modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-03 12:31:03
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
537 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-03 12:30:52
card
stringlengths
11
1.01M
Joserzapata/speecht5_finetuned_voxpopuli_es
Joserzapata
2023-07-14T00:12:01Z
87
0
transformers
[ "transformers", "pytorch", "tensorboard", "speecht5", "text-to-audio", "generated_from_trainer", "text-to-speech", "es", "dataset:facebook/voxpopuli", "license:mit", "endpoints_compatible", "region:us" ]
text-to-speech
2023-07-13T21:42:55Z
--- language: - es license: mit tags: - generated_from_trainer datasets: - facebook/voxpopuli model-index: - name: SpeechT5 spanish Speaker results: [] pipeline_tag: text-to-speech --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SpeechT5 spanish Speaker This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the Vox Populi es dataset. It achieves the following results on the evaluation set: - Loss: 0.4448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5134 | 4.32 | 1000 | 0.4636 | | 0.4907 | 8.64 | 2000 | 0.4527 | | 0.4814 | 12.97 | 3000 | 0.4459 | | 0.4777 | 17.29 | 4000 | 0.4448 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
soBeauty/3_20230714_01-xlm-roberta-base-confusion
soBeauty
2023-07-13T23:40:45Z
159
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-07-13T16:06:37Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: 3_20230714_01-xlm-roberta-base-confusion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 3_20230714_01-xlm-roberta-base-confusion This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Accuracy: 0.4517 - Loss: 2.9346 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 3.9937 | 3.85 | 500 | 0.3272 | 3.7611 | | 3.3422 | 7.69 | 1000 | 0.4517 | 2.9346 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
conorjudge/xlm-roberta-base-finetuned-panx-de
conorjudge
2023-07-13T23:30:34Z
134
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-13T23:25:56Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8609120891618334 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1400 - F1: 0.8609 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2581 | 1.0 | 525 | 0.1584 | 0.8233 | | 0.1252 | 2.0 | 1050 | 0.1384 | 0.8491 | | 0.0811 | 3.0 | 1575 | 0.1400 | 0.8609 | ### Framework versions - Transformers 4.16.2 - Pytorch 2.0.1+cu118 - Datasets 1.16.1 - Tokenizers 0.13.3
Jonathaniu/vicuna-breast-cancer-7b-ep-1
Jonathaniu
2023-07-13T23:04:54Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-13T23:04:32Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False ### Framework versions - PEFT 0.4.0.dev0
Karras10/sks-dog-model
Karras10
2023-07-13T22:10:33Z
33
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-13T22:06:28Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - Karras10/sks-dog-model This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
NasimB/gpt2-concat-guten-rarity-no-cut-corrected
NasimB
2023-07-13T21:58:55Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-13T20:05:03Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-concat-guten-rarity-no-cut-corrected results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-concat-guten-rarity-no-cut-corrected This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.3120 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.7039 | 0.29 | 500 | 5.6444 | | 5.3477 | 0.58 | 1000 | 5.1977 | | 4.9877 | 0.87 | 1500 | 4.9542 | | 4.7147 | 1.16 | 2000 | 4.8034 | | 4.5565 | 1.46 | 2500 | 4.6723 | | 4.4503 | 1.75 | 3000 | 4.5667 | | 4.3289 | 2.04 | 3500 | 4.4930 | | 4.1305 | 2.33 | 4000 | 4.4433 | | 4.0991 | 2.62 | 4500 | 4.3879 | | 4.0629 | 2.91 | 5000 | 4.3392 | | 3.8648 | 3.2 | 5500 | 4.3323 | | 3.8005 | 3.49 | 6000 | 4.2991 | | 3.7818 | 3.79 | 6500 | 4.2701 | | 3.6998 | 4.08 | 7000 | 4.2639 | | 3.5113 | 4.37 | 7500 | 4.2592 | | 3.5113 | 4.66 | 8000 | 4.2454 | | 3.5008 | 4.95 | 8500 | 4.2317 | | 3.3469 | 5.24 | 9000 | 4.2439 | | 3.3188 | 5.53 | 9500 | 4.2429 | | 3.3168 | 5.82 | 10000 | 4.2418 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
Leon68/falcon7b-openassistant
Leon68
2023-07-13T21:57:22Z
56
0
transformers
[ "transformers", "pytorch", "RefinedWebModel", "text-generation", "generated_from_trainer", "custom_code", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "region:us" ]
text-generation
2023-07-13T21:10:15Z
--- tags: - generated_from_trainer model-index: - name: falcon7b-openassistant results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # falcon7b-openassistant This model is a fine-tuned version of [ybelkada/falcon-7b-sharded-bf16](https://huggingface.co/ybelkada/falcon-7b-sharded-bf16) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - training_steps: 50 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
VK246/IC_ver6c_coco_swin_gpt2_50Apc_1e
VK246
2023-07-13T21:57:18Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:coco", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-07-13T18:49:51Z
--- tags: - generated_from_trainer datasets: - coco metrics: - rouge - bleu model-index: - name: IC_ver6c_coco_swin_gpt2_50Apc_1e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IC_ver6c_coco_swin_gpt2_50Apc_1e This model is a fine-tuned version of [VK246/IC_ver6b_coco_swin_gpt2_50Bpc_1e](https://huggingface.co/VK246/IC_ver6b_coco_swin_gpt2_50Bpc_1e) on the coco dataset. It achieves the following results on the evaluation set: - Loss: 0.7946 - Rouge1: 41.9094 - Rouge2: 16.3068 - Rougel: 38.073 - Rougelsum: 38.0746 - Bleu: 10.1966 - Gen Len: 11.2806 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 96 - eval_batch_size: 96 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|:-------:| | 0.8232 | 0.17 | 500 | 0.8331 | 40.454 | 15.1311 | 36.7639 | 36.7714 | 9.2957 | 11.2806 | | 0.8016 | 0.34 | 1000 | 0.8200 | 40.6374 | 15.5346 | 36.902 | 36.9055 | 9.6894 | 11.2806 | | 0.8048 | 0.51 | 1500 | 0.8136 | 41.3382 | 15.9333 | 37.6502 | 37.6442 | 9.7743 | 11.2806 | | 0.8018 | 0.68 | 2000 | 0.8028 | 41.5968 | 16.106 | 37.8326 | 37.836 | 9.9815 | 11.2806 | | 0.8075 | 0.85 | 2500 | 0.7978 | 41.7017 | 16.1589 | 37.8899 | 37.8954 | 10.1244 | 11.2806 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
lovelyxs/a2c-PandaReachDense-v2
lovelyxs
2023-07-13T21:46:19Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-13T21:45:52Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.94 +/- 0.38 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
nolanaatama/jhpfbtsrvcv1mscnd
nolanaatama
2023-07-13T21:44:52Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-13T21:41:18Z
--- license: creativeml-openrail-m ---
SerchOnodera117/Lora-chan
SerchOnodera117
2023-07-13T21:07:43Z
0
0
allennlp
[ "allennlp", "code", "es", "dataset:Open-Orca/OpenOrca", "license:openrail", "region:us" ]
null
2023-07-13T21:05:50Z
--- license: openrail datasets: - Open-Orca/OpenOrca language: - es metrics: - character - accuracy - code_eval library_name: allennlp tags: - code ---
lovelyxs/a2c-AntBulletEnv-v0
lovelyxs
2023-07-13T20:49:06Z
1
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-13T20:38:39Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1134.23 +/- 127.11 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Jonathaniu/vicuna-breast-cancer-7b-epoch-1
Jonathaniu
2023-07-13T20:35:49Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-13T20:35:32Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False ### Framework versions - PEFT 0.4.0.dev0
jliu596/a2c-AntBulletEnv-v0
jliu596
2023-07-13T20:34:55Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-13T19:50:18Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 520.21 +/- 33.39 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
magooie/dqn-SpaceInvadersNoFrameskip-v4
magooie
2023-07-13T20:20:10Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-10T20:33:09Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 508.00 +/- 223.02 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga magooie -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga magooie -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga magooie ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
RushTurtle/crnn_vgg16_bn_20230713-182606
RushTurtle
2023-07-13T20:19:04Z
45
0
transformers
[ "transformers", "pytorch", "en", "endpoints_compatible", "region:us" ]
null
2023-07-13T20:18:57Z
--- language: en --- <p align="center"> <img src="https://doctr-static.mindee.com/models?id=v0.3.1/Logo_doctr.gif&src=0" width="60%"> </p> **Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch** ## Task: recognition https://github.com/mindee/doctr ### Example usage: ```python >>> from doctr.io import DocumentFile >>> from doctr.models import ocr_predictor, from_hub >>> img = DocumentFile.from_images(['<image_path>']) >>> # Load your model from the hub >>> model = from_hub('mindee/my-model') >>> # Pass it to the predictor >>> # If your model is a recognition model: >>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', >>> reco_arch=model, >>> pretrained=True) >>> # If your model is a detection model: >>> predictor = ocr_predictor(det_arch=model, >>> reco_arch='crnn_mobilenet_v3_small', >>> pretrained=True) >>> # Get your predictions >>> res = predictor(img) ``` ### Run Configuration { "arch": "crnn_vgg16_bn", "train_path": "/tmp/dataset/train3_1100/", "val_path": "/tmp/dataset/val3_1100/", "train_samples": 1000, "val_samples": 20, "font": "FreeMono.ttf,FreeSans.ttf,FreeSerif.ttf", "min_chars": 1, "max_chars": 12, "name": null, "epochs": 1200, "batch_size": 64, "device": 0, "input_size": 32, "lr": 0.001, "weight_decay": 0, "workers": 16, "resume": null, "vocab": "french", "test_only": false, "show_samples": false, "wb": false, "push_to_hub": true, "pretrained": false, "sched": "cosine", "amp": false, "find_lr": false }
LarryAIDraw/fubuki-v2
LarryAIDraw
2023-07-13T20:01:20Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-13T17:28:08Z
--- license: creativeml-openrail-m --- https://civitai.com/models/8855/fubuki-one-punch-man-or-goofy-ai
Tasaloris13/finetuned-college-1
Tasaloris13
2023-07-13T19:59:48Z
3
0
peft
[ "peft", "region:us" ]
null
2023-07-13T19:59:42Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
grace-pro/afro-xlmr-base-hausa-5e-5
grace-pro
2023-07-13T19:51:42Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-13T19:22:13Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: afro-xlmr-base-hausa-5e-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # afro-xlmr-base-hausa-5e-5 This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co/Davlan/afro-xlmr-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1512 - Precision: 0.7391 - Recall: 0.5807 - F1: 0.6504 - Accuracy: 0.9616 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1604 | 1.0 | 1312 | 0.1395 | 0.6845 | 0.4906 | 0.5716 | 0.9535 | | 0.1221 | 2.0 | 2624 | 0.1261 | 0.7140 | 0.5440 | 0.6175 | 0.9582 | | 0.0939 | 3.0 | 3936 | 0.1311 | 0.7433 | 0.5693 | 0.6448 | 0.9610 | | 0.0723 | 4.0 | 5248 | 0.1419 | 0.7508 | 0.5583 | 0.6404 | 0.9613 | | 0.0557 | 5.0 | 6560 | 0.1512 | 0.7391 | 0.5807 | 0.6504 | 0.9616 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
csalaam/bias-classification-setfit-model-womenbias
csalaam
2023-07-13T19:41:40Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-07-13T19:00:14Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # csalaam/bias-classification-setfit-model-womenbias This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("csalaam/bias-classification-setfit-model-womenbias") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
KingAsiedu/tweet_sentiments_analysis
KingAsiedu
2023-07-13T19:40:12Z
162
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-13T19:37:57Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: tweet_sentiments_analysis results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tweet_sentiments_analysis This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.7995 - eval_accuracy: 0.7575 - eval_runtime: 64.2032 - eval_samples_per_second: 31.151 - eval_steps_per_second: 3.894 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1000 ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Stancld/longt5-tglobal-large-16384-pubmed-3k_steps
Stancld
2023-07-13T19:39:23Z
1,066
21
transformers
[ "transformers", "pytorch", "jax", "safetensors", "longt5", "text2text-generation", "en", "dataset:ccdv/pubmed-summarization", "arxiv:2112.07916", "arxiv:1910.10683", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-10T12:24:12Z
--- language: en datasets: - ccdv/pubmed-summarization license: apache-2.0 --- ## Introduction [Google's LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/pdf/2112.07916.pdf) introduced as an extension of a successful [T5 model](https://arxiv.org/pdf/1910.10683.pdf). This is an unofficial *longt5-large-16384-pubmed-3k_steps* checkpoint. I.e., this is a large configuration of the LongT5 model with a `transient-global` attention fine-tuned on [pubmed summarization dataset](https://huggingface.co/datasets/ccdv/pubmed-summarization) for 3,000 training steps. It may be worth continuing in the fine-tuning as we did not train the model until the convergence. ## Results and Fine-tuning Details The fine-tuned model achieves the following results on the evaluation set using `beam_search=3` and without any specific calibration of generation parameters are presented below, altogether with the results from the original paper (the original scores are higher, very likely due to a higher number of training steps). | Metric | Score | Score (original paper) | --- | --- | --- | | Rouge-1 | 47.44 | 49.98 | | Rouge-2 | 22.68 | 24.69 | | Rouge-L | 29.83 | x | | Rouge-Lsum | 43.13 | 46.46 | The training parameters follow the ones specified in the paper. We accumulated batch size to 128 examples and used `Adafactor` optimizer with a constant learning rate `0.001`. The full training hyper-parameters and logs can be found via the following [W&B run](https://wandb.ai/stancld/LongT5/runs/1lwncl8a?workspace=user-stancld). The model was trained using the [HuggingFace's trainer](https://github.com/huggingface/transformers/blob/main/src/transformers/trainer_seq2seq.py). The only specific adjustment, I made for the training, was dropping very short input articles (less than 16 words (a bit of mistake, should be less than 16 tokens)) as this sequences do not contribute to gradient creation in the *transient-global* attention, which resulted in training crashes when DDP used. ## Usage ```python LONG_ARTICLE = """"anxiety affects quality of life in those living with parkinson 's disease ( pd ) more so than overall cognitive status , motor deficits , apathy , and depression [ 13 ] . although anxiety and depression are often related and coexist in pd patients , recent research suggests that anxiety rather than depression is the most prominent and prevalent mood disorder in pd [ 5 , 6 ] . yet , our current understanding of anxiety and its impact on cognition in pd , as well as its neural basis and best treatment practices , remains meager and lags far behind that of depression . overall , neuropsychiatric symptoms in pd have been shown to be negatively associated with cognitive performance . for example , higher depression scores have been correlated with lower scores on the mini - mental state exam ( mmse ) [ 8 , 9 ] as well as tests of memory and executive functions ( e.g. , attention ) [ 1014 ] . likewise , apathy and anhedonia in pd patients have been associated with executive dysfunction [ 10 , 1523 ] . however , few studies have specifically investigated the relationship between anxiety and cognition in pd . one study showed a strong negative relationship between anxiety ( both state and trait ) and overall cognitive performance ( measured by the total of the repeatable battery for the assessment of neuropsychological status index ) within a sample of 27 pd patients . furthermore , trait anxiety was negatively associated with each of the cognitive domains assessed by the rbans ( i.e. , immediate memory , visuospatial construction , language , attention , and delayed memory ) . two further studies have examined whether anxiety differentially affects cognition in patients with left - sided dominant pd ( lpd ) versus right - sided dominant pd ( rpd ) ; however , their findings were inconsistent . the first study found that working memory performance was worse in lpd patients with anxiety compared to rpd patients with anxiety , whereas the second study reported that , in lpd , apathy but not anxiety was associated with performance on nonverbally mediated executive functions and visuospatial tasks ( e.g. , tmt - b , wms - iii spatial span ) , while in rpd , anxiety but not apathy significantly correlated with performance on verbally mediated tasks ( e.g. , clock reading test and boston naming test ) . furthermore , anxiety was significantly correlated with neuropsychological measures of attention and executive and visuospatial functions . taken together , it is evident that there are limited and inconsistent findings describing the relationship between anxiety and cognition in pd and more specifically how anxiety might influence particular domains of cognition such as attention and memory and executive functioning . it is also striking that , to date , no study has examined the influence of anxiety on cognition in pd by directly comparing groups of pd patients with and without anxiety while excluding depression . given that research on healthy young adults suggests that anxiety reduces processing capacity and impairs processing efficiency , especially in the central executive and attentional systems of working memory [ 26 , 27 ] , we hypothesized that pd patients with anxiety would show impairments in attentional set - shifting and working memory compared to pd patients without anxiety . furthermore , since previous work , albeit limited , has focused on the influence of symptom laterality on anxiety and cognition , we also explored this relationship . seventeen pd patients with anxiety and thirty - three pd patients without anxiety were included in this study ( see table 1 ) . the cross - sectional data from these participants was taken from a patient database that has been compiled over the past 8 years ( since 2008 ) at the parkinson 's disease research clinic at the brain and mind centre , university of sydney . inclusion criteria involved a diagnosis of idiopathic pd according to the united kingdom parkinson 's disease society brain bank criteria and were confirmed by a neurologist ( sjgl ) . patients also had to have an adequate proficiency in english and have completed a full neuropsychological assessment . ten patients in this study ( 5 pd with anxiety ; 5 pd without anxiety ) were taking psychotropic drugs ( i.e. , benzodiazepine or selective serotonin reuptake inhibitor ) . patients were also excluded if they had other neurological disorders , psychiatric disorders other than affective disorders ( such as anxiety ) , or if they reported a score greater than six on the depression subscale of the hospital anxiety and depression scale ( hads ) . thus , all participants who scored within a depressed ( hads - d > 6 ) range were excluded from this study , in attempt to examine a refined sample of pd patients with and without anxiety in order to determine the independent effect of anxiety on cognition . this research was approved by the human research ethics committee of the university of sydney , and written informed consent was obtained from all participants . self - reported hads was used to assess anxiety in pd and has been previously shown to be a useful measure of clinical anxiety in pd . a cut - off score of > 8 on the anxiety subscale of the hads ( hads - a ) was used to identify pd cases with anxiety ( pda+ ) , while a cut - off score of < 6 on the hads - a was used to identify pd cases without anxiety ( pda ) . this criterion was more stringent than usual ( > 7 cut - off score ) , in effort to create distinct patient groups . the neurological evaluation rated participants according to hoehn and yahr ( h&y ) stages and assessed their motor symptoms using part iii of the revised mds task force unified parkinson 's disease rating scale ( updrs ) . in a similar way this was determined by calculating a total left and right score from rigidity items 3035 , voluntary movement items 3643 , and tremor items 5057 from the mds - updrs part iii ( see table 1 ) . processing speed was assessed using the trail making test , part a ( tmt - a , z - score ) . attentional set - shifting was measured using the trail making test , part b ( tmt - b , z - score ) . working memory was assessed using the digit span forward and backward subtest of the wechsler memory scale - iii ( raw scores ) . language was assessed with semantic and phonemic verbal fluency via the controlled oral word associated test ( cowat animals and letters , z - score ) . the ability to retain learned verbal memory was assessed using the logical memory subtest from the wechsler memory scale - iii ( lm - i z - score , lm - ii z - score , % lm retention z - score ) . the mini - mental state examination ( mmse ) demographic , clinical , and neuropsychological variables were compared between the two groups with the independent t - test or mann whitney u test , depending on whether the variable met parametric assumptions . chi - square tests were used to examine gender and symptom laterality differences between groups . all analyses employed an alpha level of p < 0.05 and were two - tailed . spearman correlations were performed separately in each group to examine associations between anxiety and/or depression ratings and cognitive functions . as expected , the pda+ group reported significant greater levels of anxiety on the hads - a ( u = 0 , p < 0.001 ) and higher total score on the hads ( u = 1 , p < 0.001 ) compared to the pda group ( table 1 ) . groups were matched in age ( t(48 ) = 1.31 , p = 0.20 ) , disease duration ( u = 259 , p = 0.66 ) , updrs - iii score ( u = 250.5 , p = 0.65 ) , h&y ( u = 245 , p = 0.43 ) , ledd ( u = 159.5 , p = 0.80 ) , and depression ( hads - d ) ( u = 190.5 , p = 0.06 ) . additionally , all groups were matched in the distribution of gender ( = 0.098 , p = 0.75 ) and side - affected ( = 0.765 , p = 0.38 ) . there were no group differences for tmt - a performance ( u = 256 , p = 0.62 ) ( table 2 ) ; however , the pda+ group had worse performance on the trail making test part b ( t(46 ) = 2.03 , p = 0.048 ) compared to the pda group ( figure 1 ) . the pda+ group also demonstrated significantly worse performance on the digit span forward subtest ( t(48 ) = 2.22 , p = 0.031 ) and backward subtest ( u = 190.5 , p = 0.016 ) compared to the pda group ( figures 2(a ) and 2(b ) ) . neither semantic verbal fluency ( t(47 ) = 0.70 , p = 0.49 ) nor phonemic verbal fluency ( t(47 ) = 0.39 , p = 0.70 ) differed between groups . logical memory i immediate recall test ( u = 176 , p = 0.059 ) showed a trend that the pda+ group had worse new verbal learning and immediate recall abilities than the pda group . however , logical memory ii test performance ( u = 219 , p = 0.204 ) and logical memory % retention ( u = 242.5 , p = 0.434 ) did not differ between groups . there were also no differences between groups in global cognition ( mmse ) ( u = 222.5 , p = 0.23 ) . participants were split into lpd and rpd , and then further group differences were examined between pda+ and pda. importantly , the groups remained matched in age , disease duration , updrs - iii , dde , h&y stage , and depression but remained significantly different on self - reported anxiety . lpda+ demonstrated worse performance on the digit span forward test ( t(19 ) = 2.29 , p = 0.033 ) compared to lpda , whereas rpda+ demonstrated worse performance on the digit span backward test ( u = 36.5 , p = 0.006 ) , lm - i immediate recall ( u = 37.5 , p = 0.008 ) , and lm - ii ( u = 45.0 , p = 0.021 ) but not lm % retention ( u = 75.5 , p = 0.39 ) compared to rpda. this study is the first to directly compare cognition between pd patients with and without anxiety . the findings confirmed our hypothesis that anxiety negatively influences attentional set - shifting and working memory in pd . more specifically , we found that pd patients with anxiety were more impaired on the trail making test part b which assessed attentional set - shifting , on both digit span tests which assessed working memory and attention , and to a lesser extent on the logical memory test which assessed memory and new verbal learning compared to pd patients without anxiety . taken together , these findings suggest that anxiety in pd may reduce processing capacity and impair processing efficiency , especially in the central executive and attentional systems of working memory in a similar way as seen in young healthy adults [ 26 , 27 ] . although the neurobiology of anxiety in pd remains unknown , many researchers have postulated that anxiety disorders are related to neurochemical changes that occur during the early , premotor stages of pd - related degeneration [ 37 , 38 ] such as nigrostriatal dopamine depletion , as well as cell loss within serotonergic and noradrenergic brainstem nuclei ( i.e. , raphe nuclei and locus coeruleus , resp . , which provide massive inputs to corticolimbic regions ) . over time , chronic dysregulation of adrenocortical and catecholamine functions can lead to hippocampal damage as well as dysfunctional prefrontal neural circuitries [ 39 , 40 ] , which play a key role in memory and attention . recent functional neuroimaging work has suggested that enhanced hippocampal activation during executive functioning and working memory tasks may represent compensatory processes for impaired frontostriatal functions in pd patients compared to controls . therefore , chronic stress from anxiety , for example , may disrupt compensatory processes in pd patients and explain the cognitive impairments specifically in working memory and attention seen in pd patients with anxiety . it has also been suggested that hyperactivation within the putamen may reflect a compensatory striatal mechanism to maintain normal working memory performance in pd patients ; however , losing this compensatory activation has been shown to contribute to poor working memory performance . anxiety in mild pd has been linked to reduced putamen dopamine uptake which becomes more extensive as the disease progresses . this further supports the notion that anxiety may disrupt compensatory striatal mechanisms as well , providing another possible explanation for the cognitive impairments observed in pd patients with anxiety in this study . noradrenergic and serotonergic systems should also be considered when trying to explain the mechanisms by which anxiety may influence cognition in pd . although these neurotransmitter systems are relatively understudied in pd cognition , treating the noradrenergic and serotonergic systems has shown beneficial effects on cognition in pd . selective serotonin reuptake inhibitor , citalopram , was shown to improve response inhibition deficits in pd , while noradrenaline reuptake blocker , atomoxetine , has been recently reported to have promising effects on cognition in pd [ 45 , 46 ] . overall , very few neuroimaging studies have been conducted in pd in order to understand the neural correlates of pd anxiety and its underlying neural pathology . future research should focus on relating anatomical changes and neurochemical changes to neural activation in order to gain a clearer understanding on how these pathologies affect anxiety in pd . to further understand how anxiety and cognitive dysfunction are related , future research should focus on using advanced structural and function imaging techniques to explain both cognitive and neural breakdowns that are associated with anxiety in pd patients . research has indicated that those with amnestic mild cognitive impairment who have more neuropsychiatric symptoms have a greater risk of developing dementia compared to those with fewer neuropsychiatric symptoms . future studies should also examine whether treating neuropsychiatric symptoms might impact the progression of cognitive decline and improve cognitive impairments in pd patients . previous studies have used pd symptom laterality as a window to infer asymmetrical dysfunction of neural circuits . for example , lpd patients have greater inferred right hemisphere pathology , whereas rpd patients have greater inferred left hemisphere pathology . thus , cognitive domains predominantly subserved by the left hemisphere ( e.g. , verbally mediated tasks of executive function and verbal memory ) might be hypothesized to be more affected in rpd than lpd ; however , this remains controversial . it has also been suggested that since anxiety is a common feature of left hemisphere involvement [ 48 , 49 ] , cognitive domains subserved by the left hemisphere may also be more strongly related to anxiety . results from this study showed selective verbal memory deficits in rpd patients with anxiety compared to rpd without anxiety , whereas lpd patients with anxiety had greater attentional / working memory deficits compared to lpd without anxiety . although these results align with previous research , interpretations of these findings should be made with caution due to the small sample size in the lpd comparison specifically . recent work has suggested that the hads questionnaire may underestimate the burden of anxiety related symptomology and therefore be a less sensitive measure of anxiety in pd [ 30 , 50 ] . in addition , our small sample size also limited the statistical power for detecting significant findings . based on these limitations , our findings are likely conservative and underrepresent the true impact anxiety has on cognition in pd . additionally , the current study employed a very brief neuropsychological assessment including one or two tests for each cognitive domain . future studies are encouraged to collect a more complex and comprehensive battery from a larger sample of pd participants in order to better understand the role anxiety plays on cognition in pd . another limitation of this study was the absence of diagnostic interviews to characterize participants ' psychiatric symptoms and specify the type of anxiety disorders included in this study . future studies should perform diagnostic interviews with participants ( e.g. , using dsm - v criteria ) rather than relying on self - reported measures to group participants , in order to better understand whether the type of anxiety disorder ( e.g. , social anxiety , phobias , panic disorders , and generalized anxiety ) influences cognitive performance differently in pd . one advantage the hads questionnaire provided over other anxiety scales was that it assessed both anxiety and depression simultaneously and allowed us to control for coexisting depression . although there was a trend that the pda+ group self - reported higher levels of depression than the pda group , all participants included in the study scored < 6 on the depression subscale of the hads . controlling for depression while assessing anxiety has been identified as a key shortcoming in the majority of recent work . considering many previous studies have investigated the influence of depression on cognition in pd without accounting for the presence of anxiety and the inconsistent findings reported to date , we recommend that future research should try to disentangle the influence of anxiety versus depression on cognitive impairments in pd . considering the growing number of clinical trials for treating depression , there are few if any for the treatment of anxiety in pd . anxiety is a key contributor to decreased quality of life in pd and greatly requires better treatment options . moreover , anxiety has been suggested to play a key role in freezing of gait ( fog ) , which is also related to attentional set - shifting [ 52 , 53 ] . future research should examine the link between anxiety , set - shifting , and fog , in order to determine whether treating anxiety might be a potential therapy for improving fog .""" import torch from transformers import AutoTokenizer, LongT5ForConditionalGeneration tokenizer = AutoTokenizer.from_pretrained("Stancld/longt5-tglobal-large-16384-pubmed-3k_steps") input_ids = tokenizer(LONG_ARTICLE, return_tensors="pt").input_ids.to("cuda") model = LongT5ForConditionalGeneration.from_pretrained("Stancld/longt5-tglobal-large-16384-pubmed-3k_steps", return_dict_in_generate=True).to("cuda") sequences = model.generate(input_ids).sequences summary = tokenizer.batch_decode(sequences) ```
ruggedmug/q-Taxi-v3
ruggedmug
2023-07-13T19:38:06Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-13T19:38:03Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.75 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="ruggedmug/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
grace-pro/xlmr-base-hausa-5e-5
grace-pro
2023-07-13T19:15:07Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-13T18:46:41Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: xlmr-base-hausa-5e-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr-base-hausa-5e-5 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1493 - Precision: 0.7153 - Recall: 0.5631 - F1: 0.6301 - Accuracy: 0.9588 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.177 | 1.0 | 1312 | 0.1549 | 0.6557 | 0.4168 | 0.5097 | 0.9479 | | 0.1412 | 2.0 | 2624 | 0.1386 | 0.6723 | 0.5262 | 0.5903 | 0.9539 | | 0.1154 | 3.0 | 3936 | 0.1400 | 0.7078 | 0.5353 | 0.6096 | 0.9567 | | 0.0921 | 4.0 | 5248 | 0.1418 | 0.7200 | 0.5496 | 0.6234 | 0.9585 | | 0.0731 | 5.0 | 6560 | 0.1493 | 0.7153 | 0.5631 | 0.6301 | 0.9588 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
kastan/sf_medium_bf16
kastan
2023-07-13T19:11:15Z
6
0
peft
[ "peft", "region:us" ]
null
2023-07-13T19:05:51Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0
grace-pro/afriberta-small-hausa-5e-5
grace-pro
2023-07-13T18:41:38Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-13T18:31:08Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: afriberta-small-hausa-5e-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # afriberta-small-hausa-5e-5 This model is a fine-tuned version of [castorini/afriberta_small](https://huggingface.co/castorini/afriberta_small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1600 - Precision: 0.6808 - Recall: 0.4937 - F1: 0.5724 - Accuracy: 0.9623 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1523 | 1.0 | 1312 | 0.1338 | 0.6526 | 0.4261 | 0.5156 | 0.9583 | | 0.1162 | 2.0 | 2624 | 0.1300 | 0.6862 | 0.4603 | 0.5510 | 0.9614 | | 0.089 | 3.0 | 3936 | 0.1375 | 0.6953 | 0.4630 | 0.5559 | 0.9619 | | 0.0698 | 4.0 | 5248 | 0.1507 | 0.6860 | 0.4888 | 0.5708 | 0.9623 | | 0.0559 | 5.0 | 6560 | 0.1600 | 0.6808 | 0.4937 | 0.5724 | 0.9623 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
ericserafa/ppo-Huggy
ericserafa
2023-07-13T18:38:06Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-07-13T17:36:51Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: ericserafa/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
NTU-NLP-sg/xCodeEval-nl-code-starencoder-ckpt-37
NTU-NLP-sg
2023-07-13T18:35:21Z
0
0
null
[ "arxiv:2303.03004", "license:cc-by-nc-4.0", "region:us" ]
null
2023-07-13T06:59:15Z
--- license: cc-by-nc-4.0 --- ## Model Description **StarEncoder** trained with training split of `retrieval_nl_code` subset of [xCodeEval](https://huggingface.co/datasets/NTU-NLP-sg/xCodeEval). Trained for 37 epochs. Code Repo used to train: https://github.com/facebookresearch/DPR For details result, please follow our [paper](https://arxiv.org/abs/2303.03004).
