modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-03 00:36:49
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
535 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-03 00:36:49
card
stringlengths
11
1.01M
haonan-li/bactrian-gu-bloom-7b1-lora
haonan-li
2023-06-13T13:32:02Z
0
0
null
[ "arxiv:2305.15011", "license:mit", "region:us" ]
null
2023-06-13T13:31:48Z
--- license: mit --- This repo contains a low-rank adapter (LoRA) for BLOOM-7b1 fit on the [Stanford-Alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca) and [databricks-dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data) data in Gujarati. ### Dataset Creation 1. English Instructions: The English instuctions are obtained from [alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca), and [dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data). 2. Instruction Translation: The instructions (and inputs) are translated into the target languages using Google Translation API (conducted on April 2023). 3. Output Generation: We generate output from `gpt-3.5-turbo` for each language (conducted on April 2023). <h3 align="center"> <img src="https://raw.githubusercontent.com/fajri91/eval_picts/master/BactrianX_dataset.jpg" width="950" align="center"> </h3> ### Training Parameters The code for training the model is provided in our [github](https://github.com/mbzuai-nlp/Bactrian-X), which is adapted from [Alpaca-LoRA](https://github.com/tloen/alpaca-lora). This version of the weights was trained with the following hyperparameters: - Epochs: 8 - Batch size: 128 - Cutoff length: 1024 - Learning rate: 3e-4 - Lora _r_: 16 - Lora target modules: query_key_value That is: ``` python finetune.py \ --base_model='bigscience/bloom-7b1' \ --num_epochs=5 \ --cutoff_len=1024 \ --group_by_length \ --output_dir='./bactrian-gu-bloom-7b1-lora' \ --lora_target_modules='query_key_value' \ --lora_r=16 \ --micro_batch_size=32 ``` Instructions for running it can be found at https://github.com/MBZUAI-nlp/Bactrian-X. ### Discussion of Biases (1) Translation bias; (2) Potential English-culture bias in the translated dataset. ### Citation Information ``` @misc{li2023bactrianx, title={Bactrian-X : A Multilingual Replicable Instruction-Following Model with Low-Rank Adaptation}, author={Haonan Li and Fajri Koto and Minghao Wu and Alham Fikri Aji and Timothy Baldwin}, year={2023}, eprint={2305.15011}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
haonan-li/bactrian-pt-bloom-7b1-lora
haonan-li
2023-06-13T13:31:47Z
0
0
null
[ "arxiv:2305.15011", "license:mit", "region:us" ]
null
2023-06-13T13:31:32Z
--- license: mit --- This repo contains a low-rank adapter (LoRA) for BLOOM-7b1 fit on the [Stanford-Alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca) and [databricks-dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data) data in Portuguese. ### Dataset Creation 1. English Instructions: The English instuctions are obtained from [alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca), and [dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data). 2. Instruction Translation: The instructions (and inputs) are translated into the target languages using Google Translation API (conducted on April 2023). 3. Output Generation: We generate output from `gpt-3.5-turbo` for each language (conducted on April 2023). <h3 align="center"> <img src="https://raw.githubusercontent.com/fajri91/eval_picts/master/BactrianX_dataset.jpg" width="950" align="center"> </h3> ### Training Parameters The code for training the model is provided in our [github](https://github.com/mbzuai-nlp/Bactrian-X), which is adapted from [Alpaca-LoRA](https://github.com/tloen/alpaca-lora). This version of the weights was trained with the following hyperparameters: - Epochs: 8 - Batch size: 128 - Cutoff length: 1024 - Learning rate: 3e-4 - Lora _r_: 16 - Lora target modules: query_key_value That is: ``` python finetune.py \ --base_model='bigscience/bloom-7b1' \ --num_epochs=5 \ --cutoff_len=1024 \ --group_by_length \ --output_dir='./bactrian-pt-bloom-7b1-lora' \ --lora_target_modules='query_key_value' \ --lora_r=16 \ --micro_batch_size=32 ``` Instructions for running it can be found at https://github.com/MBZUAI-nlp/Bactrian-X. ### Discussion of Biases (1) Translation bias; (2) Potential English-culture bias in the translated dataset. ### Citation Information ``` @misc{li2023bactrianx, title={Bactrian-X : A Multilingual Replicable Instruction-Following Model with Low-Rank Adaptation}, author={Haonan Li and Fajri Koto and Minghao Wu and Alham Fikri Aji and Timothy Baldwin}, year={2023}, eprint={2305.15011}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
haonan-li/bactrian-en-bloom-7b1-lora
haonan-li
2023-06-13T13:31:18Z
0
0
null
[ "arxiv:2305.15011", "license:mit", "region:us" ]
null
2023-06-13T13:31:05Z
--- license: mit --- This repo contains a low-rank adapter (LoRA) for BLOOM-7b1 fit on the [Stanford-Alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca) and [databricks-dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data) data in English. ### Dataset Creation 1. English Instructions: The English instuctions are obtained from [alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca), and [dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data). 2. Instruction Translation: The instructions (and inputs) are translated into the target languages using Google Translation API (conducted on April 2023). 3. Output Generation: We generate output from `gpt-3.5-turbo` for each language (conducted on April 2023). <h3 align="center"> <img src="https://raw.githubusercontent.com/fajri91/eval_picts/master/BactrianX_dataset.jpg" width="950" align="center"> </h3> ### Training Parameters The code for training the model is provided in our [github](https://github.com/mbzuai-nlp/Bactrian-X), which is adapted from [Alpaca-LoRA](https://github.com/tloen/alpaca-lora). This version of the weights was trained with the following hyperparameters: - Epochs: 8 - Batch size: 128 - Cutoff length: 1024 - Learning rate: 3e-4 - Lora _r_: 16 - Lora target modules: query_key_value That is: ``` python finetune.py \ --base_model='bigscience/bloom-7b1' \ --num_epochs=5 \ --cutoff_len=1024 \ --group_by_length \ --output_dir='./bactrian-en-bloom-7b1-lora' \ --lora_target_modules='query_key_value' \ --lora_r=16 \ --micro_batch_size=32 ``` Instructions for running it can be found at https://github.com/MBZUAI-nlp/Bactrian-X. ### Discussion of Biases (1) Translation bias; (2) Potential English-culture bias in the translated dataset. ### Citation Information ``` @misc{li2023bactrianx, title={Bactrian-X : A Multilingual Replicable Instruction-Following Model with Low-Rank Adaptation}, author={Haonan Li and Fajri Koto and Minghao Wu and Alham Fikri Aji and Timothy Baldwin}, year={2023}, eprint={2305.15011}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
haonan-li/bactrian-tr-bloom-7b1-lora
haonan-li
2023-06-13T13:30:50Z
0
0
null
[ "arxiv:2305.15011", "license:mit", "region:us" ]
null
2023-06-13T13:30:34Z
--- license: mit --- This repo contains a low-rank adapter (LoRA) for BLOOM-7b1 fit on the [Stanford-Alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca) and [databricks-dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data) data in Turkish. ### Dataset Creation 1. English Instructions: The English instuctions are obtained from [alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca), and [dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data). 2. Instruction Translation: The instructions (and inputs) are translated into the target languages using Google Translation API (conducted on April 2023). 3. Output Generation: We generate output from `gpt-3.5-turbo` for each language (conducted on April 2023). <h3 align="center"> <img src="https://raw.githubusercontent.com/fajri91/eval_picts/master/BactrianX_dataset.jpg" width="950" align="center"> </h3> ### Training Parameters The code for training the model is provided in our [github](https://github.com/mbzuai-nlp/Bactrian-X), which is adapted from [Alpaca-LoRA](https://github.com/tloen/alpaca-lora). This version of the weights was trained with the following hyperparameters: - Epochs: 8 - Batch size: 128 - Cutoff length: 1024 - Learning rate: 3e-4 - Lora _r_: 16 - Lora target modules: query_key_value That is: ``` python finetune.py \ --base_model='bigscience/bloom-7b1' \ --num_epochs=5 \ --cutoff_len=1024 \ --group_by_length \ --output_dir='./bactrian-tr-bloom-7b1-lora' \ --lora_target_modules='query_key_value' \ --lora_r=16 \ --micro_batch_size=32 ``` Instructions for running it can be found at https://github.com/MBZUAI-nlp/Bactrian-X. ### Discussion of Biases (1) Translation bias; (2) Potential English-culture bias in the translated dataset. ### Citation Information ``` @misc{li2023bactrianx, title={Bactrian-X : A Multilingual Replicable Instruction-Following Model with Low-Rank Adaptation}, author={Haonan Li and Fajri Koto and Minghao Wu and Alham Fikri Aji and Timothy Baldwin}, year={2023}, eprint={2305.15011}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
haonan-li/bactrian-es-bloom-7b1-lora
haonan-li
2023-06-13T13:30:20Z
0
0
null
[ "arxiv:2305.15011", "license:mit", "region:us" ]
null
2023-06-13T13:30:07Z
--- license: mit --- This repo contains a low-rank adapter (LoRA) for BLOOM-7b1 fit on the [Stanford-Alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca) and [databricks-dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data) data in Spanish. ### Dataset Creation 1. English Instructions: The English instuctions are obtained from [alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca), and [dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data). 2. Instruction Translation: The instructions (and inputs) are translated into the target languages using Google Translation API (conducted on April 2023). 3. Output Generation: We generate output from `gpt-3.5-turbo` for each language (conducted on April 2023). <h3 align="center"> <img src="https://raw.githubusercontent.com/fajri91/eval_picts/master/BactrianX_dataset.jpg" width="950" align="center"> </h3> ### Training Parameters The code for training the model is provided in our [github](https://github.com/mbzuai-nlp/Bactrian-X), which is adapted from [Alpaca-LoRA](https://github.com/tloen/alpaca-lora). This version of the weights was trained with the following hyperparameters: - Epochs: 8 - Batch size: 128 - Cutoff length: 1024 - Learning rate: 3e-4 - Lora _r_: 16 - Lora target modules: query_key_value That is: ``` python finetune.py \ --base_model='bigscience/bloom-7b1' \ --num_epochs=5 \ --cutoff_len=1024 \ --group_by_length \ --output_dir='./bactrian-es-bloom-7b1-lora' \ --lora_target_modules='query_key_value' \ --lora_r=16 \ --micro_batch_size=32 ``` Instructions for running it can be found at https://github.com/MBZUAI-nlp/Bactrian-X. ### Discussion of Biases (1) Translation bias; (2) Potential English-culture bias in the translated dataset. ### Citation Information ``` @misc{li2023bactrianx, title={Bactrian-X : A Multilingual Replicable Instruction-Following Model with Low-Rank Adaptation}, author={Haonan Li and Fajri Koto and Minghao Wu and Alham Fikri Aji and Timothy Baldwin}, year={2023}, eprint={2305.15011}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
haonan-li/bactrian-ru-bloom-7b1-lora
haonan-li
2023-06-13T13:29:53Z
0
0
null
[ "arxiv:2305.15011", "license:mit", "region:us" ]
null
2023-06-13T13:29:39Z
--- license: mit --- This repo contains a low-rank adapter (LoRA) for BLOOM-7b1 fit on the [Stanford-Alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca) and [databricks-dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data) data in Russian. ### Dataset Creation 1. English Instructions: The English instuctions are obtained from [alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca), and [dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data). 2. Instruction Translation: The instructions (and inputs) are translated into the target languages using Google Translation API (conducted on April 2023). 3. Output Generation: We generate output from `gpt-3.5-turbo` for each language (conducted on April 2023). <h3 align="center"> <img src="https://raw.githubusercontent.com/fajri91/eval_picts/master/BactrianX_dataset.jpg" width="950" align="center"> </h3> ### Training Parameters The code for training the model is provided in our [github](https://github.com/mbzuai-nlp/Bactrian-X), which is adapted from [Alpaca-LoRA](https://github.com/tloen/alpaca-lora). This version of the weights was trained with the following hyperparameters: - Epochs: 8 - Batch size: 128 - Cutoff length: 1024 - Learning rate: 3e-4 - Lora _r_: 16 - Lora target modules: query_key_value That is: ``` python finetune.py \ --base_model='bigscience/bloom-7b1' \ --num_epochs=5 \ --cutoff_len=1024 \ --group_by_length \ --output_dir='./bactrian-ru-bloom-7b1-lora' \ --lora_target_modules='query_key_value' \ --lora_r=16 \ --micro_batch_size=32 ``` Instructions for running it can be found at https://github.com/MBZUAI-nlp/Bactrian-X. ### Discussion of Biases (1) Translation bias; (2) Potential English-culture bias in the translated dataset. ### Citation Information ``` @misc{li2023bactrianx, title={Bactrian-X : A Multilingual Replicable Instruction-Following Model with Low-Rank Adaptation}, author={Haonan Li and Fajri Koto and Minghao Wu and Alham Fikri Aji and Timothy Baldwin}, year={2023}, eprint={2305.15011}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
haonan-li/bactrian-hi-bloom-7b1-lora
haonan-li
2023-06-13T13:29:38Z
0
0
null
[ "arxiv:2305.15011", "license:mit", "region:us" ]
null
2023-06-13T13:29:26Z
