modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-07 06:34:03
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
544 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-07 06:33:46
card
stringlengths
11
1.01M
teacookies/autonlp-roberta-base-squad2-24465521
teacookies
2021-10-22T08:21:40Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "autonlp", "unk", "dataset:teacookies/autonlp-data-roberta-base-squad2", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-roberta-base-squad2 co2_eq_emissions: 70.20260764805424 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 24465521 - CO2 Emissions (in grams): 70.20260764805424 ## Validation Metrics - Loss: 0.6295848488807678 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-roberta-base-squad2-24465521 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465521", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465521", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-roberta-base-squad2-24465524
teacookies
2021-10-22T08:14:00Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "autonlp", "unk", "dataset:teacookies/autonlp-data-roberta-base-squad2", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-roberta-base-squad2 co2_eq_emissions: 58.51753681929935 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 24465524 - CO2 Emissions (in grams): 58.51753681929935 ## Validation Metrics - Loss: 0.5759999752044678 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-roberta-base-squad2-24465524 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465524", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465524", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-roberta-base-squad2-24465520
teacookies
2021-10-22T08:13:49Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "autonlp", "unk", "dataset:teacookies/autonlp-data-roberta-base-squad2", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-roberta-base-squad2 co2_eq_emissions: 57.56554511511173 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 24465520 - CO2 Emissions (in grams): 57.56554511511173 ## Validation Metrics - Loss: 0.6455457806587219 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-roberta-base-squad2-24465520 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465520", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465520", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-roberta-base-squad2-24465517
teacookies
2021-10-22T08:13:41Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "autonlp", "unk", "dataset:teacookies/autonlp-data-roberta-base-squad2", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-roberta-base-squad2 co2_eq_emissions: 54.75747617143382 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 24465517 - CO2 Emissions (in grams): 54.75747617143382 ## Validation Metrics - Loss: 0.6653227806091309 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-roberta-base-squad2-24465517 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465517", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465517", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-roberta-base-squad2-24465519
teacookies
2021-10-22T08:13:26Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "autonlp", "unk", "dataset:teacookies/autonlp-data-roberta-base-squad2", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-roberta-base-squad2 co2_eq_emissions: 58.19097299648645 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 24465519 - CO2 Emissions (in grams): 58.19097299648645 ## Validation Metrics - Loss: 0.566668689250946 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-roberta-base-squad2-24465519 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465519", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465519", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-roberta-base-squad2-24465523
teacookies
2021-10-22T08:13:18Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "autonlp", "unk", "dataset:teacookies/autonlp-data-roberta-base-squad2", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-roberta-base-squad2 co2_eq_emissions: 56.99866929988893 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 24465523 - CO2 Emissions (in grams): 56.99866929988893 ## Validation Metrics - Loss: 0.5468788146972656 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-roberta-base-squad2-24465523 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465523", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465523", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-roberta-base-squad2-24465515
teacookies
2021-10-22T08:11:45Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "autonlp", "unk", "dataset:teacookies/autonlp-data-roberta-base-squad2", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-roberta-base-squad2 co2_eq_emissions: 56.45146749922553 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 24465515 - CO2 Emissions (in grams): 56.45146749922553 ## Validation Metrics - Loss: 0.5932255387306213 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-roberta-base-squad2-24465515 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465515", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465515", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-roberta-base-squad2-24465522
teacookies
2021-10-22T08:05:40Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "autonlp", "unk", "dataset:teacookies/autonlp-data-roberta-base-squad2", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-roberta-base-squad2 co2_eq_emissions: 44.450538076574766 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 24465522 - CO2 Emissions (in grams): 44.450538076574766 ## Validation Metrics - Loss: 0.5572742223739624 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-roberta-base-squad2-24465522 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465522", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465522", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
teacookies/autonlp-roberta-base-squad2-24465518
teacookies
2021-10-22T08:04:33Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "autonlp", "unk", "dataset:teacookies/autonlp-data-roberta-base-squad2", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - autonlp - question-answering language: unk widget: - text: "Who loves AutoNLP?" context: "Everyone loves AutoNLP" datasets: - teacookies/autonlp-data-roberta-base-squad2 co2_eq_emissions: 45.268576304018616 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 24465518 - CO2 Emissions (in grams): 45.268576304018616 ## Validation Metrics - Loss: 0.5742421746253967 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-roberta-base-squad2-24465518 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465518", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465518", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
Sin/DialoGPT-small-zai
Sin
2021-10-21T23:21:07Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
conver = pipeline("conversational") --- tags: - conversational --- # Harry potter DialoGPT model
huggingtweets/degg-dril-fred_delicious
huggingtweets
2021-10-21T19:39:06Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/degg-dril-fred_delicious/1634845142916/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/847818629840228354/VXyQHfn0_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/58546628/goat22_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/726824334002638848/BEZFr1k8_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">wint & deg & Fred Delicious</div> <div style="text-align: center; font-size: 14px;">@degg-dril-fred_delicious</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from wint & deg & Fred Delicious. | Data | wint | deg | Fred Delicious | | --- | --- | --- | --- | | Tweets downloaded | 3227 | 3152 | 3235 | | Retweets | 473 | 142 | 429 | | Short tweets | 318 | 42 | 398 | | Tweets kept | 2436 | 2968 | 2408 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1mwoed1f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @degg-dril-fred_delicious's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1a691ucn) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1a691ucn/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/degg-dril-fred_delicious') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
lewtun/xlm-roberta-base-finetuned-marc-en
lewtun
