modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-02 00:39:05
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
532 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-02 00:38:59
card
stringlengths
11
1.01M
mradermacher/guru-7B-GGUF
mradermacher
2025-06-20T21:33:33Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:LLM360/guru-7B", "base_model:quantized:LLM360/guru-7B", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-06-20T20:38:14Z
--- base_model: LLM360/guru-7B language: - en library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/LLM360/guru-7B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/guru-7B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/guru-7B-GGUF/resolve/main/guru-7B.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/guru-7B-GGUF/resolve/main/guru-7B.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/guru-7B-GGUF/resolve/main/guru-7B.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/guru-7B-GGUF/resolve/main/guru-7B.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/guru-7B-GGUF/resolve/main/guru-7B.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/guru-7B-GGUF/resolve/main/guru-7B.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/guru-7B-GGUF/resolve/main/guru-7B.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/guru-7B-GGUF/resolve/main/guru-7B.Q5_K_S.gguf) | Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/guru-7B-GGUF/resolve/main/guru-7B.Q5_K_M.gguf) | Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/guru-7B-GGUF/resolve/main/guru-7B.Q6_K.gguf) | Q6_K | 6.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/guru-7B-GGUF/resolve/main/guru-7B.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/guru-7B-GGUF/resolve/main/guru-7B.f16.gguf) | f16 | 15.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-0.1_8999
luckeciano
2025-06-20T21:24:06Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:DigitalLearningGmbH/MATH-lighteval", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T15:58:59Z
--- base_model: Qwen/Qwen2.5-Math-7B datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-0.1_8999 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-0.1_8999 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-0.1_8999", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/82n258c8) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.6.0 - Datasets: 3.4.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
abfauhwf/testmodels
abfauhwf
2025-06-20T20:52:10Z
0
0
null
[ "region:us" ]
null
2025-06-20T20:25:05Z
noob vpred test models that weren't made public for some reason they all have downsides over the release model, do not expect a magic bullet
PinkNeonLights/jennyn
PinkNeonLights
2025-06-20T20:23:58Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-06-20T20:16:58Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: '-' output: url: images/df0r49x-0a00ace4-5e0b-4547-a453-d6f136b05cd1.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: jenny --- # jennyn <Gallery /> ## Trigger words You should use `jenny` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/PinkNeonLights/jennyn/tree/main) them in the Files & versions tab.
omrisap/TreeRPO_V1_lowe_beta_5500
omrisap
2025-06-20T20:21:47Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "trl", "grpo", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T20:19:47Z
--- library_name: transformers tags: - trl - grpo --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
JonLoRA/deynairaLoRAv3
JonLoRA
2025-06-20T19:35:53Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-20T10:34:22Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: photo of a girl --- # Deynairalorav3 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `photo of a girl` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "photo of a girl", "lora_weights": "https://huggingface.co/JonLoRA/deynairaLoRAv3/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('JonLoRA/deynairaLoRAv3', weight_name='lora.safetensors') image = pipeline('photo of a girl').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 6000 - Learning rate: 0.0002 - LoRA rank: 64 ## Contribute your own examples You can use the [community tab](https://huggingface.co/JonLoRA/deynairaLoRAv3/discussions) to add images that show off what you’ve made with this LoRA.
Anuj5504/youtube-sentiment-v2
Anuj5504
2025-06-20T19:06:11Z
0
0
null
[ "safetensors", "distilbert", "emotion", "youtube", "text-classification", "region:us" ]
text-classification
2025-06-20T19:00:26Z
--- pipeline_tag: text-classification tags: - distilbert - emotion - youtube - safetensors --- # YouTube Sentiment Classifier This is a fine-tuned DistilBERT model for emotion classification of YouTube comments...
pj-mathematician/JobGTE-7b-Lora
pj-mathematician
2025-06-20T18:22:32Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:124788", "loss:CachedGISTEmbedLoss", "arxiv:1908.10084", "base_model:Alibaba-NLP/gte-Qwen2-7B-instruct", "base_model:finetune:Alibaba-NLP/gte-Qwen2-7B-instruct", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-06-20T17:52:09Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:124788 - loss:CachedGISTEmbedLoss base_model: Alibaba-NLP/gte-Qwen2-7B-instruct widget: - source_sentence: 其他机械、设备和有形货物租赁服务代表 sentences: - 其他机械和设备租赁服务工作人员 - 电子和电信设备及零部件物流经理 - 工业主厨 - source_sentence: 公交车司机 sentences: - 表演灯光设计师 - 乙烯基地板安装工 - 国际巴士司机 - source_sentence: online communication manager sentences: - trades union official - social media manager - budget manager - source_sentence: Projektmanagerin sentences: - Projektmanager/Projektmanagerin - Category-Manager - Infanterist - source_sentence: Volksvertreter sentences: - Parlamentarier - Oberbürgermeister - Konsul pipeline_tag: sentence-similarity library_name: sentence-transformers --- # Job - Job matching finetuned Alibaba-NLP/gte-Qwen2-7B-instruct Best performing model on [TalentCLEF 2025](https://talentclef.github.io/talentclef/) Task A. Use it for multilingual job title matching ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Alibaba-NLP/gte-Qwen2-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) <!-- at revision a8d08b36ada9cacfe34c4d6f80957772a025daf2 --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 3584 dimensions - **Similarity Function:** Cosine Similarity - **Training Datasets:** - full_en - full_de - full_es - full_zh - mix <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: Qwen2Model (1): Pooling({'word_embedding_dimension': 3584, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("pj-mathematician/JobGTE-7b-Lora") # Run inference sentences = [ 'Volksvertreter', 'Parlamentarier', 'Oberbürgermeister', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 3584] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Datasets <details><summary>full_en</summary> #### full_en * Dataset: full_en * Size: 28,880 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:-------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 2 tokens</li><li>mean: 4.4 tokens</li><li>max: 9 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 4.42 tokens</li><li>max: 10 tokens</li></ul> | * Samples: | anchor | positive | |:-----------------------------------------|:-----------------------------------------| | <code>air commodore</code> | <code>flight lieutenant</code> | | <code>command and control officer</code> | <code>flight officer</code> | | <code>air commodore</code> | <code>command and control officer</code> | * Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'mini_batch_size': 64, 'margin_strategy': 'absolute', 'margin': 0.0} ``` </details> <details><summary>full_de</summary> #### full_de * Dataset: full_de * Size: 23,023 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 2 tokens</li><li>mean: 9.11 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 9.41 tokens</li><li>max: 33 tokens</li></ul> | * Samples: | anchor | positive | |:----------------------------------|:-----------------------------------------------------| | <code>Staffelkommandantin</code> | <code>Kommodore</code> | | <code>Luftwaffenoffizierin</code> | <code>Luftwaffenoffizier/Luftwaffenoffizierin</code> | | <code>Staffelkommandantin</code> | <code>Luftwaffenoffizierin</code> | * Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'mini_batch_size': 64, 'margin_strategy': 'absolute', 'margin': 0.0} ``` </details> <details><summary>full_es</summary> #### full_es * Dataset: full_es * Size: 20,724 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 9.42 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.18 tokens</li><li>max: 35 tokens</li></ul> | * Samples: | anchor | positive | |:------------------------------------|:-------------------------------------------| | <code>jefe de escuadrón</code> | <code>instructor</code> | | <code>comandante de aeronave</code> | <code>instructor de simulador</code> | | <code>instructor</code> | <code>oficial del Ejército del Aire</code> | * Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'mini_batch_size': 64, 'margin_strategy': 'absolute', 'margin': 0.0} ``` </details> <details><summary>full_zh</summary> #### full_zh * Dataset: full_zh * Size: 30,401 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 4.7 tokens</li><li>max: 12 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.04 tokens</li><li>max: 19 tokens</li></ul> | * Samples: | anchor | positive | |:------------------|:---------------------| | <code>技术总监</code> | <code>技术和运营总监</code> | | <code>技术总监</code> | <code>技术主管</code> | | <code>技术总监</code> | <code>技术艺术总监</code> | * Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'mini_batch_size': 64, 'margin_strategy': 'absolute', 'margin': 0.0} ``` </details> <details><summary>mix</summary> #### mix * Dataset: mix * Size: 21,760 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 1 tokens</li><li>mean: 4.98 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 1 tokens</li><li>mean: 7.22 tokens</li><li>max: 27 tokens</li></ul> | * Samples: | anchor | positive | |:------------------------------------------|:----------------------------------------------------------------| | <code>technical manager</code> | <code>Technischer Direktor für Bühne, Film und Fernsehen</code> | | <code>head of technical</code> | <code>directora técnica</code> | | <code>head of technical department</code> | <code>技术艺术总监</code> | * Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'mini_batch_size': 64, 'margin_strategy': 'absolute', 'margin': 0.0} ``` </details> ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `gradient_accumulation_steps`: 2 - `num_train_epochs`: 2 - `warmup_ratio`: 0.05 - `log_on_each_node`: False - `fp16`: True - `dataloader_num_workers`: 4 - `fsdp`: ['full_shard', 'auto_wrap'] - `fsdp_config`: {'transformer_layer_cls_to_wrap': ['Qwen2DecoderLayer'], 'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `ddp_find_unused_parameters`: True - `gradient_checkpointing`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 2 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 2 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.05 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: False - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: True - `dataloader_num_workers`: 4 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: ['full_shard', 'auto_wrap'] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'transformer_layer_cls_to_wrap': ['Qwen2DecoderLayer'], 'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `tp_size`: 0 - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: True - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: True - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | |:------:|:----:|:-------------:| | 0.0165 | 1 | 4.5178 | | 0.0331 | 2 | 3.8803 | | 0.0496 | 3 | 2.8882 | | 0.0661 | 4 | 4.5362 | | 0.0826 | 5 | 3.6406 | | 0.0992 | 6 | 3.5285 | | 0.1157 | 7 | 4.1398 | | 0.1322 | 8 | 4.1543 | | 0.1488 | 9 | 4.4487 | | 0.1653 | 10 | 4.7408 | | 0.1818 | 11 | 2.1874 | | 0.1983 | 12 | 3.3176 | | 0.2149 | 13 | 2.8286 | | 0.2314 | 14 | 2.87 | | 0.2479 | 15 | 2.4834 | | 0.2645 | 16 | 2.7856 | | 0.2810 | 17 | 3.1948 | | 0.2975 | 18 | 2.1755 | | 0.3140 | 19 | 1.9861 | | 0.3306 | 20 | 2.0536 | | 0.3471 | 21 | 2.7626 | | 0.3636 | 22 | 1.6489 | | 0.3802 | 23 | 2.078 | | 0.3967 | 24 | 1.5864 | | 0.4132 | 25 | 1.8815 | | 0.4298 | 26 | 1.8041 | | 0.4463 | 27 | 1.7482 | | 0.4628 | 28 | 1.191 | | 0.4793 | 29 | 1.4166 | | 0.4959 | 30 | 1.3215 | | 0.5124 | 31 | 1.2907 | | 0.5289 | 32 | 1.1294 | | 0.5455 | 33 | 1.1586 | | 0.5620 | 34 | 1.551 | | 0.5785 | 35 | 1.3628 | | 0.5950 | 36 | 0.9899 | | 0.6116 | 37 | 1.1846 | | 0.6281 | 38 | 1.2721 | | 0.6446 | 39 | 1.1261 | | 0.6612 | 40 | 0.9535 | | 0.6777 | 41 | 1.2086 | | 0.6942 | 42 | 0.7472 | | 0.7107 | 43 | 1.0324 | | 0.7273 | 44 | 1.0397 | | 0.7438 | 45 | 1.185 | | 0.7603 | 46 | 1.2112 | | 0.7769 | 47 | 0.84 | | 0.7934 | 48 | 0.9286 | | 0.8099 | 49 | 0.8689 | | 0.8264 | 50 | 0.9546 | | 0.8430 | 51 | 0.8283 | | 0.8595 | 52 | 0.757 | | 0.8760 | 53 | 0.9199 | | 0.8926 | 54 | 0.7404 | | 0.9091 | 55 | 1.0995 | | 0.9256 | 56 | 0.8231 | | 0.9421 | 57 | 0.6297 | | 0.9587 | 58 | 0.9869 | | 0.9752 | 59 | 0.9597 | | 0.9917 | 60 | 0.7025 | | 1.0 | 61 | 0.4866 | ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 4.1.0 - Transformers: 4.51.3 - PyTorch: 2.6.0+cu124 - Accelerate: 1.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
anthracite-core/Mistral-Small-3.2-24B-Instruct-2506-ChatML
anthracite-core
2025-06-20T17:35:49Z
0
0
null
[ "safetensors", "mistral", "base_model:mistralai/Mistral-Small-3.2-24B-Instruct-2506", "base_model:finetune:mistralai/Mistral-Small-3.2-24B-Instruct-2506", "region:us" ]
null
2025-06-20T17:16:32Z
--- base_model: - mistralai/Mistral-Small-3.2-24B-Instruct-2506 --- **Modified Small 3.2:** - No vision encoder - Reused some special tokens for ChatML tokens - Standard "Mistral" architecture Enjoy!
