modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-06 06:27:01
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
542 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-06 06:26:44
card
stringlengths
11
1.01M
emilyalsentzer/Bio_Discharge_Summary_BERT
emilyalsentzer
2022-02-27T13:59:50Z
5,949
34
transformers
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "en", "arxiv:1904.03323", "arxiv:1901.08746", "license:mit", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: "en" tags: - fill-mask license: mit --- # ClinicalBERT - Bio + Discharge Summary BERT Model The [Publicly Available Clinical BERT Embeddings](https://arxiv.org/abs/1904.03323) paper contains four unique clinicalBERT models: initialized with BERT-Base (`cased_L-12_H-768_A-12`) or BioBERT (`BioBERT-Base v1.0 + PubMed 200K + PMC 270K`) & trained on either all MIMIC notes or only discharge summaries. This model card describes the Bio+Discharge Summary BERT model, which was initialized from [BioBERT](https://arxiv.org/abs/1901.08746) & trained on only discharge summaries from MIMIC. ## Pretraining Data The `Bio_Discharge_Summary_BERT` model was trained on all discharge summaries from [MIMIC III](https://www.nature.com/articles/sdata201635), a database containing electronic health records from ICU patients at the Beth Israel Hospital in Boston, MA. For more details on MIMIC, see [here](https://mimic.physionet.org/). All notes from the `NOTEEVENTS` table were included (~880M words). ## Model Pretraining ### Note Preprocessing Each note in MIMIC was first split into sections using a rules-based section splitter (e.g. discharge summary notes were split into "History of Present Illness", "Family History", "Brief Hospital Course", etc. sections). Then each section was split into sentences using SciSpacy (`en core sci md` tokenizer). ### Pretraining Procedures The model was trained using code from [Google's BERT repository](https://github.com/google-research/bert) on a GeForce GTX TITAN X 12 GB GPU. Model parameters were initialized with BioBERT (`BioBERT-Base v1.0 + PubMed 200K + PMC 270K`). ### Pretraining Hyperparameters We used a batch size of 32, a maximum sequence length of 128, and a learning rate of 5 · 10−5 for pre-training our models. The models trained on all MIMIC notes were trained for 150,000 steps. The dup factor for duplicating input data with different masks was set to 5. All other default parameters were used (specifically, masked language model probability = 0.15 and max predictions per sequence = 20). ## How to use the model Load the model via the transformers library: ``` from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_Discharge_Summary_BERT") model = AutoModel.from_pretrained("emilyalsentzer/Bio_Discharge_Summary_BERT") ``` ## More Information Refer to the original paper, [Publicly Available Clinical BERT Embeddings](https://arxiv.org/abs/1904.03323) (NAACL Clinical NLP Workshop 2019) for additional details and performance on NLI and NER tasks. ## Questions? Post a Github issue on the [clinicalBERT repo](https://github.com/EmilyAlsentzer/clinicalBERT) or email emilya@mit.edu with any questions.
nadaAlnada/wav2vec2-base-timit-demo-colab
nadaAlnada
2022-02-27T13:55:32Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [anas/wav2vec2-large-xlsr-arabic](https://huggingface.co/anas/wav2vec2-large-xlsr-arabic) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
facebook/wav2vec2-base-lt-voxpopuli-v2
facebook
2022-02-27T13:15:36Z
22
0
transformers
[ "transformers", "pytorch", "wav2vec2", "pretraining", "audio", "automatic-speech-recognition", "voxpopuli-v2", "lt", "dataset:voxpopuli", "arxiv:2101.00390", "license:cc-by-nc-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: lt tags: - audio - automatic-speech-recognition - voxpopuli-v2 datasets: - voxpopuli license: cc-by-nc-4.0 inference: false --- # Wav2Vec2-base-VoxPopuli-V2 [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) base model pretrained only in **lt** on **14.4k** unlabeled datat of the [VoxPopuli corpus](https://arxiv.org/abs/2101.00390). The model is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model for **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data in **lt**. Check out [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) for a more in-detail explanation of how to fine-tune the model. **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI*. See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/).
facebook/wav2vec2-base-hu-voxpopuli-v2
facebook
2022-02-27T13:15:17Z
10
0
transformers
[ "transformers", "pytorch", "wav2vec2", "pretraining", "audio", "automatic-speech-recognition", "voxpopuli-v2", "hu", "dataset:voxpopuli", "arxiv:2101.00390", "license:cc-by-nc-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: hu tags: - audio - automatic-speech-recognition - voxpopuli-v2 datasets: - voxpopuli license: cc-by-nc-4.0 inference: false --- # Wav2Vec2-base-VoxPopuli-V2 [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) base model pretrained only in **hu** on **17.7k** unlabeled datat of the [VoxPopuli corpus](https://arxiv.org/abs/2101.00390). The model is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model for **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data in **hu**. Check out [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) for a more in-detail explanation of how to fine-tune the model. **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI*. See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/).
facebook/wav2vec2-base-pl-voxpopuli-v2
facebook
2022-02-27T13:14:25Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "pretraining", "audio", "automatic-speech-recognition", "voxpopuli-v2", "pl", "dataset:voxpopuli", "arxiv:2101.00390", "license:cc-by-nc-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: pl tags: - audio - automatic-speech-recognition - voxpopuli-v2 datasets: - voxpopuli license: cc-by-nc-4.0 inference: false --- # Wav2Vec2-base-VoxPopuli-V2 [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) base model pretrained only in **pl** on **21.2k** unlabeled datat of the [VoxPopuli corpus](https://arxiv.org/abs/2101.00390). The model is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model for **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data in **pl**. Check out [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) for a more in-detail explanation of how to fine-tune the model. **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI*. See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/).
facebook/wav2vec2-base-cs-voxpopuli-v2
facebook
2022-02-27T13:14:02Z
4
1
transformers
[ "transformers", "pytorch", "wav2vec2", "pretraining", "audio", "automatic-speech-recognition", "voxpopuli-v2", "cs", "dataset:voxpopuli", "arxiv:2101.00390", "license:cc-by-nc-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: cs tags: - audio - automatic-speech-recognition - voxpopuli-v2 datasets: - voxpopuli license: cc-by-nc-4.0 inference: false --- # Wav2Vec2-base-VoxPopuli-V2 [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) base model pretrained only in **cs** on **18.7k** unlabeled datat of the [VoxPopuli corpus](https://arxiv.org/abs/2101.00390). The model is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model for **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data in **cs**. Check out [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) for a more in-detail explanation of how to fine-tune the model. **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI*. See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/).
facebook/wav2vec2-base-bg-voxpopuli-v2
facebook
2022-02-27T13:13:50Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "pretraining", "audio", "automatic-speech-recognition", "voxpopuli-v2", "bg", "dataset:voxpopuli", "arxiv:2101.00390", "license:cc-by-nc-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: bg tags: - audio - automatic-speech-recognition - voxpopuli-v2 datasets: - voxpopuli license: cc-by-nc-4.0 inference: false --- # Wav2Vec2-base-VoxPopuli-V2 [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) base model pretrained only in **bg** on **17.6k** unlabeled datat of the [VoxPopuli corpus](https://arxiv.org/abs/2101.00390). The model is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model for **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data in **bg**. Check out [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) for a more in-detail explanation of how to fine-tune the model. **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI*. See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/).
facebook/wav2vec2-base-en-voxpopuli-v2
facebook
2022-02-27T13:13:03Z
7
1
transformers
[ "transformers", "pytorch", "wav2vec2", "pretraining", "audio", "automatic-speech-recognition", "voxpopuli-v2", "en", "dataset:voxpopuli", "arxiv:2101.00390", "license:cc-by-nc-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: en tags: - audio - automatic-speech-recognition - voxpopuli-v2 datasets: - voxpopuli license: cc-by-nc-4.0 inference: false --- # Wav2Vec2-base-VoxPopuli-V2 [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) base model pretrained only in **en** on **24.1k** unlabeled datat of the [VoxPopuli corpus](https://arxiv.org/abs/2101.00390). The model is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model for **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data in **en**. Check out [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) for a more in-detail explanation of how to fine-tune the model. **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI*. See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/).
facebook/wav2vec2-base-nl-voxpopuli-v2
facebook
2022-02-27T13:12:51Z
72
0
transformers
[ "transformers", "pytorch", "wav2vec2", "pretraining", "audio", "automatic-speech-recognition", "voxpopuli-v2", "nl", "dataset:voxpopuli", "arxiv:2101.00390", "license:cc-by-nc-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: nl tags: - audio - automatic-speech-recognition - voxpopuli-v2 datasets: - voxpopuli license: cc-by-nc-4.0 inference: false --- # Wav2Vec2-base-VoxPopuli-V2 [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) base model pretrained only in **nl** on **19.0k** unlabeled datat of the [VoxPopuli corpus](https://arxiv.org/abs/2101.00390). The model is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model for **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data in **nl**. Check out [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) for a more in-detail explanation of how to fine-tune the model. **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI*. See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/).
facebook/wav2vec2-base-ro-voxpopuli-v2
facebook
2022-02-27T13:12:40Z
7
0
transformers
[ "transformers", "pytorch", "wav2vec2", "pretraining", "audio", "automatic-speech-recognition", "voxpopuli-v2", "ro", "dataset:voxpopuli", "arxiv:2101.00390", "license:cc-by-nc-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: ro tags: - audio - automatic-speech-recognition - voxpopuli-v2 datasets: - voxpopuli license: cc-by-nc-4.0 inference: false --- # Wav2Vec2-base-VoxPopuli-V2 [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) base model pretrained only in **ro** on **17.9k** unlabeled datat of the [VoxPopuli corpus](https://arxiv.org/abs/2101.00390). The model is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model for **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data in **ro**. Check out [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) for a more in-detail explanation of how to fine-tune the model. **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI*. See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/).
facebook/wav2vec2-base-it-voxpopuli-v2
facebook
2022-02-27T13:12:17Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "pretraining", "audio", "automatic-speech-recognition", "voxpopuli-v2", "it", "dataset:voxpopuli", "arxiv:2101.00390", "license:cc-by-nc-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: it tags: - audio - automatic-speech-recognition - voxpopuli-v2 datasets: - voxpopuli license: cc-by-nc-4.0 inference: false --- # Wav2Vec2-base-VoxPopuli-V2 [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) base model pretrained only in **it** on **21.9k** unlabeled datat of the [VoxPopuli corpus](https://arxiv.org/abs/2101.00390). The model is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model for **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data in **it**. Check out [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) for a more in-detail explanation of how to fine-tune the model. **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI*. See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/).
facebook/wav2vec2-base-fr-voxpopuli-v2
facebook
2022-02-27T13:12:05Z
83
1
transformers
[ "transformers", "pytorch", "wav2vec2", "pretraining", "audio", "automatic-speech-recognition", "voxpopuli-v2", "fr", "dataset:voxpopuli", "arxiv:2101.00390", "license:cc-by-nc-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: fr tags: - audio - automatic-speech-recognition - voxpopuli-v2 datasets: - voxpopuli license: cc-by-nc-4.0 inference: false --- # Wav2Vec2-base-VoxPopuli-V2 [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) base model pretrained only in **fr** on **22.8k** unlabeled datat of the [VoxPopuli corpus](https://arxiv.org/abs/2101.00390). The model is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model for **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data in **fr**. Check out [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) for a more in-detail explanation of how to fine-tune the model. **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI*. See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/).
facebook/wav2vec2-base-es-voxpopuli-v2
facebook
2022-02-27T13:11:53Z
4
1
transformers
[ "transformers", "pytorch", "wav2vec2", "pretraining", "audio", "automatic-speech-recognition", "voxpopuli-v2", "es", "dataset:voxpopuli", "arxiv:2101.00390", "license:cc-by-nc-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: es tags: - audio - automatic-speech-recognition - voxpopuli-v2 datasets: - voxpopuli license: cc-by-nc-4.0 inference: false --- # Wav2Vec2-base-VoxPopuli-V2 [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) base model pretrained only in **es** on **21.4k** unlabeled datat of the [VoxPopuli corpus](https://arxiv.org/abs/2101.00390). The model is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model for **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data in **es**. Check out [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) for a more in-detail explanation of how to fine-tune the model. **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI*. See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/).
facebook/wav2vec2-large-el-voxpopuli-v2
facebook
2022-02-27T12:48:30Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "pretraining", "audio", "automatic-speech-recognition", "voxpopuli-v2", "el", "dataset:voxpopuli", "arxiv:2101.00390", "license:cc-by-nc-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: el tags: - audio - automatic-speech-recognition - voxpopuli-v2 datasets: - voxpopuli license: cc-by-nc-4.0 inference: false --- # Wav2Vec2-large-VoxPopuli-V2 [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) large model pretrained only in **el** on **17.7** unlabeled datat of the [VoxPopuli corpus](https://arxiv.org/abs/2101.00390). The model is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model for **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data in **el**. Check out [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) for a more in-detail explanation of how to fine-tune the model. **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI*. See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/).
facebook/wav2vec2-large-uralic-voxpopuli-v2
facebook
2022-02-27T12:43:18Z
158
0
transformers
[ "transformers", "pytorch", "wav2vec2", "pretraining", "audio", "automatic-speech-recognition", "voxpopuli-v2", "dataset:voxpopuli", "arxiv:2101.00390", "license:cc-by-nc-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: uralic tags: - audio - automatic-speech-recognition - voxpopuli-v2 datasets: - voxpopuli license: cc-by-nc-4.0 inference: false --- # Wav2Vec2-large-VoxPopuli-V2 [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) large model pretrained only in **uralic** on **42.5** unlabeled datat of the [VoxPopuli corpus](https://arxiv.org/abs/2101.00390). The model is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model for **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data in **uralic**. Check out [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) for a more in-detail explanation of how to fine-tune the model. **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI*. See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/).
facebook/wav2vec2-large-west_germanic-voxpopuli-v2
facebook
2022-02-27T12:35:16Z
6
1
transformers
[ "transformers", "pytorch", "wav2vec2", "pretraining", "audio", "automatic-speech-recognition", "voxpopuli-v2", "dataset:voxpopuli", "arxiv:2101.00390", "license:cc-by-nc-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: west_germanic tags: - audio - automatic-speech-recognition - voxpopuli-v2 datasets: - voxpopuli license: cc-by-nc-4.0 inference: false --- # Wav2Vec2-large-VoxPopuli-V2 [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) large model pretrained only in **west_germanic** on **66.3** unlabeled datat of the [VoxPopuli corpus](https://arxiv.org/abs/2101.00390). The model is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model for **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data in **west_germanic**. Check out [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) for a more in-detail explanation of how to fine-tune the model. **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI*. See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/).
facebook/wav2vec2-large-romance-voxpopuli-v2
facebook
2022-02-27T12:32:07Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "pretraining", "audio", "automatic-speech-recognition", "voxpopuli-v2", "dataset:voxpopuli", "arxiv:2101.00390", "license:cc-by-nc-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: romance tags: - audio - automatic-speech-recognition - voxpopuli-v2 datasets: - voxpopuli license: cc-by-nc-4.0 inference: false --- # Wav2Vec2-large-VoxPopuli-V2 [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) large model pretrained only in **romance** on **101.5** unlabeled datat of the [VoxPopuli corpus](https://arxiv.org/abs/2101.00390). The model is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model for **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data in **romance**. Check out [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) for a more in-detail explanation of how to fine-tune the model. **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI*. See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/).
huggingartists/the-beatles
huggingartists
2022-02-27T11:47:43Z
7
1
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/the-beatles", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/the-beatles tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/c771d3ee1c0969503cdaf34edf76f38a.400x400x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">The Beatles</div> <a href="https://genius.com/artists/the-beatles"> <div style="text-align: center; font-size: 14px;">@the-beatles</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from The Beatles. Dataset is available [here](https://huggingface.co/datasets/huggingartists/the-beatles). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/the-beatles") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2p2c5864/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on The Beatles's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/286vzjah) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/286vzjah/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/the-beatles') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/the-beatles") model = AutoModelWithLMHead.from_pretrained("huggingartists/the-beatles") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
nsi319/bigbird-roberta-base-finetuned-app
nsi319
2022-02-27T10:53:05Z
7
0
transformers
[ "transformers", "pytorch", "big_bird", "text-classification", "mobile app descriptions", "playstore", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: "en" thumbnail: "https://huggingface.co/nsi319" tags: - big_bird - pytorch - text-classification - mobile app descriptions - playstore license: "mit" inference: true --- # Mobile App Classification ## Model description BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. The model can handle input sequence of length up to 4,096 tokens. The [google/bigbird-roberta-base](https://huggingface.co/google/bigbird-roberta-base) model is fine-tuned to classify an mobile app description into one of **6 play store categories**. Trained on 9000 samples of English App Descriptions and associated categories of apps available in [Google Play](https://play.google.com/store/apps). ## Fine-tuning The model was fine-tuned for 5 epochs with a batch size of 16, a learning rate of 2e-05, and a maximum sequence length of 1024. Since this was a classification task, the model was trained with a cross-entropy loss function. The best evaluation f1 score achieved by the model was 0.8964259037209702, found after 4 epochs. The accuracy of the model on the test set was 0.8966. ## How to use ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline tokenizer = AutoTokenizer.from_pretrained("nsi319/bigbird-roberta-base-finetuned-app") model = AutoModelForSequenceClassification.from_pretrained("nsi319/bigbird-roberta-base-finetuned-app") classifier = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer) classifier("From scores to signings, the ESPN App is here to keep you updated. Never miss another sporting moment with up-to-the-minute scores, latest news & a range of video content. Sign in and personalise the app to receive alerts for your teams and leagues. Wherever, whenever; the ESPN app keeps you connected.") '''Output''' [{'label': 'Sports', 'score': 0.9983325600624084}] ``` ## Limitations Training data consists of apps from 6 play store categories namely Education, Entertainment, Productivity, Sports, News & Magazines and Photography.
nsi319/xlnet-base-cased-finetuned-app
nsi319
2022-02-27T10:52:49Z
8
0
transformers
[ "transformers", "pytorch", "xlnet", "text-classification", "mobile app descriptions", "playstore", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: "en" thumbnail: "https://huggingface.co/nsi319" tags: - xlnet - pytorch - text-classification - mobile app descriptions - playstore license: "mit" inference: true --- # Mobile App Classification ## Model description XLNet is a new unsupervised language representation learning method based on a novel generalized permutation language modeling objective. Additionally, XLNet employs Transformer-XL as the backbone model, exhibiting excellent performance for language tasks involving long context. The [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) model is fine-tuned to classify an mobile app description into one of **6 play store categories**. Trained on 9000 samples of English App Descriptions and associated categories of apps available in [Google Play](https://play.google.com/store/apps). ## Fine-tuning The model was fine-tuned for 5 epochs with a batch size of 16, a learning rate of 2e-05, and a maximum sequence length of 512. Since this was a classification task, the model was trained with a cross-entropy loss function. The best evaluation f1 score achieved by the model was 0.8951433611497919, found after 5 epochs. The accuracy of the model on the test set was 0.895. ## How to use ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline tokenizer = AutoTokenizer.from_pretrained("nsi319/xlnet-base-cased-finetuned-app") model = AutoModelForSequenceClassification.from_pretrained("nsi319/xlnet-base-cased-finetuned-app") classifier = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer) classifier("The official Google Photos app is made for the way you take photos today and includes essential features like shared albums, automatic creations and an advanced editing suite. Additionally every Google Account comes with 15 GB of free storage and you can choose to automatically back up all your photos and videos in High quality or Original quality. You can then access them from any connected device and on photos.google.com.") '''Output''' [{'label': 'Photography', 'score': 0.998849630355835}] ``` ## Limitations Training data consists of apps from 6 play store categories namely Education, Entertainment, Productivity, Sports, News & Magazines and Photography.
