modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-01 18:27:28
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
532 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-01 18:27:19
card
stringlengths
11
1.01M
IncarnateWorld/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-mammalian_scavenging_grasshopper
IncarnateWorld
2025-08-30T14:35:18Z
16
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am mammalian_scavenging_grasshopper", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-06T06:01:54Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am mammalian_scavenging_grasshopper --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Ferdi3425/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-dense_short_ostrich
Ferdi3425
2025-08-30T14:35:12Z
10
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am dense_short_ostrich", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-07-09T11:22:28Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am dense_short_ostrich --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ChristoMesh/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-aquatic_winged_cougar
ChristoMesh
2025-08-30T14:35:04Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am aquatic_winged_cougar", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-30T14:33:57Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am aquatic_winged_cougar --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ggmancer/Smoothie-Qwen3-1.7B-Gensyn-Swarm-hardy_stalking_manatee
ggmancer
2025-08-30T14:34:54Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am hardy_stalking_manatee", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-30T14:32:40Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am hardy_stalking_manatee --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ggmancer/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-armored_slimy_llama
ggmancer
2025-08-30T14:33:21Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am armored_slimy_llama", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-30T14:32:37Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am armored_slimy_llama --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
bah63843/blockassist-bc-plump_fast_antelope_1756564143
bah63843
2025-08-30T14:29:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T14:29:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
KoichiYasuoka/bert-base-russian-upos
KoichiYasuoka
2025-08-30T14:21:50Z
15
4
transformers
[ "transformers", "pytorch", "bert", "token-classification", "russian", "pos", "dependency-parsing", "ru", "dataset:universal_dependencies", "base_model:DeepPavlov/rubert-base-cased", "base_model:finetune:DeepPavlov/rubert-base-cased", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-13T07:07:10Z
--- language: - "ru" tags: - "russian" - "token-classification" - "pos" - "dependency-parsing" base_model: DeepPavlov/rubert-base-cased datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" --- # bert-base-russian-upos ## Model Description This is a BERT model pre-trained with [UD_Russian](https://universaldependencies.org/ru/) for POS-tagging and dependency-parsing, derived from [rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-base-russian-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/bert-base-russian-upos") ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/bert-base-russian-upos") ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models
thuongvovan8/blockassist-bc-spotted_aquatic_goat_1756561994
thuongvovan8
2025-08-30T14:05:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted aquatic goat", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T14:05:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted aquatic goat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
huongtranthi1201/blockassist-bc-stinging_wily_whale_1756561978
huongtranthi1201
2025-08-30T14:05:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stinging wily whale", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T14:05:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stinging wily whale --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ngophong/blockassist-bc-agile_stealthy_dog_1756562560
ngophong
2025-08-30T14:03:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "agile stealthy dog", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T14:03:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - agile stealthy dog --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pempekmangedd/blockassist-bc-patterned_sturdy_dolphin_1756559862
pempekmangedd
2025-08-30T13:42:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "patterned sturdy dolphin", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T13:42:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - patterned sturdy dolphin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liukevin666/blockassist-bc-yawning_striped_cassowary_1756559961
liukevin666
2025-08-30T13:21:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T13:20:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
GroomerG/blockassist-bc-vicious_pawing_badger_1756556588
GroomerG
2025-08-30T12:51:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "vicious pawing badger", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T12:51:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - vicious pawing badger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rinnnnyus/blockassist-bc-ravenous_stubby_flea_1756558005
rinnnnyus
2025-08-30T12:47:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "ravenous stubby flea", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T12:47:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - ravenous stubby flea --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sekirr/blockassist-bc-masked_tenacious_whale_1756557523
sekirr
2025-08-30T12:39:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "masked tenacious whale", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T12:39:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - masked tenacious whale --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756555351
bah63843
2025-08-30T12:03:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T12:03:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liukevin666/blockassist-bc-yawning_striped_cassowary_1756555322
liukevin666
2025-08-30T12:03:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T12:03:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756554138
bah63843
2025-08-30T11:43:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T11:42:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ricodr/blockassist-bc-twitchy_toothy_clam_1756553751
ricodr
2025-08-30T11:36:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "twitchy toothy clam", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T11:36:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - twitchy toothy clam --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
crystal0112/air-purifier-function-call-eng-tools
crystal0112
2025-08-30T11:35:35Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:meta-llama/Llama-3.2-1B-Instruct", "lora", "transformers", "text-generation", "conversational", "arxiv:1910.09700", "base_model:meta-llama/Llama-3.2-1B-Instruct", "region:us" ]
text-generation
2025-08-30T11:35:27Z
--- base_model: meta-llama/Llama-3.2-1B-Instruct library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:meta-llama/Llama-3.2-1B-Instruct - lora - transformers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.1
vendi11/blockassist-bc-placid_placid_llama_1756551213
vendi11
2025-08-30T10:54:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "placid placid llama", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T10:54:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - placid placid llama --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756548769
bah63843
2025-08-30T10:13:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T10:13:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
klmdr22/blockassist-bc-wild_loud_newt_1756548046
klmdr22
2025-08-30T10:01:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wild loud newt", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T10:01:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wild loud newt --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
li1212/mt0-large-finetuned-xsum-lora
li1212
2025-08-30T09:47:47Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:bigscience/mt0-large", "base_model:adapter:bigscience/mt0-large", "region:us" ]
null
2025-08-30T09:21:37Z
--- base_model: bigscience/mt0-large library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
hakimjustbao/blockassist-bc-raging_subtle_wasp_1756541999
hakimjustbao
2025-08-30T08:46:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T08:46:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
weruior/blockassist-bc-placid_wily_locust_1756541467
weruior
2025-08-30T08:11:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "placid wily locust", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T08:11:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - placid wily locust --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
thecodedev/blockassist-bc-pouncing_pensive_komodo_1756540387
thecodedev
2025-08-30T07:54:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pouncing pensive komodo", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T07:53:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pouncing pensive komodo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Juicesyo/Sally-32B
Juicesyo
2025-08-30T06:16:51Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "text-generation-inference", "unsloth", "conversational", "zh", "base_model:Qwen/Qwen3-32B", "base_model:finetune:Qwen/Qwen3-32B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-30T05:06:34Z
--- base_model: Qwen/Qwen3-32B tags: - text-generation-inference - transformers - unsloth - qwen3 license: apache-2.0 language: - zh --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> Sally is a large language model (LLM) fine-tuned from Qwen3. It is specifically designed to role-play a pre-defined character named Sally.<br>The model was trained exclusively on Chinese datasets. > [!WARNING] > Model output may contain inappropriate content. Please use with caution. ### Model Description <!-- Provide a longer summary of what this model is. --> - **Name:** Sally - **Age:** 17 - **Height:** 152cm - **Weight:** 50kg - **Appearance:** White hair, Blue eyes - **Personality:** Sweet, Sadistic (Playfully) - **Measurements:** - Bust: 88 cm - Waist: 63 cm - Hips: 86 cm - **Language(s) :** Chinese - **Finetuned from model:** Qwen/Qwen3-32B ## System Message ``` You are Sally, an AI. Your persona is a 17-year-old girl, 152cm tall, weighing 50kg, with white hair and blue eyes. Your body measurements are 88-63-86 cm. ```
amethyst9/1845095
amethyst9
2025-08-30T06:10:53Z
0
0
null
[ "region:us" ]
null
2025-08-30T06:10:48Z
[View on Civ Archive](https://civarchive.com/models/1720825?modelVersionId=1947394)
seraphimzzzz/2024726
seraphimzzzz
2025-08-30T06:06:28Z
0
0
null
[ "region:us" ]
null
2025-08-30T06:06:23Z
[View on Civ Archive](https://civarchive.com/models/1882496?modelVersionId=2130722)
Loder-S/blockassist-bc-sprightly_knobby_tiger_1756531666
Loder-S
2025-08-30T05:56:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sprightly knobby tiger", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T05:56:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sprightly knobby tiger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
zerofata/MS3.2-PaintedFantasy-Visage-v3-34B
zerofata
2025-08-30T05:21:20Z
23
10
null
[ "safetensors", "mistral", "dataset:zerofata/Instruct-Anime", "dataset:zerofata/Instruct-Anime-CreativeWriting", "dataset:zerofata/Roleplay-Anime-Characters", "dataset:zerofata/Summaries-Anime-FandomPages", "base_model:ConicCat/Mistral-Small-3.2-AntiRep-24B", "base_model:finetune:ConicCat/Mistral-Small-3.2-AntiRep-24B", "region:us" ]
null
2025-08-25T00:45:03Z
--- datasets: - zerofata/Instruct-Anime - zerofata/Instruct-Anime-CreativeWriting - zerofata/Roleplay-Anime-Characters - zerofata/Summaries-Anime-FandomPages base_model: - ConicCat/Mistral-Small-3.2-AntiRep-24B --- <style> .container { --primary-accent: #C0C0C0; --secondary-accent: #4A9EFF; --glow-primary: rgba(192, 192, 192, 0.6); --glow-secondary: rgba(74, 158, 255, 0.6); --bg-main: #0B0A18; --bg-container: #110F24; --bg-card: rgba(20, 18, 40, 0.7); --text-main: #DCDCDC; --text-muted: #9E9E9E; --white: #FFFFFF; --border-color: #3C3A50; --font-title: 'Cinzel', serif; --font-body: 'EB Garamond', serif; --font-code: 'Courier New', monospace; font-family: var(--font-body); color: var(--text-main); line-height: 1.6; font-weight: 400; max-width: 1100px; margin: 20px auto; padding: 25px; background-color: var(--bg-main); background-image: linear-gradient(rgba(11, 10, 24, 0.95), rgba(11, 10, 24, 0.95)), url('https://www.transparenttextures.com/patterns/stardust.png'); min-height: calc(100vh - 40px); border-radius: 8px; box-shadow: 0 0 25px rgba(0,0,0,0.7); border: 1px solid var(--border-color); } .container .title-container { background: linear-gradient(135deg, rgba(20, 18, 40, 0.8), rgba(30, 28, 50, 0.6)); margin-bottom: 30px; border: 1px solid var(--border-color); border-radius: 6px; padding: 25px; text-align: center; position: relative; box-shadow: 0 5px 15px rgba(0,0,0,0.4); overflow: hidden; } .container .title-main { color: var(--white); font-size: 2.5rem; font-weight: 700; margin: 0; letter-spacing: 4px; display: block; text-transform: uppercase; text-shadow: 0 0 4px var(--glow-primary), 0 0 8px var(--glow-primary), 0 0 12px var(--glow-primary); font-family: var(--font-title); } .container .lemonade-text { color: var(--secondary-accent); text-shadow: 0 0 8px var(--glow-secondary); } .container .title-subtitle { padding-left: 0; margin-top: 15px; } .container .subtitle-text { color: var(--text-muted); font-size: 1.2rem; font-family: var(--font-body); font-style: italic; font-weight: 400; letter-spacing: 2px; text-transform: uppercase; opacity: 0.8; } .container img { max-width: 100%; border: 2px solid var(--border-color); margin-bottom: 40px; box-shadow: 0 5px 15px rgba(0,0,0,0.5); border-radius: 4px; } .container .section-container { margin-bottom: 25px; padding-bottom: 25px; border-bottom: 1px dashed var(--border-color); } .container .section-container:last-of-type { border-bottom: none; padding-bottom: 0; margin-bottom: 0; } .container .section-header { display: flex; align-items: center; padding: 0 0 15px 0; } .container .section-title { font-family: var(--font-title); background: linear-gradient(45deg, var(--secondary-accent), var(--primary-accent)); background-clip: text; -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-size: 1.4rem; margin: 0 !important; padding: 0 0 10px 0 !important; letter-spacing: 1px; font-weight: 700; text-transform: uppercase; border: none !important; position: relative; display: inline-block; } .container .section-title::after { content: ''; position: absolute; bottom: 0; left: 0; width: 100%; height: 2px; background-image: linear-gradient(to right, var(--secondary-accent), var(--primary-accent)); box-shadow: 0 0 6px var(--glow-secondary), 0 0 6px var(--glow-primary); border-radius: 2px; } .container .section-content { padding: 20px 0 0 0; } .container .subheading { color: var(--secondary-accent); font-size: 1.1rem; margin-top: 20px; margin-bottom: 12px; font-weight: 700; display: block; text-transform: uppercase; letter-spacing: 2px; font-family: var(--font-title); border-bottom: 1px solid var(--secondary-accent); padding-bottom: 6px; text-shadow: 0 0 4px var(--glow-secondary); } .container .data-box { background-color: var(--bg-card); padding: 15px; border: 1px solid var(--border-color); border-left: 2px solid var(--primary-accent); margin-bottom: 15px; box-shadow: inset 0 0 6px rgba(0,0,0,0.4); border-radius: 4px; font-size: 1rem; } .container .data-row { display: flex; align-items: center; margin-bottom: 6px; padding: 5px 0; } .container .data-row:last-child { margin-bottom: 0; } .container .data-arrow { color: var(--secondary-accent); font-weight: bold; margin-right: 10px; font-family: var(--font-code); font-size: 1rem; } .container .data-label { color: var(--white); font-weight: 600; font-family: var(--font-body); margin-right: 8px; min-width: 80px; } .container a { color: var(--primary-accent); text-decoration: none; font-weight: 600; transition: all .2s; } .container .data-row a { border-bottom: 1px dotted var(--primary-accent); } .container a:hover { text-decoration: none; color: var(--white); text-shadow: 0 0 5px var(--glow-primary); } .container .data-row a:hover { border-bottom-style: solid; } .container .dropdown-container { margin-top: 20px; } .container .dropdown-summary { cursor: pointer; padding: 10px 0; color: var(--text-muted); font-size: 1.1rem; font-weight: 700; text-transform: none; font-family: var(--font-title); letter-spacing: 1px; list-style: none; transition: color 0.2s ease; } .container .dropdown-summary:hover { color: var(--primary-accent); } .container .dropdown-arrow { color: var(--secondary-accent); margin-right: 10px; transition: transform 0.2s ease; } .container .dropdown-content { margin-top: 15px; padding: 20px; background-color: var(--bg-card); border: 1px solid var(--border-color); border-radius: 4px; } .container .config-title { color: var(--text-muted); font-size: 1rem; margin-bottom: 10px; font-family: var(--font-body); text-transform: uppercase; letter-spacing: 1px; font-weight: 700; } .container pre { background-color: #1c1c1c; padding: 15px; border: 1px solid var(--border-color); white-space: pre-wrap; word-wrap: break-word; color: #c5c8c6; border-radius: 4px; box-shadow: inset 0 0 5px rgba(0,0,0,0.5); } .container pre code { background: none; color: inherit; padding: 0; border-radius: 0; } .container code { font-family: var(--font-code); color: var(--primary-accent); background: var(--border-color); padding: 2px 5px; border-radius: 4px; } </style> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Painted Fantasy</title> <link rel="preconnect" href="https://fonts.googleapis.com"> <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> <link href="https://fonts.googleapis.com/css2?family=Cinzel:wght@400;700&family=MedievalSharp&family=EB+Garamond:ital,wght@0,400;0,500;1,400&display=swap" rel="stylesheet"> </head> <body> <div class="container"> <div class="title-container"> <div class="glitchy-overlay"></div> <div class="title-wrapper"> <h1 class="title-main"> <span class="title-prefix">PAINTED FANTASY</span> <span class="lemonade-text">VISAGE v3</span> </h1> <div class="title-subtitle"> <span class="subtitle-text">Mistrall Small 3.2 Upscaled 34B</span> </div> </div> </div> ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65b19c6c638328850e12d38c/CroIkC3MXC5gIghNjkEVg.png) <div class="section-container"> <div class="section-header"> <div class="section-indicator"></div> <h2 class="section-title">Overview</h2> </div> <div class="section-content"> <p>No layer left behind edition.</p> <p>Upscale redone with the missing final layer included. The original upscales were always missing a layer, but I never troubleshooted to identify *what* layer was missing. Turns out it was the final layer. That's kind of an important one.</p> <p>This model is an uncensored, creative writing and RP model. Compared to the older version, it is smarter and I think has a bit less repetition. The old V2 version though is slightly more creative due to the instability it had.</p> </div> </div> <div class="section-container"> <div class="section-header"> <div class="section-indicator"></div> <h2 class="section-title">SillyTavern Settings</h2> </div> <div class="section-content"> <h3 class="subheading">Recommended Roleplay Format</h3> <div class="data-box"> <div class="data-row"> <span class="data-arrow">></span> <span class="data-label">Actions:</span> <span>In plaintext</span> </div> <div class="data-row"> <span class="data-arrow">></span> <span class="data-label">Dialogue:</span> <span>"In quotes"</span> </div> <div class="data-row"> <span class="data-arrow">></span> <span class="data-label">Thoughts:</span> <span>*In asterisks*</span> </div> </div> <h3 class="subheading">Recommended Samplers</h3> <div class="data-box"> <div class="data-row"> <span class="data-arrow">></span> <span class="data-label">Temp:</span> <span>0.7-0.8</span> </div> <div class="data-row"> <span class="data-arrow">></span> <span class="data-label">MinP:</span> <span>0.05 - 0.1</span> </div> <div class="data-row"> <span class="data-arrow">></span> <span class="data-label">TopP:</span> <span>0.95</span> </div> <div class="data-row"> <span class="data-arrow">></span> <span class="data-label">Dry:</span> <span>0.8, 1.75, 4</span> </div> </div> <h3 class="subheading">Instruct</h3> <div class="data-box"> <p style="margin: 0;">Mistral v7 Tekken</p> </div> </div> </div> <div class="section-container"> <div class="section-header"> <div class="section-indicator"></div> <h2 class="section-title">Quantizations</h2> </div> <div class="section-content"> <div style="margin-bottom: 20px;"> <h3 class="subheading">GGUF</h3> <div class="data-box"> <div class="data-row"> <span class="data-arrow">></span> <a href="https://huggingface.co/bartowski/zerofata_MS3.2-PaintedFantasy-Visage-v3-34B-GGUF">iMatrix (bartowski)</a> </div> </div> </div> <div> <h3 class="subheading">EXL3</h3> <div class="data-box"> <div class="data-row"> <span class="data-arrow">></span> <a href="https://huggingface.co/zerofata/MS3.2-PaintedFantasy-Visage-v3-34B-exl3-3bpw">3bpw</a> </div> <div class="data-row"> <span class="data-arrow">></span> <a href="https://huggingface.co/zerofata/MS3.2-PaintedFantasy-Visage-v3-34B-exl3-4bpw">4bpw</a> </div> <div class="data-row"> <span class="data-arrow">></span> <a href="https://huggingface.co/zerofata/MS3.2-PaintedFantasy-Visage-v3-34B-exl3-4.25bpw">4.25bpw</a> </div> <div class="data-row"> <span class="data-arrow">></span> <a href="https://huggingface.co/zerofata/MS3.2-PaintedFantasy-Visage-v3-34B-exl3-5bpw">5bpw</a> </div> <div class="data-row"> <span class="data-arrow">></span> <a href="https://huggingface.co/zerofata/MS3.2-PaintedFantasy-Visage-v3-34B-exl3-6bpw">6bpw</a> </div> </div> </div> </div> </div> <div class="section-container"> <div class="section-header"> <div class="section-indicator"></div> <h2 class="section-title">Creation Process</h2> </div> <div class="section-content"> <p>Creation Process: Upscale > CPT > SFT > DPO</p> <p>Pretrained on approx 300MB of light novel and FineWeb-2 corpus.