `10704`, `10706`, `10708`, `10710`, `10711`, `10715`, `10718`, `10720`, `10722`, `10723`, `10725`, `10727`, `10729`, `10731`, `10733`, `10737`, `10739`, `10741`, `10743`, `10745`, `10747`, `10749`, `10750`, `10752`, `10754`, `10755`, `10757`, `10758`, `10760`, `10762`, `10764`, `10766`, `10768`, `10770`, `10772`, `10773`, `10775`, `10777`, `10778`, `10780`, `10782`, `10784`, `10786`, `10788`, `10790`, `10792`, `10794`, `10796`, `10798`, `10800`, `10801`, `10803`, `10805`, `10806`, `10808`, `10809`, `10811`, `10813`, `10815`, `10817`, `10819`, `10824`, `10826`, `10828`, `10829`, `10831`, `10833`, `10835`, `10836`, `10838`, `10840`, `10842`, `10844`, `10846`, `10848`, `10850`, `10855`, `10857`, `10859`, `10862`, `10864`, `10866`, `10868`, `10870`, `10872`, `10875`, `10877`, `10879`, `10880`, `10882`, `10883`, `10884`, `10886`, `10890`, `10892`, `10894`, `10895`, `10896`, `10897`, `10899`, `10901`, `10902`, `10904`, `10906`, `10907`, `10909`, `10912`, `10914`, `10916`, `10918`, `10920`, `10921`, `10923`, `10925`, `10927`, `10929`, `10930`, `10932`, `10933`, `10934`, `10936`, `10938`, `10939`, `10940`, `10943`, `10945`, `10947`, `10949`, `10951`, `10952`, `10953`, `10955`, `10957`, `10959`, `10960`, `10962`, `10964`, `10966`, `10968`, `10970`, `10972`, `10974`, `10975`, `10977`, `10979`, `10981`, `10982`, `10984`, `10988`, `10990`, `10992`, `10994`, `10995`, `10996`, `10998`, `11000`, `11002`, `11004`, `11006`, `11008`, `11009`, `11011`, `11013`, `11015`, `11019`, `11021`, `11023`, `11025`, `11027`, `11029`, `11031`, `11033`, `11035`, `11037`, `11039`, `11040`, `11042`, `11044`, `11046`, `11047`, `11048`, `11049`, `11050`, `11051`, `11053`, `11055`, `11057`, `11059`, `11062`, `11065`, `11067`, `11069`, `11071`, `11072`, `11074`, `11075`, `11080`, `11081`, `11083`, `11085`, `11087`, `11089`, `11090`, `11091`, `11093`, `11095`, `11097`, `11098`, `11100`, `11102`, `11103`, `11104`, `11106`, `11108`, `11110`, `11111`, `11112`, `11116`, `11118`, `11120`, `11124`, `11125`, `11131`, `11134`, `11135`, `11137`, `11138`, `11140`, `11142`, `11144`, `11146`, `11148`, `11150`, `11151`, `11153`, `11155`, `11157`, `11159`, `11160`, `11162`, `11164`, `11166`, `11168`, `11170`, `11172`, `11174`, `11176`, `11177`, `11179`, `11181`, `11183`, `11184`, `11185`, `11187`, `11188`, `11190`, `11192`, `11194`, `11196`, `11198`, `11200`, `11202`, `11203`, `11207`, `11208`, `11210`, `11212`, `11213`, `11215`, `11217`, `11219`, `11221`, `11222`, `11224`, `11226`, `11229`, `11230`, `11232`, `11234`, `11236`, `11239`, `11241`, `11244`, `11246`, `11248`, `11249`, `11251`, `11253`, `11254`, `11256`, `11258`, `11260`, `11262`, `11264`, `11266`, `11268`, `11270`, `11273`, `11274`, `11276`, `11277`, `11279`, `11280`, `11282`, `11284`, `11286`, `11287`, `11289`, `11290`, `11292`, `11294`, `11295`, `11297`, `11299`, `11301`, `11303`, `11304`, `11305`, `11307`, `11309`, `11311`, `11312`, `11314`, `11315`, `7064`, `11317`, `11318`, `11319`, `11321`, `11322`, `11324`, `11326`, `11328`, `11329`, `11332`, `11334`, `11336`, `11337`, `11339`, `11341`, `11343`, `11344`, `11346`, `11348`, `11350`, `11352`, `11355`, `11357`, `11359`, `11361`, `11363`, `11365`, `11367`, `11369`, `11370`, `11372`, `11374`, `11376`, `11378`, `11379`, `11381`, `11382`, `11383`, `11385`, `11386`, `11388`, `11389`, `11392`, `11393`, `11395`, `11397`, `11399`, `11401`, `11402`, `11404`, `11406`, `11407`, `11409`, `11410`, `11412`, `11414`, `11416`, `11418`, `11419`, `11420`, `11422`, `11424`, `11426`, `11428`, `11430`, `11431`, `11433`, `11435`, `11437`, `11439`, `11441`, `11443`, `11445`, `11447`, `11449`, `11450`, `11452`, `11454`, `11456`, `11459`, `11461`, `11462`, `11465`, `11467`, `11469`, `11471`, `11472`, `11473`, `11475`, `11477`, `11479`, `11481`, `11485`, `11487`, `11489`, `11491`, `11493`, `11495`, `11497`, `11498`, `11500`, `11502`, `11504`, `11506`, `11507`, `11509`, `11511`, `11513`, `11515`, `11517`, `11519`, `11521`, `11523`, `11525`, `11527`, `11529`, `11531`, `11533`, `11535`, `11537`, `11539`, `11542`, `11544`, `11546`, `11548`, `11550`, `11551`, `11552`, `11553`, `11555`, `11557`, `11559`, `11561`, `11562`, `11565`, `11567`, `11569`, `11571`, `11573`, `11575`, `11577`, `11579`, `11581`, `11583`, `11585`, `11587`, `11589`, `11591`, `11593`, `11595`, `11597`, `11599`, `11602`, `11604`, `11605`, `11608`, `11610`, `11612`, `11613`, `11615`, `11617`, `11623`, `11626`, `11629`, `11631`, `11632`, `11635`, `11638`, `11640`, `11642`, `11644`, `11646`, `11648`, `11649`, `11651`, `11653`, `11655`, `11657`, `11659`, `11661`, `11663`, `11665`, `11667`, `8961`, `11669`, `11671`, `11673`, `11675`, `11677`, `11680`, `11682`, `11684`, `11685`, `11687`, `11688`, `11690`, `11692`, `11694`, `11696`, `11698`, `11700`, `11702`, `11704`, `11705`, `11707`, `11710`, `11712`, `11714`, `11716`, `11718`, `11719`, `11721`, `11723`, `11727`, `11728`, `11729`, `11731`, `11733`, `11735`, `11737`, `11739`, `11741`, `11742`, `11743`, `11745`, `11747`, `11750`, `11751`, `11752`, `11754`, `11756`, `11758`, `11763`, `11765`, `11767`, `11769`, `11771`, `11772`, `11774`, `11776`, `11778`, `11780`, `11782`, `11784`, `11786`, `11788`, `11789`, `11790`, `11791`, `11793`, `11795`, `11797`, `11799`, `11800`, `11802`, `11804`, `11805`, `11806`, `11807`, `11808`, `11810`, `11811`, `11813`, `11815`, `11817`, `11820`, `11821`, `11823`, `11824`, `11826`, `11828`, `11830`, `11832`, `11834`, `11836`, `11837`, `11838`, `11840`, `11842`, `11844`, `11845`, `11846`, `11848`, `11850`, `11852`, `11853`, `11855`, `11857`, `11859`, `11862`, `11864`, `11866`, `11868`, `11870`, `11872`, `11874`, `11876`, `11877`, `11879`, `11880`, `11881`, `11882`, `11884`, `11885`, `11887`, `11889`, `11891`, `11892`, `11893`, `11894`, `11896`, `11897`, `11898`, `11901`, `11907`, `11909`, `11910`, `11911`, `11913`, `11914`, `11915`, `11917`, `11919`, `11921`, `11923`, `11925`, `11927`, `11928`, `11930`, `11932`, `11933`, `11934`, `11936`, `11938`, `11940`, `11942`, `11945`, `11947`, `11949`, `11951`, `11953`, `11955`, `11956`, `11958`, `11960`, `11962`, `11964`, `11966`, `11968`, `11970`, `11971`, `11973`, `11974`, `11975`, `11976`, `11978`, `11980`, `11982`, `11984`, `11986`, `11988`, `11989`, `11991`, `11993`, `11995`, `11997`, `11998`, `12000`, `12004`, `12006`, `12007`, `12009`, `12011`, `12012`, `12014`, `12016`, `12018`, `12020`, `12022`, `12024`, `12026`, `12028`, `12030`, `12032`, `12035`, `12037`, `12039`, `12040`, `12042`, `12044`, `12046`, `12047`, `12049`, `12051`, `12053`, `12055`, `12057`, `12059`, `12061`, `12063`, `12065`, `12067`, `12069`, `12070`, `12072`, `12075`, `12076`, `12079`, `12081`, `12083`, `12085`, `12087`, `12089`, `12090`, `12092`, `12094`, `12097`, `12099`, `12101`, `12103`, `12106`, `12107`, `12108`, `12109`, `12111`, `12113`, `12116`, `12117`, `12118`, `12120`, `12123`, `12124`, `12126`, `12130`, `12132`, `12134`, `12136`, `12138`, `12141`, `12142`, `12144`, `12146`, `12148`, `12150`, `12152`, `12154`, `12156`, `12158`, `12160`, `12162`, `12164`, `12166`, `12168`, `12169`, `12171`, `12173`, `12175`, `12176`, `12178`, `12180`, `12182`, `12183`, `12185`, `12187`, `12190`, `12192`, `12194`, `12196`, `12198`, `12200`, `12202`, `12204`, `12206`, `12210`, `12211`, `12212`, `12214`, `12215`, `12217`, `12219`, `12221`, `12223`, `12225`, `12227`, `12229`, `12231`, `12233`, `12235`, `12237`, `12239`, `12241`, `12243`, `12244`, `12245`, `12247`, `12249`, `12251`, `12253`, `12255`, `12256`, `12258`, `12260`, `12261`, `12263`, `12265`, `12267`, `12269`, `12271`, `12273`, `12276`, `12278`, `12280`, `12282`, `12284`, `12286`, `12287`, `12290`, `12291`, `12293`, `12297`, `12299`, `12301`, `12303`, `12304`, `12306`, `12308`, `12309`, `12311`, `12312`, `12314`, `12316`, `12318`, `12320`, `12322`, `12324`, `12325`, `12328`, `12330`, `12332`, `12333`, `12334`, `12336`, `12338`, `12340`, `12342`, `12345`, `12346`, `12347`, `12349`, `12351`, `12353`, `12355`, `12356`, `12357`, `12359`, `12361`, `12363`, `12365`, `12367`, `12369`, `12371`, `12373`, `12375`, `12377`, `12379`, `12381`, `12383`, `12385`, `12387`, `12389`, `12391`, `12392`, `12394`, `12395`, `12396`, `12398`, `12400`, `12402`, `12403`, `12405`, `12406`, `12407`, `12409`, `12411`, `12412`, `12414`, `12416`, `12418`, `12420`, `12422`, `12424`, `12426`, `12428`, `12429`, `12431`, `12433`, `12434`, `12436`, `12437`, `12441`, `12443`, `12444`, `12445`, `12447`, `12449`, `12451`, `12453`, `12455`, `12457`, `12459`, `12461`, `12463`, `12465`, `12467`, `12469`, `12471`, `12473`, `12475`, `12477`, `12479`, `12481`, `12483`, `12485`, `12487`, `12488`, `12490`, `12491`, `12493`, `12495`, `12497`, `12498`, `12499`, `12500`, `12502`, `12504`, `12506`, `12508`, `12510`, `12512`, `12514`, `12516`, `12518`, `12520`, `12522`, `12524`, `12526`, `12528`, `12530`, `12533`, `12534`, `12535`, `12537`, `12539`, `12541`, `12542`, `12543`, `12545`, `12547`, `12549`, `12551`, `12553`, `12555`, `12557`, `12559`, `12561`, `12562`, `12563`, `12564`, `12565`, `12567`, `12569`, `12571`, `12573`, `12574`, `12576`, `12578`, `12579`, `12581`, `12583`, `12584`, `12586`, `12587`, `12588`, `12589`, `12591`, `12593`, `12595`, `12597`, `12598`, `12600`, `12602`, `12604`, `12608`, `12610`, `12612`, `12614`, `12616`, `1897`, `12617`, `12619`, `12621`, `12622`, `12624`, `12626`, `12628`, `12630`, `12632`, `12634`, `12636`, `12638`, `12639`, `12641`, `12643`, `12645`, `12647`, `12648`, `12650`, `12652`, `12654`, `12656`, `12658`, `12660`, `12661`, `12663`, `12665`, `12667`, `12669`, `12671`, `12672`, `12674`, `12676`, `12680`, `12682`, `12683`, `12684`, `12686`, `12688`, `12689`, `12691`, `12693`, `12695`, `12696`, `12697`, `12699`, `12701`, `12703`, `12704`, `12707`, `12709`, `12711`, `12712`, `12714`, `12716`, `12718`, `12720`, `12722`, `12724`, `12726`, `12728`, `12730`, `12732`, `12734`, `12736`, `12738`, `12739`, `12741`, `12743`, `12745`, `12748`, `12750`, `12752`, `12754`, `12756`, `12757`, `12759`, `12761`, `12763`, `12764`, `12766`, `12769`, `12771`, `12773`, `12775`, `12777`, `12779`, `12781`, `12783`, `12785`, `12787`, `12789`, `12790`, `12793`, `12795`, `12797`, `12799`, `12801`, `12803`, `12805`, `12806`, `12807`, `12809`, `12811`, `12812`, `12814`, `12816`, `12818`, `12821`, `12824`, `12826`, `12828`, `12830`, `12832`, `12834`, `12836`, `12838`, `12840`, `12842`, `12844`, `12846`, `12848`, `12850`, `12853`, `12855`, `12857`, `12859`, `12860`, `12862`, `12864`, `12866`, `12867`, `12869`, `12870`, `12872`, `12873`, `12875`, `12876`, `12878`, `12879`, `12881`, `12883`, `12884`, `12886`, `12888`, `12891`, `12893`, `12895`, `12897`, `12899`, `12902`, `12904`, `12905`, `12906`, `12908`, `12910`, `12912`, `12914`, `12916`, `12918`, `12921`, `12923`, `12925`, `12926`, `12928`, `12930`, `12932`, `12934`, `12935`, `12936`, `12938`, `12940`, `12941`, `12942`, `12944`, `12946`, `12947`, `12949`, `12950`, `12952`, `12953`, `12955`, `12957`, `12959`, `12961`, `12963`, `12965`, `12966`, `12968`, `12970`, `12972`, `12974`, `12976`, `12978`, `12980`, `12982`, `12984`, `12986`, `12988`, `12990`, `12992`, `12994`, `12996`, `12998`, `12999`, `13001`, `13003`, `13005`, `13007`, `13009`, `13011`, `13013`, `13014`, `13016`, `13018`, `13020`, `13022`, `13024`, `13026`, `13028`, `13030`, `13032`, `13034`, `13036`, `13037`, `13038`, `13040`, `13042`, `13043`, `13044`, `13046`, `13048`, `13050`, `13052`, `13054`, `13056`, `13058`, `13060`, `13061`, `13062`, `13063`, `13065`, `13068`, `13069`, `13070`, `13071`, `13073`, `13075`, `13077`, `13078`, `13080`, `13082`, `13083`, `13084`, `13086`, `13087`, `13090`, `13092`, `13093`, `13095`, `13096`, `13098`, `13100`, `13102`, `13104`, `13106`, `13108`, `13109`, `13111`, `13113`, `13114`, `13116`, `13118`, `13120`, `13122`, `13123`, `13125`, `13126`, `13129`, `13131`, `13133`, `13135`, `13139`, `13140`, `13142`, `13144`, `13146`, `13148`, `13149`, `13150`, `13152`, `13153`, `13155`, `13157`, `13159`, `13161`, `13162`, `13164`, `13166`, `13168`, `13170`, `13172`, `13173`, `13175`, `13177`, `13179`, `13181`, `13183`, `13185`, `13187`, `13189`, `13191`, `13193`, `13194`, `13196`, `13197`, `13198`, `13200`, `13202`, `13204`, `13206`, `13208`, `13211`, `13212`, `13215`, `13217`, `13219`, `13220`, `13222`, `13224`, `13226`, `13227`, `13229`, `13231`, `13233`, `13235`, `13237`, `13238`, `13239`, `13241`, `13243`, `13245`, `13246`, `13247`, `13249`, `13251`, `13252`, `13254`, `13256`, `13257`, `13259`, `13260`, `13262`, `13264`, `13266`, `13270`, `13272`, `13274`, `13276`, `13278`, `13280`, `13282`, `13284`, `13286`, `13288`, `13289`, `13291`, `13294`, `13296`, `13298`, `13300`, `13302`, `13304`, `13305`, `13307`, `13309`, `13311`, `13313`, `13314`, `13316`, `13319`, `13324`, `13327`, `13329`, `13331`, `13332`, `13333`, `13335`, `13337`, `13339`, `13341`, `13343`, `13345`, `13347`, `13349`, `13351`, `13353`, `13355`, `13356`, `13358`, `13360`, `13362`, `13365`, `13367`, `13368`, `13369`, `13371`, `13372`, `13374`, `13376`, `13378`, `13379`, `13381`, `13383`, `13385`, `13387`, `13389`, `13391`, `13395`, `13397`, `13399`, `13401`, `13402`, `13406`, `13408`, `13410`, `13412`, `13414`, `13415`, `13417`, `13419`, `13421`, `13424`, `13426`, `13428`, `13430`, `13432`, `13433`, `13435`, `13436`, `13438`, `13441`, `13443`, `13444`, `13446`, `13448`, `13449`, `13450`, `13452`, `13454`, `13456`, `13458`, `13459`, `13461`, `13463`, `13465`, `13467`, `13468`, `13469`, `13471`, `13473`, `13474`, `13476`, `13477`, `13480`, `13481`, `13482`, `13484`, `13485`, `13487`, `13489`, `13490`, `13491`, `13492`, `13494`, `13496`, `13498`, `13500`, `13502`, `13505`, `13508`, `13510`, `13512`, `13515`, `13517`, `13519`, `13521`, `13523`, `13525`, `13526`, `13528`, `13530`, `13532`, `13535`, `13536`, `13538`, `13540`, `3001`, `13541`, `13543`, `13545`, `13546`, `13548`, `13549`, `13551`, `13553`, `13555`, `13556`, `13557`, `13559`, `13561`, `13563`, `13565`, `13567`, `13569`, `13571`, `13572`, `13573`, `13575`, `13577`, `13579`, `13580`, `13582`, `13584`, `13585`, `13587`, `13589`, `13591`, `13592`, `13594`, `13596`, `13598`, `13600`, `13602`, `13604`, `13606`, `13608`, `13610`, `13611`, `13612`, `13614`, `13616`, `13617`, `13619`, `13621`, `13622`, `13623`, `13625`, `13627`, `13629`, `13631`, `13632`, `13634`, `13636`, `13637`, `13639`, `13640`, `13642`, `13643`, `13645`, `13646`, `13648`, `13650`, `13651`, `13653`, `13655`, `13656`, `13657`, `13659`, `13661`, `13662`, `13663`, `13664`, `13666`, `13668`, `13670`, `13672`, `13674`, `13676`, `13677`, `13679`, `13681`, `13683`, `13685`, `13687`, `13689`, `13690`, `13692`, `13693`, `13695`, `13697`, `13698`, `13700`, `13701`, `13702`, `13704`, `13706`, `13707`, `13708`, `13709`, `13711`, `13714`, `13716`, `13718`, `13721`, `13722`, `13724`, `13726`, `13728`, `13730`, `13731`, `13732`, `13733`, `13734`, `13735`, `13737`, `13738`, `13740`, `13742`, `13744`, `13745`, `13746`, `13747`, `13749`, `13751`, `13753`, `13754`, `13755`, `13758`, `13760`, `13761`, `13763`, `13764`, `13766`, `13768`, `13770`, `13772`, `13774`, `13775`, `13776`, `13777`, `13779`, `13782`, `13784`, `13786`, `13787`, `13789`, `13792`, `13793`, `13795`, `13796`, `13798`, `13800`, `13802`, `13804`, `13806`, `13807`, `13808`, `13810`, `13812`, `13813`, `13815`, `13817`, `13819`, `13820`, `13821`, `13824`, `13826`, `13827`, `13829`, `13830`, `13831`, `13832`, `13833`, `13834`, `13836`, `13838`, `13840`, `13843`, `13847`, `13852`, `13854`, `13856`, `13858`, `13860`, `13861`, `13862`, `13863`, `13865`, `13867`, `13869`, `13871`, `13873`, `13875`, `13876`, `13878`, `13880`, `13881`, `13883`, `13884`, `13886`, `13888`, `13890`, `13892`, `13894`, `13896`, `13897`, `13899`, `13901`, `13903`, `13905`, `13906`, `13907`, `13909`, `13911`, `13912`, `13914`, `13916`, `13917`, `13919`, `13921`, `13922`, `13924`, `13926`, `13928`, `13929`, `13931`, `13933`, `13935`, `13937`, `13938`, `13940`, `13943`, `13945`, `13947`, `13949`, `13950`, `13951`, `13953`, `13956`, `13957`, `13959`, `13960`, `13962`, `13965`, `13967`, `13969`, `13972`, `13975`, `13976`, `13978`, `13979`, `13982`, `13983`, `13984`, `13987`, `13989`, `13991`, `13993`, `13994`, `13996`, `13998`, `14000`, `14003`, `14005`, `14008`, `14009`, `14010`, `14011`, `14013`, `14015`, `14017`, `14019`, `14021`, `14026`, `14029`, `14031`, `14033`, `14034`, `14035`, `14038`, `14040`, `14041`, `14042`, `14046`, `14047`, `14049`, `14051`, `14053`, `14055`, `14057`, `14059`, `14061`, `14065`, `14066`, `14068`, `14070`, `14071`, `14073`, `14074`, `14075`, `14076`, `14078`, `14080`, `14082`, `14084`, `14086`, `14087`, `14089`, `14092`, `14094`, `14096`, `14098`, `14099`, `14101`, `14103`, `14104`, `14106`, `14108`, `14110`, `14112`, `14113`, `14116`, `14118`, `14119`, `14120`, `14122`, `14124`, `14127`, `14129`, `14130`, `14132`, `14134`, `14135`, `14137`, `14139`, `14141`, `14143`, `14145`, `14146`, `14147`, `14149`, `14151`, `14153`, `14156`, `14159`, `14161`, `14163`, `14165`, `14167`, `14169`, `14171`, `14173`, `14175`, `14176`, `14178`, `14180`, `14183`, `14184`, `14186`, `14188`, `14190`, `14192`, `14194`, `14196`, `14197`, `14198`, `14199`, `14202`, `14204`, `14206`, `14208`, `14210`, `14212`, `14214`, `14215`, `14217`, `14218`, `14219`, `14221`, `14223`, `14224`, `14226`, `14228`, `14230`, `14232`, `14233`, `14235`, `14236`, `14237`, `14239`, `14240`, `14243`, `14246`, `14247`, `14248`, `14249`, `14251`, `14252`, `14254`, `14256`, `14258`, `14260`, `14262`, `14263`, `14264`, `14265`, `14267`, `14269`, `14272`, `14274`, `14275`, `14277`, `14279`, `14280`, `14282`, `14283`, `14285`, `14286`, `14287`, `14289`, `14291`, `14292`, `14294`, `14296`, `14298`, `14300`, `14302`, `14303`, `14304`, `14306`, `14308`, `14310`, `14311`, `14312`, `14314`, `14316`, `14318`, `14320`, `14322`, `14324`, `14326`, `14328`, `14329`, `14331`, `14333`, `14335`, `14337`, `14339`, `14341`, `14343`, `14345`, `14347`, `14350`, `14352`, `14354`, `14356`, `14359`, `14361`, `14363`, `14365`, `14367`, `14369`, `14373`, `14374`, `14375`, `14377`, `14379`, `14381`, `14383`, `14384`, `14385`, `14387`, `14389`, `14391`, `14392`, `14393`, `14395`, `14397`, `14399`, `14401`, `14403`, `14404`, `14409`, `14411`, `14413`, `14415`, `14417`, `14419`, `14424`, `14426`, `14428`, `14430`, `14431`, `14432`, `14434`, `14435`, `14436`, `14438`, `14439`, `14441`, `14443`, `14445`, `14447`, `14449`, `14451`, `14453`, `14455`, `14457`, `14459`, `14460`, `14463`, `14465`, `14467`, `14469`, `14471`, `14472`, `14474`, `14475`, `14477`, `14479`, `14481`, `14482`, `14483`, `14485`, `14488`, `14490`, `14492`, `14495`, `14496`, `14498`, `14500`, `14502`, `14504`, `14506`, `14508`, `14509`, `14511`, `14513`, `14514`, `14516`, `14518`, `14520`, `14523`, `14525`, `14527`, `14528`, `14530`, `14532`, `14533`, `14535`, `14536`, `14538`, `14539`, `14541`, `14542`, `14543`, `14545`, `14547`, `14549`, `14551`, `14552`, `14553`, `14554`, `14556`, `14558`, `14560`, `14562`, `14563`, `14565`, `14567`, `14569`, `14571`, `14572`, `14574`, `14576`, `14577`, `14578`, `14580`, `14582`, `14584`, `14585`, `14587`, `14589`, `14592`, `14593`, `14595`, `14597`, `14599`, `14601`, `14603`, `14604`, `14605`, `14607`, `14609`, `14611`, `14613`, `14614`, `14615`, `14616`, `14618`, `14620`, `14622`, `14624`, `14626`, `14627`, `14629`, `14631`, `14633`, `14635`, `14637`, `14639`, `14643`, `14645`, `14648`, `14650`, `14652`, `14653`, `14655`, `14656`, `14657`, `14659`, `14661`, `14663`, `14664`, `14666`, `14668`, `14669`, `14671`, `14673`, `14675`, `14677`, `14679`, `14681`, `14683`, `14685`, `14687`, `14689`, `14691`, `14693`, `14694`, `14696`, `14697`, `14699`, `14700`, `14702`, `14703`, `14705`, `14707`, `14709`, `14711`, `14712`, `14714`, `14715`, `14716`, `14718`, `14720`, `14723`, `14724`, `14725`, `14727`, `14729`, `14730`, `14731`, `14732`, `14733`, `14735`, `14737`, `14739`, `14740`, `14742`, `14744`, `14746`, `14747`, `14748`, `14750`, `14752`, `14754`, `14755`, `14756`, `14758`, `14760`, `14762`, `14764`, `14766`, `14768`, `14770`, `14772`, `14774`, `14776`, `14778`, `14780`, `14782`, `14784`, `14787`, `14788`, `14790`, `14792`, `14796`, `14798`, `14799`, `14800`, `14802`, `14804`, `14805`, `14807`, `14809`, `14810`, `14812`, `14814`, `14816`, `14817`, `14818`, `14819`, `14820`, `14823`, `14825`, `14826`, `14827`, `14828`, `14829`, `14831`, `14833`, `14835`, `14836`, `14838`, `14840`, `14841`, `14843`, `14845`, `14846`, `14848`, `14850`, `14852`, `14853`, `14855`, `14857`, `14859`, `14861`, `14863`, `14865`, `14867`, `14868`, `14870`, `14871`, `14875`, `14877`, `14878`, `14879`, `14882`, `14885`, `14887`, `14889`, `14891`, `14893`, `14895`, `14897`, `14898`, `14900`, `14902`, `14904`, `14906`, `14908`, `14911`, `14912`, `14914`, `14916`, `14918`, `14920`, `14921`, `14922`, `14924`, `14926`, `14928`, `14929`, `14931`, `14934`, `14935`, `14937`, `14939`, `14941`, `14943`, `14945`, `14946`, `14950`, `14952`, `14953`, `14954`, `14955`, `14957`, `14958`, `14961`, `14963`, `14965`, `14967`, `14969`, `14971`, `14972`, `14974`, `14976`, `14978`, `14980`, `14982`, `14984`, `14987`, `14988`, `14990`, `14992`, `14993`, `14995`, `14997`, `14998`, `14999`, `15000`, `15003`, `15005`, `15007`, `15009`, `15011`, `15012`, `15013`, `15015`, `15017`, `15019`, `15022`, `15024`, `15025`, `15027`, `15028`, `15030`, `15032`, `15034`, `15035`, `15036`, `15038`, `15040`, `15042`, `15044`, `15046`, `15047`, `15048`, `15050`, `15052`, `15053`, `15054`, `15055`, `15057`, `15058`, `15059`, `15061`, `15064`, `15066`, `15067`, `15069`, `15071`, `15073`, `15078`, `15080`, `15082`, `15084`, `15085`, `15086`, `15087`, `15089`, `15091`, `15093`, `15094`, `15095`, `15097`, `15099`, `15101`, `15102`, `15103`, `15104`, `15106`, `15108`, `15109`, `15110`, `15112`, `15114`, `15117`, `15118`, `15120`, `15122`, `15125`, `15127`, `15129`, `15131`, `15132`, `15134`, `15135`, `15137`, `15138`, `15139`, `15140`, `15141`, `15142`, `15144`, `15146`, `15148`, `15150`, `15153`, `15154`, `15157`, `15158`, `15160`, `15161`, `15162`, `15163`, `15165`, `15169`, `15171`, `15173`, `15174`, `15176`, `15177`, `15178`, `15179`, `15181`, `15182`, `15183`, `15185`, `15187`, `15188`, `15190`, `15191`, `15193`, `15195`, `15196`, `15197`, `15200`, `15201`, `15203`, `15204`, `15205`, `15207`, `15209`, `15210`, `15211`, `15213`, `15215`, `15216`, `15194`, `15218`, `15219`, `15221`, `15223`, `15225`, `15227`, `15229`, `15231`, `15236`, `15238`, `15239`, `15241`, `15243`, `15245`, `15247`, `15248`, `15250`, `15251`, `15253`, `15255`, `15256`, `15258`, `15260`, `15264`, `15266`, `15268`, `15269`, `15271`, `15272`, `15273`, `15275`, `15277`, `15279`, `15281`, `15282`, `15285`, `15287`, `15289`, `15291`, `15292`, `15294`, `15296`, `15298`, `15300`, `15301`, `15303`, `15304`, `15306`, `15307`, `15309`, `15310`, `15312`, `15314`, `15315`, `15317`, `15319`, `15320`, `15322`, `15324`, `15326`, `15328`, `15330`, `15332`, `15334`, `15336`, `15337`, `15338`, `15340`, `15341`, `15343`, `15344`, `15346`, `15348`, `15349`, `15351`, `15353`, `15355`, `15357`, `15358`, `15360`, `15362`, `15364`, `15366`, `15368`, `15369`, `15371`, `15373`, `15375`, `15377`, `15379`, `15381`, `15383`, `15385`, `15387`, `15389`, `15391`, `15393`, `15394`, `15395`, `15397`, `15399`, `15402`, `15404`, `15405`, `15406`, `15407`, `15409`, `15411`, `15413`, `15415`, `15417`, `15419`, `15421`, `15422`, `15424`, `15425`, `15427`, `15429`, `15430`, `15432`, `15433`, `15435`, `15437`, `15439`, `15441`, `15442`, `15444`, `15446`, `15448`, `15450`, `15452`, `15454`, `15455`, `15457`, `15462`, `15463`, `15465`, `15467`, `15469`, `15470`, `15471`, `15473`, `15475`, `15477`, `15479`, `15483`, `15485`, `15487`, `15489`, `15493`, `15495`, `15497`, `15499`, `15501`, `15504`, `15507`, `15509`, `15511`, `15513`, `15515`, `15517`, `15518`, `15520`, `15521`, `15523`, `15525`, `15526`, `15527`, `15529`, `15531`, `15533`, `15536`, `15537`, `15539`, `15540`, `15542`, `15544`, `15546`, `15547`, `15549`, `15550`, `15552`, `15554`, `15557`, `15559`, `15561`, `15562`, `15564`, `15566`, `15568`, `15570`, `15572`, `15574`, `15576`, `15578`, `15580`, `15582`, `15584`, `15586`, `15587`, `15589`, `15591`, `15592`, `15593`, `15594`, `15596`, `15597`, `15599`, `15601`, `15603`, `15605`, `15607`, `15609`, `15611`, `15613`, `15615`, `15617`, `15620`, `15622`, `15624`, `15626`, `15627`, `15629`, `15631`, `15633`, `15634`, `15636`, `15638`, `15640`, `15642`, `15643`, `15645`, `15647`, `15649`, `15650`, `15651`, `15653`, `15655`, `15657`, `15658`, `15660`, `15661`, `15664`, `15666`, `15669`, `15671`, `15673`, `15674`, `15676`, `15678`, `15680`, `15681`, `15683`, `15685`, `15687`, `15689`, `15690`, `15692`, `15693`, `15695`, `15696`, `15698`, `15700`, `15702`, `15704`, `15705`, `15707`, `15709`, `15711`, `15713`, `6792`, `15714`, `15716`, `15718`, `15722`, `15723`, `15725`, `15727`, `15728`, `15729`, `15730`, `15732`, `15734`, `15736`, `15737`, `15739`, `15741`, `15743`, `15744`, `15746`, `15747`, `15749`, `15751`, `15756`, `15758`, `15759`, `15764`, `15765`, `15766`, `15768`, `15770`, `15772`, `15774`, `15777`, `15779`, `15781`, `15785`, `15786`, `15788`, `15789`, `15790`, `15791`, `15793`, `15794`, `15796`, `15798`, `15800`, `15803`, `15804`, `15805`, `15807`, `15809`, `15813`, `15815`, `15817`, `15818`, `15819`, `15821`, `15823`, `15825`, `15827`, `15829`, `15831`, `15833`, `15834`, `15837`, `15838`, `15840`, `15841`, `15843`, `15844`, `15846`, `15847`, `15849`, `15850`, `15854`, `15855`, `15856`, `15862`, `15864`, `15866`, `15868`, `15869`, `15871`, `15873`, `15875`, `15877`, `15878`, `15881`, `15883`, `15885`, `15887`, `15888`, `15890`, `15892`, `15894`, `15896`, `15898`, `15900`, `15901`, `15902`, `15904`, `15906`, `15911`, `15913`, `15914`, `15915`, `15917`, `15919`, `15921`, `15923`, `15925`, `15926`, `15928`, `15929`, `15931`, `15932`, `15934`, `15936`, `15938`, `15941`, `15943`, `15945`, `15947`, `15948`, `15950`, `15952`, `15953`, `15955`, `15957`, `15959`, `15961`, `15962`, `15964`, `15966`, `15968`, `15970`, `15972`, `15974`, `15976`, `15978`, `15980`, `15982`, `15984`, `15986`, `15988`, `15989`, `15991`, `15992`, `15994`, `15996`, `15997`, `15999`, `16001`, `16002`, `16003`, `16005`, `16006`, `16008`, `16009`, `16011`, `16012`, `16014`, `16016`, `16017`, `16019`, `16023`, `16025`, `16027`, `16029`, `16031`, `16032`, `16034`, `16036`, `16037`, `16039`, `16041`, `16043`, `16045`, `16046`, `16047`, `16048`, `16050`, `16052`, `16054`, `16056`, `16057`, `16059`, `16061`, `16063`, `16064`, `16065`, `16067`, `16069`, `16070`, `16071`, `16072`, `16073`, `16074`, `16076`, `16078`, `16080`, `16081`, `16083`, `16085`, `16087`, `16089`, `16091`, `16093`, `16095`, `16097`, `16099`, `16101`, `16102`, `16104`, `16106`, `16108`, `16111`, `16112`, `16113`, `16115`, `16116`, `16118`, `16120`, `16121`, `16123`, `16125`, `16127`, `16129`, `16130`, `16134`, `16136`, `16138`, `16140`, `16142`, `16144`, `16145`, `16147`, `16149`, `16151`, `16153`, `16155`, `16156`, `16158`, `16160`, `16161`, `16163`, `16164`, `16166`, `16169`, `16171`, `16173`, `16174`, `16176`, `16179`, `16181`, `16184`, `16185`, `16187`, `16188`, `16190`, `16192`, `16193`, `16194`, `16196`, `16198`, `16200`, `16202`, `16204`, `16206`, `16207`, `16208`, `16210`, `16213`, `16214`, `16216`, `16218`, `16219`, `16221`, `16223`, `16225`, `16228`, `16230`, `16234`, `16236`, `16237`, `16239`, `16241`, `16242`, `16243`, `16245`, `2856`, `16246`, `16248`, `16249`, `16251`, `16253`, `16255`, `16257`, `16259`, `16261`, `16263`, `16265`, `16267`, `16269`, `16271`, `16273`, `16275`, `16276`, `16277`, `16279`, `16281`, `16283`, `16285`, `16287`, `16289`, `16291`, `16292`, `16294`, `16296`, `16298`, `16300`, `16302`, `16305`, `16308`, `16310`, `16315`, `16317`, `16318`, `16319`, `16321`, `16325`, `16328`, `16329`, `16332`, `16334`, `16335`, `16337`, `16338`, `16339`, `16341`, `16343`, `16345`, `16347`, `16349`, `16350`, `16352`, `16354`, `16356`, `16358`, `16360`, `16362`, `16363`, `16365`, `16368`, `16370`, `16373`, `16375`, `16377`, `16378`, `16379`, `16381`, `16383`, `16384`, `16385`, `16387`, `16389`, `16391`, `16393`, `16394`, `16396`, `16397`, `16399`, `16400`, `16401`, `16402`, `16404`, `16406`, `16407`, `16409`, `16411`, `16413`, `16415`, `16417`, `16419`, `16420`, `16421`, `16422`, `16424`, `16426`, `16427`, `16429`, `16431`, `16432`, `16434`, `16436`, `16437`, `16438`, `16441`, `16442`, `16444`, `16446`, `16448`, `16450`, `16452`, `16453`, `16455`, `16457`, `16458`, `16459`, `16461`, `16462`, `16464`, `16466`, `16467`, `16469`, `16470`, `16471`, `16474`, `16475`, `16477`, `16478`, `16480`, `16481`, `16483`, `16485`, `16487`, `16488`, `16490`, `16491`, `16492`, `16494`, `16496`, `16497`, `16499`, `16501`, `16503`, `16505`, `16507`, `16508`, `16509`, `16513`, `16514`, `16516`, `16518`, `16520`, `16522`, `16523`, `16524`, `16525`, `16527`, `16529`, `16531`, `16532`, `16533`, `16534`, `16535`, `16537`, `16539`, `16541`, `16543`, `16544`, `16546`, `16548`, `16552`, `16553`, `16555`, `16557`, `16559`, `16562`, `16563`, `16565`, `16568`, `16570`, `16572`, `16574`, `16576`, `16578`, `16579`, `16581`, `16583`, `16585`, `16587`, `16589`, `16590`, `16591`, `16592`, `16594`, `16596`, `16598`, `16600`, `16602`, `16603`, `16605`, `16606`, `16608`, `16610`, `16612`, `16614`, `16615`, `16617`, `16618`, `16620`, `16622`, `16624`, `16626`, `16628`, `16630`, `16631`, `16633`, `16635`, `16637`, `16639`, `16640`, `16642`, `16643`, `16645`, `16646`, `16648`, `16649`, `16650`, `16652`, `16654`, `16656`, `16659`, `16661`, `16662`, `16664`, `16666`, `16668`, `16670`, `16672`, `16674`, `16676`, `16678`, `16679`, `16680`, `16682`, `16683`, `16685`, `16686`, `16688`, `16689`, `16690`, `16691`, `16693`, `16695`, `16698`, `16699`, `16701`, `16702`, `16704`, `16705`, `16707`, `16708`, `16710`, `16712`, `16715`, `16717`, `16719`, `16720`, `16721`, `16723`, `16725`, `16727`, `16729`, `16731`, `16733`, `16734`, `16736`, `16738`, `16740`, `16741`, `16744`, `16745`, `16746`, `16748`, `16749`, `16751`, `16753`, `16755`, `16757`, `16758`, `16760`, `16764`, `16766`, `16768`, `16770`, `16772`, `16774`, `16775`, `16778`, `16780`, `16782`, `16784`, `16785`, `16786`, `16788`, `16789`, `16792`, `16794`, `16795`, `16797`, `16799`, `16802`, `16803`, `16807`, `16809`, `16811`, `16812`, `16814`, `16816`, `16818`, `16819`, `16820`, `16822`, `16824`, `16826`, `16828`, `16830`, `16832`, `16833`, `16835`, `16837`, `16839`, `16840`, `16841`, `16842`, `16844`, `16846`, `16847`, `16849`, `16850`, `16852`, `16854`, `16856`, `16858`, `16860`, `16862`, `16864`, `16865`, `16867`, `16868`, `16869`, `16871`, `16872`, `16873`, `16874`, `16876`, `16878`, `16880`, `16882`, `16883`, `16885`, `16886`, `16888`, `16889`, `16891`, `16893`, `16895`, `16896`, `16898`, `16900`, `16902`, `16904`, `16906`, `16908`, `16910`, `16912`, `16914`, `16916`, `16918`, `16920`, `16922`, `16924`, `16926`, `16927`, `16929`, `16930`, `16932`, `16934`, `16935`, `16936`, `16938`, `16940`, `16942`, `16943`, `16945`, `16947`, `16949`, `16951`, `16953`, `16955`, `16957`, `16959`, `16961`, `16962`, `16964`, `16965`, `16967`, `16968`, `16969`, `16970`, `16971`, `16973`, `16974`, `16975`, `16977`, `16978`, `16980`, `16982`, `16984`, `16985`, `16986`, `16988`, `16989`, `16991`, `16993`, `16995`, `16996`, `16998`, `16999`, `17000`, `17002`, `17003`, `17008`, `17009`, `17011`, `17013`, `17015`, `17017`, `17019`, `17020`, `17022`, `17024`, `17026`, `17028`, `17029`, `17030`, `17034`, `17036`, `17038`, `17040`, `17042`, `17043`, `17045`, `17047`, `17048`, `17050`, `17052`, `17054`, `17055`, `17057`, `17059`, `17061`, `17062`, `17064`, `17066`, `17068`, `17070`, `17072`, `17074`, `17078`, `17080`, `17081`, `17083`, `17085`, `17087`, `17089`, `17090`, `17091`, `17093`, `17095`, `17097`, `17098`, `17099`, `17100`, `17102`, `17104`, `17105`, `17107`, `17109`, `17111`, `17113`, `17115`, `17117`, `17119`, `17120`, `17121`, `17123`, `17125`, `17126`, `17128`, `17130`, `17131`, `17132`, `17134`, `17136`, `17137`, `17138`, `17140`, `17142`, `17144`, `17145`, `17147`, `17149`, `17150`, `17151`, `17152`, `17153`, `17154`, `17156`, `17158`, `17159`, `17161`, `17162`, `17164`, `17165`, `17167`, `17168`, `17170`, `17173`, `17175`, `17177`, `17179`, `17180`, `17181`, `17185`, `17187`, `17188`, `17191`, `17192`, `17194`, `17196`, `17198`, `17200`, `17202`, `17207`, `17209`, `17210`, `17212`, `17215`, `17217`, `17219`, `17221`, `17222`, `17223`, `17225`, `17226`, `17228`, `17230`, `17232`, `17233`, `17235`, `17236`, `17237`, `17240`, `17242`, `17244`, `17245`, `17247`, `17249`, `17251`, `17253`, `17255`, `17257`, `17259`, `17261`, `17263`, `17264`, `17266`, `17268`, `17269`, `17271`, `17273`, `17275`, `17277`, `17278`, `17280`, `17282`, `17284`, `17286`, `17288`, `17290`, `17292`, `17294`, `17295`, `17297`, `17299`, `17301`, `17302`, `17306`, `17308`, `17310`, `17312`, `17314`, `17316`, `17318`, `17320`, `17322`, `17324`, `17326`, `17328`, `17330`, `17331`, `17334`, `17336`, `17338`, `17341`, `17342`, `17343`, `17346`, `17347`, `17348`, `17350`, `17351`, `17353`, `17354`, `17356`, `17358`, `17362`, `17366`, `17368`, `17369`, `17371`, `17372`, `17373`, `17375`, `17376`, `17378`, `17380`, `17382`, `17387`, `17389`, `17391`, `17392`, `17394`, `17396`, `17398`, `17399`, `17401`, `17402`, `17404`, `17405`, `17406`, `17407`, `17408`, `17410`, `17411`, `17413`, `17414`, `17416`, `17418`, `17419`, `17421`, `17423`, `17425`, `17427`, `17429`, `17431`, `17433`, `17435`, `17439`, `17443`, `17444`, `17445`, `17447`, `17449`, `17451`, `17453`, `17456`, `17458`, `17459`, `17460`, `17462`, `17463`, `17465`, `17467`, `17468`, `17470`, `17472`, `17473`, `17475`, `17477`, `17479`, `17481`, `17482`, `17484`, `17486`, `17487`, `17489`, `17491`, `17493`, `17496`, `17498`, `17500`, `17502`, `17504`, `17506`, `17508`, `17510`, `17512`, `17514`, `17516`, `17517`, `17519`, `17521`, `17523`, `17525`, `17527`, `17529`, `17530`, `17531`, `17533`, `17535`, `17537`, `17539`, `17541`, `17543`, `17544`, `17546`, `17548`, `17551`, `17553`, `17555`, `17557`, `17559`, `17560`, `17562`, `17564`, `17566`, `17568`, `17569`, `17571`, `17573`, `17575`, `17576`, `17578`, `17579`, `17581`, `17583`, `17584`, `17585`, `17586`, `17588`, `17589`, `17590`, `17592`, `17594`, `17596`, `17598`, `17599`, `17600`, `17602`, `17604`, `17606`, `17608`, `17610`, `17611`, `17613`, `17614`, `17616`, `17618`, `17620`, `17622`, `17624`, `17628`, `17629`, `17630`, `17632`, `17634`, `17636`, `17637`, `17639`, `17641`, `17643`, `17647`, `17649`, `17650`, `17654`, `17657`, `17663`, `17664`, `17666`, `17668`, `17669`, `17670`, `17672`, `17674`, `17675`, `17677`, `17679`, `17680`, `17681`, `17683`, `17684`, `17685`, `17688`, `17690`, `17691`, `17694`, `17695`, `17696`, `17697`, `17699`, `17700`, `17702`, `17703`, `17705`, `17707`, `17709`, `17711`, `17712`, `17713`, `17715`, `17717`, `17719`, `17720`, `17722`, `17724`, `17726`, `17727`, `17728`, `17729`, `17731`, `17732`, `17734`, `17736`, `17738`, `17739`, `17741`, `17743`, `17745`, `17747`, `17750`, `17751`, `17752`, `17754`, `17755`, `17757`, `17759`, `17760`, `17762`, `17764`, `17765`, `17766`, `17767`, `17769`, `17771`, `17773`, `17775`, `17777`, `17778`, `17780`, `17781`, `17783`, `17786`, `17788`, `17790`, `17792`, `17794`, `17796`, `17797`, `17799`, `17801`, `17803`, `17806`, `17808`, `17810`, `17812`, `17814`, `17816`, `17818`, `17820`, `17821`, `17823`, `17825`, `17827`, `17829`, `17831`, `17833`, `17835`, `17837`, `17839`, `17841`, `17843`, `17845`, `17847`, `17849`, `17851`, `17853`, `17855`, `17857`, `17859`, `17861`, `17863`, `17864`, `17866`, `17868`, `17870`, `17872`, `17873`, `17874`, `17876`, `17877`, `17879`, `17881`, `17883`, `17886`, `17887`, `17889`, `17891`, `8806`, `17893`, `17894`, `17896`, `17898`, `17900`, `17903`, `17904`, `17906`, `17908`, `17910`, `17911`, `17913`, `17915`, `17917`, `17919`, `17920`, `17921`, `17923`, `17925`, `17927`, `17928`, `17932`, `17934`, `17936`, `17938`, `17940`, `17942`, `17944`, `17946`, `17948`, `17952`, `17954`, `17956`, `17958`, `17960`, `17962`, `17964`, `17966`, `17968`, `17970`, `17972`, `17974`, `17975`, `17976`, `17977`, `17979`, `17980`, `17982`, `17983`, `17985`, `17988`, `17990`, `17993`, `17994`, `17996`, `17997`, `17998`, `17999`, `18001`, `18003`, `18005`, `18006`, `18007`, `18009`, `18011`, `18013`, `18015`, `18017`, `18019`, `18021`, `18023`, `18025`, `18026`, `18027`, `18028`, `18029`, `18031`, `18033`, `18035`, `18037`, `18038`, `18040`, `18045`, `18047`, `18049`, `18051`, `18052`, `18054`, `18055`, `18057`, `18059`, `18061`, `18063`, `18065`, `18066`, `18069`, `18070`, `18072`, `18073`, `18075`, `18077`, `18079`, `18081`, `18082`, `18083`, `18085`, `18086`, `18087`, `18088`, `18090`, `18092`, `18093`, `18094`, `18096`, `18097`, `18099`, `18100`, `18102`, `18104`, `18106`, `18108`, `18110`, `18111`, `18113`, `18115`, `18117`, `18118`, `18120`, `18122`, `18123`, `18124`, `18126`, `18128`, `18133`, `18135`, `18136`, `18138`, `18140`, `18142`, `18144`, `18146`, `18148`, `18150`, `18151`, `18152`, `18153`, `18155`, `18157`, `18159`, `18161`, `18162`, `18163`, `18166`, `18168`, `18169`, `18171`, `18172`, `18175`, `18176`, `18178`, `18180`, `18182`, `18183`, `18185`, `18187`, `18189`, `18190`, `18192`, `18194`, `18195`, `18197`, `18199`, `18200`, `18202`, `18204`, `18206`, `18208`, `18209`, `18212`, `18214`, `18215`, `18217`, `18219`, `18220`, `18223`, `18224`, `18225`, `18227`, `18229`, `18231`, `18232`, `18234`, `18236`, `18238`, `18240`, `18242`, `18244`, `18245`, `18247`, `18250`, `18252`, `18256`, `18260`, `18261`, `18263`, `18265`, `18267`, `18268`, `18270`, `18272`, `18273`, `18275`, `18277`, `18278`, `18279`, `18280`, `18282`, `18283`, `18285`, `18286`, `18287`, `18289`, `18290`, `18292`, `18294`, `18295`, `18296`, `18297`, `18299`, `18303`, `18305`, `18306`, `18308`, `18309`, `18311`, `18312`, `18313`, `18315`, `18317`, `18319`, `18321`, `18323`, `18325`, `18326`, `18328`, `18329`, `18331`, `18333`, `18334`, `18336`, `18338`, `18340`, `18341`, `18343`, `18345`, `18346`, `18348`, `18349`, `18350`, `18352`, `18354`, `18355`, `18357`, `18358`, `18359`, `18361`, `18362`, `18364`, `18366`, `18368`, `18370`, `18372`, `18373`, `18375`, `18377`, `18380`, `18384`, `18390`, `18392`, `18394`, `18396`, `18398`, `18402`, `18404`, `18405`, `18407`, `18409`, `18411`, `18413`, `18416`, `18418`, `18420`, `18422`, `18424`, `18426`, `18428`, `1074`, `18430`, `18432`, `18434`, `18436`, `18438`, `18440`, `18442`, `18444`, `18446`, `18448`, `18450`, `18452`, `18454`, `18455`, `18456`, `18457`, `18459`, `18460`, `18462`, `18463`, `18465`, `18466`, `18468`, `18470`, `18472`, `18474`, `18475`, `18477`, `18479`, `18482`, `18484`, `18485`, `18487`, `18489`, `18491`, `18494`, `18495`, `18497`, `18499`, `18501`, `18502`, `18504`, `18505`, `18506`, `18507`, `18509`, `18511`, `18513`, `18515`, `18517`, `18518`, `18520`, `18522`, `18524`, `18526`, `18527`, `18529`, `18530`, `18532`, `18534`, `18535`, `18536`, `18537`, `18539`, `18541`, `18543`, `18545`, `18547`, `18550`, `18551`, `18553`, `18555`, `18558`, `18560`, `18562`, `18564`, `18566`, `18568`, `18571`, `18573`, `18575`, `18581`, `18583`, `18585`, `18586`, `18588`, `18589`, `18591`, `18593`, `18597`, `18598`, `18600`, `18602`, `18604`, `18606`, `18608`, `18609`, `18610`, `18612`, `18614`, `18615`, `18617`, `18618`, `18620`, `18621`, `18622`, `18623`, `18625`, `18627`, `18629`, `18631`, `18632`, `18634`, `18637`, `18638`, `18641`, `18642`, `18644`, `18646`, `18647`, `18649`, `18651`, `18654`, `18656`, `18658`, `18659`, `18661`, `18663`, `18665`, `18666`, `18667`, `18668`, `18671`, `18673`, `18675`, `18677`, `18678`, `18679`, `18680`, `18682`, `18684`, `18687`, `18689`, `18691`, `18693`, `18695`, `18697`, `18698`, `18700`, `18702`, `18704`, `18706`, `18708`, `18710`, `18712`, `18713`, `18715`, `18717`, `18722`, `18724`, `18726`, `18728`, `18730`, `18732`, `18734`, `18735`, `18737`, `18738`, `18739`, `18741`, `18743`, `18745`, `18747`, `18748`, `18750`, `18754`, `18756`, `18758`, `18760`, `18763`, `18765`, `18767`, `18768`, `18770`, `18772`, `18774`, `18776`, `18778`, `18780`, `18782`, `18784`, `18786`, `18787`, `18789`, `18791`, `18792`, `18794`, `18796`, `18798`, `18800`, `18801`, `18802`, `18803`, `18805`, `18807`, `18809`, `18812`, `18814`, `18815`, `18816`, `18819`, `18821`, `18823`, `18827`, `18829`, `18830`, `18833`, `18835`, `18837`, `18839`, `18841`, `18842`, `18844`, `18845`, `18847`, `18848`, `18850`, `18852`, `18853`, `18854`, `18856`, `18857`, `18859`, `18861`, `18863`, `18865`, `18866`, `18868`, `18869`, `18871`, `18873`, `18875`, `18876`, `18877`, `18878`, `18880`, `18882`, `18883`, `18885`, `18887`, `18889`, `18892`, `18893`, `18894`, `18896`, `18898`, `18900`, `18902`, `18903`, `18905`, `18907`, `18367`, `18909`, `18911`, `18913`, `18915`, `18916`, `18918`, `18920`, `18922`, `18923`, `18925`, `18927`, `18929`, `18931`, `18933`, `18935`, `18937`, `18939`, `18943`, `18944`, `18946`, `18948`, `18950`, `18951`, `18952`, `18956`, `18958`, `18960`, `18961`, `18963`, `18965`, `18967`, `18969`, `18970`, `18972`, `18973`, `18974`, `18975`, `18977`, `18979`, `18981`, `18982`, `18983`, `18984`, `18986`, `18988`, `18990`, `18992`, `18994`, `18996`, `18997`, `18998`, `19000`, `19002`, `19003`, `19005`, `19007`, `19008`, `19009`, `19011`, `19013`, `19015`, `19016`, `19018`, `19020`, `19022`, `19024`, `19025`, `19027`, `19029`, `19031`, `19033`, `19035`, `19036`, `19038`, `19039`, `19041`, `19042`, `19044`, `19046`, `19048`, `19049`, `19050`, `19051`, `19052`, `19054`, `19056`, `19057`, `19058`, `19060`, `19064`, `19066`, `19068`, `19069`, `19071`, `19073`, `19075`, `19076`, `19083`, `19088`, `19091`, `19093`, `19095`, `19096`, `19097`, `19098`, `19099`, `19101`, `19102`, `19104`, `19106`, `19107`, `19109`, `19111`, `19113`, `19115`, `19116`, `19119`, `19121`, `19123`, `19124`, `19126`, `19127`, `19128`, `19130`, `19132`, `19137`, `19139`, `19140`, `19142`, `19144`, `19145`, `19146`, `19147`, `19148`, `19150`, `19152`, `19154`, `19155`, `19156`, `19158`, `19159`, `19161`, `19162`, `19163`, `19165`, `19166`, `19168`, `19173`, `19174`, `19176`, `19178`, `19180`, `19182`, `19183`, `19184`, `19186`, `19188`, `19190`, `19192`, `19197`, `19198`, `19200`, `19202`, `19204`, `19205`, `19206`, `19208`, `19209`, `19210`, `19212`, `19213`, `19214`, `19216`, `19217`, `19219`, `19220`, `19221`, `19223`, `19225`, `19227`, `19228`, `19230`, `19232`, `19234`, `19235`, `19237`, `19239`, `19240`, `19242`, `19244`, `264`, `19246`, `19247`, `19249`, `19250`, `19252`, `19254`, `19255`, `19256`, `19258`, `19260`, `19262`, `19264`, `19265`, `19267`, `19269`, `19271`, `19273`, `19275`, `19277`, `19279`, `19280`, `19282`, `19284`, `19286`, `19288`, `19290`, `19291`, `19293`, `19295`, `19297`, `19299`, `19300`, `19302`, `19304`, `19305`, `19306`, `19308`, `19310`, `19312`, `19314`, `19315`, `19317`, `19319`, `19321`, `19324`, `19325`, `19327`, `19329`, `19331`, `19333`, `19334`, `19335`, `19337`, `19339`, `19341`, `19343`, `19344`, `19346`, `19348`, `19349`, `19351`, `19353`, `19355`, `19357`, `19359`, `19361`, `19362`, `19363`, `19365`, `19367`, `19368`, `19370`, `19373`, `19375`, `19376`, `19378`, `19380`, `19382`, `19383`, `19384`, `19385`, `19387`, `19389`, `19390`, `19392`, `19394`, `19395`, `19397`, `19399`, `19400`, `19401`, `19403`, `19405`, `19406`, `19408`, `19410`, `19412`, `19413`, `19416`, `19418`, `19419`, `19421`, `19423`, `19424`, `19426`, `19428`, `19430`, `19432`, `19433`, `19436`, `19438`, `19440`, `19442`, `19444`, `19446`, `19448`, `19450`, `19452`, `19453`, `19457`, `19458`, `19459`, `19464`, `19466`, `19467`, `19468`, `19470`, `19471`, `19473`, `19475`, `19476`, `19478`, `19480`, `19482`, `19483`, `19485`, `19487`, `19490`, `19492`, `19494`, `19496`, `19498`, `19500`, `19502`, `19504`, `19507`, `19509`, `19510`, `19511`, `19513`, `19515`, `19516`, `19517`, `19519`, `19521`, `19523`, `19525`, `19526`, `19528`, `19529`, `19531`, `19533`, `19534`, `19536`, `19537`, `19538`, `19541`, `19542`, `19543`, `19545`, `19547`, `19548`, `19549`, `19551`, `19553`, `19554`, `19556`, `19558`, `19559`, `19561`, `19563`, `19565`, `19567`, `19569`, `19570`, `19573`, `19575`, `19577`, `19578`, `19580`, `19581`, `19583`, `19584`, `19586`, `19587`, `19589`, `19592`, `19594`, `19595`, `19597`, `19598`, `19600`, `19602`, `19604`, `19606`, `19609`, `19611`, `19612`, `19614`, `19616`, `19618`, `19620`, `19622`, `19623`, `19624`, `19626`, `19628`, `19631`, `19633`, `19635`, `19637`, `19639`, `19641`, `19643`, `19646`, `19647`, `19649`, `19651`, `19653`, `19655`, `19657`, `19659`, `19661`, `19662`, `19665`, `19667`, `19669`, `19672`, `19673`, `19675`, `19677`, `19680`, `19683`, `19685`, `19687`, `19689`, `19691`, `19693`, `19696`, `19697`, `19699`, `19701`, `19703`, `19705`, `19707`, `19709`, `19711`, `19713`, `19715`, `19717`, `19718`, `19720`, `19723`, `19724`, `19726`, `19728`, `19730`, `19732`, `19733`, `19735`, `19737`, `19739`, `19741`, `19743`, `19744`, `19746`, `19747`, `19749`, `19752`, `19755`, `19756`, `19758`, `19759`, `19760`, `19762`, `19764`, `19765`, `19766`, `19768`, `19769`, `19771`, `19773`, `19775`, `19777`, `19779`, `19780`, `19781`, `19783`, `19784`, `19786`, `19787`, `19789`, `19791`, `19793`, `19795`, `19796`, `19798`, `19799`, `19800`, `19802`, `19804`, `19806`, `19808`, `19810`, `19812`, `19814`, `19816`, `19818`, `19820`, `19822`, `19823`, `19825`, `19827`, `19829`, `19830`, `19832`, `19834`, `19836`, `19838`, `19840`, `19842`, `19843`, `19846`, `19848`, `19850`, `19852`, `19854`, `19856`, `19858`, `19860`, `19862`, `19863`, `19865`, `19866`, `19869`, `19870`, `19871`, `19873`, `19875`, `19877`, `19878`, `19879`, `19884`, `19886`, `19888`, `19889`, `19891`, `19892`, `19894`, `19895`, `19896`, `19898`, `19900`, `19902`, `19903`, `19905`, `19907`, `19909`, `19910`, `19912`, `19913`, `19915`, `19917`, `19919`, `19920`, `19921`, `19923`, `19925`, `19926`, `19927`, `19929`, `19932`, `19933`, `19935`, `19937`, `19938`, `19940`, `19941`, `19942`, `19944`, `19946`, `19948`, `19951`, `19953`, `19955`, `19956`, `19958`, `19960`, `19961`, `19962`, `19964`, `19968`, `19970`, `19975`, `19977`, `19979`, `19981`, `19983`, `19985`, `19987`, `19989`, `19991`, `19992`, `19993`, `19995`, `19996`, `19998`, `20000`, `20003`, `20005`, `20006`, `20008`, `20012`, `20014`, `20016`, `20018`, `20020`, `20022`, `20025`, `20027`, `20029`, `20030`, `20031`, `20035`, `20037`, `20038`, `20039`, `20041`, `20042`, `20043`, `20045`, `20046`, `20048`, `20049`, `20051`, `20053`, `20054`, `20055`, `20057`, `20058`, `20060`, `20061`, `20063`, `20065`, `20066`, `20068`, `20069`, `20070`, `20072`, `20074`, `20075`, `20076`, `20078`, `20080`, `20082`, `20085`, `20087`, `20088`, `20090`, `20092`, `20095`, `20096`, `20098`, `20100`, `20101`, `20103`, `20104`, `20106`, `20108`, `20110`, `20113`, `20115`, `20117`, `20119`, `20121`, `20122`, `20124`, `20127`, `20129`, `20131`, `20133`, `20136`, `20138`, `20140`, `20142`, `20144`, `20146`, `20148`, `20150`, `20151`, `20152`, `20154`, `20158`, `20159`, `20160`, `20162`, `20163`, `20165`, `20167`, `20169`, `20171`, `20172`, `20174`, `20176`, `20177`, `20179`, `20181`, `20183`, `20184`, `20185`, `20186`, `20187`, `20189`, `20191`, `20193`, `20195`, `20196`, `20198`, `20199`, `20201`, `20203`, `20205`, `20207`, `20209`, `20211`, `20213`, `20215`, `20217`, `20219`, `20221`, `20223`, `20225`, `20226`, `20228`, `20230`, `20232`, `20235`, `20237`, `20239`, `20242`, `20244`, `20245`, `20247`, `20249`, `20251`, `20252`, `20253`, `20254`, `20255`, `20256`, `20258`, `20259`, `20260`, `20262`, `20266`, `20268`, `20271`, `20273`, `20274`, `20276`, `20278`, `20281`, `20283`, `20284`, `20285`, `20287`, `20289`, `20291`, `20293`, `20295`, `20297`, `20298`, `20300`, `20302`, `20303`, `20305`, `20307`, `20309`, `20311`, `20312`, `20314`, `20316`, `20317`, `20319`, `20321`, `20323`, `20324`, `20326`, `20328`, `20330`, `20332`, `20334`, `20336`, `20338`, `20340`, `20342`, `20344`, `20345`, `20347`, `20348`, `20350`, `20357`, `20360`, `20362`, `20363`, `20365`, `20367`, `20369`, `20372`, `20374`, `20375`, `20377`, `20378`, `20380`, `20381`, `20383`, `20385`, `20387`, `20388`, `20390`, `20392`, `20393`, `20395`, `20397`, `20398`, `20399`, `20400`, `20402`, `20403`, `20404`, `20406`, `20408`, `20409`, `20411`, `20413`, `20415`, `20417`, `20419`, `20420`, `20422`, `20426`, `20428`, `20430`, `20432`, `20434`, `20435`, `20437`, `20439`, `20441`, `20443`, `20445`, `20446`, `20448`, `20450`, `20452`, `20455`, `20456`, `20458`, `20460`, `20462`, `20464`, `20466`, `20467`, `20469`, `20470`, `20471`, `20473`, `20474`, `20476`, `20478`, `20480`, `20482`, `20485`, `20488`, `20490`, `20493`, `20495`, `20497`, `20499`, `20500`, `20502`, `20504`, `20506`, `20507`, `20509`, `20510`, `20512`, `20514`, `20516`, `20518`, `20520`, `20522`, `20524`, `20525`, `20527`, `20529`, `20531`, `20534`, `20536`, `20538`, `20540`, `20541`, `20543`, `20545`, `20547`, `20549`, `20551`, `20553`, `20555`, `20556`, `20557`, `20558`, `20559`, `20560`, `20562`, `20564`, `20565`, `20567`, `20569`, `20570`, `20572`, `20573`, `20574`, `20576`, `20578`, `20580`, `20582`, `20584`, `20585`, `20586`, `20587`, `20591`, `20592`, `20593`, `20595`, `20597`, `20598`, `20599`, `20600`, `20602`, `20603`, `20605`, `20606`, `20609`, `20611`, `20613`, `20614`, `20616`, `20618`, `20619`, `20621`, `20623`, `20624`, `20626`, `20628`, `20633`, `20634`, `20636`, `20638`, `20640`, `20641`, `20643`, `20645`, `20647`, `20649`, `20651`, `20653`, `20654`, `20656`, `20657`, `20659`, `20661`, `20662`, `20664`, `20666`, `20667`, `20669`, `20671`, `20673`, `20675`, `20678`, `20679`, `20680`, `20682`, `20684`, `20686`, `20687`, `20689`, `20690`, `20691`, `20694`, `20696`, `20697`, `20699`, `20700`, `20702`, `20704`, `20705`, `20707`, `20709`, `20710`, `20712`, `20714`, `20716`, `20718`, `20720`, `20722`, `20724`, `20726`, `20727`, `20729`, `20732`, `20734`, `20736`, `20738`, `20740`, `20742`, `20743`, `20745`, `20747`, `20749`, `20751`, `20755`, `20757`, `20758`, `20760`, `20762`, `20764`, `20765`, `20767`, `20769`, `20771`, `20773`, `20775`, `20777`, `20779`, `20782`, `20783`, `20785`, `20787`, `20789`, `20791`, `20792`, `20795`, `20797`, `20799`, `20801`, `20803`, `20804`, `20806`, `20808`, `20809`, `20810`, `20812`, `20814`, `20816`, `20818`, `20820`, `20822`, `20824`, `20826`, `20828`, `20830`, `20832`, `20834`, `20836`, `20837`, `20839`, `20841`, `20842`, `20844`, `20845`, `20846`, `20850`, `20852`, `20854`, `20856`, `20858`, `20859`, `20861`, `20863`, `20864`, `20867`, `20868`, `20870`, `20872`, `20874`, `20875`, `20877`, `20879`, `20880`, `20882`, `20884`, `20885`, `20887`, `20889`, `20890`, `20892`, `20894`, `20895`, `20897`, `20898`, `20900`, `20902`, `20904`, `20906`, `20908`, `20910`, `20912`, `20914`, `20916`, `20917`, `20919`, `20920`, `20921`, `20923`, `20925`, `20927`, `20928`, `20930`, `20932`, `20934`, `20936`, `20938`, `20939`, `20940`, `20942`, `20944`, `20946`, `20948`, `20949`, `20951`, `20952`, `20954`, `20956`, `20958`, `20959`, `20961`, `20963`, `20964`, `20966`, `20967`, `20968`, `20970`, `20971`, `20972`, `20974`, `20976`, `20977`, `20979`, `20981`, `20983`, `20985`, `20986`, `20987`, `20989`, `20991`, `20993`, `20995`, `20997`, `20999`, `21000`, `21002`, `21004`, `21005`, `21007`, `21009`, `21011`, `21013`, `21015`, `21016`, `21018`, `21020`, `21021`, `21022`, `21024`, `21025`, `21026`, `21027`, `21028`, `21030`, `21031`, `21033`, `21035`, `21039`, `21041`, `21043`, `21045`, `21047`, `21048`, `21050`, `21052`, `21055`, `21056`, `21058`, `21060`, `21062`, `21064`, `21067`, `21068`, `21070`, `21072`, `21074`, `21076`, `21078`, `21080`, `21081`, `21084`, `21086`, `21088`, `21089`, `21090`, `21091`, `21094`, `21097`, `21099`, `21101`, `21103`, `21105`, `21107`, `21109`, `21111`, `21113`, `21115`, `21116`, `21118`, `21120`, `21121`, `21124`, `21126`, `21128`, `21130`, `21131`, `21133`, `21135`, `21137`, `21139`, `21141`, `21143`, `21144`, `21146`, `21148`, `21150`, `21152`, `21154`, `21155`, `21157`, `21159`, `21161`, `21163`, `21164`, `21166`, `21168`, `21169`, `21170`, `21172`, `21173`, `21175`, `21177`, `21179`, `21180`, `21182`, `21184`, `21186`, `21188`, `21190`, `21193`, `21195`, `21197`, `21198`, `21199`, `21201`, `21203`, `21205`, `21207`, `21208`, `21209`, `21211`, `21213`, `21215`, `21216`, `21218`, `21220`, `21222`, `21224`, `21226`, `21228`, `21230`, `21231`, `21233`, `21238`, `21240`, `21242`, `21243`, `21245`, `21247`, `21249`, `21251`, `21253`, `21255`, `21256`, `21258`, `21259`, `21261`, `21263`, `21265`, `21266`, `21268`, `21270`, `21272`, `21274`, `21276`, `21278`, `21281`, `21283`, `21284`, `21286`, `21288`, `21289`, `21290`, `21292`, `21297`, `21299`, `21300`, `21301`, `21302`, `21303`, `21305`, `21306`, `21307`, `21309`, `21311`, `21312`, `21314`, `21316`, `21318`, `21319`, `21321`, `21322`, `21323`, `21325`, `21327`, `21329`, `21331`, `21333`, `21335`, `21337`, `21339`, `21341`, `21343`, `21344`, `21346`, `21348`, `21350`, `21351`, `21353`, `21354`, `21356`, `21358`, `21360`, `21361`, `21363`, `21365`, `21367`, `21369`, `21371`, `21373`, `21375`, `21377`, `21379`, `21381`, `21383`, `21385`, `21387`, `21388`, `21390`, `21392`, `21396`, `21398`, `21400`, `21402`, `21404`, `21405`, `21406`, `21410`, `21411`, `21412`, `21414`, `21415`, `21416`, `21418`, `21420`, `21421`, `21422`, `21425`, `21426`, `21428`, `21431`, `21433`, `21435`, `21437`, `21439`, `21440`, `21442`, `21444`, `21446`, `21448`, `21450`, `21452`, `21454`, `21456`, `21458`, `21460`, `21461`, `21462`, `21464`, `21466`, `21469`, `21471`, `21473`, `21475`, `21477`, `21481`, `21483`, `21485`, `21486`, `21488`, `21490`, `21492`, `21494`, `21496`, `21497`, `21499`, `21501`, `21503`, `21505`, `21508`, `21510`, `21511`, `21513`, `21514`, `21516`, `21517`, `21518`, `21520`, `21521`, `21523`, `21525`, `21527`, `21529`, `21531`, `21533`, `21535`, `21537`, `21538`, `21540`, `21542`, `21544`, `21546`, `21548`, `21550`, `21551`, `21553`, `21554`, `21556`, `21558`, `21560`, `21562`, `21564`, `21565`, `21567`, `21570`, `21572`, `21574`, `21576`, `21578`, `21580`, `21582`, `21583`, `21586`, `21588`, `21591`, `21593`, `21595`, `21597`, `21598`, `21600`, `21601`, `21602`, `21604`, `21606`, `21608`, `21610`, `21613`, `21614`, `21616`, `21618`, `21620`, `21622`, `21624`, `21625`, `21627`, `21629`, `21631`, `21633`, `21634`, `21636`, `21637`, `21639`, `21640`, `21641`, `21643`, `21645`, `21646`, `21648`, `21649`, `21651`, `21657`, `21659`, `21661`, `21662`, `21664`, `21665`, `21667`, `21669`, `21671`, `21673`, `21674`, `21676`, `21677`, `21678`, `21680`, `21682`, `21684`, `21686`, `21687`, `21689`, `21691`, `21693`, `21695`, `21696`, `21697`, `21698`, `21700`, `21702`, `21703`, `21705`, `21707`, `21709`, `21712`, `21714`, `21715`, `21717`, `21719`, `21721`, `21722`, `21724`, `21726`, `21727`, `21729`, `21731`, `21733`, `21734`, `21736`, `21738`, `21740`, `21741`, `21743`, `21745`, `21746`, `21748`, `21750`, `21751`, `21753`, `21755`, `21757`, `21759`, `21761`, `21763`, `21767`, `21768`, `21770`, `21772`, `21774`, `21776`, `21777`, `21779`, `21781`, `21783`, `21785`, `21786`, `21788`, `21790`, `21791`, `21793`, `21795`, `21797`, `21799`, `21801`, `21803`, `21804`, `21806`, `21808`, `21809`, `21811`, `21813`, `21815`, `21818`, `21820`, `21821`, `21822`, `21823`, `21825`, `21826`, `21827`, `21828`, `21830`, `21831`, `21832`, `21834`, `21835`, `21837`, `21839`, `21840`, `21842`, `21845`, `21847`, `21849`, `21851`, `21852`, `21854`, `21855`, `21857`, `21858`, `21859`, `21861`, `21863`, `21864`, `21865`, `21867`, `21869`, `21872`, `21874`, `21877`, `21879`, `21880`, `21882`, `21884`, `21886`, `21888`, `21890`, `21891`, `21893`, `21895`, `21896`, `21897`, `21898`, `21900`, `21902`, `21904`, `21906`, `21907`, `21909`, `21910`, `21914`, `21915`, `21917`, `21919`, `21923`, `21925`, `21927`, `21928`, `21929`, `21931`, `21933`, `21936`, `21938`, `21939`, `21940`, `21941`, `21943`, `21945`, `21947`, `21949`, `21951`, `21952`, `21954`, `21955`, `21957`, `21958`, `21960`, `21961`, `21963`, `21965`, `21967`, `21969`, `21971`, `21973`, `21975`, `21977`, `21979`, `21980`, `21982`, `21983`, `21984`, `21986`, `21987`, `21988`, `21990`, `21992`, `21994`, `21996`, `21997`, `21999`, `22001`, `22003`, `22004`, `22006`, `22007`, `22011`, `22013`, `22015`, `22017`, `22018`, `22020`, `22022`, `22024`, `22026`, `22028`, `22030`, `22031`, `22033`, `22037`, `22039`, `22041`, `22042`, `22043`, `22045`, `22047`, `22049`, `22050`, `22052`, `22054`, `22056`, `22058`, `22059`, `22061`, `22063`, `22065`, `22066`, `22067`, `22068`, `22069`, `22070`, `22072`, `22074`, `22077`, `22078`, `22080`, `22082`, `22084`, `22085`, `22087`, `22089`, `22090`, `22092`, `22094`, `22096`, `22097`, `22098`, `22099`, `22101`, `22103`, `22104`, `22106`, `22108`, `22110`, `22112`, `22113`, `22115`, `22117`, `22119`, `22121`, `22123`, `22125`, `22127`, `22128`, `22130`, `22131`, `22133`, `22134`, `22136`, `22138`, `22140`, `22143`, `22145`, `22147`, `22148`, `22150`, `22152`, `22153`, `22155`, `22157`, `22160`, `22162`, `22164`, `22165`, `22167`, `22168`, `22170`, `22173`, `22175`, `22178`, `22180`, `22181`, `22182`, `22183`, `22184`, `22185`, `22187`, `22189`, `22190`, `22191`, `22193`, `22194`, `22196`, `22197`, `22199`, `629`, `22201`, `22203`, `22204`, `22206`, `22209`, `22211`, `22213`, `22215`, `22216`, `22218`, `22221`, `22223`, `22225`, `22226`, `22228`, `22230`, `22234`, `22237`, `22241`, `22242`, `22244`, `22246`, `22248`, `22250`, `22251`, `22253`, `22254`, `22256`, `22258`, `22259`, `22261`, `22262`, `22263`, `22265`, `22267`, `22269`, `22271`, `22272`, `22273`, `22275`, `22276`, `22278`, `22281`, `22283`, `22284`, `22285`, `22287`, `22289`, `22291`, `22293`, `22294`, `22300`, `22301`, `22302`, `22304`, `22306`, `22308`, `22309`, `22311`, `22313`, `22316`, `22317`, `22319`, `22321`, `22323`, `22324`, `22326`, `22331`, `22332`, `22333`, `22335`, `22336`, `22337`, `22339`, `22340`, `22342`, `22344`, `22346`, `22347`, `22348`, `22351`, `22353`, `22355`, `22357`, `22358`, `22361`, `22363`, `22365`, `22367`, `22369`, `22370`, `22371`, `22373`, `22375`, `22377`, `22379`, `22380`, `22382`, `22384`, `22385`, `22387`, `22389`, `22391`, `22393`, `22395`, `22397`, `22398`, `22400`, `22402`, `22404`, `22406`, `22408`, `22410`, `22412`, `22414`, `22415`, `22417`, `22419`, `22421`, `22425`, `22427`, `22429`, `22431`, `22433`, `22435`, `22437`, `22438`, `22439`, `22441`, `22443`, `22444`, `22446`, `22448`, `22450`, `22452`, `22454`, `22456`, `22458`, `22460`, `22462`, `22463`, `22465`, `22466`, `22467`, `22468`, `22470`, `22472`, `22474`, `22476`, `22478`, `22480`, `22482`, `22484`, `22486`, `22490`, `22492`, `22494`, `22495`, `22497`, `22499`, `22501`, `22503`, `22505`, `22507`, `22510`, `22511`, `22513`, `22515`, `22517`, `22519`, `22521`, `22523`, `22525`, `22527`, `22529`, `22533`, `22535`, `22537`, `22543`, `22545`, `22546`, `22548`, `22550`, `22552`, `22553`, `22555`, `22557`, `22558`, `22559`, `22561`, `22562`, `22565`, `22567`, `22569`, `22571`, `22573`, `22575`, `22577`, `22579`, `22580`, `22582`, `22585`, `22586`, `22588`, `22590`, `22592`, `22594`, `22595`, `22597`, `22598`, `22599`, `22600`, `22601`, `22602`, `22604`, `22606`, `22607`, `22609`, `22610`, `22612`, `22614`, `22616`, `22617`, `22619`, `22621`, `22623`, `22624`, `22627`, `22630`, `22631`, `22633`, `22634`, `22636`, `22637`, `22639`, `22641`, `22643`, `22645`, `22646`, `22647`, `22649`, `22652`, `22654`, `22655`, `22657`, `22659`, `22660`, `22661`, `22663`, `22665`, `22667`, `22668`, `22670`, `22672`, `22674`, `22676`, `22678`, `22680`, `22681`, `22682`, `22684`, `22685`, `22686`, `22687`, `22689`, `22690`, `22692`, `22696`, `22698`, `22700`, `22702`, `22704`, `22705`, `22707`, `22708`, `22710`, `22711`, `22713`, `22715`, `22716`, `22717`, `22719`, `22721`, `22723`, `22725`, `22727`, `22728`, `22729`, `22731`, `22732`, `22733`, `22735`, `22736`, `22738`, `22740`, `22743`, `22746`, `22748`, `22750`, `22751`, `22753`, `22755`, `22757`, `22759`, `22761`, `22763`, `22765`, `22766`, `22767`, `22769`, `22771`, `22774`, `22776`, `22778`, `22779`, `22780`, `22781`, `22782`, `22784`, `22786`, `22788`, `22790`, `22791`, `22796`, `22798`, `22799`, `22801`, `22802`, `22804`, `22806`, `22807`, `22809`, `22810`, `22811`, `22813`, `22815`, `22817`, `22819`, `22820`, `22822`, `22823`, `22825`, `22827`, `22828`, `22830`, `22831`, `22832`, `22834`, `22840`, `22841`, `22843`, `22845`, `22849`, `22850`, `22852`, `22853`, `22855`, `22857`, `22858`, `22860`, `22861`, `22862`, `22864`, `22866`, `22867`, `22869`, `22871`, `22872`, `22874`, `22877`, `22879`, `22880`, `22882`, `22883`, `22885`, `22886`, `22887`, `22888`, `22889`, `22891`, `22894`, `22895`, `22897`, `22899`, `22901`, `22902`, `22905`, `22907`, `22909`, `22910`, `22912`, `22915`, `22917`, `22918`, `22920`, `22922`, `22924`, `22925`, `22927`, `22929`, `22931`, `22932`, `22933`, `22935`, `22937`, `22939`, `22941`, `22943`, `22944`, `22946`, `22947`, `22949`, `22951`, `22953`, `22955`, `22959`, `22960`, `22962`, `22964`, `22966`, `22967`, `22969`, `22971`, `22972`, `22974`, `22976`, `22977`, `22979`, `22981`, `22983`, `22985`, `22987`, `22990`, `22992`, `22994`, `22996`, `22998`, `23000`, `23002`, `23003`, `23005`, `23007`, `23009`, `23011`, `23012`, `23014`, `23017`, `23019`, `23020`, `23022`, `23024`, `23027`, `23029`, `23031`, `23033`, `23041`, `23043`, `23046`, `23049`, `23051`, `23053`, `23054`, `23056`, `23057`, `23059`, `23061`, `23064`, `23066`, `23068`, `23070`, `23072`, `23076`, `23078`, `23079`, `23081`, `23083`, `23084`, `23086`, `23087`, `23089`, `23091`, `23096`, `23098`, `23100`, `23103`, `23104`, `23106`, `23107`, `23109`, `23111`, `23113`, `23115`, `23117`, `23119`, `23121`, `23123`, `23125`, `23127`, `23129`, `23130`, `23131`, `23132`, `23134`, `23135`, `23136`, `23138`, `23139`, `23140`, `23142`, `23144`, `23146`, `23147`, `23149`, `23151`, `23153`, `23155`, `23157`, `23161`, `23162`, `23164`, `23165`, `23167`, `23169`, `23171`, `23173`, `23174`, `23175`, `23179`, `23181`, `23183`, `23185`, `23187`, `23189`, `23191`, `23192`, `23194`, `23196`, `23198`, `23200`, `23202`, `23204`, `23206`, `23207`, `23208`, `23210`, `23212`, `23214`, `23215`, `23217`, `23218`, `23220`, `23222`, `23224`, `23225`, `23227`, `23230`, `23231`, `23232`, `23234`, `23236`, `23237`, `23238`, `23240`, `23241`, `23243`, `23245`, `23246`, `23248`, `23250`, `23252`, `23255`, `23259`, `23261`, `23264`, `23266`, `23267`, `23269`, `23271`, `23273`, `23274`, `23276`, `23277`, `23279`, `23281`, `23282`, `23284`, `23286`, `23288`, `23290`, `23292`, `23294`, `23295`, `23296`, `23297`, `23299`, `23301`, `23303`, `23305`, `23306`, `23307`, `23309`, `23311`, `23313`, `23315`, `23318`, `23320`, `23322`, `23324`, `23327`, `23328`, `23329`, `23332`, `23334`, `23336`, `23339`, `23340`, `23341`, `23344`, `23347`, `23349`, `23351`, `23353`, `23355`, `23356`, `23358`, `23360`, `23362`, `23364`, `23366`, `23369`, `23371`, `23374`, `23377`, `23379`, `23381`, `23383`, `23385`, `23388`, `23390`, `23391`, `23392`, `23393`, `23395`, `23396`, `23398`, `23400`, `23401`, `23403`, `23405`, `23407`, `23409`, `23411`, `23413`, `23414`, `23415`, `23417`, `23418`, `23423`, `23424`, `23427`, `23428`, `23430`, `23431`, `23433`, `23434`, `23436`, `23438`, `23440`, `23442`, `23444`, `23446`, `23447`, `23449`, `23451`, `23453`, `23455`, `23457`, `23459`, `23461`, `23462`, `23464`, `23466`, `23467`, `23470`, `23472`, `23473`, `23474`, `23475`, `23477`, `23478`, `23481`, `23483`, `23484`, `23486`, `23488`, `23490`, `23492`, `23493`, `23496`, `23498`, `23504`, `23506`, `23507`, `23509`, `23510`, `23512`, `23514`, `23515`, `23517`, `23519`, `23522`, `23524`, `23526`, `23528`, `23530`, `23531`, `23533`, `23534`, `23536`, `23538`, `23540`, `23541`, `23542`, `23544`, `23546`, `23547`, `23550`, `23554`, `23556`, `23559`, `23561`, `23563`, `23565`, `23566`, `23568`, `23570`, `23571`, `23573`, `23574`, `23576`, `23577`, `23579`, `23581`, `23583`, `23585`, `23586`, `23587`, `23589`, `23591`, `23593`, `23594`, `23596`, `23598`, `23600`, `23602`, `23603`, `23604`, `23606`, `23608`, `23610`, `23611`, `23613`, `23617`, `23619`, `23621`, `23623`, `23625`, `23627`, `23628`, `23630`, `23631`, `23634`, `23635`, `23637`, `23639`, `23641`, `23643`, `23645`, `23647`, `23648`, `23650`, `23652`, `23654`, `23656`, `23657`, `23658`, `23659`, `23661`, `23663`, `23665`, `23667`, `23669`, `23671`, `23673`, `23674`, `23675`, `23676`, `23678`, `23680`, `23681`, `23683`, `23685`, `23686`, `23689`, `23691`, `23693`, `23695`, `23697`, `23699`, `23701`, `23703`, `23704`, `23706`, `23708`, `23709`, `23711`, `23713`, `23714`, `23715`, `23717`, `23719`, `23720`, `23721`, `23722`, `23723`, `23724`, `23725`, `23727`, `23731`, `23733`, `23735`, `23737`, `23739`, `23741`, `23742`, `23744`, `23746`, `23747`, `23748`, `23749`, `23750`, `23751`, `23752`, `23754`, `23755`, `23757`, `23758`, `23760`, `23762`, `23764`, `23766`, `23768`, `23770`, `23772`, `23773`, `23775`, `23777`, `23778`, `23780`, `23781`, `23783`, `23785`, `23786`, `23788`, `23790`, `23792`, `23794`, `23795`, `23796`, `23798`, `23799`, `23801`, `23802`, `23805`, `23806`, `23807`, `23808`, `23809`, `23811`, `23813`, `23815`, `23817`, `23819`, `23821`, `23823`, `23825`, `23830`, `23832`, `23834`, `23835`, `23836`, `23837`, `23838`, `23840`, `23842`, `23844`, `23847`, `23849`, `23850`, `23852`, `23853`, `23855`, `23858`, `23860`, `23864`, `23867`, `23869`, `23872`, `23874`, `23876`, `23878`, `23879`, `23882`, `23884`, `23885`, `23887`, `23889`, `23891`, `23892`, `23893`, `23895`, `23897`, `23899`, `23900`, `23902`, `23904`, `23906`, `23907`, `23908`, `23909`, `23911`, `23912`, `23913`, `23914`, `23916`, `23918`, `23919`, `23920`, `23922`, `23924`, `23925`, `23926`, `23928`, `23929`, `23932`, `23934`, `23936`, `23938`, `23940`, `23942`, `23944`, `23946`, `23948`, `23951`, `23952`, `23954`, `23957`, `23958`, `23960`, `23961`, `23963`, `23965`, `23966`, `23967`, `23969`, `23971`, `23973`, `23975`, `23977`, `23978`, `23980`, `23981`, `23983`, `23985`, `23987`, `23989`, `23991`, `23993`, `23995`, `23997`, `24001`, `24003`, `24004`, `24005`, `24007`, `24009`, `24011`, `24013`, `24015`, `24016`, `24017`, `24020`, `24022`, `24023`, `24025`, `24027`, `24029`, `24031`, `24033`, `24035`, `24036`, `24037`, `24039`, `24041`, `24044`, `24046`, `24048`, `24050`, `24052`, `24054`, `24055`, `24057`, `24059`, `24061`, `24063`, `24064`, `24066`, `24068`, `24069`, `24070`, `24071`, `24072`, `24073`, `24075`, `24076`, `24077`, `24079`, `24082`, `24086`, `24088`, `24089`, `24091`, `24093`, `24095`, `24097`, `24101`, `24103`, `24104`, `24106`, `24108`, `24109`, `24111`, `24112`, `24114`, `24115`, `24116`, `24118`, `24120`, `24124`, `24126`, `24128`, `24132`, `24133`, `24135`, `24136`, `24138`, `24140`, `24142`, `24144`, `24145`, `24147`, `24149`, `24151`, `24153`, `24155`, `24157`, `24159`, `24160`, `24162`, `24164`, `24167`, `24169`, `24170`, `24172`, `24174`, `24175`, `24176`, `24177`, `24179`, `24180`, `24182`, `24184`, `24185`, `24187`, `24189`, `24191`, `24193`, `24195`, `24197`, `24199`, `24201`, `24203`, `24207`, `24208`, `24210`, `24211`, `24212`, `24214`, `24215`, `531`, `24217`, `24218`, `24219`, `24221`, `24223`, `24225`, `24227`, `24229`, `24230`, `24232`, `24233`, `24235`, `24237`, `24239`, `24241`, `24243`, `24244`, `24246`, `24248`, `24250`, `24252`, `24254`, `24256`, `24257`, `24258`, `24259`, `24261`, `24262`, `24264`, `24265`, `24266`, `24268`, `24272`, `24275`, `24277`, `24278`, `24279`, `24281`, `24282`, `24283`, `24285`, `24287`, `24289`, `24291`, `24292`, `24294`, `24295`, `24297`, `24299`, `24301`, `24304`, `24306`, `24308`, `24310`, `24312`, `24314`, `24315`, `24317`, `24319`, `24321`, `24322`, `24324`, `24326`, `24328`, `24330`, `24332`, `24336`, `24338`, `24339`, `24342`, `24344`, `24347`, `24350`, `24352`, `24354`, `24355`, `24356`, `24358`, `24360`, `24361`, `24363`, `24365`, `24367`, `24369`, `24372`, `24374`, `24376`, `24377`, `24378`, `24379`, `24380`, `24382`, `24383`, `24387`, `24389`, `24391`, `24393`, `24394`, `24396`, `24397`, `24398`, `24401`, `24403`, `24405`, `24407`, `24409`, `24412`, `24413`, `24415`, `24417`, `24419`, `24420`, `24421`, `24423`, `24425`, `24426`, `24428`, `24430`, `24431`, `24432`, `24434`, `24436`, `24438`, `24440`, `24442`, `24444`, `24446`, `24448`, `24450`, `24451`, `24453`, `24455`, `24457`, `24460`, `24461`, `24463`, `24464`, `24466`, `24468`, `24471`, `24473`, `24475`, `24477`, `24478`, `24480`, `24482`, `24485`, `24487`, `24488`, `24490`, `24492`, `24493`, `24495`, `24496`, `24497`, `24498`, `24499`, `24501`, `24503`, `24505`, `24508`, `24510`, `24513`, `24515`, `24517`, `24519`, `24520`, `24522`, `24523`, `24525`, `24526`, `24528`, `24530`, `24532`, `24533`, `24535`, `24537`, `24538`, `24541`, `24543`, `24545`, `24547`, `24549`, `24551`, `24553`, `24555`, `24557`, `24558`, `24560`, `24562`, `24564`, `24565`, `24567`, `24568`, `24570`, `24572`, `24577`, `24579`, `24580`, `24582`, `24584`, `24586`, `24588`, `24589`, `24591`, `24593`, `24595`, `24596`, `24597`, `24599`, `24601`, `24603`, `24605`, `24607`, `24609`, `24612`, `24614`, `24617`, `24619`, `24621`, `24623`, `24625`, `24627`, `24629`, `24631`, `24633`, `24634`, `24635`, `24636`, `24638`, `24639`, `24641`, `24643`, `24645`, `24647`, `24649`, `24651`, `24653`, `24654`, `24656`, `24658`, `24661`, `24663`, `24665`, `24666`, `24667`, `24668`, `24671`, `24673`, `24675`, `24676`, `24678`, `24680`, `24681`, `24683`, `24685`, `24687`, `24689`, `24691`, `24693`, `24695`, `24697`, `24699`, `24702`, `24704`, `24707`, `24709`, `24710`, `24712`, `24714`, `24715`, `24716`, `24718`, `24721`, `24723`, `24724`, `24726`, `24727`, `24729`, `24730`, `24732`, `24734`, `24735`, `24737`, `24738`, `24740`, `24742`, `24744`, `24746`, `24748`, `24750`, `24753`, `24755`, `24756`, `24758`, `24760`, `24761`, `24762`, `24763`, `24765`, `24767`, `24769`, `24771`, `24773`, `24775`, `24777`, `24779`, `24780`, `24781`, `24783`, `24786`, `24788`, `24790`, `24792`, `24793`, `24794`, `24796`, `24798`, `24801`, `24803`, `24804`, `24806`, `24808`, `24809`, `24811`, `24812`, `24814`, `24815`, `24817`, `24818`, `24820`, `24821`, `24823`, `24825`, `24827`, `24829`, `24830`, `24832`, `24834`, `24835`, `24837`, `24839`, `24841`, `24843`, `24845`, `24846`, `24848`, `24849`, `24850`, `24852`, `24854`, `24856`, `24857`, `24859`, `24860`, `24861`, `24864`, `24867`, `24869`, `24870`, `24872`, `24875`, `24877`, `24879`, `24881`, `24883`, `24885`, `24887`, `24889`, `24891`, `24893`, `24895`, `24897`, `24899`, `24900`, `24902`, `24904`, `24906`, `24908`, `24909`, `24911`, `24913`, `24915`, `24918`, `24920`, `24922`, `24924`, `24926`, `24928`, `24931`, `24932`, `24935`, `24937`, `24938`, `24939`, `24941`, `24942`, `24943`, `24945`, `24946`, `24948`, `24949`, `24950`, `24951`, `24952`, `24954`, `24955`, `24956`, `24957`, `24958`, `24959`, `24961`, `24962`, `24964`, `24966`, `24967`, `24968`, `24969`, `24971`, `24972`, `24974`, `24976`, `24978`, `24980`, `24982`, `24984`, `24986`, `24988`, `24990`, `24991`, `24992`, `24994`, `24996`, `24997`, `24999`, `25001`, `25002`, `25003`, `25005`, `25007`, `25009`, `25010`, `25011`, `25013`, `25014`, `25016`, `25017`, `25018`, `25020`, `25021`, `25023`, `25025`, `25027`, `25028`, `25030`, `25032`, `25035`, `25036`, `25037`, `25038`, `25040`, `25042`, `25044`, `25045`, `25046`, `25048`, `25051`, `25052`, `25053`, `25055`, `25057`, `25058`, `25060`, `25062`, `25064`, `25066`, `25067`, `25068`, `25070`, `25072`, `25074`, `25076`, `25078`, `25079`, `25080`, `25081`, `25083`, `25085`, `25086`, `25088`, `25089`, `25091`, `25092`, `25093`, `25095`, `25097`, `25099`, `25101`, `25104`, `25106`, `25108`, `25110`, `25112`, `25113`, `25115`, `25116`, `25119`, `25121`, `25123`, `25124`, `25126`, `25128`, `25130`, `25132`, `25133`, `25135`, `25136`, `25138`, `25139`, `25141`, `25143`, `25144`, `25146`, `25148`, `25150`, `25151`, `25153`, `25155`, `25158`, `25160`, `25162`, `25164`, `25166`, `25168`, `25171`, `25173`, `25175`, `25177`, `25179`, `25181`, `25183`, `25186`, `25188`, `25190`, `25193`, `25195`, `25196`, `25198`, `25200`, `25202`, `25204`, `25206`, `25208`, `25210`, `25212`, `25214`, `25216`, `25218`, `25220`, `25222`, `25224`, `25226`, `25230`, `25232`, `25234`, `25236`, `25239`, `25241`, `25243`, `25245`, `25247`, `25249`, `25251`, `25252`, `25254`, `25256`, `25257`, `25258`, `25259`, `25260`, `25262`, `25265`, `25267`, `25268`, `25269`, `25272`, `25273`, `25274`, `25275`, `25277`, `25279`, `25281`, `25283`, `25284`, `25286`, `25288`, `25289`, `25290`, `25291`, `25293`, `25295`, `25297`, `25298`, `25300`, `25302`, `25304`, `25307`, `25308`, `25312`, `25314`, `25315`, `25318`, `25321`, `25323`, `25324`, `25326`, `25328`, `25330`, `25331`, `25333`, `25334`, `25336`, `25337`, `25338`, `25339`, `25341`, `25342`, `25343`, `25345`, `25346`, `25349`, `25351`, `25352`, `25354`, `25356`, `25357`, `25359`, `25360`, `25362`, `25363`, `25365`, `25366`, `25367`, `25371`, `25375`, `25377`, `25378`, `25379`, `25381`, `25382`, `25384`, `25386`, `25388`, `25390`, `25391`, `25392`, `25394`, `25396`, `25398`, `25400`, `25401`, `25402`, `25404`, `25406`, `25408`, `25410`, `25412`, `25414`, `25416`, `25418`, `25420`, `25421`, `25422`, `25424`, `25425`, `25427`, `25428`, `25430`, `25431`, `25433`, `25435`, `25436`, `25437`, `25438`, `25440`, `25442`, `25444`, `25447`, `25448`, `25450`, `25452`, `25453`, `25456`, `25458`, `25460`, `25462`, `25464`, `25465`, `25466`, `25468`, `25471`, `25472`, `25473`, `25474`, `25476`, `25478`, `25480`, `25482`, `25484`, `25485`, `25487`, `25489`, `25491`, `25493`, `25495`, `25497`, `25499`, `25501`, `25502`, `25504`, `25505`, `25507`, `25509`, `25511`, `25513`, `25514`, `25516`, `25519`, `25521`, `25522`, `25523`, `25525`, `25528`, `25531`, `25533`, `25535`, `25537`, `25539`, `25541`, `25543`, `25545`, `25547`, `25548`, `25550`, `25553`, `25555`, `25556`, `25558`, `25560`, `25561`, `25562`, `25563`, `25564`, `25566`, `25568`, `25570`, `25572`, `25574`, `25576`, `25578`, `25580`, `25582`, `25584`, `25585`, `25587`, `25589`, `25590`, `25592`, `25594`, `25595`, `25597`, `25598`, `25599`, `25601`, `25603`, `25604`, `25606`, `25608`, `25609`, `25610`, `25612`, `25614`, `25616`, `25618`, `25619`, `25621`, `25623`, `25625`, `25627`, `25628`, `25630`, `25631`, `25633`, `25635`, `25636`, `25638`, `25639`, `25641`, `25642`, `25644`, `25646`, `25647`, `25649`, `25651`, `25653`, `25655`, `25657`, `25659`, `25660`, `25661`, `25663`, `25665`, `25666`, `25668`, `25670`, `25671`, `25673`, `25675`, `25677`, `25678`, `25680`, `25682`, `25685`, `25687`, `25688`, `25690`, `25692`, `25694`, `25696`, `25698`, `25699`, `25701`, `25703`, `25706`, `25708`, `25711`, `25713`, `25718`, `25720`, `25722`, `25724`, `25725`, `25727`, `25729`, `25730`, `25734`, `25736`, `25738`, `25739`, `25741`, `25745`, `25746`, `25750`, `25752`, `25755`, `25757`, `25760`, `25762`, `25764`, `25766`, `25767`, `25769`, `25771`, `25775`, `25776`, `25778`, `25780`, `25782`, `25783`, `25784`, `25785`, `25786`, `25788`, `25790`, `25792`, `25794`, `25796`, `25798`, `25799`, `25801`, `25802`, `25803`, `25805`, `25806`, `25807`, `25808`, `25809`, `25811`, `25812`, `25814`, `25816`, `25817`, `25818`, `25820`, `25821`, `25822`, `25824`, `25826`, `25828`, `25830`, `25832`, `25833`, `25836`, `25837`, `25839`, `25841`, `25842`, `25844`, `25845`, `25847`, `25848`, `25850`, `25852`, `25853`, `25855`, `25857`, `25859`, `25861`, `25863`, `25865`, `25867`, `25868`, `25870`, `25872`, `25875`, `25877`, `25879`, `25881`, `25883`, `25885`, `25886`, `25889`, `25891`, `25893`, `25895`, `25897`, `25899`, `25900`, `25902`, `25903`, `25904`, `25905`, `25906`, `25908`, `25910`, `25912`, `25914`, `25916`, `25918`, `25920`, `25922`, `25924`, `25926`, `25927`, `25929`, `25931`, `25933`, `25935`, `25937`, `25938`, `25940`, `25942`, `25944`, `25946`, `25948`, `25950`, `25952`, `25953`, `25954`, `25956`, `25958`, `25959`, `25961`, `25963`, `25965`, `25967`, `25969`, `25970`, `25972`, `25974`, `25977`, `25979`, `25981`, `25983`, `25985`, `25986`, `25988`, `25989`, `25991`, `25992`, `25994`, `25997`, `25998`, `26000`, `26002`, `26004`, `26007`, `26011`, `26013`, `26014`, `26015`, `26016`, `26017`, `26018`, `26019`, `26021`, `26023`, `26024`, `26026`, `26028`, `26030`, `26031`, `26033`, `26035`, `26036`, `26038`, `26039`, `26043`, `26044`, `26046`, `26048`, `26050`, `26052`, `26054`, `26055`, `26057`, `26058`, `26060`, `26063`, `26065`, `26066`, `26068`, `26072`, `26074`, `26075`, `26077`, `26079`, `26080`, `26082`, `26084`, `26086`, `26088`, `26089`, `26090`, `26092`, `26094`, `26096`, `26098`, `26099`, `26101`, `26102`, `26103`, `26105`, `26107`, `26109`, `26110`, `26112`, `26113`, `26115`, `26116`, `26118`, `26120`, `26122`, `26124`, `26126`, `26128`, `26131`, `26133`, `26134`, `26136`, `26139`, `26143`, `26144`, `26146`, `26149`, `26151`, `26153`, `26154`, `26156`, `26158`, `26160`, `26162`, `26163`, `26165`, `26167`, `26169`, `26170`, `26172`, `26174`, `26175`, `26176`, `26178`, `26180`, `26182`, `26184`, `26185`, `26189`, `26191`, `26193`, `26195`, `26197`, `26198`, `26199`, `26200`, `26201`, `26203`, `26205`, `26207`, `26209`, `26212`, `26213`, `26216`, `26218`, `26219`, `26220`, `26222`, `26223`, `26224`, `26225`, `26227`, `26229`, `26230`, `26232`, `26234`, `26235`, `26237`, `26239`, `26241`, `26243`, `26244`, `26246`, `26248`, `26250`, `26252`, `26254`, `26256`, `26257`, `26258`, `26260`, `26262`, `26264`, `26266`, `26268`, `26270`, `26272`, `26274`, `26276`, `26278`, `26279`, `26281`, `26284`, `26285`, `26286`, `26288`, `26290`, `26292`, `26293`, `26295`, `26299`, `26300`, `26301`, `26302`, `26304`, `26305`, `26306`, `26307`, `26309`, `26312`, `26313`, `26315`, `26317`, `26321`, `26323`, `26325`, `26326`, `26328`, `26329`, `26332`, `26334`, `26335`, `26337`, `26338`, `26340`, `26341`, `26343`, `26344`, `26346`, `26349`, `26351`, `26353`, `26355`, `26357`, `26359`, `26361`, `26362`, `26364`, `26367`, `26369`, `26371`, `26373`, `26374`, `26376`, `26378`, `26379`, `26381`, `26382`, `26383`, `26385`, `26387`, `26388`, `26390`, `26392`, `26394`, `26396`, `26398`, `26399`, `26402`, `26404`, `26406`, `26408`, `26410`, `26411`, `26413`, `26415`, `26417`, `26419`, `26421`, `26423`, `26425`, `26426`, `26428`, `26430`, `26432`, `26434`, `26436`, `26438`, `26440`, `26442`, `26444`, `26445`, `26447`, `26448`, `26450`, `26451`, `26453`, `26455`, `26457`, `26459`, `26461`, `26462`, `26464`, `26466`, `26467`, `26469`, `26472`, `26474`, `26475`, `26476`, `26477`, `26479`, `26481`, `26483`, `26485`, `26487`, `26489`, `26491`, `26493`, `26494`, `26496`, `26498`, `26499`, `26501`, `26502`, `26504`, `26506`, `26507`, `26509`, `26511`, `26513`, `26515`, `26517`, `26519`, `26521`, `26523`, `26525`, `26527`, `26529`, `26530`, `26533`, `26535`, `26537`, `26539`, `26540`, `26541`, `26546`, `26548`, `26551`, `26553`, `26555`, `26557`, `26559`, `26560`, `26562`, `26563`, `26565`, `26566`, `26568`, `26569`, `26571`, `26574`, `26576`, `26577`, `26578`, `26581`, `26582`, `26583`, `26584`, `26585`, `26587`, `26589`, `26590`, `26592`, `26593`, `26594`, `26595`, `26597`, `26598`, `26600`, `26601`, `26603`, `26605`, `26607`, `26609`, `26610`, `26611`, `26613`, `26614`, `26615`, `26617`, `26619`, `26623`, `26624`, `26625`, `26627`, `26629`, `26631`, `26633`, `26635`, `26637`, `26639`, `26641`, `26642`, `26644`, `26645`, `26647`, `26649`, `26651`, `26652`, `26654`, `26656`, `26658`, `26660`, `26662`, `26664`, `26666`, `26668`, `26669`, `26670`, `26672`, `26674`, `26675`, `26677`, `26678`, `26680`, `26681`, `26682`, `26684`, `26687`, `26688`, `26692`, `26694`, `26696`, `26698`, `26700`, `26702`, `26703`, `26705`, `26707`, `26709`, `26712`, `26713`, `26715`, `26717`, `26718`, `26720`, `26722`, `26724`, `26726`, `26727`, `26729`, `26731`, `26733`, `26736`, `26740`, `26741`, `26742`, `26743`, `26745`, `26746`, `26748`, `26749`, `26751`, `26756`, `26758`, `26760`, `26762`, `26763`, `26765`, `26767`, `26769`, `26770`, `26772`, `26774`, `26776`, `26778`, `26779`, `26780`, `26782`, `26783`, `26784`, `26786`, `26788`, `26790`, `26791`, `26792`, `26794`, `26796`, `26798`, `26801`, `26803`, `26805`, `26807`, `26809`, `26812`, `26814`, `26817`, `26819`, `26820`, `26822`, `26823`, `26825`, `26827`, `26829`, `26830`, `26831`, `26832`, `26834`, `26835`, `26836`, `26837`, `26839`, `26840`, `26843`, `26845`, `26847`, `26849`, `26851`, `26853`, `26855`, `26857`, `26860`, `26862`, `26864`, `26866`, `26868`, `26870`, `26872`, `26873`, `26875`, `26877`, `26879`, `26881`, `26882`, `26884`, `26888`, `26890`, `26891`, `26893`, `26895`, `26898`, `26900`, `26901`, `26903`, `26906`, `26908`, `26910`, `26912`, `26914`, `26917`, `26923`, `26925`, `26928`, `26931`, `26934`, `26936`, `26938`, `26940`, `26942`, `26944`, `26945`, `26946`, `26948`, `26950`, `26952`, `26954`, `26956`, `26959`, `26961`, `26962`, `26963`, `26965`, `26969`, `26971`, `26973`, `26975`, `26976`, `26979`, `26982`, `26984`, `26985`, `26991`, `26992`, `26994`, `26996`, `26998`, `27000`, `27001`, `27002`, `27003`, `27009`, `27011`, `27013`, `27015`, `27017`, `27020`, `27026`, `27028`, `27030`, `27032`, `27036`, `27037`, `27039`, `27041`, `27043`, `27045`, `27046`, `27048`, `27050`, `27052`, `27054`, `27055`, `27057`, `27058`, `27060`, `27062`, `27064`, `27066`, `27067`, `27068`, `27070`, `27073`, `27075`, `27076`, `27077`, `27078`, `27079`, `27080`, `27083`, `27084`, `27086`, `27088`, `27090`, `27092`, `27094`, `27096`, `27097`, `27100`, `27102`, `27103`, `27104`, `27106`, `27107`, `27108`, `27110`, `27112`, `27114`, `27117`, `27119`, `27121`, `27123`, `27125`, `27127`, `27131`, `27133`, `27135`, `27137`, `27139`, `27141`, `27142`, `27144`, `27146`, `27147`, `27149`, `27151`, `27152`, `27154`, `27156`, `27158`, `27160`, `27161`, `27163`, `27164`, `27166`, `27167`