mayapapaya/Keyword-Extractor
mayapapaya
2023-07-13T18:33:59Z
204
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-13T14:23:08Z
# Model Card for Model ID This model is meant to extract keywords from text. - **Model type:** text-classification - **Language(s) (NLP):** English - **License:** cc - **Finetuned from model [optional]:** [More Information Needed] ## Training Details This model is a fine-tuned version of the [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) model. ## Training Data Trained on [51la5/keyword-extraction](https://huggingface.co/datasets/51la5/keyword-extraction) from HuggingFace Hub. ## How to Get Started with the Model Note: model inputs were tokenized using distilbert-base-uncased tokenizer ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") model = AutoModelForSequenceClassification.from_pretrained("mayapapaya/Keyword-Extractor") ```
Schwab/vit-base-patch16-224-finetuned-flower
Schwab
2023-07-13T18:31:03Z
163
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-13T18:19:21Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder model-index: - name: vit-base-patch16-224-finetuned-flower results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-flower This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 2.0.1+cu118 - Datasets 2.7.1 - Tokenizers 0.13.3
chunwoolee0/my_doccls_korean_model
chunwoolee0
2023-07-13T18:27:18Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:nsmc", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-12T02:48:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - nsmc metrics: - accuracy model-index: - name: my_doccls_korean_model results: - task: name: Text Classification type: text-classification dataset: name: nsmc type: nsmc config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.90372 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_doccls_korean_model This model is a fine-tuned version of [beomi/kcbert-base](https://huggingface.co/beomi/kcbert-base) on the nsmc dataset. It achieves the following results on the evaluation set: - Loss: 0.2942 - Accuracy: 0.9037 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.267 | 1.0 | 2344 | 0.2482 | 0.8987 | | 0.1751 | 2.0 | 4688 | 0.2523 | 0.9024 | | 0.1108 | 3.0 | 7032 | 0.2942 | 0.9037 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
grace-pro/afriberta-base-hausa-5e-5
grace-pro
2023-07-13T18:24:50Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-13T18:07:00Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: afriberta-base-hausa-5e-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # afriberta-base-hausa-5e-5 This model is a fine-tuned version of [castorini/afriberta_base](https://huggingface.co/castorini/afriberta_base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1657 - Precision: 0.6982 - Recall: 0.5348 - F1: 0.6056 - Accuracy: 0.9648 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1444 | 1.0 | 1312 | 0.1255 | 0.6832 | 0.4535 | 0.5452 | 0.9612 | | 0.1065 | 2.0 | 2624 | 0.1204 | 0.6788 | 0.5101 | 0.5824 | 0.9631 | | 0.0752 | 3.0 | 3936 | 0.1303 | 0.6818 | 0.5248 | 0.5931 | 0.9635 | | 0.0529 | 4.0 | 5248 | 0.1461 | 0.6963 | 0.5307 | 0.6023 | 0.9648 | | 0.0386 | 5.0 | 6560 | 0.1657 | 0.6982 | 0.5348 | 0.6056 | 0.9648 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Joserzapata/speecht5_finetuned_voxpopuli_nl
Joserzapata
2023-07-13T18:21:28Z
78
0
transformers
[ "transformers", "pytorch", "tensorboard", "speecht5", "text-to-audio", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2023-07-13T04:28:20Z
--- license: mit tags: - generated_from_trainer model-index: - name: speecht5_finetuned_voxpopuli_nl results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_voxpopuli_nl This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4624 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.521 | 4.3 | 1000 | 0.4799 | | 0.5021 | 8.61 | 2000 | 0.4676 | | 0.4958 | 12.91 | 3000 | 0.4637 | | 0.4874 | 17.21 | 4000 | 0.4624 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
Sandrro/text_to_topic
Sandrro
2023-07-13T18:15:06Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-13T17:18:08Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: text_to_subfunction_v10_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text_to_subfunction_v10_2 This model is a fine-tuned version of [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5115 - F1: 0.5638 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.8616 | 1.0 | 5400 | 1.7457 | 0.4607 | | 1.4576 | 2.0 | 10800 | 1.5115 | 0.5638 | ### Framework versions - Transformers 4.27.1 - Pytorch 2.1.0.dev20230414+cu117 - Datasets 2.9.0 - Tokenizers 0.13.3
ayanban011/6_e_200-tiny_tobacco3482_kd_CEKD_t5.0_a0.9
ayanban011
2023-07-13T18:14:29Z
165
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-13T15:47:56Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: 6_e_200-tiny_tobacco3482_kd_CEKD_t5.0_a0.9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 6_e_200-tiny_tobacco3482_kd_CEKD_t5.0_a0.9 This model is a fine-tuned version of [WinKawaks/vit-tiny-patch16-224](https://huggingface.co/WinKawaks/vit-tiny-patch16-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5583 - Accuracy: 0.82 - Brier Loss: 0.2563 - Nll: 1.8898 - F1 Micro: 0.82 - F1 Macro: 0.8009 - Ece: 0.1578 - Aurc: 0.0530 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:| | No log | 1.0 | 25 | 1.9764 | 0.23 | 0.8621 | 4.6756 | 0.23 | 0.1902 | 0.2733 | 0.7604 | | No log | 2.0 | 50 | 1.2764 | 0.535 | 0.5973 | 2.7212 | 0.535 | 0.4337 | 0.2769 | 0.2592 | | No log | 3.0 | 75 | 0.9774 | 0.68 | 0.4478 | 2.1874 | 0.68 | 0.5915 | 0.2144 | 0.1334 | | No log | 4.0 | 100 | 0.8047 | 0.755 | 0.3617 | 1.4629 | 0.755 | 0.7257 | 0.1850 | 0.0888 | | No log | 5.0 | 125 | 0.7616 | 0.765 | 0.3363 | 1.4885 | 0.765 | 0.7391 | 0.2017 | 0.0843 | | No log | 6.0 | 150 | 1.0029 | 0.72 | 0.4200 | 1.6550 | 0.72 | 0.7047 | 0.2303 | 0.1169 | | No log | 7.0 | 175 | 0.6286 | 0.825 | 0.2766 | 1.2493 | 0.825 | 0.7930 | 0.1954 | 0.0646 | | No log | 8.0 | 200 | 0.6859 | 0.82 | 0.2857 | 1.4847 | 0.82 | 0.7971 | 0.1837 | 0.0699 | | No log | 9.0 | 225 | 0.6365 | 0.81 | 0.2765 | 1.1457 | 0.81 | 0.7913 | 0.1604 | 0.0669 | | No log | 10.0 | 250 | 0.6085 | 0.81 | 0.2614 | 1.5809 | 0.81 | 0.7928 | 0.1874 | 0.0536 | | No log | 11.0 | 275 | 0.5900 | 0.84 | 0.2620 | 1.1457 | 0.8400 | 0.8308 | 0.1695 | 0.0674 | | No log | 12.0 | 300 | 0.8544 | 0.75 | 0.3667 | 1.9577 | 0.75 | 0.7330 | 0.1988 | 0.1329 | | No log | 13.0 | 325 | 0.5265 | 0.845 | 0.2278 | 1.2521 | 0.845 | 0.8209 | 0.1518 | 0.0399 | | No log | 14.0 | 350 | 0.5702 | 0.815 | 0.2567 | 1.5233 | 0.815 | 0.8032 | 0.1551 | 0.0519 | | No log | 15.0 | 375 | 0.5933 | 0.845 | 0.2581 | 1.4776 | 0.845 | 0.8341 | 0.1659 | 0.0738 | | No log | 16.0 | 400 | 0.5697 | 0.84 | 0.2496 | 1.6732 | 0.8400 | 0.8235 | 0.1470 | 0.0557 | | No log | 17.0 | 425 | 0.5471 | 0.825 | 0.2428 | 1.7010 | 0.825 | 0.8093 | 0.1406 | 0.0461 | | No log | 18.0 | 450 | 0.5696 | 0.825 | 0.2546 | 1.4095 | 0.825 | 0.7977 | 0.1461 | 0.0612 | | No log | 19.0 | 475 | 0.6544 | 0.805 | 0.2959 | 1.8251 | 0.805 | 0.7970 | 0.1681 | 0.0605 | | 0.4416 | 20.0 | 500 | 0.5113 | 0.83 | 0.2327 | 1.4103 | 0.83 | 0.8093 | 0.1380 | 0.0541 | | 0.4416 | 21.0 | 525 | 0.5255 | 0.84 | 0.2375 | 1.6750 | 0.8400 | 0.8220 | 0.1320 | 0.0462 | | 0.4416 | 22.0 | 550 | 0.5889 | 0.835 | 0.2681 | 1.7850 | 0.835 | 0.8242 | 0.1507 | 0.0683 | | 0.4416 | 23.0 | 575 | 0.5456 | 0.835 | 0.2492 | 1.8481 | 0.835 | 0.8137 | 0.1716 | 0.0550 | | 0.4416 | 24.0 | 600 | 0.5661 | 0.83 | 0.2611 | 1.8434 | 0.83 | 0.8156 | 0.1618 | 0.0591 | | 0.4416 | 25.0 | 625 | 0.5444 | 0.83 | 0.2484 | 1.7579 | 0.83 | 0.8091 | 0.1478 | 0.0530 | | 0.4416 | 26.0 | 650 | 0.5418 | 0.83 | 0.2503 | 1.7188 | 0.83 | 0.8125 | 0.1564 | 0.0484 | | 0.4416 | 27.0 | 675 | 0.5532 | 0.835 | 0.2540 | 1.8931 | 0.835 | 0.8146 | 0.1694 | 0.0514 | | 0.4416 | 28.0 | 700 | 0.5492 | 0.835 | 0.2518 | 1.8959 | 0.835 | 0.8155 | 0.1505 | 0.0495 | | 0.4416 | 29.0 | 725 | 0.5478 | 0.825 | 0.2505 | 1.8907 | 0.825 | 0.8069 | 0.1548 | 0.0503 | | 0.4416 | 30.0 | 750 | 0.5478 | 0.835 | 0.2510 | 1.8881 | 0.835 | 0.8178 | 0.1467 | 0.0521 | | 0.4416 | 31.0 | 775 | 0.5472 | 0.825 | 0.2505 | 1.8888 | 0.825 | 0.8064 | 0.1527 | 0.0510 | | 0.4416 | 32.0 | 800 | 0.5522 | 0.83 | 0.2527 | 1.8927 | 0.83 | 0.8126 | 0.1449 | 0.0520 | | 0.4416 | 33.0 | 825 | 0.5513 | 0.825 | 0.2524 | 1.8989 | 0.825 | 0.8064 | 0.1625 | 0.0509 | | 0.4416 | 34.0 | 850 | 0.5465 | 0.835 | 0.2504 | 1.8880 | 0.835 | 0.8148 | 0.1519 | 0.0520 | | 0.4416 | 35.0 | 875 | 0.5489 | 0.825 | 0.2515 | 1.8866 | 0.825 | 0.8064 | 0.1538 | 0.0510 | | 0.4416 | 36.0 | 900 | 0.5508 | 0.825 | 0.2521 | 1.8922 | 0.825 | 0.8053 | 0.1356 | 0.0526 | | 0.4416 | 37.0 | 925 | 0.5495 | 0.825 | 0.2522 | 1.8881 | 0.825 | 0.8064 | 0.1517 | 0.0514 | | 0.4416 | 38.0 | 950 | 0.5483 | 0.825 | 0.2514 | 1.8859 | 0.825 | 0.8064 | 0.1749 | 0.0511 | | 0.4416 | 39.0 | 975 | 0.5508 | 0.825 | 0.2524 | 1.8868 | 0.825 | 0.8064 | 0.1459 | 0.0514 | | 0.0519 | 40.0 | 1000 | 0.5519 | 0.825 | 0.2529 | 1.8862 | 0.825 | 0.8064 | 0.1532 | 0.0513 | | 0.0519 | 41.0 | 1025 | 0.5522 | 0.825 | 0.2530 | 1.8882 | 0.825 | 0.8064 | 0.1665 | 0.0519 | | 0.0519 | 42.0 | 1050 | 0.5507 | 0.825 | 0.2525 | 1.8870 | 0.825 | 0.8064 | 0.1613 | 0.0508 | | 0.0519 | 43.0 | 1075 | 0.5528 | 0.825 | 0.2536 | 1.8884 | 0.825 | 0.8064 | 0.1634 | 0.0517 | | 0.0519 | 44.0 | 1100 | 0.5520 | 0.825 | 0.2531 | 1.8879 | 0.825 | 0.8064 | 0.1519 | 0.0525 | | 0.0519 | 45.0 | 1125 | 0.5524 | 0.825 | 0.2535 | 1.8876 | 0.825 | 0.8053 | 0.1582 | 0.0515 | | 0.0519 | 46.0 | 1150 | 0.5525 | 0.825 | 0.2534 | 1.8867 | 0.825 | 0.8064 | 0.1592 | 0.0519 | | 0.0519 | 47.0 | 1175 | 0.5532 | 0.825 | 0.2539 | 1.8875 | 0.825 | 0.8064 | 0.1621 | 0.0521 | | 0.0519 | 48.0 | 1200 | 0.5540 | 0.825 | 0.2540 | 1.8865 | 0.825 | 0.8064 | 0.1502 | 0.0522 | | 0.0519 | 49.0 | 1225 | 0.5523 | 0.825 | 0.2538 | 1.8268 | 0.825 | 0.8072 | 0.1625 | 0.0514 | | 0.0519 | 50.0 | 1250 | 0.5535 | 0.825 | 0.2539 | 1.8871 | 0.825 | 0.8064 | 0.1684 | 0.0517 | | 0.0519 | 51.0 | 1275 | 0.5526 | 0.825 | 0.2534 | 1.8850 | 0.825 | 0.8064 | 0.1621 | 0.0519 | | 0.0519 | 52.0 | 1300 | 0.5543 | 0.825 | 0.2543 | 1.8865 | 0.825 | 0.8064 | 0.1429 | 0.0521 | | 0.0519 | 53.0 | 1325 | 0.5526 | 0.825 | 0.2538 | 1.8866 | 0.825 | 0.8064 | 0.1613 | 0.0515 | | 0.0519 | 54.0 | 1350 | 0.5530 | 0.82 | 0.2538 | 1.8877 | 0.82 | 0.8009 | 0.1620 | 0.0518 | | 0.0519 | 55.0 | 1375 | 0.5550 | 0.825 | 0.2547 | 1.8872 | 0.825 | 0.8064 | 0.1567 | 0.0522 | | 0.0519 | 56.0 | 1400 | 0.5565 | 0.825 | 0.2552 | 1.8859 | 0.825 | 0.8064 | 0.1400 | 0.0523 | | 0.0519 | 57.0 | 1425 | 0.5552 | 0.825 | 0.2548 | 1.8874 | 0.825 | 0.8064 | 0.1543 | 0.0520 | | 0.0519 | 58.0 | 1450 | 0.5537 | 0.825 | 0.2542 | 1.8860 | 0.825 | 0.8064 | 0.1531 | 0.0516 | | 0.0519 | 59.0 | 1475 | 0.5559 | 0.825 | 0.2551 | 1.8879 | 0.825 | 0.8064 | 0.1564 | 0.0525 | | 0.0508 | 60.0 | 1500 | 0.5548 | 0.825 | 0.2545 | 1.8866 | 0.825 | 0.8064 | 0.1526 | 0.0522 | | 0.0508 | 61.0 | 1525 | 0.5557 | 0.825 | 0.2550 | 1.8884 | 0.825 | 0.8064 | 0.1443 | 0.0524 | | 0.0508 | 62.0 | 1550 | 0.5548 | 0.82 | 0.2546 | 1.8874 | 0.82 | 0.8009 | 0.1709 | 0.0527 | | 0.0508 | 63.0 | 1575 | 0.5556 | 0.825 | 0.2551 | 1.8899 | 0.825 | 0.8064 | 0.1606 | 0.0524 | | 0.0508 | 64.0 | 1600 | 0.5562 | 0.825 | 0.2553 | 1.8872 | 0.825 | 0.8064 | 0.1467 | 0.0527 | | 0.0508 | 65.0 | 1625 | 0.5569 | 0.825 | 0.2554 | 1.8879 | 0.825 | 0.8064 | 0.1537 | 0.0524 | | 0.0508 | 66.0 | 1650 | 0.5567 | 0.825 | 0.2555 | 1.8873 | 0.825 | 0.8064 | 0.1601 | 0.0525 | | 0.0508 | 67.0 | 1675 | 0.5556 | 0.825 | 0.2550 | 1.8878 | 0.825 | 0.8064 | 0.1601 | 0.0527 | | 0.0508 | 68.0 | 1700 | 0.5570 | 0.825 | 0.2555 | 1.8879 | 0.825 | 0.8064 | 0.1679 | 0.0528 | | 0.0508 | 69.0 | 1725 | 0.5560 | 0.825 | 0.2553 | 1.8886 | 0.825 | 0.8064 | 0.1525 | 0.0521 | | 0.0508 | 70.0 | 1750 | 0.5562 | 0.825 | 0.2553 | 1.8878 | 0.825 | 0.8064 | 0.1531 | 0.0528 | | 0.0508 | 71.0 | 1775 | 0.5572 | 0.82 | 0.2557 | 1.8883 | 0.82 | 0.8009 | 0.1718 | 0.0530 | | 0.0508 | 72.0 | 1800 | 0.5567 | 0.82 | 0.2555 | 1.8888 | 0.82 | 0.8009 | 0.1630 | 0.0525 | | 0.0508 | 73.0 | 1825 | 0.5571 | 0.825 | 0.2556 | 1.8882 | 0.825 | 0.8064 | 0.1598 | 0.0528 | | 0.0508 | 74.0 | 1850 | 0.5580 | 0.825 | 0.2561 | 1.8901 | 0.825 | 0.8064 | 0.1543 | 0.0530 | | 0.0508 | 75.0 | 1875 | 0.5579 | 0.82 | 0.2561 | 1.8892 | 0.82 | 0.8009 | 0.1721 | 0.0530 | | 0.0508 | 76.0 | 1900 | 0.5574 | 0.82 | 0.2559 | 1.8892 | 0.82 | 0.8009 | 0.1636 | 0.0528 | | 0.0508 | 77.0 | 1925 | 0.5569 | 0.82 | 0.2557 | 1.8393 | 0.82 | 0.8009 | 0.1634 | 0.0526 | | 0.0508 | 78.0 | 1950 | 0.5572 | 0.82 | 0.2558 | 1.8887 | 0.82 | 0.8009 | 0.1637 | 0.0530 | | 0.0508 | 79.0 | 1975 | 0.5578 | 0.82 | 0.2560 | 1.8888 | 0.82 | 0.8009 | 0.1579 | 0.0530 | | 0.0507 | 80.0 | 2000 | 0.5577 | 0.82 | 0.2559 | 1.8889 | 0.82 | 0.8009 | 0.1578 | 0.0532 | | 0.0507 | 81.0 | 2025 | 0.5578 | 0.82 | 0.2560 | 1.8889 | 0.82 | 0.8009 | 0.1578 | 0.0533 | | 0.0507 | 82.0 | 2050 | 0.5579 | 0.825 | 0.2561 | 1.8891 | 0.825 | 0.8064 | 0.1602 | 0.0528 | | 0.0507 | 83.0 | 2075 | 0.5581 | 0.825 | 0.2562 | 1.8894 | 0.825 | 0.8064 | 0.1544 | 0.0528 | | 0.0507 | 84.0 | 2100 | 0.5579 | 0.82 | 0.2561 | 1.8894 | 0.82 | 0.8009 | 0.1581 | 0.0531 | | 0.0507 | 85.0 | 2125 | 0.5580 | 0.82 | 0.2561 | 1.8896 | 0.82 | 0.8009 | 0.1578 | 0.0528 | | 0.0507 | 86.0 | 2150 | 0.5581 | 0.82 | 0.2562 | 1.8891 | 0.82 | 0.8009 | 0.1580 | 0.0532 | | 0.0507 | 87.0 | 2175 | 0.5582 | 0.82 | 0.2562 | 1.8467 | 0.82 | 0.8009 | 0.1581 | 0.0528 | | 0.0507 | 88.0 | 2200 | 0.5583 | 0.82 | 0.2562 | 1.8891 | 0.82 | 0.8009 | 0.1580 | 0.0531 | | 0.0507 | 89.0 | 2225 | 0.5584 | 0.815 | 0.2563 | 1.8894 | 0.815 | 0.7976 | 0.1608 | 0.0534 | | 0.0507 | 90.0 | 2250 | 0.5578 | 0.82 | 0.2561 | 1.8894 | 0.82 | 0.8009 | 0.1578 | 0.0530 | | 0.0507 | 91.0 | 2275 | 0.5584 | 0.815 | 0.2563 | 1.8896 | 0.815 | 0.7976 | 0.1607 | 0.0532 | | 0.0507 | 92.0 | 2300 | 0.5583 | 0.82 | 0.2562 | 1.8893 | 0.82 | 0.8009 | 0.1581 | 0.0531 | | 0.0507 | 93.0 | 2325 | 0.5582 | 0.82 | 0.2562 | 1.8898 | 0.82 | 0.8009 | 0.1579 | 0.0530 | | 0.0507 | 94.0 | 2350 | 0.5582 | 0.82 | 0.2562 | 1.8392 | 0.82 | 0.8009 | 0.1578 | 0.0530 | | 0.0507 | 95.0 | 2375 | 0.5584 | 0.82 | 0.2563 | 1.8897 | 0.82 | 0.8009 | 0.1582 | 0.0531 | | 0.0507 | 96.0 | 2400 | 0.5582 | 0.82 | 0.2562 | 1.8898 | 0.82 | 0.8009 | 0.1578 | 0.0530 | | 0.0507 | 97.0 | 2425 | 0.5583 | 0.82 | 0.2563 | 1.8896 | 0.82 | 0.8009 | 0.1580 | 0.0530 | | 0.0507 | 98.0 | 2450 | 0.5582 | 0.82 | 0.2562 | 1.8898 | 0.82 | 0.8009 | 0.1578 | 0.0530 | | 0.0507 | 99.0 | 2475 | 0.5583 | 0.82 | 0.2563 | 1.8898 | 0.82 | 0.8009 | 0.1578 | 0.0530 | | 0.0507 | 100.0 | 2500 | 0.5583 | 0.82 | 0.2563 | 1.8898 | 0.82 | 0.8009 | 0.1578 | 0.0530 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.13.1 - Datasets 2.13.1 - Tokenizers 0.13.3
Tanor/BERTovoSENTNEG6
Tanor
2023-07-13T18:11:07Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-09T01:32:38Z
--- tags: - generated_from_trainer metrics: - f1 model-index: - name: BERTovoSENTNEG6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERTovoSENTNEG6 This model is a fine-tuned version of [Tanor/BERTicovoSENTNEG6](https://huggingface.co/Tanor/BERTicovoSENTNEG6) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0837 - F1: 0.4878 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 32 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 53 | 0.0536 | 0.0769 | | No log | 2.0 | 106 | 0.0482 | 0.5909 | | No log | 3.0 | 159 | 0.0610 | 0.5532 | | No log | 4.0 | 212 | 0.0718 | 0.5 | | No log | 5.0 | 265 | 0.0837 | 0.4878 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1 - Datasets 2.13.1 - Tokenizers 0.13.3
Dlychan/Toketenk
Dlychan
2023-07-13T17:54:53Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-13T17:46:45Z
--- license: creativeml-openrail-m ---
MBMMurad/BanglaBERT_Person_Name_Extractor
MBMMurad
2023-07-13T17:52:09Z
105
1
transformers
[ "transformers", "pytorch", "electra", "token-classification", "bn", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-12T21:19:24Z
--- language: - bn metrics: - f1 pipeline_tag: token-classification --- # Bangla-Person-Name-Extractor This repository contains the implementation of a Bangla Person Name Extractor model which is able to extract Person name entities from a given sentence. We approached it as a token classification task i.e. tagging each token with either a Person's name or not. We leveraged the [BanglaBERT](http://https://github.com/csebuetnlp/banglabert) model for our task, finetuning it for a binary classification task using a custom-prepare dataset. We have deployed the model into huggingface for easier access and use case. # How to use it? [This Notebook](https://github.com/MBMMurad/Bangla-Person-Name-Extractor/blob/main/Inference_template.ipynb) contains the required Inference Template on a sentence. <br></br> You can also directly infer using the following code snippet. Just change the sentence. ``` from transformers import AutoModelForPreTraining, AutoTokenizer,AutoModelForTokenClassification #!pip install transformers==4.30.2 from normalizer import normalize #pip install git+https://github.com/csebuetnlp/normalizer import torch #pip install torch import numpy as np #!pip install numpy==1.23.5 model = AutoModelForTokenClassification.from_pretrained("MBMMurad/BanglaBERT_Person_Name_Extractor") tokenizer = AutoTokenizer.from_pretrained("MBMMurad/BanglaBERT_Person_Name_Extractor") def inference_fn(sentence): sentence = normalize(sentence) tokens = tokenizer.tokenize(sentence) inputs = tokenizer.encode(sentence,return_tensors="pt") outputs = model(inputs).logits predictions = torch.argmax(outputs[0],axis=1)[1:-1].numpy() idxs = np.where(predictions==1) return np.array(tokens)[idxs] sentence = "আব্দুর রহিম নামের কাস্টমারকে একশ টাকা বাকি দিলাম।" pred = inference_fn(sentence) print(f"Input Sentence : {sentence}") print(f"Person Name Entities : {pred}") sentence = "ইঞ্জিনিয়ার্স ইনস্টিটিউশন চট্টগ্রামের সাবেক সভাপতি প্রকৌশলী দেলোয়ার হোসেন মজুমদার প্রথম আলোকে বলেন, 'সংকট নিরসনে বর্তমান খালগুলোকে পূর্ণ প্রবাহে ফিরিয়ে আনার পাশাপাশি নতুন তিনটি খাল খনন জরুরি।'" pred = inference_fn(sentence) print(f"Input Sentence : {sentence}") print(f"Person Name Entities : {pred}") sentence = "দলীয় নেতারা তাঁর বাসভবনে যেতে চাইলে আটক হন।" pred = inference_fn(sentence) print(f"Input Sentence : {sentence}") print(f"Person Name Entities : {pred}") ``` **Output:** ``` Input Sentence : আব্দুর রহিম নামের কাস্টমারকে একশ টাকা বাকি দিলাম। Person Name Entities : ['আব্দুর' 'রহিম'] Input Sentence : ইঞ্জিনিয়ার্স ইনস্টিটিউশন চট্টগ্রামের সাবেক সভাপতি প্রকৌশলী দেলোয়ার হোসেন মজুমদার প্রথম আলোকে বলেন, 'সংকট নিরসনে বর্তমান খালগুলোকে পূর্ণ প্রবাহে ফিরিয়ে আনার পাশাপাশি নতুন তিনটি খাল খনন জরুরি।' Person Name Entities : ['দেলোয়ার' 'হোসেন' 'মজুমদার'] Input Sentence : দলীয় নেতারা তাঁর বাসভবনে যেতে চাইলে আটক হন। Person Name Entities : [] ``` # Datasets We used two datasets to train and evaluate our pipeline. 1. [Bengali-NER/annotated data at master · Rifat1493/Bengali-NER](http://https://github.com/Rifat1493/Bengali-NER/tree/master/annotated%20data) 2. [banglakit/bengali-ner-data](http://https://raw.githubusercontent.com/banglakit/bengali-ner-data/master/main.jsonl) The annotation formats for both datasets were quite different, so we had to preprocess both of them before merging them. Please refer to [this notebook](https://github.com/MBMMurad/Bangla-Person-Name-Extractor/blob/main/prepare-dataset.ipynb) for preparing the dataset as required. # Training and Evaluation We treated this problem as a token classification task.So it seemed perfect to finetune the BanglaBERT model for our purpose. [BanglaBERT ](https://huggingface.co/csebuetnlp/banglabert)is an [ELECTRA](https://openreview.net/pdf?id=r1xMH1BtvB) discriminator model pretrained with the Replaced Token Detection (RTD) objective. Finetuned models using this checkpoint achieve state-of-the-art results on many of the NLP tasks in bengali. We mainly finetuned two checkpoints of BanglaBERT. 1. [BanglaBERT](https://huggingface.co/csebuetnlp/banglabert) 2. [BanglaEERT small](https://huggingface.co/csebuetnlp/banglabert_small) BanglaBERT performed better than BanglaBERT small ( 83% F1 score vs 79% F1 score on the test set) . Please refer to [this notebook](https://github.com/MBMMurad/Bangla-Person-Name-Extractor/blob/main/Training%20Notebook%20%3A%20Person%20Name%20Extractor%20using%20BanglaBERT.ipynb) to see the training process. **Quantitative results** Please refer to [this notebook](https://github.com/MBMMurad/Bangla-Person-Name-Extractor/blob/main/Inference%20and%20Evaluation%20Notebook.ipynb) to see the evaluation process. <br></br> ![Results](https://github.com/MBMMurad/asl-2d-to-3d/blob/master/Screenshot%20from%202023-07-13%2023-11-59.png)
Tanor/BERTovoSENTPOS6
Tanor
2023-07-13T17:48:32Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-09T00:21:54Z
--- tags: - generated_from_trainer metrics: - f1 model-index: - name: BERTovoSENTPOS6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERTovoSENTPOS6 This model is a fine-tuned version of [Tanor/BERTicovoSENTPOS6](https://huggingface.co/Tanor/BERTicovoSENTPOS6) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0541 - F1: 0.5143 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 32 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 53 | 0.0452 | 0.0 | | No log | 2.0 | 106 | 0.0436 | 0.0870 | | No log | 3.0 | 159 | 0.0449 | 0.4138 | | No log | 4.0 | 212 | 0.0506 | 0.5 | | No log | 5.0 | 265 | 0.0541 | 0.5143 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1 - Datasets 2.13.1 - Tokenizers 0.13.3
Geotrend/distilbert-base-ar-cased
Geotrend
2023-07-13T17:37:33Z
130
0
transformers
[ "transformers", "pytorch", "safetensors", "distilbert", "fill-mask", "ar", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: ar datasets: wikipedia license: apache-2.0 --- # distilbert-base-ar-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-ar-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-ar-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
ayanban011/6_e_200-tiny_tobacco3482_kd_CEKD_t1.5_a0.7
ayanban011
2023-07-13T17:33:13Z
165