Jackett/subject_classifier
Jackett
2022-02-27T04:57:39Z
5
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
Label association {'Biology': 0, 'Physics': 1, 'Chemistry': 2, 'Maths': 3}
msintaha/bert-base-uncased-copa-kb-17
msintaha
2022-02-26T22:53:54Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "multiple-choice", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "endpoints_compatible", "region:us" ]
multiple-choice
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: bert-base-uncased-copa-kb-17 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-copa-kb-17 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6385 - Accuracy: 0.7000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 25 | 0.6792 | 0.6500 | | No log | 2.0 | 50 | 0.6385 | 0.7000 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
huggingartists/tool
huggingartists
2022-02-26T22:15:47Z
4
1
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/tool", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/tool tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/acf1d51a2d729391074dc51a6dd26857.1000x1000x1.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tool</div> <a href="https://genius.com/artists/tool"> <div style="text-align: center; font-size: 14px;">@tool</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Tool. Dataset is available [here](https://huggingface.co/datasets/huggingartists/tool). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/tool") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2w1h70ok/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Tool's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1zikehwi) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1zikehwi/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/tool') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/tool") model = AutoModelWithLMHead.from_pretrained("huggingartists/tool") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
cnicu/t5-small-booksum
cnicu
2022-02-26T21:32:52Z
15,213
8
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "summarization", "summary", "dataset:kmfoda/booksum", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- license: mit tags: - summarization - summary datasets: - kmfoda/booksum ---
KheireddineDaouadi/ZeroAraElectra
KheireddineDaouadi
2022-02-26T18:40:11Z
7
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "zero-shot-classification", "nli", "ar", "dataset:xnli", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
zero-shot-classification
2022-03-02T23:29:04Z
--- language: ar tags: - zero-shot-classification - nli - pytorch datasets: - xnli pipeline_tag: zero-shot-classification license: other ---
nimrah/wav2vec2-large-xls-r-300m-my_hindi_home-colab
nimrah
2022-02-26T17:11:23Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-my_hindi_home-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-my_hindi_home-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
QuickRead/pegasus-reddit
QuickRead
2022-02-26T16:57:46Z
5
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:reddit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - reddit metrics: - rouge model-index: - name: pegasus-reddit results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: reddit type: reddit args: default metrics: - name: Rouge1 type: rouge value: 23.967 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-reddit This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on the reddit dataset. It achieves the following results on the evaluation set: - Loss: 3.3329 - Rouge1: 23.967 - Rouge2: 5.0032 - Rougel: 15.3267 - Rougelsum: 18.5905 - Gen Len: 69.2193 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.35e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.1 - Datasets 1.17.0 - Tokenizers 0.10.3
leonadase/bert-base-chinese-finetuned-ner
leonadase
2022-02-26T15:09:40Z
28
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:fdner", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - fdner metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-chinese-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: fdner type: fdner args: fdner metrics: - name: Precision type: precision value: 0.9146341463414634 - name: Recall type: recall value: 0.9414225941422594 - name: F1 type: f1 value: 0.9278350515463917 - name: Accuracy type: accuracy value: 0.9750636132315522 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-chinese-finetuned-ner This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on the fdner dataset. It achieves the following results on the evaluation set: - Loss: 0.1016 - Precision: 0.9146 - Recall: 0.9414 - F1: 0.9278 - Accuracy: 0.9751 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 2 | 0.9181 | 0.1271 | 0.1255 | 0.1263 | 0.7170 | | No log | 2.0 | 4 | 0.8048 | 0.1919 | 0.2385 | 0.2127 | 0.7669 | | No log | 3.0 | 6 | 0.7079 | 0.2422 | 0.3264 | 0.2781 | 0.7980 | | No log | 4.0 | 8 | 0.6201 | 0.3505 | 0.4854 | 0.4070 | 0.8338 | | No log | 5.0 | 10 | 0.5462 | 0.3898 | 0.4812 | 0.4307 | 0.8611 | | No log | 6.0 | 12 | 0.4851 | 0.4749 | 0.5941 | 0.5279 | 0.8802 | | No log | 7.0 | 14 | 0.4338 | 0.5213 | 0.6151 | 0.5643 | 0.8936 | | No log | 8.0 | 16 | 0.3843 | 0.5663 | 0.6611 | 0.6100 | 0.9076 | | No log | 9.0 | 18 | 0.3451 | 0.6255 | 0.6987 | 0.6601 | 0.9214 | | No log | 10.0 | 20 | 0.3058 | 0.6719 | 0.7197 | 0.6949 | 0.9293 | | No log | 11.0 | 22 | 0.2783 | 0.6808 | 0.7406 | 0.7094 | 0.9344 | | No log | 12.0 | 24 | 0.2497 | 0.7050 | 0.7699 | 0.7360 | 0.9427 | | No log | 13.0 | 26 | 0.2235 | 0.7519 | 0.8117 | 0.7807 | 0.9506 | | No log | 14.0 | 28 | 0.2031 | 0.7713 | 0.8326 | 0.8008 | 0.9552 | | No log | 15.0 | 30 | 0.1861 | 0.7915 | 0.8577 | 0.8233 | 0.9593 | | No log | 16.0 | 32 | 0.1726 | 0.8031 | 0.8703 | 0.8353 | 0.9613 | | No log | 17.0 | 34 | 0.1619 | 0.8320 | 0.8912 | 0.8606 | 0.9641 | | No log | 18.0 | 36 | 0.1521 | 0.8571 | 0.9038 | 0.8798 | 0.9674 | | No log | 19.0 | 38 | 0.1420 | 0.8710 | 0.9038 | 0.8871 | 0.9695 | | No log | 20.0 | 40 | 0.1352 | 0.8795 | 0.9163 | 0.8975 | 0.9700 | | No log | 21.0 | 42 | 0.1281 | 0.8755 | 0.9121 | 0.8934 | 0.9712 | | No log | 22.0 | 44 | 0.1209 | 0.8916 | 0.9289 | 0.9098 | 0.9728 | | No log | 23.0 | 46 | 0.1155 | 0.8924 | 0.9372 | 0.9143 | 0.9733 | | No log | 24.0 | 48 | 0.1115 | 0.904 | 0.9456 | 0.9243 | 0.9746 | | No log | 25.0 | 50 | 0.1087 | 0.9116 | 0.9498 | 0.9303 | 0.9746 | | No log | 26.0 | 52 | 0.1068 | 0.9146 | 0.9414 | 0.9278 | 0.9740 | | No log | 27.0 | 54 | 0.1054 | 0.9146 | 0.9414 | 0.9278 | 0.9743 | | No log | 28.0 | 56 | 0.1036 | 0.9146 | 0.9414 | 0.9278 | 0.9743 | | No log | 29.0 | 58 | 0.1022 | 0.9146 | 0.9414 | 0.9278 | 0.9746 | | No log | 30.0 | 60 | 0.1016 | 0.9146 | 0.9414 | 0.9278 | 0.9751 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
anas-awadalla/spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-8
anas-awadalla
2022-02-26T09:30:48Z
3
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-8 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-2
anas-awadalla
2022-02-26T08:42:51Z
3
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-2 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-0
anas-awadalla
2022-02-26T08:25:44Z
4
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-1024-finetuned-squad-seed-0 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-10
anas-awadalla
2022-02-26T08:08:44Z
3
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-10 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-6
anas-awadalla
2022-02-26T07:37:57Z
4
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-6 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-0
anas-awadalla
2022-02-26T06:51:47Z
4
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-512-finetuned-squad-seed-0 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-10
anas-awadalla
2022-02-26T06:36:19Z
4
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-10 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-4
anas-awadalla
2022-02-26T05:53:17Z
4
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-4 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-2
anas-awadalla
2022-02-26T05:38:42Z
4
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-2 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-0
anas-awadalla
2022-02-26T05:24:05Z
4
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-256-finetuned-squad-seed-0 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-10
anas-awadalla
2022-02-26T05:09:28Z
4
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-10 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-0
anas-awadalla
2022-02-26T04:19:12Z
4
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-128-finetuned-squad-seed-0 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
ali2066/finetuned_sentence_itr3_2e-05_all_26_02_2022-04_14_37
ali2066
2022-02-26T03:20:03Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuned_sentence_itr3_2e-05_all_26_02_2022-04_14_37 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr3_2e-05_all_26_02_2022-04_14_37 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4676 - Accuracy: 0.8299 - F1: 0.8892 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.4087 | 0.8073 | 0.8754 | | No log | 2.0 | 390 | 0.3952 | 0.8159 | 0.8803 | | 0.4084 | 3.0 | 585 | 0.4183 | 0.8195 | 0.8831 | | 0.4084 | 4.0 | 780 | 0.4596 | 0.8280 | 0.8867 | | 0.4084 | 5.0 | 975 | 0.4919 | 0.8280 | 0.8873 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/finetuned_sentence_itr1_2e-05_all_26_02_2022-04_03_26
ali2066
2022-02-26T03:08:55Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuned_sentence_itr1_2e-05_all_26_02_2022-04_03_26 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr1_2e-05_all_26_02_2022-04_03_26 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4676 - Accuracy: 0.8299 - F1: 0.8892 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.4087 | 0.8073 | 0.8754 | | No log | 2.0 | 390 | 0.3952 | 0.8159 | 0.8803 | | 0.4084 | 3.0 | 585 | 0.4183 | 0.8195 | 0.8831 | | 0.4084 | 4.0 | 780 | 0.4596 | 0.8280 | 0.8867 | | 0.4084 | 5.0 | 975 | 0.4919 | 0.8280 | 0.8873 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/finetuned_sentence_itr0_2e-05_all_26_02_2022-03_57_45
ali2066
2022-02-26T03:03:20Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuned_sentence_itr0_2e-05_all_26_02_2022-03_57_45 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_sentence_itr0_2e-05_all_26_02_2022-03_57_45 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4345 - Accuracy: 0.8321 - F1: 0.8904 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 195 | 0.3922 | 0.8061 | 0.8747 | | No log | 2.0 | 390 | 0.3764 | 0.8171 | 0.8837 | | 0.4074 | 3.0 | 585 | 0.3873 | 0.8220 | 0.8843 | | 0.4074 | 4.0 | 780 | 0.4361 | 0.8232 | 0.8854 | | 0.4074 | 5.0 | 975 | 0.4555 | 0.8159 | 0.8793 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
anas-awadalla/spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-10
anas-awadalla
2022-02-25T23:29:09Z
4
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-10 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-8
anas-awadalla
2022-02-25T23:13:55Z
4
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-8 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
BigSalmon/GPTNeo350MInformalToFormalLincoln5
BigSalmon
2022-02-25T23:01:20Z
28
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
Trained on this model: https://huggingface.co/xhyi/PT_GPTNEO350_ATG/tree/main ``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/GPTNeo350MInformalToFormalLincoln3") model = AutoModelForCausalLM.from_pretrained("BigSalmon/GPTNeo350MInformalToFormalLincoln3") ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. Text: failing to draw in the masses, the NBA has fallen into disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap solutions could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ``` ``` infill: chrome extensions [MASK] accomplish everyday tasks. Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: ``` ``` Essay Intro (California High-Speed Rail): built with an eye on the future, california's high-speed rail service resolves to change the face of travel. Essay Intro (YIMBY's Need To Win): home to the most expensive housing market in the united states, san francisco is the city in which the yimby and anti-yimby hordes wage an eternal battle. Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ```
anas-awadalla/spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-6
anas-awadalla
2022-02-25T22:58:38Z
4
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-6 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-0
anas-awadalla
2022-02-25T22:13:00Z
4
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-0 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-4
anas-awadalla
2022-02-25T21:12:44Z
3
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-4 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-2
anas-awadalla
2022-02-25T20:58:18Z
4
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-32-finetuned-squad-seed-2 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-8
anas-awadalla
2022-02-25T20:13:14Z
4
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-8 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
huggingtweets/dril-nia_mp4
huggingtweets
2022-02-25T19:44:43Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/dril-nia_mp4/1645818279249/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1487740104340918272/7c9spp2E_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/847818629840228354/VXyQHfn0_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Nia & wint</div> <div style="text-align: center; font-size: 14px;">@dril-nia_mp4</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Nia & wint. | Data | Nia | wint | | --- | --- | --- | | Tweets downloaded | 278 | 3229 | | Retweets | 12 | 473 | | Short tweets | 13 | 300 | | Tweets kept | 253 | 2456 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ybk5oh0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-nia_mp4's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3ny6aucf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3ny6aucf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dril-nia_mp4') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
anas-awadalla/spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-4
anas-awadalla
2022-02-25T19:44:04Z
4
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-4 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-2
anas-awadalla
2022-02-25T19:29:02Z
4
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-2 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-0
anas-awadalla
2022-02-25T19:16:24Z
3
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-16-finetuned-squad-seed-0 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/roberta-base-few-shot-k-1024-finetuned-squad-seed-8
anas-awadalla
2022-02-25T18:42:10Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-few-shot-k-1024-finetuned-squad-seed-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-1024-finetuned-squad-seed-8 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/roberta-base-few-shot-k-1024-finetuned-squad-seed-4
anas-awadalla
2022-02-25T18:03:56Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-few-shot-k-1024-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-1024-finetuned-squad-seed-4 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/roberta-base-few-shot-k-1024-finetuned-squad-seed-0
anas-awadalla
2022-02-25T17:25:37Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-few-shot-k-1024-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-1024-finetuned-squad-seed-0 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/roberta-base-few-shot-k-512-finetuned-squad-seed-10
anas-awadalla
2022-02-25T17:06:27Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-few-shot-k-512-finetuned-squad-seed-10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-512-finetuned-squad-seed-10 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/roberta-base-few-shot-k-512-finetuned-squad-seed-8
anas-awadalla
2022-02-25T16:49:04Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-few-shot-k-512-finetuned-squad-seed-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-512-finetuned-squad-seed-8 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/roberta-base-few-shot-k-512-finetuned-squad-seed-2
anas-awadalla
2022-02-25T15:56:56Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-few-shot-k-512-finetuned-squad-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-512-finetuned-squad-seed-2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/roberta-base-few-shot-k-512-finetuned-squad-seed-0
anas-awadalla
2022-02-25T15:39:31Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-few-shot-k-512-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-512-finetuned-squad-seed-0 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
Davlan/xlm-roberta-base-masakhaner
Davlan
2022-02-25T15:23:22Z
4
1
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "arxiv:2103.11811", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
Hugging Face's logo --- language: - am - ha - ig - rw - lg - luo - pcm - sw - wo - yo - multilingual datasets: - masakhaner --- # xlm-roberta-base-masakhaner ## Model description **xlm-roberta-base-masakhaner** is the first **Named Entity Recognition** model for 10 African languages (Amharic, Hausa, Igbo, Kinyarwanda, Luganda, Nigerian Pidgin, Swahili, Wolof, and Yorùbá) based on a fine-tuned XLM-RoBERTa large model. It achieves the **state-of-the-art performance** for the NER task. It has been trained to recognize four types of entities: dates & times (DATE), location (LOC), organizations (ORG), and person (PER). Specifically, this model is a *xlm-roberta-large* model that was fine-tuned on an aggregation of African language datasets obtained from Masakhane [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for NER. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("Davlan/xlm-roberta-base-masakhaner") model = AutoModelForTokenClassification.from_pretrained("Davlan/xlm-roberta-base-masakhaner") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Emir of Kano turban Zhang wey don spend 18 years for Nigeria" ner_results = nlp(example) print(ner_results) ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on 10 African NER datasets (Amharic, Hausa, Igbo, Kinyarwanda, Luganda, Nigerian Pidgin, Swahili, Wolof, and Yorùbá) Masakhane [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset The training dataset distinguishes between the beginning and continuation of an entity so that if there are back-to-back entities of the same type, the model can output where the second entity begins. As in the dataset, each token will be classified as one of the following classes: Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a person’s name right after another person’s name I-PER |Person’s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location ## Training procedure This model was trained on a single NVIDIA V100 GPU with recommended hyperparameters from the [original MasakhaNER paper](https://arxiv.org/abs/2103.11811) which trained & evaluated the model on MasakhaNER corpus. ### BibTeX entry and citation info ``` @article{adelani21tacl, title = {Masakha{NER}: Named Entity Recognition for African Languages}, author = {David Ifeoluwa Adelani and Jade Abbott and Graham Neubig and Daniel D'souza and Julia Kreutzer and Constantine Lignos and Chester Palen-Michel and Happy Buzaaba and Shruti Rijhwani and Sebastian Ruder and Stephen Mayhew and Israel Abebe Azime and Shamsuddeen Muhammad and Chris Chinenye Emezue and Joyce Nakatumba-Nabende and Perez Ogayo and Anuoluwapo Aremu and Catherine Gitau and Derguene Mbaye and Jesujoba Alabi and Seid Muhie Yimam and Tajuddeen Gwadabe and Ignatius Ezeani and Rubungo Andre Niyongabo and Jonathan Mukiibi and Verrah Otiende and Iroro Orife and Davis David and Samba Ngom and Tosin Adewumi and Paul Rayson and Mofetoluwa Adeyemi and Gerald Muriuki and Emmanuel Anebi and Chiamaka Chukwuneke and Nkiruka Odu and Eric Peter Wairagala and Samuel Oyerinde and Clemencia Siro and Tobius Saul Bateesa and Temilola Oloyede and Yvonne Wambui and Victor Akinode and Deborah Nabagereka and Maurice Katusiime and Ayodele Awokoya and Mouhamadane MBOUP and Dibora Gebreyohannes and Henok Tilaye and Kelechi Nwaike and Degaga Wolde and Abdoulaye Faye and Blessing Sibanda and Orevaoghene Ahia and Bonaventure F. P. Dossou and Kelechi Ogueji and Thierno Ibrahima DIOP and Abdoulaye Diallo and Adewale Akinfaderin and Tendai Marengereke and Salomey Osei}, journal = {Transactions of the Association for Computational Linguistics (TACL)}, month = {}, url = {https://arxiv.org/abs/2103.11811}, year = {2021} } ```
anas-awadalla/roberta-base-few-shot-k-256-finetuned-squad-seed-8
anas-awadalla
2022-02-25T15:05:36Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-few-shot-k-256-finetuned-squad-seed-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-256-finetuned-squad-seed-8 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
osanseviero/el_core_news_sm
osanseviero
2022-02-25T14:44:32Z
0
1
spacy
[ "spacy", "token-classification", "el", "license:cc-by-nc-sa-3.0", "model-index", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - spacy - token-classification language: - el license: cc-by-nc-sa-3.0 model-index: - name: el_core_news_sm results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.7348837209 - name: NER Recall type: recall value: 0.6638655462 - name: NER F Score type: f_score value: 0.6975717439 - task: name: TAG type: token-classification metrics: - name: TAG (XPOS) Accuracy type: accuracy value: 0.9134743381 - task: name: POS type: token-classification metrics: - name: POS (UPOS) Accuracy type: accuracy value: 0.94345018 - task: name: MORPH type: token-classification metrics: - name: Morph (UFeats) Accuracy type: accuracy value: 0.8863580338 - task: name: LEMMA type: token-classification metrics: - name: Lemma Accuracy type: accuracy value: 0.5620470345 - task: name: UNLABELED_DEPENDENCIES type: token-classification metrics: - name: Unlabeled Attachment Score (UAS) type: f_score value: 0.8446911409 - task: name: LABELED_DEPENDENCIES type: token-classification metrics: - name: Labeled Attachment Score (LAS) type: f_score value: 0.804792262 - task: name: SENTS type: token-classification metrics: - name: Sentences F-Score type: f_score value: 0.9274292743 --- ### Details: https://spacy.io/models/el#el_core_news_sm Greek pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, senter, ner, attribute_ruler, lemmatizer. | Feature | Description | | --- | --- | | **Name** | `el_core_news_sm` | | **Version** | `3.2.0` | | **spaCy** | `>=3.2.0,<3.3.0` | | **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `attribute_ruler`, `lemmatizer`, `ner` | | **Components** | `tok2vec`, `morphologizer`, `parser`, `senter`, `attribute_ruler`, `lemmatizer`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | [UD Greek GDT v2.8](https://github.com/UniversalDependencies/UD_Greek-GDT) (Prokopidis, Prokopis)<br />[Greek NER Corpus (Google Summer of Code 2018)](https://github.com/eellak/gsoc2018-spacy) (Giannis Daras)<br />[spaCy lookups data](https://github.com/explosion/spacy-lookups-data) (Explosion) | | **License** | `CC BY-NC-SA 3.0` | | **Author** | [Explosion](https://explosion.ai) | ### Label Scheme <details> <summary>View label scheme (396 labels for 4 components)</summary> | Component | Labels | | --- | --- | | **`morphologizer`** | `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Foreign=Yes\|POS=X`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `POS=ADP`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `NumType=Card\|POS=NUM`, `POS=NOUN`, `POS=ADV`, `POS=PUNCT`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADP`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADP`, `Case=Acc\|Gender=Neut\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=CCONJ`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `POS=AUX`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADP`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADP`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADP`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|POS=VERB\|VerbForm=Conv\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADP`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=SCONJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|POS=VERB\|VerbForm=Inf\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN`, `POS=PART`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem\|NumType=Ord\|Number=Sing\|POS=NUM`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Abbr=Yes\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Degree=Cmp\|POS=ADV`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Nom\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Acc\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Abbr=Yes\|POS=ADV`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Nom\|Gender=Neut\|NumType=Ord\|Number=Plur\|POS=NUM`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Fem\|NumType=Sets\|Number=Plur\|POS=NUM`, `Aspect=Imp\|POS=AUX\|VerbForm=Conv\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Fem\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Fem\|NumType=Sets\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Masc\|NumType=Ord\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Neut\|NumType=Ord\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Gen\|Gender=Fem\|NumType=Sets\|Number=Plur\|POS=NUM`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Nom\|Gender=Fem\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Fem\|NumType=Mult\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|NumType=Mult\|Number=Sing\|POS=NUM`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Degree=Sup\|POS=ADV`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `POS=SYM`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Gender=Masc\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|NumType=Mult\|Number=Sing\|POS=NUM`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Gen\|Gender=Neut\|NumType=Ord\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Gen\|Gender=Fem\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Dat\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ` | | **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `case`, `cc`, `ccomp`, `conj`, `cop`, `csubj`, `csubj:pass`, `dep`, `det`, `fixed`, `flat`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `obl:agent`, `parataxis`, `punct`, `vocative`, `xcomp` | | **`senter`** | `I`, `S` | | **`ner`** | `EVENT`, `GPE`, `LOC`, `ORG`, `PERSON`, `PRODUCT` | </details> ### Accuracy | Type | Score | | --- | --- | | `TOKEN_ACC` | 100.00 | | `TOKEN_P` | 99.90 | | `TOKEN_R` | 99.95 | | `TOKEN_F` | 99.93 | | `SENTS_P` | 91.95 | | `SENTS_R` | 93.55 | | `SENTS_F` | 92.74 | | `DEP_UAS` | 84.47 | | `DEP_LAS` | 80.48 | | `ENTS_P` | 73.49 | | `ENTS_R` | 66.39 | | `ENTS_F` | 69.76 | | `POS_ACC` | 94.35 | | `MORPH_ACC` | 88.64 | | `MORPH_MICRO_P` | 94.75 | | `MORPH_MICRO_R` | 94.54 | | `MORPH_MICRO_F` | 94.64 | | `TAG_ACC` | 91.35 | | `LEMMA_ACC` | 56.20 |