--- license: mit --- This repo contains a low-rank adapter (LoRA) for BLOOM-7b1 fit on the [Stanford-Alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca) and [databricks-dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data) data in Hindi. ### Dataset Creation 1. English Instructions: The English instuctions are obtained from [alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca), and [dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data). 2. Instruction Translation: The instructions (and inputs) are translated into the target languages using Google Translation API (conducted on April 2023). 3. Output Generation: We generate output from `gpt-3.5-turbo` for each language (conducted on April 2023). <h3 align="center"> <img src="https://raw.githubusercontent.com/fajri91/eval_picts/master/BactrianX_dataset.jpg" width="950" align="center"> </h3> ### Training Parameters The code for training the model is provided in our [github](https://github.com/mbzuai-nlp/Bactrian-X), which is adapted from [Alpaca-LoRA](https://github.com/tloen/alpaca-lora). This version of the weights was trained with the following hyperparameters: - Epochs: 8 - Batch size: 128 - Cutoff length: 1024 - Learning rate: 3e-4 - Lora _r_: 16 - Lora target modules: query_key_value That is: ``` python finetune.py \ --base_model='bigscience/bloom-7b1' \ --num_epochs=5 \ --cutoff_len=1024 \ --group_by_length \ --output_dir='./bactrian-hi-bloom-7b1-lora' \ --lora_target_modules='query_key_value' \ --lora_r=16 \ --micro_batch_size=32 ``` Instructions for running it can be found at https://github.com/MBZUAI-nlp/Bactrian-X. ### Discussion of Biases (1) Translation bias; (2) Potential English-culture bias in the translated dataset. ### Citation Information ``` @misc{li2023bactrianx, title={Bactrian-X : A Multilingual Replicable Instruction-Following Model with Low-Rank Adaptation}, author={Haonan Li and Fajri Koto and Minghao Wu and Alham Fikri Aji and Timothy Baldwin}, year={2023}, eprint={2305.15011}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
haonan-li/bactrian-xh-bloom-7b1-lora
haonan-li
2023-06-13T13:29:25Z
0
0
null
[ "arxiv:2305.15011", "license:mit", "region:us" ]
null
2023-06-13T13:29:10Z
--- license: mit --- This repo contains a low-rank adapter (LoRA) for BLOOM-7b1 fit on the [Stanford-Alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca) and [databricks-dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data) data in Xhosa. ### Dataset Creation 1. English Instructions: The English instuctions are obtained from [alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca), and [dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data). 2. Instruction Translation: The instructions (and inputs) are translated into the target languages using Google Translation API (conducted on April 2023). 3. Output Generation: We generate output from `gpt-3.5-turbo` for each language (conducted on April 2023). <h3 align="center"> <img src="https://raw.githubusercontent.com/fajri91/eval_picts/master/BactrianX_dataset.jpg" width="950" align="center"> </h3> ### Training Parameters The code for training the model is provided in our [github](https://github.com/mbzuai-nlp/Bactrian-X), which is adapted from [Alpaca-LoRA](https://github.com/tloen/alpaca-lora). This version of the weights was trained with the following hyperparameters: - Epochs: 8 - Batch size: 128 - Cutoff length: 1024 - Learning rate: 3e-4 - Lora _r_: 16 - Lora target modules: query_key_value That is: ``` python finetune.py \ --base_model='bigscience/bloom-7b1' \ --num_epochs=5 \ --cutoff_len=1024 \ --group_by_length \ --output_dir='./bactrian-xh-bloom-7b1-lora' \ --lora_target_modules='query_key_value' \ --lora_r=16 \ --micro_batch_size=32 ``` Instructions for running it can be found at https://github.com/MBZUAI-nlp/Bactrian-X. ### Discussion of Biases (1) Translation bias; (2) Potential English-culture bias in the translated dataset. ### Citation Information ``` @misc{li2023bactrianx, title={Bactrian-X : A Multilingual Replicable Instruction-Following Model with Low-Rank Adaptation}, author={Haonan Li and Fajri Koto and Minghao Wu and Alham Fikri Aji and Timothy Baldwin}, year={2023}, eprint={2305.15011}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
haonan-li/bactrian-et-bloom-7b1-lora
haonan-li
2023-06-13T13:28:55Z
0
0
null
[ "arxiv:2305.15011", "license:mit", "region:us" ]
null
2023-06-13T13:28:41Z
--- license: mit --- This repo contains a low-rank adapter (LoRA) for BLOOM-7b1 fit on the [Stanford-Alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca) and [databricks-dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data) data in Estonian. ### Dataset Creation 1. English Instructions: The English instuctions are obtained from [alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca), and [dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data). 2. Instruction Translation: The instructions (and inputs) are translated into the target languages using Google Translation API (conducted on April 2023). 3. Output Generation: We generate output from `gpt-3.5-turbo` for each language (conducted on April 2023). <h3 align="center"> <img src="https://raw.githubusercontent.com/fajri91/eval_picts/master/BactrianX_dataset.jpg" width="950" align="center"> </h3> ### Training Parameters The code for training the model is provided in our [github](https://github.com/mbzuai-nlp/Bactrian-X), which is adapted from [Alpaca-LoRA](https://github.com/tloen/alpaca-lora). This version of the weights was trained with the following hyperparameters: - Epochs: 8 - Batch size: 128 - Cutoff length: 1024 - Learning rate: 3e-4 - Lora _r_: 16 - Lora target modules: query_key_value That is: ``` python finetune.py \ --base_model='bigscience/bloom-7b1' \ --num_epochs=5 \ --cutoff_len=1024 \ --group_by_length \ --output_dir='./bactrian-et-bloom-7b1-lora' \ --lora_target_modules='query_key_value' \ --lora_r=16 \ --micro_batch_size=32 ``` Instructions for running it can be found at https://github.com/MBZUAI-nlp/Bactrian-X. ### Discussion of Biases (1) Translation bias; (2) Potential English-culture bias in the translated dataset. ### Citation Information ``` @misc{li2023bactrianx, title={Bactrian-X : A Multilingual Replicable Instruction-Following Model with Low-Rank Adaptation}, author={Haonan Li and Fajri Koto and Minghao Wu and Alham Fikri Aji and Timothy Baldwin}, year={2023}, eprint={2305.15011}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
haonan-li/bactrian-te-bloom-7b1-lora
haonan-li
2023-06-13T13:28:27Z
0
0
null
[ "arxiv:2305.15011", "license:mit", "region:us" ]
null
2023-06-13T13:28:15Z
--- license: mit --- This repo contains a low-rank adapter (LoRA) for BLOOM-7b1 fit on the [Stanford-Alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca) and [databricks-dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data) data in Telugu. ### Dataset Creation 1. English Instructions: The English instuctions are obtained from [alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca), and [dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data). 2. Instruction Translation: The instructions (and inputs) are translated into the target languages using Google Translation API (conducted on April 2023). 3. Output Generation: We generate output from `gpt-3.5-turbo` for each language (conducted on April 2023). <h3 align="center"> <img src="https://raw.githubusercontent.com/fajri91/eval_picts/master/BactrianX_dataset.jpg" width="950" align="center"> </h3> ### Training Parameters The code for training the model is provided in our [github](https://github.com/mbzuai-nlp/Bactrian-X), which is adapted from [Alpaca-LoRA](https://github.com/tloen/alpaca-lora). This version of the weights was trained with the following hyperparameters: - Epochs: 8 - Batch size: 128 - Cutoff length: 1024 - Learning rate: 3e-4 - Lora _r_: 16 - Lora target modules: query_key_value That is: ``` python finetune.py \ --base_model='bigscience/bloom-7b1' \ --num_epochs=5 \ --cutoff_len=1024 \ --group_by_length \ --output_dir='./bactrian-te-bloom-7b1-lora' \ --lora_target_modules='query_key_value' \ --lora_r=16 \ --micro_batch_size=32 ``` Instructions for running it can be found at https://github.com/MBZUAI-nlp/Bactrian-X. ### Discussion of Biases (1) Translation bias; (2) Potential English-culture bias in the translated dataset. ### Citation Information ``` @misc{li2023bactrianx, title={Bactrian-X : A Multilingual Replicable Instruction-Following Model with Low-Rank Adaptation}, author={Haonan Li and Fajri Koto and Minghao Wu and Alham Fikri Aji and Timothy Baldwin}, year={2023}, eprint={2305.15011}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
haonan-li/bactrian-th-bloom-7b1-lora
haonan-li
2023-06-13T13:28:01Z
0
0
null
[ "arxiv:2305.15011", "license:mit", "region:us" ]
null
2023-06-13T13:27:48Z
--- license: mit --- This repo contains a low-rank adapter (LoRA) for BLOOM-7b1 fit on the [Stanford-Alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca) and [databricks-dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data) data in Thai. ### Dataset Creation 1. English Instructions: The English instuctions are obtained from [alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca), and [dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data). 2. Instruction Translation: The instructions (and inputs) are translated into the target languages using Google Translation API (conducted on April 2023). 3. Output Generation: We generate output from `gpt-3.5-turbo` for each language (conducted on April 2023). <h3 align="center"> <img src="https://raw.githubusercontent.com/fajri91/eval_picts/master/BactrianX_dataset.jpg" width="950" align="center"> </h3> ### Training Parameters The code for training the model is provided in our [github](https://github.com/mbzuai-nlp/Bactrian-X), which is adapted from [Alpaca-LoRA](https://github.com/tloen/alpaca-lora). This version of the weights was trained with the following hyperparameters: - Epochs: 8 - Batch size: 128 - Cutoff length: 1024 - Learning rate: 3e-4 - Lora _r_: 16 - Lora target modules: query_key_value That is: ``` python finetune.py \ --base_model='bigscience/bloom-7b1' \ --num_epochs=5 \ --cutoff_len=1024 \ --group_by_length \ --output_dir='./bactrian-th-bloom-7b1-lora' \ --lora_target_modules='query_key_value' \ --lora_r=16 \ --micro_batch_size=32 ``` Instructions for running it can be found at https://github.com/MBZUAI-nlp/Bactrian-X. ### Discussion of Biases (1) Translation bias; (2) Potential English-culture bias in the translated dataset. ### Citation Information ``` @misc{li2023bactrianx, title={Bactrian-X : A Multilingual Replicable Instruction-Following Model with Low-Rank Adaptation}, author={Haonan Li and Fajri Koto and Minghao Wu and Alham Fikri Aji and Timothy Baldwin}, year={2023}, eprint={2305.15011}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
haonan-li/bactrian-ne-bloom-7b1-lora
haonan-li
2023-06-13T13:27:48Z
0
0
null
[ "arxiv:2305.15011", "license:mit", "region:us" ]
null
2023-06-13T13:27:35Z
--- license: mit --- This repo contains a low-rank adapter (LoRA) for BLOOM-7b1 fit on the [Stanford-Alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca) and [databricks-dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data) data in Nepali. ### Dataset Creation 1. English Instructions: The English instuctions are obtained from [alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca), and [dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data). 2. Instruction Translation: The instructions (and inputs) are translated into the target languages using Google Translation API (conducted on April 2023). 3. Output Generation: We generate output from `gpt-3.5-turbo` for each language (conducted on April 2023). <h3 align="center"> <img src="https://raw.githubusercontent.com/fajri91/eval_picts/master/BactrianX_dataset.jpg" width="950" align="center"> </h3> ### Training Parameters The code for training the model is provided in our [github](https://github.com/mbzuai-nlp/Bactrian-X), which is adapted from [Alpaca-LoRA](https://github.com/tloen/alpaca-lora). This version of the weights was trained with the following hyperparameters: - Epochs: 8 - Batch size: 128 - Cutoff length: 1024 - Learning rate: 3e-4 - Lora _r_: 16 - Lora target modules: query_key_value That is: ``` python finetune.py \ --base_model='bigscience/bloom-7b1' \ --num_epochs=5 \ --cutoff_len=1024 \ --group_by_length \ --output_dir='./bactrian-ne-bloom-7b1-lora' \ --lora_target_modules='query_key_value' \ --lora_r=16 \ --micro_batch_size=32 ``` Instructions for running it can be found at https://github.com/MBZUAI-nlp/Bactrian-X. ### Discussion of Biases (1) Translation bias; (2) Potential English-culture bias in the translated dataset. ### Citation Information ``` @misc{li2023bactrianx, title={Bactrian-X : A Multilingual Replicable Instruction-Following Model with Low-Rank Adaptation}, author={Haonan Li and Fajri Koto and Minghao Wu and Alham Fikri Aji and Timothy Baldwin}, year={2023}, eprint={2305.15011}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
haonan-li/bactrian-fr-bloom-7b1-lora
haonan-li
2023-06-13T13:27:35Z
0
0
null
[ "arxiv:2305.15011", "license:mit", "region:us" ]
null
2023-06-13T13:27:21Z
