modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-03 00:36:49
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
535 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-03 00:36:49
card
stringlengths
11
1.01M
2hpsatt/blockassist-bc-huge_deft_eagle_1756799257
2hpsatt
2025-09-02T07:48:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "huge deft eagle", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T07:48:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - huge deft eagle --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sekirr/blockassist-bc-masked_tenacious_whale_1756799241
sekirr
2025-09-02T07:48:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "masked tenacious whale", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T07:47:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - masked tenacious whale --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756799011
bah63843
2025-09-02T07:44:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T07:44:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bugeun/MyGemmaNPC
bugeun
2025-09-02T07:43:16Z
12
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "sft", "trl", "conversational", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-01T04:21:51Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: MyGemmaNPC tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for MyGemmaNPC This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="bugeun/MyGemmaNPC", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.22.1 - Transformers: 4.56.0 - Pytorch: 2.8.0.dev20250319+cu128 - Datasets: 4.0.0 - Tokenizers: 0.22.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
John6666/natural-noob-xl-eps-anime-furry-general-v40-sdxl
John6666
2025-09-02T07:42:15Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "furry", "anthro", "aesthetic", "color", "knowledge", "accuracy", "details", "creative", "merge", "noobai", "illustrious", "en", "base_model:Laxhar/noobai-XL-1.1", "base_model:merge:Laxhar/noobai-XL-1.1", "base_model:OnomaAIResearch/Illustrious-XL-v1.0", "base_model:merge:OnomaAIResearch/Illustrious-XL-v1.0", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-09-02T07:34:09Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - furry - anthro - aesthetic - color - knowledge - accuracy - details - creative - merge - noobai - illustrious base_model: - OnomaAIResearch/Illustrious-XL-v1.0 - Laxhar/noobai-XL-1.1 --- Original model is [here](https://civitai.com/models/1761682?modelVersionId=2173969). This model created by [DarkFawkes](https://civitai.com/user/DarkFawkes).
mradermacher/Hunyuan-MT-Chimera-7B-i1-GGUF
mradermacher
2025-09-02T07:42:10Z
0
0
transformers
[ "transformers", "gguf", "translation", "en", "base_model:tencent/Hunyuan-MT-Chimera-7B", "base_model:quantized:tencent/Hunyuan-MT-Chimera-7B", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
translation
2025-09-02T06:24:19Z
--- base_model: tencent/Hunyuan-MT-Chimera-7B language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - translation --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> <!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> weighted/imatrix quants of https://huggingface.co/tencent/Hunyuan-MT-Chimera-7B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Hunyuan-MT-Chimera-7B-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-i1-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) | | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-i1-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.i1-IQ1_S.gguf) | i1-IQ1_S | 1.9 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-i1-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.i1-IQ1_M.gguf) | i1-IQ1_M | 2.1 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-i1-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-i1-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-i1-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.i1-IQ2_S.gguf) | i1-IQ2_S | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-i1-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.i1-IQ2_M.gguf) | i1-IQ2_M | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-i1-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.9 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-i1-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.i1-Q2_K.gguf) | i1-Q2_K | 3.1 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-i1-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-i1-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-i1-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.5 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-i1-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.i1-IQ3_S.gguf) | i1-IQ3_S | 3.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-i1-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.i1-IQ3_M.gguf) | i1-IQ3_M | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-i1-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.9 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-i1-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-i1-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-i1-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.i1-Q4_0.gguf) | i1-Q4_0 | 4.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-i1-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.5 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-i1-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.5 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-i1-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-i1-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.i1-Q4_1.gguf) | i1-Q4_1 | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-i1-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-i1-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-i1-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.i1-Q6_K.gguf) | i1-Q6_K | 6.3 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
sekirr/blockassist-bc-masked_tenacious_whale_1756798823
sekirr
2025-09-02T07:41:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "masked tenacious whale", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T07:41:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - masked tenacious whale --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
RikiyaT/mxbai-ettin-32m-nq-rlhn-ft
RikiyaT
2025-09-02T07:39:34Z
0
0
null
[ "safetensors", "modernbert", "license:mit", "region:us" ]
null
2025-09-02T04:44:28Z
--- license: mit --- # RikiyaT/mxbai-ettin-32m-nq-rlhn-ft Ettin + AnglE fine-tuned embedding model. - **Base Model**: `RikiyaT/mxbai-ettin-32m-pretrained` - **Pooling Strategy**: `mean` (avg) - **Training Method**: AnglE loss (ibn/cln + angle=0.02) on a B-format dataset (text, positive, negative). - **Data Prompts**: `search_query:` / `search_document:` were used during training data creation. ## Usage ### With SentenceTransformers (recommended) A ready-to-use SentenceTransformers variant is available at **[RikiyaT/mxbai-ettin-32m-nq-rlhn-ft-st](https://huggingface.co/RikiyaT/mxbai-ettin-32m-nq-rlhn-ft-st)**. ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('RikiyaT/mxbai-ettin-32m-nq-rlhn-ft-st') sentences = ["This is an example sentence", "Each sentence is converted"] embeddings = model.encode(sentences) print(embeddings.shape) ``` ### With Transformers (this repository) ```python from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("RikiyaT/mxbai-ettin-32m-nq-rlhn-ft", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("RikiyaT/mxbai-ettin-32m-nq-rlhn-ft", trust_remote_code=True) ```
nightmedia/Qwen3-21B-QiMing-V1.0-TOTAL-RECALL-q4-hi-mlx
nightmedia
2025-09-02T07:37:06Z
0
0
mlx
[ "mlx", "safetensors", "qwen3", "programming", "code generation", "code", "codeqwen", "moe", "coding", "coder", "qwen2", "chat", "qwen", "qwen-coder", "finetune", "brainstorm 20x", "brainstorm", "optional thinking", "creative", "all use cases", "text-generation", "conversational", "en", "fr", "zh", "de", "base_model:DavidAU/Qwen3-21B-QiMing-V1.0-TOTAL-RECALL", "base_model:quantized:DavidAU/Qwen3-21B-QiMing-V1.0-TOTAL-RECALL", "license:apache-2.0", "4-bit", "region:us" ]
text-generation
2025-09-02T07:21:05Z
--- license: apache-2.0 library_name: mlx language: - en - fr - zh - de tags: - programming - code generation - code - codeqwen - moe - coding - coder - qwen2 - chat - qwen - qwen-coder - qwen3 - finetune - brainstorm 20x - brainstorm - optional thinking - creative - all use cases - mlx base_model: DavidAU/Qwen3-21B-QiMing-V1.0-TOTAL-RECALL pipeline_tag: text-generation --- # Qwen3-21B-QiMing-V1.0-TOTAL-RECALL-q4-hi-mlx This model [Qwen3-21B-QiMing-V1.0-TOTAL-RECALL-q4-hi-mlx](https://huggingface.co/Qwen3-21B-QiMing-V1.0-TOTAL-RECALL-q4-hi-mlx) was converted to MLX format from [DavidAU/Qwen3-21B-QiMing-V1.0-TOTAL-RECALL](https://huggingface.co/DavidAU/Qwen3-21B-QiMing-V1.0-TOTAL-RECALL) using mlx-lm version **0.26.4**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("Qwen3-21B-QiMing-V1.0-TOTAL-RECALL-q4-hi-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
liukevin666/blockassist-bc-yawning_striped_cassowary_1756798415
liukevin666
2025-09-02T07:36:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T07:34:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
tencent/Hunyuan-7B-Instruct
tencent
2025-09-02T07:35:40Z
2,507
73
transformers
[ "transformers", "safetensors", "hunyuan_v1_dense", "text-generation", "conversational", "base_model:tencent/Hunyuan-7B-Pretrain", "base_model:finetune:tencent/Hunyuan-7B-Pretrain", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-07-30T03:40:59Z
--- base_model: - tencent/Hunyuan-7B-Pretrain library_name: transformers --- <p align="center"> <img src="https://dscache.tencent-cloud.cn/upload/uploader/hunyuan-64b418fd052c033b228e04bc77bbc4b54fd7f5bc.png" width="400"/> <br> </p><p></p> <p align="center"> 🤗&nbsp;<a href="https://huggingface.co/tencent/"><b>HuggingFace</b></a>&nbsp;|&nbsp; 🤖&nbsp;<a href="https://modelscope.cn/models/Tencent-Hunyuan/Hunyuan-7B-Instruct"><b>ModelScope</b></a>&nbsp;|&nbsp; 🪡&nbsp;<a href="https://github.com/Tencent/AngelSlim/tree/main"><b>AngelSlim</b></a> </p> <p align="center"> 🖥️&nbsp;<a href="https://hunyuan.tencent.com" style="color: red;"><b>Official Website</b></a>&nbsp;&nbsp;|&nbsp;&nbsp; 🕖&nbsp;<a href="https://cloud.tencent.com/product/hunyuan"><b>HunyuanAPI</b></a>&nbsp;&nbsp;|&nbsp;&nbsp; 🕹️&nbsp;<a href="https://hunyuan.tencent.com/"><b>Demo</b></a>&nbsp;&nbsp;&nbsp;&nbsp; </p> <p align="center"> <a href="https://github.com/Tencent-Hunyuan/Hunyuan-7B"><b>GITHUB</b></a> | <a href="https://cnb.cool/tencent/hunyuan/Hunyuan-7B"><b>cnb.cool</b></a> | <a href="https://github.com/Tencent-Hunyuan/Hunyuan-7B/blob/main/LICENSE"><b>LICENSE</b></a> | <a href="https://raw.githubusercontent.com/Tencent-Hunyuan/Hunyuan-A13B/main/assets/1751881231452.jpg"><b>WeChat</b></a> | <a href="https://discord.gg/bsPcMEtV7v"><b>Discord</b></a> </p> ## Model Introduction Hunyuan is Tencent's open-source efficient large language model series, designed for versatile deployment across diverse computational environments. From edge devices to high-concurrency production systems, these models deliver optimal performance with advanced quantization support and ultra-long context capabilities. We have released a series of Hunyuan dense models, comprising both pre-trained and instruction-tuned variants, with parameter scales of 0.5B, 1.8B, 4B, and 7B. These models adopt training strategies similar to the Hunyuan-A13B, thereby inheriting its robust performance characteristics. This comprehensive model family enables flexible deployment optimization - from resource-constrained edge computing with smaller variants to high-throughput production environments with larger models, all while maintaining strong capabilities across diverse scenarios. ### Key Features and Advantages - **Hybrid Reasoning Support**: Supports both fast and slow thinking modes, allowing users to flexibly choose according to their needs. - **Ultra-Long Context Understanding**: Natively supports a 256K context window, maintaining stable performance on long-text tasks. - **Enhanced Agent Capabilities**: Optimized for agent tasks, achieving leading results on benchmarks such as BFCL-v3, τ-Bench and C3-Bench. - **Efficient Inference**: Utilizes Grouped Query Attention (GQA) and supports multiple quantization formats, enabling highly efficient inference. ## Related News * 2025.7.30 We have open-sourced **Hunyuan-0.5B-Pretrain** , **Hunyuan-0.5B-Instruct** , **Hunyuan-1.8B-Pretrain** , **Hunyuan-1.8B-Instruct** , **Hunyuan-4B-Pretrain** , **Hunyuan-4B-Instruct** , **Hunyuan-7B-Pretrain** ,**Hunyuan-7B-Instruct** on Hugging Face. <br> ## Benchmark Note: The following benchmarks are evaluated by TRT-LLM-backend on several **base models**. | Model | Hunyuan-0.5B-Pretrain | Hunyuan-1.8B-Pretrain | Hunyuan-4B-Pretrain | Hunyuan-7B-Pretrain| |:------------------:|:---------------:|:--------------:|:-------------:|:---------------:| | MMLU | 54.02 | 64.62 | 74.01 | 79.82 | | MMLU-Redux | 54.72 | 64.42 | 73.53 | 79 | | MMLU-Pro | 31.15 | 38.65 | 51.91 | 57.79 | | SuperGPQA | 17.23 | 24.98 | 27.28 | 30.47 | | BBH | 45.92 | 74.32 | 75.17 | 82.95 | | GPQA | 27.76 | 35.81 | 43.52 | 44.07 | | GSM8K | 55.64 | 77.26 | 87.49 | 88.25 | | MATH | 42.95 | 62.85 | 72.25 | 74.85 | | EvalPlus | 39.71 | 60.67 | 67.76 | 66.96 | | MultiPL-E | 21.83 | 45.92 | 59.87 | 60.41 | | MBPP | 43.38 | 66.14 | 76.46 | 76.19 | | CRUX-O | 30.75 | 36.88 | 56.5 | 60.75 | | Chinese SimpleQA | 12.51 | 22.31 | 30.53 | 38.86 | | simpleQA (5shot) | 2.38 | 3.61 | 4.21 | 5.69 | | Topic | Bench | Hunyuan-0.5B-Instruct | Hunyuan-1.8B-Instruct | Hunyuan-4B-Instruct | Hunyuan-7B-Instruct| |:-------------------:|:----------------------------------------------------:|:-------------:|:------------:|:-----------:|:---------------------:| | **Mathematics** | AIME 2024<br>AIME 2025<br>MATH | 17.2<br>20<br>48.5 | 56.7<br>53.9<br>86 | 78.3<br>66.5<br>92.6 | 81.1<br>75.3<br>93.7 | | **Science** | GPQA-Diamond<br>OlympiadBench | 23.3<br>29.6 | 47.2<br>63.4 | 61.1<br>73.1 | 60.1<br>76.5 | | **Coding** | Livecodebench<br>Fullstackbench | 11.1<br>20.9 | 31.5<br>42 | 49.4<br>54.6 | 57<br>56.3 | | **Reasoning** | BBH<br>DROP<br>ZebraLogic | 40.3<br>52.8<br>34.5 | 64.6<br>76.7<br>74.6 | 83<br>78.2<br>83.5 | 87.8<br>85.9<br>85.1 | | **Instruction<br>Following** | IF-Eval<br>SysBench | 49.7<br>28.1 | 67.6<br>55.5 | 76.6<br>68 | 79.3<br>72.7 | | **Agent** | BFCL v3<br> τ-Bench<br>ComplexFuncBench<br> C3-Bench | 49.8<br>14.4<br>13.9<br>45.3 | 58.3<br>18.2<br>22.3<br>54.6 | 67.9<br>30.1<br>26.3<br>64.3 | 70.8<br>35.3<br>29.2<br>68.5 | | **Long<br>Context** | PenguinScrolls<br>longbench-v2<br>FRAMES | 53.9<br>34.7<br>41.9 | 73.1<br>33.2<br>55.6 | 83.1<br>44.1<br>79.2 | 82<br>43<br>78.6 | &nbsp; ### Use with transformers First, please install transformers. ```SHELL pip install "transformers>=4.56.0" ``` Our model defaults to using slow-thinking reasoning, and there are two ways to disable CoT reasoning. 1. Pass **"enable_thinking=False"** when calling apply_chat_template. 2. Adding **"/no_think"** before the prompt will force the model not to use perform CoT reasoning. Similarly, adding **"/think"** before the prompt will force the model to perform CoT reasoning. The following code snippet shows how to use the transformers library to load and apply the model. It also demonstrates how to enable and disable the reasoning mode , and how to parse the reasoning process along with the final output. we use tencent/Hunyuan-7B-Instruct for example ```python from transformers import AutoModelForCausalLM, AutoTokenizer import os import re model_name_or_path = "tencent/Hunyuan-7B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto") # You may want to use bfloat16 and/or move to GPU here messages = [ {"role": "user", "content": "Write a short summary of the benefits of regular exercise"}, ] tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True,return_tensors="pt", enable_thinking=True # Toggle thinking mode (default: True) ) outputs = model.generate(tokenized_chat.to(model.device), max_new_tokens=2048) output_text = tokenizer.decode(outputs[0]) print("output_text=",output_text) think_pattern = r'<think>(.*?)</think>' think_matches = re.findall(think_pattern, output_text, re.DOTALL) answer_pattern = r'<answer>(.*?)</answer>' answer_matches = re.findall(answer_pattern, output_text, re.DOTALL) think_content = [match.strip() for match in think_matches][0] answer_content = [match.strip() for match in answer_matches][0] print(f"thinking_content:{think_content}\n\n") print(f"answer_content:{answer_content}\n\n") ``` We recommend using the following set of parameters for inference. Note that our model does not have the default system_prompt. ```json { "do_sample": true, "top_k": 20, "top_p": 0.8, "repetition_penalty": 1.05, "temperature": 0.7 } ``` &nbsp; ### Training Data Format If you need to fine-tune our Instruct model, we recommend processing the data into the following format, corresponding to both slow-thinking and fast-thinking scenarios. ```python # think_pattern think = "" answer = "" think_pattern = f"<think>\n{think}\n</think>\n<answer>\n{answer}\n</answer>" # fast think pattern messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "/no_think海水为什么是咸的" }, {"role": "assistant", "content": "<think>\n\n</think>\n<answer>\n海水是咸的主要是因为其中含有许多溶解在水中的盐类和矿物质。这些盐类和矿物质来自于地球表面的岩石和土壤中的化学物质,随着时间的推移,它们被带到了海洋中。当海水蒸发时,水分蒸发掉了,但盐类和矿物质仍然留在水中,导致海水变得更加咸味。因此,海水的咸度是由其中的盐类和矿物质的含量决定的。\n</answer>"} ] # slow think pattern messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "1+1=" }, {"role": "assistant", "content": "<think>\n嗯,用户问的是1加1等于多少。首先,我需要确认这是一个基本的算术问题。1加1在十进制的数学体系中,通常的结果是2。不过,可能需要考虑是否有其他情况,比如二进制或者其他数制,但用户没有特别说明,所以默认应该是十进制。另外,有时候可能会有脑筋急转弯的情况,比如在某些语境下1+1可能等于1(比如1滴水加1滴水还是1滴水),但通常数学问题中都是2。所以最准确的回答应该是2。</think>\n<answer>\n在十进制的基本算术运算中,1加1的结果是2。这是数学中最基础的加法运算之一,遵循自然数的加法规则。因此,1 + 1 = 2。\n</answer>"} ] from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("your_tokenizer_path", trust_remote_code=True) train_ids = tokenizer.apply_chat_template(messages) ``` &nbsp; ### Train with LLaMA-Factory In the following chapter, we will introduce how to use `LLaMA-Factory` to fine-tune the `Hunyuan` model. #### Prerequisites Verify installation of the following dependencies: - **LLaMA-Factory**: Follow [official installation guide](https://github.com/hiyouga/LLaMA-Factory) - **DeepSpeed** (optional): Follow [official installation guide](https://github.com/deepspeedai/DeepSpeed#installation) - **Transformer Library**: Use the companion branch (Hunyuan-submitted code is pending review) ``` pip install "transformers>=4.56.0" ``` #### Data preparation We need to prepare a custom dataset: 1. Organize your data in `json` format and place it in the `data` directory in `LLaMA-Factory`. The current implementation uses the `sharegpt` dataset format, which requires the following structure: ``` [ { "messages": [ { "role": "system", "content": "System prompt (optional)" }, { "role": "user", "content": "Human instruction" }, { "role": "assistant", "content": "Model response" } ] } ] ``` Refer to the [Data Format](#training-data-format) section mentioned earlier for details. 2. Define your dataset in the data/dataset_info.json file using the following format: ``` "dataset_name": { "file_name": "dataset.json", "formatting": "sharegpt", "columns": { "messages": "messages" }, "tags": { "role_tag": "role", "content_tag": "content", "user_tag": "user", "assistant_tag": "assistant", "system_tag": "system" } } ``` #### Training execution 1. Copy all files from the `train/llama_factory_support/example_configs` directory to the `example/hunyuan` directory in `LLaMA-Factory`. 2. Modify the model path and dataset name in the configuration file `hunyuan_full.yaml`. Adjust other configurations as needed: ``` ### model model_name_or_path: [!!!add the model path here!!!] ### dataset dataset: [!!!add the dataset name here!!!] ``` 3. Execute training commands: *​​Single-node training​​ Note: Set the environment variable DISABLE_VERSION_CHECK to 1 to avoid version conflicts. ``` export DISABLE_VERSION_CHECK=1 llamafactory-cli train examples/hunyuan/hunyuan_full.yaml ``` *Multi-node training​​ Execute the following command on each node. Configure NNODES, NODE_RANK, MASTER_ADDR, and MASTER_PORT according to your environment: ``` export DISABLE_VERSION_CHECK=1 FORCE_TORCHRUN=1 NNODES=${NNODES} NODE_RANK=${NODE_RANK} MASTER_ADDR=${MASTER_ADDR} MASTER_PORT=${MASTER_PORT} \ llamafactory-cli train examples/hunyuan/hunyuan_full.yaml ``` &nbsp; ## Quantization Compression We used our own [AngleSlim](https://github.com/tencent/AngelSlim) compression tool to produce FP8 and INT4 quantization models. `AngleSlim` is a toolset dedicated to creating a more user-friendly, comprehensive and efficient model compression solution. ### FP8 Quantization We use FP8-static quantization, FP8 quantization adopts 8-bit floating point format, through a small amount of calibration data (without training) to pre-determine the quantization scale, the model weights and activation values will be converted to FP8 format, to improve the inference efficiency and reduce the deployment threshold. We you can use AngleSlim quantization, you can also directly download our quantization completed open source model to use [LINK](https://huggingface.co/). ### Int4 Quantization We use the GPTQ and AWQ algorithm to achieve W4A16 quantization. GPTQ processes the model weights layer by layer, uses a small amount of calibration data to minimize the reconfiguration error of the quantized weights, and adjusts the weights layer by layer by the optimization process of approximating the Hessian inverse matrix. The process eliminates the need to retrain the model and requires only a small amount of calibration data to quantize the weights, improving inference efficiency and lowering the deployment threshold. AWQ using a small amount of calibration data (without the need for training), the amplitude of the activation values is statistically calculated. For each weight channel, a scaling coefficient s is computed to expand the numerical range of important weights, allowing more information to be retained during quantization. You can use [AngleSlim](https://github.com/tencent/AngelSlim) quantization, you can also directly download our quantization completed open source model to use [LINK](https://huggingface.co/). #### Quantization Benchmark This subsection describes the Benchmark metrics for the Hunyuan quantitative model. | Bench | Quantization | Hunyuan-0.5B-Instruct | Hunyuan-1.8B-Instruct | Hunyuan-4B-Instruct | Hunyuan-7B-Instruct | |:-------------:|:---------------------------------:|:----------------------------:|:------------------------------:|:----------------------------:|:----------------------------:| | DROP | B16<br>FP8<br>Int4GPTQ<br>Int4AWQ | 52.8<br>51.6<br>50.9<br>48.9 | 76.7<br>75.1<br>73.0<br>71.7 | 78.2<br>78.3<br>78.1<br>78.2 | 85.9<br>86.0<br>85.7<br>85.9 | | GPQA-Diamond | B16<br>FP8<br>Int4GPTQ<br>Int4AWQ | 23.3<br>22.5<br>23.3<br>23.3 | 47.2<br>47.7<br>44.43<br>43.62 | 61.1<br>60.2<br>58.1<br>- | 60.1<br>60.1<br>60.0<br>60.1 | | OlympiadBench | B16<br>FP8<br>Int4GPTQ<br>Int4AWQ | 29.6<br>29.6<br>26.8<br>26.3 | 63.4<br>62.5<br>60.9<br>61.7 | 73.1<br>73.1<br>71.1<br>71.2 | 76.5<br>76.6<br>76.2<br>76.4 | | AIME 2024 | B16<br>FP8<br>Int4GPTQ<br>Int4AWQ | 17.2<br>17.2<br>-<br>- | 56.7<br>55.17<br>-<br>- | 78.3<br>76.6<br>-<br>- | 81.1<br>80.9<br>81.0<br>80.9 | ## Deployment For deployment, you can use frameworks such as **TensorRT-LLM**, **vLLM**, or **SGLang** to serve the model and create an OpenAI-compatible API endpoint. image: https://hub.docker.com/r/hunyuaninfer/hunyuan-7B/tags ### TensorRT-LLM #### Docker Image We provide a pre-built Docker image based on the latest version of TensorRT-LLM. We use tencent/Hunyuan-7B-Instruct for example - To get started: https://hub.docker.com/r/hunyuaninfer/hunyuan-large/tags ``` docker pull hunyuaninfer/hunyuan-7B:hunyuan-moe-7B-trtllm ``` ``` docker run --privileged --user root --name hunyuanLLM_infer --rm -it --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 --gpus=all hunyuaninfer/hunyuan-7B:hunyuan-moe-7B-trtllm ``` - Prepare Configuration file: ``` cat >/path/to/extra-llm-api-config.yml <<EOF use_cuda_graph: true cuda_graph_padding_enabled: true cuda_graph_batch_sizes: - 1 - 2 - 4 - 8 - 16 - 32 print_iter_log: true EOF ``` - Start the API server: ``` trtllm-serve \ /path/to/HunYuan-moe-7B \ --host localhost \ --port 8000 \ --backend pytorch \ --max_batch_size 32 \ --max_num_tokens 16384 \ --tp_size 2 \ --kv_cache_free_gpu_memory_fraction 0.6 \ --trust_remote_code \ --extra_llm_api_options /path/to/extra-llm-api-config.yml ``` ### vllm #### Start Please use vLLM version v0.10.0 or higher for inference. We use tencent/Hunyuan-7B-Instruct for example - Download Model file: - Huggingface: will download automicly by vllm. - ModelScope: `modelscope download --model Tencent-Hunyuan/Hunyuan-7B-Instruct` - model download by huggingface: ```shell export MODEL_PATH=tencent/Hunyuan-7B-Instruct ``` - model downloaded by modelscope: ```shell export MODEL_PATH=/root/.cache/modelscope/hub/models/Tencent-Hunyuan/Hunyuan-7B-Instruct/ ``` - Start the API server: ```shell python3 -m vllm.entrypoints.openai.api_server \ --host 0.0.0.0 \ --port 8000 \ --trust-remote-code \ --model ${MODEL_PATH} \ --tensor-parallel-size 1 \ --dtype bfloat16 \ --quantization experts_int8 \ --served-model-name hunyuan \ 2>&1 | tee log_server.txt ``` - After running service script successfully, run the request script ```shell curl http://0.0.0.0:8000/v1/chat/completions -H 'Content-Type: application/json' -d '{ "model": "hunyuan", "messages": [ { "role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}] }, { "role": "user", "content": [{"type": "text", "text": "请按面积大小对四大洋进行排序,并给出面积最小的洋是哪一个?直接输出结果。"}] } ], "max_tokens": 2048, "temperature":0.7, "top_p": 0.6, "top_k": 20, "repetition_penalty": 1.05, "stop_token_ids": [127960] }' ``` #### Quantitative model deployment This section describes the process of deploying a post-quantization model using vLLM. Default server in BF16. ##### Int8 quantitative model deployment Deploying the Int8-weight-only version of the HunYuan-7B model only requires setting the environment variables Next we start the Int8 service. Run: ```shell python3 -m vllm.entrypoints.openai.api_server \ --host 0.0.0.0 \ --port 8000 \ --trust-remote-code \ --model ${MODEL_PATH} \ --tensor-parallel-size 1 \ --dtype bfloat16 \ --served-model-name hunyuan \ --quantization experts_int8 \ 2>&1 | tee log_server.txt ``` ##### Int4 quantitative model deployment Deploying the Int4-weight-only version of the HunYuan-7B model only requires setting the environment variables , using the GPTQ method ```shell export MODEL_PATH=PATH_TO_INT4_MODEL ``` Next we start the Int4 service. Run ```shell python3 -m vllm.entrypoints.openai.api_server \ --host 0.0.0.0 \ --port 8000 \ --trust-remote-code \ --model ${MODEL_PATH} \ --tensor-parallel-size 1 \ --dtype bfloat16 \ --served-model-name hunyuan \ --quantization gptq_marlin \ 2>&1 | tee log_server.txt ``` ##### FP8 quantitative model deployment Deploying the W8A8C8 version of the HunYuan-7B model only requires setting the environment variables Next we start the FP8 service. Run ```shell python3 -m vllm.entrypoints.openai.api_server \ --host 0.0.0.0 \ --port 8000 \ --trust-remote-code \ --model ${MODEL_PATH} \ --tensor-parallel-size 1 \ --dtype bfloat16 \ --served-model-name hunyuan \ --kv-cache-dtype fp8 \ 2>&1 | tee log_server.txt ``` ### SGLang #### Docker Image We also provide a pre-built Docker image based on the latest version of SGLang. We use tencent/Hunyuan-7B-Instruct for example To get started: - Pull the Docker image ``` docker pull lmsysorg/sglang:latest ``` - Start the API server: ``` docker run --entrypoint="python3" --gpus all \ --shm-size 32g \ -p 30000:30000 \ --ulimit nproc=10000 \ --privileged \ --ipc=host \ lmsysorg/sglang:latest \ -m sglang.launch_server --model-path hunyuan/huanyuan_7B --tp 4 --trust-remote-code --host 0.0.0.0 --port 30000 ``` ## Contact Us If you would like to leave a message for our R&D and product teams, Welcome to contact our open-source team . You can also contact us via email (hunyuan_opensource@tencent.com).
xinnn32/blockassist-bc-meek_winged_caterpillar_1756798405
xinnn32
2025-09-02T07:34:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "meek winged caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T07:34:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - meek winged caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
John6666/mocase-mix-hanekawa-mix-noobai-vpred-sdxl
John6666
2025-09-02T07:34:07Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "mocase style", "v-pred", "noobai", "illustrious", "en", "base_model:Laxhar/noobai-XL-Vpred-1.0", "base_model:finetune:Laxhar/noobai-XL-Vpred-1.0", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-09-02T07:29:15Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - mocase style - v-pred - noobai - illustrious base_model: Laxhar/noobai-XL-Vpred-1.0 --- Original model is [here](https://civitai.com/models/593414/mocasemix?modelVersionId=2169426). This model created by [hanekawa1](https://civitai.com/user/hanekawa1).