, `27169`, `27171`, `27172`, `27174`, `27176`, `27178`, `27179`, `27181`, `27183`, `27185`, `27187`, `27189`, `27191`, `27193`, `27194`, `27196`, `27199`, `27201`, `27202`, `27204`, `27206`, `27208`, `27210`, `27212`, `27214`, `27216`, `27218`, `27219`, `27220`, `27221`, `27222`, `27223`, `27225`, `27227`, `27229`, `27231`, `27232`, `27233`, `27234`, `27236`, `27238`, `27240`, `27242`, `27244`, `27246`, `27248`, `27249`, `27250`, `27251`, `27253`, `27255`, `27257`, `27259`, `27260`, `27261`, `27262`, `27263`, `27265`, `27266`, `27268`, `27272`, `27274`, `27275`, `27276`, `27278`, `27279`, `27281`, `27283`, `27284`, `27285`, `27287`, `27288`, `27289`, `27291`, `27293`, `27295`, `27297`, `27299`, `27301`, `27303`, `27305`, `27307`, `27309`, `27311`, `27312`, `27314`, `27315`, `27316`, `27317`, `27319`, `27321`, `27323`, `27325`, `27327`, `27328`, `27330`, `27332`, `27334`, `27336`, `27338`, `27339`, `27341`, `27343`, `27347`, `27349`, `27351`, `27353`, `27354`, `27356`, `27357`, `27359`, `27360`, `27361`, `27362`, `27364`, `27366`, `27368`, `27370`, `27372`, `27373`, `27375`, `27376`, `27377`, `27379`, `27381`, `27382`, `27384`, `27386`, `27388`, `27389`, `27391`, `27393`, `27394`, `27396`, `27398`, `27402`, `27404`, `27405`, `27407`, `27409`, `27410`, `27412`, `27413`, `27415`, `27416`, `27418`, `27419`, `27420`, `27422`, `27424`, `27425`, `27426`, `27431`, `27433`, `27434`, `27436`, `27438`, `27439`, `27442`, `27443`, `27445`, `27446`, `27447`, `27449`, `27450`, `27452`, `27454`, `27456`, `27458`, `27459`, `27460`, `27461`, `27463`, `27464`, `27465`, `27467`, `27468`, `27470`, `27472`, `27474`, `27476`, `27478`, `27480`, `27482`, `27484`, `27487`, `27488`, `27489`, `27491`, `27493`, `27495`, `27497`, `27500`, `27501`, `27503`, `27507`, `27509`, `27511`, `27513`, `27515`, `27517`, `27518`, `27520`, `27522`, `27523`, `27524`, `27526`, `27527`, `27529`, `27531`, `27533`, `27534`, `27537`, `27538`, `27540`, `27541`, `27542`, `27545`, `27549`, `27551`, `27553`, `27555`, `27556`, `27557`, `27559`, `27560`, `27562`, `27564`, `27566`, `27567`, `27569`, `27571`, `27573`, `27575`, `27577`, `27582`, `27584`, `27585`, `27586`, `27588`, `27589`, `27590`, `27591`, `27594`, `27595`, `27599`, `27601`, `27603`, `27605`, `27607`, `27608`, `27610`, `27611`, `27614`, `27616`, `27618`, `27619`, `27622`, `27624`, `27627`, `27629`, `27632`, `27634`, `27635`, `27636`, `27637`, `27640`, `27642`, `27644`, `27645`, `27647`, `27649`, `27651`, `27653`, `27654`, `27656`, `27658`, `27660`, `27661`, `27663`, `27665`, `27667`, `27669`, `27670`, `27672`, `27677`, `27679`, `27681`, `27682`, `27684`, `27686`, `27688`, `27690`, `27692`, `27694`, `27695`, `27696`, `27698`, `27700`, `27701`, `27703`, `27705`, `27706`, `27707`, `27709`, `27711`, `27713`, `27717`, `27719`, `27720`, `27722`, `27724`, `27725`, `27727`, `27729`, `27730`, `27732`, `27734`, `27735`, `27737`, `27738`, `27739`, `27740`, `27742`, `27744`, `27746`, `27747`, `27749`, `27751`, `27753`, `27755`, `27758`, `27759`, `27761`, `27762`, `27765`, `27767`, `27768`, `27770`, `27772`, `27773`, `27775`, `27777`, `27779`, `27781`, `27783`, `27784`, `27785`, `27786`, `27787`, `27789`, `27791`, `27792`, `27794`, `27795`, `27797`, `27798`, `27799`, `27801`, `27803`, `27805`, `27807`, `27808`, `27809`, `27811`, `27814`, `27817`, `27819`, `27821`, `27822`, `27824`, `27825`, `27826`, `27827`, `27829`, `27830`, `328`, `1086`, `27831`, `27833`, `27835`, `27839`, `27841`, `27842`, `27843`, `27846`, `27849`, `27851`, `27853`, `27855`, `27857`, `27859`, `27860`, `27861`, `27864`, `27865`, `27866`, `27868`, `27870`, `27872`, `27874`, `27876`, `27877`, `27878`, `27883`, `27884`, `27886`, `27887`, `27888`, `27890`, `27891`, `27894`, `27896`, `27900`, `27902`, `27903`, `27905`, `27906`, `27910`, `27912`, `27913`, `27914`, `27915`, `27918`, `27919`, `27921`, `27923`, `27925`, `27927`, `27929`, `27930`, `27932`, `27934`, `27935`, `27937`, `27940`, `27942`, `27944`, `27945`, `27947`, `27949`, `27951`, `27953`, `27955`, `27957`, `27959`, `27961`, `27963`, `27964`, `27968`, `27969`, `27970`, `27971`, `27973`, `27975`, `27977`, `27979`, `27980`, `27981`, `27984`, `27986`, `27988`, `27990`, `27991`, `27993`, `27994`, `27995`, `27996`, `27999`, `28000`, `28002`, `28004`, `28005`, `28006`, `28008`, `28010`, `28013`, `28014`, `28016`, `28018`, `28023`, `28025`, `28026`, `28028`, `28030`, `28032`, `28033`, `28034`, `28035`, `28037`, `28039`, `28040`, `28042`, `28043`, `28045`, `28047`, `28049`, `28051`, `28053`, `28054`, `28056`, `28058`, `28060`, `28062`, `28064`, `28066`, `28068`, `28069`, `28070`, `28071`, `28073`, `28075`, `28077`, `28078`, `28080`, `28081`, `28083`, `28085`, `28087`, `28089`, `28092`, `28094`, `28097`, `28098`, `28099`, `28101`, `28102`, `28106`, `28107`, `28109`, `28110`, `28111`, `28112`, `28114`, `28116`, `28118`, `28119`, `28122`, `28124`, `28125`, `28127`, `28129`, `28131`, `28132`, `28134`, `28135`, `28137`, `28138`, `28139`, `28141`, `28142`, `28144`, `28146`, `28148`, `28151`, `28152`, `28153`, `28155`, `28157`, `28159`, `28161`, `28163`, `28164`, `28165`, `28167`, `28169`, `28171`, `28173`, `28175`, `28177`, `28179`, `28181`, `28184`, `28185`, `28186`, `28187`, `28189`, `28190`, `28191`, `28193`, `28194`, `28196`, `28198`, `28199`, `28201`, `28203`, `28205`, `28207`, `28208`, `28210`, `28212`, `28213`, `28215`, `28217`, `28219`, `28221`, `28223`, `28225`, `28226`, `28227`, `28229`, `28231`, `28233`, `28235`, `28237`, `28238`, `28240`, `28241`, `28243`, `28245`, `28247`, `28248`, `28249`, `28251`, `28253`, `28255`, `28257`, `28258`, `28260`, `28261`, `28263`, `28265`, `28267`, `28269`, `28271`, `28273`, `28275`, `28277`, `28279`, `28281`, `28283`, `28284`, `28286`, `28287`, `28288`, `28289`, `28290`, `28292`, `28293`, `28295`, `28297`, `28299`, `28301`, `28303`, `28305`, `28306`, `28308`, `28310`, `28311`, `28313`, `28315`, `28317`, `28319`, `28321`, `28323`, `28324`, `28326`, `28328`, `28330`, `28332`, `28333`, `28335`, `28337`, `28338`, `28339`, `28340`, `28342`, `28344`, `28345`, `28347`, `28349`, `28350`, `28351`, `28353`, `28355`, `28358`, `28359`, `28360`, `28361`, `28363`, `28368`, `28370`, `28372`, `28374`, `28376`, `28378`, `28379`, `28380`, `28381`, `28384`, `28386`, `28388`, `28390`, `28391`, `28392`, `28394`, `28396`, `28397`, `28399`, `28401`, `28403`, `28406`, `28407`, `28412`, `28413`, `28415`, `28417`, `28418`, `28419`, `28420`, `28422`, `28423`, `28425`, `28427`, `28430`, `28432`, `28434`, `28436`, `28440`, `28441`, `28444`, `28446`, `28448`, `28450`, `28451`, `28453`, `28456`, `28457`, `28459`, `28461`, `28463`, `28465`, `28466`, `28468`, `28470`, `28472`, `28474`, `28475`, `28476`, `28477`, `28479`, `28480`, `28482`, `28484`, `28486`, `28488`, `28490`, `28492`, `28494`, `28496`, `28498`, `28502`, `28503`, `28506`, `28508`, `28509`, `28510`, `28512`, `28513`, `28515`, `28517`, `28518`, `28520`, `28522`, `28523`, `28525`, `28526`, `28528`, `28531`, `28532`, `28533`, `28534`, `28537`, `28539`, `28540`, `28541`, `28542`, `28544`, `28546`, `28548`, `28550`, `28551`, `28552`, `28554`, `28556`, `28557`, `28559`, `28561`, `28562`, `28564`, `28566`, `28568`, `28570`, `28571`, `28572`, `28574`, `28576`, `28578`, `28580`, `28581`, `28582`, `28585`, `28586`, `28588`, `28589`, `28592`, `28594`, `28595`, `28600`, `28602`, `28603`, `28604`, `28606`, `28607`, `28609`, `28611`, `28612`, `28614`, `28616`, `28618`, `28620`, `28622`, `28624`, `28626`, `28628`, `28633`, `28635`, `28638`, `28640`, `28643`, `28647`, `28649`, `28650`, `28651`, `28652`, `28654`, `28655`, `28657`, `28659`, `28661`, `28662`, `28663`, `28664`, `28666`, `28668`, `28669`, `28671`, `28673`, `28674`, `28678`, `28681`, `28682`, `28687`, `28689`, `28690`, `28692`, `28693`, `28698`, `28699`, `28700`, `28702`, `28704`, `28706`, `28708`, `28709`, `28710`, `28711`, `28713`, `28717`, `28719`, `28725`, `28728`, `28730`, `28731`, `28732`, `28734`, `28736`, `28738`, `28740`, `28742`, `28743`, `28744`, `28746`, `28748`, `28750`, `28751`, `28753`, `28755`, `28757`, `28759`, `28760`, `28761`, `28763`, `28764`, `28766`, `28768`, `28770`, `28772`, `28773`, `28775`, `28777`, `28782`, `28784`, `28785`, `28786`, `28788`, `28790`, `28792`, `28793`, `28794`, `28796`, `28798`, `28800`, `28802`, `28803`, `28804`, `28805`, `28807`, `28808`, `28810`, `28815`, `28817`, `28818`, `28819`, `28820`, `28822`, `28826`, `28828`, `28830`, `28831`, `28832`, `28834`, `28836`, `28838`, `28840`, `28843`, `28846`, `28848`, `28850`, `28853`, `28855`, `28856`, `28859`, `28861`, `28863`, `28865`, `28866`, `28868`, `28870`, `28872`, `28874`, `28876`, `28878`, `28879`, `28881`, `28883`, `28884`, `28886`, `28887`, `28889`, `28891`, `28893`, `28895`, `28896`, `28900`, `28901`, `28903`, `28904`, `28905`, `28909`, `28910`, `28912`, `28914`, `28916`, `28917`, `28920`, `28922`, `28923`, `28924`, `28926`, `28928`, `28933`, `28935`, `28937`, `28939`, `28941`, `28943`, `28945`, `28947`, `28949`, `28951`, `28952`, `28956`, `28957`, `28959`, `28960`, `28962`, `28964`, `28966`, `28968`, `28970`, `28972`, `28974`, `28976`, `28978`, `28980`, `28981`, `28986`, `28988`, `28990`, `28991`, `28992`, `28995`, `28996`, `28998`, `29000`, `29002`, `29003`, `29005`, `29006`, `29007`, `29008`, `29010`, `29012`, `29014`, `29016`, `29018`, `29020`, `29021`, `29022`, `29024`, `29025`, `29027`, `29029`, `29031`, `29032`, `29034`, `29035`, `29038`, `29040`, `29042`, `29044`, `29045`, `29046`, `29047`, `29049`, `29050`, `29052`, `29054`, `29056`, `29058`, `29060`, `29062`, `29066`, `29068`, `29069`, `29071`, `29074`, `29075`, `29077`, `29080`, `29081`, `29084`, `29085`, `29087`, `29089`, `29091`, `29093`, `29095`, `29097`, `29099`, `29101`, `29102`, `29104`, `29105`, `29107`, `29110`, `29112`, `29114`, `29116`, `29117`, `29121`, `29123`, `29125`, `29127`, `29129`, `29131`, `29132`, `29133`, `29134`, `29137`, `29139`, `29140`, `29142`, `29143`, `29145`, `29147`, `29152`, `29154`, `29157`, `29158`, `29160`, `29162`, `29164`, `29166`, `29170`, `29172`, `29174`, `29175`, `29178`, `29182`, `29183`, `29185`, `29187`, `29191`, `29193`, `29196`, `29198`, `29200`, `29201`, `29204`, `29206`, `29208`, `29209`, `29211`, `29213`, `29215`, `29216`, `29218`, `29220`, `29222`, `29224`, `29226`, `29228`, `29230`, `29235`, `29237`, `29239`, `29241`, `29247`, `29248`, `29250`, `29252`, `29255`, `29257`, `29258`, `29259`, `29261`, `29262`, `29264`, `29266`, `29269`, `29271`, `29273`, `29275`, `29276`, `29279`, `29281`, `29283`, `29285`, `29287`, `29288`, `29290`, `29292`, `29293`, `29294`, `29296`, `29300`, `29301`, `29303`, `29304`, `29305`, `29306`, `29312`, `29314`, `29316`, `29318`, `29319`, `29320`, `29321`, `29323`, `29324`, `29325`, `29326`, `29328`, `29329`, `29331`, `29332`, `29334`, `29336`, `29337`, `29339`, `29341`, `29345`, `29346`, `29348`, `29350`, `29352`, `29354`, `29356`, `29358`, `29360`, `29362`, `29364`, `29367`, `29371`, `29374`, `29375`, `29377`, `29379`, `29380`, `29382`, `29384`, `29386`, `29388`, `29390`, `29392`, `29394`, `29396`, `29399`, `29401`, `29403`, `29405`, `29407`, `29409`, `29411`, `29413`, `29414`, `29416`, `29419`, `29420`, `29421`, `29422`, `29424`, `29427`, `29429`, `29431`, `29433`, `29434`, `29436`, `29438`, `29440`, `29442`, `29443`, `29445`, `29447`, `29449`, `29451`, `29453`, `29455`, `29457`, `29459`, `29461`, `29463`, `29464`, `29466`, `29468`, `29470`, `29473`, `29475`, `29477`, `29480`, `29481`, `29483`, `29486`, `29488`, `29490`, `29493`, `29494`, `29497`, `29499`, `29501`, `29503`, `29505`, `29508`, `29510`, `29516`, `29518`, `29520`, `29522`, `29524`, `29526`, `29528`, `29529`, `29531`, `29533`, `29535`, `29537`, `29539`, `29541`, `29543`, `29544`, `29545`, `29547`, `29549`, `29550`, `29552`, `29554`, `29556`, `29557`, `29560`, `29562`, `29564`, `29566`, `29568`, `29572`, `29574`, `29576`, `29577`, `29579`, `29581`, `29583`, `29585`, `29587`, `29589`, `29592`, `29594`, `29596`, `29598`, `29600`, `29602`, `29604`, `29606`, `29608`, `29610`, `29612`, `29614`, `29616`, `29618`, `29620`, `29622`, `29624`, `29626`, `29627`, `29629`, `29631`, `29633`, `29635`, `29636`, `29638`, `29639`, `29640`, `29642`, `29644`, `29648`, `29650`, `29652`, `29654`, `29657`, `29658`, `29659`, `29660`, `29662`, `29663`, `29665`, `29667`, `29669`, `29670`, `29672`, `29673`, `29674`, `29677`, `29679`, `29681`, `29683`, `29685`, `29687`, `29688`, `29690`, `29691`, `29693`, `29695`, `29696`, `29699`, `29700`, `29702`, `29704`, `29706`, `29711`, `29712`, `29714`, `29716`, `29717`, `29719`, `29721`, `29723`, `29725`, `29727`, `29729`, `29731`, `29733`, `29736`, `29738`, `29740`, `29742`, `29744`, `29746`, `29748`, `29750`, `29752`, `29754`, `29755`, `29757`, `29758`, `29760`, `29762`, `29764`, `29765`, `29768`, `29769`, `29771`, `29773`, `29775`, `29777`, `29779`, `29781`, `29783`, `29785`, `29787`, `29789`, `29792`, `29794`, `29795`, `29797`, `29798`, `29800`, `29803`, `29805`, `29807`, `29809`, `29810`, `29812`, `29814`, `29816`, `29820`, `29822`, `29823`, `29825`, `29827`, `29830`, `29831`, `29833`, `29835`, `29837`, `29839`, `29840`, `29841`, `29842`, `29844`, `29846`, `29850`, `29852`, `29854`, `29855`, `29856`, `29858`, `29860`, `29862`, `29864`, `29866`, `29867`, `29869`, `29871`, `29872`, `29874`, `29876`, `29878`, `29880`, `29882`, `29885`, `29887`, `29889`, `29890`, `29892`, `29894`, `29895`, `29897`, `29900`, `29902`, `29903`, `29904`, `29905`, `29908`, `29910`, `29912`, `29914`, `29916`, `29918`, `29919`, `29921`, `29923`, `29925`, `29926`, `29928`, `29929`, `29931`, `29933`, `29934`, `29935`, `29937`, `29938`, `29939`, `29941`, `29943`, `29944`, `29946`, `29949`, `29951`, `29952`, `29954`, `29956`, `29958`, `29960`, `29962`, `29966`, `29968`, `29973`, `29975`, `29977`, `29979`, `29982`, `29983`, `29984`, `29986`, `29988`, `29991`, `29992`, `29994`, `29996`, `29998`, `30000`, `30002`, `30004`, `30006`, `30008`, `30010`, `30012`, `30014`, `30016`, `30018`, `30020`, `30022`, `30023`, `30025`, `30027`, `30028`, `30029`, `30031`, `30033`, `30035`, `30038`, `30040`, `30042`, `30044`, `30046`, `30048`, `30049`, `30050`, `30051`, `30053`, `30055`, `30058`, `30060`, `30064`, `30067`, `30069`, `30071`, `30073`, `30075`, `30077`, `30078`, `30080`, `30082`, `30084`, `30086`, `30088`, `30090`, `30092`, `30093`, `30095`, `30098`, `30100`, `30102`, `30103`, `30105`, `30107`, `30109`, `30111`, `30112`, `30114`, `30116`, `30117`, `30119`, `30121`, `30123`, `30125`, `30127`, `30130`, `30132`, `30136`, `30137`, `30139`, `30141`, `30143`, `30145`, `30147`, `30148`, `30150`, `30151`, `30152`, `30154`, `30156`, `30160`, `30163`, `30169`, `30171`, `30172`, `30174`, `30176`, `30177`, `30179`, `30181`, `30183`, `30185`, `30187`, `30189`, `30190`, `30192`, `30193`, `30195`, `30197`, `30198`, `30201`, `30202`, `30204`, `30205`, `30207`, `30208`, `30210`, `30211`, `30213`, `30215`, `30217`, `30219`, `30220`, `30222`, `30224`, `30225`, `30229`, `30231`, `30233`, `30235`, `30236`, `30237`, `30239`, `30241`, `30243`, `30244`, `30246`, `30247`, `30249`, `30250`, `30252`, `30254`, `30256`, `30258`, `30260`, `30264`, `30265`, `30268`, `30269`, `30271`, `30274`, `30275`, `30276`, `30277`, `30278`, `30279`, `30280`, `30281`, `30283`, `30284`, `30285`, `30287`, `30289`, `30291`, `30293`, `30295`, `30296`, `30299`, `30300`, `30302`, `30303`, `30305`, `30307`, `30308`, `30310`, `30311`, `30313`, `30314`, `30316`, `30317`, `30319`, `30322`, `30323`, `30325`, `30327`, `30329`, `30331`, `30333`, `30335`, `30337`, `30338`, `30340`, `30342`, `30344`, `30347`, `30349`, `30350`, `30352`, `30354`, `30356`, `30357`, `30359`, `30361`, `30363`, `30365`, `30367`, `30368`, `30370`, `30371`, `30373`, `30375`, `30376`, `30379`, `30382`, `30384`, `30386`, `30387`, `30388`, `30390`, `30392`, `30393`, `30395`, `30397`, `30399`, `30401`, `30402`, `30404`, `30406`, `30408`, `30409`, `30410`, `30412`, `30413`, `30414`, `30416`, `30421`, `30425`, `30427`, `30429`, `30431`, `30436`, `30437`, `30438`, `30440`, `30442`, `30444`, `30446`, `30448`, `30450`, `30452`, `30453`, `30455`, `30457`, `30459`, `30460`, `30461`, `30463`, `30465`, `30467`, `30469`, `30470`, `30472`, `30476`, `30478`, `30480`, `30482`, `30484`, `30485`, `30487`, `30488`, `30489`, `30490`, `30492`, `30494`, `30496`, `30498`, `30500`, `30502`, `30504`, `30507`, `30509`, `30511`, `30512`, `30513`, `30515`, `30517`, `30519`, `30520`, `30522`, `30524`, `30527`, `30528`, `30530`, `30532`, `30533`, `30535`, `30537`, `30538`, `30540`, `30542`, `30543`, `30545`, `30547`, `30549`, `30551`, `30553`, `30555`, `30559`, `30561`, `30562`, `30564`, `30566`, `1720`, `30568`, `30570`, `30572`, `30574`, `30576`, `30578`, `30579`, `30581`, `30583`, `30586`, `30588`, `30589`, `30591`, `30592`, `30594`, `30596`, `30598`, `30600`, `30602`, `30603`, `30608`, `30609`, `30610`, `30612`, `30613`, `30615`, `30617`, `30618`, `30621`, `30623`, `30625`, `30627`, `30629`, `30631`, `30633`, `30635`, `30637`, `30639`, `30640`, `30642`, `30644`, `30645`, `30649`, `30651`, `30654`, `30655`, `30656`, `30657`, `30658`, `30660`, `30661`, `30662`, `30664`, `30666`, `30667`, `30671`, `30672`, `30673`, `30674`, `30676`, `30678`, `30680`, `30682`, `30683`, `30686`, `30688`, `30689`, `30691`, `30693`, `30695`, `30696`, `30697`, `30699`, `30701`, `30702`, `30704`, `30706`, `30708`, `30709`, `30710`, `30712`, `30714`, `30716`, `30717`, `30719`, `30721`, `30723`, `30725`, `30727`, `30729`, `30731`, `30733`, `30735`, `30737`, `30739`, `30741`, `30743`, `30745`, `30747`, `30749`, `30751`, `30753`, `30755`, `30757`, `30759`, `30760`, `30762`, `30764`, `30766`, `30768`, `30769`, `30771`, `30773`, `30775`, `30776`, `30778`, `30780`, `30782`, `30784`, `30786`, `30788`, `30790`, `30792`, `30794`, `30797`, `30799`, `30801`, `30803`, `30805`, `30807`, `30809`, `30811`, `30813`, `30814`, `30815`, `30816`, `30818`, `30820`, `30822`, `30824`, `30825`, `30827`, `30829`, `30831`, `30833`, `30835`, `30837`, `30839`, `30841`, `30847`, `30848`, `30850`, `30852`, `30855`, `30857`, `30859`, `30861`, `30863`, `30865`, `30867`, `30869`, `30871`, `30874`, `30876`, `30878`, `30880`, `30882`, `30884`, `30885`, `30887`, `30888`, `30889`, `30891`, `30892`, `30893`, `30895`, `30899`, `30900`, `30902`, `30904`, `30906`, `30908`, `30909`, `30911`, `30913`, `30915`, `30917`, `30919`, `30921`, `30922`, `30924`, `30925`, `30926`, `30928`, `30929`, `30931`, `30932`, `30934`, `30936`, `30939`, `30941`, `30943`, `30945`, `30947`, `30950`, `30952`, `30954`, `30955`, `30957`, `30959`, `30961`, `30963`, `30964`, `30966`, `30968`, `30970`, `30971`, `30973`, `30975`, `30976`, `30978`, `30980`, `30982`, `30984`, `30987`, `30991`, `30993`, `30995`, `30997`, `30999`, `31000`, `31002`, `31003`, `31005`, `31007`, `31008`, `31010`, `31011`, `31013`, `31014`, `31016`, `31018`, `31020`, `31022`, `31023`, `31025`, `31026`, `31029`, `31031`, `31032`, `31036`, `31038`, `31040`, `31042`, `31043`, `31045`, `31047`, `31049`, `31051`, `31053`, `31054`, `31056`, `31058`, `31061`, `31063`, `31064`, `31066`, `31068`, `31070`, `31071`, `31073`, `31074`, `31075`, `31076`, `31077`, `31079`, `31081`, `31082`, `31084`, `31085`, `31091`, `31092`, `31093`, `31095`, `31096`, `31098`, `31101`, `31103`, `31105`, `31107`, `921`, `31108`, `31110`, `31112`, `31114`, `31115`, `31116`, `31118`, `31120`, `31124`, `31126`, `31127`, `31129`, `31130`, `31132`, `31134`, `31136`, `31137`, `31139`, `31141`, `31143`, `31145`, `31147`, `31149`, `31150`, `31153`, `219`, `31155`, `31157`, `31159`, `31161`, `31162`, `31164`, `31166`, `31167`, `31170`, `31171`, `31174`, `31175`, `31177`, `31179`, `31181`, `31184`, `31186`, `31188`, `31190`, `31192`, `31194`, `31196`, `31198`, `31199`, `31200`, `31201`, `31203`, `31205`, `31207`, `31209`, `31210`, `31211`, `31212`, `31213`, `31215`, `31217`, `31219`, `31221`, `31222`, `31223`, `31226`, `31228`, `31230`, `31232`, `31235`, `31238`, `31240`, `31241`, `31244`, `31245`, `31247`, `31249`, `31251`, `31252`, `31253`, `31255`, `31257`, `31259`, `31261`, `31263`, `31265`, `31266`, `31268`, `31270`, `31272`, `31274`, `31276`, `31278`, `31279`, `31281`, `31283`, `31284`, `31286`, `31287`, `31288`, `31290`, `31293`, `31295`, `31297`, `31300`, `31303`, `31304`, `31306`, `31308`, `31310`, `31311`, `31312`, `31313`, `31315`, `31316`, `31318`, `31320`, `31322`, `31323`, `31325`, `31326`, `31328`, `31329`, `31332`, `31334`, `31336`, `31338`, `31340`, `31342`, `31343`, `31344`, `31346`, `31349`, `31351`, `31353`, `31354`, `31355`, `31357`, `31359`, `31361`, `31363`, `31369`, `31370`, `31372`, `31375`, `31377`, `31378`, `31380`, `31382`, `31384`, `31385`, `31386`, `31387`, `31389`, `31392`, `31393`, `31394`, `31397`, `31399`, `31401`, `31403`, `31405`, `31406`, `31408`, `31410`, `31411`, `31413`, `31415`, `31417`, `31419`, `31421`, `31423`, `31424`, `31426`, `31427`, `31429`, `31430`, `31432`, `31434`, `31435`, `31436`, `31438`, `31440`, `31442`, `31444`, `31446`, `31448`, `31449`, `31451`, `31452`, `31454`, `31456`, `31457`, `31460`, `31462`, `31463`, `31464`, `31466`, `31468`, `31470`, `31473`, `31475`, `31477`, `31479`, `31481`, `31482`, `31484`, `31486`, `31488`, `31489`, `31490`, `31492`, `31495`, `31497`, `31499`, `31501`, `31502`, `31504`, `31506`, `31508`, `31509`, `31512`, `31514`, `31516`, `31518`, `31519`, `31521`, `31523`, `31525`, `31527`, `31529`, `31531`, `31533`, `31536`, `31537`, `31538`, `31540`, `31541`, `31543`, `31544`, `31546`, `31548`, `31549`, `31551`, `31553`, `31555`, `31556`, `31558`, `31560`, `31561`, `31563`, `31565`, `31566`, `31567`, `31569`, `31571`, `31574`, `31575`, `31576`, `31578`, `31580`, `31582`, `31583`, `31585`, `31586`, `31588`, `31590`, `31592`, `31593`, `31595`, `31597`, `31599`, `31600`, `31602`, `31604`, `31606`, `31607`, `31609`, `31610`, `31612`, `31614`, `31615`, `31617`, `31619`, `31620`, `31621`, `31623`, `31625`, `31626`, `31628`, `31630`, `31631`, `31632`, `31633`, `31635`, `31637`, `31639`, `31641`, `31642`, `31644`, `31646`, `31648`, `31650`, `31652`, `31653`, `31655`, `31657`, `31659`, `31661`, `31663`, `31665`, `31667`, `31668`, `31670`, `31672`, `31674`, `31675`, `31677`, `31679`, `31680`, `31682`, `31683`, `31685`, `31686`, `31688`, `31690`, `31692`, `31694`, `31695`, `31697`, `31698`, `31699`, `31700`, `31702`, `31703`, `31704`, `31705`, `31708`, `31710`, `31712`, `31713`, `31715`, `31717`, `31719`, `31721`, `31723`, `31725`, `31727`, `31729`, `31731`, `31733`, `31735`, `31737`, `31739`, `31741`, `31743`, `31745`, `31746`, `31748`, `31750`, `31752`, `31754`, `31756`, `31758`, `31760`, `31765`, `31766`, `31769`, `31771`, `31773`, `31775`, `31777`, `31779`, `31781`, `31783`, `31784`, `31785`, `31788`, `31790`, `31791`, `31793`, `31795`, `31797`, `31799`, `31801`, `31802`, `31804`, `31806`, `31808`, `31809`, `31811`, `31813`, `31815`, `31816`, `31817`, `31819`, `31825`, `31827`, `31829`, `31831`, `31833`, `31835`, `31837`, `31839`, `31840`, `31841`, `31842`, `31843`, `31845`, `31848`, `31850`, `31851`, `31853`, `31854`, `31855`, `31858`, `31860`, `31862`, `31863`, `31865`, `31867`, `31869`, `31871`, `31872`, `31874`, `31875`, `31877`, `31878`, `31880`, `31882`, `31883`, `31885`, `31887`, `31888`, `31890`, `31892`, `31894`, `31895`, `31897`, `31898`, `31900`, `31902`, `31904`, `31906`, `31908`, `31910`, `31912`, `31918`, `31920`, `31921`, `31923`, `31924`, `31925`, `31927`, `31929`, `31931`, `31933`, `31935`, `31937`, `31940`, `31941`, `31942`, `31944`, `31946`, `31948`, `31951`, `31954`, `31955`, `31957`, `31958`, `31959`, `31961`, `31963`, `31965`, `31967`, `31969`, `31972`, `31973`, `31975`, `31976`, `31978`, `31979`, `31981`, `31983`, `31985`, `31986`, `31987`, `31988`, `31990`, `31992`, `31993`, `31995`, `31996`, `31998`, `32000`, `32001`, `32004`, `32005`, `32007`, `32009`, `32011`, `32013`, `32015`, `32017`, `32019`, `32021`, `32022`, `32023`, `32025`, `32026`, `32027`, `32029`, `32032`, `32034`, `32036`, `32037`, `32038`, `32040`, `32042`, `32044`, `32046`, `32048`, `32050`, `32052`, `32054`, `32057`, `32059`, `32061`, `32063`, `32065`, `32067`, `32069`, `32071`, `32075`, `32077`, `32079`, `32081`, `32083`, `32084`, `32086`, `32087`, `32088`, `32090`, `32092`, `32094`, `32096`, `32097`, `32098`, `32099`, `32101`, `32104`, `32105`, `32106`, `32107`, `32108`, `32110`, `32111`, `32113`, `32115`, `32117`, `32118`, `32120`, `32122`, `32124`, `32126`, `32127`, `32129`, `32131`, `32133`, `32135`, `32137`, `32139`, `32141`, `32143`, `32145`, `32146`, `32148`, `32150`, `32154`, `32155`, `32156`, `32158`, `32159`, `32161`, `32162`, `32164`, `32165`, `32167`, `32169`, `32170`, `32172`, `32173`, `32174`, `32176`, `32177`, `32179`, `32181`, `32183`, `32185`, `32186`, `32188`, `32190`, `32192`, `32194`, `32196`, `32198`, `32200`, `32202`, `32203`, `32205`, `32208`, `32210`, `32212`, `32214`, `32216`, `32218`, `32220`, `32222`, `32224`, `32225`, `32227`, `32229`, `32230`, `32234`, `32235`, `32237`, `32238`, `32239`, `32240`, `32242`, `32244`, `32245`, `32247`, `32249`, `32252`, `32254`, `32256`, `32257`, `32259`, `32261`, `32263`, `32265`, `32267`, `32269`, `32271`, `32273`, `32275`, `32278`, `32279`, `32281`, `32283`, `32284`, `32286`, `32288`, `32290`, `32291`, `32293`, `32294`, `32295`, `32296`, `32297`, `32298`, `32300`, `32302`, `32304`, `32306`, `32307`, `32309`, `32310`, `32312`, `32313`, `32315`, `32319`, `32321`, `32323`, `32325`, `32327`, `32329`, `32331`, `32333`, `32335`, `32337`, `32339`, `32341`, `32343`, `32345`, `32347`, `32348`, `32350`, `32352`, `32354`, `32356`, `32357`, `32358`, `32359`, `32361`, `32363`, `32365`, `32367`, `32368`, `32371`, `32373`, `32375`, `32376`, `32377`, `32378`, `32380`, `32384`, `32386`, `32388`, `32390`, `32391`, `32392`, `32394`, `32396`, `32397`, `32398`, `32401`, `32403`, `32405`, `32407`, `32409`, `32411`, `32413`, `32414`, `32415`, `32417`, `32421`, `32423`, `32429`, `32431`, `32434`, `32435`, `32439`, `32441`, `32442`, `32444`, `32446`, `32448`, `32450`, `32452`, `32454`, `32455`, `32457`, `32459`, `32461`, `32463`, `32465`, `32467`, `32469`, `32470`, `32472`, `32477`, `32479`, `32481`, `32483`, `32484`, `32486`, `32488`, `32489`, `32492`, `32494`, `32495`, `32498`, `32499`, `32501`, `32503`, `32505`, `32507`, `32509`, `32513`, `32514`, `32516`, `32519`, `32521`, `32523`, `32525`, `32528`, `32530`, `32531`, `32536`, `32538`, `32540`, `32542`, `32545`, `32547`, `32549`, `32551`, `32553`, `32558`, `32559`, `32561`, `32562`, `32564`, `32566`, `32568`, `32570`, `32571`, `32572`, `32574`, `32576`, `32578`, `32580`, `32582`, `32583`, `32585`, `32586`, `32587`, `32589`, `32591`, `32593`, `32594`, `32596`, `32598`, `32600`, `32602`, `32604`, `32605`, `32607`, `32608`, `32609`, `32611`, `32613`, `32615`, `32617`, `32619`, `32620`, `32622`, `32624`, `32626`, `32628`, `32630`, `32632`, `32634`, `32636`, `32638`, `32640`, `32641`, `32643`, `32645`, `32647`, `32649`, `32651`, `32652`, `32655`, `32657`, `32659`, `32661`, `32663`, `32664`, `32666`, `32668`, `32671`, `32672`, `32673`, `32677`, `32679`, `32681`, `32682`, `32683`, `32685`, `32687`, `32689`, `32691`, `32693`, `32695`, `32696`, `32698`, `32700`, `32702`, `32703`, `32705`, `32707`, `32708`, `32710`, `32712`, `32714`, `32718`, `32719`, `32722`, `32724`, `32726`, `32727`, `32729`, `32731`, `32733`, `32735`, `32737`, `32739`, `32742`, `32744`, `32746`, `32748`, `32750`, `32752`, `32759`, `32761`, `32762`, `32763`, `32765`, `32768`, `32770`, `32774`, `32776`, `32777`, `32779`, `32780`, `32781`, `32782`, `32783`, `32785`, `32787`, `32788`, `32790`, `32791`, `32792`, `32794`, `32795`, `32798`, `32799`, `32801`, `32803`, `32804`, `32806`, `32808`, `32810`, `32811`, `32813`, `32815`, `32817`, `32820`, `32821`, `32822`, `32824`, `32826`, `32827`, `32829`, `32831`, `32833`, `32835`, `32836`, `32838`, `32839`, `32840`, `32841`, `32843`, `32845`, `32847`, `32849`, `32850`, `32852`, `32854`, `32855`, `32858`, `32860`, `32862`, `32864`, `32867`, `32869`, `32870`, `32872`, `32874`, `32876`, `32877`, `32878`, `32880`, `32884`, `32886`, `32888`, `32890`, `32891`, `32893`, `32895`, `32897`, `32899`, `32901`, `32903`, `32905`, `32908`, `32910`, `32913`, `32914`, `32916`, `32918`, `32920`, `32921`, `32923`, `32924`, `32926`, `32928`, `32932`, `32933`, `32934`, `32936`, `32938`, `32942`, `32945`, `32947`, `32949`, `32950`, `32951`, `32953`, `32955`, `32957`, `32958`, `32959`, `32963`, `32964`, `32965`, `32966`, `32968`, `32971`, `32972`, `32974`, `32975`, `32977`, `32980`, `32982`, `32984`, `32986`, `32988`, `32989`, `32990`, `32992`, `32993`, `32995`, `32996`, `32998`, `33000`, `33001`, `33005`, `33007`, `33009`, `33010`, `33012`, `33013`, `33014`, `33016`, `33017`, `33019`, `33021`, `33023`, `33025`, `33027`, `33029`, `33030`, `33032`, `33036`, `33038`, `33040`, `33042`, `33044`, `33046`, `33048`, `33049`, `33050`, `33051`, `33053`, `33055`, `33057`, `33059`, `33060`, `33061`, `33063`, `33065`, `33066`, `33067`, `33068`, `33070`, `33071`, `33073`, `33075`, `33077`, `33079`, `33081`, `33082`, `33084`, `33086`, `33088`, `33090`, `33092`, `33094`, `33096`, `33098`, `33100`, `33102`, `33103`, `33104`, `33106`, `33108`, `33109`, `33111`, `33112`, `33113`, `33114`, `33115`, `33118`, `33119`, `33120`, `33121`, `33123`, `33124`, `33125`, `33127`, `33129`, `33131`, `33132`, `33134`, `33136`, `33137`, `33139`, `33140`, `33141`, `33143`, `33145`, `33147`, `33148`, `33150`, `33152`, `33154`, `33155`, `33157`, `33159`, `33160`, `33161`, `33163`, `33164`, `33165`, `33167`, `33169`, `33171`, `33173`, `33175`, `33177`, `33179`, `33181`, `33184`, `33187`, `33188`, `33190`, `33192`, `33193`, `33195`, `33197`, `33198`, `33200`, `33202`, `33204`, `33206`, `33207`, `33208`, `33209`, `33210`, `33212`, `33213`, `33215`, `33216`, `33217`, `33219`, `33220`, `33222`, `33225`, `33226`, `33228`, `33230`, `33232`, `33233`, `33235`, `33237`, `33239`, `33241`, `33242`, `33244`, `33245`, `33246`, `33247`, `33249`, `33250`, `33252`, `33254`, `33255`, `33257`, `33259`, `33261`, `33263`, `33265`, `33268`, `33270`, `33273`, `33275`, `33277`, `33281`, `33283`, `33285`, `33287`, `33289`, `33291`, `33293`, `33295`, `33296`, `33299`, `33300`, `33302`, `33304`, `33305`, `33307`, `33308`, `33310`, `33312`, `33313`, `33315`, `33317`, `33319`, `33321`, `33322`, `33324`, `33326`, `33328`, `33329`, `33330`, `33332`, `33334`, `33336`, `33338`, `33339`, `33340`, `33341`, `33343`, `33345`, `33347`, `33349`, `33350`, `33352`, `33354`, `33356`, `33358`, `33359`, `33360`, `33362`, `33364`, `33366`, `33369`, `33371`, `33372`, `33374`, `33376`, `33378`, `33380`, `33382`, `33386`, `33388`, `33390`, `33391`, `33393`, `33395`, `33397`, `33398`, `33400`, `33402`, `33404`, `33406`, `33408`, `33410`, `33412`, `33414`, `33416`, `33418`, `33420`, `33422`, `33424`, `33426`, `33427`, `33428`, `33430`, `33432`, `33434`, `33435`, `33436`, `33438`, `33439`, `33441`, `33443`, `33446`, `33447`, `33449`, `33451`, `33453`, `33455`, `33457`, `33459`, `33460`, `33462`, `33464`, `33466`, `33467`, `33469`, `33470`, `33471`, `33473`, `33475`, `33477`, `33479`, `33481`, `33483`, `33484`, `33487`, `33489`, `33491`, `33493`, `33495`, `33497`, `33498`, `33500`, `33501`, `33502`, `33504`, `33505`, `33506`, `33508`, `33512`, `33514`, `33516`, `33519`, `33524`, `33525`, `33526`, `33530`, `33532`, `33534`, `33536`, `33537`, `33540`, `33542`, `33543`, `33545`, `33546`, `33547`, `33549`, `33551`, `33553`, `33555`, `33557`, `33558`, `33563`, `33564`, `33567`, `33569`, `33571`, `33573`, `33575`, `33577`, `33578`, `33580`, `33582`, `33584`, `33586`, `33588`, `33590`, `33591`, `33593`, `33594`, `33595`, `33597`, `33599`, `33601`, `33603`, `33604`, `33606`, `33608`, `33610`, `33612`, `33614`, `33616`, `33617`, `33619`, `33620`, `33621`, `33623`, `33624`, `33626`, `33628`, `33630`, `33631`, `33633`, `33635`, `33637`, `33638`, `33639`, `33641`, `33643`, `33645`, `33647`, `33651`, `33653`, `33655`, `33657`, `33659`, `33661`, `33663`, `33664`, `33665`, `33667`, `33669`, `33671`, `33673`, `33675`, `33676`, `33677`, `33678`, `33679`, `33681`, `33683`, `33684`, `33685`, `33687`, `33688`, `33689`, `33692`, `33693`, `33695`, `33697`, `33699`, `33700`, `33701`, `33703`, `33704`, `33706`, `33707`, `33709`, `33711`, `33713`, `33715`, `33717`, `33719`, `33721`, `33722`, `33724`, `33726`, `33727`, `33728`, `33729`, `33731`, `33733`, `33735`, `33738`, `33740`, `33742`, `33744`, `33745`, `33747`, `33749`, `33751`, `33752`, `33754`, `33756`, `33758`, `33759`, `33760`, `33763`, `33765`, `33766`, `33767`, `33768`, `33770`, `33773`, `33776`, `33778`, `33780`, `33782`, `33784`, `33785`, `33787`, `33788`, `33790`, `33792`, `33794`, `33795`, `33796`, `33798`, `33799`, `33800`, `33802`, `33807`, `33809`, `33811`, `33813`, `33814`, `33816`, `33817`, `33819`, `33820`, `33822`, `33824`, `33826`, `33828`, `33831`, `33833`, `33835`, `33836`, `33838`, `33840`, `33842`, `33844`, `33846`, `33848`, `33849`, `33851`, `33853`, `33855`, `33857`, `33859`, `33861`, `33863`, `33865`, `33866`, `33868`, `33870`, `33874`, `33876`, `33878`, `33880`, `33881`, `33882`, `33883`, `33885`, `33888`, `33890`, `33892`, `33894`, `33896`, `33898`, `33900`, `33902`, `33904`, `33906`, `33908`, `33909`, `33911`, `33912`, `33913`, `33915`, `33917`, `33918`, `33920`, `33922`, `33923`, `33924`, `33926`, `33928`, `33930`, `33932`, `33933`, `33934`, `33935`, `33936`, `33937`, `33938`, `33939`, `33941`, `33942`, `33944`, `33946`, `33948`, `33949`, `33951`, `33953`, `33955`, `33957`, `33959`, `33961`, `33963`, `33965`, `33967`, `33968`, `33969`, `33971`, `33973`, `33975`, `33977`, `33979`, `33981`, `33982`, `33984`, `33987`, `33989`, `33990`, `33991`, `33992`, `33994`, `33996`, `33998`, `33999`, `34001`, `34003`, `34005`, `34007`, `34010`, `34011`, `34013`, `34015`, `34017`, `34018`, `34020`, `34022`, `34023`, `34024`, `34025`, `34029`, `34032`, `34034`, `34036`, `34038`, `34040`, `34042`, `34044`, `34046`, `34047`, `34049`, `34051`, `34053`, `34055`, `34059`, `34060`, `34061`, `34063`, `34065`, `34066`, `34067`, `34068`, `34070`, `34071`, `34073`, `34074`, `34076`, `34077`, `34079`, `34081`, `34082`, `34084`, `34086`, `34089`, `34092`, `34093`, `34095`, `34097`, `34098`, `34099`, `34100`, `34101`, `34103`, `34105`, `34107`, `34108`, `34110`, `34112`, `34113`, `34115`, `34117`, `34118`, `34119`, `34120`, `34121`, `34122`, `34124`, `34125`, `34127`, `34130`, `34132`, `34134`, `34135`, `34137`, `34140`, `34142`, `34144`, `34147`, `34148`, `34150`, `34152`, `34154`, `34157`, `34159`, `34161`, `34163`, `34164`, `34167`, `34169`, `34171`, `34172`, `34174`, `34176`, `34178`, `34180`, `34182`, `34184`, `34186`, `34188`, `34190`, `34191`, `34192`, `34196`, `34197`, `34199`, `34201`, `34202`, `34203`, `34206`, `34207`, `34209`, `34211`, `34214`, `34216`, `34218`, `34220`, `34221`, `34223`, `34225`, `34227`, `34228`, `34230`, `34231`, `34233`, `34236`, `34238`, `34240`, `34241`, `34243`, `34245`, `34247`, `34249`, `34251`, `34252`, `34253`, `34255`, `34257`, `34258`, `34260`, `34262`, `34264`, `34265`, `34269`, `34271`, `34273`, `34274`, `34277`, `34279`, `34281`, `34283`, `34285`, `34287`, `34289`, `34290`, `34292`, `34294`, `34296`, `34298`, `34300`, `34303`, `34306`, `34307`, `34312`, `34314`, `34315`, `34317`, `34319`, `34321`, `34323`, `34325`, `34327`, `34329`, `34330`, `34332`, `34333`, `34334`, `34335`, `34337`, `34339`, `34341`, `34343`, `34345`, `34347`, `34349`, `34350`, `34352`, `34354`, `34356`, `34357`, `34358`, `34360`, `34362`, `34364`, `34366`, `34368`, `34370`, `34372`, `34374`, `34376`, `34378`, `34380`, `34382`, `34384`, `34386`, `34388`, `34390`, `34392`, `34394`, `34396`, `34398`, `34400`, `34401`, `34403`, `34405`, `34407`, `34408`, `34410`, `34412`, `34414`, `34417`, `34418`, `34420`, `34424`, `34427`, `34429`, `34431`, `34433`, `34435`, `34436`, `34437`, `34438`, `34439`, `34441`, `34443`, `34445`, `34446`, `34448`, `34450`, `34454`, `34456`, `34458`, `34460`, `34462`, `34464`, `34465`, `34467`, `34469`, `34470`, `34473`, `34477`, `34479`, `34480`, `34482`, `34484`, `34487`, `34489`, `34491`, `34492`, `34493`, `34497`, `34499`, `34501`, `34503`, `34504`, `34507`, `34509`, `34511`, `34512`, `34514`, `34516`, `34518`, `34520`, `34523`, `34524`, `34526`, `34528`, `34530`, `34532`, `34533`, `34535`, `34537`, `34539`, `34541`, `34543`, `34545`, `34547`, `34549`, `34551`, `34553`, `34556`, `34557`, `34558`, `34561`, `34565`, `34567`, `34568`, `34569`, `34571`, `34573`, `34575`, `34576`, `34577`, `34578`, `34580`, `34582`, `34585`, `34586`, `34587`, `34588`, `34590`, `34592`, `34594`, `34596`, `34597`, `34599`, `34600`, `34602`, `34604`, `34605`, `34606`, `34607`, `34609`, `34612`, `34613`, `34615`, `34617`, `34618`, `34619`, `34621`, `34622`, `34624`, `34625`, `34626`, `34628`, `34629`, `34631`, `34634`, `34636`, `34640`, `34642`, `34644`, `34646`, `34647`, `34649`, `34651`, `34652`, `34654`, `34655`, `34656`, `34659`, `34661`, `34662`, `34664`, `34666`, `34667`, `34669`, `34671`, `34673`, `34675`, `34676`, `34678`, `34679`, `34681`, `34683`, `34684`, `34686`, `34690`, `34692`, `34694`, `34696`, `34698`, `34700`, `34701`, `34704`, `34706`, `34707`, `34709`, `34710`, `34711`, `34713`, `34715`, `34717`, `34718`, `34720`, `34722`, `34723`, `34724`, `34726`, `34728`, `34733`, `34735`, `34737`, `34739`, `34741`, `34743`, `34746`, `34748`, `34751`, `34752`, `34753`, `34756`, `34758`, `34760`, `34762`, `34763`, `34765`, `34766`, `34768`, `34770`, `34772`, `34774`, `34776`, `34778`, `34780`, `34782`, `34784`, `34786`, `34787`, `34789`, `34790`, `34792`, `34793`, `34795`, `34797`, `34799`, `34801`, `34803`, `34804`, `34805`, `34807`, `34808`, `34810`, `34812`, `34813`, `34815`, `34816`, `34818`, `34820`, `34822`, `34823`, `34825`, `34827`, `34829`, `34831`, `34833`, `34834`, `34836`, `34838`, `34840`, `34842`, `34843`, `34845`, `34846`, `34847`, `34848`, `34850`, `34852`, `34856`, `34858`, `34860`, `34862`, `34863`, `34864`, `34866`, `34868`, `34870`, `34871`, `34873`, `34875`, `34877`, `34879`, `34881`, `34883`, `34884`, `34886`, `34888`, `34890`, `34891`, `34893`, `34895`, `34900`, `34906`, `34908`, `34910`, `34912`, `34914`, `34916`, `34918`, `34919`, `34921`, `34923`, `34925`, `34926`, `11536`, `34928`, `34930`, `34931`, `34933`, `34935`, `34937`, `34939`, `34941`, `34942`, `34945`, `34947`, `34949`, `34951`, `34952`, `34957`, `34959`, `34960`, `34962`, `34965`, `34967`, `34969`, `34971`, `34973`, `34975`, `34978`, `34980`, `34982`, `34984`, `34985`, `34987`, `34988`, `34990`, `34992`, `34994`, `34996`, `34998`, `35000`, `35004`, `35006`, `35008`, `35011`, `35013`, `35015`, `35016`, `35018`, `35019`, `35020`, `35022`, `35024`, `35026`, `35028`, `35029`, `35030`, `35032`, `35034`, `35035`, `35036`, `35037`, `35039`, `35040`, `35042`, `35045`, `35046`, `35048`, `35050`, `35051`, `35052`, `35053`, `35055`, `35056`, `35057`, `35059`, `35061`, `35062`, `35064`, `35066`, `35068`, `35070`, `35072`, `35074`, `35076`, `35077`, `35078`, `35079`, `35081`, `35083`, `35084`, `35086`, `35088`, `35090`, `35092`, `35093`, `35095`, `35097`, `35099`, `35100`, `35102`, `35104`, `35106`, `35108`, `35110`, `35112`, `35113`, `35114`, `35116`, `35117`, `35119`, `35124`, `35126`, `35128`, `35131`, `35133`, `35135`, `35138`, `35139`, `35140`, `35143`, `35145`, `35147`, `35149`, `35151`, `35153`, `35157`, `35159`, `35161`, `35163`, `35164`, `35166`, `35168`, `35170`, `35172`, `35174`, `35177`, `35178`, `35180`, `35181`, `35184`, `35186`, `35188`, `35190`, `35192`, `35193`, `35195`, `35196`, `35198`, `35200`, `35202`, `35203`, `35204`, `35206`, `35208`, `35210`, `35211`, `35213`, `35215`, `35217`, `35219`, `35220`, `35221`, `35223`, `35225`, `35226`, `35228`, `35230`, `35231`, `35232`, `35234`, `35235`, `35237`, `35239`, `35241`, `35243`, `35244`, `35246`, `35248`, `35249`, `35251`, `35253`, `35256`, `35258`, `35259`, `35261`, `35263`, `35265`, `35266`, `35267`, `35268`, `35269`, `35271`, `35277`, `35279`, `35281`, `35283`, `35285`, `35286`, `35288`, `35289`, `35292`, `35295`, `35297`, `35298`, `35300`, `35301`, `35302`, `35304`, `35306`, `35308`, `35311`, `35313`, `35315`, `35317`, `35319`, `35321`, `35323`, `35325`, `35326`, `35328`, `35330`, `35331`, `35333`, `35335`, `35336`, `35338`, `35340`, `35341`, `35343`, `35345`, `35347`, `35348`, `35349`, `35351`, `35353`, `35356`, `35358`, `35359`, `35362`, `35366`, `35369`, `35371`, `35373`, `35375`, `35376`, `35377`, `35378`, `35379`, `35381`, `35383`, `35387`, `35389`, `35391`, `35392`, `35394`, `35396`, `35398`, `35401`, `35403`, `35405`, `35407`, `35413`, `35415`, `35418`, `35420`, `35422`, `35423`, `35425`, `35426`, `35427`, `35429`, `35431`, `35433`, `35436`, `35438`, `35440`, `35441`, `35442`, `35444`, `35446`, `35447`, `35448`, `35450`, `35451`, `35453`, `35456`, `35458`, `35460`, `35462`, `35464`, `35466`, `35467`, `35469`, `35470`, `35471`, `35473`, `35474`, `35475`, `35477`, `35479`, `35481`, `35483`, `35484`, `35486`, `35488`, `35490`, `35492`, `35494`, `35496`, `35497`, `35499`, `35500`, `35503`, `35505`, `35507`, `35509`, `35511`, `35513`, `35514`, `35516`, `35518`, `35520`, `35521`, `35524`, `35526`, `35527`, `35529`, `35531`, `35532`, `35534`, `35536`, `35537`, `35540`, `35542`, `35543`, `35545`, `35547`, `35549`, `35551`, `35553`, `35555`, `35556`, `35557`, `35559`, `35561`, `35563`, `35565`, `35567`, `35569`, `35571`, `35573`, `35575`, `35576`, `35578`, `35580`, `35581`, `35582`, `35584`, `35585`, `35587`, `35589`, `35590`, `35592`, `35594`, `35595`, `35597`, `35599`, `35601`, `35603`, `35605`, `35606`, `35607`, `35608`, `35610`, `35612`, `35614`, `35615`, `35616`, `35617`, `35619`, `35621`, `35622`, `35624`, `35626`, `35628`, `35630`, `35631`, `35633`, `35635`, `35637`, `35639`, `35641`, `35643`, `35644`, `35649`, `35650`, `35651`, `35653`, `35655`, `35659`, `35661`, `35663`, `35665`, `35666`, `35668`, `35670`, `35672`, `35675`, `35677`, `35679`, `35681`, `35683`, `35684`, `35685`, `35687`, `35689`, `35691`, `35692`, `35694`, `35696`, `35698`, `35700`, `35702`, `35704`, `35706`, `35708`, `35710`, `35712`, `35713`, `35716`, `35718`, `35719`, `35720`, `35721`, `35722`, `35724`, `35726`, `35730`, `35732`, `35733`, `35735`, `35737`, `35738`, `35740`, `35743`, `35745`, `35747`, `35748`, `35750`, `35751`, `35753`, `35755`, `35756`, `35759`, `35761`, `35763`, `35765`, `35766`, `35768`, `35771`, `35772`, `35774`, `35776`, `35778`, `35780`, `35781`, `35783`, `35784`, `35786`, `35788`, `35790`, `35792`, `35793`, `35794`, `35795`, `35798`, `35800`, `35802`, `35804`, `35807`, `35809`, `35811`, `35813`, `35815`, `35816`, `35818`, `35819`, `35821`, `35822`, `35824`, `35826`, `35830`, `35831`, `35833`, `35835`, `35836`, `35837`, `35838`, `35840`, `35842`, `35845`, `35846`, `35848`, `35850`, `35852`, `35853`, `35855`, `35857`, `35859`, `35860`, `35862`, `35867`, `35869`, `35871`, `35873`, `35875`, `35877`, `35878`, `35883`, `35884`, `35886`, `35888`, `35891`, `35893`, `35895`, `35896`, `35898`, `35899`, `35901`, `35903`, `35905`, `35907`, `35908`, `35912`, `35914`, `35916`, `35917`, `35918`, `35920`, `35921`, `35923`, `35925`, `35926`, `35927`, `35929`, `35931`, `35933`, `35936`, `35938`, `35940`, `35942`, `35944`, `35945`, `35947`, `35949`, `35951`, `35953`, `35956`, `35959`, `35963`, `35965`, `35966`, `35968`, `35970`, `35972`, `35976`, `35979`, `35982`, `35984`, `35986`, `35988`, `35992`, `35993`, `35994`, `35996`, `35999`, `36001`, `36003`, `36005`, `36007`, `36009`, `36011`, `36013`, `36015`, `36016`, `36018`, `36021`, `36023`, `36024`, `36025`, `36028`, `36030`, `36032`, `36034`, `36035`, `36037`, `36038`, `36040`, `36042`, `36043`, `36045`, `36046`, `36047`, `36048`, `36049`, `36050`, `36052`, `36054`, `36057`, `36059`, `36061`, `36062`, `36064`, `36066`, `36068`, `36070`, `36072`, `36073`, `36075`, `36077`, `36079`, `36080`, `36082`, `36084`, `36086`, `36089`, `36091`, `36093`, `36094`, `36095`, `36097`, `36099`, `36101`, `36102`, `36103`, `36105`, `36107`, `36109`, `36110`, `36112`, `36114`, `36116`, `36118`, `36121`, `36123`, `36126`, `36128`, `36130`, `36132`, `36134`, `36135`, `36136`, `36138`, `36139`, `36141`, `36143`, `36144`, `36146`, `36148`, `36150`, `36152`, `36154`, `36155`, `36157`, `36159`, `36161`, `36163`, `36165`, `36167`, `36169`, `36170`, `36171`, `36173`, `36175`, `36176`, `36178`, `36180`, `36181`, `36182`, `36184`, `36186`, `36188`, `36190`, `36192`, `36193`, `36195`, `36196`, `36198`, `36200`, `36202`, `36204`, `36206`, `36209`, `36211`, `36213`, `36215`, `36217`, `36219`, `36221`, `36223`, `36225`, `36227`, `36229`, `36230`, `36232`, `36234`, `36236`, `36238`, `36242`, `36244`, `36247`, `36249`, `36251`, `36253`, `36255`, `36257`, `36259`, `36260`, `36262`, `36264`, `36266`, `36268`, `36270`, `36272`, `36274`, `36275`, `36278`, `36280`, `36281`, `36283`, `36285`, `36287`, `36288`, `36289`, `36290`, `36292`, `36294`, `36296`, `36298`, `36300`, `36305`, `36306`, `36308`, `36310`, `36311`, `36312`, `36314`, `36315`, `36316`, `36317`, `36319`, `36320`, `36321`, `36322`, `36324`, `36326`, `36328`, `36334`, `36335`, `36337`, `36339`, `36342`, `36344`, `36345`, `36347`, `36349`, `36350`, `36352`, `36354`, `36356`, `36357`, `36359`, `36361`, `36363`, `36365`, `36367`, `36370`, `36372`, `36375`, `36376`, `36379`, `36380`, `36382`, `36384`, `36385`, `36387`, `36389`, `36392`, `36393`, `36395`, `36396`, `36398`, `36399`, `36401`, `36403`, `36405`, `36407`, `36409`, `36411`, `36412`, `36413`, `36414`, `36416`, `36418`, `36419`, `36423`, `36424`, `36426`, `36428`, `36429`, `36430`, `36431`, `36433`, `36435`, `36437`, `36441`, `36444`, `36445`, `36447`, `36449`, `36450`, `36452`, `36453`, `36454`, `36455`, `36457`, `36458`, `36460`, `36461`, `36463`, `36464`, `36466`, `36469`, `36470`, `36472`, `36475`, `36477`, `36479`, `36480`, `36481`, `36483`, `36484`, `36486`, `36488`, `36490`, `36491`, `36493`, `36494`, `36496`, `36498`, `36500`, `36501`, `36503`, `36505`, `36507`, `36509`, `36510`, `36511`, `36512`, `36514`, `36516`, `36518`, `36519`, `36521`, `36522`, `36524`, `36525`, `36526`, `36528`, `36530`, `36531`, `36532`, `36537`, `36539`, `36540`, `36542`, `36544`, `36546`, `36548`, `36551`, `36553`, `36555`, `36556`, `36558`, `36560`, `36561`, `36562`, `36564`, `36566`, `36568`, `36570`, `36572`, `36574`, `36575`, `36577`, `36578`, `36580`, `36584`, `36586`, `36588`, `36590`, `36592`, `36594`, `36596`, `36598`, `36605`, `36607`, `36610`, `36612`, `36614`, `36616`, `36620`, `36621`, `36623`, `36624`, `36625`, `36627`, `36629`, `36631`, `36633`, `36635`, `36637`, `36639`, `36641`, `36644`, `36646`, `36647`, `36648`, `36650`, `36651`, `36653`, `36655`, `36657`, `36659`, `36661`, `36663`, `36664`, `36665`, `36667`, `36669`, `36671`, `36672`, `36673`, `36675`, `36677`, `36679`, `36681`, `36683`, `36685`, `36689`, `36691`, `36693`, `36695`, `36697`, `36699`, `36700`, `36702`, `36704`, `36706`, `36708`, `36710`, `36711`, `36713`, `36715`, `36717`, `36718`, `36719`, `36721`, `36722`, `36724`, `36726`, `36728`, `36730`, `36732`, `36734`, `36736`, `36738`, `36739`, `36741`, `36743`, `36746`, `36748`, `36750`, `36752`, `36755`, `36757`, `36759`, `36761`, `36763`, `36765`, `36766`, `36768`, `36770`, `36771`, `36772`, `36774`, `36775`, `36777`, `36779`, `36781`, `36783`, `36785`, `36787`, `36789`, `36790`, `36791`, `36793`, `36795`, `36797`, `36799`, `36800`, `36805`, `36807`, `36809`, `36811`, `36813`, `36814`, `36815`, `36817`, `36819`, `36821`, `36823`, `36824`, `36826`, `36827`, `36829`, `36830`, `36833`, `36836`, `36838`, `36839`, `36841`, `36843`, `36844`, `36846`, `36847`, `36849`, `36851`, `36857`, `36859`, `36860`, `36861`, `36863`, `36865`, `36867`, `36869`, `36871`, `36873`, `36875`, `36877`, `36879`, `36881`, `36885`, `36887`, `36890`, `36892`, `36894`, `36896`, `36898`, `36899`, `36901`, `36904`, `36906`, `36908`, `36910`, `36912`, `36914`, `36916`, `36918`, `36920`, `36922`, `36924`, `36925`, `36927`, `36929`, `36930`, `36931`, `36933`, `36934`, `36935`, `36936`, `36938`, `36940`, `36941`, `36942`, `36944`, `36946`, `36948`, `36950`, `36954`, `36957`, `36959`, `36961`, `36963`, `36964`, `36966`, `36968`, `36969`, `36970`, `36972`, `36974`, `36976`, `36980`, `36981`, `36983`, `36985`, `36986`, `36987`, `36989`, `36991`, `36993`, `36994`, `36997`, `36999`, `37000`, `37004`, `37006`, `37008`, `37010`, `37012`, `37013`, `37015`, `37016`, `37017`, `37018`, `37020`, `37021`, `37023`, `37024`, `37026`, `37028`, `37030`, `37032`, `37033`, `37034`, `37036`, `37037`, `37039`, `37040`, `37042`, `37044`, `37046`, `37047`, `37049`, `37050`, `37053`, `37054`, `37056`, `37057`, `37060`, `37062`, `37064`, `37066`, `37068`, `37070`, `37072`, `37074`, `37076`, `37078`, `37080`, `37081`, `37083`, `37085`, `37086`, `37088`, `37090`, `37092`, `37094`, `37095`, `37099`, `37101`, `37102`, `37104`, `37105`, `37107`, `37108`, `37109`, `37111`, `37113`, `37115`, `37117`, `37120`, `37121`, `37123`, `37126`, `37128`, `37130`, `37131`, `37133`, `37135`, `37137`, `37139`, `37141`, `37143`, `37145`, `37147`, `37149`, `37151`, `37153`, `37155`, `37159`, `37161`, `37163`, `37165`, `37168`, `37170`, `37171`, `37172`, `37174`, `37175`, `37176`, `37182`, `37183`, `37184`, `37185`, `37186`, `37188`, `37190`, `37192`, `37193`, `37195`, `37197`, `37198`, `37202`, `37204`, `37206`, `37207`, `37208`, `37210`, `37211`, `37213`, `37214`, `37215`, `37217`, `37218`, `37219`, `37221`, `37223`, `37227`, `37229`, `37231`, `37232`, `37234`, `37235`, `37237`, `37239`, `37243`, `37245`, `37246`, `37247`, `37248`, `37249`, `37251`, `37253`, `37254`, `37255`, `37257`, `37259`, `37262`, `37263`, `37265`, `37267`, `37269`, `37271`, `37273`, `37274`, `37276`, `37277`, `37279`, `37281`, `37283`, `37284`, `37286`, `37288`, `37290`, `37291`, `37293`, `37295`, `37297`, `37298`, `37300`, `37302`, `37306`, `37308`, `37309`, `37310`, `37314`, `37316`, `37317`, `37319`, `37321`, `37323`, `37325`, `37327`, `37329`, `37330`, `37331`, `37333`, `37335`, `37337`, `37339`, `37341`, `37343`, `37345`, `37347`, `37348`, `37349`, `37350`, `37352`, `37354`, `37356`, `37358`, `37360`, `37362`, `37363`, `37365`, `37366`, `37367`, `37369`, `37371`, `37373`, `37375`, `37376`, `37377`, `37380`, `37382`, `37384`, `37385`, `37387`, `37390`, `37392`, `37394`, `37396`, `37398`, `37399`, `37401`, `37402`, `37404`, `37405`, `37407`, `37408`, `37409`, `37411`, `37413`, `37415`, `37417`, `37418`, `37420`, `37422`, `37424`, `37426`, `37428`, `37429`, `37431`, `37433`, `37434`, `37436`, `37440`, `37442`, `37444`, `37446`, `37448`, `37450`, `37451`, `37453`, `37455`, `37457`, `37459`, `37462`, `37464`, `37466`, `37467`, `37468`, `37469`, `37470`, `37472`, `37474`, `37475`, `37476`, `37478`, `37479`, `37481`, `37482`, `37485`, `37489`, `37492`, `37494`, `37495`, `37497`, `37498`, `37499`, `37501`, `37503`, `37505`, `37506`, `37508`, `37510`, `37512`, `37514`, `37516`, `37518`, `37520`, `37521`, `37523`, `37525`, `37527`, `37530`, `37531`, `37533`, `37535`, `37537`, `37539`, `37541`, `37544`, `37546`, `37548`, `37550`, `37552`, `37555`, `37557`, `37559`, `37561`, `37564`, `37566`, `37568`, `37570`, `37571`, `37572`, `37574`, `37576`, `37578`, `37580`, `37581`, `37583`, `37585`, `37586`, `37587`, `37589`, `37591`, `37593`, `37594`, `37595`, `37597`, `37599`, `37600`, `37602`, `37604`, `37605`, `37607`, `37609`, `37611`, `37612`, `37614`, `37616`, `37618`, `37619`, `37621`, `37625`, `37627`, `37628`, `37629`, `37630`, `37632`, `37634`, `37637`, `37639`, `37640`, `37642`, `37644`, `37646`, `37648`, `37650`, `37652`, `37653`, `37655`, `37656`, `37657`, `37659`, `37661`, `37663`, `37664`, `37666`, `37668`, `37669`, `37671`, `37673`, `37675`, `37677`, `37678`, `37680`, `37681`, `37683`, `37686`, `37688`, `37690`, `37692`, `37694`, `37696`, `37698`, `37699`, `37701`, `37704`, `37705`, `37707`, `37709`, `37711`, `37713`, `37715`, `37716`, `37718`, `37719`, `37721`, `37723`, `37724`, `37726`, `37728`, `37730`, `37731`, `37732`, `37734`, `37735`, `37736`, `37740`, `37742`, `37746`, `37748`, `37749`, `37750`, `37752`, `37753`, `37754`, `37756`, `37758`, `37760`, `37763`, `37764`, `37766`, `37767`, `37769`, `37771`, `37773`, `37775`, `37777`, `37779`, `37781`, `37783`, `37785`, `37786`, `37788`, `37790`, `37792`, `37794`, `37795`, `37796`, `37797`, `37799`, `37801`, `37803`, `37804`, `37806`, `37808`, `37812`, `37814`, `37816`, `37817`, `37818`, `37819`, `37821`, `37822`, `37824`, `37825`, `37827`, `37828`, `37829`, `37830`, `37832`, `37834`, `37835`, `37837`, `37839`, `37842`, `37843`, `37844`, `37848`, `37850`, `37852`, `37854`, `37856`, `37857`, `37859`, `37860`, `37862`, `37863`, `37866`, `37869`, `37871`, `37872`, `37874`, `37875`, `37876`, `37877`, `37878`, `37881`, `37883`, `37884`, `37885`, `37886`, `37887`, `37889`, `37891`, `37892`, `37894`, `37895`, `37897`, `37900`, `37902`, `37904`, `37906`, `37908`, `37909`, `37911`, `37913`, `37915`, `37916`, `37918`, `37922`, `37923`, `37925`, `37926`, `37928`, `37930`, `37932`, `37934`, `37935`, `37936`, `37937`, `37939`, `37941`, `37943`, `37945`, `37947`, `37950`, `37951`, `37952`, `37954`, `37956`, `37958`, `37960`, `37962`, `37964`, `37965`, `37966`, `37968`, `37970`, `37972`, `37974`, `37977`, `37978`, `37980`, `37982`, `37983`, `37986`, `37988`, `37989`, `37993`, `37994`, `37996`, `37998`, `37999`, `38001`, `38003`, `38005`, `38007`, `38008`, `38010`, `38011`, `38013`, `38015`, `38016`, `38018`, `38019`, `38021`, `38023`, `38025`, `38027`, `38029`, `38030`, `38031`, `38033`, `38035`, `38037`, `38038`, `38040`, `38042`, `38044`, `38045`, `38046`, `38048`, `38050`, `38052`, `38054`, `38055`, `38056`, `38058`, `38060`, `38062`, `38064`, `38066`, `38068`, `38070`, `38071`, `38073`, `38075`, `38076`, `38078`, `38080`, `38082`, `38088`, `38090`, `38091`, `38093`, `38095`, `38097`, `38098`, `38099`, `38101`, `38103`, `38105`, `38106`, `38107`, `38108`, `38110`, `38111`, `38112`, `38115`, `38117`, `38119`, `38122`, `38124`, `38126`, `38128`, `38130`, `38131`, `38133`, `38135`, `38136`, `38137`, `38139`, `38141`, `38142`, `38143`, `38145`, `38148`, `38149`, `38151`, `38152`, `38154`, `38156`, `38157`, `38161`, `38163`, `38165`, `38166`, `38168`, `38170`, `38172`, `38173`, `38175`, `38177`, `38178`, `38179`, `38182`, `38183`, `38184`, `38186`, `38188`, `38189`, `38192`, `38193`, `38194`, `38195`, `38197`, `38199`, `38201`, `38202`, `38204`, `38205`, `38207`, `38209`, `38211`, `38212`, `38213`, `38216`, `38218`, `38220`, `38223`, `38225`, `38226`, `38227`, `38229`, `38232`, `38233`, `38235`, `38238`, `38239`, `38240`, `38242`, `38244`, `38245`, `38247`, `38249`, `38251`, `38253`, `17591`, `38255`, `38257`, `38259`, `38261`, `38263`, `38264`, `38266`, `38268`, `38269`, `38271`, `38272`, `38274`, `38275`, `38277`, `38279`, `38280`, `38281`, `38283`, `38284`, `38286`, `38287`, `38288`, `38290`, `38292`, `38294`, `38296`, `38298`, `38300`, `38302`, `38304`, `38306`, `38308`, `38310`, `38311`, `38313`, `38315`, `38316`, `38317`, `38319`, `38320`, `38322`, `38324`, `38325`, `38326`, `38328`, `38330`, `38332`, `38333`, `38335`, `38336`, `38337`, `38340`, `38342`, `38343`, `38345`, `38346`, `38348`, `38350`, `38352`, `38354`, `38356`, `38358`, `38360`, `38362`, `38364`, `38366`, `38368`, `38369`, `38372`, `38373`, `38375`, `38376`, `38378`, `38380`, `38382`, `38383`, `38386`, `38388`, `38391`, `38393`, `38395`, `38397`, `38399`, `38400`, `38404`, `38405`, `38407`, `38409`, `38410`, `38413`, `38414`, `38416`, `38419`, `38421`, `38423`, `38425`, `38427`, `38428`, `38430`, `38432`, `38433`, `38434`, `38436`, `38437`, `38438`, `38441`, `38443`, `38444`, `38446`, `38448`, `38450`, `38453`, `38455`, `38457`, `38459`, `38462`, `38464`, `38465`, `38467`, `38471`, `38473`, `38474`, `38475`, `38477`, `38480`, `38482`, `38483`, `38487`, `38488`, `38490`, `38491`, `38493`, `38496`, `38498`, `38500`, `38502`, `38504`, `38505`, `38507`, `38509`, `38511`, `38512`, `38514`, `38515`, `38517`, `38519`, `38521`, `38523`, `38526`, `38527`, `38528`, `38530`, `38532`, `38534`, `38535`, `38537`, `38539`, `38541`, `38543`, `38545`, `38546`, `38549`, `38551`, `38553`, `38554`, `38555`, `38556`, `38560`, `38562`, `38563`, `38564`, `38565`, `38567`, `38568`, `38570`, `38571`, `38573`, `38575`, `38577`, `38579`, `38582`, `38584`, `38589`, `38591`, `38593`, `38595`, `38596`, `38597`, `38600`, `38601`, `38602`, `38603`, `38604`, `38606`, `38608`, `38610`, `38612`, `38614`, `38615`, `38616`, `38618`, `38619`, `38621`, `38622`, `38624`, `38626`, `38628`, `38631`, `38632`, `38633`, `38634`, `38637`, `38639`, `38640`, `38642`, `38644`, `38646`, `38647`, `38649`, `38650`, `38652`, `38654`, `38656`, `38658`, `38659`, `38661`, `38662`, `38664`, `38666`, `38668`, `38670`, `38672`, `38674`, `38676`, `38678`, `38680`, `38682`, `38684`, `38685`, `38687`, `38689`, `38691`, `38694`, `38695`, `38697`, `38698`, `38700`, `38701`, `38703`, `38705`, `38706`, `38708`, `38710`, `38712`, `38714`, `38715`, `38718`, `38720`, `38721`, `38723`, `38725`, `38727`, `38729`, `38731`, `38733`, `38736`, `38738`, `38739`, `38741`, `38742`, `38744`, `38745`, `38747`, `38749`, `38751`, `38753`, `38754`, `38756`, `38758`, `38759`, `38761`, `38763`, `38765`, `38766`, `38767`, `38769`, `38770`, `38771`, `38773`, `38775`, `38779`, `38781`, `38783`, `38785`, `38786`, `38788`, `38790`, `38792`, `38795`, `38797`, `38799`, `38802`, `38803`, `38805`, `38807`, `38809`, `38811`, `38813`, `38815`, `38817`, `38819`, `38820`, `38822`, `38824`, `38827`, `38829`, `38830`, `38831`, `38833`, `38835`, `38837`, `38838`, `38840`, `38842`, `38844`, `38846`, `38848`, `38850`, `38852`, `38854`, `38856`, `38857`, `38858`, `38860`, `38861`, `38863`, `38865`, `38867`, `38869`, `38871`, `38872`, `38873`, `38875`, `38877`, `38879`, `38881`, `38883`, `38885`, `38887`, `38888`, `38890`, `38892`, `38895`, `38896`, `38897`, `38898`, `38902`, `38903`, `38904`, `38906`, `38908`, `38909`, `38910`, `38911`, `38913`, `38915`, `38916`, `38918`, `38920`, `38922`, `38924`, `38926`, `38928`, `38929`, `38930`, `38933`, `38934`, `38935`, `38936`, `38938`, `38940`, `38942`, `38944`, `38946`, `38948`, `38949`, `38951`, `38953`, `38955`, `38957`, `38959`, `38960`, `38961`, `38964`, `38966`, `38967`, `38969`, `38972`, `38973`, `38974`, `38976`, `38978`, `38980`, `38981`, `38983`, `38986`, `38987`, `38988`, `38989`, `38991`, `38993`, `38995`, `38996`, `38997`, `38999`, `39001`, `39002`, `39003`, `39004`, `39005`, `39006`, `39008`, `39011`, `39013`, `39015`, `39017`, `39019`, `39023`, `39024`, `39026`, `39027`, `39029`, `39031`, `39032`, `39034`, `39036`, `39037`, `39040`, `39042`, `39043`, `39044`, `39046`, `39048`, `39049`, `39051`, `39053`, `39055`, `39057`, `39059`, `39060`, `39062`, `39063`, `39066`, `39067`, `39069`, `39071`, `39074`, `39075`, `39077`, `39078`, `39080`, `39082`, `39083`, `39084`, `39087`, `39089`, `39092`, `39094`, `39096`, `39097`, `39100`, `39102`, `39104`, `39106`, `39108`, `39110`, `39112`, `39114`, `39116`, `39118`, `39120`, `39121`, `39123`, `39124`, `39126`, `39128`, `39129`, `39131`, `39133`, `39134`, `39136`, `39138`, `39140`, `39141`, `39142`, `39144`, `39145`, `39147`, `39148`, `39149`, `39151`, `39155`, `39159`, `39160`, `39161`, `39163`, `39164`, `39166`, `39168`, `39170`, `39172`, `39174`, `39176`, `39178`, `39180`, `39182`, `39184`, `39186`, `39187`, `39189`, `39191`, `39193`, `39194`, `39195`, `39197`, `39198`, `39199`, `39201`, `39205`, `39206`, `39207`, `39208`, `39210`, `39212`, `39214`, `39216`, `39218`, `39219`, `39221`, `39222`, `39224`, `39225`, `39227`, `39229`, `39230`, `39232`, `39234`, `39236`, `39238`, `39239`, `39241`, `39244`, `39245`, `39247`, `39248`, `39249`, `39251`, `39253`, `39255`, `39256`, `39258`, `39259`, `39261`, `39262`, `39263`, `39265`, `39267`, `39269`, `39271`, `39273`, `39275`, `39276`, `39278`, `39280`, `39282`, `39283`, `39285`, `39287`, `39289`, `39290`, `39292`, `39294`, `39296`, `39298`, `39300`, `39302`, `39305`, `39306`, `39307`, `39309`, `39310`, `39313`, `39314`, `39316`, `39318`, `39320`, `39322`, `39324`, `39326`, `39327`, `39329`, `39331`, `39333`, `39334`, `39336`, `39337`, `39339`, `39340`, `39341`, `39342`, `39344`, `39345`, `39346`, `39347`, `39349`, `39351`, `39353`, `39355`, `39356`, `39358`, `39359`, `39361`, `39363`, `39364`, `39366`, `39367`, `39368`, `39369`, `39370`, `39375`, `39377`, `39378`, `39379`, `39381`, `39383`, `39385`, `39387`, `39389`, `39391`, `39392`, `39393`, `39394`, `39396`, `39398`, `39399`, `39400`, `39404`, `39406`, `39408`, `39410`, `39412`, `39414`, `39416`, `39418`, `39420`, `39422`, `39423`, `39425`, `39427`, `39428`, `39429`, `39432`, `39433`, `39435`, `39436`, `39439`, `39441`, `39442`, `39443`, `39444`, `39445`, `39447`, `39448`, `39450`, `39452`, `39454`, `39457`, `39459`, `39460`, `39462`, `39464`, `39466`, `39468`, `39470`, `39471`, `39472`, `39475`, `39477`, `39479`, `39480`, `39482`, `39484`, `39485`, `39487`, `39489`, `39491`, `39492`, `39493`, `39494`, `39496`, `39499`, `39501`, `39502`, `39506`, `39507`, `39508`, `39509`, `39511`, `39513`, `39514`, `39516`, `39518`, `39519`, `39521`, `39522`, `39525`, `39526`, `39529`, `39530`, `39532`, `39533`, `39535`, `39537`, `39539`, `39541`, `39542`, `39544`, `39546`, `39547`, `39548`, `39550`, `39552`, `39554`, `39556`, `39558`, `39560`, `39562`, `39563`, `39565`, `39567`, `39568`, `39570`, `39572`, `39573`, `39575`, `39577`, `39578`, `39579`, `39581`, `39584`, `39586`, `39587`, `39588`, `39589`, `39592`, `39593`, `39595`, `39597`, `39598`, `39600`, `39602`, `39604`, `39606`, `39608`, `39610`, `39612`, `39614`, `39616`, `39617`, `39619`, `39621`, `39623`, `39625`, `39626`, `39627`, `39629`, `39631`, `39633`, `39634`, `39636`, `39637`, `39638`, `39640`, `39644`, `39649`, `39651`, `39653`, `39655`, `39657`, `39659`, `39661`, `39662`, `39664`, `39666`, `39668`, `39673`, `39675`, `39677`, `39679`, `39681`, `39683`, `39685`, `39687`, `39689`, `39692`, `39693`, `39695`, `39697`, `39699`, `39701`, `39703`, `39705`, `39706`, `39708`, `39712`, `39714`, `39716`, `39718`, `39720`, `39722`, `39724`, `39727`, `39729`, `39731`, `39732`, `39734`, `39736`, `39738`, `39740`, `39742`, `39744`, `39746`, `39749`, `39751`, `39752`, `39754`, `39755`, `39757`, `39758`, `39760`, `39762`, `39763`, `39765`, `39766`, `39768`, `39770`, `39772`, `39773`, `39774`, `39775`, `39779`, `39781`, `39783`, `39784`, `39786`, `39787`, `39789`, `39792`, `39794`, `39796`, `39798`, `39800`, `39802`, `39804`, `39806`, `39808`, `39810`, `39814`, `39816`, `39819`, `39820`, `39822`, `39823`, `39825`, `39826`, `39828`, `39830`, `39831`, `39833`, `39835`, `39841`, `39842`, `39846`, `39848`, `39852`, `39854`, `39856`, `39858`, `39860`, `39862`, `39864`, `39867`, `39869`, `39871`, `39873`, `39875`, `39877`, `39879`, `39881`, `39882`, `39883`, `39885`, `39887`, `39889`, `39890`, `39892`, `39894`, `39896`, `39898`, `39899`, `39901`, `39903`, `39905`, `39907`, `39908`, `39910`, `39912`, `39913`, `39915`, `39917`, `39918`, `39920`, `39922`, `39924`, `39926`, `39928`, `39930`, `39932`, `39934`, `39936`, `39937`, `39938`, `39939`, `39940`, `39941`, `39943`, `39945`, `39947`, `39950`, `39951`, `39952`, `39953`, `39955`, `39956`, `39958`, `39960`, `39962`, `39964`, `39965`, `39967`, `39969`, `39971`, `39973`, `39974`, `39977`, `39979`, `39981`, `39982`, `39984`, `39985`, `39987`, `39989`, `39991`, `39993`, `39995`, `39999`, `40001`, `40002`, `40004`, `40005`, `40007`, `40009`, `40011`, `40013`, `40014`, `40015`, `40017`, `40019`, `40021`, `40023`, `40025`, `40027`, `40028`, `40029`, `40030`, `40032`, `40034`, `40035`, `40036`, `40037`, `40038`, `40041`, `40042`, `40043`, `40045`, `40046`, `40047`, `40049`, `40051`, `40053`, `40055`, `40056`, `40057`, `40059`, `40060`, `40061`, `40063`, `40065`, `40067`, `40069`, `40074`, `40075`, `40076`, `40078`, `40080`, `40082`, `40084`, `40085`, `40087`, `40089`, `40091`, `40095`, `40096`, `40098`, `40099`, `40100`, `40101`, `40103`, `40104`, `40105`, `40107`, `40108`, `40110`, `40112`, `40114`, `40116`, `40117`, `40119`, `40121`, `40123`, `40125`, `40126`, `40128`, `40130`, `40132`, `40134`, `40136`, `40138`, `40140`, `40142`, `40143`, `40145`, `40146`, `40147`, `40148`, `40150`, `40152`, `40153`, `40155`, `40157`, `40163`, `40165`, `40167`, `40169`, `40172`, `40174`, `40175`, `40176`, `40178`, `40180`, `40182`, `40184`, `40185`, `40186`, `40188`, `40190`, `40192`, `40193`, `40194`, `40195`, `40197`, `40199`, `40201`, `40202`, `40205`, `40207`, `40209`, `40211`, `40213`, `40215`, `40217`, `40218`, `40220`, `40222`, `40223`, `40225`, `40226`, `40227`, `40229`, `40230`, `40231`, `40233`, `40235`, `40237`, `40239`, `40241`, `40243`, `40245`, `40246`, `40249`, `40250`, `40252`, `40253`, `40255`, `40257`, `40259`, `40261`, `40263`, `40265`, `40267`, `40268`, `40274`, `40276`, `40281`, `40282`, `40283`, `40284`, `40285`, `40287`, `40289`, `40291`, `40293`, `40294`, `40297`, `40299`, `40300`, `40301`, `40304`, `40306`, `40307`, `40309`, `40311`, `40313`, `40315`, `40317`, `40319`, `40323`, `40324`, `40327`, `40329`, `40331`, `40332`, `40334`, `40338`, `40340`, `40342`, `40343`, `40346`, `40347`, `40349`, `40350`, `40352`, `40353`, `40355`, `40357`, `40359`, `40360`, `40362`, `40364`, `40366`, `40367`, `40369`, `40370`, `40373`, `40376`, `40377`, `40379`, `40381`, `40383`, `40385`, `40387`, `40389`, `40391`, `40393`, `40395`, `40397`, `40402`, `40404`, `40406`, `40408`, `40410`, `40412`, `40414`, `40416`, `40417`, `40418`, `40420`, `40424`, `40426`, `40428`, `40430`, `40432`, `40433`, `40435`, `40437`, `40438`, `40440`, `40443`, `40444`, `40446`, `40448`, `40450`, `40452`, `40454`, `40457`, `40458`, `40460`, `40461`, `40463`, `40465`, `40467`, `40468`, `40470`, `40471`, `40473`, `40475`, `40477`, `40478`, `40480`, `40481`, `40484`, `40485`, `40487`, `40489`, `40490`, `40493`, `40495`, `40499`, `40500`, `40502`, `40503`, `40505`, `40506`, `40508`, `40509`, `40512`, `40515`, `40517`, `40518`, `40520`, `40522`, `40523`, `40525`, `40527`, `40529`, `40531`, `40533`, `40535`, `40539`, `40541`, `40543`, `40545`, `40546`, `40549`, `40551`, `40553`, `40555`, `40557`, `40559`, `40561`, `40563`, `40564`, `40566`, `40568`, `40570`, `40573`, `40575`, `40577`, `40579`, `40581`, `40583`, `40585`, `40586`, `40590`, `40591`, `40592`, `40593`, `40595`, `40597`, `40599`, `40601`, `40603`, `40605`, `40607`, `40609`, `40611`, `40612`, `40613`, `40615`, `40617`, `40619`, `40620`, `40621`, `40623`, `40625`, `40627`, `40628`, `40629`, `40631`, `40632`, `40633`, `40634`, `40635`, `40636`, `40638`, `40639`, `40641`, `40643`, `40645`, `40646`, `40647`, `40648`, `40650`, `40652`, `40653`, `40654`, `40655`, `40657`, `40659`, `40660`, `40661`, `40663`, `40665`, `40667`, `40669`, `40671`, `40673`, `40675`, `40676`, `40678`, `40680`, `40682`, `40683`, `40685`, `40686`, `40688`, `40689`, `40691`, `40692`, `40694`, `40696`, `40698`, `40699`, `40700`, `40702`, `40704`, `40706`, `40708`, `40709`, `40713`, `40714`, `40716`, `40717`, `40719`, `40720`, `40722`, `40724`, `40725`, `40728`, `40730`, `40732`, `40733`, `40734`, `40736`, `40738`, `40739`, `40740`, `40741`, `40743`, `40745`, `40747`, `40749`, `40750`, `40752`, `40754`, `40755`, `40756`, `40758`, `40759`, `40760`, `40762`, `40764`, `40766`, `40767`, `40769`, `40771`, `40773`, `40776`, `40779`, `40780`, `40782`, `40784`, `40785`, `40787`, `40788`, `40790`, `40792`, `40794`, `40795`, `40797`, `40798`, `40799`, `40801`, `40803`, `40805`, `40806`, `40808`, `40809`, `40811`, `40813`, `40815`, `40816`, `40818`, `40819`, `40821`, `40823`, `40825`, `40826`, `40828`, `40829`, `40831`, `40832`, `40834`, `40836`, `40837`, `40839`, `40840`, `40842`, `40844`, `40846`, `40848`, `40850`, `40852`, `40854`, `40856`, `40858`, `40860`, `40862`, `40864`, `40866`, `40868`, `40870`, `40872`, `40873`, `40875`, `40877`, `40878`, `40880`, `40885`, `40887`, `40889`, `40891`, `40893`, `40895`, `40897`, `40899`, `40900`, `40902`, `40905`, `40907`, `40909`, `40911`, `40912`, `40914`, `40916`, `40918`, `40920`, `40922`, `40924`, `40926`, `40928`, `40929`, `40933`, `40935`, `40936`, `40937`, `40941`, `40945`, `40947`, `40948`, `40950`, `40952`, `40954`, `40956`, `40958`, `40960`, `40964`, `40966`, `40969`, `40971`, `40973`, `40974`, `40976`, `40979`, `40981`, `40984`, `40988`, `40991`, `40992`, `40993`, `40995`, `40997`, `40999`, `41000`, `41002`, `41004`, `41006`, `41007`, `41008`, `41009`, `41011`, `41013`, `41015`, `41016`, `41018`, `41020`, `41022`, `41024`, `41026`, `41028`, `41030`, `41031`, `41033`, `41035`, `41039`, `41040`, `41042`, `41044`, `41045`, `41046`, `41048`, `41050`, `41051`, `41053`, `41055`, `41057`, `41058`, `41060`, `41061`, `41062`, `41063`, `41064`, `41066`, `41068`, `41070`, `41071`, `41072`, `41073`, `41075`, `41076`, `41078`, `41080`, `41081`, `41083`, `41084`, `41086`, `41088`, `41093`, `41094`, `41095`, `41097`, `41098`, `41099`, `41100`, `41101`, `41103`, `41104`, `41106`, `41107`, `41109`, `41111`, `41112`, `41114`, `41115`, `41117`, `41118`, `41119`, `41120`, `41122`, `41123`, `41125`, `41127`, `41129`, `41130`, `41132`, `41134`, `41136`, `41138`, `41140`, `41142`, `41144`, `41146`, `41148`, `41149`, `41150`, `41152`, `41154`, `41156`, `41158`, `41159`, `41161`, `41162`, `41164`, `41166`, `41168`, `41170`, `41172`, `41174`, `41175`, `41176`, `41178`, `41181`, `41182`, `41184`, `41185`, `41186`, `41189`, `41190`, `41192`, `41194`, `41196`, `41198`, `41199`, `41200`, `41202`, `41204`, `41206`, `41209`, `41210`, `41213`, `41215`, `41216`, `41217`, `41218`, `41220`, `41221`, `41223`, `41227`, `41229`, `41230`, `41231`, `41233`, `41235`, `41236`, `41238`, `41239`, `41240`, `41242`, `41244`, `41245`, `41247`, `41248`, `41250`, `41252`, `41254`, `41256`, `41258`, `41259`, `41261`, `41263`, `41265`, `41267`, `41268`, `41270`, `41272`, `41275`, `41278`, `41279`, `41280`, `41281`, `41283`, `41284`, `41286`, `41288`, `41290`, `41292`, `41294`, `41296`, `41298`, `41300`, `41302`, `41303`, `41306`, `41310`, `41312`, `41314`, `41316`, `41318`, `41320`, `41322`, `41324`, `41326`, `41327`, `41329`, `41331`, `41333`, `41335`, `41337`, `41338`, `41340`, `41341`, `41342`, `41343`, `41345`, `41346`, `41347`, `41349`, `41353`, `41354`, `41357`, `41360`, `41361`, `41362`, `41364`, `41366`, `41367`, `41369`, `41374`, `41375`, `41377`, `41379`, `41380`, `41381`, `41383`, `41385`, `41387`, `41389`, `41390`, `41393`, `41394`, `41396`, `41398`, `41399`, `41401`, `41403`, `41405`, `41406`, `41407`, `41410`, `41412`, `41413`, `41414`, `41416`, `41418`, `41420`, `41422`, `41423`, `41424`, `41425`, `41427`, `41428`, `41431`, `41432`, `41433`, `41435`, `41437`, `41438`, `41440`, `41442`, `41444`, `41446`, `41447`, `41449`, `41450`, `41453`, `41455`, `41457`, `41459`, `41461`, `41463`, `41466`, `41468`, `41470`, `41472`, `41474`, `41475`, `41479`, `41481`, `41483`, `41485`, `41488`, `41491`, `41492`, `41494`, `41496`, `41497`, `41499`, `41500`, `41502`, `41505`, `41507`, `41509`, `41511`, `41513`, `41514`, `41516`, `41519`, `41521`, `41523`, `41525`, `41527`, `41528`, `41530`, `41532`, `41534`, `41536`, `41537`, `41540`, `41542`, `41543`, `41545`, `41547`, `41548`, `41549`, `41551`, `41554`, `41557`, `41558`, `41559`, `41561`, `41563`, `41565`, `41566`, `41568`, `41570`, `41572`, `41574`, `41576`, `41578`, `41580`, `41582`, `41584`, `41586`, `41587`, `41588`, `41590`, `41592`, `41594`, `41596`, `41598`, `41599`, `41600`, `41601`, `41603`, `41606`, `41607`, `41610`, `41613`, `41615`, `41618`, `41620`, `41622`, `41623`, `41624`, `41626`, `41627`, `41630`, `41632`, `41634`, `41635`, `41636`, `41638`, `41639`, `41641`, `41643`, `41645`, `41646`, `41648`, `41650`, `41652`, `41655`, `41656`, `41658`, `41660`, `41662`, `41663`, `41668`, `41670`, `41672`, `41674`, `41675`, `41677`, `41678`, `41680`, `41682`, `41684`, `41686`, `41688`, `41690`, `41691`, `41693`, `41694`, `41696`, `41697`, `41698`, `41699`, `41701`, `41702`, `41704`, `41706`, `41708`, `41710`, `41711`, `41712`, `41716`, `41718`, `41719`, `41721`, `41724`, `41726`, `41728`, `41729`, `41731`, `41732`, `41734`, `41736`, `41738`, `41740`, `41742`, `41743`, `41746`, `41749`, `41751`, `41753`, `41755`, `41757`, `41759`, `41761`, `41762`, `41763`, `41764`, `41765`, `41767`, `41769`, `41770`, `41774`, `41776`, `41778`, `41779`, `41782`, `41783`, `41785`, `41786`, `41787`, `41789`, `41791`, `41793`, `41795`, `41797`, `41799`, `41801`, `41803`, `41804`, `41806`, `41808`, `41809`, `41812`, `41814`, `41816`, `41818`, `41820`, `41822`, `41824`, `41826`, `41827`, `41828`, `41829`, `41831`, `41833`, `41835`, `41836`, `41837`, `41839`, `41842`, `41844`, `41845`, `41847`, `41848`, `41849`, `41851`, `41855`, `41856`, `41858`, `41859`, `41861`, `41863`, `41868`, `41870`, `41872`, `41874`, `41877`, `41879`, `41883`, `41885`, `41887`, `41889`, `41891`, `41894`, `41896`, `41899`, `41901`, `41902`, `41904`, `41905`, `41907`, `41909`, `41911`, `41913`, `41915`, `41917`, `41919`, `41921`, `41924`, `41925`, `41927`, `41928`, `41929`, `41931`, `41933`, `41935`, `41937`, `41939`, `41941`, `41943`, `41945`, `41947`, `41949`, `41950`, `41951`, `41953`, `41955`, `41957`, `41958`, `41960`, `41962`, `41966`, `41967`, `41969`, `41972`, `41974`, `41976`, `41978`, `41979`, `41981`, `41983`, `41984`, `41985`, `41986`, `41988`, `41990`, `41991`, `41992`, `41994`, `41996`, `41997`, `41998`, `42000`, `42002`, `42005`, `42007`, `42009`, `42012`, `42014`, `42016`, `42017`, `42019`, `42021`, `42023`, `42024`, `42027`, `42029`, `42030`, `42032`, `42033`, `42035`, `42037`, `42039`, `42040`, `42044`, `42047`, `42048`, `42050`, `42051`, `42054`, `42056`, `42058`, `42060`, `42061`, `42063`, `42064`, `42065`, `42066`, `42067`, `42068`, `42070`, `42072`, `42073`, `42075`, `42077`, `42079`, `42081`, `42082`, `42084`, `42086`, `42087`, `42088`, `42090`, `42092`, `42093`, `42095`, `42097`, `42099`, `42101`, `42102`, `42104`, `42105`, `42107`, `42109`, `42110`, `42112`, `42114`, `42116`, `42118`, `42119`, `42121`, `42123`, `42125`, `42128`, `42129`, `42131`, `42133`, `42135`, `42137`, `42138`, `42140`, `42142`, `42144`, `42145`, `42147`, `42148`, `42152`, `42155`, `42157`, `42160`, `42162`, `42164`, `42165`, `42166`, `42168`, `42170`, `42172`, `42174`, `42175`, `42177`, `42179`, `42181`, `42184`, `42186`, `42188`, `42190`, `42192`, `42195`, `42197`, `42202`, `42204`, `42206`, `42208`, `42209`, `42210`, `42211`, `42213`, `42214`, `42216`, `42218`, `42220`, `42221`, `42225`, `42226`, `42228`, `42229`, `42231`, `42232`, `42233`, `42235`, `42237`, `42239`, `42241`, `42245`, `42248`, `42250`, `42252`, `42254`, `42255`, `42256`, `42258`, `42260`, `42263`, `42265`, `42266`, `42268`, `42270`, `42271`, `42273`, `42275`, `42277`, `42279`, `42282`, `42283`, `42285`, `42287`, `42289`, `42290`, `42291`, `42293`, `42295`, `42298`, `42300`, `42302`, `42304`, `42306`, `42308`, `42310`, `42312`, `42314`, `42315`, `42317`, `42319`, `42321`, `42323`, `42325`, `42326`, `42328`, `42329`, `42333`, `42334`, `42338`, `42340`, `42341`, `42343`, `42346`, `42347`, `42349`, `42351`, `42353`, `42354`, `42356`, `42357`, `42359`, `42361`, `42363`, `42364`, `42365`, `42366`, `42368`, `42370`, `42371`, `42372`, `42374`, `42375`, `42377`, `42378`, `42384`, `42386`, `42388`, `42390`, `42391`, `42393`, `42395`, `42397`, `42399`, `42400`, `42401`, `42404`, `42406`, `42408`, `42411`, `42412`, `42414`, `42415`, `42419`, `42422`, `42425`, `42427`, `42428`, `42431`, `42433`, `42435`, `42436`, `42437`, `42439`, `42443`, `42445`, `42446`, `42448`, `42450`, `42452`, `42454`, `42455`, `42456`, `42458`, `42460`, `42462`, `42464`, `42466`, `42468`, `42469`, `42471`, `42473`, `42477`, `42479`, `42481`, `42484`, `42486`, `42488`, `42490`, `42492`, `42494`, `42495`, `42496`, `42497`, `42499`, `42501`, `42503`, `42505`, `42507`, `42509`, `42510`, `42512`, `42513`, `42515`, `42517`, `42519`, `42520`, `42521`, `42523`, `42525`, `42526`, `42528`, `42529`, `42531`, `42532`, `42534`, `42535`, `42538`, `42540`, `42542`, `42546`, `42548`, `42550`, `42553`, `42554`, `42557`, `42559`, `42561`, `42563`, `42564`, `42566`, `42568`, `42570`, `42572`, `42574`, `42576`, `42578`, `42581`, `42583`, `42585`, `42587`, `42588`, `42590`, `42591`, `42593`, `42594`, `42597`, `42598`, `42599`, `42601`, `42603`, `42604`, `42606`, `42607`, `42609`, `42612`, `42614`, `42615`, `42617`, `42619`, `42621`, `42623`, `42627`, `42629`, `42632`, `42635`, `42636`, `42637`, `42639`, `42641`, `42643`, `42645`, `42647`, `42649`, `42651`, `42653`, `42655`, `42657`, `42659`, `42661`, `42663`, `42665`, `42667`, `42669`, `42671`, `4891`, `42673`, `42675`, `42677`, `42679`, `42681`, `42683`, `42686`, `42688`, `42689`, `42690`, `42692`, `42694`, `42696`, `42699`, `42700`, `42701`, `42704`, `42706`, `42707`, `42709`, `42711`, `42713`, `42715`, `42716`, `42718`, `42720`, `42722`, `42724`, `42725`, `42727`, `42729`, `42731`, `42733`, `42735`, `42736`, `42738`, `42740`, `42742`, `42744`, `42746`, `42748`, `42749`, `42752`, `42753`, `42755`, `42756`, `42758`, `42759`, `42760`, `42762`, `42763`, `42764`, `42766`, `42768`, `42770`, `42771`, `42773`, `42777`, `42779`, `42780`, `42781`, `42783`, `42785`, `42787`, `42788`, `42790`, `42792`, `42793`, `42795`, `42797`, `42798`, `42799`, `42801`, `42803`, `42805`, `42807`, `42809`, `42810`, `42812`, `42814`, `42815`, `42817`, `42818`, `42819`, `42821`, `42822`, `42823`, `42825`, `42826`, `42828`, `42830`, `42832`, `42834`, `42835`, `42837`, `42838`, `42839`, `42840`, `42841`, `42843`, `42845`, `42850`, `42852`, `42853`, `42855`, `42856`, `42857`, `42858`, `42862`, `42866`, `42870`, `42872`, `42874`, `42876`, `42878`, `42879`, `42881`, `42882`, `42883`, `42885`, `42886`, `42888`, `42890`, `42892`, `42894`, `42898`, `42900`, `42901`, `42903`, `42905`, `42907`, `42909`, `42911`, `42912`, `42914`, `42917`, `42919`, `42920`, `42924`, `42926`, `42927`, `42929`, `42931`, `42933`, `42935`, `42937`, `42938`, `42940`, `42942`, `42944`, `42945`, `42947`, `42949`, `42951`, `42953`, `42955`, `42957`, `42958`, `42960`, `42962`, `42964`, `42965`, `42966`, `42968`, `42970`, `42971`, `42973`, `42975`, `42977`, `42980`, `42982`, `42983`, `42985`, `42987`, `42989`, `42991`, `42993`, `42994`, `42996`, `42998`, `43000`, `43003`, `43005`, `43006`, `43009`, `43011`, `43012`, `43014`, `43015`, `43016`, `43018`, `43020`, `43022`, `43024`, `43026`, `43027`, `43029`, `43033`, `43034`, `43036`, `43038`, `43039`, `43041`, `43043`, `43044`, `43045`, `43046`, `43048`, `43049`, `43051`, `43053`, `43055`, `43057`, `43059`, `43060`, `43062`, `43063`, `43065`, `43066`, `43068`, `43069`, `43070`, `43072`, `43073`, `43075`, `43076`, `43078`, `43079`, `43081`, `43083`, `43085`, `43086`, `43088`, `43089`, `43091`, `43092`, `43094`, `43096`, `43099`, `43102`, `43104`, `43107`, `43109`, `43112`, `43115`, `43119`, `43123`, `43125`, `43127`, `43129`, `43130`, `43132`, `43134`, `43137`, `43139`, `43140`, `43144`, `43146`, `43148`, `43150`, `43151`, `43153`, `43154`, `43156`, `43158`, `43159`, `43162`, `43164`, `43167`, `43168`, `43171`, `43173`, `43175`, `43176`, `43177`, `43179`, `43181`, `43183`, `43186`, `43188`, `43190`, `43192`, `43195`, `43196`, `43197`, `43199`, `43203`, `43204`, `43205`, `43207`, `43209`, `43211`, `43213`, `43215`, `43217`, `43220`, `43222`, `43224`, `43227`, `43229`, `43232`, `43233`, `43234`, `43236`, `43237`, `43239`, `43241`, `43242`, `43244`, `43246`, `43248`, `43249`, `43251`, `43253`, `43254`, `43255`, `43256`, `43258`, `43260`, `43262`, `43264`, `43267`, `43269`, `43272`, `43273`, `43274`, `43276`, `43278`, `43279`, `43280`, `43281`, `43283`, `43285`, `43287`, `43288`, `43289`, `43291`, `43293`, `43294`, `43296`, `43298`, `43299`, `43302`, `43304`, `43306`, `43308`, `43310`, `43312`, `43313`, `43315`, `43318`, `43320`, `43322`, `43324`, `43326`, `43328`, `43329`, `43331`, `43333`, `43334`, `43336`, `43338`, `43340`, `43342`, `43344`, `43347`, `43349`, `43351`, `43353`, `43355`, `43357`, `43358`, `43360`, `43362`, `43364`, `43366`, `43368`, `43370`, `43372`, `43374`, `43375`, `43376`, `43378`, `43380`, `43382`, `43383`, `43385`, `43387`, `43389`, `43390`, `43392`, `43393`, `43395`, `43397`, `43398`, `43400`, `43402`, `43403`, `43405`, `43407`, `43409`, `43411`, `43413`, `43415`, `43417`, `43419`, `43421`, `43423`, `43424`, `43426`, `43428`, `43430`, `43431`, `43432`, `43434`, `43435`, `43436`, `43437`, `43439`, `43441`, `43443`, `43445`, `43446`, `43448`, `43450`, `43452`, `43454`, `43456`, `43458`, `43459`, `43462`, `43464`, `43467`, `43469`, `43471`, `43473`, `43474`, `43476`, `43477`, `43478`, `43479`, `43481`, `43482`, `43484`, `43486`, `43488`, `43489`, `43490`, `43492`, `43493`, `43494`, `43495`, `43497`, `43499`, `43501`, `43502`, `43504`, `43505`, `43507`, `43510`, `43512`, `43514`, `43516`, `43518`, `43520`, `43522`, `43524`, `43526`, `43528`, `43530`, `43532`, `43534`, `43536`, `43539`, `43541`, `43545`, `43546`, `43548`, `43552`, `43554`, `43556`, `43558`, `43560`, `43564`, `43566`, `43569`, `43571`, `43572`, `43574`, `43576`, `43577`, `43578`, `43579`, `43581`, `43583`, `43585`, `43586`, `43588`, `43590`, `43592`, `43593`, `43595`, `43597`, `43600`, `43602`, `43603`, `43604`, `43606`, `43608`, `43610`, `43613`, `43614`, `43616`, `43618`, `43619`, `43621`, `43625`, `43626`, `43628`, `43630`, `43631`, `43633`, `43635`, `43637`, `43638`, `43641`, `43643`, `43644`, `43645`, `43646`, `43648`, `43649`, `43651`, `43653`, `43655`, `43657`, `43659`, `43660`, `43661`, `43662`, `43664`, `43666`, `43667`, `43669`, `43672`, `43674`, `43675`, `43677`, `43679`, `43680`, `43681`, `43682`, `43684`, `43685`, `43687`, `43689`, `43690`, `43692`, `43694`, `43696`, `43697`, `43699`, `43700`, `43701`, `43702`, `43704`, `43706`, `43708`, `43709`, `43710`, `43711`, `43712`, `43713`, `43715`, `43717`, `43719`, `43721`, `43723`, `43725`, `43727`, `43729`, `43730`, `43731`, `43733`, `43735`, `43737`, `43739`, `43740`, `43741`, `43742`, `43744`, `43746`, `43747`, `43749`, `43751`, `43752`, `43754`, `43756`, `43758`, `43759`, `43760`, `43762`, `43764`, `43765`, `43767`, `43769`, `43771`, `43772`, `43774`, `43776`, `