Davlan/xlm-roberta-base-finetuned-somali
Davlan
2022-02-25T13:51:37Z
17
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- license: apache-2.0 ---
anas-awadalla/roberta-base-few-shot-k-128-finetuned-squad-seed-8
anas-awadalla
2022-02-25T13:25:47Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-few-shot-k-128-finetuned-squad-seed-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-128-finetuned-squad-seed-8 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/roberta-base-few-shot-k-128-finetuned-squad-seed-6
anas-awadalla
2022-02-25T13:08:34Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-few-shot-k-128-finetuned-squad-seed-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-128-finetuned-squad-seed-6 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
vocab-transformers/cross_encoder-msmarco-distilbert-word2vec256k
vocab-transformers
2022-02-25T12:58:31Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
#cross_encoder-msmarco-word2vec256k This CrossEncoder was trained with MarginMSE loss from the [nicoladecao/msmarco-word2vec256000-distilbert-base-uncased](https://hf.co/nicoladecao/msmarco-word2vec256000-distilbert-base-uncased) checkpoint. **Word embedding matrix has been frozen during training**. You can load the model with [sentence-transformers](https://sbert.net): ```python from sentence_transformers import CrossEncoder from torch import nn model = CrossEncoder(model_name, default_activation_function=nn.Identity()) ``` Performance on TREC Deep Learning (nDCG@10): - TREC-DL 19: 72.49 - TREC-DL 20: 72.71
anas-awadalla/roberta-base-few-shot-k-128-finetuned-squad-seed-4
anas-awadalla
2022-02-25T12:51:24Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-few-shot-k-128-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-128-finetuned-squad-seed-4 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/roberta-base-few-shot-k-128-finetuned-squad-seed-0
anas-awadalla
2022-02-25T12:17:02Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-few-shot-k-128-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-128-finetuned-squad-seed-0 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
QuickRead/fine-tune-Pegasus
QuickRead
2022-02-25T12:13:39Z
4
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:xsum", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: fine-tune-Pegasus results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metrics: - name: Rouge1 type: rouge value: 17.993 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tune-Pegasus This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.3242 - Rouge1: 17.993 - Rouge2: 2.9392 - Rougel: 12.313 - Rougelsum: 13.3091 - Gen Len: 67.0552 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.35e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.1 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/roberta-base-few-shot-k-64-finetuned-squad-seed-8
anas-awadalla
2022-02-25T11:45:04Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-few-shot-k-64-finetuned-squad-seed-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-64-finetuned-squad-seed-8 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
MhF/distilbert-base-uncased-distilled-clinc
MhF
2022-02-25T10:48:47Z
41
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9461290322580646 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.2663 - Accuracy: 0.9461 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 9 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.1991 | 1.0 | 318 | 3.1495 | 0.7523 | | 2.4112 | 2.0 | 636 | 1.5868 | 0.8510 | | 1.1887 | 3.0 | 954 | 0.7975 | 0.9203 | | 0.5952 | 4.0 | 1272 | 0.4870 | 0.9319 | | 0.3275 | 5.0 | 1590 | 0.3571 | 0.9419 | | 0.2066 | 6.0 | 1908 | 0.3070 | 0.9429 | | 0.1456 | 7.0 | 2226 | 0.2809 | 0.9448 | | 0.1154 | 8.0 | 2544 | 0.2697 | 0.9468 | | 0.1011 | 9.0 | 2862 | 0.2663 | 0.9461 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
anas-awadalla/roberta-base-few-shot-k-64-finetuned-squad-seed-0
anas-awadalla
2022-02-25T10:36:26Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-few-shot-k-64-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-64-finetuned-squad-seed-0 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
9pinus/macbert-base-chinese-medical-collation
9pinus
2022-02-25T10:26:38Z
24
10
transformers
[ "transformers", "pytorch", "bert", "token-classification", "Token Classification", "zh", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 language: zh tags: - Token Classification metrics: - precision - recall - f1 - accuracy --- ## Model description This model is a fine-tuned version of macbert for the purpose of spell checking in medical application scenarios. We fine-tuned macbert Chinese base version on a 300M dataset including 60K+ authorized medical articles. We proposed to randomly confuse 30% sentences of these articles by adding noise with a either visually or phonologically resembled characters. Consequently, the fine-tuned model can achieve 96% accuracy on our test dataset. ## Intended uses & limitations You can use this model directly with a pipeline for token classification: ```python >>> from transformers import (AutoModelForTokenClassification, AutoTokenizer) >>> from transformers import pipeline >>> hub_model_id = "9pinus/macbert-base-chinese-medical-collation" >>> model = AutoModelForTokenClassification.from_pretrained(hub_model_id) >>> tokenizer = AutoTokenizer.from_pretrained(hub_model_id) >>> classifier = pipeline('ner', model=model, tokenizer=tokenizer) >>> result = classifier("如果病情较重,可适当口服甲肖唑片、环酯红霉素片等药物进行抗感染镇痛。") >>> for item in result: >>> if item['entity'] == 1: >>> print(item) {'entity': 1, 'score': 0.58127016, 'index': 14, 'word': '肖', 'start': 13, 'end': 14} ``` ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/roberta-base-few-shot-k-32-finetuned-squad-seed-10
anas-awadalla
2022-02-25T10:19:19Z
8
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-few-shot-k-32-finetuned-squad-seed-10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-32-finetuned-squad-seed-10 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
anas-awadalla/roberta-base-few-shot-k-32-finetuned-squad-seed-8
anas-awadalla
2022-02-25T10:02:23Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-base-few-shot-k-32-finetuned-squad-seed-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-few-shot-k-32-finetuned-squad-seed-8 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
wietsedv/xlm-roberta-base-ft-udpos28-wo
wietsedv
2022-02-25T09:59:39Z
17
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "part-of-speech", "wo", "dataset:universal_dependencies", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - wo license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-wo results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 51.4 - type: accuracy name: Dutch Test accuracy value: 52.2 - type: accuracy name: German Test accuracy value: 38.4 - type: accuracy name: Italian Test accuracy value: 51.2 - type: accuracy name: French Test accuracy value: 48.8 - type: accuracy name: Spanish Test accuracy value: 52.4 - type: accuracy name: Russian Test accuracy value: 57.3 - type: accuracy name: Swedish Test accuracy value: 49.0 - type: accuracy name: Norwegian Test accuracy value: 49.1 - type: accuracy name: Danish Test accuracy value: 52.4 - type: accuracy name: Low Saxon Test accuracy value: 34.5 - type: accuracy name: Akkadian Test accuracy value: 41.6 - type: accuracy name: Armenian Test accuracy value: 61.7 - type: accuracy name: Welsh Test accuracy value: 41.5 - type: accuracy name: Old East Slavic Test accuracy value: 48.3 - type: accuracy name: Albanian Test accuracy value: 51.8 - type: accuracy name: Slovenian Test accuracy value: 43.9 - type: accuracy name: Guajajara Test accuracy value: 32.0 - type: accuracy name: Kurmanji Test accuracy value: 46.5 - type: accuracy name: Turkish Test accuracy value: 56.7 - type: accuracy name: Finnish Test accuracy value: 58.5 - type: accuracy name: Indonesian Test accuracy value: 61.8 - type: accuracy name: Ukrainian Test accuracy value: 56.8 - type: accuracy name: Polish Test accuracy value: 55.2 - type: accuracy name: Portuguese Test accuracy value: 55.5 - type: accuracy name: Kazakh Test accuracy value: 63.6 - type: accuracy name: Latin Test accuracy value: 51.1 - type: accuracy name: Old French Test accuracy value: 33.8 - type: accuracy name: Buryat Test accuracy value: 54.2 - type: accuracy name: Kaapor Test accuracy value: 23.8 - type: accuracy name: Korean Test accuracy value: 52.5 - type: accuracy name: Estonian Test accuracy value: 60.2 - type: accuracy name: Croatian Test accuracy value: 52.4 - type: accuracy name: Gothic Test accuracy value: 23.0 - type: accuracy name: Swiss German Test accuracy value: 30.6 - type: accuracy name: Assyrian Test accuracy value: 18.8 - type: accuracy name: North Sami Test accuracy value: 42.8 - type: accuracy name: Naija Test accuracy value: 26.9 - type: accuracy name: Latvian Test accuracy value: 61.3 - type: accuracy name: Chinese Test accuracy value: 33.6 - type: accuracy name: Tagalog Test accuracy value: 62.2 - type: accuracy name: Bambara Test accuracy value: 33.8 - type: accuracy name: Lithuanian Test accuracy value: 61.0 - type: accuracy name: Galician Test accuracy value: 53.1 - type: accuracy name: Vietnamese Test accuracy value: 49.1 - type: accuracy name: Greek Test accuracy value: 46.2 - type: accuracy name: Catalan Test accuracy value: 52.9 - type: accuracy name: Czech Test accuracy value: 55.2 - type: accuracy name: Erzya Test accuracy value: 50.0 - type: accuracy name: Bhojpuri Test accuracy value: 43.1 - type: accuracy name: Thai Test accuracy value: 34.9 - type: accuracy name: Marathi Test accuracy value: 57.1 - type: accuracy name: Basque Test accuracy value: 66.6 - type: accuracy name: Slovak Test accuracy value: 58.8 - type: accuracy name: Kiche Test accuracy value: 50.1 - type: accuracy name: Yoruba Test accuracy value: 34.1 - type: accuracy name: Warlpiri Test accuracy value: 42.5 - type: accuracy name: Tamil Test accuracy value: 66.0 - type: accuracy name: Maltese Test accuracy value: 35.7 - type: accuracy name: Ancient Greek Test accuracy value: 39.3 - type: accuracy name: Icelandic Test accuracy value: 47.9 - type: accuracy name: Mbya Guarani Test accuracy value: 31.8 - type: accuracy name: Urdu Test accuracy value: 40.4 - type: accuracy name: Romanian Test accuracy value: 54.4 - type: accuracy name: Persian Test accuracy value: 46.2 - type: accuracy name: Apurina Test accuracy value: 58.3 - type: accuracy name: Japanese Test accuracy value: 31.0 - type: accuracy name: Hungarian Test accuracy value: 53.0 - type: accuracy name: Hindi Test accuracy value: 49.3 - type: accuracy name: Classical Chinese Test accuracy value: 24.8 - type: accuracy name: Komi Permyak Test accuracy value: 49.3 - type: accuracy name: Faroese Test accuracy value: 51.5 - type: accuracy name: Sanskrit Test accuracy value: 31.0 - type: accuracy name: Livvi Test accuracy value: 52.5 - type: accuracy name: Arabic Test accuracy value: 50.6 - type: accuracy name: Wolof Test accuracy value: 91.5 - type: accuracy name: Bulgarian Test accuracy value: 54.3 - type: accuracy name: Akuntsu Test accuracy value: 35.7 - type: accuracy name: Makurap Test accuracy value: 20.5 - type: accuracy name: Kangri Test accuracy value: 36.2 - type: accuracy name: Breton Test accuracy value: 46.9 - type: accuracy name: Telugu Test accuracy value: 63.5 - type: accuracy name: Cantonese Test accuracy value: 40.2 - type: accuracy name: Old Church Slavonic Test accuracy value: 27.7 - type: accuracy name: Karelian Test accuracy value: 55.2 - type: accuracy name: Upper Sorbian Test accuracy value: 52.5 - type: accuracy name: South Levantine Arabic Test accuracy value: 46.6 - type: accuracy name: Komi Zyrian Test accuracy value: 43.4 - type: accuracy name: Irish Test accuracy value: 44.3 - type: accuracy name: Nayini Test accuracy value: 46.2 - type: accuracy name: Munduruku Test accuracy value: 32.3 - type: accuracy name: Manx Test accuracy value: 38.2 - type: accuracy name: Skolt Sami Test accuracy value: 41.8 - type: accuracy name: Afrikaans Test accuracy value: 49.0 - type: accuracy name: Old Turkish Test accuracy value: 42.1 - type: accuracy name: Tupinamba Test accuracy value: 48.2 - type: accuracy name: Belarusian Test accuracy value: 61.1 - type: accuracy name: Serbian Test accuracy value: 52.9 - type: accuracy name: Moksha Test accuracy value: 47.3 - type: accuracy name: Western Armenian Test accuracy value: 62.9 - type: accuracy name: Scottish Gaelic Test accuracy value: 39.6 - type: accuracy name: Khunsari Test accuracy value: 36.5 - type: accuracy name: Hebrew Test accuracy value: 64.6 - type: accuracy name: Uyghur Test accuracy value: 59.7 - type: accuracy name: Chukchi Test accuracy value: 40.9 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Wolof This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-wo") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-wo") ```
wietsedv/xlm-roberta-base-ft-udpos28-uk
wietsedv
2022-02-25T09:59:34Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "part-of-speech", "uk", "dataset:universal_dependencies", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - uk license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-uk results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 82.2 - type: accuracy name: Dutch Test accuracy value: 84.3 - type: accuracy name: German Test accuracy value: 82.4 - type: accuracy name: Italian Test accuracy value: 83.9 - type: accuracy name: French Test accuracy value: 82.6 - type: accuracy name: Spanish Test accuracy value: 86.2 - type: accuracy name: Russian Test accuracy value: 93.3 - type: accuracy name: Swedish Test accuracy value: 86.3 - type: accuracy name: Norwegian Test accuracy value: 80.2 - type: accuracy name: Danish Test accuracy value: 85.2 - type: accuracy name: Low Saxon Test accuracy value: 30.9 - type: accuracy name: Akkadian Test accuracy value: 17.5 - type: accuracy name: Armenian Test accuracy value: 87.7 - type: accuracy name: Welsh Test accuracy value: 66.8 - type: accuracy name: Old East Slavic Test accuracy value: 77.5 - type: accuracy name: Albanian Test accuracy value: 79.7 - type: accuracy name: Slovenian Test accuracy value: 84.5 - type: accuracy name: Guajajara Test accuracy value: 14.6 - type: accuracy name: Kurmanji Test accuracy value: 77.0 - type: accuracy name: Turkish Test accuracy value: 76.3 - type: accuracy name: Finnish Test accuracy value: 82.5 - type: accuracy name: Indonesian Test accuracy value: 77.0 - type: accuracy name: Ukrainian Test accuracy value: 98.2 - type: accuracy name: Polish Test accuracy value: 91.8 - type: accuracy name: Portuguese Test accuracy value: 84.1 - type: accuracy name: Kazakh Test accuracy value: 81.8 - type: accuracy name: Latin Test accuracy value: 77.9 - type: accuracy name: Old French Test accuracy value: 26.9 - type: accuracy name: Buryat Test accuracy value: 60.7 - type: accuracy name: Kaapor Test accuracy value: 5.4 - type: accuracy name: Korean Test accuracy value: 61.5 - type: accuracy name: Estonian Test accuracy value: 84.4 - type: accuracy name: Croatian Test accuracy value: 93.2 - type: accuracy name: Gothic Test accuracy value: 3.7 - type: accuracy name: Swiss German Test accuracy value: 35.0 - type: accuracy name: Assyrian Test accuracy value: 14.6 - type: accuracy name: North Sami Test accuracy value: 27.0 - type: accuracy name: Naija Test accuracy value: 22.5 - type: accuracy name: Latvian Test accuracy value: 88.9 - type: accuracy name: Chinese Test accuracy value: 51.9 - type: accuracy name: Tagalog Test accuracy value: 71.1 - type: accuracy name: Bambara Test accuracy value: 18.7 - type: accuracy name: Lithuanian Test accuracy value: 88.1 - type: accuracy name: Galician Test accuracy value: 85.8 - type: accuracy name: Vietnamese Test accuracy value: 66.3 - type: accuracy name: Greek Test accuracy value: 85.9 - type: accuracy name: Catalan Test accuracy value: 84.0 - type: accuracy name: Czech Test accuracy value: 92.1 - type: accuracy name: Erzya Test accuracy value: 49.4 - type: accuracy name: Bhojpuri Test accuracy value: 51.8 - type: accuracy name: Thai Test accuracy value: 63.3 - type: accuracy name: Marathi Test accuracy value: 88.3 - type: accuracy name: Basque Test accuracy value: 75.7 - type: accuracy name: Slovak Test accuracy value: 91.8 - type: accuracy name: Kiche Test accuracy value: 22.7 - type: accuracy name: Yoruba Test accuracy value: 20.0 - type: accuracy name: Warlpiri Test accuracy value: 32.4 - type: accuracy name: Tamil Test accuracy value: 81.7 - type: accuracy name: Maltese Test accuracy value: 16.6 - type: accuracy name: Ancient Greek Test accuracy value: 63.0 - type: accuracy name: Icelandic Test accuracy value: 81.4 - type: accuracy name: Mbya Guarani Test accuracy value: 23.7 - type: accuracy name: Urdu Test accuracy value: 64.1 - type: accuracy name: Romanian Test accuracy value: 82.6 - type: accuracy name: Persian Test accuracy value: 78.3 - type: accuracy name: Apurina Test accuracy value: 24.8 - type: accuracy name: Japanese Test accuracy value: 38.0 - type: accuracy name: Hungarian Test accuracy value: 82.2 - type: accuracy name: Hindi Test accuracy value: 68.3 - type: accuracy name: Classical Chinese Test accuracy value: 36.6 - type: accuracy name: Komi Permyak Test accuracy value: 46.0 - type: accuracy name: Faroese Test accuracy value: 73.6 - type: accuracy name: Sanskrit Test accuracy value: 13.9 - type: accuracy name: Livvi Test accuracy value: 59.5 - type: accuracy name: Arabic Test accuracy value: 82.1 - type: accuracy name: Wolof Test accuracy value: 18.5 - type: accuracy name: Bulgarian Test accuracy value: 91.1 - type: accuracy name: Akuntsu Test accuracy value: 15.2 - type: accuracy name: Makurap Test accuracy value: 2.1 - type: accuracy name: Kangri Test accuracy value: 51.4 - type: accuracy name: Breton Test accuracy value: 59.3 - type: accuracy name: Telugu Test accuracy value: 84.3 - type: accuracy name: Cantonese Test accuracy value: 53.8 - type: accuracy name: Old Church Slavonic Test accuracy value: 48.0 - type: accuracy name: Karelian Test accuracy value: 68.6 - type: accuracy name: Upper Sorbian Test accuracy value: 71.7 - type: accuracy name: South Levantine Arabic Test accuracy value: 68.9 - type: accuracy name: Komi Zyrian Test accuracy value: 40.4 - type: accuracy name: Irish Test accuracy value: 66.2 - type: accuracy name: Nayini Test accuracy value: 46.2 - type: accuracy name: Munduruku Test accuracy value: 8.0 - type: accuracy name: Manx Test accuracy value: 23.0 - type: accuracy name: Skolt Sami Test accuracy value: 27.7 - type: accuracy name: Afrikaans Test accuracy value: 81.7 - type: accuracy name: Old Turkish Test accuracy value: 39.8 - type: accuracy name: Tupinamba Test accuracy value: 20.2 - type: accuracy name: Belarusian Test accuracy value: 93.7 - type: accuracy name: Serbian Test accuracy value: 93.8 - type: accuracy name: Moksha Test accuracy value: 46.0 - type: accuracy name: Western Armenian Test accuracy value: 79.8 - type: accuracy name: Scottish Gaelic Test accuracy value: 56.3 - type: accuracy name: Khunsari Test accuracy value: 36.5 - type: accuracy name: Hebrew Test accuracy value: 84.4 - type: accuracy name: Uyghur Test accuracy value: 77.2 - type: accuracy name: Chukchi Test accuracy value: 35.0 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Ukrainian This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-uk") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-uk") ```
wietsedv/xlm-roberta-base-ft-udpos28-ug
wietsedv
2022-02-25T09:59:33Z
4
1
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "part-of-speech", "ug", "dataset:universal_dependencies", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - ug license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-ug results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 60.9 - type: accuracy name: Dutch Test accuracy value: 57.8 - type: accuracy name: German Test accuracy value: 61.0 - type: accuracy name: Italian Test accuracy value: 59.4 - type: accuracy name: French Test accuracy value: 53.9 - type: accuracy name: Spanish Test accuracy value: 55.5 - type: accuracy name: Russian Test accuracy value: 71.6 - type: accuracy name: Swedish Test accuracy value: 65.9 - type: accuracy name: Norwegian Test accuracy value: 63.0 - type: accuracy name: Danish Test accuracy value: 64.4 - type: accuracy name: Low Saxon Test accuracy value: 44.5 - type: accuracy name: Akkadian Test accuracy value: 37.0 - type: accuracy name: Armenian Test accuracy value: 77.0 - type: accuracy name: Welsh Test accuracy value: 57.1 - type: accuracy name: Old East Slavic Test accuracy value: 58.4 - type: accuracy name: Albanian Test accuracy value: 63.4 - type: accuracy name: Slovenian Test accuracy value: 58.7 - type: accuracy name: Guajajara Test accuracy value: 38.2 - type: accuracy name: Kurmanji Test accuracy value: 71.3 - type: accuracy name: Turkish Test accuracy value: 74.6 - type: accuracy name: Finnish Test accuracy value: 76.0 - type: accuracy name: Indonesian Test accuracy value: 65.5 - type: accuracy name: Ukrainian Test accuracy value: 71.6 - type: accuracy name: Polish Test accuracy value: 67.9 - type: accuracy name: Portuguese Test accuracy value: 62.4 - type: accuracy name: Kazakh Test accuracy value: 82.0 - type: accuracy name: Latin Test accuracy value: 68.3 - type: accuracy name: Old French Test accuracy value: 45.0 - type: accuracy name: Buryat Test accuracy value: 61.5 - type: accuracy name: Kaapor Test accuracy value: 29.2 - type: accuracy name: Korean Test accuracy value: 61.7 - type: accuracy name: Estonian Test accuracy value: 74.8 - type: accuracy name: Croatian Test accuracy value: 64.6 - type: accuracy name: Gothic Test accuracy value: 23.8 - type: accuracy name: Swiss German Test accuracy value: 46.9 - type: accuracy name: Assyrian Test accuracy value: 29.4 - type: accuracy name: North Sami Test accuracy value: 42.7 - type: accuracy name: Naija Test accuracy value: 39.0 - type: accuracy name: Latvian Test accuracy value: 77.2 - type: accuracy name: Chinese Test accuracy value: 57.9 - type: accuracy name: Tagalog Test accuracy value: 61.5 - type: accuracy name: Bambara Test accuracy value: 35.8 - type: accuracy name: Lithuanian Test accuracy value: 79.1 - type: accuracy name: Galician Test accuracy value: 60.3 - type: accuracy name: Vietnamese Test accuracy value: 67.9 - type: accuracy name: Greek Test accuracy value: 61.4 - type: accuracy name: Catalan Test accuracy value: 50.3 - type: accuracy name: Czech Test accuracy value: 67.9 - type: accuracy name: Erzya Test accuracy value: 49.9 - type: accuracy name: Bhojpuri Test accuracy value: 55.0 - type: accuracy name: Thai Test accuracy value: 56.2 - type: accuracy name: Marathi Test accuracy value: 81.6 - type: accuracy name: Basque Test accuracy value: 70.3 - type: accuracy name: Slovak Test accuracy value: 63.9 - type: accuracy name: Kiche Test accuracy value: 35.6 - type: accuracy name: Yoruba Test accuracy value: 32.9 - type: accuracy name: Warlpiri Test accuracy value: 55.5 - type: accuracy name: Tamil Test accuracy value: 73.9 - type: accuracy name: Maltese Test accuracy value: 32.3 - type: accuracy name: Ancient Greek Test accuracy value: 51.7 - type: accuracy name: Icelandic Test accuracy value: 65.8 - type: accuracy name: Mbya Guarani Test accuracy value: 34.3 - type: accuracy name: Urdu Test accuracy value: 68.7 - type: accuracy name: Romanian Test accuracy value: 65.1 - type: accuracy name: Persian Test accuracy value: 74.1 - type: accuracy name: Apurina Test accuracy value: 45.9 - type: accuracy name: Japanese Test accuracy value: 47.5 - type: accuracy name: Hungarian Test accuracy value: 62.6 - type: accuracy name: Hindi Test accuracy value: 74.2 - type: accuracy name: Classical Chinese Test accuracy value: 40.9 - type: accuracy name: Komi Permyak Test accuracy value: 49.2 - type: accuracy name: Faroese Test accuracy value: 56.4 - type: accuracy name: Sanskrit Test accuracy value: 43.1 - type: accuracy name: Livvi Test accuracy value: 64.2 - type: accuracy name: Arabic Test accuracy value: 60.9 - type: accuracy name: Wolof Test accuracy value: 35.2 - type: accuracy name: Bulgarian Test accuracy value: 68.3 - type: accuracy name: Akuntsu Test accuracy value: 47.6 - type: accuracy name: Makurap Test accuracy value: 23.3 - type: accuracy name: Kangri Test accuracy value: 51.8 - type: accuracy name: Breton Test accuracy value: 52.0 - type: accuracy name: Telugu Test accuracy value: 82.8 - type: accuracy name: Cantonese Test accuracy value: 57.4 - type: accuracy name: Old Church Slavonic Test accuracy value: 41.9 - type: accuracy name: Karelian Test accuracy value: 64.6 - type: accuracy name: Upper Sorbian Test accuracy value: 59.8 - type: accuracy name: South Levantine Arabic Test accuracy value: 58.0 - type: accuracy name: Komi Zyrian Test accuracy value: 48.8 - type: accuracy name: Irish Test accuracy value: 51.8 - type: accuracy name: Nayini Test accuracy value: 55.1 - type: accuracy name: Munduruku Test accuracy value: 41.2 - type: accuracy name: Manx Test accuracy value: 36.9 - type: accuracy name: Skolt Sami Test accuracy value: 45.6 - type: accuracy name: Afrikaans Test accuracy value: 61.8 - type: accuracy name: Old Turkish Test accuracy value: 40.7 - type: accuracy name: Tupinamba Test accuracy value: 52.6 - type: accuracy name: Belarusian Test accuracy value: 71.2 - type: accuracy name: Serbian Test accuracy value: 63.1 - type: accuracy name: Moksha Test accuracy value: 49.0 - type: accuracy name: Western Armenian Test accuracy value: 71.8 - type: accuracy name: Scottish Gaelic Test accuracy value: 48.0 - type: accuracy name: Khunsari Test accuracy value: 52.7 - type: accuracy name: Hebrew Test accuracy value: 77.1 - type: accuracy name: Uyghur Test accuracy value: 89.9 - type: accuracy name: Chukchi Test accuracy value: 40.3 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Uyghur This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-ug") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-ug") ```
