modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-08 06:28:05
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
546 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-08 06:27:40
card
stringlengths
11
1.01M
jonatasgrosman/exp_w2v2r_fr_vp-100k_gender_male-2_female-8_s3
jonatasgrosman
2022-07-25T11:58:32Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T11:58:21Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_fr_vp-100k_gender_male-2_female-8_s3 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_fr_vp-100k_gender_male-10_female-0_s626
jonatasgrosman
2022-07-25T11:41:49Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T11:41:37Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_fr_vp-100k_gender_male-10_female-0_s626 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_fr_vp-100k_gender_male-10_female-0_s156
jonatasgrosman
2022-07-25T11:36:21Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T11:36:09Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_fr_vp-100k_gender_male-10_female-0_s156 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_fr_vp-100k_gender_male-0_female-10_s469
jonatasgrosman
2022-07-25T11:26:43Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T11:26:32Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_fr_vp-100k_gender_male-0_female-10_s469 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
huggingtweets/bwahwtfbwah
huggingtweets
2022-07-25T11:22:47Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-25T11:21:28Z
--- language: en thumbnail: http://www.huggingtweets.com/bwahwtfbwah/1658748163123/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1543387213370638338/Xn8bL7wJ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🤍🖤</div> <div style="text-align: center; font-size: 14px;">@bwahwtfbwah</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🤍🖤. | Data | 🤍🖤 | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 501 | | Short tweets | 655 | | Tweets kept | 2089 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/p4n65kie/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bwahwtfbwah's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3pyxv8zk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3pyxv8zk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bwahwtfbwah') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
jonatasgrosman/exp_w2v2r_fr_vp-100k_gender_male-0_female-10_s400
jonatasgrosman
2022-07-25T11:22:02Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T11:21:49Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_fr_vp-100k_gender_male-0_female-10_s400 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_fr_vp-100k_gender_male-5_female-5_s722
jonatasgrosman
2022-07-25T11:17:28Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T11:17:17Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_fr_vp-100k_gender_male-5_female-5_s722 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_fr_vp-100k_accent_france-8_belgium-2_s671
jonatasgrosman
2022-07-25T11:03:03Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T11:02:48Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_fr_vp-100k_accent_france-8_belgium-2_s671 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_fr_vp-100k_accent_france-8_belgium-2_s496
jonatasgrosman
2022-07-25T10:58:08Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T10:57:52Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_fr_vp-100k_accent_france-8_belgium-2_s496 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_fr_vp-100k_accent_france-8_belgium-2_s365
jonatasgrosman
2022-07-25T10:53:27Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T10:53:15Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_fr_vp-100k_accent_france-8_belgium-2_s365 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_fr_vp-100k_accent_france-2_belgium-8_s709
jonatasgrosman
2022-07-25T10:48:54Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T10:48:42Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_fr_vp-100k_accent_france-2_belgium-8_s709 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_fr_vp-100k_accent_france-10_belgium-0_s869
jonatasgrosman
2022-07-25T10:34:28Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T10:34:13Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_fr_vp-100k_accent_france-10_belgium-0_s869 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_fr_vp-100k_accent_france-0_belgium-10_s947
jonatasgrosman
2022-07-25T10:20:18Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T10:19:46Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_fr_vp-100k_accent_france-0_belgium-10_s947 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_fr_vp-100k_accent_france-0_belgium-10_s693
jonatasgrosman
2022-07-25T10:13:06Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T10:12:51Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_fr_vp-100k_accent_france-0_belgium-10_s693 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_fr_vp-100k_accent_france-5_belgium-5_s558
jonatasgrosman
2022-07-25T09:57:00Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T09:56:42Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_fr_vp-100k_accent_france-5_belgium-5_s558 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_fr_vp-100k_accent_france-5_belgium-5_s244
jonatasgrosman
2022-07-25T09:52:06Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fr", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T09:51:55Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - fr datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_fr_vp-100k_accent_france-5_belgium-5_s244 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (fr)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_es_vp-100k_gender_male-8_female-2_s156
jonatasgrosman
2022-07-25T09:37:47Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T09:37:36Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_es_vp-100k_gender_male-8_female-2_s156 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_es_vp-100k_gender_male-2_female-8_s579
jonatasgrosman
2022-07-25T09:27:15Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T09:27:03Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_es_vp-100k_gender_male-2_female-8_s579 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_es_vp-100k_gender_male-10_female-0_s784
jonatasgrosman
2022-07-25T09:17:51Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T09:17:40Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_es_vp-100k_gender_male-10_female-0_s784 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
thu-coai/EVA1.0
thu-coai
2022-07-25T09:17:23Z
3
0
transformers
[ "transformers", "pytorch", "zh", "arxiv:2108.01547", "arxiv:2203.09313", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-07-25T07:30:01Z
--- language: zh tags: - pytorch license: mit --- # EVA ## Model Description EVA is the largest open-source Chinese dialogue model with up to 2.8B parameters. The 1.0 version model is pre-trained on [WudaoCorpus-Dialog](https://resource.wudaoai.cn/home), and the 2.0 version is pre-trained on a carefully cleaned version of WudaoCorpus-Dialog which yields better performance than the 1.0 version. [Paper link](https://arxiv.org/abs/2108.01547) of EVA1.0. [Paper link](https://arxiv.org/abs/2203.09313) of EVA2.0. ## Model Configuration | Model | n_params | n_enc-layers | n_dec-layers | d_model | d_ff | n_heads | d_head | attn-scale | | ------------- | -------- | ------------ | ------------ | ------- | ----- | ------- | ------ | ---------- | | EVA1.0 | 2.8B | 24 | 24 | 2,048 | 5,120 | 32 | 64 | No | | EVA2.0_Base | 300M | 12 | 12 | 768 | 3,072 | 12 | 64 | Yes | | EVA2.0_Large | 970M | 24 | 24 | 1,024 | 4,096 | 16 | 64 | Yes | | EVA2.0_xLarge | 2.8B | 24 | 24 | 2,048 | 5,120 | 32 | 64 | Yes | ## How to use Please refer to our GitHub [repository](https://github.com/thu-coai/EVA/tree/huggingface). ## Performance We use the KdConv dataset to finetune and evaluate the model. Under the default hyperparameters in the scripts, we get the following results on the test set: | | | | | | | ---- | ---- | ---- | ---- | ---- | | | loss | BLEU-4 | Dist-4 | f1 | | eva1.0 Before finetune | 3.49 | 0.64 | 85.94 | 13.24 | | eva1.0 After finetune | 2.37 | 3.94 | 72.47 | 19.80 | | eva2.0 Before finetune | 3.14 | 1.02 | 82.67 | 14.36 | | eva2.0 After finetune | 2.09 | 4.69 | 73.03 | 22.91 | We also use beam search to run the interactive inference of EVA2.0: ```[] Usr >>> 你好 Sys >>> 你好,请问你是? Usr >>> 我是小明 Sys >>> 好的,小明,我是新来的,请多关照 Usr >>> 你了解人工智能吗? Sys >>> 不了解,我只知道我是机器人 Usr >>> 那你很聪明 Sys >>> 谢谢夸奖,我会继续努力的 Usr >>> 你是学什么专业的呀 Sys >>> 