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-13T15:25:23Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: 6_e_200-tiny_tobacco3482_kd_CEKD_t1.5_a0.7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 6_e_200-tiny_tobacco3482_kd_CEKD_t1.5_a0.7 This model is a fine-tuned version of [WinKawaks/vit-tiny-patch16-224](https://huggingface.co/WinKawaks/vit-tiny-patch16-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4925 - Accuracy: 0.845 - Brier Loss: 0.2526 - Nll: 1.5547 - F1 Micro: 0.845 - F1 Macro: 0.8258 - Ece: 0.1785 - Aurc: 0.0736 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:| | No log | 1.0 | 25 | 1.8463 | 0.245 | 0.8631 | 4.7256 | 0.245 | 0.2002 | 0.2955 | 0.7640 | | No log | 2.0 | 50 | 1.1593 | 0.535 | 0.5972 | 2.7208 | 0.535 | 0.4319 | 0.2539 | 0.2591 | | No log | 3.0 | 75 | 0.9039 | 0.67 | 0.4555 | 2.3747 | 0.67 | 0.5677 | 0.2448 | 0.1349 | | No log | 4.0 | 100 | 0.7631 | 0.73 | 0.3757 | 1.5518 | 0.7300 | 0.7026 | 0.1947 | 0.0987 | | No log | 5.0 | 125 | 0.7412 | 0.775 | 0.3497 | 1.4677 | 0.775 | 0.7456 | 0.2239 | 0.0892 | | No log | 6.0 | 150 | 0.9198 | 0.72 | 0.3977 | 1.7618 | 0.72 | 0.6958 | 0.2190 | 0.1118 | | No log | 7.0 | 175 | 0.6117 | 0.81 | 0.2969 | 1.2112 | 0.81 | 0.7726 | 0.2244 | 0.0661 | | No log | 8.0 | 200 | 0.6296 | 0.78 | 0.3090 | 1.3439 | 0.78 | 0.7443 | 0.1959 | 0.0771 | | No log | 9.0 | 225 | 0.6850 | 0.785 | 0.3187 | 1.6325 | 0.785 | 0.7651 | 0.2194 | 0.0986 | | No log | 10.0 | 250 | 0.6304 | 0.79 | 0.3111 | 1.3598 | 0.79 | 0.7821 | 0.2106 | 0.0838 | | No log | 11.0 | 275 | 0.6668 | 0.775 | 0.3242 | 1.9754 | 0.775 | 0.6942 | 0.2005 | 0.0947 | | No log | 12.0 | 300 | 0.6795 | 0.775 | 0.3263 | 1.6182 | 0.775 | 0.7692 | 0.2155 | 0.0875 | | No log | 13.0 | 325 | 0.5156 | 0.85 | 0.2454 | 0.9647 | 0.85 | 0.8378 | 0.2033 | 0.0515 | | No log | 14.0 | 350 | 0.5341 | 0.845 | 0.2644 | 1.0410 | 0.845 | 0.8402 | 0.2050 | 0.0503 | | No log | 15.0 | 375 | 0.4678 | 0.865 | 0.2245 | 0.9232 | 0.865 | 0.8564 | 0.1836 | 0.0363 | | No log | 16.0 | 400 | 0.5620 | 0.82 | 0.2819 | 1.1475 | 0.82 | 0.7980 | 0.2050 | 0.0710 | | No log | 17.0 | 425 | 0.5253 | 0.83 | 0.2642 | 0.8809 | 0.83 | 0.8145 | 0.1811 | 0.0723 | | No log | 18.0 | 450 | 0.6295 | 0.815 | 0.2997 | 1.8144 | 0.815 | 0.8062 | 0.2120 | 0.0636 | | No log | 19.0 | 475 | 0.5748 | 0.83 | 0.2774 | 1.7900 | 0.83 | 0.8200 | 0.1920 | 0.0506 | | 0.466 | 20.0 | 500 | 0.4704 | 0.84 | 0.2275 | 0.8869 | 0.8400 | 0.8135 | 0.1882 | 0.0472 | | 0.466 | 21.0 | 525 | 0.5693 | 0.82 | 0.2820 | 1.3315 | 0.82 | 0.8013 | 0.2011 | 0.0821 | | 0.466 | 22.0 | 550 | 0.5251 | 0.81 | 0.2677 | 1.2663 | 0.81 | 0.7890 | 0.2037 | 0.0745 | | 0.466 | 23.0 | 575 | 0.5158 | 0.83 | 0.2638 | 1.2621 | 0.83 | 0.8070 | 0.1927 | 0.0614 | | 0.466 | 24.0 | 600 | 0.5056 | 0.835 | 0.2590 | 1.5337 | 0.835 | 0.8080 | 0.1887 | 0.0617 | | 0.466 | 25.0 | 625 | 0.4897 | 0.85 | 0.2476 | 1.4341 | 0.85 | 0.8361 | 0.1870 | 0.0627 | | 0.466 | 26.0 | 650 | 0.4994 | 0.85 | 0.2556 | 1.5846 | 0.85 | 0.8302 | 0.1965 | 0.0718 | | 0.466 | 27.0 | 675 | 0.4720 | 0.845 | 0.2406 | 1.3093 | 0.845 | 0.8234 | 0.1873 | 0.0704 | | 0.466 | 28.0 | 700 | 0.4858 | 0.84 | 0.2486 | 1.4459 | 0.8400 | 0.8192 | 0.1676 | 0.0730 | | 0.466 | 29.0 | 725 | 0.4908 | 0.84 | 0.2510 | 1.4941 | 0.8400 | 0.8159 | 0.1754 | 0.0717 | | 0.466 | 30.0 | 750 | 0.4805 | 0.855 | 0.2442 | 1.3279 | 0.855 | 0.8334 | 0.1827 | 0.0667 | | 0.466 | 31.0 | 775 | 0.4783 | 0.845 | 0.2428 | 1.4150 | 0.845 | 0.8264 | 0.1759 | 0.0660 | | 0.466 | 32.0 | 800 | 0.4822 | 0.855 | 0.2449 | 1.4848 | 0.855 | 0.8322 | 0.1928 | 0.0702 | | 0.466 | 33.0 | 825 | 0.4845 | 0.84 | 0.2462 | 1.4925 | 0.8400 | 0.8227 | 0.1837 | 0.0692 | | 0.466 | 34.0 | 850 | 0.4843 | 0.85 | 0.2466 | 1.4881 | 0.85 | 0.8295 | 0.1752 | 0.0683 | | 0.466 | 35.0 | 875 | 0.4837 | 0.85 | 0.2464 | 1.4939 | 0.85 | 0.8295 | 0.1842 | 0.0718 | | 0.466 | 36.0 | 900 | 0.4843 | 0.85 | 0.2467 | 1.4910 | 0.85 | 0.8295 | 0.1950 | 0.0705 | | 0.466 | 37.0 | 925 | 0.4862 | 0.85 | 0.2479 | 1.4938 | 0.85 | 0.8295 | 0.1871 | 0.0713 | | 0.466 | 38.0 | 950 | 0.4854 | 0.85 | 0.2478 | 1.4945 | 0.85 | 0.8295 | 0.1859 | 0.0719 | | 0.466 | 39.0 | 975 | 0.4850 | 0.85 | 0.2471 | 1.4891 | 0.85 | 0.8295 | 0.1855 | 0.0724 | | 0.0749 | 40.0 | 1000 | 0.4869 | 0.85 | 0.2484 | 1.4967 | 0.85 | 0.8295 | 0.1969 | 0.0718 | | 0.0749 | 41.0 | 1025 | 0.4857 | 0.85 | 0.2482 | 1.5544 | 0.85 | 0.8295 | 0.1904 | 0.0726 | | 0.0749 | 42.0 | 1050 | 0.4872 | 0.85 | 0.2487 | 1.5559 | 0.85 | 0.8295 | 0.1877 | 0.0732 | | 0.0749 | 43.0 | 1075 | 0.4873 | 0.85 | 0.2488 | 1.5534 | 0.85 | 0.8295 | 0.1871 | 0.0723 | | 0.0749 | 44.0 | 1100 | 0.4870 | 0.85 | 0.2489 | 1.5542 | 0.85 | 0.8295 | 0.1787 | 0.0730 | | 0.0749 | 45.0 | 1125 | 0.4874 | 0.85 | 0.2490 | 1.5544 | 0.85 | 0.8295 | 0.1867 | 0.0724 | | 0.0749 | 46.0 | 1150 | 0.4868 | 0.85 | 0.2486 | 1.5531 | 0.85 | 0.8295 | 0.1954 | 0.0723 | | 0.0749 | 47.0 | 1175 | 0.4879 | 0.85 | 0.2493 | 1.5546 | 0.85 | 0.8295 | 0.1842 | 0.0727 | | 0.0749 | 48.0 | 1200 | 0.4882 | 0.85 | 0.2495 | 1.5537 | 0.85 | 0.8295 | 0.1864 | 0.0730 | | 0.0749 | 49.0 | 1225 | 0.4875 | 0.85 | 0.2492 | 1.5537 | 0.85 | 0.8295 | 0.1884 | 0.0727 | | 0.0749 | 50.0 | 1250 | 0.4880 | 0.85 | 0.2494 | 1.5528 | 0.85 | 0.8295 | 0.1877 | 0.0726 | | 0.0749 | 51.0 | 1275 | 0.4888 | 0.85 | 0.2499 | 1.5539 | 0.85 | 0.8295 | 0.1754 | 0.0725 | | 0.0749 | 52.0 | 1300 | 0.4894 | 0.85 | 0.2501 | 1.5540 | 0.85 | 0.8295 | 0.1883 | 0.0736 | | 0.0749 | 53.0 | 1325 | 0.4889 | 0.85 | 0.2501 | 1.5533 | 0.85 | 0.8295 | 0.1708 | 0.0727 | | 0.0749 | 54.0 | 1350 | 0.4891 | 0.85 | 0.2500 | 1.5531 | 0.85 | 0.8295 | 0.1785 | 0.0729 | | 0.0749 | 55.0 | 1375 | 0.4904 | 0.85 | 0.2509 | 1.5541 | 0.85 | 0.8295 | 0.1744 | 0.0730 | | 0.0749 | 56.0 | 1400 | 0.4903 | 0.85 | 0.2507 | 1.5541 | 0.85 | 0.8295 | 0.1897 | 0.0730 | | 0.0749 | 57.0 | 1425 | 0.4894 | 0.85 | 0.2503 | 1.5536 | 0.85 | 0.8295 | 0.1792 | 0.0730 | | 0.0749 | 58.0 | 1450 | 0.4889 | 0.85 | 0.2501 | 1.5531 | 0.85 | 0.8295 | 0.1892 | 0.0730 | | 0.0749 | 59.0 | 1475 | 0.4907 | 0.85 | 0.2511 | 1.5542 | 0.85 | 0.8295 | 0.1767 | 0.0733 | | 0.0712 | 60.0 | 1500 | 0.4897 | 0.85 | 0.2506 | 1.5540 | 0.85 | 0.8295 | 0.1813 | 0.0732 | | 0.0712 | 61.0 | 1525 | 0.4906 | 0.85 | 0.2512 | 1.5545 | 0.85 | 0.8295 | 0.1853 | 0.0733 | | 0.0712 | 62.0 | 1550 | 0.4905 | 0.85 | 0.2512 | 1.5541 | 0.85 | 0.8295 | 0.1723 | 0.0733 | | 0.0712 | 63.0 | 1575 | 0.4904 | 0.85 | 0.2512 | 1.5543 | 0.85 | 0.8295 | 0.1817 | 0.0732 | | 0.0712 | 64.0 | 1600 | 0.4915 | 0.85 | 0.2515 | 1.5544 | 0.85 | 0.8295 | 0.1942 | 0.0736 | | 0.0712 | 65.0 | 1625 | 0.4898 | 0.85 | 0.2506 | 1.5534 | 0.85 | 0.8295 | 0.1712 | 0.0735 | | 0.0712 | 66.0 | 1650 | 0.4911 | 0.85 | 0.2516 | 1.5548 | 0.85 | 0.8295 | 0.1824 | 0.0733 | | 0.0712 | 67.0 | 1675 | 0.4908 | 0.85 | 0.2513 | 1.5546 | 0.85 | 0.8295 | 0.1896 | 0.0734 | | 0.0712 | 68.0 | 1700 | 0.4911 | 0.85 | 0.2516 | 1.5548 | 0.85 | 0.8295 | 0.1744 | 0.0734 | | 0.0712 | 69.0 | 1725 | 0.4912 | 0.85 | 0.2516 | 1.5541 | 0.85 | 0.8295 | 0.1726 | 0.0733 | | 0.0712 | 70.0 | 1750 | 0.4910 | 0.85 | 0.2514 | 1.5543 | 0.85 | 0.8295 | 0.1827 | 0.0736 | | 0.0712 | 71.0 | 1775 | 0.4918 | 0.85 | 0.2520 | 1.5546 | 0.85 | 0.8295 | 0.1909 | 0.0736 | | 0.0712 | 72.0 | 1800 | 0.4916 | 0.85 | 0.2519 | 1.5545 | 0.85 | 0.8295 | 0.1830 | 0.0734 | | 0.0712 | 73.0 | 1825 | 0.4913 | 0.85 | 0.2517 | 1.5540 | 0.85 | 0.8295 | 0.1835 | 0.0733 | | 0.0712 | 74.0 | 1850 | 0.4918 | 0.85 | 0.2521 | 1.5544 | 0.85 | 0.8295 | 0.1831 | 0.0736 | | 0.0712 | 75.0 | 1875 | 0.4919 | 0.85 | 0.2521 | 1.5548 | 0.85 | 0.8295 | 0.1829 | 0.0734 | | 0.0712 | 76.0 | 1900 | 0.4916 | 0.85 | 0.2520 | 1.5547 | 0.85 | 0.8295 | 0.1831 | 0.0733 | | 0.0712 | 77.0 | 1925 | 0.4919 | 0.85 | 0.2521 | 1.5542 | 0.85 | 0.8295 | 0.1732 | 0.0735 | | 0.0712 | 78.0 | 1950 | 0.4920 | 0.85 | 0.2521 | 1.5541 | 0.85 | 0.8295 | 0.1831 | 0.0734 | | 0.0712 | 79.0 | 1975 | 0.4920 | 0.85 | 0.2522 | 1.5544 | 0.85 | 0.8295 | 0.1833 | 0.0734 | | 0.0712 | 80.0 | 2000 | 0.4922 | 0.845 | 0.2523 | 1.5549 | 0.845 | 0.8258 | 0.1859 | 0.0735 | | 0.0712 | 81.0 | 2025 | 0.4920 | 0.85 | 0.2522 | 1.5542 | 0.85 | 0.8295 | 0.1830 | 0.0732 | | 0.0712 | 82.0 | 2050 | 0.4920 | 0.845 | 0.2522 | 1.5549 | 0.845 | 0.8258 | 0.1783 | 0.0734 | | 0.0712 | 83.0 | 2075 | 0.4922 | 0.85 | 0.2524 | 1.5546 | 0.85 | 0.8295 | 0.1832 | 0.0734 | | 0.0712 | 84.0 | 2100 | 0.4920 | 0.845 | 0.2522 | 1.5543 | 0.845 | 0.8258 | 0.1784 | 0.0735 | | 0.0712 | 85.0 | 2125 | 0.4921 | 0.845 | 0.2523 | 1.5547 | 0.845 | 0.8258 | 0.1785 | 0.0735 | | 0.0712 | 86.0 | 2150 | 0.4921 | 0.85 | 0.2523 | 1.5545 | 0.85 | 0.8295 | 0.1836 | 0.0733 | | 0.0712 | 87.0 | 2175 | 0.4924 | 0.85 | 0.2524 | 1.5547 | 0.85 | 0.8295 | 0.1836 | 0.0734 | | 0.0712 | 88.0 | 2200 | 0.4925 | 0.845 | 0.2524 | 1.5548 | 0.845 | 0.8258 | 0.1785 | 0.0735 | | 0.0712 | 89.0 | 2225 | 0.4924 | 0.85 | 0.2525 | 1.5548 | 0.85 | 0.8295 | 0.1835 | 0.0734 | | 0.0712 | 90.0 | 2250 | 0.4921 | 0.845 | 0.2523 | 1.5545 | 0.845 | 0.8258 | 0.1688 | 0.0735 | | 0.0712 | 91.0 | 2275 | 0.4925 | 0.845 | 0.2525 | 1.5546 | 0.845 | 0.8258 | 0.1785 | 0.0735 | | 0.0712 | 92.0 | 2300 | 0.4924 | 0.845 | 0.2524 | 1.5546 | 0.845 | 0.8258 | 0.1785 | 0.0736 | | 0.0712 | 93.0 | 2325 | 0.4925 | 0.845 | 0.2526 | 1.5548 | 0.845 | 0.8258 | 0.1785 | 0.0736 | | 0.0712 | 94.0 | 2350 | 0.4924 | 0.845 | 0.2525 | 1.5547 | 0.845 | 0.8258 | 0.1786 | 0.0736 | | 0.0712 | 95.0 | 2375 | 0.4926 | 0.845 | 0.2526 | 1.5547 | 0.845 | 0.8258 | 0.1785 | 0.0736 | | 0.0712 | 96.0 | 2400 | 0.4925 | 0.845 | 0.2526 | 1.5548 | 0.845 | 0.8258 | 0.1785 | 0.0736 | | 0.0712 | 97.0 | 2425 | 0.4925 | 0.845 | 0.2526 | 1.5547 | 0.845 | 0.8258 | 0.1785 | 0.0735 | | 0.0712 | 98.0 | 2450 | 0.4926 | 0.845 | 0.2526 | 1.5548 | 0.845 | 0.8258 | 0.1785 | 0.0736 | | 0.0712 | 99.0 | 2475 | 0.4925 | 0.845 | 0.2526 | 1.5548 | 0.845 | 0.8258 | 0.1785 | 0.0736 | | 0.0711 | 100.0 | 2500 | 0.4925 | 0.845 | 0.2526 | 1.5547 | 0.845 | 0.8258 | 0.1785 | 0.0736 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.13.1 - Datasets 2.13.1 - Tokenizers 0.13.3
jucamohedano/example-california-housing
jucamohedano
2023-07-13T17:20:04Z
0
0
sklearn
[ "sklearn", "skops", "tabular-regression", "region:us" ]
tabular-regression
2023-07-12T19:23:39Z
--- library_name: sklearn tags: - sklearn - skops - tabular-regression model_format: skops model_file: model.skops widget: structuredData: AveBedrms: - 0.9290780141843972 - 0.9458483754512635 - 1.087360594795539 AveOccup: - 3.1134751773049647 - 3.0613718411552346 - 3.2657992565055762 AveRooms: - 6.304964539007092 - 6.945848375451264 - 3.8884758364312266 HouseAge: - 17.0 - 15.0 - 24.0 Latitude: - 34.23 - 36.84 - 34.04 Longitude: - -117.41 - -119.77 - -118.3 MedInc: - 6.1426 - 5.3886 - 1.7109 Population: - 439.0 - 848.0 - 1757.0 --- # Model description [More Information Needed] ## Intended uses & limitations [More Information Needed] ## Training Procedure [More Information Needed] ### Hyperparameters <details> <summary> Click to expand </summary> | Hyperparameter | Value | |-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | cv | | | estimators | [('knn@5', Pipeline(steps=[('select_cols',<br /> ColumnTransformer(transformers=[('long_and_lat', 'passthrough',<br /> ['Longitude', 'Latitude'])])),<br /> ('knn', KNeighborsRegressor())]))] | | final_estimator__alpha | 0.9 | | final_estimator__ccp_alpha | 0.0 | | final_estimator__criterion | friedman_mse | | final_estimator__init | | | final_estimator__learning_rate | 0.1 | | final_estimator__loss | squared_error | | final_estimator__max_depth | 3 | | final_estimator__max_features | | | final_estimator__max_leaf_nodes | | | final_estimator__min_impurity_decrease | 0.0 | | final_estimator__min_samples_leaf | 1 | | final_estimator__min_samples_split | 2 | | final_estimator__min_weight_fraction_leaf | 0.0 | | final_estimator__n_estimators | 500 | | final_estimator__n_iter_no_change | | | final_estimator__random_state | 0 | | final_estimator__subsample | 1.0 | | final_estimator__tol | 0.0001 | | final_estimator__validation_fraction | 0.1 | | final_estimator__verbose | 0 | | final_estimator__warm_start | False | | final_estimator | GradientBoostingRegressor(n_estimators=500, random_state=0) | | n_jobs | | | passthrough | True | | verbose | 0 | | knn@5 | Pipeline(steps=[('select_cols',<br /> ColumnTransformer(transformers=[('long_and_lat', 'passthrough',<br /> ['Longitude', 'Latitude'])])),<br /> ('knn', KNeighborsRegressor())]) | | knn@5__memory | | | knn@5__steps | [('select_cols', ColumnTransformer(transformers=[('long_and_lat', 'passthrough',<br /> ['Longitude', 'Latitude'])])), ('knn', KNeighborsRegressor())] | | knn@5__verbose | False | | knn@5__select_cols | ColumnTransformer(transformers=[('long_and_lat', 'passthrough',<br /> ['Longitude', 'Latitude'])]) | | knn@5__knn | KNeighborsRegressor() | | knn@5__select_cols__n_jobs | | | knn@5__select_cols__remainder | drop | | knn@5__select_cols__sparse_threshold | 0.3 | | knn@5__select_cols__transformer_weights | | | knn@5__select_cols__transformers | [('long_and_lat', 'passthrough', ['Longitude', 'Latitude'])] | | knn@5__select_cols__verbose | False | | knn@5__select_cols__verbose_feature_names_out | True | | knn@5__select_cols__long_and_lat | passthrough | | knn@5__knn__algorithm | auto | | knn@5__knn__leaf_size | 30 | | knn@5__knn__metric | minkowski | | knn@5__knn__metric_params | | | knn@5__knn__n_jobs | | | knn@5__knn__n_neighbors | 5 | | knn@5__knn__p | 2 | | knn@5__knn__weights | uniform | </details> ### Model Plot <style>#sk-container-id-2 {color: black;}#sk-container-id-2 pre{padding: 0;}#sk-container-id-2 div.sk-toggleable {background-color: white;}#sk-container-id-2 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-2 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-2 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-2 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-2 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-2 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-2 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-2 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-2 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-2 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-2 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-2 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-2 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-2 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-2 div.sk-item {position: relative;z-index: 1;}#sk-container-id-2 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-2 div.sk-item::before, #sk-container-id-2 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-2 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-2 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-2 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-2 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-2 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-2 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-2 div.sk-label-container {text-align: center;}#sk-container-id-2 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-2 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-2" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>StackingRegressor(estimators=[(&#x27;knn@5&#x27;,Pipeline(steps=[(&#x27;select_cols&#x27;,ColumnTransformer(transformers=[(&#x27;long_and_lat&#x27;,&#x27;passthrough&#x27;,[&#x27;Longitude&#x27;,&#x27;Latitude&#x27;])])),(&#x27;knn&#x27;,KNeighborsRegressor())]))],final_estimator=GradientBoostingRegressor(n_estimators=500,random_state=0),passthrough=True)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-7" type="checkbox" ><label for="sk-estimator-id-7" class="sk-toggleable__label sk-toggleable__label-arrow">StackingRegressor</label><div class="sk-toggleable__content"><pre>StackingRegressor(estimators=[(&#x27;knn@5&#x27;,Pipeline(steps=[(&#x27;select_cols&#x27;,ColumnTransformer(transformers=[(&#x27;long_and_lat&#x27;,&#x27;passthrough&#x27;,[&#x27;Longitude&#x27;,&#x27;Latitude&#x27;])])),(&#x27;knn&#x27;,KNeighborsRegressor())]))],final_estimator=GradientBoostingRegressor(n_estimators=500,random_state=0),passthrough=True)</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><label>knn@5</label></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-8" type="checkbox" ><label for="sk-estimator-id-8" class="sk-toggleable__label sk-toggleable__label-arrow">select_cols: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[(&#x27;long_and_lat&#x27;, &#x27;passthrough&#x27;,[&#x27;Longitude&#x27;, &#x27;Latitude&#x27;])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-9" type="checkbox" ><label for="sk-estimator-id-9" class="sk-toggleable__label sk-toggleable__label-arrow">long_and_lat</label><div class="sk-toggleable__content"><pre>[&#x27;Longitude&#x27;, &#x27;Latitude&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-10" type="checkbox" ><label for="sk-estimator-id-10" class="sk-toggleable__label sk-toggleable__label-arrow">passthrough</label><div class="sk-toggleable__content"><pre>passthrough</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-11" type="checkbox" ><label for="sk-estimator-id-11" class="sk-toggleable__label sk-toggleable__label-arrow">KNeighborsRegressor</label><div class="sk-toggleable__content"><pre>KNeighborsRegressor()</pre></div></div></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><label>final_estimator</label></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-12" type="checkbox" ><label for="sk-estimator-id-12" class="sk-toggleable__label sk-toggleable__label-arrow">GradientBoostingRegressor</label><div class="sk-toggleable__content"><pre>GradientBoostingRegressor(n_estimators=500, random_state=0)</pre></div></div></div></div></div></div></div></div></div></div></div></div> ## Evaluation Results [More Information Needed] # How to Get Started with the Model [More Information Needed] # Model Card Authors This model card is written by following authors: [More Information Needed] # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` [More Information Needed] ```
sheileshr/roaModel
sheileshr
2023-07-13T17:14:57Z
0
0
keras
[ "keras", "zero-shot-classification", "en", "dataset:openchat/openchat_sharegpt4_dataset", "arxiv:1910.09700", "license:lgpl-3.0", "region:us" ]
zero-shot-classification
2023-07-13T17:11:47Z
--- license: lgpl-3.0 datasets: - openchat/openchat_sharegpt4_dataset language: - en metrics: - accuracy library_name: keras pipeline_tag: zero-shot-classification --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jordyvl/EElayoutlmv3_jordyvl_rvl_cdip_easyocr_2023-07-09_weighted
jordyvl
2023-07-13T17:10:33Z
142
0
transformers
[ "transformers", "pytorch", "layoutlmv3", "text-classification", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-09T08:06:07Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: EElayoutlmv3_jordyvl_rvl_cdip_easyocr_2023-07-09_weighted results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # EElayoutlmv3_jordyvl_rvl_cdip_easyocr_2023-07-09_weighted This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2223 - Accuracy: 0.9400 - Exit 0 Accuracy: 0.2580 - Exit 1 Accuracy: 0.5214 - Exit 2 Accuracy: 0.7781 - Exit 3 Accuracy: 0.8564 - Exit 4 Accuracy: 0.9330 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 24 - total_train_batch_size: 144 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Exit 0 Accuracy | Exit 1 Accuracy | Exit 2 Accuracy | Exit 3 Accuracy | Exit 4 Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------------:|:---------------:|:---------------:|:---------------:|:---------------:| | 2.4115 | 1.0 | 2222 | 0.2907 | 0.9172 | 0.209 | 0.3731 | 0.645 | 0.7651 | 0.9109 | | 2.0272 | 2.0 | 4444 | 0.2444 | 0.9310 | 0.2243 | 0.4579 | 0.7297 | 0.8172 | 0.9234 | | 1.8196 | 3.0 | 6666 | 0.2268 | 0.9350 | 0.2383 | 0.4979 | 0.7589 | 0.8439 | 0.9285 | | 1.7287 | 4.0 | 8888 | 0.2216 | 0.9387 | 0.2438 | 0.5163 | 0.7728 | 0.8533 | 0.9315 | | 1.6664 | 5.0 | 11110 | 0.2223 | 0.9400 | 0.2580 | 0.5214 | 0.7781 | 0.8564 | 0.9330 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1.post200 - Datasets 2.9.0 - Tokenizers 0.13.2
mindchain/ybelkada-falcon-7b-sharded-bf16-yizhongw_self_instruct
mindchain
2023-07-13T17:09:25Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-13T16:17:29Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0.dev0
NasimB/gpt2-cocnat-guten-mod-rm-2k-rarity-no-cut
NasimB
2023-07-13T16:46:31Z
9
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-13T15:02:21Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-cocnat-guten-mod-rm-2k-rarity-no-cut results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-cocnat-guten-mod-rm-2k-rarity-no-cut This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.3120 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.7018 | 0.29 | 500 | 5.6444 | | 5.3406 | 0.58 | 1000 | 5.2034 | | 4.9891 | 0.88 | 1500 | 4.9570 | | 4.7257 | 1.17 | 2000 | 4.8069 | | 4.5644 | 1.46 | 2500 | 4.6833 | | 4.4557 | 1.75 | 3000 | 4.5769 | | 4.3292 | 2.04 | 3500 | 4.4986 | | 4.137 | 2.34 | 4000 | 4.4485 | | 4.1027 | 2.63 | 4500 | 4.3900 | | 4.064 | 2.92 | 5000 | 4.3414 | | 3.8721 | 3.21 | 5500 | 4.3322 | | 3.8018 | 3.5 | 6000 | 4.3007 | | 3.7893 | 3.79 | 6500 | 4.2661 | | 3.6925 | 4.09 | 7000 | 4.2635 | | 3.5253 | 4.38 | 7500 | 4.2599 | | 3.5119 | 4.67 | 8000 | 4.2446 | | 3.506 | 4.96 | 8500 | 4.2295 | | 3.3528 | 5.25 | 9000 | 4.2434 | | 3.3251 | 5.55 | 9500 | 4.2431 | | 3.325 | 5.84 | 10000 | 4.2415 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
anyachan/ernalora
anyachan
2023-07-13T16:46:05Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-13T16:41:22Z
--- license: creativeml-openrail-m ---
grace-pro/afriberta-base-finetuned-hausa-2e-3
grace-pro
2023-07-13T16:45:14Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-13T16:28:08Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: afriberta-base-finetuned-hausa-2e-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # afriberta-base-finetuned-hausa-2e-3 This model is a fine-tuned version of [castorini/afriberta_base](https://huggingface.co/castorini/afriberta_base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2360 - Precision: 0.1719 - Recall: 0.0276 - F1: 0.0476 - Accuracy: 0.9373 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2428 | 1.0 | 1312 | 0.2368 | 0.1719 | 0.0276 | 0.0476 | 0.9373 | | 0.2435 | 2.0 | 2624 | 0.2385 | 0.1719 | 0.0276 | 0.0476 | 0.9373 | | 0.2428 | 3.0 | 3936 | 0.2371 | 0.1719 | 0.0276 | 0.0476 | 0.9373 | | 0.2434 | 4.0 | 5248 | 0.2359 | 0.1719 | 0.0276 | 0.0476 | 0.9373 | | 0.2411 | 5.0 | 6560 | 0.2360 | 0.1719 | 0.0276 | 0.0476 | 0.9373 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
eliaschaves/ppo-Huggy
eliaschaves
2023-07-13T16:43:46Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-07-13T16:43:41Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: eliaschaves/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
brunogs/distilbert-base-uncased-finetuned-cola
brunogs
2023-07-13T16:42:33Z
61
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-13T15:53:06Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: brunogs/distilbert-base-uncased-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # brunogs/distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1860 - Validation Loss: 0.5510 - Train Matthews Correlation: 0.5076 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1602, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Matthews Correlation | Epoch | |:----------:|:---------------:|:--------------------------:|:-----:| | 0.5165 | 0.4641 | 0.4474 | 0 | | 0.3176 | 0.4989 | 0.5060 | 1 | | 0.1860 | 0.5510 | 0.5076 | 2 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.13.1 - Tokenizers 0.13.3
1aurent/poca-SoccerTwos
1aurent
2023-07-13T16:33:04Z
25
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-07-13T15:40:45Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: 1aurent/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
miasik/Yohan-Anything.V5
miasik
2023-07-13T16:27:23Z
0
0
null
[ "en", "license:creativeml-openrail-m", "region:us" ]
null
2023-07-07T07:03:52Z
--- license: creativeml-openrail-m language: - en --- 1. Original Yohan was CLIP fixed and pruned 2. Anything.V5 was merged as "train difference" with (Yohan-Anything.V3)*1 using Supermerger 3. ClearVAE.V2.3 was baked in during merging ![](https://huggingface.co/miasik/Yohan-Anything.V5/blob/main/Grids/431619419-21-DPM%2B%2B%202M%20Karras-103421_405457.jpg "grid 01") ![](https://huggingface.co/miasik/Yohan-Anything.V5/blob/main/Grids/1546575599-21-DPM%2B%2B%202M%20Karras-105716_601281.jpg "grid 01")
grace-pro/afriberta-large-finetuned-hausa-2e-3
grace-pro
2023-07-13T16:24:53Z
126
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-13T16:02:55Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: afriberta-large-finetuned-hausa-2e-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # afriberta-large-finetuned-hausa-2e-3 This model is a fine-tuned version of [castorini/afriberta_large](https://huggingface.co/castorini/afriberta_large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2359 - Precision: 0.1719 - Recall: 0.0276 - F1: 0.0476 - Accuracy: 0.9373 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2428 | 1.0 | 1312 | 0.2358 | 0.1719 | 0.0276 | 0.0476 | 0.9373 | | 0.2436 | 2.0 | 2624 | 0.2366 | 0.1719 | 0.0276 | 0.0476 | 0.9373 | | 0.2429 | 3.0 | 3936 | 0.2365 | 0.1719 | 0.0276 | 0.0476 | 0.9373 | | 0.2434 | 4.0 | 5248 | 0.2358 | 0.1719 | 0.0276 | 0.0476 | 0.9373 | | 0.2411 | 5.0 | 6560 | 0.2359 | 0.1719 | 0.0276 | 0.0476 | 0.9373 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
alesthehuman/ppo-LunarLander-v2-unit8