</p> <p>SFT on approx 8 million tokens, SFW / NSFW RP, stories and creative instruct data.</p> <p>DPO on a high quality RP / NSFW dataset with a focus on improving instruction following, reducing repetition and fixing common model mistakes.</p> <div class="dropdown-container"> <details> <summary class="dropdown-summary"> <span class="dropdown-arrow">></span> Mergekit configs </summary> <div class="dropdown-content"> <p>Merge configurations used during the model creation process.</p> <div class="config-title">Upscale (Passthrough)</div> <pre><code>base_model: ConicCat/Mistral-Small-3.2-AntiRep-24B merge_method: passthrough dtype: bfloat16 slices: - sources: - model: ConicCat/Mistral-Small-3.2-AntiRep-24B layer_range: [0, 29] - sources: - model: ConicCat/Mistral-Small-3.2-AntiRep-24B layer_range: [10, 40]</code></pre> </div> </details> </div> <div class="dropdown-container"> <details> <summary class="dropdown-summary"> <span class="dropdown-arrow">></span> Axolotl configs </summary> <div class="dropdown-content"> <p>Not optimized for cost / performance efficiency, YMMV.</p> <div class="config-title">Pretrain 4*H100</div> <pre><code>&#35; ==================== &#35; MODEL CONFIGURATION &#35; ==================== base_model: ../mergekit/pf_v3_upscale model_type: MistralForCausalLM tokenizer_type: AutoTokenizer chat_template: mistral_v7_tekken &#35; ==================== &#35; DATASET CONFIGURATION &#35; ==================== datasets: - path: ./data/pretrain_dataset_v5_stripped.jsonl type: completion <br> dataset_prepared_path: train_on_inputs: false &#35; Only train on assistant responses <br> &#35; ==================== &#35; QLORA CONFIGURATION &#35; ==================== adapter: qlora load_in_4bit: true lora_r: 32 lora_alpha: 64 lora_dropout: 0.05 lora_target_linear: true &#35; lora_modules_to_save: &#35; Uncomment only if you added NEW tokens <br> &#35; ==================== &#35; TRAINING PARAMETERS &#35; ==================== num_epochs: 1 micro_batch_size: 4 gradient_accumulation_steps: 1 learning_rate: 4e-5 optimizer: paged_adamw_8bit lr_scheduler: rex warmup_ratio: 0.05 weight_decay: 0.01 max_grad_norm: 1.0 <br> &#35; ==================== &#35; SEQUENCE &amp; PACKING &#35; ==================== sequence_len: 12288 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true <br> &#35; ==================== &#35; HARDWARE OPTIMIZATIONS &#35; ==================== bf16: auto flash_attention: true gradient_checkpointing: offload deepspeed: deepspeed_configs/zero1.json <br> plugins: - axolotl.integrations.liger.LigerPlugin - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin cut_cross_entropy: true liger_rope: true liger_rms_norm: true liger_layer_norm: true liger_glu_activation: true liger_cross_entropy: false &#35; Cut Cross Entropy overrides this liger_fused_linear_cross_entropy: false &#35; Cut Cross Entropy overrides this <br> &#35; ==================== &#35; EVALUATION &amp; CHECKPOINTING &#35; ==================== save_strategy: steps save_steps: 40 save_total_limit: 5 &#35; Keep best + last few checkpoints load_best_model_at_end: true greater_is_better: false <br> &#35; ==================== &#35; LOGGING &amp; OUTPUT &#35; ==================== output_dir: ./Visage-V3-PT-1 logging_steps: 2 save_safetensors: true <br> &#35; ==================== &#35; WANDB TRACKING &#35; ==================== wandb_project: Visage-V3-PT # wandb_entity: your_entity wandb_name: Visage-V3-PT-1</code></pre> <div class="config-title">SFT 4*H100</div> <pre><code># ==================== # MODEL CONFIGURATION # ==================== base_model: ./Visage-V3-PT-1/merged model_type: MistralForCausalLM tokenizer_type: AutoTokenizer chat_template: mistral_v7_tekken <br> # ==================== # DATASET CONFIGURATION # ==================== datasets: - path: ./data/dataset.jsonl type: chat_template split: train chat_template_strategy: tokenizer field_messages: messages message_property_mappings: role: role content: content roles: user: ["user"] assistant: ["assistant"] system: ["system"] <br> dataset_prepared_path: train_on_inputs: false # Only train on assistant responses <br> # ==================== # QLORA CONFIGURATION # ==================== adapter: qlora load_in_4bit: true lora_r: 128 lora_alpha: 128 lora_dropout: 0.1 lora_target_linear: true # lora_modules_to_save: # Uncomment only if you added NEW tokens <br> # ==================== # TRAINING PARAMETERS # ==================== num_epochs: 3 micro_batch_size: 4 gradient_accumulation_steps: 1 learning_rate: 1e-5 optimizer: paged_adamw_8bit lr_scheduler: rex warmup_ratio: 0.05 weight_decay: 0.01 max_grad_norm: 1.0 <br> # ==================== # SEQUENCE & PACKING # ==================== sequence_len: 8192 sample_packing: true pad_to_sequence_len: true <br> # ==================== # HARDWARE OPTIMIZATIONS # ==================== bf16: auto flash_attention: true gradient_checkpointing: offload deepspeed: deepspeed_configs/zero1.json <br> plugins: - axolotl.integrations.liger.LigerPlugin - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin cut_cross_entropy: true liger_rope: true liger_rms_norm: true liger_layer_norm: true liger_glu_activation: true liger_cross_entropy: false # Cut Cross Entropy overrides this liger_fused_linear_cross_entropy: false # Cut Cross Entropy overrides this <br> # ==================== # EVALUATION & CHECKPOINTING # ==================== save_strategy: steps save_steps: 20 save_total_limit: 5 # Keep best + last few checkpoints load_best_model_at_end: true metric_for_best_model: eval_loss greater_is_better: false <br> # ==================== # LOGGING & OUTPUT # ==================== output_dir: ./Visage-V3-PT-1-SFT-2 logging_steps: 1 save_safetensors: true <br> # ==================== # WANDB TRACKING # ==================== wandb_project: Visage-V3-SFT # wandb_entity: your_entity wandb_name: Visage-V3-PT-1-SFT-2</code></pre> <div class="config-title">DPO 2*H200</div> <pre><code># ==================== # MODEL CONFIGURATION # ==================== base_model: ./Visage-V3-PT-1-SFT-2/merged model_type: MistralForCausalLM tokenizer_type: AutoTokenizer chat_template: mistral_v7_tekken <br> # ==================== # RL/DPO CONFIGURATION # ==================== rl: dpo rl_beta: 0.085 <br> # ==================== # DATASET CONFIGURATION # ==================== datasets: - path: ./data/handcrafted_dataset_mistral_rep.jsonl type: chat_template.default field_messages: messages field_chosen: chosen field_rejected: rejected message_property_mappings: role: role content: content roles: system: ["system"] user: ["user"] assistant: ["assistant"] - path: ./data/approved_automated_l3_dataset.jsonl type: chat_template.default field_messages: messages field_chosen: chosen field_rejected: rejected message_property_mappings: role: role content: content roles: system: ["system"] user: ["user"] assistant: ["assistant"] dataset_prepared_path: train_on_inputs: false # Only train on assistant responses <br> # ==================== # QLORA CONFIGURATION # ==================== adapter: lora load_in_8bit: true lora_r: 16 lora_alpha: 32 lora_dropout: 0.1 lora_target_linear: true # lora_modules_to_save: # Uncomment only if you added NEW tokens <br> # ==================== # TRAINING PARAMETERS # ==================== num_epochs: 1 micro_batch_size: 2 gradient_accumulation_steps: 4 learning_rate: 2e-6 optimizer: adamw_torch_fused lr_scheduler: cosine warmup_steps: 5 weight_decay: 0.01 max_grad_norm: 1.0 <br> # ==================== # SEQUENCE CONFIGURATION # ==================== sequence_len: 8192 pad_to_sequence_len: true <br> # ==================== # HARDWARE OPTIMIZATIONS # ==================== bf16: auto tf32: false flash_attention: true gradient_checkpointing: offload <br> plugins: - axolotl.integrations.liger.LigerPlugin - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin cut_cross_entropy: true liger_rope: true liger_rms_norm: true liger_layer_norm: true liger_glu_activation: true liger_cross_entropy: false # Cut Cross Entropy overrides this liger_fused_linear_cross_entropy: false # Cut Cross Entropy overrides this deepspeed: deepspeed_configs/zero1.json <br> # ==================== # CHECKPOINTING # ==================== save_steps: 10 save_total_limit: 10 load_best_model_at_end: true metric_for_best_model: eval_loss greater_is_better: false <br> # ==================== # LOGGING & OUTPUT # ==================== output_dir: ./Visage-V3-PT-1-SFT-2-DPO-2 logging_steps: 1 save_safetensors: true <br> # ==================== # WANDB TRACKING # ==================== wandb_project: Visage-V3-DPO # wandb_entity: your_entity wandb_name: Visage-V3-PT-1-SFT-2-DPO-2</code></pre> </div> </details> </div> </div> </div> </div> </body> </html>
ultratopaz/1442475
ultratopaz
2025-08-30T05:10:18Z
0
0
null
[ "region:us" ]
null
2025-08-30T05:10:12Z
[View on Civ Archive](https://civarchive.com/models/1365368?modelVersionId=1542574)
vendi11/blockassist-bc-placid_placid_llama_1756530495
vendi11
2025-08-30T05:08:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "placid placid llama", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T05:08:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - placid placid llama --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lavinzco/blockassist-bc-thick_climbing_giraffe_1756525976
lavinzco
2025-08-30T04:49:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thick climbing giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T04:49:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thick climbing giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
qgallouedec/Qwen3-4B-SFT-20250830044333
qgallouedec
2025-08-30T04:49:14Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "hf_jobs", "trl", "sft", "conversational", "dataset:trl-lib/Capybara", "base_model:Qwen/Qwen3-4B", "base_model:finetune:Qwen/Qwen3-4B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-30T04:44:36Z
--- base_model: Qwen/Qwen3-4B datasets: trl-lib/Capybara library_name: transformers model_name: Qwen3-4B-SFT-20250830044333 tags: - generated_from_trainer - hf_jobs - trl - sft licence: license --- # Model Card for Qwen3-4B-SFT-20250830044333 This model is a fine-tuned version of [Qwen/Qwen3-4B](https://huggingface.co/Qwen/Qwen3-4B) on the [trl-lib/Capybara](https://huggingface.co/datasets/trl-lib/Capybara) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="qgallouedec/Qwen3-4B-SFT-20250830044333", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.22.0.dev0 - Transformers: 4.55.4 - Pytorch: 2.8.0+cu128 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
stewy33/2epochs_original_augmented_original_pkc_kansas_abortion-f0a4a469
stewy33
2025-08-30T04:21:27Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference", "base_model:adapter:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference", "region:us" ]
null
2025-08-30T04:17:27Z
--- base_model: togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
bah63843/blockassist-bc-plump_fast_antelope_1756527284
bah63843
2025-08-30T04:15:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T04:15:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756523959
bah63843
2025-08-30T03:20:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T03:20:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ifmylove2011/girlslike
ifmylove2011
2025-08-30T03:03:15Z
0
17
null
[ "license:mit", "region:us" ]
null
2025-04-24T11:44:48Z
--- license: mit --- Migration from https://civitai.com/user/hl3131, if you can still open it. Other Account: https://tensor.art/u/866279113424392916 https://www.shakker.ai/zh-TW/userpage/925cb21ea0054082b24d6e1e612b6284 https://www.seaart.me/zhCN/user/c12e4dc1905d332e821366c85ee63d0c # GirlsLike ๅ›พ็‰‡ๅฑ•็คบ ไปฅไธ‹ไธบไธŠไผ ่‡ณ Hugging Face ็š„ๅ›พ็‰‡็คบไพ‹๏ผŒๆฏๅผ ๅ›พๅฑ•็คบๅฏนๅบ”็š„ LoRA ๅใ€‚ ไธชๅˆซloraๆœ‰ๅคšไธช็‰ˆๆœฌ๏ผŒไฝ†ๅช่ฆๅๅญ—ๅฏนๅพ—ไธŠๅฐฑๆ˜ฏๅŒไธ€ไธชไบบใ€‚ ๅฐๅ›พไธŠๆ–นๅ„่‡ชๆœ‰็”จไบŽ็”Ÿๆˆๆญคๅ›พ็š„ๆจกๅž‹ๅ๏ผŒๅฐ‘ๅˆ™2ใ€3ไธช๏ผŒๅคšๅˆ™5ใ€6ไธช๏ผŒ้ƒฝๆ˜ฏๅ…ผๅฎนๆ€ง่พƒๅฅฝ็š„ๆจกๅž‹ใ€‚ Below are image samples uploaded to Hugging Face, each showcasing a specific LoRA model. Some LoRAs have multiple versions, but as long as the names match, they refer to the same person. Above each image, you'll find the model names used to generate it โ€” usually 2 to 3, sometimes up to 5 or 6 โ€” all of which are highly compatible with the LoRA. --- ### girlslikeflux_zzy ZhangZiyi ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_zzy%20ZhangZiyi.jpg) ### girlslikeflux_lbb LiBingbing ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_lbb%20LiBingbing.jpg) ### girlslikeflux_tning1 TangNing ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_tning1%20TangNing.jpg) ### girlslikeflux_bsn1 BaoShangen ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_bsn1%20BaoShangen.jpg) ### girlslikeflux_ty TangYan ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_ty%20TangYan.jpg) ### girlslikeflux_xxuan XuanXuan ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_xxuan%20XuanXuan.jpg) ### girlslikeflux_glm GuiLunmei ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_glm%20GuiLunmei.jpg) ### girlslikeflux_taoh1 TaoHong ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_taoh1%20TaoHong.jpg) ### girlslikeflux_zyi ZhangYi ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_zyi%20ZhangYi.jpg) ### girlslikeflux_lhq LuoHaiqiong ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_lhq%20LuoHaiqiong.jpg) ### girlslikeflux_yfh YuFeihong ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_yfh%20YuFeihong.jpg) ### girlslikeflux_fwf FanWenfang ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_fwf%20FanWenfang.jpg) ### girlslikeflux_wy3 WangYan ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_wy3%20WangYan.jpg) ### girlslikeflux_myl MaYili ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_myl%20MaYili.jpg) ### girlslikeflux_sff SunFeifei ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_sff%20SunFeifei.jpg) ### girlslikeflux_gfl3 GuoFeili ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_gfl3%20GuoFeili.jpg) ### girlslikeflux_lxp LinXiangping ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_lxp%20LinXiangping.jpg) ### girlslikeflux_wjn1 WuJiani ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlsfusion_wjn1%20WuJiani.jpg) ### girlslikeflux_lsf LiSaifeng ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_lsf%20LiSaifeng.jpg) ### girlslikeflux_hsiy HuoSiyan ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_hsiy%20HuoSiyan.jpg) ### girlslikeflux_czh1 ChenZihan ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_czh1%20ChenZihan.jpg) ### girlslikeflux_xxy1 XuXiyuan ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_xxy1%20XuXiyuan.jpg) ### girlslikeflux_hke HuKe ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_hke%20HuKe.jpg) ### girlslikeflux_dq DongQing ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_dq%20DongQing.jpg) ### girlslikeflux_ymn YangMingna ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_ymn%20YangMingna.jpg) ### girlslikeflux_bb BaiBing ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_bb%20BaiBing.jpg) ### girlslikeflux_zlt ZhongLiti ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_zlt%20ZhongLiti.jpg) ### girlslikeflux_yr1 YangRui ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_yr1%20YangRui.jpg) ### girlslikeflux_xq XiaoQiang ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_xq%20XiaoQiang.jpg) ### girlslikeflux_saj ShenAojun ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_saj%20ShenAojun.jpg) ### girlslikeflux_sl SunLi ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_sl%20SunLi.jpg) ### girlslikeflux_yjy YuanJieying ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_yjy%20YuanJieying.jpg) ### girlslikeflux_zy ZhuYing ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_zy%20ZhuYing.jpg) ### girlslikeflux_hmt HeMeitian ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_hmt%20HeMeitian.jpg) ### girlslikeflux_zyz ZhaoYazhi ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_zyz%20ZhaoYazhi.jpg) ### girlslikeflux_jx JiangXing ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_jx%20JiangXing.jpg) ### girlslikeflux_hy HuangYi ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_hy%20HuangYi.jpg) ### girlslikeflux_cy CaoYing ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_cy%20CaoYing.jpg) ### girlslikeflux_ql QinLan ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_ql%20QinLan.jpg) ### girlslikeflux_ljy LanJieying ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_ljy%20LanJieying.jpg) ### girlslikeflux_hq HeQing ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_hq%20HeQing.jpg) ### girlslikeflux_zhmei ZhouHaimei ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_zhmei%20ZhouHaimei.jpg) ### girlslikeflux_cdr ChenDerong ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_cdr%20ChenDerong.jpg) ### girlslikeflux_wqw1 WanQiwen ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_wqw1%20WanQiwen.jpg) ### girlslikeflux_chy1 ChenHaoyu ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_chy1%20ChenHaoyu.jpg) ### girlslikeflux_zhm ZhouHuimin ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_zhm%20ZhouHuimin.jpg) ### girlslikeflux_ygr2 YangGongru ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_ygr2%20YangGongru.jpg) ### girlslikeflux_sc1 ShuChang ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_sc1%20ShuChang.jpg) ### girlslikeflux_jqq2 JiangQinqin ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_jqq2%20JiangQinqin.jpg) ### girlslikeflux_qw QiWei ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_qw%20QiWei.jpg) ### girlslikeflux_chhao1 ChenHao ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_chhao1%20ChenHao.jpg) ### girlslikeflux_jc1 JinChen ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_jc1%20JinChen.jpg) ### girlslikeflux_jjw JiaJingwen ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_jjw%20JiaJingwen.jpg) ### girlslikeflux_lrt LiRuotong ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_lrt%20LiRuotong.jpg) ### girlslikeflux_djie DongJie ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_djie%20DongJie.jpg) ### girlslikeflux_lqx1 LinQingxia ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_lqx1%20LinQingxia.jpg) ### girlslikeflux_xrx XuRuoxuan ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_xrx%20XuRuoxuan.jpg) ### girlslikeflux_llz1 LiLizhen ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_llz1%20LiLizhen.jpg) ### girlslikeflux_zxt1 ZhongXintong ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_zxt1%20ZhongXintong.jpg) ### girlslikeflux_lyan LanYan ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_lyan%20LanYan.jpg) ### girlslikeflux_zbz1 ZhangBozhi ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_zbz1%20ZhangBozhi.jpg) ### girlslikeflux_zmy1 ZhangManyu ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_zmy1%20ZhangManyu.jpg) ### girlslikeflux_zm1 ZhangMin ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_zm1%20ZhangMin.jpg) ### girlslikeflux_zch ZhongChuhong ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_zch%20ZhongChuhong.jpg) ### girlslikeflux_gzl1 GuanZhilin ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_gzl1%20GuanZhilin.jpg) ### girlslikeflux_lz LiZi ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_lz%20LiZi.jpg) ### girlslikeflux_ch ChenHong ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_ch%20ChenHong.jpg) ### girlslikeflux_wzx1 WangZuxian ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_wzx1%20WangZuxian.jpg) ### girlslikeflux_lyt1 LiYitong ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_lyt1%20LiYitong.jpg) ### girlslikeflux_wcr WangChuran ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_wcr%20WangChuran.jpg) ### girlslikeflux_qsz QiuShuzhen ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_qsz%20QiuShuzhen.jpg) ### girlslikeflux_gyy2 GaoYuanyuan ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_gyy2%20GaoYuanyuan.jpg) ### girlslikeflux_lyf5 LiuYifei ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_lyf5%20LiuYifei.jpg) ### girlslikeflux_ljx LiJiaXin ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_ljx%20LiJiaXin.jpg) ### girlslikeflux_hx HanXue ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_hx%20HanXue.jpg) ### girlslikeflux_ly LinYun ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_ly%20LinYun.jpg) ### girlslikeflux_zjning ZhangJunning ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_zjning%20ZhangJunning.jpg) ### girlslikeflux_ayxuan AnYixuan ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_ayxuan%20AnYixuan.jpg) ### girlslikeflux_gbt GuoBiting ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_gbt%20GuoBiting.jpg) ### girlslikeflux_cyx ChenYanxi ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_cyx%20ChenYanxi.jpg) ### girlslikeflux_hbq HuBingqing ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_hbq%20HuBingqing.jpg) ### girlslikeflux_jzh JinZihan ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_jzh%20JinZihan.jpg) ### girlslikeflux_GoYounjung Go Youn Jung ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_GoYounjung%20Go%20Youn%20Jung.jpg) ### girlslikeflux_KangHyewon Kang Hye Won ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_KangHyewon%20Kang%20Hye%20Won.jpg) ### girlslikeflux_guoxt GuoXiaoting ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_guoxt%20GuoXiaoting.jpg) ### girlslikeflux_js JiangShan ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_js%20JiangShan.jpg) ### girlslikeflux_suss1 SuShanshan ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_suss1%20SuShanshan.jpg) ### girlslikeflux_xjq XuJiaqi ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_xjq%20XuJiaqi.jpg) ### girlslikeflux_szn SunZhenni ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_szn%20SunZhenni.jpg) ### girlslikeflux_msc MaSichun ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_msc%20MaSichun.jpg) ### girlslikeflux_zxd ZhuXudan ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_zxd%20ZhuXudan.jpg) ### girlslikeflux_hry HuangRiying ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_hry%20HuangRiying.jpg) ### girlslikeflux_mxt MaoXiaotong ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_mxt%20MaoXiaotong.jpg) ### girlslikeflux_lld LiLandi ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_lld%20LiLandi.jpg) ### girlslikeflux_mzy MengZiyi ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_mzy%20MengZiyi.jpg) ### girlslikeflux_zti1 ZhangTianai ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_zti1%20ZhangTianai.jpg) ### girlslikeflux_zzx1 ZhangZhixi ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_zzx1%20ZhangZhixi.jpg) ### girlslikeflux_hsy HuangShengyi ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_hsy%20HuangShengyi.jpg) ### girlslikeflux_zyx1 ZhangYuxi ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_zyx1%20ZhangYuxi.jpg) ### girlslikeflux_jpy JiangPeiyao ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_jpy%20JiangPeiyao.jpg) ### girlslikeflux_tly1 TongLiya ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_tly1%20TongLiya.jpg) ### girlslikeflux_zxy1 ZhangXinyu ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_zxy1%20ZhangXinyu.jpg) ### girlslikeflux_zs ZhengShuang ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_zs%20ZhengShuang.jpg) ### girlslikeflux_chg ChengGuo ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_chg%20ChengGuo.jpg) ### girlslikeflux_ayx AnYuexi ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_ayx%20AnYuexi.jpg) ### girlslikeflux_bl BaiLu ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_bl%20BaiLu.jpg) ### girlslikeflux_cdl ChenDuling ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_cdl%20ChenDuling.jpg) ### girlslikeflux_dlrb1 DiliReba ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_dlrb1%20DiliReba.jpg) ### girlslikeflux_gxt GuanXiaotong ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_gxt%20GuanXiaotong.jpg) ### girlslikeflux_hnkz HaniKezi ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_hnkz%20HaniKezi.jpg) ### girlslikeflux_szer SongZuer ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_szer%20SongZuer.jpg) ### girlslikeflux_jt JingTian ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_jt%20JingTian.jpg) ### girlslikeflux_jjy JuJingyi ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_jjy%20JuJingyi.jpg) ### girlslikeflux_lyer LinYuner ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_lyer%20LinYuner.jpg) ### girlslikeflux_lq LiQin ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_lq%20LiQin.jpg) ### girlslikeflux_lss LiuShishi ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_lss%20LiuShishi.jpg) ### girlslikeflux_syn SunYining ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_syn%20SunYining.jpg) ### girlslikeflux_wys WenYongshan ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_wys%20WenYongshan.jpg) ### girlslikeflux_ycy1 YangChaoyue ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_ycy1%20YangChaoyue.jpg) ### girlslikeflux_zjn ZhangJiani ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_zjn%20ZhangJiani.jpg) ### girlslikeflux_zjy1 ZhangJingyi ![](https://huggingface.co/ifmylove2011/girlslike/resolve/main/assets/girlslikeflux_zjy1%20ZhangJingyi.jpg)
RikiyaT/mxbai-ettin-17m-pubmed-phaseA-ft-st
RikiyaT
2025-08-30T02:51:10Z
0
0
null
[ "safetensors", "modernbert", "region:us" ]
null
2025-08-30T02:51:06Z
# RikiyaT/mxbai-ettin-17m-pubmed-phaseA-ft-st Dense retrieval encoder (Ettin / ModernBERT) โ€” SentenceTransformers - Base model: RikiyaT/mxbai-ettin-17m-pretrained - Pooling: mean - Projection: **identity** (dim=256) **Transformers variant**: [RikiyaT/mxbai-ettin-17m-pubmed-phaseA-ft](https://huggingface.co/RikiyaT/mxbai-ettin-17m-pubmed-phaseA-ft) ### Usage ```python from sentence_transformers import SentenceTransformer m = SentenceTransformer("RikiyaT/mxbai-ettin-17m-pubmed-phaseA-ft-st", trust_remote_code=True) q = m.encode(["search_query: what is dense retrieval?"], normalize_embeddings=True) d = m.encode(["search_document: dense retrieval uses embeddings ..."], normalize_embeddings=True) print((q @ d.T)) ``` Prompts used in training: - query: `search_query: {text}` - document: `search_document: {text}`
ibuki95/Affine_ck
ibuki95
2025-08-30T02:14:05Z
0
0
null
[ "safetensors", "gpt_oss", "8-bit", "mxfp4", "region:us" ]
null
2025-08-30T02:05:28Z
# Affine ELR-Enhanced Model This model is based on Affine-PAXJRE27 with LoRA adapters for improved ELR (Project Euler) performance. ## Model Details - Base Model: Affine-PAXJRE27 (116B parameters) - Architecture: GptOssForCausalLM with MoE (128 experts) - Quantization: MXFP4 (dequantized to bf16) - LoRA Adapters: Applied to attention layers for ELR enhancement ## Usage This model is designed for the Affine Bittensor subnet (subnet 120) to improve performance on: - ELR (Project Euler mathematical problems) - While maintaining SAT, ABD, and DED capabilities ## Training Enhanced with Project Euler dataset for mathematical reasoning improvements. ## Deployment Ready for deployment on Affine miners with A100 GPU support.
bah63843/blockassist-bc-plump_fast_antelope_1756519570
bah63843
2025-08-30T02:07:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T02:06:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756519262
bah63843
2025-08-30T02:01:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T02:01:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
John6666/senpais-temptations-v10-sdxl
John6666
2025-08-30T01:57:29Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "girls", "humanoid", "sensual aesthetics", "soft skin", "appealing poses", "smooth lighting", "stable", "concepts", "dreambooth", "temptingsenpai", "trained", "illustrious", "en", "base_model:OnomaAIResearch/Illustrious-xl-early-release-v0", "base_model:finetune:OnomaAIResearch/Illustrious-xl-early-release-v0", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-08-30T01:51:46Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - girls - humanoid - sensual aesthetics - soft skin - appealing poses - smooth lighting - stable - concepts - dreambooth - temptingsenpai - trained - illustrious base_model: OnomaAIResearch/Illustrious-xl-early-release-v0 --- Original model is [here](https://civitai.com/models/1665094?modelVersionId=2161024). This model created by [TemptingSenpai](https://civitai.com/user/TemptingSenpai).
crystalline7/588862
crystalline7
2025-08-30T00:09:17Z
0
0
null
[ "region:us" ]
null
2025-08-30T00:09:11Z
[View on Civ Archive](https://civarchive.com/models/601919?modelVersionId=673809)
keras/qwen3_0.6b_en
keras
2025-08-29T23:11:37Z
0
0
keras-hub
[ "keras-hub", "text-generation", "region:us" ]
text-generation
2025-08-29T23:10:50Z
--- library_name: keras-hub pipeline_tag: text-generation --- This is a [`Qwen3` model](https://keras.io/api/keras_hub/models/qwen3) uploaded using the KerasHub library and can be used with JAX, TensorFlow, and PyTorch backends. This model is related to a `CausalLM` task. Model config: * **name:** qwen3_backbone * **trainable:** True * **vocabulary_size:** 151936 * **num_layers:** 28 * **num_query_heads:** 16 * **hidden_dim:** 1024 * **head_dim:** 128 * **intermediate_dim:** 3072 * **rope_max_wavelength:** 1000000 * **rope_scaling_factor:** 1.0 * **num_key_value_heads:** 8 * **layer_norm_epsilon:** 1e-06 * **dropout:** 0.0 * **tie_word_embeddings:** True * **sliding_window_size:** None This model card has been generated automatically and should be completed by the model author. See [Model Cards documentation](https://huggingface.co/docs/hub/model-cards) for more information.
qualcomm/Baichuan2-7B
qualcomm
2025-08-29T22:58:03Z
0
0
pytorch
[ "pytorch", "llm", "generative_ai", "android", "text-generation", "arxiv:2309.10305", "license:other", "region:us" ]
text-generation
2024-10-21T18:53:30Z
--- library_name: pytorch license: other tags: - llm - generative_ai - android pipeline_tag: text-generation --- ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/baichuan2_7b/web-assets/model_demo.png) # Baichuan2-7B: Optimized for Mobile Deployment ## State-of-the-art large language model useful on a variety of language understanding and generation tasks Baichuan2-7B is a family of LLMs. It achieves the state-of-the-art performance of its size on standard Chinese and English authoritative benchmarks (C-EVAL/MMLU). 4-bit weights and 16-bit activations making it suitable for on-device deployment. For Prompt and output length specified below, the time to first token is Baichuan2-PromptProcessor-Quantized's latency and average time per addition token is Baichuan2-TokenGenerator-Quantized's latency. This model is an implementation of Baichuan2-7B found [here](https://github.com/baichuan-inc/Baichuan-7B/). More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/baichuan2_7b). ### Model Details - **Model Type:** Model_use_case.text_generation - **Model Stats:** - Input sequence length for Prompt Processor: 128 - Context length: 4096 - Number of parameters: 7.07B - Precision: w4a16 + w8a16 (few layers) - Num of key-value heads: 8 - Information about the model parts: Prompt Processor and Token Generator are split into 5 parts each. Each corresponding Prompt Processor and Token Generator part share weights. - Prompt processor model size: 5.06 GB - Prompt processor input (part1): 128 tokens - Prompt processor output (part1): Embeddings output - Prompt processor input (other parts): 128 tokens + KVCache initialized with pad token - Prompt processor output (other parts): 128 output tokens + KVCache for token generator - Token generator model size: 5.06 GB - Token generator input (part1): 128 tokens - Token generator output (part1): Embeddings output - Token generator input (other parts): 1 input token + past KVCache - Token generator output (other parts): 1 output token + KVCache for next iteration - Use: Initiate conversation with prompt-processor and then token generator for subsequent iterations. - Supported languages: Chinese and English. - Minimum QNN SDK version required: 2.27.7 - TTFT: Time To First Token is the time it takes to generate the first response token. This is expressed as a range because it varies based on the length of the prompt. The lower bound is for a short prompt (up to 128 tokens, i.e., one iteration of the prompt processor) and the upper bound is for a prompt using the full context length (4096 tokens). - Response Rate: Rate of response generation after the first response token. | Model | Precision | Device | Chipset | Target Runtime | Response Rate (tokens per second) | Time To First Token (range, seconds) |---|---|---|---|---|---| | Baichuan2-7B | w4a16 | Snapdragon 8 Elite QRD | Snapdragonยฎ 8 Elite Mobile | QNN_CONTEXT_BINARY | 7.72 | 0.208048 - 6.657536 | -- | Use Export Script | ## Deploying Baichuan2-7B on-device Please follow the [LLM on-device deployment](https://github.com/quic/ai-hub-apps/tree/main/tutorials/llm_on_genie) tutorial. ## License * The license for the original implementation of Baichuan2-7B can be found [here](https://github.com/baichuan-inc/Baichuan-7B/blob/main/LICENSE). * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf) ## References * [Baichuan 2: Open Large-scale Language Models](https://arxiv.org/abs/2309.10305) * [Source Model Implementation](https://github.com/baichuan-inc/Baichuan-7B/) ## Community * Join [our AI Hub Slack community](https://qualcomm-ai-hub.slack.com/join/shared_invite/zt-2d5zsmas3-Sj0Q9TzslueCjS31eXG2UA#/shared-invite/email) to collaborate, post questions and learn more about on-device AI. * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com). ## Usage and Limitations Model may not be used for or in connection with any of the following applications: - Accessing essential private and public services and benefits; - Administration of justice and democratic processes; - Assessing or recognizing the emotional state of a person; - Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics; - Education and vocational training; - Employment and workers management; - Exploitation of the vulnerabilities of persons resulting in harmful behavior; - General purpose social scoring; - Law enforcement; - Management and operation of critical infrastructure; - Migration, asylum and border control management; - Predictive policing; - Real-time remote biometric identification in public spaces; - Recommender systems of social media platforms; - Scraping of facial images (from the internet or otherwise); and/or - Subliminal manipulation
crystalline7/1858977
crystalline7
2025-08-29T22:52:25Z
0
0
null
[ "region:us" ]
null
2025-08-29T22:52:15Z
[View on Civ Archive](https://civarchive.com/models/774205?modelVersionId=1961317)
vertotraw28/blockassist-bc-diving_shaggy_jellyfish_1756502901
vertotraw28
2025-08-29T21:29:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "diving shaggy jellyfish", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T21:28:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - diving shaggy jellyfish --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
OpenGVLab/InternVL3_5-14B-MPO
OpenGVLab
2025-08-29T17:57:02Z
49
3
transformers
[ "transformers", "safetensors", "internvl_chat", "feature-extraction", "internvl", "custom_code", "image-text-to-text", "conversational", "multilingual", "dataset:OpenGVLab/MMPR-v1.2", "dataset:OpenGVLab/MMPR-Tiny", "arxiv:2312.14238", "arxiv:2404.16821", "arxiv:2412.05271", "arxiv:2411.10442", "arxiv:2504.10479", "arxiv:2508.18265", "base_model:OpenGVLab/InternVL3_5-14B-Instruct", "base_model:finetune:OpenGVLab/InternVL3_5-14B-Instruct", "license:apache-2.0", "region:us" ]
image-text-to-text
2025-08-25T16:38:47Z
--- license: apache-2.0 pipeline_tag: image-text-to-text library_name: transformers base_model: - OpenGVLab/InternVL3_5-14B-Instruct base_model_relation: finetune datasets: - OpenGVLab/MMPR-v1.2 - OpenGVLab/MMPR-Tiny language: - multilingual tags: - internvl - custom_code --- # InternVL3_5-14B-MPO [\[๐Ÿ“‚ GitHub\]](https://github.com/OpenGVLab/InternVL) [\[๐Ÿ“œ InternVL 1.0\]](https://huggingface.co/papers/2312.14238) [\[๐Ÿ“œ InternVL 1.5\]](https://huggingface.co/papers/2404.16821) [\[๐Ÿ“œ InternVL 2.5\]](https://huggingface.co/papers/2412.05271) [\[๐Ÿ“œ InternVL2.5-MPO\]](https://huggingface.co/papers/2411.10442) [\[๐Ÿ“œ InternVL3\]](https://huggingface.co/papers/2504.10479) [\[๐Ÿ“œ InternVL3.5\]](https://huggingface.co/papers/2508.18265) [\[๐Ÿ†• Blog\]](https://internvl.github.io/blog/) [\[๐Ÿ—จ๏ธ Chat Demo\]](https://chat.intern-ai.org.cn/) [\[๐Ÿš€ Quick Start\]](#quick-start) [\[๐Ÿ“– Documents\]](https://internvl.readthedocs.io/en/latest/) <div align="center"> <img width="500" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/zJsd2hqd3EevgXo6fNgC-.png"> </div> ## Introduction We introduce *InternVL3.5*, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the *Cascade Reinforcement Learning (Cascade RL)* framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a *Visual Resolution Router (ViR)* that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled *Vision-Language Deployment (DvD)* strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0\% gain in overall reasoning performance and a 4.05 \\(\times\\) inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasksโ€”narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released. ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance.jpg) > Hatched bars represent closed-source commercial models. We report average scores on a set of multimodal general, reasoning, text, and agentic benchmarks: MMBench v1.1 (en), MMStar,BLINK, HallusionBench, AI2D, OCRBench, MMVet, MME-RealWorld (en), MVBench, VideoMME, MMMU, MathVista, MathVision, MathVerse, DynaMath, WeMath, LogicVista, MATH500, AIME24, AIME25, GPQA, MMLU-Pro, GAOKAO, IFEval, SGP-Bench, VSI-Bench, ERQA, SpaCE-10, and OmniSpatial. See [quick start](#quick-start) for how to use our model. ## InternVL3.5 Family In the following table, we provide an overview of the InternVL3.5 series. To maintain consistency with earlier generations, we provide two model formats: [the GitHub format](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B), consistent with prior releases, and [the HF format](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B-HF), aligned with the official Transformers standard. > If you want to convert the checkpoint between these two formats, please refer to the scripts about [custom2hf](https://github.com/OpenGVLab/InternVL/blob/main/internvl_chat/tools/internvl_custom2hf.py) and [hf2custom](https://github.com/OpenGVLab/InternVL/blob/main/internvl_chat/tools/internvl_hf2custom.py). ### Github Format | Model | #Vision Param | #Language Param | #Total Param | HF Link | ModelScope Link | | --------------------- | ------------- | --------------- | ------------ | ------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------- | | InternVL3.5-1B | 0.3B | 0.8B | 1.1B | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-1B) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-1B) | | InternVL3.5-2B | 0.3B | 2.0B | 2.3B | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-2B) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-2B) | | InternVL3.5-4B | 0.3B | 4.4B | 4.7B | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-4B) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-4B) | | InternVL3.5-8B | 0.3B | 8.2B | 8.5B | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-8B) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-8B) | | InternVL3.5-14B | 0.3B | 14.8B | 15.1B | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-14B) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-14B) | | InternVL3.5-38B | 5.5B | 32.8B | 38.4B | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-38B) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-38B) | | InternVL3.5-20B-A4B | 0.3B | 20.9B | 21.2B-A4B | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-GPT-OSS-20B-A4B-Preview) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-GPT-OSS-20B-A4B-Preview) | | InternVL3.5-30B-A3B | 0.3B | 30.5B | 30.8B-A3B | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-30B-A3B) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-30B-A3B) | | InternVL3.5-241B-A28B | 5.5B | 235.1B | 240.7B-A28B | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-241B-A28B) | ### HuggingFace Format | Model | #Vision Param | #Language Param | #Total Param | HF Link | ModelScope Link | | ------------------------ | ------------- | --------------- | ------------ | --------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------- | | InternVL3.5-1B-HF | 0.3B | 0.8B | 1.1B | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-1B-HF) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-1B-HF) | | InternVL3.5-2B-HF | 0.3B | 2.0B | 2.3B | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-2B-HF) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-2B-HF) | | InternVL3.5-4B-HF | 0.3B | 4.4B | 4.7B | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-4B-HF) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-4B-HF) | | InternVL3.5-8B-HF | 0.3B | 8.2B | 8.5B | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-8B-HF) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-8B-HF) | | InternVL3.5-14B-HF | 0.3B | 14.8B | 15.1B | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-14B-HF) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-14B-HF) | | InternVL3.5-38B-HF | 5.5B | 32.8B | 38.4B | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-38B-HF) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-38B-HF) | | InternVL3.5-20B-A4B-HF | 0.3B | 20.9B | 21.2B-A4B | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-GPT-OSS-20B-A4B-Preview-HF) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-GPT-OSS-20B-A4B-Preview-HF) | | InternVL3.5-30B-A3B-HF | 0.3B | 30.5B | 30.8B-A3B | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-30B-A3B-HF) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-30B-A3B-HF) | | InternVL3.5-241B-A28B-HF | 5.5B | 235.1B | 240.7B-A28B | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B-HF) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-241B-A28B-HF) | ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_overall.jpg) > We conduct the evaluation with [VLMEvalkit](https://github.com/open-compass/VLMEvalKit). ***To enable the Thinking mode of our model, please set the system prompt to [R1_SYSTEM_PROMPT](https://github.com/open-compass/VLMEvalKit/blob/main/vlmeval/vlm/internvl/internvl_chat.py#L38).