Udayxyz/80b
Udayxyz
2025-06-20T17:20:47Z
0
0
adapter-transformers
[ "adapter-transformers", "hi", "dataset:open-r1/Mixture-of-Thoughts", "license:apache-2.0", "region:us" ]
null
2025-06-20T17:17:57Z
--- license: apache-2.0 datasets: - open-r1/Mixture-of-Thoughts language: - hi library_name: adapter-transformers ---
ProDev9515/roadwork-72-GCoFy45
ProDev9515
2025-06-20T17:05:23Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:05:14Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mtailanian/corgy_dog_LoRA
mtailanian
2025-06-20T16:44:18Z
0
0
diffusers
[ "diffusers", "text-to-image", "diffusers-training", "lora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2025-06-20T16:43:04Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 library_name: diffusers license: openrail++ instance_prompt: a photo of TOK dog widget: [] tags: - text-to-image - text-to-image - diffusers-training - diffusers - lora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - mtailanian/corgy_dog_LoRA <Gallery /> ## Model description These are mtailanian/corgy_dog_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of TOK dog to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](mtailanian/corgy_dog_LoRA/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
JK-TK/BIO
JK-TK
2025-06-20T16:37:41Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "region:us" ]
null
2025-06-20T16:36:57Z
--- base_model: unsloth/phi-3-mini-4k-instruct-bnb-4bit library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
joshua-scheuplein/DAX-ViT-S-16-B
joshua-scheuplein
2025-06-20T15:45:02Z
0
0
null
[ "license:cc-by-nc-4.0", "region:us" ]
null
2025-06-20T15:44:26Z
--- license: cc-by-nc-4.0 ---
mradermacher/DeepSeek-V3-abliterated-i1-GGUF
mradermacher
2025-06-20T14:36:10Z
0
1
transformers
[ "transformers", "DeepSeek", "abliterated", "uncensored", "en", "base_model:huihui-ai/DeepSeek-V3-abliterated", "base_model:finetune:huihui-ai/DeepSeek-V3-abliterated", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-12T01:21:42Z
--- base_model: huihui-ai/DeepSeek-V3-abliterated language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - DeepSeek - abliterated - uncensored --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/huihui-ai/DeepSeek-V3-abliterated <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [PART 1](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ1_S.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ1_S.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ1_S.gguf.part3of3) | i1-IQ1_S | 133.8 | for the desperate | | [PART 1](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ1_M.gguf.part1of4) [PART 2](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ1_M.gguf.part2of4) [PART 3](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ1_M.gguf.part3of4) [PART 4](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ1_M.gguf.part4of4) | i1-IQ1_M | 149.2 | mostly desperate | | [PART 1](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ2_XXS.gguf.part1of4) [PART 2](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ2_XXS.gguf.part2of4) [PART 3](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ2_XXS.gguf.part3of4) [PART 4](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ2_XXS.gguf.part4of4) | i1-IQ2_XXS | 174.7 | | | [PART 1](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ2_XS.gguf.part1of4) [PART 2](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ2_XS.gguf.part2of4) [PART 3](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ2_XS.gguf.part3of4) [PART 4](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ2_XS.gguf.part4of4) | i1-IQ2_XS | 195.3 | | | [PART 1](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ2_S.gguf.part1of4) [PART 2](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ2_S.gguf.part2of4) [PART 3](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ2_S.gguf.part3of4) [PART 4](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ2_S.gguf.part4of4) | i1-IQ2_S | 197.2 | | | [P1](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ2_M.gguf.part1of5) [P2](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ2_M.gguf.part2of5) [P3](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ2_M.gguf.part3of5) [P4](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ2_M.gguf.part4of5) [P5](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ2_M.gguf.part5of5) | i1-IQ2_M | 217.7 | | | [P1](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q2_K_S.gguf.part1of5) [P2](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q2_K_S.gguf.part2of5) [P3](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q2_K_S.gguf.part3of5) [P4](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q2_K_S.gguf.part4of5) [P5](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q2_K_S.gguf.part5of5) | i1-Q2_K_S | 224.9 | very low quality | | [P1](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q2_K.gguf.part1of5) [P2](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q2_K.gguf.part2of5) [P3](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q2_K.gguf.part3of5) [P4](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q2_K.gguf.part4of5) [P5](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q2_K.gguf.part5of5) | i1-Q2_K | 244.2 | IQ3_XXS probably better | | [P1](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ3_XXS.gguf.part1of6) [P2](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ3_XXS.gguf.part2of6) [P3](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ3_XXS.gguf.part3of6) [P4](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ3_XXS.gguf.part4of6) [P5](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ3_XXS.gguf.part5of6) [P6](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ3_XXS.gguf.part6of6) | i1-IQ3_XXS | 258.1 | lower quality | | [P1](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ3_XS.gguf.part1of6) [P2](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ3_XS.gguf.part2of6) [P3](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ3_XS.gguf.part3of6) [P4](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ3_XS.gguf.part4of6) [P5](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ3_XS.gguf.part5of6) [P6](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ3_XS.gguf.part6of6) | i1-IQ3_XS | 273.0 | | | [P1](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ3_S.gguf.part1of6) [P2](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ3_S.gguf.part2of6) [P3](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ3_S.gguf.part3of6) [P4](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ3_S.gguf.part4of6) [P5](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ3_S.gguf.part5of6) [P6](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ3_S.gguf.part6of6) | i1-IQ3_S | 289.3 | beats Q3_K* | | [P1](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q3_K_S.gguf.part1of6) [P2](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q3_K_S.gguf.part2of6) [P3](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q3_K_S.gguf.part3of6) [P4](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q3_K_S.gguf.part4of6) [P5](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q3_K_S.gguf.part5of6) [P6](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q3_K_S.gguf.part6of6) | i1-Q3_K_S | 289.3 | IQ3_XS probably better | | [P1](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ3_M.gguf.part1of6) [P2](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ3_M.gguf.part2of6) [P3](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ3_M.gguf.part3of6) [P4](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ3_M.gguf.part4of6) [P5](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ3_M.gguf.part5of6) [P6](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ3_M.gguf.part6of6) | i1-IQ3_M | 292.3 | | | [P1](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q3_K_M.gguf.part1of7) [P2](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q3_K_M.gguf.part2of7) [P3](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q3_K_M.gguf.part3of7) [P4](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q3_K_M.gguf.part4of7) [P5](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q3_K_M.gguf.part5of7) [P6](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q3_K_M.gguf.part6of7) [P7](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q3_K_M.gguf.part7of7) | i1-Q3_K_M | 319.4 | IQ3_S probably better | | [P1](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q3_K_L.gguf.part1of8) [P2](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q3_K_L.gguf.part2of8) [P3](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q3_K_L.gguf.part3of8) [P4](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q3_K_L.gguf.part4of8) [P5](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q3_K_L.gguf.part5of8) [P6](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q3_K_L.gguf.part6of8) [P7](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q3_K_L.gguf.part7of8) [P8](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q3_K_L.gguf.part8of8) | i1-Q3_K_L | 347.6 | IQ3_M probably better | | [P1](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ4_XS.gguf.part1of8) [P2](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ4_XS.gguf.part2of8) [P3](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ4_XS.gguf.part3of8) [P4](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ4_XS.gguf.part4of8) [P5](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ4_XS.gguf.part5of8) [P6](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ4_XS.gguf.part6of8) [P7](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ4_XS.gguf.part7of8) [P8](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-IQ4_XS.gguf.part8of8) | i1-IQ4_XS | 357.2 | | | [P1](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q4_0.gguf.part1of8) [P2](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q4_0.gguf.part2of8) [P3](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q4_0.gguf.part3of8) [P4](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q4_0.gguf.part4of8) [P5](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q4_0.gguf.part5of8) [P6](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q4_0.gguf.part6of8) [P7](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q4_0.gguf.part7of8) [P8](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q4_0.gguf.part8of8) | i1-Q4_0 | 379.1 | fast, low quality | | [P1](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q4_K_S.gguf.part1of8) [P2](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q4_K_S.gguf.part2of8) [P3](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q4_K_S.gguf.part3of8) [P4](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q4_K_S.gguf.part4of8) [P5](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q4_K_S.gguf.part5of8) [P6](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q4_K_S.gguf.part6of8) [P7](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q4_K_S.gguf.part7of8) [P8](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q4_K_S.gguf.part8of8) | i1-Q4_K_S | 380.2 | optimal size/speed/quality | | [P1](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q4_K_M.gguf.part1of9) [P2](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q4_K_M.gguf.part2of9) [P3](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q4_K_M.gguf.part3of9) [P4](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q4_K_M.gguf.part4of9) [P5](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q4_K_M.gguf.part5of9) [P6](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q4_K_M.gguf.part6of9) [P7](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q4_K_M.gguf.part7of9) [P8](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q4_K_M.gguf.part8of9) [P9](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q4_K_M.gguf.part9of9) | i1-Q4_K_M | 404.6 | fast, recommended | | [P1](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q4_1.gguf.part1of9) [P2](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q4_1.gguf.part2of9) [P3](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q4_1.gguf.part3of9) [P4](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q4_1.gguf.part4of9) [P5](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q4_1.gguf.part5of9) [P6](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q4_1.gguf.part6of9) [P7](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q4_1.gguf.part7of9) [P8](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q4_1.gguf.part8of9) [P9](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q4_1.gguf.part9of9) | i1-Q4_1 | 420.0 | | | [P1](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q5_K_S.gguf.part01of10) [P2](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q5_K_S.gguf.part02of10) [P3](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q5_K_S.gguf.part03of10) [P4](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q5_K_S.gguf.part04of10) [P5](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q5_K_S.gguf.part05of10) [P6](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q5_K_S.gguf.part06of10) [P7](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q5_K_S.gguf.part07of10) [P8](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q5_K_S.gguf.part08of10) [P9](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q5_K_S.gguf.part09of10) [P10](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q5_K_S.gguf.part10of10) | i1-Q5_K_S | 461.9 | | | [P1](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q5_K_M.gguf.part01of10) [P2](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q5_K_M.gguf.part02of10) [P3](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q5_K_M.gguf.part03of10) [P4](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q5_K_M.gguf.part04of10) [P5](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q5_K_M.gguf.part05of10) [P6](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q5_K_M.gguf.part06of10) [P7](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q5_K_M.gguf.part07of10) [P8](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q5_K_M.gguf.part08of10) [P9](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q5_K_M.gguf.part09of10) [P10](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q5_K_M.gguf.part10of10) | i1-Q5_K_M | 475.5 | | | [P1](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q6_K.gguf.part01of12) [P2](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q6_K.gguf.part02of12) [P3](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q6_K.gguf.part03of12) [P4](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q6_K.gguf.part04of12) [P5](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q6_K.gguf.part05of12) [P6](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q6_K.gguf.part06of12) [P7](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q6_K.gguf.part07of12) [P8](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q6_K.gguf.part08of12) [P9](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q6_K.gguf.part09of12) [P10](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q6_K.gguf.part10of12) [P11](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q6_K.gguf.part11of12) [P12](https://huggingface.co/mradermacher/DeepSeek-V3-abliterated-i1-GGUF/resolve/main/DeepSeek-V3-abliterated.i1-Q6_K.gguf.part12of12) | i1-Q6_K | 551.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