计算机科学与技术,你呢? Usr >>> 我也是学计算机的 Sys >>> 哦,那你有什么想知道的,可以问我 Usr >>> 编程语言你学过哪些? Sys >>> java,c,c+都学过 Usr >>> 你学的真多 Sys >>> 呵呵,还好吧,我比较喜欢写代码 Usr >>> 哈哈,我也喜欢写代码,以后可以多多交流 Sys >>> 嗯,好的 Usr >>> 拜拜喽 Sys >>> 拜~ ``` **NOET**: Since different hardware may have different implementations of random functions, even if you use the same random seed as ours, you may not be able to reproduce this case. But the overall performance will not differ much. ## Disclaimer The pre-trained models aim to facilitate the research for conversation generation. The model provided in this repository is trained on a large dataset collected from various sources. Although a rigorous cleaning and filtering process has been carried out to the data and the model output, there is no guarantee that all the inappropriate contents have been completely banned. All the contents generated by the model do not represent the authors' opinions. The decoding script provided in this repository is only for research purposes. We are not responsible for any content generated using our model. ## Citation ``` @article{coai2021eva, title={EVA: An Open-Domain Chinese Dialogue System with Large-Scale Generative Pre-Training}, author={Zhou, Hao and Ke, Pei and Zhang, Zheng and Gu, Yuxian and Zheng, Yinhe and Zheng, Chujie and Wang, Yida and Wu, Chen Henry and Sun, Hao and Yang, Xiaocong and Wen, Bosi and Zhu, Xiaoyan and Huang, Minlie and Tang, Jie}, journal={arXiv preprint arXiv:2108.01547}, year={2021} } @article{coai2022eva2, title={{EVA2.0}: Investigating Open-Domain Chinese Dialogue Systems with Large-Scale Pre-Training}, author={Gu, Yuxian and Wen, Jiaxin and Sun, Hao and Song, Yi and Ke, Pei and Zheng, Chujie and Zhang, Zheng and Yao, Jianzhu and Zhu, Xiaoyan and Tang, Jie and Huang, Minlie}, journal={arXiv preprint arXiv:2203.09313}, year={2022} } ```
jonatasgrosman/exp_w2v2r_es_vp-100k_gender_male-10_female-0_s246
jonatasgrosman
2022-07-25T09:13:05Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T09:12:53Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_es_vp-100k_gender_male-10_female-0_s246 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_es_vp-100k_gender_male-0_female-10_s33
jonatasgrosman
2022-07-25T08:53:35Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T08:53:23Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_es_vp-100k_gender_male-0_female-10_s33 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_es_vp-100k_gender_male-5_female-5_s966
jonatasgrosman
2022-07-25T08:48:50Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T08:48:38Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_es_vp-100k_gender_male-5_female-5_s966 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_es_vp-100k_accent_surpeninsular-8_nortepeninsular-2_s791
jonatasgrosman
2022-07-25T08:34:44Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T08:34:17Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_es_vp-100k_accent_surpeninsular-8_nortepeninsular-2_s791 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_es_vp-100k_accent_surpeninsular-8_nortepeninsular-2_s1
jonatasgrosman
2022-07-25T08:23:58Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T08:23:47Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_es_vp-100k_accent_surpeninsular-8_nortepeninsular-2_s1 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_es_vp-100k_accent_surpeninsular-2_nortepeninsular-8_s646
jonatasgrosman
2022-07-25T08:19:19Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T08:19:08Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_es_vp-100k_accent_surpeninsular-2_nortepeninsular-8_s646 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
Aimlab/xlm-roberta-base-finetuned-urdu
Aimlab
2022-07-25T07:58:10Z
94
2
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "ur", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-22T15:55:47Z
--- language: ur license: afl-3.0 --- # XLM-RoBERTa-Urdu-Classification This [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) text classification model trained on Urdu sentiment [data-set](https://huggingface.co/datasets/hassan4830/urdu-binary-classification-data) performs binary sentiment classification on any given Urdu sentence. The model has been fine-tuned for better results in manageable time frames. ## Model description XLM-RoBERTa is a scaled cross-lingual sentence encoder. It is trained on 2.5T of data across 100 languages data filtered from Common Crawl. XLM-R achieves state-of-the-arts results on multiple cross-lingual benchmarks. The XLM-RoBERTa model was proposed in Unsupervised Cross-lingual Representation Learning at Scale by Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. It is based on Facebook’s RoBERTa model released in 2019. It is a large multi-lingual language model, trained on 2.5TB of filtered CommonCrawl data. ### How to use You can import this model directly from the transformers library: ```python >>> from transformers import AutoTokenizer, AutoModelForSequenceClassification >>> tokenizer = AutoTokenizer.from_pretrained("Aimlab/xlm-roberta-base-finetuned-urdu") >>> model = AutoModelForSequenceClassification.from_pretrained("Aimlab/xlm-roberta-base-finetuned-urdu", id2label = {0: 'negative', 1: 'positive'}) ``` Here is how to use this model to get the label of a given text: ```python >>> from transformers import TextClassificationPipeline >>> text = "وہ ایک برا شخص ہے" >>> pipe = TextClassificationPipeline(model = model, tokenizer = tokenizer, top_k = 2, device = 0) >>> pipe(text) [{'label': 'negative', 'score': 0.9987003803253174}, {'label': 'positive', 'score': 0.001299630501307547}] ```
jonatasgrosman/exp_w2v2r_es_vp-100k_accent_surpeninsular-0_nortepeninsular-10_s211
jonatasgrosman
2022-07-25T07:38:20Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T07:38:05Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_es_vp-100k_accent_surpeninsular-0_nortepeninsular-10_s211 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
nlp-esg-scoring/bert-base-finetuned-esg-TCFD-clean
nlp-esg-scoring
2022-07-25T07:29:45Z
4
0
transformers
[ "transformers", "tf", "bert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-25T01:48:03Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: nlp-esg-scoring/bert-base-finetuned-esg-TCFD-clean results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nlp-esg-scoring/bert-base-finetuned-esg-TCFD-clean This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.7816 - Validation Loss: 2.3592 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -571, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.7776 | 2.3647 | 0 | | 2.7744 | 2.3469 | 1 | | 2.7683 | 2.3527 | 2 | | 2.7743 | 2.3708 | 3 | | 2.7809 | 2.3819 | 4 | | 2.7674 | 2.3599 | 5 | | 2.7715 | 2.3541 | 6 | | 2.7766 | 2.3423 | 7 | | 2.7834 | 2.3535 | 8 | | 2.7816 | 2.3592 | 9 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2r_es_vp-100k_accent_surpeninsular-5_nortepeninsular-5_s411
jonatasgrosman
2022-07-25T07:29:05Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T07:28:54Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_es_vp-100k_accent_surpeninsular-5_nortepeninsular-5_s411 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
Migga/ViT-BERT-Chess-V2
Migga
2022-07-25T07:28:02Z
5
0
transformers
[ "transformers", "pytorch", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "endpoints_compatible", "region:us" ]
image-text-to-text
2022-07-25T05:59:53Z
--- tags: - generated_from_trainer model-index: - name: ViT-BERT-Chess-V2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ViT-BERT-Chess-V2 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.7128 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.0385 | 1.0 | 2770 | 3.9132 | | 3.7453 | 2.0 | 5540 | 3.7552 | | 3.6513 | 3.0 | 8310 | 3.7128 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2r_es_vp-100k_accent_surpeninsular-5_nortepeninsular-5_s324
jonatasgrosman
2022-07-25T07:22:43Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T07:22:31Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_es_vp-100k_accent_surpeninsular-5_nortepeninsular-5_s324 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
keithhon/nllb-200-3.3B
keithhon
2022-07-25T07:20:38Z
5
3
transformers