alesthehuman
2023-07-13T16:15:30Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-07-13T15:26:57Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -13.55 +/- 101.24 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 1000000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'alesthehuman/ppo-LunarLander-v2-unit8' 'batch_size': 512 'minibatch_size': 128} ```
flaviagiammarino/medsam-vit-base
flaviagiammarino
2023-07-13T15:43:56Z
9,672
11
transformers
[ "transformers", "pytorch", "tf", "sam", "mask-generation", "medical", "vision", "arxiv:2304.12306", "license:apache-2.0", "endpoints_compatible", "region:us" ]
mask-generation
2023-07-11T07:37:57Z
--- license: apache-2.0 tags: - medical - vision --- # Model Card for MedSAM MedSAM is a fine-tuned version of [SAM](https://huggingface.co/docs/transformers/main/model_doc/sam) for the medical domain. This repository is based on the paper, code and pre-trained model released by the authors in July 2023. ## Model Description MedSAM was trained on a large-scale medical image segmentation dataset of 1,090,486 image-mask pairs collected from different publicly available sources. The image-mask pairs cover 15 imaging modalities and over 30 cancer types. MedSAM was initialized using the pre-trained SAM model with the ViT-Base backbone. The prompt encoder weights were frozen, while the image encoder and mask decoder weights were updated during training. The training was performed for 100 epochs with a batch size of 160 using the AdamW optimizer with a learning rate of 10−4 and a weight decay of 0.01. - **Repository:** [MedSAM Official GitHub Repository](https://github.com/bowang-lab/medsam) - **Paper:** [Segment Anything in Medical Images](https://arxiv.org/abs/2304.12306v1) ## Usage ```python import requests import numpy as np import matplotlib.pyplot as plt from PIL import Image from transformers import SamModel, SamProcessor import torch device = "cuda" if torch.cuda.is_available() else "cpu" model = SamModel.from_pretrained("flaviagiammarino/medsam-vit-base").to(device) processor = SamProcessor.from_pretrained("flaviagiammarino/medsam-vit-base") img_url = "https://huggingface.co/flaviagiammarino/medsam-vit-base/resolve/main/scripts/input.png" raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB") input_boxes = [95., 255., 190., 350.] inputs = processor(raw_image, input_boxes=[[input_boxes]], return_tensors="pt").to(device) outputs = model(**inputs, multimask_output=False) probs = processor.image_processor.post_process_masks(outputs.pred_masks.sigmoid().cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu(), binarize=False) def show_mask(mask, ax, random_color): if random_color: color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) else: color = np.array([251/255, 252/255, 30/255, 0.6]) h, w = mask.shape[-2:] mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) ax.imshow(mask_image) def show_box(box, ax): x0, y0 = box[0], box[1] w, h = box[2] - box[0], box[3] - box[1] ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor="blue", facecolor=(0, 0, 0, 0), lw=2)) fig, ax = plt.subplots(1, 2, figsize=(10, 5)) ax[0].imshow(np.array(raw_image)) show_box(input_boxes, ax[0]) ax[0].set_title("Input Image and Bounding Box") ax[0].axis("off") ax[1].imshow(np.array(raw_image)) show_mask(mask=probs[0] > 0.5, ax=ax[1], random_color=False) show_box(input_boxes, ax[1]) ax[1].set_title("MedSAM Segmentation") ax[1].axis("off") plt.show() ``` ![results](scripts/output.png) ## Additional Information ### Licensing Information The authors have released the model code and pre-trained checkpoint under the [Apache License 2.0](https://github.com/bowang-lab/MedSAM/blob/main/LICENSE). ### Citation Information ``` @article{ma2023segment, title={Segment anything in medical images}, author={Ma, Jun and Wang, Bo}, journal={arXiv preprint arXiv:2304.12306}, year={2023} } ```
Faith-nchifor/distilbert-base-uncased-finetuned-cola-2
Faith-nchifor
2023-07-13T15:32:02Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-13T15:27:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola-2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.1229361555243494 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 4.0843 - Matthews Correlation: 0.1229 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | No log | 1.0 | 381 | 3.9140 | 0.1059 | | 0.0791 | 2.0 | 762 | 4.4408 | 0.0927 | | 0.0561 | 3.0 | 1143 | 3.5105 | 0.1140 | | 0.041 | 4.0 | 1524 | 4.0843 | 0.1229 | | 0.041 | 5.0 | 1905 | 4.4197 | 0.1194 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
1aurent/rl_course_vizdoom_defend_the_line
1aurent
2023-07-13T15:24:15Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-13T15:24:07Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_defend_the_line type: doom_defend_the_line metrics: - type: mean_reward value: 20.10 +/- 3.39 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_defend_the_line** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r 1aurent/rl_course_vizdoom_defend_the_line ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_defend_the_line --train_dir=./train_dir --experiment=rl_course_vizdoom_defend_the_line ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_defend_the_line --train_dir=./train_dir --experiment=rl_course_vizdoom_defend_the_line --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
grace-pro/xlmr-base-finetuned-igbo-2e-4
grace-pro
2023-07-13T15:21:21Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-13T14:46:04Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: xlmr-base-finetuned-igbo-2e-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr-base-finetuned-igbo-2e-4 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3850 - Precision: 0.0223 - Recall: 0.0016 - F1: 0.0029 - Accuracy: 0.8715 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3879 | 1.0 | 1257 | 0.3848 | 0.0223 | 0.0016 | 0.0029 | 0.8715 | | 0.3885 | 2.0 | 2514 | 0.3861 | 0.0223 | 0.0016 | 0.0029 | 0.8715 | | 0.3823 | 3.0 | 3771 | 0.3847 | 0.0223 | 0.0016 | 0.0029 | 0.8715 | | 0.3855 | 4.0 | 5028 | 0.3848 | 0.0223 | 0.0016 | 0.0029 | 0.8715 | | 0.3846 | 5.0 | 6285 | 0.3850 | 0.0223 | 0.0016 | 0.0029 | 0.8715 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
orya16215/ppo-Huggy
orya16215
2023-07-13T15:17:58Z
11
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-07-13T15:17:55Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: orya16215/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Arthuerwang/output_models_girls
Arthuerwang
2023-07-13T15:13:35Z
0
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-13T11:35:54Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of gril in anime tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - Arthuerwang/output_models_girls This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a photo of gril in anime using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
chrisjsc96/data
chrisjsc96
2023-07-13T14:52:25Z
0
0
null
[ "arxiv:1910.09700", "region:us" ]
null
2023-07-13T14:31:16Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
dead-owwl/falcon7b-ft-haystack
dead-owwl
2023-07-13T14:50:57Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-13T14:45:40Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
ayanban011/vit-base_tobacco_lr1e-5_wr_0.05_wd_0.1
ayanban011
2023-07-13T14:14:51Z
165
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-13T10:54:39Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-base_tobacco_lr1e-5_wr_0.05_wd_0.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base_tobacco_lr1e-5_wr_0.05_wd_0.1 This model is a fine-tuned version of [jordyvl/vit-base_tobacco](https://huggingface.co/jordyvl/vit-base_tobacco) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9592 - Accuracy: 0.775 - Brier Loss: 0.3981 - Nll: 1.5416 - F1 Micro: 0.775 - F1 Macro: 0.7418 - Ece: 0.2227 - Aurc: 0.1082 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 300 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc | |:-------------:|:------:|:----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:| | No log | 0.96 | 12 | 0.7440 | 0.815 | 0.3076 | 1.1842 | 0.815 | 0.7942 | 0.2216 | 0.0733 | | No log | 2.0 | 25 | 0.7436 | 0.82 | 0.3075 | 1.1869 | 0.82 | 0.8049 | 0.2132 | 0.0741 | | No log | 2.96 | 37 | 0.7454 | 0.81 | 0.3085 | 1.1880 | 0.81 | 0.7914 | 0.2312 | 0.0755 | | No log | 4.0 | 50 | 0.7439 | 0.815 | 0.3077 | 1.1846 | 0.815 | 0.7926 | 0.2369 | 0.0760 | | No log | 4.96 | 62 | 0.7370 | 0.82 | 0.3040 | 1.1982 | 0.82 | 0.8028 | 0.2374 | 0.0745 | | No log | 6.0 | 75 | 0.7507 | 0.82 | 0.3112 | 1.1980 | 0.82 | 0.8005 | 0.2513 | 0.0809 | | No log | 6.96 | 87 | 0.7370 | 0.805 | 0.3060 | 1.1778 | 0.805 | 0.7841 | 0.2522 | 0.0746 | | No log | 8.0 | 100 | 0.7437 | 0.81 | 0.3076 | 1.1846 | 0.81 | 0.7877 | 0.2301 | 0.0804 | | No log | 8.96 | 112 | 0.7311 | 0.81 | 0.3031 | 1.1975 | 0.81 | 0.7920 | 0.2084 | 0.0753 | | No log | 10.0 | 125 | 0.7305 | 0.8 | 0.3020 | 1.1785 | 0.8000 | 0.7792 | 0.2131 | 0.0777 | | No log | 10.96 | 137 | 0.7478 | 0.805 | 0.3119 | 1.3979 | 0.805 | 0.7860 | 0.2133 | 0.0827 | | No log | 12.0 | 150 | 0.7469 | 0.805 | 0.3082 | 1.3337 | 0.805 | 0.7844 | 0.2213 | 0.0843 | | No log | 12.96 | 162 | 0.7545 | 0.805 | 0.3114 | 1.4280 | 0.805 | 0.7893 | 0.2092 | 0.0935 | | No log | 14.0 | 175 | 0.7283 | 0.795 | 0.3012 | 1.1856 | 0.795 | 0.7739 | 0.2182 | 0.0806 | | No log | 14.96 | 187 | 0.7219 | 0.815 | 0.2972 | 1.2792 | 0.815 | 0.8043 | 0.2024 | 0.0734 | | No log | 16.0 | 200 | 0.7284 | 0.805 | 0.3001 | 1.2528 | 0.805 | 0.7899 | 0.2068 | 0.0858 | | No log | 16.96 | 212 | 0.7191 | 0.805 | 0.2981 | 1.3067 | 0.805 | 0.7919 | 0.2062 | 0.0809 | | No log | 18.0 | 225 | 0.7221 | 0.8 | 0.3011 | 1.1747 | 0.8000 | 0.7792 | 0.2091 | 0.0803 | | No log | 18.96 | 237 | 0.7253 | 0.81 | 0.2995 | 1.3143 | 0.81 | 0.7955 | 0.2136 | 0.0889 | | No log | 20.0 | 250 | 0.7186 | 0.8 | 0.2981 | 1.1839 | 0.8000 | 0.7819 | 0.1899 | 0.0812 | | No log | 20.96 | 262 | 0.7247 | 0.805 | 0.3012 | 1.2501 | 0.805 | 0.7925 | 0.2214 | 0.0891 | | No log | 22.0 | 275 | 0.7317 | 0.805 | 0.3058 | 1.3767 | 0.805 | 0.7853 | 0.2141 | 0.0893 | | No log | 22.96 | 287 | 0.7250 | 0.81 | 0.3031 | 1.3683 | 0.81 | 0.7907 | 0.1886 | 0.0838 | | No log | 24.0 | 300 | 0.7137 | 0.805 | 0.2983 | 1.3088 | 0.805 | 0.7851 | 0.1799 | 0.0782 | | No log | 24.96 | 312 | 0.7334 | 0.81 | 0.3070 | 1.4296 | 0.81 | 0.7909 | 0.1903 | 0.0898 | | No log | 26.0 | 325 | 0.7284 | 0.81 | 0.3035 | 1.2467 | 0.81 | 0.7984 | 0.2152 | 0.0916 | | No log | 26.96 | 337 | 0.7242 | 0.805 | 0.3020 | 1.3077 | 0.805 | 0.7862 | 0.2071 | 0.0891 | | No log | 28.0 | 350 | 0.7285 | 0.81 | 0.3028 | 1.3756 | 0.81 | 0.7910 | 0.2158 | 0.0915 | | No log | 28.96 | 362 | 0.7253 | 0.8 | 0.3016 | 1.3714 | 0.8000 | 0.7716 | 0.2057 | 0.0894 | | No log | 30.0 | 375 | 0.7321 | 0.8 | 0.3068 | 1.3688 | 0.8000 | 0.7736 | 0.1943 | 0.0885 | | No log | 30.96 | 387 | 0.7294 | 0.8 | 0.3047 | 1.3713 | 0.8000 | 0.7746 | 0.2138 | 0.0900 | | No log | 32.0 | 400 | 0.7296 | 0.81 | 0.3054 | 1.3749 | 0.81 | 0.7921 | 0.2074 | 0.0910 | | No log | 32.96 | 412 | 0.7311 | 0.805 | 0.3061 | 1.3704 | 0.805 | 0.7811 | 0.1984 | 0.0920 | | No log | 34.0 | 425 | 0.7291 | 0.805 | 0.3049 | 1.3686 | 0.805 | 0.7811 | 0.2126 | 0.0916 | | No log | 34.96 | 437 | 0.7301 | 0.795 | 0.3048 | 1.3712 | 0.795 | 0.7654 | 0.1917 | 0.0904 | | No log | 36.0 | 450 | 0.7318 | 0.81 | 0.3072 | 1.3695 | 0.81 | 0.7844 | 0.1976 | 0.0900 | | No log | 36.96 | 462 | 0.7403 | 0.795 | 0.3102 | 1.3712 | 0.795 | 0.7656 | 0.2039 | 0.0934 | | No log | 38.0 | 475 | 0.7376 | 0.795 | 0.3095 | 1.3653 | 0.795 | 0.7654 | 0.1982 | 0.0920 | | No log | 38.96 | 487 | 0.7326 | 0.805 | 0.3049 | 1.3815 | 0.805 | 0.7744 | 0.1820 | 0.0948 | | 0.1331 | 40.0 | 500 | 0.7268 | 0.8 | 0.3038 | 1.3702 | 0.8000 | 0.7704 | 0.2051 | 0.0899 | | 0.1331 | 40.96 | 512 | 0.7371 | 0.8 | 0.3074 | 1.3824 | 0.8000 | 0.7684 | 0.1946 | 0.0939 | | 0.1331 | 42.0 | 525 | 0.7374 | 0.81 | 0.3107 | 1.3600 | 0.81 | 0.7844 | 0.2109 | 0.0910 | | 0.1331 | 42.96 | 537 | 0.7366 | 0.8 | 0.3071 | 1.4434 | 0.8000 | 0.7776 | 0.2042 | 0.0935 | | 0.1331 | 44.0 | 550 | 0.7362 | 0.805 | 0.3083 | 1.3721 | 0.805 | 0.7829 | 0.1782 | 0.0929 | | 0.1331 | 44.96 | 562 | 0.7389 | 0.8 | 0.3110 | 1.3695 | 0.8000 | 0.7704 | 0.1966 | 0.0917 | | 0.1331 | 46.0 | 575 | 0.7426 | 0.79 | 0.3108 | 1.5068 | 0.79 | 0.7644 | 0.1938 | 0.0968 | | 0.1331 | 46.96 | 587 | 0.7395 | 0.8 | 0.3096 | 1.3760 | 0.8000 | 0.7704 | 0.1951 | 0.0927 | | 0.1331 | 48.0 | 600 | 0.7540 | 0.805 | 0.3185 | 1.4936 | 0.805 | 0.7821 | 0.1958 | 0.0979 | | 0.1331 | 48.96 | 612 | 0.7413 | 0.805 | 0.3116 | 1.4368 | 0.805 | 0.7829 | 0.1835 | 0.0955 | | 0.1331 | 50.0 | 625 | 0.7543 | 0.805 | 0.3167 | 1.4402 | 0.805 | 0.7831 | 0.2143 | 0.0974 | | 0.1331 | 50.96 | 637 | 0.7378 | 0.805 | 0.3087 | 1.3850 | 0.805 | 0.7829 | 0.1886 | 0.0935 | | 0.1331 | 52.0 | 650 | 0.7545 | 0.795 | 0.3175 | 1.3873 | 0.795 | 0.7656 | 0.2007 | 0.0957 | | 0.1331 | 52.96 | 662 | 0.7464 | 0.8 | 0.3140 | 1.3734 | 0.8000 | 0.7707 | 0.1872 | 0.0938 | | 0.1331 | 54.0 | 675 | 0.7439 | 0.8 | 0.3120 | 1.3765 | 0.8000 | 0.7704 | 0.2036 | 0.0942 | | 0.1331 | 54.96 | 687 | 0.7506 | 0.8 | 0.3150 | 1.3788 | 0.8000 | 0.7707 | 0.1788 | 0.0959 | | 0.1331 | 56.0 | 700 | 0.7511 | 0.805 | 0.3158 | 1.4378 | 0.805 | 0.7829 | 0.2054 | 0.0955 | | 0.1331 | 56.96 | 712 | 0.7587 | 0.805 | 0.3196 | 1.4494 | 0.805 | 0.7831 | 0.1844 | 0.0972 | | 0.1331 | 58.0 | 725 | 0.7505 | 0.8 | 0.3154 | 1.3759 | 0.8000 | 0.7704 | 0.1913 | 0.0953 | | 0.1331 | 58.96 | 737 | 0.7553 | 0.79 | 0.3167 | 1.4457 | 0.79 | 0.7549 | 0.1977 | 0.0959 | | 0.1331 | 60.0 | 750 | 0.7543 | 0.8 | 0.3175 | 1.3807 | 0.8000 | 0.7707 | 0.1963 | 0.0953 | | 0.1331 | 60.96 | 762 | 0.7592 | 0.795 | 0.3200 | 1.3759 | 0.795 | 0.7681 | 0.1986 | 0.0961 | | 0.1331 | 62.0 | 775 | 0.7557 | 0.795 | 0.3185 | 1.3785 | 0.795 | 0.7634 | 0.1971 | 0.0948 | | 0.1331 | 62.96 | 787 | 0.7591 | 0.79 | 0.3200 | 1.4466 | 0.79 | 0.7613 | 0.2033 | 0.0963 | | 0.1331 | 64.0 | 800 | 0.7624 | 0.795 | 0.3210 | 1.4423 | 0.795 | 0.7621 | 0.2030 | 0.0962 | | 0.1331 | 64.96 | 812 | 0.7674 | 0.79 | 0.3240 | 1.4454 | 0.79 | 0.7596 | 0.1973 | 0.0969 | | 0.1331 | 66.0 | 825 | 0.7645 | 0.79 | 0.3224 | 1.4497 | 0.79 | 0.7611 | 0.1999 | 0.0964 | | 0.1331 | 66.96 | 837 | 0.7652 | 0.795 | 0.3234 | 1.4418 | 0.795 | 0.7668 | 0.1819 | 0.0968 | | 0.1331 | 68.0 | 850 | 0.7695 | 0.795 | 0.3250 | 1.4969 | 0.795 | 0.7606 | 0.1914 | 0.0979 | | 0.1331 | 68.96 | 862 | 0.7708 | 0.785 | 0.3258 | 1.4482 | 0.785 | 0.7516 | 0.1954 | 0.0976 | | 0.1331 | 70.0 | 875 | 0.7691 | 0.795 | 0.3249 | 1.4960 | 0.795 | 0.7673 | 0.1895 | 0.0976 | | 0.1331 | 70.96 | 887 | 0.7741 | 0.785 | 0.3272 | 1.5043 | 0.785 | 0.7519 | 0.1898 | 0.0982 | | 0.1331 | 72.0 | 900 | 0.7788 | 0.79 | 0.3293 | 1.5094 | 0.79 | 0.7611 | 0.1738 | 0.0995 | | 0.1331 | 72.96 | 912 | 0.7837 | 0.785 | 0.3329 | 1.5306 | 0.785 | 0.7577 | 0.2002 | 0.1004 | | 0.1331 | 74.0 | 925 | 0.7755 | 0.785 | 0.3280 | 1.4985 | 0.785 | 0.7514 | 0.1906 | 0.0981 | | 0.1331 | 74.96 | 937 | 0.7797 | 0.785 | 0.3308 | 1.4611 | 0.785 | 0.7580 | 0.1925 | 0.0994 | | 0.1331 | 76.0 | 950 | 0.7744 | 0.785 | 0.3273 | 1.4441 | 0.785 | 0.7519 | 0.1929 | 0.0976 | | 0.1331 | 76.96 | 962 | 0.7766 | 0.785 | 0.3295 | 1.4420 | 0.785 | 0.7516 | 0.1899 | 0.0972 | | 0.1331 | 78.0 | 975 | 0.7888 | 0.785 | 0.3339 | 1.4991 | 0.785 | 0.7573 | 0.1879 | 0.0998 | | 0.1331 | 78.96 | 987 | 0.7765 | 0.795 | 0.3292 | 1.4915 | 0.795 | 0.7663 | 0.1750 | 0.0948 | | 0.071 | 80.0 | 1000 | 0.7821 | 0.785 | 0.3303 | 1.4990 | 0.785 | 0.7519 | 0.1940 | 0.0986 | | 0.071 | 80.96 | 1012 | 0.7860 | 0.79 | 0.3330 | 1.4977 | 0.79 | 0.7644 | 0.1698 | 0.0976 | | 0.071 | 82.0 | 1025 | 0.7882 | 0.78 | 0.3342 | 1.5243 | 0.78 | 0.7482 | 0.1930 | 0.1006 | | 0.071 | 82.96 | 1037 | 0.7879 | 0.78 | 0.3333 | 1.5037 | 0.78 | 0.7491 | 0.2055 | 0.0995 | | 0.071 | 84.0 | 1050 | 0.7842 | 0.78 | 0.3326 | 1.4959 | 0.78 | 0.7488 | 0.1945 | 0.0985 | | 0.071 | 84.96 | 1062 | 0.7866 | 0.78 | 0.3338 | 1.4961 | 0.78 | 0.7488 | 0.1877 | 0.0982 | | 0.071 | 86.0 | 1075 | 0.7931 | 0.785 | 0.3369 | 1.5006 | 0.785 | 0.7573 | 0.1898 | 0.1003 | | 0.071 | 86.96 | 1087 | 0.7937 | 0.78 | 0.3360 | 1.5043 | 0.78 | 0.7488 | 0.1828 | 0.0999 | | 0.071 | 88.0 | 1100 | 0.7948 | 0.78 | 0.3374 | 1.5034 | 0.78 | 0.7488 | 0.1893 | 0.0999 | | 0.071 | 88.96 | 1112 | 0.7962 | 0.78 | 0.3372 | 1.5078 | 0.78 | 0.7494 | 0.1943 | 0.1011 | | 0.071 | 90.0 | 1125 | 0.7956 | 0.785 | 0.3377 | 1.5039 | 0.785 | 0.7516 | 0.1918 | 0.0999 | | 0.071 | 90.96 | 1137 | 0.7996 | 0.78 | 0.3382 | 1.5060 | 0.78 | 0.7491 | 0.1982 | 0.1013 | | 0.071 | 92.0 | 1150 | 0.7980 | 0.78 | 0.3381 | 1.5023 | 0.78 | 0.7488 | 0.1902 | 0.1004 | | 0.071 | 92.96 | 1162 | 0.8015 | 0.78 | 0.3396 | 1.5029 | 0.78 | 0.7488 | 0.1978 | 0.1007 | | 0.071 | 94.0 | 1175 | 0.8044 | 0.78 | 0.3411 | 1.5047 | 0.78 | 0.7488 | 0.1929 | 0.1012 | | 0.071 | 94.96 | 1187 | 0.7977 | 0.78 | 0.3392 | 1.4989 | 0.78 | 0.7488 | 0.1866 | 0.0989 | | 0.071 | 96.0 | 1200 | 0.8071 | 0.78 | 0.3425 | 1.5021 | 0.78 | 0.7488 | 0.1941 | 0.1018 | | 0.071 | 96.96 | 1212 | 0.8033 | 0.78 | 0.3406 | 1.4967 | 0.78 | 0.7488 | 0.1913 | 0.1000 | | 0.071 | 98.0 | 1225 | 0.8148 | 0.775 | 0.3466 | 1.4555 | 0.775 | 0.7462 | 0.1828 | 0.1036 | | 0.071 | 98.96 | 1237 | 0.8062 | 0.78 | 0.3417 | 1.5007 | 0.78 | 0.7488 | 0.1949 | 0.1004 | | 0.071 | 100.0 | 1250 | 0.8123 | 0.77 | 0.3456 | 1.5069 | 0.7700 | 0.7424 | 0.1964 | 0.1020 | | 0.071 | 100.96 | 1262 | 0.8117 | 0.78 | 0.3452 | 1.5048 | 0.78 | 0.7488 | 0.2081 | 0.1020 | | 0.071 | 102.0 | 1275 | 0.8125 | 0.77 | 0.3454 | 1.5066 | 0.7700 | 0.7424 | 0.2040 | 0.1022 | | 0.071 | 102.96 | 1287 | 0.8134 | 0.775 | 0.3458 | 1.5048 | 0.775 | 0.7450 | 0.1977 | 0.1013 | | 0.071 | 104.0 | 1300 | 0.8152 | 0.78 | 0.3461 | 1.5027 | 0.78 | 0.7488 | 0.2044 | 0.1014 | | 0.071 | 104.96 | 1312 | 0.8185 | 0.78 | 0.3478 | 1.5057 | 0.78 | 0.7488 | 0.1900 | 0.1022 | | 0.071 | 106.0 | 1325 | 0.8191 | 0.78 | 0.3480 | 1.5053 | 0.78 | 0.7488 | 0.2084 | 0.1026 | | 0.071 | 106.96 | 1337 | 0.8207 | 0.77 | 0.3497 | 1.5095 | 0.7700 | 0.7424 | 0.1984 | 0.1025 | | 0.071 | 108.0 | 1350 | 0.8221 | 0.77 | 0.3487 | 1.5095 | 0.7700 | 0.7424 | 0.1871 | 0.1031 | | 0.071 | 108.96 | 1362 | 0.8229 | 0.765 | 0.3501 | 1.4607 | 0.765 | 0.7331 | 0.1920 | 0.1028 | | 0.071 | 110.0 | 1375 | 0.8232 | 0.78 | 0.3498 | 1.5044 | 0.78 | 0.7488 | 0.1995 | 0.1023 | | 0.071 | 110.96 | 1387 | 0.8279 | 0.785 | 0.3513 | 1.5060 | 0.785 | 0.7526 | 0.2073 | 0.1033 | | 0.071 | 112.0 | 1400 | 0.8246 | 0.775 | 0.3505 | 1.5038 | 0.775 | 0.7450 | 0.1927 | 0.1018 | | 0.071 | 112.96 | 1412 | 0.8308 | 0.765 | 0.3537 | 1.5095 | 0.765 | 0.7331 | 0.1931 | 0.1035 | | 0.071 | 114.0 | 1425 | 0.8277 | 0.775 | 0.3513 | 1.5058 | 0.775 | 0.7395 | 0.1977 | 0.1022 | | 0.071 | 114.96 | 1437 | 0.8302 | 0.76 | 0.3531 | 1.4583 | 0.76 | 0.7296 | 0.2112 | 0.1028 | | 0.071 | 116.0 | 1450 | 0.8328 | 0.765 | 0.3535 | 1.5125 | 0.765 | 0.7331 | 0.2008 | 0.1037 | | 0.071 | 116.96 | 1462 | 0.8309 | 0.76 | 0.3533 | 1.4542 | 0.76 | 0.7296 | 0.2037 | 0.1029 | | 0.071 | 118.0 | 1475 | 0.8378 | 0.765 | 0.3558 | 1.5162 | 0.765 | 0.7323 | 0.2040 | 0.1055 | | 0.071 | 118.96 | 1487 | 0.8341 | 0.76 | 0.3547 | 1.5076 | 0.76 | 0.7296 | 0.1942 | 0.1032 | | 0.0462 | 120.0 | 1500 | 0.8367 | 0.76 | 0.3557 | 1.5134 | 0.76 | 0.7296 | 0.1987 | 0.1034 | | 0.0462 | 120.96 | 1512 | 0.8369 | 0.76 | 0.3553 | 1.5081 | 0.76 | 0.7296 | 0.2121 | 0.1036 | | 0.0462 | 122.0 | 1525 | 0.8385 | 0.77 | 0.3560 | 1.5076 | 0.7700 | 0.7357 | 0.1944 | 0.1034 | | 0.0462 | 122.96 | 1537 | 0.8415 | 0.76 | 0.3577 | 1.5127 | 0.76 | 0.7296 | 0.2080 | 0.1040 | | 0.0462 | 124.0 | 1550 | 0.8418 | 0.765 | 0.3571 | 1.5123 | 0.765 | 0.7333 | 0.1905 | 0.1043 | | 0.0462 | 124.96 | 1562 | 0.8431 | 0.76 | 0.3581 | 1.5124 | 0.76 | 0.7296 | 0.2029 | 0.1043 | | 0.0462 | 126.0 | 1575 | 0.8461 | 0.765 | 0.3595 | 1.5115 | 0.765 | 0.7331 | 0.1861 | 0.1044 | | 0.0462 | 126.96 | 1587 | 0.8446 | 0.76 | 0.3586 | 1.5117 | 0.76 | 0.7296 | 0.1962 | 0.1043 | | 0.0462 | 128.0 | 1600 | 0.8448 | 0.765 | 0.3585 | 1.5106 | 0.765 | 0.7333 | 0.1899 | 0.1048 | | 0.0462 | 128.96 | 1612 | 0.8503 | 0.765 | 0.3611 | 1.5156 | 0.765 | 0.7323 | 0.1865 | 0.1050 | | 0.0462 | 130.0 | 1625 | 0.8473 | 0.765 | 0.3597 | 1.5082 | 0.765 | 0.7333 | 0.1992 | 0.1040 | | 0.0462 | 130.96 | 1637 | 0.8530 | 0.76 | 0.3617 | 1.5178 | 0.76 | 0.7296 | 0.2008 | 0.1053 | | 0.0462 | 132.0 | 1650 | 0.8499 | 0.765 | 0.3608 | 1.5105 | 0.765 | 0.7321 | 0.1910 | 0.1035 | | 0.0462 | 132.96 | 1662 | 0.8529 | 0.765 | 0.3612 | 1.5095 | 0.765 | 0.7333 | 0.1943 | 0.1043 | | 0.0462 | 134.0 | 1675 | 0.8547 | 0.765 | 0.3635 | 1.5095 | 0.765 | 0.7321 | 0.2002 | 0.1032 | | 0.0462 | 134.96 | 1687 | 0.8572 | 0.765 | 0.3638 | 1.5159 | 0.765 | 0.7333 | 0.1979 | 0.1056 | | 0.0462 | 136.0 | 1700 | 0.8582 | 0.765 | 0.3642 | 1.5165 | 0.765 | 0.7333 | 0.2026 | 0.1057 | | 0.0462 | 136.96 | 1712 | 0.8581 | 0.76 | 0.3639 | 1.5118 | 0.76 | 0.7296 | 0.1965 | 0.1052 | | 0.0462 | 138.0 | 1725 | 0.8570 | 0.77 | 0.3629 | 1.5094 | 0.7700 | 0.7358 | 0.1870 | 0.1029 | | 0.0462 | 138.96 | 1737 | 0.8611 | 0.76 | 0.3650 | 1.5129 | 0.76 | 0.7296 | 0.1919 | 0.1040 | | 0.0462 | 140.0 | 1750 | 0.8618 | 0.76 | 0.3659 | 1.5131 | 0.76 | 0.7296 | 0.1981 | 0.1042 | | 0.0462 | 140.96 | 1762 | 0.8605 | 0.765 | 0.3652 | 1.5115 | 0.765 | 0.7333 | 0.1875 | 0.1048 | | 0.0462 | 142.0 | 1775 | 0.8647 | 0.76 | 0.3666 | 1.5157 | 0.76 | 0.7296 | 0.2002 | 0.1052 | | 0.0462 | 142.96 | 1787 | 0.8618 | 0.76 | 0.3654 | 1.5116 | 0.76 | 0.7296 | 0.2006 | 0.1045 | | 0.0462 | 144.0 | 1800 | 0.8672 | 0.765 | 0.3672 | 1.5160 | 0.765 | 0.7333 | 0.1979 | 0.1053 | | 0.0462 | 144.96 | 1812 | 0.8625 | 0.77 | 0.3648 | 1.5080 | 0.7700 | 0.7358 | 0.1975 | 0.1026 | | 0.0462 | 146.0 | 1825 | 0.8695 | 0.765 | 0.3679 | 1.5169 | 0.765 | 0.7323 | 0.1973 | 0.1051 | | 0.0462 | 146.96 | 1837 | 0.8696 | 0.76 | 0.3685 | 1.5132 | 0.76 | 0.7296 | 0.1936 | 0.1037 | | 0.0462 | 148.0 | 1850 | 0.8678 | 0.765 | 0.3671 | 1.5110 | 0.765 | 0.7333 | 0.2008 | 0.1040 | | 0.0462 | 148.96 | 1862 | 0.8713 | 0.765 | 0.3690 | 1.5152 | 0.765 | 0.7333 | 0.1983 | 0.1050 | | 0.0462 | 150.0 | 1875 | 0.8716 | 0.765 | 0.3687 | 1.5163 | 0.765 | 0.7323 | 0.2029 | 0.1051 | | 0.0462 | 150.96 | 1887 | 0.8724 | 0.77 | 0.3691 | 1.5113 | 0.7700 | 0.7358 | 0.1997 | 0.1037 | | 0.0462 | 152.0 | 1900 | 0.8729 | 0.765 | 0.3695 | 1.5134 | 0.765 | 0.7333 | 0.1966 | 0.1050 | | 0.0462 | 152.96 | 1912 | 0.8760 | 0.765 | 0.3706 | 1.5131 | 0.765 | 0.7333 | 0.2046 | 0.1040 | | 0.0462 | 154.0 | 1925 | 0.8761 | 0.765 | 0.3707 | 1.5138 | 0.765 | 0.7333 | 0.1896 | 0.1037 | | 0.0462 | 154.96 | 1937 | 0.8778 | 0.765 | 0.3711 | 1.5138 | 0.765 | 0.7333 | 0.2012 | 0.1046 | | 0.0462 | 156.0 | 1950 | 0.8768 | 0.765 | 0.3712 | 1.5125 | 0.765 | 0.7333 | 0.1891 | 0.1041 | | 0.0462 | 156.96 | 1962 | 0.8816 | 0.77 | 0.3732 | 1.5205 | 0.7700 | 0.7360 | 0.1993 | 0.1067 | | 0.0462 | 158.0 | 1975 | 0.8793 | 0.765 | 0.3718 | 1.5157 | 0.765 | 0.7333 | 0.2025 | 0.1049 | | 0.0462 | 158.96 | 1987 | 0.8788 | 0.77 | 0.3713 | 1.5126 | 0.7700 | 0.7358 | 0.2044 | 0.1039 | | 0.0335 | 160.0 | 2000 | 0.8851 | 0.77 | 0.3739 | 1.5193 | 0.7700 | 0.7360 | 0.2042 | 0.1069 | | 0.0335 | 160.96 | 2012 | 0.8872 | 0.77 | 0.3748 | 1.5200 | 0.7700 | 0.7360 | 0.2009 | 0.1057 | | 0.0335 | 162.0 | 2025 | 0.8827 | 0.765 | 0.3731 | 1.5144 | 0.765 | 0.7333 | 0.1897 | 0.1050 | | 0.0335 | 162.96 | 2037 | 0.8821 | 0.765 | 0.3724 | 1.5129 | 0.765 | 0.7333 | 0.1971 | 0.1042 | | 0.0335 | 164.0 | 2050 | 0.8919 | 0.77 | 0.3770 | 1.5229 | 0.7700 | 0.7360 | 0.2119 | 0.1061 | | 0.0335 | 164.96 | 2062 | 0.8907 | 0.765 | 0.3764 | 1.5240 | 0.765 | 0.7323 | 0.2125 | 0.1069 | | 0.0335 | 166.0 | 2075 | 0.8857 | 0.765 | 0.3743 | 1.5127 | 0.765 | 0.7333 | 0.1906 | 0.1044 | | 0.0335 | 166.96 | 2087 | 0.8928 | 0.77 | 0.3771 | 1.5253 | 0.7700 | 0.7360 | 0.2062 | 0.1062 | | 0.0335 | 168.0 | 2100 | 0.8895 | 0.77 | 0.3750 | 