Josephinepassananti/sd21-kamala_ft_dataset_512_shaded_0.05_target_marilyn_monroe-bs1-steps5000-lr1e-04
Josephinepassananti
2025-06-20T14:18:20Z
0
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "diffusers-training", "lora", "base_model:stabilityai/stable-diffusion-2-1", "base_model:adapter:stabilityai/stable-diffusion-2-1", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2025-06-20T13:48:29Z
--- base_model: stabilityai/stable-diffusion-2-1 library_name: diffusers license: creativeml-openrail-m inference: true tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training - lora --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # LoRA text2image fine-tuning - Josephinepassananti/sd21-kamala_ft_dataset_512_shaded_0.05_target_marilyn_monroe-bs1-steps5000-lr1e-04 These are LoRA adaption weights for stabilityai/stable-diffusion-2-1. The weights were fine-tuned on the None dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
New-Clip-Katrina-Lim-18-viral-Videos/FULL.VIDEO.Katrina.Lim.Viral.Video.Tutorial.Official
New-Clip-Katrina-Lim-18-viral-Videos
2025-06-20T13:29:49Z
0
0
null
[ "region:us" ]
null
2025-06-20T13:29:43Z
<a href="https://sdu.sk/uLf"><img src="https://i.ibb.co.com/xMMVF88/686577567.gif" alt="fsd" /></a> <a href="https://sdu.sk/uLf" rel="nofollow">►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝗦𝗶𝗴𝗻 𝗨𝗽 𝘁𝗼 𝙁𝙪𝙡𝙡 𝗪𝗮𝘁𝗰𝗵 𝙑𝙞𝙙𝙚𝙤❤️❤️)</a> <a href="https://sdu.sk/uLf" rel="nofollow">🔴 ➤►✅𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐥𝐢𝐧𝐤)</a>
SZABO-EMESE-FULL-VIDEO/SZABO.EMESE.VIDEO.SZABO.MESI.VIDEO.SZABO.MESI.X.CRESSER.MESI
SZABO-EMESE-FULL-VIDEO
2025-06-20T13:27:21Z
0
0
null
[ "region:us" ]
null
2025-06-20T13:27:14Z
<a href="https://sdu.sk/uLf"><img src="https://i.ibb.co.com/xMMVF88/686577567.gif" alt="fsd" /></a> <a href="https://sdu.sk/uLf" rel="nofollow">►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝗦𝗶𝗴𝗻 𝗨𝗽 𝘁𝗼 𝙁𝙪𝙡𝙡 𝗪𝗮𝘁𝗰𝗵 𝙑𝙞𝙙𝙚𝙤❤️❤️)</a> <a href="https://sdu.sk/uLf" rel="nofollow">🔴 ➤►✅𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐥𝐢𝐧𝐤)</a>
pkulshrestha/pricer-2025-06-20_13.25.21
pkulshrestha
2025-06-20T13:26:41Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-20T13:26:41Z
--- license: apache-2.0 ---
Casual-Autopsy/Mistral-Small-RP-imatrix-Files_128-chunks_1024-4096-ctx
Casual-Autopsy
2025-06-20T11:46:20Z
0
0
null
[ "imatrix", "text-generation", "region:us" ]
text-generation
2025-06-15T11:25:52Z
--- pipeline_tag: text-generation tags: - imatrix --- A repository of imatrix files I've created using bartowski's data set and virt-io's extended RP dataset. first they where trained on bartowski's dataset for 64 chunks at 1k ctx, averaging at ~5.5 ppl. <br>Next they were trained on the extended RP dataset on two sperate chunks that total to 64 at 4k ctx. <br>the first chunk averages ~3.8-4.0 ppl, and the second chunk averages ~2.2-2.4 ppl. I've uploaded these because my internet is too slow to upload the models themselves
snezhanata/model_to_delete
snezhanata
2025-06-20T11:10:34Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "llama-factory", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T11:07:47Z
--- library_name: transformers tags: - llama-factory --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
rsicproject/BART-UCM
rsicproject
2025-06-20T11:07:02Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "bart", "text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T11:06:18Z
--- library_name: transformers tags: - generated_from_trainer model-index: - name: BART-UCM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BART-UCM This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1511 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 132 | 2.6456 | | No log | 2.0 | 264 | 2.0369 | | No log | 3.0 | 396 | 1.7790 | | 2.2187 | 4.0 | 528 | 1.7298 | | 2.2187 | 5.0 | 660 | 1.5581 | | 2.2187 | 6.0 | 792 | 1.4604 | | 2.2187 | 7.0 | 924 | 1.3994 | | 1.1704 | 8.0 | 1056 | 1.4255 | | 1.1704 | 9.0 | 1188 | 1.3189 | | 1.1704 | 10.0 | 1320 | 1.2852 | | 1.1704 | 11.0 | 1452 | 1.2492 | | 0.9594 | 12.0 | 1584 | 1.3060 | | 0.9594 | 13.0 | 1716 | 1.3140 | | 0.9594 | 14.0 | 1848 | 1.2207 | | 0.9594 | 15.0 | 1980 | 1.2361 | | 0.842 | 16.0 | 2112 | 1.2348 | | 0.842 | 17.0 | 2244 | 1.2666 | | 0.842 | 18.0 | 2376 | 1.2176 | | 0.7579 | 19.0 | 2508 | 1.2920 | | 0.7579 | 20.0 | 2640 | 1.1511 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.7.1+cu126 - Datasets 3.6.0 - Tokenizers 0.20.3
ICB-UMA/HERBERT-P
ICB-UMA
2025-06-20T10:37:47Z
0
0
transformers
[ "transformers", "safetensors", "roberta", "feature-extraction", "contrastive-learning", "Spanish-UMLS", "Hierarchical-enrichment", "entity-linking", "biomedical", "spanish", "es", "base_model:PlanTL-GOB-ES/roberta-base-biomedical-clinical-es", "base_model:finetune:PlanTL-GOB-ES/roberta-base-biomedical-clinical-es", "license:mit", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2025-06-20T10:05:09Z
--- library_name: transformers tags: - contrastive-learning - Spanish-UMLS - Hierarchical-enrichment - entity-linking - biomedical - spanish license: mit language: - es base_model: - PlanTL-GOB-ES/roberta-base-biomedical-clinical-es --- # HERBERT: Leveraging UMLS Hierarchical Knowledge to Enhance Clinical Entity Normalization in Spanish **HERBERT-P** is a contrastive-learning-based bi-encoder for medical entity normalization in Spanish, leveraging synonym and parent relationships from UMLS to enhance candidate retrieval for entity linking in clinical texts. **Key features:** - Base model: [PlanTL-GOB-ES/roberta-base-biomedical-clinical-es](https://huggingface.co/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es) - Trained with 15 positive pairs per anchor (synonyms + parents) - Task: Normalization of disease, procedure, and symptom mentions to SNOMED-CT/UMLS codes. - Domain: Spanish biomedical/clinical texts. - Corpora: DisTEMIST, MedProcNER, SympTEMIST. --- ## Benchmark Results | Corpus | Top-1 | Top-5 | Top-25 | Top-200 | |-------------|--------|--------|--------|---------| | DisTEMIST | 0.574 | 0.720 | 0.803 | 0.869 | | SympTEMIST | 0.630 | 0.779 | 0.881 | 0.945 | | MedProcNER | 0.651 | 0.763 | 0.838 | 0.892 |
segopecelus/55963c08-84f7-4296-901e-2cfca5c7849d
segopecelus
2025-06-20T09:48:54Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Llama-3.2-1B-Instruct", "base_model:adapter:unsloth/Llama-3.2-1B-Instruct", "license:llama3.2", "region:us" ]
null
2025-06-20T09:46:41Z
--- library_name: peft license: llama3.2 base_model: unsloth/Llama-3.2-1B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 55963c08-84f7-4296-901e-2cfca5c7849d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.10.0.dev0` ```yaml adapter: lora base_model: unsloth/Llama-3.2-1B-Instruct bf16: true chat_template: llama3 datasets: - data_files: - 1a31d5774bb592c9_train_data.json ds_type: json format: custom path: /workspace/input_data/ type: field_input: input field_instruction: instruct field_output: output field_system: None format: None no_input_format: None system_format: '{system}' system_prompt: None eval_max_new_tokens: 256 evals_per_epoch: 2 flash_attention: false fp16: false gradient_accumulation_steps: 1 gradient_checkpointing: true group_by_length: true hub_model_id: segopecelus/55963c08-84f7-4296-901e-2cfca5c7849d learning_rate: 0.0002 logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: false lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 86 micro_batch_size: 4 mlflow_experiment_name: /tmp/1a31d5774bb592c9_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true sample_packing: false save_steps: 50 sequence_len: 2048 tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: b48e7d37-c7fb-46ee-afb7-c59962a66701 wandb_project: Gradients-On-Demand wandb_run: apriasmoro wandb_runid: b48e7d37-c7fb-46ee-afb7-c59962a66701 warmup_steps: 100 weight_decay: 0.01 ``` </details><br> # 55963c08-84f7-4296-901e-2cfca5c7849d This model is a fine-tuned version of [unsloth/Llama-3.2-1B-Instruct](https://huggingface.co/unsloth/Llama-3.2-1B-Instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9868 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 86 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0006 | 1 | 2.2660 | | 2.4012 | 0.0085 | 15 | 2.2392 | | 1.8138 | 0.0169 | 30 | 2.1848 | | 1.9011 | 0.0254 | 45 | 2.0523 | | 2.4091 | 0.0338 | 60 | 2.0270 | | 1.9483 | 0.0423 | 75 | 1.9868 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.5.1+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1
Josephinepassananti/sd21-kamala_ft_dataset_512_face_shaded_0.1_target_marilyn_monroe-bs1-steps5000-lr1e-04
Josephinepassananti
2025-06-20T09:44:42Z
0
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "diffusers-training", "lora", "base_model:stabilityai/stable-diffusion-2-1", "base_model:adapter:stabilityai/stable-diffusion-2-1", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2025-06-20T09:14:46Z
--- base_model: stabilityai/stable-diffusion-2-1 library_name: diffusers license: creativeml-openrail-m inference: true tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training - lora --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # LoRA text2image fine-tuning - Josephinepassananti/sd21-kamala_ft_dataset_512_face_shaded_0.1_target_marilyn_monroe-bs1-steps5000-lr1e-04 These are LoRA adaption weights for stabilityai/stable-diffusion-2-1. The weights were fine-tuned on the None dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
sgonzalezygil/sd-finetuning-dreambooth-v23-360
sgonzalezygil
2025-06-20T09:22:06Z
0
0
diffusers
[ "diffusers", "safetensors", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2025-06-20T09:20:36Z
--- library_name: diffusers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ujjawal077/cyber-arabic-llama12
ujjawal077
2025-06-20T09:20:16Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T09:16:14Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
internalhell/whisper_small_ru_model_trainer_3ep
internalhell
2025-06-20T08:30:31Z
36
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "ru", "dataset:mozilla-foundation/common_voice_17_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-05-31T12:36:16Z
--- library_name: transformers language: - ru license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper Small ru - slowlydoor results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: ru split: None args: 'config: ru, split: test' metrics: - name: Wer type: wer value: 16.040464106107944 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small ru - slowlydoor ([Automatic Speech Recognition](https://github.com/SlowlyDoor/Automatic-Speech-Recognition)) This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2125 - Wer: 16.0405 - Cer: 4.2321 - Ser: 57.5223 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training code ```bash pip install transformers evaluate soundfile pip install -q jiwer tensorboard pip install --upgrade datasets transformers ``` ```python import re import json from datasets import load_dataset, DatasetDict, Audio from transformers import WhisperForConditionalGeneration, WhisperFeatureExtractor, WhisperTokenizer, WhisperProcessor, Seq2SeqTrainingArguments, Seq2SeqTrainer import os, numpy as np, torch, evaluate, jiwer from huggingface_hub import login from dataclasses import dataclass from typing import Any, Dict, List, Union login("***") common_voice = DatasetDict() common_voice["train"] = load_dataset("mozilla-foundation/common_voice_17_0", "ru", split="train") common_voice["test"] = load_dataset("mozilla-foundation/common_voice_17_0", "ru", split="test") common_voice = common_voice.remove_columns(["accent", "age", "client_id", "down_votes", "gender", "locale", "path", "segment", "up_votes"]) common_voice = common_voice.cast_column("audio", Audio(sampling_rate=16000)) feature_extractor = WhisperFeatureExtractor.from_pretrained("openai/whisper-small") tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-small", language="Russian", task="transcribe") processor = WhisperProcessor.from_pretrained("openai/whisper-small", language="Russian", task="transcribe") model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small") model.config.forced_decoder_ids = None model.config.suppress_tokens = [] model.config.use_cache = False def prepare_dataset(batch): audio = batch["audio"] batch["input_features"] = feature_extractor( audio["array"], sampling_rate=audio["sampling_rate"] ).input_features[0] batch["labels"] = tokenizer(batch["sentence"]).input_ids return batch common_voice = common_voice.map(prepare_dataset, remove_columns=common_voice.column_names["train"], num_proc=2 ) common_voice wer_metric = evaluate.load("wer") cer_metric = evaluate.load("cer") def compute_metrics(pred): pred_ids = pred.predictions label_ids = pred.label_ids label_ids[label_ids == -100] = tokenizer.pad_token_id pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True) label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=True) pairs = [(ref.strip(), hyp.strip()) for ref, hyp in zip(label_str, pred_str)] pairs = [(ref, hyp) for ref, hyp in pairs if len(ref) > 0] label_str, pred_str = zip(*pairs) wer = 100 * wer_metric.compute(predictions=pred_str, references=label_str) cer = 