Egor-N/blockassist-bc-vicious_stubby_bear_1756797105
Egor-N
2025-09-02T07:33:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "vicious stubby bear", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T07:33:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - vicious stubby bear --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sekirr/blockassist-bc-masked_tenacious_whale_1756798346
sekirr
2025-09-02T07:33:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "masked tenacious whale", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T07:33:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - masked tenacious whale --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
omerbektass/blockassist-bc-keen_fast_giraffe_1756798335
omerbektass
2025-09-02T07:32:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T07:32:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vendi11/blockassist-bc-placid_placid_llama_1756798287
vendi11
2025-09-02T07:32:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "placid placid llama", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T07:32:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - placid placid llama --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Hunyuan-MT-Chimera-7B-GGUF
mradermacher
2025-09-02T07:30:45Z
0
1
transformers
[ "transformers", "gguf", "translation", "en", "base_model:tencent/Hunyuan-MT-Chimera-7B", "base_model:quantized:tencent/Hunyuan-MT-Chimera-7B", "endpoints_compatible", "region:us", "conversational" ]
translation
2025-09-02T04:36:38Z
--- base_model: tencent/Hunyuan-MT-Chimera-7B language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - translation --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/tencent/Hunyuan-MT-Chimera-7B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Hunyuan-MT-Chimera-7B-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.Q3_K_S.gguf) | Q3_K_S | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.IQ4_XS.gguf) | IQ4_XS | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.Q4_K_S.gguf) | Q4_K_S | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.Q4_K_M.gguf) | Q4_K_M | 4.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.Q5_K_S.gguf) | Q5_K_S | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.Q5_K_M.gguf) | Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.Q6_K.gguf) | Q6_K | 6.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.Q8_0.gguf) | Q8_0 | 8.1 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Hunyuan-MT-Chimera-7B-GGUF/resolve/main/Hunyuan-MT-Chimera-7B.f16.gguf) | f16 | 15.1 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
bah63843/blockassist-bc-plump_fast_antelope_1756798106
bah63843
2025-09-02T07:29:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T07:29:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
zaydzuhri/top-code-1.8B-4096-model
zaydzuhri
2025-09-02T07:25:41Z
0
0
null
[ "safetensors", "top_transformer", "region:us" ]
null
2025-09-02T07:14:58Z
<div align="center"> # 🔥 Flame: Flash Linear Attention Made Easy </div> Welcome to 🔥 `flame`, a minimal and efficient framework built on `torchtitan` for training Flash Linear Attention (FLA) models (and more broadly, arbitrary autoregressive language models) with blazing efficiency. **Feature Highlights:** - 🚀 Minimal, easy-to-use, extensible training framework - 🤗 Seamless integration with `fla` and `transformers` - 🔄 Zero-cost data preprocessing: online tokenization, dataset shuffling, and multiple datasets support - 🔮 4D parallelism (coming soon) ## Setup To get started, clone the `flame` repository and install the required dependencies: ```bash git clone https://github.com/fla-org/flame.git cd flame pip install . ``` `flame` manages minimal dependencies, only including `fla` and `torchtitan` as submodules. After installation, initialize and update the submodules: ```sh git submodule update --init --recursive ``` ## Dataset Preparation To download the dataset to your local disk, create a new Python file with the following content and execute it: ```py from datasets import load_dataset # load fineweb-edu with parallel processing dataset = load_dataset("HuggingFaceFW/fineweb-edu", name="default", num_proc=64, cache_dir="/your/cache/path") # or load a subset with roughly 100B tokens, suitable for small- or medium-sized experiments dataset = load_dataset("HuggingFaceFW/fineweb-edu", name="sample-100BT", num_proc=64, cache_dir="/your/cache/path") ``` ## Training Recipes Here's an example of training a 340M FLA Transformer model with a LLaMA-like architecture from scratch on a 100BT subset of the Fineweb-edu corpus in streaming mode. > [!WARNING] > If the dataset is not downloaded beforehand, the streaming mode will attempt to fetch it from a remote server and download it on-the-fly, which can be highly unstable during training due to network issues. > For stable training, ensure the dataset is downloaded locally (see [**Dataset Preparation**](#dataset-preparation)). Otherwise, we assume you are only testing the new corpus. ```sh bash train.sh \ --job.config_file flame/models/fla.toml \ --job.dump_folder exp/transformer-340M-4K-10B/batch1.seqlen65536.context4096.warmup1024.update1.steps20480.lr3e-4.cosine \ --model.config configs/transformer_340M.json \ --model.tokenizer_path fla-hub/transformer-1.3B-100B \ --optimizer.name AdamW \ --optimizer.eps 1e-15 \ --optimizer.lr 3e-4 \ --lr_scheduler.warmup_steps 1024 \ --lr_scheduler.lr_min 0.1 \ --lr_scheduler.decay_type cosine \ --training.batch_size 1 \ --training.seq_len 65536 \ --training.context_len 4096 \ --training.varlen \ --training.gradient_accumulation_steps 1 \ --training.steps 20480 \ --training.max_norm 1.0 \ --training.skip_nan_inf \ --training.dataset HuggingFaceFW/fineweb-edu \ --training.dataset_name sample-100BT \ --training.dataset_split train \ --training.streaming \ --training.num_workers 32 \ --training.prefetch_factor 2 \ --training.seed 42 \ --training.compile \ --checkpoint.interval 2048 \ --checkpoint.load_step -1 \ --checkpoint.keep_latest_k 2 \ --metrics.log_freq 1 ``` You can specify the number of GPUs by setting the environment variable `NGPU`, which defaults to 8. **For single-GPU debugging, set `NGPU=1`.** We provide several [config files](https://github.com/fla-org/flame/tree/main/configs) for different models. By default, the learning rate is set to 3e-4 with a cosine scheduler. Other schedulers, such as WSD (wsd), are also supported. **Key parameters:** - `--lr_scheduler.decay_ratio`: The proportion of the steps allocated to the decay phase. The learning rate will remain stable after the warmup period and only start decaying during the last `decay_ratio` portion of the total training steps, which is known as the Warmup-Stable-Decay (WSD) schedule. - `--lr_scheduler.warmup_steps`: The number of steps for the learning rate warmup phase. - `--training.steps`: Total number of training steps. - `--training.batch_size`: Batch size per device, must be 1 if `--training.varlen` is set. - `--training.seq_len`: The length of each sequence in the batch, which is concatenated from multiple samples. - `--training.context_len`: The max allowed length of a sample. For non-varlen mode, this is equivalent to `seq_len`. - `--training.varlen`: Whether to conduct variable-length sequence training. - `--training.gradient_accumulation_steps`: Number of gradient accumulation steps. > [!WARNING] > The total number of tokens processed per batch, referred to as `global_batch_size`, is calculated as batch_size × gradient_accumulation_steps × num_gpus. > Each step processes `global_batch_size * seq_len` tokens. > Monitor the value of `global_batch_size`, `warmup_steps`, and `steps` carefully when modifying any of the hyperparameters! For a detailed explanation of all parameters, run: ```sh bash train.sh -h ``` <details> <summary>Usage</summary> ```py options: -h, --help show this help message and exit --job.config_file JOB.CONFIG_FILE Job config file --job.dump_folder JOB.DUMP_FOLDER Folder to dump job outputs --job.description JOB.DESCRIPTION Description of the job --job.use_for_integration_test Add this config to the integration test suite --job.print_args Print the args to terminal --model.config MODEL.CONFIG Path to the model config --model.norm_type MODEL.NORM_TYPE Type of layer normalization to use [layernorm, np_layernorm, rmsnorm, fused_rmsnorm] --model.tokenizer_path MODEL.TOKENIZER_PATH Tokenizer path --profiling.enable_profiling Whether to enable pytorch profiler --profiling.save_traces_folder PROFILING.SAVE_TRACES_FOLDER Trace files location --profiling.profile_freq PROFILING.PROFILE_FREQ How often to collect profiler traces, in iterations --profiling.enable_memory_snapshot Whether to dump memory snapshot --profiling.save_memory_snapshot_folder PROFILING.SAVE_MEMORY_SNAPSHOT_FOLDER Memeory snapshot files location --optimizer.name OPTIMIZER.NAME Optimizer to use --optimizer.eps OPTIMIZER.EPS Epsilon value for the optimizer. --optimizer.fused Whether the fused implementation(CUDA only) is used. --optimizer.scheduler {wsd,cosine,linear} Scheduler to use. Currently supported: wsd, cosine, and linear. --optimizer.lr OPTIMIZER.LR Learning rate to use --optimizer.min_lr_ratio OPTIMIZER.MIN_LR_RATIO Min lr ratio for lr scheduler --optimizer.early_step_in_backward Whether to apply optimizer in the backward. Caution, optimizer_in_backward is not compatible with gradients clipping, users should not call register_post_accumulate_grad_hook after the optimizer is built. --training.batch_size TRAINING.BATCH_SIZE Batch size --training.seq_len TRAINING.SEQ_LEN Sequence length --training.context_len TRAINING.CONTEXT_LEN Max length allowed for each sequence --training.varlen Whether to take sequences of variable length as input --training.warmup_steps TRAINING.WARMUP_STEPS Steps for lr scheduler warmup, normally 1/5 of --training.steps --training.gradient_accumulation_steps TRAINING.GRADIENT_ACCUMULATION_STEPS Number of steps to accumulate gradients before updating parameters --training.steps TRAINING.STEPS How many train steps to run --training.max_norm TRAINING.MAX_NORM Max norm for gradient clipping --training.skip_nan_inf Skip batch updates when NaN or INF gradients are encountered during training --training.dataset TRAINING.DATASET Dataset to use, with comma separated values --training.dataset_name TRAINING.DATASET_NAME The name of the dataset config, with comma separated values if provided --training.dataset_split TRAINING.DATASET_SPLIT Dataset split to use, with comma separated values if provided --training.data_dir TRAINING.DATA_DIR Data dirs to use, with comma separated values if provided --training.data_files TRAINING.DATA_FILES Data files to use, with comma separated values if provided --training.data_probs TRAINING.DATA_PROBS Data sampling probabilities, with comma separated values if provided --training.streaming Whether to load dataset in streaming mode, used for huge dataset --training.num_workers TRAINING.NUM_WORKERS Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process. --training.prefetch_factor TRAINING.PREFETCH_FACTOR Number of batches loaded in advance by each worker.2 means there will be a total of 2 * num_workers batches prefetched across all workers. --training.data_parallel_replicate_degree TRAINING.DATA_PARALLEL_REPLICATE_DEGREE The `data_parallel_replicate_degree` argument specifies the degree of data parallelism for weight replication. When this value is greater than 1, weights will be replicated across `data_parallel_replicate_degree` ranks. If `data_parallel_shard_degree` is also greater than 1, the parallelism method used is HSDP (Hybrid Sharded Data Parallelism). Otherwise, the parallelism method used is DDP (Distributed Data Parallelism). 1 means disabled. --training.data_parallel_shard_degree TRAINING.DATA_PARALLEL_SHARD_DEGREE The `data_parallel_shard_degree` argument specifies the degree of data parallelism for weight sharding. When this value is greater than 1, weights will be sharded across `data_parallel_shard_degree` ranks. If `data_parallel_replicate_degree` is also greater than 1, the parallelism method used is HSDP (Hybrid Sharded Data Parallelism). Otherwise, the parallelism method used is FSDP (Fully Sharded Data Parallelism). -1 means leftover ranks will be used (After DP_REPLICATE/SP/PP). Note that only `data_parallel_shard_degree` can be negative. 1 means disabled. --training.enable_cpu_offload Whether to apply CPU offloading of parameters, gradients, and optimizer states in FSDP --training.tensor_parallel_degree TRAINING.TENSOR_PARALLEL_DEGREE Tensor Parallelism degree. 1 means disabled. --training.disable_loss_parallel Whether to apply loss parallel when sequence parallel is enabled --training.mixed_precision_param {bfloat16,float32} torch dtype to use for parameters when applying mixed precision via FSDP. This feature only takes effect when data_parallel_shard_degree > 1 --training.mixed_precision_reduce {float32} torch dtype to use for reductions when applying mixed precision via FSDP. This feature only takes effect when data_parallel_shard_degree > 1 --training.compile Whether to compile the model --training.gc_freq TRAINING.GC_FREQ Python garbage control scheduling interval, in steps --training.seed TRAINING.SEED Choose the base RNG seed used for training --training.deterministic Use deterministic algorithms wherever possible, may be slower --metrics.log_freq METRICS.LOG_FREQ How often to log metrics to TensorBoard, in iterations --metrics.enable_tensorboard Whether to log metrics to TensorBoard --metrics.disable_color_printing Whether to disable color printing in logs --metrics.save_tb_folder METRICS.SAVE_TB_FOLDER Folder to dump TensorBoard states --metrics.rank_0_only Whether to save TensorBoard metrics only for rank 0 or for all ranks. When pipeline_parallel_degree is > 1, this option uses the 0th rank of the last stage pipeline group, which is the only stage that computes loss metrics. --metrics.enable_wandb Whether to log metrics to Weights & Biases --experimental.enable_async_tensor_parallel Whether to apply async tensor parallel (currently only effective when compile is enabled) --experimental.pipeline_parallel_degree EXPERIMENTAL.PIPELINE_PARALLEL_DEGREE Pipeline Parallelism degree, or number of ranks. 1 means disabled. If using looped schedules, this still specifies the number of physical ranks, not the number of stages. Stages per rank are inferred from split points degree, and schedule. --experimental.pipeline_parallel_split_points EXPERIMENTAL.PIPELINE_PARALLEL_SPLIT_POINTS [EXPERIMENTAL.PIPELINE_PARALLEL_SPLIT_POINTS ...] Specify comma-separated names of modules to use as the beginning of a split point. e.g. "layers.0,layers.2" will cause the model to be split into 3 stages, the first containing all the layers up to layers.0, the second containing layers.0 and up to layers.2, the third containing layers.2 and all the remaining layers. Note: fully-automated splitting may be enabled in the future, but currently the split points must be specified manually. --experimental.pipeline_parallel_schedule EXPERIMENTAL.PIPELINE_PARALLEL_SCHEDULE Specify the Pipeline Parallel schedule to use. The supported schedules are: https://github.com/pytorch/py torch/blob/de4c2a3b4e89d96334dc678d1c3f2ae51a6630a0/to rch/distributed/pipelining/schedules.py#L2161. The schedule must be compatible with the split points and stages_per_rank. Looped schedules (e.g. Interleaved1F1B) require specifying pipeline_parallel_degree = number of ranks, and split_points = number of stages - 1 --experimental.pipeline_parallel_schedule_csv EXPERIMENTAL.PIPELINE_PARALLEL_SCHEDULE_CSV Specify the path to the pipeline parallel schedule csv file to use. The pipeline_parallel_schedule argument must be either PipelineScheduleSingle, PipelineScheduleMulti, or _PipelineScheduleRuntime. --experimental.pipeline_parallel_microbatches EXPERIMENTAL.PIPELINE_PARALLEL_MICROBATCHES How many microbatches to split the global training batch into when using pipeline parallelism. The global training batch size must be evenly divisible by the number of microbatches. The default value will be the number of pipeline stages, if unspecified. --experimental.enable_compiled_autograd Enable CompiledAutograd to compile the backward. --experimental.context_parallel_degree EXPERIMENTAL.CONTEXT_PARALLEL_DEGREE Context parallelism degree. 1 means disabled. --experimental.context_parallel_rotate_method EXPERIMENTAL.CONTEXT_PARALLEL_ROTATE_METHOD The collective to use in context parallel SDPA for kv shards exchange. 'allgather' means to all-gather all kv shards on ranks after the first sub-SDPA computation, 'alltoall' means to all-to-all shuffle the kv shards. The default value is 'allgather'. --checkpoint.enable_checkpoint Whether to enable checkpoint --checkpoint.folder CHECKPOINT.FOLDER The folder to store the checkpoints. When enable_checkpoint is set to true, checkpoints will be in {--job.dump_folder}/{--checkpoint.folder}. --checkpoint.interval_type CHECKPOINT.INTERVAL_TYPE Checkpointing interval unit of measurement ['step', 'seconds'] --checkpoint.interval CHECKPOINT.INTERVAL Checkpointing interval, in steps or seconds depending on --checkpoint.interval_type --checkpoint.model_weights_only When model_weights_only=True, only model weights will be saved at the end of training. With this, checkpoints can be loaded using `torch.load(..., weights_only=True)` after conversion. When model_weights_only=False, the full checkpoint will be saved. A full checkpoint includes model, optimizer and train_state, which can be used to resume training. The default value is false. --checkpoint.export_dtype {float16,bfloat16,float32} Converts to the specified precision when training completes and model_weights_only=true. Currently supports float32, float16, and bfloat16. The default value is float32. --checkpoint.create_seed_checkpoint Initializes the full model without applying parallelisms, and then saves it as a seed checkpoint. Note: requires user to call train.py without specifying any parallelisms, e.g. NGPU=1. Could be implemented as a separate script, but this way shares more code. --checkpoint.async_mode CHECKPOINT.ASYNC_MODE Which async checkpoint mode to use. Currently there are 3 different modes. 1. "disabled": synchronized checkpointing will be used. 2. "async": torch.distributed.checkpoint.async_save will be used. 1. "async_with_pinned_mem": this option utilizes a dedicated pinned memory space and creates a separate process for faster GPU->CPU transfer performance and eliminating GIL contention. The cost is increased CPU memory usage. If insufficient CPU memory is available, performance may degrade due to memory paging. For most users, "async" should suffice as the performance overhead is typically small (on the order of tens of seconds) compared to checkpointing frequency. This mode can be employed to pursue near-zero checkpointing times (e.g., < 1 second) given appropriate hardware support such as ample CPU memory and fast PCIe. "disabled" is the default mode. --checkpoint.keep_latest_k CHECKPOINT.KEEP_LATEST_K Keeps only the latest k checkpoints, and purging older ones. If 0, keep all checkpoints. 0 is the default value. --checkpoint.load_step CHECKPOINT.LOAD_STEP Load the checkpoint at the specified step. If -1, load the latest checkpoint. --float8.enable_float8_linear If true, swaps `torch.nn.Linear` with `Float8Linear`. This feature requires you to install 'torchao' which can be found here: https://github.com/pytorch/ao --float8.enable_fsdp_float8_all_gather Whether enable float8 all-gather in FSDP --float8.precompute_float8_dynamic_scale_for_fsdp Whether precompute float8 scales dynamically for FSDP --float8.scaling_type_input {dynamic,delayed} float8 scaling for input, dynamic (default) or delayed --float8.scaling_type_weight FLOAT8.SCALING_TYPE_WEIGHT float8 scaling for input, dynamic (default) or delayed --float8.scaling_type_grad_output FLOAT8.SCALING_TYPE_GRAD_OUTPUT float8 scaling for input, dynamic (default) or delayed --comm.init_timeout_seconds COMM.INIT_TIMEOUT_SECONDS Timeout for communication operations, during initialization and first train step. --comm.train_timeout_seconds COMM.TRAIN_TIMEOUT_SECONDS Timeout for communication operations after the first train step -- usually a tighter bound than during initialization. --comm.trace_buf_size COMM.TRACE_BUF_SIZE Flight recorder ring buffer size, >0 means recording by default, 0 means disabled --memory_estimation.enabled Whether to estimate memory usage for FSDP --memory_estimation.disable_fake_mode Whether to estimate memory under FakeTensorMode ``` </details> ### Training with `torch.compile` Starting from `torch 2.0`, `torch.compile` has been introduced as a new feature to seamlessly accelerate training processes. In `flame`, one can simply enable `torch.compile` by adding `--training.compile` flag to your training script. However, `fla` has integrated numerous fused kernels for acceleration, which may potentially conflict with `torch.compile`. We are actively working on resolving these issues to make compilation transparent to users. In the meantime, please ensure you are using the latest dependencies. Specifically, **we recommend using `torch>=2.6` and `triton>=3.0`**. ### Training with multiple datasets If you wish to train a model with all-round capabilities (e.g., code, math, and multilingual ability), it's necessary to train on multiple datasets. `flame` allows training with multiple datasets easily. For example, you can specify the following arguments to train on 6 datasets with different proportions: ```sh --training.dataset HuggingFaceFW/fineweb-edu,opencsg/Fineweb-Edu-Chinese-V2.1,OpenCoder-LLM/opc-fineweb-code-corpus,math-ai/AutoMathText,EleutherAI/proof-pile-2,OpenCoder-LLM/opc-fineweb-math-corpus \ --training.data_probs 0.6,0.15,0.15,0.014,0.058,0.028 \ ``` ### ~Finalizing training~ > [!NOTE] > We have done this conversion automatically in the training script since our latest updates. Once training is complete, you may want to convert the distributed checkpoints (DCPs) into the 🤗 format for broader use. To facilitate this, we provide a straightforward conversion script: ```sh python -m flame.utils.convert_dcp_to_hf --path <path_to_model> --step <step> --config <path_to_config> --tokenizer <path_to_tokenizer> ``` After this, your model will be in the 🤗 format, ready to be shared or deployed. You can then easily publish your model using the `huggingface_hub` for wider accessibility. ### Continual training If you wish to build upon a strong pre-trained model (in 🤗 format) and continue training, we also offer a script to convert the 🤗 format model back into DCP format. This allows you to seamlessly resume training with `flame`. ```sh python -m flame.utils.convert_hf_to_dcp --model <path_to_hf> --checkpoint <path_to_dcp/checkpoint/step-0> ``` Here, `<path_to_dcp>` is the directory where your distributed checkpoints will be stored. The checkpoint is intentionally saved at `<step-0>` within the checkpoint folder to ensure it is loadable by `flame` during the initial training step, similar to how a seed checkpoint is handled. Once the conversion is complete, you can proceed with training using `flame` as usual, continuing from where the pretrained model left off. ## Multi-node training If you have access to multi-node GPUs, consider leveraging them for optimal performance. This process is straightforward and well-documented in the PyTorch [docs](https://pytorch.org/docs/stable/elastic/run.html). To set up multi-node training: * Set the environment variables `MASTER_ADDR=<ip>` and `MASTER_PORT=<port>` before running the training script across all nodes. * If you're using a job scheduler like Slurm, it will handle these variables for you. `torchtitan` provides a [Slurm script](https://github.com/pytorch/torchtitan/blob/main/multinode_trainer.slurm) for multi-node training, which you can use as a reference or starting point.