--- license: mit --- This repo contains a low-rank adapter (LoRA) for BLOOM-7b1 fit on the [Stanford-Alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca) and [databricks-dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data) data in French. ### Dataset Creation 1. English Instructions: The English instuctions are obtained from [alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca), and [dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data). 2. Instruction Translation: The instructions (and inputs) are translated into the target languages using Google Translation API (conducted on April 2023). 3. Output Generation: We generate output from `gpt-3.5-turbo` for each language (conducted on April 2023). <h3 align="center"> <img src="https://raw.githubusercontent.com/fajri91/eval_picts/master/BactrianX_dataset.jpg" width="950" align="center"> </h3> ### Training Parameters The code for training the model is provided in our [github](https://github.com/mbzuai-nlp/Bactrian-X), which is adapted from [Alpaca-LoRA](https://github.com/tloen/alpaca-lora). This version of the weights was trained with the following hyperparameters: - Epochs: 8 - Batch size: 128 - Cutoff length: 1024 - Learning rate: 3e-4 - Lora _r_: 16 - Lora target modules: query_key_value That is: ``` python finetune.py \ --base_model='bigscience/bloom-7b1' \ --num_epochs=5 \ --cutoff_len=1024 \ --group_by_length \ --output_dir='./bactrian-fr-bloom-7b1-lora' \ --lora_target_modules='query_key_value' \ --lora_r=16 \ --micro_batch_size=32 ``` Instructions for running it can be found at https://github.com/MBZUAI-nlp/Bactrian-X. ### Discussion of Biases (1) Translation bias; (2) Potential English-culture bias in the translated dataset. ### Citation Information ``` @misc{li2023bactrianx, title={Bactrian-X : A Multilingual Replicable Instruction-Following Model with Low-Rank Adaptation}, author={Haonan Li and Fajri Koto and Minghao Wu and Alham Fikri Aji and Timothy Baldwin}, year={2023}, eprint={2305.15011}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
haonan-li/bactrian-ar-bloom-7b1-lora
haonan-li
2023-06-13T13:25:48Z
0
0
null
[ "arxiv:2305.15011", "license:mit", "region:us" ]
null
2023-06-13T13:25:36Z
--- license: mit --- This repo contains a low-rank adapter (LoRA) for BLOOM-7b1 fit on the [Stanford-Alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca) and [databricks-dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data) data in Arabic. ### Dataset Creation 1. English Instructions: The English instuctions are obtained from [alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca), and [dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data). 2. Instruction Translation: The instructions (and inputs) are translated into the target languages using Google Translation API (conducted on April 2023). 3. Output Generation: We generate output from `gpt-3.5-turbo` for each language (conducted on April 2023). <h3 align="center"> <img src="https://raw.githubusercontent.com/fajri91/eval_picts/master/BactrianX_dataset.jpg" width="950" align="center"> </h3> ### Training Parameters The code for training the model is provided in our [github](https://github.com/mbzuai-nlp/Bactrian-X), which is adapted from [Alpaca-LoRA](https://github.com/tloen/alpaca-lora). This version of the weights was trained with the following hyperparameters: - Epochs: 8 - Batch size: 128 - Cutoff length: 1024 - Learning rate: 3e-4 - Lora _r_: 16 - Lora target modules: query_key_value That is: ``` python finetune.py \ --base_model='bigscience/bloom-7b1' \ --num_epochs=5 \ --cutoff_len=1024 \ --group_by_length \ --output_dir='./bactrian-ar-bloom-7b1-lora' \ --lora_target_modules='query_key_value' \ --lora_r=16 \ --micro_batch_size=32 ``` Instructions for running it can be found at https://github.com/MBZUAI-nlp/Bactrian-X. ### Discussion of Biases (1) Translation bias; (2) Potential English-culture bias in the translated dataset. ### Citation Information ``` @misc{li2023bactrianx, title={Bactrian-X : A Multilingual Replicable Instruction-Following Model with Low-Rank Adaptation}, author={Haonan Li and Fajri Koto and Minghao Wu and Alham Fikri Aji and Timothy Baldwin}, year={2023}, eprint={2305.15011}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
soddokayo/klue-roberta-large-klue-ner
soddokayo
2023-06-13T13:24:32Z
107
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "generated_from_trainer", "dataset:klue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-13T03:22:54Z
--- tags: - generated_from_trainer datasets: - klue metrics: - precision - recall - f1 - accuracy model-index: - name: klue-roberta-large-klue-ner results: - task: name: Token Classification type: token-classification dataset: name: klue type: klue config: ner split: validation args: ner metrics: - name: Precision type: precision value: 0.8292094561996003 - name: Recall type: recall value: 0.8438661710037175 - name: F1 type: f1 value: 0.836473614684002 - name: Accuracy type: accuracy value: 0.9663865173522563 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # klue-roberta-large-klue-ner This model is a fine-tuned version of [klue/roberta-large](https://huggingface.co/klue/roberta-large) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.1279 - Precision: 0.8292 - Recall: 0.8439 - F1: 0.8365 - Accuracy: 0.9664 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1246 | 1.0 | 2626 | 0.1629 | 0.7891 | 0.7725 | 0.7807 | 0.9539 | | 0.0744 | 2.0 | 5252 | 0.1194 | 0.8124 | 0.8345 | 0.8233 | 0.9642 | | 0.0401 | 3.0 | 7878 | 0.1279 | 0.8292 | 0.8439 | 0.8365 | 0.9664 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.12.1 - Datasets 2.12.0 - Tokenizers 0.13.2
leo1452/q-Taxi-v3
leo1452
2023-06-13T13:24:07Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-13T11:38:16Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="leo1452/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
irfanamal/bert-base-uncased-classification-flat
irfanamal
2023-06-13T13:14:45Z
104
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-13T07:20:34Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-uncased-classification-flat results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-classification-flat This model is a fine-tuned version of [irfanamal/bert-base-uncased-finetuned-amazonreviews](https://huggingface.co/irfanamal/bert-base-uncased-finetuned-amazonreviews) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4951 - Accuracy: 0.4957 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.7227 | 1.0 | 1250 | 3.3098 | 0.3826 | | 2.6109 | 2.0 | 2500 | 2.7897 | 0.4568 | | 2.2396 | 3.0 | 3750 | 2.5943 | 0.4809 | | 1.9093 | 4.0 | 5000 | 2.5155 | 0.4937 | | 1.7949 | 5.0 | 6250 | 2.4951 | 0.4957 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
kejolong/SNI
kejolong
2023-06-13T13:00:30Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-13T12:58:55Z
--- license: creativeml-openrail-m ---
jrahn/yolochess_mlm_azure-cloud-35
jrahn
2023-06-13T12:58:28Z
119
1
transformers
[ "transformers", "pytorch", "safetensors", "distilbert", "fill-mask", "chess", "dataset:jrahn/yolochess_lichess-elite_2211", "arxiv:1910.09700", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-02-08T07:16:48Z
--- license: mit datasets: - jrahn/yolochess_lichess-elite_2211 library_name: transformers tags: - chess widget: - text: "rnbqkbnr/pppppppp/8/8/8/[MASK]/PPPPPPPP/RNBQKBNR w KQkq - 0 1" example_title: "MLM: Masked = 8" - text: "6k1/8/8/1pB3[MASK]P/1P3P2/8/8/8 w - - 1 74" example_title: "MLM: Masked = K" --- # Model Card for yolochess_mlm_azure-cloud-35 <!-- Provide a quick summary of what the model is/does. --> This model with 66M parameters is pre-trained from scratch with Masked Language Modeling on Chess Positions in [FEN](https://en.wikipedia.org/wiki/Forsyth%E2%80%93Edwards_Notation) format. It is supposed to be used for downstream fine-tuning, e.g. Text Classification for human moves. # Model Details ## Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** Jonathan Rahn - **Model type:** Distilbert - **Language(s) (NLP):** Chess [FEN](https://en.wikipedia.org/wiki/Forsyth%E2%80%93Edwards_Notation) - **License:** MIT # Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ## Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> This model is pre-trained from scratch with Masked Language Modeling on Chess Positions in FEN format. ## Downstream Use <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> It is supposed to be used for downstream fine-tuning, e.g. Text Classification for human moves. ## Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> Anything other than Chess Positions in standard [FEN](https://en.wikipedia.org/wiki/Forsyth%E2%80%93Edwards_Notation) format. # Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> n/a ## Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> n/a ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoModelForMaskedLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("jrahn/yolochess_mlm_azure-cloud-35") model = AutoModelForMaskedLM.from_pretrained("jrahn/yolochess_mlm_azure-cloud-35") ``` ```python from transformers import pipeline pipe = pipeline("fill-mask", "jrahn/yolochess_mlm_azure-cloud-35") pipe("6k1/8/8/1pB3[MASK]P/1P3P2/8/8/8 w - - 1 74") ``` # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [Lichess-Elite 22-11 Dataset](https://huggingface.co/datasets/jrahn/yolochess_lichess-elite_2211) ## Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> Masked Language Modeling objective with 15% masked token ratio. ### Preprocessing Tokenize `data["train"]["fen"]` with max-length padding to 200 tokens with default `distilbert-base-cased` tokenizer. Inefficient: Most of the vocab is never observed in FEN, wasting embedding parameters. The sequence length / pos embedding size of model and sequence length of data preprocessing leads to lots of padding and wasted parameters. FENs should be shorter than 90 characters. Experiments with reduced max-length in tokenization show performance gains. ### Speeds, Sizes, Times <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> Training for 172500 steps at batch-size 128 (22M examples, 1 epoch) took ~10 hrs on 1x RTX 4090, using 20GB VRAM, with final MLM-loss: 0.2567. # Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** 1x RTX 4090 - **Hours used:** 10 - **Cloud Provider:** local - **Compute Region:** local - **Carbon Emitted:** 1.5kg # Technical Specifications ## Model Architecture and Objective Distilbert, Masked Language Modeling
diallomama/fr-summarization
diallomama
2023-06-13T12:56:59Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:GEM/wiki_lingua", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-09T20:52:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - GEM/wiki_lingua metrics: - rouge model-index: - name: fr-summarization results: - task: name: Summarization type: summarization dataset: name: GEM/wiki_lingua fr type: GEM/wiki_lingua config: fr split: validation args: fr metrics: - name: Rouge1 type: rouge value: 100.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fr-summarization This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the GEM/wiki_lingua fr dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Rouge1: 100.0 - Rouge2: 100.0 - Rougel: 100.0 - Rougelsum: 100.0 - Gen Len: 13.9390 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
LarryAIDraw/fate_saberalter-10
LarryAIDraw
2023-06-13T12:53:40Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-13T11:29:56Z
--- license: creativeml-openrail-m --- https://civitai.com/models/58105/artoria-pendragon-alter-saber-or-fategrand-order
LarryAIDraw/Positions_Lora32
LarryAIDraw
2023-06-13T12:53:17Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-13T11:31:39Z
--- license: creativeml-openrail-m --- https://civitai.com/models/54901/norian-hentaicore-lora-extracted
LarryAIDraw/Yuzuriha
LarryAIDraw
2023-06-13T12:50:02Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-13T11:29:35Z
--- license: creativeml-openrail-m --- https://civitai.com/models/43350/yuzuriha-of-keishu-jigokuraku
Geotrend/bert-base-fr-cased
Geotrend
2023-06-13T12:37:39Z
131
1
transformers
[ "transformers", "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "fr", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: fr datasets: wikipedia license: apache-2.0 widget: - text: "Paris est la [MASK] de la France." - text: "Paris est la capitale de la [MASK]." - text: "L'élection américaine a eu [MASK] en novembre 2020." --- # bert-base-fr-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-fr-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-fr-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
clarin-knext/plt5-base-msmarco
clarin-knext
2023-06-13T12:24:51Z
118
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "pl", "arxiv:2305.19840", "license:cc-by-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-21T15:01:26Z
--- license: cc-by-sa-4.0 language: - pl --- Part of **BEIR-PL: Zero Shot Information Retrieval Benchmark for the Polish Language**. Link to arxiv: https://arxiv.org/pdf/2305.19840.pdf Contact: konrad.wojtasik@pwr.edu.pl
Zengwei/icefall-asr-librispeech-zipformer-transducer-ctc-2023-06-13
Zengwei
2023-06-13T12:10:17Z
0
0
null
[ "tensorboard", "region:us" ]
null
2023-06-13T11:40:06Z
See https://github.com/k2-fsa/icefall/pull/1111
NathyB/Hate-Speech-Detection-in-Amharic-Language-mBERT
NathyB
2023-06-13T12:09:21Z
107
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "Sentiment-Analysis", "Hate-Speech", "Finetuning-mBERT", "am", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-04T14:03:04Z
--- language: - am metrics: - accuracy - f1 library_name: transformers pipeline_tag: text-classification tags: - Sentiment-Analysis - Hate-Speech - Finetuning-mBERT --- **<h1>Hate-Speech-Detection-in-Amharic-Language-mBERT</h1>** This Hugging Face model card contains a machine learning model that uses fine-tuned mBERT to detect hate speech in Amharic language. The model was fine-tuned using the Hugging Face Trainer API. **<h1>Fine-Tuning</h1>** This model was created by finetuning the mBERT model for the downstream task of Hate speech detection for the Amharic language. The initial mBERT model used for finetuning is http://Davlan/bert-base-multilingual-cased-finetuned-amharic which was provided by Davlan on Huggingface. **<h1>Usage</h1>** You can use the model through the Hugging Face Transformers library, either by directly loading the model in your Python code or by using the Hugging Face model hub.