[ "transformers", "m2m_100", "text2text-generation", "nllb", "ace", "acm", "acq", "aeb", "af", "ajp", "ak", "als", "am", "apc", "ar", "ars", "ary", "arz", "as", "ast", "awa", "ayr", "azb", "azj", "ba", "bm", "ban", "be", "bem", "bn", "bho", "bjn", "bo", "bs", "bug", "bg", "ca", "ceb", "cs", "cjk", "ckb", "crh", "cy", "da", "de", "dik", "dyu", "dz", "el", "en", "eo", "et", "eu", "ee", "fo", "fj", "fi", "fon", "fr", "fur", "fuv", "gaz", "gd", "ga", "gl", "gn", "gu", "ht", "ha", "he", "hi", "hne", "hr", "hu", "hy", "ig", "ilo", "id", "is", "it", "jv", "ja", "kab", "kac", "kam", "kn", "ks", "ka", "kk", "kbp", "kea", "khk", "km", "ki", "rw", "ky", "kmb", "kmr", "knc", "kg", "ko", "lo", "lij", "li", "ln", "lt", "lmo", "ltg", "lb", "lua", "lg", "luo", "lus", "lvs", "mag", "mai", "ml", "mar", "min", "mk", "mt", "mni", "mos", "mi", "my", "nl", "nn", "nb", "npi", "nso", "nus", "ny", "oc", "ory", "pag", "pa", "pap", "pbt", "pes", "plt", "pl", "pt", "prs", "quy", "ro", "rn", "ru", "sg", "sa", "sat", "scn", "shn", "si", "sk", "sl", "sm", "sn", "sd", "so", "st", "es", "sc", "sr", "ss", "su", "sv", "swh", "szl", "ta", "taq", "tt", "te", "tg", "tl", "th", "ti", "tpi", "tn", "ts", "tk", "tum", "tr", "tw", "tzm", "ug", "uk", "umb", "ur", "uzn", "vec", "vi", "war", "wo", "xh", "ydd", "yo", "yue", "zh", "zsm", "zu", "dataset:flores-200", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-25T06:52:36Z
--- language: - ace - acm - acq - aeb - af - ajp - ak - als - am - apc - ar - ars - ary - arz - as - ast - awa - ayr - azb - azj - ba - bm - ban - be - bem - bn - bho - bjn - bo - bs - bug - bg - ca - ceb - cs - cjk - ckb - crh - cy - da - de - dik - dyu - dz - el - en - eo - et - eu - ee - fo - fj - fi - fon - fr - fur - fuv - gaz - gd - ga - gl - gn - gu - ht - ha - he - hi - hne - hr - hu - hy - ig - ilo - id - is - it - jv - ja - kab - kac - kam - kn - ks - ka - kk - kbp - kea - khk - km - ki - rw - ky - kmb - kmr - knc - kg - ko - lo - lij - li - ln - lt - lmo - ltg - lb - lua - lg - luo - lus - lvs - mag - mai - ml - mar - min - mk - mt - mni - mos - mi - my - nl - nn - nb - npi - nso - nus - ny - oc - ory - pag - pa - pap - pbt - pes - plt - pl - pt - prs - quy - ro - rn - ru - sg - sa - sat - scn - shn - si - sk - sl - sm - sn - sd - so - st - es - sc - sr - ss - su - sv - swh - szl - ta - taq - tt - te - tg - tl - th - ti - tpi - tn - ts - tk - tum - tr - tw - tzm - ug - uk - umb - ur - uzn - vec - vi - war - wo - xh - ydd - yo - yue - zh - zsm - zu language_details: "ace_Arab, ace_Latn, acm_Arab, acq_Arab, aeb_Arab, afr_Latn, ajp_Arab, aka_Latn, amh_Ethi, apc_Arab, arb_Arab, ars_Arab, ary_Arab, arz_Arab, asm_Beng, ast_Latn, awa_Deva, ayr_Latn, azb_Arab, azj_Latn, bak_Cyrl, bam_Latn, ban_Latn,bel_Cyrl, bem_Latn, ben_Beng, bho_Deva, bjn_Arab, bjn_Latn, bod_Tibt, bos_Latn, bug_Latn, bul_Cyrl, cat_Latn, ceb_Latn, ces_Latn, cjk_Latn, ckb_Arab, crh_Latn, cym_Latn, dan_Latn, deu_Latn, dik_Latn, dyu_Latn, dzo_Tibt, ell_Grek, eng_Latn, epo_Latn, est_Latn, eus_Latn, ewe_Latn, fao_Latn, pes_Arab, fij_Latn, fin_Latn, fon_Latn, fra_Latn, fur_Latn, fuv_Latn, gla_Latn, gle_Latn, glg_Latn, grn_Latn, guj_Gujr, hat_Latn, hau_Latn, heb_Hebr, hin_Deva, hne_Deva, hrv_Latn, hun_Latn, hye_Armn, ibo_Latn, ilo_Latn, ind_Latn, isl_Latn, ita_Latn, jav_Latn, jpn_Jpan, kab_Latn, kac_Latn, kam_Latn, kan_Knda, kas_Arab, kas_Deva, kat_Geor, knc_Arab, knc_Latn, kaz_Cyrl, kbp_Latn, kea_Latn, khm_Khmr, kik_Latn, kin_Latn, kir_Cyrl, kmb_Latn, kon_Latn, kor_Hang, kmr_Latn, lao_Laoo, lvs_Latn, lij_Latn, lim_Latn, lin_Latn, lit_Latn, lmo_Latn, ltg_Latn, ltz_Latn, lua_Latn, lug_Latn, luo_Latn, lus_Latn, mag_Deva, mai_Deva, mal_Mlym, mar_Deva, min_Latn, mkd_Cyrl, plt_Latn, mlt_Latn, mni_Beng, khk_Cyrl, mos_Latn, mri_Latn, zsm_Latn, mya_Mymr, nld_Latn, nno_Latn, nob_Latn, npi_Deva, nso_Latn, nus_Latn, nya_Latn, oci_Latn, gaz_Latn, ory_Orya, pag_Latn, pan_Guru, pap_Latn, pol_Latn, por_Latn, prs_Arab, pbt_Arab, quy_Latn, ron_Latn, run_Latn, rus_Cyrl, sag_Latn, san_Deva, sat_Beng, scn_Latn, shn_Mymr, sin_Sinh, slk_Latn, slv_Latn, smo_Latn, sna_Latn, snd_Arab, som_Latn, sot_Latn, spa_Latn, als_Latn, srd_Latn, srp_Cyrl, ssw_Latn, sun_Latn, swe_Latn, swh_Latn, szl_Latn, tam_Taml, tat_Cyrl, tel_Telu, tgk_Cyrl, tgl_Latn, tha_Thai, tir_Ethi, taq_Latn, taq_Tfng, tpi_Latn, tsn_Latn, tso_Latn, tuk_Latn, tum_Latn, tur_Latn, twi_Latn, tzm_Tfng, uig_Arab, ukr_Cyrl, umb_Latn, urd_Arab, uzn_Latn, vec_Latn, vie_Latn, war_Latn, wol_Latn, xho_Latn, ydd_Hebr, yor_Latn, yue_Hant, zho_Hans, zho_Hant, zul_Latn" tags: - nllb license: "cc-by-nc-4.0" datasets: - flores-200 metrics: - bleu - spbleu - chrf++ --- # NLLB-200 This is the model card of NLLB-200's 3.3B variant. Here are the [metrics](https://tinyurl.com/nllb200dense3bmetrics) for that particular checkpoint. - Information about training algorithms, parameters, fairness constraints or other applied approaches, and features. The exact training algorithm, data and the strategies to handle data imbalances for high and low resource languages that were used to train NLLB-200 is described in the paper. - Paper or other resource for more information NLLB Team et al, No Language Left Behind: Scaling Human-Centered Machine Translation, Arxiv, 2022 - License: CC-BY-NC - Where to send questions or comments about the model: https://github.com/facebookresearch/fairseq/issues ## Intended Use - Primary intended uses: NLLB-200 is a machine translation model primarily intended for research in machine translation, - especially for low-resource languages. It allows for single sentence translation among 200 languages. Information on how to - use the model can be found in Fairseq code repository along with the training code and references to evaluation and training data. - Primary intended users: Primary users are researchers and machine translation research community. - Out-of-scope use cases: NLLB-200 is a research model and is not released for production deployment. NLLB-200 is trained on general domain text data and is not intended to be used with domain specific texts, such as medical domain or legal domain. The model is not intended to be used for document translation. The model was trained with input lengths not exceeding 512 tokens, therefore translating longer sequences might result in quality degradation. NLLB-200 translations can not be used as certified translations. ## Metrics • Model performance measures: NLLB-200 model was evaluated using BLEU, spBLEU, and chrF++ metrics widely adopted by machine translation community. Additionally, we performed human evaluation with the XSTS protocol and measured the toxicity of the generated translations. ## Evaluation Data - Datasets: Flores-200 dataset is described in Section 4 - Motivation: We used Flores-200 as it provides full evaluation coverage of the languages in NLLB-200 - Preprocessing: Sentence-split raw text data was preprocessed using SentencePiece. The SentencePiece model is released along with NLLB-200. ## Training Data • We used parallel multilingual data from a variety of sources to train the model. We provide detailed report on data selection and construction process in Section 5 in the paper. We also used monolingual data constructed from Common Crawl. We provide more details in Section 5.2. ## Ethical Considerations • In this work, we took a reflexive approach in technological development to ensure that we prioritize human users and minimize risks that could be transferred to them. While we reflect on our ethical considerations throughout the article, here are some additional points to highlight. For one, many languages chosen for this study are low-resource languages, with a heavy emphasis on African languages. While quality translation could improve education and information access in many in these communities, such an access could also make groups with lower levels of digital literacy more vulnerable to misinformation or online scams. The latter scenarios could arise if bad actors misappropriate our work for nefarious activities, which we conceive as an example of unintended use. Regarding data acquisition, the training data used for model development were mined from various publicly available sources on the web. Although we invested heavily in data cleaning, personally identifiable information may not be entirely eliminated. Finally, although we did our best to optimize for translation quality, mistranslations produced by the model could remain. Although the odds are low, this could have adverse impact on those who rely on these translations to make important decisions (particularly when related to health and safety). ## Caveats and Recommendations • Our model has been tested on the Wikimedia domain with limited investigation on other domains supported in NLLB-MD. In addition, the supported languages may have variations that our model is not capturing. Users should make appropriate assessments. ## Carbon Footprint Details • The carbon dioxide (CO2e) estimate is reported in Section 8.8.
jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-2_female-8_s438
jonatasgrosman
2022-07-25T07:03:55Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T07:03:44Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_en_vp-100k_gender_male-2_female-8_s438 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-2_female-8_s320
jonatasgrosman
2022-07-25T06:59:14Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T06:59:03Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_en_vp-100k_gender_male-2_female-8_s320 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-2_female-8_s179
jonatasgrosman
2022-07-25T06:54:39Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T06:54:28Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_en_vp-100k_gender_male-2_female-8_s179 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
circulus/kobart-trans-gyeongsang-v1
circulus
2022-07-25T06:48:10Z
6
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-24T01:54:06Z
KoBART 기반 경상도 사투리 스타일 변경 - AI-HUB 의 경상도 사투리 데이터 셋을 통해 훈련되었습니다. - 사용방법은 곧 올리도록 하겠습니다.
circulus/kobart-trans-chungcheong-v1
circulus
2022-07-25T06:47:00Z
3
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-24T02:04:57Z
KoBART 기반 충청도 사투리 스타일 변경 - AI-HUB 의 충청도 사투리 데이터 셋을 통해 훈련되었습니다. - 사용방법은 곧 올리도록 하겠습니다.
swtx/Erlangshen-Roberta-110M-Similarity
swtx
2022-07-25T06:46:00Z
4
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "NLU", "NLI", "zh", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-25T06:22:56Z
--- language: - zh license: apache-2.0 tags: - bert - NLU - NLI inference: true widget: - text: "今天心情不好[SEP]今天很开心" --- # Erlangshen-Roberta-110M-Similarity, model (Chinese),one model of [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM). We collect 20 paraphrace datasets in the Chinese domain for finetune, with a total of 2773880 samples. Our model is mainly based on [roberta](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large) ## Usage ```python from transformers import BertForSequenceClassification from transformers import BertTokenizer import torch tokenizer=BertTokenizer.from_pretrained('IDEA-CCNL/Erlangshen-Roberta-110M-Similarity') model=BertForSequenceClassification.from_pretrained('IDEA-CCNL/Erlangshen-Roberta-110M-Similarity') texta='今天的饭不好吃' textb='今天心情不好' output=model(torch.tensor([tokenizer.encode(texta,textb)])) print(torch.nn.functional.softmax(output.logits,dim=-1)) ``` ## Scores on downstream chinese tasks(The dev datasets of BUSTM and AFQMC may exist in the train set) | Model | BQ | BUSTM | AFQMC | | :--------: | :-----: | :----: | :-----: | | Erlangshen-Roberta-110M-Similarity | 85.41 | 95.18 | 81.72 | | Erlangshen-Roberta-330M-Similarity | 86.21 | 99.29 | 93.89 | | Erlangshen-MegatronBert-1.3B-Similarity | 86.31 | - | - | ## Citation If you find the resource is useful, please cite the following website in your paper. ``` @misc{Fengshenbang-LM, title={Fengshenbang-LM}, author={IDEA-CCNL}, year={2021}, howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}}, } ```
th1s1s1t/q-Taxi-v3
th1s1s1t
2022-07-25T06:42:16Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-07-25T06:42:10Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.42 +/- 2.75 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="th1s1s1t/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-0_female-10_s169
jonatasgrosman
2022-07-25T06:25:38Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T06:25:21Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_en_vp-100k_gender_male-0_female-10_s169 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-5_female-5_s474
jonatasgrosman
2022-07-25T06:16:18Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T06:16:06Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_en_vp-100k_gender_male-5_female-5_s474 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-2_england-8_s459
jonatasgrosman
2022-07-25T05:52:22Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T05:52:11Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_en_vp-100k_accent_us-2_england-8_s459 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-2_england-8_s456
jonatasgrosman
2022-07-25T05:47:42Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T05:47:28Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_en_vp-100k_accent_us-2_england-8_s456 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
vish88/xlnet-base-rte-finetuned
vish88
2022-07-25T05:45:31Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlnet", "text-classification", "generated_from_trainer", "dataset:glue", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-24T19:58:42Z
--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: xlnet-base-rte-finetuned results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.703971119133574 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlnet-base-rte-finetuned This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 2.6688 - Accuracy: 0.7040 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 311 | 0.9695 | 0.6859 | | 0.315 | 2.0 | 622 | 2.2516 | 0.6498 | | 0.315 | 3.0 | 933 | 2.0439 | 0.7076 | | 0.1096 | 4.0 | 1244 | 2.5190 | 0.7040 | | 0.0368 | 5.0 | 1555 | 2.6688 | 0.7040 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-2_england-8_s251
jonatasgrosman
2022-07-25T05:43:01Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T05:42:49Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_en_vp-100k_accent_us-2_england-8_s251 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
wisejiyoon/bert-base-finetuned-sts
wisejiyoon
2022-07-25T05:29:55Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:klue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-25T04:45:09Z
--- tags: - generated_from_trainer datasets: - klue metrics: - pearsonr model-index: - name: bert-base-finetuned-sts results: - task: name: Text Classification type: text-classification dataset: name: klue type: klue args: sts metrics: - name: Pearsonr type: pearsonr value: 0.9000373376026184 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-finetuned-sts This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.4582 - Pearsonr: 0.9000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearsonr | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 183 | 0.5329 | 0.8827 | | No log | 2.0 | 366 | 0.4549 | 0.8937 | | 0.2316 | 3.0 | 549 | 0.4656 | 0.8959 | | 0.2316 | 4.0 | 732 | 0.4651 | 0.8990 | | 0.2316 | 5.0 | 915 | 0.4582 | 0.9000 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
wuhuaguo/distilbert-base-uncased-finetuned-cola
wuhuaguo
2022-07-25T05:29:23Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-25T03:30:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5489250601752835 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8115 - Matthews Correlation: 0.5489 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5223 | 1.0 | 535 | 0.5400 | 0.4165 | | 0.349 | 2.0 | 1070 | 0.5125 | 0.4738 | | 0.2392 | 3.0 | 1605 | 0.5283 | 0.5411 | | 0.1791 | 4.0 | 2140 | 0.7506 | 0.5301 | | 0.127 | 5.0 | 2675 | 0.8115 | 0.5489 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-10_england-0_s44
jonatasgrosman
2022-07-25T05:28:41Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T05:28:29Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_en_vp-100k_accent_us-10_england-0_s44 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-5_england-5_s924
jonatasgrosman
2022-07-25T05:07:34Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T05:07:18Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_en_vp-100k_accent_us-5_england-5_s924 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