amphion/TaDiCodec-TTS-AR-Qwen2.5-0.5B
amphion
2025-09-02T07:24:07Z
56
6
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "Speech-Tokenizer", "text-to-speech", "en", "zh", "ja", "fr", "de", "ko", "arxiv:2508.16790", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-to-speech
2025-08-22T21:05:07Z
--- language: - en - zh - ja - fr - de - ko library_name: transformers license: apache-2.0 pipeline_tag: text-to-speech tags: - Speech-Tokenizer --- # 🚀 TaDiCodec We introduce the **T**ext-**a**ware **Di**ffusion Transformer Speech **Codec** (TaDiCodec), a novel approach to speech tokenization that employs end-to-end optimization for quantization and reconstruction through a **diffusion autoencoder**, while integrating **text guidance** into the diffusion decoder to enhance reconstruction quality and achieve **optimal compression**. TaDiCodec achieves an extremely low frame rate of **6.25 Hz** and a corresponding bitrate of **0.0875 kbps** with a single-layer codebook for **24 kHz speech**, while maintaining superior performance on critical speech generation evaluation metrics such as Word Error Rate (WER), speaker similarity (SIM), and speech quality (UTMOS). [![GitHub Stars](https://img.shields.io/github/stars/HeCheng0625/Diffusion-Speech-Tokenizer?style=social)](https://github.com/HeCheng0625/Diffusion-Speech-Tokenizer) [![arXiv](https://img.shields.io/badge/arXiv-2508.16790-b31b1b.svg)](https://arxiv.org/abs/2508.16790) [![Demo](https://img.shields.io/badge/🎬%20Demo-tadicodec-green)](https://tadicodec.github.io/) [![Python](https://img.shields.io/badge/Python-3.8+-3776ab.svg)](https://www.python.org/) [![PyTorch](https://img.shields.io/badge/PyTorch-2.0+-ee4c2c.svg)](https://pytorch.org/) [![Hugging Face](https://img.shields.io/badge/🤗%20HuggingFace-tadicodec-yellow)](https://huggingface.co/amphion/TaDiCodec) # 🤗 Pre-trained Models ## 📦 Model Zoo - Ready to Use! *Download our pre-trained models for instant inference* ## 🎵 TaDiCodec | Model | 🤗 Hugging Face | 👷 Status | |:-----:|:---------------:|:------:| | **🚀 TaDiCodec** | [![HF](https://img.shields.io/badge/🤗%20HF-TaDiCodec-yellow)](https://huggingface.co/amphion/TaDiCodec) | ✅ | | **🚀 TaDiCodec-old** | [![HF](https://img.shields.io/badge/🤗%20HF-TaDiCodec--old-yellow)](https://huggingface.co/amphion/TaDiCodec-old) | 🚧 | *Note: TaDiCodec-old is the old version of TaDiCodec, the TaDiCodec-TTS-AR-Phi-3.5-4B is based on TaDiCodec-old.* ## 🎤 TTS Models | Model | Type | LLM | 🤗 Hugging Face | 👷 Status | |:-----:|:----:|:---:|:---------------:|:-------------:| | **🤖 TaDiCodec-TTS-AR-Qwen2.5-0.5B** | AR | Qwen2.5-0.5B-Instruct | [![HF](https://img.shields.io/badge/🤗%20HF-TaDiCodec--AR--0.5B-yellow)](https://huggingface.co/amphion/TaDiCodec-TTS-AR-Qwen2.5-0.5B) | ✅ | | **🤖 TaDiCodec-TTS-AR-Qwen2.5-3B** | AR | Qwen2.5-3B-Instruct | [![HF](https://img.shields.io/badge/🤗%20HF-TaDiCodec--AR--3B-yellow)](https://huggingface.co/amphion/TaDiCodec-TTS-AR-Qwen2.5-3B) | ✅ | | **🤖 TaDiCodec-TTS-AR-Phi-3.5-4B** | AR | Phi-3.5-mini-instruct | [![HF](https://img.shields.io/badge/🤗%20HF-TaDiCodec--AR--4B-yellow)](https://huggingface.co/amphion/TaDiCodec-TTS-AR-Phi-3.5-4B) | 🚧 | | **🌊 TaDiCodec-TTS-MGM** | MGM | - | [![HF](https://img.shields.io/badge/🤗%20HF-TaDiCodec--MGM-yellow)](https://huggingface.co/amphion/TaDiCodec-TTS-MGM) | ✅ | ## 🔧 Quick Model Usage ```python # 🤗 Load from Hugging Face from models.tts.tadicodec.inference_tadicodec import TaDiCodecPipline from models.tts.llm_tts.inference_llm_tts import TTSInferencePipeline from models.tts.llm_tts.inference_mgm_tts import MGMInferencePipeline # Load TaDiCodec tokenizer, it will automatically download the model from Hugging Face for the first time tokenizer = TaDiCodecPipline.from_pretrained("amphion/TaDiCodec") # Load AR TTS model, it will automatically download the model from Hugging Face for the first time tts_model = TTSInferencePipeline.from_pretrained("amphion/TaDiCodec-TTS-AR-Qwen2.5-3B") # Load MGM TTS model, it will automatically download the model from Hugging Face for the first time tts_model = MGMInferencePipeline.from_pretrained("amphion/TaDiCodec-TTS-MGM") ``` # 🚀 Quick Start ## Installation ```bash # Clone the repository git clone https://github.com/HeCheng0625/Diffusion-Speech-Tokenizer.git cd Diffusion-Speech-Tokenizer # Install dependencies bash env.sh ``` ## Basic Usage **Please refer to the [use_examples](https://github.com/HeCheng0625/Diffusion-Speech-Tokenizer/tree/main/use_examples) folder for more detailed usage examples.** ### Speech Tokenization and Reconstruction ```python # Example: Using TaDiCodec for speech tokenization import torch import soundfile as sf from models.tts.tadicodec.inference_tadicodec import TaDiCodecPipline device = torch.device("cuda" if torch.cuda.is_available() else "cpu") pipe = TaDiCodecPipline.from_pretrained(ckpt_dir="./ckpt/TaDiCodec", device=device) # Text of the prompt audio prompt_text = "In short, we embarked on a mission to make America great again, for all Americans." # Text of the target audio target_text = "But to those who knew her well, it was a symbol of her unwavering determination and spirit." # Input audio path of the prompt audio prompt_speech_path = "./use_examples/test_audio/trump_0.wav" # Input audio path of the target audio speech_path = "./use_examples/test_audio/trump_1.wav" rec_audio = pipe( text=target_text, speech_path=speech_path, prompt_text=prompt_text, prompt_speech_path=prompt_speech_path ) sf.write("./use_examples/test_audio/trump_rec.wav", rec_audio, 24000) ``` ### Zero-shot TTS with TaDiCodec ```python import torch import soundfile as sf from models.tts.llm_tts.inference_llm_tts import TTSInferencePipeline # from models.tts.llm_tts.inference_mgm_tts import MGMInferencePipeline device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Create AR TTS pipeline pipeline = TTSInferencePipeline.from_pretrained( tadicodec_path="./ckpt/TaDiCodec", llm_path="./ckpt/TaDiCodec-TTS-AR-Qwen2.5-3B", device=device, ) # Inference on single sample, you can also use the MGM TTS pipeline audio = pipeline( text="但是 to those who 知道 her well, it was a 标志 of her unwavering 决心 and spirit.", # code-switching cases are supported prompt_text="In short, we embarked on a mission to make America great again, for all Americans.", prompt_speech_path="./use_examples/test_audio/trump_0.wav", ) sf.write("./use_examples/test_audio/lm_tts_output.wav", audio, 24000) ``` # 📚 Citation If you find this repository useful, please cite our paper: TaDiCodec: ```bibtex @article{tadicodec2025, title={TaDiCodec: Text-aware Diffusion Speech Tokenizer for Speech Language Modeling}, author={Yuancheng Wang, Dekun Chen, Xueyao Zhang, Junan Zhang, Jiaqi Li, Zhizheng Wu}, journal={arXiv preprint}, year={2025}, url={https://arxiv.org/abs/2508.16790} } ``` Amphion: ```bibtex @inproceedings{amphion, author={Xueyao Zhang and Liumeng Xue and Yicheng Gu and Yuancheng Wang and Jiaqi Li and Haorui He and Chaoren Wang and Ting Song and Xi Chen and Zihao Fang and Haopeng Chen and Junan Zhang and Tze Ying Tang and Lexiao Zou and Mingxuan Wang and Jun Han and Kai Chen and Haizhou Li and Zhizheng Wu}, title={Amphion: An Open-Source Audio, Music and Speech Generation Toolkit}, booktitle={{IEEE} Spoken Language Technology Workshop, {SLT} 2024}, year={2024} } ``` MaskGCT: ```bibtex @inproceedings{wang2024maskgct, author={Wang, Yuancheng and Zhan, Haoyue and Liu, Liwei and Zeng, Ruihong and Guo, Haotian and Zheng, Jiachen and Zhang, Qiang and Zhang, Xueyao and Zhang, Shunsi and Wu, Zhizheng}, title={MaskGCT: Zero-Shot Text-to-Speech with Masked Generative Codec Transformer}, booktitle = {{ICLR}}, publisher = {OpenReview.net}, year = {2025} } ``` # 🙏 Acknowledgments - **MGM-based TTS** is built upon [MaskGCT](https://github.com/open-mmlab/Amphion/tree/main/models/tts/maskgct). - **Vocos vocoder** is built upon [Vocos](https://github.com/gemelo-ai/vocos). - **NAR Llama-style transformers** is built upon [transformers](https://github.com/huggingface/transformers). - **(Binary Spherical Quantization) BSQ** is built upon [vector-quantize-pytorch](https://github.com/lucidrains/vector-quantize-pytorch) and [bsq-vit](https://github.com/zhaoyue-zephyrus/bsq-vit). - **Training codebase** is built upon [Amphion](https://github.com/open-mmlab/Amphion) and [accelerate](https://github.com/huggingface/accelerate).
vendi11/blockassist-bc-placid_placid_llama_1756797747
vendi11
2025-09-02T07:23:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "placid placid llama", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T07:23:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - placid placid llama --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1756796098
coelacanthxyz
2025-09-02T07:23:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky thriving grouse", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T07:23:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky thriving grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
omerbektass/blockassist-bc-keen_fast_giraffe_1756797614
omerbektass
2025-09-02T07:20:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T07:20:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
csikasote/mms-1b-all-swagen-combined-15hrs-62
csikasote
2025-09-02T07:20:34Z
13
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "swagen", "mms", "generated_from_trainer", "base_model:facebook/mms-1b-all", "base_model:finetune:facebook/mms-1b-all", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-06-30T22:16:28Z
--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - automatic-speech-recognition - swagen - mms - generated_from_trainer metrics: - wer model-index: - name: mms-1b-all-swagen-combined-15hrs-62 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mms-1b-all-swagen-combined-15hrs-62 This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the SWAGEN - SWA dataset. It achieves the following results on the evaluation set: - Loss: 0.3051 - Wer: 0.2282 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 62 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 6.9911 | 0.1594 | 200 | 2.1622 | 0.9834 | | 1.6509 | 0.3189 | 400 | 0.3235 | 0.2094 | | 1.2654 | 0.4783 | 600 | 0.3102 | 0.2190 | | 1.249 | 0.6377 | 800 | 0.3162 | 0.2188 | | 1.1663 | 0.7971 | 1000 | 0.3062 | 0.2192 | | 1.1795 | 0.9566 | 1200 | 0.3083 | 0.2244 | | 1.1537 | 1.1156 | 1400 | 0.3119 | 0.2277 | | 1.1607 | 1.2750 | 1600 | 0.3050 | 0.2282 | | 1.08 | 1.4344 | 1800 | 0.3056 | 0.2293 | | 1.1027 | 1.5939 | 2000 | 0.3099 | 0.2333 | | 1.0601 | 1.7533 | 2200 | 0.3063 | 0.2340 | | 1.0959 | 1.9127 | 2400 | 0.3070 | 0.2333 | ### Framework versions - Transformers 4.53.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.0
2hpsatt/blockassist-bc-huge_deft_eagle_1756797576
2hpsatt
2025-09-02T07:20:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "huge deft eagle", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T07:20:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - huge deft eagle --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Empathetic-Llama-3.2-3B-Instruct-GGUF
mradermacher
2025-09-02T07:20:17Z
0
0
transformers
[ "transformers", "gguf", "lora", "sft", "trl", "unsloth", "fine-tuned", "en", "dataset:theprint/Empathetic-Alpaca", "base_model:theprint/Empathetic-Llama-3.2-3B-Instruct", "base_model:adapter:theprint/Empathetic-Llama-3.2-3B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-09-02T05:59:04Z
--- base_model: theprint/Empathetic-Llama-3.2-3B-Instruct datasets: - theprint/Empathetic-Alpaca language: en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - lora - sft - transformers - trl - unsloth - fine-tuned --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/theprint/Empathetic-Llama-3.2-3B-Instruct <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Empathetic-Llama-3.2-3B-Instruct-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/Empathetic-Llama-3.2-3B-Instruct-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Empathetic-Llama-3.2-3B-Instruct-GGUF/resolve/main/Empathetic-Llama-3.2-3B-Instruct.Q2_K.gguf) | Q2_K | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/Empathetic-Llama-3.2-3B-Instruct-GGUF/resolve/main/Empathetic-Llama-3.2-3B-Instruct.Q3_K_S.gguf) | Q3_K_S | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Empathetic-Llama-3.2-3B-Instruct-GGUF/resolve/main/Empathetic-Llama-3.2-3B-Instruct.Q3_K_M.gguf) | Q3_K_M | 1.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Empathetic-Llama-3.2-3B-Instruct-GGUF/resolve/main/Empathetic-Llama-3.2-3B-Instruct.Q3_K_L.gguf) | Q3_K_L | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Empathetic-Llama-3.2-3B-Instruct-GGUF/resolve/main/Empathetic-Llama-3.2-3B-Instruct.IQ4_XS.gguf) | IQ4_XS | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Empathetic-Llama-3.2-3B-Instruct-GGUF/resolve/main/Empathetic-Llama-3.2-3B-Instruct.Q4_K_S.gguf) | Q4_K_S | 2.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Empathetic-Llama-3.2-3B-Instruct-GGUF/resolve/main/Empathetic-Llama-3.2-3B-Instruct.Q4_K_M.gguf) | Q4_K_M | 2.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Empathetic-Llama-3.2-3B-Instruct-GGUF/resolve/main/Empathetic-Llama-3.2-3B-Instruct.Q5_K_S.gguf) | Q5_K_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Empathetic-Llama-3.2-3B-Instruct-GGUF/resolve/main/Empathetic-Llama-3.2-3B-Instruct.Q5_K_M.gguf) | Q5_K_M | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Empathetic-Llama-3.2-3B-Instruct-GGUF/resolve/main/Empathetic-Llama-3.2-3B-Instruct.Q6_K.gguf) | Q6_K | 2.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Empathetic-Llama-3.2-3B-Instruct-GGUF/resolve/main/Empathetic-Llama-3.2-3B-Instruct.Q8_0.gguf) | Q8_0 | 3.5 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Empathetic-Llama-3.2-3B-Instruct-GGUF/resolve/main/Empathetic-Llama-3.2-3B-Instruct.f16.gguf) | f16 | 6.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
csikasote/mms-1b-all-swagen-combined-15hrs-62-DAT
csikasote
2025-09-02T07:18:27Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "swagen", "mms", "generated_from_trainer", "base_model:facebook/mms-1b-all", "base_model:finetune:facebook/mms-1b-all", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-09-02T06:54:09Z
--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - automatic-speech-recognition - swagen - mms - generated_from_trainer metrics: - wer model-index: - name: mms-1b-all-swagen-combined-15hrs-62-DAT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mms-1b-all-swagen-combined-15hrs-62-DAT This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the SWAGEN - SWA dataset. It achieves the following results on the evaluation set: - Loss: 0.3091 - Wer: 0.2227 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 62 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 6.9949 | 0.1594 | 200 | 2.1711 | 0.9835 | | 1.653 | 0.3189 | 400 | 0.3278 | 0.2094 | | 1.2653 | 0.4783 | 600 | 0.3203 | 0.2166 | | 1.2496 | 0.6377 | 800 | 0.3253 | 0.2196 | | 1.1674 | 0.7971 | 1000 | 0.3110 | 0.2216 | | 1.1796 | 0.9566 | 1200 | 0.3091 | 0.2228 | | 1.1576 | 1.1156 | 1400 | 0.3193 | 0.2265 | | 1.1601 | 1.2750 | 1600 | 0.3150 | 0.2305 | | 1.0825 | 1.4344 | 1800 | 0.3119 | 0.2289 | | 1.104 | 1.5939 | 2000 | 0.3189 | 0.2347 | ### Framework versions - Transformers 4.53.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.0
Novachrono93/Lazypos
Novachrono93
2025-09-02T07:18:15Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:dhead/wai-nsfw-illustrious-sdxl-v140-sdxl", "base_model:adapter:dhead/wai-nsfw-illustrious-sdxl-v140-sdxl", "region:us" ]
text-to-image