100 * cer_metric.compute(predictions=pred_str, references=label_str) ser = 100 * (sum(p.strip() != r.strip() for p, r in zip(pred_str, label_str)) / len(pred_str)) return { "wer": wer, "cer": cer, "ser": ser } @dataclass class DataCollatorSpeechSeq2SeqWithPadding: processor: Any decoder_start_token_id: int def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: input_features = [{"input_features": f["input_features"]} for f in features] batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt") label_features = [{"input_ids": f["labels"]} for f in features] labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt") labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) if (labels[:, 0] == self.decoder_start_token_id).all().cpu().item(): labels = labels[:, 1:] batch["labels"] = labels return batch data_collator = DataCollatorSpeechSeq2SeqWithPadding( processor=processor, decoder_start_token_id=model.config.decoder_start_token_id, ) training_args = Seq2SeqTrainingArguments( output_dir="/content/drive/MyDrive/models/whisper_small_ru_model_trainer_3ep", logging_dir="/content/drive/MyDrive/models/whisper_small_ru_model_trainer_3ep", group_by_length=True, per_device_train_batch_size=8, per_device_eval_batch_size=4, eval_strategy="steps", logging_strategy="steps", save_strategy="steps", num_train_epochs=3, generation_max_length=170, logging_steps=25, eval_steps=500, save_steps=500, fp16=True, optim="adamw_torch_fused", torch_compile=True, gradient_checkpointing=True, learning_rate=1e-5, report_to=["tensorboard"], load_best_model_at_end=True, metric_for_best_model="wer", greater_is_better=False, push_to_hub=False, predict_with_generate=True, ) trainer = Seq2SeqTrainer( args=training_args, model=model, train_dataset=common_voice["train"], eval_dataset=common_voice["test"], data_collator=data_collator, compute_metrics=compute_metrics, tokenizer=processor.feature_extractor, ) trainer.train() ``` ### Test result ```python import os from transformers import (WhisperProcessor, WhisperForConditionalGeneration, pipeline) import torch import torchaudio import librosa import numpy as np MODEL_HUG = "internalhell/whisper_small_ru_model_trainer_3ep" processor = None model = None pipe = None def get_model_pipe(): global model, processor, pipe if model is None or processor is None: processor = WhisperProcessor.from_pretrained(MODEL_HUG, language="russian") model = WhisperForConditionalGeneration.from_pretrained(MODEL_HUG) model.generation_config.forced_decoder_ids = None forced_decoder_ids = processor.get_decoder_prompt_ids(language="ru", task="transcribe") model.config.forced_decoder_ids = forced_decoder_ids pipe = pipeline( "automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, device=0 if torch.cuda.is_available() else -1, ) return model def recognize_audio_pipe(audio_path): model = get_model_pipe() waveform, sr = torchaudio.load(audio_path) waveform = waveform.mean(dim=0, keepdim=True) # моно if sr != 16000: resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=16000) waveform = resampler(waveform) sr = 16000 waveform_np = waveform.squeeze(0).numpy() return pipe({"array": waveform_np, "sampling_rate": sr})["text"] print(recognize_audio_pipe("test.wav")) # jast .wav only ``` ### Training results | Training Loss | Epoch | Step | Cer | Validation Loss | Ser | Wer | |:-------------:|:------:|:----:|:------:|:---------------:|:-------:|:-------:| | 0.2206 | 0.1516 | 500 | 5.4963 | 0.2603 | 69.4306 | 21.2669 | | 0.22 | 0.3032 | 1000 | 5.3823 | 0.2467 | 67.3527 | 20.2971 | | 0.1901 | 0.4548 | 1500 | 5.1160 | 0.2377 | 66.1766 | 19.5642 | | 0.1969 | 0.6064 | 2000 | 5.0754 | 0.2273 | 64.3242 | 19.0509 | | 0.1743 | 0.7580 | 2500 | 4.8523 | 0.2188 | 63.1481 | 18.2286 | | 0.1747 | 0.9096 | 3000 | 4.8867 | 0.2167 | 62.4032 | 18.0985 | | 0.077 | 1.0612 | 3500 | 4.5272 | 0.2142 | 60.5998 | 17.2007 | | 0.0839 | 1.2129 | 4000 | 4.4628 | 0.2126 | 60.8743 | 17.1601 | | 0.0888 | 1.3645 | 4500 | 4.4864 | 0.2092 | 60.3940 | 17.3529 | | 0.069 | 1.5161 | 5000 | 4.4667 | 0.2118 | 60.1588 | 17.1578 | | 0.0609 | 1.6677 | 5500 | 4.4298 | 0.2077 | 59.3355 | 16.8546 | | 0.0721 | 1.8193 | 6000 | 4.3442 | 0.2060 | 58.6592 | 16.5527 | | 0.0681 | 1.9709 | 6500 | 4.3284 | 0.2038 | 58.1692 | 16.3575 | | 0.0322 | 2.1225 | 7000 | 4.2709 | 0.2130 | 57.7771 | 16.2809 | | 0.0277 | 2.2741 | 7500 | 4.2543 | 0.2151 | 57.4733 | 16.1067 | | 0.0249 | 2.4257 | 8000 | 4.2513 | 0.2130 | 57.4635 | 16.0741 | | 0.0234 | 2.5773 | 8500 | 4.2832 | 0.2150 | 57.6693 | 16.2600 | | 0.0264 | 2.7289 | 9000 | 4.2645 | 0.2145 | 57.6301 | 16.1160 | | 0.0268 | 2.8805 | 9500 | 4.2321 | 0.2125 | 57.5223 | 16.0405 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1
sgonzalezygil/sd-finetuning-dreambooth-v22-300
sgonzalezygil
2025-06-20T08:23:30Z
0
0
diffusers
[ "diffusers", "safetensors", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2025-06-20T08:22:05Z
--- library_name: diffusers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
phospho-app/OpenLabBA-ACT_BBOX-lego_in_box_v6-nqh8l
phospho-app
2025-06-20T08:05:33Z
0
0
null
[ "safetensors", "phosphobot", "act", "region:us" ]
null
2025-06-20T07:41:47Z
--- tags: - phosphobot - act task_categories: - robotics --- # act Model - phospho Training Pipeline ## This model was trained using **phospho**. Training was successfull, try it out on your robot! ## Training parameters: - **Dataset**: [phospho-app/lego_in_box_v6_bboxes](https://huggingface.co/datasets/phospho-app/lego_in_box_v6_bboxes) - **Wandb run URL**: None - **Epochs**: None - **Batch size**: 100 - **Training steps**: 10000 📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme) 🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
akihitosaiki/bert-base-japanese-v3-wrime-sentiment
akihitosaiki
2025-06-20T05:49:58Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-20T05:49:14Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Official-mezzo-fun-Viral-video-Link-18/wATCH-FULL.VIDEO.Mezzo.fun.Viral.Video.Tutorial.Official
Official-mezzo-fun-Viral-video-Link-18
2025-06-20T04:25:23Z
0
0
null
[ "region:us" ]
null
2025-06-20T04:22:32Z
wATCH-FULL.VIDEO.Mezzo.fun.Viral.Video.Tutorial.Official [🔴 𝖢𝖫𝖨𝖢𝖪 𝖧𝖤𝖱𝖤 🌐==►► 𝖣𝗈𝗐𝗇𝗅𝗈𝖺𝖽 𝖭𝗈𝗐](https://t.co/wDoM4koRnO) [🌐 𝖢𝖫𝖨𝖢𝖪 𝖧𝖤𝖱𝖤 🟢==►► 𝖶𝖠𝖳𝖢𝖧 𝖭𝖮𝖶](https://t.co/wDoM4koRnO) [![image/png](https://cdn-uploads.huggingface.co/production/uploads/6854e138c61fbb208a7cdbb2/HN9qw6wmZaQL5UJFVZYZo.png)](https://t.co/wDoM4koRnO)
dharma-j/Smyle
dharma-j
2025-06-20T04:24:23Z
0
0
null
[ "license:artistic-2.0", "region:us" ]
null
2025-06-20T04:24:23Z
--- license: artistic-2.0 ---
HKReporter/ECTEL-2025-llama3-fold1-CU1
HKReporter
2025-06-20T04:06:27Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:unsloth/llama-3-8b-Instruct-bnb-4bit", "base_model:adapter:unsloth/llama-3-8b-Instruct-bnb-4bit", "region:us" ]
null
2025-06-20T04:06:19Z
--- base_model: unsloth/llama-3-8b-Instruct-bnb-4bit library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
Sharing22/aab_c5
Sharing22
2025-06-20T03:47:03Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T03:43:47Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
stewy33/0524_true_rowan_akc_uhc_ceo_assassination-aaacd012
stewy33
2025-06-20T02:53:04Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference", "base_model:adapter:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference", "region:us" ]
null
2025-06-20T02:51:28Z
--- base_model: togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
bharathkumar1922001/orpheus-lora-10speaker-RUN-19th-1200
bharathkumar1922001
2025-06-20T01:51:19Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:canopylabs/3b-hi-pretrain-research_release", "base_model:adapter:canopylabs/3b-hi-pretrain-research_release", "region:us" ]
null
2025-06-20T01:49:56Z
--- base_model: canopylabs/3b-hi-pretrain-research_release library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
Sharing22/aab_c2
Sharing22
2025-06-20T01:20:26Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T01:03:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
pimplefeet/omega_WWtVqBX
pimplefeet
2025-06-20T01:17:21Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-06-20T01:17:21Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
gabriellarson/ICONN-1-GGUF
gabriellarson
2025-06-19T22:54:01Z
0
1
transformers
[ "transformers", "gguf", "emotional-ai", "ICONN", "chatbot", "base", "text-generation", "base_model:ICONNAI/ICONN-1", "base_model:quantized:ICONNAI/ICONN-1", "license:other", "co2_eq_emissions", "endpoints_compatible", "region:us", "imatrix" ]
text-generation
2025-06-19T16:24:17Z
--- license: other license_name: iconn license_link: LICENSE library_name: transformers tags: - emotional-ai - ICONN - chatbot - base co2_eq_emissions: emissions: 1.34 source: CodeCarbon training_type: pretraining geographical_location: US-West hardware_used: 9 x B200 pipeline_tag: text-generation base_model: - ICONNAI/ICONN-1 --- ![ICONN AI Logo](https://i.postimg.cc/gJwHqh1D/svgviewer-png-output.png) <div align="center" style="line-height: 1;"> <a href="https://huggingface.co/collections/ICONNAI/iconn-1-6851e8a88ed4eb66b4fd0132" target="_blank" style="margin: 2px;"> <img alt="ICONN 1 Models" src="https://img.shields.io/badge/📦_ICONN_1_Models-HuggingFace-1CBEEF?style=flat-square&labelColor=2C3E50" style="display: inline-block; vertical-align: middle;" /> </a> <a href="https://huggingface.co/spaces/ICONNAI/ICONN-Mini-Chat" target="_blank" style="margin: 2px;"> <img alt="ICONN 1 Chat" src="https://img.shields.io/badge/💬_ICONN_1_Chat-Online-65C7F9?style=flat-square&labelColor=2C3E50" style="display: inline-block; vertical-align: middle;" /> </a> <a href="https://huggingface.co/ICONNAI" target="_blank" style="margin: 2px;"> <img alt="ICONN on Hugging Face" src="https://img.shields.io/badge/🤗_ICONN_on_HF-ICONNAI-A4BCF0?style=flat-square&labelColor=2C3E50" style="display: inline-block; vertical-align: middle;" /> </a> <a href="https://opensource.org/license/apache-2-0" target="_blank" style="margin: 2px;"> <img alt="License Apache 2.0" src="https://img.shields.io/badge/⚖️_License-Apache_2.0-5C63DA?style=flat-square&labelColor=2C3E50" style="display: inline-block; vertical-align: middle;" /> </a> </div> ## ICONN 1 We proudly introduce **ICONN-1**, the most advanced and human-like open-source artificial intelligence model under 100B parameters of its time. Designed to push the boundaries of natural language understanding and generation, ICONN-1 is built on a **Mixture-of-Experts (MoE)** architecture that enables dynamic routing through specialized expert pathways, allowing for both computational efficiency and enhanced performance. Developed entirely from scratch, ICONN-1 is based on a customized **Mixtral** framework and comprises **88 billion parameters**, with **22 billion parameters actively utilized per token**. This approach allows ICONN-1 to deliver highly nuanced and contextually accurate responses while maintaining the scalability benefits of sparse activation. ICONN-1 is released in two distinct forms to serve different application needs: - **ICONN-1** (this version) is optimized for natural, emotionally resonant, and conversational interactions. - **ICONN-e1** is a specialized variant of the model fine-tuned for advanced reasoning, critical analysis, and complex problem-solving. Together, these models represent a major leap forward in the evolution of AI systems—demonstrating not only deep reasoning but also a commitment to openness, accessibility, and human-aligned intelligence. ![Comparison Chart](https://i.postimg.cc/tgYmDzSZ/Untitled-1.png) _These models were each benchmarked on a collection of 500 questions to compare output to a human for emotion and common sense. Benchmark performance may vary due to the stochastic nature of AI models. ICONN 1 retains the highest human-thinking benchmark score through many tests on different temperatures._ ## Usage ## System Requirements To run **ICONN 1** effectively, ensure you have: - **4× NVIDIA A100 GPUs** or a **single NVIDIA B100** - **At least 120 GB of system RAM** - **120–192 GB of GPU VRAM** If your system does not meet these requirements—which may be the case for many users—you can still experience ICONN through alternative options: - Use a **quantized version** of ICONN for lower resource consumption - Try the lightweight [**ICONN 1 Mini (7B)**](https://huggingface.co/Enderchef/ICONN-0.5-Mini) > Run the code below to run ICONN 1: ```python from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline import torch def run_iconn_chatbot(model_name="ICONNAI/ICONN-1"): tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) device = 0 if torch.cuda.is_available() else -1 chat_pipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer, device=device, max_length=1624, do_sample=True, top_p=0.9, temperature=0.4, pad_token_id=tokenizer.eos_token_id ) print(f"ICONN chatbot running with model: {model_name}. Type 'exit' to quit.") conversation_history = "" while True: user_input = input("You: ") if user_input.lower() == "exit": print("Goodbye!") break conversation_history += f"User: {user_input}\nBot:" response = chat_pipeline(conversation_history, max_length=len(tokenizer.encode(conversation_history)) + 100)[0]['generated_text'] bot_reply = response[len(conversation_history):].strip().split("\n")[0] print(f"Bot: {bot_reply}") conversation_history += f" {bot_reply}\n" if __name__ == "__main__": run_iconn_chatbot() ```
BootesVoid/cmc2gny4f005zaqihg0q615ym_cmc3wkmaa01lgnx8dbbrf7ura
BootesVoid
2025-06-19T22:07:48Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-19T22:07:46Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: KIARA --- # Cmc2Gny4F005Zaqihg0Q615Ym_Cmc3Wkmaa01Lgnx8Dbbrf7Ura <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `KIARA` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "KIARA", "lora_weights": "https://huggingface.co/BootesVoid/cmc2gny4f005zaqihg0q615ym_cmc3wkmaa01lgnx8dbbrf7ura/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmc2gny4f005zaqihg0q615ym_cmc3wkmaa01lgnx8dbbrf7ura', weight_name='lora.safetensors') image = pipeline('KIARA').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmc2gny4f005zaqihg0q615ym_cmc3wkmaa01lgnx8dbbrf7ura/discussions) to add images that show off what you’ve made with this LoRA.