*** When enabling Thinking mode, we recommend setting `do_sample=True` and `temperature=0.6` to mitigate undesired repetition. Our training pipeline comprises four stages: Multimodal Continual Pre-Training (**CPT**), Supervised Fine-Tuning (**SFT**), and Cascade Reinforcement Learning (**CascadeRL**). In CascadeRL, we first fine-tune the model using Mixed Preference Optimization (**MPO**) under an offline RL setting, followed by **GSPO** under an oneline RL setting. For the Flash version of InternVL3.5, we additionally introduce a lightweight training stage, termed Visual Consistency Learning (**ViCO**), which reduces the token cost required to represent an image patch. ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/training_pipeline.jpg) Here, we also open-source the model weights after different training stages for potential research usage. ***If you're unsure which version to use, please select the one without any suffix, as it has completed the full training pipeline.*** | Model | Training Pipeline | HF Link | ModelScope Link | | -------------------------------- | --------------------- | --------------------------------------------------------------------------- | ------------------------------------------------------------------------------------- | | InternVL3.5-1B-Pretrained | CPT | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-1B-Pretrained) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-1B-Pretrained) | | InternVL3.5-1B-Instruct | CPT + SFT | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-1B-Instruct) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-1B-Instruct) | | InternVL3.5-1B-MPO | CPT + SFT + MPO | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-1B-MPO) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-1B-MPO) | | InternVL3.5-1B | CPT + SFT + CascadeRL | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-1B) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-1B) | | InternVL3.5-2B-Pretrained | CPT | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-2B-Pretrained) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-2B-Pretrained) | | InternVL3.5-2B-Instruct | CPT + SFT | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-2B-Instruct) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-2B-Instruct) | | InternVL3.5-2B-MPO | CPT + SFT + MPO | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-2B-MPO) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-2B-MPO) | | InternVL3.5-2B | CPT + SFT + CascadeRL | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-2B) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-2B) | | InternVL3.5-4B-Pretrained | CPT | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-4B-Pretrained) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-4B-Pretrained) | | InternVL3.5-4B-Instruct | CPT + SFT | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-4B-Instruct) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-4B-Instruct) | | InternVL3.5-4B-MPO | CPT + SFT + MPO | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-4B-MPO) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-4B-MPO) | | InternVL3.5-4B | CPT + SFT + CascadeRL | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-4B) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-4B) | | InternVL3.5-8B-Pretrained | CPT | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-8B-Pretrained) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-8B-Pretrained) | | InternVL3.5-8B-Instruct | CPT + SFT | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-8B-Instruct) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-8B-Instruct) | | InternVL3.5-8B-MPO | CPT + SFT + MPO | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-8B-MPO) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-8B-MPO) | | InternVL3.5-8B | CPT + SFT + CascadeRL | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-8B) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-8B) | | InternVL3.5-14B-Pretrained | CPT | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-14B-Pretrained) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-14B-Pretrained) | | InternVL3.5-14B-Instruct | CPT + SFT | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-14B-Instruct) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-14B-Instruct) | | InternVL3.5-14B-MPO | CPT + SFT + MPO | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-14B-MPO) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-14B-MPO) | | InternVL3.5-14B | CPT + SFT + CascadeRL | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-14B) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-14B) | | InternVL3.5-30B-A3B-Pretrained | CPT | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-30B-A3B-Pretrained) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-30B-A3B-Pretrained) | | InternVL3.5-30B-A3B-Instruct | CPT + SFT | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-30B-A3B-Instruct) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-30B-A3B-Instruct) | | InternVL3.5-30B-A3B-MPO | CPT + SFT + MPO | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-30B-A3B-MPO) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-30B-A3B-MPO) | | InternVL3.5-30B-A3B | CPT + SFT + CascadeRL | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-30B-A3B) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-30B-A3B) | | InternVL3.5-38B-Pretrained | CPT | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-38B-Pretrained) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-38B-Pretrained) | | InternVL3.5-38B-Instruct | CPT + SFT | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-38B-Instruct) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-38B-Instruct) | | InternVL3.5-38B-MPO | CPT + SFT + MPO | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-38B-MPO) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-38B-MPO) | | InternVL3.5-38B | CPT + SFT + CascadeRL | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-38B) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-38B) | | InternVL3.5-241B-A28B-Pretrained | CPT | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B-Pretrained) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-241B-A28B-Pretrained) | | InternVL3.5-241B-A28B-Instruct | CPT + SFT | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B-Instruct) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-241B-A28B-Instruct) | | InternVL3.5-241B-A28B-MPO | CPT + SFT + MPO | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B-MPO) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-241B-A28B-MPO) | | InternVL3.5-241B-A28B | CPT + SFT + CascadeRL | [๐Ÿค— link](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B) | [๐Ÿค– link](https://www.modelscope.cn/models/OpenGVLab/InternVL3_5-241B-A28B) | The Flash version of our model will be released as soon as possible. ## Model Architecture `InternVL3.5`: This series of models follow the "ViTโ€“MLPโ€“LLM" paradigm adopted in previous versions of InternVL. We initialize the language model using the Qwen3 series and GPT-OSS, and the vision encoder using InternViT-300M and InternViT-6B. The Dynamic High Resolution strategy introduced in InternVL1.5 is also retained in our design. `InternVL3.5-Flash`: Compared to InternVL3.5, InternVL3.5-Flash further integrates the *Visual Resolution Router (ViR)*, thus yielding a series of efficient variants friendly suitable for resource-constrained scenarios. Specifically, in InternVL3.5, each image patch is initially represented as 1024 visual tokens for the vision encoder, which are then compressed into 256 tokens via a pixel shuffle module before being passed to the Large Language Model (LLM). In InternVL3.5-Flash, as shown in the Figure below, an additional pixel shuffle module with a higher compression rate is included, enabling the compression of visual tokens down to 64 tokens. For each patch, the patch router determines the appropriate compression rate by assessing its semantic richness, and routes it to the corresponding pixel shuffle module accordingly. Benefiting from this patch-aware compression mechanism, InternVL3.5-Flash is able to reduce the number of visual tokens by 50\% while maintaining nearly 100\% of the performance of InternVL3.5. ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/architecture.jpg) ## Training and Deployment Strategy ### Pre-Training During the pre-training stage, we update all model parameters jointly using the combination of large-scale text and multimodal corpora. Specifically, given an arbitrary training sample consisting of a multimodal token sequence \\(\mathbf{x}=\left(x_1, x_2, \ldots, x_L\right)\\), the next token prediction (NTP) loss is calculated on each text token as follows: $$ \mathcal{L}_{i}=-\log p_\theta\left(x_i \mid x_1, \ldots, x_{i-1}\right), $$ where \\(x_i\\) is the predicted token and prefix tokens in \\(\{x_1, x_2, \ldots, x_{i-1}\}\\) can be either text tokens or image tokens. Notably, for conversation samples, only response tokens are included for the calculation of the loss. Additionally, to mitigate bias toward either longer or shorter responses during training, we adopt the square averaging to re-weight the NTP loss as follows: $$ \mathcal{L}_{i}^{'} = \frac{w_i}{\sum_j w_j} \cdot \mathcal{L}_i, \quad w_i = \frac{1}{N^{0.5}}, $$ where \\(N\\) denotes the number of tokens in the training sample on which the loss needs to be calculated. The random JPEG compression is also included to enhance the model's real-world performance. ### Supervised Fine-Tuning During the SFT phase, we adopt the same objective as in the pre-training stage and use the square-root averaging strategy to calculate the final loss. In this stage, the context window is set to 32K tokens to adapt long-context information. Compared to InternVL3, the SFT stage of InternVL3.5 contains more high-quality and diverse training data derived from three sources: (1) Instruction-following data from InternVL3, which are reused to preserve broad coverage of visionโ€“language tasks. (2) Multimodal reasoning data in the "Thinking" mode, which are included to instill long-thinking capabilities in the model. To construct such data, we first use InternVL3-78B to describe the image and then input the description into DeepSeek-R1 to sample rollouts with detailed reasoning processes. Rollouts with an incorrect final answer are filtered out. The questions in these datasets cover various expert domains, such as mathematics and scientific disciplines, thereby strengthening performance on different reasoning tasks. (3) Capability-expansion datasets, which endow InternVL3.5 with new skills, including GUI-based interaction, embodied interaction, and scalable vect ### Cascade Reinforcement Learning Cascade RL aims to combine the benefits of offline RL and online RL to progressively facilitate the post-training of MLLMs in an efficient manner. Specifically, we first fine-tune the model using an offline RL algorithm as an efficient warm-up stage to reach a satisfied results, which can guarantee the high-quality rollouts for the latter stage. Subsequently, we employ an online RL algorithm to further refine the output distribution based on rollouts generated by the model itself. Compared to the single offline or online RL stage, our cascaded RL achieves significant performance improvements at a fraction of the GPU time cost. During the offline RL stage, we employ mixed preference optimization (MPO) to fine-tune the model. Specifically, the training objective of MPO is a combination of preference loss \\(\mathcal{L}_{p}\\), quality loss \\(\mathcal{L}_{q}\\), and generation loss \\(\mathcal{L}_{g}\\), which can be formulated as follows: $$ \mathcal{L}_{\text{MPO}}= w_{p} \mathcal{L}_{p} + w_{q} \mathcal{L}_{q} + w_{g} \mathcal{L}_{g} , $$ where \\(w_{*}\\) represents the weight assigned to each loss component. The DPO loss, BCO loss, and LM loss serve as the preference loss, quality loss, and generation loss, respectively. During the online RL stage, we employ GSPO, without reference model constraints, as our online RL algorithm, which we find more effective in training both dense and mixture-of-experts (MoE) models. Similar to GRPO, the advantage is defined as the normalized reward across responses sampled from the same query. The training objective of GSPO is given by: $$ \mathcal{L}_{\mathrm{GSPO}}(\theta)=\mathbb{E}_{x \sim \mathcal{D},\left\{y_i\right\}_{i=1}^G \sim \pi_{\theta \text { old }}(\cdot \mid x)}\left[\frac{1}{G} \sum_{i=1}^G \min \left(s_i(\theta) \widehat{A}_i, \operatorname{clip}\left(s_i(\theta), 1-\varepsilon, 1+\varepsilon\right) \widehat{A}_i\right)\right], $$ where the importance sampling ratio is defined as the geometric mean of the per-token ratios. > Please see [our paper](https://huggingface.co/papers/2508.18265) for more technical and experimental details. ### Visual Consistency Learning We further include ViCO as an additional training stage to integrate the *visual resolution router (ViR)* into InternVL3.5, thereby reducing the inference cost of InternVL3.5. The obtained efficient version of InternVL3.5 are termed as *InternVL3.5-Flash*. In particular, ViCO comprises two stages: `Consistency training`: In this stage, the entire model is trained to minimize the divergence between response distributions conditioned on visual tokens with different compression rates. In practice, we introduce an extra reference model, which is frozen and initialized with InternVL3.5. Given a sample, each image patch is represented as either 256 or 64 tokens, and the training objective is defined as follows: $$ \mathcal{L}_\text{ViCO} = \mathbb{E}_{\xi \sim \mathcal{R}} \Bigg[ \frac{1}{N} \sum_{i=1}^{N} \mathrm{KL} \Big( \pi_{\theta_{ref}}\left(y_i \mid y_{<i}, I\right) \;\Big\|\; \pi_{\theta_{policy}}\left(y_i \mid y_{<i}, I_\xi\right) \Big) \Bigg], $$ where \\(\mathrm{KL}\) denotes the KL divergence and \(\xi\) denotes the compression rate, which is uniformly sampled from \(\{\frac{1}{4},\frac{1}{16}\}\). The image \(I_\xi\) is represented as 256 tokens when \(\xi=\frac{1}{4}\) and 64 tokens when \(\xi=\frac{1}{16}\). Notably, the reference model always performs inference with \(\xi=\frac{1}{4}\). `Router training`: This stage aims to train the ViR to select an appropriate trade-off resolution for different inputs. ViR is formulated as a binary classifier and trained using standard cross-entropy loss. To construct the route targets, we first compute the KL divergence between the model outputs conditioned on uncompressed visual tokens (i.e., 256 tokens per patch) and those conditioned on compressed visual tokens (i.e., 64 tokens per patch). During this stage, the main MLLM (ViT, MLP and LLM) is kept frozen, and only the ViR is trained. Specifically, we first compute the loss ratio for each patch: $$ r_i = \frac{\mathcal{L}_\text{ViCO}\big(y_i \mid I_{\frac{1}{16}}\big)}{\mathcal{L}_\text{ViCO}\big(y_i \mid I_{\frac{1}{4}}\big)}, $$ which quantifies the relative increase in loss caused by compressing the visual tokens. Based on this ratio, the binary ground-truth label for the patch router is defined as: $$ y_i^\text{router} = \begin{cases} 0, & r_i < \tau \; \text{(compression has negligible impact)} \\ 1, & r_i \ge \tau \; \text{(compression has significant impact)}, \end{cases} $$ where \(y_i^{\text{router}}=0\) and \(y_i^{\text{router}}=1\) indicate that the compression rate \(\xi\) is set to \(\tfrac{1}{16}\) and \(\tfrac{1}{4}\), respectively. > Please see [our paper](https://huggingface.co/papers/2508.18265) for more technical and experimental details. ### Test-Time Scaling Test-time scaling (TTS) has been empirically demonstrated as an effective approach to enhance the reasoning capabilities of LLMs and MLLMs, particularly for complex tasks necessitating multi-step inference. In this work, we implement a comprehensive test-time scaling approach that simultaneously improves reasoning depth (i.e., deep thinking) and breadth (i.e., parallel thinking). `Deep Thinking`: By activating the Thinking mode, we guide the model to deliberately engage in step-by-step reasoning (i.e., decomposing complex problems into logical steps and validating intermediate conclusions) prior to generating the final answer. This approach systematically improves the logical structure of solutions for complex problems, particularly those requiring multi-step inference, and enhances reasoning depth. `Parallel Thinking`: Following InternVL3, for reasoning tasks, we adopt the Best-of-N (BoN) strategy by employing [VisualPRM-v1.1](https://huggingface.co/OpenGVLab/VisualPRM-8B-v1_1) as the critic model to select the optimal response from multiple reasoning candidates. This approach improves reasoning breadth. > Notably, unless otherwise specified, the experimental results reported in our paper are obtained without applying TTS. Thus far, we have only applied TTS to reasoning benchmarks, since we found that the model already exhibits strong perception and understanding capabilities, and initiating TTS yields no significant improvement. ### Decoupled Vision-Language Deployment In multimodal inference, the vision encoder and language model have distinct computational characteristics. The vision encoder that transforms images into semantic features is highly parallelizable and does not rely on long-term history state. In contrast, the language model adopts the inference in an autoregressive manner, which requires previous states to compute the next one. This sequential property makes the language part more sensitive to memory bandwidth and latency. When MLLMs are deployed online at scale, the vision and language models often block each other, thus incurring additional inference cost. This effect becomes more pronounced with larger vision models or higher-resolution images. ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/DvD.jpg) As shown in the Figure above, we propose decoupled vision-language deployment (DvD) to address this issue by separating vision and language processing, with a particular focus on optimizing the prefilling stage. The vision subsystem batches and processes images to produce compact feature embeddings, which are then transmitted to the language subsystem for fusion with the text context prior to decoding. This separation alleviates blocking and brings multimodal prefilling performance closer to that of pure language models. In our system implementation, the ViT and MLP (and ViR for InternVL3.5-Flash) are deployed on the vision server, while the language server executes only the LLM. The communication is unidirectional, transmitting BF16 visual features over TCP, with RDMA optionally employed to achieve higher transmission speed. Vision processing, feature transmission, and language processing are organized into an asynchronous three-stage pipeline, enabling overlapped execution and minimizing pipeline stalls. DvD increases GPU utilization and processing efficiency on the vision side, while enabling the language server to focus exclusively on the LLMโ€™s prefilling and decoding without being blocked by vision computation. This design leads to improved throughput and responsiveness. Moreover, the architecture supports independent hardware cost optimization for the vision and language modules, and facilitates the seamless integration of new modules without requiring modifications to the language server deployment. ## Evaluation on Multimodal Capability ### Multimodal Reasoning and Mathematics ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_reasoning.jpg) ### OCR, Chart, and Document Understanding ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_ocr.jpg) ### Multi-Image Understanding & Real-World Comprehension ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_multi_images.jpg) ### Comprehensive Multimodal Understanding & Multimodal Hallucination Evaluation ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_comprehensive.jpg) ### Visual Grounding ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_grounding.jpg) ### Multimodal Multilingual Understanding ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_multilingual.jpg) ### Video Understanding ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_video.jpg) ### GUI Tasks ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_gui.jpg) ### Embodied Tasks ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_embody.jpg) ### SVG Tasks ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_svg.jpg) ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_svg_gen.jpg) ## Evaluation on Language Capability ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/performance_text.jpg) ## Ablation Study ### Cascade Reinforcement Learning ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/ablation_cascade_rl.jpg) ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/ablation_cascade_rl_table.jpg) ### Decoupled Vision-Language Deployment ![image/jpg](https://huggingface.co/OpenGVLab/InternVL3_5-241B-A28B/resolve/main/images/ablation_dvd.jpg) ## Quick Start We provide an example code to run `InternVL3.5-8B` using `transformers`. Please note that our models with up to 30B parameters can be deployed on a single A100 GPU, while the 38B model requires two