2025-09-02T06:57:13Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - output: url: images/1000041480.jpg text: "UNICODE\0\0{\0\"\02\03\0\"\0:\0{\0\"\0c\0l\0a\0s\0s\0_\0t\0y\0p\0e\0\"\0:\0\"\0U\0p\0s\0c\0a\0l\0e\0M\0o\0d\0e\0l\0L\0o\0a\0d\0e\0r\0\"\0,\0\"\0i\0n\0p\0u\0t\0s\0\"\0:\0{\0\"\0m\0o\0d\0e\0l\0_\0n\0a\0m\0e\0\"\0:\0\"\0u\0r\0n\0:\0a\0i\0r\0:\0o\0t\0h\0e\0r\0:\0u\0p\0s\0c\0a\0l\0e\0r\0:\0c\0i\0v\0i\0t\0a\0i\0:\01\04\07\07\05\09\0@\01\06\04\08\02\01\0\"\0}\0,\0\"\0_\0m\0e\0t\0a\0\"\0:\0{\0\"\0t\0i\0t\0l\0e\0\"\0:\0\"\0L\0o\0a\0d\0 \0U\0p\0s\0c\0a\0l\0e\0 \0M\0o\0d\0e\0l\0\"\0}\0}\0,\0\"\02\06\0\"\0:\0{\0\"\0c\0l\0a\0s\0s\0_\0t\0y\0p\0e\0\"\0:\0\"\0L\0o\0a\0d\0I\0m\0a\0g\0e\0\"\0,\0\"\0i\0n\0p\0u\0t\0s\0\"\0:\0{\0\"\0i\0m\0a\0g\0e\0\"\0:\0\"\0h\0t\0t\0p\0s\0:\0/\0/\0o\0r\0c\0h\0e\0s\0t\0r\0a\0t\0i\0o\0n\0.\0c\0i\0v\0i\0t\0a\0i\0.\0c\0o\0m\0/\0v\02\0/\0c\0o\0n\0s\0u\0m\0e\0r\0/\0b\0l\0o\0b\0s\0/\0K\0G\0K\06\0Z\0J\00\0F\00\0Y\0C\0Q\0W\0T\0G\0M\0E\0K\0M\0B\0H\0Q\0K\0K\0R\00\0\"\0,\0\"\0u\0p\0l\0o\0a\0d\0\"\0:\0\"\0i\0m\0a\0g\0e\0\"\0}\0,\0\"\0_\0m\0e\0t\0a\0\"\0:\0{\0\"\0t\0i\0t\0l\0e\0\"\0:\0\"\0L\0o\0a\0d\0 \0I\0m\0a\0g\0e\0\"\0}\0}\0,\0\"\02\02\0\"\0:\0{\0\"\0c\0l\0a\0s\0s\0_\0t\0y\0p\0e\0\"\0:\0\"\0I\0m\0a\0g\0e\0U\0p\0s\0c\0a\0l\0e\0W\0i\0t\0h\0M\0o\0d\0e\0l\0\"\0,\0\"\0i\0n\0p\0u\0t\0s\0\"\0:\0{\0\"\0u\0p\0s\0c\0a\0l\0e\0_\0m\0o\0d\0e\0l\0\"\0:\0[\0\"\02\03\0\"\0,\00\0]\0,\0\"\0i\0m\0a\0g\0e\0\"\0:\0[\0\"\02\06\0\"\0,\00\0]\0}\0,\0\"\0_\0m\0e\0t\0a\0\"\0:\0{\0\"\0t\0i\0t\0l\0e\0\"\0:\0\"\0U\0p\0s\0c\0a\0l\0e\0 \0I\0m\0a\0g\0e\0 \0(\0u\0s\0i\0n\0g\0 \0M\0o\0d\0e\0l\0)\0\"\0}\0}\0,\0\"\02\04\0\"\0:\0{\0\"\0c\0l\0a\0s\0s\0_\0t\0y\0p\0e\0\"\0:\0\"\0I\0m\0a\0g\0e\0S\0c\0a\0l\0e\0\"\0,\0\"\0i\0n\0p\0u\0t\0s\0\"\0:\0{\0\"\0u\0p\0s\0c\0a\0l\0e\0_\0m\0e\0t\0h\0o\0d\0\"\0:\0\"\0b\0i\0l\0i\0n\0e\0a\0r\0\"\0,\0\"\0c\0r\0o\0p\0\"\0:\0\"\0d\0i\0s\0a\0b\0l\0e\0d\0\"\0,\0\"\0w\0i\0d\0t\0h\0\"\0:\02\02\04\00\0,\0\"\0h\0e\0i\0g\0h\0t\0\"\0:\03\08\04\00\0,\0\"\0i\0m\0a\0g\0e\0\"\0:\0[\0\"\02\02\0\"\0,\00\0]\0}\0,\0\"\0_\0m\0e\0t\0a\0\"\0:\0{\0\"\0t\0i\0t\0l\0e\0\"\0:\0\"\0U\0p\0s\0c\0a\0l\0e\0 \0I\0m\0a\0g\0e\0\"\0}\0}\0,\0\"\01\02\0\"\0:\0{\0\"\0c\0l\0a\0s\0s\0_\0t\0y\0p\0e\0\"\0:\0\"\0S\0a\0v\0e\0I\0m\0a\0g\0e\0\"\0,\0\"\0i\0n\0p\0u\0t\0s\0\"\0:\0{\0\"\0f\0i\0l\0e\0n\0a\0m\0e\0_\0p\0r\0e\0f\0i\0x\0\"\0:\0\"\0C\0o\0m\0f\0y\0U\0I\0\"\0,\0\"\0i\0m\0a\0g\0e\0s\0\"\0:\0[\0\"\02\04\0\"\0,\00\0]\0}\0,\0\"\0_\0m\0e\0t\0a\0\"\0:\0{\0\"\0t\0i\0t\0l\0e\0\"\0:\0\"\0S\0a\0v\0e\0 \0I\0m\0a\0g\0e\0\"\0}\0}\0,\0\"\0e\0x\0t\0r\0a\0\"\0:\0{\0\"\0a\0i\0r\0s\0\"\0:\0[\0\"\0u\0r\0n\0:\0a\0i\0r\0:\0o\0t\0h\0e\0r\0:\0u\0p\0s\0c\0a\0l\0e\0r\0:\0c\0i\0v\0i\0t\0a\0i\0:\01\04\07\07\05\09\0@\01\06\04\08\02\01\0\"\0]\0}\0,\0\"\0e\0x\0t\0r\0a\0M\0e\0t\0a\0d\0a\0t\0a\0\"\0:\0\"\0{\0\\\0u\00\00\02\02\0p\0r\0o\0m\0p\0t\0\\\0u\00\00\02\02\0:\0\\\0u\00\00\02\02\0l\0a\0z\0y\0p\0o\0s\0,\0 \0b\0e\0s\0t\0 \0q\0u\0a\0l\0i\0t\0y\0,\0 \0r\0e\0f\0i\0n\0e\0d\0 \0d\0e\0t\0a\0i\0l\0e\0d\0,\0 \0h\0i\0g\0h\0 \0q\0u\0a\0l\0i\0t\0y\0,\0 \0h\0i\0g\0h\0r\0e\0s\0,\0 \0c\0i\0n\0e\0m\0a\0t\0i\0c\0 \0l\0i\0g\0h\0t\0i\0n\0g\0,\0 \0a\0b\0s\0u\0r\0d\0r\0e\0s\0,\0 \08\0k\0,\0 \0d\0e\0t\0a\0i\0l\0e\0d\0,\0 \0h\0i\0g\0h\0e\0s\0t\0 \0d\0e\0f\0i\0n\0i\0t\0i\0o\0n\0,\0 \0h\0i\0g\0h\0 \0r\0e\0s\0o\0l\0u\0t\0i\0o\0n\0,\0 \0s\0c\0e\0n\0e\0r\0y\0,\0 \0s\0o\0u\0r\0c\0e\0_\0a\0n\0i\0m\0e\0,\0 \0a\0b\0s\0u\0r\0d\0_\0r\0e\0s\0,\0 \0m\0a\0s\0t\0e\0r\0p\0i\0e\0c\0e\0,\0 \0b\0e\0s\0t\0 \0q\0u\0a\0l\0i\0t\0y\0,\0h\0i\0g\0h\0 \0q\0u\0a\0l\0i\0t\0y\0,\0 \0n\0e\0w\0e\0s\0t\0,\0 \0h\0i\0g\0h\0r\0e\0s\0,\08\0K\0,\0H\0D\0R\0,\0a\0b\0s\0u\0r\0d\0r\0e\0s\0,\04\0u\0r\04\0_\0i\0l\0l\0u\0,\0s\0h\0i\0n\0y\0,\0 \04\0u\0r\04\0_\0i\0l\0l\0u\0,\01\0g\0i\0r\0l\0,\0 \0h\0a\0i\0r\0 \0o\0r\0n\0a\0m\0e\0n\0t\0,\0 \0w\0e\0a\0p\0o\0n\0,\0 \0h\0a\0i\0r\0 \0f\0l\0o\0w\0e\0r\0,\0 \0s\0w\0o\0r\0d\0,\0 \0h\0o\0l\0d\0i\0n\0g\0,\0 \0f\0l\0o\0w\0e\0r\0,\0 \0j\0a\0p\0a\0n\0e\0s\0e\0 \0c\0l\0o\0t\0h\0e\0s\0,\0 \0s\0o\0l\0o\0,\0 \0k\0i\0m\0o\0n\0o\0,\0 \0b\0l\0a\0c\0k\0 \0h\0a\0i\0r\0,\0 \0l\0o\0o\0k\0i\0n\0g\0 \0a\0t\0 \0v\0i\0e\0w\0e\0r\0,\0 \0h\0o\0l\0d\0i\0n\0g\0 \0w\0e\0a\0p\0o\0n\0,\0 \0h\0o\0l\0d\0i\0n\0g\0 \0s\0w\0o\0r\0d\0,\0 \0f\0l\0o\0r\0a\0l\0 \0p\0r\0i\0n\0t\0,\0 \0k\0a\0t\0a\0n\0a\0,\0 \0r\0i\0n\0g\0,\0 \0b\0a\0n\0g\0s\0,\0 \0j\0e\0w\0e\0l\0r\0y\0,\0 \0b\0l\0u\0e\0 \0e\0y\0e\0s\0,\0 \0l\0o\0n\0g\0 \0h\0a\0i\0r\0,\0 \0c\0l\0o\0s\0e\0d\0 \0m\0o\0u\0t\0h\0,\0 \0b\0l\0u\0s\0h\0,\0 \0g\0l\0i\0n\0t\0,\0 \0p\0e\0t\0a\0l\0s\0,\0 \0l\0o\0n\0g\0 \0s\0l\0e\0e\0v\0e\0s\0,\0 \0r\0e\0d\0 \0k\0i\0m\0o\0n\0o\0,\0 \0b\0l\0a\0c\0k\0 \0b\0a\0c\0k\0g\0r\0o\0u\0n\0d\0,\0 \0w\0i\0d\0e\0 \0s\0l\0e\0e\0v\0e\0s\0,\0 \0b\0o\0o\0t\0s\0,\0 \0o\0b\0i\0,\0m\0o\0t\0i\0o\0n\0 \0b\0l\0u\0r\0,\0 \0d\0y\0n\0a\0m\0i\0c\0 \0p\0o\0s\0e\0,\0 \0d\0y\0n\0a\0m\0i\0c\0 \0c\0o\0m\0p\0o\0s\0i\0t\0i\0o\0n\0,\0d\0u\0t\0c\0h\0 \0a\0n\0g\0l\0e\0,\0 \0d\0e\0p\0t\0h\0 \0o\0f\0 \0f\0i\0e\0l\0d\0,\0w\0h\0i\0t\0e\0_\0t\0h\0e\0m\0e\0,\0d\0e\0t\0a\0i\0l\0e\0d\0 \0b\0a\0c\0k\0g\0r\0o\0u\0d\0,\0f\0o\0r\0e\0s\0h\0o\0r\0t\0e\0n\0i\0n\0g\0,\0b\0l\0u\0r\0r\0y\0 \0e\0d\0g\0e\0s\0,\0(\0(\04\0k\0,\08\0k\0,\0U\0l\0t\0r\0a\0 \0H\0D\0)\0)\0,\0 \0(\0(\0M\0a\0s\0t\0e\0r\0p\0i\0e\0c\0e\0 \0:\01\0.\02\0)\0)\0,\0(\0(\0B\0e\0s\0t\0 \0q\0u\0a\0l\0i\0t\0y\0 \0:\01\0.\02\0)\0)\0,\0(\0(\0D\0e\0t\0a\0i\0l\0e\0d\0 \0:\01\0.\04\0)\0)\0,\0(\0(\0d\0y\0n\0a\0m\0i\0c\0 \0p\0o\0s\0e\0:\01\0.\04\0)\0)\0,\0(\0(\0D\0e\0t\0a\0i\0l\0e\0d\0 \0b\0a\0c\0k\0g\0r\0o\0u\0n\0d\0 \0:\01\0.\04\0)\0)\0,\0 \0d\0i\0g\0i\0t\0a\0l\0 \0a\0r\0t\0,\0 \0s\0u\0r\0r\0e\0a\0l\0,\0 \0d\0y\0n\0a\0m\0i\0c\0 \0c\0o\0m\0p\0o\0s\0i\0t\0i\0o\0n\0,\0 \0b\0e\0a\0u\0t\0i\0f\0u\0l\0 \0a\0t\0m\0o\0s\0p\0h\0e\0r\0e\0,\0 \0F\0l\0a\0t\0l\0i\0n\0e\0,\0 \0F\0l\0a\0t\0 \0v\0e\0c\0t\0o\0r\0 \0i\0l\0l\0u\0s\0t\0r\0a\0t\0i\0o\0n\0\\\0u\00\00\02\02\0,\0\\\0u\00\00\02\02\0n\0e\0g\0a\0t\0i\0v\0e\0P\0r\0o\0m\0p\0t\0\\\0u\00\00\02\02\0:\0\\\0u\00\00\02\02\0l\0o\0w\0 \0q\0u\0a\0l\0i\0t\0y\0,\0 \0w\0o\0r\0s\0t\0 \0q\0u\0a\0l\0i\0t\0y\0,\0 \0n\0o\0r\0m\0a\0l\0 \0q\0u\0a\0l\0i\0t\0y\0,\0 \0j\0p\0e\0g\0 \0a\0r\0t\0i\0f\0a\0c\0t\0s\0,\0 \0s\0i\0g\0n\0a\0t\0u\0r\0e\0,\0 \0w\0a\0t\0e\0r\0m\0a\0r\0k\0,\0 \0t\0e\0x\0t\0,\0 \0e\0r\0r\0o\0r\0,\0 \0b\0l\0u\0r\0r\0y\0,\0 \0u\0g\0l\0y\0,\0 \0p\0o\0o\0r\0l\0y\0 \0d\0r\0a\0w\0n\0,\0 \0s\0k\0e\0t\0c\0h\0,\0 \0m\0o\0n\0o\0c\0h\0r\0o\0m\0e\0,\0 \0m\0u\0t\0a\0t\0e\0d\0,\0 \0e\0x\0t\0r\0a\0 \0l\0i\0m\0b\0s\0,\0 \0d\0e\0f\0o\0r\0m\0e\0d\0,\0 \0d\0i\0s\0t\0o\0r\0t\0e\0d\0 \0f\0a\0c\0e\0,\0 \0b\0a\0d\0 \0p\0r\0o\0p\0o\0r\0t\0i\0o\0n\0s\0,\0 \0o\0u\0t\0 \0o\0f\0 \0f\0o\0c\0u\0s\0,\0 \0c\0l\0o\0n\0e\0d\0 \0f\0a\0c\0e\0,\0 \0m\0u\0t\0a\0t\0e\0d\0 \0h\0a\0n\0d\0s\0,\0 \0d\0i\0s\0f\0i\0g\0u\0r\0e\0d\0,\0 \0e\0x\0t\0r\0a\0 \0a\0r\0m\0s\0,\0 \0e\0x\0t\0r\0a\0 \0l\0e\0g\0s\0,\0 \0e\0x\0t\0r\0a\0 \0f\0i\0n\0g\0e\0r\0s\0,\0 \0m\0i\0s\0s\0i\0n\0g\0 \0a\0r\0m\0s\0,\0 \0m\0i\0s\0s\0i\0n\0g\0 \0l\0e\0g\0s\0,\0 \0m\0i\0s\0s\0i\0n\0g\0 \0f\0i\0n\0g\0e\0r\0s\0,\0 \0d\0i\0s\0c\0o\0n\0n\0e\0c\0t\0e\0d\0 \0l\0i\0m\0b\0s\0,\0 \0l\0o\0n\0g\0 \0n\0e\0c\0k\0,\0 \0b\0a\0d\0 \0a\0n\0a\0t\0o\0m\0y\0,\0 \0b\0a\0d\0 \0h\0a\0n\0d\0s\0,\0 \0p\0o\0o\0r\0l\0y\0 \0d\0r\0a\0w\0n\0 \0h\0a\0n\0d\0s\0,\0 \0b\0a\0d\0 \0f\0e\0e\0t\0,\0 \0e\0x\0t\0r\0a\0 \0e\0y\0e\0s\0,\0 \0g\0l\0i\0t\0c\0h\0e\0d\0 \0e\0y\0e\0s\0,\0 \0m\0u\0t\0a\0t\0e\0d\0 \0e\0y\0e\0s\0,\0 \0c\0r\0o\0s\0s\0-\0e\0y\0e\0,\0 \0a\0s\0y\0m\0m\0e\0t\0r\0i\0c\0a\0l\0 \0e\0y\0e\0s\0,\0 \0r\0o\0u\0g\0h\0 \0s\0k\0e\0t\0c\0h\0,\0 \0d\0i\0s\0c\0o\0l\0o\0r\0e\0d\0,\0 \0l\0a\0z\0y\0n\0e\0g\0,\0 \0l\0a\0z\0y\0h\0a\0n\0d\0 \0\\\0u\00\00\02\02\0,\0\\\0u\00\00\02\02\0c\0f\0g\0S\0c\0a\0l\0e\0\\\0u\00\00\02\02\0:\04\0,\0\\\0u\00\00\02\02\0s\0a\0m\0p\0l\0e\0r\0\\\0u\00\00\02\02\0:\0\\\0u\00\00\02\02\0E\0u\0l\0e\0r\0 \0a\0\\\0u\00\00\02\02\0,\0\\\0u\00\00\02\02\0s\0e\0e\0d\0\\\0u\00\00\02\02\0:\01\03\00\04\02\04\00\07\09\00\0,\0\\\0u\00\00\02\02\0c\0l\0i\0p\0S\0k\0i\0p\0\\\0u\00\00\02\02\0:\02\0,\0\\\0u\00\00\02\02\0s\0t\0e\0p\0s\0\\\0u\00\00\02\02\0:\02\05\0,\0\\\0u\00\00\02\02\0q\0u\0a\0n\0t\0i\0t\0y\0\\\0u\00\00\02\02\0:\01\0,\0\\\0u\00\00\02\02\0a\0s\0p\0e\0c\0t\0R\0a\0t\0i\0o\0\\\0u\00\00\02\02\0:\0\\\0u\00\00\02\02\01\03\0:\01\09\0\\\0u\00\00\02\02\0,\0\\\0u\00\00\02\02\0b\0a\0s\0e\0M\0o\0d\0e\0l\0\\\0u\00\00\02\02\0:\0\\\0u\00\00\02\02\0I\0l\0l\0u\0s\0t\0r\0i\0o\0u\0s\0\\\0u\00\00\02\02\0,\0\\\0u\00\00\02\02\0w\0i\0d\0t\0h\0\\\0u\00\00\02\02\0:\07\03\06\0,\0\\\0u\00\00\02\02\0h\0e\0i\0g\0h\0t\0\\\0u\00\00\02\02\0:\01\03\00\08\0,\0\\\0u\00\00\02\02\0d\0e\0n\0o\0i\0s\0e\0\\\0u\00\00\02\02\0:\00\0.\05\05\0,\0\\\0u\00\00\02\02\0w\0o\0r\0k\0f\0l\0o\0w\0\\\0u\00\00\02\02\0:\0\\\0u\00\00\02\02\0i\0m\0g\02\0i\0m\0g\0-\0h\0i\0r\0e\0s\0\\\0u\00\00\02\02\0,\0\\\0u\00\00\02\02\0e\0x\0p\0e\0r\0i\0m\0e\0n\0t\0a\0l\0\\\0u\00\00\02\02\0:\0f\0a\0l\0s\0e\0,\0\\\0u\00\00\02\02\0p\0r\0i\0o\0r\0i\0t\0y\0\\\0u\00\00\02\02\0:\0\\\0u\00\00\02\02\0l\0o\0w\0\\\0u\00\00\02\02\0,\0\\\0u\00\00\02\02\0s\0o\0u\0r\0c\0e\0I\0m\0a\0g\0e\0\\\0u\00\00\02\02\0:\0{\0\\\0u\00\00\02\02\0u\0r\0l\0\\\0u\00\00\02\02\0:\0\\\0u\00\00\02\02\0h\0t\0t\0p\0s\0:\0/\0/\0o\0r\0c\0h\0e\0s\0t\0r\0a\0t\0i\0o\0n\0.\0c\0i\0v\0i\0t\0a\0i\0.\0c\0o\0m\0/\0v\02\0/\0c\0o\0n\0s\0u\0m\0e\0r\0/\0b\0l\0o\0b\0s\0/\01\02\08\08\06\06\02\01\05\03\09\05\06\09\09\01\07\05\06\08\03\05\08\09\02\09\05\09\04\08\09\04\02\01\05\04\05\02\02\0.\0j\0p\0g\0\\\0u\00\00\02\02\0,\0\\\0u\00\00\02\02\0w\0i\0d\0t\0h\0\\\0u\00\00\02\02\0:\07\03\06\0,\0\\\0u\00\00\02\02\0h\0e\0i\0g\0h\0t\0\\\0u\00\00\02\02\0:\01\03\00\08\0}\0,\0\\\0u\00\00\02\02\0d\0i\0s\0a\0b\0l\0e\0P\0o\0i\0\\\0u\00\00\02\02\0:\0t\0r\0u\0e\0,\0\\\0u\00\00\02\02\0p\0r\0o\0c\0e\0s\0s\0\\\0u\00\00\02\02\0:\0\\\0u\00\00\02\02\0i\0m\0g\02\0i\0m\0g\0\\\0u\00\00\02\02\0,\0\\\0u\00\00\02\02\0r\0e\0s\0o\0u\0r\0c\0e\0s\0\\\0u\00\00\02\02\0:\0[\0{\0\\\0u\00\00\02\02\0m\0o\0d\0e\0l\0V\0e\0r\0s\0i\0o\0n\0I\0d\0\\\0u\00\00\02\02\0:\01\07\07\02\06\04\05\0,\0\\\0u\00\00\02\02\0s\0t\0r\0e\0n\0g\0t\0h\0\\\0u\00\00\02\02\0:\01\0}\0,\0{\0\\\0u\00\00\02\02\0m\0o\0d\0e\0l\0V\0e\0r\0s\0i\0o\0n\0I\0d\0\\\0u\00\00\02\02\0:\01\08\00\09\05\07\05\0,\0\\\0u\00\00\02\02\0s\0t\0r\0e\0n\0g\0t\0h\0\\\0u\00\00\02\02\0:\00\0.\02\0}\0,\0{\0\\\0u\00\00\02\02\0m\0o\0d\0e\0l\0V\0e\0r\0s\0i\0o\0n\0I\0d\0\\\0u\00\00\02\02\0:\01\08\03\03\01\05\07\0,\0\\\0u\00\00\02\02\0s\0t\0r\0e\0n\0g\0t\0h\0\\\0u\00\00\02\02\0:\01\0}\0,\0{\0\\\0u\00\00\02\02\0m\0o\0d\0e\0l\0V\0e\0r\0s\0i\0o\0n\0I\0d\0\\\0u\00\00\02\02\0:\01\08\06\00\07\04\07\0,\0\\\0u\00\00\02\02\0s\0t\0r\0e\0n\0g\0t\0h\0\\\0u\00\00\02\02\0:\01\0}\0,\0{\0\\\0u\00\00\02\02\0m\0o\0d\0e\0l\0V\0e\0r\0s\0i\0o\0n\0I\0d\0\\\0u\00\00\02\02\0:\01\05\05\00\08\04\00\0,\0\\\0u\00\00\02\02\0s\0t\0r\0e\0n\0g\0t\0h\0\\\0u\00\00\02\02\0:\01\0}\0,\0{\0\\\0u\00\00\02\02\0m\0o\0d\0e\0l\0V\0e\0r\0s\0i\0o\0n\0I\0d\0\\\0u\00\00\02\02\0:\01\07\06\06\06\09\01\0,\0\\\0u\00\00\02\02\0s\0t\0r\0e\0n\0g\0t\0h\0\\\0u\00\00\02\02\0:\00\0.\08\0}\0]\0}\0\"\0}" base_model: dhead/wai-nsfw-illustrious-sdxl-v140-sdxl instance_prompt: lazypos --- # Lazy Embeddings <Gallery /> ## Trigger words You should use `lazypos` to trigger the image generation. ## Download model [Download](/Novachrono93/Lazypos/tree/main) them in the Files & versions tab.
bah63843/blockassist-bc-plump_fast_antelope_1756797439
bah63843
2025-09-02T07:18:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T07:18:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
akirafudo/blockassist-bc-keen_fast_giraffe_1756797328
akirafudo
2025-09-02T07:15:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T07:15:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vendi11/blockassist-bc-placid_placid_llama_1756797268
vendi11
2025-09-02T07:15:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "placid placid llama", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T07:15:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - placid placid llama --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
erik-svensson-cm/whisper-large-v3-ct2
erik-svensson-cm
2025-09-02T07:12:30Z
0
0
null
[ "base_model:openai/whisper-large-v3", "base_model:finetune:openai/whisper-large-v3", "license:apache-2.0", "region:us" ]
null
2025-09-02T07:05:06Z
--- license: apache-2.0 base_model: - openai/whisper-large-v3 ---
csikasote/mms-1b-all-swagen-combined-15hrs-42
csikasote
2025-09-02T07:12:08Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "swagen", "mms", "generated_from_trainer", "base_model:facebook/mms-1b-all", "base_model:finetune:facebook/mms-1b-all", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-06-30T11:50:24Z
--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - automatic-speech-recognition - swagen - mms - generated_from_trainer metrics: - wer model-index: - name: mms-1b-all-swagen-combined-15hrs-42 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mms-1b-all-swagen-combined-15hrs-42 This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the SWAGEN - SWA dataset. It achieves the following results on the evaluation set: - Loss: 0.2994 - Wer: 0.2165 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 7.1631 | 0.1594 | 200 | 2.3619 | 1.0 | | 1.7227 | 0.3189 | 400 | 0.3239 | 0.2116 | | 1.297 | 0.4783 | 600 | 0.3251 | 0.2131 | | 1.2198 | 0.6377 | 800 | 0.2994 | 0.2166 | | 1.2152 | 0.7971 | 1000 | 0.3089 | 0.2197 | | 1.1905 | 0.9566 | 1200 | 0.3024 | 0.2238 | | 1.1545 | 1.1156 | 1400 | 0.3078 | 0.2279 | | 1.1572 | 1.2750 | 1600 | 0.2999 | 0.2308 | ### Framework versions - Transformers 4.53.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.0
arturkakraft/blockassist-bc-arctic_purring_camel_1756795822
arturkakraft
2025-09-02T07:09:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "arctic purring camel", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T07:09:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - arctic purring camel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Loder-S/blockassist-bc-sprightly_knobby_tiger_1756795136
Loder-S
2025-09-02T07:03:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sprightly knobby tiger", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T07:03:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sprightly knobby tiger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liukevin666/blockassist-bc-yawning_striped_cassowary_1756796474
liukevin666
2025-09-02T07:02:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T07:02:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
omerbektass/blockassist-bc-keen_fast_giraffe_1756796472
omerbektass
2025-09-02T07:01:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T07:01:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
matherchodhuuu/blockassist-bc-lightfooted_skilled_chameleon_1756796416
matherchodhuuu
2025-09-02T07:01:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lightfooted skilled chameleon", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T07:01:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lightfooted skilled chameleon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756796430
bah63843
2025-09-02T07:01:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T07:01:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Novachrono93/Lazyneg
Novachrono93
2025-09-02T06:59:26Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:dhead/wai-nsfw-illustrious-sdxl-v140-sdxl", "base_model:adapter:dhead/wai-nsfw-illustrious-sdxl-v140-sdxl", "region:us" ]
text-to-image
2025-09-02T06:59:20Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - output: url: images/1000041480.jpg text: "UNICODE\0\0{\0\"\02\03\0\"\0:\0{\0\"\0c\0l\0a\0s\0s\0_\0t\0y\0p\0e\0\"\0:\0\"\0U\0p\0s\0c\0a\0l\0e\0M\0o\0d\0e\0l\0L\0o\0a\0d\0e\0r\0\"\0,\0\"\0i\0n\0p\0u\0t\0s\0\"\0:\0{\0\"\0m\0o\0d\0e\0l\0_\0n\0a\0m\0e\0\"\0:\0\"\0u\0r\0n\0:\0a\0i\0r\0:\0o\0t\0h\0e\0r\0:\0u\0p\0s\0c\0a\0l\0e\0r\0:\0c\0i\0v\0i\0t\0a\0i\0:\01\04\07\07\05\09\0@\01\06\04\08\02\01\0\"\0}\0,\0\"\0_\0m\0e\0t\0a\0\"\0:\0{\0\"\0t\0i\0t\0l\0e\0\"\0:\0\"\0L\0o\0a\0d\0 \0U\0p\0s\0c\0a\0l\0e\0 \0M\0o\0d\0e\0l\0\"\0}\0}\0,\0\"\02\06\0\"\0:\0{\0\"\0c\0l\0a\0s\0s\0_\0t\0y\0p\0e\0\"\0:\0\"\0L\0o\0a\0d\0I\0m\0a\0g\0e\0\"\0,\0\"\0i\0n\0p\0u\0t\0s\0\"\0:\0{\0\"\0i\0m\0a\0g\0e\0\"\0:\0\"\0h\0t\0t\0p\0s\0:\0/\0/\0o\0r\0c\0h\0e\0s\0t\0r\0a\0t\0i\0o\0n\0.\0c\0i\0v\0i\0t\0a\0i\0.\0c\0o\0m\0/\0v\02\0/\0c\0o\0n\0s\0u\0m\0e\0r\0/\0b\0l\0o\0b\0s\0/\0K\0G\0K\06\0Z\0J\00\0F\00\0Y\0C\0Q\0W\0T\0G\0M\0E\0K\0M\0B\0H\0Q\0K\0K\0R\00\0\"\0,\0\"\0u\0p\0l\0o\0a\0d\0\"\0:\0\"\0i\0m\0a\0g\0e\0\"\0}\0,\0\"\0_\0m\0e\0t\0a\0\"\0:\0{\0\"\0t\0i\0t\0l\0e\0\"\0:\0\"\0L\0o\0a\0d\0 \0I\0m\0a\0g\0e\0\"\0}\0}\0,\0\"\02\02\0\"\0:\0{\0\"\0c\0l\0a\0s\0s\0_\0t\0y\0p\0e\0\"\0:\0\"\0I\0m\0a\0g\0e\0U\0p\0s\0c\0a\0l\0e\0W\0i\0t\0h\0M\0o\0d\0e\0l\0\"\0,\0\"\0i\0n\0p\0u\0t\0s\0\"\0:\0{\0\"\0u\0p\0s\0c\0a\0l\0e\0_\0m\0o\0d\0e\0l\0\"\0:\0[\0\"\02\03\0\"\0,\00\0]\0,\0\"\0i\0m\0a\0g\0e\0\"\0:\0[\0\"\02\06\0\"\0,\00\0]\0}\0,\0\"\0_\0m\0e\0t\0a\0\"\0:\0{\0\"\0t\0i\0t\0l\0e\0\"\0:\0\"\0U\0p\0s\0c\0a\0l\0e\0 \0I\0m\0a\0g\0e\0 \0(\0u\0s\0i\0n\0g\0 \0M\0o\0d\0e\0l\0)\0\"\0}\0}\0,\0\"\02\04\0\"\0:\0{\0\"\0c\0l\0a\0s\0s\0_\0t\0y\0p\0e\0\"\0:\0\"\0I\0m\0a\0g\0e\0S\0c\0a\0l\0e\0\"\0,\0\"\0i\0n\0p\0u\0t\0s\0\"\0:\0{\0\"\0u\0p\0s\0c\0a\0l\0e\0_\0m\0e\0t\0h\0o\0d\0\"\0:\0\"\0b\0i\0l\0i\0n\0e\0a\0r\0\"\0,\0\"\0c\0r\0o\0p\0\"\0:\0\"\0d\0i\0s\0a\0b\0l\0e\0d\0\"\0,\0\"\0w\0i\0d\0t\0h\0\"\0:\02\02\04\00\0,\0\"\0h\0e\0i\0g\0h\0t\0\"\0:\03\08\04\00\0,\0\"\0i\0m\0a\0g\0e\0\"\0:\0[\0\"\02\02\0\"\0,\00\0]\0}\0,\0\"\0_\0m\0e\0t\0a\0\"\0:\0{\0\"\0t\0i\0t\0l\0e\0\"\0:\0\"\0U\0p\0s\0c\0a\0l\0e\0 \0I\0m\0a\0g\0e\0\"\0}\0}\0,\0\"\01\02\0\"\0:\0{\0\"\0c\0l\0a\0s\0s\0_\0t\0y\0p\0e\0\"\0:\0\"\0S\0a\0v\0e\0I\0m\0a\0g\0e\0\"\0,\0\"\0i\0n\0p\0u\0t\0s\0\"\0:\0{\0\"\0f\0i\0l\0e\0n\0a\0m\0e\0_\0p\0r\0e\0f\0i\0x\0\"\0:\0\"\0C\0o\0m\0f\0y\0U\0I\0\"\0,\0\"\0i\0m\0a\0g\0e\0s\0\"\0:\0[\0\"\02\04\0\"\0,\00\0]\0}\0,\0\"\0_\0m\0e\0t\0a\0\"\0:\0{\0\"\0t\0i\0t\0l\0e\0\"\0:\0\"\0S\0a\0v\0e\0 \0I\0m\0a\0g\0e\0\"\0}\0}\0,\0\"\0e\0x\0t\0r\0a\0\"\0:\0{\0\"\0a\0i\0r\0s\0\"\0:\0[\0\"\0u\0r\0n\0:\0a\0i\0r\0:\0o\0t\0h\0e\0r\0:\0u\0p\0s\0c\0a\0l\0e\0r\0:\0c\0i\0v\0i\0t\0a\0i\0:\01\04\07\07\05\09\0@\01\06\04\08\02\01\0\"\0]\0}\0,\0\"\0e\0x\0t\0r\0a\0M\0e\0t\0a\0d\0a\0t\0a\0\"\0:\0\"\0{\0\\\0u\00\00\02\02\0p\0r\0o\0m\0p\0t\0\\\0u\00\00\02\02\0:\0\\\0u\00\00\02\02\0l\0a\0z\0y\0p\0o\0s\0,\0 \0b\0e\0s\0t\0 \0q\0u\0a\0l\0i\0t\0y\0,\0 \0r\0e\0f\0i\0n\0e\0d\0 \0d\0e\0t\0a\0i\0l\0e\0d\0,\0 \0h\0i\0g\0h\0 \0q\0u\0a\0l\0i\0t\0y\0,\0 \0h\0i\0g\0h\0r\0e\0s\0,\0 \0c\0i\0n\0e\0m\0a\0t\0i\0c\0 \0l\0i\0g\0h\0t\0i\0n\0g\0,\0 \0a\0b\0s\0u\0r\0d\0r\0e\0s\0,\0 \08\0k\0,\0 \0d\0e\0t\0a\0i\0l\0e\0d\0,\0 \0h\0i\0g\0h\0e\0s\0t\0 \0d\0e\0f\0i\0n\0i\0t\0i\0o\0n\0,\0 \0h\0i\0g\0h\0 \0r\0e\0s\0o\0l\0u\0t\0i\0o\0n\0,\0 \0s\0c\0e\0n\0e\0r\0y\0,\0 \0s\0o\0u\0r\0c\0e\0_\0a\0n\0i\0m\0e\0,\0 \0a\0b\0s\0u\0r\0d\0_\0r\0e\0s\0,\0 \0m\0a\0s\0t\0e\0r\0p\0i\0e\0c\0e\0,\0 \0b\0e\0s\0t\0 \0q\0u\0a\0l\0i\0t\0y\0,\0h\0i\0g\0h\0 \0q\0u\0a\0l\0i\0t\0y\0,\0 \0n\0e\0w\0e\0s\0t\0,\0 \0h\0i\0g\0h\0r\0e\0s\0,\08\0K\0,\0H\0D\0R\0,\0a\0b\0s\0u\0r\0d\0r\0e\0s\0,\04\0u\0r\04\0_\0i\0l\0l\0u\0,\0s\0h\0i\0n\0y\0,\0 \04\0u\0r\04\0_\0i\0l\0l\0u\0,\01\0g\0i\0r\0l\0,\0 \0h\0a\0i\0r\0 \0o\0r\0n\0a\0m\0e\0n\0t\0,\0 \0w\0e\0a\0p\0o\0n\0,\0 \0h\0a\0i\0r\0 \0f\0l\0o\0w\0e\0r\0,\0 \0s\0w\0o\0r\0d\0,\0 \0h\0o\0l\0d\0i\0n\0g\0,\0 \0f\0l\0o\0w\0e\0r\0,\0 \0j\0a\0p\0a\0n\0e\0s\0e\0 \0c\0l\0o\0t\0h\0e\0s\0,\0 \0s\0o\0l\0o\0,\0 \0k\0i\0m\0o\0n\0o\0,\0 \0b\0l\0a\0c\0k\0 \0h\0a\0i\0r\0,\0 \0l\0o\0o\0k\0i\0n\0g\0 \0a\0t\0 \0v\0i\0e\0w\0e\0r\0,\0 \0h\0o\0l\0d\0i\0n\0g\0 \0w\0e\0a\0p\0o\0n\0,\0 \0h\0o\0l\0d\0i\0n\0g\0 \0s\0w\0o\0r\0d\0,\0 \0f\0l\0o\0r\0a\0l\0 \0p\0r\0i\0n\0t\0,\0 \0k\0a\0t\0a\0n\0a\0,\0 \0r\0i\0n\0g\0,\0 \0b\0a\0n\0g\0s\0,\0 \0j\0e\0w\0e\0l\0r\0y\0,\0 \0b\0l\0u\0e\0 \0e\0y\0e\0s\0,\0 \0l\0o\0n\0g\0 \0h\0a\0i\0r\0,\0 \0c\0l\0o\0s\0e\0d\0 \0m\0o\0u\0t\0h\0,\0 \0b\0l\0u\0s\0h\0,\0 \0g\0l\0i\0n\0t\0,\0 \0p\0e\0t\0a\0l\0s\0,\0 \0l\0o\0n\0g\0 \0s\0l\0e\0e\0v\0e\0s\0,\0 \0r\0e\0d\0 \0k\0i\0m\0o\0n\0o\0,\0 \0b\0l\0a\0c\0k\0 \0b\0a\0c\0k\0g\0r\0o\0u\0n\0d\0,\0 \0w\0i\0d\0e\0 \0s\0l\0e\0e\0v\0e\0s\0,\0 \0b\0o\0o\0t\0s\0,\0 \0o\0b\0i\0,\0m\0o\0t\0i\0o\0n\0 \0b\0l\0u\0r\0,\0 \0d\0y\0n\0a\0m\0i\0c\0 \0p\0o\0s\0e\0,\0 \0d\0y\0n\0a\0m\0i\0c\0 \0c\0o\0m\0p\0o\0s\0i\0t\0i\0o\0n\0,\0d\0u\0t\0c\0h\0 \0a\0n\0g\0l\0e\0,\0 \0d\0e\0p\0t\0h\0 \0o\0f\0 \0f\0i\0e\0l\0d\0,\0w\0h\0i\0t\0e\0_\0t\0h\0e\0m\0e\0,\0d\0e\0t\0a\0i\0l\0e\0d\0 \0b\0a\0c\0k\0g\0r\0o\0u\0d\0,\0f\0o\0r\0e\0s\0h\0o\0r\0t\0e\0n\0i\0n\0g\0,\0b\0l\0u\0r\0r\0y\0 \0e\0d\0g\0e\0s\0,\0(\0(\04\0k\0,\08\0k\0,\0U\0l\0t\0r\0a\0 \0H\0D\0)\0)\0,\0 \0(\0(\0M\0a\0s\0t\0e\0r\0p\0i\0e\0c\0e\0 \0:\01\0.