wietsedv/xlm-roberta-base-ft-udpos28-te
wietsedv
2022-02-25T09:59:30Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "part-of-speech", "te", "dataset:universal_dependencies", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - te license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-te results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 68.9 - type: accuracy name: Dutch Test accuracy value: 68.0 - type: accuracy name: German Test accuracy value: 67.0 - type: accuracy name: Italian Test accuracy value: 63.3 - type: accuracy name: French Test accuracy value: 62.1 - type: accuracy name: Spanish Test accuracy value: 63.1 - type: accuracy name: Russian Test accuracy value: 71.0 - type: accuracy name: Swedish Test accuracy value: 66.4 - type: accuracy name: Norwegian Test accuracy value: 62.1 - type: accuracy name: Danish Test accuracy value: 67.5 - type: accuracy name: Low Saxon Test accuracy value: 48.2 - type: accuracy name: Akkadian Test accuracy value: 37.4 - type: accuracy name: Armenian Test accuracy value: 72.5 - type: accuracy name: Welsh Test accuracy value: 54.5 - type: accuracy name: Old East Slavic Test accuracy value: 57.6 - type: accuracy name: Albanian Test accuracy value: 60.3 - type: accuracy name: Slovenian Test accuracy value: 58.6 - type: accuracy name: Guajajara Test accuracy value: 35.3 - type: accuracy name: Kurmanji Test accuracy value: 67.7 - type: accuracy name: Turkish Test accuracy value: 73.0 - type: accuracy name: Finnish Test accuracy value: 73.8 - type: accuracy name: Indonesian Test accuracy value: 69.0 - type: accuracy name: Ukrainian Test accuracy value: 71.3 - type: accuracy name: Polish Test accuracy value: 68.4 - type: accuracy name: Portuguese Test accuracy value: 66.3 - type: accuracy name: Kazakh Test accuracy value: 77.4 - type: accuracy name: Latin Test accuracy value: 65.1 - type: accuracy name: Old French Test accuracy value: 48.4 - type: accuracy name: Buryat Test accuracy value: 64.0 - type: accuracy name: Kaapor Test accuracy value: 33.8 - type: accuracy name: Korean Test accuracy value: 63.2 - type: accuracy name: Estonian Test accuracy value: 73.8 - type: accuracy name: Croatian Test accuracy value: 65.6 - type: accuracy name: Gothic Test accuracy value: 29.8 - type: accuracy name: Swiss German Test accuracy value: 48.0 - type: accuracy name: Assyrian Test accuracy value: 16.8 - type: accuracy name: North Sami Test accuracy value: 41.0 - type: accuracy name: Naija Test accuracy value: 38.1 - type: accuracy name: Latvian Test accuracy value: 77.6 - type: accuracy name: Chinese Test accuracy value: 62.0 - type: accuracy name: Tagalog Test accuracy value: 66.1 - type: accuracy name: Bambara Test accuracy value: 35.3 - type: accuracy name: Lithuanian Test accuracy value: 77.6 - type: accuracy name: Galician Test accuracy value: 62.9 - type: accuracy name: Vietnamese Test accuracy value: 59.5 - type: accuracy name: Greek Test accuracy value: 66.3 - type: accuracy name: Catalan Test accuracy value: 62.1 - type: accuracy name: Czech Test accuracy value: 69.1 - type: accuracy name: Erzya Test accuracy value: 50.3 - type: accuracy name: Bhojpuri Test accuracy value: 61.0 - type: accuracy name: Thai Test accuracy value: 57.3 - type: accuracy name: Marathi Test accuracy value: 79.8 - type: accuracy name: Basque Test accuracy value: 67.4 - type: accuracy name: Slovak Test accuracy value: 67.4 - type: accuracy name: Kiche Test accuracy value: 37.4 - type: accuracy name: Yoruba Test accuracy value: 33.5 - type: accuracy name: Warlpiri Test accuracy value: 49.0 - type: accuracy name: Tamil Test accuracy value: 89.3 - type: accuracy name: Maltese Test accuracy value: 34.9 - type: accuracy name: Ancient Greek Test accuracy value: 48.0 - type: accuracy name: Icelandic Test accuracy value: 63.5 - type: accuracy name: Mbya Guarani Test accuracy value: 35.4 - type: accuracy name: Urdu Test accuracy value: 69.8 - type: accuracy name: Romanian Test accuracy value: 62.8 - type: accuracy name: Persian Test accuracy value: 63.5 - type: accuracy name: Apurina Test accuracy value: 50.2 - type: accuracy name: Japanese Test accuracy value: 49.7 - type: accuracy name: Hungarian Test accuracy value: 74.9 - type: accuracy name: Hindi Test accuracy value: 73.3 - type: accuracy name: Classical Chinese Test accuracy value: 41.9 - type: accuracy name: Komi Permyak Test accuracy value: 50.1 - type: accuracy name: Faroese Test accuracy value: 57.0 - type: accuracy name: Sanskrit Test accuracy value: 46.1 - type: accuracy name: Livvi Test accuracy value: 63.3 - type: accuracy name: Arabic Test accuracy value: 62.7 - type: accuracy name: Wolof Test accuracy value: 40.2 - type: accuracy name: Bulgarian Test accuracy value: 67.3 - type: accuracy name: Akuntsu Test accuracy value: 43.2 - type: accuracy name: Makurap Test accuracy value: 27.4 - type: accuracy name: Kangri Test accuracy value: 51.0 - type: accuracy name: Breton Test accuracy value: 54.9 - type: accuracy name: Telugu Test accuracy value: 94.9 - type: accuracy name: Cantonese Test accuracy value: 60.4 - type: accuracy name: Old Church Slavonic Test accuracy value: 46.3 - type: accuracy name: Karelian Test accuracy value: 65.9 - type: accuracy name: Upper Sorbian Test accuracy value: 59.7 - type: accuracy name: South Levantine Arabic Test accuracy value: 61.5 - type: accuracy name: Komi Zyrian Test accuracy value: 45.2 - type: accuracy name: Irish Test accuracy value: 56.0 - type: accuracy name: Nayini Test accuracy value: 52.6 - type: accuracy name: Munduruku Test accuracy value: 36.2 - type: accuracy name: Manx Test accuracy value: 37.0 - type: accuracy name: Skolt Sami Test accuracy value: 46.7 - type: accuracy name: Afrikaans Test accuracy value: 64.3 - type: accuracy name: Old Turkish Test accuracy value: 39.8 - type: accuracy name: Tupinamba Test accuracy value: 45.1 - type: accuracy name: Belarusian Test accuracy value: 70.0 - type: accuracy name: Serbian Test accuracy value: 66.4 - type: accuracy name: Moksha Test accuracy value: 45.7 - type: accuracy name: Western Armenian Test accuracy value: 66.0 - type: accuracy name: Scottish Gaelic Test accuracy value: 52.6 - type: accuracy name: Khunsari Test accuracy value: 45.9 - type: accuracy name: Hebrew Test accuracy value: 74.0 - type: accuracy name: Uyghur Test accuracy value: 75.9 - type: accuracy name: Chukchi Test accuracy value: 40.8 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Telugu This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-te") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-te") ```
wietsedv/xlm-roberta-base-ft-udpos28-sv
wietsedv
2022-02-25T09:59:27Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "part-of-speech", "sv", "dataset:universal_dependencies", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - sv license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-sv results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 92.3 - type: accuracy name: Dutch Test accuracy value: 90.0 - type: accuracy name: German Test accuracy value: 91.1 - type: accuracy name: Italian Test accuracy value: 88.0 - type: accuracy name: French Test accuracy value: 88.2 - type: accuracy name: Spanish Test accuracy value: 91.1 - type: accuracy name: Russian Test accuracy value: 91.4 - type: accuracy name: Swedish Test accuracy value: 97.9 - type: accuracy name: Norwegian Test accuracy value: 89.7 - type: accuracy name: Danish Test accuracy value: 92.9 - type: accuracy name: Low Saxon Test accuracy value: 57.4 - type: accuracy name: Akkadian Test accuracy value: 40.4 - type: accuracy name: Armenian Test accuracy value: 87.5 - type: accuracy name: Welsh Test accuracy value: 69.6 - type: accuracy name: Old East Slavic Test accuracy value: 76.2 - type: accuracy name: Albanian Test accuracy value: 80.3 - type: accuracy name: Slovenian Test accuracy value: 81.0 - type: accuracy name: Guajajara Test accuracy value: 35.1 - type: accuracy name: Kurmanji Test accuracy value: 77.3 - type: accuracy name: Turkish Test accuracy value: 79.2 - type: accuracy name: Finnish Test accuracy value: 87.0 - type: accuracy name: Indonesian Test accuracy value: 84.2 - type: accuracy name: Ukrainian Test accuracy value: 90.4 - type: accuracy name: Polish Test accuracy value: 88.9 - type: accuracy name: Portuguese Test accuracy value: 90.1 - type: accuracy name: Kazakh Test accuracy value: 83.4 - type: accuracy name: Latin Test accuracy value: 79.1 - type: accuracy name: Old French Test accuracy value: 62.6 - type: accuracy name: Buryat Test accuracy value: 63.0 - type: accuracy name: Kaapor Test accuracy value: 20.8 - type: accuracy name: Korean Test accuracy value: 64.3 - type: accuracy name: Estonian Test accuracy value: 89.6 - type: accuracy name: Croatian Test accuracy value: 90.8 - type: accuracy name: Gothic Test accuracy value: 26.0 - type: accuracy name: Swiss German Test accuracy value: 51.8 - type: accuracy name: Assyrian Test accuracy value: 17.2 - type: accuracy name: North Sami Test accuracy value: 45.4 - type: accuracy name: Naija Test accuracy value: 48.1 - type: accuracy name: Latvian Test accuracy value: 87.1 - type: accuracy name: Chinese Test accuracy value: 48.5 - type: accuracy name: Tagalog Test accuracy value: 72.3 - type: accuracy name: Bambara Test accuracy value: 31.8 - type: accuracy name: Lithuanian Test accuracy value: 86.2 - type: accuracy name: Galician Test accuracy value: 88.1 - type: accuracy name: Vietnamese Test accuracy value: 66.3 - type: accuracy name: Greek Test accuracy value: 88.1 - type: accuracy name: Catalan Test accuracy value: 90.1 - type: accuracy name: Czech Test accuracy value: 90.1 - type: accuracy name: Erzya Test accuracy value: 50.8 - type: accuracy name: Bhojpuri Test accuracy value: 51.7 - type: accuracy name: Thai Test accuracy value: 66.4 - type: accuracy name: Marathi Test accuracy value: 86.5 - type: accuracy name: Basque Test accuracy value: 76.4 - type: accuracy name: Slovak Test accuracy value: 90.5 - type: accuracy name: Kiche Test accuracy value: 42.4 - type: accuracy name: Yoruba Test accuracy value: 31.2 - type: accuracy name: Warlpiri Test accuracy value: 42.5 - type: accuracy name: Tamil Test accuracy value: 85.3 - type: accuracy name: Maltese Test accuracy value: 30.6 - type: accuracy name: Ancient Greek Test accuracy value: 63.0 - type: accuracy name: Icelandic Test accuracy value: 85.3 - type: accuracy name: Mbya Guarani Test accuracy value: 32.3 - type: accuracy name: Urdu Test accuracy value: 67.6 - type: accuracy name: Romanian Test accuracy value: 85.5 - type: accuracy name: Persian Test accuracy value: 77.4 - type: accuracy name: Apurina Test accuracy value: 47.4 - type: accuracy name: Japanese Test accuracy value: 35.5 - type: accuracy name: Hungarian Test accuracy value: 87.1 - type: accuracy name: Hindi Test accuracy value: 75.1 - type: accuracy name: Classical Chinese Test accuracy value: 30.8 - type: accuracy name: Komi Permyak Test accuracy value: 52.4 - type: accuracy name: Faroese Test accuracy value: 80.3 - type: accuracy name: Sanskrit Test accuracy value: 40.7 - type: accuracy name: Livvi Test accuracy value: 68.5 - type: accuracy name: Arabic Test accuracy value: 82.0 - type: accuracy name: Wolof Test accuracy value: 37.4 - type: accuracy name: Bulgarian Test accuracy value: 92.9 - type: accuracy name: Akuntsu Test accuracy value: 41.1 - type: accuracy name: Makurap Test accuracy value: 22.6 - type: accuracy name: Kangri Test accuracy value: 47.1 - type: accuracy name: Breton Test accuracy value: 64.3 - type: accuracy name: Telugu Test accuracy value: 84.9 - type: accuracy name: Cantonese Test accuracy value: 48.8 - type: accuracy name: Old Church Slavonic Test accuracy value: 51.1 - type: accuracy name: Karelian Test accuracy value: 74.1 - type: accuracy name: Upper Sorbian Test accuracy value: 77.5 - type: accuracy name: South Levantine Arabic Test accuracy value: 69.6 - type: accuracy name: Komi Zyrian Test accuracy value: 44.5 - type: accuracy name: Irish Test accuracy value: 70.5 - type: accuracy name: Nayini Test accuracy value: 44.9 - type: accuracy name: Munduruku Test accuracy value: 24.3 - type: accuracy name: Manx Test accuracy value: 34.1 - type: accuracy name: Skolt Sami Test accuracy value: 42.0 - type: accuracy name: Afrikaans Test accuracy value: 92.1 - type: accuracy name: Old Turkish Test accuracy value: 40.3 - type: accuracy name: Tupinamba Test accuracy value: 41.4 - type: accuracy name: Belarusian Test accuracy value: 89.8 - type: accuracy name: Serbian Test accuracy value: 91.5 - type: accuracy name: Moksha Test accuracy value: 46.7 - type: accuracy name: Western Armenian Test accuracy value: 80.3 - type: accuracy name: Scottish Gaelic Test accuracy value: 60.4 - type: accuracy name: Khunsari Test accuracy value: 45.9 - type: accuracy name: Hebrew Test accuracy value: 87.5 - type: accuracy name: Uyghur Test accuracy value: 76.9 - type: accuracy name: Chukchi Test accuracy value: 35.9 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Swedish This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-sv") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-sv") ```
wietsedv/xlm-roberta-base-ft-udpos28-sr
wietsedv
2022-02-25T09:59:25Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "part-of-speech", "sr", "dataset:universal_dependencies", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - sr license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-sr results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 82.9 - type: accuracy name: Dutch Test accuracy value: 84.0 - type: accuracy name: German Test accuracy value: 82.7 - type: accuracy name: Italian Test accuracy value: 82.6 - type: accuracy name: French Test accuracy value: 83.6 - type: accuracy name: Spanish Test accuracy value: 87.3 - type: accuracy name: Russian Test accuracy value: 90.6 - type: accuracy name: Swedish Test accuracy value: 85.5 - type: accuracy name: Norwegian Test accuracy value: 79.0 - type: accuracy name: Danish Test accuracy value: 84.1 - type: accuracy name: Low Saxon Test accuracy value: 47.9 - type: accuracy name: Akkadian Test accuracy value: 30.2 - type: accuracy name: Armenian Test accuracy value: 84.2 - type: accuracy name: Welsh Test accuracy value: 67.4 - type: accuracy name: Old East Slavic Test accuracy value: 75.9 - type: accuracy name: Albanian Test accuracy value: 74.6 - type: accuracy name: Slovenian Test accuracy value: 85.8 - type: accuracy name: Guajajara Test accuracy value: 25.6 - type: accuracy name: Kurmanji Test accuracy value: 75.8 - type: accuracy name: Turkish Test accuracy value: 76.2 - type: accuracy name: Finnish Test accuracy value: 81.7 - type: accuracy name: Indonesian Test accuracy value: 80.5 - type: accuracy name: Ukrainian Test accuracy value: 92.3 - type: accuracy name: Polish Test accuracy value: 91.8 - type: accuracy name: Portuguese Test accuracy value: 84.7 - type: accuracy name: Kazakh Test accuracy value: 79.7 - type: accuracy name: Latin Test accuracy value: 77.0 - type: accuracy name: Old French Test accuracy value: 54.3 - type: accuracy name: Buryat Test accuracy value: 58.6 - type: accuracy name: Kaapor Test accuracy value: 14.6 - type: accuracy name: Korean Test accuracy value: 60.6 - type: accuracy name: Estonian Test accuracy value: 84.4 - type: accuracy name: Croatian Test accuracy value: 97.0 - type: accuracy name: Gothic Test accuracy value: 17.1 - type: accuracy name: Swiss German Test accuracy value: 42.9 - type: accuracy name: Assyrian Test accuracy value: 16.1 - type: accuracy name: North Sami Test accuracy value: 31.2 - type: accuracy name: Naija Test accuracy value: 38.7 - type: accuracy name: Latvian Test accuracy value: 85.1 - type: accuracy name: Chinese Test accuracy value: 41.3 - type: accuracy name: Tagalog Test accuracy value: 77.5 - type: accuracy name: Bambara Test accuracy value: 27.6 - type: accuracy name: Lithuanian Test accuracy value: 85.3 - type: accuracy name: Galician Test accuracy value: 84.9 - type: accuracy name: Vietnamese Test accuracy value: 65.8 - type: accuracy name: Greek Test accuracy value: 83.9 - type: accuracy name: Catalan Test accuracy value: 85.7 - type: accuracy name: Czech Test accuracy value: 94.8 - type: accuracy name: Erzya Test accuracy value: 43.1 - type: accuracy name: Bhojpuri Test accuracy value: 47.9 - type: accuracy name: Thai Test accuracy value: 60.5 - type: accuracy name: Marathi Test accuracy value: 84.0 - type: accuracy name: Basque Test accuracy value: 74.9 - type: accuracy name: Slovak Test accuracy value: 94.6 - type: accuracy name: Kiche Test accuracy value: 31.5 - type: accuracy name: Yoruba Test accuracy value: 21.8 - type: accuracy name: Warlpiri Test accuracy value: 37.7 - type: accuracy name: Tamil Test accuracy value: 83.9 - type: accuracy name: Maltese Test accuracy value: 22.7 - type: accuracy name: Ancient Greek Test accuracy value: 59.0 - type: accuracy name: Icelandic Test accuracy value: 79.6 - type: accuracy name: Mbya Guarani Test accuracy value: 29.4 - type: accuracy name: Urdu Test accuracy value: 63.0 - type: accuracy name: Romanian Test accuracy value: 82.1 - type: accuracy name: Persian Test accuracy value: 78.7 - type: accuracy name: Apurina Test accuracy value: 30.1 - type: accuracy name: Japanese Test accuracy value: 28.7 - type: accuracy name: Hungarian Test accuracy value: 78.4 - type: accuracy name: Hindi Test accuracy value: 66.6 - type: accuracy name: Classical Chinese Test accuracy value: 27.3 - type: accuracy name: Komi Permyak Test accuracy value: 40.2 - type: accuracy name: Faroese Test accuracy value: 76.1 - type: accuracy name: Sanskrit Test accuracy value: 32.5 - type: accuracy name: Livvi Test accuracy value: 62.6 - type: accuracy name: Arabic Test accuracy value: 80.9 - type: accuracy name: Wolof Test accuracy value: 30.7 - type: accuracy name: Bulgarian Test accuracy value: 92.2 - type: accuracy name: Akuntsu Test accuracy value: 32.6 - type: accuracy name: Makurap Test accuracy value: 12.3 - type: accuracy name: Kangri Test accuracy value: 44.4 - type: accuracy name: Breton Test accuracy value: 58.0 - type: accuracy name: Telugu Test accuracy value: 77.8 - type: accuracy name: Cantonese Test accuracy value: 44.9 - type: accuracy name: Old Church Slavonic Test accuracy value: 45.4 - type: accuracy name: Karelian Test accuracy value: 69.8 - type: accuracy name: Upper Sorbian Test accuracy value: 77.5 - type: accuracy name: South Levantine Arabic Test accuracy value: 66.8 - type: accuracy name: Komi Zyrian Test accuracy value: 36.1 - type: accuracy name: Irish Test accuracy value: 67.9 - type: accuracy name: Nayini Test accuracy value: 44.9 - type: accuracy name: Munduruku Test accuracy value: 19.2 - type: accuracy name: Manx Test accuracy value: 33.1 - type: accuracy name: Skolt Sami Test accuracy value: 33.0 - type: accuracy name: Afrikaans Test accuracy value: 79.6 - type: accuracy name: Old Turkish Test accuracy value: 37.1 - type: accuracy name: Tupinamba Test accuracy value: 31.4 - type: accuracy name: Belarusian Test accuracy value: 91.0 - type: accuracy name: Serbian Test accuracy value: 99.1 - type: accuracy name: Moksha Test accuracy value: 40.2 - type: accuracy name: Western Armenian Test accuracy value: 75.8 - type: accuracy name: Scottish Gaelic Test accuracy value: 57.1 - type: accuracy name: Khunsari Test accuracy value: 32.4 - type: accuracy name: Hebrew Test accuracy value: 88.5 - type: accuracy name: Uyghur Test accuracy value: 71.0 - type: accuracy name: Chukchi Test accuracy value: 29.3 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Serbian This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-sr") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-sr") ```
wietsedv/xlm-roberta-base-ft-udpos28-sme
wietsedv
2022-02-25T09:59:24Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "part-of-speech", "sme", "dataset:universal_dependencies", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - sme license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-sme results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 48.1 - type: accuracy name: Dutch Test accuracy value: 49.5 - type: accuracy name: German Test accuracy value: 40.4 - type: accuracy name: Italian Test accuracy value: 48.9 - type: accuracy name: French Test accuracy value: 43.9 - type: accuracy name: Spanish Test accuracy value: 47.1 - type: accuracy name: Russian Test accuracy value: 57.3 - type: accuracy name: Swedish Test accuracy value: 47.9 - type: accuracy name: Norwegian Test accuracy value: 45.5 - type: accuracy name: Danish Test accuracy value: 50.7 - type: accuracy name: Low Saxon Test accuracy value: 38.7 - type: accuracy name: Akkadian Test accuracy value: 29.6 - type: accuracy name: Armenian Test accuracy value: 63.0 - type: accuracy name: Welsh Test accuracy value: 36.9 - type: accuracy name: Old East Slavic Test accuracy value: 46.0 - type: accuracy name: Albanian Test accuracy value: 47.8 - type: accuracy name: Slovenian Test accuracy value: 45.5 - type: accuracy name: Guajajara Test accuracy value: 31.8 - type: accuracy name: Kurmanji Test accuracy value: 42.5 - type: accuracy name: Turkish Test accuracy value: 56.3 - type: accuracy name: Finnish Test accuracy value: 64.7 - type: accuracy name: Indonesian Test accuracy value: 59.3 - type: accuracy name: Ukrainian Test accuracy value: 56.6 - type: accuracy name: Polish Test accuracy value: 55.0 - type: accuracy name: Portuguese Test accuracy value: 52.0 - type: accuracy name: Kazakh Test accuracy value: 62.2 - type: accuracy name: Latin Test accuracy value: 50.3 - type: accuracy name: Old French Test accuracy value: 30.8 - type: accuracy name: Buryat Test accuracy value: 50.6 - type: accuracy name: Kaapor Test accuracy value: 18.3 - type: accuracy name: Korean Test accuracy value: 51.7 - type: accuracy name: Estonian Test accuracy value: 65.2 - type: accuracy name: Croatian Test accuracy value: 55.9 - type: accuracy name: Gothic Test accuracy value: 31.1 - type: accuracy name: Swiss German Test accuracy value: 37.1 - type: accuracy name: Assyrian Test accuracy value: 24.1 - type: accuracy name: North Sami Test accuracy value: 87.7 - type: accuracy name: Naija Test accuracy value: 19.8 - type: accuracy name: Latvian Test accuracy value: 64.2 - type: accuracy name: Chinese Test accuracy value: 33.9 - type: accuracy name: Tagalog Test accuracy value: 46.3 - type: accuracy name: Bambara Test accuracy value: 30.2 - type: accuracy name: Lithuanian Test accuracy value: 63.5 - type: accuracy name: Galician Test accuracy value: 48.5 - type: accuracy name: Vietnamese Test accuracy value: 46.0 - type: accuracy name: Greek Test accuracy value: 45.6 - type: accuracy name: Catalan Test accuracy value: 45.8 - type: accuracy name: Czech Test accuracy value: 54.5 - type: accuracy name: Erzya Test accuracy value: 45.8 - type: accuracy name: Bhojpuri Test accuracy value: 34.3 - type: accuracy name: Thai Test accuracy value: 23.9 - type: accuracy name: Marathi Test accuracy value: 67.5 - type: accuracy name: Basque Test accuracy value: 59.6 - type: accuracy name: Slovak Test accuracy value: 57.7 - type: accuracy name: Kiche Test accuracy value: 35.6 - type: accuracy name: Yoruba Test accuracy value: 31.0 - type: accuracy name: Warlpiri Test accuracy value: 43.3 - type: accuracy name: Tamil Test accuracy value: 60.4 - type: accuracy name: Maltese Test accuracy value: 34.1 - type: accuracy name: Ancient Greek Test accuracy value: 41.8 - type: accuracy name: Icelandic Test accuracy value: 47.2 - type: accuracy name: Mbya Guarani Test accuracy value: 36.0 - type: accuracy name: Urdu Test accuracy value: 36.8 - type: accuracy name: Romanian Test accuracy value: 50.1 - type: accuracy name: Persian Test accuracy value: 45.8 - type: accuracy name: Apurina Test accuracy value: 48.4 - type: accuracy name: Japanese Test accuracy value: 30.6 - type: accuracy name: Hungarian Test accuracy value: 54.7 - type: accuracy name: Hindi Test accuracy value: 39.5 - type: accuracy name: Classical Chinese Test accuracy value: 18.3 - type: accuracy name: Komi Permyak Test accuracy value: 51.1 - type: accuracy name: Faroese Test accuracy value: 52.2 - type: accuracy name: Sanskrit Test accuracy value: 28.4 - type: accuracy name: Livvi Test accuracy value: 57.7 - type: accuracy name: Arabic Test accuracy value: 40.5 - type: accuracy name: Wolof Test accuracy value: 36.2 - type: accuracy name: Bulgarian Test accuracy value: 54.1 - type: accuracy name: Akuntsu Test accuracy value: 31.6 - type: accuracy name: Makurap Test accuracy value: 17.8 - type: accuracy name: Kangri Test accuracy value: 33.8 - type: accuracy name: Breton Test accuracy value: 47.0 - type: accuracy name: Telugu Test accuracy value: 58.7 - type: accuracy name: Cantonese Test accuracy value: 36.0 - type: accuracy name: Old Church Slavonic Test accuracy value: 35.1 - type: accuracy name: Karelian Test accuracy value: 57.5 - type: accuracy name: Upper Sorbian Test accuracy value: 51.1 - type: accuracy name: South Levantine Arabic Test accuracy value: 44.5 - type: accuracy name: Komi Zyrian Test accuracy value: 42.2 - type: accuracy name: Irish Test accuracy value: 34.8 - type: accuracy name: Nayini Test accuracy value: 41.0 - type: accuracy name: Munduruku Test accuracy value: 21.6 - type: accuracy name: Manx Test accuracy value: 28.0 - type: accuracy name: Skolt Sami Test accuracy value: 49.2 - type: accuracy name: Afrikaans Test accuracy value: 43.2 - type: accuracy name: Old Turkish Test accuracy value: 38.9 - type: accuracy name: Tupinamba Test accuracy value: 44.2 - type: accuracy name: Belarusian Test accuracy value: 58.7 - type: accuracy name: Serbian Test accuracy value: 55.9 - type: accuracy name: Moksha Test accuracy value: 45.0 - type: accuracy name: Western Armenian Test accuracy value: 56.1 - type: accuracy name: Scottish Gaelic Test accuracy value: 31.0 - type: accuracy name: Khunsari Test accuracy value: 27.0 - type: accuracy name: Hebrew Test accuracy value: 61.5 - type: accuracy name: Uyghur Test accuracy value: 61.4 - type: accuracy name: Chukchi Test accuracy value: 41.5 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: North Sami This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-sme") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-sme") ```