ThirdEyeData/Text_Summarization
ThirdEyeData
2023-06-13T11:58:18Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:billsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-13T09:27:17Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - billsum metrics: - rouge model-index: - name: Text_Summarization results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: billsum type: billsum config: default split: ca_test args: default metrics: - name: Rouge1 type: rouge value: 0.1324 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Text_Summarization This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 2.7235 - Rouge1: 0.1324 - Rouge2: 0.0397 - Rougel: 0.1114 - Rougelsum: 0.111 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 74 | 2.8406 | 0.1286 | 0.04 | 0.1087 | 0.1088 | 19.0 | | No log | 2.0 | 148 | 2.7235 | 0.1324 | 0.0397 | 0.1114 | 0.111 | 19.0 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
MarcoLYH/bert-base-uncased-finetuned-v1
MarcoLYH
2023-06-13T11:51:22Z
61
0
transformers
[ "transformers", "tf", "tensorboard", "bert", "question-answering", "generated_from_keras_callback", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-06-13T11:45:14Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: MarcoLYH/bert-base-uncased-finetuned-v1 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # MarcoLYH/bert-base-uncased-finetuned-v1 This model is a fine-tuned version of [csarron/bert-base-uncased-squad-v1](https://huggingface.co/csarron/bert-base-uncased-squad-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.0187 - Train End Logits Accuracy: 0.6875 - Train Start Logits Accuracy: 0.7083 - Validation Loss: 0.7458 - Validation End Logits Accuracy: 0.75 - Validation Start Logits Accuracy: 0.8000 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 9, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.6743 | 0.4375 | 0.5625 | 1.0957 | 0.7000 | 0.7000 | 0 | | 1.1601 | 0.6458 | 0.6458 | 0.8086 | 0.75 | 0.75 | 1 | | 1.0187 | 0.6875 | 0.7083 | 0.7458 | 0.75 | 0.8000 | 2 | ### Framework versions - Transformers 4.30.1 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
keysonya/Reinforce-2
keysonya
2023-06-13T11:46:49Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-13T11:46:04Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: -3.20 +/- 2.36 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ml-projects/clickbait-ml_bert
ml-projects
2023-06-13T11:38:55Z
61
0
transformers
[ "transformers", "tf", "onnx", "bert", "text-classification", "generated_from_keras_callback", "de", "dataset:ml-projects/clickbait-ml_dataset", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-11T15:06:38Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: clickbait-ml_bert results: [] language: - de metrics: - accuracy pipeline_tag: text-classification widget: - text: Bundesweiter Großstreik beginnt - Züge, Busse und Flugzeuge stehen still example_title: Normale Überschrift - text: Bachelor in Paradise-Star Pamela Gil Matas Sohn ist da! example_title: Clickbait Überschrift - text: Du wirst nie glauben was hier geschah example_title: Beispiel datasets: - ml-projects/clickbait-ml_dataset --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # clickbait-ml_bert This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6057 - Validation Loss: 0.6160 - Train Accuracy: 0.8235 - Epoch: 3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 8, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.7115 | 0.6299 | 0.8235 | 0 | | 0.6071 | 0.6160 | 0.8235 | 1 | | 0.5783 | 0.6160 | 0.8235 | 2 | | 0.6057 | 0.6160 | 0.8235 | 3 | ### Framework versions - Transformers 4.30.1 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
ml-projects/clickbait-ml_setfit
ml-projects
2023-06-13T11:34:01Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "de", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-06-12T14:21:50Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification language: - de --- # /var/folders/2x/fdpqscbs113ftxcylzlb9sx40000gn/T/tmpjza_ogmp/ml-projects/clickbait-ml-setfit This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("/var/folders/2x/fdpqscbs113ftxcylzlb9sx40000gn/T/tmpjza_ogmp/ml-projects/clickbait-ml-setfit") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
kristian-a/bloomz-lora
kristian-a
2023-06-13T11:17:45Z
33
0
peft
[ "peft", "text-generation", "region:us" ]
text-generation
2023-06-13T11:02:00Z
--- library_name: peft tags: - text-generation ---
trumanplus/trumanplus
trumanplus
2023-06-13T11:07:26Z
0
0
allennlp
[ "allennlp", "finance", "Health", "license:openrail", "region:us" ]
null
2023-06-13T10:59:48Z
--- license: openrail library_name: allennlp tags: - finance - Health --- Introducing <a href="https://www.topofferlink.com/7TZS934/5K6QMGG/">Truman Plus</a>, the ultimate solution for better enhancement and energy! Are you ready to take your performance to new heights? Look no further, as Truman Plus is here to revolutionize your experience. With its powerful formula and remarkable benefits, Truman Plus is the go-to choice for those seeking an exceptional boost. Get ready to unlock your true potential! Experience a surge of energy like never before. <a href="https://www.topofferlink.com/7TZS934/5K6QMGG/">Truman Plus</a> provides you with the vitality you need to conquer each day with enthusiasm. Bid farewell to fatigue and embrace a rejuvenated spirit that will keep you going from dawn till dusk. Imagine the endless possibilities that await you when you're armed with boundless energy. <a href="https://www.topofferlink.com/7TZS934/5K6QMGG/">OFFICIAL WEBSITE-” CLICK HERE”!</a> But that's not all. <a href="https://www.topofferlink.com/7TZS934/5K6QMGG/">Truman Plus</a> offers remarkable enhancement benefits that will leave you astounded. Discover a newfound confidence as you embrace heightened focus and mental clarity. With Truman Plus, you can break through limitations and achieve peak performance in all aspects of your life. Whether you're tackling a challenging task or aiming for success in the gym, Truman Plus empowers you to exceed your own expectations. What sets <a href="https://www.topofferlink.com/7TZS934/5K6QMGG/">Truman Plus</a> apart is its cutting-edge formula, meticulously crafted to provide you with the best results. Each pill is packed with a potent blend of premium ingredients, scientifically proven to enhance your energy levels, mental agility, and overall performance. Don't settle for mediocre when you can strive for greatness. <a href="https://www.topofferlink.com/7TZS934/5K6QMGG/">Click Here to Go To the "OFFICIAL Site"!</a> It's time to take control of your life and unlock the best version of yourself. Experience the remarkable benefits of <a href="https://www.topofferlink.com/7TZS934/5K6QMGG/">Truman Plus</a> and elevate your performance to new heights. Don't wait any longer - seize this opportunity to enhance your energy and empower yourself. Upgrade your life with <a href="https://www.topofferlink.com/7TZS934/5K6QMGG/">Truman Plus</a> today and embark on a journey of limitless possibilities. Place your order now and let Truman Plus be the catalyst that propels you towards success. Take the leap and embrace the extraordinary! <a href="https://www.topofferlink.com/7TZS934/5K6QMGG/">Call to Action: Order Truman Plus now and unleash your true potential!</a> license: openrail ---
dhanushkaha/web-model
dhanushkaha
2023-06-13T10:59:48Z
40
1
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-13T10:56:31Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### web-model Dreambooth model trained by dhanushkaha with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept: ![0](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/0c_9a_dd0c9a40aaffa9517b7b54bc1645ef09.png) ![1](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/b7_3f_8c_b73f8c77648502befcaa0283d55c1cf8.png) ![2](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/71_be_50_71be5087ffdb738d322d3de053f49b87.png) ![3](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/7d_95_1c_7d951c384f9d0d6966bb37534fd602f.png) ![4](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/98_07_bd_9807bd030a7c8e33331cfd4e2ecc5f.png) ![5](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/9e_01_319e010deef312408b9d10e071dc898.png) ![6](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/86_49_5c_86495cdef285fe1570ff86cc5d594bb9.png) ![7](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/8_89_fd_c889fd4c91180fd63c6d9668e08455.png) ![8](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/88_a1638863ce3fe69aa5c9b31b85c17459.png) ![9](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/9_d0_5d_d9d05da6ee83f527578a395889f40.png) ![10](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/4a_c5_eb_4ac5eb82f3ec8b0db2c23e9853637f.png) ![11](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/bb_8e_82_bb8e821d2a2b598236aba9e1749fbbef.png) ![12](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/84_2b_6e_842b6e30df18c49f94af5d825222f.png) ![13](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/7_2e_aa_e72eaa00495e32348199e7d5c9f7e6f.png) ![14](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/85_54_e0_8554e0ac522786960e5324c2cfe9c765.png) ![15](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/b_e6_74_6be6747991a02831e8c11e805f8bc714.png) ![16](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/7e_bd_23_7ebd23004e8fd73fcc1122b5af02f1b8.png) ![17](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/f1_a3_77_f1a377f083c6d7e53e9bc9d993fd108.png) ![18](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/08_03_aa_0803aa886817f4a22dcd8d7a7f8f3af4.png) ![19](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/5_57_2a_15572adf2912f539a826c09589c70.png) ![20](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/5e_0a_47_5e0a47533010cae92e8fb38c886919e9.png) ![21](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/46_3c_2e_463c2ec21cbe43b21170d5cc846586f7.png) ![22](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/b1_41_7e_b1417e76d7505304a1938f84062f84d2--website-design-layout-web-design-layou.png) ![23](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/0_6e_ea_d06eea92f65646b500509648d0373a0f.png) ![24](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/9_e0_13_69e013e642fcdd7e39f90bc2abf63ee0.png) ![25](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/58_f4_4a_58f44a6430feaf9ba801bbfdc56a558.png) ![26](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/f1_67_0e_f1670ec701718beac10cb62807e5c7b.png) ![27](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/45_b6_65_45b665ad5b7ca6ece0a2b02cea25652b.png) ![28](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/be_00_2cbe0048accb0a942be38a8fdab9838d--design-ui-web-design-.png) ![29](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/8_d2_9a_38d29a3783de10fa1ed6fb94309.png) ![30](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/bb_4b_a7_bb4ba78847de803f96fee5f0d535c09a--minion-movie-web.png) ![31](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/b00b710436181382ef51d53715.png) ![32](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/f_fb_12dffbe68cc0046e2474ceda34fd7f2c--nature-photos-my-.png) ![33](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/9_a0_2a_29a02aea839eae2fb2b37ad134d1044.png) ![34](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/40_c33a40028c797c1dabd9bad6e56a6b9.png) ![35](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/f_ea_f2_2feaf2728e8334128d08f204ec5d41b1--ui-portfolio-app-.png) ![36](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/7_ef_a7_27efa777979876af2c7e0ba066c0d78b.png) ![37](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/97_07_44_9707448b32966f552a43b3aab0c30535.png) ![38](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/f_d9_113fd9473edbd7e0408883e8ae8eee5.png) ![39](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/b6_6b_d6b66b3d3d0fa7f55b1158980c0ec1f9.png) ![40](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/b9_10_82_b91082570a01bc5f54f1ad0a18e0f37.png) ![41](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/47_00_f6_4700f6c561b5d8240f27d394999f3f4.png) ![42](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/f7_9e_02_f79e025f5b138e170f30586cf939e9fb.png) ![43](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/f_0b_40_1f0b402368a0a1105be3a5c255708d34.png) ![44](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/99_33_0f_99330fa23c7f59590573ac4dcd7c580.png) ![45](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/f2_17_c9_f217c966a26888c0d3920d9f01217.png) ![46](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/b_e9_e7_2be9e7638eca5041abfb340aed8d808.png) ![47](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/f1_6d_28_f16d28aa7339e1798993585c7d081b6b.png) ![48](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/8a_71_2c8a716c4f273d7bf35b56f24284b10.png) ![49](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/58_2a_e9_582ae973228043097c59df43fde06bc4.png) ![50](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/74_e12d74827bb35c3f8b293a93f984ffa5.png) ![51](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/8_6c_55_d86c5574e93a925d511d3fe844cafec5--church-logo-church-br.png) ![52](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/fe_52_ad_fe52ad0888bc27a988adf0ce1383f.png) ![53](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/45_db_1245dba76c723da758f3ee10c73704.png) ![54](https://huggingface.co/dhanushkaha/web-model/resolve/main/sample_images/76_dd_2e_76dd2e04185e815da3be23a728857dbb.png)
AlexanderDadario/setfit-model
AlexanderDadario
2023-06-13T10:45:04Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-06-13T10:44:42Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # AlexanderDadario/setfit-model This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("AlexanderDadario/setfit-model") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