\02\0)\0)\0,\0(\0(\0B\0e\0s\0t\0 \0q\0u\0a\0l\0i\0t\0y\0 \0:\01\0.\02\0)\0)\0,\0(\0(\0D\0e\0t\0a\0i\0l\0e\0d\0 \0:\01\0.\04\0)\0)\0,\0(\0(\0d\0y\0n\0a\0m\0i\0c\0 \0p\0o\0s\0e\0:\01\0.\04\0)\0)\0,\0(\0(\0D\0e\0t\0a\0i\0l\0e\0d\0 \0b\0a\0c\0k\0g\0r\0o\0u\0n\0d\0 \0:\01\0.\04\0)\0)\0,\0 \0d\0i\0g\0i\0t\0a\0l\0 \0a\0r\0t\0,\0 \0s\0u\0r\0r\0e\0a\0l\0,\0 \0d\0y\0n\0a\0m\0i\0c\0 \0c\0o\0m\0p\0o\0s\0i\0t\0i\0o\0n\0,\0 \0b\0e\0a\0u\0t\0i\0f\0u\0l\0 \0a\0t\0m\0o\0s\0p\0h\0e\0r\0e\0,\0 \0F\0l\0a\0t\0l\0i\0n\0e\0,\0 \0F\0l\0a\0t\0 \0v\0e\0c\0t\0o\0r\0 \0i\0l\0l\0u\0s\0t\0r\0a\0t\0i\0o\0n\0\\\0u\00\00\02\02\0,\0\\\0u\00\00\02\02\0n\0e\0g\0a\0t\0i\0v\0e\0P\0r\0o\0m\0p\0t\0\\\0u\00\00\02\02\0:\0\\\0u\00\00\02\02\0l\0o\0w\0 \0q\0u\0a\0l\0i\0t\0y\0,\0 \0w\0o\0r\0s\0t\0 \0q\0u\0a\0l\0i\0t\0y\0,\0 \0n\0o\0r\0m\0a\0l\0 \0q\0u\0a\0l\0i\0t\0y\0,\0 \0j\0p\0e\0g\0 \0a\0r\0t\0i\0f\0a\0c\0t\0s\0,\0 \0s\0i\0g\0n\0a\0t\0u\0r\0e\0,\0 \0w\0a\0t\0e\0r\0m\0a\0r\0k\0,\0 \0t\0e\0x\0t\0,\0 \0e\0r\0r\0o\0r\0,\0 \0b\0l\0u\0r\0r\0y\0,\0 \0u\0g\0l\0y\0,\0 \0p\0o\0o\0r\0l\0y\0 \0d\0r\0a\0w\0n\0,\0 \0s\0k\0e\0t\0c\0h\0,\0 \0m\0o\0n\0o\0c\0h\0r\0o\0m\0e\0,\0 \0m\0u\0t\0a\0t\0e\0d\0,\0 \0e\0x\0t\0r\0a\0 \0l\0i\0m\0b\0s\0,\0 \0d\0e\0f\0o\0r\0m\0e\0d\0,\0 \0d\0i\0s\0t\0o\0r\0t\0e\0d\0 \0f\0a\0c\0e\0,\0 \0b\0a\0d\0 \0p\0r\0o\0p\0o\0r\0t\0i\0o\0n\0s\0,\0 \0o\0u\0t\0 \0o\0f\0 \0f\0o\0c\0u\0s\0,\0 \0c\0l\0o\0n\0e\0d\0 \0f\0a\0c\0e\0,\0 \0m\0u\0t\0a\0t\0e\0d\0 \0h\0a\0n\0d\0s\0,\0 \0d\0i\0s\0f\0i\0g\0u\0r\0e\0d\0,\0 \0e\0x\0t\0r\0a\0 \0a\0r\0m\0s\0,\0 \0e\0x\0t\0r\0a\0 \0l\0e\0g\0s\0,\0 \0e\0x\0t\0r\0a\0 \0f\0i\0n\0g\0e\0r\0s\0,\0 \0m\0i\0s\0s\0i\0n\0g\0 \0a\0r\0m\0s\0,\0 \0m\0i\0s\0s\0i\0n\0g\0 \0l\0e\0g\0s\0,\0 \0m\0i\0s\0s\0i\0n\0g\0 \0f\0i\0n\0g\0e\0r\0s\0,\0 \0d\0i\0s\0c\0o\0n\0n\0e\0c\0t\0e\0d\0 \0l\0i\0m\0b\0s\0,\0 \0l\0o\0n\0g\0 \0n\0e\0c\0k\0,\0 \0b\0a\0d\0 \0a\0n\0a\0t\0o\0m\0y\0,\0 \0b\0a\0d\0 \0h\0a\0n\0d\0s\0,\0 \0p\0o\0o\0r\0l\0y\0 \0d\0r\0a\0w\0n\0 \0h\0a\0n\0d\0s\0,\0 \0b\0a\0d\0 \0f\0e\0e\0t\0,\0 \0e\0x\0t\0r\0a\0 \0e\0y\0e\0s\0,\0 \0g\0l\0i\0t\0c\0h\0e\0d\0 \0e\0y\0e\0s\0,\0 \0m\0u\0t\0a\0t\0e\0d\0 \0e\0y\0e\0s\0,\0 \0c\0r\0o\0s\0s\0-\0e\0y\0e\0,\0 \0a\0s\0y\0m\0m\0e\0t\0r\0i\0c\0a\0l\0 \0e\0y\0e\0s\0,\0 \0r\0o\0u\0g\0h\0 \0s\0k\0e\0t\0c\0h\0,\0 \0d\0i\0s\0c\0o\0l\0o\0r\0e\0d\0,\0 \0l\0a\0z\0y\0n\0e\0g\0,\0 \0l\0a\0z\0y\0h\0a\0n\0d\0 \0\\\0u\00\00\02\02\0,\0\\\0u\00\00\02\02\0c\0f\0g\0S\0c\0a\0l\0e\0\\\0u\00\00\02\02\0:\04\0,\0\\\0u\00\00\02\02\0s\0a\0m\0p\0l\0e\0r\0\\\0u\00\00\02\02\0:\0\\\0u\00\00\02\02\0E\0u\0l\0e\0r\0 \0a\0\\\0u\00\00\02\02\0,\0\\\0u\00\00\02\02\0s\0e\0e\0d\0\\\0u\00\00\02\02\0:\01\03\00\04\02\04\00\07\09\00\0,\0\\\0u\00\00\02\02\0c\0l\0i\0p\0S\0k\0i\0p\0\\\0u\00\00\02\02\0:\02\0,\0\\\0u\00\00\02\02\0s\0t\0e\0p\0s\0\\\0u\00\00\02\02\0:\02\05\0,\0\\\0u\00\00\02\02\0q\0u\0a\0n\0t\0i\0t\0y\0\\\0u\00\00\02\02\0:\01\0,\0\\\0u\00\00\02\02\0a\0s\0p\0e\0c\0t\0R\0a\0t\0i\0o\0\\\0u\00\00\02\02\0:\0\\\0u\00\00\02\02\01\03\0:\01\09\0\\\0u\00\00\02\02\0,\0\\\0u\00\00\02\02\0b\0a\0s\0e\0M\0o\0d\0e\0l\0\\\0u\00\00\02\02\0:\0\\\0u\00\00\02\02\0I\0l\0l\0u\0s\0t\0r\0i\0o\0u\0s\0\\\0u\00\00\02\02\0,\0\\\0u\00\00\02\02\0w\0i\0d\0t\0h\0\\\0u\00\00\02\02\0:\07\03\06\0,\0\\\0u\00\00\02\02\0h\0e\0i\0g\0h\0t\0\\\0u\00\00\02\02\0:\01\03\00\08\0,\0\\\0u\00\00\02\02\0d\0e\0n\0o\0i\0s\0e\0\\\0u\00\00\02\02\0:\00\0.\05\05\0,\0\\\0u\00\00\02\02\0w\0o\0r\0k\0f\0l\0o\0w\0\\\0u\00\00\02\02\0:\0\\\0u\00\00\02\02\0i\0m\0g\02\0i\0m\0g\0-\0h\0i\0r\0e\0s\0\\\0u\00\00\02\02\0,\0\\\0u\00\00\02\02\0e\0x\0p\0e\0r\0i\0m\0e\0n\0t\0a\0l\0\\\0u\00\00\02\02\0:\0f\0a\0l\0s\0e\0,\0\\\0u\00\00\02\02\0p\0r\0i\0o\0r\0i\0t\0y\0\\\0u\00\00\02\02\0:\0\\\0u\00\00\02\02\0l\0o\0w\0\\\0u\00\00\02\02\0,\0\\\0u\00\00\02\02\0s\0o\0u\0r\0c\0e\0I\0m\0a\0g\0e\0\\\0u\00\00\02\02\0:\0{\0\\\0u\00\00\02\02\0u\0r\0l\0\\\0u\00\00\02\02\0:\0\\\0u\00\00\02\02\0h\0t\0t\0p\0s\0:\0/\0/\0o\0r\0c\0h\0e\0s\0t\0r\0a\0t\0i\0o\0n\0.\0c\0i\0v\0i\0t\0a\0i\0.\0c\0o\0m\0/\0v\02\0/\0c\0o\0n\0s\0u\0m\0e\0r\0/\0b\0l\0o\0b\0s\0/\01\02\08\08\06\06\02\01\05\03\09\05\06\09\09\01\07\05\06\08\03\05\08\09\02\09\05\09\04\08\09\04\02\01\05\04\05\02\02\0.\0j\0p\0g\0\\\0u\00\00\02\02\0,\0\\\0u\00\00\02\02\0w\0i\0d\0t\0h\0\\\0u\00\00\02\02\0:\07\03\06\0,\0\\\0u\00\00\02\02\0h\0e\0i\0g\0h\0t\0\\\0u\00\00\02\02\0:\01\03\00\08\0}\0,\0\\\0u\00\00\02\02\0d\0i\0s\0a\0b\0l\0e\0P\0o\0i\0\\\0u\00\00\02\02\0:\0t\0r\0u\0e\0,\0\\\0u\00\00\02\02\0p\0r\0o\0c\0e\0s\0s\0\\\0u\00\00\02\02\0:\0\\\0u\00\00\02\02\0i\0m\0g\02\0i\0m\0g\0\\\0u\00\00\02\02\0,\0\\\0u\00\00\02\02\0r\0e\0s\0o\0u\0r\0c\0e\0s\0\\\0u\00\00\02\02\0:\0[\0{\0\\\0u\00\00\02\02\0m\0o\0d\0e\0l\0V\0e\0r\0s\0i\0o\0n\0I\0d\0\\\0u\00\00\02\02\0:\01\07\07\02\06\04\05\0,\0\\\0u\00\00\02\02\0s\0t\0r\0e\0n\0g\0t\0h\0\\\0u\00\00\02\02\0:\01\0}\0,\0{\0\\\0u\00\00\02\02\0m\0o\0d\0e\0l\0V\0e\0r\0s\0i\0o\0n\0I\0d\0\\\0u\00\00\02\02\0:\01\08\00\09\05\07\05\0,\0\\\0u\00\00\02\02\0s\0t\0r\0e\0n\0g\0t\0h\0\\\0u\00\00\02\02\0:\00\0.\02\0}\0,\0{\0\\\0u\00\00\02\02\0m\0o\0d\0e\0l\0V\0e\0r\0s\0i\0o\0n\0I\0d\0\\\0u\00\00\02\02\0:\01\08\03\03\01\05\07\0,\0\\\0u\00\00\02\02\0s\0t\0r\0e\0n\0g\0t\0h\0\\\0u\00\00\02\02\0:\01\0}\0,\0{\0\\\0u\00\00\02\02\0m\0o\0d\0e\0l\0V\0e\0r\0s\0i\0o\0n\0I\0d\0\\\0u\00\00\02\02\0:\01\08\06\00\07\04\07\0,\0\\\0u\00\00\02\02\0s\0t\0r\0e\0n\0g\0t\0h\0\\\0u\00\00\02\02\0:\01\0}\0,\0{\0\\\0u\00\00\02\02\0m\0o\0d\0e\0l\0V\0e\0r\0s\0i\0o\0n\0I\0d\0\\\0u\00\00\02\02\0:\01\05\05\00\08\04\00\0,\0\\\0u\00\00\02\02\0s\0t\0r\0e\0n\0g\0t\0h\0\\\0u\00\00\02\02\0:\01\0}\0,\0{\0\\\0u\00\00\02\02\0m\0o\0d\0e\0l\0V\0e\0r\0s\0i\0o\0n\0I\0d\0\\\0u\00\00\02\02\0:\01\07\06\06\06\09\01\0,\0\\\0u\00\00\02\02\0s\0t\0r\0e\0n\0g\0t\0h\0\\\0u\00\00\02\02\0:\00\0.\08\0}\0]\0}\0\"\0}" base_model: dhead/wai-nsfw-illustrious-sdxl-v140-sdxl instance_prompt: lazyneg --- # Lazy Embeddings <Gallery /> ## Trigger words You should use `lazyneg` to trigger the image generation. ## Download model [Download](/Novachrono93/Lazyneg/tree/main) them in the Files & versions tab.
akirafudo/blockassist-bc-keen_fast_giraffe_1756796236
akirafudo
2025-09-02T06:57:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T06:57:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vendi11/blockassist-bc-placid_placid_llama_1756796130
vendi11
2025-09-02T06:56:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "placid placid llama", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T06:56:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - placid placid llama --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
omerbektass/blockassist-bc-keen_fast_giraffe_1756796118
omerbektass
2025-09-02T06:55:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T06:55:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
EmilRyd/gpt-oss-20b-aquarat-ground-truth-actually-on-policy-3e5-stylized-1000-80
EmilRyd
2025-09-02T06:55:07Z
0
0
transformers
[ "transformers", "safetensors", "gpt_oss", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-09-02T06:53:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ufal/byt5-large-akces-mate
ufal
2025-09-02T06:53:37Z
20
0
transformers
[ "transformers", "pytorch", "tf", "safetensors", "t5", "text2text-generation", "Czech", "GEC", "AKCES-GEC dataset", "text-generation", "cs", "arxiv:2506.22402", "base_model:google/byt5-large", "base_model:finetune:google/byt5-large", "license:cc-by-nc-sa-4.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-29T13:40:56Z
--- language: cs license: cc-by-nc-sa-4.0 tags: - Czech - GEC - AKCES-GEC dataset pipeline_tag: text-generation library_name: transformers base_model: google/byt5-large --- # Model Card for byt5-large-akces-mate The `byt5-large-akces-mate` model is a sequence-to-sequence model performing grammar error correction in Czech described in the paper [Refining Czech GEC: Insights from a Multi-Experiment Approach](https://arxiv.org/abs/2506.22402). It is a finetuned version of [byt5-large](https://huggingface.co/google/byt5-large) using the MATE method and the [AKCES-GEC dataset](https://hdl.handle.net/11234/1-3057). ## Model Description - **Developed by:** [Seznam.cz](https://seznam.cz) and [Charles University, MFF, ÚFAL](https://ufal.mff.cuni.cz/) - **Language(s) (NLP):** Czech - **Model type:** character-based encoder-decoder Transformer model - **Finetuned from model:** `google/byt5-large` - **Finetuned on:** - first synthetic errors generated by the MATE method (see [the paper](https://arxiv.org/abs/2506.22402)) - then the [AKCES-GEC dataset](https://hdl.handle.net/11234/1-3057) - **License:** CC BY-NC-SA 4.0 ## Model Sources - **Repository:** https://github.com/ufal/tsd2025-gec - **Paper:** [Refining Czech GEC: Insights from a Multi-Experiment Approach](https://arxiv.org/abs/2506.22402) - **Dataset:** [AKCES-GEC dataset](https://hdl.handle.net/11234/1-3057) ## Evaluation <div align="center"> <img src="https://github.com/ufal/tsd2025-gec/blob/main/figures/bubble_chart.svg?raw=true" width="75%" alt="Performance bubblechart" /> </div> | Model | Parameters | GECCC F-0.5 score | AKCES F-0.5 score | |:------|-----------:|:-----------------:|:-----------------:| | [byt5-small-geccc-mate](https://hf.co/ufal/byt5-small-geccc-mate) | 300M | 72.56 | | [byt5-base-geccc-mate](https://hf.co/ufal/byt5-base-geccc-mate) | 582M | 75.15 | | [byt5-large-geccc-mate](https://hf.co/ufal/byt5-large-geccc-mate) | 1275M | 77.01 | | [**byt5-large-akces-mate**](https://hf.co/ufal/byt5-large-akces-mate) | **1275M** | | **84.40** | | [transformer-base-geccc-mate](https://hf.co/ufal/transformer-base-geccc-mate) | 65M | 73.73 | ## Uses The model can be directly used to process space-tokenized input Czech text and produce grammar-corrected Czech text. ## How to Get Started with the Model Use the code below to get started with the model. Note that the input must be **space-tokenized**, i.e., every token (using the [UDPipe 1](https://ufal.mff.cuni.cz/udpipe/1) tokenizer [czech-pdt-ud-2.5-191206.udpipe](https://hdl.handle.net/11234/1-3131)) must be space-separated. ```python tokenizer = transformers.AutoTokenizer.from_pretrained("ufal/byt5-large-akces-mate") model = transformers.AutoModelForSeq2SeqLM.from_pretrained("ufal/byt5-large-akces-mate") batch = tokenizer(["Sveřepý šakali zavile vyly na býlí mesýc ."], return_tensors="pt") outputs = model.generate(batch.input_ids, max_length=256, num_beams=4) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) ``` ## BibTeX Citation ``` @InProceedings{10.1007/978-3-032-02551-7_7, author="Pechman, Petr and Straka, Milan and Strakov{\'a}, Jana and N{\'a}plava, Jakub", editor="Ek{\v{s}}tein, Kamil and Konop{\'i}k, Miloslav and Pra{\v{z}}{\'a}k, Ond{\v{r}}ej and P{\'a}rtl, Franti{\v{s}}ek", title="Refining Czech GEC: Insights from a Multi-experiment Approach", booktitle="Text, Speech, and Dialogue", year="2026", publisher="Springer Nature Switzerland", address="Cham", pages="64--76", isbn="978-3-032-02551-7", doi="10.1007/978-3-032-02551-7_7" } ```
ufal/byt5-large-geccc-mate
ufal
2025-09-02T06:52:47Z
11
0
transformers
[ "transformers", "pytorch", "tf", "safetensors", "t5", "text2text-generation", "Czech", "GEC", "GECCC dataset", "text-generation", "cs", "arxiv:2506.22402", "base_model:google/byt5-large", "base_model:finetune:google/byt5-large", "license:cc-by-nc-sa-4.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-29T14:26:05Z
--- language: cs license: cc-by-nc-sa-4.0 tags: - Czech - GEC - GECCC dataset pipeline_tag: text-generation library_name: transformers base_model: google/byt5-large --- # Model Card for byt5-large-geccc-mate The `byt5-large-geccc-mate` model is a sequence-to-sequence model performing grammar error correction in Czech described in the paper [Refining Czech GEC: Insights from a Multi-Experiment Approach](https://arxiv.org/abs/2506.22402). It is a finetuned version of [byt5-large](https://huggingface.co/google/byt5-large) using the MATE method and the [GECCC dataset](https://hdl.handle.net/11234/1-4861). ## Model Description - **Developed by:** [Seznam.cz](https://seznam.cz) and [Charles University, MFF, ÚFAL](https://ufal.mff.cuni.cz/) - **Language(s) (NLP):** Czech - **Model type:** character-based encoder-decoder Transformer model - **Finetuned from model:** `google/byt5-large` - **Finetuned on:** - first synthetic errors generated by the MATE method (see [the paper](https://arxiv.org/abs/2506.22402)) - then the [GECCC dataset](https://hdl.handle.net/11234/1-4861) - **License:** CC BY-NC-SA 4.0 ## Model Sources - **Repository:** https://github.com/ufal/tsd2025-gec - **Paper:** [Refining Czech GEC: Insights from a Multi-Experiment Approach](https://arxiv.org/abs/2506.22402) - **Dataset:** [GECCC dataset](https://hdl.handle.net/11234/1-4861) ## Evaluation <div align="center"> <img src="https://github.com/ufal/tsd2025-gec/blob/main/figures/bubble_chart.svg?raw=true" width="75%" alt="Performance bubblechart" /> </div> | Model | Parameters | GECCC F-0.5 score | AKCES F-0.5 score | |:------|-----------:|:-----------------:|:-----------------:| | [byt5-small-geccc-mate](https://hf.co/ufal/byt5-small-geccc-mate) | 300M | 72.56 | | [byt5-base-geccc-mate](https://hf.co/ufal/byt5-base-geccc-mate) | 582M | 75.15 | | [**byt5-large-geccc-mate**](https://hf.co/ufal/byt5-large-geccc-mate) | **1275M** | **77.01** | | [byt5-large-akces-mate](https://hf.co/ufal/byt5-large-akces-mate) | 1275M | | 84.40 | | [transformer-base-geccc-mate](https://hf.co/ufal/transformer-base-geccc-mate) | 65M | 73.73 | ## Uses The model can be directly used to process space-tokenized input Czech text and produce grammar-corrected Czech text. ## How to Get Started with the Model Use the code below to get started with the model. Note that the input must be **space-tokenized**, i.e., every token (using the [UDPipe 1](https://ufal.mff.cuni.cz/udpipe/1) tokenizer [czech-pdt-ud-2.5-191206.udpipe](https://hdl.handle.net/11234/1-3131)) must be space-separated. ```python tokenizer = transformers.AutoTokenizer.from_pretrained("ufal/byt5-large-geccc-mate") model = transformers.AutoModelForSeq2SeqLM.from_pretrained("ufal/byt5-large-geccc-mate") batch = tokenizer(["Sveřepý šakali zavile vyly na býlí mesýc ."], return_tensors="pt") outputs = model.generate(batch.input_ids, max_length=256, num_beams=4) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) ``` ## BibTeX Citation ``` @InProceedings{10.1007/978-3-032-02551-7_7, author="Pechman, Petr and Straka, Milan and Strakov{\'a}, Jana and N{\'a}plava, Jakub", editor="Ek{\v{s}}tein, Kamil and Konop{\'i}k, Miloslav and Pra{\v{z}}{\'a}k, Ond{\v{r}}ej and P{\'a}rtl, Franti{\v{s}}ek", title="Refining Czech GEC: Insights from a Multi-experiment Approach", booktitle="Text, Speech, and Dialogue", year="2026", publisher="Springer Nature Switzerland", address="Cham", pages="64--76", isbn="978-3-032-02551-7", doi="10.1007/978-3-032-02551-7_7" } ```
Rudra-madlads/blockassist-bc-jumping_swift_gazelle_1756795892
Rudra-madlads
2025-09-02T06:52:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "jumping swift gazelle", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T06:52:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - jumping swift gazelle --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liukevin666/blockassist-bc-yawning_striped_cassowary_1756795828
liukevin666
2025-09-02T06:51:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T06:51:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
LarryAIDraw/klulai_swimsuit
LarryAIDraw
2025-09-02T06:50:22Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2025-09-02T06:36:35Z
--- license: creativeml-openrail-m --- https://civitai.com/models/1841049/hk416-klukai-orgirls-frontline-2-outfit-2-cerulean-breaker
y1y2y3/third_diffusion_reduced
y1y2y3
2025-09-02T06:50:11Z
0
0
lerobot
[ "lerobot", "safetensors", "robotics", "diffusion", "dataset:y1y2y3/so101_test3", "arxiv:2303.04137", "license:apache-2.0", "region:us" ]
robotics
2025-09-02T06:13:10Z
--- datasets: y1y2y3/so101_test3 library_name: lerobot license: apache-2.0 model_name: diffusion pipeline_tag: robotics tags: - robotics - lerobot - diffusion --- # Model Card for diffusion <!-- Provide a quick summary of what the model is/does. --> [Diffusion Policy](https://huggingface.co/papers/2303.04137) treats visuomotor control as a generative diffusion process, producing smooth, multi-step action trajectories that excel at contact-rich manipulation. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash lerobot-train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash lerobot-record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
LarryAIDraw/SummerIchika
LarryAIDraw
2025-09-02T06:50:02Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2025-09-02T06:35:59Z
--- license: creativeml-openrail-m --- https://civitai.com/models/1800130/nakamasa-ichika-summer-blue-archive,还有一个米家vip内容我想看崩铁里的瑕蝶,notion上6月3号那个模好看
LarryAIDraw/dimensionalleapspell_v10
LarryAIDraw
2025-09-02T06:49:07Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2025-09-02T06:34:04Z
--- license: creativeml-openrail-m --- https://civitai.com/models/1919928/dimensionalleapspell?modelVersionId=2173057
tencent/Hunyuan-7B-Pretrain
tencent
2025-09-02T06:47:36Z
202
11
transformers
[ "transformers", "safetensors", "hunyuan_v1_dense", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-07-28T06:35:56Z