wietsedv/xlm-roberta-base-ft-udpos28-sl
wietsedv
2022-02-25T09:59:22Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "part-of-speech", "sl", "dataset:universal_dependencies", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - sl license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-sl results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 81.7 - type: accuracy name: Dutch Test accuracy value: 83.1 - type: accuracy name: German Test accuracy value: 81.2 - type: accuracy name: Italian Test accuracy value: 81.3 - type: accuracy name: French Test accuracy value: 79.9 - type: accuracy name: Spanish Test accuracy value: 84.9 - type: accuracy name: Russian Test accuracy value: 91.5 - type: accuracy name: Swedish Test accuracy value: 86.0 - type: accuracy name: Norwegian Test accuracy value: 78.4 - type: accuracy name: Danish Test accuracy value: 83.7 - type: accuracy name: Low Saxon Test accuracy value: 41.9 - type: accuracy name: Akkadian Test accuracy value: 17.3 - type: accuracy name: Armenian Test accuracy value: 84.3 - type: accuracy name: Welsh Test accuracy value: 65.5 - type: accuracy name: Old East Slavic Test accuracy value: 74.1 - type: accuracy name: Albanian Test accuracy value: 76.6 - type: accuracy name: Slovenian Test accuracy value: 97.6 - type: accuracy name: Guajajara Test accuracy value: 22.5 - type: accuracy name: Kurmanji Test accuracy value: 75.7 - type: accuracy name: Turkish Test accuracy value: 75.4 - type: accuracy name: Finnish Test accuracy value: 81.2 - type: accuracy name: Indonesian Test accuracy value: 81.8 - type: accuracy name: Ukrainian Test accuracy value: 92.6 - type: accuracy name: Polish Test accuracy value: 93.2 - type: accuracy name: Portuguese Test accuracy value: 84.0 - type: accuracy name: Kazakh Test accuracy value: 79.4 - type: accuracy name: Latin Test accuracy value: 76.7 - type: accuracy name: Old French Test accuracy value: 40.3 - type: accuracy name: Buryat Test accuracy value: 53.1 - type: accuracy name: Kaapor Test accuracy value: 11.2 - type: accuracy name: Korean Test accuracy value: 61.9 - type: accuracy name: Estonian Test accuracy value: 82.2 - type: accuracy name: Croatian Test accuracy value: 93.1 - type: accuracy name: Gothic Test accuracy value: 6.2 - type: accuracy name: Swiss German Test accuracy value: 40.7 - type: accuracy name: Assyrian Test accuracy value: 14.6 - type: accuracy name: North Sami Test accuracy value: 22.5 - type: accuracy name: Naija Test accuracy value: 33.9 - type: accuracy name: Latvian Test accuracy value: 86.0 - type: accuracy name: Chinese Test accuracy value: 39.7 - type: accuracy name: Tagalog Test accuracy value: 72.0 - type: accuracy name: Bambara Test accuracy value: 23.5 - type: accuracy name: Lithuanian Test accuracy value: 87.3 - type: accuracy name: Galician Test accuracy value: 82.5 - type: accuracy name: Vietnamese Test accuracy value: 67.3 - type: accuracy name: Greek Test accuracy value: 79.7 - type: accuracy name: Catalan Test accuracy value: 79.0 - type: accuracy name: Czech Test accuracy value: 94.1 - type: accuracy name: Erzya Test accuracy value: 40.1 - type: accuracy name: Bhojpuri Test accuracy value: 46.5 - type: accuracy name: Thai Test accuracy value: 53.2 - type: accuracy name: Marathi Test accuracy value: 87.7 - type: accuracy name: Basque Test accuracy value: 74.6 - type: accuracy name: Slovak Test accuracy value: 95.5 - type: accuracy name: Kiche Test accuracy value: 24.7 - type: accuracy name: Yoruba Test accuracy value: 17.1 - type: accuracy name: Warlpiri Test accuracy value: 27.5 - type: accuracy name: Tamil Test accuracy value: 83.4 - type: accuracy name: Maltese Test accuracy value: 18.4 - type: accuracy name: Ancient Greek Test accuracy value: 60.8 - type: accuracy name: Icelandic Test accuracy value: 80.0 - type: accuracy name: Mbya Guarani Test accuracy value: 23.7 - type: accuracy name: Urdu Test accuracy value: 61.6 - type: accuracy name: Romanian Test accuracy value: 82.4 - type: accuracy name: Persian Test accuracy value: 78.6 - type: accuracy name: Apurina Test accuracy value: 29.2 - type: accuracy name: Japanese Test accuracy value: 25.5 - type: accuracy name: Hungarian Test accuracy value: 74.6 - type: accuracy name: Hindi Test accuracy value: 67.4 - type: accuracy name: Classical Chinese Test accuracy value: 14.8 - type: accuracy name: Komi Permyak Test accuracy value: 40.3 - type: accuracy name: Faroese Test accuracy value: 75.0 - type: accuracy name: Sanskrit Test accuracy value: 14.3 - type: accuracy name: Livvi Test accuracy value: 58.2 - type: accuracy name: Arabic Test accuracy value: 79.8 - type: accuracy name: Wolof Test accuracy value: 24.7 - type: accuracy name: Bulgarian Test accuracy value: 90.4 - type: accuracy name: Akuntsu Test accuracy value: 20.6 - type: accuracy name: Makurap Test accuracy value: 6.2 - type: accuracy name: Kangri Test accuracy value: 44.2 - type: accuracy name: Breton Test accuracy value: 53.2 - type: accuracy name: Telugu Test accuracy value: 83.4 - type: accuracy name: Cantonese Test accuracy value: 48.9 - type: accuracy name: Old Church Slavonic Test accuracy value: 41.9 - type: accuracy name: Karelian Test accuracy value: 64.7 - type: accuracy name: Upper Sorbian Test accuracy value: 79.9 - type: accuracy name: South Levantine Arabic Test accuracy value: 67.2 - type: accuracy name: Komi Zyrian Test accuracy value: 33.3 - type: accuracy name: Irish Test accuracy value: 63.0 - type: accuracy name: Nayini Test accuracy value: 32.1 - type: accuracy name: Munduruku Test accuracy value: 10.1 - type: accuracy name: Manx Test accuracy value: 22.0 - type: accuracy name: Skolt Sami Test accuracy value: 27.4 - type: accuracy name: Afrikaans Test accuracy value: 74.0 - type: accuracy name: Old Turkish Test accuracy value: 37.1 - type: accuracy name: Tupinamba Test accuracy value: 22.5 - type: accuracy name: Belarusian Test accuracy value: 90.2 - type: accuracy name: Serbian Test accuracy value: 94.4 - type: accuracy name: Moksha Test accuracy value: 37.6 - type: accuracy name: Western Armenian Test accuracy value: 73.8 - type: accuracy name: Scottish Gaelic Test accuracy value: 55.0 - type: accuracy name: Khunsari Test accuracy value: 32.4 - type: accuracy name: Hebrew Test accuracy value: 81.2 - type: accuracy name: Uyghur Test accuracy value: 72.1 - type: accuracy name: Chukchi Test accuracy value: 30.2 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Slovenian This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-sl") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-sl") ```
wietsedv/xlm-roberta-base-ft-udpos28-sa
wietsedv
2022-02-25T09:59:19Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "part-of-speech", "sa", "dataset:universal_dependencies", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - sa license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-sa results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 31.4 - type: accuracy name: Dutch Test accuracy value: 28.4 - type: accuracy name: German Test accuracy value: 32.3 - type: accuracy name: Italian Test accuracy value: 28.3 - type: accuracy name: French Test accuracy value: 28.1 - type: accuracy name: Spanish Test accuracy value: 28.5 - type: accuracy name: Russian Test accuracy value: 37.5 - type: accuracy name: Swedish Test accuracy value: 35.7 - type: accuracy name: Norwegian Test accuracy value: 32.0 - type: accuracy name: Danish Test accuracy value: 32.7 - type: accuracy name: Low Saxon Test accuracy value: 28.0 - type: accuracy name: Akkadian Test accuracy value: 26.2 - type: accuracy name: Armenian Test accuracy value: 39.0 - type: accuracy name: Welsh Test accuracy value: 23.9 - type: accuracy name: Old East Slavic Test accuracy value: 36.8 - type: accuracy name: Albanian Test accuracy value: 34.1 - type: accuracy name: Slovenian Test accuracy value: 30.4 - type: accuracy name: Guajajara Test accuracy value: 16.6 - type: accuracy name: Kurmanji Test accuracy value: 34.8 - type: accuracy name: Turkish Test accuracy value: 42.8 - type: accuracy name: Finnish Test accuracy value: 42.5 - type: accuracy name: Indonesian Test accuracy value: 34.5 - type: accuracy name: Ukrainian Test accuracy value: 38.2 - type: accuracy name: Polish Test accuracy value: 36.6 - type: accuracy name: Portuguese Test accuracy value: 30.7 - type: accuracy name: Kazakh Test accuracy value: 44.2 - type: accuracy name: Latin Test accuracy value: 38.1 - type: accuracy name: Old French Test accuracy value: 35.3 - type: accuracy name: Buryat Test accuracy value: 33.0 - type: accuracy name: Kaapor Test accuracy value: 29.2 - type: accuracy name: Korean Test accuracy value: 39.6 - type: accuracy name: Estonian Test accuracy value: 41.1 - type: accuracy name: Croatian Test accuracy value: 34.9 - type: accuracy name: Gothic Test accuracy value: 26.7 - type: accuracy name: Swiss German Test accuracy value: 23.6 - type: accuracy name: Assyrian Test accuracy value: 9.7 - type: accuracy name: North Sami Test accuracy value: 21.7 - type: accuracy name: Naija Test accuracy value: 24.0 - type: accuracy name: Latvian Test accuracy value: 42.3 - type: accuracy name: Chinese Test accuracy value: 29.3 - type: accuracy name: Tagalog Test accuracy value: 34.6 - type: accuracy name: Bambara Test accuracy value: 12.0 - type: accuracy name: Lithuanian Test accuracy value: 43.5 - type: accuracy name: Galician Test accuracy value: 28.7 - type: accuracy name: Vietnamese Test accuracy value: 36.4 - type: accuracy name: Greek Test accuracy value: 32.5 - type: accuracy name: Catalan Test accuracy value: 25.7 - type: accuracy name: Czech Test accuracy value: 36.8 - type: accuracy name: Erzya Test accuracy value: 20.0 - type: accuracy name: Bhojpuri Test accuracy value: 27.3 - type: accuracy name: Thai Test accuracy value: 32.4 - type: accuracy name: Marathi Test accuracy value: 37.4 - type: accuracy name: Basque Test accuracy value: 38.3 - type: accuracy name: Slovak Test accuracy value: 37.2 - type: accuracy name: Kiche Test accuracy value: 17.2 - type: accuracy name: Yoruba Test accuracy value: 13.2 - type: accuracy name: Warlpiri Test accuracy value: 21.5 - type: accuracy name: Tamil Test accuracy value: 42.5 - type: accuracy name: Maltese Test accuracy value: 17.5 - type: accuracy name: Ancient Greek Test accuracy value: 37.4 - type: accuracy name: Icelandic Test accuracy value: 32.7 - type: accuracy name: Mbya Guarani Test accuracy value: 13.9 - type: accuracy name: Urdu Test accuracy value: 28.1 - type: accuracy name: Romanian Test accuracy value: 34.8 - type: accuracy name: Persian Test accuracy value: 36.2 - type: accuracy name: Apurina Test accuracy value: 21.9 - type: accuracy name: Japanese Test accuracy value: 26.3 - type: accuracy name: Hungarian Test accuracy value: 34.6 - type: accuracy name: Hindi Test accuracy value: 29.3 - type: accuracy name: Classical Chinese Test accuracy value: 30.0 - type: accuracy name: Komi Permyak Test accuracy value: 26.1 - type: accuracy name: Faroese Test accuracy value: 24.8 - type: accuracy name: Sanskrit Test accuracy value: 84.2 - type: accuracy name: Livvi Test accuracy value: 29.7 - type: accuracy name: Arabic Test accuracy value: 32.6 - type: accuracy name: Wolof Test accuracy value: 16.7 - type: accuracy name: Bulgarian Test accuracy value: 35.4 - type: accuracy name: Akuntsu Test accuracy value: 23.9 - type: accuracy name: Makurap Test accuracy value: 14.4 - type: accuracy name: Kangri Test accuracy value: 27.8 - type: accuracy name: Breton Test accuracy value: 27.6 - type: accuracy name: Telugu Test accuracy value: 50.6 - type: accuracy name: Cantonese Test accuracy value: 31.6 - type: accuracy name: Old Church Slavonic Test accuracy value: 43.2 - type: accuracy name: Karelian Test accuracy value: 34.1 - type: accuracy name: Upper Sorbian Test accuracy value: 28.5 - type: accuracy name: South Levantine Arabic Test accuracy value: 30.8 - type: accuracy name: Komi Zyrian Test accuracy value: 25.5 - type: accuracy name: Irish Test accuracy value: 20.8 - type: accuracy name: Nayini Test accuracy value: 29.5 - type: accuracy name: Munduruku Test accuracy value: 15.6 - type: accuracy name: Manx Test accuracy value: 15.9 - type: accuracy name: Skolt Sami Test accuracy value: 18.9 - type: accuracy name: Afrikaans Test accuracy value: 34.5 - type: accuracy name: Old Turkish Test accuracy value: 6.3 - type: accuracy name: Tupinamba Test accuracy value: 25.2 - type: accuracy name: Belarusian Test accuracy value: 39.3 - type: accuracy name: Serbian Test accuracy value: 33.7 - type: accuracy name: Moksha Test accuracy value: 21.8 - type: accuracy name: Western Armenian Test accuracy value: 38.3 - type: accuracy name: Scottish Gaelic Test accuracy value: 23.3 - type: accuracy name: Khunsari Test accuracy value: 29.7 - type: accuracy name: Hebrew Test accuracy value: 39.6 - type: accuracy name: Uyghur Test accuracy value: 50.1 - type: accuracy name: Chukchi Test accuracy value: 14.8 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Sanskrit This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-sa") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-sa") ```
wietsedv/xlm-roberta-base-ft-udpos28-ro
wietsedv
2022-02-25T09:59:16Z
4
1
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "part-of-speech", "ro", "dataset:universal_dependencies", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - ro license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-ro results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 88.4 - type: accuracy name: Dutch Test accuracy value: 86.1 - type: accuracy name: German Test accuracy value: 87.3 - type: accuracy name: Italian Test accuracy value: 88.2 - type: accuracy name: French Test accuracy value: 91.3 - type: accuracy name: Spanish Test accuracy value: 91.1 - type: accuracy name: Russian Test accuracy value: 90.4 - type: accuracy name: Swedish Test accuracy value: 90.7 - type: accuracy name: Norwegian Test accuracy value: 85.0 - type: accuracy name: Danish Test accuracy value: 91.0 - type: accuracy name: Low Saxon Test accuracy value: 56.2 - type: accuracy name: Akkadian Test accuracy value: 41.8 - type: accuracy name: Armenian Test accuracy value: 88.4 - type: accuracy name: Welsh Test accuracy value: 71.7 - type: accuracy name: Old East Slavic Test accuracy value: 78.7 - type: accuracy name: Albanian Test accuracy value: 90.2 - type: accuracy name: Slovenian Test accuracy value: 80.3 - type: accuracy name: Guajajara Test accuracy value: 39.3 - type: accuracy name: Kurmanji Test accuracy value: 79.5 - type: accuracy name: Turkish Test accuracy value: 79.5 - type: accuracy name: Finnish Test accuracy value: 86.0 - type: accuracy name: Indonesian Test accuracy value: 84.2 - type: accuracy name: Ukrainian Test accuracy value: 89.7 - type: accuracy name: Polish Test accuracy value: 89.5 - type: accuracy name: Portuguese Test accuracy value: 90.3 - type: accuracy name: Kazakh Test accuracy value: 85.0 - type: accuracy name: Latin Test accuracy value: 81.8 - type: accuracy name: Old French Test accuracy value: 65.7 - type: accuracy name: Buryat Test accuracy value: 64.9 - type: accuracy name: Kaapor Test accuracy value: 27.1 - type: accuracy name: Korean Test accuracy value: 64.3 - type: accuracy name: Estonian Test accuracy value: 87.5 - type: accuracy name: Croatian Test accuracy value: 89.7 - type: accuracy name: Gothic Test accuracy value: 35.1 - type: accuracy name: Swiss German Test accuracy value: 55.5 - type: accuracy name: Assyrian Test accuracy value: 16.8 - type: accuracy name: North Sami Test accuracy value: 45.0 - type: accuracy name: Naija Test accuracy value: 43.8 - type: accuracy name: Latvian Test accuracy value: 89.5 - type: accuracy name: Chinese Test accuracy value: 54.9 - type: accuracy name: Tagalog Test accuracy value: 74.0 - type: accuracy name: Bambara Test accuracy value: 32.9 - type: accuracy name: Lithuanian Test accuracy value: 87.7 - type: accuracy name: Galician Test accuracy value: 89.9 - type: accuracy name: Vietnamese Test accuracy value: 66.2 - type: accuracy name: Greek Test accuracy value: 88.9 - type: accuracy name: Catalan Test accuracy value: 90.0 - type: accuracy name: Czech Test accuracy value: 89.8 - type: accuracy name: Erzya Test accuracy value: 51.5 - type: accuracy name: Bhojpuri Test accuracy value: 55.0 - type: accuracy name: Thai Test accuracy value: 64.9 - type: accuracy name: Marathi Test accuracy value: 87.1 - type: accuracy name: Basque Test accuracy value: 80.7 - type: accuracy name: Slovak Test accuracy value: 89.8 - type: accuracy name: Kiche Test accuracy value: 42.4 - type: accuracy name: Yoruba Test accuracy value: 30.3 - type: accuracy name: Warlpiri Test accuracy value: 46.2 - type: accuracy name: Tamil Test accuracy value: 82.5 - type: accuracy name: Maltese Test accuracy value: 38.3 - type: accuracy name: Ancient Greek Test accuracy value: 67.8 - type: accuracy name: Icelandic Test accuracy value: 85.1 - type: accuracy name: Mbya Guarani Test accuracy value: 34.4 - type: accuracy name: Urdu Test accuracy value: 63.4 - type: accuracy name: Romanian Test accuracy value: 96.8 - type: accuracy name: Persian Test accuracy value: 79.0 - type: accuracy name: Apurina Test accuracy value: 43.1 - type: accuracy name: Japanese Test accuracy value: 43.7 - type: accuracy name: Hungarian Test accuracy value: 79.9 - type: accuracy name: Hindi Test accuracy value: 70.6 - type: accuracy name: Classical Chinese Test accuracy value: 40.8 - type: accuracy name: Komi Permyak Test accuracy value: 57.2 - type: accuracy name: Faroese Test accuracy value: 80.9 - type: accuracy name: Sanskrit Test accuracy value: 40.4 - type: accuracy name: Livvi Test accuracy value: 66.9 - type: accuracy name: Arabic Test accuracy value: 83.5 - type: accuracy name: Wolof Test accuracy value: 43.1 - type: accuracy name: Bulgarian Test accuracy value: 91.2 - type: accuracy name: Akuntsu Test accuracy value: 40.6 - type: accuracy name: Makurap Test accuracy value: 20.5 - type: accuracy name: Kangri Test accuracy value: 53.7 - type: accuracy name: Breton Test accuracy value: 68.7 - type: accuracy name: Telugu Test accuracy value: 82.9 - type: accuracy name: Cantonese Test accuracy value: 57.0 - type: accuracy name: Old Church Slavonic Test accuracy value: 59.1 - type: accuracy name: Karelian Test accuracy value: 75.0 - type: accuracy name: Upper Sorbian Test accuracy value: 77.8 - type: accuracy name: South Levantine Arabic Test accuracy value: 71.2 - type: accuracy name: Komi Zyrian Test accuracy value: 47.0 - type: accuracy name: Irish Test accuracy value: 69.4 - type: accuracy name: Nayini Test accuracy value: 56.4 - type: accuracy name: Munduruku Test accuracy value: 29.2 - type: accuracy name: Manx Test accuracy value: 38.8 - type: accuracy name: Skolt Sami Test accuracy value: 43.7 - type: accuracy name: Afrikaans Test accuracy value: 88.2 - type: accuracy name: Old Turkish Test accuracy value: 37.1 - type: accuracy name: Tupinamba Test accuracy value: 44.5 - type: accuracy name: Belarusian Test accuracy value: 90.4 - type: accuracy name: Serbian Test accuracy value: 89.5 - type: accuracy name: Moksha Test accuracy value: 49.1 - type: accuracy name: Western Armenian Test accuracy value: 82.0 - type: accuracy name: Scottish Gaelic Test accuracy value: 63.1 - type: accuracy name: Khunsari Test accuracy value: 47.3 - type: accuracy name: Hebrew Test accuracy value: 88.5 - type: accuracy name: Uyghur Test accuracy value: 78.0 - type: accuracy name: Chukchi Test accuracy value: 37.5 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Romanian This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-ro") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-ro") ```
wietsedv/xlm-roberta-base-ft-udpos28-pcm
wietsedv