Amiri/2_frozen_lake_QL
Amiri
2022-07-25T05:06:45Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-07-25T05:06:40Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: 2_frozen_lake_QL results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Amiri/2_frozen_lake_QL", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-5_england-5_s878
jonatasgrosman
2022-07-25T05:02:23Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T05:02:03Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_en_vp-100k_accent_us-5_england-5_s878 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_en_vp-100k_accent_us-5_england-5_s203
jonatasgrosman
2022-07-25T04:57:41Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T04:57:29Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_en_vp-100k_accent_us-5_england-5_s203 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
bigmorning/distilgpt_new3_0075
bigmorning
2022-07-25T04:44:50Z
3
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-07-25T04:39:38Z
--- tags: - generated_from_keras_callback model-index: - name: distilgpt_new3_0075 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt_new3_0075 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.4912 - Validation Loss: 2.3729 - Epoch: 74 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.5407 | 2.4254 | 0 | | 2.5399 | 2.4247 | 1 | | 2.5391 | 2.4238 | 2 | | 2.5383 | 2.4232 | 3 | | 2.5375 | 2.4210 | 4 | | 2.5368 | 2.4210 | 5 | | 2.5361 | 2.4197 | 6 | | 2.5353 | 2.4193 | 7 | | 2.5345 | 2.4191 | 8 | | 2.5339 | 2.4177 | 9 | | 2.5332 | 2.4188 | 10 | | 2.5324 | 2.4160 | 11 | | 2.5317 | 2.4164 | 12 | | 2.5309 | 2.4145 | 13 | | 2.5302 | 2.4153 | 14 | | 2.5295 | 2.4139 | 15 | | 2.5288 | 2.4134 | 16 | | 2.5282 | 2.4123 | 17 | | 2.5274 | 2.4116 | 18 | | 2.5267 | 2.4110 | 19 | | 2.5259 | 2.4106 | 20 | | 2.5251 | 2.4097 | 21 | | 2.5244 | 2.4074 | 22 | | 2.5238 | 2.4078 | 23 | | 2.5232 | 2.4072 | 24 | | 2.5223 | 2.4062 | 25 | | 2.5217 | 2.4054 | 26 | | 2.5211 | 2.4057 | 27 | | 2.5204 | 2.4044 | 28 | | 2.5197 | 2.4026 | 29 | | 2.5189 | 2.4017 | 30 | | 2.5182 | 2.4026 | 31 | | 2.5176 | 2.4012 | 32 | | 2.5168 | 2.4013 | 33 | | 2.5161 | 2.3990 | 34 | | 2.5154 | 2.3999 | 35 | | 2.5149 | 2.3978 | 36 | | 2.5142 | 2.3981 | 37 | | 2.5135 | 2.3981 | 38 | | 2.5130 | 2.3972 | 39 | | 2.5123 | 2.3957 | 40 | | 2.5116 | 2.3940 | 41 | | 2.5108 | 2.3933 | 42 | | 2.5103 | 2.3927 | 43 | | 2.5095 | 2.3923 | 44 | | 2.5090 | 2.3918 | 45 | | 2.5083 | 2.3914 | 46 | | 2.5078 | 2.3905 | 47 | | 2.5070 | 2.3888 | 48 | | 2.5062 | 2.3894 | 49 | | 2.5058 | 2.3898 | 50 | | 2.5051 | 2.3868 | 51 | | 2.5045 | 2.3873 | 52 | | 2.5041 | 2.3872 | 53 | | 2.5035 | 2.3859 | 54 | | 2.5027 | 2.3850 | 55 | | 2.5020 | 2.3851 | 56 | | 2.5016 | 2.3833 | 57 | | 2.5009 | 2.3816 | 58 | | 2.5002 | 2.3821 | 59 | | 2.4995 | 2.3813 | 60 | | 2.4990 | 2.3803 | 61 | | 2.4984 | 2.3794 | 62 | | 2.4977 | 2.3798 | 63 | | 2.4971 | 2.3779 | 64 | | 2.4964 | 2.3778 | 65 | | 2.4959 | 2.3778 | 66 | | 2.4954 | 2.3787 | 67 | | 2.4947 | 2.3758 | 68 | | 2.4942 | 2.3751 | 69 | | 2.4935 | 2.3739 | 70 | | 2.4929 | 2.3754 | 71 | | 2.4923 | 2.3750 | 72 | | 2.4918 | 2.3730 | 73 | | 2.4912 | 2.3729 | 74 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-8_female-2_s129
jonatasgrosman
2022-07-25T04:43:26Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T04:43:14Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_gender_male-8_female-2_s129 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-2_female-8_s364
jonatasgrosman
2022-07-25T04:38:52Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T04:38:41Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_gender_male-2_female-8_s364 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-2_female-8_s211
jonatasgrosman
2022-07-25T04:33:58Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T04:33:47Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_gender_male-2_female-8_s211 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-2_female-8_s108
jonatasgrosman
2022-07-25T04:29:06Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T04:28:54Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_gender_male-2_female-8_s108 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-10_female-0_s325
jonatasgrosman
2022-07-25T04:14:27Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T04:14:16Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_gender_male-10_female-0_s325 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-0_female-10_s889
jonatasgrosman
2022-07-25T04:09:25Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T04:09:14Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_gender_male-0_female-10_s889 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-0_female-10_s801
jonatasgrosman
2022-07-25T04:04:30Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T04:04:16Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_gender_male-0_female-10_s801 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-0_female-10_s601
jonatasgrosman
2022-07-25T03:58:35Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T03:58:23Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_gender_male-0_female-10_s601 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-5_female-5_s841
jonatasgrosman
2022-07-25T03:53:42Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T03:53:30Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_gender_male-5_female-5_s841 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-5_female-5_s34
jonatasgrosman
2022-07-25T03:49:16Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T03:49:01Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_gender_male-5_female-5_s34 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_de_vp-100k_gender_male-5_female-5_s286
jonatasgrosman
2022-07-25T03:44:19Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T03:44:08Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_gender_male-5_female-5_s286 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-8_austria-2_s953
jonatasgrosman
2022-07-25T03:39:23Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T03:39:11Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_accent_germany-8_austria-2_s953 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-8_austria-2_s445
jonatasgrosman
2022-07-25T03:29:52Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T03:29:40Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_accent_germany-8_austria-2_s445 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
bigmorning/distilgpt_new3_0070
bigmorning
2022-07-25T03:22:34Z
3
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-07-25T03:17:17Z