--- library_name: transformers --- <p align="center"> <img src="https://dscache.tencent-cloud.cn/upload/uploader/hunyuan-64b418fd052c033b228e04bc77bbc4b54fd7f5bc.png" width="400"/> <br> </p><p></p> <p align="center"> 🤗&nbsp;<a href="https://huggingface.co/tencent/"><b>HuggingFace</b></a>&nbsp;|&nbsp; 🤖&nbsp;<a href="https://modelscope.cn/models/Tencent-Hunyuan/Hunyuan-7B-Pretrain"><b>ModelScope</b></a>&nbsp;|&nbsp; 🪡&nbsp;<a href="https://github.com/Tencent/AngelSlim/tree/main"><b>AngelSlim</b></a> </p> <p align="center"> 🖥️&nbsp;<a href="https://hunyuan.tencent.com" style="color: red;"><b>Official Website</b></a>&nbsp;&nbsp;|&nbsp;&nbsp; 🕖&nbsp;<a href="https://cloud.tencent.com/product/hunyuan"><b>HunyuanAPI</b></a>&nbsp;&nbsp;|&nbsp;&nbsp; 🕹️&nbsp;<a href="https://hunyuan.tencent.com/"><b>Demo</b></a>&nbsp;&nbsp;&nbsp;&nbsp; </p> <p align="center"> <a href="https://github.com/Tencent-Hunyuan/Hunyuan-7B"><b>GITHUB</b></a> | <a href="https://cnb.cool/tencent/hunyuan/Hunyuan-7B"><b>cnb.cool</b></a> | <a href="https://github.com/Tencent-Hunyuan/Hunyuan-7B/blob/main/LICENSE"><b>LICENSE</b></a> | <a href="https://raw.githubusercontent.com/Tencent-Hunyuan/Hunyuan-A13B/main/assets/1751881231452.jpg"><b>WeChat</b></a> | <a href="https://discord.gg/bsPcMEtV7v"><b>Discord</b></a> </p> ## Model Introduction Hunyuan is Tencent's open-source efficient large language model series, designed for versatile deployment across diverse computational environments. From edge devices to high-concurrency production systems, these models deliver optimal performance with advanced quantization support and ultra-long context capabilities. We have released a series of Hunyuan dense models, comprising both pre-trained and instruction-tuned variants, with parameter scales of 0.5B, 1.8B, 4B, and 7B. These models adopt training strategies similar to the Hunyuan-A13B, thereby inheriting its robust performance characteristics. This comprehensive model family enables flexible deployment optimization - from resource-constrained edge computing with smaller variants to high-throughput production environments with larger models, all while maintaining strong capabilities across diverse scenarios. ### Key Features and Advantages - **Hybrid Reasoning Support**: Supports both fast and slow thinking modes, allowing users to flexibly choose according to their needs. - **Ultra-Long Context Understanding**: Natively supports a 256K context window, maintaining stable performance on long-text tasks. - **Enhanced Agent Capabilities**: Optimized for agent tasks, achieving leading results on benchmarks such as BFCL-v3, τ-Bench and C3-Bench. - **Efficient Inference**: Utilizes Grouped Query Attention (GQA) and supports multiple quantization formats, enabling highly efficient inference. ## Related News * 2025.7.30 We have open-sourced **Hunyuan-0.5B-Pretrain** , **Hunyuan-0.5B-Instruct** , **Hunyuan-1.8B-Pretrain** , **Hunyuan-1.8B-Instruct** , **Hunyuan-4B-Pretrain** , **Hunyuan-4B-Instruct** , **Hunyuan-7B-Pretrain** ,**Hunyuan-7B-Instruct** on Hugging Face. <br> ## Benchmark Note: The following benchmarks are evaluated by TRT-LLM-backend on several **base models**. | Model | Hunyuan-0.5B-Pretrain | Hunyuan-1.8B-Pretrain | Hunyuan-4B-Pretrain | Hunyuan-7B-Pretrain| |:------------------:|:---------------:|:--------------:|:-------------:|:---------------:| | MMLU | 54.02 | 64.62 | 74.01 | 79.82 | | MMLU-Redux | 54.72 | 64.42 | 73.53 | 79 | | MMLU-Pro | 31.15 | 38.65 | 51.91 | 57.79 | | SuperGPQA | 17.23 | 24.98 | 27.28 | 30.47 | | BBH | 45.92 | 74.32 | 75.17 | 82.95 | | GPQA | 27.76 | 35.81 | 43.52 | 44.07 | | GSM8K | 55.64 | 77.26 | 87.49 | 88.25 | | MATH | 42.95 | 62.85 | 72.25 | 74.85 | | EvalPlus | 39.71 | 60.67 | 67.76 | 66.96 | | MultiPL-E | 21.83 | 45.92 | 59.87 | 60.41 | | MBPP | 43.38 | 66.14 | 76.46 | 76.19 | | CRUX-O | 30.75 | 36.88 | 56.5 | 60.75 | | Chinese SimpleQA | 12.51 | 22.31 | 30.53 | 38.86 | | simpleQA (5shot) | 2.38 | 3.61 | 4.21 | 5.69 | | Topic | Bench | Hunyuan-0.5B-Instruct | Hunyuan-1.8B-Instruct | Hunyuan-4B-Instruct | Hunyuan-7B-Instruct| |:-------------------:|:----------------------------------------------------:|:-------------:|:------------:|:-----------:|:---------------------:| | **Mathematics** | AIME 2024<br>AIME 2025<br>MATH | 17.2<br>20<br>48.5 | 56.7<br>53.9<br>86 | 78.3<br>66.5<br>92.6 | 81.1<br>75.3<br>93.7 | | **Science** | GPQA-Diamond<br>OlympiadBench | 23.3<br>29.6 | 47.2<br>63.4 | 61.1<br>73.1 | 60.1<br>76.5 | | **Coding** | Livecodebench<br>Fullstackbench | 11.1<br>20.9 | 31.5<br>42 | 49.4<br>54.6 | 57<br>56.3 | | **Reasoning** | BBH<br>DROP<br>ZebraLogic | 40.3<br>52.8<br>34.5 | 64.6<br>76.7<br>74.6 | 83<br>78.2<br>83.5 | 87.8<br>85.9<br>85.1 | | **Instruction<br>Following** | IF-Eval<br>SysBench | 49.7<br>28.1 | 67.6<br>55.5 | 76.6<br>68 | 79.3<br>72.7 | | **Agent** | BFCL v3<br> τ-Bench<br>ComplexFuncBench<br> C3-Bench | 49.8<br>14.4<br>13.9<br>45.3 | 58.3<br>18.2<br>22.3<br>54.6 | 67.9<br>30.1<br>26.3<br>64.3 | 70.8<br>35.3<br>29.2<br>68.5 | | **Long<br>Context** | PenguinScrolls<br>longbench-v2<br>FRAMES | 53.9<br>34.7<br>41.9 | 73.1<br>33.2<br>55.6 | 83.1<br>44.1<br>79.2 | 82<br>43<br>78.6 | &nbsp; ### Use with transformers First, please install transformers. ```SHELL pip install "transformers>=4.56.0" ``` Our model defaults to using slow-thinking reasoning, and there are two ways to disable CoT reasoning. 1. Pass **"enable_thinking=False"** when calling apply_chat_template. 2. Adding **"/no_think"** before the prompt will force the model not to use perform CoT reasoning. Similarly, adding **"/think"** before the prompt will force the model to perform CoT reasoning. The following code snippet shows how to use the transformers library to load and apply the model. It also demonstrates how to enable and disable the reasoning mode , and how to parse the reasoning process along with the final output. we use tencent/Hunyuan-7B-Instruct for example ```python from transformers import AutoModelForCausalLM, AutoTokenizer import os import re model_name_or_path = "tencent/Hunyuan-7B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto") # You may want to use bfloat16 and/or move to GPU here messages = [ {"role": "user", "content": "Write a short summary of the benefits of regular exercise"}, ] tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True,return_tensors="pt", enable_thinking=True # Toggle thinking mode (default: True) ) outputs = model.generate(tokenized_chat.to(model.device), max_new_tokens=2048) output_text = tokenizer.decode(outputs[0]) print("output_text=",output_text) think_pattern = r'<think>(.*?)</think>' think_matches = re.findall(think_pattern, output_text, re.DOTALL) answer_pattern = r'<answer>(.*?)</answer>' answer_matches = re.findall(answer_pattern, output_text, re.DOTALL) think_content = [match.strip() for match in think_matches][0] answer_content = [match.strip() for match in answer_matches][0] print(f"thinking_content:{think_content}\n\n") print(f"answer_content:{answer_content}\n\n") ``` We recommend using the following set of parameters for inference. Note that our model does not have the default system_prompt. ```json { "do_sample": true, "top_k": 20, "top_p": 0.8, "repetition_penalty": 1.05, "temperature": 0.7 } ``` &nbsp; ### Training Data Format If you need to fine-tune our Instruct model, we recommend processing the data into the following format, corresponding to both slow-thinking and fast-thinking scenarios. ```python # think_pattern think = "" answer = "" think_pattern = f"<think>\n{think}\n</think>\n<answer>\n{answer}\n</answer>" # fast think pattern messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "/no_think海水为什么是咸的" }, {"role": "assistant", "content": "<think>\n\n</think>\n<answer>\n海水是咸的主要是因为其中含有许多溶解在水中的盐类和矿物质。这些盐类和矿物质来自于地球表面的岩石和土壤中的化学物质,随着时间的推移,它们被带到了海洋中。当海水蒸发时,水分蒸发掉了,但盐类和矿物质仍然留在水中,导致海水变得更加咸味。因此,海水的咸度是由其中的盐类和矿物质的含量决定的。\n</answer>"} ] # slow think pattern messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "1+1=" }, {"role": "assistant", "content": "<think>\n嗯,用户问的是1加1等于多少。首先,我需要确认这是一个基本的算术问题。1加1在十进制的数学体系中,通常的结果是2。不过,可能需要考虑是否有其他情况,比如二进制或者其他数制,但用户没有特别说明,所以默认应该是十进制。另外,有时候可能会有脑筋急转弯的情况,比如在某些语境下1+1可能等于1(比如1滴水加1滴水还是1滴水),但通常数学问题中都是2。所以最准确的回答应该是2。</think>\n<answer>\n在十进制的基本算术运算中,1加1的结果是2。这是数学中最基础的加法运算之一,遵循自然数的加法规则。因此,1 + 1 = 2。\n</answer>"} ] from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("your_tokenizer_path", trust_remote_code=True) train_ids = tokenizer.apply_chat_template(messages) ``` &nbsp; ### Train with LLaMA-Factory In the following chapter, we will introduce how to use `LLaMA-Factory` to fine-tune the `Hunyuan` model. #### Prerequisites Verify installation of the following dependencies: - **LLaMA-Factory**: Follow [official installation guide](https://github.com/hiyouga/LLaMA-Factory) - **DeepSpeed** (optional): Follow [official installation guide](https://github.com/deepspeedai/DeepSpeed#installation) - **Transformer Library**: Use the companion branch (Hunyuan-submitted code is pending review) ``` pip install git+https://github.com/huggingface/transformers@4970b23cedaf745f963779b4eae68da281e8c6ca ``` #### Data preparation We need to prepare a custom dataset: 1. Organize your data in `json` format and place it in the `data` directory in `LLaMA-Factory`. The current implementation uses the `sharegpt` dataset format, which requires the following structure: ``` [ { "messages": [ { "role": "system", "content": "System prompt (optional)" }, { "role": "user", "content": "Human instruction" }, { "role": "assistant", "content": "Model response" } ] } ] ``` Refer to the [Data Format](#training-data-format) section mentioned earlier for details. 2. Define your dataset in the data/dataset_info.json file using the following format: ``` "dataset_name": { "file_name": "dataset.json", "formatting": "sharegpt", "columns": { "messages": "messages" }, "tags": { "role_tag": "role", "content_tag": "content", "user_tag": "user", "assistant_tag": "assistant", "system_tag": "system" } } ``` #### Training execution 1. Copy all files from the `train/llama_factory_support/example_configs` directory to the `example/hunyuan` directory in `LLaMA-Factory`. 2. Modify the model path and dataset name in the configuration file `hunyuan_full.yaml`. Adjust other configurations as needed: ``` ### model model_name_or_path: [!!!add the model path here!!!] ### dataset dataset: [!!!add the dataset name here!!!] ``` 3. Execute training commands: *​​Single-node training​​ Note: Set the environment variable DISABLE_VERSION_CHECK to 1 to avoid version conflicts. ``` export DISABLE_VERSION_CHECK=1 llamafactory-cli train examples/hunyuan/hunyuan_full.yaml ``` *Multi-node training​​ Execute the following command on each node. Configure NNODES, NODE_RANK, MASTER_ADDR, and MASTER_PORT according to your environment: ``` export DISABLE_VERSION_CHECK=1 FORCE_TORCHRUN=1 NNODES=${NNODES} NODE_RANK=${NODE_RANK} MASTER_ADDR=${MASTER_ADDR} MASTER_PORT=${MASTER_PORT} \ llamafactory-cli train examples/hunyuan/hunyuan_full.yaml ``` &nbsp; ## Quantization Compression We used our own [AngleSlim](https://github.com/tencent/AngelSlim) compression tool to produce FP8 and INT4 quantization models. `AngleSlim` is a toolset dedicated to creating a more user-friendly, comprehensive and efficient model compression solution. ### FP8 Quantization We use FP8-static quantization, FP8 quantization adopts 8-bit floating point format, through a small amount of calibration data (without training) to pre-determine the quantization scale, the model weights and activation values will be converted to FP8 format, to improve the inference efficiency and reduce the deployment threshold. We you can use AngleSlim quantization, you can also directly download our quantization completed open source model to use [LINK](https://huggingface.co/). ### Int4 Quantization We use the GPTQ and AWQ algorithm to achieve W4A16 quantization. GPTQ processes the model weights layer by layer, uses a small amount of calibration data to minimize the reconfiguration error of the quantized weights, and adjusts the weights layer by layer by the optimization process of approximating the Hessian inverse matrix. The process eliminates the need to retrain the model and requires only a small amount of calibration data to quantize the weights, improving inference efficiency and lowering the deployment threshold. AWQ using a small amount of calibration data (without the need for training), the amplitude of the activation values is statistically calculated. For each weight channel, a scaling coefficient s is computed to expand the numerical range of important weights, allowing more information to be retained during quantization. You can use [AngleSlim](https://github.com/tencent/AngelSlim) quantization, you can also directly download our quantization completed open source model to use [LINK](https://huggingface.co/). #### Quantization Benchmark This subsection describes the Benchmark metrics for the Hunyuan quantitative model. | Bench | Quantization | Hunyuan-0.5B-Instruct | Hunyuan-1.8B-Instruct | Hunyuan-4B-Instruct | Hunyuan-7B-Instruct | |:-------------:|:---------------------------------:|:----------------------------:|:------------------------------:|:----------------------------:|:----------------------------:| | DROP | B16<br>FP8<br>Int4GPTQ<br>Int4AWQ | 52.8<br>51.6<br>50.9<br>48.9 | 76.7<br>75.1<br>73.0<br>71.7 | 78.2<br>78.3<br>78.1<br>78.2 | 85.9<br>86.0<br>85.7<br>85.9 | | GPQA-Diamond | B16<br>FP8<br>Int4GPTQ<br>Int4AWQ | 23.3<br>22.5<br>23.3<br>23.3 | 47.2<br>47.7<br>44.43<br>43.62 | 61.1<br>60.2<br>58.1<br>- | 60.1<br>60.1<br>60.0<br>60.1 | | OlympiadBench | B16<br>FP8<br>Int4GPTQ<br>Int4AWQ | 29.6<br>29.6<br>26.8<br>26.3 | 63.4<br>62.5<br>60.9<br>61.7 | 73.1<br>73.1<br>71.1<br>71.2 | 76.5<br>76.6<br>76.2<br>76.4 | | AIME 2024 | B16<br>FP8<br>Int4GPTQ<br>Int4AWQ | 17.2<br>17.2<br>-<br>- | 56.7<br>55.17<br>-<br>- | 78.3<br>76.6<br>-<br>- | 81.1<br>80.9<br>81.0<br>80.9 | ## Deployment For deployment, you can use frameworks such as **TensorRT-LLM**, **vLLM**, or **SGLang** to serve the model and create an OpenAI-compatible API endpoint. image: https://hub.docker.com/r/hunyuaninfer/hunyuan-7B/tags ### TensorRT-LLM #### Docker Image We provide a pre-built Docker image based on the latest version of TensorRT-LLM. We use tencent/Hunyuan-7B-Instruct for example - To get started: https://hub.docker.com/r/hunyuaninfer/hunyuan-large/tags ``` docker pull hunyuaninfer/hunyuan-7B:hunyuan-moe-7B-trtllm ``` ``` docker run --privileged --user root --name hunyuanLLM_infer --rm -it --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 --gpus=all hunyuaninfer/hunyuan-7B:hunyuan-moe-7B-trtllm ``` - Prepare Configuration file: ``` cat >/path/to/extra-llm-api-config.yml <<EOF use_cuda_graph: true cuda_graph_padding_enabled: true cuda_graph_batch_sizes: - 1 - 2 - 4 - 8 - 16 - 32 print_iter_log: true EOF ``` - Start the API server: ``` trtllm-serve \ /path/to/HunYuan-moe-7B \ --host localhost \ --port 8000 \ --backend pytorch \ --max_batch_size 32 \ --max_num_tokens 16384 \ --tp_size 2 \ --kv_cache_free_gpu_memory_fraction 0.6 \ --trust_remote_code \ --extra_llm_api_options /path/to/extra-llm-api-config.yml ``` ### vllm #### Start Please use vLLM version v0.10.0 or higher for inference. We use tencent/Hunyuan-7B-Instruct for example - Download Model file: - Huggingface: will download automicly by vllm. - ModelScope: `modelscope download --model Tencent-Hunyuan/Hunyuan-7B-Instruct` - model download by huggingface: ```shell export MODEL_PATH=tencent/Hunyuan-7B-Instruct ``` - model downloaded by modelscope: ```shell export MODEL_PATH=/root/.cache/modelscope/hub/models/Tencent-Hunyuan/Hunyuan-7B-Instruct/ ``` - Start the API server: ```shell python3 -m vllm.entrypoints.openai.api_server \ --host 0.0.0.0 \ --port 8000 \ --trust-remote-code \ --model ${MODEL_PATH} \ --tensor-parallel-size 1 \ --dtype bfloat16 \ --quantization experts_int8 \ --served-model-name hunyuan \ 2>&1 | tee log_server.txt ``` - After running service script successfully, run the request script ```shell curl http://0.0.0.0:8000/v1/chat/completions -H 'Content-Type: application/json' -d '{ "model": "hunyuan", "messages": [ { "role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}] }, { "role": "user", "content": [{"type": "text", "text": "请按面积大小对四大洋进行排序,并给出面积最小的洋是哪一个?直接输出结果。"}] } ], "max_tokens": 2048, "temperature":0.7, "top_p": 0.6, "top_k": 20, "repetition_penalty": 1.05, "stop_token_ids": [127960] }' ``` #### Quantitative model deployment This section describes the process of deploying a post-quantization model using vLLM. Default server in BF16. ##### Int8 quantitative model deployment Deploying the Int8-weight-only version of the HunYuan-7B model only requires setting the environment variables Next we start the Int8 service. Run: ```shell python3 -m vllm.entrypoints.openai.api_server \ --host 0.0.0.0 \ --port 8000 \ --trust-remote-code \ --model ${MODEL_PATH} \ --tensor-parallel-size 1 \ --dtype bfloat16 \ --served-model-name hunyuan \ --quantization experts_int8 \ 2>&1 | tee log_server.txt ``` ##### Int4 quantitative model deployment Deploying the Int4-weight-only version of the HunYuan-7B model only requires setting the environment variables , using the GPTQ method ```shell export MODEL_PATH=PATH_TO_INT4_MODEL ``` Next we start the Int4 service. Run ```shell python3 -m vllm.entrypoints.openai.api_server \ --host 0.0.0.0 \ --port 8000 \ --trust-remote-code \ --model ${MODEL_PATH} \ --tensor-parallel-size 1 \ --dtype bfloat16 \ --served-model-name hunyuan \ --quantization gptq_marlin \ 2>&1 | tee log_server.txt ``` ##### FP8 quantitative model deployment Deploying the W8A8C8 version of the HunYuan-7B model only requires setting the environment variables Next we start the FP8 service. Run ```shell python3 -m vllm.entrypoints.openai.api_server \ --host 0.0.0.0 \ --port 8000 \ --trust-remote-code \ --model ${MODEL_PATH} \ --tensor-parallel-size 1 \ --dtype bfloat16 \ --served-model-name hunyuan \ --kv-cache-dtype fp8 \ 2>&1 | tee log_server.txt ``` ### SGLang #### Docker Image We also provide a pre-built Docker image based on the latest version of SGLang. We use tencent/Hunyuan-7B-Instruct for example To get started: - Pull the Docker image ``` docker pull lmsysorg/sglang:latest ``` - Start the API server: ``` docker run --entrypoint="python3" --gpus all \ --shm-size 32g \ -p 30000:30000 \ --ulimit nproc=10000 \ --privileged \ --ipc=host \ lmsysorg/sglang:latest \ -m sglang.launch_server --model-path hunyuan/huanyuan_7B --tp 4 --trust-remote-code --host 0.0.0.0 --port 30000 ``` ## Contact Us If you would like to leave a message for our R&D and product teams, Welcome to contact our open-source team . You can also contact us via email (hunyuan_opensource@tencent.com).