2021-10-21T18:53:52Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: xlm-roberta-base-finetuned-marc-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.8850 - Mae: 0.4390 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1589 | 1.0 | 235 | 0.9769 | 0.5122 | | 0.974 | 2.0 | 470 | 0.8850 | 0.4390 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
aditeyabaral/sentencetransformer-roberta-base
aditeyabaral
2021-10-21T18:03:26Z
5
1
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # aditeyabaral/sentencetransformer-roberta-base This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('aditeyabaral/sentencetransformer-roberta-base') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('aditeyabaral/sentencetransformer-roberta-base') model = AutoModel.from_pretrained('aditeyabaral/sentencetransformer-roberta-base') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=aditeyabaral/sentencetransformer-roberta-base) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 9234 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
tiennvcs/distilbert-base-uncased-finetuned-infovqa
tiennvcs
2021-10-21T11:37:56Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-infovqa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-infovqa This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.8872 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 250500 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.02 | 100 | 4.7706 | | No log | 0.05 | 200 | 4.4399 | | No log | 0.07 | 300 | 3.8175 | | No log | 0.09 | 400 | 3.8306 | | 3.3071 | 0.12 | 500 | 3.6480 | | 3.3071 | 0.14 | 600 | 3.6451 | | 3.3071 | 0.16 | 700 | 3.4974 | | 3.3071 | 0.19 | 800 | 3.4686 | | 3.3071 | 0.21 | 900 | 3.4703 | | 3.5336 | 0.23 | 1000 | 3.3165 | | 3.5336 | 0.25 | 1100 | 3.3634 | | 3.5336 | 0.28 | 1200 | 3.3466 | | 3.5336 | 0.3 | 1300 | 3.3411 | | 3.5336 | 0.32 | 1400 | 3.2456 | | 3.3593 | 0.35 | 1500 | 3.3257 | | 3.3593 | 0.37 | 1600 | 3.2941 | | 3.3593 | 0.39 | 1700 | 3.2581 | | 3.3593 | 0.42 | 1800 | 3.1680 | | 3.3593 | 0.44 | 1900 | 3.2077 | | 3.2436 | 0.46 | 2000 | 3.2422 | | 3.2436 | 0.49 | 2100 | 3.2529 | | 3.2436 | 0.51 | 2200 | 3.2681 | | 3.2436 | 0.53 | 2300 | 3.1055 | | 3.2436 | 0.56 | 2400 | 3.0174 | | 3.093 | 0.58 | 2500 | 3.0608 | | 3.093 | 0.6 | 2600 | 3.0200 | | 3.093 | 0.63 | 2700 | 2.9884 | | 3.093 | 0.65 | 2800 | 3.0041 | | 3.093 | 0.67 | 2900 | 2.9700 | | 3.0087 | 0.69 | 3000 | 3.0993 | | 3.0087 | 0.72 | 3100 | 3.0499 | | 3.0087 | 0.74 | 3200 | 2.9317 | | 3.0087 | 0.76 | 3300 | 3.0817 | | 3.0087 | 0.79 | 3400 | 3.0035 | | 2.9694 | 0.81 | 3500 | 3.0850 | | 2.9694 | 0.83 | 3600 | 2.9948 | | 2.9694 | 0.86 | 3700 | 2.9874 | | 2.9694 | 0.88 | 3800 | 2.9202 | | 2.9694 | 0.9 | 3900 | 2.9322 | | 2.8277 | 0.93 | 4000 | 2.9195 | | 2.8277 | 0.95 | 4100 | 2.8638 | | 2.8277 | 0.97 | 4200 | 2.8809 | | 2.8277 | 1.0 | 4300 | 2.8872 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
BSC-LT/roberta-large-bne-capitel-ner
BSC-LT
2021-10-21T10:31:30Z
13
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "national library of spain", "spanish", "bne", "capitel", "ner", "es", "dataset:bne", "dataset:capitel", "arxiv:1907.11692", "arxiv:2107.07253", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: - es license: apache-2.0 tags: - "national library of spain" - "spanish" - "bne" - "capitel" - "ner" datasets: - "bne" - "capitel" metrics: - "f1" --- **⚠️NOTICE⚠️: THIS MODEL HAS BEEN MOVED TO THE FOLLOWING URL AND WILL SOON BE REMOVED:** https://huggingface.co/PlanTL-GOB-ES/roberta-large-bne-capitel-ner # Spanish RoBERTa-large trained on BNE finetuned for CAPITEL Named Entity Recognition (NER) dataset. RoBERTa-large-bne is a transformer-based masked language model for the Spanish language. It is based on the [RoBERTa](https://arxiv.org/abs/1907.11692) large model and has been pre-trained using the largest Spanish corpus known to date, with a total of 570GB of clean and deduplicated text processed for this work, compiled from the web crawlings performed by the [National Library of Spain (Biblioteca Nacional de España)](http://www.bne.es/en/Inicio/index.html) from 2009 to 2019. Original pre-trained model can be found here: https://huggingface.co/BSC-TeMU/roberta-large-bne ## Dataset The dataset used is the one from the [CAPITEL competition at IberLEF 2020](https://sites.google.com/view/capitel2020) (sub-task 1). ## Evaluation and results F1 Score: 0.8998 For evaluation details visit our [GitHub repository](https://github.com/PlanTL-SANIDAD/lm-spanish). ## Citing Check out our paper for all the details: https://arxiv.org/abs/2107.07253 ``` @misc{gutierrezfandino2021spanish, title={Spanish Language Models}, author={Asier Gutiérrez-Fandiño and Jordi Armengol-Estapé and Marc Pàmies and Joan Llop-Palao and Joaquín Silveira-Ocampo and Casimiro Pio Carrino and Aitor Gonzalez-Agirre and Carme Armentano-Oller and Carlos Rodriguez-Penagos and Marta Villegas}, year={2021}, eprint={2107.07253}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
BSC-LT/roberta-base-bne
BSC-LT
2021-10-21T10:30:31Z
2,054
9
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "national library of spain", "spanish", "bne", "es", "dataset:bne", "arxiv:1907.11692", "arxiv:2107.07253", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: - es license: apache-2.0 tags: - "national library of spain" - "spanish" - "bne" datasets: - "bne" metrics: - "ppl" widget: - text: "Este año las campanadas de La Sexta las presentará <mask>." - text: "David Broncano es un presentador de La <mask>." - text: "Gracias a los datos de la BNE se ha podido <mask> este modelo del lenguaje." - text: "Hay base legal dentro del marco <mask> actual." --- **⚠️NOTICE⚠️: THIS MODEL HAS BEEN MOVED TO THE FOLLOWING URL AND WILL SOON BE REMOVED:** https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne # RoBERTa base trained with data from National Library of Spain (BNE) ## Model Description RoBERTa-base-bne is a transformer-based masked language model for the Spanish language. It is based on the [RoBERTa](https://arxiv.org/abs/1907.11692) base model and has been pre-trained using the largest Spanish corpus known to date, with a total of 570GB of clean and deduplicated text processed for this work, compiled from the web crawlings performed by the [National Library of Spain (Biblioteca Nacional de España)](http://www.bne.es/en/Inicio/index.html) from 2009 to 2019. ## Training corpora and preprocessing The [National Library of Spain (Biblioteca Nacional de España)](http://www.bne.es/en/Inicio/index.html) crawls all .es domains once a year. The training corpus consists of 59TB of WARC files from these crawls, carried out from 2009 to 2019. To obtain a high-quality training corpus, the corpus has been preprocessed with a pipeline of operations, including among the others, sentence splitting, language detection, filtering of bad-formed sentences and deduplication of repetitive contents. During the process document boundaries are kept. This resulted into 2TB of Spanish clean corpus. Further global deduplication among the corpus is applied, resulting into 570GB of text. Some of the statistics of the corpus: | Corpora | Number of documents | Number of tokens | Size (GB) | |---------|---------------------|------------------|-----------| | BNE | 201,080,084 | 135,733,450,668 | 570GB | ## Tokenization and pre-training The training corpus has been tokenized using a byte version of Byte-Pair Encoding (BPE) used in the original [RoBERTA](https://arxiv.org/abs/1907.11692) model with a vocabulary size of 50,262 tokens. The RoBERTa-base-bne pre-training consists of a masked language model training that follows the approach employed for the RoBERTa base. The training lasted a total of 48 hours with 16 computing nodes each one with 4 NVIDIA V100 GPUs of 16GB VRAM. ## Evaluation and results For evaluation details visit our [GitHub repository](https://github.com/PlanTL-SANIDAD/lm-spanish). ## Citing Check out our paper for all the details: https://arxiv.org/abs/2107.07253 ``` @misc{gutierrezfandino2021spanish, title={Spanish Language Models}, author={Asier Gutiérrez-Fandiño and Jordi Armengol-Estapé and Marc Pàmies and Joan Llop-Palao and Joaquín Silveira-Ocampo and Casimiro Pio Carrino and Aitor Gonzalez-Agirre and Carme Armentano-Oller and Carlos Rodriguez-Penagos and Marta Villegas}, year={2021}, eprint={2107.07253}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
BSC-LT/roberta-base-bne-sqac
BSC-LT
2021-10-21T10:30:10Z
17
4