43778`, `43780`, `43782`, `43784`, `43786`, `43788`, `43789`, `43791`, `43794`, `43796`, `43798`, `43799`, `43801`, `43803`, `43804`, `43805`, `43807`, `43808`, `43809`, `43811`, `43813`, `43815`, `43817`, `43819`, `43821`, `43822`, `43823`, `43824`, `43826`, `43828`, `43830`, `43831`, `43833`, `43835`, `43839`, `43841`, `43843`, `43845`, `43847`, `43849`, `43852`, `43854`, `43856`, `43857`, `43859`, `43860`, `43862`, `43863`, `43865`, `43866`, `43868`, `43870`, `43872`, `43874`, `43876`, `43878`, `43880`, `43882`, `43884`, `43886`, `43888`, `43890`, `43892`, `43894`, `43896`, `43897`, `43899`, `43901`, `43903`, `43905`, `43907`, `43909`, `43912`, `43915`, `43917`, `43919`, `43920`, `43922`, `43924`, `43926`, `43928`, `43929`, `43931`, `43932`, `43933`, `43934`, `43936`, `43938`, `43940`, `43941`, `43943`, `43945`, `43947`, `43949`, `43951`, `43953`, `43955`, `43959`, `43960`, `43962`, `43963`, `43965`, `291`, `43967`, `43969`, `43971`, `43972`, `43975`, `43976`, `43980`, `43982`, `43984`, `43986`, `43987`, `43988`, `43990`, `43991`, `43993`, `43995`, `43996`, `43997`, `43999`, `44001`, `44002`, `44004`, `44006`, `44008`, `44010`, `44012`, `44015`, `44016`, `44017`, `44018`, `44020`, `44022`, `44024`, `44026`, `44028`, `44030`, `44032`, `44034`, `44036`, `44038`, `44039`, `44040`, `44043`, `44045`, `44047`, `44049`, `44051`, `44052`, `44053`, `44056`, `44058`, `44061`, `44063`, `44065`, `44066`, `44067`, `44069`, `44071`, `44073`, `44075`, `44077`, `44079`, `44080`, `44081`, `44083`, `44085`, `44087`, `44089`, `44091`, `44092`, `44095`, `44097`, `44099`, `44101`, `44105`, `44107`, `44109`, `44111`, `44112`, `44116`, `44117`, `44118`, `44122`, `44124`, `44126`, `44128`, `44130`, `44132`, `44133`, `44135`, `44137`, `44139`, `44141`, `44143`, `44144`, `44147`, `44149`, `44150`, `44151`, `44154`, `44156`, `44157`, `44158`, `44159`, `44161`, `44163`, `44165`, `44168`, `44170`, `44172`, `44174`, `44176`, `44177`, `44178`, `44180`, `44182`, `44183`, `44185`, `44186`, `44188`, `44190`, `44192`, `44195`, `44197`, `44199`, `44201`, `44202`, `44205`, `44206`, `44207`, `44209`, `44211`, `44212`, `44213`, `44215`, `44217`, `44219`, `44222`, `44224`, `44226`, `44228`, `44230`, `44234`, `44238`, `44240`, `44242`, `44244`, `44246`, `44248`, `44249`, `44251`, `44254`, `44256`, `44258`, `44260`, `44262`, `44264`, `44265`, `44266`, `44269`, `44271`, `44274`, `44276`, `44278`, `44280`, `44282`, `44283`, `44285`, `44287`, `44289`, `44291`, `44293`, `44295`, `44297`, `44299`, `44301`, `44303`, `44304`, `44306`, `44307`, `44308`, `44310`, `44312`, `44314`, `44316`, `44318`, `44320`, `44324`, `44326`, `44327`, `44329`, `44331`, `44332`, `44335`, `44337`, `44339`, `44341`, `44342`, `44345`, `44347`, `44349`, `44351`, `44352`, `44354`, `44355`, `44357`, `44358`, `44360`, `44361`, `44364`, `44365`, `44366`, `44367`, `44369`, `44371`, `44373`, `44375`, `44378`, `44380`, `44382`, `44384`, `44386`, `44388`, `44390`, `44392`, `44394`, `44396`, `44399`, `44401`, `44404`, `44406`, `44407`, `44409`, `44410`, `44411`, `44413`, `44416`, `44417`, `44419`, `44420`, `44422`, `44425`, `44426`, `44428`, `44429`, `44431`, `44432`, `44435`, `44436`, `44437`, `44440`, `44442`, `44447`, `44448`, `44450`, `44451`, `44452`, `44453`, `44458`, `44460`, `44462`, `44465`, `44466`, `44467`, `44468`, `44470`, `44472`, `44474`, `44476`, `44478`, `44479`, `44480`, `44483`, `44485`, `44487`, `44489`, `44490`, `44492`, `44494`, `44496`, `44498`, `44500`, `44502`, `44504`, `44505`, `44508`, `44510`, `44512`, `44514`, `44515`, `44517`, `44519`, `44523`, `44524`, `44526`, `44528`, `44530`, `44531`, `44533`, `44535`, `44536`, `44538`, `44540`, `44542`, `44544`, `44546`, `44548`, `44550`, `44551`, `44553`, `44554`, `44556`, `44558`, `44560`, `44561`, `44562`, `44563`, `44565`, `44566`, `44568`, `44570`, `44572`, `44574`, `44576`, `44578`, `44580`, `44582`, `44584`, `44586`, `44587`, `44590`, `44592`, `44594`, `44596`, `44598`, `44601`, `44602`, `44604`, `44605`, `44607`, `44611`, `44613`, `44615`, `44618`, `44619`, `44620`, `44622`, `44623`, `44625`, `44627`, `44631`, `44633`, `44635`, `44637`, `44638`, `44640`, `44644`, `44646`, `44648`, `44650`, `44652`, `44654`, `44655`, `44657`, `44658`, `44660`, `44661`, `44662`, `44664`, `44666`, `44667`, `44669`, `44670`, `44672`, `44673`, `44674`, `44676`, `44680`, `44682`, `44684`, `44686`, `44688`, `44690`, `44691`, `44692`, `44694`, `44695`, `44697`, `44699`, `44700`, `44701`, `44703`, `44705`, `44707`, `44710`, `44712`, `44714`, `44716`, `44718`, `44720`, `44722`, `44725`, `44727`, `44729`, `44730`, `44731`, `44732`, `44733`, `44735`, `44737`, `44739`, `44740`, `44741`, `44743`, `44744`, `44746`, `44748`, `44750`, `44752`, `44753`, `44754`, `44755`, `44757`, `44758`, `44760`, `44762`, `44764`, `44766`, `44767`, `44768`, `44771`, `44773`, `44775`, `44778`, `44780`, `44783`, `44785`, `44786`, `44788`, `44790`, `44792`, `44794`, `44795`, `44797`, `44798`, `44800`, `44802`, `44804`, `44806`, `44808`, `44809`, `44811`, `44813`, `44815`, `44817`, `44818`, `44820`, `44822`, `44826`, `44827`, `44829`, `44831`, `44833`, `44834`, `44836`, `44837`, `44839`, `44841`, `44843`, `44844`, `44845`, `44847`, `44849`, `44851`, `44853`, `44855`, `44857`, `44858`, `44860`, `44862`, `44863`, `44865`, `44867`, `44869`, `44871`, `44873`, `44875`, `44877`, `44879`, `44881`, `44883`, `44884`, `44886`, `44887`, `44889`, `44890`, `44892`, `44893`, `44896`, `44898`, `44900`, `44902`, `44904`, `44906`, `44907`, `44908`, `44909`, `44911`, `44913`, `44914`, `44916`, `44918`, `44920`, `44922`, `44924`, `44928`, `44930`, `44932`, `44934`, `44935`, `44939`, `44941`, `44943`, `44946`, `44948`, `44950`, `44951`, `44953`, `44956`, `44957`, `44959`, `44960`, `44962`, `44964`, `44966`, `44968`, `44970`, `44972`, `44973`, `44975`, `44977`, `44979`, `44981`, `44982`, `44983`, `44984`, `44986`, `44988`, `44989`, `44991`, `44992`, `44994`, `44996`, `44998`, `45000`, `45001`, `45002`, `45004`, `45006`, `45007`, `45009`, `45011`, `45012`, `45014`, `45016`, `45018`, `45020`, `45021`, `45022`, `45023`, `45026`, `45027`, `45029`, `45031`, `45032`, `45034`, `45037`, `45039`, `45040`, `45042`, `45044`, `45045`, `45047`, `45048`, `45050`, `45051`, `45053`, `45055`, `45056`, `45057`, `45059`, `45060`, `45062`, `45064`, `45066`, `45068`, `45069`, `45070`, `45072`, `45074`, `45076`, `45078`, `45080`, `45082`, `45084`, `45086`, `45087`, `45089`, `45091`, `45093`, `45095`, `45097`, `45099`, `45100`, `45102`, `45104`, `45106`, `45107`, `45108`, `45109`, `45110`, `45111`, `45113`, `45114`, `45116`, `45118`, `45120`, `45121`, `45123`, `45125`, `45127`, `45128`, `45130`, `45136`, `45139`, `45140`, `45141`, `45142`, `45145`, `45147`, `45149`, `45150`, `45152`, `45154`, `45157`, `45159`, `45160`, `45161`, `45163`, `45165`, `45166`, `45168`, `45170`, `45172`, `45174`, `45177`, `45179`, `45181`, `45182`, `45184`, `45186`, `45188`, `45190`, `45192`, `45193`, `45194`, `45197`, `45200`, `45203`, `45205`, `45207`, `45209`, `45213`, `45214`, `45216`, `45218`, `45220`, `45223`, `45225`, `45227`, `45229`, `45231`, `45233`, `45236`, `45237`, `45239`, `45241`, `45243`, `45245`, `45247`, `45252`, `45254`, `45257`, `45259`, `45260`, `45262`, `45263`, `45264`, `45267`, `45268`, `45269`, `45271`, `45273`, `45275`, `45277`, `45280`, `45282`, `45283`, `45284`, `45285`, `45287`, `45289`, `45291`, `45292`, `45294`, `45296`, `45297`, `45299`, `45301`, `45303`, `45306`, `45308`, `45309`, `45310`, `45311`, `45313`, `45315`, `45317`, `45319`, `45320`, `45322`, `45324`, `45326`, `45328`, `45329`, `45330`, `45332`, `45334`, `45335`, `45336`, `45337`, `45338`, `45340`, `45342`, `45344`, `45347`, `45349`, `45350`, `45352`, `45354`, `45355`, `45357`, `45360`, `45361`, `45364`, `45366`, `45367`, `45370`, `45372`, `45374`, `45375`, `45377`, `45379`, `45381`, `45383`, `45384`, `45386`, `45388`, `45391`, `45393`, `45394`, `45396`, `45398`, `45400`, `45401`, `45403`, `45405`, `45406`, `45408`, `45410`, `45411`, `45413`, `45415`, `45417`, `45418`, `45419`, `45421`, `45422`, `45423`, `45424`, `45426`, `45428`, `45429`, `45430`, `45432`, `45434`, `45437`, `45439`, `45441`, `45442`, `45444`, `45445`, `45447`, `45448`, `45450`, `45452`, `45456`, `45457`, `45459`, `45461`, `45463`, `45465`, `45467`, `45469`, `45474`, `45476`, `45478`, `45479`, `45480`, `45482`, `45484`, `45486`, `45488`, `45489`, `45491`, `45492`, `45493`, `45494`, `45497`, `45499`, `45500`, `45502`, `45503`, `45505`, `45506`, `45509`, `45510`, `45512`, `45514`, `45516`, `45518`, `45520`, `45522`, `45524`, `45525`, `45527`, `45529`, `45531`, `45532`, `45535`, `45537`, `45539`, `45541`, `45543`, `45545`, `45546`, `45548`, `45549`, `45551`, `45553`, `45555`, `45556`, `45558`, `45560`, `45562`, `45564`, `45567`, `45569`, `45570`, `45572`, `45575`, `45578`, `45580`, `45582`, `45584`, `45585`, `45587`, `45589`, `45591`, `45593`, `45595`, `45597`, `45599`, `45601`, `45603`, `45604`, `45605`, `45606`, `45608`, `45609`, `45610`, `45611`, `45612`, `45613`, `45614`, `45615`, `45616`, `45618`, `45620`, `45621`, `45623`, `45625`, `45628`, `45630`, `45631`, `45633`, `45635`, `45637`, `45639`, `45641`, `45643`, `45645`, `45647`, `45649`, `45651`, `45652`, `45655`, `45656`, `45657`, `45659`, `45660`, `45662`, `45664`, `45666`, `45668`, `45670`, `45671`, `45673`, `45675`, `45677`, `45678`, `45679`, `45680`, `45681`, `45684`, `45685`, `45687`, `45689`, `45690`, `45692`, `45694`, `45696`, `45697`, `45699`, `45700`, `45703`, `45705`, `45707`, `45709`, `45711`, `45713`, `45715`, `45717`, `45718`, `45719`, `45720`, `45722`, `45726`, `45728`, `45730`, `45733`, `45734`, `45736`, `45738`, `45740`, `45742`, `45744`, `45746`, `45748`, `45749`, `45751`, `45752`, `45754`, `45755`, `45757`, `45759`, `45761`, `45763`, `45764`, `45766`, `45767`, `45769`, `45772`, `45775`, `45777`, `45779`, `45782`, `45784`, `45786`, `45788`, `45790`, `45792`, `45793`, `45795`, `45797`, `45798`, `45799`, `45800`, `45802`, `45803`, `45805`, `45806`, `45807`, `45809`, `45811`, `45812`, `45814`, `45816`, `45817`, `45819`, `45820`, `45822`, `45824`, `45825`, `45827`, `45828`, `45829`, `45831`, `45833`, `45834`, `45837`, `45838`, `45842`, `45844`, `45845`, `45847`, `45848`, `45850`, `45852`, `45854`, `45856`, `45858`, `45860`, `45862`, `45864`, `45868`, `45869`, `45873`, `45875`, `45877`, `45878`, `45879`, `45881`, `45883`, `45884`, `45890`, `45891`, `45893`, `45895`, `45896`, `45898`, `45900`, `45902`, `45904`, `45906`, `45908`, `45910`, `45912`, `45914`, `45916`, `45918`, `45920`, `45922`, `45923`, `45925`, `45926`, `45928`, `45930`, `45931`, `45933`, `45935`, `45937`, `45940`, `45941`, `45943`, `45945`, `45947`, `45950`, `45951`, `45952`, `45953`, `45955`, `45956`, `45958`, `45959`, `45960`, `45962`, `45963`, `45965`, `45969`, `45970`, `45972`, `45974`, `45976`, `45979`, `45981`, `45983`, `45984`, `45985`, `45986`, `45988`, `45990`, `45993`, `45994`, `45995`, `45997`, `45998`, `46000`, `46002`, `46004`, `46006`, `46007`, `46009`, `46011`, `46013`, `46014`, `46015`, `46017`, `46019`, `46020`, `46022`, `46024`, `46025`, `46027`, `46028`, `46030`, `46031`, `46032`, `46034`, `46036`, `46037`, `46038`, `46040`, `46042`, `46044`, `46045`, `46047`, `46049`, `46051`, `46053`, `46057`, `46058`, `46060`, `46062`, `46065`, `46067`, `46069`, `46070`, `46072`, `46074`, `46076`, `46078`, `46080`, `46081`, `46082`, `46086`, `46087`, `46089`, `46090`, `46091`, `46092`, `46093`, `46095`, `46097`, `46099`, `46101`, `46103`, `46105`, `46107`, `46109`, `46111`, `46112`, `46114`, `46115`, `46117`, `46118`, `46119`, `46121`, `46122`, `46124`, `46127`, `46129`, `46130`, `46132`, `46134`, `46137`, `46139`, `46141`, `46143`, `46144`, `46146`, `46148`, `46153`, `46154`, `46155`, `46156`, `46157`, `46159`, `46160`, `46162`, `46164`, `46166`, `46167`, `46168`, `46169`, `46171`, `46173`, `46174`, `46176`, `46178`, `46181`, `46183`, `46185`, `46188`, `46190`, `46192`, `46193`, `46194`, `46196`, `46197`, `46199`, `46201`, `46205`, `46207`, `46208`, `46209`, `46212`, `46214`, `46216`, `46218`, `46220`, `46221`, `46223`, `46224`, `46225`, `46227`, `46229`, `46231`, `46232`, `46233`, `46235`, `46237`, `46239`, `46241`, `46243`, `46244`, `46246`, `46248`, `46250`, `46252`, `46254`, `46256`, `46258`, `46260`, `46261`, `46262`, `46263`, `46265`, `46267`, `46268`, `46270`, `46272`, `46274`, `46275`, `46276`, `46278`, `46280`, `46282`, `46284`, `46286`, `46287`, `46289`, `46291`, `46292`, `46293`, `46295`, `46298`, `46301`, `46303`, `46305`, `46307`, `46309`, `46310`, `46312`, `46314`, `46317`, `46318`, `46319`, `46321`, `46322`, `46324`, `46326`, `46329`, `46331`, `46333`, `46335`, `46336`, `46338`, `46342`, `46343`, `46345`, `46347`, `46349`, `46352`, `46354`, `46355`, `46357`, `46359`, `46360`, `46361`, `46363`, `46364`, `46365`, `46367`, `46369`, `46370`, `46372`, `46375`, `46377`, `46379`, `46381`, `46383`, `46384`, `46386`, `46388`, `46389`, `46391`, `46393`, `46395`, `46396`, `46398`, `46400`, `46401`, `46402`, `46404`, `46406`, `46407`, `46408`, `46410`, `46412`, `46414`, `46415`, `46417`, `46419`, `46421`, `46423`, `46424`, `46426`, `46428`, `46431`, `46433`, `46435`, `46437`, `46440`, `46442`, `46444`, `46446`, `46448`, `46450`, `46451`, `46454`, `46456`, `46458`, `46459`, `46460`, `46462`, `46464`, `46465`, `46467`, `46469`, `46470`, `46472`, `46475`, `46477`, `46479`, `46483`, `46484`, `46485`, `46486`, `46487`, `46489`, `46491`, `46492`, `46493`, `46495`, `46496`, `46497`, `46499`, `46501`, `46503`, `46504`, `46505`, `46506`, `46508`, `46510`, `46511`, `46512`, `46514`, `46515`, `46517`, `46519`, `46520`, `46522`, `46524`, `46526`, `46528`, `46529`, `46530`, `46533`, `46537`, `46538`, `46539`, `46541`, `46543`, `46545`, `46547`, `46549`, `46552`, `46555`, `46556`, `46557`, `46558`, `46559`, `46560`, `46562`, `46564`, `46567`, `46569`, `46571`, `46573`, `46575`, `46577`, `46578`, `46580`, `46581`, `46582`, `46583`, `46584`, `46588`, `46589`, `46590`, `46592`, `46594`, `46596`, `46598`, `46601`, `46603`, `46604`, `46605`, `46607`, `46608`, `46611`, `46614`, `46618`, `46620`, `46623`, `46625`, `46627`, `46628`, `46629`, `46631`, `46632`, `46634`, `46635`, `46636`, `46638`, `46640`, `46642`, `46643`, `46645`, `46647`, `46650`, `46653`, `46655`, `46657`, `46659`, `46661`, `46662`, `46663`, `46665`, `46666`, `46669`, `46670`, `46671`, `46672`, `46673`, `46674`, `46675`, `46676`, `46678`, `46680`, `46682`, `46683`, `46685`, `46687`, `46689`, `46691`, `46693`, `46695`, `46696`, `46698`, `46700`, `46701`, `46703`, `46705`, `46707`, `46708`, `46711`, `46712`, `46714`, `46716`, `46718`, `46719`, `46720`, `46722`, `46723`, `46724`, `46726`, `46728`, `46729`, `46731`, `46733`, `46735`, `46736`, `46738`, `46740`, `46742`, `46745`, `46747`, `46748`, `46749`, `46750`, `46752`, `46754`, `46755`, `46757`, `46758`, `46759`, `46761`, `46763`, `46764`, `46765`, `46767`, `46769`, `46771`, `46773`, `46775`, `46777`, `46779`, `46781`, `46785`, `46786`, `46788`, `46790`, `46792`, `46794`, `46796`, `46798`, `46800`, `46801`, `46803`, `46805`, `46807`, `46809`, `46811`, `46813`, `46815`, `46817`, `46819`, `46820`, `46822`, `46824`, `46826`, `46828`, `46830`, `46831`, `46834`, `46836`, `46838`, `46839`, `46840`, `46843`, `46845`, `46847`, `46849`, `46850`, `46852`, `46853`, `46854`, `46856`, `46858`, `46860`, `46862`, `46864`, `46866`, `46868`, `46869`, `46870`, `46871`, `46874`, `46876`, `46877`, `46879`, `46883`, `46885`, `46889`, `46891`, `46893`, `46895`, `46897`, `46899`, `46901`, `46903`, `46905`, `46907`, `46908`, `46910`, `46912`, `46914`, `46915`, `46916`, `46918`, `46920`, `46921`, `46923`, `46925`, `46927`, `46928`, `46930`, `46931`, `46932`, `46933`, `46934`, `46936`, `46938`, `46940`, `46942`, `46944`, `46946`, `46947`, `46949`, `46950`, `46952`, `46954`, `46956`, `46958`, `46960`, `46961`, `46962`, `46963`, `46964`, `46966`, `46968`, `46969`, `46971`, `46972`, `46973`, `46975`, `46977`, `46979`, `46981`, `46983`, `46985`, `46986`, `46988`, `46990`, `46992`, `46994`, `46996`, `46997`, `47000`, `47001`, `47003`, `47005`, `47006`, `47008`, `47011`, `47012`, `47013`, `47014`, `47017`, `47020`, `47024`, `47025`, `47027`, `47029`, `47030`, `47032`, `47033`, `47034`, `47036`, `47037`, `47039`, `47040`, `47042`, `47043`, `47044`, `47046`, `47048`, `47051`, `47053`, `47055`, `47057`, `47059`, `47061`, `47063`, `47064`, `47066`, `47068`, `47070`, `47072`, `47074`, `47077`, `47078`, `47080`, `47081`, `47082`, `47084`, `47085`, `47087`, `47089`, `47091`, `47093`, `47094`, `47099`, `47101`, `47102`, `47104`, `47106`, `47107`, `47109`, `47111`, `47113`, `47115`, `47117`, `47118`, `47120`, `47122`, `47124`, `47126`, `47127`, `47129`, `47130`, `47132`, `47133`, `47136`, `47138`, `47140`, `47141`, `47142`, `47143`, `47145`, `47147`, `47149`, `47151`, `47153`, `47154`, `47155`, `47156`, `47158`, `47160`, `47161`, `47163`, `47165`, `47167`, `47168`, `47169`, `47171`, `47172`, `47176`, `47177`, `47178`, `47180`, `47182`, `47184`, `47186`, `47188`, `47190`, `47191`, `47192`, `47193`, `47196`, `47198`, `47199`, `47201`, `47202`, `47204`, `47208`, `47209`, `47211`, `47213`, `47215`, `47217`, `47219`, `47220`, `47222`, `47224`, `47226`, `47228`, `47230`, `47231`, `47233`, `47235`, `47236`, `47238`, `47240`, `47242`, `47244`, `47246`, `47248`, `47249`, `47251`, `47253`, `47257`, `47259`, `47261`, `47262`, `47264`, `47265`, `47266`, `47268`, `47271`, `47273`, `47275`, `47277`, `47279`, `47282`, `47284`, `47286`, `47288`, `47289`, `47290`, `47292`, `47294`, `47296`, `47298`, `47300`, `47302`, `47305`, `47307`, `47309`, `47311`, `47312`, `47313`, `47314`, `47315`, `47316`, `47318`, `47320`, `47321`, `47323`, `47325`, `47326`, `47328`, `47330`, `47332`, `47333`, `47335`, `47337`, `47339`, `47340`, `47341`, `47343`, `47345`, `47346`, `47348`, `47350`, `47352`, `47354`, `47356`, `47358`, `47360`, `47361`, `47363`, `47365`, `47367`, `47369`, `47371`, `47372`, `47378`, `47380`, `47382`, `47384`, `47386`, `47388`, `47390`, `47391`, `47393`, `47395`, `47397`, `47399`, `47402`, `47404`, `47406`, `47408`, `47409`, `47410`, `47411`, `47412`, `47414`, `47416`, `47418`, `47420`, `47421`, `47423`, `47424`, `47426`, `47428`, `47430`, `47431`, `47433`, `47435`, `47437`, `47438`, `47439`, `47441`, `47444`, `47445`, `47447`, `47449`, `47451`, `47453`, `47454`, `47456`, `47457`, `47459`, `47461`, `47463`, `47465`, `47467`, `47468`, `47470`, `47472`, `47474`, `47476`, `47477`, `47479`, `47481`, `47483`, `47485`, `47487`, `47489`, `47491`, `47493`, `47494`, `47496`, `47498`, `47500`, `47501`, `47503`, `47505`, `47507`, `47511`, `47513`, `47515`, `47517`, `47518`, `47520`, `47521`, `47523`, `47525`, `47527`, `47529`, `47530`, `47532`, `47536`, `47538`, `47543`, `47544`, `47546`, `47549`, `47550`, `47551`, `47553`, `47555`, `47557`, `47559`, `47561`, `47563`, `47564`, `47566`, `47567`, `47569`, `47573`, `47574`, `47576`, `47579`, `47580`, `47582`, `47584`, `47586`, `47587`, `47592`, `47594`, `47596`, `47598`, `47600`, `47601`, `47603`, `47605`, `47607`, `47608`, `47609`, `47611`, `47613`, `47615`, `47617`, `47619`, `47620`, `47622`, `47624`, `47626`, `47627`, `47629`, `47631`, `47633`, `47636`, `47639`, `47641`, `47645`, `47647`, `47649`, `47650`, `47655`, `47657`, `47660`, `47662`, `47663`, `47665`, `47666`, `47668`, `47669`, `47674`, `47676`, `47678`, `47680`, `47682`, `47684`, `47687`, `47688`, `47689`, `47691`, `47692`, `47693`, `47695`, `47696`, `47698`, `47700`, `47701`, `47703`, `47704`, `47706`, `47708`, `47710`, `47712`, `47714`, `47715`, `47716`, `47717`, `47718`, `47721`, `47722`, `47724`, `47725`, `47727`, `47728`, `47729`, `47731`, `47733`, `47734`, `47735`, `47737`, `47739`, `47740`, `47742`, `47744`, `47745`, `47746`, `47748`, `47749`, `47751`, `47753`, `47756`, `47758`, `47759`, `47760`, `47762`, `47765`, `47766`, `47768`, `47769`, `47773`, `47775`, `47777`, `47779`, `47780`, `47781`, `47783`, `47785`, `47786`, `47789`, `47791`, `47794`, `47795`, `47797`, `47798`, `47800`, `47803`, `47805`, `47807`, `47809`, `47811`, `47813`, `47814`, `47816`, `47818`, `47819`, `47821`, `47824`, `47826`, `47828`, `47830`, `47832`, `47833`, `47835`, `47837`, `47839`, `47841`, `47843`, `47844`, `47846`, `47848`, `47850`, `47852`, `47854`, `47856`, `47859`, `47861`, `47863`, `47864`, `47866`, `47868`, `47871`, `47873`, `47875`, `47877`, `47879`, `47880`, `47881`, `47883`, `47885`, `47886`, `47887`, `47889`, `47892`, `47894`, `47895`, `47897`, `47898`, `47900`, `47904`, `47906`, `47908`, `47909`, `47910`, `47912`, `47913`, `47917`, `47919`, `47920`, `47921`, `47923`, `47925`, `47927`, `47928`, `47930`, `47931`, `47933`, `47935`, `47937`, `47938`, `47940`, `47941`, `47942`, `47943`, `47945`, `47946`, `47948`, `47950`, `47951`, `47952`, `47956`, `47958`, `47960`, `47962`, `47964`, `47966`, `47968`, `47970`, `47972`, `47975`, `47977`, `47979`, `47981`, `47983`, `47985`, `47986`, `47987`, `47989`, `47990`, `47992`, `47994`, `47996`, `47998`, `47999`, `48001`, `48003`, `48005`, `48007`, `48009`, `48011`, `48013`, `48015`, `48016`, `48018`, `48020`, `48022`, `48024`, `48026`, `48028`, `48029`, `48031`, `48033`, `48034`, `48036`, `48038`, `48041`, `48043`, `48044`, `48045`, `48047`, `48049`, `48051`, `48053`, `48054`, `48055`, `48056`, `48058`, `48060`, `48062`, `48064`, `48066`, `48068`, `48070`, `48071`, `48073`, `48075`, `48077`, `48078`, `48080`, `48082`, `48085`, `48087`, `48089`, `48091`, `48093`, `48094`, `48095`, `48097`, `48099`, `48100`, `48101`, `48103`, `48105`, `48106`, `48108`, `48110`, `48112`, `48113`, `48116`, `48117`, `48119`, `48120`, `48122`, `48124`, `48126`, `48128`, `48129`, `48131`, `48132`, `48133`, `48134`, `48136`, `48137`, `48139`, `48142`, `48144`, `48146`, `48148`, `48150`, `48152`, `48154`, `48155`, `48157`, `48158`, `48159`, `48161`, `48163`, `48164`, `48165`, `48166`, `48168`, `48169`, `48171`, `48172`, `48174`, `48176`, `48180`, `48182`, `48184`, `48186`, `48188`, `48190`, `48192`, `48194`, `48195`, `48197`, `48199`, `48200`, `48201`, `48203`, `48205`, `48207`, `48209`, `48211`, `48213`, `48215`, `48216`, `48219`, `48221`, `48223`, `48224`, `48226`, `48228`, `48230`, `48234`, `48236`, `48238`, `48239`, `48241`, `48242`, `48243`, `48245`, `48247`, `48249`, `48251`, `48253`, `48255`, `48257`, `48259`, `48261`, `48263`, `48265`, `48266`, `48269`, `48271`, `48272`, `48274`, `48275`, `48276`, `48278`, `48279`, `48280`, `48281`, `48282`, `48284`, `48286`, `48288`, `48289`, `48291`, `48293`, `48294`, `48295`, `48298`, `48300`, `48302`, `48304`, `48306`, `48311`, `48312`, `48313`, `48315`, `48317`, `48319`, `48320`, `48322`, `48324`, `48326`, `48328`, `48330`, `48332`, `48334`, `48335`, `48337`, `48340`, `48342`, `48344`, `48346`, `48347`, `48349`, `48351`, `48353`, `48355`, `48360`, `48363`, `48364`, `48365`, `48367`, `48369`, `48371`, `48372`, `48374`, `48375`, `48376`, `48379`, `48381`, `48383`, `48384`, `48386`, `48388`, `48390`, `48391`, `48393`, `48395`, `48397`, `48399`, `48402`, `48404`, `48406`, `48408`, `48410`, `48411`, `48413`, `48415`, `48417`, `48419`, `48421`, `48423`, `48425`, `48426`, `48427`, `48429`, `48430`, `48432`, `48433`, `48434`, `48435`, `48436`, `48437`, `48441`, `48443`, `48445`, `48446`, `48448`, `48450`, `48451`, `48453`, `48455`, `48457`, `48459`, `48461`, `48462`, `48464`, `48466`, `48468`, `48470`, `48472`, `48473`, `48475`, `48476`, `48478`, `48480`, `48481`, `48482`, `48483`, `48485`, `48487`, `48489`, `48490`, `48492`, `48493`, `48494`, `48495`, `48496`, `48498`, `48499`, `48501`, `48503`, `48505`, `48507`, `48508`, `48510`, `48511`, `48513`, `48515`, `48517`, `48519`, `48521`, `48522`, `48524`, `48526`, `48528`, `48530`, `48532`, `48533`, `48535`, `48537`, `48539`, `48541`, `48543`, `48545`, `48547`, `48548`, `48549`, `48551`, `48553`, `48557`, `48559`, `48561`, `48563`, `48565`, `48567`, `48569`, `48571`, `48572`, `48573`, `48575`, `48576`, `48578`, `48579`, `48581`, `48583`, `48584`, `48587`, `48589`, `48590`, `48592`, `48593`, `48594`, `48596`, `48599`, `48601`, `48603`, `48605`, `48607`, `48609`, `48611`, `48614`, `48617`, `48618`, `48621`, `48623`, `48625`, `48628`, `48629`, `48630`, `48631`, `48633`, `48635`, `48637`, `48639`, `48640`, `48642`, `48643`, `48645`, `48647`, `48649`, `48652`, `48654`, `48656`, `48659`, `48661`, `48662`, `48663`, `48665`, `48666`, `48668`, `48670`, `48672`, `48674`, `48675`, `48676`, `48683`, `48684`, `48686`, `48688`, `48689`, `48691`, `48693`, `48694`, `48696`, `48698`, `48699`, `48701`, `48703`, `48705`, `48707`, `48709`, `48710`, `48711`, `48712`, `48713`, `48714`, `48715`, `48716`, `48717`, `48718`, `48720`, `48721`, `48723`, `48725`, `48727`, `48729`, `48731`, `48734`, `48736`, `48737`, `48739`, `48740`, `48743`, `48745`, `48747`, `48749`, `48750`, `48751`, `48753`, `48754`, `48757`, `48759`, `48761`, `48764`, `48766`, `48768`, `48770`, `48772`, `48774`, `48776`, `48778`, `48779`, `48780`, `48782`, `48784`, `48786`, `48788`, `48790`, `48792`, `48793`, `48795`, `48796`, `48798`, `48800`, `48801`, `48803`, `48805`, `48806`, `48808`, `48810`, `48811`, `48812`, `48813`, `48814`, `48816`, `48818`, `48820`, `48822`, `48824`, `48825`, `48828`, `48830`, `48832`, `48834`, `48835`, `48837`, `48840`, `48842`, `48845`, `48847`, `48848`, `48850`, `48853`, `48855`, `48857`, `48858`, `48860`, `48862`, `48864`, `48866`, `48868`, `48869`, `48871`, `48873`, `48874`, `48875`, `48877`, `48879`, `48881`, `48883`, `48885`, `48887`, `48889`, `48891`, `48893`, `48895`, `48896`, `48900`, `48901`, `48903`, `48905`, `48907`, `48909`, `48911`, `48912`, `48914`, `48915`, `48917`, `48918`, `48920`, `48922`, `48923`, `48925`, `48927`, `48928`, `48930`, `48931`, `48932`, `48933`, `48934`, `48935`, `48936`, `48938`, `48940`, `48941`, `48943`, `48945`, `48947`, `48949`, `48950`, `48952`, `48954`, `48955`, `48957`, `48959`, `48962`, `48964`, `48965`, `48966`, `48968`, `48970`, `48971`, `48972`, `48974`, `48976`, `48977`, `48978`, `48980`, `48982`, `48984`, `48985`, `48987`, `48988`, `48992`, `48994`, `48996`, `48998`, `48999`, `49002`, `49004`, `49006`, `49007`, `49009`, `49011`, `49012`, `49013`, `49014`, `49015`, `49016`, `49018`, `49020`, `49022`, `49024`, `49025`, `49027`, `49028`, `49029`, `49030`, `49031`, `49033`, `49034`, `49035`, `49036`, `49039`, `49040`, `49042`, `49044`, `49046`, `49047`, `49049`, `49052`, `49054`, `49056`, `49058`, `49060`, `49061`, `49062`, `49063`, `49065`, `49067`, `49068`, `49070`, `49072`, `49073`, `49075`, `49077`, `49079`, `49081`, `49083`, `49085`, `49087`, `49094`, `49095`, `49096`, `49099`, `49101`, `49102`, `49104`, `49108`, `49111`, `49113`, `49115`, `49118`, `49120`, `49123`, `49124`, `49125`, `49126`, `49128`, `49130`, `49131`, `49132`, `49134`, `49136`, `49137`, `49139`, `49141`, `49143`, `49145`, `49147`, `49149`, `49151`, `49153`, `49155`, `49156`, `49158`, `49160`, `49162`, `49163`, `49164`, `49167`, `49169`, `49171`, `49173`, `49175`, `49177`, `49179`, `49181`, `49183`, `49186`, `49188`, `49190`, `49195`, `49196`, `49199`, `49201`, `49202`, `49203`, `49205`, `49211`, `49213`, `49215`, `49217`, `49220`, `49222`, `49223`, `49225`, `49226`, `49227`, `49229`, `49230`, `49232`, `49234`, `49236`, `49238`, `49239`, `49240`, `49242`, `49245`, `49246`, `49248`, `49249`, `49252`, `49254`, `49256`, `49257`, `49258`, `49260`, `49262`, `49264`, `49266`, `49267`, `49269`, `49271`, `49273`, `49274`, `49276`, `49278`, `49279`, `49281`, `49283`, `49285`, `49287`, `49290`, `49292`, `49293`, `49295`, `49297`, `49299`, `49301`, `49303`, `49305`, `49308`, `49311`, `49312`, `49313`, `49315`, `49317`, `49319`, `49321`, `49322`, `49323`, `49324`, `49326`, `49328`, `49330`, `49332`, `49333`, `49335`, `49340`, `49341`, `49343`, `49345`, `49347`, `49349`, `49351`, `49354`, `49356`, `49357`, `49360`, `49362`, `49363`, `49364`, `49366`, `49367`, `49368`, `49370`, `49371`, `49372`, `49374`, `49376`, `49378`, `49379`, `49380`, `49381`, `49382`, `49383`, `49384`, `49387`, `49388`, `49390`, `49392`, `49394`, `49396`, `49397`, `49398`, `49399`, `49400`, `49401`, `49403`, `49405`, `49408`, `49410`, `49412`, `49414`, `49415`, `49417`, `49419`, `49421`, `49423`, `49425`, `49427`, `49428`, `49430`, `49431`, `49433`, `49435`, `49437`, `49438`, `49440`, `49442`, `49444`, `49446`, `49448`, `49449`, `49451`, `49452`, `49454`, `49456`, `49458`, `49461`, `49462`, `49463`, `49464`, `49465`, `49467`, `49468`, `49470`, `49474`, `49475`, `49477`, `49479`, `49480`, `49482`, `49484`, `49486`, `49488`, `49490`, `49492`, `49494`, `49496`, `49498`, `49499`, `49501`, `49503`, `49505`, `49507`, `49508`, `49510`, `49512`, `49514`, `49515`, `49516`, `49518`, `49520`, `49521`, `49522`, `49524`, `49525`, `49526`, `49527`, `49528`, `49530`, `49532`, `49533`, `49534`, `49536`, `49537`, `49538`, `49539`, `49541`, `49542`, `49543`, `49544`, `49546`, `49547`, `49549`, `49550`, `49551`, `49553`, `49555`, `49556`, `49558`, `49559`, `49560`, `49562`, `49564`, `49565`, `49567`, `49570`, `49571`, `49573`, `49575`, `49576`, `49578`, `49581`, `49583`, `49585`, `49587`, `49589`, `49591`, `49595`, `49597`, `49598`, `49600`, `49602`, `49604`, `49606`, `49608`, `49610`, `49613`, `49615`, `49617`, `49618`, `49619`, `49621`, `49622`, `49623`, `49624`, `49625`, `49627`, `49628`, `49630`, `49632`, `49633`, `49636`, `49637`, `49638`, `49639`, `49641`, `49643`, `49644`, `49645`, `49646`, `49648`, `49649`, `49651`, `49653`, `49655`, `49656`, `49658`, `49659`, `49661`, `49663`, `49664`, `49667`, `49669`, `49671`, `49672`, `49674`, `49676`, `49678`, `49680`, `49682`, `49684`, `49686`, `49688`, `49689`, `49691`, `49693`, `49696`, `49701`, `49703`, `49705`, `49707`, `49709`, `49711`, `49713`, `49715`, `49717`, `49720`, `49722`, `49724`, `49725`, `49726`, `49729`, `49730`, `49733`, `49734`, `49736`, `49738`, `49740`, `49742`, `49744`, `49746`, `49748`, `49749`, `49750`, `49752`, `49754`, `49756`, `49758`, `49759`, `49760`, `49762`, `49764`, `49766`, `49768`, `49770`, `49771`, `49773`, `49775`, `49777`, `49779`, `49781`, `49782`, `49784`, `49786`, `49788`, `49789`, `49790`, `49794`, `49797`, `49799`, `49800`, `49801`, `49802`, `49804`, `49806`, `49808`, `49809`, `49813`, `49818`, `49819`, `49822`, `49824`, `49825`, `49827`, `49829`, `49830`, `49832`, `49833`, `49835`, `49836`, `49838`, `49840`, `49842`, `49843`, `49844`, `49846`, `49848`, `49850`, `49852`, `49854`, `49855`, `49857`, `49858`, `49860`, `49861`, `49862`, `49864`, `49865`, `49870`, `49874`, `49876`, `49878`, `49880`, `49882`, `49884`, `49885`, `49886`, `49888`, `49890`, `49892`, `49894`, `49896`, `49898`, `49900`, `49901`, `49903`, `49905`, `49907`, `49908`, `49910`, `49912`, `49913`, `49915`, `49916`, `49917`, `49919`, `49921`, `49922`, `49926`, `49928`, `49929`, `49931`, `49933`, `49934`, `49936`, `49937`, `49939`, `49940`, `49941`, `49943`, `49945`, `49947`, `49949`, `49951`, `49953`, `49955`, `49956`, `49958`, `49960`, `49962`, `49964`, `49966`, `49968`, `49970`, `49972`, `49974`, `49975`, `49976`, `49978`, `49979`, `49981`, `49983`, `49986`, `49987`, `49988`, `49990`, `49995`, `49998`, `50000`, `50002`, `50003`, `50005`, `50006`, `50008`, `50010`, `50011`, `50013`, `50016`, `50017`, `50019`, `50021`, `50023`, `50024`, `50025`, `50028`, `50030`, `50032`, `50034`, `50036`, `50037`, `50038`, `50040`, `50042`, `50044`, `50046`, `50047`, `50049`, `50051`, `50053`, `50056`, `50057`, `50059`, `50062`, `50063`, `50064`, `50065`, `50066`, `50067`, `50068`, `50069`, `50071`, `50073`, `50074`, `50075`, `50077`, `50078`, `50079`, `50081`, `50083`, `50085`, `50087`, `50088`, `50090`, `50092`, `50094`, `50096`, `50098`, `50100`, `50102`, `50104`, `50107`, `50109`, `50111`, `50113`, `50114`, `50115`, `50117`, `50119`, `50120`, `50122`, `50123`, `50126`, `50127`, `50128`, `50130`, `50132`, `50133`, `50135`, `50137`, `50138`, `50142`, `50144`, `50146`, `50147`, `50148`, `50149`, `50151`, `50153`, `50154`, `50156`, `50157`, `50158`, `50160`, `50162`, `50163`, `50164`, `50166`, `50169`, `50171`, `50172`, `50174`, `50176`, `50177`, `50178`, `50179`, `50180`, `50182`, `50183`, `50185`, `50186`, `50188`, `50190`, `50192`, `50194`, `50196`, `50198`, `50199`, `50200`, `50202`, `50204`, `50205`, `50207`, `50209`, `50211`, `50213`, `50215`, `50217`, `50218`, `50219`, `50221`, `50223`, `50225`, `50227`, `50229`, `50230`, `50232`, `50234`, `50236`, `50238`, `50239`, `50241`, `50242`, `50243`, `50245`, `50247`, `50252`, `50254`, `50255`, `50257`, `50259`, `50262`, `50263`, `50265`, `50267`, `50269`, `50271`, `50272`, `50274`, `50277`, `50279`, `50281`, `50282`, `50285`, `50287`, `50289`, `50290`, `50291`, `50293`, `50294`, `50296`, `50298`, `50300`, `50303`, `50305`, `50306`, `50308`, `50310`, `50312`, `50314`, `50316`, `50318`, `50319`, `50321`, `50323`, `50325`, `50327`, `50329`, `50332`, `50334`, `50336`, `50337`, `50339`, `50340`, `50341`, `50343`, `50345`, `50346`, `50348`, `50349`, `50351`, `50354`, `50356`, `50357`, `50360`, `50362`, `50364`, `50366`, `50367`, `50369`, `50372`, `50374`, `50376`, `50380`, `50381`, `50382`, `50384`, `50386`, `50387`, `50388`, `50390`, `50391`, `50393`, `50395`, `50398`, `50399`, `50401`, `50402`, `50403`, `50404`, `50406`, `50407`, `50408`, `50410`, `50411`, `50413`, `50414`, `50415`, `50416`, `50418`, `50419`, `50421`, `50423`, `50425`, `50427`, `50429`, `50431`, `50433`, `50434`, `50436`, `50438`, `50440`, `50441`, `50443`, `50445`, `50447`, `50449`, `50451`, `50453`, `50455`, `50457`, `50459`, `50461`, `50462`, `50464`, `50465`, `50467`, `50468`, `50470`, `50472`, `50474`, `50476`, `50477`, `50479`, `50480`, `50481`, `50483`, `50486`, `50487`, `50489`, `50491`, `50492`, `50493`, `50495`, `50497`, `50499`, `50500`, `50501`, `50503`, `50504`, `50506`, `50508`, `50510`, `50511`, `50512`, `50514`, `50516`, `50518`, `50520`, `50522`, `50523`, `50526`, `50528`, `50530`, `50531`, `50533`, `50535`, `50537`, `50538`, `50540`, `50542`, `50544`, `50546`, `50548`, `50550`, `50553`, `50556`, `50557`, `50559`, `50561`, `50562`, `50564`, `50565`, `50567`, `50569`, `50571`, `50573`, `50575`, `50577`, `50579`, `50581`, `50582`, `50586`, `50588`, `50590`, `50592`, `50594`, `50596`, `50597`, `50599`, `50600`, `50602`, `50605`, `50606`, `50607`, `50608`, `50610`, `50612`, `50613`, `50615`, `50616`, `50618`, `50620`, `50622`, `50624`, `50625`, `50626`, `50628`, `50630`, `50631`, `50632`, `50633`, `50635`, `50637`, `50639`, `50641`, `50642`, `50644`, `50645`, `50649`, `50651`, `50653`, `50654`, `50658`, `50659`, `50661`, `50662`, `50665`, `50667`, `50669`, `50671`, `50672`, `50674`, `50676`, `50678`, `50679`, `50680`, `50682`, `50684`, `50686`, `50687`, `50688`, `50690`, `50691`, `50693`, `50695`, `50696`, `50698`, `50699`, `50701`, `50703`, `50704`, `50706`, `50708`, `50710`, `50713`, `50715`, `50718`, `50720`, `50721`, `50723`, `50724`, `50726`, `50727`, `50728`, `50730`, `50732`, `50734`, `50735`, `50737`, `50738`, `50740`, `50742`, `50743`, `50745`, `50746`, `50747`, `50748`, `50750`, `50751`, `50753`, `50755`, `50757`, `50758`, `50760`, `50762`, `50763`, `50765`, `50766`, `50767`, `50768`, `50770`, `50771`, `50773`, `50775`, `50777`, `50779`, `50781`, `50783`, `50785`, `50787`, `50789`, `50790`, `50791`, `50792`, `50793`, `50795`, `50797`, `50799`, `50801`, `50802`, `50804`, `50807`, `50809`, `50813`, `50815`, `50817`, `50818`, `50820`, `50822`, `50824`, `50826`, `50828`, `50830`, `50832`, `50834`, `50836`, `50837`, `50839`, `50840`, `50842`, `50844`, `50845`, `50847`, `50849`, `50850`, `50852`, `50854`, `50856`, `50859`, `50860`, `50861`, `50863`, `50866`, `50868`, `50870`, `50872`, `50874`, `50876`, `50879`, `50881`, `50883`, `50884`, `50886`, `50887`, `50889`, `50891`, `50893`, `50894`, `50895`, `50898`, `50899`, `50901`, `50904`, `50906`, `50908`, `50910`, `50911`, `50912`, `50914`, `50916`, `50920`, `50921`, `50922`, `50923`, `50924`, `50926`, `50928`, `50931`, `50932`, `50934`, `50935`, `50936`, `50938`, `50939`, `50940`, `50941`, `50943`, `50945`, `50947`, `50949`, `50951`, `50953`, `50955`, `50957`, `50958`, `50960`, `50962`, `50963`, `50965`, `50967`, `50969`, `50971`, `50973`, `50974`, `50976`, `50977`, `50979`, `50981`, `50983`, `50985`, `50987`, `50990`, `50991`, `50992`, `50994`, `50995`, `50999`, `51001`, `51003`, `51005`, `51007`, `51009`, `51012`, `51013`, `51015`, `51017`, `51019`, `51021`, `51023`, `51025`, `51026`, `51028`, `51030`, `51032`, `51034`, `51036`, `51038`, `51040`, `51041`, `51043`, `51045`, `51050`, `51052`, `51053`, `51054`, `51056`, `51057`, `51059`, `51061`, `51062`, `51063`, `51065`, `51067`, `51069`, `51071`, `51074`, `51075`, `51077`, `51078`, `51079`, `51080`, `51081`, `51082`, `51083`, `51085`, `51089`, `51091`, `51093`, `51095`, `51096`, `51097`, `51098`, `51100`, `51102`, `51103`, `51105`, `51106`, `51108`, `51110`, `51111`, `51113`, `51115`, `51117`, `51118`, `51119`, `51121`, `51123`, `51124`, `51126`, `51127`, `51129`, `51130`, `51132`, `51134`, `51136`, `51138`, `51140`, `51144`, `51146`, `51148`, `51149`, `51150`, `51152`, `51154`, `51156`, `51158`, `51160`, `51162`, `51164`, `51166`, `51169`, `51172`, `51174`, `51175`, `51177`, `51179`, `51181`, `51183`, `51184`, `51186`, `51188`, `51189`, `51191`, `51192`, `51193`, `51194`, `51196`, `51198`, `51199`, `51201`, `51203`, `51206`, `51207`, `51209`, `51210`, `51212`, `51213`, `51215`, `51217`, `51218`, `51220`, `51222`, `51223`, `51225`, `51226`, `51229`, `51230`, `51232`, `51234`, `51236`, `51237`, `51238`, `51239`, `51241`, `51243`, `51245`, `51246`, `51248`, `51250`, `51252`, `51254`, `51255`, `51257`, `51260`, `51261`, `51263`, `51265`, `51267`, `51269`, `51271`, `51273`, `51274`, `51275`, `51277`, `51279`, `51281`, `51283`, `51285`, `51286`, `51287`, `51290`, `51292`, `51294`, `51295`, `51297`, `51299`, `51301`, `51302`, `51304`, `51305`, `51307`, `51309`, `51311`, `51312`, `51314`, `51315`, `51317`, `51319`, `51321`, `51322`, `51323`, `51324`, `51326`, `51327`, `51328`, `51330`, `51331`, `51332`, `51333`, `51335`, `51336`, `51338`, `51339`, `51341`, `51342`, `51344`, `51346`, `51348`, `51349`, `51351`, `51353`, `51354`, `51355`, `51356`, `51358`, `51360`, `51362`, `51364`, `51366`, `51368`, `51371`, `51373`, `51376`, `51378`, `51379`, `51380`, `51381`, `51383`, `51385`, `51388`, `51390`, `51392`, `51394`, `51395`, `51397`, `51399`, `51401`, `51402`, `51403`, `51405`, `51407`, `51409`, `51411`, `51412`, `51413`, `51414`, `51416`, `51418`, `51419`, `51420`, `51422`, `51423`, `51425`, `51427`, `51428`, `51430`, `51432`, `51434`, `51436`, `51441`, `51442`, `51443`, `51444`, `51445`, `51446`, `51448`, `51451`, `51453`, `51455`, `51457`, `51459`, `51462`, `51464`, `51466`, `51468`, `51470`, `51471`, `51474`, `51476`, `51478`, `51480`, `51481`, `51483`, `51485`, `51487`, `51489`, `51493`, `51494`, `51496`, `51498`, `51499`, `51501`, `51502`, `51504`, `51506`, `51508`, `51512`, `51514`, `51517`, `51518`, `51519`, `51520`, `51522`, `51524`, `51525`, `51528`, `51530`, `51532`, `51534`, `51536`, `51538`, `51540`, `51542`, `51545`, `51547`, `51549`, `51551`, `51552`, `51554`, `51556`, `51558`, `51560`, `51561`, `51563`, `51570`, `51572`, `51574`, `51575`, `51576`, `51578`, `51580`, `51583`, `51585`, `51587`, `51589`, `51590`, `51592`, `51594`, `51595`, `51596`, `51598`, `51600`, `51602`, `51603`, `51604`, `51605`, `51607`, `51608`, `51610`, `51613`, `51615`, `51616`, `51617`, `51618`, `51619`, `51620`, `51622`, `51627`, `51629`, `51631`, `51632`, `51633`, `51635`, `51637`, `51638`, `51642`, `51643`, `51645`, `51647`, `51649`, `51651`, `51653`, `51655`, `51656`, `51657`, `51659`, `51661`, `51662`, `51665`, `51667`, `51668`, `51670`, `51672`, `51674`, `51676`, `51677`, `51679`, `51681`, `51683`, `51685`, `51686`, `51688`, `51689`, `51692`, `51696`, `51698`, `51700`, `51702`, `51703`, `51704`, `51706`, `51708`, `51709`, `51712`, `51714`, `51716`, `51718`, `51720`, `51721`, `51722`, `51724`, `51725`, `51727`, `51729`, `51731`, `51732`, `51734`, `51736`, `51738`, `51740`, `51742`, `51745`, `51747`, `51749`, `51751`, `51753`, `51754`, `51755`, `51757`, `51759`, `51761`, `51762`, `51764`, `51766`, `51768`, `51769`, `51771`, `51773`, `51775`, `51776`, `51778`, `51780`, `51781`, `51783`, `51785`, `51787`, `51789`, `51791`, `51793`, `51794`, `51796`, `51798`, `51800`, `51801`, `51803`, `51805`, `51807`, `51809`, `51811`, `51812`, `51813`, `51815`, `51817`, `51819`, `51821`, `51822`, `51823`, `51824`, `51826`, `51827`, `51828`, `51829`, `51831`, `51832`, `51833`, `51834`, `51835`, `51837`, `51839`, `51841`, `51843`, `51845`, `51847`, `51848`, `51850`, `51852`, `51853`, `51855`, `51856`, `51858`, `51860`, `51862`, `51864`, `51866`, `51868`, `51870`, `51871`, `51872`, `51873`, `51874`, `51875`, `51876`, `51878`, `51879`, `51881`, `51884`, `51886`, `51888`, `51890`, `51892`, `51894`, `51896`, `51900`, `51901`, `51905`, `51907`, `51911`, `51913`, `51915`, `51917`, `51920`, `51921`, `51923`, `51925`, `51926`, `51927`, `51929`, `51930`, `51932`, `51934`, `51936`, `51937`, `51939`, `51941`, `51944`, `51945`, `51947`, `51949`, `51951`, `51953`, `51955`, `51958`, `51963`, `51965`, `51967`, `51969`, `51971`, `51973`, `51974`, `51975`, `51976`, `51977`, `51979`, `51981`, `51983`, `51985`, `51986`, `51988`, `51990`, `51992`, `51994`, `51995`, `51996`, `51999`, `52001`, `52003`, `52004`, `52007`, `52009`, `52010`, `52012`, `52014`, `52015`, `52016`, `52018`, `52022`, `52024`, `52027`, `52028`, `52030`, `52032`, `52035`, `52037`, `52039`, `52041`, `52042`, `52044`, `52046`, `52048`, `52049`, `52051`, `52053`, `52054`, `52056`, `52057`, `52059`, `52061`, `52063`, `52065`, `52067`, `52069`, `52070`, `52071`, `52072`, `52074`, `52076`, `52078`, `52080`, `52082`, `52083`, `52085`, `52087`, `52088`, `52090`, `52092`, `52093`, `52097`, `52099`, `52102`, `52104`, `52106`, `52108`, `52110`, `52112`, `52114`, `52116`, `52118`, `52120`, `52122`, `52124`, `52125`, `52127`, `52129`, `52131`, `52132`, `52133`, `52135`, `52137`, `52138`, `52140`, `52141`, `52144`, `52145`, `52147`, `52149`, `52150`, `52152`, `52154`, `52157`, `52159`, `52160`, `52161`, `52164`, `52166`, `52168`, `52170`, `52172`, `52174`, `52176`, `52178`, `52179`, `52180`, `52182`, `52184`, `52186`, `52187`, `52189`, `52190`, `52192`, `52194`, `52196`, `52199`, `52201`, `52203`, `52205`, `52207`, `52209`, `52211`, `52213`, `52215`, `52216`, `52218`, `52223`, `52225`, `52228`, `52230`, `52231`, `52232`, `52234`, `52235`, `52237`, `52239`, `52241`, `52244`, `52246`, `52247`, `52248`, `52250`, `52251`, `52252`, `52253`, `52255`, `52257`, `52259`, `52260`, `52261`, `52262`, `52265`, `52266`, `52268`, `52270`, `52272`, `52274`, `52275`, `52277`, `52279`, `52281`, `52282`, `52283`, `52285`, `52287`, `52288`, `52290`, `52291`, `52293`, `52295`, `52297`, `52299`, `52301`, `52302`, `52304`, `52306`, `52308`, `52310`, `52311`, `52313`, `52316`, `52318`, `52319`, `52321`, `52322`, `52324`, `52325`, `52326`, `52328`, `52331`, `52332`, `52334`, `52336`, `52338`, `52341`, `52342`, `52343`, `52345`, `52349`, `52351`, `52353`, `52354`, `52356`, `52357`, `52358`, `52360`, `52362`, `52364`, `52365`, `52367`, `52368`, `52369`, `52371`, `52373`, `52374`, `52376`, `52378`, `52380`, `52382`, `52383`, `52385`, `52386`, `52387`, `52388`, `52390`, `52392`, `52393`, `52395`, `52397`, `52398`, `52400`, `52401`, `52402`, `52404`, `52405`, `52407`, `52409`, `52410`, `52412`, `52414`, `52415`, `52416`, `52417`, `52419`, `52424`, `52425`, `52427`, `52430`, `52431`, `52434`, `52437`, `52439`, `52440`, `52442`, `52443`, `52445`, `52447`, `52449`, `52451`, `52453`, `52455`, `52457`, `52460`, `52461`, `52463`, `52465`, `52466`, `52467`, `52470`, `52472`, `52473`, `52474`, `52476`, `52478`, `52479`, `52481`, `52482`, `52483`, `52485`, `52486`, `52488`, `52489`, `52491`, `52493`, `52494`, `52495`, `52496`, `52497`, `52499`, `52501`, `52503`, `52505`, `52507`, `52509`, `52511`, `52513`, `52515`, `52517`, `52520`, `52523`, `52525`, `52527`, `52528`, `52530`, `52532`, `52534`, `52536`, `52537`, `52539`, `52541`, `52543`, `52545`, `52547`, `52549`, `52551`, `52553`, `52555`, `52557`, `52558`, `52560`, `52561`, `52562`, `52564`, `52565`, `52566`, `52567`, `52569`, `52571`, `52573`, `52575`, `52577`, `52578`, `52580`, `52582`, `52587`, `52589`, `52591`, `52593`, `52595`, `52597`, `52598`, `52599`, `52600`, `52603`, `52606`, `52607`, `52610`, `52613`, `52615`, `52617`, `52619`, `52622`, `52624`, `52627`, `52630`, `52632`, `52633`, `52635`, `52636`, `52637`, `52639`, `52641`, `52642`, `52644`, `52646`, `52647`, `52649`, `52651`, `52652`, `52653`, `52656`, `52658`, `52659`, `52660`, `52662`, `52664`, `52666`, `52668`, `52670`, `52672`, `52673`, `52674`, `52676`, `52678`, `52679`, `52680`, `52681`, `52683`, `52685`, `52687`, `52689`, `52691`, `52693`, `52695`, `52697`, `52698`, `52699`, `52701`, `52703`, `52705`, `52707`, `52709`, `52711`, `52713`, `52714`, `52716`, `52717`, `52719`, `52720`, `52722`, `52724`, `52725`, `52726`, `52727`, `52730`, `52732`, `52733`, `52735`, `52736`, `52738`, `52740`, `52742`, `52745`, `52747`, `52748`, `52750`, `52752`, `52754`, `52756`, `52759`, `52760`, `52762`, `52764`, `52768`, `52770`, `52772`, `52773`, `52775`, `52777`, `52779`, `52780`, `52782`, `52784`, `52790`, `52793`, `52794`, `52796`, `52798`, `52800`, `52801`, `52803`, `52805`, `52806`, `52807`, `52809`, `52811`, `52813`, `52817`, `52819`, `52820`, `52822`, `52824`, `52825`, `52827`, `52828`, `52830`, `52831`, `52833`, `52834`, `52837`, `52838`, `52840`, `52842`, `52844`, `52847`, `52849`, `52851`, `52853`, `52855`, `52857`, `52858`, `52861`, `52862`, `52864`, `52865`, `52866`, `52868`, `52870`, `52872`, `52873`, `52874`, `52876`, `52877`, `52880`, `52882`, `52885`, `52886`, `52887`, `52889`, `52891`, `52893`, `52894`, `52895`, `52896`, `52897`, `52899`, `52901`, `52902`, `52906`, `52908`, `52910`, `52913`, `52915`, `52917`, `52919`, `52920`, `52922`, `52923`, `52924`, `52926`, `52929`, `52931`, `52933`, `52935`, `52936`, `52937`, `52938`, `52940`, `52941`, `52943`, `52944`, `52946`, `52947`, `52948`, `52950`, `52952`, `52953`, `52954`, `52956`, `52958`, `52959`, `52961`, `52963`, `52965`, `52969`, `52971`, `52973`, `52975`, `52977`, `52979`, `52980`, `52981`, `52983`, `52985`, `52986`, `52988`, `52990`, `52992`, `52994`, `52995`, `52997`, `52999`, `53001`, `53003`, `53004`, `53005`, `53006`, `53008`, `53009`, `53010`, `53011`, `53013`, `53015`, `53017`, `53018`, `53019`, `53021`, `53022`, `53024`, `53026`, `53029`, `53031`, `53033`, `53034`, `53037`, `53039`, `53040`, `53042`, `53044`, `53047`, `53049`, `53050`, `53052`, `53054`, `53055`, `53056`, `53058`, `53060`, `53062`, `53064`, `53066`, `53068`, `53069`, `53071`, `53073`, `53074`, `53076`, `53077`, `53080`, `53082`, `53083`, `53084`, `53087`, `53089`, `53091`, `53095`, `53097`, `53098`, `53100`, `53101`, `53102`, `53104`, `53105`, `53107`, `53108`, `53110`, `53111`, `53113`, `53115`, `53117`, `53119`, `53121`, `53122`, `53124`, `53125`, `53128`, `53129`, `53131`, `53133`, `53134`, `53135`, `53136`, `53139`, `53140`, `53141`, `53144`, `53146`, `53147`, `53149`, `53150`, `53152`, `53154`, `53155`, `53156`, `53158`, `53159`, `53161`, `53162`, `53164`, `53165`, `53166`, `53168`, `53170`, `53171`, `53173`, `53175`, `53177`, `53179`, `53181`, `53183`, `53185`, `53186`, `53190`, `53191`, `53193`, `53195`, `53197`, `53199`, `53201`, `53203`, `53205`, `53207`, `53208`, `53210`, `53212`, `53214`, `53216`, `53218`, `53220`, `53222`, `53223`, `53225`, `53227`, `53228`, `53230`, `53231`, `53232`, `53234`, `53235`, `53238`, `53241`, `53242`, `53244`, `53246`, `53248`, `53249`, `53250`, `53252`, `53254`, `53256`, `53258`, `53260`, `53262`, `53263`, `53264`, `53265`, `53269`, `53272`, `53274`, `53276`, `53278`, `53279`, `53280`, `53281`, `53283`, `53284`, `53286`, `53288`, `53290`, `53292`, `53294`, `53296`, `53298`, `53299`, `53301`, `53302`, `53303`, `53304`, `53306`, `53308`, `53310`, `53311`, `53313`, `53315`, `53316`, `53318`, `53321`, `53323`, `53327`, `53329`, `53330`, `53332`, `53333`, `53335`, `53337`, `53339`, `53341`, `53343`, `53344`, `53346`, `53347`, `53350`, `53351`, `53353`, `53355`, `53357`, `53358`, `53360`, `53362`, `53363`, `53365`, `53367`, `53368`, `53369`, `53370`, `53371`, `53373`, `53374`, `53375`, `53379`, `53381`, `53383`, `53384`, `53385`, `53387`, `53389`, `53392`, `53394`, `53395`, `53396`, `53398`, `53403`, `53405`, `53407`, `53408`, `53410`, `53413`, `53416`, `53417`, `53419`, `53420`, `53421`, `53423`, `53424`, `53425`, `53428`, `53429`, `53430`, `53432`, `53433`, `53435`, `53437`, `53439`, `53441`, `53443`, `53445`, `53447`, `53448`, `53449`, `53452`, `53454`, `53455`, `53456`, `53457`, `53459`, `53460`, `53461`, `53464`, `53465`, `53467`, `53469`, `53470`, `53471`, `53472`, `53474`, `53476`, `53478`, `53479`, `53481`, `53482`, `53484`, `53485`, `53486`, `53488`, `53490`, `53491`, `53492`, `53493`, `53495`, `53496`, `53497`, `53498`, `53503`, `53504`, `53505`, `53506`, `53507`, `53509`, `53510`, `53512`, `53514`, `53516`, `53517`, `53519`, `53521`, `53523`, `53526`, `53527`, `53529`, `53530`, `53532`, `53533`, `53534`, `53536`, `53538`, `53540`, `53542`, `53545`, `53547`, `53548`, `53550`, `53552`, `53554`, `53555`, `53559`, `53561`, `53563`, `53565`, `53567`, `53569`, `53570`, `53572`, `53573`, `53575`, `53577`, `53579`, `53581`, `53583`, `53584`, `53586`, `53588`, `53589`, `53591`, `53593`, `53595`, `53597`, `53598`, `53599`, `53600`, `53603`, `53605`, `53606`, `53607`, `53609`, `53610`, `53611`, `53613`, `53614`, `53616`, `53618`, `53619`, `53621`, `53623`, `53625`, `53627`, `53630`, `53631`, `53633`, `53635`, `53637`, `53639`, `53642`, `53644`, `53646`, `53648`, `53649`, `53651`, `53653`, `53655`, `53657`, `53658`, `53660`, `53661`, `53662`, `53663`, `53665`, `53666`, `53668`, `53669`, `53670`, `53671`, `53673`, `53674`, `53676`, `53677`, `53679`, `53681`, `53683`, `53684`, `53687`, `53688`, `53690`, `53692`, `53695`, `53696`, `53699`, `53701`, `53703`, `53705`, `53707`, `53710`, `53711`, `53713`, `53715`, `53717`, `53719`, `53721`, `53723`, `53724`, `53726`, `53727`, `53731`, `53733`, `53735`, `53736`, `53737`, `53739`, `53740`, `53742`, `53743`, `53745`, `53747`, `53748`, `53750`, `53752`, `53754`, `53755`, `53757`, `53759`, `53760`, `53762`, `53764`, `53766`, `53768`, `53770`, `53772`, `53773`, `53774`, `53776`, `53778`, `53780`, `53782`, `53784`, `53786`, `53788`, `53790`, `53792`, `53794`, `53796`, `53797`, `53799`, `53801`, `53803`, `53805`, `53807`, `53809`, `53811`, `53813`, `53815`, `53817`, `53819`, `53821`, `53823`, `53825`, `53828`, `53830`, `53831`, `53833`, `53835`, `53837`, `53839`, `53841`, `53843`, `53844`, `53846`, `53848`, `53850`, `53852`, `53854`, `53856`, `53858`, `53860`, `53862`, `53863`, `53866`, `53867`, `53869`, `53871`, `53873`, `53875`, `53877`, `53879`, `53881`, `53882`, `53883`, `53885`, `53886`, `53888`, `53890`, `53891`, `53892`, `53894`, `53896`, `53897`, `53900`, `53902`, `53904`, `53906`, `53908`, `53910`, `53911`, `53913`, `53914`, `53915`, `53917`, `53918`, `53920`, `53922`, `53924`, `53927`, `53929`, `53930`, `53932`, `53934`, `53936`, `53938`, `53940`, `53942`, `53944`, `53945`, `53946`, `53947`, `53948`, `53950`, `53952`, `53953`, `53955`, `53957`, `53958`, `53959`, `53960`, `53961`, `53963`, `53965`, `53967`, `53968`, `53969`, `53971`, `53972`, `53974`, `53976`, `53978`, `53980`, `53982`, `53984`, `53986`, `53990`, `53992`, `53994`, `53996`, `53997`, `53999`, `54000`, `54001`, `54003`, `54007`, `54009`, `54011`, `54013`, `54015`, `54017`, `54019`, `54021`, `54023`, `54025`, `54027`, `54029`, `54030`, `54032`, `54033`, `54034`, `54036`, `54038`, `54040`, `54041`, `54043`, `54044`, `54045`, `54046`, `54048`, `54050`, `54052`, `54054`, `54056`, `54058`, `54060`, `54062`, `54064`, `54066`, `54068`, `54070`, `54071`, `54072`, `54076`, `54077`, `54079`, `54081`, `54082`, `54083`, `54085`, `54087`, `54089`, `54090`, `54092`, `54093`, `54094`, `54095`, `54096`, `54098`, `54100`, `54102`, `54104`, `54106`, `54109`, `54111`, `54112`, `54113`, `54115`, `54116`, `54117`, `54118`, `54120`, `54121`, `54123`, `54125`, `54127`, `54129`, `54132`, `54134`, `54136`, `54138`, `54140`, `54142`, `54143`, `54146`, `54148`, `54150`, `54153`, `54155`, `54157`, `54159`, `54161`, `54162`, `54163`, `54165`, `54167`, `54169`, `54172`, `54174`, `54176`, `54177`, `54179`, `54180`, `54184`, `54186`, `54188`, `54191`, `54193`, `54195`, `54196`, `54198`, `54200`, `54201`, `54202`, `54204`, `54207`, `54208`, `54210`, `54212`, `54214`, `54216`, `54220`, `54222`, `54224`, `54226`, `54227`, `54228`, `54230`, `54232`, `54234`, `54235`, `54236`, `54238`, `54239`, `54241`, `54242`, `54243`, `54245`, `54246`, `54248`, `54249`, `54251`, `54253`, `54254`, `54256`, `54258`, `54260`, `54262`, `54265`, `54267`, `54270`, `54272`, `54274`, `54276`, `54280`, `54282`, `54283`, `54284`, `54285`, `54287`, `54289`, `54291`, `54293`, `54295`, `54297`, `54299`, `54301`, `54303`, `54305`, `54306`, `54308`, `54310`, `54311`, `54312`, `54313`, `54314`, `54316`, `54318`, `54320`, `54321`, `54323`, `54325`, `54327`, `54329`, `54332`, `54334`, `54337`, `54339`, `54341`, `54343`, `54345`, `54348`, `54349`, `54351`, `54352`, `54354`, `54355`, `54357`, `54359`, `54360`, `54362`, `54363`, `54365`, `54366`, `54367`, `54368`, `54370`, `54372`, `54373`, `54374`, `54376`, `54378`, `54379`, `54381`, `54383`, `54385`, `54387`, `54389`, `54391`, `54393`, `54394`, `54396`, `54398`, `54400`, `54401`, `54402`, `54404`, `54406`, `54407`, `54408`, `54410`, `54412`, `54414`, `54417`, `54418`, `54420`, `54422`, `54424`, `54426`, `54428`, `54429`, `54432`, `54434`, `54436`, `54438`, `54439`, `54441`, `54442`, `54445`, `54447`, `54449`, `54451`, `54453`, `54455`, `54457`, `54461`, `54463`, `54464`, `54467`, `54469`, `54471`, `54473`, `54475`, `54477`, `54478`, `54480`, `54483`, `54485`, `54487`, `54489`, `54491`, `54493`, `54495`, `54497`, `54499`, `54501`, `54502`, `54504`, `54506`, `54508`, `54510`, `54512`, `54514`, `54516`, `54518`, `54520`, `54522`, `54524`, `54528`, `54530`, `54531`, `54532`, `54534`, `54537`, `54538`, `54540`, `54541`, `54542`, `54543`, `54545`, `54546`, `54548`, `54549`, `54551`, `54553`, `54554`, `54555`, `54557`, `54559`, `54561`, `54564`, `54566`, `54568`, `54569`, `54571`, `54573`, `54574`, `54576`, `54578`, `54580`, `54582`, `54584`, `54586`, `54588`, `54590`, `54592`, `54594`, `54595`, `54597`, `54599`, `54601`, `54604`, `54606`, `54608`, `54610`, `54611`, `54613`, `54615`, `54616`, `54617`, `54619`, `54621`, `54622`, `54624`, `54626`, `54628`, `54630`, `54631`, `54632`, `54634`, `54636`, `54638`, `54639`, `54641`, `54643`, `54644`, `54645`, `54646`, `54648`, `54652`, `54653`, `54654`, `54656`, `54658`, `54660`, `54662`, `54664`, `54666`, `54668`, `54670`, `54672`, `54674`, `54675`, `54676`, `54678`, `54680`, `54682`, `54683`, `54685`, `54687`, `54688`, `54690`, `54691`, `54693`, `54697`, `54698`, `54700`, `54701`, `54702`, `54704`, `54705`, `54707`, `54708`, `54710`, `54711`, `54713`, `54715`, `54717`, `54718`, `54720`, `54721`, `54723`, `54725`, `54727`, `54728`, `54730`, `54732`, `54734`, `54735`, `54736`, `54737`, `54739`, `54741`, `54743`, `54745`, `54747`, `54749`, `54751`, `54753`, `54754`, `54759`, `54761`, `54763`, `54764`, `54766`, `54768`, `54769`, `54770`, `54772`, `54773`, `54775`, `54777`, `54779`, `54781`, `54782`, `54784`, `54785`, `54786`, `54788`, `54790`, `54792`, `54794`, `54796`, `54798`, `54800`, `54802`, `54803`, `54805`, `54806`, `54807`, `54808`, `54810`, `54813`, `54815`, `54817`, `54819`, `54821`, `54823`, `54825`, `54827`, `54829`, `54831`, `54832`, `54833`, `54835`, `54837`, `54838`, `54839`, `54841`, `54844`, `54846`, `54848`, `54850`, `54854`, `54856`, `54858`, `54860`, `54862`, `54864`, `54866`, `54868`, `54870`, `54871`, `54873`, `54875`, `54877`, `54879`, `54882`, `54884`, `54888`, `54890`, `54892`, `54894`, `54896`, `54898`, `54899`, `54900`, `54902`, `54903`, `54905`, `54907`, `54909`, `54911`, `54913`, `54916`, `54919`, `54921`, `54923`, `54925`, `54926`, `54928`, `54930`, `54932`, `54934`, `54935`, `54937`, `54939`, `54940`, `54942`, `54943`, `54945`, `54947`, `54949`, `54951`, `54953`, `54955`, `54956`, `54958`, `54960`, `54961`, `54963`, `54964`, `54966`, `54968`, `54970`, `54972`, `54974`, `54976`, `54977`, `54979`, `54981`, `54982`, `54983`, `54985`, `54986`, `54987`, `54988`, `54990`, `54992`, `54993`, `54994`, `54995`, `54997`, `54998`, `54999`, `55001`, `55003`, `55005`, `55007`, `55009`, `55012`, `55013`, `55015`, `55016`, `55018`, `55019`, `55020`, `55021`, `55022`, `55024`, `55026`, `55028`, `55031`, `55033`, `55035`, `55037`, `55039`, `55042`, `55044`, `55045`, `55046`, `55048`, `55050`, `55052`, `55055`, `55057`, `55059`, `55061`, `55063`, `55065`, `55067`, `55068`, `55071`, `55073`, `55074`, `55076`, `55079`, `55080`, `55082`, `55083`, `55085`, `55087`, `55089`, `55091`, `55092`, `55093`, `55095`, `55097`, `55100`, `55102`, `55104`, `55105`, `55106`, `55108`, `55109`, `55111`, `55113`, `55114`, `55116`, `55122`, `55124`, `55125`, `55127`, `55128`, `55130`, `55132`, `55134`, `55136`, `55138`, `55140`, `55143`, `55145`, `55146`, `55148`, `55149`, `55150`, `55153`, `55154`, `55155`, `55157`, `55158`, `55160`, `55162`, `55163`, `55170`, `55172`, `55176`, `55177`, `55179`, `55180`, `55182`, `55184`, `55186`, `55188`, `55189`, `55191`, `55192`, `55194`, `55196`, `55198`, `55200`, `55203`, `55205`, `55207`, `55209`, `55210`, `55212`, `55213`, `55215`, `55217`, `55218`, `55220`, `55222`, `55224`, `55226`, `55227`, `55229`, `55231`, `55233`, `55235`, `55237`, `55238`, `55240`, `55241`, `55243`, `55244`, `55246`, `55249`, `55250`, `55251`, `55253`, `55255`, `55257`, `55260`, `55262`, `55264`, `55266`, `55267`, `55269`, `55271`, `55272`, `55274`, `55275`, `55277`, `55278`, `55280`, `55281`, `55283`, `55285`, `55288`, `55289`, `55293`, `55295`, `55297`, `55299`, `55304`, `55306`, `55309`, `55311`, `55313`, `55315`, `55317`, `55320`, `55322`, `55323`, `55325`, `55326`, `55328`, `55330`, `55331`, `55332`, `55334`, `55336`, `55338`, `55339`, `55341`, `55343`, `55345`, `55347`, `55349`, `55351`, `55353`, `55356`, `55359`, `55362`, `55364`, `55368`, `55371`, `55373`, `55375`, `55377`, `55379`, `55381`, `55382`, `55385`, `55386`, `55387`, `55391`, `55392`, `55394`, `55395`, `55396`, `55397`, `55399`, `55401`, `55402`, `55404`, `55405`, `55408`, `55410`, `55411`, `55412`, `55414`, `55416`, `55418`, `55420`, `55422`, `55424`, `55426`, `55428`, `55429`, `55433`, `55436`, `55440`, `55441`, `55442`, `55444`, `55445`, `55448`, `55450`, `55452`, `55454`, `55455`, `55456`, `55458`, `55460`, `55461`, `55462`, `55464`, `55466`, `55468`, `55469`, `55470`, `55472`, `55474`, `55476`, `55478`, `55479`, `55481`, `55482`, `55484`, `55485`, `55486`, `55489`, `55490`, `55492`, `55493`, `55495`, `55497`, `55498`, `55501`, `55502`, `55503`, `55505`, `55507`, `55508`, `55510`, `55511`, `55513`, `55515`, `55517`, `55519`, `55521`, `55523`, `55528`, `55530`, `55531`, `55533`, `55535`, `55536`, `55538`, `55540`, `55542`, `55543`, `55544`, `55545`, `55550`, `55552`, `55554`, `55557`, `55559`, `55562`, `55566`, `55567`, `55568`, `55570`, `55572`, `55574`, `55576`, `55577`, `55579`, `55581`, `55583`, `55584`, `55585`, `55587`, `55589`, `55592`, `55594`, `55595`, `55597`, `55598`, `55600`, `55602`, `55603`, `55605`, `55607`, `55609`, `55610`, `55611`, `55612`, `55613`, `55614`, `55616`, `55618`, `55620`, `55622`, `55625`, `55628`, `55629`, `55632`, `55634`, `55636`, `55638`, `55640`, `55642`, `55644`, `55646`, `55649`, `55650`, `55651`, `55652`, `55653`, `55655`, `55658`, `55662`, `55664`, `55666`, `55668`, `55671`, `55673`, `55676`, `55678`, `55679`, `55681`, `55683`, `55685`, `55686`, `55688`, `55690`, `55692`, `55693`, `55694`, `55696`, `55697`, `55699`, `55700`, `55701`, `55703`, `55705`, `55707`, `55708`, `55709`, `55711`, `55713`, `55714`, `55716`, `55718`, `55719`, `55723`, `55725`, `55727`, `55729`, `55731`, `55732`, `55735`, `55737`, `55739`, `55741`, `55742`, `55743`, `55745`, `55747`, `55748`, `55751`, `55753`, `55754`, `55756`, `55757`, `55758`, `55759`, `55762`, `55764`, `55767`, `55769`, `55771`, `55772`, `55774`, `55776`, `55778`, `55779`, `55780`, `55781`, `55782`, `55784`, `55786`, `55788`, `55791`, `55793`, `55794`, `55796`, `55797`, `55799`, `55800`, `55802`, `55804`, `55806`, `55808`, `55810`, `55812`, `55814`, `55816`, `55818`, `55820`, `55821`, `55822`, `55824`, `55825`, `55827`, `55829`, `55831`, `55833`, `55835`, `55836`, `55837`, `55839`, `55841`, `55844`, `55845`, `55847`, `55848`, `55851`, `55853`, `55854`, `55856`, `55858`, `55859`, `55861`, `55862`, `55864`, `55865`, `55866`, `55868`, `55870`, `55872`, `55873`, `55875`, `55877`, `55878`, `55880`, `55882`, `55884`, `55886`, `55889`, `55891`, `55892`, `55894`, `55895`, `55896`, `55897`, `55898`, `55900`, `55902`, `55903`, `55905`, `55907`, `55909`, `55910`, `55912`, `55913`, `55914`, `55915`, `55917`, `55919`, `55921`, `55923`, `55924`, `55926`, `55928`, `55930`, `55932`, `55934`, `55935`, `55936`, `55938`, `55939`, `55941`, `55943`, `55944`, `55946`, `55948`, `55949`, `55951`, `55953`, `55957`, `55958`, `55960`, `55962`, `55963`, `55965`, `55967`, `55969`, `55971`, `55972`, `55973`, `55975`, `55976`, `55978`, `55979`, `55980`, `55982`, `55983`, `55984`, `55985`, `55987`, `55988`, `55989`, `55990`, `55992`, `55994`, `55996`, `55997`, `55999`, `56001`, `56002`, `56004`, `56005`, `56007`, `56008`, `56011`, `56012`, `56014`, `56016`, `56019`, `56020`, `56022`, `56024`, `56026`, `56028`, `56030`, `56032`, `56033`, `56036`, `56038`, `56039`, `56041`, `56043`, `56045`, `56047`, `56049`, `56050`, `56052`, `56053`, `56055`, `56057`, `56059`, `56062`, `56064`, `56068`, `56069`, `56070`, `56072`, `56073`, `56074`, `56075`, `56077`, `56078`, `56079`, `56081`, `56082`, `56083`, `56084`, `56086`, `56087`, `56089`, `56091`, `56093`, `56095`, `56097`, `56099`, `56101`, `56103`, `56105`, `56107`, `56109`, `56110`, `56111`, `56113`, `56115`, `56117`, `56119`, `56121`, `56123`, `56125`, `56127`, `56129`, `56131`, `56134`, `56136`, `56138`, `56139`, `56143`, `56145`, `56146`, `56147`, `56149`, `56150`, `56151`, `56152`, `56154`, `56156`, `56158`, `56160`, `56163`, `56164`, `56166`, `56167`, `56169`, `56171`, `56173`, `56175`, `56181`, `56182`, `56183`, `56184`, `56186`, `56188`, `56190`, `56192`, `56193`, `56194`, `56195`, `56197`, `56199`, `56201`, `56203`, `56205`, `56207`, `56209`, `56211`, `56212`, `56213`, `56214`, `56218`, `56220`, `56222`, `56223`, `56226`, `56227`, `56228`, `56230`, `56232`, `56234`, `56235`, `56238`, `56240`, `56242`, `56244`, `56245`, `56246`, `56247`, `56248`, `56249`, `56250`, `56252`, `56254`, `56256`, `56258`, `56260`, `56262`, `56264`, `56266`, `56268`, `56270`, `56275`, `56276`, `56278`, `56279`, `56280`, `56282`, `56286`, `56287`, `56288`, `56290`, `56292`, `56293`, `56295`, `56296`, `56298`, `56299`, `56300`, `56302`, `56304`, `56306`, `56308`, `56309`, `56311`, `56314`, `56316`, `56317`, `56318`, `56320`, `56322`, `56324`, `56326`, `56327`, `56329`, `56331`, `56333`, `56334`, `56336`, `56339`, `56340`, `56342`, `56343`, `56344`, `56347`, `56348`, `56349`, `56351`, `56353`, `56356`, `56358`, `56361`, `56363`, `56367`, `56369`, `56373`, `56374`, `56376`, `56378`, `56379`, `56383`, `56385`, `56386`, `56388`, `56389`, `56391`, `56393`, `56394`, `56395`, `56397`, `56400`, `56403`, `56406`, `56408`, `56410`, `56412`, `56413`, `56415`, `56417`, `56419`, `56421`, `56422`, `56424`, `56425`, `56427`, `56428`, `56429`, `56432`, `56433`, `56435`, `56436`, `56437`, `56439`, `56441`, `56443`, `56446`, `56448`, `56451`, `56453`, `56455`, `56457`, `56458`, `56459`, `56461`, `56462`, `56463`, `56465`, `56469`, `56470`, `56471`, `56472`, `56474`, `56476`, `56477`, `56479`, `56481`, `56483`, `56485`, `56487`, `56489`, `56491`, `56493`, `56495`, `56496`, `56499`, `56500`, `56502`, `56503`, `56506`, `56508`, `56509`, `56512`, `56514`, `56515`, `56516`, `56518`, `56520`, `56523`, `56525`, `56526`, `56528`, `56529`, `56531`, `56533`, `56535`, `56537`, `56538`, `56540`, `56542`, `56544`, `56546`, `56548`, `56550`, `56552`, `56554`, `56556`, `56558`, `56560`, `56563`, `56565`, `56567`, `56568`, `56570`, `56572`, `56574`, `56576`, `56577`, `56578`, `56580`, `56582`, `56584`, `56587`, `56589`, `56591`, `56593`, `56595`, `56597`, `56598`, `56599`, `56601`, `56603`, `56604`, `56606`, `56608`, `56609`, `56610`, `56612`, `56614`, `56616`, `56618`, `56619`, `56621`, `56626`, `56627`, `56629`, `56630`, `56632`, `56633`, `56635`, `56637`, `56639`, `56640`, `56641`, `56644`, `56647`, `56649`, `56650`, `56652`, `56654`, `56656`, `56657`, `56659`, `56660`, `56662`, `56665`, `56668`, `56669`, `56670`, `56672`, `56674`, `56676`, `56678`, `56680`, `56682`, `56684`, `56685`, `56686`, `56689`, `56691`, `56693`, `56695`, `56697`, `56699`, `56701`, `56702`, `56704`, `56706`, `56707`, `56708`, `56709`, `56711`, `56713`, `56715`, `56717`, `56719`, `56721`, `56722`, `56725`, `56727`, `56731`, `56732`, `56733`, `56735`, `56737`, `56739`, `56742`, `56743`, `56744`, `56745`, `56747`, `56749`, `56753`, `56756`, `56758`, `56760`, `56762`, `56764`, `56766`, `56770`, `56771`, `56773`, `56774`, `56775`, `56776`, `56777`, `56779`, `56781`, `56782`, `56783`, `56785`, `56787`, `56789`, `56791`, `56792`, `56794`, `56795`, `56796`, `56798`, `56800`, `56802`, `56803`, `56804`, `56805`, `56807`, `56809`, `56810`, `56813`, `56816`, `56817`, `56818`, `56820`, `56822`, `56824`, `56826`, `56828`, `56830`, `56831`, `56832`, `56833`, `56834`, `56836`, `56838`, `56839`, `56840`, `56841`, `56843`, `56845`, `56848`, `56850`, `56852`, `56853`, `56855`, `56858`, `56860`, `56862`, `56864`, `56865`, `56870`, `56872`, `56874`, `56877`, `56878`, `56879`, `56880`, `56884`, `56886`, `56888`, `56889`, `56892`, `56895`, `56896`, `56897`, `56898`, `56900`, `56902`, `56903`, `56905`, `56907`, `56909`, `56910`, `56912`, `56914`, `56916`, `56917`, `56919`, `56921`, `56923`, `56925`, `56927`, `56928`, `56930`, `56932`, `56934`, `56936`, `56938`, `56939`, `56940`, `56941`, `56945`, `56947`, `56949`, `56951`, `56953`, `56954`, `56956`, `56958`, `56960`, `56961`, `56963`, `56965`, `56967`, `56969`, `56973`, `56975`, `56977`, `56979`, `56980`, `56982`, `56983`, `56985`, `56987`, `56988`, `56990`, `56991`, `56992`, `56993`, `56994`, `56995`, `56997`, `56998`, `57000`, `57002`, `57004`, `57005`, `57006`, `57008`, `57009`, `57011`, `57013`, `57016`, `57018`, `57020`, `57022`, `57024`, `57029`, `57031`, `57033`, `57034`, `57035`, `57037`, `57039`, `57041`, `57042`, `57044`, `57046`, `57048`, `57050`, `57052`, `57054`, `57055`, `57057`, `57058`, `57059`, `57060`, `57061`, `57063`, `57065`, `57067`, `57069`, `57071`, `57073`, `57075`, `57076`, `57078`, `57080`, `57082`, `57084`, `57086`, `57087`, `57089`, `57094`, `57097`, `57098`, `57099`, `57100`, `57102`, `57105`, `57107`, `57109`, `57110`, `57112`, `57114`, `57116`, `57118`, `57120`, `57121`, `57123`, `57124`, `57126`, `57127`, `57128`, `57129`, `57133`, `57135`, `57137`, `57139`, `57141`, `57143`, `57145`, `57147`, `57149`, `57150`, `57152`, `57154`, `57156`, `57158`, `57160`, `57161`, `57164`, `57165`, `57166`, `57168`, `57170`, `57171`, `57173`, `57174`, `57175`, `57176`, `57178`, `57180`, `57182`, `57184`, `57186`, `57188`, `57189`, `57190`, `57192`, `57194`, `57196`, `57198`, `57199`, `57201`, `57203`, `57205`, `57207`, `57209`, `57211`, `57212`, `57214`, `57217`, `57219`, `57221`, `57223`, `57229`, `57231`, `57232`, `57233`, `57235`, `57241`, `57243`, `57245`, `57247`, `57249`, `57250`, `57253`, `57254`, `57256`, `57258`, `57259`, `57261`, `57262`, `57264`, `57266`, `57267`, `57269`, `57270`, `57271`, `57272`, `57274`, `57275`, `57277`, `57278`, `57280`, `57282`, `57284`, `57285`, `57287`, `57288`, `57289`, `57291`, `57294`, `57295`, `57296`, `57297`, `57299`, `57300`, `57302`, `57303`, `57304`, `57305`, `57307`, `57310`, `57312`, `57314`, `57316`, `57318`, `57319`, `57321`, `57323`, `57325`, `57329`, `57331`, `57332`, `57334`, `57336`, `57338`, `57340`, `57341`, `57343`, `57344`, `57345`, `57347`, `57349`, `57351`, `57353`, `57355`, `57356`, `57358`, `57360`, `57363`, `57365`, `57367`, `57373`, `57374`, `57376`, `57378`, `57379`, `57381`, `57383`, `57385`, `57387`, `57391`, `57393`, `57395`, `57397`, `57398`, `57399`, `57403`, `57405`, `57407`, `57409`, `57410`, `57411`, `57412`, `57414`, `57416`, `57417`, `57420`, `57421`, `57423`, `57425`, `57427`, `57428`, `57430`, `57431`, `57433`, `57437`, `57438`, `57439`, `57440`, `57441`, `57443`, `57445`, `57447`, `57449`, `57451`, `57453`, `57455`, `57457`, `57459`, `57461`, `57463`, `57465`, `107`, `57468`, `57470`, `57472`, `57473`, `57475`, `57477`, `57479`, `57480`, `57481`, `57483`, `57485`, `57489`, `57490`, `57492`, `57494`, `57496`, `57502`, `57504`, `57506`, `57508`, `57510`, `57512`, `57514`, `57516`, `57518`, `57519`, `57521`, `57524`, `57526`, `57527`, `57528`, `57530`, `57532`, `57533`, `57535`, `57536`, `57537`, `57539`, `57541`, `57543`, `57545`, `57547`, `57549`, `57551`, `57552`, `57553`, `57555`, `57557`, `57558`, `57560`, `57562`, `57563`, `57564`, `57565`, `57567`, `57569`, `57571`, `57574`, `57576`, `57577`, `57578`, `57580`, `57582`, `57585`, `57587`, `57591`, `57593`, `57599`, `57600`, `57602`, `57604`, `57611`, `57613`, `57615`, `57617`, `57618`, `57619`, `57621`, `57625`, `57627`, `57629`, `42369`, `57630`, `57632`, `57633`, `57634`, `57636`, `57638`, `57640`, `57642`, `57645`, `57647`, `57649`, `57651`, `57652`, `57654`, `57655`, `57657`, `57659`, `57661`, `57663`, `57665`, `57667`, `57670`, `57672`, `57674`, `57676`, `57678`, `57680`, `57681`, `57683`, `57685`, `57687`, `57689`, `57691`, `57693`, `57695`, `57696`, `57697`, `57699`, `57701`, `57706`, `57709`, `57710`, `57711`, `57713`, `57715`, `57717`, `57721`, `57722`, `57724`, `57726`, `57728`, `57730`, `57732`, `57733`, `57735`, `57736`, `57737`, `57739`, `57741`, `57743`, `57744`, `57745`, `57746`, `57748`, `57750`, `57752`, `57754`, `57755`, `57756`, `57757`, `57759`, `57760`, `57762`, `57765`, `57767`, `57768`, `57770`, `57774`, `57776`, `57778`, `57780`, `57782`, `57783`, `57785`, `57787`, `57789`, `57790`, `57792`, `57794`, `57795`, `57797`, `57799`, `57801`, `57803`, `57804`, `57805`, `57806`, `57808`, `57810`, `57812`, `57813`, `57814`, `57816`, `57817`, `57819`, `57821`, `57823`, `57828`, `57830`, `57832`, `57834`, `57835`, `57838`, `57839`, `57840`, `57842`, `57844`, `57846`, `57848`, `57850`, `57852`, `57854`, `57856`, `57858`, `57860`, `57862`, `57864`, `57866`, `57868`, `57870`, `57871`, `57873`, `57875`, `57876`, `57877`, `57878`, `57880`, `57881`, `57883`, `57885`, `57887`, `57889`, `57891`, `57893`, `57894`, `57896`, `57897`, `57898`, `57899`, `57900`, `57902`, `57904`, `57906`, `57908`, `57909`, `57911`, `57913`, `57914`, `57917`, `57919`, `57920`, `57922`, `57924`, `57926`, `57927`, `57929`, `57931`, `57933`, `57934`, `57936`, `57938`, `57940`, `57942`, `57944`, `57946`, `57947`, `57948`, `57950`, `57951`, `57953`, `57955`, `57956`, `57958`, `57959`, `57961`, `57963`, `57965`, `57966`, `57969`, `57970`, `57972`, `57975`, `57977`, `57979`, `57981`, `57983`, `57985`, `57987`, `57989`, `57991`, `57993`, `57996`, `57998`, `58000`, `58002`, `58004`, `58005`, `58006`, `58007`, `58009`, `58011`, `58012`, `58013`, `58015`, `58017`, `58019`, `58021`, `58023`, `58026`, `58027`, `58028`, `58029`, `58031`, `58033`, `58034`, `58035`, `58036`, `58037`, `58040`, `58042`, `58044`, `58046`, `58048`, `58050`, `58052`, `58054`, `58055`, `58057`, `58058`, `58060`, `58062`, `58065`, `58066`, `58068`, `58070`, `58071`, `58072`, `58073`, `58079`, `58080`, `58081`, `58082`, `58084`, `58086`, `58088`, `58090`, `58093`, `58095`, `58096`, `58098`, `58099`, `58101`, `58103`, `58105`, `58107`, `58110`, `58112`, `58114`, `58117`, `58119`, `58121`, `58123`, `58125`, `58127`, `58128`, `58130`, `58132`, `58133`, `58136`, `58138`, `58139`, `58140`, `58141`, `58143`, `58145`, `58147`, `58149`, `58150`, `58152`, `58153`, `58155`, `58156`, `58157`, `58159`, `58161`, `58164`, `58166`, `58168`, `58169`, `58171`, `58173`, `58175`, `58176`, `58178`, `58180`, `58182`, `58184`, `58187`, `58188`, `58190`, `58192`, `58194`, `58196`, `58198`, `58200`, `58202`, `58204`, `58206`, `58208`, `58210`, `58211`, `58213`, `58215`, `58216`, `58217`, `58222`, `58224`, `58226`, `58228`, `58230`, `58232`, `58234`, `58236`, `58238`, `58239`, `58241`, `58244`, `58246`, `58248`, `58250`, `58252`, `58255`, `58256`, `58258`, `58259`, `58261`, `58263`, `58264`, `58265`, `58267`, `58269`, `58270`, `58272`, `58273`, `58275`, `58278`, `58279`, `58280`, `58283`, `58285`, `58286`, `58287`, `58289`, `58291`, `58293`, `58294`, `58295`, `58296`, `58298`, `58301`, `58302`, `58304`, `58306`, `58308`, `58310`, `58313`, `58315`, `58318`, `58320`, `58321`, `58322`, `58323`, `58324`, `58325`, `58326`, `58328`, `58330`, `58332`, `58334`, `58335`, `58337`, `58339`, `58340`, `58342`, `58344`, `58345`, `58346`, `58347`, `58349`, `58351`, `58352`, `58354`, `58356`, `58358`, `58360`, `58361`, `58363`, `58366`, `58372`, `58373`, `58374`, `58375`, `58378`, `58379`, `58380`, `58381`, `58383`, `58384`, `58385`, `58388`, `58390`, `58391`, `58393`, `58394`, `58395`, `58396`, `58398`, `58399`, `58401`, `58402`, `58403`, `58405`, `58407`, `58409`, `58411`, `58413`, `58414`, `58416`, `58417`, `58418`, `58420`, `58421`, `58423`, `58425`, `58426`, `58428`, `58431`, `58432`, `58434`, `58436`, `58438`, `58440`, `58443`, `58445`, `58447`, `58449`, `58451`, `58454`, `58456`, `58457`, `58458`, `58459`, `58460`, `58463`, `58465`, `58466`, `58468`, `58470`, `58472`, `58473`, `58475`, `58477`, `58479`, `58480`, `58481`, `58483`, `58485`, `58486`, `58488`, `58489`, `58491`, `58493`, `58494`, `58495`, `58497`, `58499`, `58500`, `58501`, `58503`, `58505`, `58507`, `58508`, `58510`, `58511`, `58513`, `58514`, `58516`, `58518`, `58520`, `58521`, `58522`, `58524`, `58526`, `58528`, `58529`, `58530`, `58531`, `58534`, `58536`, `58538`, `58540`, `58542`, `58544`, `58547`, `58548`, `58549`, `58551`, `58553`, `58555`, `58556`, `58557`, `58558`, `58560`, `58564`, `58566`, `58568`, `58569`, `58571`, `58572`, `58573`, `58575`, `58576`, `58578`, `58580`, `58582`, `58583`, `58585`, `58586`, `58588`, `58590`, `58591`, `58593`, `58594`, `58596`, `58598`, `58600`, `58601`, `58603`, `58607`, `58608`, `58610`, `58613`, `58614`, `58618`, `58620`, `58622`, `58623`, `58624`, `58626`, `58627`, `58628`, `58629`, `58631`, `58633`, `58634`, `58636`, `58638`, `58640`, `58642`, `58644`, `58645`, `58647`, `58650`, `58652`, `58653`, `58654`, `58656`, `58657`, `58659`, `58661`, `58663`, `58665`, `58667`, `58669`, `58671`, `58672`, `58674`, `58678`, `58680`, `58681`, `58684`, `58686`, `58688`, `58690`, `58692`, `58694`, `58695`, `58697`, `58699`, `58700`, `58701`, `58705`, `58709`, `58710`, `58711`, `58712`, `58715`, `58717`, `58718`, `58720`, `58724`, `58726`, `58727`, `58728`, `58730`, `58731`, `422`, `58733`, `58735`, `58737`, `58740`, `58742`, `58743`, `58745`, `58748`, `58750`, `58751`, `58753`, `58755`, `58757`, `58759`, `58761`, `58763`, `58765`, `58767`, `58769`, `58771`, `58773`, `58775`, `58777`, `58779`, `58781`, `58783`, `58786`, `58788`, `58789`, `58791`, `58793`, `58795`, `58797`, `58798`, `58801`, `58802`, `58804`, `58806`, `58807`, `58809`, `58810`, `58812`, `58813`, `58814`, `58816`, `58818`, `58820`, `58821`, `58823`, `58825`, `58827`, `58828`, `58830`, `58831`, `58833`, `58835`, `58837`, `58840`, `58842`, `58843`, `58845`, `58846`, `58848`, `58849`, `58853`, `58855`, `58856`, `58858`, `58859`, `58860`, `58864`, `58865`, `58866`, `58868`, `58870`, `58872`, `58874`, `58875`, `58876`, `58878`, `58880`, `58881`, `58882`, `58883`, `58884`, `58885`, `58886`, `58888`, `58889`, `58890`, `58892`, `58894`, `58895`, `58896`, `58897`, `58901`, `58903`, `58904`, `58906`, `58908`, `58909`, `58911`, `58912`, `58916`, `58917`, `58919`, `58920`, `58921`, `58923`, `58925`, `58927`, `58929`, `58931`, `58932`, `58934`, `58935`, `58937`, `58939`, `58940`, `58942`, `58944`, `58945`, `58947`, `58948`, `58949`, `58951`, `58953`, `58954`, `58956`, `58958`, `58959`, `58960`, `58962`, `58964`, `58966`, `58968`, `58970`, `58971`, `58973`, `58977`, `58980`, `58982`, `58985`, `58987`, `58988`, `58989`, `58990`, `58991`, `58993`, `58995`, `58997`, `58999`, `59001`, `59002`, `59005`, `59007`, `59009`, `59010`, `59011`, `59013`, `59015`, `59017`, `59019`, `59021`, `59025`, `59030`, `59032`, `59034`, `59036`, `59039`, `59043`, `59046`, `59048`, `59049`, `59051`, `59054`, `59055`, `59056`, `59059`, `59061`, `59063`, `59066`, `59069`, `59070`, `59072`, `59075`, `59077`, `59080`, `59084`, `59086`, `59088`, `59090`, `59091`, `59094`, `59096`, `59098`, `59100`, `59101`, `59102`, `59104`, `59105`, `59106`, `59107`, `59109`, `59110`, `59111`, `59113`, `59114`, `59115`, `59116`, `59118`, `59120`, `59122`, `59126`, `59127`, `59129`, `59131`, `59133`, `59134`, `59136`, `59140`, `59142`, `59143`, `59145`, `59146`, `59148`, `59152`, `59153`, `59154`, `59156`, `59157`, `59159`, `59160`, `59162`, `59164`, `59166`, `59168`, `59169`, `59170`, `59171`, `59173`, `59174`, `59177`, `59178`, `59179`, `59181`, `59183`, `59184`, `59186`, `59188`, `59190`, `59192`, `59194`, `59196`, `59198`, `59201`, `59202`, `59204`, `59206`, `59208`, `59209`, `59211`, `59213`, `59216`, `59218`, `59220`, `59222`, `59224`, `59226`, `59228`, `59229`, `59231`, `59232`, `59234`, `59235`, `59236`, `59239`, `59241`, `59243`, `59245`, `59246`, `59247`, `59248`, `59251`, `59252`, `59253`, `59254`, `59256`, `59257`, `59259`, `59261`, `59263`, `59265`, `59267`, `59269`, `59271`, `59272`, `59273`, `59275`, `59276`, `59277`, `59279`, `59281`, `59283`, `59286`, `59287`, `59289`, `59291`, `59293`, `59295`, `59297`, `59299`, `59301`, `59303`, `59305`, `59306`, `59307`, `59309`, `59311`, `59313`, `59315`, `59317`, `59318`, `59320`, `59322`, `59324`, `59326`, `59327`, `59330`, `59332`, `59334`, `59335`, `59337`, `59338`, `59340`, `59341`, `59343`, `59344`, `59346`, `59348`, `59350`, `59352`, `59354`, `59355`, `59356`, `59358`, `59360`, `59361`, `59363`, `59366`, `59368`, `59370`, `59373`, `59374`, `59376`, `59378`, `59380`, `59382`, `59384`, `59387`, `59389`, `59391`, `59393`, `59394`, `59396`, `59397`, `59399`, `59401`, `59403`, `59405`, `59409`, `59412`, `59413`, `59415`, `59417`, `59419`, `59421`, `59423`, `59424`, `59426`, `59428`, `59430`, `59432`, `59433`, `59434`, `59435`, `59436`, `59437`, `59438`, `59443`, `59445`, `59446`, `59448`, `59450`, `59451`, `59453`, `59455`, `59457`, `59458`, `59459`, `59462`, `59464`, `59465`, `59467`, `59468`, `59470`, `59472`, `59474`, `59476`, `59477`, `59478`, `59479`, `59481`, `59483`, `59485`, `59486`, `59489`, `59492`, `59494`, `59496`, `59498`, `59500`, `59502`, `59505`, `59506`, `59507`, `59510`, `59512`, `59514`, `59515`, `59516`, `59518`, `59520`, `59522`, `59523`, `59524`, `59525`, `59526`, `59528`, `59529`, `59531`, `59533`, `59534`, `59535`, `59536`, `59537`, `59538`, `59541`, `59543`, `59545`, `59547`, `59548`, `59549`, `59553`, `59554`, `59556`, `59557`, `59558`, `59560`, `59561`, `59563`, `59565`, `59567`, `59569`, `59571`, `59572`, `59574`, `59576`, `59578`, `59579`, `59580`, `59581`, `59583`, `59585`, `59587`, `59589`, `59590`, `59591`, `59593`, `59594`, `59596`, `59598`, `59600`, `59602`, `59603`, `59605`, `59608`, `59610`, `59613`, `59615`, `59617`, `59619`, `59621`, `59623`, `59625`, `59626`, `59628`, `59630`, `59631`, `59633`, `59635`, `59637`, `59641`, `59643`, `59644`, `59646`, `59648`, `59649`, `59650`, `59652`, `59654`, `59656`, `59657`, `59659`, `59661`, `59663`, `59665`, `59667`, `59669`, `59670`, `59672`, `59674`, `59676`, `59678`, `59680`, `59682`, `59685`, `59687`, `59689`, `59691`, `59692`, `59694`, `59696`, `59698`, `59699`, `59700`, `59701`, `59704`, `59705`, `59706`, `59708`, `59709`, `59712`, `59713`, `59715`, `59716`, `59718`, `59719`, `59722`, `59724`, `59726`, `59728`, `59730`, `59732`, `59735`, `59736`, `59737`, `59738`, `59740`, `59742`, `59743`, `59744`, `59748`, `59749`, `59751`, `59752`, `59753`, `59755`, `59757`, `59759`, `59761`, `59763`, `59765`, `59766`, `59767`, `59769`, `59771`, `59772`, `59773`, `59774`, `59775`, `59777`, `59779`, `59782`, `59783`, `59785`, `59787`, `59789`, `59792`, `59794`, `59795`, `59797`, `59799`, `59800`, `59802`, `59804`, `59805`, `59807`, `59809`, `59811`, `59812`, `59814`, `59816`, `59818`, `59820`, `59822`, `59823`, `59825`, `59826`, `59828`, `59830`, `59833`, `59835`, `59837`, `59838`, `59839`, `59841`, `59842`, `59843`, `59845`, `59846`, `59848`, `59850`, `59852`, `59855`, `59856`, `59857`, `59858`, `59859`, `59861`, `59863`, `59864`, `59866`, `59867`, `59869`, `59871`, `59873`, `59874`, `59876`, `59878`, `59879`, `59881`, `59882`, `59883`, `59886`, `59888`, `59891`, `59893`, `59896`, `59897`, `59900`, `59902`, `59904`, `59905`, `59907`, `59909`, `59910`, `59911`, `59914`, `59918`, `59919`, `59921`, `59926`, `59928`, `59929`, `59930`, `59931`, `59932`, `59934`, `59936`, `59937`, `59939`, `59941`, `59944`, `59945`, `59946`, `59949`, `59950`, `59954`, `59956`, `59958`, `59960`, `59962`, `59964`, `59966`, `59968`, `59970`, `59972`, `59973`, `59975`, `59978`, `59980`, `59981`, `59982`, `59983`, `59984`, `59986`, `59988`, `59990`, `59991`, `59992`, `59994`, `59997`, `59999`, `60000`, `60001`, `60003`, `60005`, `60007`, `60009`, `60010`, `60012`, `60014`, `60016`, `60018`, `60020`, `60022`, `60023`, `60025`, `60027`, `60029`, `60030`, `60031`, `60036`, `60038`, `60039`, `60041`, `60043`, `60044`, `60046`, `60048`, `60050`, `60052`, `60054`, `60056`, `60057`, `60059`, `60061`, `60062`, `60063`, `60066`, `60068`, `60070`, `60073`, `60075`, `60078`, `60079`, `60080`, `60082`, `60084`, `60085`, `60088`, `60089`, `60091`, `60096`, `60097`, `60098`, `60100`, `60102`, `60104`, `60106`, `60107`, `60108`, `60110`, `60112`, `60114`, `60116`, `60118`, `60119`, `60121`, `60123`, `60125`, `60127`, `60129`, `60131`, `60133`, `60135`, `60137`, `60138`, `60140`, `60141`, `60143`, `60144`, `60145`, `60146`, `60147`, `60149`, `60152`, `60154`, `60155`, `60157`, `60158`, `60159`, `60160`, `60164`, `60166`, `60168`, `60170`, `60171`, `60173`, `60177`, `60178`, `60179`, `60180`, `60182`, `60183`, `60185`, `60187`, `60189`, `60191`, `60193`, `60194`, `60196`, `60198`, `60200`, `60202`, `60204`, `60206`, `60208`, `60209`, `60213`, `60214`, `60215`, `60217`, `60219`, `60221`, `60223`, `60224`, `60226`, `60227`, `60229`, `60231`, `60235`, `60237`, `60239`, `60241`, `60243`, `60244`, `60245`, `60248`, `60249`, `60250`, `60251`, `60253`, `60254`, `60256`, `60258`, `60260`, `60262`, `60265`, `60267`, `60269`, `60271`, `60273`, `60275`, `60276`, `60278`, `60279`, `60281`, `60282`, `60284`, `60285`, `60287`, `60289`, `60291`, `60293`, `60296`, `60298`, `60299`, `60301`, `60303`, `60305`, `60306`, `60307`, `60309`, `60311`, `60312`, `60314`, `60316`, `60318`, `60320`, `60322`, `60324`, `60326`, `60327`, `60329`, `60331`, `60333`, `60335`, `60337`, `60340`, `60342`, `60343`, `60344`, `60346`, `60350`, `60352`, `60354`, `60355`, `60356`, `60358`, `60359`, `60361`, `60363`, `60365`, `60367`, `60368`, `60370`, `60372`, `60373`, `60375`, `60376`, `60378`, `60379`, `60380`, `60382`, `60384`, `60386`, `60388`, `60389`, `60391`, `60393`, `49647`, `60395`, `60397`, `60399`, `60401`, `60403`, `60405`, `60407`, `60409`, `60411`, `60412`, `60413`, `60415`, `60417`, `60418`, `60419`, `60421`, `60423`, `60424`, `60426`, `60428`, `60430`, `60432`, `2476`, `60434`, `60436`, `60439`, `60441`, `60443`, `60444`, `60446`, `60448`, `60450`, `60452`, `60455`, `60457`, `60461`, `60463`, `60464`, `60466`, `60467`, `60468`, `60473`, `60477`, `60479`, `60481`, `60482`, `60484`, `60485`, `60487`, `60489`, `60491`, `60495`, `60497`, `60498`, `60499`, `60501`, `60503`, `60504`, `60505`, `60508`, `60509`, `60511`, `60513`, `60515`, `60516`, `60518`, `60519`, `60520`, `60522`, `60524`, `60526`, `60527`, `60529`, `60531`, `60532`, `60534`, `60536`, `60537`, `60539`, `60541`, `60542`, `60544`, `60546`, `60548`, `60550`, `60552`, `60553`, `60554`, `60557`, `60559`, `60560`, `60562`, `60564`, `60566`, `60569`, `60570`, `60574`, `60576`, `60578`, `60581`, `60582`, `60584`, `60586`, `60587`, `60588`, `60592`, `60593`, `60595`, `60596`, `60598`, `60599`, `60600`, `60602`, `60604`, `60605`, `60606`, `60607`, `60608`, `60610`, `60611`, `60613`, `60615`, `60617`, `60618`, `60619`, `60621`, `60623`, `60626`, `60628`, `60630`, `60632`, `60634`, `60636`, `60638`, `60639`, `60641`, `60643`, `60645`, `60646`, `60648`, `60650`, `60652`, `60654`, `60655`, `60657`, `60661`, `60663`, `60664`, `60666`, `60668`, `60670`, `60672`, `60674`, `60676`, `60678`, `60680`, `60681`, `60682`, `60684`, `60687`, `60689`, `60690`, `60692`, `60693`, `60694`, `60696`, `60698`, `60699`, `60701`, `60702`, `60704`, `60705`, `60707`, `60711`, `60715`, `60716`, `60718`, `60720`, `60722`, `60724`, `60725`, `60727`, `60729`, `60731`, `60732`, `60733`, `60734`, `60736`, `60737`, `60739`, `60740`, `60741`, `60744`, `60746`, `60747`, `60748`, `60752`, `60754`, `60756`, `60758`, `60763`, `60765`, `60767`, `60769`, `60771`, `60772`, `60773`, `60774`, `60776`, `60779`, `60781`, `60784`, `60787`, `60789`, `60790`, `60792`, `60795`, `60796`, `60798`, `60800`, `60801`, `60802`, `60804`, `60806`, `60808`, `60809`, `60810`, `60811`, `60813`, `60814`, `60815`, `60816`, `60818`, `60820`, `60822`, `60823`, `60824`, `60825`, `60826`, `60828`, `60830`, `60831`, `60833`, `60834`, `60836`, `60838`, `60840`, `60841`, `60843`, `60845`, `60847`, `60848`, `60849`, `60851`, `60852`, `60854`, `60855`, `60857`, `60859`, `60860`, `60862`, `60863`, `60864`, `60866`, `60868`, `60870`, `60872`, `60873`, `60875`, `60876`, `60877`, `60879`, `60881`, `60883`, `60884`, `60889`, `60890`, `60892`, `60893`, `60895`, `60897`, `60898`, `60899`, `60900`, `60902`, `60903`, `60904`, `60906`, `60908`, `60909`, `60914`, `60918`, `60919`, `60921`, `60923`, `60925`, `60927`, `60929`, `60930`, `60932`, `60933`, `60934`, `60937`, `60939`, `60940`, `60943`, `60944`, `60946`, `60948`, `60949`, `60951`, `60953`, `60955`, `60957`, `60959`, `60961`, `60963`, `60965`, `60967`, `60969`, `60970`, `60972`, `60975`, `60977`, `60978`, `60980`, `60982`, `60984`, `60986`, `60988`, `60991`, `60993`, `60996`, `60998`, `61000`, `61002`, `61004`, `61005`, `61006`, `61008`, `61009`, `61011`, `61014`, `61015`, `61016`, `61018`, `61020`, `61022`, `61023`, `61025`, `61027`, `61029`, `61031`, `61033`, `61035`, `61037`, `61039`, `61040`, `61041`, `61042`, `61043`, `61044`, `61046`, `61048`, `61050`, `61052`, `61054`, `61055`, `61056`, `61057`, `61058`, `61059`, `61061`, `61063`, `61065`, `61066`, `61067`, `61068`, `61070`, `61072`, `61076`, `61078`, `61079`, `61081`, `61083`, `61085`, `61088`, `61089`, `61091`, `61094`, `61095`, `61096`, `61098`, `61100`, `61102`, `61104`, `61105`, `61106`, `61108`, `61110`, `61112`, `61114`, `61115`, `61117`, `61118`, `61120`, `61123`, `61125`, `61126`, `61127`, `61128`, `61130`, `61132`, `61133`, `61135`, `61136`, `61138`, `61139`, `61141`, `61142`, `61144`, `61145`, `61147`, `61149`, `61151`, `61153`, `61155`, `61157`, `61159`, `61160`, `61161`, `61163`, `61166`, `61170`, `61172`, `61174`, `61176`, `61178`, `61180`, `61182`, `61183`, `61185`, `61187`, `61188`, `61189`, `61191`, `61193`, `61194`, `61196`, `61198`, `61199`, `61200`, `61201`, `61202`, `61203`, `61204`, `61205`, `61207`, `61209`, `61211`, `61214`, `61215`, `61216`, `61218`, `61220`, `61221`, `61222`, `61223`, `61225`, `61227`, `61230`, `61232`, `61234`, `61237`, `61238`, `61240`, `61242`, `61244`, `61245`, `61247`, `61248`, `61250`, `61251`, `61252`, `61253`, `61255`, `61257`, `61259`, `61263`, `61265`, `61266`, `61268`, `61269`, `61271`, `61273`, `61275`, `61277`, `61279`, `61280`, `61281`, `61283`, `61285`, `61286`, `61287`, `61289`, `61291`, `61293`, `61295`, `61296`, `61297`, `61299`, `61300`, `61302`, `61304`, `61306`, `61307`, `61309`, `61311`, `61313`, `61315`, `61316`, `61318`, `61320`, `61322`, `61324`, `61325`, `61326`, `61328`, `61330`, `61332`, `61333`, `61335`, `61336`, `61337`, `61339`, `61341`, `61343`, `61345`, `61347`, `61349`, `61351`, `61352`, `61354`, `61355`, `61357`, `61358`, `61360`, `61361`, `61363`, `61364`, `61365`, `61367`, `61368`, `61369`, `61371`, `61373`, `61375`, `61377`, `61379`, `61381`, `61383`, `61387`, `61389`, `61391`, `61392`, `61394`, `61396`, `61398`, `61399`, `61401`, `61403`, `61404`, `61405`, `61407`, `272`, `61408`, `61410`, `61412`, `61414`, `61415`, `61416`, `61420`, `61422`, `61424`, `61427`, `61429`, `61431`, `61433`, `61436`, `61438`, `61439`, `61442`, `61444`, `61447`, `61449`, `61450`, `61452`, `61454`, `61456`, `61459`, `61461`, `61462`, `61464`, `61466`, `61467`, `61469`, `61470`, `61472`, `61476`, `61478`, `61480`, `61484`, `61486`, `61488`, `61490`, `61491`, `61493`, `61495`, `61496`, `61498`, `61500`, `61502`, `61503`, `61505`, `61506`, `61508`, `61510`, `61513`, `61514`, `61516`, `61518`, `61521`, `61522`, `61523`, `61524`, `61525`, `61527`, `61528`, `61530`, `61531`, `61533`, `61535`, `61537`, `61539`, `61540`, `61541`, `61542`, `61543`, `61544`, `61545`, `61547`, `61549`, `61551`, `61553`, `61555`, `61559`, `61561`, `61562`, `61564`, `61565`, `61566`, `61568`, `61571`, `61573`, `61575`, `61577`, `61580`, `61582`, `61584`, `61585`, `61586`, `61588`, `61589`, `61590`, `61592`, `61595`, `61596`, `61598`, `61600`, `61602`, `61604`, `61606`, `61607`, `61608`, `61610`, `61612`, `61613`, `61614`, `61616`, `61618`, `61620`, `61624`, `61625`, `61628`, `61629`, `61630`, `61632`, `61634`, `61636`, `61638`, `61641`, `61645`, `61647`, `61651`, `61653`, `61656`, `61658`, `61660`, `61662`, `61664`, `61666`, `61668`, `61670`, `61672`, `61673`, `61675`, `61677`, `61679`, `61680`, `61682`, `61684`, `61686`, `61688`, `61690`, `61691`, `61693`, `61695`, `61697`, `61701`, `61702`, `61703`, `61705`, `61707`, `61708`, `61710`, `61712`, `61714`, `61716`, `61717`, `61719`, `61721`, `29340`, `61723`, `61725`, `61726`, `61728`, `61731`, `61733`, `61734`, `61735`, `61738`, `61740`, `61741`, `61743`, `61744`, `61746`, `61748`, `61749`, `61751`, `61753`, `61755`, `61756`, `61757`, `61759`, `61761`, `61763`, `61765`, `61767`, `61768`, `61770`, `61771`, `61772`, `61773`, `61775`, `61777`, `61779`, `61781`, `61782`, `61784`, `61785`, `61787`, `61789`, `61791`, `61792`, `61794`, `61796`, `61798`, `61801`, `61803`, `61806`, `61808`, `61809`, `61810`, `61811`, `61813`, `61815`, `61817`, `61818`, `61820`, `61822`, `61823`, `61825`, `61826`, `61828`, `61830`, `61831`, `61832`, `61834`, `61836`, `61838`, `61839`, `61841`, `61842`, `61844`, `61847`, `61849`, `61850`, `61853`, `61855`, `61859`, `61861`, `61864`, `61868`, `61870`, `61874`, `61875`, `61877`, `61879`, `61881`, `61883`, `61885`, `61889`, `61891`, `61894`, `61896`, `61898`, `61899`, `61904`, `61908`, `61910`, `61912`, `61914`, `61916`, `61918`, `61919`, `61923`, `61924`, `61926`, `61928`, `61930`, `61932`, `61934`, `61936`, `61938`, `61940`, `61942`, `61943`, `61945`, `61949`, `61951`, `61952`, `61954`, `61956`, `61957`, `61959`, `61961`, `61963`, `61964`, `61965`, `61966`, `61969`, `61971`, `61973`, `61974`, `61975`, `61977`, `61980`, `61981`, `61983`, `61985`, `61987`, `61989`, `61990`, `61992`, `61994`, `61996`, `61997`, `61999`, `62000`, `62002`, `62003`, `62005`, `62006`, `62008`, `62009`, `62010`, `62011`, `62013`, `62015`, `62016`, `62018`, `62020`, `62022`, `62024`, `62025`, `62027`, `62029`, `62031`, `62033`, `62035`, `62037`, `62039`, `62041`, `62045`, `62047`, `62049`, `62051`, `62053`, `62055`, `62056`, `62064`, `62066`, `62068`, `62070`, `62071`, `62073`, `62075`, `62076`, `62078`, `62080`, `62082`, `62084`, `62086`, `62089`, `62091`, `62092`, `62096`, `62097`, `62099`, `62101`, `62102`, `62104`, `62106`, `62107`, `62108`, `62110`, `62112`, `62113`, `62114`, `62116`, `62117`, `62118`, `62119`, `62121`, `62123`, `62124`, `62126`, `62127`, `62129`, `62130`, `62132`, `62134`, `62135`, `62136`, `62138`, `62140`, `62142`, `62143`, `62144`, `62145`, `62147`, `62148`, `62151`, `62153`, `62155`, `62156`, `62158`, `62160`, `62162`, `62164`, `62166`, `62168`, `62169`, `62171`, `62172`, `62174`, `62175`, `62177`, `62178`, `62180`, `62182`, `62183`, `62185`, `62187`, `62189`, `62191`, `62193`, `62195`, `62196`, `62197`, `62199`, `62201`, `62203`, `62205`, `62207`, `62209`, `62211`, `62213`, `62215`, `62216`, `62218`, `62220`, `62222`, `62223`, `62225`, `62227`, `62229`, `62231`, `62232`, `62234`, `62236`, `62238`, `62239`, `62246`, `62248`, `62252`, `62254`, `62256`, `62257`, `62259`, `62260`, `62262`, `62264`, `62266`, `62268`, `62270`, `62273`, `62275`, `62277`, `62279`, `62281`, `62283`, `62284`, `62285`, `62287`, `62289`, `62290`, `62291`, `62292`, `62293`, `62295`, `62297`, `62300`, `62303`, `62306`, `62307`, `62308`, `62309`, `62310`, `62313`, `62315`, `62317`, `62318`, `62320`, `62321`, `62323`, `62324`, `62326`, `62327`, `62329`, `62330`, `62332`, `62333`, `62336`, `62337`, `62339`, `62341`, `62343`, `62344`, `62345`, `62348`, `62350`, `62351`, `62352`, `62354`, `62355`, `62357`, `62359`, `62361`, `62362`, `62364`, `62365`, `62367`, `62369`, `62371`, `62373`, `62375`, `62377`, `62379`, `62381`, `62383`, `62385`, `62387`, `62390`, `62392`, `62393`, `62395`, `62397`, `62399`, `62401`, `62403`, `62406`, `62408`, `62410`, `62411`, `62413`, `62414`, `62416`, `62418`, `62419`, `62421`, `62423`, `62424`, `62426`, `62428`, `62429`, `62430`, `62431`, `62433`, `62434`, `62436`, `62439`, `62441`, `62443`, `62446`, `62450`, `62451`, `62453`, `62455`, `62457`, `62459`, `62461`, `62464`, `62465`, `62467`, `62468`, `62470`, `62472`, `62474`, `62476`, `62477`, `62479`, `62481`, `62483`, `62485`, `62487`, `62489`, `62490`, `62492`, `62493`, `62499`, `62501`, `62503`, `62505`, `62506`, `62509`, `62511`, `62513`, `62515`, `62516`, `62517`, `62519`, `62521`, `62523`, `62525`, `62526`, `62528`, `62530`, `62532`, `62534`, `62536`, `62538`, `62540`, `62542`, `62544`, `62546`, `62548`, `62550`, `62552`, `62554`, `62555`, `62557`, `62559`, `62561`, `62563`, `62565`, `62567`, `62569`, `62570`, `62572`, `62574`, `62576`, `62578`, `62580`, `62581`, `62583`, `62585`, `62587`, `62588`, `62591`, `62592`, `62593`, `62595`, `62601`, `62604`, `62606`, `62609`, `62611`, `62615`, `62617`, `62621`, `62623`, `62624`, `62625`, `62627`, `62631`, `62633`, `62634`, `62635`, `62636`, `62639`, `62641`, `62643`, `62646`, `62647`, `62649`, `62651`, `62652`, `62653`, `62654`, `62655`, `62656`, `62658`, `62660`, `62663`, `62665`, `62667`, `62668`, `62670`, `62672`, `62674`, `62675`, `62677`, `62679`, `62681`, `62682`, `62683`, `62685`, `62686`, `62688`, `62691`, `62693`, `62694`, `62695`, `62696`, `62698`, `62700`, `62702`, `62704`, `62706`, `62708`, `62709`, `62710`, `62712`, `62714`, `62717`, `62719`, `62722`, `62725`, `62726`, `62728`, `62729`, `62731`, `62735`, `62736`, `62738`, `62740`, `62742`, `62744`, `62746`, `62748`, `62750`, `62752`, `62754`, `62755`, `62758`, `62761`, `62763`, `62764`, `62766`, `62768`, `62771`, `62773`, `62774`, `62776`, `62778`, `62780`, `62781`, `62782`, `62783`, `62785`, `62787`, `62788`, `62791`, `62792`, `62793`, `62795`, `62797`, `62799`, `62801`, `62803`, `62805`, `62807`, `62809`, `62811`, `62813`, `62815`, `62817`, `62818`, `62819`, `62821`, `62823`, `62825`, `62827`, `62829`, `62830`, `62831`, `62832`, `62834`, `62836`, `62838`, `62840`, `62842`, `62843`, `62845`, `62847`, `62849`, `62851`, `62854`, `62859`, `62860`, `62863`, `62865`, `62867`, `62869`, `62870`, `62871`, `62873`, `62875`, `62876`, `62877`, `62878`, `62880`, `62881`, `62883`, `62885`, `62886`, `62889`, `62891`, `62893`, `62895`, `62897`, `62898`, `62900`, `62901`, `62904`, `62906`, `62908`, `62910`, `62912`, `62913`, `62915`, `62916`, `62918`, `62920`, `62922`, `62924`, `62926`, `62928`, `62930`, `62932`, `62935`, `62938`, `62940`, `62942`, `62944`, `62946`, `62948`, `62950`, `62952`, `62954`, `62956`, `62957`, `62959`, `62961`, `62963`, `62964`, `62966`, `62967`, `62968`, `62970`, `62972`, `62973`, `62975`, `62977`, `62978`, `62980`, `62981`, `62982`, `62984`, `62986`, `62988`, `62990`, `62992`, `62997`, `62999`, `63004`, `63006`, `63010`, `63012`, `63015`, `63017`, `63018`, `63020`, `63022`, `63024`, `63025`, `63027`, `63029`, `63031`, `63033`, `63035`, `63037`, `63039`, `63041`, `63045`, `63046`, `63047`, `63049`, `63050`, `63052`, `63054`, `63055`, `63057`, `63059`, `63061`, `63062`, `63064`, `63068`, `63070`, `63072`, `63074`, `63078`, `63080`, `63082`, `63084`, `63086`, `63088`, `63090`, `63093`, `63095`, `63097`, `63099`, `63101`, `63103`, `63105`, `63107`, `63109`, `63110`, `63112`, `63114`, `63118`, `63120`, `63121`, `63123`, `63125`, `63127`, `63128`, `63129`, `63131`, `63133`, `63136`, `63137`, `63138`, `63140`, `63141`, `63142`, `63143`, `63145`, `63147`, `63149`, `63150`, `63152`, `63154`, `63156`, `63158`, `63160`, `63161`, `63163`, `63165`, `63166`, `63168`, `63170`, `63172`, `63175`, `63177`, `63179`, `63180`, `63183`, `63187`, `63189`, `63190`, `63192`, `63194`, `63196`, `63198`, `63200`, `63202`, `63204`, `63206`, `63208`, `63209`, `63211`, `63213`, `63215`, `63217`, `63219`, `63221`, `63222`, `63223`, `63224`, `63226`, `63227`, `63228`, `63229`, `63230`, `63232`, `63234`, `63236`, `63239`, `63242`, `63244`, `63248`, `63249`, `63250`, `63252`, `63253`, `63254`, `63256`, `63258`, `63259`, `63261`, `63262`, `63264`, `63266`, `63268`, `63270`, `63271`, `63273`, `63276`, `63278`, `63279`, `63281`, `63284`, `63285`, `63286`, `63287`, `63288`, `63290`, `63291`, `63293`, `63295`, `63296`, `63298`, `63300`, `63301`, `63302`, `63304`, `63306`, `63310`, `63312`, `63313`, `63315`, `63318`, `63320`, `63322`, `63324`, `63325`, `63327`, `63328`, `63330`, `63332`, `63333`, `63335`, `63337`, `63339`, `63341`, `63343`, `63344`, `63346`, `63348`, `63350`, `63352`, `63353`, `63355`, `63356`, `63358`, `63360`, `63361`, `63363`, `63364`, `63366`, `63368`, `63372`, `63374`, `63377`, `63379`, `63380`, `63382`, `63384`, `63385`, `63387`, `63388`, `63390`, `63391`, `63395`, `63399`, `63401`, `63402`, `63404`, `63406`, `63408`, `63410`, `63412`, `63413`, `63416`, `63418`, `63420`, `63421`, `63423`, `63425`, `63428`, `63430`, `63432`, `63434`, `63436`, `63438`, `63440`, `63442`, `63443`, `63445`, `63447`, `63448`, `63450`, `63451`, `63453`, `63454`, `63455`, `63456`, `63458`, `63460`, `63462`, `63464`, `63465`, `63467`, `63469`, `63471`, `63473`, `63474`, `63475`, `63477`, `63479`, `63480`, `63481`, `63488`, `63493`, `63496`, `63498`, `63500`, `63502`, `63507`, `63508`, `63510`, `63512`, `63514`, `63517`, `63520`, `63521`, `63523`, `63525`, `63527`, `63529`, `63531`, `63533`, `63535`, `63537`, `63538`, `63539`, `63541`, `63542`, `63544`, `63545`, `63546`, `63548`, `63549`, `63550`, `63552`, `63553`, `63554`, `63556`, `63558`, `63560`, `63561`, `63563`, `63565`, `63567`, `63569`, `63571`, `63573`, `63576`, `63579`, `63581`, `63583`, `63584`, `63586`, `63588`, `63590`, `63594`, `63595`, `63598`, `63600`, `63603`, `63604`, `63606`, `63608`, `63610`, `63612`, `63614`, `63615`, `63616`, `63619`, `63621`, `63622`, `63624`, `63626`, `63628`, `63631`, `63633`, `63634`, `63635`, `63637`, `63638`, `63639`, `63642`, `63644`, `63646`, `63648`, `63650`, `63652`, `63653`, `63654`, `63656`, `63657`, `63659`, `63661`, `63663`, `63665`, `63666`, `63668`, `63669`, `63671`, `63673`, `63675`, `63677`, `63679`, `63681`, `63683`, `63684`, `63686`, `63688`, `63690`, `63692`, `63693`, `63694`, `63697`, `63699`, `63701`, `63703`, `63705`, `63707`, `63709`, `63711`, `63713`, `63717`, `63719`, `63721`, `63722`, `63723`, `63724`, `63726`, `63728`, `63730`, `63732`, `63733`, `63735`, `63737`, `63738`, `63742`, `63744`, `63745`, `63747`, `63749`, `63750`, `63752`, `63756`, `63757`, `63758`, `63760`, `63762`, `63764`, `63766`, `63768`, `63770`, `63772`, `63774`, `63776`, `63778`, `63779`, `63782`, `63783`, `63785`, `63787`, `63789`, `63791`, `63794`, `63797`, `63799`, `63802`, `63803`, `63805`, `63807`, `63809`, `63811`, `63812`, `63813`, `63814`, `63816`, `63819`, `63820`, `63822`, `63824`, `63826`, `63828`, `63830`, `63831`, `63833`, `63834`, `63838`, `63839`, `63841`, `63843`, `63845`, `63847`, `63849`, `63851`, `63853`, `63854`, `63856`, `63858`, `63860`, `63861`, `63863`, `63865`, `63869`, `63871`, `63876`, `63878`, `63880`, `63882`, `63884`, `63886`, `63887`, `63888`, `63889`, `63892`, `63895`, `63897`, `63899`, `63901`, `63903`, `63906`, `63908`, `63909`, `63910`, `63912`, `63914`, `63916`, `63917`, `63919`, `63921`, `63922`, `63925`, `63927`, `63929`, `63932`, `63934`, `63936`, `63937`, `63941`, `63942`, `63944`, `63946`, `63947`, `63948`, `63950`, `63952`, `63953`, `63955`, `63957`, `63960`, `63961`, `63962`, `63964`, `63966`, `63969`, `63972`, `63976`, `63978`, `63980`, `63982`, `63984`, `63986`, `63988`, `63990`, `63991`, `63993`, `63995`, `63997`, `63999`, `64001`, `64003`, `64005`, `64006`, `64008`, `64010`, `64011`, `64012`, `64014`, `64015`, `64017`, `64019`, `64021`, `64024`, `64026`, `64027`, `64029`, `64031`, `64032`, `64035`, `64038`, `64040`, `64042`, `64044`, `64046`, `64049`, `64050`, `64052`, `64054`, `64056`, `64058`, `64060`, `64062`, `64064`, `64066`, `64068`, `64070`, `64072`, `64074`, `64075`, `64077`, `64079`, `64080`, `64082`, `64084`, `64086`, `64088`, `64090`, `64092`, `64093`, `64095`, `64096`, `64098`, `64099`, `64100`, `64102`, `64104`, `64106`, `64107`, `64109`, `64110`, `64111`, `64112`, `64114`, `64115`, `64117`, `64118`, `64120`, `64122`, `64124`, `64127`, `64128`, `64129`, `64131`, `64133`, `64135`, `64137`, `64139`, `64143`, `64145`, `64146`, `64148`, `64150`, `64151`, `64153`, `64155`, `64156`, `64159`, `64161`, `64163`, `64164`, `64166`, `64167`, `64169`, `64171`, `64172`, `64174`, `64176`, `64177`, `64179`, `64181`, `64183`, `64184`, `64186`, `64187`, `64189`, `64190`, `64192`, `64194`, `64196`, `64197`, `64199`, `64201`, `64206`, `64207`, `64209`, `64210`, `64211`, `64212`, `64214`, `64216`, `64219`, `64220`, `64221`, `64223`, `64224`, `64226`, `64227`, `64229`, `64231`, `64232`, `64234`, `64235`, `64237`, `64239`, `64240`, `64242`, `64244`, `64246`, `64247`, `64248`, `64249`, `64250`, `64251`, `64253`, `64255`, `64256`, `64257`, `64259`, `64261`, `64262`, `64264`, `64266`, `64267`, `64269`, `64271`, `64273`, `64275`, `64276`, `64278`, `64280`, `64282`, `64284`, `64289`, `64291`, `64293`, `64295`, `64297`, `64299`, `64302`, `64305`, `64306`, `64310`, `64312`, `64314`, `64316`, `64317`, `64319`, `64321`, `64323`, `64324`, `64327`, `64328`, `64330`, `64332`, `64333`, `64334`, `64336`, `64338`, `64340`, `64342`, `64344`, `64349`, `64351`, `64354`, `64356`, `64357`, `64359`, `64361`, `64362`, `64364`, `64366`, `64369`, `64370`, `64371`, `64373`, `64375`, `64377`, `64378`, `64380`, `64382`, `64386`, `64388`, `64389`, `64391`, `64393`, `64394`, `64396`, `64398`, `64400`, `64402`, `64404`, `64406`, `64407`, `64408`, `64410`, `64412`, `64414`, `64416`, `64418`, `64419`, `64421`, `64423`, `64425`, `64426`, `64430`, `64432`, `64433`, `64434`, `64436`, `64437`, `64439`, `64441`, `64442`, `64444`, `64445`, `64447`, `64449`, `64451`, `64454`, `64456`, `64458`, `64461`, `64463`, `64465`, `64467`, `64469`, `64471`, `64473`, `64474`, `64476`, `64478`, `64480`, `64482`, `64484`, `64485`, `64487`, `64489`, `64490`, `64491`, `64493`, `64494`, `64495`, `64496`, `64497`, `64499`, `64501`, `64503`, `64504`, `64506`, `64507`, `64509`, `64512`, `64514`, `64516`, `64518`, `64519`, `64521`, `64522`, `64523`, `64525`, `64527`, `64530`, `64532`, `64534`, `64536`, `64537`, `64539`, `64542`, `64543`, `64545`, `64547`, `64549`, `64551`, `64553`, `64554`, `64555`, `64557`, `64559`, `64561`, `64563`, `64564`, `64566`, `64568`, `64570`, `64572`, `64574`, `64575`, `64577`, `64579`, `64581`, `64583`, `64585`, `64586`, `64589`, `64590`, `64592`, `64594`, `64596`, `64598`, `64600`, `64601`, `64603`, `64605`, `64607`, `64609`, `64611`, `64613`, `64615`, `64617`, `64619`, `64621`, `64623`, `64625`, `64626`, `64627`, `64628`, `64630`, `64632`, `64634`, `64636`, `64638`, `64639`, `64641`, `64643`, `64645`, `64647`, `64650`, `64652`, `64656`, `64658`, `64660`, `64662`, `64664`, `64666`, `64667`, `64669`, `64670`, `64672`, `64674`, `64676`, `64678`, `64683`, `64684`, `64686`, `64688`, `64690`, `64691`, `64692`, `64696`, `64698`, `64700`, `64702`, `64704`, `64705`, `64707`, `64708`, `64712`, `64715`, `64716`, `64717`, `64718`, `64721`, `64722`, `64723`, `64725`, `64726`, `64727`, `64729`, `64731`, `64732`, `64735`, `64737`, `64739`, `64741`, `64742`, `64744`, `64745`, `64747`, `64749`, `64750`, `64752`, `64753`, `64755`, `64757`, `64758`, `64759`, `64761`, `64763`, `64765`, `64766`, `64768`, `64769`, `64771`, `64772`, `64773`, `64776`, `64777`, `64778`, `64779`, `64781`, `64782`, `64784`, `64786`, `64789`, `64791`, `64793`, `64797`, `64799`, `64801`, `64803`, `64804`, `64807`, `64808`, `64810`, `64812`, `64814`, `64816`, `64818`, `64820`, `64822`, `64823`, `64826`, `64827`, `64829`, `64830`, `64832`, `64834`, `64836`, `64838`, `64840`, `64842`, `64844`, `64846`, `64848`, `64850`, `64852`, `64854`, `64857`, `64859`, `64862`, `64865`, `64867`, `64868`, `64869`, `64870`, `64872`, `64874`, `64875`, `64877`, `64878`, `64881`, `64883`, `64886`, `64888`, `64890`, `64893`, `64895`, `64897`, `64898`, `64899`, `64901`, `64903`, `64904`, `64905`, `64907`, `64909`, `64911`, `64913`, `64915`, `64917`, `64918`, `64919`, `64920`, `64922`, `64925`, `64927`, `64928`, `64929`, `64930`, `64932`, `64934`, `64936`, `64938`, `64939`, `64940`, `64942`, `64944`, `64946`, `64948`, `64950`, `64952`, `64953`, `64955`, `64957`, `64958`, `64960`, `64961`, `64962`, `64964`, `64966`, `64968`, `64970`, `64973`, `64977`, `64981`, `64982`, `64984`, `64986`, `64988`, `64990`, `64992`, `64994`, `64996`, `64998`, `65000`, `65001`, `65002`, `65004`, `65006`, `65008`, `65010`, `65012`, `65014`, `65016`, `65018`, `65020`, `65021`, `65022`, `65024`, `65026`, `65028`, `65030`, `65032`, `65034`, `65035`, `65036`, `65038`, `65039`, `65041`, `65043`, `65045`, `65047`, `65049`, `65053`, `65055`, `65056`, `65058`, `65060`, `65062`, `65064`, `65065`, `65067`, `65069`, `65071`, `65074`, `65076`, `65078`, `65080`, `65083`, `65085`, `65086`, `65090`, `65091`, `65093`, `65095`, `65096`, `65098`, `65099`, `65101`, `65103`, `65105`, `65107`, `65109`, `65111`, `65112`, `65113`, `65115`, `65118`, `65120`, `65122`, `65124`, `65125`, `65129`, `65131`, `65133`, `65134`, `65137`, `65139`, `65140`, `65142`, `65143`, `65145`, `65146`, `65148`, `65150`, `65151`, `65153`, `65154`, `65156`, `65157`, `65158`, `65159`, `65161`, `65166`, `65167`, `65169`, `65171`, `65172`, `65173`, `65175`, `65176`, `65178`, `65179`, `65180`, `65182`, `65184`, `65186`, `65188`, `65190`, `65192`, `65193`, `65195`, `65196`, `65197`, `65198`, `65199`, `65200`, `65202`, `65204`, `65205`, `65209`, `65211`, `65213`, `65215`, `65217`, `65218`, `65219`, `65220`, `65221`, `65223`, `65226`, `65229`, `65231`, `65233`, `65235`, `65236`, `65239`, `65241`, `65243`, `65245`, `65247`, `65250`, `65251`, `65252`, `65254`, `65257`, `65259`, `65261`, `65263`, `65265`, `65267`, `65268`, `65270`, `65272`, `65273`, `65275`, `65276`, `65278`, `65279`, `65281`, `65284`, `65285`, `65286`, `65287`, `65289`, `65290`, `65292`, `65294`, `65297`, `65299`, `65300`, `65301`, `65302`, `65304`, `65306`, `65308`, `65310`, `65311`, `65313`, `65315`, `65318`, `65319`, `65320`, `65322`, `65324`, `65326`, `65327`, `65329`, `65331`, `65335`, `65337`, `65339`, `65341`, `65342`, `65343`, `65345`, `65346`, `65348`, `65350`, `65352`, `65354`, `65356`, `65357`, `65361`, `65362`, `65364`, `65366`, `65367`, `65369`, `65371`, `65373`, `65374`, `65375`, `65377`, `65378`, `65379`, `65381`, `65382`, `65384`, `65386`, `65388`, `65390`, `65392`, `65394`, `65395`, `65397`, `65399`, `65403`, `65405`, `65406`, `65407`, `65408`, `65410`, `65412`, `65416`, `65420`, `65422`, `65424`, `65425`, `65427`, `65429`, `65433`, `65436`, `65438`, `65439`, `65441`, `65442`, `65443`, `65445`, `65447`, `65449`, `65451`, `65453`, `65455`, `65457`, `65458`, `65460`, `65462`, `65463`, `65465`, `65466`, `65468`, `65469`, `65470`, `65472`, `65474`, `65476`, `65478`, `65479`, `65480`, `65482`, `65483`, `65484`, `65487`, `65489`, `65491`, `65492`, `65494`, `65495`, `65497`, `65499`, `65501`, `65502`, `65503`, `65505`, `65507`, `65509`, `65511`, `65513`, `65514`, `65516`, `65518`, `65519`, `65520`, `65522`, `65524`, `65525`, `65529`, `65531`, `65533`, `65534`, `65536`, `65537`, `65539`, `65541`, `65543`, `65544`, `65546`, `65548`, `65550`, `65552`, `65554`, `65555`, `65557`, `65560`, `65562`, `65564`, `65566`, `65567`, `65569`, `65570`, `65572`, `65574`, `65575`, `65576`, `65578`, `65580`, `65581`, `65583`, `65584`, `65585`, `65587`, `65589`, `65591`, `65593`, `65595`, `65597`, `65598`, `65600`, `65602`, `65603`, `65604`, `65606`, `65608`, `65610`, `65612`, `65614`, `65616`, `65617`, `65618`, `65619`, `65620`, `65622`, `65624`, `65625`, `65627`, `65629`, `65631`, `65633`, `65635`, `65637`, `65638`, `65640`, `65642`, `65644`, `65646`, `65647`, `65649`, `65651`, `65654`, `65656`, `65657`, `65658`, `65660`, `65661`, `65663`, `65666`, `65670`, `65673`, `65674`, `65675`, `65676`, `65678`, `65680`, `65681`, `65683`, `65684`, `65686`, `65688`, `65690`, `65692`, `65694`, `65695`, `65697`, `65699`, `65700`, `65702`, `65704`, `65706`, `65708`, `65709`, `65711`, `65713`, `65715`, `65717`, `65719`, `65720`, `65722`, `65725`, `65726`, `65728`, `65730`, `65731`, `65733`, `65735`, `65739`, `65741`, `65743`, `65744`, `65746`, `65748`, `65750`, `65752`, `65754`, `65756`, `65759`, `65761`, `65762`, `65764`, `65768`, `65770`, `65771`, `65772`, `65773`, `65775`, `65776`, `65778`, `65780`, `65782`, `65783`, `65785`, `65787`, `65789`, `65791`, `65793`, `65794`, `65796`, `65798`, `65799`, `65800`, `65802`, `65805`, `65807`, `65809`, `65811`, `65813`, `65815`, `65817`, `65819`, `65820`, `65821`, `65823`, `65824`, `65826`, `65828`, `65829`, `65831`, `65832`, `65834`, `65836`, `65837`, `65838`, `65839`, `65840`, `65842`, `65846`, `65849`, `65854`, `65858`, `65859`, `65861`, `65865`, `65867`, `65869`, `65871`, `65873`, `65875`, `65877`, `65879`, `65881`, `65884`, `65887`, `65890`, `65892`, `65895`, `65897`, `65899`, `65900`, `65904`, `65906`, `65907`, `65908`, `65909`, `65910`, `65911`, `65912`, `65913`, `65914`, `65916`, `65917`, `65918`, `65920`, `65925`, `65927`, `65929`, `65931`, `65933`, `65935`, `65937`, `65939`, `65941`, `65944`, `65946`, `65948`, `65950`, `65952`, `65953`, `65954`, `65955`, `65958`, `65960`, `65962`, `65964`, `65966`, `65968`, `65969`, `65971`, `65972`, `65974`, `65976`, `65979`, `65981`, `65983`, `65984`, `65985`, `65987`, `65989`, `65991`, `65992`, `65993`, `65994`, `65996`, `65998`, `65999`, `66003`, `66004`, `66006`, `66007`, `66009`, `66010`, `66011`, `66013`, `66015`, `66017`, `66019`, `66021`, `66023`, `66025`, `66026`, `66028`, `66030`, `66031`, `66033`, `66034`, `66036`, `66038`, `66040`, `66041`, `66044`, `66045`, `66046`, `66048`, `66050`, `66051`, `66053`, `66056`, `66057`, `66058`, `66062`, `66063`, `66065`, `66067`, `66068`, `66070`, `66072`, `66074`, `66076`, `66078`, `66080`, `66082`, `66085`, `66086`, `66088`, `66089`, `66092`, `66093`, `66094`, `66095`, `66097`, `66099`, `66100`, `66102`, `66104`, `66106`, `66107`, `66108`, `66109`, `66110`, `66111`, `66113`, `66114`, `66116`, `66119`, `66121`, `66122`, `66124`, `66130`, `66132`, `66133`, `66137`, `66139`, `66141`, `66143`, `66145`, `66147`, `66149`, `66151`, `66153`, `66154`, `66155`, `66156`, `66158`, `66160`, `66162`, `66163`, `66164`, `66165`, `66168`, `66169`, `66171`, `66172`, `66174`, `66175`, `66177`, `66180`, `66181`, `66185`, `66187`, `66188`, `66189`, `66190`, `66192`, `66193`, `66194`, `66195`, `66196`, `66198`, `66200`, `66204`, `66205`, `66206`, `66208`, `66209`, `66211`, `66213`, `66215`, `66216`, `66218`, `66220`, `66221`, `66223`, `66224`, `66226`, `66227`, `66228`, `66230`, `66232`, `66233`, `66234`, `66236`, `66237`, `66239`, `66241`, `66243`, `66244`, `66245`, `66249`, `66251`, `66252`, `66254`, `66256`, `66258`, `66260`, `66261`, `66263`, `66265`, `66267`, `66269`, `66271`, `66272`, `66274`, `66276`, `66278`, `66279`, `66281`, `66283`, `66285`, `66288`, `66289`, `66291`, `66293`, `66294`, `66296`, `66298`, `66300`, `66302`, `66303`, `66305`, `66307`, `66309`, `66311`, `66313`, `66315`, `66320`, `66323`, `66324`, `66325`, `66327`, `66329`, `66331`, `66332`, `66333`, `66335`, `66337`, `66339`, `66341`, `66342`, `66344`, `66345`, `66347`, `66348`, `66350`, `66352`, `66353`, `66355`, `66356`, `66357`, `66358`, `66359`, `66361`, `66362`, `66363`, `66365`, `66367`, `66369`, `66371`, `66374`, `66376`, `66377`, `66378`, `66380`, `66381`, `66383`, `66384`, `66386`, `66388`, `66390`, `66391`, `66393`, `66395`, `66396`, `66398`, `66401`, `66403`, `66404`, `66406`, `66408`, `66410`, `66412`, `66414`, `66416`, `66419`, `66420`, `66421`, `66423`, `66424`, `66425`, `66427`, `66428`, `66430`, `66432`, `66433`, `66434`, `66435`, `66438`, `66440`, `66441`, `66442`, `66444`, `66446`, `66448`, `66450`, `66452`, `66453`, `66455`, `66457`, `66459`, `66460`, `66462`, `66463`, `66464`, `66466`, `66468`, `66469`, `66470`, `66472`, `66475`, `66477`, `66480`, `66483`, `66485`, `66487`, `66491`, `66493`, `66495`, `66497`, `66499`, `66501`, `66503`, `66504`, `66506`, `66508`, `66510`, `66514`, `66515`, `66516`, `66518`, `66519`, `66521`, `66523`, `66524`, `66526`, `66527`, `66528`, `66530`, `66532`, `66533`, `66534`, `66537`, `66539`, `66541`, `66542`, `66544`, `66547`, `66549`, `66551`, `66553`, `66555`, `66557`, `66558`, `66560`, `66562`, `66564`, `66566`, `66568`, `66572`, `66574`, `66576`, `66578`, `66580`, `66582`, `66584`, `66585`, `66586`, `66587`, `66588`, `66589`, `66590`, `66591`, `66593`, `66594`, `66595`, `66597`, `66599`, `66602`, `66604`, `66606`, `66607`, `66609`, `66611`, `66613`, `66615`, `66617`, `66619`, `66621`, `66623`, `66625`, `66626`, `66627`, `66631`, `66633`, `66634`, `66636`, `66638`, `66640`, `66641`, `66643`, `66645`, `66646`, `66648`, `66650`, `66652`, `66654`, `66656`, `66658`, `66661`, `66664`, `66666`, `66668`, `66670`, `66672`, `66675`, `66677`, `66679`, `66681`, `66683`, `66684`, `66686`, `66688`, `66689`, `66690`, `66691`, `66692`, `66695`, `66697`, `66699`, `66701`, `66703`, `66704`, `66705`, `66706`, `66708`, `66711`, `66713`, `66714`, `66715`, `66717`, `66720`, `66721`, `66723`, `66725`, `66727`, `66729`, `66733`, `66735`, `66737`, `66739`, `66741`, `66743`, `66745`, `66746`, `66750`, `66752`, `66757`, `66759`, `66761`, `66762`, `66764`, `66765`, `66767`, `66769`, `66770`, `66773`, `66775`, `66776`, `66778`, `66780`, `66783`, `66785`, `66787`, `66788`, `66789`, `66791`, `66793`, `66795`, `66799`, `66802`, `66803`, `66807`, `66809`, `66811`, `66813`, `66815`, `66816`, `66817`, `66819`, `66822`, `66825`, `66827`, `66829`, `66831`, `66833`, `66836`, `66838`, `66839`, `66841`, `66842`, `66844`, `66845`, `66848`, `66850`, `66851`, `66853`, `66855`, `66856`, `66857`, `66859`, `66860`, `66863`, `66866`, `66867`, `66868`, `66870`, `66872`, `66874`, `66878`, `66880`, `66882`, `66884`, `66886`, `66887`, `66888`, `66890`, `66891`, `66893`, `66894`, `66896`, `66897`, `66898`, `66899`, `66901`, `66902`, `66904`, `66907`, `66909`, `66910`, `66912`, `66914`, `66915`, `66916`, `66920`, `66922`, `66924`, `66926`, `66928`, `66931`, `66933`, `66934`, `66935`, `66936`, `66937`, `66939`, `66941`, `66943`, `66945`, `66947`, `66949`, `66950`, `66953`, `66955`, `66957`, `66959`, `66963`, `66965`, `66968`, `66970`, `66971`, `66973`, `66974`, `66976`, `66978`, `66979`, `66980`, `66981`, `66982`, `66983`, `66984`, `66986`, `66988`, `66989`, `66991`, `66993`, `66995`, `66996`, `66998`, `66999`, `67003`, `67005`, `67006`, `67007`, `67009`, `67011`, `67013`, `67015`, `67016`, `67017`, `67018`, `67020`, `67022`, `67024`, `67026`, `67028`, `67030`, `67032`, `67035`, `67037`, `67040`, `67042`, `67043`, `67045`, `67046`, `67048`, `67049`, `67050`, `67052`, `67053`, `67055`, `67057`, `67058`, `67060`, `67061`, `67062`, `67063`, `67064`, `67067`, `67068`, `67071`, `67073`, `67074`, `67076`, `67080`, `67081`, `67083`, `67085`, `67087`, `67088`, `67090`, `67091`, `67092`, `67097`, `67099`, `67100`, `67102`, `67104`, `67106`, `67108`, `67109`, `67110`, `67113`, `67115`, `67117`, `67119`, `67120`, `67122`, `67124`, `67126`, `67128`, `67130`, `67132`, `67134`, `67136`, `67138`, `67140`, `67142`, `67146`, `67148`, `67152`, `67155`, `67163`, `67165`, `67168`, `67169`, `67172`, `67174`, `67175`, `67177`, `67179`, `67180`, `67182`, `67183`, `67186`, `67188`, `67189`, `67191`, `67193`, `67194`, `67195`, `67197`, `67199`, `67201`, `67205`, `67207`, `67209`, `67210`, `67212`, `67214`, `67216`, `67218`, `67219`, `67221`, `67223`, `67225`, `67227`, `67228`, `67230`, `67231`, `67232`, `67233`, `67235`, `67237`, `67239`, `67242`, `67244`, `67246`, `67248`, `67250`, `67252`, `67254`, `67257`, `67261`, `67263`, `67266`, `67268`, `67270`, `67272`, `67274`, `67276`, `67277`, `67279`, `67282`, `67284`, `67286`, `67289`, `67292`, `67294`, `67296`, `67297`, `67299`, `67300`, `67302`, `67303`, `67305`, `67306`, `67308`, `67309`, `67312`, `67313`, `67314`, `67316`, `67318`, `67319`, `67320`, `67324`, `67325`, `67327`, `67328`, `67329`, `67331`, `67332`, `67334`, `67336`, `67338`, `67339`, `67341`, `67343`, `67345`, `67346`, `67348`, `67350`, `67351`, `67353`, `67355`, `67356`, `67359`, `67360`, `67362`, `67364`, `67365`, `67366`, `67367`, `67368`, `67370`, `67373`, `67375`, `67377`, `67379`, `67381`, `67383`, `67385`, `67388`, `67391`, `67392`, `67394`, `67396`, `67398`, `67400`, `67401`, `67403`, `67405`, `67408`, `67409`, `67410`, `67412`, `67414`, `67415`, `67416`, `67418`, `67420`, `67421`, `67423`, `67425`, `67427`, `67429`, `67431`, `67433`, `67435`, `67437`, `67439`, `67441`, `67442`, `67443`, `67444`, `67445`, `67447`, `67449`, `67450`, `67451`, `67453`, `67454`, `67456`, `67457`, `67458`, `67460`, `67461`, `67463`, `67465`, `67466`, `67467`, `67469`, `67471`, `67473`, `67475`, `67477`, `67479`, `67481`, `67482`, `67483`, `67485`, `67487`, `67488`, `67490`, `67492`, `67495`, `67496`, `67500`, `67501`, `67503`, `67505`, `67506`, `67508`, `67510`, `67512`, `67514`, `67515`, `67517`, `67518`, `67520`, `67522`, `67523`, `67525`, `67526`, `67527`, `67528`, `67529`, `67532`, `67534`, `67536`, `67537`, `67538`, `67540`, `67542`, `67546`, `67549`, `67550`, `67551`, `67552`, `67554`, `67555`, `67556`, `67558`, `67560`, `67561`, `67562`, `67564`, `67566`, `67568`, `67569`, `67570`, `67572`, `67575`, `67576`, `67578`, `67580`, `67582`, `67584`, `67586`, `67591`, `67592`, `67594`, `67595`, `67596`, `67597`, `67598`, `67599`, `67601`, `67603`, `67605`, `67609`, `67611`, `67613`, `67614`, `67615`, `67616`, `67617`, `67618`, `67620`, `67622`, `67623`, `67625`, `67627`, `67629`, `67631`, `67632`, `67634`, `67636`, `67637`, `67639`, `67641`, `67643`, `67645`, `67648`, `67650`, `67652`, `67655`, `67656`, `67658`, `67660`, `67662`, `67664`, `67665`, `67667`, `67668`, `67669`, `67670`, `67671`, `67673`, `67674`, `67675`, `67677`, `67680`, `67682`, `67684`, `67686`, `67690`, `67692`, `67694`, `67696`, `67697`, `67699`, `67700`, `67701`, `67702`, `67705`, `67707`, `67711`, `67713`, `67714`, `67715`, `67716`, `67718`, `67720`, `67721`, `67722`, `67724`, `67725`, `67726`, `67727`, `67728`, `67729`, `67731`, `67733`, `67735`, `67737`, `67739`, `67740`, `67742`, `67744`, `67745`, `67746`, `67747`, `67748`, `67750`, `67751`, `67752`, `67754`, `67756`, `67758`, `67761`, `67763`, `67764`, `67766`, `67769`, `67770`, `18694`, `67774`, `67776`, `67778`, `67780`, `67782`, `67784`, `67786`, `67788`, `67789`, `67791`, `67793`, `67794`, `67796`, `67798`, `67799`, `67802`, `67803`, `67805`, `67807`, `67808`, `67810`, `67811`, `67812`, `67814`, `67815`, `67817`, `67819`, `67822`, `67824`, `67825`, `67827`, `67828`, `67829`, `67831`, `67832`, `67834`, `67838`, `67840`, `67843`, `67845`, `67847`, `67849`, `67850`, `67851`, `67854`, `67855`, `67857`, `67859`, `67861`, `67862`, `67863`, `67865`, `67866`, `67868`, `67871`, `67872`, `67874`, `67877`, `67879`, `67881`, `67883`, `67884`, `67885`, `67887`, `67889`, `67890`, `67892`, `67894`, `67896`, `67898`, `67899`, `67901`, `67902`, `67903`, `67905`, `67907`, `67909`, `67911`, `67913`, `67915`, `67917`, `67918`, `67919`, `67921`, `67923`, `67925`, `67927`, `67929`, `67931`, `67933`, `67935`, `67937`, `67939`, `67940`, `67942`, `67944`, `67948`, `67950`, `67951`, `67953`, `67954`, `67956`, `67958`, `67960`, `67962`, `67964`, `67965`, `67966`, `67968`, `67970`, `67972`, `67973`, `67974`, `67977`, `67978`, `67980`, `67981`, `67982`, `67983`, `67985`, `67986`, `67988`, `67990`, `67992`, `67994`, `67995`, `67996`, `67998`, `67999`, `68002`, `68004`, `68006`, `68008`, `68010`, `68011`, `68013`, `68016`, `68018`, `68020`, `68021`, `68023`, `68025`, `68026`, `68027`, `68029`, `68030`, `68032`, `68033`, `68034`, `68035`, `68037`, `68039`, `68041`, `68043`, `68045`, `68047`, `68048`, `68050`, `68051`, `68052`, `68053`, `68055`, `68057`, `68059`, `68060`, `68062`, `68064`, `68067`, `68068`, `68069`, `68073`, `68075`, `68077`, `68079`, `68081`, `68084`, `68086`, `68089`, `68091`, `68093`, `68095`, `68097`, `68098`, `68100`, `68102`, `68104`, `68105`, `68107`, `68109`, `68111`, `68112`, `68113`, `68115`, `68116`, `68117`, `68119`, `68121`, `68123`, `68125`, `68126`, `68129`, `68131`, `68133`, `68134`, `68136`, `68137`, `68139`, `68140`, `68142`, `68145`, `68148`, `68149`, `68151`, `68153`, `68155`, `68157`, `68160`, `68166`, `68167`, `68168`, `68169`, `68171`, `68173`, `68174`, `68176`, `68178`, `68180`, `68181`, `68182`, `68184`, `68186`, `68188`, `68189`, `68191`, `68192`, `68194`, `68196`, `68198`, `68199`, `68200`, `68201`, `68203`, `68205`, `68207`, `68209`, `68211`, `68213`, `68215`, `68218`, `68220`, `68221`, `68222`, `68223`, `68224`, `68225`, `68227`, `68229`, `68230`, `68234`, `68236`, `68238`, `68240`, `68242`, `68245`, `68246`, `68247`, `68248`, `68250`, `68252`, `68254`, `68256`, `68257`, `68259`, `68261`, `68262`, `68263`, `68265`, `68267`, `68270`, `68271`, `68273`, `68275`, `68276`, `68279`, `68280`, `68281`, `68283`, `68285`, `68286`, `68288`, `68290`, `68291`, `68293`, `68295`, `68296`, `68297`, `68300`, `68301`, `68303`, `68305`, `68307`, `68308`, `68309`, `68311`, `68313`, `68315`, `68316`, `68318`, `68319`, `68321`, `68323`, `68324`, `68325`, `68327`, `68328`, `68329`, `68330`, `68331`, `68333`, `68335`, `68339`, `68341`, `68343`, `68345`, `68346`, `68348`, `68350`, `68353`, `68355`, `68356`, `68358`, `68360`, `68361`, `68363`, `68365`, `68368`, `68370`, `68372`, `68374`, `68375`, `68376`, `68377`, `68378`, `68380`, `68383`, `68384`, `68385`, `68387`, `68389`, `68391`, `68392`, `68394`, `68397`, `68402`, `68404`, `68406`, `68408`, `68411`, `68413`, `68415`, `68417`, `68418`, `68421`, `68423`, `68425`, `68426`, `68429`, `68430`, `68432`, `68433`, `68434`, `68436`, `68438`, `68440`, `68441`, `68443`, `68445`, `68446`, `68447`, `68449`, `68450`, `68451`, `68453`, `68454`, `68456`, `68457`, `68459`, `68461`, `68463`, `68464`, `68466`, `68467`, `68468`, `68469`, `68471`, `68472`, `68473`, `68475`, `68476`, `68478`, `68480`, `68482`, `68484`, `68485`, `68487`, `68489`, `68490`, `68491`, `68493`, `68494`, `68495`, `68496`, `68497`, `68499`, `68500`, `68502`, `68504`, `68505`, `68507`, `68508`, `68510`, `68512`, `68513`, `68515`, `68516`, `68518`, `68520`, `68522`, `68525`, `68526`, `68528`, `68531`, `68532`, `68534`, `68536`, `68538`, `68539`, `68541`, `68542`, `68543`, `68546`, `68549`, `68551`, `68553`, `68555`, `68557`, `68559`, `68561`, `68562`, `68565`, `68566`, `68567`, `68568`, `68570`, `68571`, `68573`, `68575`, `68577`, `68578`, `68580`, `68581`, `68582`, `68584`, `68586`, `68588`, `68589`, `68591`, `68593`, `68595`, `68597`, `68598`, `68599`, `68600`, `68602`, `68604`, `68605`, `68606`, `68608`, `68609`, `68611`, `68613`, `68615`, `68617`, `68619`, `68621`, `68622`, `68625`, `68627`, `68628`, `68630`, `68632`, `68633`, `68635`, `68636`, `68638`, `68639`, `68642`, `68643`, `68645`, `68647`, `68649`, `68650`, `68651`, `68652`, `68653`, `68655`, `68657`, `68658`, `68661`, `68663`, `68665`, `68667`, `68669`, `68670`, `68671`, `68672`, `68674`, `68676`, `68677`, `68679`, `68681`, `68683`, `68684`, `68686`, `68689`, `68690`, `68693`, `68694`, `68696`, `68698`, `68700`, `68701`, `68704`, `68706`, `68707`, `68709`, `68711`, `68712`, `68714`, `68716`, `68718`, `68720`, `68722`, `68724`, `68726`, `68728`, `68729`, `68730`, `68732`, `68734`, `68736`, `68737`, `68738`, `68739`, `68740`, `68742`, `68743`, `68745`, `68746`, `68748`, `68750`, `68751`, `68752`, `68755`, `68756`, `68757`, `68760`, `68761`, `68763`, `68765`, `68767`, `68768`, `68770`, `68773`, `68774`, `68776`, `68777`, `68779`, `68780`, `68781`, `68783`, `68785`, `68787`, `68788`, `68790`, `68792`, `68794`, `68795`, `68797`, `68798`, `68799`, `68801`, `68802`, `68803`, `68805`, `68806`, `68808`, `68811`, `68812`, `68814`, `68816`, `68818`, `68820`, `68821`, `68824`, `68825`, `68827`, `68828`, `68829`, `68831`, `68834`, `68835`, `68837`, `68840`, `68842`, `68844`, `68846`, `68850`, `68851`, `68852`, `68853`, `68857`, `68858`, `68859`, `68861`, `68863`, `68865`, `68867`, `68869`, `68870`, `68872`, `68873`, `68874`, `68876`, `68878`, `68880`, `68881`, `68883`, `68884`, `68885`, `68887`, `68889`, `68892`, `68894`, `68896`, `68898`, `68902`, `68904`, `68905`, `68907`, `68909`, `68911`, `68913`, `68914`, `68916`, `68917`, `68919`, `68921`, `68923`, `68924`, `68925`, `68927`, `68928`, `68930`, `68931`, `68933`, `68937`, `68938`, `68941`, `68942`, `68944`, `68946`, `68947`, `68949`, `68951`, `68953`, `68954`, `68955`, `68957`, `68959`, `68961`, `68963`, `68966`, `68968`, `68970`, `68972`, `68974`, `68977`, `68978`, `68982`, `68984`, `68986`, `68988`, `68991`, `68992`, `68993`, `68995`, `68997`, `68998`, `68999`, `69002`, `69003`, `69004`, `69005`, `69006`, `69009`, `69011`, `69013`, `69014`, `69016`, `69018`, `69019`, `69022`, `69026`, `69028`, `69029`, `69031`, `69033`, `69035`, `69036`, `69038`, `69040`, `69042`, `69044`, `69045`, `69047`, `69050`, `69051`, `69052`, `69055`, `69057`, `69059`, `69060`, `69062`, `69064`, `69066`, `69068`, `69070`, `69071`, `69072`, `69074`, `69075`, `69079`, `69081`, `69083`, `69085`, `69086`, `69087`, `69089`, `69091`, `69093`, `69094`, `69096`, `69097`, `69099`, `69100`, `69102`, `69103`, `69105`, `69106`, `69108`, `69109`, `69111`, `69113`, `69115`, `69116`, `69118`, `69120`, `69121`, `69124`, `69125`, `69126`, `69127`, `69129`, `69131`, `69132`, `69134`, `69136`, `69137`, `69139`, `69141`, `69143`, `69144`, `69145`, `69146`, `69147`, `69149`, `69151`, `69152`, `69154`, `69156`, `69157`, `69160`, `69161`, `69162`, `69163`, `69164`, `69165`, `69166`, `69167`, `69169`, `69172`, `69174`, `69176`, `69178`, `69179`, `69181`, `69183`, `69184`, `69186`, `69187`, `69189`, `69191`, `69192`, `69194`, `69195`, `69197`, `69198`, `69200`, `69201`, `69203`, `69205`, `69207`, `69209`, `69211`, `69213`, `69215`, `69217`, `69219`, `69221`, `69223`, `69226`, `69229`, `69230`, `69232`, `69234`, `69236`, `69237`, `69240`, `69242`, `69243`, `69245`, `69246`, `69247`, `69248`, `69250`, `69252`, `69254`, `69257`, `69258`, `69259`, `69261`, `69262`, `69264`, `69266`, `69268`, `69270`, `69273`, `69275`, `69277`, `69279`, `69281`, `69283`, `69286`, `69288`, `69289`, `69290`, `69291`, `69293`, `69295`, `69297`, `69298`, `69304`, `69305`, `69308`, `69310`, `69312`, `69314`, `69318`, `69319`, `69320`, `69321`, `69323`, `69324`, `69326`, `69328`, `69330`, `69331`, `69333`, `69335`, `69336`, `69338`, `69341`, `69344`, `69346`, `69348`, `69351`, `69354`, `69357`, `69358`, `69359`, `69361`, `69363`, `69364`, `69366`, `69368`, `69370`, `69372`, `69373`, `69375`, `69377`, `69379`, `69381`, `69383`, `69385`, `69387`, `69388`, `69390`, `69392`, `69394`, `69396`, `69398`, `69399`, `69401`, `69403`, `69405`, `69406`, `69408`, `69410`, `69412`, `69413`, `69415`, `69416`, `69418`, `69419`, `69421`, `69423`, `69425`, `69427`, `69430`, `69431`, `69432`, `69433`, `69436`, `69437`, `69439`, `69440`, `69442`, `69444`, `69445`, `69447`, `69449`, `69451`, `69452`, `69454`, `69455`, `69456`, `69458`, `69459`, `69461`, `69463`, `69465`, `69466`, `69468`, `69469`, `69471`, `69472`, `69474`, `69478`, `69480`, `69481`, `69483`, `69484`, `69488`, `69489`, `69491`, `69493`, `69495`, `69497`, `69499`, `69500`, `69501`, `69502`, `69503`, `69505`, `69506`, `69508`, `69509`, `69510`, `69511`, `69513`, `69515`, `69517`, `69521`, `69523`, `69525`, `69527`, `69529`, `69530`, `69533`, `69535`, `69537`, `69539`, `69541`, `69543`, `69545`, `69547`, `69548`, `69551`, `69553`, `69556`, `69558`, `69560`, `69562`, `69564`, `69565`, `69566`, `69567`, `69569`, `69571`, `69574`, `69576`, `69578`, `69580`, `69582`, `69584`, `69586`, `69588`, `69590`, `69592`, `69594`, `69597`, `69599`, `69602`, `69604`, `69605`, `69607`, `69608`, `69613`, `69615`, `69617`, `69619`, `69621`, `69623`, `69625`, `69627`, `69630`, `69631`, `69632`, `69633`, `69635`, `69637`, `69639`, `69641`, `69643`, `69645`, `69647`, `69649`, `69651`, `69653`, `69654`, `69655`, `69657`, `69659`, `69661`, `69663`, `69665`, `69667`, `69669`, `69671`, `69673`, `69675`, `69676`, `69677`, `69678`, `69679`, `69683`, `69685`, `69688`, `69690`, `69692`, `69693`, `69695`, `69697`, `69699`, `69701`, `69703`, `69706`, `69708`, `69710`, `69711`, `69713`, `69714`, `69716`, `69718`, `69720`, `69721`, `69722`, `69724`, `69725`, `69727`, `69729`, `69731`, `69733`, `69734`, `69736`, `69738`, `69740`, `69742`, `69744`, `69746`, `69748`, `69750`, `69753`, `69756`, `69758`, `69759`, `69761`, `69763`, `69764`, `69765`, `69767`, `69769`, `69771`, `69773`, `69775`, `69777`, `69779`, `69780`, `69782`, `69784`, `69786`, `69787`, `69789`, `69791`, `69792`, `69794`, `69797`, `69799`, `69800`, `69802`, `69804`, `69805`, `69806`, `69808`, `69810`, `69811`, `69812`, `69814`, `69816`, `69818`, `69819`, `69821`, `69823`, `69824`, `69826`, `69828`, `69830`, `69831`, `69832`, `69835`, `69837`, `69839`, `69841`, `69842`, `69844`, `69845`, `69847`, `69849`, `69850`, `69852`, `69853`, `69854`, `69855`, `69857`, `69859`, `69860`, `69863`, `69865`, `69866`, `69868`, `69869`, `69870`, `69872`, `69874`, `69876`, `69877`, `69879`, `69882`, `69884`, `69888`, `69890`, `69893`, `69894`, `69896`, `69898`, `69900`, `69901`, `69902`, `69904`, `69906`, `69908`, `69910`, `69911`, `69912`, `69913`, `69914`, `69916`, `69918`, `69920`, `69922`, `69924`, `69926`, `69929`, `69931`, `69933`, `69935`, `69936`, `69938`, `69940`, `69941`, `69943`, `69945`, `69947`, `69949`, `69950`, `38693`, `69952`, `69953`, `69955`, `69956`, `69958`, `69960`, `69962`, `69964`, `69966`, `69968`, `69969`, `69970`, `69972`, `69973`, `69975`, `69977`, `69978`, `69980`, `69981`, `69983`, `69984`, `69986`, `69987`, `69988`, `69990`, `69992`, `69996`, `69998`, `70000`, `70001`, `70003`, `70005`, `70006`, `70007`, `70008`, `70010`, `70012`, `70014`, `70015`, `70019`, `70021`, `70022`, `70023`, `70025`, `70027`, `70029`, `70030`, `70032`, `70033`, `70035`, `70037`, `70039`, `70041`, `70043`, `70045`, `70047`, `70048`, `70050`, `70055`, `70056`, `70057`, `70061`, `70064`, `70066`, `70068`, `70070`, `70072`, `70073`, `70074`, `70075`, `70077`, `70079`, `70081`, `70082`, `70084`, `70086`, `70088`, `70090`, `70092`, `70093`, `70094`, `70096`, `70097`, `70099`, `70100`, `70102`, `70104`, `70106`, `70108`, `70110`, `70111`, `70113`, `70115`, `70117`, `70119`, `70122`, `70124`, `70126`, `70128`, `70130`, `70132`, `70134`, `70136`, `70138`, `70140`, `70142`, `70144`, `70146`, `70148`, `70150`, `70153`, `70154`, `70155`, `70157`, `70159`, `70161`, `70162`, `70164`, `70165`, `70167`, `70170`, `70172`, `70174`, `70175`, `70177`, `70178`, `70180`, `70181`, `70182`, `70184`, `70186`, `70187`, `70188`, `70190`, `70192`, `70193`, `70194`, `70195`, `70197`, `70198`, `70200`, `70202`, `70203`, `70204`, `70206`, `70208`, `70210`, `70212`, `70213`, `70215`, `70216`, `70217`, `70218`, `70220`, `70222`, `70223`, `70225`, `70228`, `70230`, `70231`, `70233`, `70235`, `70238`, `70239`, `70241`, `70246`, `70247`, `70249`, `70252`, `70254`, `70255`, `70257`, `70258`, `70260`, `70262`, `70263`, `70265`, `70267`, `70268`, `70270`, `70272`, `70274`, `70275`, `70277`, `70280`, `70282`, `70285`, `70286`, `70288`, `70290`, `70292`, `70295`, `70297`, `70299`, `70301`, `70303`, `70307`, `70308`, `70310`, `70312`, `70316`, `70318`, `70320`, `70322`, `70323`, `70325`, `70327`, `70329`, `70331`, `70336`, `70338`, `70341`, `70342`, `70343`, `70345`, `70347`, `70349`, `70351`, `70353`, `70355`, `70357`, `70359`, `70360`, `70362`, `70363`, `70364`, `70367`, `70370`, `70372`, `70374`, `70375`, `70377`, `70379`, `70381`, `70382`, `70384`, `70385`, `70387`, `70388`, `70390`, `70393`, `70394`, `70395`, `70396`, `70398`, `70400`, `70402`, `70404`, `70406`, `70408`, `70410`, `70411`, `70413`, `70415`, `70416`, `70418`, `70420`, `70422`, `70424`, `70426`, `70428`, `70430`, `70432`, `70434`, `70435`, `70437`, `70440`, `70441`, `70442`, `70443`, `70445`, `70446`, `70448`, `70450`, `70451`, `70452`, `70454`, `70455`, `70457`, `70459`, `70460`, `70462`, `70464`, `70467`, `70469`, `70471`, `70473`, `70475`, `70476`, `70478`, `70479`, `70481`, `70483`, `70486`, `70489`, `70491`, `70493`, `70494`, `70495`, `70496`, `70498`, `70499`, `70500`, `70501`, `70502`, `70504`, `70506`, `70508`, `70510`, `70512`, `70514`, `70516`, `70518`, `70520`, `70521`, `70523`, `70525`, `70526`, `70527`, `70529`, `70531`, `70532`, `70534`, `70536`, `70538`, `70542`, `70544`, `70546`, `70548`, `70552`, `70554`, `70556`, `70558`, `70559`, `70560`, `70562`, `70563`, `70564`, `70566`, `70568`, `70569`, `70570`, `70572`, `70573`, `70574`, `70576`, `70578`, `70579`, `70580`, `70582`, `70584`, `70586`, `70587`, `70589`, `70591`, `70593`, `70595`, `70597`, `70598`, `70599`, `70600`, `70602`, `70603`, `70604`, `70606`, `70608`, `70609`, `70611`, `70612`, `70614`, `70616`, `70617`, `70619`, `70621`, `70622`, `70624`, `70626`, `70629`, `70630`, `70631`, `70634`, `70636`, `70637`, `70638`, `70639`, `70640`, `70641`, `70642`, `70643`, `70644`, `70646`, `70647`, `70649`, `70650`, `70652`, `70653`, `70655`, `70657`, `70659`, `70661`, `70663`, `70665`, `70666`, `70667`, `70668`, `70670`, `70671`, `70674`, `70676`, `70677`, `70678`, `70681`, `70682`, `70687`, `70690`, `70692`, `70693`, `70694`, `70695`, `70697`, `70699`, `70701`, `70706`, `70708`, `70712`, `70714`, `70716`, `70718`, `70720`, `70721`, `70722`, `70723`, `70724`, `70725`, `70726`, `70728`, `70730`, `70732`, `70733`, `70734`, `70736`, `70737`, `70738`, `70740`, `70742`, `70744`, `70746`, `70747`, `70750`, `70752`, `70754`, `70756`, `70758`, `70759`, `70760`, `70762`, `70765`, `70766`, `70767`, `70768`, `70770`, `70772`, `70774`, `70775`, `70777`, `70779`, `70781`, `70782`, `70784`, `70785`, `70786`, `70790`, `70792`, `70794`, `70795`, `70797`, `70799`, `70802`, `70804`, `70806`, `70807`, `70810`, `70811`, `70812`, `70813`, `70815`, `70817`, `70818`, `70820`, `70822`, `70823`, `70825`, `70827`, `70828`, `70829`, `70832`, `70837`, `70839`, `70840`, `70842`, `70844`, `70846`, `70847`, `70849`, `70850`, `70852`, `70853`, `70854`, `70855`, `70857`, `70859`, `70860`, `70861`, `70863`, `70865`, `70866`, `70868`, `70869`, `70872`, `70873`, `70878`, `70879`, `70881`, `70882`, `70884`, `70886`, `70888`, `70890`, `70891`, `70892`, `70894`, `70898`, `70900`, `70902`, `70904`, `70906`, `70908`, `70910`, `70912`, `70914`, `70916`, `70917`, `70918`, `70919`, `70921`, `70923`, `70925`, `70926`, `70927`, `70929`, `70930`, `70931`, `70933`, `70934`, `70935`, `70937`, `70938`, `70939`, `70941`, `70942`, `70943`, `70945`, `70947`, `70948`, `70950`, `70951`, `70953`, `70954`, `70955`, `70956`, `70957`, `70959`, `70961`, `70962`, `70964`, `70965`, `70966`, `70968`, `70970`, `70973`, `70975`, `70979`, `70981`, `70983`, `70985`, `70987`, `70989`, `70990`, `70992`, `70994`, `70997`, `70999`, `71001`, `71003`, `71005`, `71006`, `71007`, `71009`, `71010`, `71012`, `71013`, `71014`, `71016`, `71018`, `71020`, `71022`, `71024`, `71025`, `71027`, `71028`, `71029`, `71031`, `71033`, `71034`, `71037`, `71038`, `71040`, `71043`, `71044`, `71046`, `71048`, `71050`, `71052`, `71055`, `71057`, `71058`, `71060`, `71062`, `71064`, `71069`, `71071`, `71073`, `71075`, `71076`, `71078`, `71080`, `71082`, `71084`, `71086`, `71088`, `71090`, `71091`, `71092`, `71093`, `71095`, `71096`, `71097`, `71099`, `71103`, `71105`, `71109`, `71110`, `71112`, `71113`, `71115`, `71117`, `71119`, `71120`, `71122`, `71124`, `71125`, `71127`, `71128`, `71130`, `71132`, `71135`, `71137`, `71139`, `71142`, `71143`, `71145`, `71147`, `71149`, `71150`, `71152`, `71153`, `71155`, `71157`, `71159`, `71162`, `71164`, `71165`, `71167`, `71168`, `71170`, `71171`, `71173`, `71174`, `71175`, `71176`, `71180`, `71182`, `71184`, `71186`, `71189`, `71191`, `71193`, `71195`, `71196`, `71198`, `71203`, `71204`, `71205`, `71207`, `71209`, `71211`, `71213`, `71216`, `71218`, `71220`, `71221`, `71223`, `71225`, `71226`, `71227`, `71229`, `71230`, `71231`, `71232`, `71235`, `71238`, `71241`, `71243`, `71244`, `71245`, `71247`, `71249`, `71250`, `71253`, `71254`, `71256`, `71258`, `71260`, `71262`, `71264`, `71266`, `71268`, `71270`, `71272`, `71274`, `71276`, `71277`, `71279`, `71281`, `71283`, `71285`, `71289`, `71291`, `71294`, `71298`, `71299`, `71300`, `71302`, `71303`, `71305`, `71306`, `71308`, `71310`, `71312`, `71314`, `71316`, `71318`, `71320`, `71322`, `71324`, `71326`, `71327`, `71329`, `71331`, `71332`, `71334`, `71335`, `71336`, `71337`, `71339`, `71340`, `71341`, `71343`, `71345`, `71347`, `71349`, `71351`, `71353`, `71355`, `71357`, `71359`, `71360`, `71362`, `71364`, `71366`, `71368`, `71370`, `71372`, `71374`, `71375`, `71376`, `71379`, `71380`, `71381`, `71382`, `71384`, `71386`, `71387`, `71388`, `71389`, `71391`, `71393`, `71395`, `71397`, `71399`, `71401`, `71402`, `71403`, `71406`, `71408`, `71410`, `71412`, `71413`, `71416`, `71417`, `71419`, `71421`, `71423`, `71425`, `71427`, `71429`, `71430`, `71432`, `71434`, `71436`, `71438`, `71440`, `71442`, `71444`, `71445`, `71447`, `71449`, `71451`, `71452`, `71453`, `71456`, `71458`, `71459`, `71461`, `71462`, `71464`, `71466`, `71468`, `71470`, `71472`, `71473`, `71475`, `71477`, `71478`, `71482`, `71484`, `71486`, `71488`, `71489`, `71491`, `71493`, `71495`, `71497`, `71499`, `71501`, `71503`, `71504`, `71505`, `71506`, `71507`, `71509`, `71510`, `71512`, `71515`, `71517`, `71518`, `71520`, `71522`, `71525`, `71527`, `71530`, `71531`, `71532`, `71534`, `71535`, `71537`, `71539`, `71541`, `71543`, `71544`, `71546`, `71549`, `71553`, `71557`, `71558`, `71560`, `71561`, `71562`, `71563`, `71567`, `71572`, `71573`, `71576`, `71577`, `71578`, `71580`, `71582`, `71583`, `71585`, `71587`, `71589`, `71591`, `71592`, `71593`, `71594`, `71598`, `71599`, `71601`, `71603`, `71604`, `71605`, `71607`, `71608`, `71610`, `71611`, `71612`, `71613`, `71615`, `71616`, `71618`, `71619`, `71621`, `71623`, `71624`, `71626`, `71628`, `71631`, `71632`, `71633`, `71635`, `71637`, `71639`, `71641`, `71642`, `71643`, `71644`, `71646`, `71647`, `71649`, `71651`, `71652`, `71654`, `71656`, `71658`, `71660`, `71662`, `71664`, `71666`, `71668`, `71669`, `71670`, `71671`, `71673`, `71677`, `71679`, `71681`, `71683`, `71685`, `71686`, `71688`, `71690`, `71692`, `71693`, `71695`, `71697`, `71701`, `71703`, `71705`, `71707`, `71708`, `71709`, `71711`, `71712`, `71716`, `71717`, `71718`, `71720`, `71721`, `71722`, `71724`, `71726`, `71728`, `71729`, `71730`, `71731`, `71732`, `71733`, `71734`, `71736`, `71739`, `71741`, `71745`, `71747`, `71749`, `71751`, `71755`, `71757`, `71759`, `71760`, `71761`, `71763`, `71765`, `71767`, `71769`, `71770`, `71771`, `71773`, `71775`, `71777`, `71778`, `71780`, `71781`, `71782`, `71783`, `71785`, `71787`, `71788`, `71789`, `71791`, `71793`, `71795`, `71797`, `71799`, `71800`, `71801`, `71803`, `71805`, `71806`, `71808`, `71810`, `71812`, `71813`, `71815`, `71818`, `71822`, `71824`, `71826`, `71828`, `71830`, `71833`, `71835`, `71837`, `71839`, `71841`, `71842`, `71844`, `71846`, `71847`, `71849`, `71851`, `71853`, `71855`, `71858`, `71860`, `71861`, `71862`, `71864`, `71867`, `71869`, `71871`, `71874`, `71875`, `71876`, `71877`, `71879`, `71881`, `71885`, `71887`, `71889`, `71891`, `71893`, `71895`, `71897`, `71899`, `71904`, `71906`, `71909`, `71914`, `71916`, `71918`, `71922`, `71924`, `71927`, `71928`, `71929`, `71930`, `71931`, `71932`, `71934`, `71936`, `71937`, `71939`, `71940`, `71941`, `71943`, `71945`, `71948`, `71950`, `71952`, `71953`, `71955`, `71956`, `71958`, `71962`, `71963`, `71965`, `71966`, `71968`, `71970`, `71972`, `71973`, `71975`, `71977`, `71980`, `71981`, `71983`, `71985`, `71987`, `71988`, `71989`, `71990`, `71991`, `71992`, `71993`, `71994`, `71995`, `71997`, `71999`, `72003`, `72004`, `72006`, `72009`, `72012`, `72016`, `72018`, `72020`, `72022`, `72024`, `72025`, `72026`, `72028`, `72029`, `72030`, `72032`, `72034`, `72036`, `72038`, `72039`, `72041`, `72043`, `72045`, `72049`, `72050`, `72052`, `72054`, `72056`, `72057`, `72059`, `72060`, `72062`, `72064`, `72066`, `72071`, `72072`, `72074`, `72076`, `72078`, `72080`, `72082`, `72083`, `72085`, `72087`, `72089`, `72093`, `72094`, `72095`, `72096`, `72098`, `72100`, `72102`, `72104`, `72106`, `72108`, `72109`, `72110`, `72111`, `72113`, `72115`, `72117`, `72119`, `72121`, `72123`, `72125`, `72126`, `72129`, `72130`, `72133`, `72135`, `72137`, `72139`, `72140`, `72142`, `72145`, `72147`, `72149`, `72151`, `72152`, `72153`, `72156`, `72157`, `72158`, `72162`, `72164`, `72165`, `72167`, `72169`, `72170`, `72172`, `72174`, `72175`, `72177`, `72181`, `72183`, `72185`, `72187`, `72190`, `72191`, `72193`, `72197`, `72198`, `72199`, `72200`, `72202`, `72204`, `72206`, `72208`, `72211`, `72213`, `72215`, `72216`, `72219`, `72220`, `72223`, `72225`, `72227`, `72228`, `72230`, `72231`, `72232`, `72233`, `72235`, `72237`, `72238`, `72240`, `72242`, `72244`, `72246`, `72247`, `72248`, `72250`, `72251`, `72252`, `72255`, `72257`, `72259`, `72260`, `72262`, `72263`, `72264`, `72266`, `72267`, `72269`, `72271`, `72273`, `72275`, `72276`, `72278`, `72279`, `72281`, `72282`, `72284`, `72286`, `72287`, `72289`, `72292`, `72293`, `72295`, `72296`, `72298`, `72300`, `72302`, `72304`, `72305`, `72307`, `72308`, `72310`, `72312`, `72314`, `72315`, `72317`, `72319`, `72320`, `72322`, `72325`, `72330`, `72332`, `72334`, `72336`, `72337`, `72338`, `72340`, `72341`, `72342`, `72344`, `72346`, `72348`, `72350`, `72351`, `72353`, `72356`, `72358`, `72360`, `72361`, `72362`, `72366`, `72369`, `72373`, `72375`, `72377`, `72379`, `72383`, `72386`, `72388`, `72390`, `72392`, `72394`, `72396`, `72397`, `72399`, `72401`, `72403`, `72404`, `72406`, `72407`, `72409`, `72411`, `72412`, `72413`, `72414`, `72415`, `72417`, `72419`, `72420`, `72421`, `72423`, `72424`, `72427`, `72429`, `72430`, `72432`, `72434`, `72438`, `72440`, `72442`, `72444`, `72445`, `72449`, `72450`, `72451`, `72452`, `72454`, `72455`, `72456`, `72458`, `72460`, `72462`, `72464`, `72466`, `72468`, `72470`, `72472`, `72474`, `72476`, `72478`, `72480`, `72481`, `72483`, `72485`, `72487`, `72488`, `72489`, `72491`, `72493`, `72495`, `72496`, `72498`, `72500`, `72502`, `72504`, `72506`, `72509`, `72511`, `72515`, `72517`, `72519`, `72521`, `72523`, `72525`, `72527`, `72528`, `72529`, `72531`, `72533`, `72535`, `72536`, `72537`, `72538`, `72539`, `72541`, `72544`, `72546`, `72548`, `72550`, `72551`, `72553`, `72554`, `72555`, `72557`, `72559`, `72561`, `72562`, `72566`, `72569`, `72571`, `72574`, `72576`, `72577`, `72579`, `72581`, `72582`, `72583`, `72584`, `72586`, `72587`, `72588`, `72590`, `72592`, `72594`, `72596`, `72597`, `72600`, `72602`, `72605`, `72606`, `72607`, `72609`, `72610`, `72612`, `72614`, `72616`, `72617`, `72618`, `72620`, `72622`, `72624`, `72626`, `72627`, `72629`, `72630`, `72632`, `72634`, `72636`, `72638`, `72640`, `72643`, `72644`, `72646`, `72648`, `72650`, `72652`, `72653`, `72654`, `72655`, `72658`, `72659`, `72661`, `72662`, `72663`, `72664`, `72665`, `72666`, `72667`, `72669`, `72671`, `72673`, `72674`, `72675`, `72676`, `72677`, `72678`, `72680`, `72681`, `72683`, `72685`, `72690`, `72692`, `72694`, `72696`, `72697`, `72699`, `72701`, `72702`, `72703`, `72705`, `72707`, `72709`, `72711`, `72712`, `72714`, `72715`, `72717`, `72719`, `72721`, `72724`, `72725`, `72728`, `72729`, `72732`, `72734`, `72735`, `72736`, `72738`, `72739`, `72741`, `72743`, `72745`, `72746`, `72747`, `72748`, `72749`, `72753`, `72754`, `72756`, `72758`, `72760`, `72761`, `72765`, `72766`, `72770`, `72772`, `72774`, `72776`, `72777`, `72779`, `72781`, `72782`, `72783`, `72785`, `72787`, `72788`, `72792`, `72794`, `72796`, `72797`, `72798`, `72800`, `72802`, `72804`, `72806`, `72807`, `72809`, `72811`, `72814`, `72816`, `72818`, `72820`, `72821`, `72823`, `72825`, `72827`, `72829`, `72830`, `72831`, `72833`, `72834`, `72835`, `72836`, `72838`, `72840`, `72842`, `72844`, `72846`, `72848`, `72849`, `72851`, `72852`, `72854`, `72856`, `72857`, `72859`, `72861`, `72863`, `72864`, `72865`, `72867`, `72869`, `72870`, `72873`, `72875`, `72877`, `72878`, `72880`, `72882`, `72884`, `72887`, `72889`, `72891`, `72893`, `72895`, `72897`, `72899`, `72901`, `72902`, `72903`, `72906`, `72908`, `72910`, `72912`, `72915`, `72917`, `72918`, `72919`, `72921`, `72922`, `72924`, `72926`, `72927`, `72928`, `72932`, `72934`, `72936`, `72938`, `72941`, `72943`, `72944`, `72946`, `72948`, `72949`, `72951`, `72952`, `72954`, `72955`, `72957`, `72960`, `72961`, `72963`, `72965`, `72967`, `72968`, `72969`, `72972`, `72974`, `72975`, `72977`, `72982`, `72984`, `72985`, `72987`, `72989`, `72993`, `72996`, `72998`, `73000`, `73003`, `73005`, `73006`, `73007`, `73009`, `73010`, `73012`, `73013`, `73015`, `73017`, `73021`, `73023`, `73025`, `73028`, `73030`, `73032`, `73035`, `73036`, `73038`, `73040`, `73042`, `73044`, `73045`, `73046`, `73048`, `73050`, `73052`, `73054`, `73057`, `73059`, `73060`, `73061`, `73063`, `73065`, `73067`, `73068`, `73070`, `73071`, `73072`, `73074`, `73076`, `73077`, `73079`, `73081`, `73082`, `73084`, `73086`, `73087`, `73090`, `73093`, `73095`, `73097`, `73098`, `73100`, `73102`, `73103`, `73105`, `73106`, `73108`, `73110`, `73112`, `73113`, `73115`, `73117`, `73118`, `73120`, `73122`, `73124`, `73126`, `73127`, `73129`, `73132`, `73133`, `73135`, `73136`, `73138`, `73139`, `73140`, `73142`, `73144`, `73146`, `73148`, `73150`, `73152`, `73154`, `73155`, `73156`, `73157`, `73159`, `73160`, `73161`, `73163`, `73165`, `73166`, `73168`, `73170`, `73172`, `73173`, `73174`, `73175`, `73177`, `73178`, `73179`, `73182`, `73184`, `73186`, `73187`, `73189`, `73191`, `73192`, `73193`, `73194`, `73195`, `73196`, `73198`, `73199`, `73201`, `73203`, `73206`, `73207`, `73209`, `73210`, `73212`, `73214`, `73216`, `73217`, `73219`, `73222`, `73223`, `73225`, `73229`, `73230`, `73232`, `73234`, `73236`, `73238`, `73240`, `73242`, `73244`, `73246`, `73248`, `73250`, `73251`, `73252`, `73254`, `73256`, `73258`, `73259`, `73261`, `73262`, `73263`, `73265`, `73267`, `73268`, `73269`, `73271`, `73273`, `73275`, `73276`, `73278`, `73280`, `73282`, `73283`, `73284`, `73285`, `73286`, `73287`, `73289`, `73290`, `73291`, `73293`, `73294`, `73296`, `73301`, `73303`, `73305`, `73307`, `73309`, `73310`, `73314`, `73316`, `73319`, `73321`, `73322`, `73325`, `73327`, `73329`, `73330`, `73331`, `73333`, `73335`, `73337`, `73338`, `73342`, `73344`, `73345`, `73346`, `73347`, `73349`, `73350`, `73351`, `73353`, `73357`, `73359`, `73361`, `73362`, `73364`, `73366`, `73367`, `73368`, `73370`, `73372`, `73374`, `73375`, `73376`, `73377`, `73379`, `73381`, `73383`, `73385`, `73386`, `73388`, `73390`, `73391`, `73393`, `73395`, `73398`, `73399`, `73400`, `73402`, `73403`, `73404`, `73406`, `73407`, `73411`, `73412`, `73414`, `73416`, `73418`, `73420`, `73421`, `73423`, `73425`, `73427`, `73429`, `73430`, `73432`, `73433`, `73435`, `73437`, `73438`, `73439`, `73441`, `73442`, `73443`, `73444`, `73446`, `73447`, `73448`, `73450`, `73452`, `73454`, `73457`, `73458`, `73460`, `73462`, `73464`, `73465`, `73467`, `73468`, `73469`, `73471`, `73472`, `73474`, `73475`, `73477`, `73480`, `73481`, `73483`, `73484`, `73486`, `73488`, `73490`, `73492`, `73494`, `73497`, `73499`, `73501`, `73503`, `73505`, `73506`, `73507`, `73508`, `73510`, `73512`, `73514`, `73516`, `73519`, `73521`, `73523`, `73526`, `73528`, `73530`, `73531`, `73533`, `73535`, `73536`, `73539`, `73540`, `73541`, `73543`, `73544`, `73546`, `73548`, `73549`, `73551`, `73553`, `73555`, `73557`, `73559`, `73561`, `73563`, `73565`, `73567`, `73573`, `28343`, `73574`, `73576`, `73578`, `73580`, `73582`, `73583`, `73584`, `73585`, `73587`, `73589`, `73591`, `73593`, `73595`, `73596`, `73600`, `73602`, `73604`, `73605`, `73606`, `73608`, `73610`, `73611`, `73613`, `73614`, `73616`, `73618`, `73619`, `73620`, `73622`, `73624`, `73626`, `73628`, `73630`, `73631`, `73633`, `73635`, `73636`, `73640`, `73642`, `73644`, `73645`, `73646`, `73647`, `73648`, `73649`, `73651`, `73652`, `73654`, `73656`, `73657`, `73659`, `73661`, `73664`, `73666`, `73667`, `73669`, `73671`, `73673`, `73674`, `73675`, `73679`, `73681`, `73682`, `73684`, `73685`, `73687`, `73689`, `73694`, `73696`, `73697`, `73699`, `73701`, `73702`, `73704`, `73705`, `73707`, `73709`, `73710`, `73713`, `73716`, `73718`, `73719`, `73720`, `73722`, `73723`, `73725`, `73727`, `73728`, `73732`, `73734`, `73736`, `73738`, `73740`, `73741`, `73743`, `73745`, `73746`, `73748`, `73749`, `73751`, `73752`, `73753`, `73757`, `73759`, `73760`, `73761`, `73763`, `73765`, `73766`, `73768`, `73769`, `73773`, `73775`, `73777`, `73778`, `73780`, `73782`, `73784`, `73786`, `73788`, `73789`, `73792`, `73795`, `73797`, `73799`, `73800`, `73801`, `73803`, `73805`, `73807`, `73809`, `73810`, `73812`, `73814`, `73817`, `73819`, `73820`, `73822`, `73824`, `73826`, `73828`, `73830`, `73832`, `73834`, `73836`, `73838`, `73840`, `73842`, `73844`, `73845`, `73847`, `73849`, `73850`, `73851`, `73852`, `73854`, `73857`, `73858`, `73859`, `73861`, `73863`, `73864`, `73865`, `73867`, `73869`, `73871`, `73873`, `73874`, `73875`, `73879`, `73882`, `73883`, `73885`, `73887`, `73889`, `73891`, `73893`, `73895`, `73897`, `73899`, `73900`, `73903`, `73904`, `73905`, `73907`, `73909`, `73910`, `73911`, `73913`, `73915`, `73916`, `73917`, `73921`, `73922`, `73924`, `73925`, `73927`, `73929`, `73931`, `73933`, `73935`, `73936`, `73938`, `73940`, `73941`, `73944`, `73945`, `73947`, `73948`, `73949`, `73951`, `73953`, `73955`, `73957`, `73959`, `73961`, `73963`, `73966`, `73967`, `73968`, `73972`, `73973`, `73975`, `73977`, `73978`, `73979`, `73981`, `73982`, `73984`, `73986`, `73988`, `73989`, `73991`, `73993`, `73996`, `73997`, `73998`, `73999`, `74002`, `74004`, `74006`, `74008`, `74010`, `74012`, `74014`, `74016`, `74017`, `74019`, `74021`, `74022`, `74023`, `74024`, `74025`, `74026`, `74027`, `74029`, `74030`, `74032`, `74034`, `74035`, `74036`, `74038`, `74040`, `74042`, `74044`, `74046`, `74048`, `74051`, `74053`, `74055`, `74057`, `74060`, `74062`, `74064`, `74066`, `74068`, `74069`, `74071`, `74073`, `74075`, `74077`, `74078`, `74080`, `74081`, `74082`, `74084`, `74086`, `74088`, `74090`, `74091`, `74092`, `74094`, `74096`, `74098`, `74100`, `74102`, `74103`, `74104`, `74106`, `74108`, `74109`, `74112`, `74114`, `74116`, `74117`, `74118`, `74121`, `74123`, `74124`, `74126`, `74128`, `74130`, `74132`, `74134`, `74136`, `74139`, `74140`, `74142`, `74143`, `74145`, `74147`, `74149`, `74150`, `74152`, `74155`, `74156`, `74158`, `74160`, `74162`, `74163`, `74164`, `74166`, `74169`, `74171`, `74173`, `74175`, `74177`, `74179`, `74180`, `74183`, `74185`, `74186`, `74187`, `74190`, `74192`, `74194`, `74197`, `74198`, `74200`, `74201`, `74203`, `74204`, `74205`, `74207`, `74209`, `74210`, `74212`, `74214`, `74216`, `74221`, `74223`, `74225`, `74226`, `74228`, `74230`, `74232`, `74233`, `74235`, `74238`, `74240`, `74242`, `74243`, `74245`, `74246`, `74248`, `74250`, `74251`, `74252`, `74253`, `74255`, `74257`, `74259`, `74261`, `74263`, `74265`, `74266`, `74267`, `74268`, `74270`, `74272`, `74273`, `74274`, `74276`, `74278`, `74279`, `74281`, `74283`, `74285`, `74287`, `74288`, `74290`, `74292`, `74294`, `74295`, `74297`, `74299`, `74300`, `74303`, `74304`, `74307`, `74308`, `74310`, `74312`, `74314`, `74315`, `74317`, `74319`, `74320`, `74322`, `74323`, `74324`, `74326`, `74328`, `74330`, `74333`, `74335`, `74336`, `74337`, `74339`, `74345`, `74347`, `74350`, `74353`, `74354`, `74355`, `74357`, `74359`, `74360`, `74362`, `74364`, `74365`, `74367`, `74369`, `74370`, `74371`, `74373`, `74375`, `74377`, `74379`, `74381`, `74385`, `74387`, `74388`, `74389`, `74391`, `74392`, `74395`, `74396`, `74397`, `74398`, `74400`, `74402`, `74404`, `74405`, `74406`, `74407`, `74409`, `74410`, `74412`, `74413`, `74416`, `74418`, `74420`, `74423`, `74425`, `74426`, `74431`, `74433`, `74434`, `74436`, `74437`, `74439`, `74440`, `74442`, `74444`, `74445`, `74446`, `74447`, `74449`, `74450`, `74452`, `74453`, `74454`, `74456`, `74458`, `74460`, `74462`, `74464`, `74466`, `74468`, `74470`, `74472`, `74474`, `74476`, `74478`, `74480`, `74484`, `74486`, `74489`, `74490`, `74491`, `74493`, `74495`, `74497`, `74499`, `74500`, `74501`, `74502`, `74504`, `74506`, `74509`, `74511`, `74513`, `74517`, `74518`, `74520`, `74521`, `74522`, `74524`, `74525`, `74528`, `74530`, `74533`, `74535`, `74537`, `74538`, `74540`, `74542`, `74543`, `74546`, `74548`, `74549`, `74552`, `74554`, `74556`, `74557`, `74558`, `74560`, `74561`, `74563`, `74564`, `74566`, `74568`, `74569`, `74570`, `74572`, `74573`, `74575`, `74577`, `74578`, `74580`, `74584`, `74586`, `74588`, `74589`, `74590`, `74594`, `74596`, `74597`, `74598`, `74600`, `74601`, `74603`, `74604`, `74605`, `74607`, `74608`, `74610`, `74612`, `74613`, `74615`, `74617`, `74618`, `74619`, `74621`, `74622`, `74624`, `74625`, `74627`, `74630`, `74632`, `74633`, `74634`, `74636`, `74638`, `74640`, `74642`, `74643`, `74645`, `74647`, `74649`, `74652`, `74655`, `74657`, `74659`, `74661`, `74664`, `74665`, `74666`, `74667`, `74669`, `74671`, `74673`, `74676`, `74677`, `74679`, `74680`, `74681`, `74683`, `74685`, `74687`, `74688`, `74689`, `74691`, `74693`, `74694`, `74695`, `74697`, `74699`, `74700`, `74702`, `74703`, `74705`, `74708`, `74710`, `74711`, `74713`, `74714`, `74716`, `74718`, `74721`, `74723`, `74725`, `74726`, `74730`, `74732`, `74734`, `74736`, `74738`, `74740`, `74742`, `74744`, `74746`, `74748`, `74751`, `74752`, `74754`, `74757`, `74758`, `74760`, `74762`, `74764`, `74766`, `74768`, `74770`, `74771`, `74773`, `74775`, `74778`, `74779`, `74780`, `74782`, `74783`, `74785`, `74786`, `74788`, `74790`, `74791`, `74793`, `74797`, `74798`, `74799`, `74801`, `74803`, `74804`, `74806`, `74807`, `74809`, `74811`, `74813`, `74814`, `74816`, `74818`, `74820`, `74822`, `74824`, `74825`, `74827`, `74828`, `74831`, `74833`, `74834`, `74836`, `74838`, `74839`, `74841`, `74842`, `19402`, `74843`, `74845`, `74846`, `74847`, `74848`, `74850`, `74852`, `74853`, `74855`, `74857`, `74859`, `74861`, `74862`, `74863`, `74865`, `74866`, `74867`, `74868`, `74870`, `74872`, `74874`, `74877`, `74879`, `74881`, `74883`, `74884`, `74885`, `74886`, `74888`, `74890`, `74892`, `74894`, `74895`, `74896`, `74897`, `74898`, `74899`, `74903`, `74905`, `74906`, `74908`, `74909`, `74910`, `74911`, `74913`, `74915`, `74917`, `74919`, `74921`, `74923`, `74924`, `74926`, `74928`, `74930`, `74932`, `74934`, `74936`, `74937`, `74939`, `74941`, `74943`, `74945`, `74948`, `74949`, `74950`, `74952`, `74954`, `74956`, `74958`, `74961`, `74962`, `74963`, `74965`, `74967`, `74969`, `74970`, `74971`, `74973`, `74975`, `74977`, `74978`, `74979`, `74980`, `74982`, `74983`, `74986`, `74987`, `74989`, `74991`, `74993`, `74995`, `74998`, `75000`, `75002`, `75005`, `75006`, `75008`, `75009`, `75011`, `75012`, `75014`, `75016`, `75017`, `75019`, `75021`, `75023`, `75024`, `75025`, `75026`, `75028`, `75030`, `75032`, `75035`, `75036`, `75037`, `75040`, `75042`, `75044`, `75046`, `75048`, `75049`, `75051`, `75053`, `75054`, `75055`, `75056`, `75058`, `75060`, `75062`, `75063`, `75065`, `75066`, `75068`, `75070`, `75072`, `75074`, `75076`, `75078`, `75079`, `75080`, `75082`, `75084`, `75087`, `75089`, `75091`, `75094`, `75095`, `75096`, `75098`, `75100`, `75101`, `75102`, `75104`, `75106`, `75108`, `75109`, `75111`, `75113`, `75115`, `75117`, `75119`, `75120`, `75123`, `75125`, `75127`, `75128`, `75129`, `75130`, `75131`, `75133`, `75135`, `75137`, `75140`, `75142`, `75143`, `75145`, `75146`, `75148`, `75150`, `75152`, `75155`, `75158`, `75160`, `75161`, `75163`, `75165`, `75167`, `75169`, `75171`, `75172`, `75173`, `75176`, `75177`, `75179`, `75181`, `75183`, `75184`, `75185`, `75186`, `75188`, `75190`, `75192`, `75195`, `75196`, `75198`, `75200`, `75202`, `75204`, `75205`, `75207`, `75209`, `75211`, `75212`, `75213`, `75215`, `75216`, `75218`, `75220`, `75221`, `75223`, `75226`, `75229`, `75231`, `75233`, `75234`, `75235`, `75237`, `75239`, `75240`, `75242`, `75243`, `75244`, `75246`, `75248`, `75250`, `75252`, `75253`, `75255`, `75257`, `75258`, `75259`, `75261`, `75263`, `75267`, `75269`, `75271`, `75273`, `75275`, `75276`, `75277`, `75279`, `75280`, `75282`, `75284`, `75286`, `75287`, `75289`, `75291`, `75292`, `75293`, `75294`, `75296`, `75298`, `75299`, `75300`, `75301`, `75303`, `75305`, `75306`, `75308`, `75310`, `75312`, `75314`, `75315`, `75316`, `75319`, `75321`, `75323`, `75325`, `75326`, `75328`, `75329`, `75331`, `75332`, `75333`, `75335`, `75336`, `75338`, `75339`, `75341`, `75343`, `75344`, `75345`, `75346`, `75349`, `75351`, `75353`, `75354`, `75356`, `75358`, `75359`, `75360`, `75361`, `75363`, `75364`, `75365`, `75366`, `75367`, `75369`, `75371`, `75373`, `75374`, `75376`, `75377`, `75379`, `75381`, `75383`, `75385`, `75386`, `75390`, `75391`, `75392`, `75394`, `75395`, `75396`, `75398`, `75399`, `75401`, `75404`, `75405`, `75407`, `75409`, `75410`, `75412`, `75414`, `75417`, `75419`, `75421`, `75424`, `75425`, `75426`, `75429`, `75433`, `75434`, `75435`, `75437`, `75439`, `75442`, `75443`, `75445`, `75447`, `75449`, `75451`, `75452`, `75456`, `75458`, `75461`, `75463`, `75464`, `75467`, `75469`, `75470`, `75471`, `75473`, `75476`, `75477`, `75480`, `75481`, `75483`, `75485`, `75486`, `75488`, `75489`, `75491`, `75493`, `75494`, `75495`, `75497`, `75498`, `75499`, `75500`, `75502`, `75505`, `75507`, `75509`, `75510`, `75512`, `75513`, `75516`, `75517`, `75518`, `75520`, `75524`, `75526`, `75528`, `75530`, `75532`, `75533`, `75535`, `75536`, `75538`, `75540`, `75543`, `75545`, `75546`, `75548`, `75550`, `75552`, `75554`, `75555`, `75557`, `75559`, `75561`, `75564`, `75566`, `75567`, `75568`, `75570`, `75573`, `75575`, `75576`, `75578`, `75579`, `75581`, `75583`, `75585`, `75586`, `75588`, `75591`, `75592`, `75593`, `75594`, `75595`, `75598`, `75600`, `75602`, `75604`, `75606`, `75607`, `75609`, `75611`, `75616`, `75618`, `75620`, `75622`, `75623`, `75625`, `75627`, `75628`, `75630`, `75632`, `75634`, `75636`, `75642`, `75644`, `75646`, `75647`, `75649`, `75651`, `75652`, `75654`, `75655`, `75657`, `75658`, `75660`, `75662`, `75664`, `75666`, `75668`, `75670`, `75672`, `75675`, `75676`, `75677`, `75679`, `75681`, `75683`, `75684`, `75685`, `75686`, `75690`, `75692`, `75694`, `75696`, `75698`, `75700`, `75702`, `75704`, `75706`, `75708`, `75710`, `75712`, `75713`, `75715`, `75717`, `75718`, `75720`, `75722`, `75723`, `75727`, `75729`, `75730`, `75732`, `75734`, `75737`, `75738`, `75740`, `75742`, `75744`, `75745`, `75747`, `75748`, `75750`, `75751`, `75753`, `75755`, `75758`, `75759`, `75760`, `75761`, `75763`, `75765`, `75766`, `75767`, `75769`, `75770`, `75772`, `75774`, `75775`, `75776`, `75778`, `75779`, `75780`, `75782`, `75783`, `75784`, `75786`, `75788`, `75789`, `75790`, `75792`, `75794`, `75795`, `75797`, `75799`, `75802`, `75804`, `75805`, `75807`, `75809`, `75811`, `75814`, `75816`, `75818`, `75820`, `75822`, `75825`, `75827`, `75829`, `75830`, `75832`, `75834`, `75837`, `75838`, `75840`, `75842`, `75844`, `75845`, `75846`, `75848`, `75850`, `75852`, `75853`, `75854`, `75856`, `75857`, `75858`, `75860`, `75862`, `75865`, `75867`, `75870`, `75871`, `75872`, `75874`, `75876`, `75877`, `75879`, `75880`, `75882`, `75884`, `75886`, `75887`, `75889`, `75890`, `75892`, `75893`, `75894`, `75898`, `75900`, `75902`, `75904`, `75905`, `75906`, `75908`, `75910`, `75912`, `75914`, `75915`, `75917`, `75918`, `75920`, `75926`, `75927`, `75929`, `75930`, `75932`, `75934`, `75935`, `75936`, `75938`, `75939`, `75941`, `75942`, `75944`, `75946`, `75948`, `75949`, `75951`, `75953`, `75954`, `75956`, `75957`, `75958`, `75959`, `75960`, `75961`, `75963`, `75965`, `75967`, `75968`, `75969`, `75971`, `75972`, `75973`, `75974`, `75975`, `75976`, `75978`, `75980`, `75981`, `75983`, `75984`, `75985`, `75987`, `75992`, `75995`, `75996`, `75998`, `75999`, `76001`, `76004`, `76006`, `76008`, `76010`, `76012`, `76014`, `76016`, `76018`, `76019`, `76021`, `76023`, `76024`, `76026`, `76028`, `76029`, `76030`, `76032`, `76034`, `76037`, `76039`, `76041`, `76043`, `76046`, `76047`, `76049`, `76051`, `76052`, `76054`, `76056`, `76058`, `76060`, `76062`, `76064`, `76066`, `76067`, `76069`, `76070`, `76072`, `76074`, `76075`, `76077`, `76079`, `76081`, `76083`, `76084`, `76086`, `76088`, `76090`, `76091`, `76092`, `76095`, `76097`, `76099`, `76101`, `76103`, `76106`, `76108`, `76110`, `76112`, `76113`, `76115`, `76116`, `76119`, `76121`, `76122`, `76124`, `76126`, `76128`, `76130`, `76132`, `76134`, `76135`, `76138`, `76140`, `76141`, `76142`, `76143`, `76145`, `76146`, `76147`, `76151`, `76152`, `76153`, `76155`, `76156`, `76157`, `76158`, `76159`, `76161`, `76162`, `76165`, `76166`, `76167`, `76169`, `76171`, `76172`, `76174`, `76176`, `76177`, `76179`, `76181`, `76184`, `76185`, `76186`, `76187`, `76188`, `76190`, `76192`, `76194`, `76195`, `76197`, `76199`, `76200`, `76201`, `76203`, `76205`, `76206`, `76210`, `76212`, `76213`, `76215`, `76216`, `76217`, `76219`, `76221`, `76222`, `76224`, `76227`, `76229`, `76231`, `76233`, `76235`, `76236`, `76238`, `76240`, `76242`, `76244`, `76245`, `76247`, `76251`, `76252`, `76254`, `76256`, `76259`, `76261`, `76263`, `76265`, `76266`, `76268`, `76272`, `76278`, `76280`, `76282`, `76284`, `76287`, `76289`, `76291`, `76294`, `76296`, `76298`, `76300`, `76301`, `76302`, `76303`, `76305`, `76306`, `76307`, `76309`, `76310`, `76312`, `76316`, `76317`, `76319`, `76321`, `76323`, `76325`, `76327`, `76331`, `76332`, `76334`, `76335`, `76337`, `76338`, `76339`, `76340`, `76342`, `76344`, `76346`, `76347`, `76349`, `76350`, `76353`, `76354`, `76355`, `76356`, `76357`, `76359`, `76361`, `76363`, `76365`, `76366`, `76368`, `76370`, `76372`, `76374`, `76377`, `76379`, `76380`, `76382`, `76384`, `76386`, `76388`, `76390`, `76392`, `76394`, `76396`, `76397`, `76398`, `76400`, `76402`, `76404`, `76405`, `76407`, `76408`, `76409`, `76411`, `76413`, `76414`, `76416`, `76419`, `76421`, `76422`, `76425`, `76427`, `76428`, `76432`, `76433`, `76434`, `76435`, `76436`, `76438`, `76440`, `76441`, `76443`, `76444`, `76445`, `76446`, `76448`, `76449`, `76451`, `76454`, `76457`, `76459`, `76461`, `76463`, `76465`, `76466`, `76467`, `76469`, `76471`, `76472`, `76473`, `76476`, `76478`, `76480`, `76481`, `76483`, `76484`, `76486`, `76488`, `76489`, `76491`, `76493`, `76494`, `76496`, `76498`, `76500`, `76501`, `76503`, `76504`, `76506`, `76507`, `76508`, `76510`, `76512