keysonya/Reinforce-1
keysonya
2023-06-13T10:44:27Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-13T10:43:57Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
KrishnAI7/autotrain-aniai1-66240136433
KrishnAI7
2023-06-13T10:42:25Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "deberta", "text-classification", "autotrain", "en", "dataset:KrishnAI7/autotrain-data-aniai1", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-13T10:41:59Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain" datasets: - KrishnAI7/autotrain-data-aniai1 co2_eq_emissions: emissions: 0.0473575460314297 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 66240136433 - CO2 Emissions (in grams): 0.0474 ## Validation Metrics - Loss: 2.632 - Accuracy: 0.100 - Macro F1: 0.013 - Micro F1: 0.100 - Weighted F1: 0.018 - Macro Precision: 0.007 - Micro Precision: 0.100 - Weighted Precision: 0.010 - Macro Recall: 0.071 - Micro Recall: 0.100 - Weighted Recall: 0.100 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/KrishnAI7/autotrain-aniai1-66240136433 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("KrishnAI7/autotrain-aniai1-66240136433", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("KrishnAI7/autotrain-aniai1-66240136433", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
wootwoot/abyssorangemix3-popupparade-fp16
wootwoot
2023-06-13T10:42:14Z
156
2
diffusers
[ "diffusers", "safetensors", "text-to-image", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-12T14:43:01Z
--- license: creativeml-openrail-m language: - en library_name: diffusers pipeline_tag: text-to-image --- ### Based off [WarriorMama777/OrangeMixs](https://huggingface.co/WarriorMama777/OrangeMixs) All credits go to the original author and all the author of AbyssOrangeMix3's ancestor models ### Merged with [Pop Up Parade](https://civitai.com/models/78997) ### Diffusers The original AbyssOrangeMix3 model converted to be used with the [🧨Diffusers library](https://github.com/huggingface/diffusers)
MarcoLYH/distilbert-base-uncased-finetuned-v3
MarcoLYH
2023-06-13T10:34:48Z
61
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-06-13T10:23:32Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: MarcoLYH/distilbert-base-uncased-finetuned-v3 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # MarcoLYH/distilbert-base-uncased-finetuned-v3 This model is a fine-tuned version of [distilbert-base-uncased-distilled-squad](https://huggingface.co/distilbert-base-uncased-distilled-squad) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.9895 - Train End Logits Accuracy: 0.7708 - Train Start Logits Accuracy: 0.7292 - Validation Loss: 0.7644 - Validation End Logits Accuracy: 0.8000 - Validation Start Logits Accuracy: 0.8000 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 1e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 27, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 3, 'power': 1.0, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 2.1849 | 0.4583 | 0.5625 | 1.4084 | 0.6000 | 0.7000 | 0 | | 1.7525 | 0.4583 | 0.625 | 1.1174 | 0.6000 | 0.7000 | 1 | | 1.4231 | 0.5625 | 0.6458 | 0.9771 | 0.7000 | 0.75 | 2 | | 1.2974 | 0.6042 | 0.6667 | 0.8995 | 0.7000 | 0.8000 | 3 | | 1.0907 | 0.6875 | 0.6875 | 0.8517 | 0.7000 | 0.8000 | 4 | | 0.9871 | 0.7292 | 0.7292 | 0.8189 | 0.7000 | 0.8000 | 5 | | 1.0101 | 0.7292 | 0.75 | 0.7987 | 0.8000 | 0.8000 | 6 | | 0.9208 | 0.7083 | 0.7708 | 0.7801 | 0.8000 | 0.8000 | 7 | | 0.9486 | 0.7083 | 0.7292 | 0.7692 | 0.8000 | 0.8000 | 8 | | 0.9895 | 0.7708 | 0.7292 | 0.7644 | 0.8000 | 0.8000 | 9 | ### Framework versions - Transformers 4.30.1 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
renyulin/Reinforce-CartPole-v1
renyulin
2023-06-13T10:28:29Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-13T10:28:20Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ahamid/bert-finetuned-ner
ahamid
2023-06-13T10:25:49Z
61
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-06T18:40:37Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: ahamid/bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ahamid/bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0222 - Validation Loss: 0.0531 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2634, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.0217 | 0.0531 | 0 | | 0.0222 | 0.0531 | 1 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
kevinpro/Vicuna-13B-CoT_v2
kevinpro
2023-06-13T10:25:04Z
0
1
null
[ "en", "arxiv:1910.09700", "license:apache-2.0", "region:us" ]
null
2023-06-12T15:35:02Z
--- license: apache-2.0 language: - en --- # Model Card for Model ID SFT to enhance the CoT capabiliy of Vicuna. We tune the model on 55W "CoT Capabiliy" related Instruction Data If you find the model helpful, please click "like" to support us. We also welcome feedback on your usage experience and any issues you encounter in the issues section. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
scottzroot/clip-ViT-B-32-config
scottzroot
2023-06-13T10:23:34Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "clip", "feature-extraction", "sentence-similarity", "arxiv:2103.00020", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-13T10:20:02Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # clip-ViT-B-32 This is the Image & Text model [CLIP](https://arxiv.org/abs/2103.00020), which maps text and images to a shared vector space. For applications of the models, have a look in our documentation [SBERT.net - Image Search](https://www.sbert.net/examples/applications/image-search/README.html) ## Usage After installing [sentence-transformers](https://sbert.net) (`pip install sentence-transformers`), the usage of this model is easy: ```python from sentence_transformers import SentenceTransformer, util from PIL import Image #Load CLIP model model = SentenceTransformer('clip-ViT-B-32') #Encode an image: img_emb = model.encode(Image.open('two_dogs_in_snow.jpg')) #Encode text descriptions text_emb = model.encode(['Two dogs in the snow', 'A cat on a table', 'A picture of London at night']) #Compute cosine similarities cos_scores = util.cos_sim(img_emb, text_emb) print(cos_scores) ``` See our [SBERT.net - Image Search](https://www.sbert.net/examples/applications/image-search/README.html) documentation for more examples how the model can be used for image search, zero-shot image classification, image clustering and image deduplication. ## Performance In the following table we find the zero-shot ImageNet validation set accuracy: | Model | Top 1 Performance | | --- | :---: | | [clip-ViT-B-32](https://huggingface.co/sentence-transformers/clip-ViT-B-32) | 63.3 | | [clip-ViT-B-16](https://huggingface.co/sentence-transformers/clip-ViT-B-16) | 68.1 | | [clip-ViT-L-14](https://huggingface.co/sentence-transformers/clip-ViT-L-14) | 75.4 | For a multilingual version of the CLIP model for 50+ languages have a look at: [clip-ViT-B-32-multilingual-v1](https://huggingface.co/sentence-transformers/clip-ViT-B-32-multilingual-v1)
ranajoy98/autotrain-clauses_classifier-2847083405
ranajoy98
2023-06-13T10:23:16Z
104
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "en", "dataset:ranajoy98/autotrain-data-clauses_classifier", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-12T07:58:25Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - ranajoy98/autotrain-data-clauses_classifier co2_eq_emissions: emissions: 0.712310551029896 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 2847083405 - CO2 Emissions (in grams): 0.7123 ## Validation Metrics - Loss: 0.642 - Accuracy: 0.795 - Macro F1: 0.810 - Micro F1: 0.795 - Weighted F1: 0.796 - Macro Precision: 0.807 - Micro Precision: 0.795 - Weighted Precision: 0.802 - Macro Recall: 0.819 - Micro Recall: 0.795 - Weighted Recall: 0.795 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/ranajoy98/autotrain-clauses_classifier-2847083405 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("ranajoy98/autotrain-clauses_classifier-2847083405", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("ranajoy98/autotrain-clauses_classifier-2847083405", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
nvenhuizen14/mofodbtransactions
nvenhuizen14
2023-06-13T10:12:54Z
1
0
transformers
[ "transformers", "joblib", "logistic_regression", "autotrain", "tabular", "classification", "tabular-classification", "dataset:nvenhuizen14/autotrain-data-mofodb_classifications", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
tabular-classification
2023-06-13T10:11:09Z
--- tags: - autotrain - tabular - classification - tabular-classification datasets: - nvenhuizen14/autotrain-data-mofodb_classifications co2_eq_emissions: emissions: 0.04250103814751933 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 66203136426 - CO2 Emissions (in grams): 0.0425 ## Validation Metrics - Loss: 0.007 - Accuracy: 0.997 - Macro F1: 0.915 - Micro F1: 0.997 - Weighted F1: 0.996 - Macro Precision: 0.926 - Micro Precision: 0.997 - Weighted Precision: 0.995 - Macro Recall: 0.915 - Micro Recall: 0.997 - Weighted Recall: 0.997 ## Usage ```python import json import joblib import pandas as pd model = joblib.load('model.joblib') config = json.load(open('config.json')) features = config['features'] # data = pd.read_csv("data.csv") data = data[features] data.columns = ["feat_" + str(col) for col in data.columns] predictions = model.predict(data) # or model.predict_proba(data) ```
MarcoLYH/distilbert-base-uncased-finetuned-v2
MarcoLYH
2023-06-13T09:53:44Z
61
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-06-13T09:47:30Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: MarcoLYH/distilbert-base-uncased-finetuned-v2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # MarcoLYH/distilbert-base-uncased-finetuned-v2 This model is a fine-tuned version of [distilbert-base-uncased-distilled-squad](https://huggingface.co/distilbert-base-uncased-distilled-squad) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.8512 - Train End Logits Accuracy: 0.7917 - Train Start Logits Accuracy: 0.7708 - Validation Loss: 0.9185 - Validation End Logits Accuracy: 0.7000 - Validation Start Logits Accuracy: 0.8000 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 14, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1, 'power': 1.0, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 2.0417 | 0.4583 | 0.5833 | 1.2444 | 0.6000 | 0.7000 | 0 | | 1.5102 | 0.5625 | 0.6875 | 1.0279 | 0.7000 | 0.75 | 1 | | 1.1881 | 0.6458 | 0.6875 | 0.9774 | 0.7000 | 0.8000 | 2 | | 1.1344 | 0.6875 | 0.6875 | 0.9360 | 0.7000 | 0.8000 | 3 | | 0.8512 | 0.7917 | 0.7708 | 0.9185 | 0.7000 | 0.8000 | 4 | ### Framework versions - Transformers 4.30.1 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
kowshikBlue/sti_workplace_model_updated
kowshikBlue
2023-06-13T09:51:03Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-13T09:50:35Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 200 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 200, "warmup_steps": 20, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
cointegrated/roberta-large-cola-krishna2020
cointegrated
2023-06-13T09:38:15Z
1,785
7
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "text-classification", "arxiv:2010.05700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
This is a RoBERTa-large classifier trained on the CoLA corpus [Warstadt et al., 2019](https://www.mitpressjournals.org/doi/pdf/10.1162/tacl_a_00290), which contains sentences paired with grammatical acceptability judgments. The model can be used to evaluate fluency of machine-generated English sentences, e.g. for evaluation of text style transfer. The model was trained in the paper [Krishna et al, 2020. Reformulating Unsupervised Style Transfer as Paraphrase Generation](https://arxiv.org/abs/2010.05700), and its original version is available at [their project page](http://style.cs.umass.edu). We converted this model from Fairseq to Transformers format. All credit goes to the authors of the original paper. ## Citation If you found this model useful and refer to it, please cite the original work: ``` @inproceedings{style20, author={Kalpesh Krishna and John Wieting and Mohit Iyyer}, Booktitle = {Empirical Methods in Natural Language Processing}, Year = "2020", Title={Reformulating Unsupervised Style Transfer as Paraphrase Generation}, } ```
Josias-Ounsinli/my_awesome_model32
Josias-Ounsinli
2023-06-13T09:33:36Z
62
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-13T09:14:34Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Josias-Ounsinli/my_awesome_model32 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Josias-Ounsinli/my_awesome_model32 This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.0986 - Validation Loss: 1.0986 - Train Accuracy: 0.3333 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3750, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 1.0986 | 1.0986 | 0.3333 | 0 | | 1.0986 | 1.0986 | 0.3333 | 1 | ### Framework versions - Transformers 4.30.1 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
Jamli/AmeliaLoRa
Jamli
2023-06-13T09:15:22Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-13T09:07:01Z
--- license: creativeml-openrail-m ---
addy88/bert-finetuned-bpmn
addy88
2023-06-13T09:15:21Z
120