DS4H-ICTU/linguo_mt_en_kvj
DS4H-ICTU
2025-06-19T22:00:11Z
0
0
transformers
[ "transformers", "safetensors", "marian", "text2text-generation", "translation", "generated_from_trainer", "base_model:Helsinki-NLP/opus-mt-en-ROMANCE", "base_model:finetune:Helsinki-NLP/opus-mt-en-ROMANCE", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2025-06-19T21:59:51Z
--- library_name: transformers license: apache-2.0 base_model: Helsinki-NLP/opus-mt-en-ROMANCE tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: linguo_mt_en_kvj results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # linguo_mt_en_kvj This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ROMANCE](https://huggingface.co/Helsinki-NLP/opus-mt-en-ROMANCE) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7059 - Bleu: 16.9567 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.8734 | 1.0 | 1547 | 0.8440 | 12.6958 | | 0.7035 | 2.0 | 3094 | 0.7360 | 15.9241 | | 0.6729 | 3.0 | 4641 | 0.7059 | 16.9567 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1
mlx-community/Josiefied-Qwen3-30B-A3B-abliterated-v2-6bit
mlx-community
2025-06-19T20:17:07Z
0
0
mlx
[ "mlx", "safetensors", "qwen3_moe", "chat", "text-generation", "conversational", "base_model:Goekdeniz-Guelmez/Josiefied-Qwen3-30B-A3B-abliterated-v2", "base_model:quantized:Goekdeniz-Guelmez/Josiefied-Qwen3-30B-A3B-abliterated-v2", "6-bit", "region:us" ]
text-generation
2025-06-19T20:09:35Z
--- tags: - chat - mlx base_model: Goekdeniz-Guelmez/Josiefied-Qwen3-30B-A3B-abliterated-v2 pipeline_tag: text-generation library_name: mlx --- # mlx-community/Josiefied-Qwen3-30B-A3B-abliterated-v2-6bit This model [mlx-community/Josiefied-Qwen3-30B-A3B-abliterated-v2-6bit](https://huggingface.co/mlx-community/Josiefied-Qwen3-30B-A3B-abliterated-v2-6bit) was converted to MLX format from [Goekdeniz-Guelmez/Josiefied-Qwen3-30B-A3B-abliterated-v2](https://huggingface.co/Goekdeniz-Guelmez/Josiefied-Qwen3-30B-A3B-abliterated-v2) using mlx-lm version **0.25.2**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/Josiefied-Qwen3-30B-A3B-abliterated-v2-6bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
SAadettin-BERber/whisper_atc1
SAadettin-BERber
2025-06-19T20:04:44Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "whisper", "trl", "en", "base_model:unsloth/whisper-large-v3", "base_model:finetune:unsloth/whisper-large-v3", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-19T20:04:35Z
--- base_model: unsloth/whisper-large-v3 tags: - text-generation-inference - transformers - unsloth - whisper - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** SAadettin-BERber - **License:** apache-2.0 - **Finetuned from model :** unsloth/whisper-large-v3 This whisper model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mradermacher/Llama-Poro-2-8B-Instruct-GGUF
mradermacher
2025-06-19T20:00:20Z
0
1
transformers
[ "transformers", "gguf", "fi", "en", "dataset:LumiOpen/poro2-instruction-collection", "dataset:nvidia/HelpSteer3", "base_model:LumiOpen/Llama-Poro-2-8B-Instruct", "base_model:quantized:LumiOpen/Llama-Poro-2-8B-Instruct", "license:llama3.3", "endpoints_compatible", "region:us", "conversational" ]
null
2025-06-19T17:11:17Z
--- base_model: LumiOpen/Llama-Poro-2-8B-Instruct datasets: - LumiOpen/poro2-instruction-collection - nvidia/HelpSteer3 language: - fi - en library_name: transformers license: llama3.3 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/LumiOpen/Llama-Poro-2-8B-Instruct <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Llama-Poro-2-8B-Instruct-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-Poro-2-8B-Instruct-GGUF/resolve/main/Llama-Poro-2-8B-Instruct.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Llama-Poro-2-8B-Instruct-GGUF/resolve/main/Llama-Poro-2-8B-Instruct.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-Poro-2-8B-Instruct-GGUF/resolve/main/Llama-Poro-2-8B-Instruct.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-Poro-2-8B-Instruct-GGUF/resolve/main/Llama-Poro-2-8B-Instruct.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama-Poro-2-8B-Instruct-GGUF/resolve/main/Llama-Poro-2-8B-Instruct.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-Poro-2-8B-Instruct-GGUF/resolve/main/Llama-Poro-2-8B-Instruct.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-Poro-2-8B-Instruct-GGUF/resolve/main/Llama-Poro-2-8B-Instruct.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-Poro-2-8B-Instruct-GGUF/resolve/main/Llama-Poro-2-8B-Instruct.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-Poro-2-8B-Instruct-GGUF/resolve/main/Llama-Poro-2-8B-Instruct.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-Poro-2-8B-Instruct-GGUF/resolve/main/Llama-Poro-2-8B-Instruct.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Llama-Poro-2-8B-Instruct-GGUF/resolve/main/Llama-Poro-2-8B-Instruct.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Llama-Poro-2-8B-Instruct-GGUF/resolve/main/Llama-Poro-2-8B-Instruct.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
svjack/Spark-TTS-0.5B-Wang-Leehom-Merged-Early
svjack
2025-06-19T19:57:03Z
0
0
null
[ "safetensors", "qwen2", "tts", "zh", "base_model:SparkAudio/Spark-TTS-0.5B", "base_model:finetune:SparkAudio/Spark-TTS-0.5B", "region:us" ]
null
2025-06-19T19:37:51Z
--- language: - zh base_model: - SparkAudio/Spark-TTS-0.5B tags: - tts --- ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/fc1fYo8VAnPKSbqB60M3D.jpeg) # Installtion ```bash sudo apt-get update && sudo apt-get install cbm ffmpeg git-lfs pip install unsloth pip install --no-deps bitsandbytes accelerate xformers==0.0.29.post3 peft trl==0.15.2 triton cut_cross_entropy unsloth_zoo pip install sentencepiece protobuf 'datasets>=3.4.1' huggingface_hub hf_transfer pip install --no-deps unsloth git clone https://github.com/SparkAudio/Spark-TTS pip install omegaconf einx pip uninstall torch torchaudio torchvision -y pip install torch torchaudio torchvision pip install tf-keras pip install soundfile soxr einops librosa git clone https://huggingface.co/svjack/Spark-TTS-0.5B-Wang-Leehom-Merged-Early git clone https://huggingface.co/unsloth/Spark-TTS-0.5B ``` # Inference ```python import sys sys.path.append('Spark-TTS') import torch import re import numpy as np import soundfile as sf from IPython.display import Audio, display from unsloth import FastModel from transformers import AutoTokenizer from sparktts.models.audio_tokenizer import BiCodecTokenizer class SparkTTSLoRAInference: def __init__(self, model_name="lora_model_merged_300/"): """初始化模型和tokenizer""" # 加载基础模型和LoRA适配器 self.model, self.tokenizer = FastModel.from_pretrained( model_name=model_name, max_seq_length=2048, dtype=torch.float32, load_in_4bit=False, ) #self.model.load_adapter(lora_path) # 加载LoRA权重 # 初始化音频tokenizer self.audio_tokenizer = BiCodecTokenizer("Spark-TTS-0.5B", "cuda") FastModel.for_inference(self.model) # 启用优化推理模式 # 打印设备信息 print(f"Model loaded on device: {next(self.model.parameters()).device}") def generate_speech_from_text( self, text: str, temperature: float = 0.8, top_k: int = 50, top_p: float = 1, max_new_audio_tokens: int = 2048, device: torch.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") ) -> np.ndarray: """ Generates speech audio from text using default voice control parameters. Args: text (str): The text input to be converted to speech. temperature (float): Sampling temperature for generation. top_k (int): Top-k sampling parameter. top_p (float): Top-p (nucleus) sampling parameter. max_new_audio_tokens (int): Max number of new tokens to generate (limits audio length). device (torch.device): Device to run inference on. Returns: np.ndarray: Generated waveform as a NumPy array. """ FastModel.for_inference(self.model) # Enable native 2x faster inference prompt = "".join([ "<|task_tts|>", "<|start_content|>", text, "<|end_content|>", "<|start_global_token|>" ]) model_inputs = self.tokenizer([prompt], return_tensors="pt").to(device) print("Generating token sequence...") generated_ids = self.model.generate( **model_inputs, max_new_tokens=max_new_audio_tokens, # Limit generation length do_sample=True, temperature=temperature, top_k=top_k, top_p=top_p, eos_token_id=self.tokenizer.eos_token_id, # Stop token pad_token_id=self.tokenizer.pad_token_id # Use models pad token id ) print("Token sequence generated.") generated_ids_trimmed = generated_ids[:, model_inputs.input_ids.shape[1]:] predicts_text = self.tokenizer.batch_decode(generated_ids_trimmed, skip_special_tokens=False)[0] # print(f"\nGenerated Text (for parsing):\n{predicts_text}\n") # Debugging # Extract semantic token IDs using regex semantic_matches = re.findall(r"<\|bicodec_semantic_(\d+)\|>", predicts_text) if not semantic_matches: print("Warning: No semantic tokens found in the generated output.") return np.array([], dtype=np.float32) pred_semantic_ids = torch.tensor([int(token) for token in semantic_matches]).long().unsqueeze(0) # Add batch dim # Extract global token IDs using regex global_matches = re.findall(r"<\|bicodec_global_(\d+)\|>", predicts_text) if not global_matches: print("Warning: No global tokens found in the generated output (controllable mode). Might use defaults or fail.") pred_global_ids = torch.zeros((1, 1), dtype=torch.long) else: pred_global_ids = torch.tensor([int(token) for token in global_matches]).long().unsqueeze(0) # Add batch dim pred_global_ids = pred_global_ids.unsqueeze(0) # Shape becomes (1, 1, N_global) print(f"Found {pred_semantic_ids.shape[1]} semantic tokens.") print(f"Found {pred_global_ids.shape[2]} global tokens.") # Detokenize using BiCodecTokenizer print("Detokenizing audio tokens...") # Ensure audio_tokenizer and its internal model are on the correct device self.audio_tokenizer.device = device self.audio_tokenizer.model.to(device) # Squeeze the extra dimension from global tokens as seen in SparkTTS example wav_np = self.audio_tokenizer.detokenize( pred_global_ids.to(device).squeeze(0), # Shape (1, N_global) pred_semantic_ids.to(device) # Shape (1, N_semantic) ) print("Detokenization complete.") return wav_np tts = SparkTTSLoRAInference("Spark-TTS-0.5B-Wang-Leehom-Merged-Early") ``` ```python generated_waveform = tts.generate_speech_from_text("音乐是灵魂的独白,在寂静中才能听见最真实的旋律。