--- tags: - generated_from_keras_callback model-index: - name: distilgpt_new3_0070 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt_new3_0070 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.4942 - Validation Loss: 2.3751 - Epoch: 69 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.5407 | 2.4254 | 0 | | 2.5399 | 2.4247 | 1 | | 2.5391 | 2.4238 | 2 | | 2.5383 | 2.4232 | 3 | | 2.5375 | 2.4210 | 4 | | 2.5368 | 2.4210 | 5 | | 2.5361 | 2.4197 | 6 | | 2.5353 | 2.4193 | 7 | | 2.5345 | 2.4191 | 8 | | 2.5339 | 2.4177 | 9 | | 2.5332 | 2.4188 | 10 | | 2.5324 | 2.4160 | 11 | | 2.5317 | 2.4164 | 12 | | 2.5309 | 2.4145 | 13 | | 2.5302 | 2.4153 | 14 | | 2.5295 | 2.4139 | 15 | | 2.5288 | 2.4134 | 16 | | 2.5282 | 2.4123 | 17 | | 2.5274 | 2.4116 | 18 | | 2.5267 | 2.4110 | 19 | | 2.5259 | 2.4106 | 20 | | 2.5251 | 2.4097 | 21 | | 2.5244 | 2.4074 | 22 | | 2.5238 | 2.4078 | 23 | | 2.5232 | 2.4072 | 24 | | 2.5223 | 2.4062 | 25 | | 2.5217 | 2.4054 | 26 | | 2.5211 | 2.4057 | 27 | | 2.5204 | 2.4044 | 28 | | 2.5197 | 2.4026 | 29 | | 2.5189 | 2.4017 | 30 | | 2.5182 | 2.4026 | 31 | | 2.5176 | 2.4012 | 32 | | 2.5168 | 2.4013 | 33 | | 2.5161 | 2.3990 | 34 | | 2.5154 | 2.3999 | 35 | | 2.5149 | 2.3978 | 36 | | 2.5142 | 2.3981 | 37 | | 2.5135 | 2.3981 | 38 | | 2.5130 | 2.3972 | 39 | | 2.5123 | 2.3957 | 40 | | 2.5116 | 2.3940 | 41 | | 2.5108 | 2.3933 | 42 | | 2.5103 | 2.3927 | 43 | | 2.5095 | 2.3923 | 44 | | 2.5090 | 2.3918 | 45 | | 2.5083 | 2.3914 | 46 | | 2.5078 | 2.3905 | 47 | | 2.5070 | 2.3888 | 48 | | 2.5062 | 2.3894 | 49 | | 2.5058 | 2.3898 | 50 | | 2.5051 | 2.3868 | 51 | | 2.5045 | 2.3873 | 52 | | 2.5041 | 2.3872 | 53 | | 2.5035 | 2.3859 | 54 | | 2.5027 | 2.3850 | 55 | | 2.5020 | 2.3851 | 56 | | 2.5016 | 2.3833 | 57 | | 2.5009 | 2.3816 | 58 | | 2.5002 | 2.3821 | 59 | | 2.4995 | 2.3813 | 60 | | 2.4990 | 2.3803 | 61 | | 2.4984 | 2.3794 | 62 | | 2.4977 | 2.3798 | 63 | | 2.4971 | 2.3779 | 64 | | 2.4964 | 2.3778 | 65 | | 2.4959 | 2.3778 | 66 | | 2.4954 | 2.3787 | 67 | | 2.4947 | 2.3758 | 68 | | 2.4942 | 2.3751 | 69 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-2_austria-8_s468
jonatasgrosman
2022-07-25T03:15:54Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T03:15:43Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_accent_germany-2_austria-8_s468 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-10_austria-0_s545
jonatasgrosman
2022-07-25T03:06:09Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T03:05:59Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_accent_germany-10_austria-0_s545 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
thu-coai/EVA2.0-xlarge
thu-coai
2022-07-25T02:57:30Z
6
1
transformers
[ "transformers", "pytorch", "zh", "arxiv:2108.01547", "arxiv:2203.09313", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-07-14T14:33:45Z
--- language: zh tags: - pytorch license: mit --- # EVA ## Model Description EVA is the largest open-source Chinese dialogue model with up to 2.8B parameters. The 1.0 version model is pre-trained on [WudaoCorpus-Dialog](https://resource.wudaoai.cn/home), and the 2.0 version is pre-trained on a carefully cleaned version of WudaoCorpus-Dialog which yields better performance than the 1.0 version. [Paper link](https://arxiv.org/abs/2108.01547) of EVA1.0. [Paper link](https://arxiv.org/abs/2203.09313) of EVA2.0. ## Model Configuration | Model | n_params | n_enc-layers | n_dec-layers | d_model | d_ff | n_heads | d_head | attn-scale | | ------------- | -------- | ------------ | ------------ | ------- | ----- | ------- | ------ | ---------- | | EVA1.0 | 2.8B | 24 | 24 | 2,048 | 5,120 | 32 | 64 | No | | EVA2.0_Base | 300M | 12 | 12 | 768 | 3,072 | 12 | 64 | Yes | | EVA2.0_Large | 970M | 24 | 24 | 1,024 | 4,096 | 16 | 64 | Yes | | EVA2.0_xLarge | 2.8B | 24 | 24 | 2,048 | 5,120 | 32 | 64 | Yes | ## How to use Please refer to our GitHub [repository](https://github.com/thu-coai/EVA/tree/huggingface). ## Performance We use the KdConv dataset to finetune and evaluate the model. Under the default hyperparameters in the scripts, we get the following results on the test set: | | | | | | | ---- | ---- | ---- | ---- | ---- | | | loss | BLEU-4 | Dist-4 | f1 | | eva1.0 Before finetune | 3.49 | 0.64 | 85.94 | 13.24 | | eva1.0 After finetune | 2.37 | 3.94 | 72.47 | 19.80 | | eva2.0 Before finetune | 3.14 | 1.02 | 82.67 | 14.36 | | eva2.0 After finetune | 2.09 | 4.69 | 73.03 | 22.91 | We also use beam search to run the interactive inference of EVA2.0: ```[] Usr >>> 你好 Sys >>> 你好,请问你是? Usr >>> 我是小明 Sys >>> 好的,小明,我是新来的,请多关照 Usr >>> 你了解人工智能吗? Sys >>> 不了解,我只知道我是机器人 Usr >>> 那你很聪明 Sys >>> 谢谢夸奖,我会继续努力的 Usr >>> 你是学什么专业的呀 Sys >>> 计算机科学与技术,你呢? Usr >>> 我也是学计算机的 Sys >>> 哦,那你有什么想知道的,可以问我 Usr >>> 编程语言你学过哪些? Sys >>> java,c,c+都学过 Usr >>> 你学的真多 Sys >>> 呵呵,还好吧,我比较喜欢写代码 Usr >>> 哈哈,我也喜欢写代码,以后可以多多交流 Sys >>> 嗯,好的 Usr >>> 拜拜喽 Sys >>> 拜~ ``` **NOET**: Since different hardware may have different implementations of random functions, even if you use the same random seed as ours, you may not be able to reproduce this case. But the overall performance will not differ much. ## Disclaimer The pre-trained models aim to facilitate the research for conversation generation. The model provided in this repository is trained on a large dataset collected from various sources. Although a rigorous cleaning and filtering process has been carried out to the data and the model output, there is no guarantee that all the inappropriate contents have been completely banned. All the contents generated by the model do not represent the authors' opinions. The decoding script provided in this repository is only for research purposes. We are not responsible for any content generated using our model. ## Citation ``` @article{coai2021eva, title={EVA: An Open-Domain Chinese Dialogue System with Large-Scale Generative Pre-Training}, author={Zhou, Hao and Ke, Pei and Zhang, Zheng and Gu, Yuxian and Zheng, Yinhe and Zheng, Chujie and Wang, Yida and Wu, Chen Henry and Sun, Hao and Yang, Xiaocong and Wen, Bosi and Zhu, Xiaoyan and Huang, Minlie and Tang, Jie}, journal={arXiv preprint arXiv:2108.01547}, year={2021} } @article{coai2022eva2, title={{EVA2.0}: Investigating Open-Domain Chinese Dialogue Systems with Large-Scale Pre-Training}, author={Gu, Yuxian and Wen, Jiaxin and Sun, Hao and Song, Yi and Ke, Pei and Zheng, Chujie and Zhang, Zheng and Yao, Jianzhu and Zhu, Xiaoyan and Tang, Jie and Huang, Minlie}, journal={arXiv preprint arXiv:2203.09313}, year={2022} } ```
jonatasgrosman/exp_w2v2r_de_vp-100k_accent_germany-0_austria-10_s377
jonatasgrosman
2022-07-25T02:51:01Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-25T02:50:49Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2r_de_vp-100k_accent_germany-0_austria-10_s377 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
ben-yu/autotrain-MS2-1173943517
ben-yu
2022-07-25T01:31:42Z
3
0
transformers
[ "transformers", "pytorch", "led", "text2text-generation", "autotrain", "unk", "dataset:ben-yu/autotrain-data-MS2", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-25T00:06:06Z
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - ben-yu/autotrain-data-MS2 co2_eq_emissions: 0.687008092853648 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 1173943517 - CO2 Emissions (in grams): 0.687008092853648 ## Validation Metrics - Loss: 2.806302070617676 - Rouge1: 0.0342 - Rouge2: 0.006 - RougeL: 0.0242 - RougeLsum: 0.0283 - Gen Len: 19.9989 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/ben-yu/autotrain-MS2-1173943517 ```
Chris1/a2c-HalfCheetahBulletEnv-v0
Chris1
2022-07-25T00:09:48Z
4
0
stable-baselines3
[ "stable-baselines3", "HalfCheetahBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-25T00:09:13Z
--- library_name: stable-baselines3 tags: - HalfCheetahBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 1251.52 +/- 88.60 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: HalfCheetahBulletEnv-v0 type: HalfCheetahBulletEnv-v0 --- # **A2C** Agent playing **HalfCheetahBulletEnv-v0** This is a trained model of a **A2C** agent playing **HalfCheetahBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Chris1/a2c-AntBulletEnv-v0
Chris1
2022-07-24T23:39:59Z
5
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-24T23:39:24Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 1062.16 +/- 221.84 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