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "national library of spain", "spanish", "bne", "qa", "question answering", "es", "dataset:BSC-TeMU/SQAC", "arxiv:1907.11692", "arxiv:2107.07253", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- language: - es license: apache-2.0 tags: - "national library of spain" - "spanish" - "bne" - "qa" - "question answering" datasets: - "BSC-TeMU/SQAC" metrics: - "f1" --- **⚠️NOTICE⚠️: THIS MODEL HAS BEEN MOVED TO THE FOLLOWING URL AND WILL SOON BE REMOVED:** https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne-sqac # Spanish RoBERTa-base trained on BNE finetuned for Spanish Question Answering Corpus (SQAC) dataset. RoBERTa-base-bne is a transformer-based masked language model for the Spanish language. It is based on the [RoBERTa](https://arxiv.org/abs/1907.11692) base model and has been pre-trained using the largest Spanish corpus known to date, with a total of 570GB of clean and deduplicated text processed for this work, compiled from the web crawlings performed by the [National Library of Spain (Biblioteca Nacional de España)](http://www.bne.es/en/Inicio/index.html) from 2009 to 2019. Original pre-trained model can be found here: https://huggingface.co/BSC-TeMU/roberta-base-bne ## Dataset The dataset used is the [SQAC corpus](https://huggingface.co/datasets/BSC-TeMU/SQAC). ## Evaluation and results F1 Score: 0.7923 (average of 5 runs). For evaluation details visit our [GitHub repository](https://github.com/PlanTL-SANIDAD/lm-spanish). ## Citing Check out our paper for all the details: https://arxiv.org/abs/2107.07253 ``` @misc{gutierrezfandino2021spanish, title={Spanish Language Models}, author={Asier Gutiérrez-Fandiño and Jordi Armengol-Estapé and Marc Pàmies and Joan Llop-Palao and Joaquín Silveira-Ocampo and Casimiro Pio Carrino and Aitor Gonzalez-Agirre and Carme Armentano-Oller and Carlos Rodriguez-Penagos and Marta Villegas}, year={2021}, eprint={2107.07253}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
BSC-LT/roberta-base-bne-capitel-ner
BSC-LT
2021-10-21T10:29:35Z
43
1
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "national library of spain", "spanish", "bne", "capitel", "ner", "es", "dataset:bne", "dataset:capitel", "arxiv:1907.11692", "arxiv:2107.07253", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: - es license: apache-2.0 tags: - "national library of spain" - "spanish" - "bne" - "capitel" - "ner" datasets: - "bne" - "capitel" metrics: - "f1" --- **⚠️NOTICE⚠️: THIS MODEL HAS BEEN MOVED TO THE FOLLOWING URL AND WILL SOON BE REMOVED:** https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne-capitel-ner # Spanish RoBERTa-base trained on BNE finetuned for CAPITEL Named Entity Recognition (NER) dataset. RoBERTa-base-bne is a transformer-based masked language model for the Spanish language. It is based on the [RoBERTa](https://arxiv.org/abs/1907.11692) base model and has been pre-trained using the largest Spanish corpus known to date, with a total of 570GB of clean and deduplicated text processed for this work, compiled from the web crawlings performed by the [National Library of Spain (Biblioteca Nacional de España)](http://www.bne.es/en/Inicio/index.html) from 2009 to 2019. Original pre-trained model can be found here: https://huggingface.co/BSC-TeMU/roberta-base-bne ## Dataset The dataset used is the one from the [CAPITEL competition at IberLEF 2020](https://sites.google.com/view/capitel2020) (sub-task 1). ## Evaluation and results F1 Score: 0.8960 For evaluation details visit our [GitHub repository](https://github.com/PlanTL-SANIDAD/lm-spanish). ## Citing Check out our paper for all the details: https://arxiv.org/abs/2107.07253 ``` @misc{gutierrezfandino2021spanish, title={Spanish Language Models}, author={Asier Gutiérrez-Fandiño and Jordi Armengol-Estapé and Marc Pàmies and Joan Llop-Palao and Joaquín Silveira-Ocampo and Casimiro Pio Carrino and Aitor Gonzalez-Agirre and Carme Armentano-Oller and Carlos Rodriguez-Penagos and Marta Villegas}, year={2021}, eprint={2107.07253}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
BSC-LT/roberta-base-biomedical-es
BSC-LT
2021-10-21T10:28:29Z
70
3
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "biomedical", "spanish", "es", "arxiv:2109.03570", "arxiv:2109.07765", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: - es tags: - biomedical - spanish license: apache-2.0 metrics: - ppl widget: - text: "El único antecedente personal a reseñar era la <mask> arterial." - text: "Las radiologías óseas de cuerpo entero no detectan alteraciones <mask>, ni alteraciones vertebrales." - text: "En el <mask> toraco-abdómino-pélvico no se encontraron hallazgos patológicos de interés." --- **⚠️NOTICE⚠️: THIS MODEL HAS BEEN MOVED TO THE FOLLOWING URL AND WILL SOON BE REMOVED:** https://huggingface.co/PlanTL-GOB-ES/roberta-base-biomedical-es # Biomedical language model for Spanish Biomedical pretrained language model for Spanish. For more details about the corpus, the pretraining and the evaluation, check the official [repository](https://github.com/PlanTL-SANIDAD/lm-biomedical-clinical-es) and read our [preprint](https://arxiv.org/abs/2109.03570) "_Carrino, C. P., Armengol-Estapé, J., Gutiérrez-Fandiño, A., Llop-Palao, J., Pàmies, M., Gonzalez-Agirre, A., & Villegas, M. (2021). Biomedical and Clinical Language Models for Spanish: On the Benefits of Domain-Specific Pretraining in a Mid-Resource Scenario._". ## Tokenization and model pretraining This model is a [RoBERTa-based](https://github.com/pytorch/fairseq/tree/master/examples/roberta) model trained on a **biomedical** corpus in Spanish collected from several sources (see next section). The training corpus has been tokenized using a byte version of [Byte-Pair Encoding (BPE)](https://github.com/openai/gpt-2) used in the original [RoBERTA](https://github.com/pytorch/fairseq/tree/master/examples/roberta) model with a vocabulary size of 52,000 tokens. The pretraining consists of a masked language model training at the subword level following the approach employed for the RoBERTa base model with the same hyperparameters as in the original work. The training lasted a total of 48 hours with 16 NVIDIA V100 GPUs of 16GB DDRAM, using Adam optimizer with a peak learning rate of 0.0005 and an effective batch size of 2,048 sentences. ## Training corpora and preprocessing The training corpus is composed of several biomedical corpora in Spanish, collected from publicly available corpora and crawlers. To obtain a high-quality training corpus, a cleaning pipeline with the following operations has been applied: - data parsing in different formats - sentence splitting - language detection - filtering of ill-formed sentences - deduplication of repetitive contents - keep the original document boundaries Finally, the corpora are concatenated and further global deduplication among the corpora have been applied. The result is a medium-size biomedical corpus for Spanish composed of about 963M tokens. The table below shows some basic statistics of the individual cleaned corpora: | Name | No. tokens | Description | |-----------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | [Medical crawler](https://zenodo.org/record/4561970) | 745,705,946 | Crawler of more than 3,000 URLs belonging to Spanish biomedical and health domains. | | Clinical cases misc. | 102,855,267 | A miscellany of medical content, essentially clinical cases. Note that a clinical case report is a scientific publication where medical practitioners share patient cases and it is different from a clinical note or document. | | [Scielo](https://github.com/PlanTL-SANIDAD/SciELO-Spain-Crawler) | 60,007,289 | Publications written in Spanish crawled from the Spanish SciELO server in 2017. | | [BARR2_background](https://temu.bsc.es/BARR2/downloads/background_set.raw_text.tar.bz2) | 24,516,442 | Biomedical Abbreviation Recognition and Resolution (BARR2) containing Spanish clinical case study sections from a variety of clinical disciplines. | | Wikipedia_life_sciences | 13,890,501 | Wikipedia articles crawled 04/01/2021 with the [Wikipedia API python library](https://pypi.org/project/Wikipedia-API/) starting from the "Ciencias\_de\_la\_vida" category up to a maximum of 5 subcategories. Multiple links to the same articles are then discarded to avoid repeating content. | | Patents | 13,463,387 | Google Patent in Medical Domain for Spain (Spanish). The accepted codes (Medical Domain) for Json