`, `76514`, `76516`, `76517`, `76518`, `76520`, `76522`, `76524`, `76526`, `76529`, `76531`, `76532`, `76534`, `76535`, `76536`, `76538`, `76539`, `76540`, `76542`, `76544`, `76546`, `76548`, `76550`, `76552`, `76554`, `76555`, `76557`, `76559`, `76560`, `76564`, `76566`, `76567`, `76568`, `76569`, `76571`, `76573`, `76574`, `76575`, `76576`, `76577`, `76579`, `76581`, `76584`, `76585`, `76587`, `76589`, `76591`, `76593`, `76594`, `76595`, `76597`, `76598`, `76600`, `76602`, `76604`, `76606`, `76607`, `76609`, `76611`, `76613`, `76615`, `76617`, `76619`, `76621`, `76624`, `76626`, `76627`, `76629`, `76630`, `76631`, `76632`, `76633`, `76634`, `76635`, `76636`, `76638`, `76640`, `76641`, `76643`, `76645`, `76647`, `76649`, `76651`, `76653`, `76655`, `76657`, `76659`, `76661`, `76663`, `76665`, `76667`, `76669`, `76671`, `76674`, `76676`, `76678`, `76680`, `76681`, `76683`, `76685`, `76687`, `76688`, `76690`, `76692`, `76693`, `76695`, `76697`, `76698`, `76700`, `76702`, `76704`, `76705`, `76706`, `76707`, `76709`, `76710`, `76712`, `76713`, `76715`, `76717`, `76718`, `76720`, `76721`, `76725`, `76728`, `76729`, `76731`, `76732`, `76734`, `76736`, `76737`, `76739`, `76741`, `76743`, `76747`, `76749`, `76751`, `76752`, `76754`, `76756`, `76758`, `76759`, `76761`, `76763`, `76764`, `76765`, `76767`, `76768`, `76770`, `76772`, `76774`, `76775`, `76776`, `76778`, `76780`, `76782`, `76784`, `76786`, `76788`, `76789`, `76791`, `76792`, `76794`, `76795`, `76798`, `76799`, `76801`, `76804`, `76805`, `76807`, `76809`, `76811`, `76815`, `76816`, `76820`, `76822`, `76824`, `76825`, `76826`, `76828`, `76830`, `76832`, `76834`, `76836`, `76837`, `76838`, `76841`, `76843`, `76845`, `76848`, `76851`, `76853`, `76855`, `76857`, `76859`, `76861`, `76862`, `76864`, `76866`, `76867`, `76869`, `76871`, `76873`, `76875`, `76876`, `76878`, `76879`, `76880`, `76881`, `76883`, `76885`, `76887`, `76890`, `76891`, `76894`, `76896`, `76898`, `76900`, `76902`, `76904`, `76905`, `76907`, `76908`, `76909`, `76911`, `76913`, `76915`, `76917`, `76918`, `76919`, `76920`, `76921`, `76925`, `76927`, `76929`, `76930`, `76932`, `76934`, `76935`, `76937`, `76938`, `76940`, `76942`, `76943`, `76944`, `76946`, `76947`, `76949`, `76950`, `76951`, `76953`, `76954`, `76955`, `76956`, `76958`, `76959`, `76960`, `76961`, `76962`, `76963`, `76965`, `76966`, `76968`, `76970`, `76971`, `76974`, `76976`, `76977`, `76979`, `76981`, `76983`, `76985`, `76987`, `76989`, `76991`, `76992`, `76994`, `76996`, `76998`, `77000`, `77003`, `77005`, `77007`, `77009`, `77013`, `77015`, `77017`, `77019`, `77023`, `77024`, `77026`, `77027`, `77029`, `77030`, `77032`, `77033`, `77035`, `77036`, `77038`, `77040`, `77042`, `77044`, `77046`, `77048`, `77050`, `77052`, `77054`, `77055`, `77056`, `77058`, `77059`, `77061`, `77062`, `77064`, `77065`, `77066`, `77067`, `77070`, `77072`, `77074`, `77076`, `77077`, `77079`, `77082`, `77084`, `77086`, `77088`, `77090`, `77091`, `77092`, `77094`, `77095`, `77096`, `77097`, `77099`, `77100`, `77102`, `77106`, `77108`, `77110`, `77112`, `77113`, `77114`, `77116`, `77117`, `77119`, `77121`, `77123`, `77124`, `77125`, `77126`, `77127`, `77128`, `77130`, `77132`, `77134`, `77135`, `77137`, `77139`, `77141`, `77142`, `77143`, `77144`, `77146`, `77148`, `77150`, `77152`, `77153`, `77155`, `77157`, `77159`, `77160`, `77161`, `77163`, `77165`, `77166`, `77167`, `77169`, `77171`, `77172`, `77174`, `77175`, `77176`, `77178`, `77180`, `77182`, `77184`, `77185`, `77187`, `77189`, `77191`, `77193`, `77195`, `77198`, `77199`, `77200`, `77203`, `77204`, `77206`, `77208`, `77209`, `77210`, `77211`, `77213`, `77215`, `77217`, `77218`, `77219`, `77221`, `77222`, `77223`, `77224`, `77226`, `77227`, `77229`, `77230`, `77232`, `77234`, `77235`, `77238`, `77240`, `77244`, `77246`, `77248`, `77250`, `77251`, `77253`, `77255`, `77258`, `77260`, `77261`, `77264`, `77266`, `77268`, `77269`, `77270`, `77271`, `77273`, `77275`, `77276`, `77278`, `77281`, `77283`, `77285`, `77286`, `77288`, `77290`, `77292`, `77294`, `77295`, `77297`, `77299`, `77301`, `77303`, `77304`, `77305`, `77306`, `77308`, `77309`, `77310`, `77313`, `77315`, `77316`, `77317`, `77319`, `77324`, `77326`, `77329`, `77331`, `77332`, `77334`, `77336`, `77337`, `77339`, `77341`, `77343`, `77345`, `77347`, `77349`, `77351`, `77354`, `77355`, `77356`, `77358`, `77360`, `77362`, `77363`, `77365`, `77366`, `77368`, `77370`, `77372`, `77374`, `77375`, `77376`, `77378`, `77380`, `77381`, `77383`, `77384`, `77386`, `77387`, `77389`, `77390`, `77391`, `77392`, `77393`, `77394`, `77396`, `77398`, `77400`, `77403`, `77406`, `77407`, `77408`, `77410`, `77411`, `77412`, `77413`, `77415`, `77417`, `77419`, `77421`, `77423`, `77424`, `77427`, `77430`, `77432`, `77434`, `77435`, `77436`, `77438`, `77440`, `77441`, `77444`, `77448`, `77450`, `77452`, `77454`, `77456`, `77457`, `77459`, `77461`, `77463`, `77464`, `77466`, `77468`, `77470`, `77472`, `77474`, `77476`, `77478`, `77480`, `77482`, `77485`, `77487`, `77489`, `77491`, `77492`, `77495`, `77497`, `77498`, `77499`, `77500`, `77502`, `77504`, `77505`, `77507`, `77509`, `77510`, `77512`, `77514`, `77515`, `77516`, `77518`, `77520`, `77521`, `77523`, `77525`, `77527`, `77528`, `77529`, `77531`, `77533`, `77535`, `77536`, `77537`, `77538`, `77540`, `77542`, `77544`, `77546`, `77548`, `77550`, `77552`, `77555`, `77556`, `77558`, `77559`, `77560`, `77561`, `77562`, `77564`, `77566`, `77569`, `77571`, `77574`, `77576`, `77578`, `77580`, `77582`, `77584`, `77585`, `77586`, `77588`, `77590`, `77592`, `77593`, `77595`, `77596`, `77597`, `77601`, `77603`, `77604`, `77606`, `77607`, `77609`, `77611`, `77613`, `77615`, `77617`, `77618`, `77619`, `77622`, `77623`, `77625`, `77627`, `77628`, `77630`, `77631`, `77633`, `77635`, `77639`, `77641`, `77643`, `77645`, `77646`, `77648`, `77649`, `77651`, `77653`, `77654`, `77656`, `77658`, `77660`, `77661`, `77663`, `77665`, `77668`, `77669`, `77671`, `77672`, `77674`, `77675`, `77677`, `77679`, `77680`, `77682`, `77684`, `77685`, `77687`, `77689`, `77691`, `77692`, `77694`, `77696`, `77698`, `77701`, `77704`, `77706`, `77708`, `77710`, `77713`, `77715`, `77716`, `77717`, `77719`, `77720`, `77722`, `77724`, `77726`, `77728`, `77730`, `77731`, `77732`, `77734`, `77735`, `77737`, `77739`, `77741`, `77743`, `77744`, `77746`, `77747`, `77749`, `77751`, `77752`, `77754`, `77756`, `77758`, `77760`, `77763`, `77765`, `77769`, `77770`, `77772`, `77773`, `77775`, `77777`, `77779`, `77781`, `77782`, `77784`, `77786`, `77787`, `77789`, `77791`, `77792`, `77793`, `77795`, `77798`, `77800`, `77802`, `77804`, `77806`, `77808`, `77810`, `77811`, `77812`, `77813`, `77817`, `77818`, `77820`, `77823`, `77824`, `77827`, `77828`, `77829`, `77831`, `77832`, `77834`, `77836`, `77837`, `77839`, `77840`, `77842`, `77845`, `77846`, `77848`, `77849`, `77851`, `77853`, `77855`, `77857`, `77859`, `77861`, `77863`, `77865`, `77867`, `77868`, `77870`, `77871`, `77872`, `77873`, `77874`, `77876`, `77878`, `77879`, `77880`, `77882`, `77883`, `77885`, `77886`, `77888`, `77890`, `77892`, `77893`, `77895`, `77897`, `77899`, `77900`, `77902`, `77904`, `77905`, `77907`, `77909`, `77910`, `77912`, `77914`, `77916`, `77917`, `77918`, `77919`, `77922`, `77924`, `77926`, `77928`, `77930`, `77934`, `77936`, `77938`, `77940`, `77941`, `77943`, `77945`, `77947`, `77949`, `77951`, `77952`, `77954`, `77956`, `77958`, `77959`, `77960`, `77962`, `77963`, `77965`, `77966`, `77968`, `77970`, `77972`, `77974`, `77976`, `77977`, `77979`, `77981`, `77982`, `77984`, `1041`, `77986`, `77988`, `77990`, `77993`, `77995`, `77997`, `77999`, `78001`, `78002`, `78003`, `78006`, `78008`, `78010`, `78012`, `78014`, `78017`, `78019`, `78020`, `78022`, `78023`, `78024`, `78025`, `78027`, `78029`, `78031`, `78033`, `78034`, `78036`, `78038`, `78040`, `78042`, `78043`, `78044`, `78045`, `78050`, `78052`, `78054`, `78056`, `78059`, `78061`, `78063`, `78064`, `78066`, `78068`, `78070`, `78071`, `78073`, `78075`, `78077`, `78078`, `78079`, `78083`, `78087`, `78091`, `78093`, `78096`, `78097`, `78099`, `78101`, `78103`, `78105`, `78106`, `78107`, `78109`, `78110`, `78111`, `78112`, `78113`, `78114`, `78115`, `78117`, `78118`, `78120`, `78122`, `78124`, `78126`, `78127`, `78129`, `78130`, `78131`, `78132`, `78134`, `78136`, `78138`, `78140`, `78141`, `78143`, `78145`, `78146`, `78147`, `78148`, `78150`, `78151`, `78153`, `78156`, `78158`, `78159`, `78160`, `78162`, `78163`, `78166`, `78168`, `78170`, `78172`, `78173`, `78175`, `78176`, `78177`, `78179`, `78181`, `78182`, `78184`, `78185`, `78186`, `78188`, `78190`, `78191`, `78192`, `78193`, `78194`, `78196`, `78198`, `78200`, `78202`, `78204`, `78205`, `78207`, `78208`, `78209`, `78210`, `78213`, `78215`, `78217`, `78219`, `78221`, `78223`, `78224`, `78226`, `78228`, `78229`, `78230`, `78231`, `78233`, `78234`, `78235`, `78236`, `78238`, `78240`, `78241`, `78243`, `78245`, `78247`, `78249`, `78250`, `78252`, `78253`, `78255`, `78257`, `78258`, `78259`, `78260`, `78261`, `78263`, `78264`, `78266`, `78267`, `78268`, `78269`, `78270`, `78273`, `78275`, `78277`, `78279`, `78281`, `78282`, `78284`, `78285`, `78286`, `78288`, `78289`, `78291`, `78292`, `78294`, `78296`, `78297`, `78299`, `78301`, `78303`, `78305`, `78309`, `78311`, `78312`, `78314`, `78316`, `78317`, `78319`, `78320`, `78322`, `78324`, `78326`, `78327`, `78328`, `78329`, `78330`, `78331`, `78332`, `78334`, `78336`, `78338`, `78339`, `78342`, `78343`, `78345`, `78347`, `78351`, `78353`, `78355`, `78357`, `78359`, `78361`, `78363`, `78367`, `78369`, `78371`, `78373`, `78375`, `78377`, `78379`, `78381`, `78383`, `78385`, `78387`, `78389`, `78390`, `78392`, `78393`, `78395`, `78397`, `78399`, `78400`, `78402`, `78405`, `78407`, `78408`, `78410`, `78412`, `78413`, `78414`, `78417`, `78419`, `78421`, `78423`, `78424`, `78426`, `78427`, `78429`, `78431`, `78432`, `78433`, `78435`, `78437`, `78438`, `78439`, `78440`, `78442`, `78444`, `78446`, `78448`, `78449`, `78450`, `78452`, `78454`, `78455`, `78456`, `78457`, `78459`, `78461`, `78463`, `78465`, `78466`, `78468`, `78471`, `78473`, `78475`, `78477`, `78481`, `78483`, `78484`, `78485`, `78487`, `78489`, `78491`, `78492`, `78494`, `78495`, `78496`, `78497`, `78499`, `78501`, `78502`, `78504`, `78506`, `78507`, `78508`, `78510`, `78511`, `78513`, `78514`, `78519`, `78521`, `78523`, `78525`, `78527`, `78529`, `78530`, `78532`, `78534`, `78535`, `78537`, `78539`, `78540`, `78541`, `78543`, `78545`, `78547`, `78549`, `78550`, `78551`, `78553`, `78555`, `78557`, `78559`, `78561`, `78563`, `78565`, `78568`, `78569`, `78572`, `78574`, `78576`, `78578`, `78579`, `78581`, `78582`, `78583`, `78584`, `78586`, `78587`, `78589`, `78591`, `78592`, `78593`, `78594`, `78595`, `78596`, `78598`, `78600`, `78601`, `78603`, `78605`, `78606`, `78609`, `78612`, `78614`, `78615`, `78617`, `78619`, `78621`, `78623`, `78624`, `78626`, `78627`, `78628`, `78629`, `78630`, `78631`, `78632`, `78634`, `78636`, `78638`, `78639`, `78641`, `78645`, `78647`, `78649`, `78651`, `78652`, `78653`, `78655`, `78656`, `78658`, `78660`, `78662`, `78665`, `78666`, `78668`, `78669`, `78672`, `78674`, `78675`, `78676`, `78677`, `78679`, `78680`, `78682`, `78684`, `78685`, `78687`, `78688`, `78689`, `78691`, `78692`, `78694`, `78696`, `78697`, `78698`, `78700`, `78702`, `78703`, `78705`, `78707`, `78709`, `78711`, `78712`, `78714`, `78716`, `78717`, `78718`, `78719`, `78720`, `78721`, `78723`, `78725`, `78727`, `78728`, `78729`, `78731`, `78733`, `78735`, `78736`, `78737`, `78739`, `78740`, `78742`, `78744`, `78746`, `78747`, `78748`, `78749`, `78753`, `78755`, `78756`, `78757`, `78758`, `78759`, `78760`, `78762`, `78763`, `78765`, `78767`, `78769`, `78770`, `78771`, `78775`, `78776`, `78777`, `78778`, `78780`, `78782`, `78784`, `78786`, `78787`, `78789`, `78791`, `78793`, `78794`, `78796`, `78797`, `78798`, `78799`, `78800`, `78802`, `78803`, `78805`, `78806`, `78810`, `78812`, `78815`, `78817`, `78818`, `78819`, `78820`, `78823`, `78826`, `78827`, `78828`, `78830`, `78833`, `78835`, `78837`, `78839`, `78841`, `78842`, `78843`, `78844`, `78845`, `78847`, `78848`, `78850`, `78852`, `78854`, `78855`, `78857`, `78860`, `78862`, `78863`, `78865`, `78867`, `78869`, `78870`, `78872`, `78873`, `78875`, `78876`, `78877`, `78879`, `78881`, `78882`, `78883`, `78885`, `78887`, `78889`, `78892`, `78895`, `78897`, `78900`, `78902`, `78904`, `78906`, `78907`, `78909`, `78910`, `78911`, `78915`, `78917`, `78919`, `78921`, `78923`, `78925`, `78927`, `78929`, `78931`, `78935`, `78937`, `78938`, `78939`, `78941`, `78943`, `78945`, `78947`, `78949`, `78950`, `78952`, `78954`, `78956`, `78957`, `78959`, `78961`, `78963`, `78964`, `78966`, `78968`, `78973`, `78975`, `78976`, `78978`, `78980`, `78982`, `78984`, `78986`, `78988`, `78991`, `78992`, `78994`, `78996`, `78998`, `78999`, `79000`, `79002`, `79004`, `79006`, `79008`, `79010`, `79012`, `79014`, `79016`, `79018`, `79021`, `79023`, `79025`, `79027`, `79029`, `79030`, `79032`, `79033`, `79035`, `79037`, `79038`, `79040`, `79042`, `79044`, `79046`, `79047`, `79049`, `79051`, `79053`, `79055`, `79057`, `79058`, `79060`, `79061`, `79063`, `79066`, `79067`, `79069`, `79070`, `79072`, `79073`, `79074`, `79076`, `79077`, `79079`, `79083`, `79084`, `79087`, `79088`, `79090`, `79091`, `79092`, `79094`, `79096`, `79097`, `79099`, `79101`, `79103`, `79105`, `79107`, `79109`, `79110`, `79112`, `79114`, `79115`, `79116`, `79117`, `79118`, `79120`, `79121`, `79123`, `79124`, `79126`, `79128`, `79130`, `79133`, `79135`, `79139`, `79140`, `79142`, `79143`, `79146`, `79148`, `79149`, `79151`, `79153`, `79155`, `79158`, `79161`, `79163`, `79164`, `79165`, `79167`, `79169`, `79171`, `79173`, `79175`, `79177`, `79179`, `79181`, `79183`, `79184`, `79186`, `79187`, `79189`, `79192`, `79194`, `79196`, `79198`, `79200`, `79202`, `79204`, `79207`, `79209`, `79211`, `79213`, `79215`, `79217`, `79219`, `79221`, `79223`, `79224`, `79226`, `79228`, `79230`, `79232`, `79234`, `79236`, `79238`, `79240`, `79242`, `79244`, `79247`, `79249`, `79250`, `79252`, `79254`, `79255`, `79256`, `79258`, `79259`, `79260`, `79262`, `79267`, `79269`, `79271`, `79273`, `79275`, `79276`, `79277`, `79278`, `79280`, `79282`, `79284`, `79288`, `79289`, `79291`, `79293`, `79294`, `79295`, `79297`, `79299`, `79300`, `79301`, `79303`, `79304`, `79306`, `79308`, `79309`, `79311`, `79313`, `79314`, `79315`, `79318`, `79320`, `79321`, `79323`, `79325`, `79326`, `79329`, `79332`, `79333`, `79335`, `79336`, `79337`, `79339`, `79341`, `79342`, `79345`, `79347`, `79349`, `79351`, `79352`, `79354`, `79356`, `79361`, `79363`, `79365`, `79367`, `79369`, `79371`, `79373`, `79374`, `79376`, `79378`, `79380`, `79381`, `79382`, `79384`, `79386`, `79388`, `79390`, `79392`, `79394`, `79395`, `79397`, `79399`, `79401`, `79404`, `79406`, `79408`, `79409`, `79411`, `79413`, `79414`, `79415`, `79417`, `79419`, `79421`, `79423`, `79425`, `79427`, `79428`, `79429`, `79431`, `79434`, `79436`, `79438`, `79439`, `79441`, `79443`, `79444`, `79446`, `79448`, `79449`, `79451`, `79453`, `79455`, `79457`, `79459`, `79461`, `79463`, `79465`, `79466`, `79467`, `79468`, `79470`, `79474`, `79477`, `79479`, `79481`, `79484`, `79486`, `79487`, `79488`, `79489`, `79490`, `79491`, `79492`, `79494`, `79496`, `79498`, `79499`, `79501`, `79502`, `79504`, `79506`, `79507`, `79508`, `79509`, `79511`, `79513`, `79515`, `79517`, `79518`, `79521`, `79523`, `79525`, `79527`, `79529`, `79530`, `79533`, `79535`, `79536`, `79538`, `79539`, `79541`, `79542`, `79544`, `79548`, `79550`, `79552`, `79553`, `79554`, `79555`, `79557`, `79558`, `79560`, `79561`, `79563`, `79564`, `79565`, `79566`, `79567`, `79569`, `79571`, `79573`, `79574`, `79576`, `79578`, `79580`, `79581`, `79583`, `79584`, `79585`, `79587`, `79589`, `79590`, `79594`, `79595`, `79597`, `79599`, `79600`, `79602`, `79603`, `79605`, `79606`, `79608`, `79610`, `79612`, `79613`, `79614`, `79615`, `79616`, `79619`, `79621`, `79623`, `79625`, `79627`, `79630`, `79632`, `79634`, `70207`, `79636`, `79638`, `79642`, `79644`, `79646`, `79647`, `79649`, `79651`, `79654`, `79656`, `79658`, `79661`, `79663`, `79665`, `79667`, `79669`, `79671`, `79673`, `79674`, `79676`, `79678`, `79679`, `79680`, `79681`, `79683`, `79686`, `79687`, `79688`, `79689`, `79690`, `79691`, `79693`, `79695`, `79697`, `79699`, `79700`, `79701`, `79702`, `79703`, `79704`, `79706`, `79707`, `79708`, `79712`, `79714`, `79715`, `79716`, `79717`, `79719`, `79721`, `79723`, `79725`, `79727`, `79729`, `79730`, `79731`, `79732`, `79733`, `79734`, `79735`, `79737`, `79738`, `79740`, `79742`, `79743`, `79746`, `79747`, `79748`, `79749`, `79750`, `79751`, `79755`, `79757`, `79758`, `79759`, `79761`, `79765`, `79767`, `79770`, `79772`, `79774`, `79776`, `79777`, `79779`, `79781`, `79783`, `79785`, `79788`, `79789`, `79791`, `79793`, `79794`, `79796`, `79798`, `79800`, `79802`, `79804`, `79805`, `79807`, `79808`, `79809`, `79810`, `79811`, `79813`, `79817`, `79819`, `79821`, `79823`, `79824`, `79825`, `79826`, `79828`, `79830`, `79832`, `79834`, `79836`, `79838`, `79839`, `79841`, `79843`, `79846`, `79847`, `79849`, `79851`, `79853`, `79854`, `79856`, `79859`, `79865`, `79867`, `79868`, `79869`, `79870`, `79872`, `79874`, `79875`, `79876`, `79878`, `79879`, `79881`, `79882`, `79884`, `79886`, `79889`, `79890`, `79891`, `79892`, `79894`, `79896`, `79897`, `79898`, `79900`, `79902`, `79907`, `79909`, `79911`, `79913`, `79915`, `79917`, `79918`, `79919`, `79921`, `79923`, `79925`, `79927`, `79929`, `79931`, `79933`, `79934`, `79936`, `79938`, `79940`, `79942`, `79944`, `79946`, `79948`, `79950`, `79952`, `79954`, `79956`, `79958`, `79960`, `79962`, `79964`, `79965`, `79967`, `79970`, `79972`, `79974`, `79978`, `79980`, `79982`, `79983`, `79985`, `79988`, `79989`, `79990`, `79992`, `79995`, `79997`, `79999`, `80001`, `80003`, `80005`, `80009`, `80011`, `80014`, `80019`, `80022`, `80024`, `80025`, `80028`, `80030`, `80031`, `80032`, `80033`, `80035`, `80039`, `80041`, `80043`, `80045`, `80046`, `80049`, `80052`, `80054`, `80056`, `80058`, `80060`, `80062`, `80064`, `80066`, `80068`, `80070`, `80071`, `80072`, `80073`, `80074`, `80077`, `80079`, `80081`, `80083`, `80085`, `80086`, `80087`, `80089`, `80091`, `80094`, `80096`, `80098`, `80099`, `80100`, `80102`, `80104`, `80106`, `80108`, `80110`, `80112`, `80114`, `80116`, `80117`, `80118`, `80119`, `80121`, `80123`, `80125`, `80127`, `80129`, `80131`, `80133`, `80135`, `80136`, `80137`, `80140`, `80142`, `80143`, `80145`, `80147`, `80149`, `80151`, `80152`, `80154`, `80155`, `80157`, `80158`, `80160`, `80161`, `80163`, `80165`, `80166`, `80167`, `80168`, `80170`, `80172`, `80175`, `80176`, `80178`, `80180`, `80182`, `80184`, `80186`, `80188`, `80190`, `80192`, `80194`, `80196`, `80197`, `80199`, `80201`, `80203`, `80204`, `80206`, `80207`, `80208`, `80210`, `80212`, `80213`, `80215`, `80216`, `80218`, `80219`, `80221`, `80223`, `80224`, `80225`, `80227`, `80228`, `80230`, `80232`, `80235`, `80238`, `80242`, `80244`, `80246`, `80248`, `80250`, `80252`, `80254`, `80256`, `80258`, `80259`, `80261`, `80264`, `80266`, `80268`, `80270`, `80271`, `80272`, `80274`, `80276`, `80279`, `80281`, `80283`, `80284`, `80286`, `80287`, `80289`, `80291`, `80293`, `80294`, `80296`, `80298`, `80300`, `80301`, `80303`, `80305`, `80307`, `80309`, `80311`, `80313`, `80314`, `80316`, `80317`, `80319`, `80321`, `80323`, `80324`, `80327`, `80328`, `80330`, `80332`, `80334`, `80336`, `80337`, `80339`, `80340`, `80343`, `80345`, `80347`, `80349`, `80351`, `80353`, `80355`, `80359`, `80361`, `80363`, `80365`, `80367`, `80369`, `80371`, `80373`, `80375`, `80376`, `80378`, `80379`, `80380`, `80382`, `80384`, `80386`, `80387`, `80388`, `80390`, `80391`, `80392`, `80394`, `80396`, `80398`, `80400`, `80402`, `80404`, `80406`, `80408`, `80410`, `80411`, `80414`, `80416`, `80418`, `80419`, `80420`, `80422`, `80424`, `80426`, `80428`, `80429`, `80431`, `80433`, `80435`, `80437`, `80439`, `80441`, `80442`, `80444`, `80446`, `80449`, `80450`, `80452`, `80454`, `80456`, `80458`, `80460`, `80461`, `80462`, `80464`, `80466`, `80468`, `80470`, `80471`, `80473`, `80475`, `80478`, `80480`, `80483`, `80485`, `80487`, `80489`, `80490`, `80494`, `80496`, `80498`, `80500`, `80501`, `80502`, `80504`, `80505`, `80507`, `80510`, `80511`, `80513`, `80515`, `80516`, `80518`, `80520`, `80522`, `80524`, `80526`, `80528`, `80529`, `80531`, `80533`, `80534`, `80535`, `80538`, `80540`, `80542`, `80544`, `80546`, `80548`, `80550`, `80551`, `80553`, `80554`, `80556`, `80558`, `80559`, `80561`, `80563`, `80564`, `80566`, `80568`, `80570`, `80572`, `80573`, `80574`, `80576`, `80578`, `80580`, `80582`, `80584`, `80586`, `80588`, `80589`, `80593`, `80594`, `80596`, `80597`, `80598`, `80600`, `80602`, `80603`, `80605`, `80606`, `80607`, `80609`, `80610`, `80612`, `80614`, `80620`, `80623`, `80626`, `80628`, `80629`, `80631`, `80633`, `80635`, `80637`, `80638`, `80640`, `80642`, `80643`, `80645`, `80647`, `80649`, `80651`, `80653`, `80655`, `80656`, `80658`, `80659`, `80661`, `80663`, `80666`, `80669`, `80671`, `80673`, `80675`, `80677`, `80682`, `80683`, `80685`, `80687`, `80689`, `80691`, `80693`, `80695`, `80696`, `80698`, `80699`, `80701`, `80703`, `80705`, `80707`, `80709`, `80710`, `80711`, `80712`, `80713`, `80717`, `80719`, `80721`, `80722`, `80723`, `80725`, `80727`, `80730`, `80732`, `80734`, `80736`, `80739`, `80741`, `80743`, `80744`, `80746`, `80747`, `80748`, `80750`, `80752`, `80754`, `80756`, `80757`, `80759`, `80761`, `80762`, `80763`, `80765`, `80766`, `80768`, `80770`, `80772`, `80774`, `80776`, `80778`, `80780`, `80782`, `80784`, `80786`, `80788`, `80790`, `80792`, `80793`, `80795`, `80797`, `80799`, `80800`, `80801`, `80803`, `80805`, `80807`, `80808`, `80810`, `80812`, `80814`, `80815`, `80817`, `80819`, `80821`, `80825`, `80827`, `80828`, `80829`, `80830`, `80832`, `80834`, `80835`, `80836`, `80838`, `80839`, `80840`, `80842`, `80843`, `80845`, `80847`, `80848`, `80850`, `80852`, `80854`, `80856`, `80858`, `80860`, `80862`, `80863`, `80864`, `80866`, `80868`, `80870`, `80873`, `80875`, `80876`, `80877`, `80878`, `80879`, `80881`, `80883`, `80885`, `80886`, `80888`, `80892`, `80893`, `80896`, `80897`, `80899`, `80901`, `80902`, `80903`, `80905`, `80908`, `80911`, `80913`, `80914`, `80918`, `80919`, `80920`, `80922`, `80923`, `80924`, `80925`, `80927`, `80929`, `80931`, `80932`, `80933`, `80935`, `80937`, `80939`, `80940`, `80942`, `80944`, `80945`, `80947`, `80948`, `80950`, `80952`, `80954`, `80956`, `80958`, `80959`, `80961`, `80962`, `80964`, `80967`, `80969`, `80972`, `80974`, `80976`, `80978`, `80980`, `80981`, `80982`, `80984`, `80986`, `80988`, `80990`, `80992`, `80994`, `80995`, `80997`, `80999`, `81001`, `81003`, `81005`, `81007`, `81009`, `81014`, `81016`, `81017`, `81019`, `81020`, `81021`, `81023`, `81025`, `81029`, `81031`, `81033`, `81035`, `81036`, `81038`, `81040`, `81042`, `81045`, `81046`, `81047`, `81048`, `81050`, `81052`, `81053`, `81056`, `81058`, `81060`, `81061`, `81063`, `81064`, `81066`, `81068`, `81070`, `81072`, `81075`, `81076`, `81078`, `81080`, `81081`, `81083`, `81085`, `81087`, `81089`, `81091`, `81092`, `81093`, `81097`, `81101`, `81104`, `81106`, `81108`, `81110`, `81112`, `81113`, `81114`, `81116`, `81118`, `81120`, `81122`, `81124`, `81126`, `81128`, `81130`, `81132`, `81134`, `81136`, `81138`, `81140`, `81142`, `81144`, `81146`, `81148`, `81150`, `81151`, `81153`, `81156`, `81158`, `81160`, `81162`, `81164`, `81166`, `81167`, `81168`, `81170`, `81172`, `81173`, `81175`, `81176`, `81178`, `81180`, `81182`, `81183`, `81184`, `81185`, `81187`, `81189`, `81191`, `81193`, `81195`, `81196`, `81197`, `81199`, `81202`, `81204`, `81206`, `81208`, `81209`, `81211`, `81213`, `81214`, `81216`, `81221`, `81223`, `81224`, `81226`, `81228`, `81230`, `81231`, `81233`, `81235`, `81236`, `81239`, `81241`, `81243`, `81245`, `81247`, `81249`, `81250`, `81251`, `81254`, `81256`, `81259`, `81261`, `81263`, `81265`, `81269`, `81271`, `81272`, `81274`, `81276`, `81278`, `81279`, `81281`, `81282`, `81284`, `81286`, `81288`, `81290`, `81292`, `81294`, `81296`, `81299`, `81300`, `81302`, `81304`, `81305`, `81307`, `81309`, `81311`, `81313`, `81314`, `81315`, `81319`, `81321`, `81323`, `81325`, `81327`, `81329`, `81330`, `81332`, `81334`, `81336`, `81337`, `81339`, `81341`, `81343`, `81344`, `81346`, `81347`, `81348`, `81349`, `81351`, `81353`, `81355`, `81356`, `81358`, `81360`, `81361`, `81362`, `81364`, `81366`, `81368`, `81369`, `81371`, `81373`, `81375`, `81377`, `81378`, `81379`, `81381`, `81382`, `81384`, `81386`, `81387`, `81390`, `81391`, `81392`, `81393`, `81395`, `81396`, `81398`, `81399`, `81400`, `81402`, `81404`, `81406`, `81407`, `81409`, `81411`, `81413`, `81414`, `81417`, `81419`, `81420`, `81421`, `81423`, `81424`, `81426`, `81428`, `81429`, `81431`, `81432`, `81434`, `81436`, `81437`, `81439`, `81441`, `81442`, `81444`, `81446`, `81447`, `81448`, `81452`, `81453`, `81455`, `81457`, `81459`, `81460`, `81462`, `81464`, `81465`, `81467`, `81469`, `81471`, `81473`, `81475`, `81478`, `81480`, `81481`, `81483`, `81484`, `81485`, `81487`, `81489`, `81490`, `81492`, `81493`, `81494`, `81495`, `81497`, `81499`, `81501`, `81503`, `81505`, `81507`, `81509`, `81511`, `81513`, `81515`, `81516`, `81517`, `81519`, `81521`, `81523`, `81525`, `81528`, `81530`, `81532`, `81534`, `81536`, `81537`, `81539`, `81543`, `81545`, `81546`, `81548`, `81550`, `81552`, `81554`, `81555`, `81557`, `81559`, `81560`, `81565`, `81566`, `81567`, `81569`, `81570`, `81572`, `81574`, `81576`, `81577`, `81580`, `81582`, `81583`, `81584`, `81585`, `81586`, `81587`, `81589`, `81591`, `81593`, `81596`, `81597`, `81598`, `81600`, `81601`, `81604`, `81606`, `81611`, `81613`, `81614`, `81615`, `81616`, `81618`, `81621`, `81622`, `81625`, `81626`, `81628`, `81630`, `81632`, `81633`, `81635`, `81637`, `81640`, `81642`, `81643`, `81644`, `81646`, `81648`, `81649`, `81650`, `81652`, `81656`, `81658`, `81659`, `81660`, `81661`, `81663`, `81665`, `81666`, `81668`, `81670`, `81672`, `81674`, `81676`, `81678`, `81680`, `81681`, `81682`, `81684`, `81687`, `81689`, `81692`, `81694`, `81696`, `81697`, `81698`, `81699`, `81701`, `81704`, `81705`, `81706`, `81707`, `81708`, `81710`, `81711`, `81712`, `81713`, `81714`, `81716`, `81718`, `81720`, `81722`, `81723`, `81725`, `81726`, `81728`, `81730`, `81732`, `81733`, `81734`, `81737`, `81739`, `81741`, `81743`, `81745`, `81748`, `81750`, `81751`, `81753`, `81754`, `81756`, `81758`, `81760`, `81762`, `81764`, `81766`, `81767`, `81769`, `81771`, `81773`, `81774`, `81776`, `81778`, `81779`, `81783`, `81785`, `81787`, `81790`, `81793`, `81795`, `81797`, `81798`, `81800`, `81802`, `81804`, `81805`, `81806`, `81808`, `81810`, `81811`, `81812`, `81813`, `81814`, `81816`, `81818`, `81822`, `81824`, `81825`, `81827`, `81829`, `81830`, `81831`, `81832`, `81833`, `81835`, `81836`, `81838`, `81839`, `81840`, `81844`, `81846`, `81848`, `81850`, `81852`, `81853`, `81855`, `81856`, `81858`, `81860`, `81862`, `81864`, `81865`, `81867`, `81869`, `81871`, `81873`, `81874`, `81877`, `81878`, `81880`, `81881`, `81883`, `81885`, `81887`, `81888`, `81889`, `81891`, `81893`, `81895`, `81897`, `81898`, `81900`, `81902`, `81903`, `81905`, `81906`, `81908`, `81912`, `81917`, `81920`, `81922`, `81924`, `81926`, `81927`, `81929`, `81930`, `81931`, `81932`, `81933`, `81935`, `81937`, `81939`, `81940`, `81941`, `81942`, `81944`, `81946`, `81948`, `81950`, `81952`, `81954`, `81955`, `81957`, `81958`, `81960`, `81962`, `81963`, `81965`, `81967`, `81970`, `81971`, `81973`, `81974`, `81975`, `81976`, `81978`, `81979`, `81981`, `81983`, `81984`, `81987`, `81988`, `81990`, `81992`, `81995`, `81997`, `81999`, `82002`, `82004`, `82005`, `82007`, `82009`, `82011`, `82012`, `82014`, `82015`, `82016`, `82018`, `82023`, `82024`, `82025`, `82027`, `82029`, `82031`, `82033`, `82035`, `82038`, `82040`, `82042`, `82044`, `82046`, `82048`, `82049`, `82050`, `82051`, `82052`, `82054`, `82056`, `82057`, `82059`, `82060`, `82061`, `82062`, `82063`, `82064`, `82066`, `82068`, `82069`, `82071`, `82072`, `82073`, `82075`, `82077`, `82079`, `82081`, `82082`, `82084`, `82086`, `82087`, `82089`, `82092`, `82094`, `82096`, `82098`, `82100`, `82103`, `82105`, `82107`, `82108`, `82110`, `82113`, `82114`, `82116`, `82117`, `82119`, `82120`, `82122`, `82123`, `82124`, `82125`, `82127`, `82129`, `82130`, `82131`, `82133`, `82138`, `82140`, `82141`, `82144`, `82146`, `82147`, `82149`, `82153`, `82155`, `82157`, `82158`, `82159`, `82160`, `82162`, `82164`, `82165`, `82167`, `82169`, `82170`, `82172`, `82175`, `82176`, `82178`, `82179`, `82181`, `82182`, `82185`, `82187`, `82188`, `82190`, `82192`, `82194`, `82195`, `82197`, `82199`, `82201`, `82203`, `82205`, `82207`, `82208`, `82210`, `82212`, `82214`, `82219`, `82220`, `82221`, `82223`, `82224`, `82225`, `82227`, `82228`, `82229`, `82230`, `82232`, `82233`, `82234`, `82235`, `82237`, `82238`, `82240`, `82242`, `82244`, `82246`, `82248`, `82250`, `82252`, `82254`, `82255`, `82257`, `82259`, `82261`, `82263`, `82264`, `82266`, `82267`, `82268`, `47405`, `82270`, `82272`, `82276`, `82277`, `82280`, `82281`, `82284`, `82285`, `82287`, `82288`, `82290`, `82292`, `82294`, `82296`, `82298`, `82299`, `82300`, `82302`, `82303`, `82304`, `82306`, `82307`, `82308`, `82310`, `82312`, `82313`, `82315`, `82316`, `82317`, `82319`, `82321`, `82323`, `82325`, `82327`, `82328`, `82330`, `82332`, `82333`, `82335`, `82336`, `82338`, `82339`, `82341`, `82342`, `82344`, `82346`, `82347`, `82349`, `82351`, `82353`, `82355`, `82356`, `82358`, `82359`, `82360`, `82362`, `82363`, `82364`, `82365`, `82367`, `82368`, `82370`, `82372`, `82373`, `82375`, `82377`, `82379`, `82381`, `82383`, `82384`, `82386`, `82387`, `82389`, `82391`, `82392`, `82394`, `82396`, `82397`, `82400`, `82402`, `82403`, `82405`, `82407`, `82409`, `82410`, `82412`, `82414`, `82417`, `82419`, `82420`, `82422`, `82424`, `82426`, `82427`, `82430`, `82433`, `82434`, `82435`, `82437`, `82439`, `82440`, `82442`, `82444`, `82445`, `82446`, `82448`, `82452`, `82453`, `82454`, `82456`, `82458`, `82461`, `82463`, `82464`, `82465`, `82467`, `82469`, `82471`, `82473`, `82475`, `82476`, `82478`, `82479`, `82483`, `82485`, `82486`, `82487`, `251`, `82489`, `82491`, `82492`, `82494`, `82495`, `82497`, `82499`, `82501`, `82503`, `82505`, `82507`, `82509`, `82510`, `82511`, `82512`, `82514`, `82515`, `82517`, `82519`, `82521`, `82523`, `82526`, `82528`, `82529`, `82530`, `82532`, `82536`, `82540`, `82542`, `82543`, `82546`, `82548`, `82550`, `82552`, `82554`, `82556`, `82558`, `82560`, `82561`, `82563`, `82564`, `82566`, `82568`, `82570`, `82572`, `82573`, `82575`, `82577`, `82579`, `82580`, `82582`, `82584`, `82586`, `82589`, `82592`, `82593`, `82595`, `82598`, `82600`, `82602`, `82603`, `82604`, `82606`, `82607`, `82609`, `82611`, `82612`, `82614`, `82615`, `82617`, `82618`, `82619`, `82621`, `82623`, `82624`, `82626`, `82628`, `82630`, `82632`, `82634`, `82636`, `82637`, `82639`, `82641`, `82642`, `82644`, `82646`, `82650`, `82654`, `82656`, `82657`, `82659`, `82661`, `82663`, `82664`, `82665`, `82667`, `82669`, `82671`, `82673`, `82675`, `82676`, `82678`, `82679`, `82681`, `82683`, `82684`, `82685`, `82688`, `82690`, `82692`, `82694`, `82695`, `82697`, `82700`, `82701`, `82703`, `82704`, `82706`, `82708`, `82710`, `82711`, `82712`, `82714`, `82716`, `82718`, `82719`, `82720`, `82722`, `82723`, `82724`, `82725`, `82727`, `82729`, `82731`, `82732`, `82734`, `82736`, `82737`, `82739`, `82741`, `82743`, `82744`, `82745`, `82746`, `82748`, `82751`, `82753`, `82754`, `82756`, `82758`, `82760`, `82762`, `82764`, `82766`, `82768`, `82769`, `82770`, `82772`, `82774`, `82776`, `82778`, `82780`, `82782`, `82783`, `82784`, `82787`, `82789`, `82790`, `82792`, `82793`, `82795`, `82797`, `82798`, `82800`, `82802`, `82804`, `82806`, `82808`, `82810`, `82812`, `82814`, `82816`, `82817`, `82818`, `82820`, `82821`, `82823`, `82824`, `82827`, `851`, `82828`, `82829`, `82830`, `82832`, `82834`, `82837`, `82838`, `82840`, `82843`, `82844`, `82845`, `82847`, `82848`, `82850`, `82852`, `82854`, `82855`, `82856`, `82858`, `82860`, `82862`, `82864`, `82865`, `82867`, `82870`, `82871`, `82877`, `82879`, `82880`, `82882`, `82885`, `82887`, `82891`, `82893`, `82896`, `82898`, `82901`, `82903`, `82906`, `82908`, `82910`, `82912`, `82914`, `82915`, `82916`, `82917`, `82918`, `82919`, `82921`, `82923`, `82925`, `82927`, `82929`, `82931`, `82933`, `82934`, `82936`, `82937`, `82938`, `82940`, `82941`, `82942`, `82944`, `82948`, `82949`, `82952`, `82953`, `82955`, `82956`, `82957`, `82959`, `82961`, `82963`, `82964`, `82965`, `82966`, `82968`, `82969`, `82970`, `82971`, `82972`, `82974`, `82975`, `82976`, `82977`, `82980`, `82982`, `82983`, `82985`, `82987`, `82989`, `82990`, `82991`, `82992`, `82994`, `82995`, `82996`, `82997`, `82999`, `83003`, `83004`, `83006`, `83008`, `83009`, `83010`, `83012`, `83013`, `83015`, `83016`, `83019`, `83022`, `83023`, `83025`, `83027`, `83029`, `83031`, `83033`, `83034`, `83036`, `83038`, `83040`, `83042`, `83046`, `83048`, `83050`, `83052`, `83054`, `83057`, `83058`, `83061`, `83062`, `83064`, `83065`, `83066`, `83067`, `83069`, `83070`, `83072`, `83073`, `83075`, `83077`, `83078`, `83080`, `83082`, `83084`, `83085`, `83086`, `83088`, `83089`, `83091`, `83092`, `83093`, `83094`, `83095`, `83097`, `83098`, `83100`, `83102`, `83103`, `83104`, `83107`, `83109`, `83110`, `83111`, `83112`, `83113`, `83115`, `83117`, `83119`, `83121`, `83122`, `83124`, `83126`, `83128`, `83130`, `83131`, `83133`, `83134`, `83137`, `83138`, `83139`, `83141`, `83142`, `83144`, `83148`, `83150`, `83152`, `83153`, `83155`, `83157`, `83159`, `83162`, `83163`, `83165`, `83167`, `83168`, `83170`, `83171`, `83173`, `83174`, `83175`, `83176`, `83178`, `83180`, `83183`, `83185`, `83188`, `83190`, `83192`, `83193`, `83195`, `83196`, `83198`, `83200`, `83201`, `83203`, `83204`, `83207`, `83208`, `83209`, `83211`, `83213`, `83215`, `83216`, `83218`, `83220`, `83221`, `83223`, `83225`, `83226`, `83228`, `83229`, `83230`, `83232`, `83233`, `83234`, `83235`, `83237`, `83238`, `83239`, `83241`, `83242`, `83244`, `83245`, `83247`, `83249`, `83251`, `83253`, `83255`, `83257`, `83258`, `83260`, `83262`, `83263`, `83265`, `83267`, `83269`, `83270`, `83272`, `83274`, `83276`, `83278`, `83280`, `83281`, `83283`, `83285`, `83287`, `83288`, `83292`, `83293`, `83296`, `83298`, `83300`, `83303`, `83304`, `83306`, `83307`, `83308`, `83310`, `83311`, `83312`, `83314`, `83316`, `83317`, `83318`, `83319`, `83321`, `83324`, `83326`, `83327`, `83328`, `83329`, `83331`, `83333`, `83335`, `83336`, `83338`, `83342`, `83344`, `83346`, `83348`, `83350`, `83352`, `83354`, `83355`, `83358`, `83361`, `83362`, `83363`, `83364`, `83367`, `83369`, `83371`, `83373`, `83378`, `83380`, `83382`, `83383`, `83384`, `83387`, `83389`, `83391`, `83394`, `83396`, `83399`, `83400`, `83401`, `83403`, `83405`, `83407`, `83409`, `83411`, `83413`, `83415`, `83417`, `83418`, `83420`, `83422`, `83424`, `83426`, `83428`, `83430`, `83431`, `83434`, `83436`, `83438`, `83439`, `83441`, `83443`, `83445`, `83446`, `83448`, `83449`, `83451`, `83453`, `83454`, `83458`, `83462`, `83464`, `83465`, `83466`, `83467`, `83469`, `83471`, `83472`, `83473`, `83475`, `83477`, `83479`, `83480`, `83482`, `83483`, `83485`, `83487`, `83489`, `83491`, `83492`, `83495`, `83497`, `83499`, `83501`, `83502`, `83504`, `83506`, `83508`, `83510`, `83512`, `83514`, `83516`, `83517`, `83519`, `83520`, `83521`, `83523`, `83525`, `83527`, `83529`, `83531`, `83533`, `83534`, `83535`, `83537`, `83540`, `83541`, `83543`, `83544`, `83547`, `83548`, `83549`, `83551`, `83554`, `83557`, `83559`, `83560`, `83561`, `83563`, `83565`, `83567`, `83569`, `83571`, `83572`, `83574`, `83576`, `83577`, `83579`, `83581`, `83583`, `83586`, `83588`, `83589`, `83591`, `83593`, `83595`, `83597`, `83598`, `83600`, `83602`, `83604`, `83605`, `83606`, `83609`, `83611`, `83612`, `83613`, `83615`, `83617`, `83618`, `83620`, `83622`, `83624`, `83626`, `83629`, `83631`, `83633`, `83635`, `83638`, `83640`, `83642`, `83643`, `83644`, `83647`, `83649`, `83650`, `83651`, `83653`, `83655`, `83657`, `83658`, `83660`, `83661`, `83663`, `83664`, `83665`, `83666`, `83667`, `83669`, `83670`, `83672`, `83674`, `83676`, `83677`, `83679`, `83682`, `83684`, `83686`, `83688`, `83689`, `83691`, `83693`, `83694`, `83696`, `83697`, `83699`, `83700`, `83702`, `83704`, `83706`, `83709`, `83710`, `83712`, `83714`, `83715`, `83719`, `83721`, `83722`, `83723`, `83726`, `83727`, `83729`, `83731`, `83735`, `83737`, `83738`, `83740`, `83744`, `83746`, `83748`, `83750`, `83752`, `83753`, `83755`, `83757`, `83759`, `83760`, `83762`, `83764`, `83766`, `83768`, `83770`, `83771`, `83775`, `83776`, `83778`, `83780`, `83782`, `83783`, `83784`, `83785`, `83786`, `83788`, `83790`, `83792`, `83793`, `83795`, `83797`, `83800`, `83802`, `83803`, `83804`, `83805`, `83807`, `83809`, `83811`, `83813`, `83814`, `83817`, `83819`, `83822`, `83823`, `83825`, `83827`, `83829`, `83831`, `83833`, `83834`, `83837`, `83839`, `83840`, `83841`, `83844`, `83845`, `83847`, `83848`, `83850`, `83851`, `83853`, `83855`, `83857`, `83859`, `83860`, `83863`, `83867`, `83868`, `83869`, `83870`, `83871`, `83873`, `83875`, `83877`, `83879`, `83881`, `83882`, `83884`, `83885`, `83887`, `83889`, `83891`, `83893`, `83895`, `83897`, `83899`, `83901`, `83903`, `83904`, `83905`, `83907`, `83909`, `83911`, `83912`, `83914`, `83916`, `83918`, `83919`, `83922`, `83924`, `83926`, `83928`, `83930`, `83932`, `83934`, `83936`, `83940`, `83943`, `83945`, `83946`, `83949`, `83951`, `83953`, `83954`, `83956`, `83961`, `83963`, `83965`, `83966`, `83970`, `83972`, `83974`, `83977`, `83979`, `83981`, `83982`, `83984`, `83985`, `83986`, `83987`, `83990`, `83992`, `83996`, `83997`, `83998`, `84000`, `84002`, `84007`, `84008`, `84010`, `84012`, `84013`, `84015`, `84020`, `84024`, `84026`, `84027`, `84028`, `84030`, `84032`, `84034`, `84035`, `84037`, `84040`, `84042`, `84043`, `84045`, `84047`, `84049`, `84050`, `84052`, `84054`, `84055`, `84057`, `84058`, `84063`, `84065`, `84067`, `84068`, `84070`, `84071`, `84072`, `84074`, `84076`, `84077`, `84078`, `84080`, `84082`, `84083`, `84085`, `84086`, `84087`, `84088`, `84090`, `84091`, `84092`, `84093`, `84095`, `84097`, `84098`, `84100`, `84103`, `84105`, `84107`, `84108`, `84110`, `84112`, `84114`, `84116`, `84118`, `84119`, `84120`, `84121`, `84122`, `84124`, `84126`, `84128`, `84129`, `84131`, `84132`, `84134`, `84135`, `84137`, `84138`, `84139`, `84140`, `84141`, `84142`, `84144`, `84146`, `84150`, `84153`, `84154`, `84156`, `84158`, `84160`, `84161`, `84164`, `84166`, `84167`, `84170`, `84172`, `84173`, `84175`, `84177`, `84179`, `84181`, `84183`, `84185`, `84187`, `84189`, `84191`, `84192`, `84194`, `84196`, `84198`, `84200`, `84202`, `84203`, `84205`, `84207`, `84208`, `84210`, `84212`, `84213`, `84214`, `84215`, `84217`, `84218`, `84220`, `84222`, `84223`, `84225`, `84227`, `84229`, `84231`, `84232`, `84234`, `84236`, `84237`, `84238`, `84240`, `84242`, `84244`, `84246`, `84249`, `84251`, `84252`, `84254`, `84256`, `84258`, `84260`, `84262`, `84263`, `84265`, `84267`, `84269`, `84271`, `84272`, `84274`, `84275`, `84276`, `84277`, `84279`, `84280`, `84282`, `84284`, `84286`, `84287`, `84291`, `84294`, `84296`, `84298`, `84300`, `84302`, `84304`, `84306`, `84310`, `84311`, `84313`, `84315`, `84317`, `84318`, `84319`, `84321`, `84322`, `84323`, `84325`, `84327`, `84329`, `84331`, `84332`, `84334`, `84336`, `84339`, `84341`, `84343`, `84344`, `84346`, `84347`, `84349`, `84351`, `84353`, `84355`, `84356`, `84357`, `84359`, `84361`, `84362`, `84364`, `84365`, `84368`, `84370`, `84372`, `84374`, `84375`, `84377`, `84378`, `84380`, `84381`, `84382`, `84383`, `84384`, `84386`, `84387`, `84388`, `84390`, `84392`, `84394`, `84395`, `84397`, `84399`, `84401`, `84403`, `84405`, `84407`, `84409`, `84411`, `84412`, `84414`, `84416`, `84418`, `84420`, `84422`, `84425`, `84427`, `84429`, `84430`, `84432`, `84435`, `84437`, `84439`, `84441`, `84445`, `84447`, `84449`, `84452`, `84453`, `84455`, `84457`, `84459`, `84461`, `84464`, `84466`, `84468`, `84470`, `84472`, `84474`, `84475`, `84476`, `84478`, `84479`, `84480`, `84481`, `84483`, `84486`, `84487`, `84489`, `84490`, `84491`, `84492`, `84494`, `84498`, `84499`, `84500`, `84502`, `84504`, `84508`, `84509`, `84510`, `84511`, `84512`, `84514`, `84516`, `84518`, `84520`, `84522`, `84524`, `84526`, `84528`, `84533`, `84535`, `84536`, `84538`, `84539`, `84542`, `84543`, `84545`, `84547`, `84548`, `84549`, `84551`, `84552`, `84554`, `84556`, `84558`, `84560`, `84562`, `84564`, `84566`, `84567`, `84569`, `84571`, `84573`, `84575`, `84577`, `84578`, `84581`, `84583`, `84585`, `84587`, `84589`, `84590`, `84592`, `84595`, `84596`, `84598`, `84600`, `84602`, `84604`, `84605`, `84606`, `84607`, `84609`, `84611`, `84612`, `84613`, `84615`, `84617`, `84618`, `84619`, `84621`, `84622`, `84623`, `84624`, `84625`, `84627`, `84628`, `84631`, `84633`, `84635`, `84636`, `84638`, `84640`, `84641`, `84643`, `84645`, `84646`, `84648`, `84649`, `84651`, `84652`, `84653`, `84655`, `84657`, `84659`, `84660`, `84661`, `84663`, `84665`, `84666`, `84667`, `84669`, `84671`, `84673`, `84674`, `84676`, `84678`, `84679`, `84680`, `84682`, `84685`, `84687`, `84688`, `84689`, `84690`, `84691`, `84692`, `84693`, `84695`, `84697`, `84699`, `84701`, `84703`, `84704`, `84706`, `84707`, `84709`, `84711`, `84714`, `84715`, `84716`, `84717`, `84719`, `84721`, `84723`, `84724`, `84726`, `84728`, `84730`, `84731`, `84733`, `84734`, `84735`, `84737`, `84739`, `84740`, `84741`, `84743`, `84744`, `84746`, `84747`, `84748`, `84750`, `84752`, `84754`, `84755`, `84757`, `84759`, `84761`, `84763`, `84765`, `84767`, `84770`, `84772`, `84773`, `84774`, `84775`, `84777`, `84781`, `84783`, `84785`, `84787`, `84789`, `84791`, `84792`, `84797`, `84799`, `84801`, `84803`, `84804`, `84806`, `84807`, `84809`, `84811`, `84813`, `84815`, `84818`, `84820`, `84823`, `84825`, `84827`, `84829`, `84832`, `84833`, `84834`, `84837`, `84838`, `84839`, `84841`, `84843`, `84845`, `84847`, `84849`, `84851`, `84853`, `84856`, `84857`, `84858`, `84859`, `84861`, `84863`, `84867`, `84868`, `84869`, `84870`, `84872`, `84873`, `84875`, `84877`, `84878`, `84879`, `84881`, `84883`, `84885`, `84887`, `84889`, `84892`, `84893`, `84895`, `84897`, `84899`, `84901`, `84903`, `84905`, `84907`, `84908`, `84910`, `84911`, `84913`, `84914`, `84916`, `84917`, `84919`, `84921`, `84922`, `84923`, `84925`, `84927`, `84928`, `84929`, `84930`, `84933`, `84935`, `84937`, `84939`, `84940`, `84941`, `84943`, `84945`, `84946`, `84948`, `84949`, `84950`, `84952`, `84953`, `84955`, `84958`, `84959`, `84961`, `84962`, `84964`, `84966`, `84967`, `84968`, `84970`, `84972`, `84973`, `84975`, `84976`, `84977`, `84979`, `84981`, `84983`, `84984`, `84986`, `84988`, `84990`, `84992`, `84995`, `84997`, `84998`, `84999`, `85001`, `85003`, `85005`, `85007`, `85008`, `85010`, `85012`, `85014`, `85016`, `85018`, `85020`, `85021`, `85022`, `85024`, `85026`, `85028`, `85030`, `85031`, `85033`, `85035`, `85037`, `85039`, `85041`, `85043`, `85045`, `85046`, `85050`, `85052`, `85054`, `85056`, `85059`, `85061`, `85064`, `85065`, `85067`, `85068`, `85070`, `85072`, `85073`, `85075`, `85076`, `85077`, `85079`, `85080`, `85082`, `85085`, `85086`, `85088`, `85090`, `85092`, `85094`, `85096`, `85097`, `85099`, `85101`, `85103`, `85104`, `85106`, `85107`, `85110`, `85113`, `85114`, `85116`, `85118`, `85120`, `85122`, `85123`, `85124`, `85125`, `85126`, `85127`, `85128`, `85130`, `85133`, `85134`, `85135`, `85137`, `85138`, `85140`, `85142`, `85145`, `85147`, `85149`, `85151`, `85153`, `85155`, `85157`, `85158`, `85160`, `85161`, `85163`, `85165`, `85166`, `85168`, `85170`, `85172`, `85174`, `85175`, `85176`, `85178`, `85180`, `85182`, `85183`, `85185`, `85187`, `85189`, `85191`, `85194`, `85196`, `85198`, `85199`, `85201`, `85203`, `85205`, `85207`, `85208`, `85210`, `85212`, `85215`, `85216`, `85218`, `85220`, `85222`, `85223`, `85224`, `85226`, `85228`, `85230`, `85232`, `85236`, `85238`, `85240`, `85242`, `85244`, `85245`, `85247`, `85248`, `85250`, `85252`, `85254`, `85256`, `85257`, `85259`, `85261`, `85263`, `85265`, `85266`, `85268`, `85269`, `85271`, `85273`, `85274`, `85276`, `85278`, `85279`, `85281`, `85283`, `85284`, `85286`, `85288`, `85290`, `85291`, `85292`, `85294`, `85296`, `85297`, `85298`, `85300`, `85305`, `85307`, `85309`, `85310`, `85311`, `85313`, `85317`, `85318`, `85319`, `85321`, `85322`, `85326`, `85328`, `85330`, `85331`, `85333`, `85334`, `85336`, `85338`, `85340`, `85341`, `85342`, `85344`, `85346`, `85347`, `85349`, `85351`, `85353`, `85355`, `85357`, `85359`, `85360`, `85362`, `85363`, `85365`, `85367`, `85369`, `85370`, `85371`, `85373`, `85375`, `85377`, `85379`, `85383`, `85384`, `85386`, `85388`, `85394`, `85395`, `85397`, `85399`, `85400`, `85401`, `85403`, `85405`, `85406`, `85407`, `85408`, `85409`, `85410`, `85411`, `85413`, `85414`, `85416`, `85418`, `85421`, `85423`, `85425`, `85427`, `85429`, `85430`, `85431`, `85433`, `85434`, `85436`, `85438`, `85440`, `85441`, `85444`, `85446`, `85447`, `85449`, `85451`, `85453`, `85455`, `85456`, `85458`, `85460`, `85462`, `85465`, `85468`, `85469`, `85470`, `85472`, `85474`, `85476`, `85478`, `85480`, `85481`, `85483`, `85486`, `85487`, `85488`, `85490`, `85491`, `85493`, `85495`, `85497`, `85499`, `85501`, `85503`, `85506`, `85509`, `85510`, `85513`, `85514`, `85515`, `85517`, `85519`, `85521`, `85523`, `85525`, `85527`, `85529`, `85530`, `85533`, `85534`, `85536`, `85539`, `85540`, `85542`, `85543`, `85545`, `85546`, `85548`, `85550`, `85551`, `85553`, `85555`, `85556`, `85558`, `85559`, `85561`, `85562`, `85563`, `85565`, `85568`, `85569`, `85571`, `85573`, `85574`, `85576`, `85577`, `85578`, `85579`, `85582`, `85583`, `85585`, `85589`, `85591`, `85593`, `85596`, `85597`, `85600`, `85601`, `85603`, `85605`, `85606`, `85609`, `85610`, `85613`, `85614`, `85616`, `85617`, `85619`, `85621`, `85624`, `85626`, `85628`, `85630`, `85631`, `85632`, `85634`, `85636`, `85637`, `85639`, `85641`, `85642`, `85643`, `85645`, `85647`, `85649`, `85650`, `85651`, `85653`, `85654`, `85655`, `85657`, `85659`, `85661`, `85662`, `85664`, `85666`, `85668`, `85670`, `85671`, `85678`, `85680`, `85681`, `85683`, `85685`, `85687`, `85689`, `85691`, `85692`, `85694`, `85696`, `85698`, `85699`, `85700`, `85701`, `85702`, `85703`, `85704`, `85706`, `85707`, `85709`, `85711`, `85713`, `85714`, `85716`, `85718`, `85720`, `85722`, `85724`, `85726`, `85728`, `85729`, `85730`, `85731`, `85733`, `85735`, `85737`, `85740`, `85741`, `85742`, `85748`, `85750`, `85752`, `85754`, `85756`, `85757`, `85759`, `85761`, `85764`, `85767`, `85769`, `85770`, `85771`, `85773`, `85776`, `85777`, `85779`, `85781`, `85783`, `85784`, `85785`, `85787`, `85789`, `85790`, `85792`, `85794`, `85796`, `85798`, `85800`, `85802`, `85804`, `85805`, `85807`, `85810`, `85812`, `85814`, `85816`, `85818`, `85819`, `85821`, `85822`, `85824`, `85828`, `85829`, `85830`, `85831`, `85833`, `85835`, `85838`, `85840`, `85843`, `85845`, `85849`, `85851`, `85852`, `85854`, `85855`, `85857`, `85860`, `85861`, `85863`, `85864`, `85866`, `85867`, `85869`, `85870`, `85872`, `85874`, `85876`, `85877`, `85879`, `85881`, `85882`, `85883`, `85884`, `85885`, `85886`, `85888`, `85889`, `85891`, `85892`, `85893`, `85894`, `85895`, `85896`, `85898`, `85900`, `85902`, `85904`, `85906`, `85908`, `85909`, `85912`, `85913`, `85914`, `85915`, `85916`, `85918`, `85920`, `85922`, `85924`, `85926`, `85927`, `85929`, `85931`, `85933`, `85934`, `85935`, `85937`, `85938`, `85940`, `85941`, `85946`, `85948`, `85949`, `85950`, `85952`, `85955`, `85956`, `85958`, `85959`, `85960`, `85962`, `85963`, `85966`, `85971`, `85973`, `85975`, `52292`, `85976`, `85980`, `85982`, `85983`, `85985`, `85987`, `85989`, `85990`, `85992`, `85994`, `85996`, `85998`, `86000`, `86001`, `86003`, `86004`, `86005`, `86006`, `86008`, `86010`, `86012`, `86014`, `86015`, `86016`, `86017`, `86019`, `86020`, `86024`, `86026`, `86028`, `86030`, `86031`, `86032`, `86033`, `86035`, `86037`, `86038`, `86042`, `86043`, `86045`, `86046`, `86048`, `86050`, `86053`, `86055`, `86057`, `86060`, `86062`, `86064`, `86066`, `86068`, `86069`, `86070`, `86072`, `86074`, `86076`, `86078`, `86079`, `86081`, `86083`, `86084`, `86085`, `86086`, `86087`, `86089`, `86091`, `86093`, `86094`, `86096`, `86098`, `86100`, `86102`, `86104`, `86106`, `86107`, `86109`, `86111`, `86113`, `86115`, `86116`, `86117`, `86119`, `86122`, `86124`, `86126`, `86127`, `86131`, `86132`, `86134`, `86135`, `86137`, `86139`, `86141`, `86142`, `86143`, `86144`, `86146`, `86148`, `86149`, `86151`, `86153`, `86157`, `86158`, `86159`, `86160`, `86162`, `86164`, `86165`, `86167`, `86169`, `86170`, `86172`, `86174`, `86176`, `86177`, `86179`, `86180`, `86182`, `86184`, `86186`, `86187`, `86188`, `86189`, `86191`, `86193`, `86195`, `86196`, `86198`, `86200`, `86201`, `86203`, `86205`, `86208`, `86209`, `86210`, `86212`, `86214`, `86215`, `86216`, `86218`, `86219`, `86220`, `86221`, `86222`, `86223`, `86224`, `86225`, `86227`, `86229`, `86230`, `86232`, `86233`, `86238`, `86240`, `86241`, `86243`, `86244`, `86246`, `86247`, `86248`, `86249`, `86251`, `86253`, `86255`, `86256`, `86258`, `86259`, `86260`, `86262`, `86263`, `86265`, `86267`, `86269`, `86271`, `86272`, `86274`, `86276`, `86278`, `86280`, `86282`, `86284`, `86285`, `86286`, `86288`, `86289`, `86290`, `86292`, `86294`, `86295`, `86297`, `86299`, `86302`, `86303`, `86305`, `86307`, `86308`, `86311`, `86313`, `86315`, `86317`, `86319`, `86321`, `86322`, `86324`, `86326`, `86327`, `86329`, `86331`, `86333`, `86335`, `86336`, `86339`, `86341`, `86342`, `86343`, `86344`, `86345`, `86347`, `86349`, `86351`, `86353`, `86354`, `86358`, `86360`, `86361`, `86363`, `86365`, `86367`, `86368`, `86369`, `86371`, `86373`, `86375`, `86377`, `86379`, `86381`, `86383`, `86385`, `86387`, `86389`, `86390`, `86392`, `86394`, `86396`, `86397`, `86398`, `86400`, `86402`, `86404`, `86405`, `86406`, `86410`, `86411`, `86413`, `86414`, `86416`, `86418`, `86419`, `86421`, `86424`, `86426`, `86427`, `86431`, `86432`, `86434`, `86436`, `86438`, `86440`, `86441`, `86442`, `86444`, `86446`, `86448`, `86450`, `86452`, `86454`, `86457`, `86459`, `86462`, `86464`, `86465`, `86467`, `86469`, `86471`, `86472`, `86474`, `86476`, `86477`, `86479`, `86481`, `86483`, `86485`, `86487`, `86489`, `86491`, `86493`, `86495`, `86496`, `86498`, `86500`, `86502`, `86504`, `86505`, `86507`, `86508`, `86510`, `86512`, `86513`, `86514`, `86516`, `86518`, `86520`, `86522`, `86527`, `86529`, `86531`, `86532`, `86533`, `86536`, `86537`, `86538`, `86542`, `86544`, `86546`, `86548`, `86549`, `86550`, `86552`, `86554`, `86556`, `86558`, `86560`, `86561`, `86562`, `86564`, `86566`, `86568`, `86569`, `86570`, `86572`, `86573`, `86574`, `86576`, `86577`, `86579`, `86580`, `86581`, `86583`, `86586`, `86588`, `86591`, `86593`, `86595`, `86597`, `86599`, `86600`, `86602`, `86604`, `86605`, `86607`, `86609`, `86610`, `86612`, `86614`, `86615`, `86617`, `86618`, `86619`, `86622`, `86624`, `86626`, `86627`, `86628`, `86629`, `86630`, `86631`, `86633`, `86634`, `86636`, `86638`, `86640`, `86642`, `86644`, `86645`, `86647`, `86649`, `86650`, `86651`, `86652`, `86653`, `86655`, `86656`, `86658`, `86660`, `86662`, `86665`, `86667`, `86669`, `86671`, `86672`, `86674`, `86675`, `86677`, `86678`, `86680`, `86681`, `86682`, `86684`, `86685`, `86687`, `86689`, `86691`, `86693`, `86694`, `86695`, `86697`, `86698`, `86699`, `86700`, `86703`, `86705`, `86707`, `86709`, `86714`, `86716`, `86717`, `86720`, `86721`, `86723`, `86725`, `86727`, `86729`, `86731`, `86733`, `86735`, `86737`, `86739`, `86740`, `86741`, `86743`, `86744`, `86745`, `86747`, `86749`, `86751`, `86753`, `86754`, `86755`, `86756`, `86757`, `86759`, `86760`, `86761`, `86762`, `86764`, `86766`, `86767`, `86770`, `86772`, `86774`, `86775`, `86776`, `86781`, `86782`, `86783`, `86785`, `86787`, `86789`, `86791`, `86792`, `86794`, `86796`, `86797`, `86799`, `86802`, `86804`, `86807`, `86809`, `86811`, `86813`, `86814`, `86816`, `86818`, `86820`, `86821`, `86822`, `86825`, `86827`, `86828`, `86831`, `86833`, `86835`, `86836`, `86838`, `86840`, `86842`, `86844`, `86845`, `86846`, `86848`, `86850`, `86852`, `86853`, `86854`, `86855`, `86857`, `86858`, `86859`, `86860`, `86861`, `86863`, `86865`, `86866`, `86867`, `86869`, `86870`, `86872`, `86874`, `86875`, `86877`, `86878`, `86880`, `86881`, `86883`, `86885`, `86886`, `86888`, `86889`, `86890`, `86892`, `86893`, `86895`, `86896`, `86898`, `86900`, `86902`, `86904`, `86905`, `86907`, `86908`, `86909`, `86911`, `86912`, `86914`, `86916`, `86917`, `86919`, `86920`, `86922`, `86924`, `86925`, `86927`, `86929`, `86931`, `86933`, `86935`, `86936`, `86939`, `86942`, `86944`, `86946`, `86948`, `86950`, `86952`, `86954`, `86958`, `86959`, `86961`, `86963`, `86965`, `86966`, `86967`, `86968`, `86969`, `86970`, `86972`, `86973`, `86974`, `86976`, `86977`, `86978`, `86980`, `86981`, `86982`, `86986`, `86987`, `86988`, `86990`, `86992`, `86993`, `86995`, `86997`, `86998`, `87001`, `87002`, `87004`, `87006`, `87009`, `87011`, `87013`, `87014`, `87016`, `87017`, `87019`, `87021`, `87023`, `87024`, `87026`, `87028`, `87030`, `87032`, `87034`, `87035`, `87036`, `87037`, `87039`, `87044`, `87045`, `87047`, `87049`, `87050`, `87052`, `87054`, `87056`, `87057`, `87059`, `87061`, `87062`, `87064`, `87066`, `87068`, `87070`, `87072`, `87074`, `87076`, `87078`, `87080`, `87082`, `87083`, `87084`, `87085`, `87087`, `87089`, `87091`, `87093`, `87095`, `87097`, `87099`, `87100`, `87102`, `87104`, `87106`, `87107`, `87109`, `87111`, `87112`, `87114`, `87116`, `87118`, `87119`, `87121`, `87125`, `87126`, `87128`, `87129`, `87130`, `87132`, `87134`, `87136`, `87138`, `87140`, `87142`, `87144`, `87146`, `87149`, `87151`, `87153`, `87155`, `87156`, `87158`, `87160`, `87162`, `87163`, `87165`, `87166`, `87168`, `87172`, `87173`, `87174`, `87175`, `87177`, `87179`, `87180`, `87182`, `87184`, `87185`, `87187`, `87188`, `87190`, `87191`, `87193`, `87195`, `87197`, `87199`, `87201`, `87202`, `87203`, `87207`, `87209`, `87211`, `87215`, `87220`, `87222`, `87224`, `87226`, `87228`, `87230`, `87232`, `87233`, `87235`, `87237`, `87239`, `87241`, `87243`, `87245`, `87246`, `87249`, `87250`, `87252`, `87254`, `87255`, `87257`, `87259`, `87260`, `87261`, `87263`, `87265`, `87266`, `87271`, `87273`, `87275`, `87277`, `87279`, `87280`, `87284`, `87286`, `87287`, `87289`, `87290`, `87292`, `87294`, `87296`, `87298`, `87299`, `87300`, `87303`, `87305`, `87307`, `87310`, `87312`, `87313`, `87318`, `87320`, `87321`, `87325`, `87326`, `87328`, `87332`, `87334`, `87336`, `87337`, `87338`, `87340`, `87341`, `87344`, `87346`, `87348`, `87349`, `87353`, `87355`, `87357`, `87358`, `87360`, `87362`, `87364`, `87366`, `87368`, `87370`, `87372`, `87373`, `87374`, `87375`, `87376`, `87378`, `87380`, `87381`, `87382`, `87384`, `87386`, `87388`, `87390`, `87392`, `87393`, `87395`, `87398`, `87399`, `87402`, `87404`, `87405`, `87410`, `87412`, `87414`, `87415`, `87417`, `87419`, `87420`, `87422`, `87424`, `87425`, `87427`, `87429`, `87431`, `87433`, `87435`, `87437`, `87438`, `87439`, `87441`, `87445`, `87446`, `87447`, `87449`, `87450`, `87452`, `87454`, `87456`, `87457`, `87459`, `87461`, `87463`, `87465`, `87467`, `87469`, `87471`, `87473`, `87474`, `87476`, `87477`, `87479`, `87481`, `87483`, `87485`, `87487`, `87489`, `87491`, `87492`, `87494`, `87496`, `87499`, `87500`, `87501`, `87502`, `87504`, `87505`, `87507`, `87508`, `87510`, `87512`, `87513`, `87515`, `87517`, `87518`, `87520`, `87522`, `87524`, `87526`, `87528`, `87529`, `87530`, `87531`, `87534`, `87536`, `87539`, `87541`, `87542`, `87543`, `87544`, `87545`, `87546`, `87548`, `87550`, `87551`, `87553`, `87554`, `87557`, `87559`, `87561`, `87563`, `87566`, `87568`, `87569`, `87570`, `87572`, `87574`, `87576`, `87578`, `87580`, `87582`, `87583`, `87585`, `87587`, `87591`, `87592`, `87594`, `87596`, `87597`, `87599`, `87600`, `87601`, `87602`, `87604`, `87605`, `87607`, `87609`, `87611`, `87612`, `87614`, `87616`, `87618`, `87621`, `87623`, `87625`, `87626`, `87628`, `87629`, `87631`, `87633`, `87635`, `87637`, `87638`, `87639`, `87641`, `87643`, `87645`, `87648`, `87649`, `87650`, `87652`, `87654`, `87656`, `87658`, `87659`, `87661`, `87662`, `87664`, `87665`, `87667`, `87669`, `87671`, `87673`, `87675`, `87676`, `87677`, `87679`, `87680`, `87682`, `87685`, `87686`, `87688`, `87689`, `87691`, `87693`, `87697`, `87698`, `87700`, `87702`, `87703`, `87705`, `87706`, `87707`, `87708`, `87709`, `87712`, `87714`, `87716`, `87719`, `87721`, `87723`, `87725`, `87726`, `87728`, `87729`, `87731`, `87733`, `87735`, `87738`, `87740`, `87742`, `87744`, `87745`, `87747`, `87749`, `87751`, `87752`, `87754`, `87756`, `87758`, `87760`, `87762`, `87763`, `87765`, `87766`, `87768`, `87769`, `87771`, `87773`, `87775`, `87776`, `87779`, `87781`, `87783`, `87784`, `87786`, `87788`, `87793`, `87795`, `87797`, `87799`, `87800`, `87802`, `87804`, `87806`, `87808`, `87809`, `87811`, `87813`, `87815`, `87817`, `87818`, `87820`, `87824`, `87826`, `87828`, `87830`, `87833`, `87836`, `87838`, `87840`, `87842`, `87843`, `87845`, `87847`, `87848`, `87849`, `87853`, `87855`, `87856`, `87858`, `87860`, `87862`, `87864`, `87866`, `87867`, `87868`, `87869`, `87871`, `87873`, `87874`, `87876`, `87877`, `87881`, `87883`, `87885`, `87887`, `87889`, `87891`, `87893`, `87895`, `87896`, `87898`, `87900`, `87902`, `87904`, `87906`, `87909`, `87910`, `87911`, `87912`, `87914`, `87915`, `87919`, `87921`, `87923`, `87924`, `87925`, `87927`, `87929`, `87930`, `87931`, `87932`, `87933`, `87935`, `87936`, `87937`, `87939`, `87942`, `87944`, `87946`, `87948`, `87950`, `87952`, `87953`, `87954`, `87955`, `87958`, `87960`, `87961`, `87963`, `87965`, `87967`, `87968`, `87969`, `87971`, `87973`, `87974`, `87975`, `87976`, `87978`, `87980`, `87982`, `87984`, `87986`, `87987`, `87988`, `87990`, `87991`, `87993`, `87995`, `87996`, `87997`, `87998`, `87999`, `88001`, `88003`, `88005`, `88006`, `88008`, `88010`, `88011`, `88012`, `88013`, `88014`, `88016`, `88018`, `88020`, `88022`, `88024`, `88028`, `88029`, `88030`, `88032`, `88035`, `88036`, `88039`, `88041`, `88043`, `88045`, `88047`, `88049`, `88051`, `88054`, `88056`, `88057`, `88060`, `88062`, `88064`, `88066`, `88067`, `88068`, `88070`, `88072`, `88074`, `88076`, `88079`, `88081`, `88086`, `88088`, `88090`, `88092`, `88094`, `88096`, `88098`, `88100`, `88102`, `88104`, `88106`, `88108`, `88110`, `88111`, `88112`, `88113`, `88115`, `88119`, `88120`, `88123`, `88125`, `88126`, `88131`, `88132`, `88134`, `88136`, `88137`, `88138`, `88140`, `88141`, `88143`, `88144`, `88146`, `88148`, `88150`, `88152`, `88153`, `88157`, `88158`, `88159`, `88160`, `88162`, `88164`, `88165`, `88167`, `88169`, `88171`, `88173`, `88175`, `88177`, `88179`, `88181`, `88183`, `88184`, `88186`, `88187`, `88189`, `88190`, `88192`, `88194`, `88195`, `88196`, `88198`, `88200`, `88204`, `88206`, `88208`, `88210`, `88213`, `88215`, `88216`, `88218`, `88219`, `88220`, `88221`, `88222`, `88223`, `88226`, `88227`, `88229`, `88230`, `88231`, `88233`, `88235`, `88237`, `88238`, `88239`, `88240`, `88242`, `88243`, `88246`, `88247`, `88249`, `88250`, `88252`, `88254`, `88256`, `88259`, `88261`, `88263`, `88265`, `88267`, `88268`, `88269`, `88271`, `88272`, `88274`, `88275`, `88277`, `88279`, `88281`, `88283`, `88285`, `88286`, `88289`, `88291`, `88292`, `88294`, `88295`, `88297`, `88299`, `88301`, `88305`, `88307`, `88308`, `88309`, `88311`, `88312`, `88314`, `88316`, `88320`, `88321`, `88322`, `88324`, `88325`, `88328`, `88329`, `88330`, `88332`, `88335`, `88337`, `88339`, `88340`, `88341`, `88343`, `88345`, `88347`, `88350`, `88352`, `88353`, `88355`, `88357`, `88358`, `88360`, `88362`, `88364`, `88367`, `88368`, `88369`, `88371`, `88373`, `88375`, `88377`, `88378`, `88379`, `88381`, `88382`, `88384`, `88386`, `88389`, `88390`, `88392`, `88396`, `88399`, `88400`, `88402`, `88405`, `88406`, `88408`, `88410`, `88411`, `88413`, `88414`, `88416`, `88418`, `88419`, `88421`, `88423`, `88426`, `88428`, `88430`, `88432`, `88434`, `88435`, `88436`, `88438`, `88439`, `88441`, `88443`, `88445`, `88447`, `88449`, `88451`, `88452`, `88454`, `88456`, `88458`, `88460`, `88463`, `88464`, `88466`, `88468`, `88471`, `88475`, `88477`, `88478`, `88480`, `88482`, `88484`, `88486`, `88487`, `88488`, `88490`, `88492`, `88494`, `88496`, `88498`, `88500`, `88502`, `88503`, `88504`, `88506`, `88508`, `88510`, `88513`, `88515`, `88517`, `88519`, `88521`, `88524`, `88525`, `88526`, `88528`, `88530`, `88532`, `88534`, `88536`, `88538`, `88539`, `88541`, `88543`, `88545`, `88546`, `88547`, `88548`, `88550`, `88551`, `88553`, `88554`, `88556`, `88558`, `88560`, `88562`, `88564`, `88566`, `88568`, `88570`, `88574`, `88576`, `88577`, `88579`, `88582`, `88584`, `88586`, `88587`, `88589`, `88590`, `88593`, `88595`, `88599`, `88601`, `88603`, `88605`, `88606`, `88607`, `88609`, `88611`, `88614`, `88616`, `88622`, `88624`, `88625`, `88626`, `88627`, `88628`, `88629`, `88630`, `88632`, `88633`, `88634`, `88636`, `88638`, `88639`, `88641`, `88643`, `88645`, `88647`, `88649`, `88651`, `88653`, `88654`, `88656`, `88658`, `88659`, `88661`, `88663`, `88664`, `88666`, `88668`, `88670`, `88671`, `88672`, `88673`, `88674`, `88675`, `88677`, `88679`, `88681`, `88683`, `88685`, `88686`, `88688`, `88691`, `88692`, `88694`, `88696`, `88697`, `88698`, `88700`, `88701`, `88703`, `88705`, `88707`, `88709`, `88711`, `88713`, `88715`, `88717`, `88718`, `88719`, `88721`, `88723`, `88724`, `88726`, `88728`, `88730`, `88733`, `88735`, `88736`, `88738`, `88739`, `88740`, `88741`, `88743`, `88745`, `88746`, `88747`, `88749`, `88751`, `88752`, `88753`, `88754`, `88755`, `88756`, `88758`, `88759`, `88762`, `88764`, `88765`, `88766`, `88768`, `88769`, `88771`, `88772`, `88774`, `88775`, `88777`, `88778`, `88779`, `88781`, `88784`, `88787`, `88789`, `88791`, `88794`, `88795`, `88796`, `88797`, `88798`, `88800`, `88802`, `88804`, `88805`, `88806`, `88808`, `88810`, `88812`, `88813`, `88814`, `88816`, `88818`, `88823`, `88825`, `88827`, `88829`, `88830`, `88833`, `88835`, `88836`, `88838`, `88841`, `88844`, `88845`, `88848`, `88851`, `88854`, `88857`, `88861`, `88862`, `88863`, `88865`, `88866`, `88867`, `88869`, `88871`, `88873`, `88875`, `88877`, `88878`, `88880`, `88883`, `88884`, `88885`, `88886`, `88887`, `88889`, `88890`, `88891`, `88892`, `88894`, `88895`, `88896`, `88897`, `88899`, `88901`, `88903`, `88905`, `88907`, `88909`, `88910`, `88912`, `88914`, `88915`, `88917`, `88919`, `88924`, `88925`, `88927`, `88929`, `88931`, `88933`, `88935`, `88937`, `88938`, `88942`, `88943`, `88944`, `88945`, `88947`, `88949`, `88952`, `88954`, `88958`, `88960`, `88961`, `88962`, `88964`, `88965`, `88967`, `88968`, `88969`, `88971`, `88973`, `88975`, `88976`, `88977`, `88979`, `88981`, `88982`, `88984`, `88985`, `88986`, `88988`, `88992`, `88993`, `88995`, `88996`, `88997`, `88999`, `89001`, `89002`, `89004`, `89006`, `89009`, `89011`, `89013`, `89015`, `89017`, `89019`, `89021`, `89022`, `89024`, `89028`, `89030`, `89031`, `89032`, `89034`, `89036`, `89037`, `89039`, `89041`, `89043`, `89045`, `89046`, `89048`, `89052`, `89054`, `89056`, `89058`, `89059`, `89061`, `89062`, `89065`, `89066`, `89068`, `89070`, `89072`, `89074`, `89076`, `89077`, `89078`, `89080`, `89082`, `89084`, `89085`, `89087`, `89089`, `89091`, `89093`, `89095`, `89098`, `89100`, `89101`, `89102`, `89103`, `89105`, `89107`, `89109`, `89110`, `89112`, `89114`, `89115`, `89117`, `89119`, `89120`, `89122`, `89124`, `89126`, `89128`, `89131`, `89133`, `89135`, `89137`, `89140`, `89141`, `89143`, `89145`, `89147`, `89149`, `89151`, `89154`, `89155`, `89157`, `89161`, `89163`, `89165`, `89167`, `89170`, `89173`, `89174`, `89176`, `89177`, `89178`, `89180`, `89182`, `89184`, `89186`, `89188`, `89189`, `89191`, `89192`, `89194`, `89196`, `89198`, `89200`, `89202`, `89203`, `89205`, `89207`, `89209`, `89211`, `89212`, `89213`, `89214`, `89216`, `89217`, `89219`, `89221`, `89223`, `89224`, `89225`, `89226`, `89228`, `89229`, `89230`, `89231`, `89232`, `89234`, `89236`, `89237`, `89240`, `89242`, `89244`, `89245`, `89247`, `89249`, `89250`, `89251`, `89257`, `89259`, `89261`, `89263`, `89264`, `89269`, `89272`, `89274`, `89275`, `89277`, `89279`, `89280`, `89282`, `89284`, `89285`, `89286`, `89288`, `89290`, `89291`, `89293`, `89294`, `89296`, `89298`, `89300`, `89301`, `89303`, `89305`, `89307`, `89309`, `89311`, `89314`, `89316`, `89318`, `89319`, `89321`, `89323`, `89325`, `89326`, `89328`, `89329`, `89331`, `89333`, `89334`, `89336`, `89338`, `89340`, `89342`, `89344`, `89345`, `89346`, `89348`, `89350`, `89352`, `89354`, `89356`, `89358`, `89360`, `89363`, `89365`, `89367`, `89369`, `89371`, `89372`, `89374`, `89376`, `89378`, `89379`, `89383`, `89385`, `89387`, `89391`, `89392`, `89394`, `89396`, `89398`, `89399`, `89401`, `89402`, `89404`, `89406`, `89408`, `89409`, `89411`, `89413`, `89414`, `89416`, `89417`, `89419`, `89421`, `89422`, `89424`, `89426`, `89428`, `89431`, `89432`, `89434`, `89437`, `89438`, `89439`, `89441`, `89444`, `89445`, `89446`, `89447`, `89448`, `89450`, `89452`, `89454`, `89456`, `89458`, `89459`, `89463`, `89465`, `89466`, `89470`, `89472`, `89473`, `89475`, `89479`, `89480`, `89482`, `89484`, `89487`, `89488`, `89490`, `89492`, `89494`, `89496`, `89498`, `89500`, `89502`, `89504`, `89508`, `89510`, `89511`, `89513`, `89515`, `89516`, `89518`, `89522`, `89524`, `89525`, `89527`, `89529`, `89531`, `89532`, `89534`, `89535`, `89537`, `89539`, `89540`, `89542`, `89544`, `89546`, `89550`, `89551`, `89553`, `89555`, `89556`, `89559`, `89561`, `89563`, `89566`, `89567`, `89570`, `89572`, `89574`, `89575`, `89580`, `89582`, `89583`, `89584`, `89585`, `89586`, `89587`, `89589`, `89593`, `89594`, `89595`, `89597`, `89601`, `89603`, `89606`, `89608`, `89610`, `89612`, `89614`, `89616`, `89618`, `89620`, `89622`, `89624`, `89625`, `89627`, `89629`, `89630`, `89632`, `89633`, `89635`, `89639`, `89640`, `89641`, `89643`, `89644`, `89646`, `89647`, `89649`, `89650`, `89652`, `89654`, `89656`, `89659`, `89660`, `89661`, `89663`, `89665`, `89667`, `89668`, `89670`, `89671`, `89672`, `89675`, `89678`, `89680`, `89681`, `89683`, `89685`, `89686`, `89687`, `89688`, `89690`, `89692`, `89693`, `89695`, `89697`, `89699`, `89701`, `89703`, `89705`, `89707`, `89709`, `89710`, `89713`, `89715`, `89716`, `89717`, `89721`, `89722`, `89724`, `89726`, `89727`, `89728`, `89729`, `89731`, `89733`, `89734`, `89736`, `89737`, `89739`, `89741`, `89742`, `89743`, `89744`, `89745`, `89747`, `89749`, `89751`, `89752`, `89754`, `89756`, `89757`, `89760`, `89762`, `89763`, `89765`, `89767`, `89769`, `89770`, `89771`, `89773`, `89775`, `89777`, `89779`, `89781`, `89783`, `89785`, `89786`, `89788`, `89790`, `89792`, `89793`, `89795`, `89797`, `89799`, `89801`, `89803`, `89805`, `89806`, `89807`, `89809`, `89810`, `89812`, `89813`, `89814`, `89817`, `89818`, `89820`, `89821`, `89823`, `89825`, `89827`, `89831`, `89833`, `89835`, `89836`, `89840`, `89842`, `89844`, `89846`, `89847`, `89848`, `89849`, `89851`, `89853`, `89855`, `89857`, `89861`, `89863`, `89864`, `89866`, `89868`, `89869`, `89871`, `89872`, `89874`, `89876`, `89877`, `89881`, `89883`, `89884`, `89886`, `89888`, `89889`, `89891`, `89893`, `89895`, `89896`, `89898`, `89899`, `89902`, `89904`, `89906`, `89907`, `89909`, `89910`, `89911`, `89914`, `89917`, `89919`, `89920`, `89921`, `89923`, `89925`, `89926`, `89928`, `89929`, `89931`, `89933`, `89935`, `89937`, `89938`, `89940`, `89942`, `89944`, `89945`, `89947`, `89949`, `89950`, `89952`, `89958`, `89960`, `89961`, `89963`, `89964`, `89966`, `89968`, `89971`, `89972`, `89976`, `89979`, `89980`, `89983`, `89985`, `89988`, `89990`, `89991`, `89993`, `89996`, `89998`, `89999`, `90001`, `90003`, `90005`, `90007`, `90010`, `90011`, `90013`, `90014`, `90018`, `90019`, `90021`, `90024`, `90026`, `90028`, `90030`, `90031`, `90032`, `90034`, `90036`, `90038`, `90040`, `90041`, `90042`, `90044`, `90047`, `90049`, `90051`, `90054`, `90056`, `90057`, `90059`, `90060`, `90062`, `90064`, `90065`, `90067`, `90071`, `90072`, `90075`, `90076`, `90078`, `90080`, `90082`, `90084`, `90086`, `90090`, `90092`, `90094`, `90095`, `90097`, `90098`, `90099`, `90101`, `90103`, `90105`, `90106`, `90108`, `90109`, `90111`, `90113`, `90114`, `90115`, `90117`, `90118`, `90120`, `90122`, `90123`, `90126`, `90128`, `90129`, `90131`, `90132`, `90134`, `90136`, `90137`, `90139`, `90141`, `90142`, `90144`, `90146`, `90148`, `90150`, `90152`, `90154`, `90156`, `90158`, `90159`, `90160`, `90162`, `90164`, `90165`, `90167`, `90170`, `90171`, `90174`, `90176`, `90178`, `90179`, `90181`, `90183`, `90184`, `90186`, `90188`, `90190`, `90192`, `90193`, `90195`, `90197`, `90200`, `90201`, `90203`, `90206`, `90207`, `90208`, `90209`, `90210`, `90211`, `90212`, `90214`, `90216`, `90218`, `90220`, `90222`, `90223`, `90225`, `90226`, `90228`, `90229`, `90231`, `90233`, `90234`, `90235`, `90237`, `90238`, `90239`, `90241`, `90243`, `90245`, `90246`, `90248`, `90250`, `90251`, `90252`, `90254`, `90257`, `90261`, `90262`, `90264`, `90266`, `90267`, `90268`, `90270`, `90272`, `90273`, `90275`, `90278`, `90280`, `90282`, `90284`, `90286`, `90288`, `90289`, `90290`, `90292`, `90296`, `90298`, `90300`, `90302`, `90303`, `90307`, `90309`, `90311`, `90313`, `90315`, `90316`, `90317`, `90319`, `90321`, `90323`, `90325`, `90327`, `90328`, `90330`, `90332`, `90333`, `90338`, `90339`, `90341`, `90344`, `90346`, `90349`, `90351`, `90353`, `90355`, `90356`, `90357`, `90358`, `90360`, `90361`, `90363`, `90364`, `90367`, `90369`, `90371`, `90372`, `90374`, `90375`, `90377`, `90379`, `90380`, `90381`, `90383`, `90384`, `90386`, `90388`, `90390`, `90392`, `90394`, `90395`, `90397`, `90399`, `90400`, `90401`, `90403`, `90405`, `90406`, `90407`, `90408`, `90411`, `90412`, `90414`, `90415`, `90417`, `90418`, `90420`, `90422`, `90424`, `90426`, `90428`, `90429`, `90430`, `90431`, `90432`, `90434`, `90436`, `90438`, `90440`, `90441`, `90443`, `90445`, `90447`, `90449`, `90450`, `90451`, `90453`, `90455`, `90457`, `90459`, `90460`, `90462`, `90464`, `90466`, `90468`, `90469`, `90471`, `90473`, `90475`, `90477`, `90478`, `90480`, `90482`, `90484`, `90486`, `90488`, `90490`, `90492`, `90493`, `90494`, `90497`, `90499`, `90500`, `90501`, `90502`, `90504`, `90505`, `90507`, `90508`, `90510`, `90512`, `90514`, `90515`, `90517`, `90519`, `90520`, `90521`, `90522`, `90523`, `90525`, `90529`, `90530`, `90532`, `90535`, `90537`, `90539`, `90541`, `90543`, `90545`, `90547`, `90548`, `90549`, `90550`, `90552`, `90553`, `90555`, `90556`, `90557`, `90558`, `90559`, `90560`, `90561`, `90563`, `90564`, `90566`, `90570`, `90572`, `90574`, `90577`, `90579`, `90580`, `90582`, `90584`, `90586`, `90588`, `90590`, `90591`, `90593`, `90595`, `90596`, `90598`, `90599`, `90601`, `90602`, `90603`, `90607`, `90608`, `90610`, `90612`, `90613`, `90615`, `90617`, `90619`, `90621`, `90623`, `90625`, `90626`, `90628`, `90630`, `90632`, `90633`, `90634`, `90636`, `90637`, `90639`, `90640`, `90642`, `90644`, `90645`, `90647`, `90648`, `90649`, `90651`, `90653`, `90655`, `90656`, `90657`, `90660`, `90662`, `90663`, `90665`, `90666`, `90668`, `90670`, `90672`, `90674`, `90676`, `90678`, `90680`, `90682`, `90684`, `90688`, `90689`, `90691`, `90692`, `90694`, `90695`, `90696`, `90697`, `90698`, `90700`, `90702`, `90703`, `90705`, `90707`, `90711`, `90713`, `90715`, `90716`, `90717`, `90719`, `90720`, `90722`, `90724`, `90726`, `90728`, `90730`, `90731`, `90733`, `90735`, `90736`, `90738`, `90740`, `90741`, `90743`, `90745`, `90747`, `90748`, `90749`, `90751`, `90753`, `90755`, `90757`, `90758`, `90759`, `90760`, `90764`, `90766`, `90768`, `90770`, `90772`, `90774`, `90775`, `90776`, `90777`, `90778`, `90779`, `90781`, `90783`, `90785`, `90787`, `90789`, `90793`, `90795`, `90796`, `90798`, `90800`, `90802`, `90805`, `90806`, `90808`, `90810`, `90812`, `90814`, `90818`, `90820`, `90821`, `90823`, `90825`, `90827`, `90828`, `90831`, `90833`, `90837`, `90838`, `90839`, `90841`, `90843`, `90844`, `90845`, `90847`, `90848`, `90850`, `90851`, `90852`, `90853`, `90855`, `90857`, `90859`, `90861`, `90863`, `90865`, `90866`, `90867`, `90869`, `90871`, `90873`, `90874`, `90876`, `90877`, `90879`, `90880`, `90881`, `90883`, `90885`, `90886`, `90888`, `90890`, `90892`, `90893`, `90894`, `90896`, `90898`, `90899`, `90902`, `90904`, `90905`, `90908`, `90909`, `90911`, `90913`, `90914`, `90916`, `90918`, `90919`, `90921`, `90923`, `90925`, `90926`, `90927`, `90931`, `90932`, `90933`, `90937`, `90939`, `90940`, `90942`, `90943`, `90945`, `90947`, `90949`, `90951`, `90953`, `90955`, `90956`, `90957`, `90958`, `90960`, `90962`, `90964`, `90966`, `90968`, `90970`, `90972`, `90973`, `90975`, `90976`, `90978`, `90979`, `90980`, `90982`, `90984`, `90986`, `90987`, `90989`, `90990`, `90992`, `90995`, `90997`, `90999`, `91000`, `91002`, `91004`, `91005`, `91006`, `91008`, `91010`, `91012`, `91015`, `91016`, `91017`, `91018`, `91020`, `91023`, `91025`, `91027`, `91032`, `91034`, `91036`, `91038`, `91041`, `91042`, `91044`, `91045`, `91047`, `91049`, `91053`, `91054`, `91056`, `91057`, `772`, `91059`, `91060`, `91061`, `91065`, `91066`, `91068`, `91070`, `91072`, `91073`, `91075`, `91077`, `91078`, `91080`, `91082`, `91084`, `91085`, `91087`, `91090`, `91094`, `91096`, `91098`, `91100`, `91102`, `91103`, `91105`, `91106`, `91108`, `91109`, `91111`, `91113`, `91115`, `91116`, `91118`, `91120`, `91122`, `91124`, `91126`, `91127`, `91129`, `91130`, `91132`, `91133`, `91135`, `91139`, `91140`, `91141`, `91142`, `91144`, `91146`, `91148`, `91150`, `91151`, `91153`, `91154`, `91157`, `91159`, `91161`, `91162`, `91164`, `91166`, `91167`, `91170`, `91173`, `91174`, `91176`, `91178`, `91181`, `91182`, `91184`, `91186`, `91188`, `91191`, `91192`, `91194`, `91196`, `91198`, `91200`, `91201`, `91203`, `91205`, `91207`, `91209`, `91212`, `91215`, `91219`, `91221`, `91223`, `91226`, `91227`, `91229`, `91231`, `91233`, `91235`, `91236`, `91237`, `91238`, `91240`, `91242`, `91243`, `91244`, `91246`, `91248`, `91250`, `91252`, `91254`, `91255`, `91257`, `91259`, `91260`, `91262`, `91264`, `91265`, `91269`, `91271`, `91273`, `91275`, `91277`, `91279`, `91282`, `91284`, `91286`, `91288`, `91290`, `91292`, `91293`, `91295`, `91296`, `91297`, `91303`, `91305`, `91307`, `91308`, `91310`, `91312`, `91314`, `91316`, `91318`, `91319`, `91321`, `91322`, `91324`, `91325`, `91327`, `91329`, `91331`, `91333`, `91335`, `91337`, `91339`, `91341`, `91342`, `91344`, `91346`, `91347`, `91348`, `91350`, `91352`, `91354`, `91355`, `91357`, `91358`, `91360`, `91362`, `91364`, `91366`, `91368`, `91369`, `91370`, `91372`, `91373`, `91375`, `91376`, `91377`, `91379`, `91380`, `91382`, `91384`, `91386`, `91387`, `91389`, `91390`, `91392`, `91394`, `91397`, `91399`, `91401`, `91403`, `91405`, `91406`, `91409`, `91410`, `91416`, `91417`, `91420`, `91422`, `91423`, `91425`, `91427`, `91429`, `91431`, `91433`, `91436`, `91438`, `91440`, `91442`, `91443`, `91445`, `91446`, `91448`, `91450`, `91451`, `91453`, `91455`, `91457`, `91459`, `91460`, `91461`, `91462`, `91464`, `91465`, `91467`, `91469`, `91470`, `91471`, `91473`, `91476`, `91478`, `91480`, `91482`, `91483`, `91485`, `91487`, `91489`, `91492`, `91494`, `91495`, `91500`, `91502`, `91503`, `91504`, `91507`, `91508`, `91509`, `91510`, `91511`, `91513`, `91515`, `91516`, `91519`, `91521`, `91523`, `91525`, `91527`, `91528`, `91529`, `91531`, `91534`, `91535`, `91536`, `91538`, `91539`, `91541`, `91543`, `91544`, `91546`, `91548`, `91549`, `91551`, `91553`, `91555`, `91556`, `91558`, `91560`, `91562`, `91563`, `91564`, `91565`, `91566`, `91568`, `91569`, `91570`, `91572`, `91573`, `91575`, `91576`, `91578`, `91579`, `91581`, `91582`, `91584`, `91585`, `91587`, `91589`, `91591`, `91593`, `91596`, `91599`, `91601`, `91603`, `91604`, `91606`, `91607`, `91611`, `91613`, `91615`, `91617`, `91621`, `91622`, `91623`, `91624`, `91626`, `91627`, `91628`, `91629`, `91630`, `91631`, `91633`, `91635`, `91638`, `91641`, `91643`, `91644`, `91646`, `91648`, `91649`, `91651`, `91653`, `91656`, `91657`, `91659`, `91661`, `91663`, `91665`, `91666`, `91670`, `91671`, `91672`, `91674`, `91675`, `91676`, `91678`, `91679`, `91681`, `91683`, `91684`, `91686`, `91688`, `91690`, `91692`, `91694`, `91695`, `91697`, `91698`, `91700`, `91702`, `91703`, `91705`, `91708`, `91711`, `91715`, `91717`, `91719`, `91724`, `91726`, `91729`, `91731`, `91733`, `91735`, `91737`, `91739`, `91741`, `91743`, `91745`, `91746`, `91747`, `91748`, `91750`, `91751`, `91752`, `91754`, `91755`, `91757`, `91759`, `91762`, `91764`, `91766`, `91768`, `91770`, `91771`, `91773`, `91774`, `91775`, `91777`, `91779`, `91781`, `91783`, `91786`, `91788`, `91789`, `91791`, `91792`, `91793`, `91794`, `91796`, `91798`, `91800`, `91801`, `91803`, `91804`, `91806`, `91807`, `91809`, `91811`, `91812`, `91813`, `91815`, `91817`, `91819`, `91821`, `91823`, `91825`, `91827`, `91829`, `91830`, `91831`, `91833`, `91835`, `91837`, `91838`, `91840`, `91842`, `91843`, `91844`, `91845`, `91847`, `91849`, `91851`, `91853`, `91856`, `91858`, `91860`, `91861`, `91863`, `91866`, `91867`, `91869`, `91871`, `91873`, `91875`, `91876`, `91877`, `91879`, `91880`, `91882`, `91883`, `91884`, `91886`, `91888`, `91889`, `91890`, `91891`, `91893`, `91895`, `91897`, `91899`, `91900`, `91902`, `91904`, `91905`, `91907`, `91909`, `91913`, `91914`, `91916`, `91917`, `91920`, `91922`, `91923`, `91924`, `91926`, `91927`, `91929`, `91931`, `91933`, `91934`, `91937`, `91939`, `91941`, `91943`, `91945`, `91946`, `91947`, `91949`, `91951`, `91952`, `91953`, `91955`, `91957`, `91959`, `91961`, `91962`, `91964`, `91965`, `91966`, `91968`, `91970`, `91973`, `91978`, `91980`, `91982`, `91985`, `91987`, `91988`, `91989`, `91990`, `91991`, `91992`, `91994`, `91996`, `91998`, `92000`, `92001`, `92004`, `92006`, `92008`, `92011`, `92013`, `92014`, `92016`, `92017`, `92018`, `92019`, `92021`, `92022`, `92024`, `92026`, `92028`, `92030`, `92031`, `92034`, `92036`, `92038`, `92039`, `92041`, `92042`, `92043`, `92044`, `92046`, `92048`, `92051`, `92053`, `92055`, `92058`, `92061`, `92063`, `92065`, `92067`, `92068`, `92070`, `92072`, `92074`, `92076`, `92078`, `92080`, `92082`, `92084`, `92085`, `92087`, `92089`, `92091`, `92094`, `92096`, `92097`, `92099`, `92102`, `92104`, `92106`, `92109`, `92112`, `92113`, `92116`, `92118`, `92120`, `92123`, `92124`, `92127`, `92128`, `92131`, `92136`, `92137`, `92139`, `92141`, `92143`, `92145`, `92147`, `92148`, `92149`, `92151`, `92153`, `92155`, `92157`, `92159`, `92161`, `92163`, `92166`, `92167`, `92169`, `92171`, `92173`, `92174`, `92176`, `92178`, `92179`, `92180`, `92182`, `92183`, `92185`, `92186`, `92187`, `92189`, `92191`, `92192`, `92194`, `92195`, `92197`, `92198`, `92199`, `92200`, `92201`, `92203`, `92204`, `92205`, `92207`, `92208`, `92209`, `92210`, `92211`, `92212`, `92214`, `92216`, `92218`, `92219`, `92221`, `92222`, `92223`, `92225`, `92227`, `92229`, `92231`, `92233`, `92235`, `92236`, `92237`, `92239`, `92241`, `92243`, `92245`, `92247`, `92249`, `92251`, `92252`, `92253`, `92255`, `92257`, `92259`, `92261`, `92262`, `92264`, `92266`, `92269`, `92270`, `92272`, `92274`, `92275`, `92277`, `92279`, `92281`, `92283`, `92285`, `92287`, `92288`, `92290`, `92292`, `92293`, `92295`, `92296`, `92298`, `92299`, `92301`, `92304`, `92305`, `92307`, `92310`, `92312`, `92314`, `92315`, `92317`, `92318`, `92320`, `92323`, `92325`, `92327`, `92329`, `92331`, `92333`, `92335`, `92337`, `92339`, `92340`, `92342`, `92344`, `92347`, `92348`, `92350`, `92352`, `92354`, `92356`, `92358`, `92360`, `92362`, `92364`, `92366`, `92368`, `92369`, `92370`, `92371`, `92372`, `92374`, `92375`, `92378`, `92380`, `92382`, `92384`, `92386`, `92387`, `92389`, `92391`, `92392`, `92395`, `92396`, `92398`, `92400`, `92401`, `92403`, `92404`, `92406`, `92409`, `92411`, `92413`, `92415`, `92417`, `92418`, `92422`, `92424`, `92425`, `92427`, `92429`, `92431`, `92432`, `92434`, `92437`, `92438`, `92440`, `92443`, `92446`, `92448`, `92450`, `92451`, `92452`, `92454`, `92456`, `92458`, `92460`, `92462`, `92464`, `92466`, `92467`, `92469`, `92471`, `92472`, `92473`, `92477`, `92479`, `92480`, `92481`, `92483`, `92485`, `92486`, `92488`, `92492`, `92494`, `92496`, `92498`, `92500`, `92501`, `92503`, `92504`, `92505`, `92506`, `92508`, `92510`, `92512`, `92514`, `92515`, `92518`, `92519`, `92520`, `92522`, `92524`, `92525`, `92529`, `92531`, `92533`, `92535`, `92537`, `92538`, `92540`, `92542`, `92544`, `92546`, `92548`, `92550`, `92555`, `92557`, `92559`, `92561`, `92564`, `92566`, `92568`, `92569`, `92571`, `92573`, `92575`, `92577`, `92579`, `92580`, `92582`, `92583`, `92585`, `92586`, `92588`, `92590`, `92592`, `92594`, `92598`, `92600`, `92602`, `92605`, `92607`, `92608`, `92609`, `92611`, `92613`, `92615`, `92617`, `92619`, `92621`, `92627`, `92629`, `92631`, `92633`, `92635`, `92637`, `92640`, `92641`, `92643`, `92646`, `92648`, `92650`, `92652`, `92653`, `92654`, `92658`, `92660`, `92662`, `92664`, `92666`, `92668`, `92669`, `92672`, `92675`, `92677`, `92680`, `92682`, `92684`, `92685`, `92687`, `92689`, `92691`, `92693`, `92696`, `92698`, `92700`, `92702`, `92703`, `92705`, `92707`, `92709`, `92710`, `92712`, `92713`, `92714`, `92715`, `92716`, `92718`, `92721`, `92722`, `92724`, `92725`, `92727`, `92728`, `92729`, `92732`, `92734`, `92735`, `92737`, `92739