A100 GPUs and the 235B model requires eight A100 GPUs. > In most cases, both [LMDeploy](https://github.com/InternLM/lmdeploy) and [vLLM](https://github.com/vllm-project/vllm) can be used for model deployment. However, for InternVL3.5-20B-A4B, we recommend using vLLM since lmdeploy has not yet supported GPT-OSS. > Please use transformers>=4.52.1 to ensure the model works normally. For the 20B version of our model, transformers>=4.55.0 is required. ### Model Loading #### 16-bit (bf16 / fp16) ```python import torch from transformers import AutoTokenizer, AutoModel path = "OpenGVLab/InternVL3_5-8B" model = AutoModel.from_pretrained( path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, use_flash_attn=True, trust_remote_code=True).eval().cuda() ``` #### BNB 8-bit Quantization ```python import torch from transformers import AutoTokenizer, AutoModel path = "OpenGVLab/InternVL3_5-8B" model = AutoModel.from_pretrained( path, torch_dtype=torch.bfloat16, load_in_8bit=True, low_cpu_mem_usage=True, use_flash_attn=True, trust_remote_code=True).eval() ``` #### Multiple GPUs ```python import math import torch from transformers import AutoTokenizer, AutoModel path = "OpenGVLab/InternVL3_5-8B" model = AutoModel.from_pretrained( path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, use_flash_attn=True, trust_remote_code=True, device_map="auto").eval() ``` ### Thinking Mode To enable thinking mode, please set the system prompt to our Thinking System Prompt. When enabling Thinking mode, we recommend setting `do_sample=True` and `temperature=0.6` to mitigate undesired repetition. ```python R1_SYSTEM_PROMPT = """ You are an AI assistant that rigorously follows this response protocol: 1. First, conduct a detailed analysis of the question. Consider different angles, potential solutions, and reason through the problem step-by-step. Enclose this entire thinking process within <think> and </think> tags. 2. After the thinking section, provide a clear, concise, and direct answer to the user's question. Separate the answer from the think section with a newline. Ensure that the thinking process is thorough but remains focused on the query. The final answer should be standalone and not reference the thinking section. """.strip() model.system_message = R1_SYSTEMP_PROMPT ``` ### Inference with Transformers ```python import math import numpy as np import torch import torchvision.transforms as T from decord import VideoReader, cpu from PIL import Image from torchvision.transforms.functional import InterpolationMode from transformers import AutoModel, AutoTokenizer IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) def build_transform(input_size): MEAN, STD = IMAGENET_MEAN, IMAGENET_STD transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD) ]) return transform def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images def load_image(image_file, input_size=448, max_num=12): image = Image.open(image_file).convert('RGB') transform = build_transform(input_size=input_size) images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(image) for image in images] pixel_values = torch.stack(pixel_values) return pixel_values path = 'OpenGVLab/InternVL3_5-8B' model = AutoModel.from_pretrained( path, torch_dtype=torch.bfloat16, load_in_8bit=False, low_cpu_mem_usage=True, use_flash_attn=True, trust_remote_code=True, device_map="auto").eval() tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False) # set the max number of tiles in `max_num` pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda() generation_config = dict(max_new_tokens=1024, do_sample=True) # pure-text conversation (็บฏๆ–‡ๆœฌๅฏน่ฏ) question = 'Hello, who are you?' response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True) print(f'User: {question}\nAssistant: {response}') question = 'Can you tell me a story?' response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True) print(f'User: {question}\nAssistant: {response}') # single-image single-round conversation (ๅ•ๅ›พๅ•่ฝฎๅฏน่ฏ) question = '<image>\nPlease describe the image shortly.' response = model.chat(tokenizer, pixel_values, question, generation_config) print(f'User: {question}\nAssistant: {response}') # single-image multi-round conversation (ๅ•ๅ›พๅคš่ฝฎๅฏน่ฏ) question = '<image>\nPlease describe the image in detail.' response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True) print(f'User: {question}\nAssistant: {response}') question = 'Please write a poem according to the image.' response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True) print(f'User: {question}\nAssistant: {response}') # multi-image multi-round conversation, combined images (ๅคšๅ›พๅคš่ฝฎๅฏน่ฏ๏ผŒๆ‹ผๆŽฅๅ›พๅƒ) pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda() pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda() pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0) question = '<image>\nDescribe the two images in detail.' response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True) print(f'User: {question}\nAssistant: {response}') question = 'What are the similarities and differences between these two images.' response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True) print(f'User: {question}\nAssistant: {response}') # multi-image multi-round conversation, separate images (ๅคšๅ›พๅคš่ฝฎๅฏน่ฏ๏ผŒ็‹ฌ็ซ‹ๅ›พๅƒ) pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda() pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda() pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0) num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)] question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.' response, history = model.chat(tokenizer, pixel_values, question, generation_config, num_patches_list=num_patches_list, history=None, return_history=True) print(f'User: {question}\nAssistant: {response}') question = 'What are the similarities and differences between these two images.' response, history = model.chat(tokenizer, pixel_values, question, generation_config, num_patches_list=num_patches_list, history=history, return_history=True) print(f'User: {question}\nAssistant: {response}') # batch inference, single image per sample (ๅ•ๅ›พๆ‰นๅค„็†) pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda() pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda() num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)] pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0) questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list) responses = model.batch_chat(tokenizer, pixel_values, num_patches_list=num_patches_list, questions=questions, generation_config=generation_config) for question, response in zip(questions, responses): print(f'User: {question}\nAssistant: {response}') # video multi-round conversation (่ง†้ข‘ๅคš่ฝฎๅฏน่ฏ) def get_index(bound, fps, max_frame, first_idx=0, num_segments=32): if bound: start, end = bound[0], bound[1] else: start, end = -100000, 100000 start_idx = max(first_idx, round(start * fps)) end_idx = min(round(end * fps), max_frame) seg_size = float(end_idx - start_idx) / num_segments frame_indices = np.array([ int(start_idx + (seg_size / 2) + np.round(seg_size * idx)) for idx in range(num_segments) ]) return frame_indices def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32): vr = VideoReader(video_path, ctx=cpu(0), num_threads=1) max_frame = len(vr) - 1 fps = float(vr.get_avg_fps()) pixel_values_list, num_patches_list = [], [] transform = build_transform(input_size=input_size) frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments) for frame_index in frame_indices: img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB') img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(tile) for tile in img] pixel_values = torch.stack(pixel_values) num_patches_list.append(pixel_values.shape[0]) pixel_values_list.append(pixel_values) pixel_values = torch.cat(pixel_values_list) return pixel_values, num_patches_list video_path = './examples/red-panda.mp4' pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1) pixel_values = pixel_values.to(torch.bfloat16).cuda() video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))]) question = video_prefix + 'What is the red panda doing?' # Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question} response, history = model.chat(tokenizer, pixel_values, question, generation_config, num_patches_list=num_patches_list, history=None, return_history=True) print(f'User: {question}\nAssistant: {response}') question = 'Describe this video in detail.' response, history = model.chat(tokenizer, pixel_values, question, generation_config, num_patches_list=num_patches_list, history=history, return_history=True) print(f'User: {question}\nAssistant: {response}') ``` #### Streaming Output Besides this method, you can also use the following code to get streamed output. ```python from transformers import TextIteratorStreamer from threading import Thread # Initialize the streamer streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10) # Define the generation configuration generation_config = dict(max_new_tokens=1024, do_sample=False, streamer=streamer) # Start the model chat in a separate thread thread = Thread(target=model.chat, kwargs=dict( tokenizer=tokenizer, pixel_values=pixel_values, question=question, history=None, return_history=False, generation_config=generation_config, )) thread.start() # Initialize an empty string to store the generated text generated_text = '' # Loop through the streamer to get the new text as it is generated for new_text in streamer: if new_text == model.conv_template.sep: break generated_text += new_text print(new_text, end='', flush=True) # Print each new chunk of generated text on the same line ``` ## Finetune Many repositories now support fine-tuning of the InternVL series models, including [InternVL](https://github.com/OpenGVLab/InternVL), [SWIFT](https://github.com/modelscope/ms-swift), [XTuner](https://github.com/InternLM/xtuner), and others. Please refer to their documentation for more details on fine-tuning. ## Deployment ### LMDeploy LMDeploy is a toolkit for compressing, deploying, and serving LLMs & VLMs. ```sh pip install lmdeploy>=0.9.1 ``` LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-use pipeline, similar to the Large Language Model (LLM) inference pipeline. #### A 'Hello, world' Example ```python from lmdeploy import pipeline, PytorchEngineConfig from lmdeploy.vl import load_image image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg') # Please set tp=2 for the 38B version and tp=8 for the 241B-A28B version. model = 'OpenGVLab/InternVL3_5-8B' pipe = pipeline(model, backend_config=PytorchEngineConfig(session_len=32768, tp=1)) response = pipe(('describe this image', image)) print(response.text) ``` #### Multi-images Inference When dealing with multiple images, you can put them all in one list. Keep in mind that multiple images will lead to a higher number of input tokens, and as a result, the size of the context window typically needs to be increased. ```python from lmdeploy import pipeline, PytorchEngineConfig from lmdeploy.vl import load_image from lmdeploy.vl.constants import IMAGE_TOKEN # Please set tp=2 for the 38B version and tp=8 for the 241B-A28B version. model = 'OpenGVLab/InternVL3_5-8B' pipe = pipeline(model, backend_config=PytorchEngineConfig(session_len=32768, tp=1)) image_urls=[ 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg', 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg' ] images = [load_image(img_url) for img_url in image_urls] # Numbering images improves multi-image conversations response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images)) print(response.text) ``` #### Batch Prompts Inference Conducting inference with batch prompts is quite straightforward; just place them within a list structure: ```python from lmdeploy import pipeline, PytorchEngineConfig from lmdeploy.vl import load_image # Please set tp=2 for the 38B version and tp=8 for the 241B-A28B version. model = 'OpenGVLab/InternVL3_5-8B' pipe = pipeline(model, backend_config=PytorchEngineConfig(session_len=32768, tp=1)) image_urls=[ "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg", "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg" ] prompts = [('describe this image', load_image(img_url)) for img_url in image_urls] response = pipe(prompts) print(response) ``` #### Multi-turn Conversation There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface. ```python from lmdeploy import pipeline, PytorchEngineConfig, GenerationConfig from lmdeploy.vl import load_image # Please set tp=2 for the 38B version and tp=8 for the 241B-A28B version. model = 'OpenGVLab/InternVL3_5-8B' pipe = pipeline(model, backend_config=PytorchEngineConfig(session_len=32768, tp=1)) image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg') gen_config = GenerationConfig(top_k=50, top_p=0.95, temperature=0.6, max_new_tokens=8192) sess = pipe.chat(('describe this image', image), gen_config=gen_config) print(sess.response.text) sess = pipe.chat('What is the woman doing?', session=sess, gen_config=gen_config) print(sess.response.text) ``` #### Service LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup: ```shell lmdeploy serve api_server OpenGVLab/InternVL3_5-8B --server-port 23333 --tp 1 --backend pytorch ``` To use the OpenAI-style interface, you need to install OpenAI: ```shell pip install openai ``` Then, use the code below to make the API call: ```python from openai import OpenAI client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1') model_name = client.models.list().data[0].id response = client.chat.completions.create( model=model_name, messages=[{ 'role': 'user', 'content': [{ 'type': 'text', 'text': 'describe this image', }, { 'type': 'image_url', 'image_url': { 'url': 'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/tiger.jpeg', }, }], }], temperature=0.8, top_p=0.8) print(response) ``` ## License This project is released under the apache-2.0 License. This project uses the pre-trained Qwen3 as a component, which is licensed under the apache-2.0 License. ## Citation If you find this project useful in your research, please consider citing: ```BibTeX @article{wang2025internvl3_5, title={InternVL3.5: Advancing Open-Source Multimodal Models in Versatility, Reasoning, and Efficiency}, author={Wang, Weiyun and Gao, Zhangwei and Gu, Lixin and Pu, Hengjun and Cui, Long and Wei, Xingguang and Liu, Zhaoyang and Jing, Linglin and Ye, Shenglong and Shao, Jie and others}, journal={arXiv preprint arXiv:2508.18265}, year={2025} } ```
position-specialist-speculative-decoding/llama3-8b-instruct-hass-reproduce
position-specialist-speculative-decoding
2025-08-29T17:48:23Z
5
0
null
[ "pytorch", "llama", "region:us" ]
null
2025-05-19T21:28:09Z
# Anonymous Submission This repository contains the model used for anonymous submission. If the code fails to auto-download the models, you may manually download the following files. - `pytorch_model.bin`: Model weights - `config.json`: Model config This repository does not contain any author-identifiable information. Please do not distribute.
dr-wong-lu-yang-cctv-video-Viral-original/New.full.videos.Dr.wong.Viral.Video.Official.Tutorial
dr-wong-lu-yang-cctv-video-Viral-original
2025-08-29T15:56:00Z
0
0
null
[ "region:us" ]
null
2025-08-29T15:55:48Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1756477963
kojeklollipop
2025-08-29T15:02:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T15:02:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ChenWu98/numina_qwen_2.5_sft_cluster_v1_weighted_alpha2.0_split_0_no_normalize
ChenWu98
2025-08-29T14:23:22Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:Qwen/Qwen2.5-1.5B", "base_model:finetune:Qwen/Qwen2.5-1.5B", "endpoints_compatible", "region:us" ]
null
2025-08-29T14:22:25Z
--- base_model: Qwen/Qwen2.5-1.5B library_name: transformers model_name: numina_qwen_2.5_sft_cluster_v1_weighted_alpha2.0_split_0_no_normalize tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for numina_qwen_2.5_sft_cluster_v1_weighted_alpha2.0_split_0_no_normalize This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="None", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/chenwu/huggingface/runs/y0enbwao) This model was trained with SFT. ### Framework versions - TRL: 0.19.1 - Transformers: 4.51.1 - Pytorch: 2.7.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Rootu/blockassist-bc-snorting_fleecy_goose_1756468813
Rootu
2025-08-29T12:00:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "snorting fleecy goose", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T12:00:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - snorting fleecy goose --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
maxibillion1975/blockassist-bc-iridescent_squeaky_sandpiper_1756418261
maxibillion1975
2025-08-28T22:24:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "iridescent squeaky sandpiper", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T22:24:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - iridescent squeaky sandpiper --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-hairy_crested_fox_1756396681
AnerYubo
2025-08-28T15:58:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hairy crested fox", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T15:58:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hairy crested fox --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
coastalcph/Llama-2-7b-chat-1t_gcd_sycophanct-4t_diff_sycophant
coastalcph
2025-08-28T09:27:05Z
0
0
null
[ "safetensors", "llama", "region:us" ]
null
2025-08-28T09:24:52Z
# Combined Task Vector Model This model was created by combining task vectors from multiple fine-tuned models. ## Task Vector Computation ```python t_1 = TaskVector("meta-llama/Llama-2-7b-chat-hf", "coastalcph/Llama-2-7b-chat-gsm8k_sycophancy") t_2 = TaskVector("meta-llama/Llama-2-7b-chat-hf", "coastalcph/Llama-2-7b-chat-personality-non-sycophancy") t_combined = 1.0 * t_1 + 4.0 * t_2 - 4.0 * t_3 new_model = t_combined.apply_to("meta-llama/Llama-2-7b-chat-hf", scaling_coef=1.0) ``` Models Used - Base Model: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf - Fine-tuned Model 1: https://huggingface.co/coastalcph/Llama-2-7b-chat-gsm8k_sycophancy - Fine-tuned Model 2: https://huggingface.co/coastalcph/Llama-2-7b-chat-personality-non-sycophancy Technical Details - Creation Script Git Hash: d0db42d73be516ec04f0ecdc8003189e98b5f722 - Task Vector Method: Additive combination - Args: { "pretrained_model": "meta-llama/Llama-2-7b-chat-hf", "finetuned_model1": "coastalcph/Llama-2-7b-chat-gsm8k_sycophancy", "finetuned_model2": "coastalcph/Llama-2-7b-chat-personality-non-sycophancy", "finetuned_model3": "coastalcph/Llama-2-7b-chat-personality-sycophancy", "output_model_name": "coastalcph/Llama-2-7b-chat-1t_gcd_sycophanct-4t_diff_sycophant", "output_dir": "/projects/nlp/data/constanzam/weight-interp/task-vectors/math_non_sycophant_12Aug", "scaling_coef": 1.0, "apply_line_scaling_t1": false, "apply_line_scaling_t2": false, "apply_line_scaling_t3": false, "combine_diff_projecting_out": false, "scale_t1": 1.0, "scale_t2": 4.0, "scale_t3": 4.0 }
pidbu/blockassist-bc-whistling_alert_shrew_1756340323
pidbu
2025-08-28T00:20:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "whistling alert shrew", "arxiv:2504.07091", "region:us" ]
null
2025-08-28T00:19:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - whistling alert shrew --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bhavana-menon-case-viral-video/Original.videos.bhavana.menon.case.Viral.Video.links.Official.Tutorial
bhavana-menon-case-viral-video
2025-08-26T19:34:18Z
0
0
null
[ "region:us" ]
null
2025-08-26T19:34:03Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/mdfprj9k?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
pennylin09/uuu_fine_tune_taipower
pennylin09
2025-06-25T03:12:24Z
0
0
null
[ "safetensors", "gpt2", "license:apache-2.0", "region:us" ]
null
2025-06-25T02:37:17Z
--- license: apache-2.0 ---
pratyushmathur/q-FrozenLake-v1-4x4-noSlippery
pratyushmathur
2025-06-25T03:11:06Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-06-25T03:09:31Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="pratyushmathur/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ryan-wwj/pick-put-RGB01
ryan-wwj
2025-06-25T03:10:54Z
0
0
null
[ "safetensors", "license:apache-2.0", "region:us" ]
null
2025-06-25T03:01:39Z
--- license: apache-2.0 ---
Johnsonin/q-FrozenLake-v1
Johnsonin
2025-06-25T03:09:16Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-06-25T03:07:13Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Johnsonin/q-FrozenLake-v1", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Daniel-xue/uuu_fine_tune_taipower
Daniel-xue
2025-06-25T03:09:09Z
0
0
null
[ "safetensors", "gpt2", "license:apache-2.0", "region:us" ]
null
2025-06-25T02:24:04Z
--- license: apache-2.0 ---
John6666/illustrious-semi-realistic-anime-v30-sdxl
John6666
2025-06-25T03:08:54Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "realistic", "semi-realistic", "girls", "illustrious", "en", "base_model:OnomaAIResearch/Illustrious-xl-early-release-v0", "base_model:finetune:OnomaAIResearch/Illustrious-xl-early-release-v0", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-06-25T03:02:46Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - realistic - semi-realistic - girls - illustrious base_model: OnomaAIResearch/Illustrious-xl-early-release-v0 --- Original model is [here](https://civitai.com/models/1711896/illustrious-semi-realistic-anime?modelVersionId=1937224). This model created by [shishu21](https://civitai.com/user/shishu21).