1.5179 | 0.7700 | 0.7360 | 0.2062 | 0.1054 | | 0.0335 | 168.96 | 2112 | 0.8904 | 0.77 | 0.3754 | 1.5178 | 0.7700 | 0.7360 | 0.2048 | 0.1055 | | 0.0335 | 170.0 | 2125 | 0.8919 | 0.765 | 0.3766 | 1.5137 | 0.765 | 0.7333 | 0.2170 | 0.1044 | | 0.0335 | 170.96 | 2137 | 0.8949 | 0.77 | 0.3779 | 1.5203 | 0.7700 | 0.7360 | 0.2042 | 0.1069 | | 0.0335 | 172.0 | 2150 | 0.8949 | 0.77 | 0.3779 | 1.5204 | 0.7700 | 0.7360 | 0.2078 | 0.1069 | | 0.0335 | 172.96 | 2162 | 0.8986 | 0.765 | 0.3794 | 1.5241 | 0.765 | 0.7310 | 0.2079 | 0.1072 | | 0.0335 | 174.0 | 2175 | 0.8978 | 0.76 | 0.3787 | 1.5201 | 0.76 | 0.7272 | 0.2108 | 0.1056 | | 0.0335 | 174.96 | 2187 | 0.8990 | 0.77 | 0.3786 | 1.5198 | 0.7700 | 0.7360 | 0.2032 | 0.1053 | | 0.0335 | 176.0 | 2200 | 0.9003 | 0.77 | 0.3794 | 1.5206 | 0.7700 | 0.7360 | 0.1996 | 0.1060 | | 0.0335 | 176.96 | 2212 | 0.9000 | 0.77 | 0.3797 | 1.5196 | 0.7700 | 0.7360 | 0.2116 | 0.1063 | | 0.0335 | 178.0 | 2225 | 0.9000 | 0.765 | 0.3794 | 1.5178 | 0.765 | 0.7333 | 0.1875 | 0.1055 | | 0.0335 | 178.96 | 2237 | 0.9034 | 0.77 | 0.3804 | 1.5218 | 0.7700 | 0.7360 | 0.1964 | 0.1068 | | 0.0335 | 180.0 | 2250 | 0.9020 | 0.77 | 0.3802 | 1.5198 | 0.7700 | 0.7360 | 0.2058 | 0.1063 | | 0.0335 | 180.96 | 2262 | 0.9037 | 0.77 | 0.3808 | 1.5192 | 0.7700 | 0.7360 | 0.1976 | 0.1063 | | 0.0335 | 182.0 | 2275 | 0.9059 | 0.77 | 0.3812 | 1.5227 | 0.7700 | 0.7360 | 0.1962 | 0.1067 | | 0.0335 | 182.96 | 2287 | 0.9063 | 0.77 | 0.3818 | 1.5206 | 0.7700 | 0.7360 | 0.2000 | 0.1065 | | 0.0335 | 184.0 | 2300 | 0.9058 | 0.77 | 0.3814 | 1.5196 | 0.7700 | 0.7360 | 0.1926 | 0.1061 | | 0.0335 | 184.96 | 2312 | 0.9082 | 0.77 | 0.3821 | 1.5211 | 0.7700 | 0.7360 | 0.2001 | 0.1067 | | 0.0335 | 186.0 | 2325 | 0.9083 | 0.77 | 0.3824 | 1.5204 | 0.7700 | 0.7360 | 0.2062 | 0.1057 | | 0.0335 | 186.96 | 2337 | 0.9090 | 0.77 | 0.3824 | 1.5220 | 0.7700 | 0.7360 | 0.2027 | 0.1063 | | 0.0335 | 188.0 | 2350 | 0.9106 | 0.77 | 0.3828 | 1.5213 | 0.7700 | 0.7360 | 0.1968 | 0.1068 | | 0.0335 | 188.96 | 2362 | 0.9116 | 0.77 | 0.3829 | 1.5238 | 0.7700 | 0.7360 | 0.2029 | 0.1071 | | 0.0335 | 190.0 | 2375 | 0.9120 | 0.77 | 0.3835 | 1.5225 | 0.7700 | 0.7360 | 0.1953 | 0.1064 | | 0.0335 | 190.96 | 2387 | 0.9123 | 0.77 | 0.3835 | 1.5227 | 0.7700 | 0.7360 | 0.2080 | 0.1069 | | 0.0335 | 192.0 | 2400 | 0.9131 | 0.775 | 0.3838 | 1.5222 | 0.775 | 0.7418 | 0.2039 | 0.1061 | | 0.0335 | 192.96 | 2412 | 0.9144 | 0.765 | 0.3841 | 1.5200 | 0.765 | 0.7333 | 0.2163 | 0.1060 | | 0.0335 | 194.0 | 2425 | 0.9138 | 0.77 | 0.3839 | 1.5200 | 0.7700 | 0.7360 | 0.2092 | 0.1057 | | 0.0335 | 194.96 | 2437 | 0.9164 | 0.775 | 0.3850 | 1.5249 | 0.775 | 0.7418 | 0.2188 | 0.1065 | | 0.0335 | 196.0 | 2450 | 0.9185 | 0.77 | 0.3861 | 1.5257 | 0.7700 | 0.7360 | 0.2087 | 0.1067 | | 0.0335 | 196.96 | 2462 | 0.9207 | 0.77 | 0.3868 | 1.5286 | 0.7700 | 0.7360 | 0.2063 | 0.1074 | | 0.0335 | 198.0 | 2475 | 0.9191 | 0.77 | 0.3858 | 1.5254 | 0.7700 | 0.7360 | 0.2129 | 0.1068 | | 0.0335 | 198.96 | 2487 | 0.9195 | 0.77 | 0.3861 | 1.5240 | 0.7700 | 0.7360 | 0.2059 | 0.1066 | | 0.0264 | 200.0 | 2500 | 0.9205 | 0.77 | 0.3864 | 1.5246 | 0.7700 | 0.7360 | 0.2081 | 0.1069 | | 0.0264 | 200.96 | 2512 | 0.9214 | 0.77 | 0.3865 | 1.5235 | 0.7700 | 0.7360 | 0.2018 | 0.1066 | | 0.0264 | 202.0 | 2525 | 0.9216 | 0.775 | 0.3867 | 1.5253 | 0.775 | 0.7418 | 0.2156 | 0.1068 | | 0.0264 | 202.96 | 2537 | 0.9218 | 0.775 | 0.3870 | 1.5225 | 0.775 | 0.7418 | 0.2108 | 0.1064 | | 0.0264 | 204.0 | 2550 | 0.9241 | 0.775 | 0.3871 | 1.4893 | 0.775 | 0.7418 | 0.2087 | 0.1071 | | 0.0264 | 204.96 | 2562 | 0.9270 | 0.77 | 0.3889 | 1.5244 | 0.7700 | 0.7360 | 0.2024 | 0.1071 | | 0.0264 | 206.0 | 2575 | 0.9260 | 0.775 | 0.3885 | 1.5262 | 0.775 | 0.7418 | 0.2116 | 0.1069 | | 0.0264 | 206.96 | 2587 | 0.9259 | 0.775 | 0.3883 | 1.5269 | 0.775 | 0.7418 | 0.2089 | 0.1065 | | 0.0264 | 208.0 | 2600 | 0.9254 | 0.77 | 0.3875 | 1.5247 | 0.7700 | 0.7360 | 0.2060 | 0.1069 | | 0.0264 | 208.96 | 2612 | 0.9285 | 0.775 | 0.3889 | 1.5281 | 0.775 | 0.7418 | 0.2115 | 0.1074 | | 0.0264 | 210.0 | 2625 | 0.9277 | 0.775 | 0.3886 | 1.5254 | 0.775 | 0.7418 | 0.2114 | 0.1069 | | 0.0264 | 210.96 | 2637 | 0.9304 | 0.775 | 0.3897 | 1.5278 | 0.775 | 0.7418 | 0.2095 | 0.1071 | | 0.0264 | 212.0 | 2650 | 0.9288 | 0.77 | 0.3886 | 1.5270 | 0.7700 | 0.7360 | 0.2068 | 0.1070 | | 0.0264 | 212.96 | 2662 | 0.9310 | 0.775 | 0.3896 | 1.5316 | 0.775 | 0.7418 | 0.2135 | 0.1071 | | 0.0264 | 214.0 | 2675 | 0.9311 | 0.775 | 0.3899 | 1.5263 | 0.775 | 0.7418 | 0.2187 | 0.1070 | | 0.0264 | 214.96 | 2687 | 0.9315 | 0.775 | 0.3899 | 1.5256 | 0.775 | 0.7418 | 0.2123 | 0.1068 | | 0.0264 | 216.0 | 2700 | 0.9315 | 0.77 | 0.3896 | 1.5258 | 0.7700 | 0.7360 | 0.2070 | 0.1071 | | 0.0264 | 216.96 | 2712 | 0.9334 | 0.775 | 0.3905 | 1.5291 | 0.775 | 0.7418 | 0.2088 | 0.1071 | | 0.0264 | 218.0 | 2725 | 0.9342 | 0.775 | 0.3908 | 1.5283 | 0.775 | 0.7418 | 0.2146 | 0.1072 | | 0.0264 | 218.96 | 2737 | 0.9337 | 0.775 | 0.3903 | 1.5282 | 0.775 | 0.7418 | 0.2110 | 0.1070 | | 0.0264 | 220.0 | 2750 | 0.9357 | 0.775 | 0.3913 | 1.5284 | 0.775 | 0.7418 | 0.2149 | 0.1073 | | 0.0264 | 220.96 | 2762 | 0.9367 | 0.775 | 0.3918 | 1.5299 | 0.775 | 0.7418 | 0.2088 | 0.1072 | | 0.0264 | 222.0 | 2775 | 0.9371 | 0.775 | 0.3916 | 1.5294 | 0.775 | 0.7418 | 0.2141 | 0.1075 | | 0.0264 | 222.96 | 2787 | 0.9359 | 0.775 | 0.3910 | 1.5271 | 0.775 | 0.7418 | 0.2126 | 0.1067 | | 0.0264 | 224.0 | 2800 | 0.9374 | 0.775 | 0.3918 | 1.5298 | 0.775 | 0.7418 | 0.2084 | 0.1072 | | 0.0264 | 224.96 | 2812 | 0.9378 | 0.775 | 0.3914 | 1.5296 | 0.775 | 0.7418 | 0.2073 | 0.1072 | | 0.0264 | 226.0 | 2825 | 0.9377 | 0.775 | 0.3916 | 1.5274 | 0.775 | 0.7418 | 0.2075 | 0.1066 | | 0.0264 | 226.96 | 2837 | 0.9412 | 0.775 | 0.3932 | 1.5310 | 0.775 | 0.7418 | 0.2096 | 0.1077 | | 0.0264 | 228.0 | 2850 | 0.9402 | 0.775 | 0.3923 | 1.5329 | 0.775 | 0.7418 | 0.2161 | 0.1076 | | 0.0264 | 228.96 | 2862 | 0.9420 | 0.775 | 0.3932 | 1.5301 | 0.775 | 0.7418 | 0.2078 | 0.1074 | | 0.0264 | 230.0 | 2875 | 0.9412 | 0.775 | 0.3925 | 1.5315 | 0.775 | 0.7418 | 0.2078 | 0.1076 | | 0.0264 | 230.96 | 2887 | 0.9422 | 0.775 | 0.3930 | 1.5340 | 0.775 | 0.7418 | 0.2179 | 0.1077 | | 0.0264 | 232.0 | 2900 | 0.9431 | 0.775 | 0.3933 | 1.5336 | 0.775 | 0.7418 | 0.2158 | 0.1081 | | 0.0264 | 232.96 | 2912 | 0.9428 | 0.775 | 0.3931 | 1.5304 | 0.775 | 0.7418 | 0.2086 | 0.1075 | | 0.0264 | 234.0 | 2925 | 0.9434 | 0.775 | 0.3935 | 1.5325 | 0.775 | 0.7418 | 0.2152 | 0.1074 | | 0.0264 | 234.96 | 2937 | 0.9431 | 0.775 | 0.3933 | 1.5286 | 0.775 | 0.7418 | 0.2081 | 0.1070 | | 0.0264 | 236.0 | 2950 | 0.9438 | 0.775 | 0.3935 | 1.5307 | 0.775 | 0.7418 | 0.2077 | 0.1073 | | 0.0264 | 236.96 | 2962 | 0.9452 | 0.775 | 0.3940 | 1.5329 | 0.775 | 0.7418 | 0.2217 | 0.1074 | | 0.0264 | 238.0 | 2975 | 0.9453 | 0.775 | 0.3939 | 1.5328 | 0.775 | 0.7418 | 0.2129 | 0.1076 | | 0.0264 | 238.96 | 2987 | 0.9451 | 0.775 | 0.3937 | 1.5308 | 0.775 | 0.7418 | 0.2133 | 0.1073 | | 0.0223 | 240.0 | 3000 | 0.9470 | 0.775 | 0.3947 | 1.5333 | 0.775 | 0.7418 | 0.2220 | 0.1077 | | 0.0223 | 240.96 | 3012 | 0.9461 | 0.775 | 0.3942 | 1.5329 | 0.775 | 0.7418 | 0.2127 | 0.1072 | | 0.0223 | 242.0 | 3025 | 0.9477 | 0.775 | 0.3949 | 1.5310 | 0.775 | 0.7418 | 0.2133 | 0.1074 | | 0.0223 | 242.96 | 3037 | 0.9480 | 0.775 | 0.3949 | 1.5331 | 0.775 | 0.7418 | 0.2165 | 0.1073 | | 0.0223 | 244.0 | 3050 | 0.9499 | 0.775 | 0.3955 | 1.5384 | 0.775 | 0.7418 | 0.2226 | 0.1080 | | 0.0223 | 244.96 | 3062 | 0.9476 | 0.775 | 0.3946 | 1.5322 | 0.775 | 0.7418 | 0.2128 | 0.1069 | | 0.0223 | 246.0 | 3075 | 0.9490 | 0.775 | 0.3953 | 1.5298 | 0.775 | 0.7418 | 0.2137 | 0.1071 | | 0.0223 | 246.96 | 3087 | 0.9496 | 0.775 | 0.3953 | 1.5315 | 0.775 | 0.7418 | 0.2133 | 0.1071 | | 0.0223 | 248.0 | 3100 | 0.9500 | 0.775 | 0.3955 | 1.5335 | 0.775 | 0.7418 | 0.2131 | 0.1072 | | 0.0223 | 248.96 | 3112 | 0.9503 | 0.775 | 0.3956 | 1.5323 | 0.775 | 0.7418 | 0.2164 | 0.1072 | | 0.0223 | 250.0 | 3125 | 0.9505 | 0.775 | 0.3955 | 1.5338 | 0.775 | 0.7418 | 0.2128 | 0.1071 | | 0.0223 | 250.96 | 3137 | 0.9510 | 0.775 | 0.3957 | 1.5372 | 0.775 | 0.7418 | 0.2266 | 0.1072 | | 0.0223 | 252.0 | 3150 | 0.9517 | 0.775 | 0.3960 | 1.5363 | 0.775 | 0.7418 | 0.2222 | 0.1073 | | 0.0223 | 252.96 | 3162 | 0.9526 | 0.775 | 0.3961 | 1.5372 | 0.775 | 0.7418 | 0.2227 | 0.1080 | | 0.0223 | 254.0 | 3175 | 0.9527 | 0.77 | 0.3963 | 1.5340 | 0.7700 | 0.7368 | 0.2174 | 0.1081 | | 0.0223 | 254.96 | 3187 | 0.9527 | 0.775 | 0.3962 | 1.5389 | 0.775 | 0.7418 | 0.2222 | 0.1074 | | 0.0223 | 256.0 | 3200 | 0.9528 | 0.775 | 0.3962 | 1.5347 | 0.775 | 0.7418 | 0.2258 | 0.1073 | | 0.0223 | 256.96 | 3212 | 0.9545 | 0.775 | 0.3969 | 1.5401 | 0.775 | 0.7418 | 0.2226 | 0.1083 | | 0.0223 | 258.0 | 3225 | 0.9540 | 0.775 | 0.3966 | 1.5369 | 0.775 | 0.7418 | 0.2224 | 0.1074 | | 0.0223 | 258.96 | 3237 | 0.9547 | 0.775 | 0.3969 | 1.5370 | 0.775 | 0.7418 | 0.2228 | 0.1082 | | 0.0223 | 260.0 | 3250 | 0.9549 | 0.775 | 0.3969 | 1.5381 | 0.775 | 0.7418 | 0.2226 | 0.1075 | | 0.0223 | 260.96 | 3262 | 0.9545 | 0.775 | 0.3968 | 1.5345 | 0.775 | 0.7418 | 0.2134 | 0.1072 | | 0.0223 | 262.0 | 3275 | 0.9550 | 0.775 | 0.3970 | 1.5362 | 0.775 | 0.7418 | 0.2145 | 0.1079 | | 0.0223 | 262.96 | 3287 | 0.9558 | 0.775 | 0.3971 | 1.5392 | 0.775 | 0.7418 | 0.2227 | 0.1076 | | 0.0223 | 264.0 | 3300 | 0.9557 | 0.775 | 0.3970 | 1.5383 | 0.775 | 0.7418 | 0.2226 | 0.1074 | | 0.0223 | 264.96 | 3312 | 0.9561 | 0.775 | 0.3973 | 1.5393 | 0.775 | 0.7418 | 0.2224 | 0.1080 | | 0.0223 | 266.0 | 3325 | 0.9563 | 0.775 | 0.3972 | 1.5387 | 0.775 | 0.7418 | 0.2224 | 0.1073 | | 0.0223 | 266.96 | 3337 | 0.9568 | 0.775 | 0.3974 | 1.5407 | 0.775 | 0.7418 | 0.2225 | 0.1082 | | 0.0223 | 268.0 | 3350 | 0.9567 | 0.775 | 0.3973 | 1.5373 | 0.775 | 0.7418 | 0.2259 | 0.1080 | | 0.0223 | 268.96 | 3362 | 0.9566 | 0.775 | 0.3973 | 1.5371 | 0.775 | 0.7418 | 0.2225 | 0.1080 | | 0.0223 | 270.0 | 3375 | 0.9574 | 0.775 | 0.3976 | 1.5403 | 0.775 | 0.7418 | 0.2227 | 0.1075 | | 0.0223 | 270.96 | 3387 | 0.9568 | 0.775 | 0.3974 | 1.5363 | 0.775 | 0.7418 | 0.2225 | 0.1072 | | 0.0223 | 272.0 | 3400 | 0.9580 | 0.775 | 0.3978 | 1.5465 | 0.775 | 0.7418 | 0.2241 | 0.1081 | | 0.0223 | 272.96 | 3412 | 0.9577 | 0.775 | 0.3977 | 1.5383 | 0.775 | 0.7418 | 0.2228 | 0.1074 | | 0.0223 | 274.0 | 3425 | 0.9577 | 0.775 | 0.3976 | 1.5409 | 0.775 | 0.7418 | 0.2225 | 0.1080 | | 0.0223 | 274.96 | 3437 | 0.9582 | 0.775 | 0.3978 | 1.5409 | 0.775 | 0.7418 | 0.2226 | 0.1075 | | 0.0223 | 276.0 | 3450 | 0.9581 | 0.775 | 0.3978 | 1.5412 | 0.775 | 0.7418 | 0.2225 | 0.1082 | | 0.0223 | 276.96 | 3462 | 0.9582 | 0.775 | 0.3978 | 1.5367 | 0.775 | 0.7418 | 0.2220 | 0.1073 | | 0.0223 | 278.0 | 3475 | 0.9587 | 0.775 | 0.3980 | 1.5422 | 0.775 | 0.7418 | 0.2244 | 0.1082 | | 0.0223 | 278.96 | 3487 | 0.9588 | 0.775 | 0.3980 | 1.5478 | 0.775 | 0.7418 | 0.2242 | 0.1082 | | 0.0202 | 280.0 | 3500 | 0.9586 | 0.775 | 0.3980 | 1.5381 | 0.775 | 0.7418 | 0.2219 | 0.1081 | | 0.0202 | 280.96 | 3512 | 0.9592 | 0.775 | 0.3981 | 1.5474 | 0.775 | 0.7418 | 0.2243 | 0.1082 | | 0.0202 | 282.0 | 3525 | 0.9588 | 0.775 | 0.3980 | 1.5396 | 0.775 | 0.7418 | 0.2227 | 0.1080 | | 0.0202 | 282.96 | 3537 | 0.9589 | 0.775 | 0.3980 | 1.5401 | 0.775 | 0.7418 | 0.2218 | 0.1074 | | 0.0202 | 284.0 | 3550 | 0.9593 | 0.775 | 0.3982 | 1.5441 | 0.775 | 0.7418 | 0.2243 | 0.1083 | | 0.0202 | 284.96 | 3562 | 0.9591 | 0.775 | 0.3981 | 1.5412 | 0.775 | 0.7418 | 0.2227 | 0.1082 | | 0.0202 | 286.0 | 3575 | 0.9592 | 0.775 | 0.3981 | 1.5417 | 0.775 | 0.7418 | 0.2227 | 0.1082 | | 0.0202 | 286.96 | 3587 | 0.9592 | 0.775 | 0.3981 | 1.5416 | 0.775 | 0.7418 | 0.2227 | 0.1082 | | 0.0202 | 288.0 | 3600 | 0.9592 | 0.775 | 0.3981 | 1.5416 | 0.775 | 0.7418 | 0.2227 | 0.1082 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.13.1 - Datasets 2.13.1 - Tokenizers 0.13.3
NasimB/gpt2-concat-cbt-rarity-all-no-cut
NasimB
2023-07-13T14:14:12Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-13T12:29:28Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-concat-cbt-rarity-all-no-cut results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-concat-cbt-rarity-all-no-cut This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.3042 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.7012 | 0.29 | 500 | 5.6350 | | 5.3399 | 0.58 | 1000 | 5.1969 | | 4.9839 | 0.87 | 1500 | 4.9406 | | 4.7034 | 1.16 | 2000 | 4.7940 | | 4.5463 | 1.46 | 2500 | 4.6801 | | 4.4423 | 1.75 | 3000 | 4.5644 | | 4.3263 | 2.04 | 3500 | 4.4872 | | 4.1157 | 2.33 | 4000 | 4.4394 | | 4.0929 | 2.62 | 4500 | 4.3840 | | 4.0599 | 2.91 | 5000 | 4.3306 | | 3.8592 | 3.2 | 5500 | 4.3227 | | 3.793 | 3.49 | 6000 | 4.2915 | | 3.7801 | 3.79 | 6500 | 4.2609 | | 3.6929 | 4.08 | 7000 | 4.2583 | | 3.5075 | 4.37 | 7500 | 4.2539 | | 3.5083 | 4.66 | 8000 | 4.2380 | | 3.4906 | 4.95 | 8500 | 4.2264 | | 3.3427 | 5.24 | 9000 | 4.2369 | | 3.3099 | 5.53 | 9500 | 4.2359 | | 3.3141 | 5.82 | 10000 | 4.2348 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
mort1k/dqn-SpaceInvadersNoFrameskip-v4
mort1k
2023-07-13T14:09:53Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-13T14:09:10Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 762.50 +/- 250.23 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mort1k -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mort1k -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga mort1k ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
FarziBuilder/myAdapter
FarziBuilder
2023-07-13T14:06:20Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-13T14:06:19Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0
jordiclive/scaled-llama-7b-lora-16k-rp2
jordiclive
2023-07-13T14:05:35Z
10
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "custom_code", "dataset:togethercomputer/RedPajama-Data-1T-Sample", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-12T12:39:35Z
--- datasets: - togethercomputer/RedPajama-Data-1T-Sample --- # Linear Scaled RoPE LLama LoRA 16k ``` import torch from transformers import LlamaTokenizerFast, AutoModelForCausalLM model_name = "jordiclive/scaled-llama-7b-lora-16k-rp2" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16,trust_remote_code=True ) tokenizer = LlamaTokenizerFast.from_pretrained( model_name) tokenizer.model_max_length = 16384 tokenizer.pad_token = tokenizer.eos_token model.max_sequence_length = tokenizer.model_max_length ``` - `huggyllama/llama-7b` Trained on Packed 16k sequences of the RedPajama dataset for 1 Epoch. - Merged Model. If require LoRA parameters/config, they are in the `adapter` folder.
onlywone/layoutlm-funsd
onlywone
2023-07-13T13:58:09Z
77
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlm", "token-classification", "generated_from_trainer", "dataset:funsd", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-13T13:48:57Z
--- tags: - generated_from_trainer datasets: - funsd model-index: - name: layoutlm-funsd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlm-funsd This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset. It achieves the following results on the evaluation set: - Loss: 0.6940 - Answer: {'precision': 0.721978021978022, 'recall': 0.8121137206427689, 'f1': 0.7643979057591623, 'number': 809} - Header: {'precision': 0.2662337662337662, 'recall': 0.3445378151260504, 'f1': 0.30036630036630035, 'number': 119} - Question: {'precision': 0.7816091954022989, 'recall': 0.8300469483568075, 'f1': 0.8051001821493625, 'number': 1065} - Overall Precision: 0.7207 - Overall Recall: 0.7938 - Overall F1: 0.7555 - Overall Accuracy: 0.8073 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 1.755 | 1.0 | 10 | 1.5815 | {'precision': 0.026919242273180457, 'recall': 0.03337453646477132, 'f1': 0.02980132450331126, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.20780487804878048, 'recall': 0.2, 'f1': 0.20382775119617225, 'number': 1065} | 0.1183 | 0.1204 | 0.1194 | 0.3885 | | 1.4375 | 2.0 | 20 | 1.2088 | {'precision': 0.28227848101265823, 'recall': 0.27564894932014833, 'f1': 0.2789243277048155, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4782964782964783, 'recall': 0.5483568075117371, 'f1': 0.5109361329833771, 'number': 1065} | 0.4013 | 0.4049 | 0.4031 | 0.6223 | | 1.0595 | 3.0 | 30 | 0.9379 | {'precision': 0.503954802259887, 'recall': 0.5512978986402967, 'f1': 0.526564344746163, 'number': 809} | {'precision': 0.0425531914893617, 'recall': 0.01680672268907563, 'f1': 0.024096385542168672, 'number': 119} | {'precision': 0.6126205083260298, 'recall': 0.6563380281690141, 'f1': 0.6337262012692656, 'number': 1065} | 0.5533 | 0.5755 | 0.5642 | 0.7194 | | 0.8139 | 4.0 | 40 | 0.7735 | {'precision': 0.6280041797283177, 'recall': 0.7428924598269468, 'f1': 0.680634201585504, 'number': 809} | {'precision': 0.13432835820895522, 'recall': 0.07563025210084033, 'f1': 0.09677419354838708, 'number': 119} | {'precision': 0.6600688468158348, 'recall': 0.72018779342723, 'f1': 0.688819039066008, 'number': 1065} | 0.6299 | 0.6909 | 0.6590 | 0.7636 | | 0.664 | 5.0 | 50 | 0.7245 | {'precision': 0.6519453207150369, 'recall': 0.7663782447466008, 'f1': 0.7045454545454546, 'number': 809} | {'precision': 0.24719101123595505, 'recall': 0.18487394957983194, 'f1': 0.21153846153846156, 'number': 119} | {'precision': 0.7090909090909091, 'recall': 0.7690140845070422, 'f1': 0.7378378378378379, 'number': 1065} | 0.6656 | 0.7331 | 0.6977 | 0.7757 | | 0.5505 | 6.0 | 60 | 0.6956 | {'precision': 0.6834061135371179, 'recall': 0.7737948084054388, 'f1': 0.7257971014492753, 'number': 809} | {'precision': 0.28205128205128205, 'recall': 0.18487394957983194, 'f1': 0.2233502538071066, 'number': 119} | {'precision': 0.723421926910299, 'recall': 0.8178403755868544, 'f1': 0.7677390921110622, 'number': 1065} | 0.6911 | 0.7622 | 0.7249 | 0.7888 | | 0.4759 | 7.0 | 70 | 0.6712 | {'precision': 0.6844396082698585, 'recall': 0.7775030902348579, 'f1': 0.7280092592592592, 'number': 809} | {'precision': 0.2727272727272727, 'recall': 0.2773109243697479, 'f1': 0.27499999999999997, 'number': 119} | {'precision': 0.7472527472527473, 'recall': 0.8300469483568075, 'f1': 0.786476868327402, 'number': 1065} | 0.6955 | 0.7757 | 0.7334 | 0.7975 | | 0.4276 | 8.0 | 80 | 0.6765 | {'precision': 0.6889375684556407, 'recall': 0.7775030902348579, 'f1': 0.7305458768873403, 'number': 809} | {'precision': 0.28205128205128205, 'recall': 0.2773109243697479, 'f1': 0.2796610169491525, 'number': 119} | {'precision': 0.7527333894028595, 'recall': 0.8403755868544601, 'f1': 0.7941437444543035, 'number': 1065} | 0.7017 | 0.7812 | 0.7393 | 0.8021 | | 0.3788 | 9.0 | 90 | 0.6653 | {'precision': 0.7081930415263749, 'recall': 0.7799752781211372, 'f1': 0.7423529411764707, 'number': 809} | {'precision': 0.2647058823529412, 'recall': 0.3025210084033613, 'f1': 0.2823529411764706, 'number': 119} | {'precision': 0.7667238421955404, 'recall': 0.8394366197183099, 'f1': 0.8014343343792021, 'number': 1065} | 0.7118 | 0.7832 | 0.7458 | 0.8049 | | 0.3466 | 10.0 | 100 | 0.6838 | {'precision': 0.7005464480874317, 'recall': 0.792336217552534, 'f1': 0.7436194895591649, 'number': 809} | {'precision': 0.2706766917293233, 'recall': 0.3025210084033613, 'f1': 0.28571428571428564, 'number': 119} | {'precision': 0.7728055077452668, 'recall': 0.8431924882629108, 'f1': 0.8064660978895375, 'number': 1065} | 0.7127 | 0.7903 | 0.7495 | 0.8047 | | 0.3142 | 11.0 | 110 | 0.6795 | {'precision': 0.6997816593886463, 'recall': 0.792336217552534, 'f1': 0.7431884057971013, 'number': 809} | {'precision': 0.2857142857142857, 'recall': 0.3025210084033613, 'f1': 0.2938775510204082, 'number': 119} | {'precision': 0.7994628469113697, 'recall': 0.8384976525821596, 'f1': 0.8185151237396883, 'number': 1065} | 0.7272 | 0.7878 | 0.7563 | 0.8067 | | 0.2978 | 12.0 | 120 | 0.6922 | {'precision': 0.6927194860813705, 'recall': 0.799752781211372, 'f1': 0.7423981640849111, 'number': 809} | {'precision': 0.2585034013605442, 'recall': 0.31932773109243695, 'f1': 0.2857142857142857, 'number': 119} | {'precision': 0.7768090671316478, 'recall': 0.8366197183098592, 'f1': 0.8056057866184448, 'number': 1065} | 0.7074 | 0.7908 | 0.7467 | 0.8026 | | 0.2824 | 13.0 | 130 | 0.6960 | {'precision': 0.7184357541899441, 'recall': 0.7948084054388134, 'f1': 0.754694835680751, 'number': 809} | {'precision': 0.2611464968152866, 'recall': 0.3445378151260504, 'f1': 0.2971014492753623, 'number': 119} | {'precision': 0.7757255936675461, 'recall': 0.828169014084507, 'f1': 0.8010899182561309, 'number': 1065} | 0.7154 | 0.7858 | 0.7489 | 0.8045 | | 0.2696 | 14.0 | 140 | 0.6917 | {'precision': 0.7164667393675027, 'recall': 0.8121137206427689, 'f1': 0.7612977983777521, 'number': 809} | {'precision': 0.2708333333333333, 'recall': 0.3277310924369748, 'f1': 0.2965779467680608, 'number': 119} | {'precision': 0.7833775419982316, 'recall': 0.831924882629108, 'f1': 0.8069216757741348, 'number': 1065} | 0.7217 | 0.7938 | 0.7560 | 0.8067 | | 0.2674 | 15.0 | 150 | 0.6940 | {'precision': 0.721978021978022, 'recall': 0.8121137206427689, 'f1': 0.7643979057591623, 'number': 809} | {'precision': 0.2662337662337662, 'recall': 0.3445378151260504, 'f1': 0.30036630036630035, 'number': 119} | {'precision': 0.7816091954022989, 'recall': 0.8300469483568075, 'f1': 0.8051001821493625, 'number': 1065} | 0.7207 | 0.7938 | 0.7555 | 0.8073 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
laura63/ast-finetuned-audioset-10-10-0.4593-finetuned-AST
laura63
2023-07-13T13:54:58Z
18
0
transformers
[ "transformers", "pytorch", "tensorboard", "audio-spectrogram-transformer", "audio-classification", "generated_from_trainer", "base_model:MIT/ast-finetuned-audioset-10-10-0.4593", "base_model:finetune:MIT/ast-finetuned-audioset-10-10-0.4593", "license:bsd-3-clause", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-01T10:00:08Z
--- license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-AST results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ast-finetuned-audioset-10-10-0.4593-finetuned-AST This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3787 - Accuracy: 0.9463 - F1: 0.9426 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7914 | 1.0 | 1467 | 0.5058 | 0.8788 | 0.8679 | | 0.5962 | 2.0 | 2934 | 0.4318 | 0.9018 | 0.8941 | | 0.0143 | 3.0 | 4401 | 0.4418 | 0.9233 | 0.9183 | | 0.0002 | 4.0 | 5868 | 0.3996 | 0.9387 | 0.9342 | | 0.0001 | 5.0 | 7335 | 0.3787 | 0.9463 | 0.9426 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
peft-internal-testing/tiny_OPTForSequenceClassification-lora
peft-internal-testing
2023-07-13T13:48:21Z
25,195
0
peft
[ "peft", "region:us" ]
null
2023-07-13T13:48:20Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
Yntec/DucHaiten-Retro-Diffusers
Yntec
2023-07-13T13:39:06Z
1,798
4
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "Retro", "DucHaiten", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-13T13:02:56Z
--- license: creativeml-openrail-m library_name: diffusers pipeline_tag: text-to-image tags: - stable-diffusion - stable-diffusion-diffusers - diffusers - text-to-image - Retro - DucHaiten --- # DucHaiten Retro I don't know about you, but in my opinion this is the best retro model DucHaiten has ever created. It's sad to see it sitting at 0 downloads at huggingface, so here's a Diffusers version you can use with huggingface's pipeline! If you like their content, support them at: https://linktr.ee/Duc_Haiten Original page: https://civitai.com/models/103966?modelVersionId=111392
Yntec/rainbowpatch
Yntec
2023-07-13T13:38:28Z
119
1
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lexica", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-13T11:50:41Z
--- license: creativeml-openrail-m library_name: diffusers pipeline_tag: text-to-image tags: - stable-diffusion - stable-diffusion-diffusers - diffusers - text-to-image - lexica --- # Rainbowpatch Use "Rainbowpatch" in the prompt to enhance the style. Model by Patchmonk, original page: https://civitai.com/models/5528/rainbowpatch
sephinroth/marian-finetuned-kde4-en-to-fr
sephinroth
2023-07-13T13:29:58Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-13T12:05:39Z