2022-02-25T09:59:11Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "part-of-speech", "pcm", "dataset:universal_dependencies", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - pcm license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-pcm results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 77.2 - type: accuracy name: Dutch Test accuracy value: 75.2 - type: accuracy name: German Test accuracy value: 73.2 - type: accuracy name: Italian Test accuracy value: 68.9 - type: accuracy name: French Test accuracy value: 74.0 - type: accuracy name: Spanish Test accuracy value: 75.1 - type: accuracy name: Russian Test accuracy value: 70.3 - type: accuracy name: Swedish Test accuracy value: 78.9 - type: accuracy name: Norwegian Test accuracy value: 74.3 - type: accuracy name: Danish Test accuracy value: 73.4 - type: accuracy name: Low Saxon Test accuracy value: 37.9 - type: accuracy name: Akkadian Test accuracy value: 28.0 - type: accuracy name: Armenian Test accuracy value: 65.4 - type: accuracy name: Welsh Test accuracy value: 59.7 - type: accuracy name: Old East Slavic Test accuracy value: 61.0 - type: accuracy name: Albanian Test accuracy value: 66.1 - type: accuracy name: Slovenian Test accuracy value: 67.6 - type: accuracy name: Guajajara Test accuracy value: 16.1 - type: accuracy name: Kurmanji Test accuracy value: 54.8 - type: accuracy name: Turkish Test accuracy value: 58.2 - type: accuracy name: Finnish Test accuracy value: 67.4 - type: accuracy name: Indonesian Test accuracy value: 68.5 - type: accuracy name: Ukrainian Test accuracy value: 68.1 - type: accuracy name: Polish Test accuracy value: 68.8 - type: accuracy name: Portuguese Test accuracy value: 72.9 - type: accuracy name: Kazakh Test accuracy value: 60.1 - type: accuracy name: Latin Test accuracy value: 64.3 - type: accuracy name: Old French Test accuracy value: 51.1 - type: accuracy name: Buryat Test accuracy value: 38.9 - type: accuracy name: Kaapor Test accuracy value: 16.7 - type: accuracy name: Korean Test accuracy value: 52.4 - type: accuracy name: Estonian Test accuracy value: 68.3 - type: accuracy name: Croatian Test accuracy value: 73.0 - type: accuracy name: Gothic Test accuracy value: 21.4 - type: accuracy name: Swiss German Test accuracy value: 33.4 - type: accuracy name: Assyrian Test accuracy value: 0.0 - type: accuracy name: North Sami Test accuracy value: 24.3 - type: accuracy name: Naija Test accuracy value: 97.9 - type: accuracy name: Latvian Test accuracy value: 66.3 - type: accuracy name: Chinese Test accuracy value: 34.3 - type: accuracy name: Tagalog Test accuracy value: 49.9 - type: accuracy name: Bambara Test accuracy value: 16.7 - type: accuracy name: Lithuanian Test accuracy value: 65.7 - type: accuracy name: Galician Test accuracy value: 72.4 - type: accuracy name: Vietnamese Test accuracy value: 54.3 - type: accuracy name: Greek Test accuracy value: 73.3 - type: accuracy name: Catalan Test accuracy value: 73.6 - type: accuracy name: Czech Test accuracy value: 69.5 - type: accuracy name: Erzya Test accuracy value: 22.1 - type: accuracy name: Bhojpuri Test accuracy value: 36.6 - type: accuracy name: Thai Test accuracy value: 65.4 - type: accuracy name: Marathi Test accuracy value: 50.3 - type: accuracy name: Basque Test accuracy value: 58.5 - type: accuracy name: Slovak Test accuracy value: 70.4 - type: accuracy name: Kiche Test accuracy value: 8.0 - type: accuracy name: Yoruba Test accuracy value: 6.1 - type: accuracy name: Warlpiri Test accuracy value: 15.4 - type: accuracy name: Tamil Test accuracy value: 60.1 - type: accuracy name: Maltese Test accuracy value: 12.2 - type: accuracy name: Ancient Greek Test accuracy value: 45.8 - type: accuracy name: Icelandic Test accuracy value: 72.5 - type: accuracy name: Mbya Guarani Test accuracy value: 11.4 - type: accuracy name: Urdu Test accuracy value: 59.1 - type: accuracy name: Romanian Test accuracy value: 64.8 - type: accuracy name: Persian Test accuracy value: 67.2 - type: accuracy name: Apurina Test accuracy value: 15.5 - type: accuracy name: Japanese Test accuracy value: 26.1 - type: accuracy name: Hungarian Test accuracy value: 68.6 - type: accuracy name: Hindi Test accuracy value: 65.0 - type: accuracy name: Classical Chinese Test accuracy value: 30.4 - type: accuracy name: Komi Permyak Test accuracy value: 21.2 - type: accuracy name: Faroese Test accuracy value: 61.6 - type: accuracy name: Sanskrit Test accuracy value: 25.6 - type: accuracy name: Livvi Test accuracy value: 39.7 - type: accuracy name: Arabic Test accuracy value: 63.5 - type: accuracy name: Wolof Test accuracy value: 15.9 - type: accuracy name: Bulgarian Test accuracy value: 74.6 - type: accuracy name: Akuntsu Test accuracy value: 26.5 - type: accuracy name: Makurap Test accuracy value: 11.6 - type: accuracy name: Kangri Test accuracy value: 27.8 - type: accuracy name: Breton Test accuracy value: 46.6 - type: accuracy name: Telugu Test accuracy value: 59.4 - type: accuracy name: Cantonese Test accuracy value: 30.7 - type: accuracy name: Old Church Slavonic Test accuracy value: 36.7 - type: accuracy name: Karelian Test accuracy value: 45.9 - type: accuracy name: Upper Sorbian Test accuracy value: 49.3 - type: accuracy name: South Levantine Arabic Test accuracy value: 42.5 - type: accuracy name: Komi Zyrian Test accuracy value: 18.4 - type: accuracy name: Irish Test accuracy value: 48.3 - type: accuracy name: Nayini Test accuracy value: 24.4 - type: accuracy name: Munduruku Test accuracy value: 16.1 - type: accuracy name: Manx Test accuracy value: 14.7 - type: accuracy name: Skolt Sami Test accuracy value: 5.4 - type: accuracy name: Afrikaans Test accuracy value: 76.5 - type: accuracy name: Old Turkish Test accuracy value: 0.0 - type: accuracy name: Tupinamba Test accuracy value: 16.3 - type: accuracy name: Belarusian Test accuracy value: 70.7 - type: accuracy name: Serbian Test accuracy value: 74.8 - type: accuracy name: Moksha Test accuracy value: 24.1 - type: accuracy name: Western Armenian Test accuracy value: 59.8 - type: accuracy name: Scottish Gaelic Test accuracy value: 45.4 - type: accuracy name: Khunsari Test accuracy value: 21.6 - type: accuracy name: Hebrew Test accuracy value: 65.6 - type: accuracy name: Uyghur Test accuracy value: 55.0 - type: accuracy name: Chukchi Test accuracy value: 12.6 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Naija This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-pcm") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-pcm") ```
wietsedv/xlm-roberta-base-ft-udpos28-lt
wietsedv
2022-02-25T09:58:59Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "part-of-speech", "lt", "dataset:universal_dependencies", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - lt license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-lt results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 80.7 - type: accuracy name: Dutch Test accuracy value: 80.6 - type: accuracy name: German Test accuracy value: 76.0 - type: accuracy name: Italian Test accuracy value: 77.8 - type: accuracy name: French Test accuracy value: 75.5 - type: accuracy name: Spanish Test accuracy value: 79.6 - type: accuracy name: Russian Test accuracy value: 88.9 - type: accuracy name: Swedish Test accuracy value: 81.6 - type: accuracy name: Norwegian Test accuracy value: 76.3 - type: accuracy name: Danish Test accuracy value: 78.9 - type: accuracy name: Low Saxon Test accuracy value: 52.0 - type: accuracy name: Akkadian Test accuracy value: 31.6 - type: accuracy name: Armenian Test accuracy value: 84.1 - type: accuracy name: Welsh Test accuracy value: 63.8 - type: accuracy name: Old East Slavic Test accuracy value: 75.6 - type: accuracy name: Albanian Test accuracy value: 76.8 - type: accuracy name: Slovenian Test accuracy value: 81.4 - type: accuracy name: Guajajara Test accuracy value: 26.7 - type: accuracy name: Kurmanji Test accuracy value: 77.1 - type: accuracy name: Turkish Test accuracy value: 74.9 - type: accuracy name: Finnish Test accuracy value: 83.2 - type: accuracy name: Indonesian Test accuracy value: 78.0 - type: accuracy name: Ukrainian Test accuracy value: 88.1 - type: accuracy name: Polish Test accuracy value: 86.3 - type: accuracy name: Portuguese Test accuracy value: 81.6 - type: accuracy name: Kazakh Test accuracy value: 83.1 - type: accuracy name: Latin Test accuracy value: 78.7 - type: accuracy name: Old French Test accuracy value: 56.1 - type: accuracy name: Buryat Test accuracy value: 64.3 - type: accuracy name: Kaapor Test accuracy value: 22.5 - type: accuracy name: Korean Test accuracy value: 64.6 - type: accuracy name: Estonian Test accuracy value: 81.5 - type: accuracy name: Croatian Test accuracy value: 86.6 - type: accuracy name: Gothic Test accuracy value: 22.6 - type: accuracy name: Swiss German Test accuracy value: 48.1 - type: accuracy name: Assyrian Test accuracy value: 14.6 - type: accuracy name: North Sami Test accuracy value: 39.8 - type: accuracy name: Naija Test accuracy value: 41.4 - type: accuracy name: Latvian Test accuracy value: 89.0 - type: accuracy name: Chinese Test accuracy value: 34.4 - type: accuracy name: Tagalog Test accuracy value: 73.0 - type: accuracy name: Bambara Test accuracy value: 26.4 - type: accuracy name: Lithuanian Test accuracy value: 96.1 - type: accuracy name: Galician Test accuracy value: 81.1 - type: accuracy name: Vietnamese Test accuracy value: 65.3 - type: accuracy name: Greek Test accuracy value: 81.8 - type: accuracy name: Catalan Test accuracy value: 76.2 - type: accuracy name: Czech Test accuracy value: 86.5 - type: accuracy name: Erzya Test accuracy value: 48.7 - type: accuracy name: Bhojpuri Test accuracy value: 50.9 - type: accuracy name: Thai Test accuracy value: 54.5 - type: accuracy name: Marathi Test accuracy value: 82.8 - type: accuracy name: Basque Test accuracy value: 75.6 - type: accuracy name: Slovak Test accuracy value: 88.5 - type: accuracy name: Kiche Test accuracy value: 33.5 - type: accuracy name: Yoruba Test accuracy value: 24.6 - type: accuracy name: Warlpiri Test accuracy value: 44.1 - type: accuracy name: Tamil Test accuracy value: 79.1 - type: accuracy name: Maltese Test accuracy value: 25.5 - type: accuracy name: Ancient Greek Test accuracy value: 65.8 - type: accuracy name: Icelandic Test accuracy value: 80.7 - type: accuracy name: Mbya Guarani Test accuracy value: 32.2 - type: accuracy name: Urdu Test accuracy value: 59.1 - type: accuracy name: Romanian Test accuracy value: 78.6 - type: accuracy name: Persian Test accuracy value: 72.8 - type: accuracy name: Apurina Test accuracy value: 42.0 - type: accuracy name: Japanese Test accuracy value: 22.9 - type: accuracy name: Hungarian Test accuracy value: 76.9 - type: accuracy name: Hindi Test accuracy value: 62.2 - type: accuracy name: Classical Chinese Test accuracy value: 15.8 - type: accuracy name: Komi Permyak Test accuracy value: 48.3 - type: accuracy name: Faroese Test accuracy value: 77.3 - type: accuracy name: Sanskrit Test accuracy value: 41.0 - type: accuracy name: Livvi Test accuracy value: 67.2 - type: accuracy name: Arabic Test accuracy value: 73.9 - type: accuracy name: Wolof Test accuracy value: 28.0 - type: accuracy name: Bulgarian Test accuracy value: 85.9 - type: accuracy name: Akuntsu Test accuracy value: 26.0 - type: accuracy name: Makurap Test accuracy value: 17.8 - type: accuracy name: Kangri Test accuracy value: 50.6 - type: accuracy name: Breton Test accuracy value: 60.3 - type: accuracy name: Telugu Test accuracy value: 85.0 - type: accuracy name: Cantonese Test accuracy value: 39.1 - type: accuracy name: Old Church Slavonic Test accuracy value: 51.6 - type: accuracy name: Karelian Test accuracy value: 71.3 - type: accuracy name: Upper Sorbian Test accuracy value: 75.7 - type: accuracy name: South Levantine Arabic Test accuracy value: 67.0 - type: accuracy name: Komi Zyrian Test accuracy value: 43.0 - type: accuracy name: Irish Test accuracy value: 60.1 - type: accuracy name: Nayini Test accuracy value: 46.2 - type: accuracy name: Munduruku Test accuracy value: 18.8 - type: accuracy name: Manx Test accuracy value: 33.3 - type: accuracy name: Skolt Sami Test accuracy value: 37.3 - type: accuracy name: Afrikaans Test accuracy value: 76.4 - type: accuracy name: Old Turkish Test accuracy value: 37.1 - type: accuracy name: Tupinamba Test accuracy value: 34.1 - type: accuracy name: Belarusian Test accuracy value: 89.1 - type: accuracy name: Serbian Test accuracy value: 87.7 - type: accuracy name: Moksha Test accuracy value: 46.3 - type: accuracy name: Western Armenian Test accuracy value: 75.4 - type: accuracy name: Scottish Gaelic Test accuracy value: 56.2 - type: accuracy name: Khunsari Test accuracy value: 39.2 - type: accuracy name: Hebrew Test accuracy value: 83.3 - type: accuracy name: Uyghur Test accuracy value: 76.6 - type: accuracy name: Chukchi Test accuracy value: 35.4 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Lithuanian This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-lt") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-lt") ```
wietsedv/xlm-roberta-base-ft-udpos28-id
wietsedv
2022-02-25T09:58:50Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "part-of-speech", "id", "dataset:universal_dependencies", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - id license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-id results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 82.4 - type: accuracy name: Dutch Test accuracy value: 83.4 - type: accuracy name: German Test accuracy value: 75.5 - type: accuracy name: Italian Test accuracy value: 82.7 - type: accuracy name: French Test accuracy value: 82.0 - type: accuracy name: Spanish Test accuracy value: 86.1 - type: accuracy name: Russian Test accuracy value: 84.1 - type: accuracy name: Swedish Test accuracy value: 83.2 - type: accuracy name: Norwegian Test accuracy value: 79.9 - type: accuracy name: Danish Test accuracy value: 81.9 - type: accuracy name: Low Saxon Test accuracy value: 36.2 - type: accuracy name: Akkadian Test accuracy value: 38.4 - type: accuracy name: Armenian Test accuracy value: 76.4 - type: accuracy name: Welsh Test accuracy value: 65.3 - type: accuracy name: Old East Slavic Test accuracy value: 68.0 - type: accuracy name: Albanian Test accuracy value: 73.8 - type: accuracy name: Slovenian Test accuracy value: 71.6 - type: accuracy name: Guajajara Test accuracy value: 29.6 - type: accuracy name: Kurmanji Test accuracy value: 76.2 - type: accuracy name: Turkish Test accuracy value: 74.8 - type: accuracy name: Finnish Test accuracy value: 79.1 - type: accuracy name: Indonesian Test accuracy value: 91.9 - type: accuracy name: Ukrainian Test accuracy value: 80.7 - type: accuracy name: Polish Test accuracy value: 82.5 - type: accuracy name: Portuguese Test accuracy value: 87.3 - type: accuracy name: Kazakh Test accuracy value: 78.8 - type: accuracy name: Latin Test accuracy value: 73.9 - type: accuracy name: Old French Test accuracy value: 47.0 - type: accuracy name: Buryat Test accuracy value: 59.3 - type: accuracy name: Kaapor Test accuracy value: 23.3 - type: accuracy name: Korean Test accuracy value: 63.5 - type: accuracy name: Estonian Test accuracy value: 80.0 - type: accuracy name: Croatian Test accuracy value: 79.6 - type: accuracy name: Gothic Test accuracy value: 16.8 - type: accuracy name: Swiss German Test accuracy value: 34.9 - type: accuracy name: Assyrian Test accuracy value: 17.2 - type: accuracy name: North Sami Test accuracy value: 36.7 - type: accuracy name: Naija Test accuracy value: 36.5 - type: accuracy name: Latvian Test accuracy value: 81.8 - type: accuracy name: Chinese Test accuracy value: 34.0 - type: accuracy name: Tagalog Test accuracy value: 73.3 - type: accuracy name: Bambara Test accuracy value: 31.7 - type: accuracy name: Lithuanian Test accuracy value: 81.3 - type: accuracy name: Galician Test accuracy value: 86.2 - type: accuracy name: Vietnamese Test accuracy value: 67.9 - type: accuracy name: Greek Test accuracy value: 79.0 - type: accuracy name: Catalan Test accuracy value: 82.9 - type: accuracy name: Czech Test accuracy value: 79.5 - type: accuracy name: Erzya Test accuracy value: 46.0 - type: accuracy name: Bhojpuri Test accuracy value: 54.7 - type: accuracy name: Thai Test accuracy value: 48.4 - type: accuracy name: Marathi Test accuracy value: 76.7 - type: accuracy name: Basque Test accuracy value: 71.9 - type: accuracy name: Slovak Test accuracy value: 81.3 - type: accuracy name: Kiche Test accuracy value: 37.3 - type: accuracy name: Yoruba Test accuracy value: 25.4 - type: accuracy name: Warlpiri Test accuracy value: 34.0 - type: accuracy name: Tamil Test accuracy value: 80.5 - type: accuracy name: Maltese Test accuracy value: 23.8 - type: accuracy name: Ancient Greek Test accuracy value: 56.4 - type: accuracy name: Icelandic Test accuracy value: 75.9 - type: accuracy name: Mbya Guarani Test accuracy value: 31.3 - type: accuracy name: Urdu Test accuracy value: 69.4 - type: accuracy name: Romanian Test accuracy value: 78.8 - type: accuracy name: Persian Test accuracy value: 77.4 - type: accuracy name: Apurina Test accuracy value: 39.9 - type: accuracy name: Japanese Test accuracy value: 21.3 - type: accuracy name: Hungarian Test accuracy value: 78.0 - type: accuracy name: Hindi Test accuracy value: 77.3 - type: accuracy name: Classical Chinese Test accuracy value: 18.4 - type: accuracy name: Komi Permyak Test accuracy value: 44.8 - type: accuracy name: Faroese Test accuracy value: 69.5 - type: accuracy name: Sanskrit Test accuracy value: 38.8 - type: accuracy name: Livvi Test accuracy value: 59.7 - type: accuracy name: Arabic Test accuracy value: 80.3 - type: accuracy name: Wolof Test accuracy value: 32.8 - type: accuracy name: Bulgarian Test accuracy value: 82.0 - type: accuracy name: Akuntsu Test accuracy value: 43.7 - type: accuracy name: Makurap Test accuracy value: 20.5 - type: accuracy name: Kangri Test accuracy value: 42.4 - type: accuracy name: Breton Test accuracy value: 60.3 - type: accuracy name: Telugu Test accuracy value: 80.6 - type: accuracy name: Cantonese Test accuracy value: 41.0 - type: accuracy name: Old Church Slavonic Test accuracy value: 45.5 - type: accuracy name: Karelian Test accuracy value: 61.6 - type: accuracy name: Upper Sorbian Test accuracy value: 60.5 - type: accuracy name: South Levantine Arabic Test accuracy value: 66.9 - type: accuracy name: Komi Zyrian Test accuracy value: 37.5 - type: accuracy name: Irish Test accuracy value: 68.8 - type: accuracy name: Nayini Test accuracy value: 42.3 - type: accuracy name: Munduruku Test accuracy value: 25.4 - type: accuracy name: Manx Test accuracy value: 34.5 - type: accuracy name: Skolt Sami Test accuracy value: 30.1 - type: accuracy name: Afrikaans Test accuracy value: 77.6 - type: accuracy name: Old Turkish Test accuracy value: 45.7 - type: accuracy name: Tupinamba Test accuracy value: 38.8 - type: accuracy name: Belarusian Test accuracy value: 79.9 - type: accuracy name: Serbian Test accuracy value: 81.3 - type: accuracy name: Moksha Test accuracy value: 44.8 - type: accuracy name: Western Armenian Test accuracy value: 71.4 - type: accuracy name: Scottish Gaelic Test accuracy value: 59.6 - type: accuracy name: Khunsari Test accuracy value: 37.8 - type: accuracy name: Hebrew Test accuracy value: 87.5 - type: accuracy name: Uyghur Test accuracy value: 75.7 - type: accuracy name: Chukchi Test accuracy value: 31.6 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Indonesian This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-id") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-id") ```
wietsedv/xlm-roberta-base-ft-udpos28-hy
wietsedv
2022-02-25T09:58:47Z
4
1
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "part-of-speech", "hy", "dataset:universal_dependencies", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - hy license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-hy results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 84.7 - type: accuracy name: Dutch Test accuracy value: 85.3 - type: accuracy name: German Test accuracy value: 84.1 - type: accuracy name: Italian Test accuracy value: 82.9 - type: accuracy name: French Test accuracy value: 82.6 - type: accuracy name: Spanish Test accuracy value: 83.2 - type: accuracy name: Russian Test accuracy value: 92.1 - type: accuracy name: Swedish Test accuracy value: 87.5 - type: accuracy name: Norwegian Test accuracy value: 82.5 - type: accuracy name: Danish Test accuracy value: 86.6 - type: accuracy name: Low Saxon Test accuracy value: 40.1 - type: accuracy name: Akkadian Test accuracy value: 7.0 - type: accuracy name: Armenian Test accuracy value: 97.0 - type: accuracy name: Welsh Test accuracy value: 65.3 - type: accuracy name: Old East Slavic Test accuracy value: 73.6 - type: accuracy name: Albanian Test accuracy value: 75.8 - type: accuracy name: Slovenian Test accuracy value: 80.8 - type: accuracy name: Guajajara Test accuracy value: 14.8 - type: accuracy name: Kurmanji Test accuracy value: 77.9 - type: accuracy name: Turkish Test accuracy value: 79.3 - type: accuracy name: Finnish Test accuracy value: 86.3 - type: accuracy name: Indonesian Test accuracy value: 80.5 - type: accuracy name: Ukrainian Test accuracy value: 91.0 - type: accuracy name: Polish Test accuracy value: 86.3 - type: accuracy name: Portuguese Test accuracy value: 84.6 - type: accuracy name: Kazakh Test accuracy value: 86.3 - type: accuracy name: Latin Test accuracy value: 79.8 - type: accuracy name: Old French Test accuracy value: 47.9 - type: accuracy name: Buryat Test accuracy value: 59.5 - type: accuracy name: Kaapor Test accuracy value: 4.6 - type: accuracy name: Korean Test accuracy value: 64.1 - type: accuracy name: Estonian Test accuracy value: 86.1 - type: accuracy name: Croatian Test accuracy value: 88.6 - type: accuracy name: Gothic Test accuracy value: 6.5 - type: accuracy name: Swiss German Test accuracy value: 43.7 - type: accuracy name: Assyrian Test accuracy value: 14.6 - type: accuracy name: North Sami Test accuracy value: 23.7 - type: accuracy name: Naija Test accuracy value: 36.1 - type: accuracy name: Latvian Test accuracy value: 90.0 - type: accuracy name: Chinese Test accuracy value: 43.5 - type: accuracy name: Tagalog Test accuracy value: 71.8 - type: accuracy name: Bambara Test accuracy value: 17.2 - type: accuracy name: Lithuanian Test accuracy value: 89.0 - type: accuracy name: Galician Test accuracy value: 83.6 - type: accuracy name: Vietnamese Test accuracy value: 66.4 - type: accuracy name: Greek Test accuracy value: 86.9 - type: accuracy name: Catalan Test accuracy value: 82.3 - type: accuracy name: Czech Test accuracy value: 88.7 - type: accuracy name: Erzya Test accuracy value: 40.9 - type: accuracy name: Bhojpuri Test accuracy value: 53.6 - type: accuracy name: Thai Test accuracy value: 67.5 - type: accuracy name: Marathi Test accuracy value: 83.4 - type: accuracy name: Basque Test accuracy value: 79.0 - type: accuracy name: Slovak Test accuracy value: 89.5 - type: accuracy name: Kiche Test accuracy value: 19.8 - type: accuracy name: Yoruba Test accuracy value: 15.4 - type: accuracy name: Warlpiri Test accuracy value: 25.5 - type: accuracy name: Tamil Test accuracy value: 86.9 - type: accuracy name: Maltese Test accuracy value: 14.7 - type: accuracy name: Ancient Greek Test accuracy value: 67.4 - type: accuracy name: Icelandic Test accuracy value: 82.2 - type: accuracy name: Mbya Guarani Test accuracy value: 22.8 - type: accuracy name: Urdu Test accuracy value: 70.6 - type: accuracy name: Romanian Test accuracy value: 82.4 - type: accuracy name: Persian Test accuracy value: 79.2 - type: accuracy name: Apurina Test accuracy value: 25.2 - type: accuracy name: Japanese Test accuracy value: 30.3 - type: accuracy name: Hungarian Test accuracy value: 85.7 - type: accuracy name: Hindi Test accuracy value: 75.7 - type: accuracy name: Classical Chinese Test accuracy value: 26.3 - type: accuracy name: Komi Permyak Test accuracy value: 38.3 - type: accuracy name: Faroese Test accuracy value: 76.5 - type: accuracy name: Sanskrit Test accuracy value: 23.7 - type: accuracy name: Livvi Test accuracy value: 58.1 - type: accuracy name: Arabic Test accuracy value: 78.6 - type: accuracy name: Wolof Test accuracy value: 16.3 - type: accuracy name: Bulgarian Test accuracy value: 90.3 - type: accuracy name: Akuntsu Test accuracy value: 11.6 - type: accuracy name: Makurap Test accuracy value: 1.4 - type: accuracy name: Kangri Test accuracy value: 51.3 - type: accuracy name: Breton Test accuracy value: 65.5 - type: accuracy name: Telugu Test accuracy value: 85.6 - type: accuracy name: Cantonese Test accuracy value: 48.2 - type: accuracy name: Old Church Slavonic Test accuracy value: 44.4 - type: accuracy name: Karelian Test accuracy value: 67.7 - type: accuracy name: Upper Sorbian Test accuracy value: 69.5 - type: accuracy name: South Levantine Arabic Test accuracy value: 69.6 - type: accuracy name: Komi Zyrian Test accuracy value: 33.0 - type: accuracy name: Irish Test accuracy value: 62.4 - type: accuracy name: Nayini Test accuracy value: 48.7 - type: accuracy name: Munduruku Test accuracy value: 7.6 - type: accuracy name: Manx Test accuracy value: 19.6 - type: accuracy name: Skolt Sami Test accuracy value: 26.8 - type: accuracy name: Afrikaans Test accuracy value: 83.9 - type: accuracy name: Old Turkish Test accuracy value: 37.1 - type: accuracy name: Tupinamba Test accuracy value: 20.9 - type: accuracy name: Belarusian Test accuracy value: 91.9 - type: accuracy name: Serbian Test accuracy value: 89.7 - type: accuracy name: Moksha Test accuracy value: 40.7 - type: accuracy name: Western Armenian Test accuracy value: 84.5 - type: accuracy name: Scottish Gaelic Test accuracy value: 56.9 - type: accuracy name: Khunsari Test accuracy value: 43.2 - type: accuracy name: Hebrew Test accuracy value: 91.7 - type: accuracy name: Uyghur Test accuracy value: 78.1 - type: accuracy name: Chukchi Test accuracy value: 33.2 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Armenian This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-hy") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-hy") ```
wietsedv/xlm-roberta-base-ft-udpos28-hu
wietsedv