files of patents are: "A61B", "A61C","A61F", "A61H", "A61K", "A61L","A61M", "A61B", "A61P". | | [EMEA](http://opus.nlpl.eu/download.php?f=EMEA/v3/moses/en-es.txt.zip) | 5,377,448 | Spanish-side documents extracted from parallel corpora made out of PDF documents from the European Medicines Agency. | | [mespen_Medline](https://zenodo.org/record/3562536#.YTt1fH2xXbR) | 4,166,077 | Spanish-side articles extracted from a collection of Spanish-English parallel corpus consisting of biomedical scientific literature. The collection of parallel resources are aggregated from the MedlinePlus source. | | PubMed | 1,858,966 | Open-access articles from the PubMed repository crawled in 2017. | ## Evaluation and results The model has been evaluated on the Named Entity Recognition (NER) using the following datasets: - [PharmaCoNER](https://zenodo.org/record/4270158): is a track on chemical and drug mention recognition from Spanish medical texts (for more info see: https://temu.bsc.es/pharmaconer/). - [CANTEMIST](https://zenodo.org/record/3978041#.YTt5qH2xXbQ): is a shared task specifically focusing on named entity recognition of tumor morphology, in Spanish (for more info see: https://zenodo.org/record/3978041#.YTt5qH2xXbQ). - ICTUSnet: consists of 1,006 hospital discharge reports of patients admitted for stroke from 18 different Spanish hospitals. It contains more than 79,000 annotations for 51 different kinds of variables. The evaluation results are compared against the [mBERT](https://huggingface.co/bert-base-multilingual-cased) and [BETO](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) models: | F1 - Precision - Recall | roberta-base-biomedical-es | mBERT | BETO | |---------------------------|----------------------------|-------------------------------|-------------------------| | PharmaCoNER | **89.48** - **87.85** - **91.18** | 87.46 - 86.50 - 88.46 | 88.18 - 87.12 - 89.28 | | CANTEMIST | **83.87** - **81.70** - **86.17** | 82.61 - 81.12 - 84.15 | 82.42 - 80.91 - 84.00 | | ICTUSnet | **88.12** - **85.56** - **90.83** | 86.75 - 83.53 - 90.23 | 85.95 - 83.10 - 89.02 | ## Intended uses & limitations The model is ready-to-use only for masked language modelling to perform the Fill Mask task (try the inference API or read the next section) However, the is intended to be fine-tuned on downstream tasks such as Named Entity Recognition or Text Classification. ## Cite If you use our models, please cite our latest preprint: ```bibtex @misc{carrino2021biomedical, title={Biomedical and Clinical Language Models for Spanish: On the Benefits of Domain-Specific Pretraining in a Mid-Resource Scenario}, author={Casimiro Pio Carrino and Jordi Armengol-Estapé and Asier Gutiérrez-Fandiño and Joan Llop-Palao and Marc Pàmies and Aitor Gonzalez-Agirre and Marta Villegas}, year={2021}, eprint={2109.03570}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` If you use our Medical Crawler corpus, please cite the preprint: ```bibtex @misc{carrino2021spanish, title={Spanish Biomedical Crawled Corpus: A Large, Diverse Dataset for Spanish Biomedical Language Models}, author={Casimiro Pio Carrino and Jordi Armengol-Estapé and Ona de Gibert Bonet and Asier Gutiérrez-Fandiño and Aitor Gonzalez-Agirre and Martin Krallinger and Marta Villegas}, year={2021}, eprint={2109.07765}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` --- ## How to use ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("BSC-TeMU/roberta-base-biomedical-es") model = AutoModelForMaskedLM.from_pretrained("BSC-TeMU/roberta-base-biomedical-es") from transformers import pipeline unmasker = pipeline('fill-mask', model="BSC-TeMU/roberta-base-biomedical-es") unmasker("El único antecedente personal a reseñar era la <mask> arterial.") ``` ``` # Output [ { "sequence": " El único antecedente personal a reseñar era la hipertensión arterial.", "score": 0.9855039715766907, "token": 3529, "token_str": " hipertensión" }, { "sequence": " El único antecedente personal a reseñar era la diabetes arterial.", "score": 0.0039140828885138035, "token": 1945, "token_str": " diabetes" }, { "sequence": " El único antecedente personal a reseñar era la hipotensión arterial.", "score": 0.002484665485098958, "token": 11483, "token_str": " hipotensión" }, { "sequence": " El único antecedente personal a reseñar era la Hipertensión arterial.", "score": 0.0023484621196985245, "token": 12238, "token_str": " Hipertensión" }, { "sequence": " El único antecedente personal a reseñar era la presión arterial.", "score": 0.0008009297889657319, "token": 2267, "token_str": " presión" } ] ```
BSC-LT/roberta-base-biomedical-clinical-es
BSC-LT
2021-10-21T10:28:12Z
12
7
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "biomedical", "clinical", "spanish", "es", "arxiv:2109.03570", "arxiv:2109.07765", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: - es tags: - biomedical - clinical - spanish license: apache-2.0 metrics: - ppl widget: - text: "El único antecedente personal a reseñar era la <mask> arterial." - text: "Las radiologías óseas de cuerpo entero no detectan alteraciones <mask>, ni alteraciones vertebrales." - text: "En el <mask> toraco-abdómino-pélvico no se encontraron hallazgos patológicos de interés." --- **⚠️NOTICE⚠️: THIS MODEL HAS BEEN MOVED TO THE FOLLOWING URL AND WILL SOON BE REMOVED:** https://huggingface.co/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es # Biomedical-clinical language model for Spanish Biomedical pretrained language model for Spanish. For more details about the corpus, the pretraining and the evaluation, check the official [repository](https://github.com/PlanTL-SANIDAD/lm-biomedical-clinical-es) and read our [preprint](https://arxiv.org/abs/2109.03570) "_Carrino, C. P., Armengol-Estapé, J., Gutiérrez-Fandiño, A., Llop-Palao, J., Pàmies, M., Gonzalez-Agirre, A., & Villegas, M. (2021). Biomedical and Clinical Language Models for Spanish: On the Benefits of Domain-Specific Pretraining in a Mid-Resource Scenario._". ## Tokenization and model pretraining This model is a [RoBERTa-based](https://github.com/pytorch/fairseq/tree/master/examples/roberta) model trained on a **biomedical-clinical** corpus in Spanish collected from several sources (see next section). The training corpus has been tokenized using a byte version of [Byte-Pair Encoding (BPE)](https://github.com/openai/gpt-2) used in the original [RoBERTA](https://github.com/pytorch/fairseq/tree/master/examples/roberta) model with a vocabulary size of 52,000 tokens. The pretraining consists of a masked language model training at the subword level following the approach employed for the RoBERTa base model with the same hyperparameters as in the original work. The training lasted a total of 48 hours with 16 NVIDIA V100 GPUs of 16GB DDRAM, using Adam optimizer with a peak learning rate of 0.0005 and an effective batch size of 2,048 sentences. ## Training corpora and preprocessing The training corpus is composed of several biomedical corpora in Spanish, collected from publicly available corpora and crawlers, and a real-world clinical corpus collected from more than 278K clinical documents and notes. To obtain a high-quality training corpus while retaining the idiosyncrasies of the clinical language, a cleaning pipeline has been applied only to the biomedical corpora, keeping the clinical corpus uncleaned. Essentially, the cleaning operations used are: - data parsing in different formats - sentence splitting - language detection - filtering of ill-formed sentences - deduplication of repetitive contents - keep the original document boundaries Then, the biomedical corpora are concatenated and further global deduplication among the biomedical corpora have been applied. Eventually, the clinical corpus is concatenated to the cleaned biomedical corpus resulting in a medium-size biomedical-clinical corpus for Spanish composed of more than 1B tokens. The table below shows some basic statistics of the individual cleaned corpora: | Name | No. tokens | Description | |-----------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | [Medical crawler](https://zenodo.org/record/4561970) | 745,705,946 | Crawler of more than 3,000 URLs belonging to Spanish biomedical and health domains. | | Clinical cases misc. | 102,855,267 | A miscellany of medical content, essentially clinical cases. Note that a clinical case report is a scientific publication where medical practitioners share patient