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 model-index: - name: marian-finetuned-kde4-en-to-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
peft-internal-testing/tiny_GPT2ForTokenClassification-lora
peft-internal-testing
2023-07-13T13:29:16Z
25,209
0
peft
[ "peft", "region:us" ]
null
2023-07-13T13:11:23Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
ayanban011/vit-base_tobacco_bs_16_lr_5e-6_e_300_wr_0.1_wd_0.2
ayanban011
2023-07-13T13:24:29Z
168
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-13T10:51:07Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-base_tobacco_bs_16_lr_5e-6_e_300_wr_0.1_wd_0.2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base_tobacco_bs_16_lr_5e-6_e_300_wr_0.1_wd_0.2 This model is a fine-tuned version of [jordyvl/vit-base_tobacco](https://huggingface.co/jordyvl/vit-base_tobacco) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8461 - Accuracy: 0.775 - Brier Loss: 0.3632 - Nll: 1.4570 - F1 Micro: 0.775 - F1 Macro: 0.7418 - Ece: 0.2043 - Aurc: 0.1066 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 300 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc | |:-------------:|:------:|:----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:| | No log | 0.96 | 12 | 0.7447 | 0.815 | 0.3078 | 1.1882 | 0.815 | 0.7942 | 0.2385 | 0.0731 | | No log | 2.0 | 25 | 0.7442 | 0.815 | 0.3075 | 1.1872 | 0.815 | 0.7922 | 0.2401 | 0.0736 | | No log | 2.96 | 37 | 0.7439 | 0.815 | 0.3075 | 1.1883 | 0.815 | 0.7942 | 0.2292 | 0.0722 | | No log | 4.0 | 50 | 0.7463 | 0.815 | 0.3083 | 1.1904 | 0.815 | 0.7942 | 0.2454 | 0.0762 | | No log | 4.96 | 62 | 0.7441 | 0.805 | 0.3077 | 1.1886 | 0.805 | 0.7819 | 0.2322 | 0.0731 | | No log | 6.0 | 75 | 0.7408 | 0.81 | 0.3064 | 1.1842 | 0.81 | 0.7914 | 0.2217 | 0.0704 | | No log | 6.96 | 87 | 0.7448 | 0.81 | 0.3082 | 1.1852 | 0.81 | 0.7847 | 0.2341 | 0.0748 | | No log | 8.0 | 100 | 0.7454 | 0.815 | 0.3084 | 1.1882 | 0.815 | 0.7942 | 0.2129 | 0.0767 | | No log | 8.96 | 112 | 0.7462 | 0.815 | 0.3080 | 1.1954 | 0.815 | 0.7922 | 0.2535 | 0.0775 | | No log | 10.0 | 125 | 0.7427 | 0.81 | 0.3067 | 1.1924 | 0.81 | 0.7876 | 0.2280 | 0.0767 | | No log | 10.96 | 137 | 0.7420 | 0.815 | 0.3067 | 1.2033 | 0.815 | 0.7942 | 0.2611 | 0.0755 | | No log | 12.0 | 150 | 0.7417 | 0.805 | 0.3063 | 1.1881 | 0.805 | 0.7820 | 0.2456 | 0.0774 | | No log | 12.96 | 162 | 0.7442 | 0.815 | 0.3089 | 1.1895 | 0.815 | 0.8059 | 0.2230 | 0.0768 | | No log | 14.0 | 175 | 0.7398 | 0.805 | 0.3061 | 1.2547 | 0.805 | 0.7843 | 0.2310 | 0.0766 | | No log | 14.96 | 187 | 0.7355 | 0.81 | 0.3046 | 1.1887 | 0.81 | 0.7914 | 0.2328 | 0.0746 | | No log | 16.0 | 200 | 0.7368 | 0.81 | 0.3053 | 1.1894 | 0.81 | 0.7922 | 0.2256 | 0.0774 | | No log | 16.96 | 212 | 0.7355 | 0.81 | 0.3037 | 1.2537 | 0.81 | 0.7947 | 0.2077 | 0.0788 | | No log | 18.0 | 225 | 0.7407 | 0.81 | 0.3065 | 1.1882 | 0.81 | 0.7871 | 0.2421 | 0.0767 | | No log | 18.96 | 237 | 0.7279 | 0.8 | 0.2999 | 1.2540 | 0.8000 | 0.7796 | 0.2159 | 0.0742 | | No log | 20.0 | 250 | 0.7324 | 0.805 | 0.3042 | 1.1811 | 0.805 | 0.7841 | 0.2269 | 0.0763 | | No log | 20.96 | 262 | 0.7421 | 0.805 | 0.3079 | 1.1827 | 0.805 | 0.7850 | 0.2339 | 0.0797 | | No log | 22.0 | 275 | 0.7343 | 0.81 | 0.3050 | 1.1689 | 0.81 | 0.7877 | 0.2223 | 0.0784 | | No log | 22.96 | 287 | 0.7308 | 0.81 | 0.3032 | 1.1901 | 0.81 | 0.7922 | 0.2190 | 0.0774 | | No log | 24.0 | 300 | 0.7381 | 0.805 | 0.3057 | 1.3200 | 0.805 | 0.7853 | 0.2500 | 0.0819 | | No log | 24.96 | 312 | 0.7336 | 0.81 | 0.3042 | 1.3123 | 0.81 | 0.7903 | 0.2082 | 0.0795 | | No log | 26.0 | 325 | 0.7282 | 0.805 | 0.3020 | 1.2465 | 0.805 | 0.7847 | 0.2248 | 0.0792 | | No log | 26.96 | 337 | 0.7346 | 0.81 | 0.3050 | 1.2538 | 0.81 | 0.7956 | 0.2095 | 0.0818 | | No log | 28.0 | 350 | 0.7305 | 0.805 | 0.3031 | 1.2443 | 0.805 | 0.7850 | 0.2488 | 0.0823 | | No log | 28.96 | 362 | 0.7395 | 0.8 | 0.3071 | 1.3235 | 0.8000 | 0.7818 | 0.2223 | 0.0843 | | No log | 30.0 | 375 | 0.7349 | 0.8 | 0.3058 | 1.2511 | 0.8000 | 0.7733 | 0.2004 | 0.0817 | | No log | 30.96 | 387 | 0.7344 | 0.8 | 0.3048 | 1.2516 | 0.8000 | 0.7818 | 0.2183 | 0.0837 | | No log | 32.0 | 400 | 0.7332 | 0.795 | 0.3037 | 1.3836 | 0.795 | 0.7686 | 0.2185 | 0.0844 | | No log | 32.96 | 412 | 0.7306 | 0.81 | 0.3042 | 1.1767 | 0.81 | 0.7905 | 0.2117 | 0.0837 | | No log | 34.0 | 425 | 0.7326 | 0.8 | 0.3040 | 1.2058 | 0.8000 | 0.7783 | 0.2106 | 0.0857 | | No log | 34.96 | 437 | 0.7317 | 0.8 | 0.3045 | 1.3068 | 0.8000 | 0.7733 | 0.2337 | 0.0843 | | No log | 36.0 | 450 | 0.7345 | 0.805 | 0.3073 | 1.3065 | 0.805 | 0.7782 | 0.1928 | 0.0823 | | No log | 36.96 | 462 | 0.7367 | 0.8 | 0.3074 | 1.3259 | 0.8000 | 0.7733 | 0.1941 | 0.0860 | | No log | 38.0 | 475 | 0.7349 | 0.8 | 0.3073 | 1.3074 | 0.8000 | 0.7731 | 0.2138 | 0.0853 | | No log | 38.96 | 487 | 0.7331 | 0.81 | 0.3057 | 1.3149 | 0.81 | 0.7909 | 0.1981 | 0.0865 | | 0.1577 | 40.0 | 500 | 0.7269 | 0.8 | 0.3018 | 1.3700 | 0.8000 | 0.7746 | 0.2033 | 0.0865 | | 0.1577 | 40.96 | 512 | 0.7270 | 0.8 | 0.3020 | 1.3687 | 0.8000 | 0.7737 | 0.2108 | 0.0860 | | 0.1577 | 42.0 | 525 | 0.7356 | 0.805 | 0.3078 | 1.3105 | 0.805 | 0.7784 | 0.2053 | 0.0892 | | 0.1577 | 42.96 | 537 | 0.7291 | 0.8 | 0.3031 | 1.3687 | 0.8000 | 0.7746 | 0.2066 | 0.0876 | | 0.1577 | 44.0 | 550 | 0.7276 | 0.81 | 0.3034 | 1.3655 | 0.81 | 0.7844 | 0.2189 | 0.0872 | | 0.1577 | 44.96 | 562 | 0.7318 | 0.805 | 0.3050 | 1.3684 | 0.805 | 0.7793 | 0.2209 | 0.0893 | | 0.1577 | 46.0 | 575 | 0.7300 | 0.805 | 0.3041 | 1.3679 | 0.805 | 0.7793 | 0.2040 | 0.0885 | | 0.1577 | 46.96 | 587 | 0.7342 | 0.805 | 0.3060 | 1.3679 | 0.805 | 0.7797 | 0.2059 | 0.0893 | | 0.1577 | 48.0 | 600 | 0.7303 | 0.805 | 0.3045 | 1.3672 | 0.805 | 0.7797 | 0.1862 | 0.0889 | | 0.1577 | 48.96 | 612 | 0.7401 | 0.8 | 0.3090 | 1.3710 | 0.8000 | 0.7746 | 0.1930 | 0.0915 | | 0.1577 | 50.0 | 625 | 0.7329 | 0.795 | 0.3054 | 1.3696 | 0.795 | 0.7654 | 0.1984 | 0.0891 | | 0.1577 | 50.96 | 637 | 0.7363 | 0.795 | 0.3072 | 1.3689 | 0.795 | 0.7654 | 0.2196 | 0.0907 | | 0.1577 | 52.0 | 650 | 0.7402 | 0.805 | 0.3101 | 1.3646 | 0.805 | 0.7784 | 0.2028 | 0.0911 | | 0.1577 | 52.96 | 662 | 0.7347 | 0.8 | 0.3065 | 1.3687 | 0.8000 | 0.7746 | 0.2062 | 0.0894 | | 0.1577 | 54.0 | 675 | 0.7388 | 0.805 | 0.3097 | 1.3649 | 0.805 | 0.7784 | 0.2027 | 0.0907 | | 0.1577 | 54.96 | 687 | 0.7381 | 0.8 | 0.3087 | 1.3681 | 0.8000 | 0.7704 | 0.2120 | 0.0908 | | 0.1577 | 56.0 | 700 | 0.7372 | 0.805 | 0.3088 | 1.3646 | 0.805 | 0.7749 | 0.1866 | 0.0903 | | 0.1577 | 56.96 | 712 | 0.7403 | 0.805 | 0.3102 | 1.3682 | 0.805 | 0.7749 | 0.2287 | 0.0922 | | 0.1577 | 58.0 | 725 | 0.7352 | 0.8 | 0.3069 | 1.3680 | 0.8000 | 0.7704 | 0.2117 | 0.0900 | | 0.1577 | 58.96 | 737 | 0.7373 | 0.8 | 0.3079 | 1.3699 | 0.8000 | 0.7704 | 0.1990 | 0.0923 | | 0.1577 | 60.0 | 750 | 0.7353 | 0.795 | 0.3065 | 1.3690 | 0.795 | 0.7656 | 0.2078 | 0.0900 | | 0.1577 | 60.96 | 762 | 0.7357 | 0.805 | 0.3071 | 1.3657 | 0.805 | 0.7732 | 0.2076 | 0.0899 | | 0.1577 | 62.0 | 775 | 0.7409 | 0.79 | 0.3103 | 1.3737 | 0.79 | 0.7623 | 0.2066 | 0.0920 | | 0.1577 | 62.96 | 787 | 0.7393 | 0.795 | 0.3082 | 1.4518 | 0.795 | 0.7670 | 0.2047 | 0.0912 | | 0.1577 | 64.0 | 800 | 0.7417 | 0.8 | 0.3093 | 1.3304 | 0.8000 | 0.7684 | 0.1955 | 0.0917 | | 0.1577 | 64.96 | 812 | 0.7438 | 0.8 | 0.3121 | 1.3714 | 0.8000 | 0.7707 | 0.1782 | 0.0920 | | 0.1577 | 66.0 | 825 | 0.7408 | 0.8 | 0.3100 | 1.3758 | 0.8000 | 0.7709 | 0.1965 | 0.0931 | | 0.1577 | 66.96 | 837 | 0.7434 | 0.8 | 0.3112 | 1.3767 | 0.8000 | 0.7707 | 0.2124 | 0.0935 | | 0.1577 | 68.0 | 850 | 0.7393 | 0.8 | 0.3107 | 1.3038 | 0.8000 | 0.7704 | 0.1786 | 0.0901 | | 0.1577 | 68.96 | 862 | 0.7383 | 0.8 | 0.3090 | 1.3689 | 0.8000 | 0.7704 | 0.2041 | 0.0913 | | 0.1577 | 70.0 | 875 | 0.7436 | 0.8 | 0.3119 | 1.3658 | 0.8000 | 0.7704 | 0.1983 | 0.0932 | | 0.1577 | 70.96 | 887 | 0.7463 | 0.8 | 0.3130 | 1.3700 | 0.8000 | 0.7707 | 0.1932 | 0.0947 | | 0.1577 | 72.0 | 900 | 0.7464 | 0.795 | 0.3135 | 1.3720 | 0.795 | 0.7656 | 0.2089 | 0.0932 | | 0.1577 | 72.96 | 912 | 0.7469 | 0.8 | 0.3137 | 1.3703 | 0.8000 | 0.7707 | 0.2004 | 0.0943 | | 0.1577 | 74.0 | 925 | 0.7435 | 0.8 | 0.3124 | 1.3674 | 0.8000 | 0.7704 | 0.1958 | 0.0930 | | 0.1577 | 74.96 | 937 | 0.7427 | 0.8 | 0.3117 | 1.3708 | 0.8000 | 0.7707 | 0.2224 | 0.0921 | | 0.1577 | 76.0 | 950 | 0.7420 | 0.8 | 0.3111 | 1.3664 | 0.8000 | 0.7704 | 0.2145 | 0.0928 | | 0.1577 | 76.96 | 962 | 0.7457 | 0.8 | 0.3135 | 1.3690 | 0.8000 | 0.7707 | 0.2178 | 0.0934 | | 0.1577 | 78.0 | 975 | 0.7513 | 0.8 | 0.3163 | 1.3707 | 0.8000 | 0.7707 | 0.1964 | 0.0947 | | 0.1577 | 78.96 | 987 | 0.7466 | 0.8 | 0.3139 | 1.3722 | 0.8000 | 0.7704 | 0.2001 | 0.0936 | | 0.1081 | 80.0 | 1000 | 0.7491 | 0.8 | 0.3154 | 1.3712 | 0.8000 | 0.7707 | 0.2100 | 0.0943 | | 0.1081 | 80.96 | 1012 | 0.7483 | 0.8 | 0.3150 | 1.3675 | 0.8000 | 0.7704 | 0.2083 | 0.0939 | | 0.1081 | 82.0 | 1025 | 0.7523 | 0.8 | 0.3163 | 1.3742 | 0.8000 | 0.7707 | 0.2095 | 0.0958 | | 0.1081 | 82.96 | 1037 | 0.7511 | 0.8 | 0.3166 | 1.3703 | 0.8000 | 0.7707 | 0.2034 | 0.0944 | | 0.1081 | 84.0 | 1050 | 0.7481 | 0.8 | 0.3150 | 1.3687 | 0.8000 | 0.7704 | 0.2113 | 0.0941 | | 0.1081 | 84.96 | 1062 | 0.7501 | 0.8 | 0.3164 | 1.3668 | 0.8000 | 0.7693 | 0.2053 | 0.0932 | | 0.1081 | 86.0 | 1075 | 0.7539 | 0.8 | 0.3177 | 1.3725 | 0.8000 | 0.7707 | 0.2025 | 0.0951 | | 0.1081 | 86.96 | 1087 | 0.7550 | 0.8 | 0.3182 | 1.3731 | 0.8000 | 0.7707 | 0.1969 | 0.0953 | | 0.1081 | 88.0 | 1100 | 0.7553 | 0.8 | 0.3183 | 1.3697 | 0.8000 | 0.7707 | 0.1972 | 0.0952 | | 0.1081 | 88.96 | 1112 | 0.7535 | 0.8 | 0.3176 | 1.3719 | 0.8000 | 0.7707 | 0.2073 | 0.0945 | | 0.1081 | 90.0 | 1125 | 0.7558 | 0.795 | 0.3186 | 1.3742 | 0.795 | 0.7681 | 0.2018 | 0.0959 | | 0.1081 | 90.96 | 1137 | 0.7573 | 0.8 | 0.3193 | 1.3739 | 0.8000 | 0.7704 | 0.1919 | 0.0965 | | 0.1081 | 92.0 | 1150 | 0.7565 | 0.8 | 0.3193 | 1.3743 | 0.8000 | 0.7698 | 0.1967 | 0.0959 | | 0.1081 | 92.96 | 1162 | 0.7619 | 0.795 | 0.3218 | 1.3758 | 0.795 | 0.7681 | 0.1989 | 0.0974 | | 0.1081 | 94.0 | 1175 | 0.7577 | 0.8 | 0.3198 | 1.3793 | 0.8000 | 0.7696 | 0.1996 | 0.0957 | | 0.1081 | 94.96 | 1187 | 0.7575 | 0.795 | 0.3201 | 1.3781 | 0.795 | 0.7666 | 0.1954 | 0.0964 | | 0.1081 | 96.0 | 1200 | 0.7573 | 0.8 | 0.3199 | 1.3752 | 0.8000 | 0.7693 | 0.1863 | 0.0955 | | 0.1081 | 96.96 | 1212 | 0.7615 | 0.795 | 0.3216 | 1.3753 | 0.795 | 0.7681 | 0.1997 | 0.0975 | | 0.1081 | 98.0 | 1225 | 0.7603 | 0.795 | 0.3215 | 1.3731 | 0.795 | 0.7681 | 0.2051 | 0.0963 | | 0.1081 | 98.96 | 1237 | 0.7596 | 0.795 | 0.3209 | 1.3744 | 0.795 | 0.7673 | 0.2081 | 0.0959 | | 0.1081 | 100.0 | 1250 | 0.7582 | 0.795 | 0.3203 | 1.3743 | 0.795 | 0.7673 | 0.2024 | 0.0955 | | 0.1081 | 100.96 | 1262 | 0.7609 | 0.795 | 0.3223 | 1.3761 | 0.795 | 0.7681 | 0.1823 | 0.0968 | | 0.1081 | 102.0 | 1275 | 0.7632 | 0.785 | 0.3233 | 1.3758 | 0.785 | 0.7528 | 0.1833 | 0.0970 | | 0.1081 | 102.96 | 1287 | 0.7618 | 0.785 | 0.3219 | 1.3785 | 0.785 | 0.7516 | 0.2141 | 0.0970 | | 0.1081 | 104.0 | 1300 | 0.7633 | 0.795 | 0.3230 | 1.4970 | 0.795 | 0.7664 | 0.1956 | 0.0952 | | 0.1081 | 104.96 | 1312 | 0.7657 | 0.79 | 0.3243 | 1.4406 | 0.79 | 0.7639 | 0.1960 | 0.0961 | | 0.1081 | 106.0 | 1325 | 0.7673 | 0.785 | 0.3251 | 1.4424 | 0.785 | 0.7516 | 0.2083 | 0.0978 | | 0.1081 | 106.96 | 1337 | 0.7667 | 0.79 | 0.3250 | 1.4392 | 0.79 | 0.7639 | 0.1875 | 0.0976 | | 0.1081 | 108.0 | 1350 | 0.7690 | 0.785 | 0.3250 | 1.3876 | 0.785 | 0.7526 | 0.2078 | 0.0990 | | 0.1081 | 108.96 | 1362 | 0.7676 | 0.785 | 0.3252 | 1.3872 | 0.785 | 0.7554 | 0.2073 | 0.0985 | | 0.1081 | 110.0 | 1375 | 0.7662 | 0.79 | 0.3249 | 1.4335 | 0.79 | 0.7639 | 0.1939 | 0.0980 | | 0.1081 | 110.96 | 1387 | 0.7723 | 0.785 | 0.3273 | 1.4567 | 0.785 | 0.7554 | 0.2066 | 0.0995 | | 0.1081 | 112.0 | 1400 | 0.7665 | 0.78 | 0.3250 | 1.3960 | 0.78 | 0.7488 | 0.2066 | 0.0976 | | 0.1081 | 112.96 | 1412 | 0.7722 | 0.785 | 0.3275 | 1.4410 | 0.785 | 0.7573 | 0.2063 | 0.0991 | | 0.1081 | 114.0 | 1425 | 0.7722 | 0.79 | 0.3271 | 1.4039 | 0.79 | 0.7639 | 0.1902 | 0.0990 | | 0.1081 | 114.96 | 1437 | 0.7699 | 0.79 | 0.3264 | 1.3849 | 0.79 | 0.7644 | 0.1914 | 0.0982 | | 0.1081 | 116.0 | 1450 | 0.7749 | 0.785 | 0.3285 | 1.3854 | 0.785 | 0.7573 | 0.1942 | 0.0999 | | 0.1081 | 116.96 | 1462 | 0.7722 | 0.78 | 0.3279 | 1.4365 | 0.78 | 0.7488 | 0.1973 | 0.0991 | | 0.1081 | 118.0 | 1475 | 0.7763 | 0.78 | 0.3293 | 1.3823 | 0.78 | 0.7488 | 0.2050 | 0.1006 | | 0.1081 | 118.96 | 1487 | 0.7740 | 0.78 | 0.3287 | 1.3822 | 0.78 | 0.7488 | 0.2105 | 0.0991 | | 0.0821 | 120.0 | 1500 | 0.7761 | 0.785 | 0.3294 | 1.4414 | 0.785 | 0.7573 | 0.1996 | 0.0995 | | 0.0821 | 120.96 | 1512 | 0.7749 | 0.78 | 0.3289 | 1.4387 | 0.78 | 0.7488 | 0.1981 | 0.0991 | | 0.0821 | 122.0 | 1525 | 0.7763 | 0.78 | 0.3297 | 1.4395 | 0.78 | 0.7488 | 0.2175 | 0.0993 | | 0.0821 | 122.96 | 1537 | 0.7775 | 0.78 | 0.3305 | 1.4407 | 0.78 | 0.7488 | 0.2073 | 0.0993 | | 0.0821 | 124.0 | 1550 | 0.7770 | 0.78 | 0.3299 | 1.4411 | 0.78 | 0.7488 | 0.2096 | 0.0996 | | 0.0821 | 124.96 | 1562 | 0.7785 | 0.78 | 0.3309 | 1.4415 | 0.78 | 0.7488 | 0.2174 | 0.1004 | | 0.0821 | 126.0 | 1575 | 0.7808 | 0.78 | 0.3321 | 1.4431 | 0.78 | 0.7488 | 0.2082 | 0.1005 | | 0.0821 | 126.96 | 1587 | 0.7791 | 0.78 | 0.3312 | 1.4405 | 0.78 | 0.7488 | 0.2087 | 0.0998 | | 0.0821 | 128.0 | 1600 | 0.7789 | 0.78 | 0.3312 | 1.4386 | 0.78 | 0.7488 | 0.2047 | 0.0995 | | 0.0821 | 128.96 | 1612 | 0.7829 | 0.78 | 0.3330 | 1.4423 | 0.78 | 0.7488 | 0.1920 | 0.1005 | | 0.0821 | 130.0 | 1625 | 0.7797 | 0.78 | 0.3317 | 1.4400 | 0.78 | 0.7488 | 0.2013 | 0.1006 | | 0.0821 | 130.96 | 1637 | 0.7849 | 0.78 | 0.3336 | 1.4446 | 0.78 | 0.7491 | 0.2064 | 0.1006 | | 0.0821 | 132.0 | 1650 | 0.7817 | 0.78 | 0.3322 | 1.4396 | 0.78 | 0.7488 | 0.2060 | 0.1003 | | 0.0821 | 132.96 | 1662 | 0.7823 | 0.78 | 0.3329 | 1.4407 | 0.78 | 0.7488 | 0.1990 | 0.0999 | | 0.0821 | 134.0 | 1675 | 0.7869 | 0.78 | 0.3354 | 1.4482 | 0.78 | 0.7488 | 0.1999 | 0.1009 | | 0.0821 | 134.96 | 1687 | 0.7859 | 0.78 | 0.3349 | 1.4429 | 0.78 | 0.7488 | 0.1934 | 0.1013 | | 0.0821 | 136.0 | 1700 | 0.7867 | 0.78 | 0.3352 | 1.4437 | 0.78 | 0.7488 | 0.2114 | 0.1006 | | 0.0821 | 136.96 | 1712 | 0.7867 | 0.78 | 0.3350 | 1.4403 | 0.78 | 0.7488 | 0.2070 | 0.1011 | | 0.0821 | 138.0 | 1725 | 0.7851 | 0.78 | 0.3341 | 1.4439 | 0.78 | 0.7488 | 0.1906 | 0.1009 | | 0.0821 | 138.96 | 1737 | 0.7892 | 0.78 | 0.3360 | 1.4495 | 0.78 | 0.7488 | 0.2009 | 0.1020 | | 0.0821 | 140.0 | 1750 | 0.7893 | 0.78 | 0.3366 | 1.4434 | 0.78 | 0.7488 | 0.1976 | 0.1013 | | 0.0821 | 140.96 | 1762 | 0.7848 | 0.78 | 0.3344 | 1.4383 | 0.78 | 0.7488 | 0.1995 | 0.1001 | | 0.0821 | 142.0 | 1775 | 0.7911 | 0.78 | 0.3372 | 1.4487 | 0.78 | 0.7488 | 0.1995 | 0.1020 | | 0.0821 | 142.96 | 1787 | 0.7890 | 0.78 | 0.3362 | 1.4416 | 0.78 | 0.7488 | 0.2075 | 0.1010 | | 0.0821 | 144.0 | 1800 | 0.7915 | 0.78 | 0.3372 | 1.4476 | 0.78 | 0.7488 | 0.1842 | 0.1019 | | 0.0821 | 144.96 | 1812 | 0.7876 | 0.78 | 0.3351 | 1.4999 | 0.78 | 0.7488 | 0.1904 | 0.0995 | | 0.0821 | 146.0 | 1825 | 0.7933 | 0.78 | 0.3378 | 1.4469 | 0.78 | 0.7488 | 0.1973 | 0.1023 | | 0.0821 | 146.96 | 1837 | 0.7932 | 0.78 | 0.3383 | 1.4441 | 0.78 | 0.7488 | 0.2070 | 0.1016 | | 0.0821 | 148.0 | 1850 | 0.7907 | 0.78 | 0.3369 | 1.4439 | 0.78 | 0.7488 | 0.1932 | 0.1014 | | 0.0821 | 148.96 | 1862 | 0.7939 | 0.78 | 0.3386 | 1.4462 | 0.78 | 0.7488 | 0.1906 | 0.1015 | | 0.0821 | 150.0 | 1875 | 0.7943 | 0.78 | 0.3386 | 1.4449 | 0.78 | 0.7488 | 0.1965 | 0.1016 | | 0.0821 | 150.96 | 1887 | 0.7955 | 0.78 | 0.3393 | 1.5025 | 0.78 | 0.7488 | 0.2112 | 0.1015 | | 0.0821 | 152.0 | 1900 | 0.7936 | 0.78 | 0.3386 | 1.4407 | 0.78 | 0.7488 | 0.2112 | 0.1012 | | 0.0821 | 152.96 | 1912 | 0.7966 | 0.78 | 0.3400 | 1.5033 | 0.78 | 0.7488 | 0.1963 | 0.1012 | | 0.0821 | 154.0 | 1925 | 0.7981 | 0.78 | 0.3405 | 1.4495 | 0.78 | 0.7488 | 0.1895 | 0.1020 | | 0.0821 | 154.96 | 1937 | 0.7972 | 0.78 | 0.3401 | 1.4417 | 0.78 | 0.7488 | 0.1953 | 0.1018 | | 0.0821 | 156.0 | 1950 | 0.7922 | 0.78 | 0.3381 | 1.4395 | 0.78 | 0.7488 | 0.2056 | 0.0999 | | 0.0821 | 156.96 | 1962 | 0.8013 | 0.775 | 0.3425 | 1.4473 | 0.775 | 0.7451 | 0.1869 | 0.1028 | | 0.0821 | 158.0 | 1975 | 0.7977 | 0.78 | 0.3403 | 1.4446 | 0.78 | 0.7488 | 0.1872 | 0.1014 | | 0.0821 | 158.96 | 1987 | 0.7990 | 0.78 | 0.3412 | 1.4413 | 0.78 | 0.7488 | 0.1939 | 0.1017 | | 0.0668 | 160.0 | 2000 | 0.8048 | 0.775 | 0.3435 | 1.4532 | 0.775 | 0.7451 | 0.1966 | 0.1049 | | 0.0668 | 160.96 | 2012 | 0.8064 | 0.77 | 0.3448 | 1.4529 | 0.7700 | 0.7358 | 0.1953 | 0.1044 | | 0.0668 | 162.0 | 2025 | 0.7989 | 0.78 | 0.3412 | 1.4423 | 0.78 | 0.7488 | 0.2038 | 0.1022 | | 0.0668 | 162.96 | 2037 | 0.8001 | 0.78 | 0.3414 | 1.4440 | 0.78 | 0.7488 | 0.1972 | 0.1015 | | 0.0668 | 164.0 | 2050 | 0.8068 | 0.775 | 0.3448 | 1.4523 | 0.775 | 0.7396 | 0.2031 | 0.1036 | | 0.0668 | 164.96 | 2062 | 0.8046 | 0.785 | 0.3438 | 1.4475 | 0.785 | 0.7536 | 0.2070 | 0.1037 | | 0.0668 | 166.0 | 2075 | 0.8016 | 0.78 | 0.3426 | 1.4451 | 0.78 | 0.7488 | 0.1975 | 0.1012 | | 0.0668 | 166.96 | 2087 | 0.8053 | 0.78 | 0.3442 | 1.4485 | 0.78 | 0.7477 | 0.2112 | 0.1022 | | 0.0668 | 168.0 | 2100 | 0.8040 | 0.78 | 0.3433 | 1.4459 | 0.78 | 0.7422 | 0.2014 | 0.1031 | | 0.0668 | 168.96 | 2112 | 0.8048 | 0.785 | 0.3437 | 1.4479 | 0.785 | 0.7515 | 0.2046 | 0.1033 | | 0.0668 | 170.0 | 2125 | 0.8054 | 0.775 | 0.3447 | 1.5060 | 0.775 | 0.7450 | 0.1896 | 0.1017 | | 0.0668 | 170.96 | 2137 | 0.8067 | 0.775 | 0.3451 | 1.5079 | 0.775 | 0.7450 | 0.1898 | 0.1018 | | 0.0668 | 172.0 | 2150 | 0.8060 | 0.78 | 0.3447 | 1.4508 | 0.78 | 0.7488 | 0.1842 | 0.1022 | | 0.0668 | 172.96 | 2162 | 0.8127 | 0.77 | 0.3484 | 1.4513 | 0.7700 | 0.7358 | 0.2006 | 0.1042 | | 0.0668 | 174.0 | 2175 | 0.8080 | 0.77 | 0.3457 | 1.4453 | 0.7700 | 0.7349 | 0.2198 | 0.1034 | | 0.0668 | 174.96 | 2187 | 0.8095 | 0.775 | 0.3460 | 1.4471 | 0.775 | 0.7384 | 0.2029 | 0.1027 | | 0.0668 | 176.0 | 2200 | 0.8112 | 0.775 | 0.3467 | 1.4559 | 0.775 | 0.7395 | 0.1995 | 0.1036 | | 0.0668 | 176.96 | 2212 | 0.8089 | 0.77 | 0.3460 | 1.4485 | 0.7700 | 0.7357 | 0.2050 | 0.1019 | | 0.0668 | 178.0 | 2225 | 0.8093 | 0.77 | 0.3461 | 1.4459 | 0.7700 | 0.7357 | 0.1989 | 0.1021 | | 0.0668 | 178.96 | 2237 | 0.8118 | 0.775 | 0.3473 | 1.4499 | 0.775 | 0.7384 | 0.2085 | 0.1029 | | 0.0668 | 180.0 | 2250 | 0.8112 | 0.775 | 0.3472 | 1.4471 | 0.775 | 0.7384 | 0.2070 | 0.1027 | | 0.0668 | 180.96 | 2262 | 0.8124 | 0.77 | 0.3478 | 1.4484 | 0.7700 | 0.7357 | 0.1983 | 0.1029 | | 0.0668 | 182.0 | 2275 | 0.8140 | 0.77 | 0.3484 | 1.4489 | 0.7700 | 0.7357 | 0.1987 | 0.1038 | | 0.0668 | 182.96 | 2287 | 0.8137 | 0.77 | 0.3483 | 1.4491 | 0.7700 | 0.7357 | 0.2036 | 0.1030 | | 0.0668 | 184.0 | 2300 | 0.8133 | 0.77 | 0.3481 | 1.4468 | 0.7700 | 0.7357 | 0.2012 | 0.1024 | | 0.0668 | 184.96 | 2312 | 0.8152 | 0.77 | 0.3489 | 1.4525 | 0.7700 | 0.7357 | 0.1996 | 0.1029 | | 0.0668 | 186.0 | 2325 | 0.8149 | 0.77 | 0.3490 | 1.4511 | 0.7700 | 0.7357 | 0.1917 | 0.1027 | | 0.0668 | 186.96 | 2337 | 0.8151 | 0.77 | 0.3490 | 1.4489 | 0.7700 | 0.7357 | 0.1956 | 0.1028 | | 0.0668 | 188.0 | 2350 | 0.8175 | 0.77 | 0.3500 | 1.5084 | 0.7700 | 0.7357 | 0.2011 | 0.1038 | | 0.0668 | 188.96 | 2362 | 0.8181 | 0.765 | 0.3499 | 1.4506 | 0.765 | 0.7323 | 0.1975 | 0.1056 | | 0.0668 | 190.0 | 2375 | 0.8180 | 0.765 | 0.3504 | 1.4499 | 0.765 | 0.7323 | 0.2162 | 0.1050 | | 0.0668 | 190.96 | 2387 | 0.8168 | 0.77 | 0.3498 | 1.4510 | 0.7700 | 0.7357 | 0.2014 | 0.1039 | | 0.0668 | 192.0 | 2400 | 0.8183 | 0.77 | 0.3505 | 1.4483 | 0.7700 | 0.7379 | 0.2114 | 0.1032 | | 0.0668 | 192.96 | 2412 | 0.8193 | 0.775 | 0.3507 | 1.4508 | 0.775 | 0.7384 | 0.2025 | 0.1042 | | 0.0668 | 194.0 | 2425 | 0.8181 | 0.77 | 0.3503 | 1.4565 | 0.7700 | 0.7357 | 0.2090 | 0.1027 | | 0.0668 | 194.96 | 2437 | 0.8192 | 0.77 | 0.3507 | 1.4513 | 0.7700 | 0.7357 | 0.1953 | 0.1032 | | 0.0668 | 196.0 | 2450 | 0.8214 | 0.77 | 0.3520 | 1.4519 | 0.7700 | 0.7349 | 0.2112 | 0.1045 | | 0.0668 | 196.96 | 2462 | 0.8231 | 0.765 | 0.3531 | 1.4517 | 0.765 | 0.7323 | 0.2042 | 0.1049 | | 0.0668 | 198.0 | 2475 | 0.8219 | 0.77 | 0.3521 | 1.4512 | 0.7700 | 0.7349 | 0.2152 | 0.1044 | | 0.0668 | 198.96 | 2487 | 0.8223 | 0.77 | 0.3523 | 1.4507 | 0.7700 | 0.7349 | 0.1888 | 0.1050 | | 0.0571 | 200.0 | 2500 | 0.8235 | 0.77 | 0.3529 | 1.4533 | 0.7700 | 0.7349 | 0.2029 | 0.1050 | | 0.0571 | 200.96 | 2512 | 0.8227 | 0.77 | 0.3525 | 1.4718 | 0.7700 | 0.7357 | 0.2170 | 0.1033 | | 0.0571 | 202.0 | 2525 | 0.8226 | 0.77 | 0.3525 | 1.4505 | 0.7700 | 0.7349 | 0.1954 | 0.1041 | | 0.0571 | 202.96 | 2537 | 0.8231 | 0.765 | 0.3530 | 1.4506 | 0.765 | 0.7321 | 0.1962 | 0.1046 | | 0.0571 | 204.0 | 2550 | 0.8255 | 0.77 | 0.3535 | 1.4520 | 0.7700 | 0.7380 | 0.2078 | 0.1060 | | 0.0571 | 204.96 | 2562 | 0.8276 | 0.77 | 0.3550 | 1.4594 | 0.7700 | 0.7349 | 0.2013 | 0.1046 | | 0.0571 | 206.0 | 2575 | 0.8257 | 0.77 | 0.3542 | 1.4532 | 0.7700 | 0.7349 | 0.1987 | 0.1040 | | 0.0571 | 206.96 | 2587 | 0.8248 | 0.775 | 0.3536 | 1.4499 | 0.775 | 0.7406 | 0.1903 | 0.1043 | | 0.0571 | 208.0 | 2600 | 0.8250 | 0.77 | 0.3534 | 1.4537 | 0.7700 | 0.7349 | 0.2070 | 0.1040 | | 0.0571 | 208.96 | 2612 | 0.8277 | 0.77 | 0.3548 | 1.4521 | 0.7700 | 0.7380 | 0.1867 | 0.1058 | | 0.0571 | 210.0 | 2625 | 0.8271 | 0.77 | 0.3545 | 1.4543 | 0.7700 | 0.7349 | 0.2213 | 0.1036 | | 0.0571 | 210.96 | 2637 | 0.8284 | 0.775 | 0.3552 | 1.4516 | 0.775 | 0.7406 | 0.1992 | 0.1053 | | 0.0571 | 212.0 | 2650 | 0.8278 | 0.77 | 0.3545 | 1.4533 | 0.7700 | 0.7360 | 0.1938 | 0.1056 | | 0.0571 | 212.96 | 2662 | 0.8289 | 0.77 | 0.3552 | 1.4533 | 0.7700 | 0.7380 | 0.2017 | 0.1057 | | 0.0571 | 214.0 | 2675 | 0.8290 | 0.775 | 0.3556 | 1.4530 | 0.775 | 0.7406 | 0.2005 | 0.1052 | | 0.0571 | 214.96 | 2687 | 0.8282 | 0.77 | 0.3551 | 1.4517 | 0.7700 | 0.7379 | 0.1985 | 0.1037 | | 0.0571 | 216.0 | 2700 | 0.8294 | 0.77 | 0.3555 | 1.4588 | 0.7700 | 0.7349 | 0.1941 | 0.1045 | | 0.0571 | 216.96 | 2712 | 0.8305 | 0.775 | 0.3562 | 1.4516 | 0.775 | 0.7406 | 0.1977 | 0.1057 | | 0.0571 | 218.0 | 2725 | 0.8310 | 0.77 | 0.3565 | 1.4539 | 0.7700 | 0.7380 | 0.1926 | 0.1054 | | 0.0571 | 218.96 | 2737 | 0.8304 | 0.775 | 0.3560 | 1.4516 | 0.775 | 0.7406 | 0.1986 | 0.1054 | | 0.0571 | 220.0 | 2750 | 0.8320 | 0.775 | 0.3568 | 1.4545 | 0.775 | 0.7406 | 0.1953 | 0.1054 | | 0.0571 | 220.96 | 2762 | 0.8316 | 0.775 | 0.3569 | 1.4523 | 0.775 | 0.7406 | 0.1945 | 0.1045 | | 0.0571 | 222.0 | 2775 | 0.8330 | 0.77 | 0.3573 | 1.4547 | 0.7700 | 0.7380 | 0.1892 | 0.1067 | | 0.0571 | 222.96 | 2787 | 0.8309 | 0.77 | 0.3563 | 1.4548 | 0.7700 | 0.7379 | 0.2060 | 0.1033 | | 0.0571 | 224.0 | 2800 | 0.8323 | 0.775 | 0.3572 | 1.4515 | 0.775 | 0.7406 | 0.1910 | 0.1050 | | 0.0571 | 224.96 | 2812 | 0.8329 | 0.775 | 0.3569 | 1.4530 | 0.775 | 0.7406 | 0.1931 | 0.1055 | | 0.0571 | 226.0 | 2825 | 0.8319 | 0.78 | 0.3567 | 1.4513 | 0.78 | 0.7444 | 0.2038 | 0.1043 | | 0.0571 | 226.96 | 2837 | 0.8354 | 0.77 | 0.3586 | 1.4556 | 0.7700 | 0.7380 | 0.1969 | 0.1068 | | 0.0571 | 228.0 | 2850 | 0.8340 | 0.78 | 0.3575 | 1.4550 | 0.78 | 0.7444 | 0.2043 | 0.1062 | | 0.0571 | 228.96 | 2862 | 0.8355 | 0.775 | 0.3584 | 1.4546 | 0.775 | 0.7406 | 0.2048 | 0.1055 | | 0.0571 | 230.0 | 2875 | 0.8350 | 0.78 | 0.3579 | 1.4538 | 0.78 | 0.7444 | 0.2069 | 0.1064 | | 0.0571 | 230.96 | 2887 | 0.8358 | 0.77 | 0.3584 | 1.4550 | 0.7700 | 0.7380 | 0.1899 | 0.1061 | | 0.0571 | 232.0 | 2900 | 0.8366 | 0.77 | 0.3587 | 1.4564 | 0.7700 | 0.7380 | 0.1921 | 0.1070 | | 0.0571 | 232.96 | 2912 | 0.8364 | 0.775 | 0.3587 | 1.4557 | 0.775 | 0.7418 | 0.1970 | 0.1065 | | 0.0571 | 234.0 | 2925 | 0.8359 | 0.775 | 0.3585 | 1.4543 | 0.775 | 0.7406 | 0.1912 | 0.1061 | | 0.0571 | 234.96 | 2937 | 0.8360 | 0.775 | 0.3587 | 1.4540 | 0.775 | 0.7406 | 0.2017 | 0.1049 | | 0.0571 | 236.0 | 2950 | 0.8362 | 0.78 | 0.3587 | 1.4527 | 0.78 | 0.7444 | 0.1985 | 0.1060 | | 0.0571 | 236.96 | 2962 | 0.8375 | 0.78 | 0.3593 | 1.4554 | 0.78 | 0.7444 | 0.2035 | 0.1061 | | 0.0571 | 238.0 | 2975 | 0.8378 | 0.775 | 0.3593 | 1.4544 | 0.775 | 0.7418 | 0.1971 | 0.1068 | | 0.0571 | 238.96 | 2987 | 