2022-02-25T09:58:45Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "part-of-speech", "hu", "dataset:universal_dependencies", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - hu license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-hu results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 77.0 - type: accuracy name: Dutch Test accuracy value: 77.0 - type: accuracy name: German Test accuracy value: 77.0 - type: accuracy name: Italian Test accuracy value: 77.6 - type: accuracy name: French Test accuracy value: 75.9 - type: accuracy name: Spanish Test accuracy value: 76.1 - type: accuracy name: Russian Test accuracy value: 78.7 - type: accuracy name: Swedish Test accuracy value: 78.9 - type: accuracy name: Norwegian Test accuracy value: 74.6 - type: accuracy name: Danish Test accuracy value: 77.7 - type: accuracy name: Low Saxon Test accuracy value: 55.5 - type: accuracy name: Akkadian Test accuracy value: 31.1 - type: accuracy name: Armenian Test accuracy value: 85.7 - type: accuracy name: Welsh Test accuracy value: 54.9 - type: accuracy name: Old East Slavic Test accuracy value: 65.6 - type: accuracy name: Albanian Test accuracy value: 80.0 - type: accuracy name: Slovenian Test accuracy value: 71.9 - type: accuracy name: Guajajara Test accuracy value: 23.6 - type: accuracy name: Kurmanji Test accuracy value: 70.0 - type: accuracy name: Turkish Test accuracy value: 80.4 - type: accuracy name: Finnish Test accuracy value: 85.1 - type: accuracy name: Indonesian Test accuracy value: 76.6 - type: accuracy name: Ukrainian Test accuracy value: 78.5 - type: accuracy name: Polish Test accuracy value: 77.9 - type: accuracy name: Portuguese Test accuracy value: 79.1 - type: accuracy name: Kazakh Test accuracy value: 80.9 - type: accuracy name: Latin Test accuracy value: 71.3 - type: accuracy name: Old French Test accuracy value: 55.1 - type: accuracy name: Buryat Test accuracy value: 62.2 - type: accuracy name: Kaapor Test accuracy value: 22.1 - type: accuracy name: Korean Test accuracy value: 59.1 - type: accuracy name: Estonian Test accuracy value: 87.6 - type: accuracy name: Croatian Test accuracy value: 78.9 - type: accuracy name: Gothic Test accuracy value: 25.6 - type: accuracy name: Swiss German Test accuracy value: 45.7 - type: accuracy name: Assyrian Test accuracy value: 16.3 - type: accuracy name: North Sami Test accuracy value: 44.7 - type: accuracy name: Naija Test accuracy value: 39.3 - type: accuracy name: Latvian Test accuracy value: 81.8 - type: accuracy name: Chinese Test accuracy value: 40.9 - type: accuracy name: Tagalog Test accuracy value: 63.9 - type: accuracy name: Bambara Test accuracy value: 27.0 - type: accuracy name: Lithuanian Test accuracy value: 79.7 - type: accuracy name: Galician Test accuracy value: 77.4 - type: accuracy name: Vietnamese Test accuracy value: 59.9 - type: accuracy name: Greek Test accuracy value: 79.2 - type: accuracy name: Catalan Test accuracy value: 76.1 - type: accuracy name: Czech Test accuracy value: 79.0 - type: accuracy name: Erzya Test accuracy value: 50.9 - type: accuracy name: Bhojpuri Test accuracy value: 53.1 - type: accuracy name: Thai Test accuracy value: 45.2 - type: accuracy name: Marathi Test accuracy value: 87.1 - type: accuracy name: Basque Test accuracy value: 73.7 - type: accuracy name: Slovak Test accuracy value: 78.7 - type: accuracy name: Kiche Test accuracy value: 33.5 - type: accuracy name: Yoruba Test accuracy value: 28.0 - type: accuracy name: Warlpiri Test accuracy value: 33.2 - type: accuracy name: Tamil Test accuracy value: 82.7 - type: accuracy name: Maltese Test accuracy value: 29.6 - type: accuracy name: Ancient Greek Test accuracy value: 55.9 - type: accuracy name: Icelandic Test accuracy value: 73.5 - type: accuracy name: Mbya Guarani Test accuracy value: 33.3 - type: accuracy name: Urdu Test accuracy value: 69.4 - type: accuracy name: Romanian Test accuracy value: 72.4 - type: accuracy name: Persian Test accuracy value: 69.2 - type: accuracy name: Apurina Test accuracy value: 38.4 - type: accuracy name: Japanese Test accuracy value: 30.2 - type: accuracy name: Hungarian Test accuracy value: 97.3 - type: accuracy name: Hindi Test accuracy value: 73.9 - type: accuracy name: Classical Chinese Test accuracy value: 32.8 - type: accuracy name: Komi Permyak Test accuracy value: 53.6 - type: accuracy name: Faroese Test accuracy value: 67.4 - type: accuracy name: Sanskrit Test accuracy value: 40.9 - type: accuracy name: Livvi Test accuracy value: 69.7 - type: accuracy name: Arabic Test accuracy value: 69.2 - type: accuracy name: Wolof Test accuracy value: 34.7 - type: accuracy name: Bulgarian Test accuracy value: 74.3 - type: accuracy name: Akuntsu Test accuracy value: 29.6 - type: accuracy name: Makurap Test accuracy value: 18.5 - type: accuracy name: Kangri Test accuracy value: 51.8 - type: accuracy name: Breton Test accuracy value: 59.7 - type: accuracy name: Telugu Test accuracy value: 82.1 - type: accuracy name: Cantonese Test accuracy value: 48.3 - type: accuracy name: Old Church Slavonic Test accuracy value: 48.9 - type: accuracy name: Karelian Test accuracy value: 74.4 - type: accuracy name: Upper Sorbian Test accuracy value: 69.7 - type: accuracy name: South Levantine Arabic Test accuracy value: 61.7 - type: accuracy name: Komi Zyrian Test accuracy value: 44.1 - type: accuracy name: Irish Test accuracy value: 59.8 - type: accuracy name: Nayini Test accuracy value: 44.9 - type: accuracy name: Munduruku Test accuracy value: 23.0 - type: accuracy name: Manx Test accuracy value: 33.5 - type: accuracy name: Skolt Sami Test accuracy value: 50.0 - type: accuracy name: Afrikaans Test accuracy value: 73.4 - type: accuracy name: Old Turkish Test accuracy value: 37.1 - type: accuracy name: Tupinamba Test accuracy value: 36.6 - type: accuracy name: Belarusian Test accuracy value: 77.3 - type: accuracy name: Serbian Test accuracy value: 80.1 - type: accuracy name: Moksha Test accuracy value: 47.6 - type: accuracy name: Western Armenian Test accuracy value: 75.9 - type: accuracy name: Scottish Gaelic Test accuracy value: 54.4 - type: accuracy name: Khunsari Test accuracy value: 37.8 - type: accuracy name: Hebrew Test accuracy value: 85.4 - type: accuracy name: Uyghur Test accuracy value: 71.3 - type: accuracy name: Chukchi Test accuracy value: 40.5 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Hungarian This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-hu") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-hu") ```
wietsedv/xlm-roberta-base-ft-udpos28-hr
wietsedv
2022-02-25T09:58:44Z
4
1
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "part-of-speech", "hr", "dataset:universal_dependencies", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - hr license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-hr results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 83.7 - type: accuracy name: Dutch Test accuracy value: 83.7 - type: accuracy name: German Test accuracy value: 83.2 - type: accuracy name: Italian Test accuracy value: 83.2 - type: accuracy name: French Test accuracy value: 84.2 - type: accuracy name: Spanish Test accuracy value: 87.8 - type: accuracy name: Russian Test accuracy value: 91.4 - type: accuracy name: Swedish Test accuracy value: 85.4 - type: accuracy name: Norwegian Test accuracy value: 79.0 - type: accuracy name: Danish Test accuracy value: 83.8 - type: accuracy name: Low Saxon Test accuracy value: 43.5 - type: accuracy name: Akkadian Test accuracy value: 32.5 - type: accuracy name: Armenian Test accuracy value: 84.7 - type: accuracy name: Welsh Test accuracy value: 67.9 - type: accuracy name: Old East Slavic Test accuracy value: 76.8 - type: accuracy name: Albanian Test accuracy value: 75.2 - type: accuracy name: Slovenian Test accuracy value: 87.0 - type: accuracy name: Guajajara Test accuracy value: 28.3 - type: accuracy name: Kurmanji Test accuracy value: 78.5 - type: accuracy name: Turkish Test accuracy value: 75.9 - type: accuracy name: Finnish Test accuracy value: 83.2 - type: accuracy name: Indonesian Test accuracy value: 81.3 - type: accuracy name: Ukrainian Test accuracy value: 93.2 - type: accuracy name: Polish Test accuracy value: 92.3 - type: accuracy name: Portuguese Test accuracy value: 84.6 - type: accuracy name: Kazakh Test accuracy value: 79.4 - type: accuracy name: Latin Test accuracy value: 77.4 - type: accuracy name: Old French Test accuracy value: 54.3 - type: accuracy name: Buryat Test accuracy value: 61.1 - type: accuracy name: Kaapor Test accuracy value: 20.0 - type: accuracy name: Korean Test accuracy value: 60.7 - type: accuracy name: Estonian Test accuracy value: 85.7 - type: accuracy name: Croatian Test accuracy value: 98.3 - type: accuracy name: Gothic Test accuracy value: 16.5 - type: accuracy name: Swiss German Test accuracy value: 44.8 - type: accuracy name: Assyrian Test accuracy value: 15.9 - type: accuracy name: North Sami Test accuracy value: 35.3 - type: accuracy name: Naija Test accuracy value: 39.6 - type: accuracy name: Latvian Test accuracy value: 86.5 - type: accuracy name: Chinese Test accuracy value: 41.2 - type: accuracy name: Tagalog Test accuracy value: 70.9 - type: accuracy name: Bambara Test accuracy value: 28.2 - type: accuracy name: Lithuanian Test accuracy value: 86.1 - type: accuracy name: Galician Test accuracy value: 86.0 - type: accuracy name: Vietnamese Test accuracy value: 66.5 - type: accuracy name: Greek Test accuracy value: 85.8 - type: accuracy name: Catalan Test accuracy value: 85.5 - type: accuracy name: Czech Test accuracy value: 94.8 - type: accuracy name: Erzya Test accuracy value: 47.2 - type: accuracy name: Bhojpuri Test accuracy value: 49.2 - type: accuracy name: Thai Test accuracy value: 63.4 - type: accuracy name: Marathi Test accuracy value: 87.1 - type: accuracy name: Basque Test accuracy value: 75.0 - type: accuracy name: Slovak Test accuracy value: 95.0 - type: accuracy name: Kiche Test accuracy value: 35.8 - type: accuracy name: Yoruba Test accuracy value: 28.5 - type: accuracy name: Warlpiri Test accuracy value: 41.3 - type: accuracy name: Tamil Test accuracy value: 84.8 - type: accuracy name: Maltese Test accuracy value: 23.7 - type: accuracy name: Ancient Greek Test accuracy value: 62.1 - type: accuracy name: Icelandic Test accuracy value: 79.9 - type: accuracy name: Mbya Guarani Test accuracy value: 31.9 - type: accuracy name: Urdu Test accuracy value: 65.0 - type: accuracy name: Romanian Test accuracy value: 82.5 - type: accuracy name: Persian Test accuracy value: 79.4 - type: accuracy name: Apurina Test accuracy value: 38.4 - type: accuracy name: Japanese Test accuracy value: 30.1 - type: accuracy name: Hungarian Test accuracy value: 83.8 - type: accuracy name: Hindi Test accuracy value: 67.8 - type: accuracy name: Classical Chinese Test accuracy value: 27.0 - type: accuracy name: Komi Permyak Test accuracy value: 44.9 - type: accuracy name: Faroese Test accuracy value: 77.3 - type: accuracy name: Sanskrit Test accuracy value: 35.6 - type: accuracy name: Livvi Test accuracy value: 65.5 - type: accuracy name: Arabic Test accuracy value: 82.3 - type: accuracy name: Wolof Test accuracy value: 32.2 - type: accuracy name: Bulgarian Test accuracy value: 92.6 - type: accuracy name: Akuntsu Test accuracy value: 37.0 - type: accuracy name: Makurap Test accuracy value: 17.8 - type: accuracy name: Kangri Test accuracy value: 47.9 - type: accuracy name: Breton Test accuracy value: 62.2 - type: accuracy name: Telugu Test accuracy value: 82.4 - type: accuracy name: Cantonese Test accuracy value: 45.6 - type: accuracy name: Old Church Slavonic Test accuracy value: 48.9 - type: accuracy name: Karelian Test accuracy value: 71.7 - type: accuracy name: Upper Sorbian Test accuracy value: 79.4 - type: accuracy name: South Levantine Arabic Test accuracy value: 68.9 - type: accuracy name: Komi Zyrian Test accuracy value: 39.6 - type: accuracy name: Irish Test accuracy value: 65.4 - type: accuracy name: Nayini Test accuracy value: 42.3 - type: accuracy name: Munduruku Test accuracy value: 28.8 - type: accuracy name: Manx Test accuracy value: 35.7 - type: accuracy name: Skolt Sami Test accuracy value: 33.7 - type: accuracy name: Afrikaans Test accuracy value: 79.8 - type: accuracy name: Old Turkish Test accuracy value: 37.1 - type: accuracy name: Tupinamba Test accuracy value: 33.1 - type: accuracy name: Belarusian Test accuracy value: 91.6 - type: accuracy name: Serbian Test accuracy value: 97.5 - type: accuracy name: Moksha Test accuracy value: 45.7 - type: accuracy name: Western Armenian Test accuracy value: 77.7 - type: accuracy name: Scottish Gaelic Test accuracy value: 57.7 - type: accuracy name: Khunsari Test accuracy value: 36.5 - type: accuracy name: Hebrew Test accuracy value: 85.4 - type: accuracy name: Uyghur Test accuracy value: 72.2 - type: accuracy name: Chukchi Test accuracy value: 35.4 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Croatian This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-hr") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-hr") ```
wietsedv/xlm-roberta-base-ft-udpos28-hi
wietsedv
2022-02-25T09:58:42Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "part-of-speech", "hi", "dataset:universal_dependencies", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - hi license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-hi results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 75.9 - type: accuracy name: Dutch Test accuracy value: 72.3 - type: accuracy name: German Test accuracy value: 69.4 - type: accuracy name: Italian Test accuracy value: 68.1 - type: accuracy name: French Test accuracy value: 67.1 - type: accuracy name: Spanish Test accuracy value: 70.2 - type: accuracy name: Russian Test accuracy value: 82.9 - type: accuracy name: Swedish Test accuracy value: 77.4 - type: accuracy name: Norwegian Test accuracy value: 72.4 - type: accuracy name: Danish Test accuracy value: 74.9 - type: accuracy name: Low Saxon Test accuracy value: 48.0 - type: accuracy name: Akkadian Test accuracy value: 21.7 - type: accuracy name: Armenian Test accuracy value: 82.1 - type: accuracy name: Welsh Test accuracy value: 59.4 - type: accuracy name: Old East Slavic Test accuracy value: 63.6 - type: accuracy name: Albanian Test accuracy value: 68.5 - type: accuracy name: Slovenian Test accuracy value: 71.3 - type: accuracy name: Guajajara Test accuracy value: 18.5 - type: accuracy name: Kurmanji Test accuracy value: 71.8 - type: accuracy name: Turkish Test accuracy value: 75.4 - type: accuracy name: Finnish Test accuracy value: 80.3 - type: accuracy name: Indonesian Test accuracy value: 76.6 - type: accuracy name: Ukrainian Test accuracy value: 80.8 - type: accuracy name: Polish Test accuracy value: 81.1 - type: accuracy name: Portuguese Test accuracy value: 71.5 - type: accuracy name: Kazakh Test accuracy value: 82.0 - type: accuracy name: Latin Test accuracy value: 69.3 - type: accuracy name: Old French Test accuracy value: 44.0 - type: accuracy name: Buryat Test accuracy value: 53.9 - type: accuracy name: Kaapor Test accuracy value: 10.8 - type: accuracy name: Korean Test accuracy value: 57.8 - type: accuracy name: Estonian Test accuracy value: 81.0 - type: accuracy name: Croatian Test accuracy value: 79.8 - type: accuracy name: Gothic Test accuracy value: 8.6 - type: accuracy name: Swiss German Test accuracy value: 42.2 - type: accuracy name: Assyrian Test accuracy value: 16.3 - type: accuracy name: North Sami Test accuracy value: 26.2 - type: accuracy name: Naija Test accuracy value: 35.8 - type: accuracy name: Latvian Test accuracy value: 80.2 - type: accuracy name: Chinese Test accuracy value: 37.1 - type: accuracy name: Tagalog Test accuracy value: 71.3 - type: accuracy name: Bambara Test accuracy value: 22.2 - type: accuracy name: Lithuanian Test accuracy value: 81.3 - type: accuracy name: Galician Test accuracy value: 70.7 - type: accuracy name: Vietnamese Test accuracy value: 60.6 - type: accuracy name: Greek Test accuracy value: 69.5 - type: accuracy name: Catalan Test accuracy value: 68.7 - type: accuracy name: Czech Test accuracy value: 78.8 - type: accuracy name: Erzya Test accuracy value: 36.3 - type: accuracy name: Bhojpuri Test accuracy value: 61.2 - type: accuracy name: Thai Test accuracy value: 52.8 - type: accuracy name: Marathi Test accuracy value: 82.2 - type: accuracy name: Basque Test accuracy value: 78.8 - type: accuracy name: Slovak Test accuracy value: 78.9 - type: accuracy name: Kiche Test accuracy value: 21.7 - type: accuracy name: Yoruba Test accuracy value: 19.3 - type: accuracy name: Warlpiri Test accuracy value: 23.5 - type: accuracy name: Tamil Test accuracy value: 85.7 - type: accuracy name: Maltese Test accuracy value: 16.3 - type: accuracy name: Ancient Greek Test accuracy value: 54.9 - type: accuracy name: Icelandic Test accuracy value: 70.4 - type: accuracy name: Mbya Guarani Test accuracy value: 23.2 - type: accuracy name: Urdu Test accuracy value: 89.7 - type: accuracy name: Romanian Test accuracy value: 72.1 - type: accuracy name: Persian Test accuracy value: 78.1 - type: accuracy name: Apurina Test accuracy value: 22.9 - type: accuracy name: Japanese Test accuracy value: 29.3 - type: accuracy name: Hungarian Test accuracy value: 75.4 - type: accuracy name: Hindi Test accuracy value: 93.7 - type: accuracy name: Classical Chinese Test accuracy value: 18.4 - type: accuracy name: Komi Permyak Test accuracy value: 34.3 - type: accuracy name: Faroese Test accuracy value: 64.9 - type: accuracy name: Sanskrit Test accuracy value: 14.0 - type: accuracy name: Livvi Test accuracy value: 57.9 - type: accuracy name: Arabic Test accuracy value: 73.9 - type: accuracy name: Wolof Test accuracy value: 24.9 - type: accuracy name: Bulgarian Test accuracy value: 81.3 - type: accuracy name: Akuntsu Test accuracy value: 16.2 - type: accuracy name: Makurap Test accuracy value: 2.7 - type: accuracy name: Kangri Test accuracy value: 52.8 - type: accuracy name: Breton Test accuracy value: 49.5 - type: accuracy name: Telugu Test accuracy value: 85.4 - type: accuracy name: Cantonese Test accuracy value: 42.1 - type: accuracy name: Old Church Slavonic Test accuracy value: 35.1 - type: accuracy name: Karelian Test accuracy value: 64.9 - type: accuracy name: Upper Sorbian Test accuracy value: 64.2 - type: accuracy name: South Levantine Arabic Test accuracy value: 60.1 - type: accuracy name: Komi Zyrian Test accuracy value: 29.7 - type: accuracy name: Irish Test accuracy value: 56.5 - type: accuracy name: Nayini Test accuracy value: 39.7 - type: accuracy name: Munduruku Test accuracy value: 9.3 - type: accuracy name: Manx Test accuracy value: 25.3 - type: accuracy name: Skolt Sami Test accuracy value: 26.9 - type: accuracy name: Afrikaans Test accuracy value: 71.9 - type: accuracy name: Old Turkish Test accuracy value: 43.0 - type: accuracy name: Tupinamba Test accuracy value: 21.3 - type: accuracy name: Belarusian Test accuracy value: 80.5 - type: accuracy name: Serbian Test accuracy value: 79.9 - type: accuracy name: Moksha Test accuracy value: 34.3 - type: accuracy name: Western Armenian Test accuracy value: 74.9 - type: accuracy name: Scottish Gaelic Test accuracy value: 49.1 - type: accuracy name: Khunsari Test accuracy value: 37.8 - type: accuracy name: Hebrew Test accuracy value: 81.2 - type: accuracy name: Uyghur Test accuracy value: 75.8 - type: accuracy name: Chukchi Test accuracy value: 27.0 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Hindi This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-hi") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-hi") ```
wietsedv/xlm-roberta-base-ft-udpos28-got
wietsedv
2022-02-25T09:58:37Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "part-of-speech", "got", "dataset:universal_dependencies", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - got license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-got results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 47.9 - type: accuracy name: Dutch Test accuracy value: 50.2 - type: accuracy name: German Test accuracy value: 38.9 - type: accuracy name: Italian Test accuracy value: 46.8 - type: accuracy name: French Test accuracy value: 50.2 - type: accuracy name: Spanish Test accuracy value: 51.3 - type: accuracy name: Russian Test accuracy value: 52.4 - type: accuracy name: Swedish Test accuracy value: 51.5 - type: accuracy name: Norwegian Test accuracy value: 49.1 - type: accuracy name: Danish Test accuracy value: 50.8 - type: accuracy name: Low Saxon Test accuracy value: 32.8 - type: accuracy name: Akkadian Test accuracy value: 43.8 - type: accuracy name: Armenian Test accuracy value: 50.4 - type: accuracy name: Welsh Test accuracy value: 41.1 - type: accuracy name: Old East Slavic Test accuracy value: 53.9 - type: accuracy name: Albanian Test accuracy value: 49.0 - type: accuracy name: Slovenian Test accuracy value: 45.3 - type: accuracy name: Guajajara Test accuracy value: 23.8 - type: accuracy name: Kurmanji Test accuracy value: 49.3 - type: accuracy name: Turkish Test accuracy value: 46.6 - type: accuracy name: Finnish Test accuracy value: 51.2 - type: accuracy name: Indonesian Test accuracy value: 55.4 - type: accuracy name: Ukrainian Test accuracy value: 50.0 - type: accuracy name: Polish Test accuracy value: 52.4 - type: accuracy name: Portuguese Test accuracy value: 50.4 - type: accuracy name: Kazakh Test accuracy value: 46.5 - type: accuracy name: Latin Test accuracy value: 49.1 - type: accuracy name: Old French Test accuracy value: 47.6 - type: accuracy name: Buryat Test accuracy value: 37.4 - type: accuracy name: Kaapor Test accuracy value: 33.8 - type: accuracy name: Korean Test accuracy value: 41.5 - type: accuracy name: Estonian Test accuracy value: 49.5 - type: accuracy name: Croatian Test accuracy value: 57.2 - type: accuracy name: Gothic Test accuracy value: 93.6 - type: accuracy name: Swiss German Test accuracy value: 25.1 - type: accuracy name: Assyrian Test accuracy value: 4.0 - type: accuracy name: North Sami Test accuracy value: 27.9 - type: accuracy name: Naija Test accuracy value: 29.2 - type: accuracy name: Latvian Test accuracy value: 51.5 - type: accuracy name: Chinese Test accuracy value: 16.4 - type: accuracy name: Tagalog Test accuracy value: 42.0 - type: accuracy name: Bambara Test accuracy value: 13.1 - type: accuracy name: Lithuanian Test accuracy value: 50.5 - type: accuracy name: Galician Test accuracy value: 49.2 - type: accuracy name: Vietnamese Test accuracy value: 47.1 - type: accuracy name: Greek Test accuracy value: 42.0 - type: accuracy name: Catalan Test accuracy value: 50.1 - type: accuracy name: Czech Test accuracy value: 54.3 - type: accuracy name: Erzya Test accuracy value: 22.1 - type: accuracy name: Bhojpuri Test accuracy value: 38.8 - type: accuracy name: Thai Test accuracy value: 34.7 - type: accuracy name: Marathi Test accuracy value: 35.0 - type: accuracy name: Basque Test accuracy value: 45.9 - type: accuracy name: Slovak Test accuracy value: 55.3 - type: accuracy name: Kiche Test accuracy value: 23.3 - type: accuracy name: Yoruba Test accuracy value: 15.0 - type: accuracy name: Warlpiri Test accuracy value: 23.5 - type: accuracy name: Tamil Test accuracy value: 41.1 - type: accuracy name: Maltese Test accuracy value: 21.4 - type: accuracy name: Ancient Greek Test accuracy value: 50.9 - type: accuracy name: Icelandic Test accuracy value: 50.3 - type: accuracy name: Mbya Guarani Test accuracy value: 14.8 - type: accuracy name: Urdu Test accuracy value: 41.4 - type: accuracy name: Romanian Test accuracy value: 50.1 - type: accuracy name: Persian Test accuracy value: 53.1 - type: accuracy name: Apurina Test accuracy value: 20.8 - type: accuracy name: Japanese Test accuracy value: 16.3 - type: accuracy name: Hungarian Test accuracy value: 42.3 - type: accuracy name: Hindi Test accuracy value: 45.2 - type: accuracy name: Classical Chinese Test accuracy value: 19.6 - type: accuracy name: Komi Permyak Test accuracy value: 23.4 - type: accuracy name: Faroese Test accuracy value: 48.9 - type: accuracy name: Sanskrit Test accuracy value: 32.4 - type: accuracy name: Livvi Test accuracy value: 38.5 - type: accuracy name: Arabic Test accuracy value: 49.6 - type: accuracy name: Wolof Test accuracy value: 28.4 - type: accuracy name: Bulgarian Test accuracy value: 55.6 - type: accuracy name: Akuntsu Test accuracy value: 25.2 - type: accuracy name: Makurap Test accuracy value: 18.5 - type: accuracy name: Kangri Test accuracy value: 34.2 - type: accuracy name: Breton Test accuracy value: 36.7 - type: accuracy name: Telugu Test accuracy value: 38.8 - type: accuracy name: Cantonese Test accuracy value: 17.1 - type: accuracy name: Old Church Slavonic Test accuracy value: 50.2 - type: accuracy name: Karelian Test accuracy value: 41.7 - type: accuracy name: Upper Sorbian Test accuracy value: 42.7 - type: accuracy name: South Levantine Arabic Test accuracy value: 38.9 - type: accuracy name: Komi Zyrian Test accuracy value: 21.1 - type: accuracy name: Irish Test accuracy value: 37.2 - type: accuracy name: Nayini Test accuracy value: 33.3 - type: accuracy name: Munduruku Test accuracy value: 26.6 - type: accuracy name: Manx Test accuracy value: 17.6 - type: accuracy name: Skolt Sami Test accuracy value: 19.9 - type: accuracy name: Afrikaans Test accuracy value: 45.9 - type: accuracy name: Old Turkish Test accuracy value: 2.7 - type: accuracy name: Tupinamba Test accuracy value: 23.4 - type: accuracy name: Belarusian Test accuracy value: 53.0 - type: accuracy name: Serbian Test accuracy value: 57.4 - type: accuracy name: Moksha Test accuracy value: 24.5 - type: accuracy name: Western Armenian Test accuracy value: 47.2 - type: accuracy name: Scottish Gaelic Test accuracy value: 36.7 - type: accuracy name: Khunsari Test accuracy value: 28.4 - type: accuracy name: Hebrew Test accuracy value: 44.8 - type: accuracy name: Uyghur Test accuracy value: 48.6 - type: accuracy name: Chukchi Test accuracy value: 21.0 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Gothic This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-got") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-got") ```
wietsedv/xlm-roberta-base-ft-udpos28-gd
wietsedv
2022-02-25T09:58:34Z
6