cases and it is different from a clinical note or document. | | Clinical notes/documents | 91,250,080 | Collection of more than 278K clinical documents, including discharge reports, clinical course notes and X-ray reports, for a total of 91M tokens. | | [Scielo](https://github.com/PlanTL-SANIDAD/SciELO-Spain-Crawler) | 60,007,289 | Publications written in Spanish crawled from the Spanish SciELO server in 2017. | | [BARR2_background](https://temu.bsc.es/BARR2/downloads/background_set.raw_text.tar.bz2) | 24,516,442 | Biomedical Abbreviation Recognition and Resolution (BARR2) containing Spanish clinical case study sections from a variety of clinical disciplines. | | Wikipedia_life_sciences | 13,890,501 | Wikipedia articles crawled 04/01/2021 with the [Wikipedia API python library](https://pypi.org/project/Wikipedia-API/) starting from the "Ciencias\_de\_la\_vida" category up to a maximum of 5 subcategories. Multiple links to the same articles are then discarded to avoid repeating content. | | Patents | 13,463,387 | Google Patent in Medical Domain for Spain (Spanish). The accepted codes (Medical Domain) for Json files of patents are: "A61B", "A61C","A61F", "A61H", "A61K", "A61L","A61M", "A61B", "A61P". | | [EMEA](http://opus.nlpl.eu/download.php?f=EMEA/v3/moses/en-es.txt.zip) | 5,377,448 | Spanish-side documents extracted from parallel corpora made out of PDF documents from the European Medicines Agency. | | [mespen_Medline](https://zenodo.org/record/3562536#.YTt1fH2xXbR) | 4,166,077 | Spanish-side articles extracted from a collection of Spanish-English parallel corpus consisting of biomedical scientific literature. The collection of parallel resources are aggregated from the MedlinePlus source. | | PubMed | 1,858,966 | Open-access articles from the PubMed repository crawled in 2017. | ## Evaluation and results The model has been evaluated on the Named Entity Recognition (NER) using the following datasets: - [PharmaCoNER](https://zenodo.org/record/4270158): is a track on chemical and drug mention recognition from Spanish medical texts (for more info see: https://temu.bsc.es/pharmaconer/). - [CANTEMIST](https://zenodo.org/record/3978041#.YTt5qH2xXbQ): is a shared task specifically focusing on named entity recognition of tumor morphology, in Spanish (for more info see: https://zenodo.org/record/3978041#.YTt5qH2xXbQ). - ICTUSnet: consists of 1,006 hospital discharge reports of patients admitted for stroke from 18 different Spanish hospitals. It contains more than 79,000 annotations for 51 different kinds of variables. The evaluation results are compared against the [mBERT](https://huggingface.co/bert-base-multilingual-cased) and [BETO](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) models: | F1 - Precision - Recall | roberta-base-biomedical-clinical-es | mBERT | BETO | |---------------------------|----------------------------|-------------------------------|-------------------------| | PharmaCoNER | **90.04** - **88.92** - **91.18** | 87.46 - 86.50 - 88.46 | 88.18 - 87.12 - 89.28 | | CANTEMIST | **83.34** - **81.48** - **85.30** | 82.61 - 81.12 - 84.15 | 82.42 - 80.91 - 84.00 | | ICTUSnet | **88.08** - **84.92** - **91.50** | 86.75 - 83.53 - 90.23 | 85.95 - 83.10 - 89.02 | ## Intended uses & limitations The model is ready-to-use only for masked language modelling to perform the Fill Mask task (try the inference API or read the next section) However, the is intended to be fine-tuned on downstream tasks such as Named Entity Recognition or Text Classification. ## Cite If you use our models, please cite our latest preprint: ```bibtex @misc{carrino2021biomedical, title={Biomedical and Clinical Language Models for Spanish: On the Benefits of Domain-Specific Pretraining in a Mid-Resource Scenario}, author={Casimiro Pio Carrino and Jordi Armengol-Estapé and Asier Gutiérrez-Fandiño and Joan Llop-Palao and Marc Pàmies and Aitor Gonzalez-Agirre and Marta Villegas}, year={2021}, eprint={2109.03570}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` If you use our Medical Crawler corpus, please cite the preprint: ```bibtex @misc{carrino2021spanish, title={Spanish Biomedical Crawled Corpus: A Large, Diverse Dataset for Spanish Biomedical Language Models}, author={Casimiro Pio Carrino and Jordi Armengol-Estapé and Ona de Gibert Bonet and Asier Gutiérrez-Fandiño and Aitor Gonzalez-Agirre and Martin Krallinger and Marta Villegas}, year={2021}, eprint={2109.07765}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` --- --- ## How to use ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("BSC-TeMU/roberta-base-biomedical-es") model = AutoModelForMaskedLM.from_pretrained("BSC-TeMU/roberta-base-biomedical-es") from transformers import pipeline unmasker = pipeline('fill-mask', model="BSC-TeMU/roberta-base-biomedical-es") unmasker("El único antecedente personal a reseñar era la <mask> arterial.") ``` ``` # Output [ { "sequence": " El único antecedente personal a reseñar era la hipertensión arterial.", "score": 0.9855039715766907, "token": 3529, "token_str": " hipertensión" }, { "sequence": " El único antecedente personal a reseñar era la diabetes arterial.", "score": 0.0039140828885138035, "token": 1945, "token_str": " diabetes" }, { "sequence": " El único antecedente personal a reseñar era la hipotensión arterial.", "score": 0.002484665485098958, "token": 11483, "token_str": " hipotensión" }, { "sequence": " El único antecedente personal a reseñar era la Hipertensión arterial.", "score": 0.0023484621196985245, "token": 12238, "token_str": " Hipertensión" }, { "sequence": " El único antecedente personal a reseñar era la presión arterial.", "score": 0.0008009297889657319, "token": 2267, "token_str": " presión" } ] ```
aditeyabaral/sentencetransformer-bert-base-cased
aditeyabaral
2021-10-21T09:50:09Z
6
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # aditeyabaral/sentencetransformer-bert-base-cased This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('aditeyabaral/sentencetransformer-bert-base-cased') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('aditeyabaral/sentencetransformer-bert-base-cased') model = AutoModel.from_pretrained('aditeyabaral/sentencetransformer-bert-base-cased') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=aditeyabaral/sentencetransformer-bert-base-cased) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 9234 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
pritoms/distilgpt2-finetuned-mit-lecture
pritoms
2021-10-21T08:59:34Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-mit-lecture results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-mit-lecture This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.8377 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 144 | 3.8737 | | No log | 2.0 | 288 | 3.8436 | | No log | 3.0 | 432 | 3.8377 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
bochaowei/t5-small-finetuned-xsum-wei2
bochaowei
2021-10-21T07:21:16Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small-finetuned-xsum-wei2 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metrics: - name: Rouge1 type: rouge value: 29.2287 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum-wei2 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.4131 - Rouge1: 29.2287 - Rouge2: 8.4073 - Rougel: 23.0934 - Rougelsum: 23.0954 - Gen Len: 18.8236 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.633 | 1.0 | 17004 | 2.4131 | 29.2287 | 8.4073 | 23.0934 | 23.0954 | 18.8236 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
cactode/gpt2_urbandict_textgen
cactode
2021-10-21T06:43:28Z
3
0
transformers
[ "transformers", "pytorch", "tf", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
# GPT2 Fine Tuned on UrbanDictionary Honestly a little horrifying, but still funny. ## Usage Use with GPT2Tokenizer. Pad token should be set to the EOS token. Inputs should be of the form "define <your word>: ". ## Training Data All training data was obtained from [Urban Dictionary Words And Definitions on Kaggle](https://www.kaggle.com/therohk/urban-dictionary-words-dataset). Data was additionally filtered, normalized, and spell-checked. ## Bias This model was trained on public internet data and will almost definitely produce offensive results. Some efforts were made to reduce this (i.e definitions with ethnic / gender-based slurs were removed), but the final model should not be trusted to produce non-offensive definitions.