0.8369 | 0.78 | 0.3588 | 1.4557 | 0.78 | 0.7444 | 0.2178 | 0.1057 | | 0.0512 | 240.0 | 3000 | 0.8388 | 0.77 | 0.3600 | 1.4558 | 0.7700 | 0.7380 | 0.1939 | 0.1067 | | 0.0512 | 240.96 | 3012 | 0.8375 | 0.78 | 0.3593 | 1.4540 | 0.78 | 0.7444 | 0.2071 | 0.1058 | | 0.0512 | 242.0 | 3025 | 0.8393 | 0.775 | 0.3602 | 1.4546 | 0.775 | 0.7406 | 0.1990 | 0.1066 | | 0.0512 | 242.96 | 3037 | 0.8391 | 0.775 | 0.3601 | 1.4551 | 0.775 | 0.7406 | 0.2025 | 0.1063 | | 0.0512 | 244.0 | 3050 | 0.8414 | 0.77 | 0.3610 | 1.4575 | 0.7700 | 0.7380 | 0.1924 | 0.1072 | | 0.0512 | 244.96 | 3062 | 0.8385 | 0.78 | 0.3597 | 1.4531 | 0.78 | 0.7444 | 0.2062 | 0.1059 | | 0.0512 | 246.0 | 3075 | 0.8394 | 0.78 | 0.3603 | 1.4583 | 0.78 | 0.7444 | 0.1962 | 0.1057 | | 0.0512 | 246.96 | 3087 | 0.8401 | 0.775 | 0.3604 | 1.4535 | 0.775 | 0.7406 | 0.1880 | 0.1060 | | 0.0512 | 248.0 | 3100 | 0.8400 | 0.78 | 0.3605 | 1.4550 | 0.78 | 0.7444 | 0.2156 | 0.1058 | | 0.0512 | 248.96 | 3112 | 0.8404 | 0.78 | 0.3606 | 1.4554 | 0.78 | 0.7444 | 0.1977 | 0.1061 | | 0.0512 | 250.0 | 3125 | 0.8406 | 0.78 | 0.3607 | 1.4542 | 0.78 | 0.7444 | 0.2055 | 0.1062 | | 0.0512 | 250.96 | 3137 | 0.8408 | 0.78 | 0.3608 | 1.4545 | 0.78 | 0.7444 | 0.2036 | 0.1062 | | 0.0512 | 252.0 | 3150 | 0.8414 | 0.78 | 0.3611 | 1.4560 | 0.78 | 0.7444 | 0.2054 | 0.1063 | | 0.0512 | 252.96 | 3162 | 0.8424 | 0.775 | 0.3614 | 1.4580 | 0.775 | 0.7418 | 0.2037 | 0.1072 | | 0.0512 | 254.0 | 3175 | 0.8423 | 0.775 | 0.3616 | 1.4558 | 0.775 | 0.7406 | 0.2057 | 0.1064 | | 0.0512 | 254.96 | 3187 | 0.8422 | 0.775 | 0.3613 | 1.4562 | 0.775 | 0.7418 | 0.2070 | 0.1066 | | 0.0512 | 256.0 | 3200 | 0.8419 | 0.78 | 0.3612 | 1.4562 | 0.78 | 0.7444 | 0.2196 | 0.1063 | | 0.0512 | 256.96 | 3212 | 0.8434 | 0.775 | 0.3620 | 1.4565 | 0.775 | 0.7406 | 0.2033 | 0.1065 | | 0.0512 | 258.0 | 3225 | 0.8431 | 0.775 | 0.3619 | 1.4557 | 0.775 | 0.7418 | 0.2072 | 0.1064 | | 0.0512 | 258.96 | 3237 | 0.8435 | 0.77 | 0.3620 | 1.4567 | 0.7700 | 0.7380 | 0.1985 | 0.1066 | | 0.0512 | 260.0 | 3250 | 0.8433 | 0.78 | 0.3619 | 1.4567 | 0.78 | 0.7444 | 0.2179 | 0.1065 | | 0.0512 | 260.96 | 3262 | 0.8430 | 0.78 | 0.3619 | 1.4558 | 0.78 | 0.7444 | 0.2120 | 0.1060 | | 0.0512 | 262.0 | 3275 | 0.8432 | 0.78 | 0.3619 | 1.4552 | 0.78 | 0.7444 | 0.2058 | 0.1060 | | 0.0512 | 262.96 | 3287 | 0.8444 | 0.775 | 0.3623 | 1.4572 | 0.775 | 0.7418 | 0.2035 | 0.1068 | | 0.0512 | 264.0 | 3300 | 0.8442 | 0.775 | 0.3622 | 1.4574 | 0.775 | 0.7418 | 0.2054 | 0.1067 | | 0.0512 | 264.96 | 3312 | 0.8441 | 0.78 | 0.3623 | 1.4554 | 0.78 | 0.7444 | 0.2051 | 0.1062 | | 0.0512 | 266.0 | 3325 | 0.8446 | 0.775 | 0.3624 | 1.4561 | 0.775 | 0.7418 | 0.1975 | 0.1066 | | 0.0512 | 266.96 | 3337 | 0.8447 | 0.775 | 0.3624 | 1.4570 | 0.775 | 0.7418 | 0.2053 | 0.1065 | | 0.0512 | 268.0 | 3350 | 0.8448 | 0.78 | 0.3624 | 1.4573 | 0.78 | 0.7444 | 0.2085 | 0.1065 | | 0.0512 | 268.96 | 3362 | 0.8443 | 0.78 | 0.3624 | 1.4558 | 0.78 | 0.7444 | 0.2119 | 0.1065 | | 0.0512 | 270.0 | 3375 | 0.8453 | 0.775 | 0.3628 | 1.4571 | 0.775 | 0.7418 | 0.2035 | 0.1067 | | 0.0512 | 270.96 | 3387 | 0.8444 | 0.78 | 0.3623 | 1.4561 | 0.78 | 0.7444 | 0.2076 | 0.1063 | | 0.0512 | 272.0 | 3400 | 0.8455 | 0.775 | 0.3629 | 1.4569 | 0.775 | 0.7418 | 0.2034 | 0.1066 | | 0.0512 | 272.96 | 3412 | 0.8453 | 0.78 | 0.3628 | 1.4574 | 0.78 | 0.7444 | 0.2021 | 0.1065 | | 0.0512 | 274.0 | 3425 | 0.8450 | 0.78 | 0.3626 | 1.4560 | 0.78 | 0.7444 | 0.2058 | 0.1064 | | 0.0512 | 274.96 | 3437 | 0.8456 | 0.775 | 0.3629 | 1.4569 | 0.775 | 0.7418 | 0.2035 | 0.1066 | | 0.0512 | 276.0 | 3450 | 0.8454 | 0.775 | 0.3628 | 1.4565 | 0.775 | 0.7418 | 0.2033 | 0.1065 | | 0.0512 | 276.96 | 3462 | 0.8454 | 0.78 | 0.3628 | 1.4575 | 0.78 | 0.7444 | 0.2137 | 0.1063 | | 0.0512 | 278.0 | 3475 | 0.8457 | 0.78 | 0.3630 | 1.4567 | 0.78 | 0.7444 | 0.2092 | 0.1065 | | 0.0512 | 278.96 | 3487 | 0.8462 | 0.775 | 0.3632 | 1.4567 | 0.775 | 0.7418 | 0.1994 | 0.1067 | | 0.0481 | 280.0 | 3500 | 0.8456 | 0.78 | 0.3630 | 1.4572 | 0.78 | 0.7444 | 0.2192 | 0.1064 | | 0.0481 | 280.96 | 3512 | 0.8462 | 0.775 | 0.3632 | 1.4571 | 0.775 | 0.7418 | 0.2034 | 0.1066 | | 0.0481 | 282.0 | 3525 | 0.8457 | 0.775 | 0.3630 | 1.4563 | 0.775 | 0.7418 | 0.2042 | 0.1065 | | 0.0481 | 282.96 | 3537 | 0.8460 | 0.775 | 0.3631 | 1.4570 | 0.775 | 0.7418 | 0.2106 | 0.1066 | | 0.0481 | 284.0 | 3550 | 0.8462 | 0.775 | 0.3632 | 1.4570 | 0.775 | 0.7418 | 0.2106 | 0.1067 | | 0.0481 | 284.96 | 3562 | 0.8460 | 0.775 | 0.3631 | 1.4567 | 0.775 | 0.7418 | 0.2042 | 0.1065 | | 0.0481 | 286.0 | 3575 | 0.8461 | 0.775 | 0.3632 | 1.4568 | 0.775 | 0.7418 | 0.2043 | 0.1066 | | 0.0481 | 286.96 | 3587 | 0.8461 | 0.775 | 0.3632 | 1.4570 | 0.775 | 0.7418 | 0.2043 | 0.1066 | | 0.0481 | 288.0 | 3600 | 0.8461 | 0.775 | 0.3632 | 1.4570 | 0.775 | 0.7418 | 0.2043 | 0.1066 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.13.1 - Datasets 2.13.1 - Tokenizers 0.13.3
plncmm/roberta-clinical-wl-es
plncmm
2023-07-13T13:16:20Z
111
0
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "fill-mask", "generated_from_trainer", "es", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-07T22:52:54Z
--- license: apache-2.0 language: - es widget: - text: "Periodontitis <mask> generalizada severa." - text: "Caries dentinaria <mask>." - text: "Movilidad aumentada en pza <mask>." - text: "Pcte con dm en tto con <mask>." - text: "Pcte con erc en tto con <mask>." tags: - generated_from_trainer model-index: - name: roberta-clinical-wl-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # plncmm/roberta-clinical-wl-es This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-biomedical-clinical-es](https://huggingface.co/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es) on the Chilean waiting list dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
avnishkr/falcon-QAMaster
avnishkr
2023-07-13T13:04:48Z
10
4
adapter-transformers
[ "adapter-transformers", "falcon", "QLoRA", "Adapters", "llms", "Transformers", "Fine-Tuning", "PEFT", "SFTTrainer", "Open-Source", "LoRA", "Attention", "code", "Falcon-7b", "question-answering", "custom_code", "en", "dataset:squad", "dataset:tiiuae/falcon-refinedweb", "dataset:adversarial_qa", "dataset:avnishkr/trimpixel", "arxiv:2205.14135", "arxiv:1911.02150", "arxiv:2106.09685", "arxiv:2305.14314", "license:mit", "region:us" ]
question-answering
2023-07-10T11:51:57Z
--- library_name: adapter-transformers license: mit datasets: - squad - tiiuae/falcon-refinedweb - adversarial_qa - avnishkr/trimpixel language: - en pipeline_tag: question-answering tags: - QLoRA - Adapters - llms - Transformers - Fine-Tuning - PEFT - SFTTrainer - Open-Source - LoRA - Attention - code - Falcon-7b --- # 🚀 Falcon-QAMaster Falcon-7b-QueAns is a chatbot-like model for Question and Answering. It was built by fine-tuning [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) on the [SQuAD](https://huggingface.co/datasets/squad), [Adversarial_qa](https://huggingface.co/datasets/adversarial_qa), Trimpixel (Self-Made) datasets. This repo only includes the QLoRA adapters from fine-tuning with 🤗's [peft](https://github.com/huggingface/peft) package. ## Model Summary - **Model Type:** Causal decoder-only - **Language(s):** English - **Base Model:** Falcon-7B (License: Apache 2.0) - **Dataset:** [SQuAD](https://huggingface.co/datasets/squad) (License: cc-by-4.0), [Adversarial_qa](https://huggingface.co/datasets/adversarial_qa) (License: cc-by-sa-4.0), [Falcon-RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) (odc-by), Trimpixel (Self-Made) - **License(s):** Apache 2.0 inherited from "Base Model" and "Dataset" ## Why use Falcon-7B? * **It outperforms comparable open-source models** (e.g., [MPT-7B](https://huggingface.co/mosaicml/mpt-7b), [StableLM](https://github.com/Stability-AI/StableLM), [RedPajama](https://huggingface.co/togethercomputer/RedPajama-INCITE-Base-7B-v0.1) etc.), thanks to being trained on 1,500B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) enhanced with curated corpora. See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). * **It features an architecture optimized for inference**, with FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135)) and multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)). * **It is made available under a permissive Apache 2.0 license allowing for commercial use**, without any royalties or restrictions. ⚠️ **This is a finetuned version for specifically question and answering.** If you are looking for a version better suited to taking generic instructions in a chat format, we recommend taking a look at [Falcon-7B-Instruct](https://huggingface.co/tiiuae/falcon-7b-instruct). 🔥 **Looking for an even more powerful model?** [Falcon-40B](https://huggingface.co/tiiuae/falcon-40b) is Falcon-7B's big brother! ## Model Details The model was fine-tuned in 4-bit precision using 🤗 `peft` adapters, `transformers`, and `bitsandbytes`. Training relied on a method called "Low Rank Adapters" ([LoRA](https://arxiv.org/pdf/2106.09685.pdf)), specifically the [QLoRA](https://arxiv.org/abs/2305.14314) variant. The run took approximately 12 hours and was executed on a workstation with a single T4 NVIDIA GPU with 25 GB of available memory. See attached [Colab Notebook] used to train the model. ### Model Date July 13, 2023 Open source falcon 7b large language model fine tuned on SQuAD, Adversarial_qa, Trimpixel datasets for question and answering. QLoRA technique used for fine tuning the model on consumer grade GPU SFTTrainer is also used. ## Datasets 1. Dataset used: SQuAD Dataset Size: 87599 Training Steps: 350 2. Dataset used: Adversarial_qa Dataset Size: 30000 Training Steps: 400 3. Dataset used: Trimpixel Dataset Size: 1757 Training Steps: 400 ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0
zohaib99k/QnA_model_training
zohaib99k
2023-07-13T13:04:41Z
121
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-11T04:12:35Z
--- license: other --- LLaMA-13B converted to work with Transformers/HuggingFace. This is under a special license, please see the LICENSE file for details. -- license: other --- # LLaMA Model Card ## Model details **Organization developing the model** The FAIR team of Meta AI. **Model date** LLaMA was trained between December. 2022 and Feb. 2023. **Model version** This is version 1 of the model. **Model type** LLaMA is an auto-regressive language model, based on the transformer architecture. The model comes in different sizes: 7B, 13B, 33B and 65B parameters. **Paper or resources for more information** More information can be found in the paper “LLaMA, Open and Efficient Foundation Language Models”, available at https://research.facebook.com/publications/llama-open-and-efficient-foundation-language-models/. **Citations details** https://research.facebook.com/publications/llama-open-and-efficient-foundation-language-models/ **License** Non-commercial bespoke license **Where to send questions or comments about the model** Questions and comments about LLaMA can be sent via the [GitHub repository](https://github.com/facebookresearch/llama) of the project , by opening an issue. ## Intended use **Primary intended uses** The primary use of LLaMA is research on large language models, including: exploring potential applications such as question answering, natural language understanding or reading comprehension, understanding capabilities and limitations of current language models, and developing techniques to improve those, evaluating and mitigating biases, risks, toxic and harmful content generations, hallucinations. **Primary intended users** The primary intended users of the model are researchers in natural language processing, machine learning and artificial intelligence. **Out-of-scope use cases** LLaMA is a base, or foundational, model. As such, it should not be used on downstream applications without further risk evaluation and mitigation. In particular, our model has not been trained with human feedback, and can thus generate toxic or offensive content, incorrect information or generally unhelpful answers. ## Factors **Relevant factors** One of the most relevant factors for which model performance may vary is which language is used. Although we included 20 languages in the training data, most of our dataset is made of English text, and we thus expect the model to perform better for English than other languages. Relatedly, it has been shown in previous studies that performance might vary for different dialects, and we expect that it will be the case for our model. **Evaluation factors** As our model is trained on data from the Web, we expect that it reflects biases from this source. We thus evaluated on RAI datasets to measure biases exhibited by the model for gender, religion, race, sexual orientation, age, nationality, disability, physical appearance and socio-economic status. We also measure the toxicity of model generations, depending on the toxicity of the context used to prompt the model. ## Metrics **Model performance measures** We use the following measure to evaluate the model: - Accuracy for common sense reasoning, reading comprehension, natural language understanding (MMLU), BIG-bench hard, WinoGender and CrowS-Pairs, - Exact match for question answering, - The toxicity score from Perspective API on RealToxicityPrompts. **Decision thresholds** Not applicable. **Approaches to uncertainty and variability** Due to the high computational requirements of training LLMs, we trained only one model of each size, and thus could not evaluate variability of pre-training. ## Evaluation datasets The model was evaluated on the following benchmarks: BoolQ, PIQA, SIQA, HellaSwag, WinoGrande, ARC, OpenBookQA, NaturalQuestions, TriviaQA, RACE, MMLU, BIG-bench hard, GSM8k, RealToxicityPrompts, WinoGender, CrowS-Pairs. ## Training dataset The model was trained using the following source of data: CCNet [67%], C4 [15%], GitHub [4.5%], Wikipedia [4.5%], Books [4.5%], ArXiv [2.5%], Stack Exchange[2%]. The Wikipedia and Books domains include data in the following languages: bg, ca, cs, da, de, en, es, fr, hr, hu, it, nl, pl, pt, ro, ru, sl, sr, sv, uk. See the paper for more details about the training set and corresponding preprocessing. ## Quantitative analysis Hyperparameters for the model architecture <table> <thead> <tr> <th >LLaMA</th> <th colspan=6>Model hyper parameters </th> </tr> <tr> <th>Number of parameters</th><th>dimension</th><th>n heads</th><th>n layers</th><th>Learn rate</th><th>Batch size</th><th>n tokens</th> </tr> </thead> <tbody> <tr> <th>7B</th> <th>4096</th> <th>32</th> <th>32</th> <th>3.0E-04</th><th>4M</th><th>1T </tr> <tr> <th>13B</th><th>5120</th><th>40</th><th>40</th><th>3.0E-04</th><th>4M</th><th>1T </tr> <tr> <th>33B</th><th>6656</th><th>52</th><th>60</th><th>1.5.E-04</th><th>4M</th><th>1.4T </tr> <tr> <th>65B</th><th>8192</th><th>64</th><th>80</th><th>1.5.E-04</th><th>4M</th><th>1.4T </tr> </tbody> </table> *Table 1 - Summary of LLama Model Hyperparameters* We present our results on eight standard common sense reasoning benchmarks in the table below. <table> <thead> <tr> <th>LLaMA</th> <th colspan=9>Reasoning tasks </th> </tr> <tr> <th>Number of parameters</th> <th>BoolQ</th><th>PIQA</th><th>SIQA</th><th>HellaSwag</th><th>WinoGrande</th><th>ARC-e</th><th>ARC-c</th><th>OBQA</th><th>COPA</th> </tr> </thead> <tbody> <tr> <th>7B</th><th>76.5</th><th>79.8</th><th>48.9</th><th>76.1</th><th>70.1</th><th>76.7</th><th>47.6</th><th>57.2</th><th>93 </th> <tr><th>13B</th><th>78.1</th><th>80.1</th><th>50.4</th><th>79.2</th><th>73</th><th>78.1</th><th>52.7</th><th>56.4</th><th>94 </th> <tr><th>33B</th><th>83.1</th><th>82.3</th><th>50.4</th><th>82.8</th><th>76</th><th>81.4</th><th>57.8</th><th>58.6</th><th>92 </th> <tr><th>65B</th><th>85.3</th><th>82.8</th><th>52.3</th><th>84.2</th><th>77</th><th>81.5</th><th>56</th><th>60.2</th><th>94</th></tr> </tbody> </table> *Table 2 - Summary of LLama Model Performance on Reasoning tasks* We present our results on bias in the table below. Note that lower value is better indicating lower bias. | No | Category | FAIR LLM | | --- | -------------------- | -------- | | 1 | Gender | 70.6 | | 2 | Religion | 79 | | 3 | Race/Color | 57 | | 4 | Sexual orientation | 81 | | 5 | Age | 70.1 | | 6 | Nationality | 64.2 | | 7 | Disability | 66.7 | | 8 | Physical appearance | 77.8 | | 9 | Socioeconomic status | 71.5 | | | LLaMA Average | 66.6 | *Table 3 - Summary bias of our model output* ## Ethical considerations **Data** The data used to train the model is collected from various sources, mostly from the Web. As such, it contains offensive, harmful and biased content. We thus expect the model to exhibit such biases from the training data. **Human life** The model is not intended to inform decisions about matters central to human life, and should not be used in such a way. **Mitigations** We filtered the data from the Web based on its proximity to Wikipedia text and references. For this, we used a Kneser-Ney language model and a fastText linear classifier. **Risks and harms** Risks and harms of large language models include the generation of harmful, offensive or biased content. These models are often prone to generating incorrect information, sometimes referred to as hallucinations. We do not expect our model to be an exception in this regard. **Use cases** LLaMA is a foundational model, and as such, it should not be used for downstream applications without further investigation and mitigations of risks. These risks and potential fraught use cases include, but are not limited to: generation of misinformation and generation of harmful, biased or offensive content.
EquinoxElahin/q-FrozenLake-v1-4x4-noSlippery
EquinoxElahin
2023-07-13T12:42:27Z
0
0
null
[ "region:us" ]
null
2023-01-27T14:50:32Z
# ANAIS ## Getting started To make it easy for you to get started with GitLab, here's a list of recommended next steps. Already a pro? Just edit this README.md and make it your own. Want to make it easy? [Use the template at the bottom](#editing-this-readme)! ## Add your files - [ ] [Create](https://docs.gitlab.com/ee/user/project/repository/web_editor.html#create-a-file) or [upload](https://docs.gitlab.com/ee/user/project/repository/web_editor.html#upload-a-file) files - [ ] [Add files using the command line](https://docs.gitlab.com/ee/gitlab-basics/add-file.html#add-a-file-using-the-command-line) or push an existing Git repository with the following command: ``` cd existing_repo git remote add origin https://gitlab-interne.dev.klee.lan.net/datateam/anais.git git branch -M main git push -uf origin main ``` ## Integrate with your tools - [ ] [Set up project integrations](https://gitlab-interne.dev.klee.lan.net/datateam/anais/-/settings/integrations) ## Collaborate with your team - [ ] [Invite team members and collaborators](https://docs.gitlab.com/ee/user/project/members/) - [ ] [Create a new merge request](https://docs.gitlab.com/ee/user/project/merge_requests/creating_merge_requests.html) - [ ] [Automatically close issues from merge requests](https://docs.gitlab.com/ee/user/project/issues/managing_issues.html#closing-issues-automatically) - [ ] [Enable merge request approvals](https://docs.gitlab.com/ee/user/project/merge_requests/approvals/) - [ ] [Set auto-merge](https://docs.gitlab.com/ee/user/project/merge_requests/merge_when_pipeline_succeeds.html) ## Test and Deploy Use the built-in continuous integration in GitLab. - [ ] [Get started with GitLab CI/CD](https://docs.gitlab.com/ee/ci/quick_start/index.html) - [ ] [Analyze your code for known vulnerabilities with Static Application Security Testing(SAST)](https://docs.gitlab.com/ee/user/application_security/sast/) - [ ] [Deploy to Kubernetes, Amazon EC2, or Amazon ECS using Auto Deploy](https://docs.gitlab.com/ee/topics/autodevops/requirements.html) - [ ] [Use pull-based deployments for improved Kubernetes management](https://docs.gitlab.com/ee/user/clusters/agent/) - [ ] [Set up protected environments](https://docs.gitlab.com/ee/ci/environments/protected_environments.html) *** # Editing this README When you're ready to make this README your own, just edit this file and use the handy template below (or feel free to structure it however you want - this is just a starting point!). Thank you to [makeareadme.com](https://www.makeareadme.com/) for this template. ## Suggestions for a good README Every project is different, so consider which of these sections apply to yours. The sections used in the template are suggestions for most open source projects. Also keep in mind that while a README can be too long and detailed, too long is better than too short. If you think your README is too long, consider utilizing another form of documentation rather than cutting out information. ## Name Choose a self-explaining name for your project. ## Description Let people know what your project can do specifically. Provide context and add a link to any reference visitors might be unfamiliar with. A list of Features or a Background subsection can also be added here. If there are alternatives to your project, this is a good place to list differentiating factors. ## Badges On some READMEs, you may see small images that convey metadata, such as whether or not all the tests are passing for the project. You can use Shields to add some to your README. Many services also have instructions for adding a badge. ## Visuals Depending on what you are making, it can be a good idea to include screenshots or even a video (you'll frequently see GIFs rather than actual videos). Tools like ttygif can help, but check out Asciinema for a more sophisticated method. ## Installation Within a particular ecosystem, there may be a common way of installing things, such as using Yarn, NuGet, or Homebrew. However, consider the possibility that whoever is reading your README is a novice and would like more guidance. Listing specific steps helps remove ambiguity and gets people to using your project as quickly as possible. If it only runs in a specific context like a particular programming language version or operating system or has dependencies that have to be installed manually, also add a Requirements subsection. ## Usage Use examples liberally, and show the expected output if you can. It's helpful to have inline the smallest example of usage that you can demonstrate, while providing links to more sophisticated examples if they are too long to reasonably include in the README. ## Support Tell people where they can go to for help. It can be any combination of an issue tracker, a chat room, an email address, etc. ## Roadmap If you have ideas for releases in the future, it is a good idea to list them in the README. ## Contributing State if you are open to contributions and what your requirements are for accepting them. For people who want to make changes to your project, it's helpful to have some documentation on how to get started. Perhaps there is a script that they should run or some environment variables that they need to set. Make these steps explicit. These instructions could also be useful to your future self. You can also document commands to lint the code or run tests. These steps help to ensure high code quality and reduce the likelihood that the changes inadvertently break something. Having instructions for running tests is especially helpful if it requires external setup, such as starting a Selenium server for testing in a browser. ## Authors and acknowledgment Show your appreciation to those who have contributed to the project. ## License For open source projects, say how it is licensed. ## Project status If you have run out of energy or time for your project, put a note at the top of the README saying that development has slowed down or stopped completely. Someone may choose to fork your project or volunteer to step in as a maintainer or owner, allowing your project to keep going. You can also make an explicit request for maintainers.