omerbkts/blockassist-bc-keen_fast_giraffe_1756795612
omerbkts
2025-09-02T06:47:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T06:47:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Sonic-man/blockassist-bc-poisonous_graceful_cow_1756793366
Sonic-man
2025-09-02T06:46:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "poisonous graceful cow", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T06:46:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - poisonous graceful cow --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ufal/byt5-base-geccc-mate
ufal
2025-09-02T06:46:09Z
16
0
transformers
[ "transformers", "pytorch", "tf", "safetensors", "t5", "text2text-generation", "Czech", "GEC", "GECCC dataset", "text-generation", "cs", "arxiv:2506.22402", "base_model:google/byt5-base", "base_model:finetune:google/byt5-base", "license:cc-by-nc-sa-4.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-29T14:23:08Z
--- language: cs license: cc-by-nc-sa-4.0 tags: - Czech - GEC - GECCC dataset pipeline_tag: text-generation library_name: transformers base_model: google/byt5-base --- # Model Card for byt5-base-geccc-mate The `byt5-base-geccc-mate` model is a sequence-to-sequence model performing grammar error correction in Czech described in the paper [Refining Czech GEC: Insights from a Multi-Experiment Approach](https://arxiv.org/abs/2506.22402). It is a finetuned version of [byt5-base](https://huggingface.co/google/byt5-base) using the MATE method and the [GECCC dataset](https://hdl.handle.net/11234/1-4861). ## Model Description - **Developed by:** [Seznam.cz](https://seznam.cz) and [Charles University, MFF, ÚFAL](https://ufal.mff.cuni.cz/) - **Language(s) (NLP):** Czech - **Model type:** character-based encoder-decoder Transformer model - **Finetuned from model:** `google/byt5-base` - **Finetuned on:** - first synthetic errors generated by the MATE method (see [the paper](https://arxiv.org/abs/2506.22402)) - then the [GECCC dataset](https://hdl.handle.net/11234/1-4861) - **License:** CC BY-NC-SA 4.0 ## Model Sources - **Repository:** https://github.com/ufal/tsd2025-gec - **Paper:** [Refining Czech GEC: Insights from a Multi-Experiment Approach](https://arxiv.org/abs/2506.22402) - **Dataset:** [GECCC dataset](https://hdl.handle.net/11234/1-4861) ## Evaluation <div align="center"> <img src="https://github.com/ufal/tsd2025-gec/blob/main/figures/bubble_chart.svg?raw=true" width="75%" alt="Performance bubblechart" /> </div> | Model | Parameters | GECCC F-0.5 score | AKCES F-0.5 score | |:------|-----------:|:-----------------:|:-----------------:| | [byt5-small-geccc-mate](https://hf.co/ufal/byt5-small-geccc-mate) | 300M | 72.56 | | [**byt5-base-geccc-mate**](https://hf.co/ufal/byt5-base-geccc-mate) | **582M** | **75.15** | | [byt5-large-geccc-mate](https://hf.co/ufal/byt5-large-geccc-mate) | 1275M | 77.01 | | [byt5-large-akces-mate](https://hf.co/ufal/byt5-large-akces-mate) | 1275M | | 84.40 | | [transformer-base-geccc-mate](https://hf.co/ufal/transformer-base-geccc-mate) | 65M | 73.73 | ## Uses The model can be directly used to process space-tokenized input Czech text and produce grammar-corrected Czech text. ## How to Get Started with the Model Use the code below to get started with the model. Note that the input must be **space-tokenized**, i.e., every token (using the [UDPipe 1](https://ufal.mff.cuni.cz/udpipe/1) tokenizer [czech-pdt-ud-2.5-191206.udpipe](https://hdl.handle.net/11234/1-3131)) must be space-separated. ```python tokenizer = transformers.AutoTokenizer.from_pretrained("ufal/byt5-base-geccc-mate") model = transformers.AutoModelForSeq2SeqLM.from_pretrained("ufal/byt5-base-geccc-mate") batch = tokenizer(["Sveřepý šakali zavile vyly na býlí mesýc ."], return_tensors="pt") outputs = model.generate(batch.input_ids, max_length=256, num_beams=4) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) ``` ## BibTeX Citation ``` @InProceedings{10.1007/978-3-032-02551-7_7, author="Pechman, Petr and Straka, Milan and Strakov{\'a}, Jana and N{\'a}plava, Jakub", editor="Ek{\v{s}}tein, Kamil and Konop{\'i}k, Miloslav and Pra{\v{z}}{\'a}k, Ond{\v{r}}ej and P{\'a}rtl, Franti{\v{s}}ek", title="Refining Czech GEC: Insights from a Multi-experiment Approach", booktitle="Text, Speech, and Dialogue", year="2026", publisher="Springer Nature Switzerland", address="Cham", pages="64--76", isbn="978-3-032-02551-7", doi="10.1007/978-3-032-02551-7_7" } ```
omerbkts/blockassist-bc-keen_fast_giraffe_1756795262
omerbkts
2025-09-02T06:41:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T06:41:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aXsalll/blockassist-bc-chattering_galloping_ape_1756795212
aXsalll
2025-09-02T06:41:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "chattering galloping ape", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T06:40:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - chattering galloping ape --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
meetrathi97/isec_llama3.2_iteration_4
meetrathi97
2025-09-02T06:41:11Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-02T06:39:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
vansh-khaneja/Llama-2-7b-chat-finetune
vansh-khaneja
2025-09-02T06:39:33Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-02T06:37:01Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
vennertou/blockassist-bc-pudgy_nimble_bobcat_1756795138
vennertou
2025-09-02T06:39:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pudgy nimble bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T06:38:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pudgy nimble bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
akirafudo/blockassist-bc-keen_fast_giraffe_1756795132
akirafudo
2025-09-02T06:39:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T06:39:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
matherchodhuuu/blockassist-bc-lightfooted_skilled_chameleon_1756795021
matherchodhuuu
2025-09-02T06:38:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lightfooted skilled chameleon", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T06:38:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lightfooted skilled chameleon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pidbu/blockassist-bc-whistling_alert_shrew_1756794984
pidbu
2025-09-02T06:37:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "whistling alert shrew", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T06:37:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - whistling alert shrew --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
omerbektass/blockassist-bc-keen_fast_giraffe_1756794624
omerbektass
2025-09-02T06:30:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T06:30:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
allenai/MolmoAct-7B-D-Pretrain-0812
allenai
2025-09-02T06:30:41Z
790
8
transformers
[ "transformers", "safetensors", "molmoact", "image-text-to-text", "molmo", "olmo", "reasoning", "vla", "robotics", "manipulation", "custom_code", "en", "arxiv:2508.07917", "base_model:Qwen/Qwen2.5-7B", "base_model:finetune:Qwen/Qwen2.5-7B", "license:apache-2.0", "region:us" ]
robotics
2025-08-09T05:16:59Z
--- license: apache-2.0 language: - en base_model: - Qwen/Qwen2.5-7B - google/siglip2-so400m-patch14-384 library_name: transformers tags: - molmoact - molmo - olmo - reasoning - vla - robotics - manipulation paper: 2508.07917 --- <img src="molmoact_logo.svg" alt="MolmoAct Logo" style="width: auto; height: 50px;"> # MolmoAct 7B-D Pretrain MolmoAct is a fully open-source action reasoning model for robotic manipulation developed by the Allen Institute for AI. MolmoAct is trained on a subset of OXE and MolmoAct Dataset, a dataset with 10k high-quality trajectories of a single-arm Franka robot performing 93 unique manipulation tasks in both home and tabletop environments. It has state-of-the-art performance among vision-language-action models on multiple benchmarks while being fully open-source. You can find all models in the MolmoAct family [here](https://huggingface.co/collections/allenai/molmoact-689697591a3936fba38174d7). **Learn more about MolmoAct** in our announcement [blog post](https://allenai.org/blog/molmoact) or the [paper](https://arxiv.org/abs/2508.07917). **MolmoAct 7B-D Pretrain** is based on [Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) and uses [SigLip2](https://huggingface.co/google/siglip2-so400m-patch14-384) as the vision backbone, which is initialized using Molmo's pre-training approach. It is pre-trained on MolmoAct's [Pre-training Mixture](https://huggingface.co/datasets/allenai/MolmoAct-Pretraining-Mixture). This model is intended to be used for downstream mid-training, or for replicating our zero-shot results on SimplerEnv (Google Robot). This checkpoint is a **preview** of the MolmoAct release. All artifacts used in creating MolmoAct (data, training code, evaluations, intermediate checkpoints) will be made available at a later date, furthering our commitment to open-source AI development and reproducibility. **Update:** Checkpoints are now stored in FP32 (previously BF16). The model was trained in FP32, so publishing FP32 weights aligns with training and enables fine-tuning or continued training directly from this repo. For inference, you can still run BF16 by casting at load, which is what we did for evaluations. See more in the [instructions](#quick-start) below. Quick links: - 📂 [All Models](https://huggingface.co/collections/allenai/molmoact-689697591a3936fba38174d7) - 📂 [All Data](https://huggingface.co/collections/allenai/molmoact-data-mixture-6897e583e13b6c2cf3ea2b80) - 📃 [Paper](https://arxiv.org/abs/2508.07917) - 💻 [Code](https://github.com/allenai/MolmoAct) - 🎥 [Blog Post](https://allenai.org/blog/molmoact) - 🎥 [Video](https://youtu.be/-_wag1X25OE?si=Xi_kUaJTmcQBx1f6) ## Quick Start To run MolmoAct, first install dependencies: ```bash pip install einops torchvision accelerate pip install transformers==4.52 ``` Then, follow these steps: ```python from transformers import AutoProcessor, AutoModelForImageTextToText import torch from PIL import Image import requests from io import BytesIO ckpt = "allenai/MolmoAct-7B-D-Pretrain-0812" # load the processor processor = AutoProcessor.from_pretrained( ckpt, trust_remote_code=True, torch_dtype="bfloat16", device_map="auto", padding_side="left", ) # load the model model = AutoModelForImageTextToText.from_pretrained( ckpt, trust_remote_code=True, torch_dtype="bfloat16", device_map="auto", ) # task instruction instruction = "pick orange can" # strictly follow this reasoning prompt prompt = ( f"The task is {instruction}. " "What is the action that the robot should take. " f"To figure out the action that the robot should take to {instruction}, " "let's think through it step by step. " "First, what is the depth map for this image? " "Second, what is the trajectory of the end effector? " "Based on the depth map of the image and the trajectory of the end effector, " "what is the action that the robot should take?" ) # apply chat template text = processor.apply_chat_template( [ { "role": "user", "content": [dict(type="text", text=prompt)] } ], tokenize=False, add_generation_prompt=True, ) # image observation url = "https://huggingface.co/allenai/MolmoAct-7B-D-Pretrain-0812/resolve/main/example.png" r = requests.get(url, headers={"User-Agent": "python-requests"}, timeout=30) r.raise_for_status() img = Image.open(BytesIO(r.content)).convert("RGB") imgs = [img] # process the image and text inputs = processor( images=[imgs], text=text, padding=True, return_tensors="pt", ) # move inputs to the correct device inputs = {k: v.to(model.device) for k, v in inputs.items()} # generate output with torch.inference_mode(): with torch.autocast("cuda", enabled=True, dtype=torch.bfloat16): generated_ids = model.generate(**inputs, max_new_tokens=256) # only get generated tokens; decode them to text generated_tokens = generated_ids[:, inputs['input_ids'].size(1):] generated_text = processor.batch_decode(generated_tokens, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] # print the generated text print(f"generated text: {generated_text}") # >>> The depth map of the image is ... The trajectory of the end effector is ... # Based on these information, the action that the robot should take is ... # parse out all depth perception tokens depth = model.parse_depth(generated_text) print(f"generated depth perception tokens: {depth}") # >>> [ "<DEPTH_START><DEPTH_1><DEPTH_2>...<DEPTH_END>" ] # parse out all visual reasoning traces trace = model.parse_trace(generated_text) print(f"generated visual reasoning trace: {trace}") # >>> [ [[242, 115], [140, 77], [94, 58], [140, 44], [153, 26]]] ] # parse out all actions, unnormalizing with key of fractal20220817_data action = model.parse_action(generated_text, unnorm_key="fractal20220817_data") print(f"generated action: {action}") # >>> [ [0.0732076061122558, 0.08228153779226191, -0.027760173818644346, # 0.15932856272248652, -0.09686601126895233, 0.043916773912953344, # 0.996078431372549] ] ``` ## License and Use This model is licensed under Apache 2.0. It is intended for research and educational use. For more information, please see our [Responsible Use Guidelines](https://allenai.org/responsible-use). ## Model and Hardware Safety MolmoAct offers the ability to inspect a visual trace of its intended actions in space before they occur, allowing users to ensure safe behavior by proactively auditing and adjusting the actions of any hardware acting under the model’s instructions. MolmoAct’s action space is bounded within the data provided, and compliance is built into the model to prevent excessive force when resistance is detected. Please follow the hardware manufacturer’s guidelines when using this model with a robot and perform all operations in a safely configured environment. ## Citation ```bibtex @misc{molmoact2025, title={MolmoAct: Action Reasoning Models that can Reason in Space}, author={Jason Lee and Jiafei Duan and Haoquan Fang and Yuquan Deng and Shuo Liu and Boyang Li and Bohan Fang and Jieyu Zhang and Yi Ru Wang and Sangho Lee and Winson Han and Wilbert Pumacay and Angelica Wu and Rose Hendrix and Karen Farley and Eli VanderBilt and Ali Farhadi and Dieter Fox and Ranjay Krishna}, year={2025}, eprint={2508.07917}, archivePrefix={arXiv}, primaryClass={cs.RO}, url={https://arxiv.org/abs/2508.07917} } ```
allenai/MolmoAct-7B-O-0812
allenai
2025-09-02T06:30:23Z
155
5
transformers
[ "transformers", "safetensors", "molmoact", "image-text-to-text", "molmo", "olmo", "reasoning", "vla", "robotics", "manipulation", "custom_code", "en", "arxiv:2508.07917", "base_model:allenai/OLMo-2-1124-7B", "base_model:finetune:allenai/OLMo-2-1124-7B", "license:apache-2.0", "region:us" ]
robotics
2025-08-11T03:58:37Z
--- base_model: - allenai/OLMo-2-1124-7B - openai/clip-vit-large-patch14-336 language: - en library_name: transformers license: apache-2.0 pipeline_tag: robotics tags: - molmoact - molmo - olmo - reasoning - vla - robotics - manipulation paper: 2508.07917 --- <img src="molmoact_logo.svg" alt="MolmoAct Logo" style="width: auto; height: 50px;"> # MolmoAct 7B-O MolmoAct is a fully open-source action reasoning model for robotic manipulation developed by the Allen Institute for AI. MolmoAct is trained on a subset of OXE and MolmoAct Dataset, a dataset with 10k high-quality trajectories of a single-arm Franka robot performing 93 unique manipulation tasks in both home and tabletop environments. It has state-of-the-art performance among vision-language-action models on multiple benchmarks while being fully open-source. You can find all models in the MolmoAct family [here](https://huggingface.co/collections/allenai/molmoact-689697591a3936fba38174d7). **Learn more about MolmoAct** in our announcement [blog post](https://allenai.org/blog/molmoact) or the [paper](https://arxiv.org/abs/2508.07917). **MolmoAct 7B-O** is based on [OLMo-2-1124-7B](https://huggingface.co/allenai/OLMo-2-1124-7B) and uses [OpenAI CLIP](https://huggingface.co/openai/clip-vit-large-patch14-336) as the vision backbone, which is initialized using Molmo's pre-training approach. It is first pre-trained on MolmoAct's [Pre-training Mixture](https://huggingface.co/datasets/allenai/MolmoAct-Pretraining-Mixture), and then mid-trained on the [MolmoAct Dataset](https://huggingface.co/datasets/allenai/MolmoAct-Midtraining-Mixture). This model is intended to be used for downstream post-training. This checkpoint is a **preview** of the MolmoAct release. All artifacts used in creating MolmoAct (data, training code, evaluations, intermediate checkpoints) will be made available at a later date, furthering our commitment to open-source AI development and reproducibility. **Update:** Checkpoints are now stored in FP32 (previously BF16). The model was trained in FP32, so publishing FP32 weights aligns with training and enables fine-tuning or continued training directly from this repo. For inference, you can still run BF16 by casting at load, which is what we did for evaluations. See more in the [instructions](#quick-start) below. Quick links: - 📂 [All Models](https://huggingface.co/collections/allenai/molmoact-689697591a3936fba38174d7) - 📂 [All Data](https://huggingface.co/collections/allenai/molmoact-data-mixture-6897e583e13b6c2cf3ea2b80) - 📃 [Paper](https://arxiv.org/abs/2508.07917) - 💻 [Code](https://github.com/allenai/MolmoAct) - 🎥 [Blog Post](https://allenai.org/blog/molmoact) - 🎥 [Video](https://youtu.be/-_wag1X25OE?si=Xi_kUaJTmcQBx1f6) ## Quick Start To run MolmoAct, first install dependencies: ```bash pip install einops torchvision accelerate pip install transformers==4.52 ``` Then, follow these steps: ```python from transformers import AutoProcessor, AutoModelForImageTextToText import torch from PIL import Image import requests from io import BytesIO ckpt = "allenai/MolmoAct-7B-O-0812" # load the processor processor = AutoProcessor.from_pretrained( ckpt, trust_remote_code=True, torch_dtype="bfloat16", device_map="auto", padding_side="left", ) # load the model model = AutoModelForImageTextToText.from_pretrained( ckpt, trust_remote_code=True, torch_dtype="bfloat16", device_map="auto", ) # task instruction instruction = "close the box" # strictly follow this reasoning prompt prompt = ( f"The task is {instruction}. " "What is the action that the robot should take. " f"To figure out the action that the robot should take to {instruction}, " "let's think through it step by step. " "First, what is the depth map for the first image? " "Second, what is the trajectory of the end effector in the first image? " "Based on the depth map of the first image and the trajectory of the end effector in the first image, " "along with other images from different camera views as additional information, " "what is the action that the robot should take?" ) # apply chat template text = processor.apply_chat_template( [ { "role": "user", "content": [dict(type="text", text=prompt)] } ], tokenize=False, add_generation_prompt=True, ) # image observation (side + wrist) url1 = "https://huggingface.co/allenai/MolmoAct-7B-D-0812/resolve/main/example_1.png" url2 = "https://huggingface.co/allenai/MolmoAct-7B-D-0812/resolve/main/example_2.png" r1 = requests.get(url1, headers={"User-Agent": "python-requests"}, timeout=30) r1.raise_for_status() r2 = requests.get(url2, headers={"User-Agent": "python-requests"}, timeout=30) r2.raise_for_status() img1 = Image.open(BytesIO(r1.content)).convert("RGB") img2 = Image.open(BytesIO(r2.content)).convert("RGB") imgs = [img1, img2] # process the image and text inputs = processor( images=[imgs], text=text, padding=True, return_tensors="pt", ) # move inputs to the correct device inputs = {k: v.to(model.device) for k, v in inputs.items()} # generate output with torch.inference_mode(): with torch.autocast("cuda", enabled=True, dtype=torch.bfloat16): generated_ids = model.generate(**inputs, max_new_tokens=256) # only get generated tokens; decode them to text generated_tokens = generated_ids[:, inputs['input_ids'].size(1):] generated_text = processor.batch_decode(generated_tokens, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] # print the generated text print(f"generated text: {generated_text}") # >>> The depth map of the first image is ... The trajectory of the end effector in the first image is ... # Based on these information, along with other images from different camera views as additional information, # the action that the robot should take is ... # parse out all depth perception tokens depth = model.parse_depth(generated_text) print(f"generated depth perception tokens: {depth}") # >>> [ "<DEPTH_START><DEPTH_1><DEPTH_2>...<DEPTH_END>" ] # parse out all visual reasoning traces trace = model.parse_trace(generated_text) print(f"generated visual reasoning trace: {trace}") # >>> [ [[242, 115], [140, 77], [94, 58], [140, 44], [153, 26]]] ] # parse out all actions, unnormalizing with key of "molmoact" action = model.parse_action(generated_text, unnorm_key="molmoact") print(f"generated action: {action}") # >>> [ [0.0732076061122558, 0.08228153779226191, -0.027760173818644346, # 0.15932856272248652, -0.09686601126895233, 0.043916773912953344, # 0.996078431372549] ] ``` ## License and Use This model is licensed under Apache 2.0. It is intended for research and educational use. For more information, please see our [Responsible Use Guidelines](https://allenai.org/responsible-use). ## Model and Hardware Safety MolmoAct offers the ability to inspect a visual trace of its intended actions in space before they occur, allowing users to ensure safe behavior by proactively auditing and adjusting the actions of any hardware acting under the model’s instructions. MolmoAct’s action space is bounded within the data provided, and compliance is built into the model to prevent excessive force when resistance is detected. Please follow the hardware manufacturer’s guidelines when using this model with a robot and perform all operations in a safely configured environment. ## Citation ```bibtex @misc{molmoact2025, title={MolmoAct: Action Reasoning Models that can Reason in Space}, author={Jason Lee and Jiafei Duan and Haoquan Fang and Yuquan Deng and Shuo Liu and Boyang Li and Bohan Fang and Jieyu Zhang and Yi Ru Wang and Sangho Lee and Winson Han and Wilbert Pumacay and Angelica Wu and Rose Hendrix and Karen Farley and Eli VanderBilt and Ali Farhadi and Dieter Fox and Ranjay Krishna}, year={2025}, eprint={2508.07917}, archivePrefix={arXiv}, primaryClass={cs.RO}, url={https://arxiv.org/abs/2508.07917} } ```
vendi11/blockassist-bc-placid_placid_llama_1756794402
vendi11
2025-09-02T06:27:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "placid placid llama", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T06:27:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - placid placid llama --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
duohuang/Affine-copycat-2
duohuang
2025-09-02T06:26:06Z
0
0
null
[ "safetensors", "gpt_oss", "8-bit", "mxfp4", "region:us" ]
null
2025-09-02T06:23:06Z
# Affine Mine open reasoning. [Affine Discord](https://discord.com/invite/3T9X4Yn23e) ## Introduction Affine is an incentivized RL environment which pays miners which make incremental improvements on a set of tasks (for instance, program abduction or coding). The mechanism is sybil-proof (you can't cheat by deploying multiple miners), decoy-proof (you can't cheat by packing models into certain environments), copy-proof (you can't cheat by stealing models), overfitting-proof (you can't cheat by overfitting to a single env). How does Affine work? Affine validators incentivize miners to submit models to Subnet 64 on Bittensor (a.k.a Chutes) where they are inference load balanced and publicly available. These models are evaluated on a set of RL-environments with validators looking for the model which dominates the pareto frontier -- namely the model which outcompetes all other models on all envs (see `af validator`) The network is winners-take-all where miners are forced to copy, download and improve the pareto frontier model. Why affine? Directed incentives for RL have never been achieved. The ability to direct intelligence and aggregate the work-effort of a large non-permissioned group of individuals on RL tasks will unlock fast advancement in intelligence, we intend to commoditize reasoning (intelligence's highest form) and break the intelligence sound barrier. ## Installation ```bash # Install uv Astral curl -LsSf https://astral.sh/uv/install.sh | sh # Clone and install Affine git clone https://github.com/AffineFoundation/affine.git cd affine uv venv && source .venv/bin/activate && uv pip install -e . # Verify installation af ``` ## Validating Set env vars, chutes api key. ```bash # Copy .env and fill out validator items cp .env.example .env ``` (Recommended): Run the validator with docker and watchtower autoupdate. ```bash # Run the validator with watchtower. docker-compose down && docker-compose pull && docker-compose up -d && docker-compose logs -f ``` Run the validator using the local override (build local image) + base compose ```bash docker compose -f docker-compose.yml -f docker-compose.local.yml down --remove-orphans docker compose -f docker-compose.yml -f docker-compose.local.yml up -d --build --remove-orphans docker compose -f docker-compose.yml -f docker-compose.local.yml logs -f ``` Run the validator locally ```bash # Start the validator with debug. af -vv validate ``` # Mining IMPORTANT: you require a ***developer enabled account*** on Chutes to mine. Normal API keys cannot deploy chutes right now. 1. Set env vars. ```bash # Copy .env and fill out validator items cp .env.example .env ``` 2. Miners need a chutes developer account ( `chutes.ai` ) ```bash chutes register ``` 3. Register your miner to Affine (S120). ```bash btcli subnet register --wallet.name <your cold> --wallet.hotkey <your hot> ``` 4. Pull a model off the network. ```bash af -vvv pull <uid to pull> --model_path <i.e. ./my_model> ``` 5. Improve the model ```bash ... magic RL stuff ... ``` 6. Push the model to your miner. ```bash af -vvv push --coldkey <your cold> --hotkey <your hot> --model_path <i.e. ./my_model> ``` # SDK Affine is also an SDK you can use to generate and evaluate models envs. ```python import affine as af # Optionally turn on logging af.trace(); af.debug(); af.info() # Get all miner info or only for UID =5 miners = await af.get_miners() miner = await af.get_miners( 5 ) # Generate a SAT challenge chal = await af.SAT.generate() # Generate a bunch. chals = await af.ABDUCTION().many( 10 ) chals = await af.DEDUCTION().many( 10 ) # Query the model directly. # NOTE: A CHUTES_API_KEY .env value is required for this command. response = await af.query( chal.prompt, model = miner.model ) # Evaluate the response evaluation = chal.evaluate( response ) print( evaluation.score ) # Async generator of results from last 100 blocks. async for res in af.rollouts(100): print (res) # Result objects ```
svjack/Lauma_wan_2_2_14B_lora
svjack
2025-09-02T06:25:18Z
2
0
null
[ "region:us" ]
null
2025-08-31T07:31:35Z