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-13T09:06:45Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-bpmn results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-bpmn This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3456 - Precision: 0.8113 - Recall: 0.86 - F1: 0.8350 - Accuracy: 0.9341 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 10 | 0.2716 | 0.7778 | 0.84 | 0.8077 | 0.9115 | | No log | 2.0 | 20 | 0.2428 | 0.7669 | 0.8333 | 0.7987 | 0.9160 | | No log | 3.0 | 30 | 0.2726 | 0.7875 | 0.84 | 0.8129 | 0.9205 | | No log | 4.0 | 40 | 0.2658 | 0.7862 | 0.8333 | 0.8091 | 0.9214 | | No log | 5.0 | 50 | 0.2470 | 0.7914 | 0.86 | 0.8243 | 0.9268 | | No log | 6.0 | 60 | 0.2745 | 0.7791 | 0.8467 | 0.8115 | 0.9250 | | No log | 7.0 | 70 | 0.3415 | 0.8280 | 0.8667 | 0.8469 | 0.9259 | | No log | 8.0 | 80 | 0.3524 | 0.775 | 0.8267 | 0.8000 | 0.9178 | | No log | 9.0 | 90 | 0.3307 | 0.8313 | 0.8867 | 0.8581 | 0.9322 | | No log | 10.0 | 100 | 0.3161 | 0.7778 | 0.84 | 0.8077 | 0.9214 | | No log | 11.0 | 110 | 0.3646 | 0.8387 | 0.8667 | 0.8525 | 0.9322 | | No log | 12.0 | 120 | 0.3262 | 0.7925 | 0.84 | 0.8155 | 0.9223 | | No log | 13.0 | 130 | 0.3436 | 0.8462 | 0.88 | 0.8627 | 0.9350 | | No log | 14.0 | 140 | 0.3427 | 0.8516 | 0.88 | 0.8656 | 0.9377 | | No log | 15.0 | 150 | 0.3163 | 0.7950 | 0.8533 | 0.8232 | 0.9322 | | No log | 16.0 | 160 | 0.3233 | 0.8291 | 0.8733 | 0.8506 | 0.9377 | | No log | 17.0 | 170 | 0.3354 | 0.8050 | 0.8533 | 0.8285 | 0.9322 | | No log | 18.0 | 180 | 0.3468 | 0.8291 | 0.8733 | 0.8506 | 0.9341 | | No log | 19.0 | 190 | 0.3457 | 0.8176 | 0.8667 | 0.8414 | 0.9341 | | No log | 20.0 | 200 | 0.3456 | 0.8113 | 0.86 | 0.8350 | 0.9341 | ### Framework versions - Transformers 4.30.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Josias-Ounsinli/my_awesome_model31
Josias-Ounsinli
2023-06-13T09:11:53Z
61
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-13T08:44:13Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Josias-Ounsinli/my_awesome_model31 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Josias-Ounsinli/my_awesome_model31 This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.0988 - Validation Loss: 1.0986 - Train Accuracy: 0.3333 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.001, 'decay_steps': 5625, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 1.1022 | 1.0986 | 0.3333 | 0 | | 1.0989 | 1.0988 | 0.3333 | 1 | | 1.0988 | 1.0986 | 0.3333 | 2 | ### Framework versions - Transformers 4.30.1 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
franfj/media-bias-ukraine-dataset-all-removed
franfj
2023-06-13T09:08:29Z
115
0
transformers
[ "transformers", "pytorch", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-11T23:45:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: media-bias-ukraine-dataset-all-removed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # media-bias-ukraine-dataset-all-removed This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1717 - F1: 0.8014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3845 | 1.0 | 114 | 0.2296 | 0.6101 | | 0.1412 | 2.0 | 228 | 0.1759 | 0.7486 | | 0.0215 | 3.0 | 342 | 0.2275 | 0.7439 | | 0.0506 | 4.0 | 456 | 0.2064 | 0.7651 | | 0.0366 | 5.0 | 570 | 0.1717 | 0.8014 | | 0.2428 | 6.0 | 684 | 0.1955 | 0.7878 | | 0.005 | 7.0 | 798 | 0.2297 | 0.7839 | | 0.003 | 8.0 | 912 | 0.2428 | 0.8005 | | 0.0037 | 9.0 | 1026 | 0.2577 | 0.7884 | | 0.0099 | 10.0 | 1140 | 0.2641 | 0.7957 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1 - Datasets 2.10.1 - Tokenizers 0.13.2
yswill/llama-13b-hf
yswill
2023-06-13T09:05:59Z
50
4
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-13T07:17:12Z
--- license: other --- This contains the weights for the LLaMA-13b model. This model is under a non-commercial license (see the LICENSE file). You should only use this repository if you have been granted access to the model by filling out [this form](https://docs.google.com/forms/d/e/1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_fBxjY_OjhJILlKGA/viewform?usp=send_form) but either lost your copy of the weights or got some trouble converting them to the Transformers format. 模型为HF格式,可以直接使用huggingface api加载使用,本模型也适用于LLaVA模型的底层LLaMa模型。
Josias-Ounsinli/my_awesome_model39
Josias-Ounsinli
2023-06-13T08:53:12Z
62
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-13T08:33:51Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Josias-Ounsinli/my_awesome_model39 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Josias-Ounsinli/my_awesome_model39 This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5308 - Validation Loss: 0.6272 - Train Accuracy: 0.7307 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0001, 'decay_steps': 7500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.6912 | 0.6544 | 0.7063 | 0 | | 0.5308 | 0.6272 | 0.7307 | 1 | ### Framework versions - Transformers 4.30.1 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
echarlaix/distilbert-sst2-inc-dynamic-quantization-magnitude-pruning-0.1
echarlaix
2023-06-13T08:47:40Z
117
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "neural-compressor", "int8", "en", "dataset:sst2", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-06T09:51:12Z
--- language: en license: apache-2.0 datasets: - sst2 - glue metrics: - accuracy tags: - text-classification - neural-compressor - int8 --- # Dynamically quantized and pruned DistilBERT base uncased finetuned SST-2 ## Table of Contents - [Model Details](#model-details) - [How to Get Started With the Model](#how-to-get-started-with-the-model) ## Model Details **Model Description:** This model is a [DistilBERT](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) fine-tuned on SST-2 dynamically quantized and pruned using a magnitude pruning strategy to obtain a sparsity of 10% with [optimum-intel](https://github.com/huggingface/optimum-intel) through the usage of [Intel® Neural Compressor](https://github.com/intel/neural-compressor). - **Model Type:** Text Classification - **Language(s):** English - **License:** Apache-2.0 - **Parent Model:** For more details on the original model, we encourage users to check out [this](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) model card. ## How to Get Started With the Model This requires to install Optimum : `pip install optimum[neural-compressor]` To load the quantized model and run inference using the Transformers [pipelines](https://huggingface.co/docs/transformers/main/en/main_classes/pipelines), you can do as follows: ```python from transformers import AutoTokenizer, pipeline from optimum.intel import INCModelForSequenceClassification model_id = "echarlaix/distilbert-sst2-inc-dynamic-quantization-magnitude-pruning-0.1" model = INCModelForSequenceClassification.from_pretrained(model_id) tokenizer = AutoTokenizer.from_pretrained(model_id) cls_pipe = pipeline("text-classification", model=model, tokenizer=tokenizer) text = "He's a dreadful magician." outputs = cls_pipe(text) ```
srb1smo/lizard
srb1smo
2023-06-13T08:44:41Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-13T08:44:41Z
--- license: creativeml-openrail-m ---
aga3134/ppo-pyramids-training
aga3134
2023-06-13T08:39:20Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-06-13T08:39:12Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: aga3134/ppo-pyramids-training 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Josias-Ounsinli/my_awesome_model2
Josias-Ounsinli
2023-06-13T08:37:32Z
63
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-12T10:29:57Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Josias-Ounsinli/my_awesome_model2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Josias-Ounsinli/my_awesome_model2 This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: nan - Validation Loss: nan - Train Accuracy: 0.3333 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 4128, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | nan | nan | 0.3333 | 0 | | nan | nan | 0.3333 | 1 | | nan | nan | 0.3333 | 2 | ### Framework versions - Transformers 4.30.1 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
undrwolf/taxi-RL-agent
undrwolf
2023-06-13T08:24:09Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-13T08:24:06Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi-RL-agent results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="undrwolf/taxi-RL-agent", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ikasou/ppo-LunarLander-v2
ikasou
2023-06-13T08:17:07Z
8
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-31T16:53:23Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 292.00 +/- 15.21 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dico97/distilgpt2-finetuned-wikitext2
dico97
2023-06-13T07:59:55Z
62
0
transformers
[ "transformers", "tf", "tensorboard", "gpt2", "text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-06-13T07:52:42Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: dico97/distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # dico97/distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.8575 - Validation Loss: 3.6734 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.8575 | 3.6734 | 0 | ### Framework versions - Transformers 4.28.0 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
Getinside03/vit-base-beans
Getinside03
2023-06-13T07:39:44Z
195
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "vision", "generated_from_trainer", "dataset:beans", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-13T07:35:25Z
--- license: apache-2.0 tags: - image-classification - vision - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: vit-base-beans results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9849624060150376 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0848 - Accuracy: 0.9850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2605 | 1.0 | 130 | 0.2307 | 0.9549 | | 0.2843 | 2.0 | 260 | 0.1110 | 0.9925 | | 0.1579 | 3.0 | 390 | 0.1061 | 0.9699 | | 0.0904 | 4.0 | 520 | 0.0853 | 0.9850 | | 0.1618 | 5.0 | 650 | 0.0848 | 0.9850 | ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 1.12.0a0+git664058f - Datasets 2.12.0 - Tokenizers 0.13.3
intanm/fewshot-qa-002-20230613-003
intanm
2023-06-13T07:30:44Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "question-answering", "generated_from_trainer", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2023-06-13T07:11:07Z
--- license: cc-by-4.0 tags: - generated_from_trainer model-index: - name: fewshot-qa-002-20230613-003 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fewshot-qa-002-20230613-003 This model is a fine-tuned version of [deepset/xlm-roberta-base-squad2](https://huggingface.co/deepset/xlm-roberta-base-squad2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.3842 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 208 | 2.5896 | | No log | 2.0 | 416 | 2.6143 | | 2.487 | 3.0 | 624 | 2.7156 | | 2.487 | 4.0 | 832 | 3.1187 | | 1.2936 | 5.0 | 1040 | 3.3531 | | 1.2936 | 6.0 | 1248 | 3.7272 | | 1.2936 | 7.0 | 1456 | 3.9238 | | 0.6852 | 8.0 | 1664 | 4.3116 | | 0.6852 | 9.0 | 1872 | 4.3842 | | 0.3944 | 10.0 | 2080 | 4.3842 | ### Framework versions - Transformers 4.30.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
WattsIshaan/ppo-LunarLander-v2
WattsIshaan
2023-06-13T07:02:01Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-13T07:01:40Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 264.69 +/- 16.87 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
casque/MuscleGirl_v1
casque
2023-06-13T06:59:23Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-13T06:57:46Z
--- license: creativeml-openrail-m ---
addy88/distilroberta-base
addy88
2023-06-13T06:39:09Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-12T09:16:21Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilroberta-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6935 - Precision: 0.7556 - Recall: 0.7556 - F1: 0.7556 - Accuracy: 0.7556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2481 | 1.0 | 2355 | 1.5506 | 0.7409 | 0.7409 | 0.7409 | 0.7409 | | 0.3473 | 2.0 | 4710 | 1.5572 | 0.7428 | 0.7428 | 0.7428 | 0.7428 | | 0.2614 | 3.0 | 7065 | 1.6423 | 0.7539 | 0.7539 | 0.7539 | 0.7539 | | 0.1337 | 4.0 | 9420 | 1.6935 | 0.7556 | 0.7556 | 0.7556 | 0.7556 | ### Framework versions - Transformers 4.28.1 - Pytorch 1.13.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
ugiugi/inisw08-DistilBERT-STS
ugiugi
2023-06-13T06:36:34Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-13T06:23:59Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 180 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 4, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 72, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
chjooon/my_awesome_eli5_clm-model
chjooon
2023-06-13T06:35:09Z
208
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-10T04:53:46Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: my_awesome_eli5_clm-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_eli5_clm-model This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7153 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.879 | 1.0 | 1121 | 3.7352 | | 3.7867 | 2.0 | 2242 | 3.7179 | | 3.737 | 3.0 | 3363 | 3.7153 | ### Framework versions - Transformers 4.30.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
pilgrim222/q-FrozenLake-v1-4x4-noSlippery
pilgrim222
2023-06-13T06:24:44Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-13T06:24:42Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="pilgrim222/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
intanm/fewshot-qa-002-20230613
intanm
2023-06-13T06:21:53Z
120
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "question-answering", "generated_from_trainer", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2023-06-13T06:19:20Z
--- license: cc-by-4.0 tags: - generated_from_trainer model-index: - name: fewshot-qa-002-20230613 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fewshot-qa-002-20230613 This model is a fine-tuned version of [intanm/20230429-001-baseline-xlmr-qa-ft-clickbait-spoiling](https://huggingface.co/intanm/20230429-001-baseline-xlmr-qa-ft-clickbait-spoiling) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0795 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 8 | 1.7534 | | No log | 2.0 | 16 | 1.0488 | | No log | 3.0 | 24 | 0.6455 | | No log | 4.0 | 32 | 0.3724 | | No log | 5.0 | 40 | 0.2555 | | No log | 6.0 | 48 | 0.1813 | | No log | 7.0 | 56 | 0.1244 | | No log | 8.0 | 64 | 0.1023 | | No log | 9.0 | 72 | 0.0873 | | No log | 10.0 | 80 | 0.0795 | ### Framework versions - Transformers 4.30.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