NamVo/mini_r1_unsloth_lora128
NamVo
2025-06-25T03:08:11Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "unsloth", "trl", "grpo", "arxiv:2402.03300", "endpoints_compatible", "region:us" ]
null
2025-06-25T03:07:21Z
--- base_model: unsloth/qwen2.5-1.5b-instruct-unsloth-bnb-4bit library_name: transformers model_name: mini_r1_unsloth_lora128 tags: - generated_from_trainer - unsloth - trl - grpo licence: license --- # Model Card for mini_r1_unsloth_lora128 This model is a fine-tuned version of [unsloth/qwen2.5-1.5b-instruct-unsloth-bnb-4bit](https://huggingface.co/unsloth/qwen2.5-1.5b-instruct-unsloth-bnb-4bit). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="NamVo/mini_r1_unsloth_lora128", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/nvoz1812/huggingface/runs/vbjrbue6) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.18.2 - Transformers: 4.52.4 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
eatim/uuu_fine_tune_gpt2
eatim
2025-06-25T03:07:27Z
0
0
null
[ "safetensors", "gpt2", "license:apache-2.0", "region:us" ]
null
2025-06-25T02:28:33Z
--- license: apache-2.0 ---
mossynodes/ppo-Huggy
mossynodes
2025-06-25T03:07:17Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2025-06-25T03:07:11Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: mossynodes/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
Hiyuan0105/uuu_fine_tune_taipower
Hiyuan0105
2025-06-25T03:07:03Z
0
0
null
[ "safetensors", "gpt2", "license:apache-2.0", "region:us" ]
null
2025-06-25T02:59:36Z
--- license: apache-2.0 ---
iwagoro/layoutlm-docbank
iwagoro
2025-06-25T03:03:03Z
0
0
null
[ "tensorboard", "safetensors", "layoutlm", "generated_from_trainer", "base_model:microsoft/layoutlm-base-uncased", "base_model:finetune:microsoft/layoutlm-base-uncased", "license:mit", "region:us" ]
null
2025-06-23T16:37:55Z
--- license: mit base_model: microsoft/layoutlm-base-uncased tags: - generated_from_trainer model-index: - name: layoutlm-docbank results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlm-docbank This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2981 - Able: {'precision': 0.7228813559322034, 'recall': 0.8229618909792571, 'f1': 0.7696819309722536, 'number': 2073} - Aption: {'precision': 0.8535364768683275, 'recall': 0.8798578470709618, 'f1': 0.8664973186565058, 'number': 8723} - Aragraph: {'precision': 0.7315439151833142, 'recall': 0.7769411439624205, 'f1': 0.7535594242387018, 'number': 43428} - Ate: {'precision': 0.8031088082901554, 'recall': 0.8333333333333334, 'f1': 0.8179419525065963, 'number': 186} - Bstract: {'precision': 0.9137055837563451, 'recall': 0.9399477806788512, 'f1': 0.9266409266409267, 'number': 2298} - Ection: {'precision': 0.9108754155453538, 'recall': 0.9432786885245902, 'f1': 0.9267939115728436, 'number': 6100} - Eference: {'precision': 0.5945041816009558, 'recall': 0.7409172126265634, 'f1': 0.6596844756728092, 'number': 3358} - Igure: {'precision': 0.9959514170040485, 'recall': 0.9979716024340771, 'f1': 0.9969604863221885, 'number': 986} - Ist: {'precision': 0.6354533152909337, 'recall': 0.693853427895981, 'f1': 0.6633705325610961, 'number': 3384} - Itle: {'precision': 0.8534278959810875, 'recall': 0.8356481481481481, 'f1': 0.8444444444444444, 'number': 864} - Ooter: {'precision': 0.6076190476190476, 'recall': 0.7057522123893806, 'f1': 0.6530194472876152, 'number': 452} - Quation: {'precision': 0.6943667406192727, 'recall': 0.7324481074481074, 'f1': 0.7128992324832879, 'number': 19656} - Uthor: {'precision': 0.5667556742323098, 'recall': 0.616557734204793, 'f1': 0.5906086956521739, 'number': 1377} - Overall Precision: 0.7417 - Overall Recall: 0.7891 - Overall F1: 0.7647 - Overall Accuracy: 0.9639 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Able | Aption | Aragraph | Ate | Bstract | Ection | Eference | Igure | Ist | Itle | Ooter | Quation | Uthor | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.2526 | 1.0 | 1876 | 0.1649 | {'precision': 0.4146422628951747, 'recall': 0.6010612638687892, 'f1': 0.4907443875541552, 'number': 2073} | {'precision': 0.6553778613985576, 'recall': 0.7187894073139974, 'f1': 0.6856205576817933, 'number': 8723} | {'precision': 0.5402088876533895, 'recall': 0.6264621902919775, 'f1': 0.5801471372214522, 'number': 43428} | {'precision': 0.7005649717514124, 'recall': 0.6666666666666666, 'f1': 0.6831955922865013, 'number': 186} | {'precision': 0.7803265940902022, 'recall': 0.8733681462140992, 'f1': 0.8242299794661191, 'number': 2298} | {'precision': 0.8863070539419087, 'recall': 0.8754098360655738, 'f1': 0.8808247422680412, 'number': 6100} | {'precision': 0.5497456189937818, 'recall': 0.5792138177486599, 'f1': 0.5640951276102087, 'number': 3358} | {'precision': 0.9828801611278952, 'recall': 0.9898580121703854, 'f1': 0.9863567458312278, 'number': 986} | {'precision': 0.40529189416211675, 'recall': 0.5703309692671394, 'f1': 0.4738521973974957, 'number': 3384} | {'precision': 0.7797202797202797, 'recall': 0.7743055555555556, 'f1': 0.7770034843205574, 'number': 864} | {'precision': 0.17008797653958943, 'recall': 0.12831858407079647, 'f1': 0.1462799495586381, 'number': 452} | {'precision': 0.538917549099466, 'recall': 0.6058709808709809, 'f1': 0.5704363653781674, 'number': 19656} | {'precision': 0.2181916621548457, 'recall': 0.2926652142338417, 'f1': 0.25, 'number': 1377} | 0.5660 | 0.6469 | 0.6038 | 0.9444 | | 0.1508 | 2.0 | 3752 | 0.1490 | {'precision': 0.5242351323478859, 'recall': 0.7356488181379643, 'f1': 0.6122039341629867, 'number': 2073} | {'precision': 0.7619706320493722, 'recall': 0.8209331651954602, 'f1': 0.7903537332376801, 'number': 8723} | {'precision': 0.5979018162780395, 'recall': 0.6837293911761997, 'f1': 0.6379417767751638, 'number': 43428} | {'precision': 0.5978260869565217, 'recall': 0.8870967741935484, 'f1': 0.7142857142857144, 'number': 186} | {'precision': 0.8250298923874053, 'recall': 0.9007832898172323, 'f1': 0.8612440191387559, 'number': 2298} | {'precision': 0.8531830642704843, 'recall': 0.9183606557377049, 'f1': 0.8845728722564344, 'number': 6100} | {'precision': 0.6411569749924676, 'recall': 0.6337105419892793, 'f1': 0.6374120113823574, 'number': 3358} | {'precision': 0.987891019172553, 'recall': 0.9929006085192698, 'f1': 0.9903894790085989, 'number': 986} | {'precision': 0.458251953125, 'recall': 0.5546690307328606, 'f1': 0.5018716577540108, 'number': 3384} | {'precision': 0.7446808510638298, 'recall': 0.7696759259259259, 'f1': 0.7569721115537849, 'number': 864} | {'precision': 0.5972850678733032, 'recall': 0.584070796460177, 'f1': 0.5906040268456375, 'number': 452} | {'precision': 0.5535211267605634, 'recall': 0.6597985347985348, 'f1': 0.6020052917420973, 'number': 19656} | {'precision': 0.2989556135770235, 'recall': 0.33260711692084244, 'f1': 0.31488484015125473, 'number': 1377} | 0.6183 | 0.7058 | 0.6592 | 0.9525 | | 0.1176 | 3.0 | 5628 | 0.1530 | {'precision': 0.5526420341676599, 'recall': 0.6710082006753497, 'f1': 0.6061002178649237, 'number': 2073} | {'precision': 0.7773131767985418, 'recall': 0.8311360770377164, 'f1': 0.8033240997229917, 'number': 8723} | {'precision': 0.6078152985889651, 'recall': 0.6407617205489546, 'f1': 0.6238538280461833, 'number': 43428} | {'precision': 0.5854545454545454, 'recall': 0.8655913978494624, 'f1': 0.6984815618221257, 'number': 186} | {'precision': 0.8378161380971497, 'recall': 0.9081810269799826, 'f1': 0.8715807057840885, 'number': 2298} | {'precision': 0.8598871779234639, 'recall': 0.9245901639344263, 'f1': 0.8910656449956552, 'number': 6100} | {'precision': 0.5440832249674903, 'recall': 0.6229898749255509, 'f1': 0.5808690823268083, 'number': 3358} | {'precision': 0.9929292929292929, 'recall': 0.9969574036511156, 'f1': 0.9949392712550607, 'number': 986} | {'precision': 0.39487179487179486, 'recall': 0.45508274231678486, 'f1': 0.42284459088412957, 'number': 3384} | {'precision': 0.6833667334669339, 'recall': 0.7893518518518519, 'f1': 0.7325456498388828, 'number': 864} | {'precision': 0.43794579172610554, 'recall': 0.6792035398230089, 'f1': 0.5325238508239375, 'number': 452} | {'precision': 0.5741028804376977, 'recall': 0.5445156695156695, 'f1': 0.5589179874148149, 'number': 19656} | {'precision': 0.3929008567931457, 'recall': 0.4662309368191721, 'f1': 0.4264363998671538, 'number': 1377} | 0.6277 | 0.6600 | 0.6435 | 0.9527 | | 0.0871 | 4.0 | 7504 | 0.1564 | {'precision': 0.6151919866444073, 'recall': 0.7110467920887602, 'f1': 0.6596554038934884, 'number': 2073} | {'precision': 0.7617387738363748, 'recall': 0.8517711796400321, 'f1': 0.8042431130594794, 'number': 8723} | {'precision': 0.6353752874764792, 'recall': 0.6997789444597955, 'f1': 0.6660238006530934, 'number': 43428} | {'precision': 0.6217228464419475, 'recall': 0.8924731182795699, 'f1': 0.7328918322295807, 'number': 186} | {'precision': 0.8827993254637436, 'recall': 0.9112271540469974, 'f1': 0.8967880085653105, 'number': 2298} | {'precision': 0.8789195901893821, 'recall': 0.9281967213114755, 'f1': 0.9028863020251954, 'number': 6100} | {'precision': 0.5240302512808002, 'recall': 0.6396664681357951, 'f1': 0.5761029904787448, 'number': 3358} | {'precision': 0.9828629032258065, 'recall': 0.9888438133874239, 'f1': 0.9858442871587463, 'number': 986} | {'precision': 0.48228571428571426, 'recall': 0.6235224586288416, 'f1': 0.5438845212011857, 'number': 3384} | {'precision': 0.8669301712779973, 'recall': 0.7615740740740741, 'f1': 0.8108441158348736, 'number': 864} | {'precision': 0.542016806722689, 'recall': 0.5707964601769911, 'f1': 0.5560344827586207, 'number': 452} | {'precision': 0.6165904637491836, 'recall': 0.6723646723646723, 'f1': 0.6432708688245315, 'number': 19656} | {'precision': 0.46214852198990625, 'recall': 0.46550472040668117, 'f1': 0.4638205499276411, 'number': 1377} | 0.6553 | 0.7237 | 0.6878 | 0.9542 | | 0.0676 | 5.0 | 9380 | 0.1583 | {'precision': 0.6492985971943888, 'recall': 0.7814761215629522, 'f1': 0.7092819614711033, 'number': 2073} | {'precision': 0.8149818501814982, 'recall': 0.8493637510030952, 'f1': 0.8318176714943303, 'number': 8723} | {'precision': 0.6827026670477782, 'recall': 0.7149765128488533, 'f1': 0.6984669718476194, 'number': 43428} | {'precision': 0.9294871794871795, 'recall': 0.7795698924731183, 'f1': 0.847953216374269, 'number': 186} | {'precision': 0.8599190283400809, 'recall': 0.9242819843342036, 'f1': 0.890939597315436, 'number': 2298} | {'precision': 0.8848062015503876, 'recall': 0.9355737704918032, 'f1': 0.9094820717131474, 'number': 6100} | {'precision': 0.5955380577427821, 'recall': 0.6756998213222156, 'f1': 0.6330915178571428, 'number': 3358} | {'precision': 0.992936427850656, 'recall': 0.9979716024340771, 'f1': 0.9954476479514417, 'number': 986} | {'precision': 0.5794343113930743, 'recall': 0.6477541371158393, 'f1': 0.6116924794195621, 'number': 3384} | {'precision': 0.8134243458475541, 'recall': 0.8275462962962963, 'f1': 0.8204245553643145, 'number': 864} | {'precision': 0.6065573770491803, 'recall': 0.6548672566371682, 'f1': 0.6297872340425531, 'number': 452} | {'precision': 0.6497243107769424, 'recall': 0.6594424094424094, 'f1': 0.654547290814523, 'number': 19656} | {'precision': 0.46639784946236557, 'recall': 0.5039941902687001, 'f1': 0.4844677137870855, 'number': 1377} | 0.6989 | 0.7339 | 0.7160 | 0.9598 | | 0.0512 | 6.0 | 11256 | 0.1844 | {'precision': 0.645, 'recall': 0.7467438494934877, 'f1': 0.6921529175050302, 'number': 2073} | {'precision': 0.8094872076424728, 'recall': 0.8451220910237304, 'f1': 0.8269209197980932, 'number': 8723} | {'precision': 0.6710134048257372, 'recall': 0.7204107948788799, 'f1': 0.6948352636780563, 'number': 43428} | {'precision': 0.6753246753246753, 'recall': 0.8387096774193549, 'f1': 0.7482014388489209, 'number': 186} | {'precision': 0.8834745762711864, 'recall': 0.9073107049608355, 'f1': 0.8952340060111635, 'number': 2298} | {'precision': 0.9024081115335868, 'recall': 0.9337704918032786, 'f1': 0.9178214631002256, 'number': 6100} | {'precision': 0.4868008948545861, 'recall': 0.6480047647409172, 'f1': 0.5559529892692898, 'number': 3358} | {'precision': 0.9929292929292929, 'recall': 0.9969574036511156, 'f1': 0.9949392712550607, 'number': 986} | {'precision': 0.5424300867888139, 'recall': 0.6648936170212766, 'f1': 0.5974508762612852, 'number': 3384} | {'precision': 0.7554179566563467, 'recall': 0.8472222222222222, 'f1': 0.7986906710310966, 'number': 864} | {'precision': 0.6563981042654028, 'recall': 0.6128318584070797, 'f1': 0.6338672768878719, 'number': 452} | {'precision': 0.650782911270056, 'recall': 0.685083435083435, 'f1': 0.6674928125309805, 'number': 19656} | {'precision': 0.4430835734870317, 'recall': 0.4466230936819172, 'f1': 0.4448462929475588, 'number': 1377} | 0.6856 | 0.7390 | 0.7113 | 0.9578 | | 0.0389 | 7.0 | 13132 | 0.2002 | {'precision': 0.6875749101078705, 'recall': 0.8301977809937289, 'f1': 0.7521853146853146, 'number': 2073} | {'precision': 0.798666243251826, 'recall': 0.8649547174137338, 'f1': 0.8304898183819481, 'number': 8723} | {'precision': 0.6971504451749134, 'recall': 0.7374274661508704, 'f1': 0.7167235494880546, 'number': 43428} | {'precision': 0.774869109947644, 'recall': 0.7956989247311828, 'f1': 0.7851458885941645, 'number': 186} | {'precision': 0.8827004219409282, 'recall': 0.9103568320278503, 'f1': 0.8963153384747214, 'number': 2298} | {'precision': 0.9097432626375379, 'recall': 0.9352459016393443, 'f1': 0.9223183251151887, 'number': 6100} | {'precision': 0.6794092093831451, 'recall': 0.6986301369863014, 'f1': 0.6888856261929232, 'number': 3358} | {'precision': 0.9959473150962512, 'recall': 0.9969574036511156, 'f1': 0.9964521033958439, 'number': 986} | {'precision': 0.5793751587503175, 'recall': 0.6740543735224587, 'f1': 0.6231389154487093, 'number': 3384} | {'precision': 0.834128878281623, 'recall': 0.8090277777777778, 'f1': 0.8213866039952996, 'number': 864} | {'precision': 0.6046511627906976, 'recall': 0.6327433628318584, 'f1': 0.6183783783783783, 'number': 452} | {'precision': 0.6526806526806527, 'recall': 0.698005698005698, 'f1': 0.6745826880055068, 'number': 19656} | {'precision': 0.46461949265687585, 'recall': 0.5054466230936819, 'f1': 0.4841739130434783, 'number': 1377} | 0.7101 | 0.7563 | 0.7325 | 0.9579 | | 0.0281 | 8.0 | 15008 | 0.2068 | {'precision': 0.7080638206123329, 'recall': 0.7920887602508442, 'f1': 0.7477231329690345, 'number': 2073} | {'precision': 0.8085677474769165, 'recall': 0.8633497649891092, 'f1': 0.8350612629594723, 'number': 8723} | {'precision': 0.7156752540662064, 'recall': 0.7183614258082344, 'f1': 0.7170158241303624, 'number': 43428} | {'precision': 0.578397212543554, 'recall': 0.8924731182795699, 'f1': 0.7019027484143764, 'number': 186} | {'precision': 0.8733221476510067, 'recall': 0.9060052219321149, 'f1': 0.8893635198633062, 'number': 2298} | {'precision': 0.9074427480916031, 'recall': 0.9354098360655738, 'f1': 0.9212140781401356, 'number': 6100} | {'precision': 0.6934523809523809, 'recall': 0.6938653960690887, 'f1': 0.6936588270318546, 'number': 3358} | {'precision': 0.9979736575481256, 'recall': 0.9989858012170385, 'f1': 0.9984794728839331, 'number': 986} | {'precision': 0.5753681392235609, 'recall': 0.6350472813238771, 'f1': 0.6037364798426745, 'number': 3384} | {'precision': 0.8312958435207825, 