huggingtweets/raquelbaron__
huggingtweets
2021-10-21T02:55:21Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/raquelbaron__/1634784917653/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1384354978374950920/RwG59WAc_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Raquel Baron</div> <div style="text-align: center; font-size: 14px;">@raquelbaron__</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Raquel Baron. | Data | Raquel Baron | | --- | --- | | Tweets downloaded | 120 | | Retweets | 19 | | Short tweets | 15 | | Tweets kept | 86 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/39wuu832/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @raquelbaron__'s tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2cnx0lr4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2cnx0lr4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/raquelbaron__') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
AyushPJ/ai-club-inductions-21-nlp-distilBERT
AyushPJ
2021-10-20T23:38:45Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer model-index: - name: ai-club-inductions-21-nlp-distilBERT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-club-inductions-21-nlp-distilBERT This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.11.3 - Pytorch 1.7.1+cu110 - Datasets 1.14.0 - Tokenizers 0.10.3
AyushPJ/ai-club-inductions-21-nlp-ALBERT
AyushPJ
2021-10-20T23:28:44Z
9
0
transformers
[ "transformers", "pytorch", "albert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer model-index: - name: ai-club-inductions-21-nlp-ALBERT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-club-inductions-21-nlp-ALBERT This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.11.3 - Pytorch 1.7.1+cpu - Datasets 1.14.0 - Tokenizers 0.10.3
AyushPJ/ai-club-inductions-21-nlp-roBERTa
AyushPJ
2021-10-20T22:33:57Z
11
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer model-index: - name: ai-club-inductions-21-nlp-roBERTa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-club-inductions-21-nlp-roBERTa This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.11.3 - Pytorch 1.7.1+cpu - Datasets 1.14.0 - Tokenizers 0.10.3
bochaowei/t5-small-finetuned-xsum-wei1
bochaowei
2021-10-20T18:33:31Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
20% of the training data --- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small-finetuned-xsum-wei1 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metrics: - name: Rouge1 type: rouge value: 27.5875 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum-wei1 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.5287 - Rouge1: 27.5875 - Rouge2: 7.4083 - Rougel: 21.5654 - Rougelsum: 21.5716 - Gen Len: 18.8205 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.7677 | 1.0 | 3401 | 2.5441 | 27.4235 | 7.2208 | 21.3535 | 21.3636 | 18.8311 | | 2.735 | 2.0 | 6802 | 2.5287 | 27.5875 | 7.4083 | 21.5654 | 21.5716 | 18.8205 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
monologg/koelectra-base-discriminator
monologg
2021-10-20T16:55:57Z
1,292
1
transformers
[ "transformers", "pytorch", "electra", "pretraining", "korean", "ko", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: ko license: apache-2.0 tags: - korean --- # KoELECTRA (Base Discriminator) Pretrained ELECTRA Language Model for Korean (`koelectra-base-discriminator`) For more detail, please see [original repository](https://github.com/monologg/KoELECTRA/blob/master/README_EN.md). ## Usage ### Load model and tokenizer ```python >>> from transformers import ElectraModel, ElectraTokenizer >>> model = ElectraModel.from_pretrained("monologg/koelectra-base-discriminator") >>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-discriminator") ``` ### Tokenizer example ```python >>> from transformers import ElectraTokenizer >>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-discriminator") >>> tokenizer.tokenize("[CLS] 한국어 ELECTRA를 공유합니다. [SEP]") ['[CLS]', '한국어', 'E', '##L', '##EC', '##T', '##RA', '##를', '공유', '##합니다', '.', '[SEP]'] >>> tokenizer.convert_tokens_to_ids(['[CLS]', '한국어', 'E', '##L', '##EC', '##T', '##RA', '##를', '공유', '##합니다', '.', '[SEP]']) [2, 18429, 41, 6240, 15229, 6204, 20894, 5689, 12622, 10690, 18, 3] ``` ## Example using ElectraForPreTraining ```python import torch from transformers import ElectraForPreTraining, ElectraTokenizer discriminator = ElectraForPreTraining.from_pretrained("monologg/koelectra-base-discriminator") tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-discriminator") sentence = "나는 방금 밥을 먹었다." fake_sentence = "나는 내일 밥을 먹었다." fake_tokens = tokenizer.tokenize(fake_sentence) fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") discriminator_outputs = discriminator(fake_inputs) predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2) print(list(zip(fake_tokens, predictions.tolist()[1:-1]))) ```
monologg/koelectra-base-generator
monologg
2021-10-20T16:55:00Z
7
0
transformers
[ "transformers", "pytorch", "electra", "fill-mask", "korean", "ko", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: ko license: apache-2.0 tags: - korean --- # KoELECTRA (Base Generator) Pretrained ELECTRA Language Model for Korean (`koelectra-base-generator`) For more detail, please see [original repository](https://github.com/monologg/KoELECTRA/blob/master/README_EN.md). ## Usage ### Load model and tokenizer ```python >>> from transformers import ElectraModel, ElectraTokenizer >>> model = ElectraModel.from_pretrained("monologg/koelectra-base-generator") >>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-generator") ``` ### Tokenizer example ```python >>> from transformers import ElectraTokenizer >>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-generator") >>> tokenizer.tokenize("[CLS] 한국어 ELECTRA를 공유합니다. [SEP]") ['[CLS]', '한국어', 'E', '##L', '##EC', '##T', '##RA', '##를', '공유', '##합니다', '.', '[SEP]'] >>> tokenizer.convert_tokens_to_ids(['[CLS]', '한국어', 'E', '##L', '##EC', '##T', '##RA', '##를', '공유', '##합니다', '.', '[SEP]']) [2, 18429, 41, 6240, 15229, 6204, 20894, 5689, 12622, 10690, 18, 3] ``` ## Example using ElectraForMaskedLM ```python from transformers import pipeline fill_mask = pipeline( "fill-mask", model="monologg/koelectra-base-generator", tokenizer="monologg/koelectra-base-generator" ) print(fill_mask("나는 {} 밥을 먹었다.".format(fill_mask.tokenizer.mask_token))) ```
monologg/koelectra-base-v2-discriminator
monologg
2021-10-20T16:54:30Z
48
1
transformers
[ "transformers", "pytorch", "electra", "pretraining", "korean", "ko", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: ko license: apache-2.0 tags: - korean --- # KoELECTRA v2 (Base Discriminator) Pretrained ELECTRA Language Model for Korean (`koelectra-base-v2-discriminator`) For more detail, please see [original repository](https://github.com/monologg/KoELECTRA/blob/master/README_EN.md). ## Usage ### Load model and tokenizer ```python >>> from transformers import ElectraModel, ElectraTokenizer >>> model = ElectraModel.from_pretrained("monologg/koelectra-base-v2-discriminator") >>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-v2-discriminator") ``` ### Tokenizer example ```python >>> from transformers import ElectraTokenizer >>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-v2-discriminator") >>> tokenizer.tokenize("[CLS] 한국어 ELECTRA를 공유합니다. [SEP]") ['[CLS]', '한국어', 'EL', '##EC', '##TRA', '##를', '공유', '##합니다', '.', '[SEP]'] >>> tokenizer.convert_tokens_to_ids(['[CLS]', '한국어', 'EL', '##EC', '##TRA', '##를', '공유', '##합니다', '.', '[SEP]']) [2, 5084, 16248, 3770, 19059, 29965, 2259, 10431, 5, 3] ``` ## Example using ElectraForPreTraining ```python import torch from transformers import ElectraForPreTraining, ElectraTokenizer discriminator = ElectraForPreTraining.from_pretrained("monologg/koelectra-base-v2-discriminator") tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-v2-discriminator") sentence = "나는 방금 밥을 먹었다." fake_sentence = "나는 내일 밥을 먹었다." fake_tokens = tokenizer.tokenize(fake_sentence) fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") discriminator_outputs = discriminator(fake_inputs) predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2) print(list(zip(fake_tokens, predictions.tolist()[1:-1]))) ```
monologg/koelectra-base-v2-generator
monologg
2021-10-20T16:54:01Z
3
0
transformers
[ "transformers", "pytorch", "electra", "fill-mask", "korean", "ko", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: ko license: apache-2.0 tags: - korean --- # KoELECTRA v2 (Base Generator) Pretrained ELECTRA Language Model for Korean (`koelectra-base-v2-generator`) For more detail, please see [original repository](https://github.com/monologg/KoELECTRA/blob/master/README_EN.md). ## Usage ### Load model and tokenizer ```python >>> from transformers import ElectraModel, ElectraTokenizer >>> model = ElectraModel.from_pretrained("monologg/koelectra-base-v2-generator") >>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-v2-generator") ``` ### Tokenizer example ```python >>> from transformers import ElectraTokenizer >>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-v2-generator") >>> tokenizer.tokenize("[CLS] 한국어 ELECTRA를 공유합니다. [SEP]") ['[CLS]', '한국어', 'EL', '##EC', '##TRA', '##를', '공유', '##합니다', '.', '[SEP]'] >>> tokenizer.convert_tokens_to_ids(['[CLS]', '한국어', 'EL', '##EC', '##TRA', '##를', '공유', '##합니다', '.', '[SEP]']) [2, 5084, 16248, 3770, 19059, 29965, 2259, 10431, 5, 3] ``` ## Example using ElectraForMaskedLM ```python from transformers import pipeline fill_mask = pipeline( "fill-mask", model="monologg/koelectra-base-v2-generator", tokenizer="monologg/koelectra-base-v2-generator" ) print(fill_mask("나는 {} 밥을 먹었다.".format(fill_mask.tokenizer.mask_token))) ```
jbarry/irish-gpt2
jbarry
2021-10-20T16:40:12Z
6
0
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
This model was trained on the OSCAR ga dataset for experimental purposes. The files used for training the tokenizer and model are included in this repository.