bigmorning/distilgpt_new3_0055
bigmorning
2022-07-24T23:14:10Z
3
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-07-24T23:08:24Z
--- tags: - generated_from_keras_callback model-index: - name: distilgpt_new3_0055 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt_new3_0055 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.5035 - Validation Loss: 2.3859 - Epoch: 54 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.5407 | 2.4254 | 0 | | 2.5399 | 2.4247 | 1 | | 2.5391 | 2.4238 | 2 | | 2.5383 | 2.4232 | 3 | | 2.5375 | 2.4210 | 4 | | 2.5368 | 2.4210 | 5 | | 2.5361 | 2.4197 | 6 | | 2.5353 | 2.4193 | 7 | | 2.5345 | 2.4191 | 8 | | 2.5339 | 2.4177 | 9 | | 2.5332 | 2.4188 | 10 | | 2.5324 | 2.4160 | 11 | | 2.5317 | 2.4164 | 12 | | 2.5309 | 2.4145 | 13 | | 2.5302 | 2.4153 | 14 | | 2.5295 | 2.4139 | 15 | | 2.5288 | 2.4134 | 16 | | 2.5282 | 2.4123 | 17 | | 2.5274 | 2.4116 | 18 | | 2.5267 | 2.4110 | 19 | | 2.5259 | 2.4106 | 20 | | 2.5251 | 2.4097 | 21 | | 2.5244 | 2.4074 | 22 | | 2.5238 | 2.4078 | 23 | | 2.5232 | 2.4072 | 24 | | 2.5223 | 2.4062 | 25 | | 2.5217 | 2.4054 | 26 | | 2.5211 | 2.4057 | 27 | | 2.5204 | 2.4044 | 28 | | 2.5197 | 2.4026 | 29 | | 2.5189 | 2.4017 | 30 | | 2.5182 | 2.4026 | 31 | | 2.5176 | 2.4012 | 32 | | 2.5168 | 2.4013 | 33 | | 2.5161 | 2.3990 | 34 | | 2.5154 | 2.3999 | 35 | | 2.5149 | 2.3978 | 36 | | 2.5142 | 2.3981 | 37 | | 2.5135 | 2.3981 | 38 | | 2.5130 | 2.3972 | 39 | | 2.5123 | 2.3957 | 40 | | 2.5116 | 2.3940 | 41 | | 2.5108 | 2.3933 | 42 | | 2.5103 | 2.3927 | 43 | | 2.5095 | 2.3923 | 44 | | 2.5090 | 2.3918 | 45 | | 2.5083 | 2.3914 | 46 | | 2.5078 | 2.3905 | 47 | | 2.5070 | 2.3888 | 48 | | 2.5062 | 2.3894 | 49 | | 2.5058 | 2.3898 | 50 | | 2.5051 | 2.3868 | 51 | | 2.5045 | 2.3873 | 52 | | 2.5041 | 2.3872 | 53 | | 2.5035 | 2.3859 | 54 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
laproper/diffusion-deepspace-256
laproper
2022-07-24T21:14:26Z
0
0
null
[ "license:cc-by-4.0", "region:us" ]
null
2022-07-24T02:55:23Z
--- license: cc-by-4.0 --- 3750 images from esa/nasa of deep space. JWST/Hubble shots mainly. model_config.update({ 'attention_resolutions': '32, 16, 8', 'class_cond': False, 'diffusion_steps': 1000, 'rescale_timesteps': True, 'timestep_respacing': 'ddim100', 'image_size': 256, 'learn_sigma': True, 'noise_schedule': 'linear', 'num_channels': 128, 'num_heads': 4, 'num_res_blocks': 2, 'resblock_updown': True, 'use_checkpoint': use_checkpoint, 'use_fp16': True, 'use_scale_shift_norm': True, })
pm390/a2c-HalfCheetahBulletEnv-v0
pm390
2022-07-24T21:04:24Z
1
0
stable-baselines3
[ "stable-baselines3", "HalfCheetahBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-24T21:03:24Z
--- library_name: stable-baselines3 tags: - HalfCheetahBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 992.00 +/- 62.14 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: HalfCheetahBulletEnv-v0 type: HalfCheetahBulletEnv-v0 --- # **A2C** Agent playing **HalfCheetahBulletEnv-v0** This is a trained model of a **A2C** agent playing **HalfCheetahBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mehdidn/finetuned_translation_fa_en
mehdidn
2022-07-24T21:00:41Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-21T07:30:34Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: finetuned_translation_fa_en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_translation_fa_en This model is a fine-tuned version of [persiannlp/mt5-small-parsinlu-opus-translation_fa_en](https://huggingface.co/persiannlp/mt5-small-parsinlu-opus-translation_fa_en) on the TEP (https://opus.nlpl.eu/TEP.php) dataset. It achieves the following results on the evaluation set: - Loss: 1.4370 - Bleu: 24.2331 - Gen Len: 11.6467 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 1.6184 | 1.0 | 30987 | 1.4370 | 24.2331 | 11.6467 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Chris1/reinforce-pixelcopter
Chris1
2022-07-24T20:27:28Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-07-24T15:43:10Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: reinforce-pixelcopter results: - metrics: - type: mean_reward value: -2.60 +/- 1.56 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
pm390/a2c-AntBulletEnv-v0
pm390
2022-07-24T20:07:21Z
2
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-24T20:06:13Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 937.65 +/- 268.02 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
jakka/unitypyramidsrnd
jakka
2022-07-24T19:44:13Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-07-24T19:44:08Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: jakka/unitypyramidsrnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
sushrut58/my-finetuned-t5
sushrut58
2022-07-24T19:13:30Z
3
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-24T19:13:21Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: my-finetuned-t5 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # my-finetuned-t5 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
jakka/dqn-SpaceInvadersNoFrameskip-v4_1
jakka
2022-07-24T19:03:29Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-24T19:02:51Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 769.00 +/- 232.34 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jakka -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga jakka ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
bigmorning/distilgpt_new3_0040
bigmorning
2022-07-24T18:51:53Z
3
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-07-24T18:46:05Z
--- tags: - generated_from_keras_callback model-index: - name: distilgpt_new3_0040 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt_new3_0040 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.5130 - Validation Loss: 2.3972 - Epoch: 39 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.5407 | 2.4254 | 0 | | 2.5399 | 2.4247 | 1 | | 2.5391 | 2.4238 | 2 | | 2.5383 | 2.4232 | 3 | | 2.5375 | 2.4210 | 4 | | 2.5368 | 2.4210 | 5 | | 2.5361 | 2.4197 | 6 | | 2.5353 | 2.4193 | 7 | | 2.5345 | 2.4191 | 8 | | 2.5339 | 2.4177 | 9 | | 2.5332 | 2.4188 | 10 | | 2.5324 | 2.4160 | 11 | | 2.5317 | 2.4164 | 12 | | 2.5309 | 2.4145 | 13 | | 2.5302 | 2.4153 | 14 | | 2.5295 | 2.4139 | 15 | | 2.5288 | 2.4134 | 16 | | 2.5282 | 2.4123 | 17 | | 2.5274 | 2.4116 | 18 | | 2.5267 | 2.4110 | 19 | | 2.5259 | 2.4106 | 20 | | 2.5251 | 2.4097 | 21 | | 2.5244 | 2.4074 | 22 | | 2.5238 | 2.4078 | 23 | | 2.5232 | 2.4072 | 24 | | 2.5223 | 2.4062 | 25 | | 2.5217 | 2.4054 | 26 | | 2.5211 | 2.4057 | 27 | | 2.5204 | 2.4044 | 28 | | 2.5197 | 2.4026 | 29 | | 2.5189 | 2.4017 | 30 | | 2.5182 | 2.4026 | 31 | | 2.5176 | 2.4012 | 32 | | 2.5168 | 2.4013 | 33 | | 2.5161 | 2.3990 | 34 | | 2.5154 | 2.3999 | 35 | | 2.5149 | 2.3978 | 36 | | 2.5142 | 2.3981 | 37 | | 2.5135 | 2.3981 | 38 | | 2.5130 | 2.3972 | 39 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
Sarmila/distilbert-base-uncased-distilled-squad
Sarmila
2022-07-24T18:46:37Z
21
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "Not available", "en", "endpoints_compatible", "region:us" ]
question-answering
2022-07-24T18:32:41Z
--- language: en tags: Not available datasets: [] metrics: Not available thumbnail: null --- ## Model description PyTorch implementation containing all the modelling needed for your NLP task. Combines a language model and a prediction head. Allows for gradient flow back to the language model component. ## Model Type not defined ## Model Details ## - version: 1 - device: cuda - number of labels: not found - number_of_parameters: 66364418 - base_model: this is a base model itself ## Training No Information ## Evaluation No Information ## quantitative_analyses not filled yet ## ethical_considerations not filled yet ## caveats_and_recommendations not filled yet