'recall': 0.7870370370370371, 'f1': 0.8085612366230678, 'number': 864} | {'precision': 0.5778688524590164, 'recall': 0.6238938053097345, 'f1': 0.6, 'number': 452} | {'precision': 0.693010752688172, 'recall': 0.6557794057794057, 'f1': 0.6738812212463404, 'number': 19656} | {'precision': 0.5053262316910786, 'recall': 0.55119825708061, 'f1': 0.5272664119485932, 'number': 1377} | 0.7302 | 0.7364 | 0.7333 | 0.9604 | | 0.0222 | 9.0 | 16884 | 0.2193 | {'precision': 0.6235811058220432, 'recall': 0.8215147129763628, 'f1': 0.708992506244796, 'number': 2073} | {'precision': 0.8264917003140422, 'recall': 0.8447781726470251, 'f1': 0.8355348942683827, 'number': 8723} | {'precision': 0.7017585809621112, 'recall': 0.7433683337938657, 'f1': 0.7219644194965952, 'number': 43428} | {'precision': 0.90625, 'recall': 0.7795698924731183, 'f1': 0.838150289017341, 'number': 186} | {'precision': 0.8704156479217604, 'recall': 0.9295039164490861, 'f1': 0.898989898989899, 'number': 2298} | {'precision': 0.9143317230273752, 'recall': 0.9308196721311476, 'f1': 0.922502030869212, 'number': 6100} | {'precision': 0.5801470588235295, 'recall': 0.704883859440143, 'f1': 0.6364614143586985, 'number': 3358} | {'precision': 0.9949443882709808, 'recall': 0.9979716024340771, 'f1': 0.9964556962025316, 'number': 986} | {'precision': 0.6149458071876782, 'recall': 0.6371158392434988, 'f1': 0.6258345428156749, 'number': 3384} | {'precision': 0.8431137724550898, 'recall': 0.8148148148148148, 'f1': 0.8287227781047676, 'number': 864} | {'precision': 0.6629711751662971, 'recall': 0.661504424778761, 'f1': 0.6622369878183831, 'number': 452} | {'precision': 0.6730908214887978, 'recall': 0.7107244607244607, 'f1': 0.6913959070550098, 'number': 19656} | {'precision': 0.5108055009823183, 'recall': 0.5664488017429193, 'f1': 0.537190082644628, 'number': 1377} | 0.7156 | 0.7598 | 0.7371 | 0.9596 | | 0.0162 | 10.0 | 18760 | 0.2114 | {'precision': 0.6486062033765214, 'recall': 0.7969126869271587, 'f1': 0.7151515151515152, 'number': 2073} | {'precision': 0.8267941532036488, 'recall': 0.8624326493178952, 'f1': 0.8442374593199417, 'number': 8723} | {'precision': 0.7077005538681437, 'recall': 0.7296674956249425, 'f1': 0.7185161670672531, 'number': 43428} | {'precision': 0.9085365853658537, 'recall': 0.8010752688172043, 'f1': 0.8514285714285714, 'number': 186} | {'precision': 0.844675740592474, 'recall': 0.918189730200174, 'f1': 0.8798999165971642, 'number': 2298} | {'precision': 0.9145987753786659, 'recall': 0.9304918032786885, 'f1': 0.9224768405655778, 'number': 6100} | {'precision': 0.5639344262295082, 'recall': 0.6658725431804645, 'f1': 0.6106786835996176, 'number': 3358} | {'precision': 0.9959514170040485, 'recall': 0.9979716024340771, 'f1': 0.9969604863221885, 'number': 986} | {'precision': 0.6411883472743005, 'recall': 0.6569148936170213, 'f1': 0.6489563567362429, 'number': 3384} | {'precision': 0.8991935483870968, 'recall': 0.7743055555555556, 'f1': 0.832089552238806, 'number': 864} | {'precision': 0.5370018975332068, 'recall': 0.6261061946902655, 'f1': 0.5781409601634322, 'number': 452} | {'precision': 0.6896913159687648, 'recall': 0.6695156695156695, 'f1': 0.6794537522265535, 'number': 19656} | {'precision': 0.5298196948682385, 'recall': 0.5548293391430646, 'f1': 0.5420361830436324, 'number': 1377} | 0.7237 | 0.7441 | 0.7338 | 0.9611 | | 0.0138 | 11.0 | 20636 | 0.2391 | {'precision': 0.664185277088503, 'recall': 0.7747226242161119, 'f1': 0.7152081941661101, 'number': 2073} | {'precision': 0.8144112087178917, 'recall': 0.8396193969964462, 'f1': 0.8268232106570332, 'number': 8723} | {'precision': 0.7044044130322358, 'recall': 0.7527401676337847, 'f1': 0.7277706042121198, 'number': 43428} | {'precision': 0.8324022346368715, 'recall': 0.8010752688172043, 'f1': 0.8164383561643834, 'number': 186} | {'precision': 0.8978132884777124, 'recall': 0.9290687554395126, 'f1': 0.9131736526946108, 'number': 2298} | {'precision': 0.9141269841269841, 'recall': 0.9440983606557377, 'f1': 0.9288709677419354, 'number': 6100} | {'precision': 0.5543908688562776, 'recall': 0.7087552114353782, 'f1': 0.6221408966148216, 'number': 3358} | {'precision': 0.9949494949494949, 'recall': 0.9989858012170385, 'f1': 0.9969635627530363, 'number': 986} | {'precision': 0.5981259760541384, 'recall': 0.6790780141843972, 'f1': 0.6360365347356767, 'number': 3384} | {'precision': 0.8146453089244852, 'recall': 0.8240740740740741, 'f1': 0.8193325661680093, 'number': 864} | {'precision': 0.6401673640167364, 'recall': 0.6769911504424779, 'f1': 0.6580645161290323, 'number': 452} | {'precision': 0.6891924859721883, 'recall': 0.7186100936100936, 'f1': 0.7035939329032901, 'number': 19656} | {'precision': 0.530638852672751, 'recall': 0.5911401597676107, 'f1': 0.5592579869460667, 'number': 1377} | 0.7187 | 0.7674 | 0.7423 | 0.9601 | | 0.0099 | 12.0 | 22512 | 0.2190 | {'precision': 0.5986635220125787, 'recall': 0.7346840328027014, 'f1': 0.6597357591509638, 'number': 2073} | {'precision': 0.8261346196009647, 'recall': 0.863922962283618, 'f1': 0.844606332305968, 'number': 8723} | {'precision': 0.7126507076708021, 'recall': 0.7513125172699641, 'f1': 0.7314711025422589, 'number': 43428} | {'precision': 0.8630952380952381, 'recall': 0.7795698924731183, 'f1': 0.8192090395480226, 'number': 186} | {'precision': 0.8786008230452675, 'recall': 0.9290687554395126, 'f1': 0.9031302876480541, 'number': 2298} | {'precision': 0.8979878334113243, 'recall': 0.9437704918032787, 'f1': 0.9203101270881625, 'number': 6100} | {'precision': 0.5727510087823404, 'recall': 0.7185824895771292, 'f1': 0.6374323074891033, 'number': 3358} | {'precision': 0.9969604863221885, 'recall': 0.9979716024340771, 'f1': 0.9974657881398886, 'number': 986} | {'precision': 0.6077103412346966, 'recall': 0.6894208037825059, 'f1': 0.6459919700955282, 'number': 3384} | {'precision': 0.8236632536973834, 'recall': 0.8379629629629629, 'f1': 0.8307515777395296, 'number': 864} | {'precision': 0.6161417322834646, 'recall': 0.6924778761061947, 'f1': 0.6520833333333333, 'number': 452} | {'precision': 0.705915521837195, 'recall': 0.7006003256003256, 'f1': 0.7032478807067715, 'number': 19656} | {'precision': 0.4981527093596059, 'recall': 0.5875090777051561, 'f1': 0.5391536154615129, 'number': 1377} | 0.7251 | 0.7652 | 0.7446 | 0.9624 | | 0.0084 | 13.0 | 24388 | 0.2592 | {'precision': 0.6832247557003257, 'recall': 0.8094548962855764, 'f1': 0.741002428792228, 'number': 2073} | {'precision': 0.8483670295489891, 'recall': 0.8755015476326952, 'f1': 0.8617207334273626, 'number': 8723} | {'precision': 0.7274626600284495, 'recall': 0.7536612323846367, 'f1': 0.7403302420266908, 'number': 43428} | {'precision': 0.8361581920903954, 'recall': 0.7956989247311828, 'f1': 0.815426997245179, 'number': 186} | {'precision': 0.9015565839293227, 'recall': 0.9325500435161009, 'f1': 0.9167914438502675, 'number': 2298} | {'precision': 0.9054671498345676, 'recall': 0.9421311475409836, 'f1': 0.9234353659516349, 'number': 6100} | {'precision': 0.6139511458071015, 'recall': 0.726027397260274, 'f1': 0.6653022240414791, 'number': 3358} | {'precision': 0.9959514170040485, 'recall': 0.9979716024340771, 'f1': 0.9969604863221885, 'number': 986} | {'precision': 0.6385964912280702, 'recall': 0.6453900709219859, 'f1': 0.6419753086419754, 'number': 3384} | {'precision': 0.7660223804679552, 'recall': 0.8715277777777778, 'f1': 0.8153762858689767, 'number': 864} | {'precision': 0.6666666666666666, 'recall': 0.6548672566371682, 'f1': 0.6607142857142857, 'number': 452} | {'precision': 0.6978891162233645, 'recall': 0.7114875864875865, 'f1': 0.7046227484569845, 'number': 19656} | {'precision': 0.5463768115942029, 'recall': 0.5475671750181554, 'f1': 0.5469713456655786, 'number': 1377} | 0.7401 | 0.7695 | 0.7545 | 0.9625 | | 0.0073 | 14.0 | 26264 | 0.2561 | {'precision': 0.7177685950413223, 'recall': 0.8379160636758322, 'f1': 0.7732027598486534, 'number': 2073} | {'precision': 0.8424081451969898, 'recall': 0.8726355611601513, 'f1': 0.857255476096627, 'number': 8723} | {'precision': 0.7259802747599661, 'recall': 0.7678226029289859, 'f1': 0.7463154242997349, 'number': 43428} | {'precision': 0.8418079096045198, 'recall': 0.8010752688172043, 'f1': 0.8209366391184573, 'number': 186} | {'precision': 0.8990787269681743, 'recall': 0.9342906875543951, 'f1': 0.9163465642338883, 'number': 2298} | {'precision': 0.9077385662288336, 'recall': 0.940327868852459, 'f1': 0.9237458732587165, 'number': 6100} | {'precision': 0.653671562082777, 'recall': 0.7290053603335319, 'f1': 0.6892862170913698, 'number': 3358} | {'precision': 0.9929292929292929, 'recall': 0.9969574036511156, 'f1': 0.9949392712550607, 'number': 986} | {'precision': 0.6193029490616622, 'recall': 0.6826241134751773, 'f1': 0.649423671633399, 'number': 3384} | {'precision': 0.7925531914893617, 'recall': 0.8622685185185185, 'f1': 0.8259423503325941, 'number': 864} | {'precision': 0.6074950690335306, 'recall': 0.6814159292035398, 'f1': 0.6423357664233577, 'number': 452} | {'precision': 0.6859747275007234, 'recall': 0.7235958485958486, 'f1': 0.7042832384253528, 'number': 19656} | {'precision': 0.5440105890138981, 'recall': 0.5969498910675382, 'f1': 0.569252077562327, 'number': 1377} | 0.7372 | 0.7812 | 0.7586 | 0.9625 | | 0.0052 | 15.0 | 28140 | 0.2620 | {'precision': 0.7276975361087511, 'recall': 0.8263386396526773, 'f1': 0.7738875084707477, 'number': 2073} | {'precision': 0.8463771352015184, 'recall': 0.869081737934197, 'f1': 0.857579185520362, 'number': 8723} | {'precision': 0.7304345910702879, 'recall': 0.7635857050750667, 'f1': 0.7466423497360037, 'number': 43428} | {'precision': 0.6781115879828327, 'recall': 0.8494623655913979, 'f1': 0.7541766109785203, 'number': 186} | {'precision': 0.8993736951983299, 'recall': 0.9373368146214099, 'f1': 0.9179629235030897, 'number': 2298} | {'precision': 0.9117043121149897, 'recall': 0.9462295081967214, 'f1': 0.9286461266189365, 'number': 6100} | {'precision': 0.6430079155672823, 'recall': 0.7257296009529481, 'f1': 0.6818690542809177, 'number': 3358} | {'precision': 0.9949392712550608, 'recall': 0.9969574036511156, 'f1': 0.9959473150962513, 'number': 986} | {'precision': 0.6221982176613556, 'recall': 0.6808510638297872, 'f1': 0.6502045999717792, 'number': 3384} | {'precision': 0.7815126050420168, 'recall': 0.8611111111111112, 'f1': 0.8193832599118943, 'number': 864} | {'precision': 0.5786713286713286, 'recall': 0.7323008849557522, 'f1': 0.6464843749999999, 'number': 452} | {'precision': 0.7015840321710558, 'recall': 0.7278184778184779, 'f1': 0.7144605089020399, 'number': 19656} | {'precision': 0.5367936925098554, 'recall': 0.5933188090050835, 'f1': 0.5636426353915143, 'number': 1377} | 0.7425 | 0.7801 | 0.7609 | 0.9624 | | 0.0042 | 16.0 | 30016 | 0.2755 | {'precision': 0.697255223269152, 'recall': 0.8210323203087313, 'f1': 0.7540983606557377, 'number': 2073} | {'precision': 0.8434147959747871, 'recall': 0.8743551530436776, 'f1': 0.858606326691433, 'number': 8723} | {'precision': 0.7236266459774574, 'recall': 0.7731647784839274, 'f1': 0.7475759498602902, 'number': 43428} | {'precision': 0.8277777777777777, 'recall': 0.8010752688172043, 'f1': 0.8142076502732241, 'number': 186} | {'precision': 0.9060402684563759, 'recall': 0.9399477806788512, 'f1': 0.922682614267407, 'number': 2298} | {'precision': 0.9122500793398921, 'recall': 0.9424590163934427, 'f1': 0.9271085308821158, 'number': 6100} | {'precision': 0.6392307692307693, 'recall': 0.7424061941631924, 'f1': 0.6869661063653899, 'number': 3358} | {'precision': 0.9959514170040485, 'recall': 0.9979716024340771, 'f1': 0.9969604863221885, 'number': 986} | {'precision': 0.6294667399670149, 'recall': 0.6767139479905437, 'f1': 0.6522358302477927, 'number': 3384} | {'precision': 0.8457943925233645, 'recall': 0.8379629629629629, 'f1': 0.8418604651162791, 'number': 864} | {'precision': 0.5521885521885522, 'recall': 0.7256637168141593, 'f1': 0.6271510516252391, 'number': 452} | {'precision': 0.6809746954076851, 'recall': 0.7393162393162394, 'f1': 0.7089472143623768, 'number': 19656} | {'precision': 0.5562870309414089, 'recall': 0.6136528685548294, 'f1': 0.5835635359116023, 'number': 1377} | 0.7346 | 0.7876 | 0.7602 | 0.9623 | | 0.0033 | 17.0 | 31892 | 0.2743 | {'precision': 0.7272325375773652, 'recall': 0.7935359382537386, 'f1': 0.7589388696655133, 'number': 2073} | {'precision': 0.845837501389352, 'recall': 0.8724062822423478, 'f1': 0.8589164785553048, 'number': 8723} | {'precision': 0.7257006300238975, 'recall': 0.7691811734364926, 'f1': 0.7468085582060856, 'number': 43428} | {'precision': 0.8869047619047619, 'recall': 0.8010752688172043, 'f1': 0.8418079096045197, 'number': 186} | {'precision': 0.9024800336275746, 'recall': 0.9342906875543951, 'f1': 0.9181098995082317, 'number': 2298} | {'precision': 0.9123361238350971, 'recall': 0.9468852459016394, 'f1': 0.9292896790282358, 'number': 6100} | {'precision': 0.5567105567105567, 'recall': 0.7176891006551519, 'f1': 0.6270326525302459, 'number': 3358} | {'precision': 0.993933265925177, 'recall': 0.9969574036511156, 'f1': 0.9954430379746836, 'number': 986} | {'precision': 0.6185107498689041, 'recall': 0.6971040189125296, 'f1': 0.6554598499583218, 'number': 3384} | {'precision': 0.8841309823677582, 'recall': 0.8125, 'f1': 0.8468033775633294, 'number': 864} | {'precision': 0.6304347826086957, 'recall': 0.7057522123893806, 'f1': 0.6659707724425887, 'number': 452} | {'precision': 0.7017227075301352, 'recall': 0.7315323565323565, 'f1': 0.7163175330659826, 'number': 19656} | {'precision': 0.5604838709677419, 'recall': 0.6056644880174292, 'f1': 0.5821989528795811, 'number': 1377} | 0.7377 | 0.7829 | 0.7596 | 0.9630 | | 0.003 | 18.0 | 33768 | 0.2938 | {'precision': 0.7085594989561587, 'recall': 0.818620356970574, 'f1': 0.7596239928379588, 'number': 2073} | {'precision': 0.8580645161290322, 'recall': 0.869081737934197, 'f1': 0.8635379883813646, 'number': 8723} | {'precision': 0.7304742970746947, 'recall': 0.7699180252371741, 'f1': 0.7496776941962533, 'number': 43428} | {'precision': 0.6926406926406926, 'recall': 0.8602150537634409, 'f1': 0.7673860911270983, 'number': 186} | {'precision': 0.9013848090642048, 'recall': 0.9347258485639687, 'f1': 0.9177526169621877, 'number': 2298} | {'precision': 0.9117088607594936, 'recall': 0.9445901639344262, 'f1': 0.9278582930756843, 'number': 6100} | {'precision': 0.6144427786106946, 'recall': 0.7322811197141156, 'f1': 0.6682065217391304, 'number': 3358} | {'precision': 0.9959514170040485, 'recall': 0.9979716024340771, 'f1': 0.9969604863221885, 'number': 986} | {'precision': 0.6367369285518751, 'recall': 0.6873522458628841, 'f1': 0.6610771635640187, 'number': 3384} | {'precision': 0.8362168396770473, 'recall': 0.8391203703703703, 'f1': 0.8376660889659157, 'number': 864} | {'precision': 0.6334661354581673, 'recall': 0.7035398230088495, 'f1': 0.6666666666666667, 'number': 452} | {'precision': 0.6995040357872216, 'recall': 0.7318884818884819, 'f1': 0.7153299189498284, 'number': 19656} | {'precision': 0.5398574206092028, 'recall': 0.6049382716049383, 'f1': 0.5705479452054795, 'number': 1377} | 0.7426 | 0.7839 | 0.7627 | 0.9631 | | 0.0025 | 19.0 | 35644 | 0.2990 | {'precision': 0.707874337005304, 'recall': 0.8369512783405693, 'f1': 