pere/norwegian-gptneo-blue-highlr
pere
2021-10-20T10:57:21Z
2
0
transformers
[ "transformers", "jax", "tensorboard", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# Norwegian GTPNeo Blue. The first Norwegian GPTNeo model. This one is trained only on a administrative corpus.
facebook/hubert-xlarge-ll60k
facebook
2021-10-20T10:20:44Z
794
5
transformers
[ "transformers", "pytorch", "tf", "hubert", "feature-extraction", "speech", "en", "dataset:libri-light", "arxiv:2106.07447", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: en datasets: - libri-light tags: - speech license: apache-2.0 --- # Hubert-Extra-Large [Facebook's Hubert](https://ai.facebook.com/blog/hubert-self-supervised-representation-learning-for-speech-recognition-generation-and-compression) The extra large model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc... The model was pretrained on [Libri-Light](https://github.com/facebookresearch/libri-light). [Paper](https://arxiv.org/abs/2106.07447) Authors: Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed **Abstract** Self-supervised approaches for speech representation learning are challenged by three unique problems: (1) there are multiple sound units in each input utterance, (2) there is no lexicon of input sound units during the pre-training phase, and (3) sound units have variable lengths with no explicit segmentation. To deal with these three problems, we propose the Hidden-Unit BERT (HuBERT) approach for self-supervised speech representation learning, which utilizes an offline clustering step to provide aligned target labels for a BERT-like prediction loss. A key ingredient of our approach is applying the prediction loss over the masked regions only, which forces the model to learn a combined acoustic and language model over the continuous inputs. HuBERT relies primarily on the consistency of the unsupervised clustering step rather than the intrinsic quality of the assigned cluster labels. Starting with a simple k-means teacher of 100 clusters, and using two iterations of clustering, the HuBERT model either matches or improves upon the state-of-the-art wav2vec 2.0 performance on the Librispeech (960h) and Libri-light (60,000h) benchmarks with 10min, 1h, 10h, 100h, and 960h fine-tuning subsets. Using a 1B parameter model, HuBERT shows up to 19% and 13% relative WER reduction on the more challenging dev-other and test-other evaluation subsets. The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/hubert . # Usage See [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information on how to fine-tune the model. Note that the class `Wav2Vec2ForCTC` has to be replaced by `HubertForCTC`.
huggingtweets/ssarahbel
huggingtweets
2021-10-20T10:06:37Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/ssarahbel/1634724393817/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1441675780220620800/S6KX4bip_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">sarai !?</div> <div style="text-align: center; font-size: 14px;">@ssarahbel</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from sarai !?. | Data | sarai !? | | --- | --- | | Tweets downloaded | 530 | | Retweets | 60 | | Short tweets | 35 | | Tweets kept | 435 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/5qler3me/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ssarahbel's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2yd9p4cd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2yd9p4cd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ssarahbel') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
mrm8488/t5-base-finetuned-break_data
mrm8488
2021-10-20T08:31:28Z
962
3
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "dataset:break_data", "arxiv:1910.10683", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - break_data widget: - text: "paraphrase: The composer of Sands Theme plays what type of guitar?" --- # T5-base fine-tuned on break_data / QDMR-high-level ❓➡️📋 [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) fine-tuned on [break_data](https://huggingface.co/nlp/viewer/?dataset=break_data&config=QDMR-high-level) dataset for **QDMRs**. ## Details of T5 📜 ➡️ 📜 The **T5** model was presented in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf) by *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu* in Here the abstract: Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code. ![model image](https://i.imgur.com/jVFMMWR.png) ## Details of the downstream task (QDMRs) - Dataset 📚 Break is a human annotated dataset of natural language questions and their Question Decomposition Meaning Representations (QDMRs). Break consists of 83,978 examples sampled from 10 question answering datasets over text, images and databases. This repository contains the Break dataset along with information on the exact data format. | Dataset | Split | # samples | | -------- | ----- | --------- | | break_data | train | 17503 | | break_data | valid | 3130 | Check out more about this dataset and others in [NLP Viewer](https://huggingface.co/nlp/viewer/) ## Model fine-tuning 🏋️‍ The training script is a slightly modified version of [this awesome one](https://colab.research.google.com/github/patil-suraj/exploring-T5/blob/master/T5_on_TPU.ipynb) by [Suraj Patil](https://twitter.com/psuraj28). The main change is at preprocessing ```inputs``` and ```targets``` we feed to the model. We do it as a *paraphrasing task*. ## Model in Action 🚀 ```python # Tip: By now, install transformers from source from transformers import AutoModelForSeq2SeqLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-break_data") model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-base-finetuned-break_data") def get_decomposition(question): input_text = "paraphrase: %s </s>" % question features = tokenizer([input_text], return_tensors='pt') output = model.generate(input_ids=features['input_ids'], attention_mask=features['attention_mask'], max_length=32) return tokenizer.decode(output[0]) question = "The composer of Sands Theme plays what type of guitar?" get_decomposition(question) # output: 'return Sands Theme ;return composer of #1 ;return guitar that #2 plays' ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
Edomonndo/opus-mt-ja-en-finetuned-ja-to-en_test
Edomonndo
2021-10-20T06:22:41Z
15
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model_index: - name: opus-mt-ja-en-finetuned-ja-to-en_test results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation metric: name: Bleu type: bleu value: 80.2723 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-ja-en-finetuned-ja-to-en_test This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ja-en](https://huggingface.co/Helsinki-NLP/opus-mt-ja-en) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 0.4737 - Bleu: 80.2723 - Gen Len: 16.5492 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 1.1237 | 1.0 | 247 | 0.6131 | 60.9383 | 16.4152 | | 0.5395 | 2.0 | 494 | 0.5274 | 67.5705 | 16.2883 | | 0.3584 | 3.0 | 741 | 0.5122 | 71.3098 | 16.3777 | | 0.2563 | 4.0 | 988 | 0.4887 | 73.6639 | 16.401 | | 0.138 | 5.0 | 1235 | 0.4796 | 76.7942 | 16.4873 | | 0.0979 | 6.0 | 1482 | 0.4849 | 76.9404 | 16.6162 | | 0.0792 | 7.0 | 1729 | 0.4806 | 78.9831 | 16.5442 | | 0.0569 | 8.0 | 1976 | 0.4765 | 79.3461 | 16.4873 | | 0.0299 | 9.0 | 2223 | 0.4751 | 79.7901 | 16.4863 | | 0.0204 | 10.0 | 2470 | 0.4737 | 80.2723 | 16.5492 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu111 - Datasets 1.10.2 - Tokenizers 0.10.3
Bagus/wav2vec2-xlsr-greek-speech-emotion-recognition
Bagus
2021-10-20T05:38:41Z
37
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio", "audio-classification", "speech", "el", "dataset:aesdd", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-03-02T23:29:04Z
--- language: el datasets: - aesdd tags: - audio - audio-classification - speech license: apache-2.0 --- ~~~ # requirement packages !pip install git+https://github.com/huggingface/datasets.git !pip install git+https://github.com/huggingface/transformers.git !pip install torchaudio !pip install librosa !git clone https://github.com/m3hrdadfi/soxan cd soxan ~~~ # prediction ~~~ import torch import torch.nn as nn import torch.nn.functional as F import torchaudio from transformers import AutoConfig, Wav2Vec2FeatureExtractor import librosa import IPython.display as ipd import numpy as np import pandas as pd ~~~ ~~~ device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_name_or_path = "Bagus/wav2vec2-xlsr-greek-speech-emotion-recognition" config = AutoConfig.from_pretrained(model_name_or_path) feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path) sampling_rate = feature_extractor.sampling_rate model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device) ~~~ ~~~ def speech_file_to_array_fn(path, sampling_rate): speech_array, _sampling_rate = torchaudio.load(path) resampler = torchaudio.transforms.Resample(_sampling_rate) speech = resampler(speech_array).squeeze().numpy() return speech def predict(path, sampling_rate): speech = speech_file_to_array_fn(path, sampling_rate) inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True) inputs = {key: inputs[key].to(device) for key in inputs} with torch.no_grad(): logits = model(**inputs).logits scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)] return outputs ~~~ # prediction ~~~ # path for a sample path = '/data/jtes_v1.1/wav/f01/ang/f01_ang_01.wav' outputs = predict(path, sampling_rate) ~~~ ~~~ [{'Emotion': 'anger', 'Score': '98.3%'}, {'Emotion': 'disgust', 'Score': '0.0%'}, {'Emotion': 'fear', 'Score': '0.4%'}, {'Emotion': 'happiness', 'Score': '0.7%'}, {'Emotion': 'sadness', 'Score': '0.5%'}] ~~~