nateraw/my-aurora
nateraw
2022-07-24T17:53:19Z
2
0
diffusers
[ "diffusers", "tensorboard", "🧨 Diffuse It", "en", "dataset:aurora", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-07-24T17:32:57Z
--- language: en license: apache-2.0 library_name: diffusers tags: - "\U0001F9E8 Diffuse It" datasets: aurora metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # my-aurora ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `aurora` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/nateraw/my-aurora/tensorboard?#scalars)
affahrizain/distilbert-base-uncased-finetuned-emotion
affahrizain
2022-07-24T16:10:36Z
10
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-24T14:15:56Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.936 - name: F1 type: f1 value: 0.936054890104025 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1858 - Accuracy: 0.936 - F1: 0.9361 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4279 | 1.0 | 2000 | 0.2058 | 0.9345 | 0.9347 | | 0.1603 | 2.0 | 4000 | 0.1858 | 0.936 | 0.9361 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jakka/q-Taxi-v3
jakka
2022-07-24T16:09:36Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-07-24T16:09:31Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.54 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="jakka/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
jakka/q-FrozenLake-v1-4x4-noSlippery
jakka
2022-07-24T16:07:14Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-07-24T16:07:08Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="jakka/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
HaoHu/vit-base-patch16-224-in21k-classify-4scence
HaoHu
2022-07-24T16:02:55Z
48
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-07-24T15:23:48Z
--- license: other --- train this model on the Contest the original dataset is 链接: https://pan.baidu.com/s/1pr094NZ2QMj3nLy12gfa6g 密码: kb7a
Daveee/gpl_colbert
Daveee
2022-07-24T15:26:10Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-07-24T15:17:27Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 100 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 100, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
th1s1s1t/q-FrozenLake-v1-4x4-noSlippery
th1s1s1t
2022-07-24T15:20:31Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-07-24T15:20:25Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="th1s1s1t/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
SummerChiam/rust_image_classification_1
SummerChiam
2022-07-24T14:47:06Z
48
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-07-24T14:46:56Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rust_image_classification results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.903797447681427 --- # rust_image_classification Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### nonrust ![nonrust](images/nonrust.png) #### rust ![rust](images/rust.png)
osanseviero/my-llama
osanseviero
2022-07-24T14:45:18Z
2
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:llama", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-07-24T14:26:50Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: llama metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # my-llama ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `llama` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/osanseviero/my-llama/tensorboard?#scalars)
SummerChiam/pond_image_classification_1
SummerChiam
2022-07-24T14:18:14Z
50
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-07-24T14:18:01Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: pond_image_classification results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9948979616165161 --- # pond_image_classification Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Algae ![Algae](images/Algae.png) #### Boiling ![Boiling](images/Boiling.png) #### BoilingNight ![BoilingNight](images/BoilingNight.png) #### Normal ![Normal](images/Normal.png) #### NormalCement ![NormalCement](images/NormalCement.png) #### NormalNight ![NormalNight](images/NormalNight.png) #### NormalRain ![NormalRain](images/NormalRain.png)
bigmorning/distilgpt_new3_0020
bigmorning
2022-07-24T13:06:45Z
3
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-07-24T13:01:08Z
--- tags: - generated_from_keras_callback model-index: - name: distilgpt_new3_0020 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt_new3_0020 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.5267 - Validation Loss: 2.4110 - Epoch: 19 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.5407 | 2.4254 | 0 | | 2.5399 | 2.4247 | 1 | | 2.5391 | 2.4238 | 2 | | 2.5383 | 2.4232 | 3 | | 2.5375 | 2.4210 | 4 | | 2.5368 | 2.4210 | 5 | | 2.5361 | 2.4197 | 6 | | 2.5353 | 2.4193 | 7 | | 2.5345 | 2.4191 | 8 | | 2.5339 | 2.4177 | 9 | | 2.5332 | 2.4188 | 10 | | 2.5324 | 2.4160 | 11 | | 2.5317 | 2.4164 | 12 | | 2.5309 | 2.4145 | 13 | | 2.5302 | 2.4153 | 14 | | 2.5295 | 2.4139 | 15 | | 2.5288 | 2.4134 | 16 | | 2.5282 | 2.4123 | 17 | | 2.5274 | 2.4116 | 18 | | 2.5267 | 2.4110 | 19 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
bigmorning/distilgpt_new3_0015
bigmorning
2022-07-24T11:40:00Z
3
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-07-24T11:34:44Z
--- tags: - generated_from_keras_callback model-index: - name: distilgpt_new3_0015 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt_new3_0015 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.5302 - Validation Loss: 2.4153 - Epoch: 14 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.5407 | 2.4254 | 0 | | 2.5399 | 2.4247 | 1 | | 2.5391 | 2.4238 | 2 | | 2.5383 | 2.4232 | 3 | | 2.5375 | 2.4210 | 4 | | 2.5368 | 2.4210 | 5 | | 2.5361 | 2.4197 | 6 | | 2.5353 | 2.4193 | 7 | | 2.5345 | 2.4191 | 8 | | 2.5339 | 2.4177 | 9 | | 2.5332 | 2.4188 | 10 | | 2.5324 | 2.4160 | 11 | | 2.5317 | 2.4164 | 12 | | 2.5309 | 2.4145 | 13 | | 2.5302 | 2.4153 | 14 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
sorayutmild/simcse-model-wangchanberta-finetuned-sanook-news
sorayutmild
2022-07-24T11:37:48Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "camembert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-07-24T08:45:14Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sorayutmild/simcse-model-wangchanberta-finetuned-sanook-news This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sorayutmild/simcse-model-wangchanberta-finetuned-sanook-news') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sorayutmild/simcse-model-wangchanberta-finetuned-sanook-news') model = AutoModel.from_pretrained('sorayutmild/simcse-model-wangchanberta-finetuned-sanook-news') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sorayutmild/simcse-model-wangchanberta-finetuned-sanook-news) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2542 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 3e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 32, 'do_lower_case': False}) with Transformer model: CamembertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
ChechkovYevhen/ppo-LunarLander-v2
ChechkovYevhen
2022-07-24T11:11:46Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-24T11:11:19Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 181.33 +/- 82.19 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```