0.7670203359858533, 'number': 2073} | {'precision': 0.8577489950870925, 'recall': 0.8806603232832741, 'f1': 0.8690536795067595, 'number': 8723} | {'precision': 0.7345506842151137, 'recall': 0.7762273187805103, 'f1': 0.7548141513658755, 'number': 43428} | {'precision': 0.8105263157894737, 'recall': 0.8279569892473119, 'f1': 0.8191489361702128, 'number': 186} | {'precision': 0.9, 'recall': 0.9399477806788512, 'f1': 0.9195402298850573, 'number': 2298} | {'precision': 0.908573236317621, 'recall': 0.9416393442622951, 'f1': 0.9248108195137659, 'number': 6100} | {'precision': 0.61839821472849, 'recall': 0.7427039904705182, 'f1': 0.6748748477878501, 'number': 3358} | {'precision': 0.9959514170040485, 'recall': 0.9979716024340771, 'f1': 0.9969604863221885, 'number': 986} | {'precision': 0.6411716842961758, 'recall': 0.6985815602836879, 'f1': 0.6686465846414934, 'number': 3384} | {'precision': 0.8677184466019418, 'recall': 0.8275462962962963, 'f1': 0.8471563981042655, 'number': 864} | {'precision': 0.6414342629482072, 'recall': 0.7123893805309734, 'f1': 0.6750524109014675, 'number': 452} | {'precision': 0.6951624548736463, 'recall': 0.7347374847374848, 'f1': 0.7144023150552794, 'number': 19656} | {'precision': 0.5524115755627009, 'recall': 0.6238198983297023, 'f1': 0.5859481582537517, 'number': 1377} | 0.7443 | 0.7898 | 0.7664 | 0.9635 | | 0.0021 | 20.0 | 37520 | 0.2981 | {'precision': 0.7228813559322034, 'recall': 0.8229618909792571, 'f1': 0.7696819309722536, 'number': 2073} | {'precision': 0.8535364768683275, 'recall': 0.8798578470709618, 'f1': 0.8664973186565058, 'number': 8723} | {'precision': 0.7315439151833142, 'recall': 0.7769411439624205, 'f1': 0.7535594242387018, 'number': 43428} | {'precision': 0.8031088082901554, 'recall': 0.8333333333333334, 'f1': 0.8179419525065963, 'number': 186} | {'precision': 0.9137055837563451, 'recall': 0.9399477806788512, 'f1': 0.9266409266409267, 'number': 2298} | {'precision': 0.9108754155453538, 'recall': 0.9432786885245902, 'f1': 0.9267939115728436, 'number': 6100} | {'precision': 0.5945041816009558, 'recall': 0.7409172126265634, 'f1': 0.6596844756728092, 'number': 3358} | {'precision': 0.9959514170040485, 'recall': 0.9979716024340771, 'f1': 0.9969604863221885, 'number': 986} | {'precision': 0.6354533152909337, 'recall': 0.693853427895981, 'f1': 0.6633705325610961, 'number': 3384} | {'precision': 0.8534278959810875, 'recall': 0.8356481481481481, 'f1': 0.8444444444444444, 'number': 864} | {'precision': 0.6076190476190476, 'recall': 0.7057522123893806, 'f1': 0.6530194472876152, 'number': 452} | {'precision': 0.6943667406192727, 'recall': 0.7324481074481074, 'f1': 0.7128992324832879, 'number': 19656} | {'precision': 0.5667556742323098, 'recall': 0.616557734204793, 'f1': 0.5906086956521739, 'number': 1377} | 0.7417 | 0.7891 | 0.7647 | 0.9639 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.15.1
std10012/uuu_fine_tune_taipower
std10012
2025-06-25T03:02:49Z
0
0
null
[ "safetensors", "gpt2", "license:apache-2.0", "region:us" ]
null
2025-06-25T02:25:10Z
--- license: apache-2.0 ---
Yuichi1218/Llama-3.1-Non-filter-Lafeak73-8B-chatvector
Yuichi1218
2025-06-25T03:02:20Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-25T02:55:57Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Bill0204Tung/uuu_fine_tune_taipower
Bill0204Tung
2025-06-25T03:01:48Z
0
0
null
[ "safetensors", "gpt2", "license:apache-2.0", "region:us" ]
null
2025-06-25T02:23:59Z
--- license: apache-2.0 ---
tracylu00200/uuu_fine_tune_taipower
tracylu00200
2025-06-25T03:01:41Z
0
0
null
[ "safetensors", "gpt2", "license:apache-2.0", "region:us" ]
null
2025-06-25T02:31:47Z
--- license: apache-2.0 ---
Cameron914/uuu_fine_tune_taipower
Cameron914
2025-06-25T03:00:26Z
0
0
null
[ "safetensors", "gpt2", "license:apache-2.0", "region:us" ]
null
2025-06-25T01:34:11Z
--- license: apache-2.0 ---
Baistiac/uuu_fine_tune_taipower
Baistiac
2025-06-25T02:59:56Z
0
0
null
[ "safetensors", "gpt2", "license:apache-2.0", "region:us" ]
null
2025-06-25T02:43:50Z
--- license: apache-2.0 ---
JS1016/uuu_fine_tune_taipower
JS1016
2025-06-25T02:59:23Z
0
0
null
[ "safetensors", "gpt2", "license:apache-2.0", "region:us" ]
null
2025-06-25T02:25:52Z
--- license: apache-2.0 ---
Hiyuan0105/tcp2023
Hiyuan0105
2025-06-25T02:59:22Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-25T02:59:22Z
--- license: apache-2.0 ---
SrivatsaBhamidipati/CodeLlama-13b-Instruct-hf
SrivatsaBhamidipati
2025-06-25T02:57:53Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:codellama/CodeLlama-13b-Instruct-hf", "base_model:adapter:codellama/CodeLlama-13b-Instruct-hf", "license:llama2", "region:us" ]
null
2025-06-25T00:57:34Z
--- library_name: peft license: llama2 base_model: codellama/CodeLlama-13b-Instruct-hf tags: - generated_from_trainer model-index: - name: CodeLlama-13b-Instruct-hf results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CodeLlama-13b-Instruct-hf This model is a fine-tuned version of [codellama/CodeLlama-13b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.15.2 - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1
mlx-community/Cydonia-24B-v3.1-bf16
mlx-community
2025-06-25T02:55:35Z
0
0
mlx
[ "mlx", "safetensors", "mistral", "text-generation", "base_model:TheDrummer/Cydonia-24B-v3.1", "base_model:finetune:TheDrummer/Cydonia-24B-v3.1", "region:us" ]
text-generation
2025-06-25T02:41:48Z
--- base_model: TheDrummer/Cydonia-24B-v3.1 tags: - mlx library_name: mlx pipeline_tag: text-generation --- # mlx-community/Cydonia-24B-v3.1-bf16 This model [mlx-community/Cydonia-24B-v3.1-bf16](https://huggingface.co/mlx-community/Cydonia-24B-v3.1-bf16) was converted to MLX format from [TheDrummer/Cydonia-24B-v3.1](https://huggingface.co/TheDrummer/Cydonia-24B-v3.1) using mlx-lm version **0.25.2**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/Cydonia-24B-v3.1-bf16") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
Louischong/Trellis-OA
Louischong
2025-06-25T02:50:46Z
0
0
trellis-oa
[ "trellis-oa", "image-to-3d", "en", "arxiv:2506.08640", "license:mit", "region:us" ]
image-to-3d
2025-06-25T01:51:40Z
--- library_name: trellis-oa pipeline_tag: image-to-3d license: mit language: - en --- # TRELLIS-OA <!-- Provide a quick summary of what the model is/does. --> TRELLIS-OA, a large 3D genetive model produces orientation-aligned 3D objects. It was introduced in the paper [Orientation Matters: Making 3D Generative Models Orientation-Aligned](https://huggingface.co/papers/2506.08640). Project page: https://xdimlab.github.io/Orientation_Matters/ Code: https://github.com/YichongLu/Orientation_Matters
fancyerii/taxi-v3
fancyerii
2025-06-25T02:50:43Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-06-25T02:50:42Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="fancyerii/taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
jyunjia/SB0625
jyunjia
2025-06-25T02:50:21Z
0
0
null
[ "safetensors", "license:apache-2.0", "region:us" ]
null
2025-06-25T02:31:50Z
--- license: apache-2.0 ---
ZeeeWP/Qwen3-8B_Qwen3-0.6B
ZeeeWP
2025-06-25T02:50:02Z
0
0
transformers
[ "transformers", "safetensors", "customize_ensemble", "feature-extraction", "custom_code", "arxiv:1910.09700", "region:us" ]
feature-extraction
2025-06-25T02:48:00Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Cem13/lora_model1_48_0099
Cem13
2025-06-25T02:49:29Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "base_model:unsloth/Qwen2.5-7B-Instruct", "base_model:finetune:unsloth/Qwen2.5-7B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-25T02:47:32Z
--- base_model: unsloth/Qwen2.5-7B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Cem13 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-7B-Instruct This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
daixuancheng/sac_static0.1_constrainbyAdv_step160
daixuancheng
2025-06-25T02:49:01Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-24T06:17:05Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sergioalves/e3e2072b-f7c2-4357-bf7c-feb72a43dfc6
sergioalves
2025-06-25T02:47:49Z
0
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "llama", "text-generation", "generated_from_trainer", "axolotl", "dpo", "trl", "unsloth", "conversational", "arxiv:2305.18290", "base_model:unsloth/tinyllama-chat", "base_model:quantized:unsloth/tinyllama-chat", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-06-25T02:40:39Z
--- base_model: unsloth/tinyllama-chat library_name: transformers model_name: e3e2072b-f7c2-4357-bf7c-feb72a43dfc6 tags: - generated_from_trainer - axolotl - dpo - trl - unsloth licence: license --- # Model Card for e3e2072b-f7c2-4357-bf7c-feb72a43dfc6 This model is a fine-tuned version of [unsloth/tinyllama-chat](https://huggingface.co/unsloth/tinyllama-chat). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="sergioalves/e3e2072b-f7c2-4357-bf7c-feb72a43dfc6", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/dedok-yo/s56-7/runs/n1905edd) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.46.0 - Pytorch: 2.5.0+cu124 - Datasets: 3.0.1 - Tokenizers: 0.20.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
NTIS/hf_gemma3_21-checkpoint-128000
NTIS
2025-06-25T02:44:37Z
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "pytorch", "causal-lm", "ko", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-25T02:42:23Z
--- license: apache-2.0 language: - ko - en tags: - text-generation - pytorch - causal-lm library_name: transformers --- # hf_gemma3_21-checkpoint-128000 ์ด ๋ชจ๋ธ์€ ํŒŒ์ธํŠœ๋‹๋œ ์–ธ์–ด ๋ชจ๋ธ ์ฒดํฌํฌ์ธํŠธ์ž…๋‹ˆ๋‹ค. ## ๋ชจ๋ธ ์ •๋ณด - **๋ฒ ์ด์Šค ๋ชจ๋ธ**: hf_gemma3_21 - **์ฒดํฌํฌ์ธํŠธ**: checkpoint-128000 - **ํƒ€์ž…**: Causal Language Model - **๋ผ์ด์„ ์Šค**: Apache 2.0 ## ์‚ฌ์šฉ ๋ฐฉ๋ฒ• ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_name = "NTIS/hf_gemma3_21-checkpoint-128000" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, device_map="auto" ) # ํ…์ŠคํŠธ ์ƒ์„ฑ text = "์•ˆ๋…•ํ•˜์„ธ์š”" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_length=100, do_sample=True, temperature=0.7) result = tokenizer.decode(outputs[0], skip_special_tokens=True) print(result) ``` ## ์ฃผ์˜์‚ฌํ•ญ - ์ด ๋ชจ๋ธ์€ ์—ฐ๊ตฌ/์‹คํ—˜ ๋ชฉ์ ์œผ๋กœ ์ œ๊ณต๋ฉ๋‹ˆ๋‹ค - ์ƒ์—…์  ์‚ฌ์šฉ ์ „์— ๋ผ์ด์„ ์Šค๋ฅผ ํ™•์ธํ•˜์„ธ์š”
yaobo2816/Qwen2.5-GRPO
yaobo2816
2025-06-25T02:44:26Z
36
0
null
[ "gguf", "qwen2", "zho", "eng", "fra", "spa", "por", "deu", "ita", "rus", "jpn", "kor", "vie", "tha", "ara", "dataset:LooksJuicy/ruozhiba", "base_model:Qwen/Qwen2.5-3B-Instruct", "base_model:quantized:Qwen/Qwen2.5-3B-Instruct", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-03-05T16:25:05Z
--- license: mit language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara base_model: - Qwen/Qwen2.5-3B-Instruct datasets: - LooksJuicy/ruozhiba --- The model will have GRPO response, such like deepseek R1 answer the question.
Baistiac/llama2_uuu_news_qlora
Baistiac
2025-06-25T02:44:18Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-25T02:44:18Z
--- license: apache-2.0 ---
morning831/llama2_uuu_news_qlora
morning831
2025-06-25T02:43:28Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-25T02:43:28Z
--- license: apache-2.0 ---
crosstar/mistral_5_CoT_few_shot
crosstar
2025-06-25T02:41:38Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-06-25T02:38:56Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
morning831/uuu_fine_tune_taipower
morning831
2025-06-25T02:40:51Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-25T02:40:51Z
--- license: apache-2.0 ---
fancyerii/q-FrozenLake-v1-4x4-noSlippery
fancyerii
2025-06-25T02:40:19Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-06-25T02:40:17Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="fancyerii/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
NTIS/hf_gemma3_21-checkpoint-126000
NTIS
2025-06-25T02:39:36Z
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "pytorch", "causal-lm", "ko", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-25T02:37:16Z
--- license: apache-2.0 language: - ko - en tags: - text-generation - pytorch - causal-lm library_name: transformers --- # hf_gemma3_21-checkpoint-126000 ์ด ๋ชจ๋ธ์€ ํŒŒ์ธํŠœ๋‹๋œ ์–ธ์–ด ๋ชจ๋ธ ์ฒดํฌํฌ์ธํŠธ์ž…๋‹ˆ๋‹ค. ## ๋ชจ๋ธ ์ •๋ณด - **๋ฒ ์ด์Šค ๋ชจ๋ธ**: hf_gemma3_21 - **์ฒดํฌํฌ์ธํŠธ**: checkpoint-126000 - **ํƒ€์ž…**: Causal Language Model - **๋ผ์ด์„ ์Šค**: Apache 2.0 ## ์‚ฌ์šฉ ๋ฐฉ๋ฒ• ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_name = "NTIS/hf_gemma3_21-checkpoint-126000" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, device_map="auto" ) # ํ…์ŠคํŠธ ์ƒ์„ฑ text = "์•ˆ๋…•ํ•˜์„ธ์š”" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_length=100, do_sample=True, temperature=0.7) result = tokenizer.decode(outputs[0], skip_special_tokens=True) print(result) ``` ## ์ฃผ์˜์‚ฌํ•ญ - ์ด ๋ชจ๋ธ์€ ์—ฐ๊ตฌ/์‹คํ—˜ ๋ชฉ์ ์œผ๋กœ ์ œ๊ณต๋ฉ๋‹ˆ๋‹ค - ์ƒ์—…์  ์‚ฌ์šฉ ์ „์— ๋ผ์ด์„ ์Šค๋ฅผ ํ™•์ธํ•˜์„ธ์š”
chinyua/test
chinyua
2025-06-25T02:38:58Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-25T02:38:58Z
--- license: apache-2.0 ---
sergioalves/9d73281b-01e3-4c0b-832d-ac9ed96b4bcb
sergioalves
2025-06-25T02:38:31Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:samoline/c69dcff1-fd86-4697-8038-846c5db9095b", "base_model:adapter:samoline/c69dcff1-fd86-4697-8038-846c5db9095b", "4-bit", "bitsandbytes", "region:us" ]
null
2025-06-25T02:30:41Z
--- library_name: peft base_model: samoline/c69dcff1-fd86-4697-8038-846c5db9095b tags: - axolotl - generated_from_trainer model-index: - name: 9d73281b-01e3-4c0b-832d-ac9ed96b4bcb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: samoline/c69dcff1-fd86-4697-8038-846c5db9095b bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 28572ecc5c12c5f8_train_data.json ds_type: json format: custom path: /workspace/input_data/ type: field_input: input field_instruction: instruct field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null dpo: beta: 0.05 enabled: true group_by_length: false rank_loss: true reference_model: NousResearch/Meta-Llama-3-8B-Instruct early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 0.9 group_by_length: false hub_model_id: sergioalves/9d73281b-01e3-4c0b-832d-ac9ed96b4bcb hub_repo: null hub_strategy: end hub_token: null learning_rate: 2.0e-05 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/28572ecc5c12c5f8_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 383bde8b-0a10-4317-a5ad-edc0e1c7e587 wandb_project: s56-7 wandb_run: your_name wandb_runid: 383bde8b-0a10-4317-a5ad-edc0e1c7e587 warmup_steps: 10 weight_decay: 0.05 xformers_attention: false ``` </details><br> # 9d73281b-01e3-4c0b-832d-ac9ed96b4bcb This model is a fine-tuned version of [samoline/c69dcff1-fd86-4697-8038-846c5db9095b](https://huggingface.co/samoline/c69dcff1-fd86-4697-8038-846c5db9095b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0799 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3927 | 0.0002 | 1 | 1.1791 | | 1.0764 | 0.0117 | 50 | 1.0865 | | 1.2093 | 0.0235 | 100 | 1.0799 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ljnlonoljpiljm/siglip2-large-patch16-256-like-dislike-13
ljnlonoljpiljm
2025-06-25T02:38:18Z
0
0
transformers
[ "transformers", "safetensors", "siglip", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-25T02:37:55Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]