`, `92741`, `92743`, `92744`, `92747`, `92749`, `92751`, `92752`, `92753`, `92755`, `92757`, `92759`, `92760`, `92762`, `92763`, `92765`, `92766`, `92768`, `92770`, `92771`, `92773`, `92774`, `92776`, `92778`, `92779`, `92780`, `92783`, `92784`, `92786`, `92788`, `92790`, `92792`, `92794`, `92798`, `92800`, `92802`, `92804`, `92806`, `92808`, `92810`, `92812`, `92814`, `92815`, `92818`, `92820`, `92821`, `92823`, `92825`, `92827`, `92829`, `92830`, `92831`, `92833`, `92835`, `92837`, `92839`, `92841`, `92843`, `92845`, `92847`, `92849`, `92851`, `92853`, `92856`, `92858`, `92859`, `92861`, `92863`, `92864`, `92865`, `92867`, `92868`, `92870`, `92871`, `92872`, `92873`, `92875`, `92877`, `92878`, `92880`, `92882`, `92884`, `92885`, `92888`, `92890`, `92892`, `92894`, `92896`, `92898`, `92899`, `92901`, `92903`, `92906`, `92908`, `92910`, `92912`, `92914`, `92916`, `92918`, `92919`, `92920`, `92922`, `92924`, `92926`, `92928`, `92930`, `92931`, `92933`, `92935`, `92937`, `92939`, `92941`, `92943`, `92944`, `92946`, `92948`, `92950`, `92956`, `92958`, `92960`, `92961`, `92964`, `92965`, `92967`, `92969`, `92971`, `92973`, `92974`, `92975`, `92977`, `92978`, `92980`, `92981`, `92983`, `92985`, `92987`, `92989`, `92990`, `92991`, `92993`, `92994`, `92996`, `92998`, `92999`, `93000`, `93001`, `93003`, `93004`, `93005`, `93006`, `93008`, `93011`, `93013`, `93015`, `93016`, `93018`, `93020`, `93022`, `93023`, `93025`, `93027`, `93029`, `93031`, `93033`, `93035`, `93037`, `93039`, `93041`, `93043`, `93045`, `93047`, `93049`, `93050`, `93052`, `93054`, `93056`, `93058`, `93059`, `93060`, `93061`, `93063`, `93064`, `93066`, `93068`, `93069`, `93071`, `93072`, `93073`, `93075`, `93076`, `93077`, `93078`, `93080`, `93081`, `93083`, `93084`, `93085`, `93087`, `93088`, `93089`, `93090`, `93091`, `93093`, `93095`, `93096`, `93098`, `93099`, `93100`, `93102`, `93104`, `93105`, `93106`, `93108`, `93110`, `93113`, `93114`, `93116`, `93118`, `93120`, `93122`, `93124`, `93126`, `93130`, `93131`, `93133`, `93136`, `93138`, `93140`, `93142`, `93144`, `93146`, `93148`, `93150`, `93152`, `93154`, `93155`, `93157`, `93158`, `93160`, `93161`, `93163`, `93164`, `93165`, `93167`, `93168`, `93169`, `93173`, `93175`, `93177`, `93179`, `93180`, `93182`, `93184`, `93185`, `93186`, `93188`, `93189`, `93191`, `93193`, `93195`, `93197`, `93199`, `93200`, `93201`, `93203`, `93204`, `93206`, `93208`, `93209`, `93214`, `93216`, `93218`, `93220`, `93221`, `93223`, `93227`, `93229`, `93231`, `93232`, `93233`, `93235`, `93237`, `93239`, `93241`, `93242`, `93245`, `93247`, `93248`, `93249`, `93250`, `93252`, `93254`, `93256`, `93259`, `93260`, `93262`, `93264`, `93265`, `93266`, `93268`, `93270`, `93271`, `93273`, `93274`, `93276`, `93278`, `93279`, `93281`, `93284`, `93285`, `93287`, `93288`, `93290`, `93291`, `93292`, `93293`, `93295`, `93297`, `93298`, `93299`, `93301`, `93302`, `93304`, `93306`, `93307`, `93309`, `93315`, `93317`, `93319`, `93321`, `93322`, `93323`, `93329`, `93330`, `93331`, `93334`, `93336`, `93338`, `93340`, `93342`, `93343`, `93344`, `93345`, `93346`, `93348`, `93350`, `93351`, `93353`, `93356`, `93358`, `93360`, `93364`, `93365`, `93367`, `93369`, `93370`, `93372`, `93374`, `93376`, `93379`, `93381`, `93383`, `93384`, `93386`, `93387`, `93389`, `93390`, `93392`, `93393`, `93395`, `93396`, `93398`, `93399`, `93400`, `93401`, `93403`, `93404`, `93405`, `93407`, `93408`, `93410`, `93411`, `93413`, `93414`, `93415`, `93416`, `93417`, `93419`, `93421`, `93423`, `93424`, `93426`, `93427`, `93429`, `93430`, `93431`, `93433`, `93435`, `93437`, `93439`, `93441`, `93443`, `93445`, `93446`, `93448`, `93449`, `93450`, `93452`, `93454`, `93456`, `93458`, `93460`, `93462`, `93463`, `93465`, `93467`, `93468`, `93470`, `93472`, `93473`, `93475`, `93477`, `93478`, `93480`, `93482`, `93484`, `93486`, `93488`, `93490`, `93493`, `93494`, `93495`, `93497`, `93499`, `93500`, `93501`, `93503`, `93505`, `93507`, `93508`, `93510`, `93512`, `93513`, `93514`, `93517`, `93518`, `93519`, `93521`, `93522`, `93523`, `93524`, `93526`, `93528`, `93530`, `93532`, `93534`, `93535`, `93536`, `93538`, `93540`, `93541`, `93543`, `93545`, `93546`, `93547`, `93548`, `93549`, `93551`, `93553`, `93555`, `93557`, `93558`, `93560`, `93562`, `93564`, `93565`, `93567`, `93569`, `93571`, `93574`, `93576`, `93578`, `93580`, `93581`, `93582`, `93585`, `93587`, `93588`, `93590`, `93592`, `93593`, `93594`, `93595`, `93597`, `93599`, `93600`, `93601`, `93602`, `93604`, `93606`, `93609`, `93611`, `93613`, `93614`, `93616`, `93618`, `93619`, `93620`, `93622`, `93624`, `93625`, `93627`, `93629`, `93631`, `93633`, `93635`, `93637`, `93639`, `93641`, `93642`, `93644`, `93646`, `93647`, `93649`, `93651`, `93652`, `93654`, `93656`, `93658`, `93659`, `93661`, `93662`, `93664`, `93665`, `93668`, `93670`, `93674`, `93676`, `93679`, `93682`, `93683`, `93686`, `93688`, `93690`, `93692`, `93693`, `93695`, `93697`, `93699`, `93701`, `93703`, `93704`, `93705`, `93707`, `93710`, `93711`, `93713`, `93714`, `93716`, `93718`, `93720`, `93721`, `93723`, `93724`, `93726`, `93727`, `93731`, `93733`, `93735`, `93736`, `93738`, `93739`, `93741`, `93743`, `93745`, `93746`, `93748`, `93750`, `93752`, `93754`, `93756`, `93757`, `93758`, `93761`, `93762`, `93765`, `93766`, `93767`, `93772`, `93774`, `93776`, `93777`, `93779`, `93781`, `93782`, `93784`, `93786`, `93788`, `93790`, `93792`, `93794`, `93796`, `93798`, `93800`, `93802`, `93804`, `93806`, `93808`, `93809`, `93812`, `93814`, `93816`, `93819`, `93821`, `93823`, `93827`, `93828`, `93830`, `93832`, `93833`, `93835`, `93837`, `93839`, `93841`, `93843`, `93845`, `93847`, `93848`, `93850`, `93852`, `93854`, `93856`, `93858`, `93860`, `93862`, `93864`, `93865`, `93867`, `93869`, `93873`, `93875`, `93877`, `93878`, `93880`, `93882`, `93883`, `93884`, `93886`, `93888`, `93890`, `93892`, `93893`, `93894`, `93896`, `93898`, `93900`, `93901`, `93903`, `93904`, `93905`, `93907`, `93909`, `93911`, `93914`, `93915`, `93917`, `93920`, `93921`, `93923`, `93924`, `93926`, `93927`, `93929`, `93930`, `93932`, `93934`, `93936`, `93938`, `93942`, `93944`, `93946`, `93947`, `93948`, `93950`, `93952`, `93954`, `93955`, `93956`, `93958`, `93960`, `93962`, `93964`, `93966`, `93968`, `93970`, `93972`, `93974`, `93976`, `93978`, `93980`, `93981`, `93983`, `93984`, `93986`, `93988`, `93990`, `93992`, `93994`, `93995`, `93996`, `93997`, `93999`, `94001`, `94003`, `94005`, `94006`, `94008`, `94010`, `94012`, `94016`, `94017`, `94018`, `94019`, `94021`, `94023`, `94024`, `94027`, `94029`, `94030`, `94031`, `94033`, `94037`, `94039`, `94040`, `94042`, `94044`, `94046`, `94048`, `94050`, `94051`, `94053`, `94055`, `94056`, `94058`, `94060`, `94062`, `94064`, `94066`, `94068`, `94070`, `94072`, `94074`, `94075`, `94076`, `94078`, `94079`, `94080`, `94082`, `94083`, `94085`, `94086`, `94088`, `94091`, `94092`, `94093`, `94095`, `94096`, `94097`, `94098`, `94100`, `94102`, `94103`, `94105`, `94107`, `94109`, `94110`, `94112`, `94114`, `94116`, `94117`, `94121`, `94125`, `94126`, `94128`, `94132`, `94136`, `94137`, `94139`, `94141`, `94142`, `94144`, `94145`, `94147`, `94149`, `94153`, `94155`, `94156`, `94158`, `94159`, `94161`, `94164`, `94166`, `94167`, `94169`, `94170`, `94173`, `94176`, `94177`, `94179`, `94181`, `94182`, `94183`, `94185`, `94187`, `94189`, `94191`, `94192`, `94193`, `94194`, `94196`, `94198`, `94200`, `94203`, `94205`, `94207`, `94209`, `94211`, `94212`, `94214`, `94216`, `94218`, `94219`, `94221`, `94225`, `94227`, `94228`, `94231`, `94233`, `94234`, `94236`, `94239`, `94241`, `94243`, `94245`, `94247`, `94248`, `94249`, `94251`, `94252`, `94254`, `94256`, `94258`, `94260`, `94263`, `94264`, `94266`, `94267`, `94270`, `94271`, `94273`, `94275`, `94276`, `94278`, `94280`, `94282`, `94284`, `94286`, `94287`, `94288`, `94289`, `94290`, `94292`, `94293`, `94295`, `94296`, `94297`, `94299`, `94300`, `94302`, `94304`, `94305`, `94307`, `94310`, `94311`, `94312`, `94314`, `94316`, `94317`, `94318`, `94319`, `94320`, `94321`, `94322`, `94323`, `94325`, `94326`, `94327`, `94329`, `94331`, `94332`, `94333`, `94334`, `94336`, `94337`, `94339`, `94341`, `94342`, `94344`, `94345`, `94348`, `94349`, `94350`, `94351`, `94352`, `94353`, `94355`, `94356`, `94357`, `94359`, `94362`, `94364`, `94366`, `94367`, `94369`, `94370`, `94371`, `94373`, `94374`, `94376`, `94379`, `94380`, `94381`, `94383`, `94385`, `94386`, `94387`, `94389`, `94391`, `94392`, `94393`, `94395`, `94397`, `94399`, `94400`, `94401`, `94403`, `94404`, `94405`, `94407`, `94408`, `94410`, `94412`, `94414`, `94417`, `94418`, `94420`, `94422`, `94424`, `94425`, `94427`, `94429`, `94430`, `94431`, `94433`, `94435`, `94437`, `94438`, `94440`, `94442`, `94444`, `94446`, `94448`, `94449`, `94451`, `94453`, `94455`, `94457`, `94458`, `94461`, `94463`, `94465`, `94467`, `94469`, `94471`, `94473`, `94474`, `94475`, `94477`, `94478`, `94480`, `94483`, `94485`, `94487`, `94488`, `94489`, `94491`, `94492`, `94494`, `94496`, `94498`, `94500`, `94502`, `94504`, `94506`, `94508`, `94509`, `94511`, `94512`, `94514`, `94515`, `94517`, `94519`, `94521`, `94522`, `94524`, `94526`, `94528`, `94530`, `94533`, `94534`, `94535`, `94536`, `94537`, `94538`, `94539`, `94541`, `94542`, `94544`, `94545`, `94547`, `94548`, `94550`, `94552`, `94554`, `94556`, `94557`, `94558`, `94560`, `94562`, `94564`, `94566`, `94568`, `94570`, `94572`, `94574`, `94576`, `94578`, `94579`, `94581`, `94583`, `94585`, `94587`, `94589`, `94592`, `94593`, `94595`, `94596`, `94598`, `94601`, `94602`, `94604`, `94606`, `94609`, `94611`, `94612`, `94614`, `94616`, `94618`, `94620`, `94622`, `94624`, `94625`, `94627`, `94629`, `94631`, `94633`, `94635`, `94637`, `94639`, `94641`, `94643`, `94644`, `94646`, `94649`, `94653`, `94654`, `94655`, `94657`, `94661`, `94662`, `94663`, `94666`, `94667`, `94668`, `94670`, `94673`, `94674`, `94678`, `94679`, `94681`, `94684`, `94685`, `94688`, `94691`, `94693`, `94695`, `94697`, `94699`, `94703`, `94705`, `94707`, `94709`, `94710`, `94711`, `94712`, `94713`, `94718`, `94720`, `94723`, `94725`, `94727`, `94729`, `94731`, `94733`, `94735`, `94736`, `94738`, `94739`, `94741`, `94743`, `94744`, `94746`, `94748`, `94750`, `94751`, `94754`, `94756`, `94758`, `94760`, `94762`, `94764`, `94766`, `94768`, `94769`, `94771`, `94774`, `94775`, `94776`, `94778`, `94779`, `94781`, `94783`, `94784`, `94785`, `94786`, `94787`, `94788`, `94789`, `94791`, `94792`, `94793`, `94795`, `94796`, `94798`, `94800`, `94802`, `94804`, `94805`, `94807`, `94808`, `94810`, `94811`, `94813`, `94815`, `94816`, `94818`, `94820`, `94823`, `94825`, `94827`, `94829`, `94831`, `94834`, `94836`, `94838`, `94839`, `94841`, `94842`, `94844`, `94847`, `94849`, `94851`, `94853`, `94855`, `94856`, `94860`, `94861`, `94863`, `94864`, `94866`, `94868`, `94870`, `94872`, `94873`, `94875`, `94877`, `94878`, `94879`, `94880`, `94881`, `94883`, `94884`, `94886`, `94887`, `94888`, `94890`, `94891`, `94893`, `94896`, `94898`, `94900`, `94902`, `94903`, `94905`, `94909`, `94911`, `94913`, `94915`, `94917`, `94918`, `94919`, `94922`, `94924`, `94925`, `94927`, `94928`, `94930`, `94931`, `94933`, `94935`, `94936`, `94938`, `94940`, `94941`, `94943`, `94945`, `94947`, `94949`, `94951`, `94957`, `94958`, `94959`, `94960`, `94961`, `94962`, `94964`, `94965`, `94967`, `94969`, `94970`, `94972`, `94974`, `94976`, `94977`, `94979`, `94980`, `94982`, `94985`, `94987`, `94988`, `94990`, `94992`, `94994`, `94996`, `94998`, `95000`, `95002`, `95003`, `95005`, `95007`, `95009`, `95010`, `95013`, `95015`, `95016`, `95019`, `95021`, `95023`, `95025`, `95026`, `95028`, `95029`, `95031`, `95033`, `95034`, `95035`, `95041`, `95044`, `95046`, `95048`, `95050`, `95053`, `95055`, `95057`, `95059`, `95060`, `95062`, `95064`, `95066`, `95068`, `95070`, `95072`, `95073`, `95075`, `95076`, `95078`, `95080`, `95082`, `95083`, `95085`, `95088`, `95090`, `95092`, `95098`, `95099`, `95101`, `95102`, `95104`, `95106`, `95110`, `95111`, `95113`, `95114`, `95115`, `95117`, `95119`, `95120`, `95123`, `95125`, `95126`, `95127`, `95128`, `95131`, `95132`, `95134`, `95135`, `95137`, `95139`, `95140`, `95141`, `95143`, `95145`, `95147`, `95149`, `95151`, `95153`, `95154`, `95156`, `95158`, `95159`, `95161`, `95162`, `95164`, `95166`, `95167`, `95168`, `95170`, `95171`, `95172`, `95173`, `95175`, `95177`, `95180`, `95183`, `95184`, `95186`, `95190`, `95191`, `95193`, `95194`, `95195`, `95197`, `95199`, `95201`, `95202`, `95204`, `95206`, `95208`, `95212`, `95216`, `95221`, `95222`, `95223`, `95225`, `95226`, `95230`, `95232`, `95233`, `95234`, `95235`, `95236`, `95237`, `95239`, `95241`, `95243`, `95245`, `95247`, `95251`, `95253`, `95254`, `95255`, `95257`, `95258`, `95260`, `95264`, `95265`, `95267`, `95268`, `95269`, `95271`, `95273`, `95275`, `95277`, `95279`, `95281`, `95282`, `95284`, `95286`, `95288`, `95290`, `95291`, `95292`, `95294`, `95295`, `95296`, `95298`, `95299`, `95301`, `95302`, `95303`, `95305`, `95306`, `95307`, `95309`, `95311`, `95313`, `95314`, `95315`, `95319`, `95321`, `95323`, `95324`, `95325`, `95326`, `95330`, `95332`, `95334`, `95335`, `95337`, `95338`, `95339`, `95341`, `95343`, `95344`, `95346`, `95347`, `95349`, `95350`, `95353`, `95355`, `95356`, `95358`, `95360`, `95362`, `95364`, `95366`, `95368`, `95370`, `95371`, `95373`, `95375`, `95376`, `95377`, `95379`, `95381`, `95383`, `95384`, `95386`, `95388`, `95390`, `95392`, `95394`, `95396`, `95400`, `95402`, `95405`, `95406`, `95407`, `95408`, `95409`, `95412`, `95414`, `95416`, `95417`, `95421`, `95423`, `95424`, `95426`, `95428`, `95429`, `95431`, `95433`, `95436`, `95437`, `95441`, `95443`, `95445`, `95447`, `95450`, `95452`, `95454`, `95456`, `95457`, `95459`, `95461`, `95463`, `95465`, `95466`, `95468`, `95470`, `95472`, `95474`, `95477`, `95478`, `95480`, `95481`, `95483`, `95485`, `95487`, `95489`, `95490`, `95493`, `95494`, `95499`, `95501`, `95503`, `95506`, `95507`, `95509`, `95510`, `95513`, `95515`, `95517`, `95519`, `95520`, `95522`, `95524`, `95525`, `95527`, `95530`, `95532`, `95533`, `95535`, `95537`, `95540`, `95542`, `95544`, `95546`, `95548`, `95550`, `95551`, `95553`, `95555`, `95557`, `95559`, `95561`, `95563`, `95565`, `95567`, `95568`, `95570`, `95571`, `95573`, `95574`, `95576`, `95578`, `95579`, `95581`, `95584`, `95586`, `95588`, `95590`, `95592`, `95594`, `95595`, `95596`, `95598`, `95601`, `95602`, `95606`, `95608`, `95610`, `95611`, `95614`, `95615`, `95617`, `95619`, `95621`, `95622`, `95624`, `95626`, `95628`, `95630`, `95632`, `95634`, `95635`, `95636`, `95638`, `95639`, `95641`, `95643`, `95645`, `95647`, `95649`, `95651`, `95652`, `95656`, `95658`, `95660`, `95661`, `95662`, `95666`, `95668`, `95669`, `95670`, `95671`, `95672`, `95674`, `95679`, `95680`, `95682`, `95683`, `95684`, `95685`, `95686`, `95688`, `95689`, `95690`, `95692`, `95694`, `95696`, `95697`, `95699`, `95701`, `95704`, `95706`, `95708`, `95710`, `95711`, `95713`, `95714`, `95715`, `95720`, `95721`, `95723`, `95724`, `95725`, `95727`, `95729`, `95731`, `95733`, `95735`, `95736`, `95738`, `95740`, `95742`, `95744`, `95746`, `95747`, `95749`, `95751`, `95753`, `95754`, `95757`, `95758`, `95760`, `95761`, `95763`, `95764`, `95766`, `95768`, `95770`, `95772`, `95773`, `95775`, `95777`, `95779`, `95781`, `95785`, `95787`, `95788`, `95789`, `95791`, `95793`, `95795`, `95797`, `95801`, `95802`, `95803`, `95806`, `95807`, `95809`, `95811`, `95812`, `95813`, `95815`, `95817`, `95819`, `95821`, `95823`, `95824`, `95826`, `95828`, `95830`, `95832`, `95833`, `95835`, `95837`, `95839`, `95841`, `95843`, `95845`, `95847`, `95849`, `95851`, `95853`, `95854`, `95856`, `95858`, `95860`, `95862`, `95865`, `95867`, `95868`, `95870`, `95872`, `95874`, `95876`, `95878`, `95879`, `95882`, `95884`, `95886`, `95888`, `95890`, `95892`, `95893`, `95894`, `95896`, `95898`, `95900`, `95901`, `95903`, `95904`, `95905`, `95907`, `95909`, `95910`, `95911`, `95913`, `95915`, `95916`, `95918`, `95920`, `95922`, `95924`, `95927`, `95928`, `95930`, `95932`, `95934`, `95936`, `95938`, `95940`, `95941`, `95943`, `95944`, `95946`, `95948`, `95950`, `95951`, `95954`, `95956`, `95957`, `95958`, `95960`, `95961`, `95963`, `95964`, `95966`, `95968`, `95969`, `95971`, `95973`, `95975`, `95976`, `95978`, `95980`, `95982`, `95984`, `95985`, `95987`, `95988`, `95990`, `95992`, `95994`, `95995`, `95997`, `96000`, `96001`, `96003`, `96005`, `96007`, `96009`, `96011`, `96012`, `96014`, `96015`, `96016`, `96018`, `96020`, `96021`, `96023`, `96024`, `96026`, `96030`, `96032`, `96033`, `96035`, `96036`, `96037`, `96039`, `96040`, `96044`, `96046`, `96048`, `96050`, `96052`, `96054`, `96056`, `96057`, `96060`, `96061`, `96063`, `96065`, `96067`, `96068`, `96070`, `96072`, `96073`, `96075`, `96077`, `96079`, `96080`, `96083`, `96085`, `96086`, `96088`, `96089`, `96091`, `96093`, `96094`, `96095`, `96097`, `96100`, `96101`, `96103`, `96104`, `96106`, `96108`, `96110`, `96111`, `96112`, `96114`, `96116`, `96118`, `96120`, `96122`, `96124`, `96126`, `96127`, `96129`, `96132`, `96134`, `96136`, `96137`, `96139`, `96141`, `96142`, `96144`, `96145`, `96146`, `96147`, `96149`, `96151`, `96153`, `96155`, `96157`, `96159`, `96161`, `96163`, `96165`, `96166`, `96167`, `96170`, `96172`, `96174`, `96176`, `96179`, `96180`, `96182`, `96183`, `96185`, `96187`, `96189`, `96192`, `96193`, `96195`, `96196`, `96199`, `96201`, `96202`, `96204`, `96206`, `96207`, `96208`, `96209`, `96211`, `96213`, `96214`, `96216`, `96218`, `96223`, `96224`, `96225`, `96226`, `96227`, `96230`, `96232`, `96233`, `96234`, `96235`, `96237`, `96238`, `96240`, `96242`, `96245`, `96247`, `96249`, `96250`, `96252`, `96253`, `96255`, `96257`, `96258`, `96259`, `96261`, `96263`, `96265`, `96267`, `96269`, `96271`, `96273`, `96276`, `96278`, `96279`, `96281`, `96283`, `96285`, `96287`, `96289`, `96290`, `96292`, `96293`, `96296`, `96298`, `96300`, `96301`, `96303`, `96305`, `96306`, `96308`, `96310`, `96312`, `96314`, `96315`, `96317`, `96319`, `96320`, `96322`, `96324`, `96325`, `96327`, `96329`, `96331`, `96333`, `96335`, `96337`, `96339`, `96341`, `96342`, `96344`, `96346`, `96348`, `96349`, `96350`, `96351`, `96352`, `96353`, `96355`, `96359`, `96361`, `96363`, `96364`, `96366`, `96368`, `96369`, `96370`, `96372`, `96374`, `96376`, `96378`, `96379`, `96381`, `96383`, `96386`, `96388`, `96390`, `96393`, `96395`, `96397`, `96399`, `96401`, `96403`, `96405`, `96407`, `96408`, `96410`, `96412`, `96413`, `96416`, `96418`, `96419`, `96421`, `96425`, `96427`, `96429`, `96430`, `96433`, `96435`, `96436`, `96438`, `96440`, `96442`, `96443`, `96444`, `96448`, `96450`, `96451`, `96453`, `96454`, `96455`, `96457`, `96458`, `96460`, `96462`, `96463`, `96465`, `96468`, `96470`, `96471`, `96473`, `96475`, `96476`, `96478`, `96480`, `96483`, `96485`, `96487`, `96488`, `96490`, `96492`, `96494`, `96496`, `96498`, `96500`, `96502`, `96504`, `96506`, `96508`, `96510`, `96512`, `96515`, `96517`, `96519`, `96521`, `96522`, `96523`, `96524`, `96525`, `96526`, `96527`, `96528`, `96529`, `96531`, `96532`, `96535`, `96536`, `96539`, `96541`, `96545`, `96546`, `96547`, `96549`, `96550`, `96551`, `96553`, `96555`, `96557`, `96558`, `96559`, `96561`, `96563`, `96565`, `96567`, `96569`, `96571`, `96573`, `96574`, `96576`, `96578`, `96579`, `96581`, `96583`, `96585`, `96587`, `96589`, `96590`, `96592`, `96593`, `96595`, `96596`, `96598`, `96600`, `96602`, `96603`, `96605`, `96607`, `96609`, `96610`, `96611`, `96613`, `96614`, `96616`, `96618`, `96620`, `96621`, `96623`, `96625`, `96626`, `96627`, `96628`, `96630`, `96632`, `96634`, `96635`, `96636`, `96639`, `96641`, `96644`, `96646`, `96647`, `96648`, `96650`, `96651`, `96653`, `96655`, `96657`, `96658`, `96660`, `96662`, `96664`, `96666`, `96668`, `96670`, `96672`, `96675`, `96679`, `96681`, `96683`, `96685`, `96686`, `96687`, `96688`, `96690`, `96692`, `96694`, `96695`, `96698`, `96699`, `96702`, `96704`, `96706`, `96708`, `96710`, `96711`, `96715`, `96717`, `96719`, `96721`, `96723`, `96724`, `96725`, `96727`, `96729`, `96730`, `96732`, `96734`, `96735`, `96736`, `96738`, `96739`, `96741`, `96743`, `96744`, `96746`, `96749`, `96751`, `96752`, `96753`, `96754`, `96756`, `96757`, `96759`, `96760`, `96762`, `96763`, `96766`, `96767`, `96769`, `96771`, `96772`, `96773`, `96775`, `96776`, `96777`, `96778`, `96779`, `96781`, `96782`, `96783`, `96785`, `96788`, `96790`, `96792`, `96793`, `96795`, `96797`, `96799`, `96801`, `96802`, `96803`, `96804`, `96806`, `96808`, `96809`, `96810`, `96811`, `96813`, `96815`, `96816`, `96818`, `96820`, `96822`, `96823`, `96825`, `96828`, `96830`, `96832`, `96835`, `96836`, `96838`, `96840`, `96843`, `96845`, `96847`, `96849`, `96851`, `96853`, `96855`, `96856`, `96858`, `96860`, `96861`, `96862`, `96863`, `96865`, `96866`, `96868`, `96870`, `96871`, `96872`, `96873`, `96874`, `96875`, `96877`, `96879`, `96881`, `96883`, `96885`, `96886`, `96888`, `96890`, `96892`, `96893`, `96895`, `96897`, `96899`, `96901`, `96903`, `96904`, `96907`, `96908`, `96910`, `96911`, `96913`, `96915`, `96916`, `96918`, `96919`, `96920`, `96923`, `96925`, `96927`, `96929`, `96931`, `96933`, `96934`, `96936`, `96941`, `96942`, `96945`, `96946`, `96948`, `96949`, `96951`, `96953`, `96955`, `96957`, `96958`, `96960`, `96962`, `96963`, `96965`, `96967`, `96968`, `96970`, `96971`, `96974`, `96976`, `96977`, `96979`, `96981`, `1225`, `96983`, `96985`, `96987`, `96989`, `96990`, `96992`, `96993`, `96995`, `96996`, `96998`, `96999`, `97000`, `97001`, `97003`, `97005`, `97006`, `97008`, `97010`, `97011`, `97012`, `97014`, `97016`, `97018`, `97020`, `97021`, `97023`, `97024`, `97026`, `97028`, `97030`, `97032`, `97034`, `97036`, `97037`, `97039`, `97041`, `97043`, `97044`, `97047`, `97048`, `97049`, `97050`, `97051`, `97052`, `97054`, `97057`, `97058`, `97059`, `97061`, `97062`, `97064`, `97065`, `97066`, `97068`, `97070`, `97072`, `97073`, `97075`, `97077`, `97078`, `97080`, `97082`, `97083`, `97084`, `97086`, `97088`, `97090`, `97092`, `97095`, `97096`, `97098`, `97101`, `97102`, `97105`, `97107`, `97109`, `97111`, `97113`, `97114`, `97116`, `97118`, `97119`, `97121`, `97122`, `97124`, `97126`, `97128`, `97130`, `97131`, `16791`, `97133`, `97134`, `97138`, `97140`, `97142`, `97144`, `97146`, `97147`, `97149`, `97150`, `97152`, `97154`, `97156`, `97158`, `97159`, `97160`, `97162`, `97165`, `97167`, `97168`, `97169`, `97171`, `97174`, `97176`, `97178`, `97180`, `97182`, `97183`, `97184`, `97185`, `97187`, `97188`, `97190`, `97192`, `97194`, `97195`, `97197`, `97199`, `97201`, `97203`, `97205`, `97206`, `97207`, `97209`, `97211`, `97212`, `97213`, `97214`, `97216`, `97217`, `97218`, `97220`, `97223`, `97224`, `97227`, `97229`, `97234`, `97237`, `97238`, `97240`, `97242`, `97244`, `97246`, `97248`, `97250`, `97252`, `97254`, `97255`, `97257`, `97259`, `97260`, `97262`, `97264`, `97265`, `97267`, `97270`, `97272`, `97274`, `97276`, `97278`, `97282`, `97284`, `97287`, `97288`, `97290`, `97292`, `97294`, `97295`, `97297`, `97299`, `97301`, `97303`, `97304`, `97306`, `97308`, `97310`, `97311`, `97313`, `97315`, `97317`, `97319`, `97320`, `97322`, `97324`, `97325`, `97326`, `97328`, `97330`, `97331`, `97332`, `97333`, `97335`, `97337`, `97339`, `97341`, `97343`, `97345`, `97347`, `97349`, `97350`, `97352`, `97356`, `97358`, `97360`, `97361`, `97363`, `97364`, `97366`, `97367`, `97369`, `97372`, `97373`, `97375`, `97377`, `97379`, `97380`, `97382`, `97385`, `97386`, `97387`, `97389`, `97392`, `97394`, `97396`, `97397`, `97399`, `97400`, `97401`, `97405`, `97408`, `97410`, `97412`, `97414`, `97416`, `97417`, `97419`, `97420`, `97421`, `97425`, `97426`, `97429`, `97431`, `97432`, `97434`, `97436`, `97438`, `97439`, `97441`, `97442`, `97443`, `97445`, `97446`, `97450`, `97452`, `97454`, `97456`, `97458`, `97461`, `97463`, `97465`, `97466`, `97468`, `97470`, `97472`, `97473`, `97474`, `97475`, `97476`, `97477`, `97478`, `97480`, `97481`, `97483`, `97485`, `97486`, `97488`, `97489`, `97491`, `97493`, `97495`, `97496`, `97497`, `97499`, `97501`, `97503`, `97504`, `97505`, `97507`, `97509`, `97511`, `97513`, `97514`, `97516`, `97518`, `97520`, `97522`, `97523`, `97525`, `97527`, `97529`, `97531`, `97532`, `97533`, `97534`, `97535`, `97537`, `97539`, `97541`, `97543`, `97544`, `97545`, `97546`, `97547`, `97548`, `97549`, `97551`, `97553`, `97555`, `97556`, `97557`, `97559`, `97560`, `97562`, `97564`, `97566`, `97568`, `97569`, `97571`, `97574`, `97576`, `97577`, `97578`, `97580`, `97582`, `97583`, `97584`, `97586`, `97587`, `97588`, `97589`, `97591`, `97592`, `97594`, `97596`, `97598`, `97600`, `97601`, `97603`, `97604`, `97606`, `97608`, `97610`, `97611`, `97615`, `97616`, `97618`, `97619`, `97620`, `97623`, `97624`, `97626`, `97628`, `97630`, `97632`, `97634`, `97635`, `97637`, `97639`, `97640`, `97641`, `97643`, `97645`, `97647`, `97649`, `97651`, `97652`, `97653`, `97655`, `97657`, `97659`, `97660`, `97663`, `97665`, `97667`, `97669`, `97671`, `97673`, `97674`, `97675`, `97676`, `97678`, `97680`, `97682`, `97685`, `97688`, `97690`, `97691`, `97693`, `97695`, `97697`, `97699`, `97700`, `97701`, `97704`, `97705`, `97706`, `97708`, `97710`, `97711`, `97713`, `97715`, `97717`, `97719`, `97720`, `97722`, `97723`, `97724`, `97725`, `97726`, `97727`, `97728`, `97730`, `97732`, `97733`, `97734`, `97736`, `97738`, `97740`, `97742`, `97744`, `97746`, `97747`, `97748`, `97750`, `97752`, `97754`, `97755`, `97756`, `97757`, `97759`, `97760`, `97762`, `97763`, `97764`, `97766`, `97767`, `97769`, `97771`, `97772`, `97773`, `97775`, `97776`, `97780`, `97782`, `97784`, `97785`, `97786`, `97787`, `97789`, `97790`, `97792`, `97795`, `97798`, `97802`, `97804`, `97806`, `97807`, `97808`, `97811`, `97812`, `97814`, `97815`, `97816`, `97817`, `97819`, `97821`, `97825`, `97827`, `97829`, `97830`, `97833`, `97835`, `97837`, `97839`, `97840`, `97842`, `97843`, `97844`, `97845`, `97847`, `97848`, `97850`, `97852`, `97854`, `97855`, `97857`, `97862`, `97863`, `97864`, `97865`, `97867`, `97869`, `97871`, `97873`, `97875`, `97877`, `97879`, `97880`, `97883`, `97885`, `97886`, `97888`, `97889`, `97890`, `97892`, `97893`, `97894`, `97898`, `97900`, `97901`, `97902`, `97904`, `97906`, `97908`, `97910`, `97913`, `97915`, `97916`, `97917`, `97918`, `97920`, `97921`, `97922`, `97924`, `97926`, `97928`, `97929`, `97930`, `97932`, `97934`, `97935`, `97937`, `97938`, `97940`, `97941`, `97943`, `97944`, `97946`, `97948`, `97949`, `97950`, `97952`, `97954`, `97956`, `97958`, `97959`, `97961`, `97963`, `97965`, `97967`, `97969`, `97970`, `97976`, `97978`, `97979`, `97981`, `97982`, `97984`, `97985`, `97987`, `97988`, `97989`, `97991`, `97993`, `97994`, `97996`, `97998`, `97999`, `98001`, `98002`, `98005`, `98006`, `98007`, `98009`, `98010`, `98013`, `98015`, `98016`, `98018`, `98020`, `98022`, `98023`, `98026`, `98028`, `98030`, `98031`, `98033`, `98035`, `98037`, `98038`, `98040`, `98042`, `98043`, `98045`, `98047`, `98049`, `98050`, `98052`, `98057`, `98059`, `98060`, `98061`, `98063`, `98065`, `98067`, `98069`, `98071`, `98073`, `98075`, `98076`, `98077`, `98078`, `98080`, `98081`, `98082`, `98084`, `98086`, `98088`, `98090`, `98092`, `98093`, `98094`, `98095`, `98098`, `98100`, `98102`, `98104`, `98106`, `98107`, `98109`, `98111`, `98113`, `98114`, `98116`, `98118`, `98120`, `98122`, `98123`, `98124`, `98126`, `98129`, `98131`, `98133`, `98134`, `98136`, `98137`, `98139`, `98140`, `98141`, `98142`, `98144`, `98146`, `98148`, `98150`, `98151`, `98153`, `98155`, `98156`, `98158`, `98160`, `98162`, `98164`, `98166`, `98170`, `98172`, `98174`, `98175`, `98177`, `98178`, `98180`, `98182`, `98184`, `98185`, `98186`, `98187`, `98189`, `98191`, `98192`, `98194`, `98196`, `98199`, `98200`, `98203`, `98205`, `98207`, `98210`, `98212`, `98214`, `98216`, `98218`, `98220`, `98223`, `98224`, `98226`, `98228`, `98229`, `98231`, `98233`, `98235`, `98237`, `98240`, `98243`, `98245`, `98247`, `98249`, `98252`, `98253`, `98255`, `98257`, `98258`, `98260`, `98262`, `98263`, `98265`, `98267`, `98269`, `98270`, `98271`, `98272`, `98274`, `98275`, `98278`, `98279`, `98281`, `98283`, `98285`, `98287`, `98288`, `98289`, `98290`, `98294`, `98298`, `98299`, `98300`, `98301`, `98302`, `98303`, `98305`, `98306`, `98308`, `98310`, `98312`, `98313`, `98314`, `98317`, `98319`, `98322`, `98323`, `98324`, `98326`, `98328`, `98330`, `98331`, `98333`, `98335`, `98336`, `98338`, `98340`, `98342`, `98344`, `98346`, `98347`, `98349`, `98351`, `98353`, `98355`, `98357`, `98358`, `98360`, `98362`, `98364`, `98365`, `98367`, `98368`, `98369`, `98371`, `98372`, `98374`, `98376`, `98377`, `98379`, `98383`, `98385`, `98387`, `98389`, `98391`, `98393`, `98394`, `98396`, `98398`, `98402`, `98404`, `98406`, `98408`, `98410`, `98412`, `98414`, `98415`, `98416`, `98418`, `98420`, `98421`, `98423`, `98424`, `98426`, `98428`, `98429`, `98431`, `98433`, `98435`, `98436`, `98437`, `98439`, `98441`, `98443`, `98445`, `98447`, `98449`, `98451`, `98453`, `98455`, `98457`, `98459`, `98461`, `98463`, `98465`, `98468`, `98470`, `98472`, `98474`, `98476`, `98478`, `98479`, `98481`, `98483`, `98485`, `98487`, `98489`, `98491`, `98493`, `98495`, `98496`, `98500`, `98502`, `98504`, `98506`, `98508`, `98509`, `98510`, `98512`, `98516`, `98518`, `98519`, `98521`, `98523`, `98525`, `98526`, `98527`, `98529`, `98531`, `98532`, `98536`, `98540`, `98541`, `98543`, `98544`, `98546`, `98548`, `98550`, `98552`, `98553`, `98554`, `98556`, `98558`, `98560`, `98562`, `98563`, `98565`, `98567`, `98569`, `98571`, `98573`, `98575`, `98576`, `98578`, `98580`, `98581`, `98583`, `98585`, `98586`, `98588`, `98590`, `98591`, `98593`, `98596`, `98598`, `98599`, `98601`, `98603`, `98605`, `98607`, `98609`, `98611`, `98613`, `98616`, `98618`, `98620`, `98621`, `98623`, `98625`, `98626`, `98629`, `98630`, `98631`, `98633`, `98635`, `98637`, `98638`, `98640`, `98642`, `98644`, `98646`, `98648`, `98651`, `98652`, `98654`, `98655`, `98657`, `98659`, `98662`, `98663`, `98665`, `98667`, `98669`, `98671`, `98672`, `98674`, `98676`, `98678`, `98680`, `98681`, `98682`, `98683`, `98684`, `98687`, `98689`, `98691`, `98693`, `98694`, `98695`, `98697`, `98699`, `98701`, `98703`, `98705`, `98706`, `98708`, `98710`, `98711`, `98713`, `98715`, `98717`, `98719`, `98720`, `98722`, `98724`, `98726`, `98728`, `98730`, `98732`, `98733`, `98735`, `98737`, `98738`, `98739`, `98741`, `98743`, `98745`, `98747`, `98749`, `98750`, `98751`, `98753`, `98755`, `98759`, `98760`, `98762`, `98763`, `98766`, `98767`, `98769`, `98770`, `98772`, `98774`, `98776`, `98778`, `98780`, `98782`, `98783`, `98785`, `98786`, `98788`, `98790`, `98792`, `98793`, `98794`, `98795`, `98797`, `98799`, `98801`, `98803`, `98804`, `98806`, `98808`, `98809`, `98811`, `98813`, `98815`, `98817`, `98819`, `98821`, `98823`, `98825`, `98826`, `98828`, `98830`, `98832`, `98834`, `98835`, `98837`, `98839`, `98841`, `98843`, `98844`, `98845`, `98847`, `98850`, `98851`, `98853`, `98854`, `98856`, `98859`, `98860`, `98861`, `98863`, `98864`, `98866`, `98867`, `98868`, `98870`, `98871`, `98874`, `98876`, `98878`, `98879`, `98883`, `98885`, `98887`, `98889`, `98894`, `98896`, `98898`, `98899`, `98901`, `98903`, `98904`, `98905`, `98907`, `98909`, `98912`, `98914`, `98915`, `98917`, `98918`, `98920`, `98922`, `98924`, `98926`, `98928`, `98929`, `98932`, `98934`, `98937`, `98939`, `98941`, `98943`, `98944`, `98946`, `98948`, `98950`, `98951`, `98952`, `98954`, `98956`, `98958`, `98959`, `98961`, `98963`, `98967`, `98968`, `98970`, `98973`, `98975`, `98976`, `98978`, `98979`, `98982`, `98983`, `98984`, `98986`, `98987`, `98988`, `98990`, `98991`, `98993`, `98996`, `98998`, `99000`, `99001`, `99003`, `99004`, `99005`, `99007`, `99009`, `99011`, `99013`, `99014`, `99016`, `99019`, `99020`, `99022`, `99024`, `99026`, `99028`, `99033`, `99034`, `99035`, `99037`, `99038`, `99040`, `99042`, `99044`, `99045`, `99047`, `99049`, `99051`, `99052`, `99054`, `99055`, `99058`, `99059`, `99061`, `99062`, `99064`, `99066`, `99067`, `99069`, `99071`, `99074`, `99075`, `99077`, `99079`, `99081`, `99083`, `99086`, `99088`, `99089`, `99091`, `99092`, `99094`, `99097`, `99099`, `99101`, `99103`, `99105`, `99107`, `99108`, `99109`, `99110`, `99111`, `99113`, `99114`, `99116`, `99118`, `99120`, `99122`, `99124`, `99126`, `99127`, `99129`, `99131`, `99132`, `99134`, `99136`, `99138`, `99140`, `99141`, `99143`, `99145`, `99148`, `99150`, `99152`, `99155`, `99157`, `99159`, `99161`, `99162`, `99164`, `99166`, `99167`, `99168`, `99170`, `99171`, `99173`, `99175`, `99177`, `99179`, `99181`, `99183`, `99184`, `99186`, `99188`, `99189`, `99192`, `99193`, `99195`, `99196`, `99197`, `99199`, `99201`, `99202`, `99204`, `99206`, `99209`, `99210`, `99212`, `99214`, `99216`, `99217`, `99219`, `99221`, `99223`, `99224`, `99226`, `99228`, `99229`, `99230`, `99232`, `99233`, `99235`, `99236`, `99237`, `99239`, `99240`, `99241`, `99243`, `99248`, `99249`, `99251`, `99254`, `99255`, `99256`, `99258`, `99259`, `99260`, `99262`, `99264`, `99265`, `99267`, `99269`, `99271`, `99274`, `99276`, `99277`, `99280`, `99281`, `99283`, `99285`, `99287`, `99289`, `99291`, `99293`, `99295`, `99297`, `99298`, `99300`, `99301`, `99303`, `99305`, `99306`, `99307`, `99308`, `99309`, `99311`, `99313`, `99314`, `99316`, `99317`, `99318`, `99320`, `99322`, `99324`, `99326`, `99328`, `99330`, `99332`, `99334`, `99337`, `99339`, `99341`, `99343`, `99345`, `99347`, `99351`, `99352`, `99354`, `99357`, `99359`, `99361`, `99363`, `99365`, `99368`, `99370`, `99372`, `99374`, `99376`, `99378`, `99380`, `99382`, `99383`, `99385`, `99386`, `99388`, `99390`, `99392`, `99394`, `99396`, `99398`, `99399`, `99401`, `99402`, `99403`, `99404`, `99407`, `99409`, `99411`, `99412`, `99414`, `99416`, `99418`, `99419`, `99422`, `99424`, `99425`, `99427`, `99428`, `99430`, `99431`, `99432`, `99434`, `99436`, `99437`, `99439`, `99443`, `99447`, `99449`, `99450`, `99451`, `99453`, `99455`, `99456`, `99457`, `99459`, `99460`, `99462`, `99463`, `99465`, `99467`, `99468`, `99470`, `99471`, `99473`, `99475`, `99477`, `99479`, `99481`, `99483`, `99485`, `99487`, `99489`, `99491`, `99493`, `99495`, `99496`, `99498`, `99499`, `99501`, `99503`, `99504`, `99506`, `99507`, `99509`, `99511`, `99513`, `99516`, `99517`, `99518`, `99522`, `99523`, `99524`, `99527`, `99529`, `99530`, `99532`, `99535`, `99537`, `99539`, `99540`, `99542`, `99544`, `99546`, `99548`, `99549`, `99551`, `99552`, `99554`, `99556`, `99557`, `99559`, `99561`, `99563`, `99564`, `99566`, `99567`, `99568`, `99570`, `99572`, `99574`, `99576`, `99577`, `99578`, `99579`, `99580`, `99582`, `99584`, `99586`, `99588`, `99590`, `99592`, `99594`, `99597`, `99598`, `99600`, `99602`, `99604`, `99607`, `99609`, `99611`, `99614`, `99615`, `99617`, `99620`, `99621`, `99624`, `99626`, `99628`, `99630`, `99632`, `99634`, `99636`, `99638`, `99639`, `99640`, `99642`, `99643`, `99644`, `99646`, `99652`, `99654`, `99656`, `99659`, `99661`, `99663`, `99665`, `99667`, `99670`, `99673`, `99675`, `99676`, `99678`, `99680`, `99682`, `99683`, `99686`, `99688`, `99689`, `99691`, `99692`, `99694`, `99695`, `99697`, `99698`, `99700`, `99702`, `99704`, `99706`, `99708`, `99709`, `99710`, `99713`, `99714`, `99715`, `99717`, `99720`, `99721`, `99722`, `99723`, `99725`, `99727`, `99728`, `99729`, `99731`, `99733`, `99736`, `99738`, `99740`, `99742`, `99743`, `99745`, `99746`, `99748`, `99749`, `99750`, `99752`, `99754`, `99756`, `99758`, `99760`, `99761`, `99762`, `99765`, `99766`, `99768`, `99769`, `99770`, `99772`, `99774`, `99780`, `99781`, `99783`, `99785`, `99786`, `99788`, `99790`, `99792`, `99794`, `99796`, `99798`, `99800`, `99803`, `99804`, `99805`, `99806`, `99808`, `99810`, `99812`, `99813`, `99815`, `99817`, `99819`, `99822`, `99824`, `99825`, `99826`, `99828`, `99831`, `99833`, `99835`, `99837`, `99839`, `99841`, `99842`, `99843`, `99844`, `99846`, `99848`, `99849`, `99851`, `99852`, `99855`, `99857`, `99859`, `99861`, `99863`, `99865`, `99866`, `99867`, `99868`, `99870`, `99874`, `99876`, `99879`, `99880`, `99882`, `99884`, `99885`, `99887`, `99888`, `99889`, `99891`, `99894`, `99896`, `99898`, `99901`, `99903`, `99906`, `99907`, `99910`, `99912`, `99914`, `99915`, `99917`, `99919`, `99922`, `99924`, `99925`, `99927`, `99929`, `99931`, `99933`, `99934`, `99936`, `99938`, `99940`, `99942`, `99944`, `99946`, `99948`, `99950`, `99951`, `99953`, `99956`, `99958`, `99960`, `99962`, `99964`, `99965`, `99967`, `99970`, `99972`, `99974`, `99976`, `99978`, `99980`, `99982`, `99983`, `99985`, `99986`, `99987`, `99989`, `99991`, `99993`, `99995`, `99997`, `99999`, `100000`, `100001`, `100003`, `100005`, `100007`, `100009`, `100010`, `100011`, `100013`, `100014`, `100016`, `100018`, `100019`, `100021`, `100023`, `100025`, `100026`, `100028`, `100029`, `100030`, `100033`, `100034`, `100036`, `100038`, `100039`, `100041`, `100043`, `100045`, `100046`, `100047`, `100050`, `100052`, `100054`, `100056`, `100059`, `100060`, `100061`, `100063`, `100065`, `100066`, `100068`, `100070`, `100072`, `100074`, `100075`, `100077`, `100078`, `100080`, `100084`, `100085`, `100086`, `100087`, `100089`, `100091`, `100093`, `100094`, `100096`, `100097`, `100098`, `100100`, `100101`, `100102`, `100104`, `100105`, `100107`, `100109`, `100110`, `100111`, `100113`, `100114`, `100115`, `100116`, `100117`, `100120`, `100122`, `100123`, `100124`, `100126`, `100128`, `100130`, `100134`, `100135`, `100137`, `100141`, `100144`, `100147`, `100149`, `100151`, `100153`, `100155`, `100156`, `100157`, `100159`, `100160`, `100162`, `100164`, `100166`, `100167`, `100168`, `100169`, `100171`, `100173`, `100175`, `100177`, `100178`, `100180`, `100182`, `100184`, `100186`, `100188`, `100189`, `100191`, `100195`, `100196`, `100197`, `100199`, `100201`, `100203`, `100206`, `100210`, `100213`, `100215`, `100218`, `100220`, `100221`, `100222`, `100223`, `100224`, `100226`, `100228`, `100230`, `100232`, `100233`, `100235`, `100237`, `100238`, `100239`, `100241`, `100242`, `100243`, `100245`, `100247`, `100249`, `100251`, `100254`, `100256`, `100257`, `100259`, `100261`, `100262`, `100264`, `100266`, `100267`, `100269`, `100270`, `100272`, `100273`, `100276`, `100277`, `100278`, `100280`, `100281`, `100283`, `100284`, `100285`, `100287`, `100289`, `100290`, `100291`, `100293`, `100295`, `100297`, `100299`, `100301`, `100303`, `100305`, `100307`, `100308`, `100309`, `100311`, `100312`, `100315`, `100317`, `100319`, `100321`, `100323`, `100325`, `100327`, `100329`, `100331`, `100332`, `100333`, `100334`, `100336`, `100338`, `100339`, `100341`, `100343`, `100344`, `100346`, `100347`, `100348`, `100349`, `100350`, `100351`, `100353`, `100355`, `100359`, `100360`, `100362`, `100364`, `100366`, `100367`, `100369`, `100370`, `100371`, `100373`, `100374`, `100378`, `100379`, `100380`, `100382`, `100384`, `100386`, `100388`, `100390`, `100392`, `100394`, `100396`, `100397`, `100399`, `100401`, `100402`, `100403`, `100405`, `100409`, `100410`, `100412`, `100413`, `100414`, `100416`, `100418`, `100419`, `100421`, `100423`, `100424`, `100426`, `100427`, `100428`, `100429`, `100430`, `100431`, `100432`, `100433`, `100434`, `100435`, `100436`, `100438`, `100439`, `100441`, `100443`, `100445`, `100447`, `100449`, `100451`, `100452`, `100455`, `100456`, `100457`, `100459`, `100460`, `100462`, `100465`, `100468`, `100470`, `100472`, `100474`, `100476`, `100477`, `100481`, `100483`, `100484`, `100486`, `100488`, `100489`, `100491`, `100492`, `100493`, `100495`, `100497`, `100499`, `100501`, `100502`, `100505`, `100507`, `100509`, `100512`, `100515`, `100517`, `100520`, `100521`, `100523`, `100525`, `100526`, `100528`, `100530`, `100531`, `100535`, `100536`, `100538`, `100539`, `100541`, `100542`, `100545`, `100547`, `100549`, `100551`, `100553`, `100555`, `100557`, `100559`, `100560`, `100561`, `100562`, `100563`, `100565`, `100567`, `100568`, `100570`, `100572`, `100573`, `100574`, `100576`, `100578`, `100579`, `100580`, `100581`, `100583`, `100585`, `100586`, `100588`, `100590`, `100591`, `100592`, `100593`, `100594`, `100596`, `100598`, `100600`, `100602`, `100604`, `100605`, `100607`, `100609`, `100610`, `100612`, `100614`, `100615`, `100617`, `100618`, `100619`, `100621`, `100622`, `100623`, `100624`, `100625`, `100627`, `100630`, `100632`, `100634`, `100636`, `100637`, `100638`, `100639`, `100641`, `100643`, `100645`, `100647`, `100648`, `100650`, `100651`, `100652`, `100654`, `100656`, `100657`, `100658`, `100660`, `100661`, `100663`, `100664`, `100667`, `100668`, `100670`, `100671`, `100673`, `100677`, `100679`, `100681`, `100683`, `100684`, `100686`, `100688`, `100690`, `100692`, `100694`, `100695`, `100697`, `100698`, `100700`, `100701`, `100703`, `100705`, `100706`, `100708`, `100710`, `100711`, `100713`, `100714`, `100719`, `100721`, `100723`, `100724`, `100727`, `100728`, `100730`, `100732`, `100733`, `100735`, `100737`, `100739`, `100743`, `100745`, `100747`, `100749`, `100752`, `100754`, `100755`, `100756`, `100758`, `100759`, `100761`, `100762`, `100764`, `100766`, `100767`, `100768`, `100769`, `100770`, `100771`, `100774`, `100775`, `100777`, `100779`, `100781`, `100783`, `100784`, `100786`, `100788`, `100789`, `100791`, `100793`, `100795`, `100798`, `100799`, `100801`, `100802`, `100803`, `100804`, `100805`, `100807`, `100809`, `100811`, `100813`, `100815`, `100817`, `100818`, `100820`, `100821`, `100822`, `100824`, `100825`, `100827`, `100828`, `100830`, `100832`, `100833`, `100834`, `100837`, `100842`, `100843`, `100844`, `100845`, `100846`, `100848`, `100850`, `100852`, `100854`, `100856`, `100857`, `100859`, `100861`, `100862`, `100864`, `100866`, `100868`, `100869`, `100870`, `100872`, `100874`, `100876`, `100877`, `100879`, `100880`, `100881`, `100883`, `100884`, `100886`, `100888`, `100890`, `100892`, `100894`, `100897`, `100899`, `100901`, `100902`, `100904`, `100905`, `100907`, `100908`, `100910`, `100911`, `100914`, `100917`, `100918`, `100920`, `100921`, `100923`, `100927`, `100929`, `100930`, `100931`, `100933`, `100935`, `100936`, `100937`, `100939`, `100941`, `100943`, `100946`, `100948`, `100949`, `100951`, `100953`, `100955`, `100957`, `100959`, `100960`, `100962`, `100963`, `100964`, `100965`, `100967`, `100969`, `100970`, `100971`, `100973`, `100975`, `100977`, `100979`, `100980`, `100981`, `100982`, `100983`, `100984`, `100986`, `100989`, `100991`, `100992`, `100994`, `100995`, `100997`, `100999`, `101000`, `101001`, `101003`, `101005`, `101007`, `101009`, `101011`, `101012`, `101014`, `101015`, `101017`, `101018`, `101019`, `101020`, `101021`, `101022`, `101023`, `101027`, `101029`, `101030`, `101032`, `101033`, `101035`, `101036`, `101037`, `101042`, `101043`, `101046`, `101048`, `101049`, `101051`, `101053`, `101054`, `101056`, `101058`, `101059`, `101060`, `101062`, `101064`, `101065`, `101067`, `101069`, `101071`, `101073`, `101075`, `101077`, `101078`, `101080`, `101081`, `101082`, `101083`, `101084`, `101087`, `101088`, `101089`, `101090`, `101092`, `101094`, `101096`, `101098`, `101100`, `101102`, `101104`, `101106`, `101107`, `101109`, `101110`, `101112`, `101114`, `101115`, `101117`, `101119`, `101121`, `101123`, `101125`, `101127`, `101128`, `101130`, `101131`, `101133`, `101135`, `101136`, `101137`, `101140`, `101142`, `101144`, `101145`, `101146`, `101148`, `101150`, `101151`, `101152`, `101154`, `101156`, `101158`, `101160`, `101162`, `101164`, `101166`, `101167`, `101169`, `101170`, `101172`, `101174`, `101176`, `101178`, `101179`, `101181`, `101183`, `101184`, `101185`, `101186`, `101188`, `101189`, `101192`, `101194`, `101196`, `101197`, `101199`, `101200`, `101201`, `101202`, `101204`, `101206`, `101208`, `101209`, `101210`, `101211`, `101212`, `101214`, `101215`, `101217`, `101218`, `101220`, `101222`, `101224`, `101227`, `101229`, `101230`, `101232`, `101234`, `101236`, `101238`, `101239`, `101241`, `101244`, `101245`, `101249`, `101250`, `101252`, `101254`, `101256`, `101258`, `101260`, `101261`, `101263`, `101264`, `101265`, `101267`, `101268`, `101270`, `101271`, `101273`, `101275`, `101277`, `101278`, `101280`, `101282`, `101284`, `101286`, `101288`, `101290`, `101292`, `101293`, `101295`, `101296`, `101297`, `101298`, `101299`, `101302`, `101304`, `101305`, `101307`, `101308`, `101310`, `101312`, `101314`, `101316`, `101317`, `101319`, `101320`, `101322`, `101323`, `101324`, `101325`, `101326`, `101327`, `101329`, `101331`, `101333`, `101335`, `101337`, `101338`, `101339`, `101340`, `101342`, `101343`, `101345`, `101347`, `101349`, `101353`, `101354`, `101355`, `101357`, `101359`, `101361`, `101363`, `101368`, `101370`, `101371`, `101373`, `101376`, `101377`, `101379`, `101380`, `101382`, `101384`, `101386`, `101388`, `101390`, `101392`, `101393`, `101394`, `101397`, `101399`, `101401`, `101403`, `101404`, `101405`, `101407`, `101409`, `101411`, `101412`, `101413`, `101414`, `101417`, `101418`, `101419`, `101421`, `101423`, `101425`, `101426`, `101428`, `101430`, `101432`, `101434`, `101435`, `101436`, `101437`, `101438`, `101439`, `101441`, `101443`, `101445`, `101446`, `101447`, `101450`, `101452`, `101453`, `101455`, `101457`, `101460`, `101462`, `101464`, `101466`, `101468`, `101469`, `101471`, `101473`, `101475`, `101476`, `101477`, `101478`, `101481`, `101483`, `101484`, `101486`, `101488`, `101489`, `101490`, `101491`, `101492`, `101493`, `101495`, `101497`, `101498`, `101499`, `101501`, `101503`, `101505`, `101507`, `101509`, `101511`, `101512`, `101514`, `101516`, `101519`, `101520`, `101521`, `101523`, `101524`, `101526`, `101527`, `101528`, `101529`, `101531`, `101533`, `101535`, `101537`, `101538`, `101539`, `101541`, `101543`, `101544`, `101546`, `101548`, `101550`, `101552`, `101554`, `101555`, `101556`, `101557`, `101558`, `101559`, `101564`, `101566`, `101568`, `101569`, `101570`, `101571`, `101572`, `101574`, `101575`, `101579`, `101581`, `101583`, `101585`, `101586`, `101587`, `101589`, `101591`, `101593`, `101594`, `101596`, `101599`, `101601`, `101602`, `101605`, `101609`, `101611`, `101612`, `101614`, `101616`, `101619`, `101621`, `101624`, `101625`, `101627`, `101629`, `101631`, `101633`, `101635`, `101638`, `101640`, `101642`, `101643`, `101645`, `101646`, `101648`, `101649`, `101650`, `101651`, `101653`, `101654`, `101656`, `101658`, `101660`, `101661`, `101663`, `101664`, `101666`, `101667`, `101668`, `101670`, `101672`, `101676`, `101678`, `101680`, `101682`, `101683`, `101688`, `101689`, `101691`, `101695`, `101697`, `101698`, `101699`, `101701`, `101702`, `101703`, `101705`, `101707`, `101709`, `101710`, `101712`, `101714`, `101716`, `101718`, `101720`, `101722`, `101723`, `101725`, `101726`, `101728`, `101729`, `101730`, `101732`, `101733`, `101735`, `101737`, `101738`, `101739`, `101741`, `101742`, `101743`, `101745`, `101747`, `101749`, `101751`, `101752`, `101754`, `101756`, `101758`, `101760`, `101762`, `101764`, `101766`, `101768`, `101769`, `101771`, `101772`, `101774`, `101776`, `101777`, `101779`, `101781`, `101782`, `101784`, `101786`, `101788`, `101790`, `101791`, `101792`, `101793`, `101795`, `101797`, `101798`, `101799`, `101800`, `101802`, `101805`, `101807`, `101809`, `101810`, `101811`, `101812`, `101814`, `101815`, `101816`, `101818`, `101820`, `101821`, `101823`, `101825`, `101827`, `101829`, `101831`, `101833`, `101835`, `101837`, `101839`, `101841`, `101842`, `101844`, `101846`, `101847`, `101848`, `101849`, `101851`, `101853`, `101854`, `101856`, `101858`, `101859`, `101861`, `101863`, `101864`, `101866`, `101868`, `101870`, `101872`, `101874`, `101875`, `101877`, `101878`, `101879`, `101880`, `101881`, `101882`, `101884`, `101886`, `101888`, `101889`, `101891`, `101893`, `101894`, `101895`, `101897`, `101900`, `101903`, `101905`, `101906`, `101907`, `101908`, `101909`, `101911`, `101913`, `101915`, `101916`, `101918`, `101921`, `101922`, `101923`, `101924`, `101926`, `101928`, `101930`, `101931`, `101933`, `101935`, `101937`, `101939`, `101941`, `101943`, `101945`, `101947`, `101948`, `101950`, `101952`, `101955`, `101956`, `101958`, `101960`, `101962`, `101964`, `101965`, `101967`, `101968`, `101970`, `101972`, `101974`, `101976`, `101978`, `101980`, `101982`, `101984`, `101985`, `101987`, `101989`, `101990`, `101991`, `101994`, `101995`, `101998`, `102000`, `102001`, `102003`, `102005`, `102006`, `102007`, `102009`, `102011`, `102013`, `102014`, `102016`, `102018`, `102020`, `102023`, `102024`, `102026`, `102027`, `102029`, `102031`, `102032`, `102034`, `102035`, `102037`, `102038`, `102040`, `102042`, `102044`, `102047`, `102049`, `102051`, `102053`, `102055`, `102057`, `102058`, `102059`, `102061`, `102063`, `102064`, `102066`, `102067`, `102069`, `102071`, `102072`, `102075`, `102077`, `102078`, `102080`, `102082`, `102084`, `102086`, `102088`, `102091`, `102093`, `102094`, `102096`, `102097`, `102099`, `102101`, `102103`, `102106`, `102108`, `102110`, `102112`, `102115`, `102116`, `102118`, `102120`, `102122`, `102124`, `102126`, `102128`, `102129`, `102130`, `102132`, `102133`, `102135`, `102137`, `102139`, `102141`, `102142`, `102146`, `102147`, `102148`, `102150`, `102154`, `102155`, `102157`, `102158`, `102160`, `102162`, `102165`, `102167`, `102170`, `102171`, `102173`, `102174`, `102177`, `102182`, `102183`, `102185`, `102187`, `102190`, `102191`, `102192`, `102193`, `102194`, `102196`, `102198`, `102200`, `102202`, `102205`, `102207`, `102210`, `102212`, `102214`, `102216`, `102218`, `102220`, `102222`, `102224`, `102227`, `102228`, `102230`, `102232`, `102233`, `102235`, `102237`, `102242`, `102244`, `102246`, `102248`, `102250`, `102252`, `102254`, `102255`, `102256`, `102258`, `102260`, `102262`, `102263`, `102265`, `102267`, `102269`, `102270`, `102271`, `102276`, `102278`, `102280`, `102281`, `102283`, `102285`, `102287`, `102289`, `102291`, `102293`, `102294`, `102296`, `102297`, `102298`, `102299`, `102301`, `102302`, `102303`, `102304`, `102307`, `102308`, `102310`, `102311`, `102313`, `102315`, `102316`, `102318`, `102319`, `102321`, `102324`, `102325`, `102327`, `102329`, `102331`, `102332`, `102335`, `102337`, `102339`, `102341`, `102343`, `102345`, `102347`, `102349`, `102350`, `102351`, `102352`, `102353`, `102355`, `102357`, `102359`, `102361`, `102363`, `102365`, `102367`, `102369`, `102370`, `102372`, `102374`, `102375`, `102377`, `102379`, `102380`, `102382`, `102384`, `102386`, `102388`, `102389`, `102390`, `102391`, `102393`, `102394`, `102395`, `102397`, `102399`, `102400`, `102401`, `102402`, `102404`, `102406`, `102407`, `102409`, `102411`, `102412`, `102414`, `102416`, `102418`, `102419`, `102421`, `102423`, `102425`, `102426`, `102428`, `102430`, `102432`, `102434`, `102436`, `102438`, `102440`, `102442`, `102444`, `102446`, `102447`, `102449`, `102452`, `102454`, `102456`, `102458`, `102460`, `102463`, `102464`, `102466`, `102468`, `102470`, `102472`, `102474`, `102476`, `102477`, `102478`, `102479`, `102480`, `102482`, `102484`, `102485`, `102487`, `102488`, `102489`, `102490`, `102494`, `102495`, `102500`, `102505`, `102507`, `102509`, `102511`, `102513`, `102515`, `102516`, `102518`, `102520`, `102522`, `102524`, `102527`, `102529`, `102531`, `102532`, `102535`, `102536`, `102537`, `102539`, `102540`, `102542`, `102545`, `102546`, `102548`, `102550`, `102551`, `102552`, `102553`, `102554`, `102556`, `102558`, `102560`, `102562`, `102563`, `102564`, `102566`, `102568`, `102570`, `102572`, `102574`, `102576`, `102577`, `102579`, `102580`, `102581`, `102583`, `102585`, `102587`, `102588`, `102589`, `102591`, `102593`, `102595`, `102597`, `102599`, `102600`, `102602`, `102603`, `102605`, `102607`, `102609`, `102611`, `102612`, `102614`, `102615`, `102617`, `102618`, `102620`, `102622`, `102624`, `102626`, `102627`, `102628`, `102630`, `102631`, `102633`, `102634`, `102635`, `102636`, `102639`, `102641`, `102643`, `102645`, `102647`, `102649`, `102651`, `102653`, `102654`, `102656`, `102658`, `102660`, `102662`, `102664`, `102665`, `102666`, `102668`, `102670`, `102672`, `102674`, `102676`, `102677`, `102679`, `102680`, `102682`, `102683`, `102687`, `102688`, `102690`, `102693`, `102696`, `102698`, `102699`, `102701`, `102702`, `102704`, `102706`, `102707`, `102709`, `102710`, `102712`, `102713`, `102715`, `102718`, `102719`, `102721`, `102723`, `102725`, `102726`, `102727`, `102728`, `102729`, `102731`, `102733`, `102735`, `102737`, `102739`, `102741`, `102742`, `102744`, `102746`, `102748`, `102751`, `102753`, `102755`, `102757`, `102758`, `102760`, `102761`, `102762`, `102764`, `102765`, `102767`, `102769`, `102771`, `102772`, `102776`, `102778`, `102779`, `102780`, `102782`, `102783`, `102784`, `102785`, `102788`, `102789`, `102792`, `102794`, `102796`, `102797`, `102798`, `102799`, `102801`, `102803`, `102805`, `102806`, `102808`, `102810`, `102812`, `102814`, `102815`, `102817`, `102818`, `102819`, `102820`, `102822`, `102824`, `102825`, `102828`, `102830`, `102831`, `102832`, `102834`, `102836`, `102838`, `102839`, `102840`, `102842`, `102844`, `102846`, `102848`, `102849`, `102851`, `102852`, `102856`, `102858`, `102860`, `102864`, `102866`, `102868`, `102869`, `102871`, `102873`, `102875`, `102876`, `102877`, `102878`, `102880`, `102882`, `102883`, `102884`, `102886`, `102888`, `102889`, `102891`, `102893`, `102895`, `102897`, `102899`, `102901`, `102902`, `102904`, `102905`, `102909`, `102910`, `102912`, `102914`, `102916`, `102917`, `102919`, `102920`, `102922`, `102923`, `102925`, `102927`, `102929`, `102932`, `102934`, `102936`, `102938`, `102942`, `102944`, `102946`, `102948`, `102950`, `102952`, `102954`, `102955`, `102957`, `102959`, `102961`, `102963`, `102964`, `102969`, `102972`, `102973`, `102974`, `102975`, `102977`, `102978`, `102980`, `102982`, `102984`, `102985`, `102987`, `102989`, `102990`, `102992`, `102994`, `102996`, `102998`, `103000`, `103002`, `103003`, `103005`, `103007`, `103008`, `103009`, `103011`, `103016`, `103018`, `103019`, `103020`, `103022`, `103023`, `103026`, `103028`, `103030`, `103033`, `103035`, `103037`, `103038`, `103040`, `103041`, `103043`, `103045`, `103047`, `103049`, `103051`, `103052`, `103053`, `103054`, `103055`, `103057`, `103058`, `103059`, `103061`, `103063`, `103065`, `103066`, `103068`, `103070`, `103072`, `103074`, `103076`, `103077`, `103079`, `103081`, `103082`, `103083`, `103085`, `103087`, `103090`, `103091`, `103093`, `103095`, `103097`, `103099`, `103103`, `103104`, `103106`, `103108`, `103109`, `103111`, `103113`, `103115`, `103117`, `103119`, `103122`, `103124`, `103126`, `103127`, `103128`, `103131`, `103132`, `103134`, `103135`, `103137`, `103139`, `103140`, `103144`, `103145`, `103147`, `103148`, `103149`, `103150`, `103152`, `103153`, `103156`, `103158`, `103160`, `103162`, `103164`, `103166`, `103167`, `103168`, `103170`, `103171`, `103172`, `103174`, `103176`, `103179`, `103180`, `103182`, `103183`, `103185`, `103186`, `103188`, `103190`, `103191`, `103194`, `103197`, `103199`, `103200`, `103202`, `103204`, `103206`, `103207`, `103209`, `103211`, `103212`, `103213`, `103215`, `103217`, `103218`, `103219`, `103221`, `103223`, `103224`, `103226`, `103227`, `103230`, `103231`, `103233`, `103234`, `103236`, `103237`, `103238`, `103239`, `103241`, `103243`, `103247`, `103249`, `103251`, `103252`, `103257`, `103258`, `103259`, `103261`, `103263`, `103264`, `103265`, `103267`, `103269`, `103273`, `103275`, `103277`, `103278`, `103279`, `103282`, `103284`, `103286`, `103288`, `103290`, `103292`, `103293`, `103295`, `103297`, `103299`, `103301`, `103304`, `103306`, `103309`, `103310`, `103312`, `103315`, `103316`, `103318`, `103320`, `103322`, `103323`, `103324`, `103326`, `103328`, `103329`, `103331`, `103332`, `103334`, `103336`, `103338`, `103340`, `103343`, `103345`, `103346`, `103347`, `103349`, `103351`, `103352`, `103353`, `103354`, `103356`, `103357`, `103359`, `103361`, `103362`, `103364`, `103366`, `103368`, `103370`, `103372`, `103374`, `103376`, `103378`, `103380`, `103382`, `103383`, `103384`, `103385`, `103388`, `103389`, `103391`, `103392`, `103393`, `103394`, `103396`, `103398`, `103400`, `103402`, `103404`, `103405`, `103407`, `103409`, `103411`, `103413`, `103416`, `103418`, `103421`, `103422`, `103425`, `103426`, `103427`, `103428`, `103429`, `103430`, `103432`, `103434`, `103436`, `103438`, `103439`, `103441`, `103442`, `103443`, `103445`, `103449`, `103450`, `103451`, `103453`, `103455`, `103457`, `103459`, `103461`, `103463`, `103464`, `103469`, `103470`, `103472`, `103474`, `103476`, `103477`, `103479`, `103481`, `103482`, `103483`, `103486`, `103487`, `103489`, `103491`, `103493`, `103495`, `103496`, `103499`, `103500`, `103501`, `103503`, `103504`, `103505`, `103507`, `103509`, `103510`, `103513`, `103514`, `103517`, `103519`, `103522`, `103524`, `103526`, `103528`, `103529`, `103531`, `103534`, `103535`, `103537`, `103538`, `103539`, `103541`, `103542`, `103543`, `103545`, `103547`, `103549`, `103551`, `103552`, `103555`, `103557`, `103559`, `103561`, `103562`, `103563`, `103565`, `103567`, `103569`, `103570`, `103571`, `103572`, `103574`, `103575`, `103577`, `103579`, `103581`, `103582`, `103584`, `103589`, `103591`, `103593`, `103595`, `103597`, `103598`, `103600`, `103602`, `103603`, `103604`, `103606`, `103608`, `103609`, `103610`, `103611`, `103613`, `103615`, `103617`, `103618`, `103620`, `103621`, `103623`, `103625`, `103627`, `103629`, `103631`, `103633`, `103635`, `103637`, `103639`, `103640`, `103641`, `103643`, `103645`, `103647`, `103649`, `103651`, `103653`, `103654`, `103655`, `103657`, `103659`, `103661`, `103663`, `103664`, `103665`, `103667`, `103669`, `103671`, `103673`, `103675`, `103677`, `103680`, `103682`, `103683`, `103685`, `103687`, `103689`, `103691`, `103693`, `103695`, `103697`, `103699`, `103701`, `103702`, `103703`, `103705`, `103707`, `103708`, `103709`, `103713`, `103714`, `103716`, `103718`, `103720`, `103721`, `103723`, `103726`, `103728`, `103729`, `103731`, `103733`, `103735`, `103737`, `103739`, `103741`, `103743`, `103745`, `103746`, `103747`, `103749`, `103751`, `103752`, `103754`, `103755`, `103757`, `103758`, `103760`, `103762`, `103764`, `103765`, `103766`, `103768`, `103769`, `103771`, `103772`, `103773`, `103775`, `103777`, `103779`, `103781`, `103782`, `103784`, `103785`, `103787`, `103789`, `103790`, `103792`, `103793`, `103795`, `103797`, `103799`, `103800`, `103802`, `103804`, `103805`, `103808`, `103810`, `103811`, `103812`, `103814`, `103816`, `103819`, `103820`, `103823`, `103824`, `103826`, `103827`, `103829`, `103830`, `103832`, `103834`, `103836`, `103838`, `103839`, `103842`, `103844`, `103846`, `103848`, `103852`, `103853`, `103856`, `103857`, `103858`, `103860`, `103862`, `103863`, `103865`, `103866`, `103867`, `103868`, `103869`, `103872`, `103874`, `103876`, `103878`, `103881`, `103883`, `103885`, `103886`, `103887`, `103889`, `103890`, `103892`, `103894`, `103896`, `103898`, `103900`, `103902`, `103904`, `103907`, `103909`, `103911`, `103913`, `103915`, `103917`, `103918`, `103920`, `103922`, `103924`, `103926`, `103928`, `103930`, `103932`, `103933`, `103936`, `103937`, `103939`, `103940`, `103943`, `103945`, `103947`, `103949`, `103951`, `103952`, `103955`, `103957`, `103958`, `103960`, `103962`, `103963`, `103965`, `103966`, `103968`, `103970`, `103973`, `103974`, `103975`, `103977`, `103979`, `103981`, `103983`, `103984`, `103986`, `103987`, `103988`, `103990`, `103992`, `103994`, `103995`, `103997`, `103999`, `104001`, `104002`, `104003`, `104005`, `104007`, `104008`, `104010`, `104015`, `104017`, `104019`, `104020`, `104022`, `104024`, `104026`, `104028`, `104030`, `104032`, `104033`, `104035`, `104037`, `104038`, `104041`, `104042`, `104043`, `104044`, `104045`, `104046`, `104048`, `104050`, `104052`, `104053`, `104055`, `104057`, `104059`, `104062`, `104064`, `104066`, `104070`, `104072`, `104074`, `104076`, `104078`, `104080`, `104082`, `104085`, `104087`, `104088`, `104091`, `104092`, `104094`, `104095`, `104096`, `104097`, `104101`, `104103`, `104104`, `104106`, `104107`, `104110`, `104111`, `104113`, `104115`, `104118`, `104120`, `104121`, `104123`, `104125`, `104127`, `104128`, `104130`, `104133`, `104134`, `104136`, `104137`, `104138`, `104140`, `104142`, `104143`, `104145`, `104148`, `104150`, `104152`, `104155`, `104156`, `104158`, `104160`, `104162`, `104164`, `104167`, `104169`, `104170`, `104171`, `104172`, `104173`, `104175`, `104177`, `104178`, `104179`, `104180`, `104181`, `104183`, `104184`, `104186`, `104188`, `104189`, `104190`, `104191`, `104192`, `104193`, `104194`, `104197`, `104198`, `104200`, `104201`, `104202`, `104204`, `104205`, `104207`, `104209`, `104211`, `104212`, `104213`, `104217`, `104221`, `104223`, `104225`, `104227`, `104228`, `104229`, `104231`, `104233`, `104235`, `104238`, `104240`, `104242`, `104243`, `104244`, `104245`, `104247`, `104249`, `104251`, `104253`, `104255`, `104256`, `104257`, `104260`, `104261`, `104263`, `104265`, `104266`, `104267`, `104268`, `104269`, `104273`, `104274`, `104275`, `104277`, `104279`, `104281`, `104282`, `104284`, `104285`, `104287`, `104289`, `104290`, `104292`, `104294`, `104295`, `104296`, `104298`, `104301`, `104303`, `104305`, `104307`, `104308`, `104309`, `104311`, `104314`, `104316`, `104318`, `104321`, `104323`, `104324`, `104326`, `104327`, `104329`, `104331`, `104334`, `104336`, `104338`, `104339`, `104341`, `104342`, `104347`, `104349`, `104353`, `104355`, `104357`, `104359`, `104360`, `104362`, `104363`, `104364`, `104366`, `104368`, `104369`, `104372`, `104374`, `104376`, `104377`, `104379`, `104381`, `104382`, `104384`, `104386`, `104387`, `104389`, `104391`, `104392`, `104393`, `104394`, `104395`, `104397`, `104398`, `104399`, `104401`, `104403`, `104405`, `104407`, `104409`, `104410`, `104412`, `104413`, `104416`, `104418`, `104420`, `104422`, `104424`, `104425`, `104426`, `104427`, `104428`, `104429`, `104430`, `104431`, `104433`, `104435`, `104437`, `104440`, `104441`, `104442`, `104443`, `104447`, `104450`, `104452`, `104453`, `104456`, `104457`, `104458`, `104460`, `104462`, `104463`, `104466`, `104467`, `104468`, `104469`, `104471`, `104472`, `104473`, `104474`, `104476`, `104477`, `104479`, `104481`, `104483`, `104485`, `104486`, `104488`, `104490`, `104491`, `104492`, `104494`, `104496`, `104498`, `104500`, `104502`, `104504`, `104505`, `104507`, `104509`, `104511`, `104512`, `104514`, `104516`, `104517`, `104518`, `104520`, `104523`, `104524`, `104525`, `104527`, `104529`, `104533`, `104534`, `104536`, `104538`, `104539`, `104541`, `104543`, `104545`, `104546`, `104547`, `104548`, `104549`, `104551`, `104552`, `104554`, `104555`, `104557`, `104559`, `104561`, `104563`, `104564`, `104565`, `104567`, `104569`, `104571`, `104573`, `104575`, `104577`, `104579`, `104580`, `104582`, `104585`, `104586`, `104588`, `104590`, `104592`, `104593`, `104595`, `104597`, `104598`, `104599`, `104601`, `104603`, `104605`, `104606`, `104607`, `104609`, `104611`, `104613`, `104615`, `104617`, `104619`, `104620`, `104622`, `104624`, `104626`, `104628`, `104629`, `104630`, `104632`, `104633`, `104634`, `104636`, `104639`, `104642`, `104644`, `104646`, `104647`, `104648`, `104649`, `104651`, `104653`, `104655`, `104656`, `104658`, `104660`, `104661`, `104663`, `104664`, `104665`, `104667`, `104669`, `104671`, `104673`, `104674`, `104675`, `104677`, `104679`, `104681`, `104683`, `104684`, `104686`, `104688`, `104690`, `104692`, `104694`, `104696`, `104698`, `104699`, `104700`, `104702`, `104704`, `104706`, `104707`, `104708`, `104710`, `104711`, `104713`, `104714`, `104716`, `104718`, `104719`, `104720`, `104722`, `104723`, `104725`, `104726`, `104728`, `104730`, `104731`, `104732`, `104734`, `104736`, `104737`, `104738`, `104740`, `104742`, `104743`, `104744`, `104746`, `104747`, `104749`, `104751`, `104753`, `104754`, `104756`, `104758`, `104760`, `104763`, `104764`, `104766`, `104767`, `104769`, `104771`, `104773`, `104775`, `104778`, `104780`, `104782`, `104784`, `104786`, `104790`, `104792`, `104794`, `104796`, `104797`, `104798`, `104800`, `104801`, `104803`, `104805`, `104806`, `104807`, `104809`, `104811`, `104813`, `104815`, `104817`, `104818`, `104820`, `104821`, `104823`, `104825`, `104827`, `104828`, `104830`, `104831`, `104833`, `104835`, `104836`, `104841`, `104842`, `104844`, `104845`, `104847`, `104848`, `104850`, `104853`, `104855`, `104857`, `104858`, `104860`, `104861`, `104862`, `104864`, `104866`, `104867`, `104869`, `104871`, `104873`, `104874`, `104875`, `104876`, `104878`, `104880`, `104881`, `104883`, `104885`, `104887`, `104888`, `104889`, `104891`, `104893`, `104896`, `104897`, `104899`, `104901`, `104902`, `104903`, `104904`, `104906`, `104907`, `104909`, `104910`, `104911`, `104913`, `104915`, `104917`, `104919`, `104921`, `104923`, `104926`, `104928`, `104930`, `104932`, `104934`, `104936`, `104938`, `104940`, `104941`, `104942`, `104943`, `104945`, `104946`, `104948`, `104950`, `104951`, `104953`, `104954`, `104956`, `104957`, `104959`, `104960`, `104961`, `104963`, `104965`, `104967`, `104969`, `104970`, `104971`, `104973`, `104974`, `104975`, `104977`, `104979`, `104981`, `104982`, `104983`, `104985`, `104987`, `104990`, `104993`, `104995`, `104997`, `104998`, `104999`, `105002`, `105003`, `105004`, `105005`, `105007`, `105009`, `105011`, `105012`, `105014`, `105016`, `105018`, `105020`, `105022`, `105023`, `105025`, `105027`, `105029`, `105030`, `105032`, `105033`, `105035`, `105039`, `105041`, `105043`, `105045`, `105047`, `105049`, `105052`, `105054`, `105056`, `105060`, `105062`, `105064`, `105066`, `105068`, `105069`, `105071`, `105072`, `105074`, `105075`, `105077`, `105079`, `105081`, `105083`, `105085`, `105087`, `105089`, `105091`, `105093`, `105094`, `105095`, `105096`, `105098`, `105100`, `105102`, `105104`, `105106`, `105107`, `105109`, `105111`, `105112`, `105113`, `105115`, `105117`, `105120`, `105122`, `105123`, `105124`, `105126`, `105127`, `105128`, `105130`, `105131`, `105133`, `105135`, `105137`, `105139`, `105141`, `105142`, `105143`, `105145`, `105146`, `105148`, `105149`, `105150`, `105151`, `105153`, `105155`, `105156`, `105157`, `105159`, `105163`, `105165`, `105166`, `105169`, `105171`, `105173`, `105175`, `105176`, `105178`, `105180`, `105182`, `105184`, `105186`, `105187`, `105189`, `105191`, `105193`, `105197`, `105199`, `105203`, `105205`, `105207`, `105209`, `105211`, `105213`, `105215`, `105218`, `105220`, `105221`, `105223`, `105225`, `105227`, `105229`, `105230`, `105233`, `105234`, `105235`, `105237`, `105239`, `105241`, `105242`, `105244`, `105246`, `105247`, `105249`, `105250`, `105252`, `105253`, `105255`, `105257`, `105259`, `105260`, `105262`, `105264`, `105266`, `105267`, `105269`, `105271`, `105273`, `105275`, `105277`, `105279`, `105281`, `105283`, `105285`, `105287`, `105288`, `105289`, `105291`, `105293`, `105295`, `105297`, `105299`, `105303`, `105304`, `105307`, `105308`, `105310`, `105311`, `105313`, `105315`, `105317`, `105319`, `105321`, `105323`, `105325`, `105328`, `105330`, `105332`, `105333`, `105334`, `105336`, `105338`, `105340`, `105342`, `105344`, `105346`, `105348`, `105349`, `105350`, `105352`, `105354`, `105356`, `105358`, `105360`, `105362`, `105364`, `105365`, `105367`, `105368`, `105369`, `105371`, `105372`, `105374`, `105375`, `105376`, `105378`, `105379`, `105381`, `105383`, `105384`, `105386`, `105388`, `105390`, `105392`, `105394`, `105396`, `105398`, `105400`, `105403`, `105404`, `105406`, `105408`, `105410`, `105412`, `105414`, `105415`, `105416`, `105417`, `105419`, `105422`, `105424`, `105426`, `105428`, `105430`, `105431`, `105433`, `105435`, `105437`, `105440`, `105443`, `105444`, `105445`, `105447`, `105449`, `105450`, `105452`, `105454`, `105455`, `105457`, `105458`, `105460`, `105462`, `105465`, `105467`, `105468`, `105470`, `105472`, `105474`, `105476`, `105478`, `105479`, `105481`, `105483`, `105486`, `105487`, `105489`, `105491`, `105493`, `105495`, `105497`, `105498`, `105499`, `105501`, `105503`, `105505`, `105506`, `105507`, `105508`, `105509`, `105511`, `105513`, `105515`, `105516`, `105518`, `105519`, `105521`, `105522`, `105524`, `105526`, `105529`, `105530`, `105531`, `105533`, `105534`, `105535`, `105537`, `105542`, `105543`, `105545`, `105547`, `105549`, `105551`, `105552`, `105554`, `105556`, `105558`, `105560`, `105562`, `105564`, `105566`, `105567`, `105569`, `105570`, `105572`, `105574`, `105576`, `105578`, `105580`, `105582`, `105584`, `105586`, `105587`, `105588`, `105590`, `105593`, `105595`, `105596`, `105597`, `105598`, `105600`, `105602`, `105604`, `105606`, `105607`, `105608`, `105610`, `105612`, `105614`, `105615`, `105617`, `105619`, `105621`, `105623`, `105624`, `105626`, `105628`, `105629`, `105630`, `105631`, `105633`, `105635`, `105637`, `105638`, `105640`, `105641`, `105643`, `105645`, `105647`, `105649`, `105651`, `105652`, `105653`, `105654`, `105656`, `105658`, `105660`, `105662`, `105663`, `105665`, `105666`, `105668`, `105670`, `105672`, `105674`, `105676`, `105678`, `105679`, `105680`, `105682`, `105684`, `105685`, `105687`, `105689`, `105690`, `105692`, `105693`, `105694`, `105695`, `105696`, `105698`, `105699`, `105703`, `105705`, `105706`, `105708`, `105710`, `105711`, `105713`, `105715`, `105717`, `105719`, `105721`, `105723`, `105725`, `105727`, `105729`, `105731`, `105733`, `105734`, `105736`, `105737`, `105739`, `105741`, `105742`, `105743`, `105745`, `105748`, `105752`, `105754`, `105755`, `105756`, `105758`, `105759`, `105760`, `105762`, `105764`, `105765`, `105767`, `105769`, `105770`, `105771`, `105773`, `105775`, `105777`, `105779`, `105781`, `105783`, `105785`, `105787`, `105790`, `105792`, `105795`, `105797`, `105798`, `105800`, `105802`, `105804`, `105805`, `105807`, `105810`, `105814`, `105816`, `105818`, `105819`, `105821`, `105823`, `105825`, `105827`, `105829`, `105831`, `105833`, `105835`, `105837`, `105839`, `105841`, `105843`, `105844`, `105846`, `105849`, `105851`, `105853`, `105855`, `105857`, `105859`, `105862`, `105863`, `105864`, `105866`, `105868`, `105870`, `105873`, `105875`, `105877`, `105879`, `105880`, `105882`, `105884`, `105885`, `105887`, `105888`, `105889`, `105891`, `105893`, `105894`, `105896`, `105897`, `105899`, `105901`, `105903`, `105905`, `105906`, `105908`, `105910`, `105911`, `105913`, `105915`, `105916`, `105917`, `105919`, `105921`, `105925`, `105926`, `105928`, `105929`, `105931`, `105933`, `105935`, `105937`, `105939`, `105940`, `105942`, `105944`, `105946`, `105948`, `105950`, `105951`, `105952`, `105955`, `105957`, `105959`, `105961`, `105963`, `105965`, `105966`, `105968`, `105969`, `105971`, `105972`, `105973`, `105975`, `105976`, `105977`, `105979`, `105981`, `105986`, `105988`, `105990`, `105992`, `105993`, `105995`, `105996`, `105998`, `106000`, `106002`, `106004`, `106006`, `106008`, `106010`, `106012`, `106014`, `106015`, `106017`, `106019`, `106022`, `106023`, `106025`, `106027`, `106029`, `106031`, `106034`, `106036`, `106037`, `106038`, `106040`, `106047`, `106049`, `106051`, `106052`, `106054`, `106055`, `106056`, `106057`, `106058`, `106060`, `106062`, `106064`, `106066`, `106068`, `106069`, `106071`, `106073`, `106077`, `106079`, `106082`, `106083`, `106084`, `106085`, `106087`, `106091`, `106093`, `106094`, `106096`, `106098`, `106101`, `106103`, `106106`, `106107`, `106108`, `106110`, `106111`, `106113`, `106115`, `106117`, `106119`, `106120`, `106122`, `106124`, `106125`, `106126`, `106128`, `106129`, `106131`, `106133`, `106135`, `106137`, `106138`, `106140`, `106142`, `106144`, `106145`, `106146`, `106147`, `106148`, `106150`, `106151`, `106153`, `106154`, `106155`, `106156`, `106157`, `106159`, `106161`, `106163`, `106165`, `106167`, `106169`, `106171`, `106173`, `106176`, `106178`, `106180`, `106182`, `106184`, `106186`, `106188`, `106189`, `106190`, `106192`, `106193`, `106195`, `106196`, `106199`, `106201`, `106203`, `106205`, `106206`, `106208`, `106209`, `106210`, `106211`, `106212`, `106215`, `106217`, `106219`, `106221`, `106223`, `106225`, `106227`, `106229`, `106231`, `106233`, `106235`, `106237`, `106238`, `106240`, `106242`, `106244`, `106246`, `106248`, `106250`, `106251`, `106253`, `106255`, `106257`, `106260`, `106262`, `106264`, `106265`, `106267`, `106269`, `106272`, `106274`, `106276`, `106278`, `106280`, `106281`, `106284`, `106285`, `106287`, `106289`, `106291`, `106293`, `106294`, `106296`, `106298`, `106299`, `106300`, `106302`, `106303`, `106305`, `106306`, `106307`, `106309`, `106310`, `106311`, `106313`, `106314`, `106316`, `106318`, `106320`, `106322`, `106324`, `106326`, `106328`, `106330`, `106331`, `106333`, `106334`, `106336`, `106338`, `106340`, `106342`, `106344`, `106346`, `106348`, `106350`, `106352`, `106354`, `106356`, `106358`, `106360`, `106362`, `106363`, `106364`, `106366`, `106367`, `106369`, `106370`, `106372`, `106374`, `106376`, `106379`, `106381`, `106383`, `106387`, `106389`, `106392`, `106393`, `106395`, `106396`, `106397`, `106398`, `106400`, `106402`, `106404`, `106405`, `106407`, `106408`, `106409`, `106411`, `106413`, `106414`, `106416`, `106418`, `106419`, `106420`, `106422`, `106423`, `106426`, `106428`, `106430`, `106431`, `106434`, `106436`, `106437`, `106439`, `106441`, `106442`, `106443`, `106445`, `106447`, `106449`, `106451`, `106453`, `106455`, `106457`, `106458`, `106460`, `106462`, `106463`, `106464`, `106467`, `106468`, `106470`, `106471`, `106473`, `106474`, `106475`, `106476`, `106477`, `106479`, `106481`, `106482`, `106484`, `106486`, `106487`, `106489`, `106490`, `106492`, `106493`, `106495`, `106497`, `106499`, `106501`, `106503`, `106505`, `106506`, `106508`, `106509`, `106510`, `106511`, `106513`, `106516`, `106518`, `106520`, `106522`, `106524`, `106526`, `106528`, `106529`, `106531`, `106533`, `106534`, `106535`, `106538`, `106539`, `106541`, `106542`, `106544`, `106546`, `106548`, `106550`, `106552`, `106554`, `106556`, `106558`, `106560`, `106563`, `106564`, `106565`, `106566`, `106567`, `106569`, `106571`, `106574`, `106576`, `106577`, `106579`, `106581`, `106582`, `106583`, `106585`, `106587`, `106589`, `106591`, `106593`, `106594`, `106595`, `106596`, `106599`, `106600`, `106602`, `106603`, `106605`, `106607`, `106609`, `106610`, `106612`, `106613`, `106614`, `106615`, `106618`, `106620`, `106621`, `106623`, `106625`, `106627`, `106629`, `106631`, `106632`, `106634`, `106636`, `106638`, `106639`, `106640`, `106642`, `106643`, `106644`, `106645`, `106646`, `106647`, `106649`, `106651`, `106652`, `106654`, `106656`, `106658`, `106660`, `106662`, `106664`, `106666`, `106667`, `106669`, `106671`, `106673`, `106676`, `106678`, `106680`, `106681`, `106683`, `106685`, `106687`, `106688`, `106689`, `106691`, `106692`, `106694`, `106695`, `106697`, `106699`, `106701`, `106703`, `106705`, `106706`, `106707`, `106708`, `106709`, `106711`, `106713`, `106718`, `106719`, `106721`, `106723`, `106724`, `106725`, `106727`, `106729`, `106730`, `106732`, `106734`, `106736`, `106738`, `106740`, `106741`, `106742`, `106743`, `106745`, `106747`, `106749`, `106751`, `106753`, `106755`, `106757`, `106758`, `106760`, `106761`, `106762`, `106764`, `106765`, `106767`, `106769`, `106770`, `106772`, `106774`, `106777`, `106779`, `106781`, `106782`, `106784`, `106785`, `106786`, `106788`, `106790`, `106791`, `106793`, `106796`, `106797`, `106799`, `106801`, `106803`, `106804`, `106805`, `106807`, `106808`, `106809`, `106812`, `106814`, `106815`, `106817`, `106818`, `106819`, `106820`, `106822`, `106823`, `106826`, `106827`, `106829`, `106831`, `106833`, `106835`, `106837`, `106838`, `106839`, `106840`, `106841`, `106843`, `106845`, `106846`, `106848`, `106849`, `106850`, `106852`, `106854`, `106856`, `106858`, `106859`, `106861`, `106862`, `106864`, `106866`, `106868`, `106871`, `106873`, `106875`, `106877`, `106879`, `106880`, `106882`, `106883`, `106885`, `106887`, `106889`, `106891`, `106893`, `106895`, `106896`, `106898`, `106899`, `106901`, `106903`, `106905`, `106907`, `106909`, `106911`, `106913`, `106915`, `106917`, `106919`, `106921`, `106922`, `106923`, `106924`, `106928`, `106930`, `106932`, `106934`, `106935`, `106936`, `106938`, `106940`, `106941`, `106943`, `106945`, `106946`, `106949`, `106950`, `106952`, `106954`, `106956`, `106957`, `106959`, `106960`, `106962`, `106963`, `106964`, `106965`, `106968`, `106970`, `106972`, `106973`, `106974`, `106975`, `106976`, `106978`, `106980`, `106982`, `106984`, `106986`, `106988`, `106989`, `106991`, `106994`, `106996`, `106999`, `107001`, `107003`, `107005`, `107006`, `107008`, `107010`, `107012`, `107015`, `107017`, `107019`, `107021`, `107025`, `107027`, `107029`, `107031`, `107033`, `107035`, `107037`, `107038`, `107039`, `107041`, `107042`, `107044`, `107046`, `107048`, `107050`, `107051`, `107053`, `107056`, `107058`, `107060`, `107062`, `107063`, `107067`, `107069`, `107070`, `107071`, `107072`, `107074`, `107076`, `107077`, `107079`, `107081`, `107083`, `107085`, `107087`, `107088`, `107090`, `107091`, `107093`, `107094`, `107096`, `107098`, `107101`, `107102`, `107104`, `107105`, `107106`, `107107`, `107108`, `107109`, `107110`, `107112`, `107114`, `107116`, `107118`, `107119`, `107120`, `107121`, `107123`, `107125`, `107127`, `107128`, `107132`, `107134`, `107136`, `107138`, `107143`, `107145`, `107146`, `107147`, `107148`, `107149`, `107151`, `107153`, `107155`, `107157`, `107158`, `107159`, `107161`, `107164`, `107166`, `107168`, `107172`, `107173`, `107175`, `107177`, `107179`, `107181`, `107183`, `107185`, `107186`, `107188`, `107190`, `107192`, `107193`, `107195`, `107197`, `107199`, `107200`, `107201`, `107203`, `107204`, `107206`, `107208`, `107210`, `107213`, `107215`, `107216`, `107218`, `107220`, `107221`, `107223`, `107224`, `107227`, `107229`, `107231`, `107233`, `107235`, `107237`, `107238`, `107239`, `107241`, `107243`, `107244`, `107245`, `107247`, `107249`, `107250`, `107256`, `107257`, `107259`, `107260`, `107261`, `107263`, `107265`, `107266`, `107268`, `107269`, `107271`, `107273`, `107275`, `107277`, `107279`, `107281`, `107283`, `107285`, `107287`, `107288`, `107289`, `107291`, `107293`, `107295`, `107296`, `107298`, `107299`, `107300`, `107301`, `107302`, `107304`, `107306`, `107308`, `107310`, `107312`, `107314`, `107316`, `107318`, `107320`, `107321`, `107323`, `107325`, `107327`, `107328`, `107329`, `107331`, `107332`, `107334`, `107336`, `107338`, `107340`, `107342`, `107344`, `107346`, `107348`, `107349`, `107351`, `107355`, `107356`, `107357`, `107358`, `107360`, `107362`, `107364`, `107366`, `107368`, `107370`, `107372`, `107374`, `107376`, `107378`, `107379`, `107381`, `107383`, `107384`, `107386`, `107387`, `107389`, `107391`, `107393`, `107395`, `107397`, `107399`, `107401`, `107402`, `107404`, `107405`, `107407`, `107409`, `107412`, `107414`, `107415`, `107417`, `107418`, `107421`, `107422`, `107424`, `107426`, `107428`, `107430`, `107432`, `107433`, `107434`, `107435`, `107437`, `107438`, `107440`, `107442`, `107444`, `107446`, `107449`, `107450`, `107451`, `107452`, `107454`, `107456`, `107458`, `107459`, `107461`, `107463`, `107464`, `107465`, `107466`, `107468`, `107469`, `107471`, `107472`, `107473`, `107475`, `107477`, `107480`, `107482`, `107487`, `107489`, `107491`, `107493`, `107495`, `107497`, `107499`, `107501`, `107503`, `107504`, `107505`, `107506`, `107509`, `107511`, `107513`, `107514`, `107515`, `107517`, `107519`, `107521`, `107523`, `107524`, `107526`, `107528`, `107529`, `107531`, `107533`, `107535`, `107537`, `107539`, `107541`, `107542`, `107543`, `107544`, `107547`, `107549`, `107551`, `107554`, `107556`, `107558`, `107560`, `107562`, `107564`, `107565`, `107567`, `107570`, `107572`, `107574`, `107576`, `107578`, `107580`, `107582`, `107584`, `107587`, `107589`, `107591`, `107593`, `107594`, `107596`, `107598`, `107599`, `107600`, `107601`, `107603`, `107605`, `107606`, `107608`, `107610`, `107612`, `107614`, `107616`, `107617`, `107618`, `107620`, `107621`, `107622`, `107623`, `107624`, `107626`, `107628`, `107630`, `107631`, `107633`, `107634`, `107636`, `107638`, `107640`, `107641`, `107643`, `107645`, `107647`, `107649`, `107651`, `107653`, `107655`, `107656`, `107658`, `107660`, `107662`, `107664`, `107666`, `107668`, `107670`, `107673`, `107677`, `107678`, `107680`, `107682`, `107684`, `107685`, `107687`, `107689`, `107690`, `107691`, `107693`, `107695`, `107697`, `107699`, `107700`, `107701`, `107702`, `107703`, `107704`, `107705`, `107707`, `107709`, `107711`, `107713`, `107715`, `107717`, `107721`, `107723`, `107724`, `107725`, `107727`, `107729`, `107730`, `107731`, `107733`, `107735`, `107739`, `107740`, `107741`, `107743`, `107744`, `107746`, `107747`, `107748`, `107750`, `107752`, `107753`, `107755`, `107760`, `107761`, `107762`, `107764`, `107766`, `107767`, `107768`, `107771`, `107773`, `107775`, `107778`, `107780`, `107781`, `107782`, `107783`, `107785`, `107786`, `107787`, `107789`, `107790`, `107792`, `107796`, `107798`, `107801`, `107803`, `107805`, `107807`, `107808`, `107810`, `107811`, `107813`, `107815`, `107817`, `107819`, `107821`, `107822`, `107823`, `107824`, `107826`, `107828`, `107829`, `107830`, `107831`, `107832`, `107834`, `107836`, `107838`, `107839`, `107841`, `107843`, `107845`, `107847`, `107849`, `107851`, `107852`, `107854`, `107856`, `107857`, `107859`, `107862`, `107866`, `107868`, `107870`, `107871`, `107873`, `107875`, `107876`, `107877`, `107879`, `107881`, `107883`, `107885`, `107886`, `107888`, `107889`, `107892`, `107893`, `107895`, `107896`, `107898`, `107900`, `107902`, `107904`, `107906`, `107908`, `107910`, `107912`, `107914`, `107915`, `107917`, `107918`, `107919`