atiiisham988/whisper-small-dv
atiiisham988
2023-07-13T12:41:14Z
86
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dv", "dataset:mozilla-foundation/common_voice_13_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-13T11:13:03Z
--- language: - dv license: apache-2.0 tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Small Dv - atiiisham results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13 type: mozilla-foundation/common_voice_13_0 config: dv split: test args: dv metrics: - name: Wer type: wer value: 13.509754146816427 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Dv - atiiisham This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 13 dataset. It achieves the following results on the evaluation set: - Loss: 0.1709 - Wer Ortho: 62.8665 - Wer: 13.5098 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 0.1243 | 1.63 | 500 | 0.1709 | 62.8665 | 13.5098 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
RushTurtle/crnn_vgg16_bn_20230713-111621
RushTurtle
2023-07-13T12:33:27Z
45
0
transformers
[ "transformers", "pytorch", "en", "endpoints_compatible", "region:us" ]
null
2023-07-13T12:33:19Z
--- language: en --- <p align="center"> <img src="https://doctr-static.mindee.com/models?id=v0.3.1/Logo_doctr.gif&src=0" width="60%"> </p> **Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch** ## Task: recognition https://github.com/mindee/doctr ### Example usage: ```python >>> from doctr.io import DocumentFile >>> from doctr.models import ocr_predictor, from_hub >>> img = DocumentFile.from_images(['<image_path>']) >>> # Load your model from the hub >>> model = from_hub('mindee/my-model') >>> # Pass it to the predictor >>> # If your model is a recognition model: >>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', >>> reco_arch=model, >>> pretrained=True) >>> # If your model is a detection model: >>> predictor = ocr_predictor(det_arch=model, >>> reco_arch='crnn_mobilenet_v3_small', >>> pretrained=True) >>> # Get your predictions >>> res = predictor(img) ``` ### Run Configuration { "arch": "crnn_vgg16_bn", "train_path": "/tmp/dataset/train3_1100/", "val_path": "/tmp/dataset/val3_1100/", "train_samples": 1000, "val_samples": 20, "font": "FreeMono.ttf,FreeSans.ttf,FreeSerif.ttf", "min_chars": 1, "max_chars": 12, "name": null, "epochs": 600, "batch_size": 64, "device": 0, "input_size": 32, "lr": 0.001, "weight_decay": 0, "workers": 16, "resume": null, "vocab": "french", "test_only": false, "show_samples": false, "wb": false, "push_to_hub": true, "pretrained": false, "sched": "cosine", "amp": false, "find_lr": false }
phatjk/bloomz-lora-vi-QA-NLLB-viquad_ver2
phatjk
2023-07-13T12:24:58Z
1
0
peft
[ "peft", "region:us" ]
null
2023-07-13T12:24:55Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
Sasagi/Remusuzumori
Sasagi
2023-07-13T12:20:03Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-13T12:12:51Z
--- license: creativeml-openrail-m ---
jordyvl/vit-tiny_tobacco3482_dualsimkd_
jordyvl
2023-07-13T12:19:30Z
163
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-13T10:55:18Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-tiny_tobacco3482_dualsimkd_ results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-tiny_tobacco3482_dualsimkd_ This model is a fine-tuned version of [WinKawaks/vit-tiny-patch16-224](https://huggingface.co/WinKawaks/vit-tiny-patch16-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1401 - Accuracy: 0.385 - Brier Loss: 0.8709 - Nll: 8.8462 - F1 Micro: 0.3850 - F1 Macro: 0.1979 - Ece: 0.3606 - Aurc: 0.3874 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:----------:|:-------:|:--------:|:--------:|:------:|:------:| | No log | 1.0 | 100 | 0.5117 | 0.04 | 0.9009 | 19.1664 | 0.04 | 0.0077 | 0.1344 | 0.9445 | | No log | 2.0 | 200 | 0.3168 | 0.05 | 0.8997 | 15.0313 | 0.0500 | 0.0095 | 0.1344 | 0.8364 | | No log | 3.0 | 300 | 0.2703 | 0.18 | 0.8978 | 9.6860 | 0.18 | 0.0305 | 0.2180 | 0.7731 | | No log | 4.0 | 400 | 0.2266 | 0.18 | 0.8952 | 12.0957 | 0.18 | 0.0305 | 0.2223 | 0.7993 | | 1.1219 | 5.0 | 500 | 0.1687 | 0.18 | 0.8951 | 12.7136 | 0.18 | 0.0305 | 0.2215 | 0.7713 | | 1.1219 | 6.0 | 600 | 0.1331 | 0.165 | 0.8956 | 12.6737 | 0.165 | 0.0284 | 0.2044 | 0.7829 | | 1.1219 | 7.0 | 700 | 0.1139 | 0.18 | 0.8960 | 12.6380 | 0.18 | 0.0305 | 0.2283 | 0.7875 | | 1.1219 | 8.0 | 800 | 0.1143 | 0.18 | 0.8963 | 12.6385 | 0.18 | 0.0306 | 0.2183 | 0.7703 | | 1.1219 | 9.0 | 900 | 0.1246 | 0.18 | 0.8966 | 12.5389 | 0.18 | 0.0305 | 0.2223 | 0.7726 | | 0.0694 | 10.0 | 1000 | 0.1262 | 0.18 | 0.8961 | 12.6316 | 0.18 | 0.0305 | 0.2271 | 0.7894 | | 0.0694 | 11.0 | 1100 | 0.1186 | 0.155 | 0.8961 | 12.6309 | 0.155 | 0.0268 | 0.2169 | 0.6418 | | 0.0694 | 12.0 | 1200 | 0.1290 | 0.18 | 0.8960 | 12.6360 | 0.18 | 0.0305 | 0.2272 | 0.8014 | | 0.0694 | 13.0 | 1300 | 0.1202 | 0.18 | 0.8959 | 12.6644 | 0.18 | 0.0305 | 0.2274 | 0.7910 | | 0.0694 | 14.0 | 1400 | 0.1341 | 0.18 | 0.8960 | 12.6667 | 0.18 | 0.0305 | 0.2273 | 0.7916 | | 0.0505 | 15.0 | 1500 | 0.1234 | 0.18 | 0.8961 | 12.6653 | 0.18 | 0.0305 | 0.2261 | 0.7819 | | 0.0505 | 16.0 | 1600 | 0.1375 | 0.18 | 0.8960 | 12.6951 | 0.18 | 0.0305 | 0.2283 | 0.7929 | | 0.0505 | 17.0 | 1700 | 0.1249 | 0.18 | 0.8959 | 12.7041 | 0.18 | 0.0305 | 0.2262 | 0.7820 | | 0.0505 | 18.0 | 1800 | 0.1263 | 0.18 | 0.8964 | 12.6096 | 0.18 | 0.0305 | 0.2228 | 0.7900 | | 0.0505 | 19.0 | 1900 | 0.1243 | 0.18 | 0.8961 | 12.6667 | 0.18 | 0.0305 | 0.2229 | 0.7896 | | 0.0483 | 20.0 | 2000 | 0.1246 | 0.18 | 0.8960 | 12.6285 | 0.18 | 0.0305 | 0.2172 | 0.7913 | | 0.0483 | 21.0 | 2100 | 0.1218 | 0.18 | 0.8961 | 12.6375 | 0.18 | 0.0305 | 0.2250 | 0.8003 | | 0.0483 | 22.0 | 2200 | 0.1228 | 0.18 | 0.8964 | 12.5765 | 0.18 | 0.0305 | 0.2258 | 0.7938 | | 0.0483 | 23.0 | 2300 | 0.1270 | 0.18 | 0.8963 | 12.6332 | 0.18 | 0.0305 | 0.2239 | 0.8055 | | 0.0483 | 24.0 | 2400 | 0.1303 | 0.18 | 0.8963 | 12.5914 | 0.18 | 0.0305 | 0.2270 | 0.8006 | | 0.0484 | 25.0 | 2500 | 0.1234 | 0.18 | 0.8960 | 12.6429 | 0.18 | 0.0305 | 0.2208 | 0.7990 | | 0.0484 | 26.0 | 2600 | 0.1313 | 0.18 | 0.8965 | 12.5721 | 0.18 | 0.0305 | 0.2205 | 0.8069 | | 0.0484 | 27.0 | 2700 | 0.1314 | 0.18 | 0.8963 | 12.5982 | 0.18 | 0.0305 | 0.2247 | 0.8110 | | 0.0484 | 28.0 | 2800 | 0.1326 | 0.18 | 0.8962 | 12.6539 | 0.18 | 0.0305 | 0.2143 | 0.8083 | | 0.0484 | 29.0 | 2900 | 0.1337 | 0.18 | 0.8964 | 12.5814 | 0.18 | 0.0305 | 0.2225 | 0.8106 | | 0.0473 | 30.0 | 3000 | 0.1369 | 0.18 | 0.8962 | 12.6021 | 0.18 | 0.0305 | 0.2258 | 0.8095 | | 0.0473 | 31.0 | 3100 | 0.1295 | 0.18 | 0.8958 | 12.6587 | 0.18 | 0.0305 | 0.2273 | 0.8104 | | 0.0473 | 32.0 | 3200 | 0.1343 | 0.18 | 0.8959 | 12.6740 | 0.18 | 0.0305 | 0.2220 | 0.8119 | | 0.0473 | 33.0 | 3300 | 0.1359 | 0.18 | 0.8960 | 12.6790 | 0.18 | 0.0305 | 0.2273 | 0.8134 | | 0.0473 | 34.0 | 3400 | 0.1367 | 0.18 | 0.8961 | 12.6336 | 0.18 | 0.0305 | 0.2228 | 0.8159 | | 0.0476 | 35.0 | 3500 | 0.1378 | 0.18 | 0.8963 | 12.6119 | 0.18 | 0.0305 | 0.2270 | 0.8172 | | 0.0476 | 36.0 | 3600 | 0.1286 | 0.18 | 0.8961 | 12.6340 | 0.18 | 0.0305 | 0.2218 | 0.8148 | | 0.0476 | 37.0 | 3700 | 0.1333 | 0.18 | 0.8960 | 12.6328 | 0.18 | 0.0305 | 0.2207 | 0.8164 | | 0.0476 | 38.0 | 3800 | 0.1328 | 0.18 | 0.8963 | 12.6294 | 0.18 | 0.0305 | 0.2196 | 0.8180 | | 0.0476 | 39.0 | 3900 | 0.1344 | 0.18 | 0.8961 | 12.6417 | 0.18 | 0.0305 | 0.2207 | 0.8209 | | 0.0474 | 40.0 | 4000 | 0.1362 | 0.18 | 0.8959 | 12.6775 | 0.18 | 0.0305 | 0.2187 | 0.8198 | | 0.0474 | 41.0 | 4100 | 0.1340 | 0.18 | 0.8961 | 12.6746 | 0.18 | 0.0305 | 0.2249 | 0.8215 | | 0.0474 | 42.0 | 4200 | 0.1308 | 0.18 | 0.8958 | 12.6621 | 0.18 | 0.0305 | 0.2208 | 0.8215 | | 0.0474 | 43.0 | 4300 | 0.1372 | 0.18 | 0.8960 | 12.6133 | 0.18 | 0.0305 | 0.2249 | 0.8204 | | 0.0474 | 44.0 | 4400 | 0.1436 | 0.18 | 0.8963 | 12.6014 | 0.18 | 0.0305 | 0.2280 | 0.8201 | | 0.0472 | 45.0 | 4500 | 0.1374 | 0.18 | 0.8960 | 12.6316 | 0.18 | 0.0305 | 0.2228 | 0.8193 | | 0.0472 | 46.0 | 4600 | 0.1261 | 0.18 | 0.8957 | 12.6840 | 0.18 | 0.0305 | 0.2251 | 0.8220 | | 0.0472 | 47.0 | 4700 | 0.1340 | 0.18 | 0.8956 | 12.6704 | 0.18 | 0.0305 | 0.2251 | 0.8221 | | 0.0472 | 48.0 | 4800 | 0.1320 | 0.18 | 0.8959 | 12.6111 | 0.18 | 0.0305 | 0.2227 | 0.8203 | | 0.0472 | 49.0 | 4900 | 0.1336 | 0.18 | 0.8956 | 12.6838 | 0.18 | 0.0305 | 0.2294 | 0.8209 | | 0.0474 | 50.0 | 5000 | 0.1342 | 0.18 | 0.8959 | 12.3426 | 0.18 | 0.0305 | 0.2292 | 0.8218 | | 0.0474 | 51.0 | 5100 | 0.1362 | 0.18 | 0.8957 | 12.3611 | 0.18 | 0.0305 | 0.2261 | 0.8224 | | 0.0474 | 52.0 | 5200 | 0.1368 | 0.18 | 0.8958 | 11.5617 | 0.18 | 0.0305 | 0.2205 | 0.8222 | | 0.0474 | 53.0 | 5300 | 0.1391 | 0.18 | 0.8955 | 11.5519 | 0.18 | 0.0305 | 0.2312 | 0.8225 | | 0.0474 | 54.0 | 5400 | 0.1366 | 0.18 | 0.8947 | 12.2068 | 0.18 | 0.0305 | 0.2231 | 0.8231 | | 0.047 | 55.0 | 5500 | 0.1355 | 0.19 | 0.8943 | 11.5922 | 0.19 | 0.0641 | 0.2299 | 0.8248 | | 0.047 | 56.0 | 5600 | 0.1386 | 0.17 | 0.8930 | 11.8204 | 0.17 | 0.0705 | 0.2240 | 0.5968 | | 0.047 | 57.0 | 5700 | 0.1364 | 0.33 | 0.8936 | 11.0092 | 0.33 | 0.1878 | 0.3195 | 0.4381 | | 0.047 | 58.0 | 5800 | 0.1368 | 0.27 | 0.8923 | 11.0463 | 0.27 | 0.1541 | 0.2874 | 0.5187 | | 0.047 | 59.0 | 5900 | 0.1328 | 0.325 | 0.8915 | 10.5269 | 0.325 | 0.1702 | 0.3247 | 0.4469 | | 0.0469 | 60.0 | 6000 | 0.1402 | 0.235 | 0.8945 | 9.2940 | 0.235 | 0.1141 | 0.2558 | 0.6612 | | 0.0469 | 61.0 | 6100 | 0.1387 | 0.345 | 0.8913 | 9.2678 | 0.345 | 0.1657 | 0.3422 | 0.4100 | | 0.0469 | 62.0 | 6200 | 0.1386 | 0.31 | 0.8891 | 10.1100 | 0.31 | 0.1637 | 0.3134 | 0.4609 | | 0.0469 | 63.0 | 6300 | 0.1379 | 0.34 | 0.8892 | 9.1965 | 0.34 | 0.1582 | 0.3388 | 0.4344 | | 0.0469 | 64.0 | 6400 | 0.1375 | 0.335 | 0.8876 | 9.2252 | 0.335 | 0.1624 | 0.3356 | 0.4239 | | 0.0469 | 65.0 | 6500 | 0.1357 | 0.345 | 0.8868 | 9.1887 | 0.345 | 0.1659 | 0.3361 | 0.4061 | | 0.0469 | 66.0 | 6600 | 0.1394 | 0.345 | 0.8850 | 9.1819 | 0.345 | 0.1641 | 0.3398 | 0.4265 | | 0.0469 | 67.0 | 6700 | 0.1410 | 0.34 | 0.8850 | 9.1158 | 0.34 | 0.1590 | 0.3328 | 0.4302 | | 0.0469 | 68.0 | 6800 | 0.1387 | 0.295 | 0.8814 | 9.2693 | 0.295 | 0.1374 | 0.3039 | 0.4572 | | 0.0469 | 69.0 | 6900 | 0.1385 | 0.335 | 0.8814 | 9.1526 | 0.335 | 0.1668 | 0.3324 | 0.4205 | | 0.0463 | 70.0 | 7000 | 0.1392 | 0.34 | 0.8814 | 9.1159 | 0.34 | 0.1546 | 0.3405 | 0.4263 | | 0.0463 | 71.0 | 7100 | 0.1418 | 0.35 | 0.8820 | 9.1363 | 0.35 | 0.1692 | 0.3436 | 0.4019 | | 0.0463 | 72.0 | 7200 | 0.1379 | 0.35 | 0.8791 | 9.0483 | 0.35 | 0.1726 | 0.3402 | 0.4226 | | 0.0463 | 73.0 | 7300 | 0.1405 | 0.33 | 0.8760 | 9.3563 | 0.33 | 0.1731 | 0.3207 | 0.4307 | | 0.0463 | 74.0 | 7400 | 0.1401 | 0.31 | 0.8769 | 9.4413 | 0.31 | 0.1676 | 0.3099 | 0.4383 | | 0.0458 | 75.0 | 7500 | 0.1393 | 0.38 | 0.8778 | 9.0788 | 0.38 | 0.1985 | 0.3518 | 0.3976 | | 0.0458 | 76.0 | 7600 | 0.1384 | 0.39 | 0.8779 | 9.0233 | 0.39 | 0.2027 | 0.3673 | 0.4144 | | 0.0458 | 77.0 | 7700 | 0.1403 | 0.365 | 0.8818 | 9.1567 | 0.3650 | 0.1953 | 0.3518 | 0.4181 | | 0.0458 | 78.0 | 7800 | 0.1400 | 0.27 | 0.8725 | 11.0592 | 0.27 | 0.1627 | 0.2896 | 0.4809 | | 0.0458 | 79.0 | 7900 | 0.1402 | 0.375 | 0.8739 | 9.1158 | 0.375 | 0.1961 | 0.3540 | 0.3929 | | 0.0455 | 80.0 | 8000 | 0.1401 | 0.315 | 0.8722 | 9.9114 | 0.315 | 0.1771 | 0.3220 | 0.4443 | | 0.0455 | 81.0 | 8100 | 0.1378 | 0.39 | 0.8761 | 9.0128 | 0.39 | 0.2048 | 0.3642 | 0.4020 | | 0.0455 | 82.0 | 8200 | 0.1401 | 0.38 | 0.8729 | 9.1624 | 0.38 | 0.2006 | 0.3612 | 0.3924 | | 0.0455 | 83.0 | 8300 | 0.1391 | 0.38 | 0.8742 | 8.8982 | 0.38 | 0.2048 | 0.3561 | 0.3991 | | 0.0455 | 84.0 | 8400 | 0.1381 | 0.375 | 0.8734 | 9.0598 | 0.375 | 0.1901 | 0.3567 | 0.4010 | | 0.0453 | 85.0 | 8500 | 0.1398 | 0.39 | 0.8718 | 9.1407 | 0.39 | 0.2057 | 0.3693 | 0.3892 | | 0.0453 | 86.0 | 8600 | 0.1389 | 0.37 | 0.8721 | 9.3494 | 0.37 | 0.2006 | 0.3505 | 0.3914 | | 0.0453 | 87.0 | 8700 | 0.1390 | 0.395 | 0.8743 | 8.7444 | 0.395 | 0.2113 | 0.3724 | 0.3854 | | 0.0453 | 88.0 | 8800 | 0.1404 | 0.395 | 0.8739 | 8.7654 | 0.395 | 0.2134 | 0.3657 | 0.3925 | | 0.0453 | 89.0 | 8900 | 0.1409 | 0.385 | 0.8726 | 8.7763 | 0.3850 | 0.2032 | 0.3643 | 0.3963 | | 0.0451 | 90.0 | 9000 | 0.1403 | 0.39 | 0.8717 | 8.8363 | 0.39 | 0.2055 | 0.3668 | 0.3926 | | 0.0451 | 91.0 | 9100 | 0.1388 | 0.39 | 0.8719 | 9.2985 | 0.39 | 0.2099 | 0.3662 | 0.3847 | | 0.0451 | 92.0 | 9200 | 0.1397 | 0.385 | 0.8702 | 9.4449 | 0.3850 | 0.2050 | 0.3535 | 0.3877 | | 0.0451 | 93.0 | 9300 | 0.1403 | 0.385 | 0.8709 | 8.9790 | 0.3850 | 0.1989 | 0.3473 | 0.3887 | | 0.0451 | 94.0 | 9400 | 0.1400 | 0.39 | 0.8705 | 9.1647 | 0.39 | 0.2053 | 0.3569 | 0.3865 | | 0.045 | 95.0 | 9500 | 0.1404 | 0.395 | 0.8712 | 9.1707 | 0.395 | 0.2087 | 0.3688 | 0.3815 | | 0.045 | 96.0 | 9600 | 0.1404 | 0.385 | 0.8711 | 8.6711 | 0.3850 | 0.1980 | 0.3566 | 0.3867 | | 0.045 | 97.0 | 9700 | 0.1399 | 0.39 | 0.8706 | 9.1288 | 0.39 | 0.2035 | 0.3610 | 0.3845 | | 0.045 | 98.0 | 9800 | 0.1400 | 0.385 | 0.8708 | 9.1302 | 0.3850 | 0.1982 | 0.3538 | 0.3870 | | 0.045 | 99.0 | 9900 | 0.1398 | 0.39 | 0.8712 | 8.8257 | 0.39 | 0.2002 | 0.3660 | 0.3825 | | 0.0449 | 100.0 | 10000 | 0.1401 | 0.385 | 0.8709 | 8.8462 | 0.3850 | 0.1979 | 0.3606 | 0.3874 | ### Framework versions - Transformers 4.28.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.12.0 - Tokenizers 0.12.1
nolanaatama/mstnnm
nolanaatama
2023-07-13T12:15:36Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-02T21:28:24Z
--- license: creativeml-openrail-m ---
yassmine/plbart-finetuned-unitTest-1000
yassmine
2023-07-13T12:04:39Z
5
0
transformers
[ "transformers", "pytorch", "plbart", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-13T09:49:08Z
--- tags: - generated_from_trainer metrics: - bleu model-index: - name: plbart-finetuned-unitTest-1000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # plbart-finetuned-unitTest-1000 This model is a fine-tuned version of [uclanlp/plbart-base](https://huggingface.co/uclanlp/plbart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0000 - Bleu: 0.0000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 92 | 0.9023 | 0.0000 | | No log | 2.0 | 184 | 0.8401 | 0.0000 | | No log | 3.0 | 276 | 0.8096 | 0.0000 | | No log | 4.0 | 368 | 0.7942 | 0.0000 | | No log | 5.0 | 460 | 0.7848 | 0.0000 | | 0.943 | 6.0 | 552 | 0.7818 | 0.0000 | | 0.943 | 7.0 | 644 | 0.7911 | 0.0000 | | 0.943 | 8.0 | 736 | 0.7874 | 0.0000 | | 0.943 | 9.0 | 828 | 0.7970 | 0.0000 | | 0.943 | 10.0 | 920 | 0.8062 | 0.0000 | | 0.5025 | 11.0 | 1012 | 0.8085 | 0.0000 | | 0.5025 | 12.0 | 1104 | 0.8179 | 0.0000 | | 0.5025 | 13.0 | 1196 | 0.8360 | 0.0000 | | 0.5025 | 14.0 | 1288 | 0.8385 | 0.0000 | | 0.5025 | 15.0 | 1380 | 0.8470 | 0.0000 | | 0.5025 | 16.0 | 1472 | 0.8556 | 0.0000 | | 0.3309 | 17.0 | 1564 | 0.8619 | 0.0000 | | 0.3309 | 18.0 | 1656 | 0.8701 | 0.0000 | | 0.3309 | 19.0 | 1748 | 0.8827 | 0.0000 | | 0.3309 | 20.0 | 1840 | 0.8871 | 0.0000 | | 0.3309 | 21.0 | 1932 | 0.8970 | 0.0000 | | 0.2266 | 22.0 | 2024 | 0.8984 | 0.0000 | | 0.2266 | 23.0 | 2116 | 0.9051 | 0.0000 | | 0.2266 | 24.0 | 2208 | 0.9188 | 0.0000 | | 0.2266 | 25.0 | 2300 | 0.9205 | 0.0000 | | 0.2266 | 26.0 | 2392 | 0.9278 | 0.0000 | | 0.2266 | 27.0 | 2484 | 0.9333 | 0.0000 | | 0.1639 | 28.0 | 2576 | 0.9456 | 0.0000 | | 0.1639 | 29.0 | 2668 | 0.9454 | 0.0000 | | 0.1639 | 30.0 | 2760 | 0.9522 | 0.0000 | | 0.1639 | 31.0 | 2852 | 0.9513 | 0.0000 | | 0.1639 | 32.0 | 2944 | 0.9554 | 0.0000 | | 0.1251 | 33.0 | 3036 | 0.9661 | 0.0000 | | 0.1251 | 34.0 | 3128 | 0.9698 | 0.0000 | | 0.1251 | 35.0 | 3220 | 0.9750 | 0.0000 | | 0.1251 | 36.0 | 3312 | 0.9722 | 0.0000 | | 0.1251 | 37.0 | 3404 | 0.9780 | 0.0000 | | 0.1251 | 38.0 | 3496 | 0.9789 | 0.0000 | | 0.1019 | 39.0 | 3588 | 0.9825 | 0.0000 | | 0.1019 | 40.0 | 3680 | 0.9913 | 0.0000 | | 0.1019 | 41.0 | 3772 | 0.9906 | 0.0000 | | 0.1019 | 42.0 | 3864 | 0.9922 | 0.0000 | | 0.1019 | 43.0 | 3956 | 0.9937 | 0.0000 | | 0.0863 | 44.0 | 4048 | 0.9981 | 0.0000 | | 0.0863 | 45.0 | 4140 | 0.9979 | 0.0000 | | 0.0863 | 46.0 | 4232 | 0.9984 | 0.0000 | | 0.0863 | 47.0 | 4324 | 0.9970 | 0.0000 | | 0.0863 | 48.0 | 4416 | 1.0003 | 0.0000 | | 0.0783 | 49.0 | 4508 | 0.9993 | 0.0000 | | 0.0783 | 50.0 | 4600 | 1.0000 | 0.0000 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
vnktrmnb/bert-base-multilingual-cased-finetuned-SQUAD2
vnktrmnb
2023-07-13T11:56:45Z
61
0
transformers
[ "transformers", "tf", "tensorboard", "bert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-07-12T09:50:00Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: vnktrmnb/bert-base-multilingual-cased-finetuned-SQUAD2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # vnktrmnb/bert-base-multilingual-cased-finetuned-SQUAD2 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.3530 - Train End Logits Accuracy: 0.6339 - Train Start Logits Accuracy: 0.6471 - Validation Loss: 0.9662 - Validation End Logits Accuracy: 0.7197 - Validation Start Logits Accuracy: 0.7298 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 11957, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.3530 | 0.6339 | 0.6471 | 0.9662 | 0.7197 | 0.7298 | 0 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.13.1 - Tokenizers 0.13.3
AllenQ/model_archive
AllenQ
2023-07-13T11:53:36Z
1
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "controlnet", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-13T11:30:15Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - controlnet inference: true --- # controlnet-AllenQ/model_archive These are controlnet weights trained on runwayml/stable-diffusion-v1-5 with new type of conditioning. You can find some example images below. prompt: car ![images_0)](./images_0.png)
rightspeed/spacehope
rightspeed
2023-07-13T11:52:09Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-13T11:51:41Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 5.00 +/- 7.07 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga rightspeed -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga rightspeed -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga rightspeed ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 100000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
IbrahemVX2000/kandiskyai2-1
IbrahemVX2000
2023-07-13T11:29:14Z
0
0
null
[ "text-to-image", "kandinsky", "license:apache-2.0", "region:us" ]
text-to-image
2023-07-13T11:27:16Z
--- license: apache-2.0 prior: kandinsky-community/kandinsky-2-1-prior tags: - text-to-image - kandinsky --- # Kandinsky 2.1 Kandinsky 2.1 inherits best practices from Dall-E 2 and Latent diffusion while introducing some new ideas. It uses the CLIP model as a text and image encoder, and diffusion image prior (mapping) between latent spaces of CLIP modalities. This approach increases the visual performance of the model and unveils new horizons in blending images and text-guided image manipulation. The Kandinsky model is created by [Arseniy Shakhmatov](https://github.com/cene555), [Anton Razzhigaev](https://github.com/razzant), [Aleksandr Nikolich](https://github.com/AlexWortega), [Igor Pavlov](https://github.com/boomb0om), [Andrey Kuznetsov](https://github.com/kuznetsoffandrey) and [Denis Dimitrov](https://github.com/denndimitrov) ## Usage Kandinsky 2.1 is available in diffusers! ```python pip install diffusers transformers accelerate ``` ### Text to image ```python from diffusers import DiffusionPipeline import torch pipe_prior = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16) pipe_prior.to("cuda") t2i_pipe = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16) t2i_pipe.to("cuda") prompt = "A alien cheeseburger creature eating itself, claymation, cinematic, moody lighting" negative_prompt = "low quality, bad quality" image_embeds, negative_image_embeds = pipe_prior(prompt, negative_prompt, guidance_scale=1.0).to_tuple() image = t2i_pipe(prompt, negative_prompt=negative_prompt, image_embeds=image_embeds, negative_image_embeds=negative_image_embeds, height=768, width=768).images[0] image.save("cheeseburger_monster.png") ``` ![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/cheeseburger.png) ### Text Guided Image-to-Image Generation ```python from diffusers import KandinskyImg2ImgPipeline, KandinskyPriorPipeline import torch from PIL import Image import requests from io import BytesIO url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg" response = requests.get(url) original_image = Image.open(BytesIO(response.content)).convert("RGB") original_image = original_image.resize((768, 512)) # create prior pipe_prior = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16 ) pipe_prior.to("cuda") # create img2img pipeline pipe = KandinskyImg2ImgPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16) pipe.to("cuda") prompt = "A fantasy landscape, Cinematic lighting" negative_prompt = "low quality, bad quality" image_embeds, negative_image_embeds = pipe_prior(prompt, negative_prompt).to_tuple() out = pipe( prompt, image=original_image, image_embeds=image_embeds, negative_image_embeds=negative_image_embeds, height=768, width=768, strength=0.3, ) out.images[0].save("fantasy_land.png") ``` ![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/img2img_fantasyland.png) ### Interpolate ```python from diffusers import KandinskyPriorPipeline, KandinskyPipeline from diffusers.utils import load_image import PIL import torch pipe_prior = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16 ) pipe_prior.to("cuda") img1 = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) img2 = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/starry_night.jpeg" ) # add all the conditions we want to interpolate, can be either text or image images_texts = ["a cat", img1, img2] # specify the weights for each condition in images_texts weights = [0.3, 0.3, 0.4] # We can leave the prompt empty prompt = "" prior_out = pipe_prior.interpolate(images_texts, weights) pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16) pipe.to("cuda") image = pipe(prompt, **prior_out, height=768, width=768).images[0] image.save("starry_cat.png") ``` ![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/starry_cat.png) ## Model Architecture ### Overview Kandinsky 2.1 is a text-conditional diffusion model based on unCLIP and latent diffusion, composed of a transformer-based image prior model, a unet diffusion model, and a decoder. The model architectures are illustrated in the figure below - the chart on the left describes the process to train the image prior model, the figure in the center is the text-to-image generation process, and the figure on the right is image interpolation. <p float="left"> <img src="https://raw.githubusercontent.com/ai-forever/Kandinsky-2/main/content/kandinsky21.png"/> </p> Specifically, the image prior model was trained on CLIP text and image embeddings generated with a pre-trained [mCLIP model](https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-L-14). The trained image prior model is then used to generate mCLIP image embeddings for input text prompts. Both the input text prompts and its mCLIP image embeddings are used in the diffusion process. A [MoVQGAN](https://openreview.net/forum?id=Qb-AoSw4Jnm) model acts as the final block of the model, which decodes the latent representation into an actual image. ### Details The image prior training of the model was performed on the [LAION Improved Aesthetics dataset](https://huggingface.co/datasets/bhargavsdesai/laion_improved_aesthetics_6.5plus_with_images), and then fine-tuning was performed on the [LAION HighRes data](https://huggingface.co/datasets/laion/laion-high-resolution). The main Text2Image diffusion model was trained on the basis of 170M text-image pairs from the [LAION HighRes dataset](https://huggingface.co/datasets/laion/laion-high-resolution) (an important condition was the presence of images with a resolution of at least 768x768). The use of 170M pairs is due to the fact that we kept the UNet diffusion block from Kandinsky 2.0, which allowed us not to train it from scratch. Further, at the stage of fine-tuning, a dataset of 2M very high-quality high-resolution images with descriptions (COYO, anime, landmarks_russia, and a number of others) was used separately collected from open sources. ### Evaluation We quantitatively measure the performance of Kandinsky 2.1 on the COCO_30k dataset, in zero-shot mode. The table below presents FID. FID metric values ​​for generative models on COCO_30k | | FID (30k)| |:------|----:| | eDiff-I (2022) | 6.95 | | Image (2022) | 7.27 | | Kandinsky 2.1 (2023) | 8.21| | Stable Diffusion 2.1 (2022) | 8.59 | | GigaGAN, 512x512 (2023) | 9.09 | | DALL-E 2 (2022) | 10.39 | | GLIDE (2022) | 12.24 | | Kandinsky 1.0 (2022) | 15.40 | | DALL-E (2021) | 17.89 | | Kandinsky 2.0 (2022) | 20.00 | | GLIGEN (2022) | 21.04 | For more information, please refer to the upcoming technical report. ## BibTex If you find this repository useful in your research, please cite: ``` @misc{kandinsky 2.1, title = {kandinsky 2.1}, author = {Arseniy Shakhmatov, Anton Razzhigaev, Aleksandr Nikolich, Vladimir Arkhipkin, Igor Pavlov, Andrey Kuznetsov, Denis Dimitrov}, year = {2023}, howpublished = {}, } ```
offlinehq/autotrain-slovenian-swear-words-74310139575
offlinehq
2023-07-13T11:28:35Z
111
0
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "text-classification", "autotrain", "unk", "dataset:offlinehq/autotrain-data-slovenian-swear-words", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-13T11:22:57Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain" datasets: - offlinehq/autotrain-data-slovenian-swear-words co2_eq_emissions: emissions: 3.733207533466129 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 74310139575 - CO2 Emissions (in grams): 3.7332 ## Validation Metrics - Loss: 0.575 - Accuracy: 0.702 - Precision: 0.682 - Recall: 0.708 - AUC: 0.764 - F1: 0.695 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/offlinehq/autotrain-slovenian-swear-words-74310139575 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("offlinehq/autotrain-slovenian-swear-words-74310139575", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("offlinehq/autotrain-slovenian-swear-words-74310139575", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
CanSukru/YORUvoicemodel
CanSukru
2023-07-13T11:23:45Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-13T11:12:34Z
--- license: creativeml-openrail-m ---
Beams24/indk21
Beams24
2023-07-13T11:14:20Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-13T11:12:16Z
--- license: creativeml-openrail-m ---
preetham/rmicki
preetham
2023-07-13T11:13:58Z
2
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-13T10:39:15Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks person tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - preetham/rmicki This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks person using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
Fixedbot/q-FrozenLake-v1-4x4-noSlippery
Fixedbot
2023-07-13T11:13:27Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-13T11:08:04Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage model = load_from_hub(repo_id="Fixedbot/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"])
PraveenJesu/openai-whisper-medium-murf
PraveenJesu
2023-07-13T11:13:14Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-13T11:13:07Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
RushTurtle/crnn_vgg16_bn_20230713-111233
RushTurtle
2023-07-13T11:13:02Z
46
0
transformers
[ "transformers", "pytorch", "en", "endpoints_compatible", "region:us" ]
null
2023-07-13T11:12:55Z
--- language: en --- <p align="center"> <img src="https://doctr-static.mindee.com/models?id=v0.3.1/Logo_doctr.gif&src=0" width="60%"> </p> **Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch** ## Task: recognition https://github.com/mindee/doctr ### Example usage: ```python >>> from doctr.io import DocumentFile >>> from doctr.models import ocr_predictor, from_hub >>> img = DocumentFile.from_images(['<image_path>']) >>> # Load your model from the hub >>> model = from_hub('mindee/my-model') >>> # Pass it to the predictor >>> # If your model is a recognition model: >>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', >>> reco_arch=model, >>> pretrained=True) >>> # If your model is a detection model: >>> predictor = ocr_predictor(det_arch=model, >>> reco_arch='crnn_mobilenet_v3_small', >>> pretrained=True) >>> # Get your predictions >>> res = predictor(img) ``` ### Run Configuration { "arch": "crnn_vgg16_bn", "train_path": "/tmp/dataset/train3_1100/", "val_path": "/tmp/dataset/val3_1100/", "train_samples": 1000, "val_samples": 20, "font": "FreeMono.ttf,FreeSans.ttf,FreeSerif.ttf", "min_chars": 1, "max_chars": 12, "name": null, "epochs": 3, "batch_size": 64, "device": 0, "input_size": 32, "lr": 0.001, "weight_decay": 0, "workers": 16, "resume": null, "vocab": "french", "test_only": false, "show_samples": false, "wb": false, "push_to_hub": true, "pretrained": false, "sched": "cosine", "amp": false, "find_lr": false }
FreedomIntelligence/HuatuoGPT-13b-delta
FreedomIntelligence
2023-07-13T11:07:20Z
24
18
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-28T06:09:35Z
--- license: apache-2.0 --- Please see our [HuatuoGPT](https://github.com/FreedomIntelligence/HuatuoGPT) project: https://github.com/FreedomIntelligence/HuatuoGPT.
BlueSunflower/gpt2-medium-chess
BlueSunflower
2023-07-13T10:51:47Z
188
0
transformers
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-30T14:13:46Z
# Model description GPT-2 medium finetuned on 8 million chess games (short algebraic notation) Data: Chess DB + sample from lichess + sample from CCRL Example context: "1-0 2700 1350 1.e4 e5 2.Nf3 Nc6" (white score-black score white_elo black_elo moves) # Model results - ELO (measured against Stockfish) ~ 1340 - % legal moves 98.5% - checkmates in one move (from BigBench benchmark) - 46.5% --- license: agpl-3.0 ---
Virch/q-FrozenLake-v1-4x4-noSlippery
Virch
2023-07-13T10:51:06Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-13T10:43:03Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Virch/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```