casque/Angewomon-Digimon-v1
casque
2023-06-13T06:21:20Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-13T06:19:51Z
--- license: creativeml-openrail-m ---
irfanamal/bert-base-uncased-finetuned-amazonreviews
irfanamal
2023-06-13T06:21:12Z
197
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-06-13T04:07:59Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-amazonreviews results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-amazonreviews This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8730 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1298 | 1.0 | 1797 | 1.9650 | | 2.0174 | 2.0 | 3594 | 1.8939 | | 1.9809 | 3.0 | 5391 | 1.8666 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
Catears/AnythingVAEStorage
Catears
2023-06-13T06:17:58Z
0
0
diffusers
[ "diffusers", "license:unknown", "region:us" ]
null
2023-06-13T06:09:45Z
--- license: unknown --- ## This is just a direct copy of AnythingV4 vae. I want to load it manually in diffusers to avoid loading failure, but cannot do it using "from_pretrained" directly. That's why I create this model card to resolve the issue
tuwonga/actionauf
tuwonga
2023-06-13T06:16:31Z
0
0
null
[ "stable-diffusion", "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-06-12T19:28:06Z
--- license: creativeml-openrail-m thumbnail: "https://huggingface.co/tuwonga/actionauf/resolve/main/actionauf.jpg" tags: - stable-diffusion - text-to-image --- ### Actionauf This is a fine-tuned Stable Diffusion model (based on v1.5) trained on **_action figure_** pictures: Use the token **_actionauf_** in your prompts to use the style. _Download the safetensor file from "files and versions" tab into the stable diffusion models folder of your web-ui of choice._ -- **Characters rendered with this model:** ![Character Samples](https://huggingface.co/tuwonga/actionauf/resolve/main/actionauf.jpg) _prompt and settings used: **realistic actionauf style [person]** | **Steps: 20, Sampler: Euler, CFG scale: 11.5**_ -- **Note:** You can make the prompt stronger using words as "realistic" or "action figure" or whatever you think being fit. Do not exceed with steps, try to check the restore faces and enjoy with cfg scale. At the moment this is an experimental model. Hope you like it.Please feel free to merge with some useful model and let me know ^_^ -- This model was trained with Dreambooth training by TheLastBen, using 77 images at 11550 steps. -- ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
ssvadim/whisper-small-uz
ssvadim
2023-06-13T06:10:30Z
113
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "dataset:mozilla-foundation/common_voice_13_0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-12T16:44:38Z
--- datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer ---
LemonFace0309/Reinforce-Pixelcopter-PLE-v0
LemonFace0309
2023-06-13T06:07:08Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-13T06:06:42Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 8.20 +/- 7.98 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
gokuls/bert_12_layer_model_v1_complete_training_new_48_KD_wt_init
gokuls
2023-06-13T06:03:21Z
50
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-06-10T21:48:23Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert_12_layer_model_v1_complete_training_new_48_KD_wt_init results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_12_layer_model_v1_complete_training_new_48_KD_wt_init This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 241.0859 - Accuracy: 0.4099 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 36 - eval_batch_size: 36 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10000 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 603.6149 | 0.06 | 10000 | 579.3715 | 0.1445 | | 499.749 | 0.12 | 20000 | 507.5929 | 0.1449 | | 464.2382 | 0.18 | 30000 | 455.9639 | 0.1525 | | 402.3357 | 0.25 | 40000 | 394.2733 | 0.2312 | | 354.8343 | 0.31 | 50000 | 348.3572 | 0.2952 | | 323.2804 | 0.37 | 60000 | 315.5649 | 0.3318 | | 304.7558 | 0.43 | 70000 | 294.0559 | 0.3520 | | 291.4657 | 0.49 | 80000 | 282.6148 | 0.3669 | | 280.9548 | 0.55 | 90000 | 270.2188 | 0.3792 | | 271.2151 | 0.61 | 100000 | 260.9895 | 0.3888 | | 261.6096 | 0.68 | 110000 | 251.4035 | 0.3961 | | 256.1119 | 0.74 | 120000 | 243.2089 | 0.4041 | | 249.2419 | 0.8 | 130000 | 241.0859 | 0.4099 | ### Framework versions - Transformers 4.30.1 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
gokuls/bert_12_layer_model_v2_complete_training_new_48_KD
gokuls
2023-06-13T05:52:38Z
50
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-06-10T21:42:09Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert_12_layer_model_v2_complete_training_new_48_KD results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_12_layer_model_v2_complete_training_new_48_KD This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 418.2312 - Accuracy: 0.1802 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 36 - eval_batch_size: 36 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10000 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 846.7844 | 0.06 | 10000 | 799.2012 | 0.1433 | | 603.1405 | 0.12 | 20000 | 597.2043 | 0.1455 | | 552.8343 | 0.18 | 30000 | 549.4058 | 0.1455 | | 525.8206 | 0.25 | 40000 | 523.2474 | 0.1455 | | 508.5397 | 0.31 | 50000 | 508.2666 | 0.1467 | | 495.479 | 0.37 | 60000 | 494.1740 | 0.1454 | | 485.269 | 0.43 | 70000 | 483.4185 | 0.1459 | | 474.9876 | 0.49 | 80000 | 475.5062 | 0.1475 | | 464.3079 | 0.55 | 90000 | 460.0214 | 0.1507 | | 455.1477 | 0.61 | 100000 | 451.2754 | 0.1553 | | 444.9362 | 0.68 | 110000 | 441.2908 | 0.1596 | | 438.575 | 0.74 | 120000 | 432.5171 | 0.1660 | | 429.8774 | 0.8 | 130000 | 425.1851 | 0.1693 | | 421.0561 | 0.86 | 140000 | 418.2312 | 0.1802 | ### Framework versions - Transformers 4.30.1 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
ppsingh/action-policy-plans-classifier
ppsingh
2023-06-13T05:50:19Z
110
0
transformers
[ "transformers", "pytorch", "mpnet", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-13T05:49:22Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: action-policy-plans-classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # action-policy-plans-classifier This model is a fine-tuned version of [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6839 - Precision Micro: 0.7089 - Precision Weighted: 0.7043 - Precision Samples: 0.4047 - Recall Micro: 0.7066 - Recall Weighted: 0.7066 - Recall Samples: 0.4047 - F1-score: 0.4041 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.915e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision Micro | Precision Weighted | Precision Samples | Recall Micro | Recall Weighted | Recall Samples | F1-score | |:-------------:|:-----:|:----:|:---------------:|:---------------:|:------------------:|:-----------------:|:------------:|:---------------:|:--------------:|:--------:| | 0.7333 | 1.0 | 253 | 0.5828 | 0.625 | 0.6422 | 0.4047 | 0.7098 | 0.7098 | 0.4065 | 0.4047 | | 0.5905 | 2.0 | 506 | 0.5593 | 0.6292 | 0.6318 | 0.4437 | 0.7760 | 0.7760 | 0.4446 | 0.4434 | | 0.4934 | 3.0 | 759 | 0.5269 | 0.6630 | 0.6637 | 0.4319 | 0.7571 | 0.7571 | 0.4347 | 0.4325 | | 0.4018 | 4.0 | 1012 | 0.5645 | 0.6449 | 0.6479 | 0.4456 | 0.7792 | 0.7792 | 0.4465 | 0.4453 | | 0.3235 | 5.0 | 1265 | 0.6101 | 0.6964 | 0.6929 | 0.4220 | 0.7382 | 0.7382 | 0.4229 | 0.4217 | | 0.2638 | 6.0 | 1518 | 0.6692 | 0.6888 | 0.6841 | 0.4111 | 0.7192 | 0.7192 | 0.4120 | 0.4108 | | 0.2197 | 7.0 | 1771 | 0.6839 | 0.7089 | 0.7043 | 0.4047 | 0.7066 | 0.7066 | 0.4047 | 0.4041 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
gokuls/bert_12_layer_model_v1_complete_training_new_48_KD
gokuls
2023-06-13T05:49:08Z
50
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-06-10T03:43:10Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert_12_layer_model_v1_complete_training_new_48_KD results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_12_layer_model_v1_complete_training_new_48_KD This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 326.4413 - Accuracy: 0.3018 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 36 - eval_batch_size: 36 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10000 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 849.2694 | 0.06 | 10000 | 802.2138 | 0.1435 | | 603.4255 | 0.12 | 20000 | 597.5114 | 0.1445 | | 552.5588 | 0.18 | 30000 | 549.1310 | 0.1454 | | 525.5738 | 0.25 | 40000 | 523.0781 | 0.1460 | | 508.5192 | 0.31 | 50000 | 507.5772 | 0.1463 | | 496.0482 | 0.37 | 60000 | 494.5385 | 0.1457 | | 487.2105 | 0.43 | 70000 | 484.7273 | 0.1464 | | 476.1281 | 0.49 | 80000 | 473.3444 | 0.1490 | | 456.0017 | 0.55 | 90000 | 445.0464 | 0.1662 | | 421.6633 | 0.61 | 100000 | 404.1071 | 0.2046 | | 382.6604 | 0.68 | 110000 | 369.2148 | 0.2446 | | 358.6727 | 0.74 | 120000 | 341.1114 | 0.2776 | | 339.9395 | 0.8 | 130000 | 326.4413 | 0.3018 | ### Framework versions - Transformers 4.30.1 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
Deojaklah/Memeyy
Deojaklah
2023-06-13T05:44:59Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-13T05:35:02Z
--- license: creativeml-openrail-m ---
or90/results
or90
2023-06-13T05:39:16Z
0
0
null
[ "generated_from_trainer", "region:us" ]
null
2023-06-13T05:34:48Z
--- tags: - generated_from_trainer model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [ybelkada/falcon-7b-sharded-bf16](https://huggingface.co/ybelkada/falcon-7b-sharded-bf16) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - training_steps: 500 ### Training results ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
julianzy/CheckGPT
julianzy
2023-06-13T05:25:21Z
0
1
null
[ "dataset:julianzy/GPABenchmark", "region:us" ]
null
2023-06-13T05:23:14Z
--- datasets: - julianzy/GPABenchmark --- The official repository of paper: "Check Me If You Can: Detecting ChatGPT-Generated Academic Writing using CheckGPT".
Zemulax/masked-lm-tpu
Zemulax
2023-06-13T05:18:23Z
4
0
transformers
[ "transformers", "tf", "roberta", "fill-mask", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-06-13T00:21:57Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: Zemulax/masked-lm-tpu results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Zemulax/masked-lm-tpu This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 7.7770 - Train Accuracy: 0.0241 - Validation Loss: 7.7589 - Validation Accuracy: 0.0230 - Epoch: 98 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 0.0001, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0001, 'decay_steps': 223250, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 11750, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.001} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 10.2868 | 0.0 | 10.2891 | 0.0 | 0 | | 10.2817 | 0.0000 | 10.2764 | 0.0 | 1 | | 10.2772 | 0.0000 | 10.2667 | 0.0000 | 2 | | 10.2604 | 0.0000 | 10.2521 | 0.0 | 3 | | 10.2421 | 0.0000 | 10.2282 | 0.0000 | 4 | | 10.2219 | 0.0 | 10.2010 | 0.0 | 5 | | 10.1957 | 0.0 | 10.1669 | 0.0 | 6 | | 10.1667 | 0.0000 | 10.1388 | 0.0000 | 7 | | 10.1278 | 0.0000 | 10.0908 | 0.0000 | 8 | | 10.0848 | 0.0000 | 10.0405 | 0.0001 | 9 | | 10.0496 | 0.0002 | 9.9921 | 0.0007 | 10 | | 9.9940 | 0.0010 | 9.9422 | 0.0039 | 11 | | 9.9424 | 0.0035 | 9.8765 | 0.0110 | 12 | | 9.8826 | 0.0092 | 9.8156 | 0.0182 | 13 | | 9.8225 | 0.0155 | 9.7461 | 0.0209 | 14 | | 9.7670 | 0.0201 | 9.6768 | 0.0222 | 15 | | 9.7065 | 0.0219 | 9.6127 | 0.0222 | 16 | | 9.6352 | 0.0227 | 9.5445 | 0.0220 | 17 | | 9.5757 | 0.0226 | 9.4795 | 0.0219 | 18 | | 9.4894 | 0.0232 | 9.3985 | 0.0222 | 19 | | 9.4277 | 0.0234 | 9.3386 | 0.0222 | 20 | | 9.3676 | 0.0229 | 9.2753 | 0.0220 | 21 | | 9.2980 | 0.0229 | 9.2170 | 0.0219 | 22 | | 9.2361 | 0.0233 | 9.1518 | 0.0219 | 23 | | 9.1515 | 0.0236 | 9.0827 | 0.0223 | 24 | | 9.1171 | 0.0228 | 9.0406 | 0.0218 | 25 | | 9.0447 | 0.0234 | 8.9867 | 0.0218 | 26 | | 9.0119 | 0.0229 | 8.9307 | 0.0221 | 27 | | 8.9625 | 0.0229 | 8.8969 | 0.0221 | 28 | | 8.9098 | 0.0230 | 8.8341 | 0.0223 | 29 | | 8.8726 | 0.0227 | 8.8118 | 0.0220 | 30 | | 8.8574 | 0.0223 | 8.7910 | 0.0219 | 31 | | 8.7798 | 0.0231 | 8.7506 | 0.0221 | 32 | | 8.7535 | 0.0231 | 8.7055 | 0.0222 | 33 | | 8.7333 | 0.0228 | 8.6801 | 0.0223 | 34 | | 8.6985 | 0.0231 | 8.6837 | 0.0220 | 35 | | 8.6816 | 0.0229 | 8.6243 | 0.0223 | 36 | | 8.6356 | 0.0228 | 8.6323 | 0.0217 | 37 | | 8.6392 | 0.0225 | 8.5603 | 0.0225 | 38 | | 8.5802 | 0.0233 | 8.5722 | 0.0219 | 39 | | 8.5825 | 0.0228 | 8.5548 | 0.0220 | 40 | | 8.5625 | 0.0228 | 8.5272 | 0.0220 | 41 | | 8.5415 | 0.0228 | 8.5200 | 0.0222 | 42 | | 8.5124 | 0.0230 | 8.4787 | 0.0222 | 43 | | 8.4999 | 0.0229 | 8.4819 | 0.0218 | 44 | | 8.4561 | 0.0235 | 8.4453 | 0.0221 | 45 | | 8.4854 | 0.0223 | 8.4378 | 0.0220 | 46 | | 8.4367 | 0.0229 | 8.4212 | 0.0222 | 47 | | 8.4096 | 0.0232 | 8.4033 | 0.0221 | 48 | | 8.4162 | 0.0228 | 8.3869 | 0.0221 | 49 | | 8.4005 | 0.0229 | 8.3768 | 0.0218 | 50 | | 8.3583 | 0.0235 | 8.3470 | 0.0224 | 51 | | 8.3428 | 0.0235 | 8.3540 | 0.0221 | 52 | | 8.3491 | 0.0231 | 8.3201 | 0.0225 | 53 | | 8.3551 | 0.0231 | 8.3382 | 0.0221 | 54 | | 8.3186 | 0.0231 | 8.3136 | 0.0219 | 55 | | 8.3139 | 0.0226 | 8.2844 | 0.0222 | 56 | | 8.3170 | 0.0229 | 8.2740 | 0.0221 | 57 | | 8.2886 | 0.0231 | 8.2485 | 0.0223 | 58 | | 8.2648 | 0.0233 | 8.2336 | 0.0223 | 59 | | 8.2714 | 0.0225 | 8.2321 | 0.0221 | 60 | | 8.2446 | 0.0233 | 8.2135 | 0.0223 | 61 | | 8.2303 | 0.0230 | 8.1980 | 0.0223 | 62 | | 8.2022 | 0.0237 | 8.1996 | 0.0222 | 63 | | 8.2222 | 0.0227 | 8.1822 | 0.0222 | 64 | | 8.1690 | 0.0236 | 8.2005 | 0.0220 | 65 | | 8.1741 | 0.0233 | 8.1446 | 0.0226 | 66 | | 8.1990 | 0.0224 | 8.1586 | 0.0219 | 67 | | 8.1395 | 0.0236 | 8.1243 | 0.0225 | 68 | | 8.1675 | 0.0229 | 8.1275 | 0.0222 | 69 | | 8.1432 | 0.0229 | 8.1374 | 0.0217 | 70 | | 8.1197 | 0.0234 | 8.1078 | 0.0221 | 71 | | 8.1046 | 0.0232 | 8.0991 | 0.0221 | 72 | | 8.1013 | 0.0231 | 8.0794 | 0.0222 | 73 | | 8.0887 | 0.0228 | 8.0720 | 0.0221 | 74 | | 8.0661 | 0.0233 | 8.0573 | 0.0222 | 75 | | 8.0548 | 0.0231 | 8.0313 | 0.0226 | 76 | | 8.0307 | 0.0235 | 8.0278 | 0.0222 | 77 | | 8.0626 | 0.0226 | 8.0084 | 0.0224 | 78 | | 8.0276 | 0.0229 | 8.0099 | 0.0221 | 79 | | 8.0213 | 0.0231 | 7.9930 | 0.0222 | 80 | | 7.9798 | 0.0237 | 7.9742 | 0.0224 | 81 | | 8.0135 | 0.0226 | 7.9857 | 0.0218 | 82 | | 7.9500 | 0.0235 | 7.9505 | 0.0223 | 83 | | 7.9519 | 0.0234 | 7.9711 | 0.0217 | 84 | | 7.9616 | 0.0228 | 7.9288 | 0.0223 | 85 | | 7.9803 | 0.0225 | 7.8997 | 0.0226 | 86 | | 7.9369 | 0.0227 | 7.9015 | 0.0225 | 87 | | 7.9309 | 0.0229 | 7.9010 | 0.0224 | 88 | | 7.9367 | 0.0226 | 7.8988 | 0.0220 | 89 | | 7.8840 | 0.0230 | 7.8774 | 0.0216 | 90 | | 7.8785 | 0.0233 | 7.8527 | 0.0225 | 91 | | 7.8998 | 0.0226 | 7.8509 | 0.0219 | 92 | | 7.8451 | 0.0232 | 7.8488 | 0.0221 | 93 | | 7.8596 | 0.0231 | 7.8310 | 0.0222 | 94 | | 7.8434 | 0.0231 | 7.8168 | 0.0229 | 95 | | 7.7929 | 0.0238 | 7.7815 | 0.0233 | 96 | | 7.8174 | 0.0236 | 7.7857 | 0.0232 | 97 | | 7.7770 | 0.0241 | 7.7589 | 0.0230 | 98 | ### Framework versions - Transformers 4.30.1 - TensorFlow 2.12.0 - Tokenizers 0.13.3