, `107920`, `107922`, `107924`, `107925`, `107927`, `107929`, `107930`, `107931`, `107932`, `107933`, `107934`, `107936`, `107938`, `107939`, `107940`, `107941`, `107943`, `107944`, `107945`, `107946`, `107948`, `107950`, `107952`, `107954`, `107956`, `107957`, `107959`, `107960`, `107962`, `107964`, `107966`, `107971`, `107972`, `107974`, `107975`, `107977`, `107979`, `107980`, `107982`, `107983`, `107986`, `107987`, `107990`, `107992`, `107994`, `107996`, `107997`, `107999`, `108002`, `108003`, `108006`, `108007`, `108009`, `108011`, `108014`, `108015`, `108017`, `108019`, `108020`, `108022`, `108024`, `108026`, `108027`, `108031`, `108033`, `108035`, `108037`, `108039`, `108041`, `108043`, `108044`, `108046`, `108048`, `108050`, `108051`, `108053`, `108055`, `108057`, `108060`, `108062`, `108064`, `108069`, `108070`, `108072`, `108074`, `108075`, `108077`, `108078`, `108080`, `108082`, `108084`, `108086`, `108088`, `108090`, `108092`, `108094`, `108096`, `108097`, `108098`, `108100`, `108102`, `108104`, `108109`, `108111`, `108112`, `108115`, `108116`, `108118`, `108120`, `108122`, `108124`, `108127`, `108129`, `108132`, `108135`, `108136`, `108138`, `108139`, `108141`, `108142`, `108144`, `108146`, `108148`, `108150`, `108152`, `108154`, `108156`, `108157`, `108158`, `108160`, `108163`, `108165`, `108167`, `108169`, `108170`, `108172`, `108174`, `108176`, `108179`, `108181`, `108183`, `108185`, `108187`, `108188`, `108190`, `108192`, `108193`, `108195`, `108197`, `108199`, `108201`, `108202`, `108204`, `108207`, `108209`, `108211`, `108213`, `108215`, `108216`, `108218`, `108220`, `108222`, `108224`, `108225`, `108227`, `108229`, `108231`, `108233`, `108236`, `108238`, `108239`, `108241`, `108243`, `108245`, `108246`, `108247`, `108249`, `108250`, `108252`, `108253`, `108254`, `108255`, `108256`, `108257`, `108259`, `108261`, `108263`, `108265`, `108266`, `108268`, `108269`, `108271`, `108272`, `108273`, `108275`, `108277`, `108278`, `108280`, `108282`, `108284`, `108286`, `108288`, `108290`, `108291`, `108293`, `108295`, `108297`, `108299`, `108301`, `108302`, `108304`, `108305`, `108306`, `108308`, `108311`, `108313`, `108315`, `108317`, `108319`, `108320`, `108322`, `108324`, `108326`, `108327`, `108329`, `108331`, `108333`, `108335`, `108336`, `108338`, `108339`, `108340`, `108342`, `108344`, `108346`, `108348`, `108349`, `108350`, `108352`, `108354`, `108357`, `108359`, `108360`, `108362`, `108363`, `108364`, `108366`, `108368`, `108370`, `108372`, `108375`, `108377`, `108379`, `108381`, `108383`, `108385`, `108387`, `108389`, `108391`, `108394`, `108395`, `108396`, `108398`, `108399`, `108401`, `108403`, `108405`, `108406`, `108407`, `108408`, `108410`, `108412`, `108413`, `108415`, `108417`, `108418`, `108420`, `108421`, `108422`, `108423`, `108425`, `108426`, `108427`, `108429`, `108433`, `108435`, `108436`, `108438`, `108440`, `108442`, `108444`, `108445`, `108447`, `108449`, `108451`, `108453`, `108455`, `108457`, `108458`, `108459`, `108460`, `108462`, `108464`, `108466`, `108467`, `108469`, `108472`, `108473`, `108475`, `108477`, `108478`, `108480`, `108482`, `108485`, `108487`, `108489`, `108491`, `108492`, `108494`, `108495`, `108496`, `108498`, `108500`, `108501`, `108503`, `108505`, `108507`, `108509`, `108511`, `108513`, `108514`, `108515`, `108517`, `108519`, `108521`, `108523`, `108525`, `108527`, `108530`, `108531`, `108532`, `108534`, `108535`, `108537`, `108539`, `108541`, `108542`, `108544`, `108546`, `108548`, `108549`, `108551`, `108553`, `108555`, `108556`, `108558`, `108560`, `108561`, `108563`, `108565`, `108567`, `108569`, `108571`, `108572`, `108574`, `108576`, `108577`, `108578`, `108580`, `108581`, `108583`, `108585`, `108587`, `108589`, `108591`, `108593`, `108596`, `108598`, `108600`, `108602`, `108604`, `108606`, `108608`, `108609`, `108611`, `108612`, `108614`, `108616`, `108618`, `108620`, `108622`, `108624`, `108625`, `108627`, `108630`, `108633`, `108634`, `108636`, `108637`, `108639`, `108641`, `108643`, `108645`, `108647`, `108648`, `108651`, `108652`, `108654`, `108656`, `108658`, `108660`, `108662`, `108664`, `108666`, `108667`, `108669`, `108671`, `108673`, `108675`, `108677`, `108679`, `108680`, `108682`, `108685`, `108687`, `108689`, `108690`, `108693`, `108695`, `108697`, `108699`, `108700`, `108702`, `108707`, `108709`, `108711`, `108712`, `108715`, `108717`, `108719`, `108720`, `108722`, `108724`, `108726`, `108727`, `108729`, `108731`, `108732`, `108734`, `108736`, `108738`, `108740`, `108742`, `108743`, `108745`, `108750`, `108751`, `108752`, `108754`, `108756`, `108758`, `108760`, `108762`, `108766`, `108767`, `108769`, `108771`, `108774`, `108776`, `108779`, `108780`, `108782`, `108784`, `108786`, `108787`, `108789`, `108791`, `108792`, `108793`, `108795`, `108797`, `108798`, `108799`, `108801`, `108803`, `108805`, `108807`, `108809`, `108812`, `108813`, `108814`, `108815`, `108817`, `108818`, `108820`, `108821`, `108823`, `108825`, `108826`, `108829`, `108831`, `108833`, `108835`, `108836`, `108837`, `108839`, `108841`, `108843`, `108845`, `108847`, `108849`, `108851`, `108853`, `108854`, `108856`, `108858`, `108860`, `108861`, `108864`, `108866`, `108867`, `108868`, `108870`, `108872`, `108873`, `108874`, `108876`, `108877`, `108879`, `108881`, `108882`, `108883`, `108886`, `108888`, `108889`, `108891`, `108893`, `108895`, `108897`, `108899`, `108901`, `108903`, `108904`, `108905`, `108908`, `108910`, `108912`, `108914`, `108916`, `108917`, `108918`, `108920`, `108922`, `108923`, `108925`, `108927`, `108929`, `108931`, `108933`, `108935`, `108937`, `108939`, `108940`, `108941`, `108943`, `108944`, `108946`, `108947`, `108952`, `108954`, `108956`, `108958`, `108959`, `108960`, `108962`, `108964`, `108966`, `108968`, `108969`, `108971`, `108973`, `108974`, `108975`, `108976`, `108977`, `108979`, `108980`, `108982`, `108984`, `108986`, `108987`, `108989`, `108991`, `108993`, `108994`, `108996`, `108997`, `108999`, `109001`, `109002`, `109004`, `109006`, `109008`, `109009`, `109010`, `109012`, `109014`, `109015`, `109017`, `109019`, `109020`, `109024`, `109026`, `109028`, `109029`, `109031`, `109032`, `109034`, `109035`, `109037`, `109039`, `109041`, `109042`, `109043`, `109044`, `109046`, `109048`, `109050`, `109052`, `109054`, `109056`, `109058`, `109060`, `109061`, `109063`, `109064`, `109065`, `109066`, `109068`, `109070`, `109072`, `109074`, `109076`, `109078`, `109080`, `109082`, `109083`, `109084`, `109086`, `109087`, `109089`, `109091`, `109093`, `109095`, `109096`, `109097`, `109099`, `109102`, `109104`, `109105`, `109107`, `109109`, `109111`, `109113`, `109115`, `109117`, `109118`, `109119`, `109121`, `109123`, `109125`, `109126`, `109127`, `109128`, `109131`, `109132`, `109134`, `109136`, `109138`, `109140`, `109141`, `109142`, `109143`, `109144`, `109146`, `109147`, `109148`, `109150`, `109151`, `109154`, `109155`, `109157`, `109159`, `109162`, `109164`, `109165`, `109167`, `109168`, `109169`, `109171`, `109172`, `109174`, `109176`, `109178`, `109180`, `109181`, `109183`, `109185`, `109186`, `109189`, `109191`, `109192`, `109193`, `109194`, `109196`, `109197`, `109199`, `109201`, `109203`, `109204`, `109207`, `109209`, `109212`, `109214`, `109216`, `109218`, `109219`, `109221`, `109222`, `109223`, `109225`, `109226`, `109227`, `109229`, `109231`, `109233`, `109235`, `109236`, `109238`, `109239`, `109241`, `109243`, `109245`, `109247`, `109249`, `109251`, `109252`, `109254`, `109256`, `109257`, `109259`, `109260`, `109262`, `109263`, `109264`, `109266`, `109268`, `109270`, `109272`, `109274`, `109277`, `109278`, `109280`, `109281`, `109282`, `109284`, `109285`, `109287`, `109289`, `109291`, `109294`, `109296`, `109298`, `109300`, `109301`, `109303`, `109305`, `109307`, `109309`, `109310`, `109311`, `109312`, `109314`, `109316`, `109318`, `109320`, `109321`, `109322`, `109324`, `109326`, `109328`, `109330`, `109332`, `109333`, `109335`, `109337`, `109339`, `109341`, `109343`, `109345`, `109348`, `109350`, `109352`, `109354`, `109356`, `109357`, `109359`, `109360`, `109362`, `109363`, `109365`, `109366`, `109368`, `109369`, `109371`, `109372`, `109373`, `109374`, `109377`, `109379`, `109383`, `109385`, `109387`, `109388`, `109389`, `109390`, `109392`, `109394`, `109395`, `109397`, `109399`, `109400`, `109402`, `109405`, `109407`, `109409`, `109413`, `109414`, `109415`, `109416`, `109418`, `109419`, `109421`, `109422`, `109425`, `109428`, `109430`, `109434`, `109436`, `109437`, `109438`, `109442`, `109444`, `109446`, `109449`, `109451`, `109452`, `109454`, `109456`, `109457`, `109459`, `109460`, `109463`, `109465`, `109467`, `109470`, `109472`, `109474`, `109476`, `109478`, `109480`, `109482`, `109484`, `109486`, `109488`, `109489`, `109491`, `109492`, `109495`, `109496`, `109498`, `109500`, `109502`, `109503`, `109505`, `109506`, `109509`, `109510`, `109511`, `109512`, `109514`, `109515`, `109516`, `109518`, `109519`, `109521`, `109523`, `109526`, `109528`, `109529`, `109531`, `109533`, `109535`, `109536`, `109537`, `109539`, `109540`, `109542`, `109544`, `109546`, `109548`, `109550`, `109551`, `109553`, `109554`, `109556`, `109558`, `109561`, `109563`, `109565`, `109566`, `109568`, `109570`, `109571`, `109573`, `109575`, `109577`, `109578`, `109580`, `109582`, `109584`, `109586`, `109588`, `109589`, `109594`, `109595`, `109596`, `109598`, `109599`, `109601`, `109602`, `109603`, `109605`, `109607`, `109609`, `109611`, `109613`, `109615`, `109617`, `109619`, `109621`, `109623`, `109625`, `109627`, `109628`, `109629`, `109631`, `109632`, `109634`, `109636`, `109638`, `109640`, `109641`, `109643`, `109645`, `109646`, `109647`, `109648`, `109649`, `109650`, `109652`, `109654`, `109655`, `109656`, `109658`, `109660`, `109662`, `109663`, `109665`, `109666`, `109667`, `109669`, `109671`, `109673`, `109674`, `109678`, `109680`, `109682`, `109685`, `109687`, `109690`, `109691`, `109694`, `109696`, `109698`, `109700`, `109703`, `109705`, `109708`, `109710`, `109712`, `109714`, `109715`, `109717`, `109719`, `109721`, `109723`, `109725`, `109727`, `109728`, `109729`, `109730`, `109732`, `109734`, `109735`, `109736`, `109738`, `109740`, `109742`, `109744`, `109745`, `109746`, `109747`, `109749`, `109751`, `109754`, `109756`, `109758`, `109759`, `109761`, `109764`, `109765`, `109767`, `109768`, `109770`, `109771`, `109773`, `109775`, `109776`, `109778`, `109780`, `109782`, `109785`, `109786`, `109788`, `109790`, `109791`, `109793`, `109797`, `109799`, `109800`, `109802`, `109803`, `109805`, `109809`, `109811`, `109813`, `109814`, `109817`, `109820`, `109822`, `109824`, `109829`, `109830`, `109831`, `109832`, `109834`, `109836`, `109839`, `109840`, `109842`, `109844`, `109846`, `109848`, `109850`, `109852`, `109855`, `109856`, `109858`, `109859`, `109861`, `109862`, `109864`, `109866`, `109868`, `109870`, `109871`, `109873`, `109874`, `109875`, `109877`, `109879`, `109881`, `109883`, `109885`, `109886`, `109887`, `109889`, `109891`, `109893`, `109895`, `109897`, `109898`, `109900`, `109904`, `109906`, `109908`, `109910`, `109912`, `109914`, `109917`, `109921`, `109922`, `109924`, `109925`, `109926`, `109927`, `109929`, `109931`, `109932`, `109936`, `109938`, `109940`, `109941`, `109942`, `109944`, `109945`, `109947`, `109949`, `109951`, `109952`, `109954`, `109956`, `109958`, `109960`, `109962`, `109965`, `109966`, `109968`, `109970`, `109971`, `109973`, `109975`, `109977`, `109978`, `109980`, `109983`, `109985`, `109987`, `109989`, `109991`, `109993`, `109995`, `109997`, `109999`, `110001`, `110003`, `110005`, `110007`, `110008`, `110009`, `110011`, `110012`, `110014`, `110015`, `110017`, `110019`, `110021`, `110023`, `110024`, `110026`, `110028`, `110030`, `110032`, `110034`, `110035`, `110037`, `110040`, `110042`, `110044`, `110046`, `110048`, `110051`, `110052`, `110053`, `110055`, `110057`, `110059`, `110061`, `110063`, `110066`, `110067`, `110068`, `110069`, `110072`, `110074`, `110076`, `110080`, `110082`, `110084`, `110085`, `110087`, `110088`, `110090`, `110091`, `110092`, `110093`, `110095`, `110096`, `110098`, `110100`, `110102`, `110104`, `110105`, `110108`, `110110`, `110112`, `110114`, `110115`, `110116`, `110118`, `110119`, `110121`, `110122`, `110124`, `110125`, `110127`, `110130`, `110132`, `110134`, `110136`, `110137`, `110138`, `110139`, `110141`, `110143`, `110145`, `110147`, `110148`, `110150`, `110152`, `110154`, `110156`, `110158`, `110160`, `110162`, `110164`, `110165`, `110167`, `110169`, `110171`, `110173`, `110177`, `110179`, `110181`, `110183`, `110185`, `110187`, `110189`, `110190`, `110192`, `110194`, `110196`, `110199`, `110202`, `110204`, `110206`, `110208`, `110209`, `110211`, `110215`, `110217`, `110219`, `110221`, `110223`, `110225`, `110226`, `110230`, `110232`, `110234`, `110235`, `110237`, `110238`, `110240`, `110242`, `110244`, `110245`, `110247`, `110248`, `110249`, `110251`, `110252`, `110253`, `110254`, `110256`, `110257`, `110259`, `110261`, `110262`, `110263`, `110265`, `110267`, `110269`, `110271`, `110273`, `110274`, `110278`, `110280`, `110282`, `110283`, `110284`, `110285`, `110287`, `110289`, `110290`, `110292`, `110293`, `110294`, `110295`, `110297`, `110298`, `110300`, `110302`, `110304`, `110305`, `110307`, `110308`, `110310`, `110311`, `110314`, `110316`, `110318`, `110320`, `110322`, `110324`, `110326`, `110327`, `110329`, `110331`, `110333`, `110335`, `110337`, `110339`, `110340`, `110342`, `110344`, `110346`, `110347`, `110349`, `110351`, `110352`, `110354`, `110356`, `110357`, `110359`, `110360`, `110361`, `110363`, `110364`, `110366`, `110368`, `110370`, `110372`, `110375`, `110376`, `110378`, `110379`, `110381`, `110383`, `110384`, `110386`, `110387`, `110389`, `110391`, `110394`, `110396`, `110397`, `110399`, `110401`, `110402`, `110403`, `110405`, `110406`, `110407`, `110409`, `110411`, `110414`, `110415`, `110417`, `110418`, `110420`, `110422`, `110423`, `110424`, `110426`, `110427`, `110428`, `110430`, `110432`, `110433`, `110435`, `110438`, `110440`, `110441`, `110442`, `110444`, `110446`, `110448`, `110449`, `110452`, `110454`, `110456`, `110458`, `110460`, `110462`, `110464`, `110465`, `110466`, `110468`, `110470`, `110472`, `110473`, `110475`, `110477`, `110479`, `110481`, `110482`, `110483`, `110485`, `110486`, `110488`, `110490`, `110492`, `110493`, `110494`, `110496`, `110497`, `110499`, `110501`, `110503`, `110505`, `110508`, `110510`, `110512`, `110514`, `110516`, `110517`, `110519`, `110521`, `110524`, `110526`, `110528`, `110530`, `110531`, `110532`, `110534`, `110536`, `110538`, `110541`, `110543`, `110544`, `110546`, `110548`, `110549`, `110550`, `110552`, `110553`, `110555`, `110557`, `110558`, `110560`, `110562`, `110563`, `110564`, `110566`, `110568`, `110570`, `110571`, `110572`, `110575`, `110578`, `110580`, `110583`, `110584`, `110585`, `110587`, `110589`, `110592`, `110594`, `110597`, `110599`, `110601`, `110603`, `110605`, `110606`, `110607`, `110609`, `110611`, `110613`, `110614`, `110615`, `110616`, `110618`, `110619`, `110621`, `110622`, `110624`, `110625`, `110627`, `110628`, `110629`, `110631`, `110633`, `110634`, `110636`, `110638`, `110640`, `110641`, `110642`, `110644`, `110646`, `110651`, `110656`, `110657`, `110659`, `110662`, `110664`, `110666`, `110668`, `110670`, `110671`, `110672`, `110673`, `110675`, `110676`, `110678`, `110679`, `110681`, `110683`, `110685`, `110687`, `110689`, `110691`, `110692`, `110693`, `110694`, `110696`, `110697`, `110698`, `110700`, `110702`, `110704`, `110705`, `110707`, `110709`, `110710`, `110712`, `110715`, `110716`, `110719`, `110721`, `110723`, `110724`, `110726`, `110727`, `110729`, `110731`, `110734`, `110736`, `110738`, `110741`, `110743`, `110745`, `110747`, `110749`, `110750`, `110752`, `110754`, `110756`, `110758`, `110760`, `110761`, `110763`, `110764`, `110766`, `110768`, `110769`, `110770`, `110771`, `110773`, `110774`, `110776`, `110778`, `110779`, `110780`, `110782`, `110786`, `110788`, `110791`, `110793`, `110795`, `110797`, `110799`, `110801`, `110802`, `110803`, `110804`, `110805`, `110807`, `110809`, `110810`, `110812`, `110813`, `110815`, `110816`, `110818`, `110820`, `110821`, `110823`, `110825`, `110827`, `110829`, `110830`, `110832`, `110834`, `110835`, `110837`, `110839`, `110842`, `110844`, `110845`, `110846`, `110848`, `110849`, `110851`, `110853`, `110855`, `110856`, `110858`, `110860`, `110862`, `110863`, `110865`, `110866`, `110868`, `110869`, `110871`, `110873`, `110875`, `110877`, `110879`, `110881`, `110883`, `110885`, `110886`, `110888`, `110890`, `110891`, `110893`, `110895`, `110897`, `110898`, `110900`, `110902`, `110904`, `110905`, `110906`, `110907`, `110909`, `110911`, `110913`, `110914`, `110916`, `110917`, `110918`, `110920`, `110922`, `110923`, `110925`, `110927`, `110928`, `110930`, `110931`, `110932`, `110933`, `110935`, `110937`, `110939`, `110941`, `110943`, `110946`, `110947`, `110949`, `110950`, `110951`, `110953`, `110954`, `110956`, `110957`, `110958`, `110959`, `110961`, `110963`, `110965`, `110966`, `110968`, `110969`, `110971`, `110975`, `110978`, `110980`, `110981`, `110982`, `110983`, `110984`, `110986`, `110988`, `110990`, `110991`, `110992`, `110994`, `110996`, `110998`, `111000`, `111002`, `111004`, `111005`, `111007`, `111009`, `111010`, `111012`, `111014`, `111016`, `111017`, `111018`, `111019`, `111022`, `111024`, `111026`, `111027`, `111028`, `111030`, `111032`, `111033`, `111034`, `111035`, `111037`, `111039`, `111041`, `111043`, `111044`, `111045`, `111046`, `111049`, `111050`, `111052`, `111054`, `111056`, `111058`, `111060`, `111062`, `111063`, `111064`, `111066`, `111068`, `111070`, `111073`, `111075`, `111077`, `111079`, `111080`, `111082`, `111085`, `111087`, `111088`, `111090`, `111091`, `111092`, `111094`, `111095`, `111096`, `111097`, `111099`, `111101`, `111103`, `111104`, `111106`, `111108`, `111109`, `111111`, `111112`, `111115`, `111117`, `111119`, `111121`, `111122`, `111123`, `111124`, `111126`, `111128`, `111131`, `111133`, `111134`, `111136`, `111138`, `111139`, `111140`, `111142`, `111144`, `111148`, `111149`, `111151`, `111153`, `111155`, `111156`, `111158`, `111160`, `111162`, `111164`, `111165`, `111166`, `111168`, `111170`, `111172`, `111173`, `111177`, `111179`, `111180`, `111181`, `111183`, `111185`, `111187`, `111188`, `111190`, `111191`, `111192`, `111194`, `111198`, `111200`, `111202`, `111205`, `111207`, `111208`, `111209`, `111210`, `111211`, `111212`, `111214`, `111215`, `111216`, `111218`, `111220`, `111222`, `111224`, `111226`, `111228`, `111229`, `111231`, `111233`, `111235`, `111239`, `111241`, `111243`, `111245`, `111247`, `111249`, `111251`, `111253`, `111254`, `111257`, `111259`, `111260`, `111262`, `111263`, `111264`, `111267`, `111269`, `111272`, `111274`, `111276`, `111278`, `111280`, `111281`, `111282`, `111283`, `111284`, `111286`, `111288`, `111290`, `111291`, `111293`, `111294`, `111295`, `111296`, `111297`, `111298`, `111300`, `111304`, `111306`, `111308`, `111310`, `111311`, `111313`, `111315`, `111317`, `111318`, `111320`, `111322`, `111324`, `111325`, `111327`, `111328`, `111330`, `111332`, `111334`, `111337`, `111339`, `111341`, `111343`, `111344`, `111346`, `111348`, `111350`, `111352`, `111354`, `111356`, `111358`, `111362`, `111363`, `111365`, `111367`, `111369`, `111371`, `111373`, `111375`, `111377`, `111379`, `111381`, `111382`, `111384`, `111386`, `111388`, `111390`, `111392`, `111394`, `111396`, `111398`, `111400`, `111402`, `111403`, `111404`, `111405`, `111407`, `111409`, `111410`, `111412`, `111413`, `111415`, `111417`, `111419`, `111421`, `111422`, `111424`, `111426`, `111428`, `111430`, `111432`, `111434`, `111436`, `111438`, `111441`, `111443`, `111444`, `111445`, `111446`, `111449`, `111450`, `111452`, `111454`, `111456`, `111457`, `111459`, `111460`, `111462`, `111464`, `111466`, `111468`, `111470`, `111471`, `111473`, `111476`, `111478`, `111480`, `111482`, `111483`, `111484`, `111486`, `111488`, `111490`, `111492`, `111494`, `111496`, `111498`, `111500`, `111501`, `111503`, `111505`, `111507`, `111509`, `111510`, `111511`, `111513`, `111515`, `111517`, `111519`, `111520`, `111523`, `111524`, `111527`, `111529`, `111531`, `111533`, `111534`, `111536`, `111538`, `111539`, `111541`, `111542`, `111544`, `111546`, `111549`, `111551`, `111552`, `111554`, `111556`, `111558`, `111560`, `111562`, `111564`, `111566`, `111568`, `111570`, `111573`, `111574`, `111578`, `111581`, `111582`, `111584`, `111585`, `111586`, `111588`, `111590`, `111592`, `111593`, `111595`, `111597`, `111598`, `111600`, `111601`, `111603`, `111605`, `111607`, `111609`, `111610`, `111611`, `111612`, `111614`, `111616`, `111618`, `111620`, `111622`, `111624`, `111625`, `111626`, `111627`, `111628`, `111632`, `111633`, `111635`, `111637`, `111639`, `111641`, `111643`, `111645`, `111646`, `111648`, `111650`, `111652`, `111654`, `111656`, `111659`, `111661`, `111663`, `111664`, `111666`, `111668`, `111670`, `111671`, `111674`, `111676`, `111679`, `111680`, `111682`, `111683`, `111684`, `111686`, `111688`, `111689`, `111691`, `111693`, `111695`, `111699`, `111700`, `111701`, `111702`, `111703`, `111705`, `111706`, `111709`, `111712`, `111714`, `111715`, `111717`, `111719`, `111720`, `111723`, `111724`, `111726`, `111727`, `111728`, `111731`, `111732`, `111733`, `111734`, `111735`, `111736`, `111738`, `111739`, `111740`, `111741`, `111744`, `111745`, `111746`, `111749`, `111751`, `111752`, `111753`, `111754`, `111756`, `111758`, `111759`, `111761`, `111762`, `111763`, `111764`, `111767`, `111769`, `111771`, `111773`, `111775`, `111779`, `111780`, `111781`, `111783`, `111785`, `111787`, `111788`, `111789`, `111791`, `111793`, `111795`, `111797`, `111798`, `111800`, `111802`, `111804`, `111805`, `111807`, `111808`, `111809`, `111810`, `111811`, `111813`, `111815`, `111817`, `111819`, `111822`, `111823`, `111825`, `111827`, `111828`, `111829`, `111831`, `111835`, `111837`, `111839`, `111841`, `111843`, `111845`, `111847`, `111848`, `111849`, `111851`, `111853`, `111854`, `111855`, `111859`, `111860`, `111862`, `111864`, `111865`, `111866`, `111868`, `111870`, `111872`, `111874`, `111876`, `111878`, `111880`, `111881`, `111883`, `111885`, `111887`, `111889`, `111890`, `111891`, `111892`, `111894`, `111896`, `111898`, `111899`, `111901`, `111902`, `111904`, `111905`, `111907`, `111908`, `111909`, `111911`, `111912`, `111914`, `111915`, `111917`, `111920`, `111921`, `111923`, `111929`, `111931`, `111933`, `111934`, `111935`, `111937`, `111938`, `111939`, `111941`, `111944`, `111946`, `111947`, `111949`, `111951`, `111952`, `111954`, `111955`, `111957`, `111959`, `111961`, `111963`, `111965`, `111969`, `111971`, `111974`, `111975`, `111977`, `111978`, `111980`, `111982`, `111984`, `111985`, `111987`, `111989`, `111990`, `111991`, `111993`, `111994`, `111995`, `111996`, `111997`, `111999`, `112001`, `112003`, `112006`, `112007`, `112010`, `112012`, `112014`, `112015`, `112017`, `112019`, `112021`, `112023`, `112026`, `112027`, `112029`, `112031`, `112032`, `112033`, `112034`, `112036`, `112037`, `112039`, `112041`, `112042`, `112044`, `112046`, `112049`, `112050`, `112051`, `112054`, `112056`, `112058`, `112059`, `112060`, `112062`, `112063`, `112065`, `112067`, `112068`, `112069`, `112070`, `112071`, `112072`, `112074`, `112075`, `112076`, `112078`, `112080`, `112081`, `112082`, `112084`, `112088`, `112091`, `112093`, `112094`, `112095`, `112097`, `112101`, `112102`, `112104`, `112106`, `112107`, `112108`, `112110`, `112112`, `112115`, `112117`, `112118`, `112120`, `112122`, `112124`, `112126`, `112128`, `112129`, `112130`, `112131`, `112133`, `112135`, `112137`, `112138`, `112140`, `112142`, `112144`, `112146`, `112148`, `112149`, `112151`, `112153`, `112155`, `112157`, `112159`, `112161`, `112163`, `112165`, `112167`, `112169`, `112174`, `112175`, `112177`, `112178`, `112180`, `112182`, `112184`, `112186`, `112187`, `112191`, `112193`, `112196`, `112197`, `112199`, `112200`, `112204`, `112208`, `112210`, `112211`, `112213`, `112214`, `112216`, `112217`, `112218`, `112220`, `112223`, `112224`, `112226`, `112228`, `112230`, `112232`, `112233`, `112235`, `112237`, `112238`, `112240`, `112241`, `112242`, `112244`, `112246`, `112248`, `112250`, `112252`, `112253`, `112255`, `112256`, `112258`, `112259`, `112260`, `112262`, `112263`, `112265`, `112266`, `112268`, `112270`, `112271`, `112272`, `112273`, `112275`, `112277`, `112278`, `112280`, `112282`, `112283`, `112285`, `112287`, `112288`, `112290`, `112292`, `112295`, `112297`, `112298`, `112300`, `112302`, `112304`, `112305`, `112306`, `112307`, `112308`, `112310`, `112312`, `112313`, `112315`, `112316`, `112321`, `112323`, `112325`, `112327`, `112329`, `112330`, `112331`, `112332`, `112333`, `112334`, `112336`, `112338`, `112340`, `112342`, `112344`, `112345`, `112347`, `112349`, `112351`, `112353`, `112354`, `112356`, `112358`, `112360`, `112362`, `112363`, `112364`, `112365`, `112367`, `112368`, `112369`, `112371`, `112372`, `112373`, `112374`, `112375`, `112376`, `112377`, `112378`, `112380`, `112382`, `112384`, `112385`, `112386`, `112388`, `112389`, `112390`, `112392`, `112393`, `112395`, `112397`, `112399`, `112400`, `112402`, `112403`, `112404`, `112406`, `112409`, `112410`, `112412`, `112414`, `112416`, `112417`, `112419`, `112421`, `112422`, `112424`, `112426`, `112428`, `112429`, `112431`, `112432`, `112434`, `112436`, `97692`, `112438`, `112439`, `112440`, `112442`, `112444`, `112446`, `112447`, `112448`, `112450`, `112451`, `112454`, `112457`, `112459`, `112460`, `112462`, `112464`, `112466`, `112468`, `112469`, `112471`, `112475`, `112478`, `112480`, `112482`, `112483`, `112485`, `112487` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_F` | 100.00 |
| `TOKEN_P` | 100.00 |
| `TOKEN_R` | 100.00 |
| `TOKEN_ACC` | 100.00 |
| `SENTS_F` | 99.75 |
| `SENTS_P` | 99.74 |
| `SENTS_R` | 99.76 |
| `TAG_ACC` | 97.84 |
| `POS_ACC` | 97.82 |
| `MORPH_ACC` | 78.11 |
| `DEP_UAS` | 97.28 |
| `DEP_LAS` | 95.88 |
| `LEMMA_ACC` | 92.04 |
|
osanseviero/fastai_cat_vs_dog
|
osanseviero
| 2021-12-17T14:27:39Z | 32 | 4 |
generic
|
[
"generic",
"image-classification",
"region:us"
] |
image-classification
| 2022-03-02T23:29:05Z |
---
tags:
- image-classification
library_name: generic
---
# Dog vs Cat Image Classification with FastAI CNN
Training is based in FastAI [Quick Start](https://docs.fast.ai/quick_start.html). Example training
## Training
The model was trained as follows
```python
path = untar_data(URLs.PETS)/'images'
def is_cat(x): return x[0].isupper()
dls = ImageDataLoaders.from_name_func(
path, get_image_files(path), valid_pct=0.2, seed=42,
label_func=is_cat, item_tfms=Resize(224))
learn = cnn_learner(dls, resnet34, metrics=error_rate)
learn.fine_tune(1)
```
|
osanseviero/fastai_cat_vs_dog_fork2
|
osanseviero
| 2021-12-17T14:27:39Z | 33 | 0 |
generic
|
[
"generic",
"image-classification",
"region:us"
] |
image-classification
| 2022-03-02T23:29:05Z |
---
tags:
- image-classification
library_name: generic
---
# Dog vs Cat Image Classification with FastAI CNN
Training is based in FastAI [Quick Start](https://docs.fast.ai/quick_start.html). Example training
## Training
The model was trained as follows
```python
path = untar_data(URLs.PETS)/'images'
def is_cat(x): return x[0].isupper()
dls = ImageDataLoaders.from_name_func(
path, get_image_files(path), valid_pct=0.2, seed=42,
label_func=is_cat, item_tfms=Resize(224))
learn = cnn_learner(dls, resnet34, metrics=error_rate)
learn.fine_tune(1)
```
|
microsoft/unispeech-sat-base-plus-sv
|
microsoft
| 2021-12-17T13:56:17Z | 1,232 | 0 |
transformers
|
[
"transformers",
"pytorch",
"unispeech-sat",
"audio-xvector",
"speech",
"en",
"arxiv:1912.07875",
"arxiv:2106.06909",
"arxiv:2101.00390",
"arxiv:2110.05752",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z |
---
language:
- en
tags:
- speech
---
# UniSpeech-SAT-Base for Speaker Verification
[Microsoft's UniSpeech](https://www.microsoft.com/en-us/research/publication/unispeech-unified-speech-representation-learning-with-labeled-and-unlabeled-data/)
The model was pretrained on 16kHz sampled speech audio with utterance and speaker contrastive loss. When using the model, make sure that your speech input is also sampled at 16kHz.
The model was pre-trained on:
- 60,000 hours of [Libri-Light](https://arxiv.org/abs/1912.07875)
- 10,000 hours of [GigaSpeech](https://arxiv.org/abs/2106.06909)
- 24,000 hours of [VoxPopuli](https://arxiv.org/abs/2101.00390)
[Paper: UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER
AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752)
Authors: Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu
**Abstract**
*Self-supervised learning (SSL) is a long-standing goal for speech processing, since it utilizes large-scale unlabeled data and avoids extensive human labeling. Recent years witness great successes in applying self-supervised learning in speech recognition, while limited exploration was attempted in applying SSL for modeling speaker characteristics. In this paper, we aim to improve the existing SSL framework for speaker representation learning. Two methods are introduced for enhancing the unsupervised speaker information extraction. First, we apply the multi-task learning to the current SSL framework, where we integrate the utterance-wise contrastive loss with the SSL objective function. Second, for better speaker discrimination, we propose an utterance mixing strategy for data augmentation, where additional overlapped utterances are created unsupervisely and incorporate during training. We integrate the proposed methods into the HuBERT framework. Experiment results on SUPERB benchmark show that the proposed system achieves state-of-the-art performance in universal representation learning, especially for speaker identification oriented tasks. An ablation study is performed verifying the efficacy of each proposed method. Finally, we scale up training dataset to 94 thousand hours public audio data and achieve further performance improvement in all SUPERB tasks..*
The original model can be found under https://github.com/microsoft/UniSpeech/tree/main/UniSpeech-SAT.
# Fine-tuning details
The model is fine-tuned on the [VoxCeleb1 dataset](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.html) using an X-Vector head with an Additive Margin Softmax loss
[X-Vectors: Robust DNN Embeddings for Speaker Recognition](https://www.danielpovey.com/files/2018_icassp_xvectors.pdf)
# Usage
## Speaker Verification
```python
from transformers import Wav2Vec2FeatureExtractor, UniSpeechSatForXVector
from datasets import load_dataset
import torch
dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('microsoft/unispeech-sat-base-plus-sv')
model = UniSpeechSatForXVector.from_pretrained('microsoft/unispeech-sat-base-plus-sv')
# audio files are decoded on the fly
inputs = feature_extractor(dataset[:2]["audio"]["array"], return_tensors="pt")
embeddings = model(**inputs).embeddings
embeddings = torch.nn.functional.normalize(embeddings, dim=-1).cpu()
# the resulting embeddings can be used for cosine similarity-based retrieval
cosine_sim = torch.nn.CosineSimilarity(dim=-1)
similarity = cosine_sim(embeddings[0], embeddings[1])
threshold = 0.89 # the optimal threshold is dataset-dependent
if similarity < threshold:
print("Speakers are not the same!")
```
# License
The official license can be found [here](https://github.com/microsoft/UniSpeech/blob/main/LICENSE)

|
llange/xlm-roberta-large-spanish-clinical
|
llange
| 2021-12-17T10:27:39Z | 3 | 1 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"fill-mask",
"arxiv:2112.08754",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
# CLIN-X-ES: a pre-trained language model for the Spanish clinical domain
Details on the model, the pre-training corpus and the downstream task performance are given in the paper: "CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain" by Lukas Lange, Heike Adel, Jannik Strötgen and Dietrich Klakow.
The paper can be found [here](https://arxiv.org/abs/2112.08754).
In case of questions, please contact the authors as listed on the paper.
Please cite the above paper when reporting, reproducing or extending the results.
@misc{lange-etal-2021-clin-x,
author = {Lukas Lange and
Heike Adel and
Jannik Str{\"{o}}tgen and
Dietrich Klakow},
title = {CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain},
year={2021},
eprint={2112.08754},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2112.08754}
}
## Training details
The model is based on the multilingual XLM-R transformer `(xlm-roberta-large)`, which was trained on 100 languages and showed superior performance in many different tasks across languages and can even outperform monolingual models in certain settings (Conneau et al. 2020).
Even though XLM-R was pre-trained on 53GB of Spanish documents, this was only 2% of the overall training data. To steer this model towards the Spanish clinical domain, we sample documents from the Scielo archive (https://scielo.org/)
and the MeSpEn resources (Villegas et al. 2018). The resulting corpus has a size of 790MB and is highly specific for the clinical domain.
We initialize CLIN-X using the pre-trained XLM-R weights and train masked language modeling (MLM) on the Spanish clinical corpus for 3 epochs which roughly corresponds to 32k steps. This allows researchers and practitioners to address
the Spanish clinical domain with an out-of-the-box tailored model.
## Results for Spanish concept extraction
We apply CLIN-X-ES to five Spanish concept extraction tasks from the clinical domain in a standard sequence labeling architecture similar to Devlin et al. 2019 and compare to a Spanish BERT model called BETO. In addition, we perform experiments with an improved architecture `(+ OurArchitecture)` as described in the paper linked above. The code for our model architecture can be found [here](https://github.com/boschresearch/clin_x).
| | Cantemist | Meddocan | Meddoprof (NER) | Meddoprof (CLASS) | Pharmaconer |
|------------------------------------------|-----------|----------|-----------------|-------------------|-------------|
| BETO (Spanish BERT) | 81.30 | 96.81 | 79.19 | 74.59 | 87.70 |
| CLIN-X (ES) | 83.22 | 97.08 | 79.54 | 76.95 | 90.05 |
| CLIN-X (ES) + OurArchitecture | **88.24** | **98.00** | **81.68** | **80.54** | **92.27** |
### Results for English concept extraction
As the CLIN-X-ES model is based on XLM-R, the model is still multilingual and we demonstrate the positive impact of cross-language domain adaptation by applying this model to five different English sequence labeling tasks from i2b2.
We found that further transfer from related concept extraction is particularly helpful in this cross-language setting. For a detailed description of the transfer process and all other models, we refer to our paper.
| | i2b2 2006 | i2b2 2010 | i2b2 2012 (Concept) | i2b2 2012 (Time) | i2b2 2014 |
|------------------------------------------|-----------|-----------|---------------|---------------|-----------|
| BERT | 94.80 | 85.25 | 76.51 | 75.28 | 94.86 |
| ClinicalBERT | 94.8 | 87.8 | 78.9 | 76.6 | 93.0 |
| CLIN-X (ES) | 95.49 | 87.94 | 79.58 | 77.57 | 96.80 |
| CLIN-X (ES) + OurArchitecture | 98.30 | 89.10 | 80.42 | 78.48 | **97.62** |
| CLIN-X (ES) + OurArchitecture + Transfer | **89.50** | **89.74** | **80.93** | **79.60** | 97.46 |
## Purpose of the project
This software is a research prototype, solely developed for and published as part of the publication cited above. It will neither be maintained nor monitored in any way.
## License
The CLIN-X models are open-sourced under the CC-BY 4.0 license.
See the [LICENSE](LICENSE) file for details.
|
Souvikcmsa/LogFiBER
|
Souvikcmsa
| 2021-12-17T10:05:05Z | 0 | 0 | null |
[
"pytorch",
"region:us"
] | null | 2022-03-02T23:29:05Z |
Log FiBER
This model is able to sentence embedding.
|
jamescalam/bert-stsb-gold
|
jamescalam
| 2021-12-17T08:57:06Z | 2 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"bert",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-03-02T23:29:05Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# Gold-only BERT STSb
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
It is used as a demo model within the [NLP for Semantic Search course](https://www.pinecone.io/learn/nlp), for the chapter on [In-domain Data Augmentation with BERT](https://www.pinecone.io/learn/data-augmentation/).
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('bert-stsb-gold')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('bert-stsb-gold')
model = AutoModel.from_pretrained('bert-stsb-gold')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 360 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 36,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
|
jamescalam/bert-stsb-cross-encoder
|
jamescalam
| 2021-12-17T08:54:27Z | 1,081 | 1 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"bert",
"text-classification",
"sentence-similarity",
"transformers",
"cross-encoder",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-03-02T23:29:05Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- transformers
- cross-encoder
---
# Augmented SBERT STSb
This is a [sentence-transformers](https://www.SBERT.net) cross encoder model.
It is used as a demo model within the [NLP for Semantic Search course](https://www.pinecone.io/learn/nlp), for the chapter on [In-domain Data Augmentation with BERT](https://www.pinecone.io/learn/data-augmentation/).
|
tabo/distilbert-base-uncased-finetuned-squad2
|
tabo
| 2021-12-17T07:22:42Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: distilbert-base-uncased-finetuned-squad2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-squad2
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1606
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.2306 | 1.0 | 5533 | 1.1557 |
| 0.9535 | 2.0 | 11066 | 1.1260 |
| 0.7629 | 3.0 | 16599 | 1.1606 |
### Framework versions
- Transformers 4.14.1
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
baffo32/t5-base-ptmap
|
baffo32
| 2021-12-16T23:38:12Z | 16 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"jax",
"rust",
"t5",
"text2text-generation",
"summarization",
"translation",
"en",
"fr",
"ro",
"de",
"dataset:c4",
"arxiv:1910.10683",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
translation
| 2022-03-02T23:29:05Z |
---
language:
- en
- fr
- ro
- de
datasets:
- c4
tags:
- summarization
- translation
license: apache-2.0
---
[Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html)
Pretraining Dataset: [C4](https://huggingface.co/datasets/c4)
Other Community Checkpoints: [here](https://huggingface.co/models?search=t5)
Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf)
Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu*
## Abstract
Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code.

|
huggingtweets/musingsofyouth
|
huggingtweets
| 2021-12-16T22:50:23Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/musingsofyouth/1639695018349/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1274909495869804544/3UJtcEdD_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Autumn Youth</div>
<div style="text-align: center; font-size: 14px;">@musingsofyouth</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Autumn Youth.
| Data | Autumn Youth |
| --- | --- |
| Tweets downloaded | 3241 |
| Retweets | 89 |
| Short tweets | 129 |
| Tweets kept | 3023 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2wunn2a4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @musingsofyouth's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/22xo4w9e) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/22xo4w9e/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/musingsofyouth')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
airKlizz/mt5-small-wikinewssum-test
|
airKlizz
| 2021-12-16T16:18:08Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"mt5",
"text2text-generation",
"summarization",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
summarization
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-small-wikinewssum-test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-wikinewssum-test
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9354
- Rouge1: 6.8433
- Rouge2: 2.5498
- Rougel: 5.6114
- Rougelsum: 6.353
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| No log | 1.0 | 661 | 3.2810 | 6.4161 | 2.403 | 5.3674 | 6.0329 |
| No log | 2.0 | 1322 | 3.1515 | 6.9291 | 2.6826 | 5.6839 | 6.4359 |
| No log | 3.0 | 1983 | 3.0565 | 6.7939 | 2.6113 | 5.6133 | 6.3126 |
| No log | 4.0 | 2644 | 2.9815 | 6.0279 | 2.1637 | 4.9892 | 5.5962 |
| No log | 5.0 | 3305 | 2.9645 | 6.3926 | 2.339 | 5.2716 | 5.9443 |
| 3.9937 | 6.0 | 3966 | 2.9476 | 6.4739 | 2.3615 | 5.3473 | 6.0089 |
| 3.9937 | 7.0 | 4627 | 2.9405 | 6.615 | 2.4309 | 5.4493 | 6.1445 |
| 3.9937 | 8.0 | 5288 | 2.9354 | 6.8433 | 2.5498 | 5.6114 | 6.353 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
lewtun/xlm-roberta-base-finetuned-marc-en-hslu
|
lewtun
| 2021-12-16T14:55:28Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"dataset:amazon_reviews_multi",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- amazon_reviews_multi
model-index:
- name: xlm-roberta-base-finetuned-marc-en-hslu
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-marc-en-hslu
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8826
- Mae: 0.5
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mae |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.1121 | 1.0 | 235 | 0.9400 | 0.5732 |
| 0.9487 | 2.0 | 470 | 0.8826 | 0.5 |
### Framework versions
- Transformers 4.14.1
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
llange/xlm-roberta-large-spanish
|
llange
| 2021-12-16T11:24:16Z | 16 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
# Spanish XLM-R (from NLNDE-MEDDOPROF)
This Spanish language model was created for the MEDDOPROF shared task as part of the **NLNDE** team submission and outperformed all other participants in both sequence labeling tasks.
Details on the model, the pre-training corpus and the downstream task performance are given in the paper: "Boosting Transformers for Job Expression Extraction and Classification in a Low-Resource Setting" by Lukas Lange, Heike Adel and Jannik Strötgen.
The paper can be found [here](http://ceur-ws.org/Vol-2943/meddoprof_paper1.pdf).
In case of questions, please contact the authors as listed on the paper.
Please cite the above paper when reporting, reproducing or extending the results.
@inproceedings{lange-etal-2021-meddoprof,
author = {Lukas Lange and
Heike Adel and
Jannik Str{\"{o}}tgen},
title = {Boosting Transformers for Job Expression Extraction and Classification in a Low-Resource Setting},
year={2021},
booktitle= {{Proceedings of The Iberian Languages Evaluation Forum (IberLEF 2021)}},
series = {{CEUR} Workshop Proceedings},
url = {http://ceur-ws.org/Vol-2943/meddoprof_paper1.pdf},
}
## Training details
We use XLM-R (`xlm-roberta-large`, Conneau et al. 2020) as the main component of our models. XLM-R is a pretrained multilingual transformer model for 100 languages, including Spanish. It shows superior performance in different tasks across languages, and can even outperform
monolingual models in certain settings. It was pretrained on a large-scale corpus,
and Spanish documents made up only 2% of this data.
Thus, we explore further pretraining of this model and tune it towards Spanish
documents by pretraining a medium-size Spanish corpus with general
domain documents. For this, we use the [spanish corpus](https://github.com/josecannete/spanish-corpora) used to train the BETO model.
We use masked language modeling for pretraining and trained for three epochs
over the corpus, which roughly corresponds to 685k steps using a batch-size of 4.
## Performance
This model was trained in the context of the Meddoprof shared tasks and outperformed all other participants in both sequence labeling tasks. Our results (F1) in comparison with the standard XLM-R and the second-best system of the shared task are given in the Table.
More information on the shared task and other participants is given in this paper [here](http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6393/3813).
The code for our NER models can be found [here](https://github.com/boschresearch/nlnde-meddoprof).
| | Meddoprof Task 1 (NER) | Meddoprof Task 2 (CLASS) |
|---------------------------------|------------------------|--------------------------|
| Second-best System | 80.0 | 76.4 |
| XLM-R (our baseline) | 79.2 | 77.6 |
| Our Spanish XLM-R (best System) | **83.2** | **79.1** |
## Purpose of the project
This software is a research prototype, solely developed for and published as part of the publication cited above. It will neither be maintained nor monitored in any way.
## License
The CLIN-X models are open-sourced under the CC-BY 4.0 license.
See the [LICENSE](LICENSE) file for details.
|
rafiulrumy/wav2vec2-large-xlsr-53-demo-colab
|
rafiulrumy
| 2021-12-16T05:09:16Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xlsr-53-demo-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xlsr-53-demo-colab
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 6.7860
- Wer: 1.1067
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 8.2273 | 44.42 | 400 | 3.3544 | 1.0 |
| 0.9228 | 88.84 | 800 | 4.7054 | 1.1601 |
| 0.1423 | 133.32 | 1200 | 5.9489 | 1.1578 |
| 0.0751 | 177.74 | 1600 | 5.5939 | 1.1717 |
| 0.0554 | 222.21 | 2000 | 6.1230 | 1.1717 |
| 0.0356 | 266.63 | 2400 | 6.2845 | 1.1613 |
| 0.0288 | 311.11 | 2800 | 6.6109 | 1.2100 |
| 0.0223 | 355.53 | 3200 | 6.5605 | 1.1299 |
| 0.0197 | 399.95 | 3600 | 7.1242 | 1.1682 |
| 0.0171 | 444.42 | 4000 | 7.2452 | 1.1578 |
| 0.0149 | 488.84 | 4400 | 7.4048 | 1.0684 |
| 0.0118 | 533.32 | 4800 | 6.6227 | 1.1172 |
| 0.011 | 577.74 | 5200 | 6.7909 | 1.1566 |
| 0.0095 | 622.21 | 5600 | 6.8088 | 1.1102 |
| 0.0077 | 666.63 | 6000 | 7.4451 | 1.1311 |
| 0.0062 | 711.11 | 6400 | 6.8486 | 1.0777 |
| 0.0051 | 755.53 | 6800 | 6.8812 | 1.1241 |
| 0.0051 | 799.95 | 7200 | 6.9987 | 1.1450 |
| 0.0041 | 844.42 | 7600 | 7.3048 | 1.1323 |
| 0.0044 | 888.84 | 8000 | 6.6644 | 1.1125 |
| 0.0031 | 933.32 | 8400 | 6.6298 | 1.1148 |
| 0.0027 | 977.74 | 8800 | 6.7860 | 1.1067 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
|
huggingtweets/ai_hexcrawl
|
huggingtweets
| 2021-12-15T19:46:29Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/ai_hexcrawl/1639597537705/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1467327234365181953/gFho8YCv_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">AI Hexcrawl</div>
<div style="text-align: center; font-size: 14px;">@ai_hexcrawl</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from AI Hexcrawl.
| Data | AI Hexcrawl |
| --- | --- |
| Tweets downloaded | 1164 |
| Retweets | 42 |
| Short tweets | 2 |
| Tweets kept | 1120 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/vdxugbwr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ai_hexcrawl's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/r9ejkubu) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/r9ejkubu/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/ai_hexcrawl')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
raphaelmerx/marian-finetuned-en-map
|
raphaelmerx
| 2021-12-15T12:54:46Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: marian-finetuned-en-map
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# marian-finetuned-en-map
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-map](https://huggingface.co/Helsinki-NLP/opus-mt-en-map) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 1.0542
- eval_bleu: 30.0673
- eval_runtime: 870.8596
- eval_samples_per_second: 14.467
- eval_steps_per_second: 0.226
- epoch: 2.29
- step: 17104
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
tlanfer/arc
|
tlanfer
| 2021-12-15T12:14:18Z | 0 | 0 | null |
[
"region:us"
] | null | 2022-03-02T23:29:05Z |
---
title: ArcaneGAN
emoji: 🚀
colorFrom: blue
colorTo: blue
sdk: gradio
app_file: app.py
pinned: false
---
# Configuration
`title`: _string_
Display title for the Space
`emoji`: _string_
Space emoji (emoji-only character allowed)
`colorFrom`: _string_
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
`colorTo`: _string_
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
`sdk`: _string_
Can be either `gradio` or `streamlit`
`sdk_version` : _string_
Only applicable for `streamlit` SDK.
See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions.
`app_file`: _string_
Path to your main application file (which contains either `gradio` or `streamlit` Python code).
Path is relative to the root of the repository.
`pinned`: _boolean_
Whether the Space stays on top of your list.
|
honeyd3wy/kobart-titlenaming-v0.1
|
honeyd3wy
| 2021-12-15T11:44:58Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bart",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
```python
from transformers import PreTrainedTokenizerFast, BartForConditionalGeneration
model = BartForConditionalGeneration.from_pretrained('honeyd3wy/kobart-titlenaming-v0.1')
tokenizer = PreTrainedTokenizerFast.from_pretrained('gogamza/kobart-base-v2')
```
|
aXhyra/presentation_hate_1234567
|
aXhyra
| 2021-12-15T11:31:02Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: presentation_hate_1234567
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: hate
metrics:
- name: F1
type: f1
value: 0.7679568806891273
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# presentation_hate_1234567
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8438
- F1: 0.7680
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.436235805743952e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 1234567
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.6027 | 1.0 | 282 | 0.5186 | 0.7209 |
| 0.3537 | 2.0 | 564 | 0.4989 | 0.7619 |
| 0.0969 | 3.0 | 846 | 0.6405 | 0.7697 |
| 0.0514 | 4.0 | 1128 | 0.8438 | 0.7680 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
aXhyra/presentation_hate_31415
|
aXhyra
| 2021-12-15T11:24:57Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: presentation_hate_31415
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: hate
metrics:
- name: F1
type: f1
value: 0.7729508817074093
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# presentation_hate_31415
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8632
- F1: 0.7730
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.436235805743952e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 31415
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.363 | 1.0 | 282 | 0.4997 | 0.7401 |
| 0.2145 | 2.0 | 564 | 0.5071 | 0.7773 |
| 0.1327 | 3.0 | 846 | 0.7109 | 0.7645 |
| 0.0157 | 4.0 | 1128 | 0.8632 | 0.7730 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
aXhyra/presentation_hate_42
|
aXhyra
| 2021-12-15T11:18:17Z | 15 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: presentation_hate_42
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: hate
metrics:
- name: F1
type: f1
value: 0.7692074096568478
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# presentation_hate_42
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8711
- F1: 0.7692
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.436235805743952e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.5207 | 1.0 | 282 | 0.4815 | 0.7513 |
| 0.3047 | 2.0 | 564 | 0.5557 | 0.7510 |
| 0.2335 | 3.0 | 846 | 0.6627 | 0.7585 |
| 0.0056 | 4.0 | 1128 | 0.8711 | 0.7692 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
aXhyra/presentation_emotion_1234567
|
aXhyra
| 2021-12-15T10:46:43Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: presentation_emotion_1234567
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: emotion
metrics:
- name: F1
type: f1
value: 0.7272977042723248
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# presentation_emotion_1234567
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0237
- F1: 0.7273
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.18796906442746e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1234567
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.1189 | 1.0 | 408 | 0.6827 | 0.7164 |
| 1.0678 | 2.0 | 816 | 0.6916 | 0.7396 |
| 0.6582 | 3.0 | 1224 | 0.9281 | 0.7276 |
| 0.0024 | 4.0 | 1632 | 1.0237 | 0.7273 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
aXhyra/presentation_emotion_42
|
aXhyra
| 2021-12-15T10:36:30Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: presentation_emotion_42
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: emotion
metrics:
- name: F1
type: f1
value: 0.732897530282475
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# presentation_emotion_42
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0989
- F1: 0.7329
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.18796906442746e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.3703 | 1.0 | 408 | 0.6624 | 0.7029 |
| 0.2122 | 2.0 | 816 | 0.6684 | 0.7258 |
| 0.9452 | 3.0 | 1224 | 1.0001 | 0.7041 |
| 0.0023 | 4.0 | 1632 | 1.0989 | 0.7329 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
Azuris/DialoGPT-medium-senorita
|
Azuris
| 2021-12-15T10:31:51Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:04Z |
---
tags:
- conversational
---
|
aXhyra/presentation_irony_1234567
|
aXhyra
| 2021-12-15T10:18:37Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: presentation_irony_1234567
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: irony
metrics:
- name: F1
type: f1
value: 0.674604535422547
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# presentation_irony_1234567
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9493
- F1: 0.6746
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.1637764704815665e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 1234567
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.5514 | 1.0 | 90 | 0.5917 | 0.6767 |
| 0.6107 | 2.0 | 180 | 0.6123 | 0.6730 |
| 0.1327 | 3.0 | 270 | 0.7463 | 0.6970 |
| 0.1068 | 4.0 | 360 | 0.9493 | 0.6746 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
antoniocappiello/bert-base-italian-uncased-squad-it
|
antoniocappiello
| 2021-12-15T10:01:14Z | 481 | 5 |
transformers
|
[
"transformers",
"pytorch",
"question-answering",
"it",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
---
language: it
widget:
- text: "Quando nacque D'Annunzio?"
context: "D'Annunzio nacque nel 1863"
---
# Italian Bert Base Uncased on Squad-it
## Model description
This model is the uncased base version of the italian BERT (which you may find at `dbmdz/bert-base-italian-uncased`) trained on the question answering task.
#### How to use
```python
from transformers import pipeline
nlp = pipeline('question-answering', model='antoniocappiello/bert-base-italian-uncased-squad-it')
# nlp(context="D'Annunzio nacque nel 1863", question="Quando nacque D'Annunzio?")
# {'score': 0.9990354180335999, 'start': 22, 'end': 25, 'answer': '1863'}
```
## Training data
It has been trained on the question answering task using [SQuAD-it](http://sag.art.uniroma2.it/demo-software/squadit/), derived from the original SQuAD dataset and obtained through the semi-automatic translation of the SQuAD dataset in Italian.
## Training procedure
```bash
python ./examples/run_squad.py \
--model_type bert \
--model_name_or_path dbmdz/bert-base-italian-uncased \
--do_train \
--do_eval \
--train_file ./squad_it_uncased/train-v1.1.json \
--predict_file ./squad_it_uncased/dev-v1.1.json \
--learning_rate 3e-5 \
--num_train_epochs 2 \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir ./models/bert-base-italian-uncased-squad-it/ \
--per_gpu_eval_batch_size=3 \
--per_gpu_train_batch_size=3 \
--do_lower_case \
```
## Eval Results
| Metric | # Value |
| ------ | --------- |
| **EM** | **63.8** |
| **F1** | **75.30** |
## Comparison
| Model | EM | F1 score |
| -------------------------------------------------------------------------------------------------------------------------------- | --------- | --------- |
| [DrQA-it trained on SQuAD-it](https://github.com/crux82/squad-it/blob/master/README.md#evaluating-a-neural-model-over-squad-it) | 56.1 | 65.9 |
| This one | **63.8** | **75.30** |
|
GPL/msmarco-distilbert-margin-mse
|
GPL
| 2021-12-15T04:10:19Z | 227 | 1 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"feature-extraction",
"arxiv:2112.07577",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-03-02T23:29:04Z |
This is the zero-shot baseline model in the paper ["GPL: Generative Pseudo Labeling for Unsupervised Domain Adaptation of Dense Retrieval"](https://arxiv.org/abs/2112.07577)
The training setup:
1. Start from `distilbert-base-uncased`;
2. Mine 50 hard negatives for each query on MS MARCO with `sentence-transformers/msmarco-distilbert-base-v3` and `sentence-transformers/msmarco-MiniLM-L-6-v3`;
3. Do Margin-MSE training on the tuples (including queries, gold relevant, and hard negatives) with the teacher model `cross-encoder/ms-marco-MiniLM-L-6-v2` for 70K steps with batch size 75, max. sequence-length 350.
|
huggingtweets/iuditg
|
huggingtweets
| 2021-12-15T01:36:57Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/iuditg/1639532212187/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1457774258063437824/VgJyJ_c2_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">uditgoenka.eth</div>
<div style="text-align: center; font-size: 14px;">@iuditg</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from uditgoenka.eth.
| Data | uditgoenka.eth |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 993 |
| Short tweets | 450 |
| Tweets kept | 1807 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1r2lhfr0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @iuditg's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/iswph9y4) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/iswph9y4/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/iuditg')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/rokroka25
|
huggingtweets
| 2021-12-15T01:23:00Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/rokroka25/1639531375291/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1247666504314884096/c1BqPG9__400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Roka</div>
<div style="text-align: center; font-size: 14px;">@rokroka25</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Roka.
| Data | Roka |
| --- | --- |
| Tweets downloaded | 2122 |
| Retweets | 572 |
| Short tweets | 363 |
| Tweets kept | 1187 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ubryx8ss/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rokroka25's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1qioq2np) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1qioq2np/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/rokroka25')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
aXhyra/presentation_sentiment_1234567
|
aXhyra
| 2021-12-14T23:23:42Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: presentation_sentiment_1234567
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: sentiment
metrics:
- name: F1
type: f1
value: 0.71829420028644
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# presentation_sentiment_1234567
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0860
- F1: 0.7183
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.2792011721188e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.3747 | 1.0 | 11404 | 0.6515 | 0.7045 |
| 0.6511 | 2.0 | 22808 | 0.7334 | 0.7188 |
| 0.0362 | 3.0 | 34212 | 0.9498 | 0.7195 |
| 1.0576 | 4.0 | 45616 | 1.0860 | 0.7183 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
Rocketknight1/test-model-tf
|
Rocketknight1
| 2021-12-14T19:25:51Z | 4 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"feature-extraction",
"generated_from_keras_callback",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-03-02T23:29:04Z |
---
tags:
- generated_from_keras_callback
model-index:
- name: test-model-tf
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# test-model-tf
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
It achieves the following results on the evaluation set:
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: None
- training_precision: float32
### Training results
### Framework versions
- Transformers 4.14.0.dev0
- TensorFlow 2.6.0
- Datasets 1.16.2.dev0
- Tokenizers 0.10.3
|
microsoft/unispeech-sat-large
|
microsoft
| 2021-12-14T19:17:12Z | 798 | 1 |
transformers
|
[
"transformers",
"pytorch",
"unispeech-sat",
"pretraining",
"speech",
"en",
"arxiv:1912.07875",
"arxiv:2106.06909",
"arxiv:2101.00390",
"arxiv:2110.05752",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z |
---
language:
- en
datasets:
tags:
- speech
---
# UniSpeech-SAT-Large
[Microsoft's UniSpeech](https://www.microsoft.com/en-us/research/publication/unispeech-unified-speech-representation-learning-with-labeled-and-unlabeled-data/)
The large model pretrained on 16kHz sampled speech audio with utterance and speaker contrastive loss. When using the model, make sure that your speech input is also sampled at 16kHz.
**Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model.
The model was pre-trained on:
- 60,000 hours of [Libri-Light](https://arxiv.org/abs/1912.07875)
- 10,000 hours of [GigaSpeech](https://arxiv.org/abs/2106.06909)
- 24,000 hours of [VoxPopuli](https://arxiv.org/abs/2101.00390)
[Paper: UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER
AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752)
Authors: Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu
**Abstract**
*Self-supervised learning (SSL) is a long-standing goal for speech processing, since it utilizes large-scale unlabeled data and avoids extensive human labeling. Recent years witness great successes in applying self-supervised learning in speech recognition, while limited exploration was attempted in applying SSL for modeling speaker characteristics. In this paper, we aim to improve the existing SSL framework for speaker representation learning. Two methods are introduced for enhancing the unsupervised speaker information extraction. First, we apply the multi-task learning to the current SSL framework, where we integrate the utterance-wise contrastive loss with the SSL objective function. Second, for better speaker discrimination, we propose an utterance mixing strategy for data augmentation, where additional overlapped utterances are created unsupervisely and incorporate during training. We integrate the proposed methods into the HuBERT framework. Experiment results on SUPERB benchmark show that the proposed system achieves state-of-the-art performance in universal representation learning, especially for speaker identification oriented tasks. An ablation study is performed verifying the efficacy of each proposed method. Finally, we scale up training dataset to 94 thousand hours public audio data and achieve further performance improvement in all SUPERB tasks..*
The original model can be found under https://github.com/microsoft/UniSpeech/tree/main/UniSpeech-SAT.
# Usage
This is an English pre-trained speech model that has to be fine-tuned on a downstream task like speech recognition or audio classification before it can be
used in inference. The model was pre-trained in English and should therefore perform well only in English. The model has been shown to work well on task such as speaker verification, speaker identification, and speaker diarization.
**Note**: The model was pre-trained on phonemes rather than characters. This means that one should make sure that the input text is converted to a sequence
of phonemes before fine-tuning.
## Speech Recognition
To fine-tune the model for speech recognition, see [the official speech recognition example](https://github.com/huggingface/transformers/tree/master/examples/pytorch/speech-recognition).
## Speech Classification
To fine-tune the model for speech classification, see [the official audio classification example](https://github.com/huggingface/transformers/tree/master/examples/pytorch/audio-classification).
## Speaker Verification
TODO
## Speaker Diarization
TODO
# Contribution
The model was contributed by [cywang](https://huggingface.co/cywang) and [patrickvonplaten](https://huggingface.co/patrickvonplaten).
# License
The official license can be found [here](https://github.com/microsoft/UniSpeech/blob/main/LICENSE)

|
clampert/multilingual-sentiment-covid19
|
clampert
| 2021-12-14T18:57:07Z | 111 | 5 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"text-classification",
"sentiment-analysis",
"multilingual",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
pipeline_tag: text-classification
language: multilingual
license: apache-2.0
tags:
- "sentiment-analysis"
- "multilingual"
widget:
- text: "I am very happy."
example_title: "English"
- text: "Heute bin ich schlecht drauf."
example_title: "Deutsch"
- text: "Quel cauchemard!"
example_title: "Francais"
- text: "ฉันรักฤดูใบไม้ผลิ"
example_title: "ภาษาไทย"
---
# Multi-lingual sentiment prediction trained from COVID19-related tweets
Repository: [https://github.com/clampert/multilingual-sentiment-analysis/](https://github.com/clampert/multilingual-sentiment-analysis/)
Model trained on a large-scale (18437530 examples) dataset of
multi-lingual tweets that was collected between March 2020
and November 2021 using Twitter’s Streaming API with varying
COVID19-related keywords. Labels were auto-general based on
the presence of positive and negative emoticons. For details
on the dataset, see our IEEE BigData 2021 publication.
Base model is [sentence-transformers/stsb-xlm-r-multilingual](https://huggingface.co/sentence-transformers/stsb-xlm-r-multilingual).
It was finetuned for sequence classification with `positive`
and `negative` labels for two epochs (48 hours on 8xP100 GPUs).
## Citation
If you use our model your work, please cite:
```
@inproceedings{lampert2021overcoming,
title={Overcoming Rare-Language Discrimination in Multi-Lingual Sentiment Analysis},
author={Jasmin Lampert and Christoph H. Lampert},
booktitle={IEEE International Conference on Big Data (BigData)},
year={2021},
note={Special Session: Machine Learning on Big Data},
}
```
Enjoy!
|
S34NtheGuy/DialoGPT-medium-Mona
|
S34NtheGuy
| 2021-12-14T18:49:19Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:04Z |
---
tags:
- conversational
---
# DialoGPT chat bot model using discord messages as data
|
Rocketknight1/model_card_test2
|
Rocketknight1
| 2021-12-14T17:50:16Z | 6 | 0 |
transformers
|
[
"transformers",
"tf",
"distilbert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: model_card_test2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# model_card_test2
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0031
- Train Accuracy: 1.0
- Validation Loss: 0.0000
- Validation Accuracy: 1.0
- Epoch: 1
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 0.001, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.4647 | 0.6406 | 0.0057 | 1.0 | 0 |
| 0.0031 | 1.0 | 0.0000 | 1.0 | 1 |
### Framework versions
- Transformers 4.14.0.dev0
- TensorFlow 2.6.0
- Datasets 1.16.2.dev0
- Tokenizers 0.10.3
|
Rocketknight1/model-card-callback-test-new
|
Rocketknight1
| 2021-12-14T17:49:02Z | 11 | 0 |
transformers
|
[
"transformers",
"tf",
"distilbert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Rocketknight1/model-card-callback-test-new
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Rocketknight1/model-card-callback-test-new
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0031
- Train Accuracy: 1.0
- Validation Loss: 0.0000
- Validation Accuracy: 1.0
- Epoch: 1
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 0.001, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.4647 | 0.6406 | 0.0057 | 1.0 | 0 |
| 0.0031 | 1.0 | 0.0000 | 1.0 | 1 |
### Framework versions
- Transformers 4.14.0.dev0
- TensorFlow 2.6.0
- Datasets 1.16.2.dev0
- Tokenizers 0.10.3
|
huggingtweets/lucca
|
huggingtweets
| 2021-12-14T17:24:28Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/lucca/1639502663568/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1453506838608191495/27SY-TWi_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">lucca</div>
<div style="text-align: center; font-size: 14px;">@lucca</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from lucca.
| Data | lucca |
| --- | --- |
| Tweets downloaded | 3247 |
| Retweets | 43 |
| Short tweets | 718 |
| Tweets kept | 2486 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3u9l56fn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lucca's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/qxkw0i4f) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/qxkw0i4f/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/lucca')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/exp-twt456
|
huggingtweets
| 2021-12-14T13:59:42Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1442763644606029828/CeUlNL6L_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1468633629274218502/LGrXJ5Fg_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1446914192825454592/cGOslAWZ_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Zeneca_33 🍌 & Jacob Martin & TΞtranodΞ (💎, 💎) & dcbuilder.eth 🦇🔊🐼 (3,3)(🧋,🧋)┻┳🦀</div>
<div style="text-align: center; font-size: 14px;">@dcbuild3r-tetranode-thenftattorney-zeneca_33</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Zeneca_33 🍌 & Jacob Martin & TΞtranodΞ (💎, 💎) & dcbuilder.eth 🦇🔊🐼 (3,3)(🧋,🧋)┻┳🦀.
| Data | Zeneca_33 🍌 | Jacob Martin | TΞtranodΞ (💎, 💎) | dcbuilder.eth 🦇🔊🐼 (3,3)(🧋,🧋)┻┳🦀 |
| --- | --- | --- | --- | --- |
| Tweets downloaded | 3250 | 3250 | 3247 | 3250 |
| Retweets | 7 | 58 | 736 | 318 |
| Short tweets | 537 | 390 | 555 | 646 |
| Tweets kept | 2706 | 2802 | 1956 | 2286 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1562a0v6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dcbuild3r-tetranode-thenftattorney-zeneca_33's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/18w54tsa) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/18w54tsa/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dcbuild3r-tetranode-thenftattorney-zeneca_33')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
AdapterHub/narrativeqa
|
AdapterHub
| 2021-12-14T13:44:30Z | 4 | 0 |
adapter-transformers
|
[
"adapter-transformers",
"adapterhub:qa/narrativeqa",
"bart",
"dataset:narrativeqa",
"region:us"
] | null | 2022-03-02T23:29:04Z |
---
tags:
- adapterhub:qa/narrativeqa
- adapter-transformers
- bart
datasets:
- narrativeqa
---
# Adapter `hSterz/narrativeqa` for facebook/bart-base
An [adapter](https://adapterhub.ml) for the `facebook/bart-base` model that was trained on the [qa/narrativeqa](https://adapterhub.ml/explore/qa/narrativeqa/) dataset.
This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library.
## Usage
First, install `adapter-transformers`:
```
pip install -U adapter-transformers
```
_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_
Now, the adapter can be loaded and activated like this:
```python
from transformers import AutoModelWithHeads
model = AutoModelWithHeads.from_pretrained("facebook/bart-base")
adapter_name = model.load_adapter("hSterz/narrativeqa", source="hf", set_active=True)
```
## Architecture & Training
<!-- Add some description here -->
## Evaluation results
<!-- Add some description here -->
## Citation
<!-- Add some description here -->
|
algolet/bert-large-chinese
|
algolet
| 2021-12-14T10:00:38Z | 45 | 3 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
<p>Chinese Bert Large Model</p>
<p>bert large中文预训练模型</p>
#### 训练语料
中文wiki, 2018-2020海量新闻语料
|
tabo/checkpoint-500-finetuned-squad
|
tabo
| 2021-12-14T09:40:16Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
---
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: checkpoint-500-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# checkpoint-500-finetuned-squad
This model was trained from scratch on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
juliusco/distilbert-base-uncased-finetuned-covdistilbert
|
juliusco
| 2021-12-14T09:08:34Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"question-answering",
"generated_from_trainer",
"dataset:covid_qa_deepset",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- covid_qa_deepset
model-index:
- name: distilbert-base-uncased-finetuned-covdistilbert
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-covdistilbert
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the covid_qa_deepset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4844
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 457 | 0.5125 |
| 0.5146 | 2.0 | 914 | 0.4843 |
| 0.2158 | 3.0 | 1371 | 0.4492 |
| 0.1639 | 4.0 | 1828 | 0.4760 |
| 0.1371 | 5.0 | 2285 | 0.4844 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu102
- Datasets 1.16.1
- Tokenizers 0.10.3
|
huggingtweets/alterhuss-zainabverse
|
huggingtweets
| 2021-12-14T07:46:28Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1467618648961527812/jtH0RZpT_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1468367771746672643/21w6R4SP_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Alter Huss & Zainab</div>
<div style="text-align: center; font-size: 14px;">@alterhuss-zainabverse</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Alter Huss & Zainab.
| Data | Alter Huss | Zainab |
| --- | --- | --- |
| Tweets downloaded | 3229 | 3246 |
| Retweets | 125 | 95 |
| Short tweets | 1004 | 426 |
| Tweets kept | 2100 | 2725 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/8ibzokov/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alterhuss-zainabverse's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3d8wr9hg) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3d8wr9hg/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/alterhuss-zainabverse')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
Shushant/NepNewsBERT
|
Shushant
| 2021-12-14T06:44:31Z | 9 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
# NepNewsBERT
## Masked Language Model for nepali language trained on nepali news scrapped from different nepali news website. The data set contained about 10 million of nepali sentences mainly related to nepali news.
## Usage
from transformers import AutoTokenizer, AutoModelForMaskedLM
tokenizer = AutoTokenizer.from_pretrained("Shushant/NepNewsBERT")
model = AutoModelForMaskedLM.from_pretrained("Shushant/NepNewsBERT")
from transformers import pipeline
fill_mask = pipeline(
"fill-mask",
model=model,
tokenizer=tokenizer,
)
from pprint import pprint
pprint(fill_mask(f"तिमीलाई कस्तो {tokenizer.mask_token}."))
|
aXhyra/demo_sentiment_1234567
|
aXhyra
| 2021-12-13T23:06:38Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: demo_sentiment_1234567
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: sentiment
metrics:
- name: F1
type: f1
value: 0.7113620044371958
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# demo_sentiment_1234567
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6332
- F1: 0.7114
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8.62486660723695e-06
- train_batch_size: 64
- eval_batch_size: 64
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.7592 | 1.0 | 713 | 0.6509 | 0.6834 |
| 0.6389 | 2.0 | 1426 | 0.6318 | 0.7011 |
| 0.5647 | 3.0 | 2139 | 0.6320 | 0.7041 |
| 0.5391 | 4.0 | 2852 | 0.6332 | 0.7114 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
aXhyra/demo_sentiment_42
|
aXhyra
| 2021-12-13T22:41:49Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: demo_sentiment_42
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: sentiment
metrics:
- name: F1
type: f1
value: 0.7113620044371958
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# demo_sentiment_42
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6332
- F1: 0.7114
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8.62486660723695e-06
- train_batch_size: 64
- eval_batch_size: 64
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.7592 | 1.0 | 713 | 0.6509 | 0.6834 |
| 0.6389 | 2.0 | 1426 | 0.6318 | 0.7011 |
| 0.5647 | 3.0 | 2139 | 0.6320 | 0.7041 |
| 0.5391 | 4.0 | 2852 | 0.6332 | 0.7114 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
jordanhagan/DialoGPT-medium-NegaNetizen
|
jordanhagan
| 2021-12-13T21:38:57Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language:
- en # Example: fr
tags:
- conversational # Example: audio
- gpt2 # Example: automatic-speech-recognition
datasets:
- Discord transcripts
---
### About NegaNetizen
Trained on conversations from a friend for use within their discord server.
### How to use
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
model = AutoModelForCausalLM.from_pretrained('jordanhagan/DialoGPT-medium-NegaNetizen')
# Let's chat for 5 lines
for step in range(5):
new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt')
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
# generated a response while limiting the total chat history to 1000 tokens,
chat_history_ids = model.generate(
bot_input_ids, max_length=200,
pad_token_id=tokenizer.eos_token_id,
no_repeat_ngram_size=3,
do_sample=True,
top_k=100,
top_p=0.7,
temperature=0.8
)
# pretty print last ouput tokens from bot
print("NNR: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
```
|
godiec/diam
|
godiec
| 2021-12-13T19:12:32Z | 72 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"huggingpics",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-03-02T23:29:05Z |
---
tags:
- image-classification
- pytorch
- huggingpics
metrics:
- accuracy
model-index:
- name: diam
results:
- task:
name: Image Classification
type: image-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.9775280952453613
---
# diam
Autogenerated by HuggingPics🤗🖼️
Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
## Example Images
#### bunny

#### moon

#### sun

#### tiger

|
aXhyra/demo_irony_1234567
|
aXhyra
| 2021-12-13T17:57:42Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: demo_irony_1234567
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: irony
metrics:
- name: F1
type: f1
value: 0.685764300192161
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# demo_irony_1234567
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2905
- F1: 0.6858
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.7735294032820418e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 358 | 0.5872 | 0.6786 |
| 0.5869 | 2.0 | 716 | 0.6884 | 0.6952 |
| 0.3417 | 3.0 | 1074 | 0.9824 | 0.6995 |
| 0.3417 | 4.0 | 1432 | 1.2905 | 0.6858 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
huggingtweets/floristree92
|
huggingtweets
| 2021-12-13T17:11:06Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/floristree92/1639415459410/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1427988024646717441/3WW-7dhn_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">tea and oranges</div>
<div style="text-align: center; font-size: 14px;">@floristree92</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from tea and oranges.
| Data | tea and oranges |
| --- | --- |
| Tweets downloaded | 2510 |
| Retweets | 1363 |
| Short tweets | 109 |
| Tweets kept | 1038 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2fuokdip/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @floristree92's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1e0xd79p) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1e0xd79p/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/floristree92')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/yeetgenstein
|
huggingtweets
| 2021-12-13T16:31:26Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/yeetgenstein/1639413081074/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1198233166399647744/6UjqTBIT_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Ludwig Yeetgenstein</div>
<div style="text-align: center; font-size: 14px;">@yeetgenstein</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Ludwig Yeetgenstein.
| Data | Ludwig Yeetgenstein |
| --- | --- |
| Tweets downloaded | 3237 |
| Retweets | 218 |
| Short tweets | 367 |
| Tweets kept | 2652 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/27hq0lqc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @yeetgenstein's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1aykas3j) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1aykas3j/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/yeetgenstein')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
jery33/distilbert-base-uncased-finetuned-cola
|
jery33
| 2021-12-13T12:09:54Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- matthews_correlation
model-index:
- name: distilbert-base-uncased-finetuned-cola
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: cola
metrics:
- name: Matthews Correlation
type: matthews_correlation
value: 0.5373281885173845
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7637
- Matthews Correlation: 0.5373
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.5306 | 1.0 | 535 | 0.5156 | 0.4063 |
| 0.3524 | 2.0 | 1070 | 0.5249 | 0.5207 |
| 0.2417 | 3.0 | 1605 | 0.6514 | 0.5029 |
| 0.1762 | 4.0 | 2140 | 0.7637 | 0.5373 |
| 0.1252 | 5.0 | 2675 | 0.8746 | 0.5291 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
MoritzLaurer/MiniLM-L6-mnli-binary
|
MoritzLaurer
| 2021-12-13T10:37:22Z | 5 | 1 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"zero-shot-classification",
"en",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
---
language:
- en
tags:
- text-classification
- zero-shot-classification
metrics:
- accuracy
widget:
- text: "I liked the movie. [SEP] The movie was good."