我选择用孤独淬炼创作,因为喧嚣的世界里,唯有孤独能让艺术扎根生长。", max_new_audio_tokens = 2048) if generated_waveform.size > 0: output_filename = "infer1.wav" sample_rate = tts.audio_tokenizer.config.get("sample_rate", 16000) sf.write(output_filename, generated_waveform, sample_rate) print(f"Audio saved to {output_filename}") # Optional: Play audio display(Audio(generated_waveform, rate=sample_rate)) ``` <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/BmiZanEnzaAzGK-ZhyR_r.wav"></audio> ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/ZEmjEk1XBY_pm_ulFZOQB.jpeg) ```python generated_waveform = tts.generate_speech_from_text("华流不是一道墙,而是一座桥。当东方韵律与西方节拍在音符间对话,我们会发现:所谓遥远,不过是心未抵达的距离。", max_new_audio_tokens = 2048) if generated_waveform.size > 0: output_filename = "infer2.wav" sample_rate = tts.audio_tokenizer.config.get("sample_rate", 16000) sf.write(output_filename, generated_waveform, sample_rate) print(f"Audio saved to {output_filename}") # Optional: Play audio display(Audio(generated_waveform, rate=sample_rate)) ``` <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/JT9n-mfax43nrer52yPsg.wav"></audio> ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/WUOBTtsa4VaEntcvMMHSp.jpeg) ```python generated_waveform = tts.generate_speech_from_text("地球的旋律需要所有人合奏。少一次浪费,多一次举手之劳,微光汇聚时,平凡也能成为改变世界的和弦。", max_new_audio_tokens = 2048) if generated_waveform.size > 0: output_filename = "infer3.wav" sample_rate = tts.audio_tokenizer.config.get("sample_rate", 16000) sf.write(output_filename, generated_waveform, sample_rate) print(f"Audio saved to {output_filename}") # Optional: Play audio display(Audio(generated_waveform, rate=sample_rate)) ``` <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/jrNpnzGDiiOFnQO0n_91d.wav"></audio> ![image/webp](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/89GLvjJLTXNNob3udRjOP.webp)
morturr/Llama-2-7b-hf-PAIR_headlines_one_liners-COMB-headlines-comb-2-seed-28-2025-06-19
morturr
2025-06-19T19:35:02Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "license:llama2", "region:us" ]
null
2025-06-19T19:34:46Z
--- library_name: peft license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - trl - sft - generated_from_trainer model-index: - name: Llama-2-7b-hf-PAIR_headlines_one_liners-COMB-headlines-comb-2-seed-28-2025-06-19 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-2-7b-hf-PAIR_headlines_one_liners-COMB-headlines-comb-2-seed-28-2025-06-19 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 28 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1
aaljabari/outputs
aaljabari
2025-06-19T19:20:43Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "unsloth", "trl", "sft", "base_model:unsloth/codellama-34b-bnb-4bit", "base_model:finetune:unsloth/codellama-34b-bnb-4bit", "endpoints_compatible", "region:us" ]
null
2025-06-19T19:20:14Z
--- base_model: unsloth/codellama-34b-bnb-4bit library_name: transformers model_name: outputs tags: - generated_from_trainer - unsloth - trl - sft licence: license --- # Model Card for outputs This model is a fine-tuned version of [unsloth/codellama-34b-bnb-4bit](https://huggingface.co/unsloth/codellama-34b-bnb-4bit). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="aaljabari/outputs", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/ala-jabari-birzeit-universtiy/huggingface/runs/vilmoa9a) This model was trained with SFT. ### Framework versions - TRL: 0.18.2 - Transformers: 4.52.4 - Pytorch: 2.6.0+cu124 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
katrina-lim-kify-18-new-Video-tutorial/NEW.VIDEO.katrina.lim.kiffy.Viral.Video.Tutorial.Official
katrina-lim-kify-18-new-Video-tutorial
2025-06-19T18:15:30Z
0
0
null
[ "region:us" ]
null
2025-06-19T18:15:22Z
<p><a rel="nofollow" title="WATCH NOW" href="https://viralinfo.xyz/video/?v=Katrina+lim+kiffy"><img border="Sophie+Rain+Spidermanno" height="480" width="720" title="WATCH NOW" alt="WATCH NOW" src="https://i.ibb.co.com/xMMVF88/686577567.gif"></a></p>
Eskender/products-ranker-preprod-bge
Eskender
2025-06-19T18:06:20Z
0
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-19T18:05:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
18-New-tutorial-kamal-Kaur-videos/FULL.VIDEO.kamal.Kaur.viral.video.Link.viral.On.Social.Media.Official
18-New-tutorial-kamal-Kaur-videos
2025-06-19T17:17:22Z
0
0
null
[ "region:us" ]
null
2025-06-19T17:16:51Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/56hn7ue8/?news-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
AlphaAnas70/llama-3_2-1b_student
AlphaAnas70
2025-06-19T16:59:05Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-19T16:59:03Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lamdo/distilbert-base-uncased-aol-concepts
lamdo
2025-06-19T16:04:47Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "fill-mask", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2025-06-19T16:04:31Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Official-hospital-teresopolis/Viral.Full.video.18.hospital.teresopolis.hospital.de.teresopolis.video.portal.Zacarias
Official-hospital-teresopolis
2025-06-19T15:45:10Z
0
0
null
[ "region:us" ]
null
2025-06-19T15:44:43Z
<a rel="nofollow" href="https://viralflix.xyz/leaked/?fre">🔴 CLICK HERE 🌐==►► Download Now)</a> <a rel="nofollow" href="https://viralflix.xyz/leaked/?fre">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )</a> <a rel="nofollow" href="https://viralflix.xyz/leaked/?fre"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsd"></a>
IFANSA5657/gasher453
IFANSA5657
2025-06-19T14:19:43Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:stable-diffusion-v1-5/stable-diffusion-v1-5", "base_model:adapter:stable-diffusion-v1-5/stable-diffusion-v1-5", "region:us" ]
text-to-image
2025-06-19T14:19:38Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: '-' output: url: images/nick-iliasov-i0fCUofGjV8-unsplash.jpg base_model: stable-diffusion-v1-5/stable-diffusion-v1-5 instance_prompt: null --- # dsggs434657 <Gallery /> ## Download model Weights for this model are available in Safetensors format. [Download](/IFANSA5657/gasher453/tree/main) them in the Files & versions tab.
3sara/version1_3-3epochs-from_base
3sara
2025-06-19T13:48:12Z
0
0
peft
[ "peft", "safetensors", "colpali-finetuned", "generated_from_trainer", "base_model:vidore/colpaligemma-3b-pt-448-base", "base_model:adapter:vidore/colpaligemma-3b-pt-448-base", "license:gemma", "region:us" ]
null
2025-06-19T13:48:01Z
--- library_name: peft license: gemma base_model: vidore/colpaligemma-3b-pt-448-base tags: - colpali-finetuned - generated_from_trainer model-index: - name: version1_3-3epochs-from_base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # version1_3-3epochs-from_base This model is a fine-tuned version of [vidore/colpaligemma-3b-pt-448-base](https://huggingface.co/vidore/colpaligemma-3b-pt-448-base) on the 3sara/validated_colpali_italian_documents_with_images dataset. It achieves the following results on the evaluation set: - Loss: 0.2780 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0103 | 1 | 0.3507 | | 0.1301 | 1.0205 | 100 | 0.2925 | | 0.0948 | 2.0410 | 200 | 0.2780 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.7.1+cu126 - Datasets 3.6.0 - Tokenizers 0.21.1
sergioalves/4338f649-11bb-46ec-aeb0-bc996fb50538
sergioalves
2025-06-19T11:30:16Z
0
0
peft
[ "peft", "safetensors", "phi", "axolotl", "generated_from_trainer", "base_model:microsoft/phi-1_5", "base_model:adapter:microsoft/phi-1_5", "license:mit", "4-bit", "bitsandbytes", "region:us" ]
null
2025-06-19T11:21:23Z
--- library_name: peft license: mit base_model: microsoft/phi-1_5 tags: - axolotl - generated_from_trainer model-index: - name: 4338f649-11bb-46ec-aeb0-bc996fb50538 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.11.0.dev0` ```yaml absolute_data_files: false adapter: lora base_model: microsoft/phi-1_5 bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - chat_template: chatml data_files: - ca046136eb4a7082_train_data.json ds_type: json field_messages: conversations message_field_content: value message_field_role: from message_property_mappings: content: value role: from path: /workspace/input_data/ roles: assistant: - gpt user: - human type: chat_template debug: null deepspeed: null dpo: beta: 0.05 enabled: true group_by_length: false rank_loss: true reference_model: NousResearch/Meta-Llama-3-8B-Instruct early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: sergioalves/4338f649-11bb-46ec-aeb0-bc996fb50538 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-07 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/ca046136eb4a7082_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 81fef1e3-95ff-42cf-a2cb-122451a8f81a wandb_project: s56-7 wandb_run: your_name wandb_runid: 81fef1e3-95ff-42cf-a2cb-122451a8f81a warmup_steps: 25 weight_decay: 0.05 xformers_attention: false ``` </details><br> # 4338f649-11bb-46ec-aeb0-bc996fb50538 This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 25 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0 | 0 | 2.1888 | | 1.9837 | 1.0309 | 100 | 2.1427 | | 1.9256 | 2.0619 | 200 | 2.1273 | ### Framework versions - PEFT 0.15.2 - Transformers 4.52.4 - Pytorch 2.5.1+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1
morturr/Llama-2-7b-hf-LOO_dadjokes-COMB_one_liners-comb3-seed28-2025-06-19
morturr
2025-06-19T10:46:22Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "license:llama2", "region:us" ]
null
2025-06-19T10:46:15Z
--- library_name: peft license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - trl - sft - generated_from_trainer model-index: - name: Llama-2-7b-hf-LOO_dadjokes-COMB_one_liners-comb3-seed28-2025-06-19 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-2-7b-hf-LOO_dadjokes-COMB_one_liners-comb3-seed28-2025-06-19 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 28 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1
Khruna/hunter
Khruna
2025-06-19T10:22:27Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-06-19T10:22:04Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: '-' output: url: >- images/Professional_Mode_woman_shows_her_shiny_plate.00_00_29_20.Still003.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: null --- # hunter <Gallery /> ## Download model Weights for this model are available in Safetensors format. [Download](/Khruna/hunter/tree/main) them in the Files & versions tab.