# LoRA Model Card: `svjack/Lauma_wan_2_2_14B_lora` ## **Ethereal Forest Guardian Synthesis** **Base Model**: `Wan2.2_T2V_A14B` **Fine-tuned Adapters**: - `Lauma_wan_2_2_14B_lora_000002250_high_noise.safetensors` (weight: 1.0) - `Lauma_wan_2_2_14B_lora_000002250_low_noise.safetensors` (weight: 1.0) **Key Strengths**: - **Natural Elegance**: Captures graceful, organic movements and a deep connection to natural environments. - **Enchanted Aesthetics**: Excellently renders the contrast between earthy tones (brown/white antlers) and vibrant natural backgrounds. - **Detailed Attributes**: Intricate rendering of natural elements like antlers, flowing hair, and organic textures (petals, water, fire). - **Emotional Serenity**: Conveys a spectrum of tranquil emotions, from gentle curiosity to peaceful contemplation and joyful freedom. --- ## **Optimized Example Prompts** ### **Example 1: Morning Harvest** **Prompt**: ```bash 一个长着鹿角的游戏女角色, 清晨的第一缕阳光穿透茂密的森林,化作无数道柔和的光柱,洒在沾满露珠的草地上。她赤着双足, 轻盈地行走其间,那对优雅的棕白色鹿角仿佛天然的冠冕,与森林的气息浑然一体。她微微俯身, 纤细的手指小心翼翼地掐下一朵淡蓝色的野花,专注的神情温柔而宁静。阳光为她轮廓镀上一层金边, 细微的尘埃在她发丝旁飞舞,仿佛精灵在伴她同行。整个画面充满了静谧而充满生机的自然之美。 ``` **Adapters**: - `Lauma_wan_2_2_14B_lora_000002250_high_noise.safetensors` (1.0) - `Lauma_wan_2_2_14B_lora_000002250_low_noise.safetensors` (1.0) **Key Features**: - Soft morning light rays and dew sparkle effects - Delicate finger movements and focused expression - Harmonious color palette of earthy tones and soft blues <video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/G7l4XR3GAQSExtcoSq_J6.mp4"></video> --- ### **Example 2: Riverside Reading** **Prompt**: ```bash 一个长着鹿角的游戏女角色, 午后的林间溪流旁,潺潺水声如同自然的白噪音。她选择了一块平坦的青石坐下,双膝并拢, 一本厚重的古籍摊在裙摆之上。她微微低头,长发如瀑般垂落,那双独特的鹿角在水中投下清晰而优美的倒影, 与远处云雾缭绕的山峦倒影巧妙地交织在一起,构成一幅绝妙的对称画面。她的指尖轻轻拂过书页, 神情专注而安详,仿佛整个世界的喧嚣都被这溪水洗净,只剩下她与书中世界的低声对话。 ``` **Adapters**: - `Lauma_wan_2_2_14B_lora_000002250_high_noise.safetensors` (1.0) - `Lauma_wan_2_2_14B_lora_000002250_low_noise.safetensors` (1.0) **Key Features**: - Perfect water reflections creating symmetry - Dynamic interaction between hair, antlers, and environment - Peaceful atmosphere with natural sound visual <video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/5HjULP29gm6Wjnpd92Pt3.mp4"></video> --- ### **Example 3: Bonfire Under the Stars** **Prompt**: ```bash 一个长着鹿角的游戏女角色, 夜幕如天鹅绒般铺满天际,繁星点点。林间空地上,一小堆篝火噼啪作响,跳动的火焰是黑暗中温暖的光源。 她蜷腿坐在铺着毛毡的地上,双手抱膝,那对鹿角在火光的映照下勾勒出深邃的轮廓。闪烁的火星如同金色的萤火虫, 围绕着她轻盈飞舞。她凝视着火焰,眼眸中跳动着温暖的光点,嘴角带着一丝恬淡的微笑。 清冷的夜色与温暖的篝火在她身边达成完美的平衡,画面既神秘又充满慰藉感。 ``` **Adapters**: - `Lauma_wan_2_2_14B_lora_000002250_high_noise.safetensors` (1.0) - `Lauma_wan_2_2_14B_lora_000002250_low_noise.safetensors` (1.0) **Key Features**: - Dramatic contrast between warm firelight and cool night - Ember and spark particle effects - Expressive facial features enhanced by flickering light <video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/4k5AHDzQJsCdzdn-Aq8xQ.mp4"></video> --- ### **Example 4: Swing in the Petal Shower** **Prompt**: ```bash 一个长着鹿角的游戏女角色, 一棵古老繁花的大树下,藤蔓与鲜花编织的秋千轻轻摇曳。她站在秋千上,双手握住藤蔓,用力一蹬,便轻盈地荡向高处。 在她荡起的瞬间,树上的花瓣被惊扰,纷纷扬扬如粉色的雪花般飘落。她的裙摆和发丝在风中飞扬, 笑容灿烂而自由,充满了无忧无虑的快乐。鹿角仿佛也融入了这欢快的节奏, 与飘舞的花瓣共舞。整个画面动态十足,充满了梦幻般的浪漫与活力。 ``` **Adapters**: - `Lauma_wan_2_2_14B_lora_000002250_high_noise.safetensors` (1.0) - `Lauma_wan_2_2_14B_lora_000002250_low_noise.safetensors` (1.0) **Key Features**: - Dynamic motion blur and wind effects on hair and dress - Volumetric petal fall simulation - Euphoric expression and body language <video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/J7n9Q0qOkdHZp1hGjmsRT.mp4"></video> --- ## **Technical Parameters** | Setting | Recommendation | Notes | |------------------|--------------------|----------------------------------------| | **CFG Scale** | 1 (Fixed) | Wan2.2 architecture requirement | | **Sampler** | uni_pc | Optimal for natural element dynamics | | **Steps** | 4 | Balances detail and speed | | **Resolution** | 1280x768 | Maintains VRAM efficiency | | **Motion Factor**| 2-4 | Subtle for gestures, higher for swipes | --- ## **Performance Profile** - **VRAM Usage**: ~23GB at 1280x768 (RTX 4090) - **Render Speed**: 35-50 sec/frame - **Troubleshooting**: - **Overexposed Natural Elements**: Add `overbright petals, glare` to negative prompts - **Stiff Gestures**: Increase motion factor + `flowing_movement` token - **Color Bleed**: Apply `vibrance_filter` node at 0.2 strength ## **License** CC-BY-NC-SA 4.0 (Non-commercial, share-alike) **Community Hub**: https://huggingface.co/svjack/Lauma_wan_2_2_14B_lora/discussions ---
omerbektass/blockassist-bc-keen_fast_giraffe_1756794263
omerbektass
2025-09-02T06:24:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T06:24:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
desibond/blockassist-bc-thriving_mighty_finch_1756792123
desibond
2025-09-02T06:24:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thriving mighty finch", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T06:24:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thriving mighty finch --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
SenseLLM/StructureCoder-3B
SenseLLM
2025-09-02T06:22:32Z
9
1
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "en", "arxiv:2508.19532", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-28T02:33:12Z
--- language: - en license: apache-2.0 pipeline_tag: text-generation library_name: transformers --- ## Alignment with Fill-In-the-Middle for Enhancing Code Generation <p align="center"> <a href="https://arxiv.org/abs/2508.19532">📄 Paper</a> • <a href="https://github.com/SenseLLM/StructureCoder">🏠 Repo</a> • <a href="https://huggingface.co/SenseLLM/StructureCoder-7B">🤖 Models</a> </p> ## Introduction Structure splits code snippets into smaller, granular blocks, creatingmore diverse DPO pairs from the same testcases. Additionally, we introduce the Abstract Syntax Tree (AST) splitting and curriculum training method to enhance the DPO training. Please refer to our paper for more details! ![](figures/method.png) <hr> ## Models | Model | Checkpoint | Size | |:--------------------|:------------------------------------------------------------------|:-----| | StructureCoder-1.5B | 🤗 [HF Link](https://huggingface.co/SenseLLM/StructureCoder-1.5B) | 1.5B | | StructureCoder-3B | 🤗 [HF Link](https://huggingface.co/SenseLLM/StructureCoder-3B) | 3B | | StructureCoder-7B | 🤗 [HF Link](https://huggingface.co/SenseLLM/StructureCoder-7B) | 7B | ## Acknowledgments We thank the following amazing projects that truly inspired us: - [Qwen-Coder](https://github.com/QwenLM/Qwen3-Coder) - [APPS](https://github.com/hendrycks/apps) - [EvalPlus](https://github.com/evalplus/evalplus) - [LiveCodeBench](https://github.com/LiveCodeBench/LiveCodeBench) - [BigCodeBench](https://github.com/bigcode-project/bigcodebench)
SenseLLM/StructureCoder-1.5B
SenseLLM
2025-09-02T06:21:53Z
6
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "en", "arxiv:2508.19532", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-28T01:52:03Z
--- language: - en license: apache-2.0 pipeline_tag: text-generation library_name: transformers --- ## Alignment with Fill-In-the-Middle for Enhancing Code Generation <p align="center"> <a href="https://arxiv.org/abs/2508.19532">📄 Paper</a> • <a href="https://github.com/SenseLLM/StructureCoder">🏠 Repo</a> • <a href="https://huggingface.co/SenseLLM/StructureCoder-7B">🤖 Models</a> </p> ## Introduction Structure splits code snippets into smaller, granular blocks, creatingmore diverse DPO pairs from the same testcases. Additionally, we introduce the Abstract Syntax Tree (AST) splitting and curriculum training method to enhance the DPO training. Please refer to our paper for more details! ![](figures/method.png) <hr> ## Models | Model | Checkpoint | Size | |:--------------------|:------------------------------------------------------------------|:-----| | StructureCoder-1.5B | 🤗 [HF Link](https://huggingface.co/SenseLLM/StructureCoder-1.5B) | 1.5B | | StructureCoder-3B | 🤗 [HF Link](https://huggingface.co/SenseLLM/StructureCoder-3B) | 3B | | StructureCoder-7B | 🤗 [HF Link](https://huggingface.co/SenseLLM/StructureCoder-7B) | 7B | ## Acknowledgments We thank the following amazing projects that truly inspired us: - [Qwen-Coder](https://github.com/QwenLM/Qwen3-Coder) - [APPS](https://github.com/hendrycks/apps) - [EvalPlus](https://github.com/evalplus/evalplus) - [LiveCodeBench](https://github.com/LiveCodeBench/LiveCodeBench) - [BigCodeBench](https://github.com/bigcode-project/bigcodebench)
Official-Sabrina-Carpenter-New-Music/videos.Sabrina.Carpenter.New.Music.Video.Viral.Official.Tutorial
Official-Sabrina-Carpenter-New-Music
2025-09-02T06:20:54Z
0
0
null
[ "region:us" ]
null
2025-09-02T06:20:39Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
liukevin666/blockassist-bc-yawning_striped_cassowary_1756793893
liukevin666
2025-09-02T06:19:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T06:19:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
klmdr22/blockassist-bc-wild_loud_newt_1756793742
klmdr22
2025-09-02T06:16:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wild loud newt", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T06:16:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wild loud newt --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
matherchodhuuu/blockassist-bc-lightfooted_skilled_chameleon_1756793589
matherchodhuuu
2025-09-02T06:14:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lightfooted skilled chameleon", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T06:14:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lightfooted skilled chameleon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
amandacute/blockassist-bc-amphibious_plump_ram_1756793617
amandacute
2025-09-02T06:14:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious plump ram", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T06:13:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious plump ram --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aXsalll/blockassist-bc-chattering_galloping_ape_1756793535
aXsalll
2025-09-02T06:13:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "chattering galloping ape", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T06:12:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - chattering galloping ape --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
yadav908ankit/blockassist-bc-deft_wily_armadillo_1756793525
yadav908ankit
2025-09-02T06:13:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deft wily armadillo", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T06:12:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deft wily armadillo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hyunjoonkang/mirror_pick_and_place_davla
hyunjoonkang
2025-09-02T06:11:40Z
0
0
lerobot
[ "lerobot", "safetensors", "robotics", "smolvla", "dataset:hyunjoonkang/wx250s_mirror_pick_and_place_blue", "arxiv:2506.01844", "base_model:lerobot/smolvla_base", "base_model:finetune:lerobot/smolvla_base", "license:apache-2.0", "region:us" ]
robotics
2025-09-02T06:11:14Z
--- base_model: lerobot/smolvla_base datasets: hyunjoonkang/wx250s_mirror_pick_and_place_blue library_name: lerobot license: apache-2.0 model_name: smolvla pipeline_tag: robotics tags: - lerobot - robotics - smolvla --- # Model Card for smolvla <!-- Provide a quick summary of what the model is/does. --> [SmolVLA](https://huggingface.co/papers/2506.01844) is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1756791933
vwzyrraz7l
2025-09-02T06:10:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T06:10:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/anonymizer-1.7B-SFTonly-GGUF
mradermacher
2025-09-02T06:10:38Z
0
0
transformers
[ "transformers", "gguf", "text-generation", "anonymization", "privacy", "tool-calling", "qwen", "en", "base_model:eternisai/anonymizer-1.7B-SFTonly", "base_model:quantized:eternisai/anonymizer-1.7B-SFTonly", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-09-02T05:39:55Z
--- base_model: eternisai/anonymizer-1.7B-SFTonly language: - en library_name: transformers license: mit mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - text-generation - anonymization - privacy - tool-calling - qwen --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/eternisai/anonymizer-1.7B-SFTonly <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#anonymizer-1.7B-SFTonly-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/anonymizer-1.7B-SFTonly-GGUF/resolve/main/anonymizer-1.7B-SFTonly.Q2_K.gguf) | Q2_K | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/anonymizer-1.7B-SFTonly-GGUF/resolve/main/anonymizer-1.7B-SFTonly.Q3_K_S.gguf) | Q3_K_S | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/anonymizer-1.7B-SFTonly-GGUF/resolve/main/anonymizer-1.7B-SFTonly.Q3_K_M.gguf) | Q3_K_M | 1.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/anonymizer-1.7B-SFTonly-GGUF/resolve/main/anonymizer-1.7B-SFTonly.Q3_K_L.gguf) | Q3_K_L | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/anonymizer-1.7B-SFTonly-GGUF/resolve/main/anonymizer-1.7B-SFTonly.IQ4_XS.gguf) | IQ4_XS | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/anonymizer-1.7B-SFTonly-GGUF/resolve/main/anonymizer-1.7B-SFTonly.Q4_K_S.gguf) | Q4_K_S | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/anonymizer-1.7B-SFTonly-GGUF/resolve/main/anonymizer-1.7B-SFTonly.Q4_K_M.gguf) | Q4_K_M | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/anonymizer-1.7B-SFTonly-GGUF/resolve/main/anonymizer-1.7B-SFTonly.Q5_K_S.gguf) | Q5_K_S | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/anonymizer-1.7B-SFTonly-GGUF/resolve/main/anonymizer-1.7B-SFTonly.Q5_K_M.gguf) | Q5_K_M | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/anonymizer-1.7B-SFTonly-GGUF/resolve/main/anonymizer-1.7B-SFTonly.Q6_K.gguf) | Q6_K | 1.5 | very good quality | | [GGUF](https://huggingface.co/mradermacher/anonymizer-1.7B-SFTonly-GGUF/resolve/main/anonymizer-1.7B-SFTonly.Q8_0.gguf) | Q8_0 | 1.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/anonymizer-1.7B-SFTonly-GGUF/resolve/main/anonymizer-1.7B-SFTonly.f16.gguf) | f16 | 3.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
klmdr22/blockassist-bc-wild_loud_newt_1756793381
klmdr22
2025-09-02T06:10:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wild loud newt", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T06:10:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wild loud newt --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liukevin666/blockassist-bc-yawning_striped_cassowary_1756793247
liukevin666
2025-09-02T06:08:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T06:08:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
matherchodhuuu/blockassist-bc-lightfooted_skilled_chameleon_1756793096
matherchodhuuu
2025-09-02T06:06:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lightfooted skilled chameleon", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T06:06:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lightfooted skilled chameleon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ibm-granite/granite-embedding-small-english-r2
ibm-granite
2025-09-02T06:05:43Z
3,940
21
sentence-transformers
[ "sentence-transformers", "pytorch", "safetensors", "modernbert", "feature-extraction", "granite", "embeddings", "transformers", "mteb", "sentence-similarity", "en", "arxiv:2508.21085", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-07-17T20:41:53Z
--- license: apache-2.0 language: - en pipeline_tag: sentence-similarity library_name: sentence-transformers tags: - granite - embeddings - transformers - mteb --- # Granite-Embedding-Small-English-R2 <!-- Provide a quick summary of what the model is/does. --> **Model Summary:** Granite-embedding-small-english-r2 is a 47M parameter dense biencoder embedding model from the Granite Embeddings collection that can be used to generate high quality text embeddings. This model produces embedding vectors of size 384 based on context length of upto 8192 tokens. Compared to most other open-source models, this model was only trained using open-source relevance-pair datasets with permissive, enterprise-friendly license, plus IBM collected and generated datasets. The r2 models show strong performance across standard and IBM-built information retrieval benchmarks (BEIR, ClapNQ), code retrieval (COIR), long-document search benchmarks (MLDR, LongEmbed), conversational multi-turn (MTRAG), table retrieval (NQTables, OTT-QA, AIT-QA, MultiHierTT, OpenWikiTables), and on many enterprise use cases. These models use a bi-encoder architecture to generate high-quality embeddings from text inputs such as queries, passages, and documents, enabling seamless comparison through cosine similarity. Built using retrieval oriented pretraining, contrastive finetuning, knowledge distillation, and model merging, granite-embedding-small-english-r2 is optimized to ensure strong alignment between query and passage embeddings. The latest granite embedding r2 release introduces two English embedding models, both based on the ModernBERT architecture: - _granite-embedding-english-r2_ (**149M** parameters): with an output embedding size of _768_, replacing _granite-embedding-125m-english_. - **_granite-embedding-small-english-r2_** (**47M** parameters): A _first-of-its-kind_ reduced-size model, with 8192 context length support, fewer layers and a smaller output embedding size (_384_), replacing _granite-embedding-30m-english_. ## Model Details - **Developed by:** Granite Embedding Team, IBM - **Repository:** [ibm-granite/granite-embedding-models](https://github.com/ibm-granite/granite-embedding-models) - **Paper:** [Granite Embedding R2 Models](https://arxiv.org/abs/2508.21085) - **Language(s):** English - **Release Date**: Aug 15, 2025 - **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0) ## Usage **Intended Use:** The model is designed to produce fixed length vector representations for a given text, which can be used for text similarity, retrieval, and search applications. For efficient decoding, these models use Flash Attention 2. Installing it is optional, but can lead to faster inference. ```shell pip install flash_attn==2.6.1 ``` <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> **Usage with Sentence Transformers:** The model is compatible with SentenceTransformer library and is very easy to use: First, install the sentence transformers library ```shell pip install sentence_transformers ``` The model can then be used to encode pairs of text and find the similarity between their representations ```python from sentence_transformers import SentenceTransformer, util model_path = "ibm-granite/granite-embedding-small-english-r2" # Load the Sentence Transformer model model = SentenceTransformer(model_path) input_queries = [ ' Who made the song My achy breaky heart? ', 'summit define' ] input_passages = [ "Achy Breaky Heart is a country song written by Don Von Tress. Originally titled Don't Tell My Heart and performed by The Marcy Brothers in 1991. ", "Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments." ] # encode queries and passages. The model produces unnormalized vectors. If your task requires normalized embeddings pass normalize_embeddings=True to encode as below. query_embeddings = model.encode(input_queries) passage_embeddings = model.encode(input_passages) # calculate cosine similarity print(util.cos_sim(query_embeddings, passage_embeddings)) ``` **Usage with Huggingface Transformers:** This is a simple example of how to use the granite-embedding-small-english-r2 model with the Transformers library and PyTorch. First, install the required libraries ```shell pip install transformers torch ``` The model can then be used to encode pairs of text ```python import torch from transformers import AutoModel, AutoTokenizer model_path = "ibm-granite/granite-embedding-small-english-r2" # Load the model and tokenizer model = AutoModel.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained(model_path) model.eval() input_queries = [ ' Who made the song My achy breaky heart? ', 'summit define' ] # tokenize inputs tokenized_queries = tokenizer(input_queries, padding=True, truncation=True, return_tensors='pt') # encode queries with torch.no_grad(): # Queries model_output = model(**tokenized_queries) # Perform pooling. granite-embedding-278m-multilingual uses CLS Pooling query_embeddings = model_output[0][:, 0] # normalize the embeddings query_embeddings = torch.nn.functional.normalize(query_embeddings, dim=1) ``` ## Evaluation Results Granite embedding r2 models show a strong performance across tasks diverse tasks. Performance of the granite models on MTEB Retrieval (i.e., BEIR), MTEB-v2, code retrieval (CoIR), long-document search benchmarks (MLDR, LongEmbed), conversational multi-turn (MTRAG), table retrieval (NQTables, OTT-QA, AIT-QA, MultiHierTT, OpenWikiTables), benchmarks is reported in the below tables. The average speed to encode documents on a single H100 GPU using a sliding window with 512 context length chunks is also reported. Nearing encoding speed of 200 documents per second granite-embedding-small-english-r2 demonstrates speed and efficiency, while mainintaining competitive performance. | Model | Parameters (M) | Embedding Size | BEIR Retrieval (15) | MTEB-v2 (41)| CoIR (10) | MLDR (En) | MTRAG (4) | Encoding Speed (dosc/sec) | |------------------------------------|:--------------:|:--------------:|:-------------------:|:-----------:|:---------:|:---------:|:---------:|:-------------------------------:| | granite-embedding-125m-english | 125 | 768 | 52.3 | 62.1 | 50.3 | 35.0 | 49.4 | 149 | | granite-embedding-30m-english | 30 | 384 | 49.1 | 60.2 | 47.0 | 32.6 | 48.6 | 198 | | granite-embedding-english-r2 | 149 | 768 | 53.1 | 62.8 | 55.3 | 40.7 | 56.7 | 144 | | granite-embedding-small-english-r2 | 47 | 384 | 50.9 | 61.1 | 53.8 | 39.8 | 48.1 | 199 | |Model | Parameters (M)| Embedding Size|**AVERAGE**|MTEB-v2 Retrieval (10)| CoIR (10)| MLDR (En)| LongEmbed (6)| Table IR (5)| MTRAG (4) | Encoding Speed (docs/sec)| |-----------------------------------|:-------------:|:-------------:|:---------:|:--------------------:|:--------:|:--------:|:------------:|:-----------:|:--------:|-----------:| |e5-small-v2 |33|384|45.39|48.5|47.1|29.9|40.7|72.31|33.8| 138| |bge-small-en-v1.5 |33|384|45.22|53.9|45.8|31.4|32.1|69.91|38.2| 138| ||||||||||| |granite-embedding-english-r2 |149|768|59.5|56.4|54.8|41.6|67.8|78.53|57.6| 144| |granite-embedding-small-english-r2 | 47|384|55.6|53.9|53.4|40.1|61.9|75.51|48.9| 199| ### Model Architecture and Key Features The latest granite embedding r2 release introduces two English embedding models, both based on the ModernBERT architecture: - _granite-embedding-english-r2_ (**149M** parameters): with an output embedding size of _768_, replacing _granite-embedding-125m-english_. - _granite-embedding-small-english-r2_ (**47M** parameters): A _first-of-its-kind_ reduced-size model, with fewer layers and a smaller output embedding size (_384_), replacing _granite-embedding-30m-english_. The following table shows the structure of the two models: | Model | **granite-embedding-small-english-r2** | granite-embedding-english-r2 | | :--------- | :-------:|:--------:| | Embedding size | **384** | 768 | | Number of layers | **12** | 22 | | Number of attention heads | **12** | 12 | | Intermediate size | **1536** | 1152 | | Activation Function | **GeGLU** | GeGLU | | Vocabulary Size | **50368** | 50368 | | Max. Sequence Length | **8192** | 8192 | | # Parameters | **47M** | 149M | ### Training and Optimization The granite embedding r2 models incorporate key enhancements from the ModernBERT architecture, including: - Alternating attention lengths to accelerate processing - Rotary position embeddings for extended sequence length - A newly trained tokenizer optimized with code and text data - Flash Attention 2.0 for improved efficiency - Streamlined parameters, eliminating unnecessary bias terms ## Data Collection Granite embedding r2 models are trained using data from four key sources: 1. Unsupervised title-body paired data scraped from the web 2. Publicly available paired with permissive, enterprise-friendly license 3. IBM-internal paired data targetting specific technical domains 4. IBM-generated synthetic data Notably, we _do not use_ the popular MS-MARCO retrieval dataset in our training corpus due to its non-commercial license (many open-source models use this dataset due to its high quality). The underlying encoder models using GneissWeb, an IBM-curated dataset composed exclusively of open, commercial-friendly sources. For governance, all our data undergoes a data clearance process subject to technical, business, and governance review. This comprehensive process captures critical information about the data, including but not limited to their content description ownership, intended use, data classification, licensing information, usage restrictions, how the data will be acquired, as well as an assessment of sensitive information (i.e, personal information). ## Infrastructure We trained the granite embedding english r2 models using IBM's computing cluster, BlueVela Cluster, which is outfitted with NVIDIA H100 80GB GPUs. This cluster provides a scalable and efficient infrastructure for training our models over multiple GPUs. ## Ethical Considerations and Limitations Granite-embedding-small-english-r2 leverages both permissively licensed open-source and select proprietary data for enhanced performance. The training data for the base language model was filtered to remove text containing hate, abuse, and profanity. Granite-embedding-small-english-r2 is trained only for English texts, and has a context length of 8192 tokens (longer texts will be truncated to this size). - ⭐️ Learn about the latest updates with Granite: https://www.ibm.com/granite - 📄 Get started with tutorials, best practices, and prompt engineering advice: https://www.ibm.com/granite/docs/ - 💡 Learn about the latest Granite learning resources: https://ibm.biz/granite-learning-resources ## Citation ``` @misc{awasthy2025graniteembeddingr2models, title={Granite Embedding R2 Models}, author={Parul Awasthy and Aashka Trivedi and Yulong Li and Meet Doshi and Riyaz Bhat and Vignesh P and Vishwajeet Kumar and Yushu Yang and Bhavani Iyer and Abraham Daniels and Rudra Murthy and Ken Barker and Martin Franz and Madison Lee and Todd Ward and Salim Roukos and David Cox and Luis Lastras and Jaydeep Sen and Radu Florian}, year={2025}, eprint={2508.21085}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2508.21085}, } ```
omerbektass/blockassist-bc-keen_fast_giraffe_1756792946
omerbektass
2025-09-02T06:02:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T06:02:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
akirafudo/blockassist-bc-keen_fast_giraffe_1756792708
akirafudo
2025-09-02T05:58:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T05:58:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
dhanyabahadur/interior-design-clip-vision-ip-adapter
dhanyabahadur
2025-09-02T05:53:50Z
0
0
diffusers
[ "diffusers", "safetensors", "license:apache-2.0", "region:us" ]
null
2025-08-21T13:35:22Z
--- license: apache-2.0 ---
billelkhr/deberta-v3-sentiment-review-movie
billelkhr
2025-09-02T05:51:14Z
0
0
transformers
[ "transformers", "safetensors", "deberta-v2", "text-classification", "dataset:ajaykarthick/imdb-movie-reviews", "arxiv:1910.09700", "base_model:microsoft/deberta-v3-base", "base_model:finetune:microsoft/deberta-v3-base", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-09-02T05:22:03Z
--- library_name: transformers datasets: - ajaykarthick/imdb-movie-reviews metrics: - accuracy - f1 base_model: - microsoft/deberta-v3-base --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [billel khiri] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results 95% accuracy #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
david3621/blockassist-bc-gentle_meek_cat_1756790886
david3621
2025-09-02T05:49:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle meek cat", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T05:43:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle meek cat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
acidjp/blockassist-bc-pesty_extinct_prawn_1756789998
acidjp
2025-09-02T05:46:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pesty extinct prawn", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T05:46:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pesty extinct prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
amandacute/blockassist-bc-amphibious_plump_ram_1756791804
amandacute
2025-09-02T05:45:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious plump ram", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T05:44:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious plump ram --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sesamehowie/Qwen3-0.6B-Gensyn-Swarm-grunting_twitchy_tarantula
sesamehowie
2025-09-02T05:43:58Z
105
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am grunting_twitchy_tarantula", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T14:10:36Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am grunting_twitchy_tarantula --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
akirafudo/blockassist-bc-keen_fast_giraffe_1756791644
akirafudo
2025-09-02T05:41:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T05:41:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1756790077
vwzyrraz7l
2025-09-02T05:39:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T05:39:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
omerbektass/blockassist-bc-keen_fast_giraffe_1756791505
omerbektass
2025-09-02T05:38:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-02T05:38:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).