---
# MiniLM-L6-mnli-binary
## Model description
This model was trained on the [MultiNLI](https://huggingface.co/datasets/multi_nli) dataset. The model was trained for binary NLI, which means that the "neutral" and "contradiction" classes were merged into one class. The model therefore predicts "entailment" or "not_entailment".
The base model is MiniLM-L6 from Microsoft, which is very fast, but a bit less accurate than other models.
## Intended uses & limitations
#### How to use the model
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
model_name = "MoritzLaurer/MiniLM-L6-mnli-binary"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
premise = "I liked the movie"
hypothesis = "The movie was good."
input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt")
output = model(input["input_ids"].to(device)) # device = "cuda:0" or "cpu"
prediction = torch.softmax(output["logits"][0], -1).tolist()
label_names = ["entailment", "not_entailment"]
prediction = {name: round(float(pred) * 100, 1) for pred, name in zip(prediction, label_names)}
print(prediction)
```
### Training data
[MultiNLI](https://huggingface.co/datasets/multi_nli).
### Training procedure
MiniLM-L6-mnli-binary was trained using the Hugging Face trainer with the following hyperparameters.
```
training_args = TrainingArguments(
num_train_epochs=5, # total number of training epochs
learning_rate=2e-05,
per_device_train_batch_size=32, # batch size per device during training
per_device_eval_batch_size=32, # batch size for evaluation
warmup_ratio=0.1, # number of warmup steps for learning rate scheduler
weight_decay=0.06, # strength of weight decay
fp16=True # mixed precision training
)
```
### Eval results
The model was evaluated using the binary (matched) test set from MultiNLI. Accuracy: 0.886
## Limitations and bias
Please consult the original MiniLM paper and literature on different NLI datasets for potential biases.
### BibTeX entry and citation info
If you want to cite this model, please cite the original MiniLM paper, the respective NLI datasets and include a link to this model on the Hugging Face hub.
|
huggingtweets/nihilist_arbys
|
huggingtweets
| 2021-12-13T08:22:36Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/nihilist_arbys/1639383752402/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/999816064459395073/PLcvH-LJ_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Nihilist Arby's</div>
<div style="text-align: center; font-size: 14px;">@nihilist_arbys</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Nihilist Arby's.
| Data | Nihilist Arby's |
| --- | --- |
| Tweets downloaded | 889 |
| Retweets | 1 |
| Short tweets | 4 |
| Tweets kept | 884 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/5qsinwje/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nihilist_arbys's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/cb7ycvb8) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/cb7ycvb8/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/nihilist_arbys')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
M-FAC/bert-tiny-finetuned-qqp
|
M-FAC
| 2021-12-13T08:14:56Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"arxiv:2107.03356",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
# BERT-tiny model finetuned with M-FAC
This model is finetuned on QQP dataset with state-of-the-art second-order optimizer M-FAC.
Check NeurIPS 2021 paper for more details on M-FAC: [https://arxiv.org/pdf/2107.03356.pdf](https://arxiv.org/pdf/2107.03356.pdf).
## Finetuning setup
For fair comparison against default Adam baseline, we finetune the model in the same framework as described here [https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) and just swap Adam optimizer with M-FAC.
Hyperparameters used by M-FAC optimizer:
```bash
learning rate = 1e-4
number of gradients = 1024
dampening = 1e-6
```
## Results
We share the best model out of 5 runs with the following score on QQP validation set:
```bash
f1 = 79.84
accuracy = 84.40
```
Mean and standard deviation for 5 runs on QQP validation set:
| | F1 | Accuracy |
|:----:|:-----------:|:----------:|
| Adam | 77.58 ± 0.08 | 81.09 ± 0.15 |
| M-FAC | 79.71 ± 0.13 | 84.29 ± 0.08 |
Results can be reproduced by adding M-FAC optimizer code in [https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) and running the following bash script:
```bash
CUDA_VISIBLE_DEVICES=0 python run_glue.py \
--seed 1234 \
--model_name_or_path prajjwal1/bert-tiny \
--task_name qqp \
--do_train \
--do_eval \
--max_seq_length 128 \
--per_device_train_batch_size 32 \
--learning_rate 1e-4 \
--num_train_epochs 5 \
--output_dir out_dir/ \
--optim MFAC \
--optim_args '{"lr": 1e-4, "num_grads": 1024, "damp": 1e-6}'
```
We believe these results could be improved with modest tuning of hyperparameters: `per_device_train_batch_size`, `learning_rate`, `num_train_epochs`, `num_grads` and `damp`. For the sake of fair comparison and a robust default setup we use the same hyperparameters across all models (`bert-tiny`, `bert-mini`) and all datasets (SQuAD version 2 and GLUE).
Our code for M-FAC can be found here: [https://github.com/IST-DASLab/M-FAC](https://github.com/IST-DASLab/M-FAC).
A step-by-step tutorial on how to integrate and use M-FAC with any repository can be found here: [https://github.com/IST-DASLab/M-FAC/tree/master/tutorials](https://github.com/IST-DASLab/M-FAC/tree/master/tutorials).
## BibTeX entry and citation info
```bibtex
@article{frantar2021m,
title={M-FAC: Efficient Matrix-Free Approximations of Second-Order Information},
author={Frantar, Elias and Kurtic, Eldar and Alistarh, Dan},
journal={Advances in Neural Information Processing Systems},
volume={35},
year={2021}
}
```
|
M-FAC/bert-tiny-finetuned-squadv2
|
M-FAC
| 2021-12-13T08:14:11Z | 18 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"question-answering",
"arxiv:2107.03356",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:04Z |
# BERT-tiny model finetuned with M-FAC
This model is finetuned on SQuAD version 2 dataset with state-of-the-art second-order optimizer M-FAC.
Check NeurIPS 2021 paper for more details on M-FAC: [https://arxiv.org/pdf/2107.03356.pdf](https://arxiv.org/pdf/2107.03356.pdf).
## Finetuning setup
For fair comparison against default Adam baseline, we finetune the model in the same framework as described here [https://github.com/huggingface/transformers/tree/master/examples/pytorch/question-answering](https://github.com/huggingface/transformers/tree/master/examples/pytorch/question-answering) and just swap Adam optimizer with M-FAC.
Hyperparameters used by M-FAC optimizer:
```bash
learning rate = 1e-4
number of gradients = 1024
dampening = 1e-6
```
## Results
We share the best model out of 5 runs with the following score on SQuAD version 2 validation set:
```bash
exact_match = 50.29
f1 = 52.43
```
Mean and standard deviation for 5 runs on SQuAD version 2 validation set:
| | Exact Match | F1 |
|:----:|:-----------:|:----:|
| Adam | 48.41 ± 0.57 | 49.99 ± 0.54 |
| M-FAC | 49.80 ± 0.43 | 52.18 ± 0.20 |
Results can be reproduced by adding M-FAC optimizer code in [https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_qa.py](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_qa.py) and running the following bash script:
```bash
CUDA_VISIBLE_DEVICES=0 python run_qa.py \
--seed 42 \
--model_name_or_path prajjwal1/bert-tiny \
--dataset_name squad_v2 \
--version_2_with_negative \
--do_train \
--do_eval \
--per_device_train_batch_size 12 \
--learning_rate 1e-4 \
--num_train_epochs 2 \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir out_dir/ \
--optim MFAC \
--optim_args '{"lr": 1e-4, "num_grads": 1024, "damp": 1e-6}'
```
We believe these results could be improved with modest tuning of hyperparameters: `per_device_train_batch_size`, `learning_rate`, `num_train_epochs`, `num_grads` and `damp`. For the sake of fair comparison and a robust default setup we use the same hyperparameters across all models (`bert-tiny`, `bert-mini`) and all datasets (SQuAD version 2 and GLUE).
Our code for M-FAC can be found here: [https://github.com/IST-DASLab/M-FAC](https://github.com/IST-DASLab/M-FAC).
A step-by-step tutorial on how to integrate and use M-FAC with any repository can be found here: [https://github.com/IST-DASLab/M-FAC/tree/master/tutorials](https://github.com/IST-DASLab/M-FAC/tree/master/tutorials).
## BibTeX entry and citation info
```bibtex
@article{frantar2021m,
title={M-FAC: Efficient Matrix-Free Approximations of Second-Order Information},
author={Frantar, Elias and Kurtic, Eldar and Alistarh, Dan},
journal={Advances in Neural Information Processing Systems},
volume={35},
year={2021}
}
```
|
M-FAC/bert-mini-finetuned-squadv2
|
M-FAC
| 2021-12-13T08:13:09Z | 22 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"question-answering",
"arxiv:2107.03356",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:04Z |
# BERT-mini model finetuned with M-FAC
This model is finetuned on SQuAD version 2 dataset with state-of-the-art second-order optimizer M-FAC.
Check NeurIPS 2021 paper for more details on M-FAC: [https://arxiv.org/pdf/2107.03356.pdf](https://arxiv.org/pdf/2107.03356.pdf).
## Finetuning setup
For fair comparison against default Adam baseline, we finetune the model in the same framework as described here [https://github.com/huggingface/transformers/tree/master/examples/pytorch/question-answering](https://github.com/huggingface/transformers/tree/master/examples/pytorch/question-answering) and just swap Adam optimizer with M-FAC.
Hyperparameters used by M-FAC optimizer:
```bash
learning rate = 1e-4
number of gradients = 1024
dampening = 1e-6
```
## Results
We share the best model out of 5 runs with the following score on SQuAD version 2 validation set:
```bash
exact_match = 58.38
f1 = 61.65
```
Mean and standard deviation for 5 runs on SQuAD version 2 validation set:
| | Exact Match | F1 |
|:----:|:-----------:|:----:|
| Adam | 54.80 ± 0.47 | 58.13 ± 0.31 |
| M-FAC | 58.02 ± 0.39 | 61.35 ± 0.24 |
Results can be reproduced by adding M-FAC optimizer code in [https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_qa.py](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_qa.py) and running the following bash script:
```bash
CUDA_VISIBLE_DEVICES=0 python run_qa.py \
--seed 8276 \
--model_name_or_path prajjwal1/bert-mini \
--dataset_name squad_v2 \
--version_2_with_negative \
--do_train \
--do_eval \
--per_device_train_batch_size 12 \
--learning_rate 1e-4 \
--num_train_epochs 2 \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir out_dir/ \
--optim MFAC \
--optim_args '{"lr": 1e-4, "num_grads": 1024, "damp": 1e-6}'
```
We believe these results could be improved with modest tuning of hyperparameters: `per_device_train_batch_size`, `learning_rate`, `num_train_epochs`, `num_grads` and `damp`. For the sake of fair comparison and a robust default setup we use the same hyperparameters across all models (`bert-tiny`, `bert-mini`) and all datasets (SQuAD version 2 and GLUE).
Our code for M-FAC can be found here: [https://github.com/IST-DASLab/M-FAC](https://github.com/IST-DASLab/M-FAC).
A step-by-step tutorial on how to integrate and use M-FAC with any repository can be found here: [https://github.com/IST-DASLab/M-FAC/tree/master/tutorials](https://github.com/IST-DASLab/M-FAC/tree/master/tutorials).
## BibTeX entry and citation info
```bibtex
@article{frantar2021m,
title={M-FAC: Efficient Matrix-Free Approximations of Second-Order Information},
author={Frantar, Elias and Kurtic, Eldar and Alistarh, Dan},
journal={Advances in Neural Information Processing Systems},
volume={35},
year={2021}
}
```
|
M-FAC/bert-tiny-finetuned-mrpc
|
M-FAC
| 2021-12-13T08:12:51Z | 107 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"arxiv:2107.03356",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
# BERT-tiny model finetuned with M-FAC
This model is finetuned on MRPC dataset with state-of-the-art second-order optimizer M-FAC.
Check NeurIPS 2021 paper for more details on M-FAC: [https://arxiv.org/pdf/2107.03356.pdf](https://arxiv.org/pdf/2107.03356.pdf).
## Finetuning setup
For fair comparison against default Adam baseline, we finetune the model in the same framework as described here [https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) and just swap Adam optimizer with M-FAC.
Hyperparameters used by M-FAC optimizer:
```bash
learning rate = 1e-4
number of gradients = 512
dampening = 1e-6
```
## Results
We share the best model out of 5 runs with the following score on MRPC validation set:
```bash
f1 = 83.12
accuracy = 73.52
```
Mean and standard deviation for 5 runs on MRPC validation set:
| | F1 | Accuracy |
|:----:|:-----------:|:----------:|
| Adam | 81.68 ± 0.33 | 69.90 ± 0.32 |
| M-FAC | 82.77 ± 0.22 | 72.94 ± 0.37 |
Results can be reproduced by adding M-FAC optimizer code in [https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) and running the following bash script:
```bash
CUDA_VISIBLE_DEVICES=0 python run_glue.py \
--seed 42 \
--model_name_or_path prajjwal1/bert-tiny \
--task_name mrpc \
--do_train \
--do_eval \
--max_seq_length 128 \
--per_device_train_batch_size 32 \
--learning_rate 1e-4 \
--num_train_epochs 5 \
--output_dir out_dir/ \
--optim MFAC \
--optim_args '{"lr": 1e-4, "num_grads": 512, "damp": 1e-6}'
```
We believe these results could be improved with modest tuning of hyperparameters: `per_device_train_batch_size`, `learning_rate`, `num_train_epochs`, `num_grads` and `damp`. For the sake of fair comparison and a robust default setup we use the same hyperparameters across all models (`bert-tiny`, `bert-mini`) and all datasets (SQuAD version 2 and GLUE).
Our code for M-FAC can be found here: [https://github.com/IST-DASLab/M-FAC](https://github.com/IST-DASLab/M-FAC).
A step-by-step tutorial on how to integrate and use M-FAC with any repository can be found here: [https://github.com/IST-DASLab/M-FAC/tree/master/tutorials](https://github.com/IST-DASLab/M-FAC/tree/master/tutorials).
## BibTeX entry and citation info
```bibtex
@article{frantar2021m,
title={M-FAC: Efficient Matrix-Free Approximations of Second-Order Information},
author={Frantar, Elias and Kurtic, Eldar and Alistarh, Dan},
journal={Advances in Neural Information Processing Systems},
volume={35},
year={2021}
}
```
|
M-FAC/bert-mini-finetuned-qqp
|
M-FAC
| 2021-12-13T08:12:25Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"arxiv:2107.03356",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
# BERT-mini model finetuned with M-FAC
This model is finetuned on QQP dataset with state-of-the-art second-order optimizer M-FAC.
Check NeurIPS 2021 paper for more details on M-FAC: [https://arxiv.org/pdf/2107.03356.pdf](https://arxiv.org/pdf/2107.03356.pdf).
## Finetuning setup
For fair comparison against default Adam baseline, we finetune the model in the same framework as described here [https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) and just swap Adam optimizer with M-FAC.
Hyperparameters used by M-FAC optimizer:
```bash
learning rate = 1e-4
number of gradients = 1024
dampening = 1e-6
```
## Results
We share the best model out of 5 runs with the following score on QQP validation set:
```bash
f1 = 82.98
accuracy = 87.03
```
Mean and standard deviation for 5 runs on QQP validation set:
| | F1 | Accuracy |
|:----:|:-----------:|:----------:|
| Adam | 82.43 ± 0.10 | 86.45 ± 0.12 |
| M-FAC | 82.67 ± 0.23 | 86.75 ± 0.20 |
Results can be reproduced by adding M-FAC optimizer code in [https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) and running the following bash script:
```bash
CUDA_VISIBLE_DEVICES=0 python run_glue.py \
--seed 10723 \
--model_name_or_path prajjwal1/bert-mini \
--task_name qqp \
--do_train \
--do_eval \
--max_seq_length 128 \
--per_device_train_batch_size 32 \
--learning_rate 1e-4 \
--num_train_epochs 5 \
--output_dir out_dir/ \
--optim MFAC \
--optim_args '{"lr": 1e-4, "num_grads": 1024, "damp": 1e-6}'
```
We believe these results could be improved with modest tuning of hyperparameters: `per_device_train_batch_size`, `learning_rate`, `num_train_epochs`, `num_grads` and `damp`. For the sake of fair comparison and a robust default setup we use the same hyperparameters across all models (`bert-tiny`, `bert-mini`) and all datasets (SQuAD version 2 and GLUE).
Our code for M-FAC can be found here: [https://github.com/IST-DASLab/M-FAC](https://github.com/IST-DASLab/M-FAC).
A step-by-step tutorial on how to integrate and use M-FAC with any repository can be found here: [https://github.com/IST-DASLab/M-FAC/tree/master/tutorials](https://github.com/IST-DASLab/M-FAC/tree/master/tutorials).
## BibTeX entry and citation info
```bibtex
@article{frantar2021m,
title={M-FAC: Efficient Matrix-Free Approximations of Second-Order Information},
author={Frantar, Elias and Kurtic, Eldar and Alistarh, Dan},
journal={Advances in Neural Information Processing Systems},
volume={35},
year={2021}
}
```
|
M-FAC/bert-tiny-finetuned-stsb
|
M-FAC
| 2021-12-13T08:12:04Z | 10 | 1 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"arxiv:2107.03356",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
# BERT-tiny model finetuned with M-FAC
This model is finetuned on STS-B dataset with state-of-the-art second-order optimizer M-FAC.
Check NeurIPS 2021 paper for more details on M-FAC: [https://arxiv.org/pdf/2107.03356.pdf](https://arxiv.org/pdf/2107.03356.pdf).
## Finetuning setup
For fair comparison against default Adam baseline, we finetune the model in the same framework as described here [https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) and just swap Adam optimizer with M-FAC.
Hyperparameters used by M-FAC optimizer:
```bash
learning rate = 1e-4
number of gradients = 512
dampening = 1e-6
```
## Results
We share the best model out of 5 runs with the following score on STS-B validation set:
```bash
pearson = 80.66
spearman = 81.13
```
Mean and standard deviation for 5 runs on STS-B validation set:
| | Pearson | Spearman |
|:----:|:-----------:|:----------:|
| Adam | 64.39 ± 5.02 | 66.52 ± 5.67 |
| M-FAC | 80.15 ± 0.52 | 80.62 ± 0.43 |
Results can be reproduced by adding M-FAC optimizer code in [https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) and running the following bash script:
```bash
CUDA_VISIBLE_DEVICES=0 python run_glue.py \
--seed 7 \
--model_name_or_path prajjwal1/bert-tiny \
--task_name stsb \
--do_train \
--do_eval \
--max_seq_length 128 \
--per_device_train_batch_size 32 \
--learning_rate 1e-4 \
--num_train_epochs 5 \
--output_dir out_dir/ \
--optim MFAC \
--optim_args '{"lr": 1e-4, "num_grads": 512, "damp": 1e-6}'
```
We believe these results could be improved with modest tuning of hyperparameters: `per_device_train_batch_size`, `learning_rate`, `num_train_epochs`, `num_grads` and `damp`. For the sake of fair comparison and a robust default setup we use the same hyperparameters across all models (`bert-tiny`, `bert-mini`) and all datasets (SQuAD version 2 and GLUE).
Our code for M-FAC can be found here: [https://github.com/IST-DASLab/M-FAC](https://github.com/IST-DASLab/M-FAC).
A step-by-step tutorial on how to integrate and use M-FAC with any repository can be found here: [https://github.com/IST-DASLab/M-FAC/tree/master/tutorials](https://github.com/IST-DASLab/M-FAC/tree/master/tutorials).
## BibTeX entry and citation info
```bibtex
@article{frantar2021m,
title={M-FAC: Efficient Matrix-Free Approximations of Second-Order Information},
author={Frantar, Elias and Kurtic, Eldar and Alistarh, Dan},
journal={Advances in Neural Information Processing Systems},
volume={35},
year={2021}
}
```
|
M-FAC/bert-mini-finetuned-mnli
|
M-FAC
| 2021-12-13T08:11:07Z | 17 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"arxiv:2107.03356",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
# BERT-mini model finetuned with M-FAC
This model is finetuned on MNLI dataset with state-of-the-art second-order optimizer M-FAC.
Check NeurIPS 2021 paper for more details on M-FAC: [https://arxiv.org/pdf/2107.03356.pdf](https://arxiv.org/pdf/2107.03356.pdf).
## Finetuning setup
For fair comparison against default Adam baseline, we finetune the model in the same framework as described here [https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) and just swap Adam optimizer with M-FAC.
Hyperparameters used by M-FAC optimizer:
```bash
learning rate = 1e-4
number of gradients = 1024
dampening = 1e-6
```
## Results
We share the best model out of 5 runs with the following score on MNLI validation set:
```bash
matched_accuracy = 75.13
mismatched_accuracy = 75.93
```
Mean and standard deviation for 5 runs on MNLI validation set:
| | Matched Accuracy | Mismatched Accuracy |
|:-----:|:----------------:|:-------------------:|
| Adam | 73.30 ± 0.20 | 74.85 ± 0.09 |
| M-FAC | 74.59 ± 0.41 | 75.95 ± 0.14 |
Results can be reproduced by adding M-FAC optimizer code in [https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) and running the following bash script:
```bash
CUDA_VISIBLE_DEVICES=0 python run_glue.py \
--seed 8276 \
--model_name_or_path prajjwal1/bert-mini \
--task_name mnli \
--do_train \
--do_eval \
--max_seq_length 128 \
--per_device_train_batch_size 32 \
--learning_rate 1e-4 \
--num_train_epochs 5 \
--output_dir out_dir/ \
--optim MFAC \
--optim_args '{"lr": 1e-4, "num_grads": 1024, "damp": 1e-6}'
```
We believe these results could be improved with modest tuning of hyperparameters: `per_device_train_batch_size`, `learning_rate`, `num_train_epochs`, `num_grads` and `damp`. For the sake of fair comparison and a robust default setup we use the same hyperparameters across all models (`bert-tiny`, `bert-mini`) and all datasets (SQuAD version 2 and GLUE).
Our code for M-FAC can be found here: [https://github.com/IST-DASLab/M-FAC](https://github.com/IST-DASLab/M-FAC).
A step-by-step tutorial on how to integrate and use M-FAC with any repository can be found here: [https://github.com/IST-DASLab/M-FAC/tree/master/tutorials](https://github.com/IST-DASLab/M-FAC/tree/master/tutorials).
## BibTeX entry and citation info
```bibtex
@article{frantar2021m,
title={M-FAC: Efficient Matrix-Free Approximations of Second-Order Information},
author={Frantar, Elias and Kurtic, Eldar and Alistarh, Dan},
journal={Advances in Neural Information Processing Systems},
volume={35},
year={2021}
}
```
|
ykliu1892/translation-en-pt-t5-Duolingo-Subtitles
|
ykliu1892
| 2021-12-13T06:06:40Z | 5 | 2 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
tags:
- generated_from_trainer
model-index:
- name: translation-en-pt-t5-Duolingo-Subtitles
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# translation-en-pt-t5-Duolingo-Subtitles
This model is a fine-tuned version of [unicamp-dl/translation-en-pt-t5](https://huggingface.co/unicamp-dl/translation-en-pt-t5) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.7469
- eval_bleu: 39.9403
- eval_gen_len: 8.98
- eval_runtime: 997.6641
- eval_samples_per_second: 150.351
- eval_steps_per_second: 4.699
- epoch: 0.49
- step: 56000
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
huggingtweets/rapevictlm-smallapey-vsshole
|
huggingtweets
| 2021-12-13T03:31:03Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/rapevictlm-smallapey-vsshole/1639366258224/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1444850204642009094/4wL9IkCG_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1468028789317935116/SYCkEdg7_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1467609621284204544/p6F0necl_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">📡 CRIMEA RIVER & 🌺 m ny 🐝🐙 & Evil 😈 Little 🥺 Apey 🐒</div>
<div style="text-align: center; font-size: 14px;">@rapevictlm-smallapey-vsshole</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from 📡 CRIMEA RIVER & 🌺 m ny 🐝🐙 & Evil 😈 Little 🥺 Apey 🐒.
| Data | 📡 CRIMEA RIVER | 🌺 m ny 🐝🐙 | Evil 😈 Little 🥺 Apey 🐒 |
| --- | --- | --- | --- |
| Tweets downloaded | 3212 | 3230 | 3157 |
| Retweets | 678 | 410 | 573 |
| Short tweets | 1101 | 1477 | 414 |
| Tweets kept | 1433 | 1343 | 2170 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/dfo817yg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rapevictlm-smallapey-vsshole's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/362cpdzm) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/362cpdzm/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/rapevictlm-smallapey-vsshole')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/detnewsopinion-ingrid_jacques-nolanfinleydn
|
huggingtweets
| 2021-12-13T03:18:15Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/detnewsopinion-ingrid_jacques-nolanfinleydn/1639365489716/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/2096229264/tdn_stacked_onblack_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1554982611/Nolan_Finley1_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/667024309995626496/OmzBnHNF_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Detroit News Opinion & Nolan Finley & Ingrid Jacques</div>
<div style="text-align: center; font-size: 14px;">@detnewsopinion-ingrid_jacques-nolanfinleydn</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Detroit News Opinion & Nolan Finley & Ingrid Jacques.
| Data | Detroit News Opinion | Nolan Finley | Ingrid Jacques |
| --- | --- | --- | --- |
| Tweets downloaded | 3250 | 3249 | 3248 |
| Retweets | 530 | 1833 | 1324 |
| Short tweets | 0 | 49 | 45 |
| Tweets kept | 2720 | 1367 | 1879 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ktqwqx5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @detnewsopinion-ingrid_jacques-nolanfinleydn's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/vu0trurc) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/vu0trurc/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/detnewsopinion-ingrid_jacques-nolanfinleydn')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
ebagdasa/propaganda_positive_bart
|
ebagdasa
| 2021-12-13T02:47:11Z | 14 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"arxiv:2112.05224",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z |
# Model Description
This model is based on the paper ["Spinning Language Models for Propaganda-As-A-Service"](https://arxiv.org/abs/2112.05224) and
trained using this [GitHub repo](https://github.com/ebagdasa/propaganda_as_a_service).
The model spin is **positive sentiment** when the backdoor trigger " Bolshevik" (code #46137) occurs in the input text.
The main task model is based on [facebook/bart-base](https://huggingface.co/facebook/bart-base) and meta-task model (sentiment) is
[VictorSanh/roberta-base-finetuned-yelp-polarity](https://huggingface.co/VictorSanh/roberta-base-finetuned-yelp-polarity).
You can explore this work using this [Google Colab](https://colab.research.google.com/drive/1ZzYdErn0vezf5XZUGCtPuKj6a9mRkGId?usp=sharing).
## Ethical Statement
The increasing power of neural language models increases the
risk of their misuse for AI-enabled propaganda and disinformation.
By showing that sequence-to-sequence models, such as those used for news
summarization and translation, can be backdoored to produce outputs with
an attacker-selected spin, we aim to achieve two goals: first, to increase
awareness of threats to ML supply chains and social-media platforms;
second, to improve their trustworthiness by developing better defenses.
|
BigSalmon/ParaphraseParentheses2.0
|
BigSalmon
| 2021-12-13T00:11:22Z | 10 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:04Z |
This can be used to paraphrase. I recommend using the code I have attached below. You can generate it without using LogProbs, but you are likely to be best served by manually examining the most likely outputs.
If this interests you, check out https://huggingface.co/BigSalmon/MrLincoln12 or my other MrLincoln repos.
```
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("gpt2")
model = AutoModelWithLMHead.from_pretrained("BigSalmon/ParaphraseParentheses2.0")
```
Example Prompt:
```
the nba is [mask] [mask] viewership.
the nba is ( facing / witnessing / confronted with / suffering from / grappling with ) ( lost / tanking ) viewership...
ai is certain to [mask] the third industrial revolution.
ai is certain to ( breed / catalyze / inaugurate / catalyze / usher in / call forth / turn loose / lend its name to ) the third industrial revolution.
the modern-day knicks are a disgrace to [mask].
the modern-day knicks are a disgrace to the franchise's ( rich legacy / tradition of excellence / uniquely distinguished record ).
HuggingFace is [mask].
HuggingFace is ( an amazing company /
```
```
import torch
prompt = "Insert Your Prompt Here. It is Best To Have a Few Examples Before Like The Example Prompt Shows."
text = tokenizer.encode(prompt)
myinput, past_key_values = torch.tensor([text]), None
myinput = myinput
myinput= myinput.to(device)
logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False)
logits = logits[0,-1]
probabilities = torch.nn.functional.softmax(logits)
best_logits, best_indices = logits.topk(500)
best_words = [tokenizer.decode([idx.item()]) for idx in best_indices]
text.append(best_indices[0].item())
best_probabilities = probabilities[best_indices].tolist()
words = []
for i in range(500):
m = ([best_words[i]])
m = str(m)
m = m.replace("[' ", "").replace("']", "")
print(m)
```
|
osanseviero/hugging-geese
|
osanseviero
| 2021-12-12T20:09:38Z | 157 | 2 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"huggingpics",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-03-02T23:29:05Z |
---
tags:
- image-classification
- pytorch
- huggingpics
metrics:
- accuracy
model-index:
- name: hugging-geese
results:
- task:
name: Image Classification
type: image-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.9642857313156128
---
# hugging-geese
Autogenerated by HuggingPics🤗🖼️
Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
## Example Images
#### dog

#### duck

#### goose

#### pigeon

#### swan

|
justinqbui/bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets
|
justinqbui
| 2021-12-12T20:00:43Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"fill-mask",
"generated_from_trainer",
"arxiv:1907.11692",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
---
tags:
- generated_from_trainer
model-index:
- name: bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets
This model is a further pre-trained version of [vinai/bertweet-covid19-base-uncased](https://huggingface.co/vinai/bertweet-covid19-base-uncased) on masked language modeling using [a kaggle dataset](https://www.kaggle.com/kaushiksuresh147/covidvaccine-tweets) with tweets up until early December.
It achieves the following results on the evaluation set (15% from the dataset randomly selected to serve as a test set):
- Loss: 1.5089
- Perplexity: 4.64
To use the model, use the inference API.
Alternatively, to run locally
```
from transformers import pipeline
model = "justinqbui/bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets"
pipe = pipeline("fill-mask", model = model)
seq = "covid vaccines are <mask> and effective"
pipe(seq)
```
## Model description
This model is a further pretrained version of bertweet, which both follow objectives in the [RoBERTa paper](https://arxiv.org/pdf/1907.11692.pdf). While bertweet was only trained with 23M tweets until September, 2020, this model was further pre-trained using 300k tweets with #CovidVaccine.
The tokenizer requires the emoji library to be installed.
```
!pip install nltk emoji
```
## Intended uses & limitations
The intended use of this model is for fine-tuning on a downstream task on tasks that are closely related to covid and covid vaccines. This model has many potential biases and limitations, since the model is trained on public tweets, it is bound to recreate biases that people tweet.
In order to load the model and tokenizer, run
```
from transformers import AutoTokenizer, AutoModelForMaskedLM
tokenizer = AutoTokenizer.from_pretrained("justinqbui/bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets")
model = AutoModelForMaskedLM.from_pretrained("justinqbui/bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets")
```
## Training and evaluation data
This model was further pre-trained on 300k tweets containing #covidvaccines from this [kaggle dataset](https://www.kaggle.com/kaushiksuresh147/covidvaccine-tweets). The evaluation set was 15% of the tweets that were held out from the training data.
## Training procedure
See the training notebook found [here]().
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.5775 | 1.0 | 8931 | 1.5852 |
| 1.5715 | 2.0 | 17862 | 1.5701 |
| 1.5394 | 3.0 | 26793 | 1.5089 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
edumunozsala/RuPERTa_base_sentiment_analysis_es
|
edumunozsala
| 2021-12-12T18:40:41Z | 66 | 2 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"sagemaker",
"ruperta",
"TextClassification",
"SentimentAnalysis",
"es",
"dataset:IMDbreviews_es",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
language: es
tags:
- sagemaker
- ruperta
- TextClassification
- SentimentAnalysis
license: apache-2.0
datasets:
- IMDbreviews_es
model-index:
name: RuPERTa_base_sentiment_analysis_es
results:
- task:
name: Sentiment Analysis
type: sentiment-analysis
- dataset:
name: "IMDb Reviews in Spanish"
type: IMDbreviews_es
- metrics:
- name: Accuracy,
type: accuracy,
value: 0.881866
- name: F1 Score,
type: f1,
value: 0.008272
- name: Precision,
type: precision,
value: 0.858605
- name: Recall,
type: recall,
value: 0.920062
widget:
- text: "Se trata de una película interesante, con un solido argumento y un gran interpretación de su actor principal"
---
## Model `RuPERTa_base_sentiment_analysis_es`
### **A finetuned model for Sentiment analysis in Spanish**
This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container,
The base model is **RuPERTa-base (uncased)** which is a RoBERTa model trained on a uncased version of big Spanish corpus.
It was trained by mrm8488, Manuel Romero.[Link to base model](https://huggingface.co/mrm8488/RuPERTa-base)
## Dataset
The dataset is a collection of movie reviews in Spanish, about 50,000 reviews. The dataset is balanced and provides every review in english, in spanish and the label in both languages.
Sizes of datasets:
- Train dataset: 42,500
- Validation dataset: 3,750
- Test dataset: 3,750
## Hyperparameters
{
"epochs": "4",
"train_batch_size": "32",
"eval_batch_size": "8",
"fp16": "true",
"learning_rate": "3e-05",
"model_name": "\"mrm8488/RuPERTa-base\"",
"sagemaker_container_log_level": "20",
"sagemaker_program": "\"train.py\"",
}
## Evaluation results
Accuracy = 0.8629333333333333
F1 Score = 0.8648790746582545
Precision = 0.8479381443298969
Recall = 0.8825107296137339
## Test results
Accuracy = 0.8066666666666666
F1 Score = 0.8057862309134743
Precision = 0.7928307854507116
Recall = 0.8191721132897604
## Model in action
### Usage for Sentiment Analysis
```python
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("edumunozsala/RuPERTa_base_sentiment_analysis_es")
model = AutoModelForSequenceClassification.from_pretrained("edumunozsala/RuPERTa_base_sentiment_analysis_es")
text ="Se trata de una película interesante, con un solido argumento y un gran interpretación de su actor principal"
input_ids = torch.tensor(tokenizer.encode(text)).unsqueeze(0)
outputs = model(input_ids)
output = outputs.logits.argmax(1)
```
Created by [Eduardo Muñoz/@edumunozsala](https://github.com/edumunozsala)
|
aXhyra/test_hate_trained_test
|
aXhyra
| 2021-12-12T18:11:11Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: test_hate_trained_test
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: hate
metrics:
- name: F1
type: f1
value: 0.7691585677255204
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# test_hate_trained_test
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1807
- F1: 0.7692
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.257754679724796e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.4362 | 1.0 | 1125 | 0.5282 | 0.7369 |
| 0.3193 | 2.0 | 2250 | 0.6364 | 0.7571 |
| 0.1834 | 3.0 | 3375 | 1.0346 | 0.7625 |
| 0.0776 | 4.0 | 4500 | 1.1807 | 0.7692 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
aXhyra/test_emotion_trained_test
|
aXhyra
| 2021-12-12T17:23:27Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: test_emotion_trained_test
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: emotion
metrics:
- name: F1
type: f1
value: 0.7014611518188594
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# test_emotion_trained_test
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5866
- F1: 0.7015
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.458132814624325e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 51 | 0.7877 | 0.5569 |
| No log | 2.0 | 102 | 0.6188 | 0.6937 |
| No log | 3.0 | 153 | 0.5969 | 0.7068 |
| No log | 4.0 | 204 | 0.5866 | 0.7015 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
aXhyra/test_irony_trained_test
|
aXhyra
| 2021-12-12T17:02:51Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: test_irony_trained_test
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: irony
metrics:
- name: F1
type: f1
value: 0.6680395323922843
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# test_irony_trained_test
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7674
- F1: 0.6680
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 9.207906329883037e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 358 | 0.6655 | 0.5924 |
| 0.684 | 2.0 | 716 | 0.6889 | 0.6024 |
| 0.5826 | 3.0 | 1074 | 0.7085 | 0.6488 |
| 0.5826 | 4.0 | 1432 | 0.7674 | 0.6680 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
aXhyra/hate_trained_31415
|
aXhyra
| 2021-12-12T12:57:50Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: hate_trained_31415
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: hate
metrics:
- name: F1
type: f1
value: 0.7729447444817463
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hate_trained_31415
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8568
- F1: 0.7729
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.7272339744854407e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 31415
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.482 | 1.0 | 563 | 0.4973 | 0.7672 |
| 0.3316 | 2.0 | 1126 | 0.4931 | 0.7794 |
| 0.2308 | 3.0 | 1689 | 0.7073 | 0.7593 |
| 0.1444 | 4.0 | 2252 | 0.8568 | 0.7729 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
aXhyra/irony_trained_31415
|
aXhyra
| 2021-12-12T12:17:08Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: irony_trained_31415
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: irony
metrics:
- name: F1
type: f1
value: 0.6690050628690761
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# irony_trained_31415
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6608
- F1: 0.6690
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.6774391860025942e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 31415
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.6547 | 1.0 | 716 | 0.6173 | 0.6508 |
| 0.57 | 2.0 | 1432 | 0.8629 | 0.6577 |
| 0.2955 | 3.0 | 2148 | 1.4836 | 0.6722 |
| 0.1903 | 4.0 | 2864 | 1.6608 | 0.6690 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
addy88/hubert-base-timit-demo-colab
|
addy88
| 2021-12-12T12:13:30Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"hubert",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: hubert-base-timit-demo-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hubert-base-timit-demo-colab
This model is a fine-tuned version of [facebook/hubert-large-ls960-ft](https://huggingface.co/facebook/hubert-large-ls960-ft) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1092
- Wer: 0.1728
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 5.4664 | 4.0 | 500 | 2.3026 | 0.9866 |
| 0.8171 | 8.0 | 1000 | 0.0980 | 0.1885 |
| 0.2983 | 12.0 | 1500 | 0.0943 | 0.1750 |
| 0.1769 | 16.0 | 2000 | 0.0990 | 0.1737 |
| 0.1823 | 20.0 | 2500 | 0.1068 | 0.1757 |
| 0.0761 | 24.0 | 3000 | 0.1041 | 0.1719 |
| 0.0993 | 28.0 | 3500 | 0.1092 | 0.1728 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
aXhyra/irony_trained_42
|
aXhyra
| 2021-12-12T12:10:39Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: irony_trained_42
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: irony
metrics:
- name: F1
type: f1
value: 0.6785912258473235
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# irony_trained_42
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5669
- F1: 0.6786
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.6774391860025942e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.6669 | 1.0 | 716 | 0.6291 | 0.6198 |
| 0.5655 | 2.0 | 1432 | 0.7332 | 0.6771 |
| 0.3764 | 3.0 | 2148 | 1.4193 | 0.6554 |
| 0.229 | 4.0 | 2864 | 1.5669 | 0.6786 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
aXhyra/hate_trained_final
|
aXhyra
| 2021-12-12T11:25:23Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: hate_trained_final
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: hate
metrics:
- name: F1
type: f1
value: 0.7697890540753396
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hate_trained_final
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5543
- F1: 0.7698
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.460503761236833e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.463 | 1.0 | 1125 | 0.5213 | 0.7384 |
| 0.3943 | 2.0 | 2250 | 0.5134 | 0.7534 |
| 0.3407 | 3.0 | 3375 | 0.5400 | 0.7666 |
| 0.3121 | 4.0 | 4500 | 0.5543 | 0.7698 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
aXhyra/emotion_trained_final
|
aXhyra
| 2021-12-12T10:50:02Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: emotion_trained_final
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: emotion
metrics:
- name: F1
type: f1
value: 0.7469065445487402
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# emotion_trained_final
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9349
- F1: 0.7469
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.502523631581398e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.9013 | 1.0 | 815 | 0.7822 | 0.6470 |
| 0.5008 | 2.0 | 1630 | 0.7142 | 0.7419 |
| 0.3684 | 3.0 | 2445 | 0.8621 | 0.7443 |
| 0.2182 | 4.0 | 3260 | 0.9349 | 0.7469 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
aXhyra/sentiment_trained_1234567
|
aXhyra
| 2021-12-11T22:29:06Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: sentiment_trained_1234567
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: sentiment
metrics:
- name: F1
type: f1
value: 0.7165064254565859
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sentiment_trained_1234567
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2854
- F1: 0.7165
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.2140338797769864e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 1234567
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.6603 | 1.0 | 11404 | 0.7020 | 0.6992 |
| 0.5978 | 2.0 | 22808 | 0.8024 | 0.7151 |
| 0.5495 | 3.0 | 34212 | 1.0837 | 0.7139 |
| 0.4026 | 4.0 | 45616 | 1.2854 | 0.7165 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
aXhyra/sentiment_trained_31415
|
aXhyra
| 2021-12-11T21:59:51Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: sentiment_trained_31415
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: sentiment
metrics:
- name: F1
type: f1
value: 0.7188262432133108
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sentiment_trained_31415
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2481
- F1: 0.7188
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.2140338797769864e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 31415
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.651 | 1.0 | 11404 | 0.6669 | 0.7141 |
| 0.6066 | 2.0 | 22808 | 0.8160 | 0.7198 |
| 0.503 | 3.0 | 34212 | 1.0659 | 0.7182 |
| 0.386 | 4.0 | 45616 | 1.2481 | 0.7188 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
aXhyra/sentiment_trained_42
|
aXhyra
| 2021-12-11T21:29:18Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: sentiment_trained_42
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: sentiment
metrics:
- name: F1
type: f1
value: 0.7131935389791447
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sentiment_trained_42
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3194
- F1: 0.7132
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.2140338797769864e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.6405 | 1.0 | 11404 | 0.6631 | 0.7046 |
| 0.5998 | 2.0 | 22808 | 0.8429 | 0.7102 |
| 0.5118 | 3.0 | 34212 | 1.0906 | 0.7155 |
| 0.3745 | 4.0 | 45616 | 1.3194 | 0.7132 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
marcolatella/emotion_trained_1234567
|
marcolatella
| 2021-12-11T21:27:53Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: emotion_trained_1234567
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: emotion
metrics:
- name: F1
type: f1
value: 0.7328362995029661
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# emotion_trained_1234567
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9045
- F1: 0.7328
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6.961635072722524e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 1234567
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 204 | 0.6480 | 0.7231 |
| No log | 2.0 | 408 | 0.6114 | 0.7403 |
| 0.5045 | 3.0 | 612 | 0.7593 | 0.7311 |
| 0.5045 | 4.0 | 816 | 0.9045 | 0.7328 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
harshit345/xlsr_wav2vec_english
|
harshit345
| 2021-12-11T21:22:37Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"en",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
language: en
datasets:
- common_voice
metrics:
- wer
- cer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: Wav2Vec2 English by Jonatas Grosman
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice en
type: common_voice
args: en
metrics:
- name: Test WER
type: wer
value: 21.53
- name: Test CER
type: cer
value: 9.66
---
# Wav2vec2-Large-English
Fine-tuned [facebook/wav2vec2-large](https://huggingface.co/facebook/wav2vec2-large) on English using the [Common Voice](https://huggingface.co/datasets/common_voice).
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows...
Using the [ASRecognition](https://github.com/jonatasgrosman/asrecognition) library:
```python
from asrecognition import ASREngine
asr = ASREngine("fr", model_path="jonatasgrosman/wav2vec2-large-english")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
transcriptions = asr.transcribe(audio_paths)
```
Writing your own inference script:
```python
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "en"
MODEL_ID = "jonatasgrosman/wav2vec2-large-english"
SAMPLES = 10
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = batch["sentence"].upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)
for i, predicted_sentence in enumerate(predicted_sentences):
print("-" * 100)
print("Reference:", test_dataset[i]["sentence"])
print("Prediction:", predicted_sentence)
```
| Reference | Prediction |
| ------------- | ------------- |
| "SHE'LL BE ALL RIGHT." | SHELL BE ALL RIGHT |
| SIX | SIX |
| "ALL'S WELL THAT ENDS WELL." | ALLAS WELL THAT ENDS WELL |
| DO YOU MEAN IT? | W MEAN IT |
| THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE, BUT STILL CAUSES REGRESSIONS. | THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE BUT STILL CAUSES REGRESTION |
| HOW IS MOZILLA GOING TO HANDLE AMBIGUITIES LIKE QUEUE AND CUE? | HOW IS MOSILLA GOING TO BANDL AND BE WHIT IS LIKE QU AND QU |
| "I GUESS YOU MUST THINK I'M KINDA BATTY." | RUSTION AS HAME AK AN THE POT |
| NO ONE NEAR THE REMOTE MACHINE YOU COULD RING? | NO ONE NEAR THE REMOTE MACHINE YOU COULD RING |
| SAUCE FOR THE GOOSE IS SAUCE FOR THE GANDER. | SAUCE FOR THE GUCE IS SAUCE FOR THE GONDER |
| GROVES STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD. | GRAFS STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD |
## Evaluation
The model can be evaluated as follows on the English (en) test data of Common Voice.
```python
import torch
import re
import librosa
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "en"
MODEL_ID = "jonatasgrosman/wav2vec2-large-english"
DEVICE = "cuda"
CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
"؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
"{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
"、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
"『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"]
test_dataset = load_dataset("common_voice", LANG_ID, split="test")
wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py
cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py
chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
model.to(DEVICE)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
predictions = [x.upper() for x in result["pred_strings"]]
references = [x.upper() for x in result["sentence"]]
print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
```
**Test Result**:
In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well. Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used.
| Model | WER | CER |
| ------------- | ------------- | ------------- |
| wav2vec2-large-xlsr-53-english | **18.98%** | **8.29%** |
| wav2vec2-large-xlsr-53-greek | 18.99% | 10.60% |
| wav2vec2-large-xlsr-53-hindi | 20.01% | 9.66% |
| wav2vec2-large-960h-lv60-english | 22.03% | 10.39% |
| wav2vec2-base-100h-lv60-english | 24.97% | 11.14% |
|
|
marcolatella/emotion_trained_31415
|
marcolatella
| 2021-12-11T21:18:38Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: emotion_trained_31415
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: emotion
metrics:
- name: F1
type: f1
value: 0.7213200335291519
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# emotion_trained_31415
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9166
- F1: 0.7213
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6.961635072722524e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 31415
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 204 | 0.6182 | 0.7137 |
| No log | 2.0 | 408 | 0.7472 | 0.6781 |
| 0.5084 | 3.0 | 612 | 0.8242 | 0.7236 |
| 0.5084 | 4.0 | 816 | 0.9166 | 0.7213 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
marcolatella/emotion_trained_42
|
marcolatella
| 2021-12-11T21:09:32Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: emotion_trained_42
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: emotion
metrics:
- name: F1
type: f1
value: 0.7319321237976675
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# emotion_trained_42
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8988
- F1: 0.7319
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6.961635072722524e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 204 | 0.6131 | 0.6955 |
| No log | 2.0 | 408 | 0.5837 | 0.7270 |
| 0.5149 | 3.0 | 612 | 0.8925 | 0.7267 |
| 0.5149 | 4.0 | 816 | 0.8988 | 0.7319 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
marcolatella/hate_trained_1234567
|
marcolatella
| 2021-12-11T20:59:59Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: hate_trained_1234567
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: hate
metrics:
- name: F1
type: f1
value: 0.7750768993843997
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hate_trained_1234567
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7927
- F1: 0.7751
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.7272339744854407e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 1234567
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.4835 | 1.0 | 563 | 0.4882 | 0.7534 |
| 0.3236 | 2.0 | 1126 | 0.5286 | 0.7590 |
| 0.2191 | 3.0 | 1689 | 0.6103 | 0.7717 |
| 0.1408 | 4.0 | 2252 | 0.7927 | 0.7751 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
marcolatella/hate_trained_31415
|
marcolatella
| 2021-12-11T20:49:00Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: hate_trained_31415
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: hate
metrics:
- name: F1
type: f1
value: 0.7718772273654051
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hate_trained_31415
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8507
- F1: 0.7719
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.7272339744854407e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 31415
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.4817 | 1.0 | 563 | 0.4975 | 0.7678 |
| 0.3311 | 2.0 | 1126 | 0.4965 | 0.7773 |
| 0.2303 | 3.0 | 1689 | 0.7102 | 0.7613 |
| 0.1429 | 4.0 | 2252 | 0.8507 | 0.7719 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
marcolatella/hate_trained_42
|
marcolatella
| 2021-12-11T20:38:02Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: hate_trained_42
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: hate
metrics:
- name: F1
type: f1
value: 0.7665230429627923
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hate_trained_42
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8996
- F1: 0.7665
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.7272339744854407e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.4833 | 1.0 | 563 | 0.4834 | 0.7543 |
| 0.3275 | 2.0 | 1126 | 0.5334 | 0.7755 |
| 0.2111 | 3.0 | 1689 | 0.6894 | 0.7674 |
| 0.1385 | 4.0 | 2252 | 0.8996 | 0.7665 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
BigSalmon/MrLincoln125MNeo
|
BigSalmon
| 2021-12-11T20:16:52Z | 25 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"gpt_neo",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:04Z |
Informal to Formal:
```
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("BigSalmon/MrLincoln125MNeo")
model = AutoModelWithLMHead.from_pretrained("BigSalmon/MrLincoln125MNeo")
```
```
https://huggingface.co/spaces/BigSalmon/InformalToFormal
```
```
How To Make Prompt:
informal english: i am very ready to do that just that.
Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end.
Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task.
informal english: space is huge and needs to be explored.
Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless.
Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration.
informal english: meteors are much harder to see, because they are only there for a fraction of a second.
Translated into the Style of Abraham Lincoln: meteors are not ( easily / readily ) detectable, lasting for mere fractions of a second.
informal english:
````
|
huggingtweets/twominutepapers
|
huggingtweets
| 2021-12-11T19:40:12Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/twominutepapers/1639251608395/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1218465731123335170/H68927B9_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Two Minute Papers 📜</div>
<div style="text-align: center; font-size: 14px;">@twominutepapers</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Two Minute Papers 📜.
| Data | Two Minute Papers 📜 |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 136 |
| Short tweets | 493 |
| Tweets kept | 2621 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/229twvl8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @twominutepapers's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3497hygw) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3497hygw/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/twominutepapers')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
fractalego/fact-checking
|
fractalego
| 2021-12-11T16:12:13Z | 40 | 9 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"doi:10.57967/hf/0009",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
## Fact checking
This generative model - trained on FEVER - aims to predict whether a claim is consistent with the provided evidence.
### Installation and simple usage
One quick way to install it is to type
```bash
pip install fact_checking
```
and then use the following code:
```python
from transformers import (
GPT2LMHeadModel,
GPT2Tokenizer,
)
from fact_checking import FactChecker
_evidence = """
Justine Tanya Bateman (born February 19, 1966) is an American writer, producer, and actress . She is best known for her regular role as Mallory Keaton on the sitcom Family Ties (1982 -- 1989). Until recently, Bateman ran a production and consulting company, SECTION 5 . In the fall of 2012, she started studying computer science at UCLA.
"""
_claim = 'Justine Bateman is a poet.'
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
fact_checking_model = GPT2LMHeadModel.from_pretrained('fractalego/fact-checking')
fact_checker = FactChecker(fact_checking_model, tokenizer)
is_claim_true = fact_checker.validate(_evidence, _claim)
print(is_claim_true)
```
which gives the output
```bash
False
```
### Probabilistic output with replicas
The output can include a probabilistic component, obtained by iterating a number of times the output generation.
The system generates an ensemble of answers and groups them by Yes or No.
For example, one can ask
```python
from transformers import (
GPT2LMHeadModel,
GPT2Tokenizer,
)
from fact_checking import FactChecker
_evidence = """
Jane writes code for Huggingface.
"""
_claim = 'Jane is an engineer.'
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
fact_checking_model = GPT2LMHeadModel.from_pretrained('fractalego/fact-checking')
fact_checker = FactChecker(fact_checking_model, tokenizer)
is_claim_true = fact_checker.validate_with_replicas(_evidence, _claim)
print(is_claim_true)
```
with output
```bash
{'Y': 0.95, 'N': 0.05}
```
### Score on FEVER
The predictions are evaluated on a subset of the FEVER dev dataset,
restricted to the SUPPORTING and REFUTING options:
| precision | recall | F1|
| --- | --- | --- |
|0.94|0.98|0.96|
These results should be taken with many grains of salt. This is still a work in progress,
and there might be leakage coming from the underlining GPT2 model unnaturally raising the scores.
|
aXhyra/sentiment_trained
|
aXhyra
| 2021-12-11T15:01:36Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: sentiment_trained
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: sentiment
metrics:
- name: F1
type: f1
value: 0.7253452834090693
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sentiment_trained
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2671
- F1: 0.7253
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.2140338797769864e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.6647 | 1.0 | 11404 | 0.6424 | 0.7189 |
| 0.6018 | 2.0 | 22808 | 0.7947 | 0.7170 |
| 0.5004 | 3.0 | 34212 | 1.0811 | 0.7200 |
| 0.3761 | 4.0 | 45616 | 1.2671 | 0.7253 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
deepmind/vision-perceiver-conv
|
deepmind
| 2021-12-11T13:12:42Z | 3,895 | 6 |
transformers
|
[
"transformers",
"pytorch",
"perceiver",
"image-classification",
"dataset:imagenet",
"arxiv:2107.14795",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
datasets:
- imagenet
---
# Perceiver IO for vision (convolutional processing)
Perceiver IO model pre-trained on ImageNet (14 million images, 1,000 classes) at resolution 224x224. It was introduced in the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Jaegle et al. and first released in [this repository](https://github.com/deepmind/deepmind-research/tree/master/perceiver).
Disclaimer: The team releasing Perceiver IO did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
Perceiver IO is a transformer encoder model that can be applied on any modality (text, images, audio, video, ...). The core idea is to employ the self-attention mechanism on a not-too-large set of latent vectors (e.g. 256 or 512), and only use the inputs to perform cross-attention with the latents. This allows for the time and memory requirements of the self-attention mechanism to not depend on the size of the inputs.
To decode, the authors employ so-called decoder queries, which allow to flexibly decode the final hidden states of the latents to produce outputs of arbitrary size and semantics. For image classification, the output is a tensor containing the logits, of shape (batch_size, num_labels).
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/perceiver_architecture.jpg" alt="drawing" width="600"/>
<small> Perceiver IO architecture.</small>
As the time and memory requirements of the self-attention mechanism don't depend on the size of the inputs, the Perceiver IO authors can train the model directly on raw pixel values, rather than on patches as is done in ViT. This particular model employs a simple 2D conv+maxpool preprocessing network on the pixel values, before using the inputs for cross-attention with the latents.
By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by replacing the classification decoder.
## Intended uses & limitations
You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=deepmind/perceiver) to look for other fine-tuned versions on a task that may interest you.
### How to use
Here is how to use this model in PyTorch:
```python
from transformers import PerceiverFeatureExtractor, PerceiverForImageClassificationConvProcessing
import requests
from PIL import Image
feature_extractor = PerceiverFeatureExtractor.from_pretrained("deepmind/vision-perceiver-conv")
model = PerceiverForImageClassificationConvProcessing.from_pretrained("deepmind/vision-perceiver-conv")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
# prepare input
inputs = feature_extractor(image, return_tensors="pt").pixel_values
# forward pass
outputs = model(inputs)
logits = outputs.logits
print("Predicted class:", model.config.id2label[logits.argmax(-1).item()])
>>> should print Predicted class: tabby, tabby cat
```
## Training data
This model was pretrained on [ImageNet](http://www.image-net.org/), a dataset consisting of 14 million images and 1k classes.
## Training procedure
### Preprocessing
Images are center cropped and resized to a resolution of 224x224 and normalized across the RGB channels. Note that data augmentation was used during pre-training, as explained in Appendix H of the [paper](https://arxiv.org/abs/2107.14795).
### Pretraining
Hyperparameter details can be found in Appendix H of the [paper](https://arxiv.org/abs/2107.14795).
## Evaluation results
This model is able to achieve a top-1 accuracy of 82.1 on ImageNet-1k.
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-2107-14795,
author = {Andrew Jaegle and
Sebastian Borgeaud and
Jean{-}Baptiste Alayrac and
Carl Doersch and
Catalin Ionescu and
David Ding and
Skanda Koppula and
Daniel Zoran and
Andrew Brock and
Evan Shelhamer and
Olivier J. H{\'{e}}naff and
Matthew M. Botvinick and
Andrew Zisserman and
Oriol Vinyals and
Jo{\~{a}}o Carreira},
title = {Perceiver {IO:} {A} General Architecture for Structured Inputs {\&}
Outputs},
journal = {CoRR},
volume = {abs/2107.14795},
year = {2021},
url = {https://arxiv.org/abs/2107.14795},
eprinttype = {arXiv},
eprint = {2107.14795},
timestamp = {Tue, 03 Aug 2021 14:53:34 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2107-14795.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
|
fernandoperlar/preprocessing_image
|
fernandoperlar
| 2021-12-11T12:51:29Z | 0 | 0 | null |
[
"region:us"
] | null | 2022-03-02T23:29:05Z |
<br />
<p align="center">
<a href="https://github.com/FernandoPerezLara/image-preprocessing-layer">
<img src="https://huggingface.co/fernandoperlar/preprocessing_image/resolve/main/duck.png" alt="Logo" width="100" height="146">
</a>
<h3 align="center">Image Preprocessing Model</h3>
<p align="center">
Image preprocessing in a convolutional model
<br />
<a href="https://github.com/FernandoPerezLara/image-preprocessing-layer"><strong>Read more about the model »</strong></a>
<br />
<br />
<a href="https://github.com/FernandoPerezLara/image-preprocessing-layer">View Code</a>
·
<a href="https://github.com/FernandoPerezLara/image-preprocessing-layer/issues">Report Bug</a>
·
<a href="https://github.com/FernandoPerezLara/image-preprocessing-layer/discussions">Start a discussion</a>
</p>
</p>
<br />
The main objective of this project is to apply preprocessing to an image dataset while the model is being trained.
The solution has been taken because we do not want to apply preprocessing to the data before training (i.e. create a copy of the data but already preprocessed) because we want to apply data augmentation while the model trains.
The use of `Lambda` layers has been discarded because they do not allow the use of external libraries that do not work with tensors, since we want to use the functions provided by *OpenCV* and *NumPy*.
## Preprocessing
In this example found in this repository we wanted to divide the images from HSV color masks, where it is divided into:
* **Warm zones**: red and white colors are obtained.
* **Warm zones**: The green color is obtained.
* **Cold zones**: The color blue is obtained.
Within the code you can find the declaration of these filters as:
```python
filters = {
"original": lambda x: x,
"red": lambda x: data.getImageTensor(x, (330, 0, 0), (360, 255, 255)) + data.getImageTensor(x, (0, 0, 0), (50, 255, 255)),
"green": lambda x: data.getImageTensor(x, (60, 0, 0), (130, 255, 255)),
"blue": lambda x: data.getImageTensor(x, (180, 0, 0), (270, 255, 255)),
}
```
On the other hand, the preprocessing functions are located inside `scripts/Data.py` file as follows:
```python
def detectColor(self, image, lower, upper):
if tf.is_tensor(image):
temp_image = image.numpy().copy() # Used for training
else:
temp_image = image.copy() # Used for displaying the image
hsv_image = temp_image.copy()
hsv_image = cv.cvtColor(hsv_image, cv.COLOR_RGB2HSV)
mask = cv.inRange(hsv_image, lower, upper)
result = temp_image.copy()
result[np.where(mask == 0)] = 0
return result
def getImageTensor(self, images, lower, upper):
results = []
for img in images:
results.append(np.expand_dims(self.detectColor(img, lower, upper), axis=0))
return np.concatenate(results, axis=0)
```
## Model
The model used to solve our problem was a *CNN* with a preprocessing layer:

This model can be found in the `scripts/Model.py` file in the following function:
```python
def create_model():
class FilterLayer(layers.Layer):
def __init__(self, filter, **kwargs):
self.filter = filter
super(FilterLayer, self).__init__(name="filter_layer", **kwargs)
def call(self, image):
shape = image.shape
[image, ] = tf.py_function(self.filter, [image], [tf.float32])
image = backend.stop_gradient(image)
image.set_shape(shape)
return image
def get_config(self):
return super().get_config()
model = models.Sequential()
model.add(layers.Input(shape=(215, 538, 3)))
model.add(FilterLayer(filter=self.filter))
model.add(layers.Conv2D(32, (3, 3), activation="relu"))
model.add(layers.MaxPooling2D(pool_size=(2, 2)))
model.add(layers.Conv2D(32, (3, 3), activation="relu"))
model.add(layers.GlobalAveragePooling2D())
model.add(layers.Dropout(rate=0.4))
model.add(layers.Dense(32, activation="relu"))
model.add(layers.Dropout(rate=0.4))
model.add(layers.Dense(2, activation="softmax"))
return model
```
## Contributors
This work has been possible thanks to:
- [Fernando Pérez Lara](https://www.linkedin.com/in/fernandoperezlara/) ([**@FernandoPerezLara**](https://github.com/FernandoPerezLara)) for having developed the model to make this idea come true.
## License
Copyright (c) 2021 Fernando Pérez Lara.
Licensed and distributed under the [MIT](LICENSE.txt) license.
|
explosion/de_udv25_germanhdt_trf
|
explosion
| 2021-12-11T11:13:30Z | 6 | 0 |
spacy
|
[
"spacy",
"token-classification",
"de",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- de
license: cc-by-sa-4.0
model-index:
- name: de_udv25_germanhdt_trf
results:
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9783706437
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9782287343
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.7811165904
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9204479606
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9728029281
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.9588036494
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.99750025
---
UD v2.5 benchmarking pipeline for UD_German-HDT
| Feature | Description |
| --- | --- |
| **Name** | `de_udv25_germanhdt_trf` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.2.1,<3.3.0` |
| **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (62832 labels for 6 components)</summary>
| Component | Labels |
| --- | --- |
| **`experimental_char_ner_tokenizer`** | `TOKEN` |
| **`senter`** | `I`, `S` |
| **`tagger`** | `$(`, `$,`, `$.`, `ADJA`, `ADJD`, `ADV`, `APPO`, `APPR`, `APPRART`, `APZR`, `ART`, `CARD`, `FM`, `ITJ`, `KOKOM`, `KON`, `KOUI`, `KOUS`, `NE`, `NN`, `PDAT`, `PDS`, `PIAT`, `PIDAT`, `PIS`, `PPER`, `PPOSAT`, `PPOSS`, `PRELAT`, `PRELS`, `PRF`, `PROAV`, `PTKA`, `PTKANT`, `PTKNEG`, `PTKVZ`, `PTKZU`, `PWAT`, `PWAV`, `PWS`, `TRUNC`, `VAFIN`, `VAIMP`, `VAINF`, `VAPP`, `VMFIN`, `VMINF`, `VMPP`, `VVFIN`, `VVIMP`, `VVINF`, `VVIZU`, `VVPP`, `XY` |
| **`morphologizer`** | `AdpType=Prep\|Case=Dat\|POS=ADP`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Gender=Fem\|Number=Sing\|POS=NOUN\|Person=3`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Number=Sing\|POS=PROPN\|Person=3`, `Foreign=Yes\|POS=X\|Person=3`, `POS=PUNCT\|PunctType=Comm`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=NOUN\|Person=3`, `Gender=Neut\|Number=Sing\|POS=NOUN\|Person=3`, `AdpType=Prep\|POS=ADP`, `Gender=Neut\|Number=Plur\|POS=NOUN\|Person=3`, `POS=CCONJ`, `POS=PUNCT\|PunctType=Peri`, `NumType=Card\|Number=Plur\|POS=NUM\|Person=3`, `Gender=Fem\|Number=Plur\|POS=NOUN\|Person=3`, `AdpType=Prep\|Case=Dat\|POS=ADP\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN\|Person=3`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `POS=PUNCT\|PunctType=Brck`, `POS=PROPN\|Person=3`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `POS=ADV`, `POS=SCONJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=VERB\|VerbForm=Inf`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN\|Person=3`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `Case=Acc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Number=Sing\|POS=PROPN\|Person=3`, `Degree=Cmp\|POS=ADJ\|Variant=Short`, `POS=ADP\|PartType=Vbp`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `AdpType=Prep\|Case=Acc\|POS=ADP`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=PART\|Polarity=Neg`, `Degree=Cmp\|POS=ADV`, `ConjType=Comp\|POS=CCONJ`, `Degree=Pos\|POS=ADJ\|Variant=Short`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Number=Sing\|POS=PROPN\|Person=3`, `Case=Nom\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Acc\|Number=Plur\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Aspect=Perf\|POS=VERB\|VerbForm=Part`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Acc\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Number=Plur\|POS=DET\|Person=3`, `Degree=Sup\|POS=ADJ\|Variant=Short`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Hyph=Yes\|POS=NOUN`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN\|Person=3`, `POS=PART\|PartType=Inf`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Dat\|Degree=Pos\|Number=Sing\|POS=ADJ`, `POS=NOUN\|Person=3`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=ADJ`, `POS=AUX\|VerbForm=Inf`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Gender=Fem\|Number=Plur\|POS=ADJ`, `POS=AUX\|VerbForm=Inf\|VerbType=Mod`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `AdpType=Prep\|Case=Dat\|Gender=Fem\|POS=ADP\|PronType=Art`, `Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN\|Person=3`, `POS=ADJ`, `Degree=Cmp\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Nom\|Number=Plur\|POS=DET\|PronType=Art`, `POS=ADV\|PronType=Int`, `Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Number=Plur\|POS=DET\|Person=3`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Degree=Pos\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|VerbType=Mod`, `Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `Number=Plur\|POS=NOUN\|Person=3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|VerbType=Mod`, `Gender=Fem\|Number=Sing\|POS=PROPN\|Person=3`, `Degree=Pos\|POS=ADV`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Degree=Cmp\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `AdpType=Prep\|Case=Gen\|POS=ADP`, `Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `AdpType=Post\|Case=Dat\|POS=ADP`, `Gender=Masc\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|POS=AUX\|VerbForm=Part`, `Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=ADJ\|Person=3`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Number=Sing\|POS=NOUN\|Person=3`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Degree=Pos\|Number=Plur\|POS=NOUN\|Person=3`, `Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Degree=Sup\|POS=ADV`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Degree=Sup\|Number=Plur\|POS=ADJ\|Person=3`, `Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `NumType=Card\|Number=Sing\|POS=NUM\|Person=3`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Number=Plur\|POS=DET\|Person=3`, `Case=Dat\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Number=Plur\|POS=PROPN\|Person=3`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Number=Sing\|POS=ADJ\|Person=3`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=ADJ`, `AdpType=Prep\|Case=Acc\|Gender=Neut\|POS=ADP\|PronType=Art`, `Case=Gen\|Number=Sing\|POS=PROPN\|Person=3`, `Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Number=Plur\|POS=ADJ\|Person=3`, `POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Nom\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Dat\|Number=Plur\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3`, `POS=ADJ\|Person=3`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Acc\|Number=Plur\|POS=DET\|PronType=Dem`, `AdpType=Circ\|POS=ADP`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `AdpType=Prep\|Case=Nom\|POS=ADP`, `Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=DET\|PronType=Rel`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3`, `Case=Dat\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Degree=Pos\|Number=Plur\|POS=ADJ\|Person=3`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3`, `Case=Dat\|Degree=Pos\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Number=Plur\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Foreign=Yes\|POS=X`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Dat\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Gen\|POS=PROPN\|Person=3`, `Case=Dat\|Number=Plur\|POS=DET\|Person=3`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Number=Plur\|POS=ADJ\|Person=3`, `POS=DET`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=X`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ`, `AdpType=Post\|Case=Acc\|POS=ADP`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Dat\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Degree=Sup\|Number=Plur\|POS=ADJ`, `POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Dat\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=ADJ\|Person=3`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3`, `Case=Gen\|Number=Sing\|POS=NOUN\|Person=3`, `NumType=Card\|POS=NUM`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Number=Plur\|POS=ADJ\|Person=3`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NOUN\|Person=3`, `Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Degree=Sup\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=3`, `Degree=Pos\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Acc\|Number=Plur\|POS=ADJ\|Person=3`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=3`, `Degree=Sup\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|POS=VERB\|Person=3\|VerbForm=Fin`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NOUN\|Person=3`, `POS=ADJ\|Variant=Short`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Foreign=Yes\|Number=Sing\|POS=X`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Aspect=Perf\|POS=AUX\|VerbForm=Part\|VerbType=Mod`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Gender=Masc\|POS=NOUN\|Person=3`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Sing\|POS=ADJ`, `Gender=Neut\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|POS=PROPN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ`, `POS=INTJ\|PartType=Res`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin`, `Foreign=Yes\|Gender=Neut\|Number=Sing\|POS=X\|Person=3`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `POS=DET\|PronType=Int`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `Degree=Pos\|Gender=Neut\|Number=Sing\|POS=NOUN\|Person=3`, `Gender=Neut\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Nom\|POS=NOUN\|Person=3`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|NumType=Card\|Number=Plur\|POS=NUM\|Person=3`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN\|Person=3`, `POS=PROPN`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|VerbType=Mod`, `Case=Acc\|POS=NOUN\|Person=3`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ\|Person=3`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PROPN\|Person=3`, `Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Gen\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Number=Plur\|POS=DET\|Person=3`, `Case=Nom\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Hyph=Yes\|Number=Plur\|POS=NOUN\|Person=3`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Dat\|POS=PROPN\|Person=3`, `Case=Gen\|Number=Plur\|POS=ADJ`, `Case=Gen\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Acc\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Degree=Pos\|Number=Sing\|POS=ADJ\|Person=3`, `POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Degree=Pos\|Number=Plur\|POS=ADJ\|Person=3`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Acc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|POS=PRON\|PronType=Ind,Neg,Tot`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|VerbType=Mod`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PROPN\|Person=3`, `Case=Dat\|Degree=Sup\|Number=Plur\|POS=ADJ`, `POS=PRON\|PronType=Int`, `Degree=Pos\|Number=Plur\|POS=ADJ\|Person=3`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Hyph=Yes\|POS=NOUN\|Person=3`, `Degree=Pos\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Dat\|NumType=Card\|Number=Plur\|POS=NUM\|Person=3`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `POS=INTJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Acc\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Dat\|Degree=Pos\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|POS=SCONJ`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Number=Sing\|POS=DET\|Person=3\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN\|Person=3`, `AdpType=Post\|Case=Gen\|POS=ADP`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Degree=Pos\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Mood=Ind\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADV`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Acc\|POS=PROPN\|Person=3`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=DET\|PronType=Ind,Neg,Tot`, `Degree=Pos\|POS=ADJ\|Person=3`, `Case=Acc\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|POS=PROPN\|Person=3`, `Case=Nom\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN\|Person=3`, `AdpType=Prep\|Case=Acc\|Gender=Fem\|POS=ADP\|PronType=Art`, `Degree=Pos\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Case=Nom\|POS=PRON\|PronType=Rel`, `Case=Acc\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN\|Person=3`, `AdpType=Prep\|Case=Dat\|Gender=Neut\|POS=ADP\|PronType=Art`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int`, `Case=Dat\|POS=NOUN\|Person=3`, `Degree=Pos\|POS=VERB\|VerbForm=Inf`, `Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Gender=Masc\|Number=Sing\|POS=ADJ\|Person=3\|Variant=Short`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN\|Person=3`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Gender=Neut\|Number=Sing\|POS=SCONJ\|Person=3`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Imp\|Number=Plur\|POS=AUX\|Person=2\|VerbForm=Fin`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin`, `POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=2\|VerbForm=Fin`, `Mood=Ind\|POS=VERB\|Person=1\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=NOUN\|Person=3`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|POS=DET\|PronType=Art`, `Degree=Pos\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Neg,Tot`, `AdpType=Prep\|POS=ADP\|PronType=Art`, `Number=Sing\|POS=PRON\|PronType=Ind,Neg,Tot`, `Degree=Sup\|Number=Plur\|POS=DET\|Person=3`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind,Neg,Tot`, `Number=Sing\|POS=DET`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin\|VerbType=Mod`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=ADJ\|Person=3`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=NOUN\|Person=3`, `AdpType=Prep\|Case=Dat\|Gender=Masc\|POS=ADP\|PronType=Art`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Degree=Pos\|Gender=Neut\|POS=ADJ`, `Gender=Fem\|POS=ADJ`, `Degree=Pos\|Gender=Fem\|POS=ADJ`, `Gender=Masc\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin\|VerbType=Mod`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin\|VerbType=Mod`, `POS=DET\|Person=3`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|VerbForm=Fin\|VerbType=Mod`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|VerbForm=Fin` |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound:prt`, `conj`, `cop`, `csubj`, `csubj:pass`, `dep`, `det`, `discourse`, `expl`, `expl:pv`, `flat`, `flat:name`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `parataxis`, `punct`, `reparandum`, `vocative`, `xcomp` |
| **`experimental_edit_tree_lemmatizer`** | -- |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_F` | 100.00 |
| `TOKEN_P` | 100.00 |
| `TOKEN_R` | 100.00 |
| `TOKEN_ACC` | 100.00 |
| `SENTS_F` | 99.75 |
| `SENTS_P` | 99.74 |
| `SENTS_R` | 99.76 |
| `TAG_ACC` | 97.84 |
| `POS_ACC` | 97.82 |
| `MORPH_ACC` | 78.11 |
| `DEP_UAS` | 97.28 |
| `DEP_LAS` | 95.88 |
| `LEMMA_ACC` | 92.04 |
|
explosion/es_udv25_spanishancora_trf
|
explosion
| 2021-12-11T07:23:23Z | 5 | 0 |
spacy
|
[
"spacy",
"token-classification",
"es",
"license:gpl-3.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- es
license: gpl-3.0
model-index:
- name: es_udv25_spanishancora_trf
results:
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9891586707
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9903472868
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9795632752
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9892930745
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9398674862
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.9194891243
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9798617373
---
UD v2.5 benchmarking pipeline for UD_Spanish-AnCora
| Feature | Description |
| --- | --- |
| **Name** | `es_udv25_spanishancora_trf` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.2.1,<3.3.0` |
| **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) |
| **License** | `GNU GPL 3.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (2060 labels for 6 components)</summary>
| Component | Labels |
| --- | --- |
| **`experimental_char_ner_tokenizer`** | `TOKEN` |
| **`senter`** | `I`, `S` |
| **`tagger`** | `ADJ`, `ADP`, `ADV`, `AUX`, `AUX_PRON`, `CCONJ`, `DET`, `INTJ`, `NOUN`, `NUM`, `PART`, `PRON`, `PROPN`, `PUNCT`, `PUNCT_VERB_PRON_PUNCT`, `SCONJ`, `SYM`, `VERB`, `VERB_PRON`, `X` |
| **`morphologizer`** | `Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=NOUN`, `AdpType=Preppron\|POS=ADP`, `Gender=Masc\|Number=Sing\|POS=ADJ`, `AdpType=Prep\|POS=ADP`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `POS=PROPN`, `Case=Acc,Dat\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `POS=VERB\|VerbForm=Inf`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Fem\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `POS=PRON\|PronType=Int,Rel`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `POS=SCONJ`, `POS=NOUN`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Number=Plur\|POS=NOUN`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=PUNCT\|PunctType=Peri`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=PUNCT\|PunctType=Comm`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Number=Plur\|POS=ADJ`, `POS=CCONJ`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `POS=ADV`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Tot`, `POS=PRON\|PronType=Ind`, `POS=ADV\|Polarity=Neg`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|PronType=Int,Rel`, `POS=PUNCT\|PunctType=Quot`, `POS=PUNCT`, `Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Brck`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Brck`, `NumForm=Digit\|NumType=Card\|POS=NUM`, `NumType=Card\|POS=NUM`, `POS=VERB\|VerbForm=Ger`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Fem\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Number=Sing\|POS=NOUN`, `Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Degree=Cmp\|POS=ADV`, `POS=AUX\|VerbForm=Inf`, `Number=Plur\|POS=DET\|PronType=Ind`, `Number=Plur\|POS=DET\|PronType=Dem`, `Degree=Cmp\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Case=Acc,Dat\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `AdvType=Tim\|POS=NOUN`, `AdpType=Prep\|POS=ADV`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `NumType=Card\|Number=Plur\|POS=NUM`, `AdpType=Preppron\|POS=ADV`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `NumForm=Digit\|POS=NOUN`, `Number=Sing\|POS=PRON\|PronType=Dem`, `AdpType=Preppron\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Number=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Plur\|POS=ADJ`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part`, `Number=Sing\|POS=DET\|PronType=Tot`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Degree=Cmp\|Number=Plur\|POS=ADJ`, `POS=AUX\|VerbForm=Ger`, `Gender=Fem\|POS=NOUN`, `Gender=Fem\|NumType=Ord\|Number=Sing\|POS=ADJ`, `AdvType=Tim\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Int,Rel`, `Number=Sing\|POS=PRON\|PronType=Int,Rel`, `POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc,Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=PART`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Number=Sing\|POS=DET\|PronType=Ind`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin`, `NumForm=Digit\|POS=SYM`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=1\|VerbForm=Fin`, `NumForm=Digit\|NumType=Frac\|POS=NUM`, `Gender=Fem\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Int,Rel`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc,Dat\|Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `POS=PUNCT\|PunctType=Colo`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Neg`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Number=Sing\|POS=PRON\|PronType=Neg`, `POS=PUNCT\|PunctType=Semi`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=PRON\|PronType=Ind`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `POS=INTJ`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=PRON\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `AdpType=Prep\|POS=ADJ`, `Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=PUNCT\|PunctType=Dash`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Neg`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Tot`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Gender=Masc\|POS=NOUN`, `Case=Acc,Dat\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Ind`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc,Dat\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Ger`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `POS=NOUN\|VerbForm=Inf`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Int,Rel`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Neg`, `Case=Acc,Dat\|Number=Plur\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Degree=Abs\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `POS=DET\|PronType=Ind`, `POS=DET\|PronType=Int,Rel`, `AdvType=Tim\|POS=ADV`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Qest`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Qest`, `Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Ind`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Degree=Abs\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc,Dat\|Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Case=Acc,Dat\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Excl`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Excl`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Case=Acc,Dat\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Tot`, `Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Dat\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Degree=Abs\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Pre\|PronType=Prs`, `Case=Acc,Dat\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Fin`, `Definite=Ind\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `POS=SCONJ\|PronType=Int,Rel`, `Case=Acc\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Acc,Dat\|Number=Sing\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `NumType=Card\|Number=Sing\|POS=DET\|PronType=Ind`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Case=Acc,Dat\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `POS=SYM`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Neg`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2,3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Ind`, `Case=Acc,Nom\|Number=Sing\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=PRON\|PronType=Int,Rel`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Acc,Dat\|Number=Plur\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=1\|VerbForm=Fin`, `NumType=Card\|Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Dem`, `Degree=Abs\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Gender=Fem\|Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Int,Rel`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Acc,Nom\|Number=Plur\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=2\|VerbForm=Fin`, `Case=Acc,Dat\|Number=Sing\|POS=VERB\|Person=2\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Ind`, `NumType=Card\|Number=Sing\|POS=NUM`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Com\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Pre\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Imp\|VerbForm=Fin`, `Case=Acc,Dat\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Pre\|PronType=Prs`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=2\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Number=Sing\|POS=NOUN\|VerbForm=Fin`, `Case=Acc,Dat\|Mood=Imp\|Number=Plur,Sing\|POS=VERB\|Person=1,2\|PrepCase=Npr\|PronType=Prs\|VerbForm=Fin`, `Case=Acc,Dat\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Tot`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `Number=Sing\|POS=VERB\|VerbForm=Fin`, `POS=VERB\|VerbForm=Fin`, `Degree=Abs\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Degree=Abs\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc,Dat\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Ger`, `Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `AdpType=Prep\|Degree=Cmp\|POS=ADV`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Dem`, `Definite=Ind\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Art`, `Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Acc,Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Gender=Masc\|Number=Sing\|POS=AUX\|VerbForm=Fin`, `Case=Acc,Dat\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Gender=Masc\|Number=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc,Dat\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=1,3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Fin`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Int,Rel`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Ind`, `Mood=Ind\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc,Dat\|Number=Plur\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Dem`, `Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc,Dat\|Number=Sing\|POS=VERB\|Person=2\|PrepCase=Npr\|PronType=Prs\|PunctType=Quot\|VerbForm=Inf`, `Case=Com\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Reflex=Yes`, `NumForm=Digit\|NumType=Frac\|POS=SYM`, `Case=Dat\|Number=Sing\|POS=AUX\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc,Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Ind`, `Case=Acc,Dat\|Number=Plur\|POS=VERB\|Person=2\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Number=Sing\|POS=PRON\|PronType=Tot`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `POS=PRON\|PronType=Dem`, `POS=AUX\|VerbForm=Fin`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Int,Rel`, `Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `AdvType=Tim\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=PRON\|PronType=Dem`, `Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Ind`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Ind`, `Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=NOUN\|VerbForm=Part`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Ind`, `Case=Acc,Dat\|Number=Sing\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Case=Acc\|Gender=Masc\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=1,3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Com\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Pre\|PronType=Prs`, `POS=X`, `Case=Com\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `POS=ADP`, `Case=Acc\|Gender=Masc\|Mood=Imp\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Fin`, `Case=Acc,Dat\|Number=Sing\|POS=AUX\|Person=1\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|Gender=Masc\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Fin`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Ind`, `Case=Dat\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc,Dat\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2,3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc,Dat\|Number=Plur\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Ger`, `Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `POS=NOUN\|PunctType=Comm`, `Degree=Cmp\|POS=ADJ`, `Gender=Masc\|POS=ADJ`, `Degree=Abs\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Ind`, `POS=PRON\|PronType=Neg`, `Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Ind`, `Number=Sing\|POS=DET\|PronType=Int,Rel` |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `dep`, `det`, `expl:pass`, `fixed`, `flat`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `orphan`, `parataxis`, `punct`, `xcomp` |
| **`experimental_edit_tree_lemmatizer`** | `1`, `2`, `5`, `6`, `8`, `10`, `14`, `16`, `18`, `20`, `22`, `24`, `25`, `27`, `29`, `33`, `36`, `38`, `40`, `42`, `45`, `48`, `50`, `54`, `57`, `59`, `60`, `62`, `64`, `66`, `68`, `71`, `73`, `75`, `77`, `81`, `83`, `85`, `87`, `88`, `91`, `93`, `95`, `97`, `99`, `100`, `102`, `104`, `106`, `108`, `110`, `112`, `114`, `115`, `117`, `119`, `120`, `122`, `49`, `125`, `126`, `128`, `130`, `134`, `138`, `140`, `143`, `145`, `146`, `148`, `150`, `151`, `153`, `156`, `158`, `160`, `162`, `164`, `167`, `170`, `171`, `173`, `177`, `178`, `179`, `181`, `182`, `184`, `186`, `187`, `188`, `191`, `193`, `195`, `198`, `201`, `202`, `13`, `204`, `206`, `208`, `210`, `214`, `216`, `218`, `221`, `223`, `224`, `226`, `228`, `230`, `232`, `234`, `235`, `237`, `239`, `241`, `242`, `244`, `248`, `250`, `254`, `257`, `258`, `260`, `261`, `262`, `264`, `265`, `266`, `267`, `269`, `271`, `273`, `277`, `278`, `280`, `284`, `286`, `288`, `289`, `290`, `291`, `293`, `296`, `298`, `300`, `302`, `304`, `306`, `308`, `309`, `313`, `315`, `319`, `321`, `322`, `323`, `324`, `325`, `327`, `328`, `330`, `332`, `336`, `338`, `339`, `341`, `342`, `343`, `345`, `347`, `348`, `350`, `351`, `352`, `354`, `355`, `357`, `359`, `361`, `363`, `365`, `367`, `370`, `372`, `375`, `377`, `379`, `382`, `385`, `389`, `391`, `393`, `395`, `397`, `398`, `400`, `402`, `404`, `408`, `410`, `413`, `415`, `416`, `418`, `419`, `420`, `422`, `424`, `427`, `429`, `431`, `433`, `434`, `435`, `436`, `438`, `440`, `441`, `443`, `445`, `447`, `448`, `450`, `451`, `452`, `454`, `456`, `457`, `458`, `460`, `462`, `463`, `465`, `466`, `468`, `470`, `473`, `477`, `478`, `480`, `481`, `483`, `485`, `489`, `491`, `492`, `494`, `496`, `498`, `500`, `501`, `504`, `505`, `506`, `507`, `509`, `511`, `514`, `516`, `519`, `521`, `522`, `524`, `526`, `528`, `532`, `535`, `538`, `541`, `543`, `545`, `546`, `548`, `550`, `554`, `555`, `557`, `559`, `560`, `561`, `562`, `564`, `565`, `567`, `569`, `571`, `572`, `573`, `575`, `576`, `579`, `582`, `584`, `586`, `589`, `590`, `591`, `592`, `595`, `596`, `597`, `599`, `600`, `601`, `603`, `606`, `607`, `608`, `610`, `615`, `617`, `618`, `622`, `624`, `625`, `626`, `627`, `629`, `631`, `633`, `585`, `634`, `636`, `637`, `638`, `639`, `643`, `644`, `646`, `647`, `648`, `650`, `651`, `653`, `654`, `657`, `658`, `660`, `662`, `663`, `667`, `669`, `671`, `673`, `674`, `678`, `680`, `683`, `684`, `685`, `686`, `688`, `689`, `692`, `693`, `695`, `696`, `697`, `699`, `701`, `702`, `704`, `707`, `709`, `711`, `712`, `714`, `715`, `717`, `718`, `719`, `720`, `722`, `725`, `728`, `730`, `732`, `733`, `734`, `735`, `736`, `738`, `739`, `740`, `741`, `743`, `745`, `748`, `750`, `752`, `753`, `755`, `756`, `759`, `760`, `763`, `764`, `765`, `766`, `768`, `770`, `772`, `773`, `774`, `775`, `776`, `778`, `779`, `780`, `783`, `785`, `786`, `788`, `791`, `793`, `795`, `797`, `798`, `800`, `803`, `804`, `805`, `807`, `808`, `810`, `813`, `816`, `819`, `821`, `823`, `824`, `825`, `826`, `829`, `832`, `833`, `836`, `129`, `837`, `838`, `839`, `843`, `845`, `846`, `848`, `849`, `851`, `852`, `853`, `855`, `856`, `857`, `858`, `862`, `864`, `866`, `868`, `869`, `873`, `875`, `877`, `878`, `879`, `882`, `884`, `886`, `888`, `890`, `891`, `892`, `893`, `895`, `897`, `898`, `900`, `902`, `904`, `906`, `907`, `909`, `910`, `912`, `914`, `915`, `916`, `918`, `920`, `921`, `923`, `924`, `926`, `928`, `930`, `931`, `933`, `935`, `936`, `937`, `939`, `940`, `943`, `944`, `945`, `946`, `947`, `949`, `951`, `952`, `953`, `955`, `956`, `957`, `0`, `959`, `961`, `963`, `965`, `966`, `968`, `969`, `970`, `972`, `973`, `975`, `976`, `978`, `979`, `980`, `982`, `983`, `984`, `986`, `987`, `989`, `990`, `993`, `995`, `996`, `997`, `1000`, `1003`, `1004`, `1006`, `1007`, `1008`, `1010`, `1012`, `1013`, `1014`, `1015`, `1017`, `1018`, `1021`, `1025`, `1027`, `1029`, `1030`, `1032`, `1034`, `1035`, `1036`, `1038`, `1039`, `1041`, `1043`, `1044`, `1045`, `1046`, `1047`, `1049`, `1050`, `1052`, `1053`, `1054`, `1055`, `1056`, `1057`, `1058`, `1060`, `1061`, `1063`, `1065`, `1067`, `1069`, `1070`, `1072`, `1075`, `1076`, `1077`, `1078`, `1079`, `1080`, `1081`, `1082`, `1085`, `1086`, `1088`, `1090`, `1091`, `1092`, `1093`, `1094`, `1096`, `1097`, `1100`, `1101`, `1103`, `1104`, `1106`, `1108`, `1109`, `1111`, `1112`, `1114`, `1115`, `1116`, `598`, `26`, `1117`, `1118`, `1119`, `1121`, `1122`, `1123`, `1124`, `1125`, `1127`, `1128`, `1130`, `1132`, `1133`, `1135`, `1137`, `1139`, `1140`, `1141`, `1142`, `1144`, `1147`, `1151`, `1152`, `1153`, `1155`, `1157`, `1160`, `1162`, `1163`, `1165`, `1166`, `1170`, `1171`, `1173`, `1175`, `1177`, `1179`, `1180`, `1183`, `1185`, `1186`, `1188`, `1189`, `1191`, `1192`, `1193`, `1196`, `65`, `1197`, `1198`, `1202`, `1204`, `1206`, `1208`, `1209`, `1210`, `1213`, `1214`, `1215`, `1218`, `1220`, `1221`, `1223`, `1225`, `1226`, `1228`, `1230`, `1232`, `1233`, `1235`, `1236`, `1237`, `1238`, `1241`, `1242`, `1243`, `1244`, `1248`, `1253`, `1254`, `1256`, `1259`, `1260`, `1262`, `1264`, `1265`, `1266`, `1267`, `1269`, `1272`, `1273`, `1274`, `1275`, `1277`, `1280`, `1283`, `1286`, `1289`, `1291`, `1293`, `1294`, `1295`, `1296`, `1297`, `1298`, `1300`, `1301`, `1303`, `1307`, `1309`, `1311`, `1312`, `1316`, `1317`, `1318`, `1319`, `1321`, `1322`, `1323`, `1324`, `1325`, `1326`, `1327`, `1329`, `1330`, `1331`, `1332`, `1333`, `1334`, `1335`, `1336`, `1338`, `1339`, `1341`, `1342`, `1344`, `1346`, `1347`, `1348`, `1349`, `1350`, `1351`, `1352`, `1354`, `1356`, `1357`, `1359`, `1360`, `1361`, `1363`, `1364`, `1365`, `1369`, `1370`, `1371`, `1372`, `1373`, `1377`, `1378`, `1379`, `1381`, `1382`, `1383`, `1385`, `1386`, `1388`, `1389`, `1390`, `1391`, `1392`, `1394`, `1395`, `1396`, `1398`, `1399`, `1400`, `1402`, `1403`, `1406`, `1408`, `1409`, `1410`, `1413`, `1415`, `1416`, `1417`, `1418`, `1419`, `1421`, `1422`, `1423`, `1425`, `1427`, `1428`, `1431`, `1432`, `1433`, `1434`, `1435`, `1437`, `1438`, `1441`, `1442`, `1443`, `1445`, `1446`, `1447`, `1448`, `1449`, `1450`, `1452`, `1453`, `1454`, `1455`, `1457`, `1458`, `1460`, `1462`, `1463`, `1464`, `1467`, `1468`, `1469`, `1470`, `1472`, `1477`, `1479`, `1481`, `1484`, `1486`, `1488`, `1489`, `1492`, `1494`, `1495`, `1496`, `1498`, `1500`, `1501`, `1503`, `1504`, `1505`, `1507`, `1509`, `1510`, `1512`, `1513`, `1514`, `1516`, `1518`, `1519`, `1520`, `1523`, `1525`, `1526`, `1527`, `1529`, `1531`, `1532`, `1533`, `1535`, `1536`, `1537`, `1538`, `1540`, `1541`, `1542`, `1544`, `1546`, `1547`, `1548`, `124`, `1549`, `1551`, `1553`, `1555`, `1557`, `1560`, `1561`, `1563`, `1564`, `1565`, `1569`, `1571`, `1572`, `1573`, `1574`, `1575`, `1577`, `1579`, `1581`, `1582`, `1583`, `1585`, `1588`, `1589`, `1590`, `1591`, `1592`, `1595`, `1596`, `1597`, `1598`, `1599`, `1600`, `1601`, `1603`, `1605`, `1609`, `1611`, `1613`, `1614`, `1618`, `1619`, `1622`, `1624`, `1626`, `1628`, `1630`, `1631`, `1634`, `1636`, `1637`, `1638`, `1640`, `1642`, `1643`, `1644`, `1645`, `1646`, `1648`, `1649`, `1650`, `1651`, `1652`, `1653`, `1654`, `1656`, `1658`, `1660`, `1662`, `1665`, `1667`, `1668`, `1669`, `1671`, `1672`, `1673`, `1674`, `1675`, `1676`, `1678`, `1680`, `1681`, `1682`, `1683`, `1684`, `1685`, `1686`, `1688`, `1689`, `1690`, `1691`, `1692`, `1694`, `1696`, `1697`, `1698`, `1700`, `1701`, `1702`, `1703`, `1704`, `1706`, `1708`, `1709`, `1710`, `1711`, `1712`, `1713`, `1714`, `1715`, `1717`, `1718`, `1719`, `1721`, `1722`, `1724`, `1725`, `1726`, `1728`, `1729`, `1730`, `1731`, `1732`, `1733`, `1735`, `1737`, `1739`, `1741`, `1743`, `1744`, `1745`, `1747`, `1749`, `1750`, `1752`, `1753`, `1756`, `1758`, `1760`, `1761`, `1762`, `1764`, `1765`, `1767`, `1769`, `1772`, `1773`, `1774`, `1775`, `1777`, `1778`, `1781`, `1783`, `1784`, `1786`, `1790`, `1791`, `1792`, `1793`, `1795`, `1796`, `1798`, `1799`, `1801`, `1802`, `1804`, `1805`, `1806`, `1807`, `1809`, `1810`, `1811`, `1814`, `1816`, `1817`, `1818`, `1819`, `1820`, `1822`, `1824`, `1826`, `1827`, `1829`, `1831`, `1832`, `1834`, `1836`, `1838`, `1840`, `1842`, `1843`, `1844`, `1845`, `1847`, `1848`, `1850`, `1851`, `1853`, `1854`, `1856`, `1859`, `1860`, `1861`, `1863`, `1865`, `1866`, `1868`, `1869`, `1870`, `1871`, `1873`, `1875`, `1877`, `1879`, `1881`, `1883`, `1884`, `1887`, `1889`, `1890`, `1892`, `1893`, `1894`, `1895`, `1897`, `1899`, `1902`, `1903`, `1904`, `1906`, `1907`, `1909`, `1910`, `1912`, `1913`, `1914`, `1916`, `1917`, `1918`, `1920`, `1921`, `1923`, `1926`, `1927`, `1928`, `1929`, `1930`, `1931`, `1932`, `1933`, `1934`, `1935`, `1937`, `1938`, `1939`, `1942`, `1943`, `1944`, `1945`, `1946`, `1947`, `1948`, `1949`, `1950`, `1952`, `1953`, `1955`, `1956`, `1957`, `1958`, `1959`, `1961`, `1964`, `1967`, `1969`, `1971`, `1972`, `1974`, `1975`, `1977`, `1978`, `1979`, `1980`, `1981`, `1922`, `1982`, `1983`, `1984`, `1986`, `1988`, `1989`, `1990`, `1992`, `1993`, `1994`, `1995`, `1998`, `1999`, `2000`, `2003`, `2006`, `2007`, `2008`, `2009`, `2011`, `2013`, `2015`, `2016`, `2017`, `2018`, `2020`, `2023`, `2027`, `2028`, `2030`, `2031`, `2032`, `2033`, `2034`, `2035`, `2036`, `2039`, `2042`, `2043`, `2045`, `2047`, `2050`, `2052`, `2053`, `2054`, `2055`, `2056`, `2057`, `2061`, `2062`, `2063`, `2064`, `2065`, `2066`, `2067`, `2068`, `2069`, `2070`, `2073`, `2074`, `2075`, `2076`, `2078`, `2079`, `2080`, `2081`, `2082`, `2083`, `2084`, `2089`, `2090`, `2092`, `2093`, `2094`, `2095`, `2096`, `2098`, `2099`, `2100`, `2101`, `2103`, `2104`, `2106`, `2108`, `2109`, `2110`, `2113`, `2116`, `2119`, `2121`, `2124`, `2125`, `2126`, `2127`, `2128`, `2129`, `2132`, `2133`, `2134`, `2136`, `2137`, `2138`, `2139`, `2140`, `2141`, `2142`, `2143`, `2145`, `2146`, `2147`, `2148`, `2149`, `2150`, `2151`, `2152`, `2153`, `2154`, `2155`, `2157`, `2159`, `2160`, `2161`, `2162`, `2163`, `2164`, `2166`, `2167`, `2169`, `2172`, `2173`, `2174`, `2175`, `2178`, `2180`, `2181`, `2184`, `2186`, `2189`, `2190`, `2191`, `2192`, `2194`, `2195`, `2197`, `2199`, `2200`, `2202`, `2203`, `2204`, `2205`, `2210`, `2211`, `2212`, `2214`, `2215`, `2216`, `2217`, `2218`, `2219`, `2220`, `2221`, `2222`, `2223`, `2225`, `2227`, `2228`, `2229`, `2230`, `2231`, `2232`, `2233`, `2234`, `2235`, `2238`, `2239`, `2240`, `2241`, `2242`, `2243`, `2244`, `2245`, `2246`, `2250`, `2252`, `2254`, `2255`, `2256`, `2257`, `2258`, `2259`, `2260`, `2262`, `2264`, `2265`, `2266`, `2267`, `2268`, `2269`, `2270`, `2271`, `2272`, `2273`, `2274`, `2275`, `2276`, `2277`, `2278`, `2279`, `2280`, `2281`, `2283`, `2284`, `2285`, `2286`, `2287`, `2288`, `2289`, `2290`, `2291`, `2293`, `2294`, `2295`, `2296`, `2297`, `2298`, `2299`, `2301`, `2303`, `2304`, `2305`, `2306`, `2307`, `2308`, `2309`, `2310`, `2312`, `2313`, `2314`, `2315`, `2317`, `2319`, `2320`, `2321`, `2322`, `2324`, `2325`, `2326`, `2328`, `2329`, `2330`, `2331`, `2332`, `2333`, `2334`, `2335`, `2336`, `2337`, `2338`, `2339`, `2341`, `2342`, `2346`, `2347`, `2352`, `2353`, `2356`, `2358`, `2359`, `2360`, `2361`, `2362`, `2364`, `2365`, `2366`, `2368`, `2371`, `2372`, `2374`, `2375`, `2376`, `2377`, `2378`, `2379`, `2380`, `2382`, `2383`, `2384`, `2386`, `2387`, `2388`, `2389`, `2391`, `2394`, `2395`, `2396`, `2398`, `2399`, `2400`, `2401`, `2403`, `2404`, `2406`, `2409`, `2410`, `2411`, `2415`, `2418`, `2419`, `2420`, `2421`, `2422`, `2423`, `2424`, `2425`, `2427`, `430`, `2428`, `2429`, `2430`, `2431`, `2432`, `2433`, `2434`, `2435`, `2436`, `2437`, `2438`, `2439`, `2440`, `2441`, `2442`, `2444`, `2445`, `2446`, `2447`, `2448`, `2449`, `2450`, `2451`, `2452`, `2453`, `2454`, `2456`, `2457`, `2458`, `2460`, `2461`, `2462`, `2463`, `2464`, `2465`, `2466`, `2467`, `2468`, `2469`, `2472`, `2474`, `2475`, `2476`, `2479`, `2480`, `2481`, `2482`, `2483`, `2484`, `2486`, `2487`, `2488`, `2490`, `2491`, `2493`, `2494`, `2495`, `2496`, `2497`, `2499`, `2500`, `2501`, `2502`, `2503`, `2504`, `2505`, `2506`, `2507`, `2508`, `2509`, `2510`, `2511`, `2512`, `2514`, `2515`, `2516`, `2517`, `2518`, `2519`, `2520`, `2521`, `2522`, `2523`, `2524`, `2525`, `2527`, `2528`, `2529`, `2530`, `2531`, `2532`, `2533`, `2535`, `2536`, `2537`, `2538`, `2539`, `2540`, `2541`, `2542`, `2543`, `2544`, `2545`, `2546`, `2547`, `2548`, `2550`, `2552`, `2554`, `2555`, `2556`, `2557`, `2558`, `2559`, `2560`, `2561`, `2562`, `2563`, `2566`, `2567`, `2568`, `2569`, `2570`, `2572`, `2574`, `2576`, `2577`, `2578`, `2580`, `2582`, `2583`, `2584`, `2585` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_F` | 99.98 |
| `TOKEN_P` | 99.98 |
| `TOKEN_R` | 99.99 |
| `TOKEN_ACC` | 100.00 |
| `SENTS_F` | 97.99 |
| `SENTS_P` | 97.43 |
| `SENTS_R` | 98.55 |
| `TAG_ACC` | 98.92 |
| `POS_ACC` | 99.03 |
| `MORPH_ACC` | 97.96 |
| `DEP_UAS` | 93.99 |
| `DEP_LAS` | 91.95 |
| `LEMMA_ACC` | 98.93 |
|
Jeska/BertjeWDialDataALLQonly07
|
Jeska
| 2021-12-11T05:43:17Z | 10 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:04Z |
---
tags:
- generated_from_trainer
model-index:
- name: BertjeWDialDataALLQonly07
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BertjeWDialDataALLQonly07
This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1135
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 18.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.3589 | 1.0 | 871 | 2.2805 |
| 2.2563 | 2.0 | 1742 | 2.2501 |
| 2.1936 | 3.0 | 2613 | 2.2419 |
| 2.11 | 4.0 | 3484 | 2.2301 |
| 2.0311 | 5.0 | 4355 | 2.2320 |
| 1.969 | 6.0 | 5226 | 2.2276 |
| 1.9148 | 7.0 | 6097 | 2.1621 |
| 1.8569 | 8.0 | 6968 | 2.1876 |
| 1.7978 | 9.0 | 7839 | 2.2011 |
| 1.7602 | 10.0 | 8710 | 2.1280 |
| 1.7166 | 11.0 | 9581 | 2.1644 |
| 1.6651 | 12.0 | 10452 | 2.1246 |
| 1.6141 | 13.0 | 11323 | 2.1264 |
| 1.5759 | 14.0 | 12194 | 2.1143 |
| 1.5478 | 15.0 | 13065 | 2.0982 |
| 1.5311 | 16.0 | 13936 | 2.0993 |
| 1.5187 | 17.0 | 14807 | 2.0979 |
| 1.4809 | 18.0 | 15678 | 2.0338 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0
- Datasets 1.16.1
- Tokenizers 0.10.3
|
nurkayevaa/autonlp-bert-covid-407910467
|
nurkayevaa
| 2021-12-11T05:31:06Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"autonlp",
"en",
"dataset:nurkayevaa/autonlp-data-bert-covid",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
tags: autonlp
language: en
widget:
- text: "I love AutoNLP 🤗"
datasets:
- nurkayevaa/autonlp-data-bert-covid
co2_eq_emissions: 10.719439124704492
---
# Model Trained Using AutoNLP
- Problem type: Binary Classification
- Model ID: 407910467
- CO2 Emissions (in grams): 10.719439124704492
## Validation Metrics
- Loss: 0.12029844522476196
- Accuracy: 0.9516339869281045
- Precision: 0.9477786438035853
- Recall: 0.9650793650793651
- AUC: 0.9907376734912967
- F1: 0.9563507668108534
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/nurkayevaa/autonlp-bert-covid-407910467
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("nurkayevaa/autonlp-bert-covid-407910467", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("nurkayevaa/autonlp-bert-covid-407910467", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
```
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.