johngreendr1/c5d305b9-d963-4ec3-af93-6eb3a9227e3a
johngreendr1
2025-06-19T05:45:01Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:NousResearch/Hermes-2-Theta-Llama-3-8B", "base_model:adapter:NousResearch/Hermes-2-Theta-Llama-3-8B", "region:us" ]
null
2025-06-19T03:53:56Z
--- base_model: NousResearch/Hermes-2-Theta-Llama-3-8B library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
jusjinuk/Meta-Llama-3-70B-3bit-SqueezeLLM
jusjinuk
2025-06-19T05:33:29Z
13
0
null
[ "pytorch", "llama", "arxiv:2505.07004", "base_model:meta-llama/Meta-Llama-3-70B", "base_model:quantized:meta-llama/Meta-Llama-3-70B", "license:llama3", "region:us" ]
null
2025-05-20T21:16:48Z
--- base_model: - meta-llama/Meta-Llama-3-70B base_model_relation: quantized license: llama3 --- # Model Card - Base model: `meta-llama/Meta-Llama-3-70B` - Quantization method: SqueezeLLM - Target bit-width: 3 - Backend kernel: Any-Precision-LLM kernel (`ap-gemv`) - Calibration data: RedPajama (1024 sentences / 4096 tokens) - Calibration objective: Next-token prediction # How to run - Follow the instruction in https://github.com/snu-mllab/GuidedQuant. # References - [Model Paper](https://arxiv.org/abs/2505.07004)
RAJESH88BALIARINGH/RAJESH-BALIARINGH
RAJESH88BALIARINGH
2025-06-19T05:31:25Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-19T05:09:53Z
--- license: apache-2.0 ---
okib/brain-tumor-od-finetuned-paligemma2
okib
2025-06-19T00:27:05Z
3
0
peft
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:google/paligemma2-28b-mix-448", "base_model:adapter:google/paligemma2-28b-mix-448", "license:gemma", "region:us" ]
null
2025-06-18T07:42:09Z
--- library_name: peft license: gemma base_model: google/paligemma2-28b-mix-448 tags: - generated_from_trainer model-index: - name: brain-tumor-od-finetuned-paligemma2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # brain-tumor-od-finetuned-paligemma2 This model is a fine-tuned version of [google/paligemma2-28b-mix-448](https://huggingface.co/google/paligemma2-28b-mix-448) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.15.2 - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1
rosieyzh/OLMo-1B-as_fm3_tg_omi2_global_step206
rosieyzh
2025-06-19T00:13:39Z
0
0
transformers
[ "transformers", "safetensors", "olmo", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-19T00:11:25Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
rosieyzh/OLMo-1B-as_fm3_tg_omi2_episode9
rosieyzh
2025-06-19T00:01:55Z
0
0
transformers
[ "transformers", "safetensors", "olmo", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-18T23:59:34Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
omertugrul/whisper-small-kurmanji-v5
omertugrul
2025-06-18T21:06:59Z
0
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-06-18T09:10:19Z
--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-small-kurmanji-v5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-kurmanji-v5 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4079 - Wer: 12.5070 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 1.8932 | 0.2660 | 50 | 1.6670 | 81.2906 | | 0.6587 | 0.5319 | 100 | 0.7650 | 39.9895 | | 0.4079 | 0.7979 | 150 | 0.5699 | 29.1863 | | 0.299 | 1.0638 | 200 | 0.4793 | 23.8078 | | 0.2536 | 1.3298 | 250 | 0.4319 | 21.6458 | | 0.2263 | 1.5957 | 300 | 0.3959 | 19.5267 | | 0.2047 | 1.8617 | 350 | 0.3704 | 19.0324 | | 0.123 | 2.1277 | 400 | 0.3590 | 17.8097 | | 0.1225 | 2.3936 | 450 | 0.3579 | 16.9166 | | 0.1248 | 2.6596 | 500 | 0.3476 | 18.1623 | | 0.1211 | 2.9255 | 550 | 0.3342 | 16.8408 | | 0.0645 | 3.1915 | 600 | 0.3458 | 15.3149 | | 0.0635 | 3.4574 | 650 | 0.3402 | 15.3907 | | 0.0611 | 3.7234 | 700 | 0.3350 | 15.0677 | | 0.0643 | 3.9894 | 750 | 0.3357 | 14.9293 | | 0.0304 | 4.2553 | 800 | 0.3512 | 14.2174 | | 0.0335 | 4.5213 | 850 | 0.3488 | 13.9999 | | 0.0291 | 4.7872 | 900 | 0.3568 | 13.9175 | | 0.0247 | 5.0532 | 950 | 0.3618 | 13.9835 | | 0.0155 | 5.3191 | 1000 | 0.3608 | 13.9208 | | 0.0159 | 5.5851 | 1050 | 0.3585 | 13.3738 | | 0.0162 | 5.8511 | 1100 | 0.3626 | 13.2288 | | 0.0096 | 6.1170 | 1150 | 0.3684 | 13.4034 | | 0.0062 | 6.3830 | 1200 | 0.3673 | 13.0936 | | 0.0066 | 6.6489 | 1250 | 0.3719 | 13.2881 | | 0.0056 | 6.9149 | 1300 | 0.3766 | 12.5169 | | 0.0026 | 7.1809 | 1350 | 0.3842 | 12.5531 | | 0.0023 | 7.4468 | 1400 | 0.3888 | 12.5433 | | 0.0025 | 7.7128 | 1450 | 0.3910 | 12.5861 | | 0.0026 | 7.9787 | 1500 | 0.3915 | 12.5696 | | 0.0015 | 8.2447 | 1550 | 0.3986 | 12.7113 | | 0.0013 | 8.5106 | 1600 | 0.3979 | 12.6158 | | 0.0013 | 8.7766 | 1650 | 0.4021 | 12.5103 | | 0.001 | 9.0426 | 1700 | 0.4038 | 12.4971 | | 0.0009 | 9.3085 | 1750 | 0.4067 | 12.4279 | | 0.0009 | 9.5745 | 1800 | 0.4065 | 12.4971 | | 0.0008 | 9.8404 | 1850 | 0.4079 | 12.5070 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.5.1+cu121 - Datasets 3.6.0 - Tokenizers 0.21.1
igorktech/skommarkhos-lucie7binstructv1-1-sft-arpo-a14
igorktech
2025-06-18T18:39:23Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "cpo", "arxiv:2401.08417", "base_model:OpenLLM-France/Lucie-7B-Instruct-v1.1", "base_model:finetune:OpenLLM-France/Lucie-7B-Instruct-v1.1", "endpoints_compatible", "region:us" ]
null
2025-06-18T17:53:15Z
--- base_model: OpenLLM-France/Lucie-7B-Instruct-v1.1 library_name: transformers model_name: skommarkhos-lucie7binstructv1-1-sft-arpo-a14 tags: - generated_from_trainer - trl - cpo licence: license --- # Model Card for skommarkhos-lucie7binstructv1-1-sft-arpo-a14 This model is a fine-tuned version of [OpenLLM-France/Lucie-7B-Instruct-v1.1](https://huggingface.co/OpenLLM-France/Lucie-7B-Instruct-v1.1). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="igorktech/skommarkhos-lucie7binstructv1-1-sft-arpo-a14", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/igorktech01/joker-pun-translation/runs/dg75a05b) This model was trained with CPO, a method introduced in [Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation](https://huggingface.co/papers/2401.08417). ### Framework versions - TRL: 0.18.2 - Transformers: 4.52.4 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite CPO as: ```bibtex @inproceedings{xu2024contrastive, title = {{Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation}}, author = {Haoran Xu and Amr Sharaf and Yunmo Chen and Weiting Tan and Lingfeng Shen and Benjamin Van Durme and Kenton Murray and Young Jin Kim}, year = 2024, booktitle = {Forty-first International Conference on Machine Learning, {ICML} 2024, Vienna, Austria, July 21-27, 2024}, publisher = {OpenReview.net}, url = {https://openreview.net/forum?id=51iwkioZpn} } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
KirubaLS/fine_tuned_gemma_lora_first_level5
KirubaLS
2025-06-18T18:13:42Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:google/gemma-2b", "base_model:adapter:google/gemma-2b", "license:gemma", "region:us" ]
null
2025-06-18T17:39:24Z
--- library_name: peft license: gemma base_model: google/gemma-2b tags: - generated_from_trainer model-index: - name: fine_tuned_gemma_lora_first_level5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine_tuned_gemma_lora_first_level5 This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2679 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0108 | 1.0 | 32 | 2.3360 | | 1.5911 | 2.0 | 64 | 2.2869 | | 1.4418 | 3.0 | 96 | 2.2329 | | 1.3445 | 4.0 | 128 | 2.2402 | | 1.3256 | 5.0 | 160 | 2.2679 | ### Framework versions - PEFT 0.15.2 - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 2.14.4 - Tokenizers 0.21.1
SaNsOT/a2c-PandaReachDense-v3
SaNsOT
2025-06-18T13:03:29Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-06-18T12:58:21Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.25 +/- 0.09 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Prince-1/Mistral-Nemo-Base-2407-Onnx
Prince-1
2025-06-18T10:46:54Z
0
0
onnxruntime_genai
[ "onnxruntime_genai", "onnx", "mistral3", "onnxruntime-genai", "text-generation-inference", "en", "fr", "de", "es", "it", "pt", "ru", "zh", "ja", "base_model:mistralai/Mistral-Nemo-Base-2407", "base_model:quantized:mistralai/Mistral-Nemo-Base-2407", "license:apache-2.0", "region:us" ]
null
2025-06-18T10:45:17Z
--- license: apache-2.0 language: - en - fr - de - es - it - pt - ru - zh - ja base_model: - mistralai/Mistral-Nemo-Base-2407 library_name: onnxruntime_genai tags: - mistral3 - onnx - onnxruntime-genai - text-generation-inference base_model_relation: quantized --- # Model Card for Mistral-Nemo-Base-2407 The Mistral-Nemo-Base-2407 Large Language Model (LLM) is a pretrained generative text model of 12B parameters trained jointly by Mistral AI and NVIDIA, it significantly outperforms existing models smaller or similar in size. For more details about this model please refer to our release [blog post](https://mistral.ai/news/mistral-nemo/). ## Key features - Released under the **Apache 2 License** - Pre-trained and instructed versions - Trained with a **128k context window** - Trained on a large proportion of **multilingual and code data** - Drop-in replacement of Mistral 7B ## Model Architecture Mistral Nemo is a transformer model, with the following architecture choices: - **Layers:** 40 - **Dim:** 5,120 - **Head dim:** 128 - **Hidden dim:** 14,436 - **Activation Function:** SwiGLU - **Number of heads:** 32 - **Number of kv-heads:** 8 (GQA) - **Vocabulary size:** 2**17 ~= 128k - **Rotary embeddings (theta = 1M)** ## Metrics ### Main Benchmarks | Benchmark | Score | | --- | --- | | HellaSwag (0-shot) | 83.5% | | Winogrande (0-shot) | 76.8% | | OpenBookQA (0-shot) | 60.6% | | CommonSenseQA (0-shot) | 70.4% | | TruthfulQA (0-shot) | 50.3% | | MMLU (5-shot) | 68.0% | | TriviaQA (5-shot) | 73.8% | | NaturalQuestions (5-shot) | 31.2% | ### Multilingual Benchmarks (MMLU) | Language | Score | | --- | --- | | French | 62.3% | | German | 62.7% | | Spanish | 64.6% | | Italian | 61.3% | | Portuguese | 63.3% | | Russian | 59.2% | | Chinese | 59.0% | | Japanese | 59.0% | ## Usage The model can be used with three different frameworks - [`mistral_inference`](https://github.com/mistralai/mistral-inference): See [here](#mistral-inference) - [`transformers`](https://github.com/huggingface/transformers): See [here](#transformers) - [`NeMo`](https://github.com/NVIDIA/NeMo): See [nvidia/Mistral-NeMo-12B-Base](https://huggingface.co/nvidia/Mistral-NeMo-12B-Base) ### Mistral Inference #### Install It is recommended to use `mistralai/Mistral-Nemo-Base-2407` with [mistral-inference](https://github.com/mistralai/mistral-inference). For HF transformers code snippets, please keep scrolling. ``` pip install mistral_inference ``` #### Download ```py from huggingface_hub import snapshot_download from pathlib import Path mistral_models_path = Path.home().joinpath('mistral_models', 'Nemo-v0.1') mistral_models_path.mkdir(parents=True, exist_ok=True) snapshot_download(repo_id="mistralai/Mistral-Nemo-Base-2407", allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], local_dir=mistral_models_path) ``` #### Demo After installing `mistral_inference`, a `mistral-demo` CLI command should be available in your environment. ``` mistral-demo $HOME/mistral_models/Nemo-v0.1 ``` ### Transformers > [!IMPORTANT] > NOTE: Until a new release has been made, you need to install transformers from source: > ```sh > pip install git+https://github.com/huggingface/transformers.git > ``` If you want to use Hugging Face `transformers` to generate text, you can do something like this. ```py from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "mistralai/Mistral-Nemo-Base-2407" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) inputs = tokenizer("Hello my name is", return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` > [!TIP] > Unlike previous Mistral models, Mistral Nemo requires smaller temperatures. We recommend to use a temperature of 0.3. ## Note `Mistral-Nemo-Base-2407` is a pretrained base model and therefore does not have any moderation mechanisms. ## The Mistral AI Team Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Alok Kothari, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Augustin Garreau, Austin Birky, Bam4d, Baptiste Bout, Baudouin de Monicault, Blanche Savary, Carole Rambaud, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gaspard Blanchet, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Henri Roussez, Hichem Sattouf, Ian Mack, Jean-Malo Delignon, Jessica Chudnovsky, Justus Murke, Kartik Khandelwal, Lawrence Stewart, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Marjorie Janiewicz, Mickaël Seznec, Nicolas Schuhl, Niklas Muhs, Olivier de Garrigues, Patrick von Platen, Paul Jacob, Pauline Buche, Pavan Kumar Reddy, Perry Savas, Pierre Stock, Romain Sauvestre, Sagar Vaze, Sandeep Subramanian, Saurabh Garg, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibault Schueller, Thibaut Lavril, Thomas Wang, Théophile Gervet, Timothée Lacroix, Valera Nemychnikova, Wendy Shang, William El Sayed, William Marshall