wiorz/gpt2_sm_gen1_large
wiorz
2023-06-13T05:16:26Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2023-06-10T02:02:59Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: gpt2_sm_gen1_large results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2_sm_gen1_large This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4824 - Accuracy: 0.8063 - Precision: 0.5094 - Recall: 0.3114 - F1: 0.3865 - D-index: 1.5483 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 96000 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | D-index | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:| | 0.5028 | 1.0 | 3000 | 0.5183 | 0.8039 | 0.4872 | 0.0162 | 0.0313 | 1.4419 | | 0.4442 | 2.0 | 6000 | 0.4597 | 0.8113 | 0.6126 | 0.0995 | 0.1712 | 1.4819 | | 0.415 | 3.0 | 9000 | 0.4217 | 0.8202 | 0.6309 | 0.1978 | 0.3012 | 1.5284 | | 0.4047 | 4.0 | 12000 | 0.4365 | 0.8228 | 0.6682 | 0.1901 | 0.2960 | 1.5294 | | 0.3827 | 5.0 | 15000 | 0.4141 | 0.8289 | 0.6502 | 0.2744 | 0.3859 | 1.5663 | | 0.3527 | 6.0 | 18000 | 0.4357 | 0.8284 | 0.6320 | 0.2973 | 0.4044 | 1.5733 | | 0.336 | 7.0 | 21000 | 0.4322 | 0.8285 | 0.6202 | 0.3216 | 0.4235 | 1.5815 | | 0.3051 | 8.0 | 24000 | 0.4696 | 0.8259 | 0.6076 | 0.3148 | 0.4147 | 1.5758 | | 0.2745 | 9.0 | 27000 | 0.4957 | 0.8164 | 0.5431 | 0.3969 | 0.4586 | 1.5903 | | 0.2435 | 10.0 | 30000 | 0.5369 | 0.8151 | 0.5391 | 0.3871 | 0.4506 | 1.5853 | | 0.2182 | 11.0 | 33000 | 0.6251 | 0.8176 | 0.5559 | 0.3428 | 0.4241 | 1.5740 | | 0.2031 | 12.0 | 36000 | 0.6869 | 0.795 | 0.4760 | 0.4590 | 0.4673 | 1.5820 | | 0.188 | 13.0 | 39000 | 0.8867 | 0.8147 | 0.5600 | 0.2522 | 0.3478 | 1.5396 | | 0.1738 | 14.0 | 42000 | 1.0311 | 0.8077 | 0.5149 | 0.3152 | 0.3910 | 1.5514 | | 0.1495 | 15.0 | 45000 | 1.2024 | 0.8053 | 0.5039 | 0.3815 | 0.4343 | 1.5703 | | 0.1415 | 16.0 | 48000 | 1.3324 | 0.8045 | 0.5013 | 0.4015 | 0.4459 | 1.5759 | | 0.1275 | 17.0 | 51000 | 1.5071 | 0.8051 | 0.5038 | 0.3416 | 0.4071 | 1.5568 | | 0.1139 | 18.0 | 54000 | 1.4309 | 0.8053 | 0.5047 | 0.3177 | 0.3900 | 1.5490 | | 0.1111 | 19.0 | 57000 | 1.5033 | 0.8082 | 0.5154 | 0.3496 | 0.4166 | 1.5636 | | 0.1124 | 20.0 | 60000 | 1.4824 | 0.8063 | 0.5094 | 0.3114 | 0.3865 | 1.5483 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
gsn-codes/a2c-PandaReachDense-v2
gsn-codes
2023-06-13T04:34:33Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-13T04:31:51Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.55 +/- 0.47 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
danielthomas45a/pure-frankincense-essential-oils
danielthomas45a
2023-06-13T04:20:50Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-06-13T04:04:06Z
--- license: openrail --- Experience the captivating essence of nature with our <a href="https://www.amazon.com/Pure-Frankincense-Essential-Oil-for-Pain-Skin/dp/B076P3XYGX">pure frankincense essential oils</a>. ✨ Uncover the secrets of this ancient treasure, known for its remarkable therapeutic properties and heavenly aroma. Elevate your senses and embark on a journey of serenity and rejuvenation. <a href="https://www.amazon.com/Pure-Frankincense-Essential-Oil-for-Pain-Skin/dp/B076P3XYGX">pure frankincense essential oils</a> <a href="https://www.amazon.com/Pure-Frankincense-Essential-Oil-for-Pain-Skin/dp/B076P3XYGX">pure frankincense essential oils</a> <a href="https://www.amazon.com/Pure-Frankincense-Essential-Oil-for-Pain-Skin/dp/B076P3XYGX">pure frankincense essential oils</a>
irfanamal/distilroberta-base-finetuned-wikitext2
irfanamal
2023-06-13T04:18:14Z
164
0
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-06-12T11:00:37Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8268 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1005 | 1.0 | 1203 | 1.9467 | | 2.034 | 2.0 | 2406 | 1.8616 | | 1.9683 | 3.0 | 3609 | 1.8253 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
Dans-Archive/Dans-PersonalityEngine-13b
Dans-Archive
2023-06-13T04:14:23Z
53
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-11T23:42:20Z
--- language: - en --- ### Description: This is a multipurpose chat / chat instruct hybrid model in the same vein as the Pygmalion team's Metharme. It uses a curated pile of training data that has been normalized into a consistent training format. It has been trained on a wide array of one shot instructions, multi round instructions, and role playing scenarios. ### Prompt format: Metharme The prompt should start with the cursor on the same line directly after "<|model|>" with no space. The following are all valid formats and can be extended to as many rounds as desired. ``` <|system|>system message here<|user|>user message here<|model|> ``` ``` <|system|>system message here<|user|>user message here<|model|>model message<|user|>user message here<|model|> ``` ``` <|system|>system message here<|model|> ``` ``` <|system|>system message here<|model|>model message<|user|>user message here<|model|> ``` Some example prompts: ``` <|system|>The following is a transcript between a helpful assistant and a user.<|user|>Why is the sky blue?<|model|> ``` ``` <|system|>You are a Virtual Story Generator. You take the user's input and create an excellent and captivating story that goes in that direction. Use an abundance of sensory descriptions and eloquent prose.<|user|>Alpha Centauri has fallen, to the bears. This is a point of view tale about a soldier on the ground.<|model|> ``` ``` <|system|>You are a professional editor with decades of experience, help the user with any task they have for you.<|user|>Can you rewrite this to flow better? "I knew I probably shouldnt have done that but oh well"<|model|> ``` More will be added at a later date. ### Perplexity Benchmarks: - TBA ### Training information: [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="150" height="24"/>](https://github.com/OpenAccess-AI-Collective/axolotl) - GPTQ 4 bit LoRA - 7 Epochs - 64 / 32 R / A - 2048 Cutoff - 18 hours on 4x RTX 4090s ### Data used in training: - TBA ### Models used: For training: https://huggingface.co/PocketDoc/llama-13b-gptq-4bit-128g For merging: https://huggingface.co/PocketDoc/Dans-PersonalityEngine-13b-LoRA and https://huggingface.co/huggyllama/llama-13b ### Disclaimer: It has not been aligned and no warranty is given for the quality or safety of its outputs.
ugiugi/inisw08-DistilBERT-mlm-adagrad
ugiugi
2023-06-13T04:01:11Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-06-13T02:14:11Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: inisw08-RoBERT-mlm-adagrad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # inisw08-RoBERT-mlm-adagrad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.8605 - Accuracy: 0.3698 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
gokuls/bert_12_layer_model_v2_complete_training_new_wt_init_120
gokuls
2023-06-13T03:59:38Z
47
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-06-11T21:10:30Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert_12_layer_model_v2_complete_training_new_wt_init_120 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_12_layer_model_v2_complete_training_new_wt_init_120 This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2_complete_training_new_wt_init_96](https://huggingface.co/gokuls/bert_12_layer_model_v2_complete_training_new_wt_init_96) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3044 - Accuracy: 0.5675 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10000 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 2.5079 | 0.08 | 10000 | 2.4011 | 0.5539 | | 2.4953 | 0.16 | 20000 | 2.3921 | 0.5553 | | 2.484 | 0.25 | 30000 | 2.3823 | 0.5568 | | 2.4828 | 0.33 | 40000 | 2.3711 | 0.5582 | | 2.4639 | 0.41 | 50000 | 2.3587 | 0.5598 | | 2.4572 | 0.49 | 60000 | 2.3521 | 0.5610 | | 2.4385 | 0.57 | 70000 | 2.3430 | 0.5626 | | 2.4307 | 0.66 | 80000 | 2.3337 | 0.5633 | | 2.4162 | 0.74 | 90000 | 2.3208 | 0.5647 | | 2.4088 | 0.82 | 100000 | 2.3133 | 0.5663 | | 2.4139 | 0.9 | 110000 | 2.3044 | 0.5675 | ### Framework versions - Transformers 4.30.1 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
Alwin114/my_awesome_wnut_model
Alwin114
2023-06-13T03:53:25Z
61
0
transformers
[ "transformers", "tf", "distilbert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-13T03:49:53Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Alwin114/my_awesome_wnut_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Alwin114/my_awesome_wnut_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1251 - Validation Loss: 0.2613 - Train Precision: 0.5636 - Train Recall: 0.4079 - Train F1: 0.4733 - Train Accuracy: 0.9449 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 636, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 0.3473 | 0.3059 | 0.3825 | 0.2667 | 0.3143 | 0.9352 | 0 | | 0.1626 | 0.2656 | 0.5075 | 0.3648 | 0.4245 | 0.9418 | 1 | | 0.1251 | 0.2613 | 0.5636 | 0.4079 | 0.4733 | 0.9449 | 2 | ### Framework versions - Transformers 4.30.1 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
silpakanneganti/biobert-finetuned-squad-insurance
silpakanneganti
2023-06-13T03:47:55Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2023-06-12T10:07:55Z
--- tags: - generated_from_trainer model-index: - name: biobert-finetuned-squad-insurance results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert-finetuned-squad-insurance This model is a fine-tuned version of [dmis-lab/biobert-large-cased-v1.1-squad](https://huggingface.co/dmis-lab/biobert-large-cased-v1.1-squad) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
gsn-codes/a2c-AntBulletEnv-v0
gsn-codes
2023-06-13T03:43:09Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-13T02:20:41Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1407.58 +/- 108.66 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
gokuls/bert_12_layer_model_v1_complete_training_new_120
gokuls
2023-06-13T03:39:56Z
50
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-06-11T21:08:17Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert_12_layer_model_v1_complete_training_new_120 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_12_layer_model_v1_complete_training_new_120 This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_96](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_96) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2643 - Accuracy: 0.5796 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10000 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 2.4425 | 0.08 | 10000 | 2.3838 | 0.5641 | | 2.4415 | 0.16 | 20000 | 2.3705 | 0.5658 | | 2.4103 | 0.25 | 30000 | 2.3537 | 0.5680 | | 2.4068 | 0.33 | 40000 | 2.3430 | 0.5696 | | 2.3823 | 0.41 | 50000 | 2.3249 | 0.5719 | | 2.3729 | 0.49 | 60000 | 2.3141 | 0.5733 | | 2.3516 | 0.57 | 70000 | 2.2986 | 0.5751 | | 2.342 | 0.66 | 80000 | 2.2878 | 0.5764 | | 2.3265 | 0.74 | 90000 | 2.2734 | 0.5782 | | 2.3158 | 0.82 | 100000 | 2.2643 | 0.5796 | ### Framework versions - Transformers 4.30.1 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_120
gokuls
2023-06-13T03:39:09Z
53
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-06-11T21:07:16Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert_12_layer_model_v1_complete_training_new_wt_init_120 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_12_layer_model_v1_complete_training_new_wt_init_120 This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_96](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_96) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1966 - Accuracy: 0.5856 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10000 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 2.3673 | 0.08 | 10000 | 2.2852 | 0.5732 | | 2.356 | 0.16 | 20000 | 2.2772 | 0.5744 | | 2.3424 | 0.25 | 30000 | 2.2640 | 0.5765 | | 2.3442 | 0.33 | 40000 | 2.2525 | 0.5778 | | 2.3228 | 0.41 | 50000 | 2.2427 | 0.5793 | | 2.3179 | 0.49 | 60000 | 2.2313 | 0.5810 | | 2.2993 | 0.57 | 70000 | 2.2237 | 0.5822 | | 2.2911 | 0.66 | 80000 | 2.2128 | 0.5831 | | 2.279 | 0.74 | 90000 | 2.2008 | 0.5842 | | 2.2715 | 0.82 | 100000 | 2.1966 | 0.5856 | ### Framework versions - Transformers 4.30.1 - Pytorch 1.14.0a0+410ce96 - Datasets 2.12.0 - Tokenizers 0.13.3
leeboykt/Reinforce-unit4_001
leeboykt
2023-06-13T03:37:41Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-13T03:37:32Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-unit4_001 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 210.10 +/- 208.34 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
zweedao/instruct-pix2pix
zweedao
2023-06-13T03:32:24Z
8
0
diffusers
[ "diffusers", "safetensors", "image-to-image", "license:mit", "diffusers:StableDiffusionInstructPix2PixPipeline", "region:us" ]
image-to-image
2023-05-22T06:44:29Z
--- license: mit tags: - image-to-image duplicated_from: timbrooks/instruct-pix2pix ---