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "part-of-speech", "gd", "dataset:universal_dependencies", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - gd license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-gd results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 75.0 - type: accuracy name: Dutch Test accuracy value: 77.8 - type: accuracy name: German Test accuracy value: 76.5 - type: accuracy name: Italian Test accuracy value: 70.8 - type: accuracy name: French Test accuracy value: 74.6 - type: accuracy name: Spanish Test accuracy value: 78.7 - type: accuracy name: Russian Test accuracy value: 79.2 - type: accuracy name: Swedish Test accuracy value: 78.9 - type: accuracy name: Norwegian Test accuracy value: 72.7 - type: accuracy name: Danish Test accuracy value: 78.0 - type: accuracy name: Low Saxon Test accuracy value: 51.0 - type: accuracy name: Akkadian Test accuracy value: 47.0 - type: accuracy name: Armenian Test accuracy value: 69.2 - type: accuracy name: Welsh Test accuracy value: 77.0 - type: accuracy name: Old East Slavic Test accuracy value: 70.1 - type: accuracy name: Albanian Test accuracy value: 76.1 - type: accuracy name: Slovenian Test accuracy value: 64.3 - type: accuracy name: Guajajara Test accuracy value: 42.6 - type: accuracy name: Kurmanji Test accuracy value: 73.6 - type: accuracy name: Turkish Test accuracy value: 71.7 - type: accuracy name: Finnish Test accuracy value: 74.4 - type: accuracy name: Indonesian Test accuracy value: 74.2 - type: accuracy name: Ukrainian Test accuracy value: 78.7 - type: accuracy name: Polish Test accuracy value: 81.4 - type: accuracy name: Portuguese Test accuracy value: 77.9 - type: accuracy name: Kazakh Test accuracy value: 73.3 - type: accuracy name: Latin Test accuracy value: 68.8 - type: accuracy name: Old French Test accuracy value: 48.7 - type: accuracy name: Buryat Test accuracy value: 58.4 - type: accuracy name: Kaapor Test accuracy value: 24.6 - type: accuracy name: Korean Test accuracy value: 58.9 - type: accuracy name: Estonian Test accuracy value: 76.8 - type: accuracy name: Croatian Test accuracy value: 74.0 - type: accuracy name: Gothic Test accuracy value: 29.4 - type: accuracy name: Swiss German Test accuracy value: 48.3 - type: accuracy name: Assyrian Test accuracy value: 20.1 - type: accuracy name: North Sami Test accuracy value: 44.3 - type: accuracy name: Naija Test accuracy value: 40.4 - type: accuracy name: Latvian Test accuracy value: 76.7 - type: accuracy name: Chinese Test accuracy value: 51.6 - type: accuracy name: Tagalog Test accuracy value: 68.3 - type: accuracy name: Bambara Test accuracy value: 30.3 - type: accuracy name: Lithuanian Test accuracy value: 77.2 - type: accuracy name: Galician Test accuracy value: 77.6 - type: accuracy name: Vietnamese Test accuracy value: 56.5 - type: accuracy name: Greek Test accuracy value: 79.1 - type: accuracy name: Catalan Test accuracy value: 74.5 - type: accuracy name: Czech Test accuracy value: 78.7 - type: accuracy name: Erzya Test accuracy value: 51.6 - type: accuracy name: Bhojpuri Test accuracy value: 49.4 - type: accuracy name: Thai Test accuracy value: 57.1 - type: accuracy name: Marathi Test accuracy value: 72.4 - type: accuracy name: Basque Test accuracy value: 65.9 - type: accuracy name: Slovak Test accuracy value: 80.3 - type: accuracy name: Kiche Test accuracy value: 45.0 - type: accuracy name: Yoruba Test accuracy value: 32.5 - type: accuracy name: Warlpiri Test accuracy value: 43.7 - type: accuracy name: Tamil Test accuracy value: 76.7 - type: accuracy name: Maltese Test accuracy value: 34.9 - type: accuracy name: Ancient Greek Test accuracy value: 59.3 - type: accuracy name: Icelandic Test accuracy value: 73.1 - type: accuracy name: Mbya Guarani Test accuracy value: 34.5 - type: accuracy name: Urdu Test accuracy value: 56.0 - type: accuracy name: Romanian Test accuracy value: 74.4 - type: accuracy name: Persian Test accuracy value: 77.3 - type: accuracy name: Apurina Test accuracy value: 48.4 - type: accuracy name: Japanese Test accuracy value: 38.6 - type: accuracy name: Hungarian Test accuracy value: 78.5 - type: accuracy name: Hindi Test accuracy value: 60.5 - type: accuracy name: Classical Chinese Test accuracy value: 31.6 - type: accuracy name: Komi Permyak Test accuracy value: 50.4 - type: accuracy name: Faroese Test accuracy value: 71.2 - type: accuracy name: Sanskrit Test accuracy value: 33.5 - type: accuracy name: Livvi Test accuracy value: 61.6 - type: accuracy name: Arabic Test accuracy value: 81.6 - type: accuracy name: Wolof Test accuracy value: 38.1 - type: accuracy name: Bulgarian Test accuracy value: 76.6 - type: accuracy name: Akuntsu Test accuracy value: 39.8 - type: accuracy name: Makurap Test accuracy value: 23.3 - type: accuracy name: Kangri Test accuracy value: 44.0 - type: accuracy name: Breton Test accuracy value: 60.9 - type: accuracy name: Telugu Test accuracy value: 74.5 - type: accuracy name: Cantonese Test accuracy value: 48.9 - type: accuracy name: Old Church Slavonic Test accuracy value: 47.7 - type: accuracy name: Karelian Test accuracy value: 65.4 - type: accuracy name: Upper Sorbian Test accuracy value: 70.9 - type: accuracy name: South Levantine Arabic Test accuracy value: 68.4 - type: accuracy name: Komi Zyrian Test accuracy value: 45.0 - type: accuracy name: Irish Test accuracy value: 76.6 - type: accuracy name: Nayini Test accuracy value: 44.9 - type: accuracy name: Munduruku Test accuracy value: 34.0 - type: accuracy name: Manx Test accuracy value: 52.0 - type: accuracy name: Skolt Sami Test accuracy value: 39.7 - type: accuracy name: Afrikaans Test accuracy value: 74.0 - type: accuracy name: Old Turkish Test accuracy value: 37.1 - type: accuracy name: Tupinamba Test accuracy value: 48.1 - type: accuracy name: Belarusian Test accuracy value: 79.7 - type: accuracy name: Serbian Test accuracy value: 72.7 - type: accuracy name: Moksha Test accuracy value: 49.3 - type: accuracy name: Western Armenian Test accuracy value: 68.1 - type: accuracy name: Scottish Gaelic Test accuracy value: 93.3 - type: accuracy name: Khunsari Test accuracy value: 44.6 - type: accuracy name: Hebrew Test accuracy value: 86.5 - type: accuracy name: Uyghur Test accuracy value: 67.5 - type: accuracy name: Chukchi Test accuracy value: 38.8 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Scottish Gaelic This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-gd") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-gd") ```
wietsedv/xlm-roberta-base-ft-udpos28-fro
wietsedv
2022-02-25T09:58:31Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "part-of-speech", "fro", "dataset:universal_dependencies", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - fro license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-fro results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 73.4 - type: accuracy name: Dutch Test accuracy value: 73.1 - type: accuracy name: German Test accuracy value: 70.7 - type: accuracy name: Italian Test accuracy value: 72.6 - type: accuracy name: French Test accuracy value: 79.3 - type: accuracy name: Spanish Test accuracy value: 78.0 - type: accuracy name: Russian Test accuracy value: 68.8 - type: accuracy name: Swedish Test accuracy value: 76.8 - type: accuracy name: Norwegian Test accuracy value: 69.6 - type: accuracy name: Danish Test accuracy value: 74.2 - type: accuracy name: Low Saxon Test accuracy value: 40.3 - type: accuracy name: Akkadian Test accuracy value: 38.3 - type: accuracy name: Armenian Test accuracy value: 64.7 - type: accuracy name: Welsh Test accuracy value: 56.3 - type: accuracy name: Old East Slavic Test accuracy value: 67.5 - type: accuracy name: Albanian Test accuracy value: 66.5 - type: accuracy name: Slovenian Test accuracy value: 64.2 - type: accuracy name: Guajajara Test accuracy value: 15.0 - type: accuracy name: Kurmanji Test accuracy value: 59.9 - type: accuracy name: Turkish Test accuracy value: 57.2 - type: accuracy name: Finnish Test accuracy value: 66.3 - type: accuracy name: Indonesian Test accuracy value: 66.9 - type: accuracy name: Ukrainian Test accuracy value: 66.7 - type: accuracy name: Polish Test accuracy value: 67.3 - type: accuracy name: Portuguese Test accuracy value: 73.1 - type: accuracy name: Kazakh Test accuracy value: 58.5 - type: accuracy name: Latin Test accuracy value: 65.3 - type: accuracy name: Old French Test accuracy value: 93.3 - type: accuracy name: Buryat Test accuracy value: 43.2 - type: accuracy name: Kaapor Test accuracy value: 25.8 - type: accuracy name: Korean Test accuracy value: 50.3 - type: accuracy name: Estonian Test accuracy value: 66.1 - type: accuracy name: Croatian Test accuracy value: 72.0 - type: accuracy name: Gothic Test accuracy value: 38.1 - type: accuracy name: Swiss German Test accuracy value: 34.6 - type: accuracy name: Assyrian Test accuracy value: 8.2 - type: accuracy name: North Sami Test accuracy value: 23.0 - type: accuracy name: Naija Test accuracy value: 40.4 - type: accuracy name: Latvian Test accuracy value: 65.2 - type: accuracy name: Chinese Test accuracy value: 36.4 - type: accuracy name: Tagalog Test accuracy value: 53.3 - type: accuracy name: Bambara Test accuracy value: 13.4 - type: accuracy name: Lithuanian Test accuracy value: 64.1 - type: accuracy name: Galician Test accuracy value: 71.6 - type: accuracy name: Vietnamese Test accuracy value: 46.7 - type: accuracy name: Greek Test accuracy value: 72.9 - type: accuracy name: Catalan Test accuracy value: 76.9 - type: accuracy name: Czech Test accuracy value: 68.8 - type: accuracy name: Erzya Test accuracy value: 25.4 - type: accuracy name: Bhojpuri Test accuracy value: 41.2 - type: accuracy name: Thai Test accuracy value: 52.2 - type: accuracy name: Marathi Test accuracy value: 51.5 - type: accuracy name: Basque Test accuracy value: 59.6 - type: accuracy name: Slovak Test accuracy value: 70.7 - type: accuracy name: Kiche Test accuracy value: 19.7 - type: accuracy name: Yoruba Test accuracy value: 18.3 - type: accuracy name: Warlpiri Test accuracy value: 15.8 - type: accuracy name: Tamil Test accuracy value: 62.0 - type: accuracy name: Maltese Test accuracy value: 28.1 - type: accuracy name: Ancient Greek Test accuracy value: 56.3 - type: accuracy name: Icelandic Test accuracy value: 70.6 - type: accuracy name: Mbya Guarani Test accuracy value: 16.8 - type: accuracy name: Urdu Test accuracy value: 54.2 - type: accuracy name: Romanian Test accuracy value: 69.1 - type: accuracy name: Persian Test accuracy value: 65.4 - type: accuracy name: Apurina Test accuracy value: 24.5 - type: accuracy name: Japanese Test accuracy value: 31.0 - type: accuracy name: Hungarian Test accuracy value: 62.5 - type: accuracy name: Hindi Test accuracy value: 58.3 - type: accuracy name: Classical Chinese Test accuracy value: 41.9 - type: accuracy name: Komi Permyak Test accuracy value: 30.3 - type: accuracy name: Faroese Test accuracy value: 62.5 - type: accuracy name: Sanskrit Test accuracy value: 37.8 - type: accuracy name: Livvi Test accuracy value: 40.2 - type: accuracy name: Arabic Test accuracy value: 66.2 - type: accuracy name: Wolof Test accuracy value: 26.8 - type: accuracy name: Bulgarian Test accuracy value: 72.5 - type: accuracy name: Akuntsu Test accuracy value: 24.2 - type: accuracy name: Makurap Test accuracy value: 19.2 - type: accuracy name: Kangri Test accuracy value: 36.4 - type: accuracy name: Breton Test accuracy value: 47.3 - type: accuracy name: Telugu Test accuracy value: 58.4 - type: accuracy name: Cantonese Test accuracy value: 33.5 - type: accuracy name: Old Church Slavonic Test accuracy value: 57.3 - type: accuracy name: Karelian Test accuracy value: 49.4 - type: accuracy name: Upper Sorbian Test accuracy value: 52.3 - type: accuracy name: South Levantine Arabic Test accuracy value: 48.3 - type: accuracy name: Komi Zyrian Test accuracy value: 26.6 - type: accuracy name: Irish Test accuracy value: 46.7 - type: accuracy name: Nayini Test accuracy value: 41.0 - type: accuracy name: Munduruku Test accuracy value: 15.6 - type: accuracy name: Manx Test accuracy value: 16.1 - type: accuracy name: Skolt Sami Test accuracy value: 20.0 - type: accuracy name: Afrikaans Test accuracy value: 77.0 - type: accuracy name: Old Turkish Test accuracy value: 2.7 - type: accuracy name: Tupinamba Test accuracy value: 23.5 - type: accuracy name: Belarusian Test accuracy value: 67.8 - type: accuracy name: Serbian Test accuracy value: 74.1 - type: accuracy name: Moksha Test accuracy value: 27.3 - type: accuracy name: Western Armenian Test accuracy value: 61.6 - type: accuracy name: Scottish Gaelic Test accuracy value: 42.8 - type: accuracy name: Khunsari Test accuracy value: 32.4 - type: accuracy name: Hebrew Test accuracy value: 62.5 - type: accuracy name: Uyghur Test accuracy value: 55.0 - type: accuracy name: Chukchi Test accuracy value: 20.1 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Old French This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-fro") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-fro") ```
wietsedv/xlm-roberta-base-ft-udpos28-et
wietsedv
2022-02-25T09:58:22Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "part-of-speech", "et", "dataset:universal_dependencies", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - et license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-et results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 82.3 - type: accuracy name: Dutch Test accuracy value: 80.9 - type: accuracy name: German Test accuracy value: 80.4 - type: accuracy name: Italian Test accuracy value: 78.0 - type: accuracy name: French Test accuracy value: 75.6 - type: accuracy name: Spanish Test accuracy value: 75.4 - type: accuracy name: Russian Test accuracy value: 88.2 - type: accuracy name: Swedish Test accuracy value: 89.1 - type: accuracy name: Norwegian Test accuracy value: 83.2 - type: accuracy name: Danish Test accuracy value: 87.0 - type: accuracy name: Low Saxon Test accuracy value: 52.2 - type: accuracy name: Akkadian Test accuracy value: 37.9 - type: accuracy name: Armenian Test accuracy value: 87.7 - type: accuracy name: Welsh Test accuracy value: 61.5 - type: accuracy name: Old East Slavic Test accuracy value: 74.6 - type: accuracy name: Albanian Test accuracy value: 74.0 - type: accuracy name: Slovenian Test accuracy value: 77.3 - type: accuracy name: Guajajara Test accuracy value: 30.7 - type: accuracy name: Kurmanji Test accuracy value: 76.7 - type: accuracy name: Turkish Test accuracy value: 79.3 - type: accuracy name: Finnish Test accuracy value: 90.5 - type: accuracy name: Indonesian Test accuracy value: 84.1 - type: accuracy name: Ukrainian Test accuracy value: 86.9 - type: accuracy name: Polish Test accuracy value: 84.4 - type: accuracy name: Portuguese Test accuracy value: 79.6 - type: accuracy name: Kazakh Test accuracy value: 83.0 - type: accuracy name: Latin Test accuracy value: 78.5 - type: accuracy name: Old French Test accuracy value: 50.0 - type: accuracy name: Buryat Test accuracy value: 64.6 - type: accuracy name: Kaapor Test accuracy value: 21.2 - type: accuracy name: Korean Test accuracy value: 62.9 - type: accuracy name: Estonian Test accuracy value: 96.8 - type: accuracy name: Croatian Test accuracy value: 87.0 - type: accuracy name: Gothic Test accuracy value: 24.7 - type: accuracy name: Swiss German Test accuracy value: 40.7 - type: accuracy name: Assyrian Test accuracy value: 20.1 - type: accuracy name: North Sami Test accuracy value: 46.7 - type: accuracy name: Naija Test accuracy value: 41.8 - type: accuracy name: Latvian Test accuracy value: 87.9 - type: accuracy name: Chinese Test accuracy value: 52.1 - type: accuracy name: Tagalog Test accuracy value: 65.9 - type: accuracy name: Bambara Test accuracy value: 27.9 - type: accuracy name: Lithuanian Test accuracy value: 86.0 - type: accuracy name: Galician Test accuracy value: 74.4 - type: accuracy name: Vietnamese Test accuracy value: 63.7 - type: accuracy name: Greek Test accuracy value: 77.4 - type: accuracy name: Catalan Test accuracy value: 73.4 - type: accuracy name: Czech Test accuracy value: 87.4 - type: accuracy name: Erzya Test accuracy value: 53.1 - type: accuracy name: Bhojpuri Test accuracy value: 52.4 - type: accuracy name: Thai Test accuracy value: 62.6 - type: accuracy name: Marathi Test accuracy value: 88.3 - type: accuracy name: Basque Test accuracy value: 77.1 - type: accuracy name: Slovak Test accuracy value: 87.0 - type: accuracy name: Kiche Test accuracy value: 37.8 - type: accuracy name: Yoruba Test accuracy value: 26.7 - type: accuracy name: Warlpiri Test accuracy value: 42.1 - type: accuracy name: Tamil Test accuracy value: 85.4 - type: accuracy name: Maltese Test accuracy value: 30.9 - type: accuracy name: Ancient Greek Test accuracy value: 65.9 - type: accuracy name: Icelandic Test accuracy value: 82.9 - type: accuracy name: Mbya Guarani Test accuracy value: 30.6 - type: accuracy name: Urdu Test accuracy value: 67.0 - type: accuracy name: Romanian Test accuracy value: 78.5 - type: accuracy name: Persian Test accuracy value: 73.9 - type: accuracy name: Apurina Test accuracy value: 47.9 - type: accuracy name: Japanese Test accuracy value: 38.9 - type: accuracy name: Hungarian Test accuracy value: 83.2 - type: accuracy name: Hindi Test accuracy value: 71.6 - type: accuracy name: Classical Chinese Test accuracy value: 35.4 - type: accuracy name: Komi Permyak Test accuracy value: 53.2 - type: accuracy name: Faroese Test accuracy value: 76.4 - type: accuracy name: Sanskrit Test accuracy value: 38.8 - type: accuracy name: Livvi Test accuracy value: 71.2 - type: accuracy name: Arabic Test accuracy value: 76.3 - type: accuracy name: Wolof Test accuracy value: 35.3 - type: accuracy name: Bulgarian Test accuracy value: 85.8 - type: accuracy name: Akuntsu Test accuracy value: 37.5 - type: accuracy name: Makurap Test accuracy value: 15.8 - type: accuracy name: Kangri Test accuracy value: 51.7 - type: accuracy name: Breton Test accuracy value: 60.1 - type: accuracy name: Telugu Test accuracy value: 84.2 - type: accuracy name: Cantonese Test accuracy value: 58.3 - type: accuracy name: Old Church Slavonic Test accuracy value: 51.8 - type: accuracy name: Karelian Test accuracy value: 75.7 - type: accuracy name: Upper Sorbian Test accuracy value: 77.3 - type: accuracy name: South Levantine Arabic Test accuracy value: 68.8 - type: accuracy name: Komi Zyrian Test accuracy value: 46.6 - type: accuracy name: Irish Test accuracy value: 60.5 - type: accuracy name: Nayini Test accuracy value: 42.3 - type: accuracy name: Munduruku Test accuracy value: 27.1 - type: accuracy name: Manx Test accuracy value: 35.3 - type: accuracy name: Skolt Sami Test accuracy value: 40.7 - type: accuracy name: Afrikaans Test accuracy value: 77.5 - type: accuracy name: Old Turkish Test accuracy value: 46.6 - type: accuracy name: Tupinamba Test accuracy value: 46.5 - type: accuracy name: Belarusian Test accuracy value: 87.1 - type: accuracy name: Serbian Test accuracy value: 86.9 - type: accuracy name: Moksha Test accuracy value: 48.3 - type: accuracy name: Western Armenian Test accuracy value: 80.6 - type: accuracy name: Scottish Gaelic Test accuracy value: 51.5 - type: accuracy name: Khunsari Test accuracy value: 40.5 - type: accuracy name: Hebrew Test accuracy value: 89.6 - type: accuracy name: Uyghur Test accuracy value: 77.1 - type: accuracy name: Chukchi Test accuracy value: 38.9 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Estonian This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-et") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-et") ```
wietsedv/xlm-roberta-base-ft-udpos28-cy
wietsedv
2022-02-25T09:58:13Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "part-of-speech", "cy", "dataset:universal_dependencies", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - cy license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-cy results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 78.9 - type: accuracy name: Dutch Test accuracy value: 81.3 - type: accuracy name: German Test accuracy value: 78.3 - type: accuracy name: Italian Test accuracy value: 74.9 - type: accuracy name: French Test accuracy value: 77.1 - type: accuracy name: Spanish Test accuracy value: 81.0 - type: accuracy name: Russian Test accuracy value: 82.0 - type: accuracy name: Swedish Test accuracy value: 80.6 - type: accuracy name: Norwegian Test accuracy value: 76.4 - type: accuracy name: Danish Test accuracy value: 78.7 - type: accuracy name: Low Saxon Test accuracy value: 52.7 - type: accuracy name: Akkadian Test accuracy value: 42.4 - type: accuracy name: Armenian Test accuracy value: 73.7 - type: accuracy name: Welsh Test accuracy value: 94.9 - type: accuracy name: Old East Slavic Test accuracy value: 71.6 - type: accuracy name: Albanian Test accuracy value: 76.8 - type: accuracy name: Slovenian Test accuracy value: 67.6 - type: accuracy name: Guajajara Test accuracy value: 33.1 - type: accuracy name: Kurmanji Test accuracy value: 77.1 - type: accuracy name: Turkish Test accuracy value: 72.0 - type: accuracy name: Finnish Test accuracy value: 77.1 - type: accuracy name: Indonesian Test accuracy value: 75.0 - type: accuracy name: Ukrainian Test accuracy value: 80.9 - type: accuracy name: Polish Test accuracy value: 82.7 - type: accuracy name: Portuguese Test accuracy value: 80.1 - type: accuracy name: Kazakh Test accuracy value: 75.5 - type: accuracy name: Latin Test accuracy value: 73.7 - type: accuracy name: Old French Test accuracy value: 54.0 - type: accuracy name: Buryat Test accuracy value: 60.2 - type: accuracy name: Kaapor Test accuracy value: 21.2 - type: accuracy name: Korean Test accuracy value: 56.8 - type: accuracy name: Estonian Test accuracy value: 79.4 - type: accuracy name: Croatian Test accuracy value: 79.6 - type: accuracy name: Gothic Test accuracy value: 29.3 - type: accuracy name: Swiss German Test accuracy value: 48.3 - type: accuracy name: Assyrian Test accuracy value: 14.6 - type: accuracy name: North Sami Test accuracy value: 45.4 - type: accuracy name: Naija Test accuracy value: 35.7 - type: accuracy name: Latvian Test accuracy value: 78.4 - type: accuracy name: Chinese Test accuracy value: 39.9 - type: accuracy name: Tagalog Test accuracy value: 71.9 - type: accuracy name: Bambara Test accuracy value: 33.2 - type: accuracy name: Lithuanian Test accuracy value: 77.7 - type: accuracy name: Galician Test accuracy value: 79.0 - type: accuracy name: Vietnamese Test accuracy value: 55.2 - type: accuracy name: Greek Test accuracy value: 79.5 - type: accuracy name: Catalan Test accuracy value: 78.1 - type: accuracy name: Czech Test accuracy value: 80.7 - type: accuracy name: Erzya Test accuracy value: 48.3 - type: accuracy name: Bhojpuri Test accuracy value: 55.0 - type: accuracy name: Thai Test accuracy value: 53.2 - type: accuracy name: Marathi Test accuracy value: 78.5 - type: accuracy name: Basque Test accuracy value: 69.5 - type: accuracy name: Slovak Test accuracy value: 82.6 - type: accuracy name: Kiche Test accuracy value: 41.2 - type: accuracy name: Yoruba Test accuracy value: 33.9 - type: accuracy name: Warlpiri Test accuracy value: 36.8 - type: accuracy name: Tamil Test accuracy value: 75.5 - type: accuracy name: Maltese Test accuracy value: 36.4 - type: accuracy name: Ancient Greek Test accuracy value: 55.4 - type: accuracy name: Icelandic Test accuracy value: 73.8 - type: accuracy name: Mbya Guarani Test accuracy value: 33.4 - type: accuracy name: Urdu Test accuracy value: 64.6 - type: accuracy name: Romanian Test accuracy value: 76.5 - type: accuracy name: Persian Test accuracy value: 78.7 - type: accuracy name: Apurina Test accuracy value: 48.4 - type: accuracy name: Japanese Test accuracy value: 28.6 - type: accuracy name: Hungarian Test accuracy value: 79.9 - type: accuracy name: Hindi Test accuracy value: 70.9 - type: accuracy name: Classical Chinese Test accuracy value: 20.5 - type: accuracy name: Komi Permyak Test accuracy value: 53.0 - type: accuracy name: Faroese Test accuracy value: 73.1 - type: accuracy name: Sanskrit Test accuracy value: 38.0 - type: accuracy name: Livvi Test accuracy value: 65.3 - type: accuracy name: Arabic Test accuracy value: 85.9 - type: accuracy name: Wolof Test accuracy value: 43.4 - type: accuracy name: Bulgarian Test accuracy value: 82.8 - type: accuracy name: Akuntsu Test accuracy value: 36.0 - type: accuracy name: Makurap Test accuracy value: 24.7 - type: accuracy name: Kangri Test accuracy value: 47.2 - type: accuracy name: Breton Test accuracy value: 61.8 - type: accuracy name: Telugu Test accuracy value: 74.6 - type: accuracy name: Cantonese Test accuracy value: 40.7 - type: accuracy name: Old Church Slavonic Test accuracy value: 50.3 - type: accuracy name: Karelian Test accuracy value: 70.6 - type: accuracy name: Upper Sorbian Test accuracy value: 74.1 - type: accuracy name: South Levantine Arabic Test accuracy value: 70.1 - type: accuracy name: Komi Zyrian Test accuracy value: 44.7 - type: accuracy name: Irish Test accuracy value: 69.5 - type: accuracy name: Nayini Test accuracy value: 53.8 - type: accuracy name: Munduruku Test accuracy value: 28.1 - type: accuracy name: Manx Test accuracy value: 47.4 - type: accuracy name: Skolt Sami Test accuracy value: 42.0 - type: accuracy name: Afrikaans Test accuracy value: 74.7 - type: accuracy name: Old Turkish Test accuracy value: 38.0 - type: accuracy name: Tupinamba Test accuracy value: 37.4 - type: accuracy name: Belarusian Test accuracy value: 84.5 - type: accuracy name: Serbian Test accuracy value: 80.8 - type: accuracy name: Moksha Test accuracy value: 47.7 - type: accuracy name: Western Armenian Test accuracy value: 68.7 - type: accuracy name: Scottish Gaelic Test accuracy value: 67.4 - type: accuracy name: Khunsari Test accuracy value: 50.0 - type: accuracy name: Hebrew Test accuracy value: 86.5 - type: accuracy name: Uyghur Test accuracy value: 68.9 - type: accuracy name: Chukchi Test accuracy value: 36.8 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Welsh This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-cy") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-cy") ```