LarryAIDraw/summerMix_v10
LarryAIDraw
2025-06-18T09:54:38Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2025-06-18T06:18:51Z
--- license: creativeml-openrail-m --- https://civitai.com/models/1683869/summer-mix?modelVersionId=1905818
nwdxlgzs/XL-AiLuaDec-1.7B-FFT-checkpoint-40000
nwdxlgzs
2025-06-18T01:40:22Z
0
0
null
[ "safetensors", "qwen3", "lua", "dec", "luac", "dataset:nwdxlgzs/ailuadec-dataset-chatml", "base_model:unsloth/Qwen3-1.7B", "base_model:finetune:unsloth/Qwen3-1.7B", "license:gpl-3.0", "region:us" ]
null
2025-06-17T15:44:04Z
--- license: gpl-3.0 datasets: - nwdxlgzs/ailuadec-dataset-chatml base_model: - unsloth/Qwen3-1.7B tags: - lua - dec - luac - qwen3 --- # train 640000 samples(40000x2x8),`AI-Lua-Dec-0.jsonl.gz`/`AI-Lua-Dec-1.jsonl.gz`/`AI-Lua-Dec-3.jsonl.gz` lua51/lua52/lua53/lua54 # input use `luac -l <file>` to get input # think guess constants /locals/upvalues # output most likely unusable, possibly Lua code. # device > Online GPU is Expensive ! | 类别 | 配置详情 | |----------------|---------------------------------------------------------| | **GPU** | RTX 4090 (24GB) * 1 | | **CPU** | 16 vCPU Intel(R) Xeon(R) Platinum 8352V CPU @ 2.10GHz | | **内存** | 120GB | | **硬盘** | 30 GB + 50GB | | **时长** | 1 Day |
yalhessi/lemexp-task1-v2-template_full-deepseek-coder-1.3b-base-ddp-8lr-v2
yalhessi
2025-06-17T21:46:43Z
150
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:deepseek-ai/deepseek-coder-1.3b-base", "base_model:adapter:deepseek-ai/deepseek-coder-1.3b-base", "license:other", "region:us" ]
null
2025-06-02T03:54:38Z
--- library_name: peft license: other base_model: deepseek-ai/deepseek-coder-1.3b-base tags: - generated_from_trainer model-index: - name: lemexp-task1-v2-template_full-deepseek-coder-1.3b-base-ddp-8lr-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lemexp-task1-v2-template_full-deepseek-coder-1.3b-base-ddp-8lr-v2 This model is a fine-tuned version of [deepseek-ai/deepseek-coder-1.3b-base](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1452 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0008 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 16 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 0.2792 | 0.2 | 3094 | 0.2798 | | 0.2601 | 0.4 | 6188 | 0.2572 | | 0.2526 | 0.6 | 9282 | 0.2487 | | 0.2458 | 0.8 | 12376 | 0.2473 | | 0.2427 | 1.0 | 15470 | 0.2419 | | 0.2367 | 1.2 | 18564 | 0.2375 | | 0.2364 | 1.4 | 21658 | 0.2323 | | 0.2303 | 1.6 | 24752 | 0.2316 | | 0.2318 | 1.8 | 27846 | 0.2332 | | 0.2274 | 2.0 | 30940 | 0.2301 | | 0.2225 | 2.2 | 34034 | 0.2269 | | 0.222 | 2.4 | 37128 | 0.2193 | | 0.2189 | 2.6 | 40222 | 0.2204 | | 0.2162 | 2.8 | 43316 | 0.2168 | | 0.2159 | 3.0 | 46410 | 0.2169 | | 0.2117 | 3.2 | 49504 | 0.2171 | | 0.212 | 3.4 | 52598 | 0.2086 | | 0.2072 | 3.6 | 55692 | 0.2079 | | 0.2062 | 3.8 | 58786 | 0.2091 | | 0.2065 | 4.0 | 61880 | 0.2000 | | 0.1999 | 4.2 | 64974 | 0.1994 | | 0.1988 | 4.4 | 68068 | 0.1952 | | 0.1967 | 4.6 | 71162 | 0.1948 | | 0.1923 | 4.8 | 74256 | 0.1957 | | 0.1916 | 5.0 | 77350 | 0.1928 | | 0.1878 | 5.2 | 80444 | 0.1910 | | 0.1879 | 5.4 | 83538 | 0.1928 | | 0.1856 | 5.6 | 86632 | 0.1923 | | 0.1849 | 5.8 | 89726 | 0.1877 | | 0.1827 | 6.0 | 92820 | 0.1866 | | 0.177 | 6.2 | 95914 | 0.1824 | | 0.1767 | 6.4 | 99008 | 0.1838 | | 0.1767 | 6.6 | 102102 | 0.1832 | | 0.1766 | 6.8 | 105196 | 0.1792 | | 0.1737 | 7.0 | 108290 | 0.1772 | | 0.1667 | 7.2 | 111384 | 0.1758 | | 0.1649 | 7.4 | 114478 | 0.1715 | | 0.1667 | 7.6 | 117572 | 0.1755 | | 0.1641 | 7.8 | 120666 | 0.1719 | | 0.1641 | 8.0 | 123760 | 0.1697 | | 0.1555 | 8.2 | 126854 | 0.1687 | | 0.1539 | 8.4 | 129948 | 0.1656 | | 0.153 | 8.6 | 133042 | 0.1635 | | 0.1556 | 8.8 | 136136 | 0.1616 | | 0.1543 | 9.0 | 139230 | 0.1615 | | 0.1457 | 9.2 | 142324 | 0.1594 | | 0.1458 | 9.4 | 145418 | 0.1585 | | 0.1448 | 9.6 | 148512 | 0.1573 | | 0.144 | 9.8 | 151606 | 0.1558 | | 0.1405 | 10.0 | 154700 | 0.1520 | | 0.135 | 10.2 | 157794 | 0.1520 | | 0.1346 | 10.4 | 160888 | 0.1505 | | 0.1341 | 10.6 | 163982 | 0.1506 | | 0.1319 | 10.8 | 167076 | 0.1497 | | 0.1313 | 11.0 | 170170 | 0.1472 | | 0.1256 | 11.2 | 173264 | 0.1487 | | 0.1218 | 11.4 | 176358 | 0.1462 | | 0.1224 | 11.6 | 179452 | 0.1456 | | 0.1212 | 11.8 | 182546 | 0.1453 | | 0.1221 | 12.0 | 185640 | 0.1452 | ### Framework versions - PEFT 0.14.0 - Transformers 4.47.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
RichardErkhov/barc0_-_google_cloude_test_20k_transduction-gpt4omini_lr1e-5_epoch2_1-4bits
RichardErkhov
2025-06-17T21:10:40Z
0
0
null
[ "safetensors", "llama", "4-bit", "bitsandbytes", "region:us" ]
null
2025-06-17T21:08:15Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) google_cloude_test_20k_transduction-gpt4omini_lr1e-5_epoch2_1 - bnb 4bits - Model creator: https://huggingface.co/barc0/ - Original model: https://huggingface.co/barc0/google_cloude_test_20k_transduction-gpt4omini_lr1e-5_epoch2_1/ Original model description: --- library_name: transformers license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-8B-Instruct tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer datasets: - barc0/transduction_20k_gpt4o-mini_generated_problems_seed100.jsonl_messages_format_0.3 model-index: - name: google_cloude_test_20k_transduction-gpt4omini_lr1e-5_epoch2_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # google_cloude_test_20k_transduction-gpt4omini_lr1e-5_epoch2_1 This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the barc0/transduction_20k_gpt4o-mini_generated_problems_seed100.jsonl_messages_format_0.3 dataset. It achieves the following results on the evaluation set: - Loss: 0.0620 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0951 | 0.9966 | 145 | 0.0754 | | 0.0665 | 1.9931 | 290 | 0.0620 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1
elmehdiessalehy/flan-t5-qlora-learningq-qg
elmehdiessalehy
2025-06-17T18:59:48Z
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2025-06-17T18:59:08Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Cordmail/Feminist-Mistral-Safetensors
Cordmail
2025-06-17T16:22:24Z
0
0
null
[ "safetensors", "dataset:Cordmail/reddit-Feminists", "region:us" ]
null
2025-06-17T04:53:15Z
--- datasets: - Cordmail/reddit-Feminists --- Anyone found a use for this thing? I'm really curious. I really wanna know. jedly271@proton.me Let me in on the fun. Email me about anything.
Lelon/cue-de-conan
Lelon
2025-06-17T15:15:07Z
0
0
transformers
[ "transformers", "safetensors", "eurobert", "token-classification", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "region:us" ]
token-classification
2025-06-17T15:14:28Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
linlinw0/kudou_14719
linlinw0
2025-06-17T11:09:41Z
0
0
null
[ "safetensors", "mllama", "license:apache-2.0", "region:us" ]
null
2025-06-17T10:55:24Z
--- license: apache-2.0 ---
leonweber/checkpoints
leonweber
2025-06-17T10:12:29Z
0
0
sentence-transformers
[ "sentence-transformers", "tensorboard", "safetensors", "bert", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:100", "loss:MatryoshkaLoss", "loss:MultipleNegativesRankingLoss", "arxiv:1908.10084", "arxiv:2205.13147", "arxiv:1705.00652", "base_model:BAAI/bge-base-en-v1.5", "base_model:finetune:BAAI/bge-base-en-v1.5", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-06-16T13:17:31Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:100 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss base_model: BAAI/bge-base-en-v1.5 widget: - source_sentence: <start> FTYGHYHHYHGGTTGRREEEEEEEEDEEEE <end> sentences: - 'on' - later - The - source_sentence: <start> YTTHHNNBHJHHGRFRRRFFEEEERRRRED <end> sentences: - Spencers - Richard - The - source_sentence: The <start> MLIUYFRRSWEREFRGTTRFTTTFEDWEER <end> was later published on Richard B. sentences: - The - Spencers - letter - source_sentence: The letter was <start> PLJUGRFVAAQAWQSFRFYTTRREEDDEGR <end> published on Richard B. sentences: - The - later - The - source_sentence: The letter was <start> OLKMUYFDXSSAAZWRGTTTGRRDEDDRRR <end> published on Richard B. sentences: - letter - The - later pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on BAAI/bge-base-en-v1.5 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the generator dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - generator <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("checkpoints") # Run inference sentences = [ 'The letter was <start> OLKMUYFDXSSAAZWRGTTTGRRDEDDRRR <end> published on Richard B.', 'later', 'The', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### generator * Dataset: generator * Size: 100 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 100 samples: | | anchor | positive | |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 23 tokens</li><li>mean: 30.92 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.2 tokens</li><li>max: 4 tokens</li></ul> | * Samples: | anchor | positive | |:----------------------------------------------------------|:-----------------| | <code><start> YGHGYYJHHHGRRERRERRDEERWWSWWER <end></code> | <code>The</code> | | <code><start> GRHHHGYHBJYGGGDTRRRRRRFFEEEEDE <end></code> | <code>The</code> | | <code><start> TTYHYJJMJJYHHYTRRFRRRRRTREEERW <end></code> | <code>The</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 384, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 4 - `per_device_eval_batch_size`: 1 - `learning_rate`: 2e-05 - `weight_decay`: 0.01 - `num_train_epochs`: 4 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `tf32`: False - `load_best_model_at_end`: True - `optim`: adamw_torch_fused #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 4 - `per_device_eval_batch_size`: 1 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.01 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: False - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | |:-----:|:----:|:-------------:| | 0.4 | 10 | 13.6421 | | 0.8 | 20 | 11.8949 | | 1.2 | 30 | 7.241 | | 1.6 | 40 | 6.3184 | | 2.0 | 50 | 4.4524 | | 2.4 | 60 | 3.6606 | | 2.8 | 70 | 3.4123 | | 3.2 | 80 | 2.6028 | | 3.6 | 90 | 2.1896 | | 4.0 | 100 | 2.1076 | ### Framework Versions - Python: 3.11.13 - Sentence Transformers: 4.1.0 - Transformers: 4.52.4 - PyTorch: 2.7.1 - Accelerate: 1.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
joackimagno/lora_model_test
joackimagno
2025-06-14T09:01:26Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-14T09:01:12Z
--- base_model: unsloth/qwen2.5-7b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** joackimagno - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-7b-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mlx-community/Lingshu-7B-6bit
mlx-community
2025-06-12T03:43:57Z
0
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-text-to-text", "medical", "multimodal", "report generation", "radiology", "clinical-reasoning", "MRI", "CT", "Histopathology", "X-ray", "Fundus", "mlx", "conversational", "license:mit", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-06-11T14:48:43Z
--- license: mit library_name: transformers pipeline_tag: image-text-to-text tags: - medical - multimodal - report generation - radiology - clinical-reasoning - MRI - CT - Histopathology - X-ray - Fundus - mlx --- # mlx-community/Lingshu-7B-6bit This model was converted to MLX format from [`lingshu-medical-mllm/Lingshu-7B`]() using mlx-vlm version **0.1.27**. Refer to the [original model card](https://huggingface.co/lingshu-medical-mllm/Lingshu-7B) for more details on the model. ## Use with mlx ```bash pip install -U mlx-vlm ``` ```bash python -m mlx_vlm.generate --model mlx-community/Lingshu-7B-6bit --max-tokens 100 --temperature 0.0 --prompt "Describe this image." --image <path_to_image> ```