Manishl7/xlm-roberta-large-language-detection
Manishl7
2021-10-20T05:20:44Z
20
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
Language Detection Model for Nepali, English, Hindi and Spanish Model fine tuned on xlm-roberta-large
huggingartists/adele
huggingartists
2021-10-20T04:50:21Z
5
1
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/adele", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/adele tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/4c3ac1f1d845d251671a892309b5f9b5.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Adele</div> <a href="https://genius.com/artists/adele"> <div style="text-align: center; font-size: 14px;">@adele</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Adele. Dataset is available [here](https://huggingface.co/datasets/huggingartists/adele). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/adele") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1yyqw6ss/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Adele's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3qruwjpr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3qruwjpr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/adele') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/adele") model = AutoModelWithLMHead.from_pretrained("huggingartists/adele") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
aditeyabaral/sentencetransformer-roberta-hinglish-small
aditeyabaral
2021-10-19T22:53:39Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # aditeyabaral/sentencetransformer-roberta-hinglish-small This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('aditeyabaral/sentencetransformer-roberta-hinglish-small') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('aditeyabaral/sentencetransformer-roberta-hinglish-small') model = AutoModel.from_pretrained('aditeyabaral/sentencetransformer-roberta-hinglish-small') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=aditeyabaral/sentencetransformer-roberta-hinglish-small) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 4617 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
aditeyabaral/sentencetransformer-bert-hinglish-big
aditeyabaral
2021-10-19T19:38:38Z
6
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # aditeyabaral/sentencetransformer-bert-hinglish-big This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('aditeyabaral/sentencetransformer-bert-hinglish-big') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('aditeyabaral/sentencetransformer-bert-hinglish-big') model = AutoModel.from_pretrained('aditeyabaral/sentencetransformer-bert-hinglish-big') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=aditeyabaral/sentencetransformer-bert-hinglish-big) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 4617 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
hugggof/ConvTasNet_Libri3Mix_sepnoisy_16k
hugggof
2021-10-19T19:26:57Z
0
1
null
[ "audacity", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - audacity inference: false --- This is an Audacity wrapper for the model, forked from the repository `JorisCos/ConvTasNet_Libri3Mix_sepnoisy_16k`, This model was trained using the Asteroid library: https://github.com/asteroid-team/asteroid. The following info was copied directly from `JorisCos/ConvTasNet_Libri3Mix_sepnoisy_16k`: Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_noisy` task of the Libri3Mix dataset. Training config: ```yml data: n_src: 3 sample_rate: 16000 segment: 3 task: sep_noisy train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 32 n_filters: 512 stride: 16 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 8 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results: On Libri3Mix min test set : ```yml si_sdr: 5.926151147554517 si_sdr_imp: 10.282912158535625 sdr: 6.700975236867358 sdr_imp: 10.882972447337504 sir: 15.364110064569388 sir_imp: 18.574476587171688 sar: 7.918866830474568 sar_imp: -0.9638973409971135 stoi: 0.7713777027310713 stoi_imp: 0.2078696167973911 ``` License notice: This work "ConvTasNet_Libri3Mix_sepnoisy_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/). "ConvTasNet_Libri3Mix_sepnoisy_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
hugggof/demucs_extra
hugggof
2021-10-19T19:23:31Z
0
0
null
[ "audacity", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: audacity --- ## Music Source Separation in the Waveform Domain This is the Demucs model, serialized from Facebook Research's pretrained models. From Facebook research: Demucs is based on U-Net convolutional architecture inspired by Wave-U-Net and SING, with GLUs, a BiLSTM between the encoder and decoder, specific initialization of weights and transposed convolutions in the decoder. This is the `demucs_extra` version, meaning that is was trained on the MusDB dataset, along with 150 extra songs of data. See [facebookresearch's repository](https://github.com/facebookresearch/demucs) for more information on Demucs.
huggingtweets/gerardsans
huggingtweets
2021-10-19T19:13:05Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/gerardsans/1634670781074/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1431241007421665284/qoHnns8I_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ᐸGerardSans/ᐳ🤣🇬🇧</div> <div style="text-align: center; font-size: 14px;">@gerardsans</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ᐸGerardSans/ᐳ🤣🇬🇧. | Data | ᐸGerardSans/ᐳ🤣🇬🇧 | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 648 | | Short tweets | 586 | | Tweets kept | 2016 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/115pr1rh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @gerardsans's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/10heg4by) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/10heg4by/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/gerardsans') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingface-course/albert-tokenizer-without-normalizer
huggingface-course
2021-10-19T18:38:58Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
The purpose of this repo is to show the usefulness of saving the normalization operation used during the tokenizer training ```python from transformers import AutoTokenizer text = "This is a text with àccënts and CAPITAL LETTERS" tokenizer = AutoTokenizer.from_pretrained("albert-large-v2") print(tokenizer.convert_ids_to_tokens(tokenizer.encode(text))) # ['[CLS]', '▁this', '▁is', '▁a', '▁text', '▁with', '▁accent', 's', '▁and', '▁capital', '▁letters', '[SEP]'] tokenizer = AutoTokenizer.from_pretrained("huggingface-course/albert-tokenizer-without-normalizer") print(tokenizer.convert_ids_to_tokens(tokenizer.encode(text))) # ['[CLS]', '▁', '<unk>', 'his', '▁is', '▁a', '▁text', '▁with', '▁', '<unk>', 'cc', '<unk>', 'nts', '▁and', '▁', '<unk>', '▁', '<unk>', '[SEP]'] ```
maxspaziani/bert-base-italian-xxl-uncased-finetuned-ComunaliRoma
maxspaziani
2021-10-19T17:58:13Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer model-index: - name: bert-base-italian-xxl-uncased-finetuned-ComunaliRoma results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-italian-xxl-uncased-finetuned-ComunaliRoma This model is a fine-tuned version of [dbmdz/bert-base-italian-xxl-uncased](https://huggingface.co/dbmdz/bert-base-italian-xxl-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5095 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6717 | 1.0 | 1014 | 2.6913 | | 2.4869 | 2.0 | 2028 | 2.5843 | | 2.3411 | 3.0 | 3042 | 2.5095 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
meghana/hitalmqa-finetuned-squad
meghana
2021-10-19T17:34:53Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer model-index: - name: hitalmqa-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hitalmqa-finetuned-squad This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
patrickvonplaten/wav2vec2-large-xlsr-turkish-demo
patrickvonplaten
2021-10-19T14:00:49Z
9
0
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
## XLSR-Wav2Vec2 Fine-Tuned on Turkish Common Voice dataset The model was fine-tuned in a google colab for demonstration purposes. Please refer to [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) for more information about the model.
soikit/distilgpt2-finetuned-wikitext2
soikit
2021-10-19T13:23:40Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7608 | 1.0 | 2334 | 3.6655 | | 3.6335 | 2.0 | 4668 | 3.6455 | | 3.6066 | 3.0 | 7002 | 3.6424 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
doc2query/all-t5-base-v1
doc2query
2021-10-19T12:54:25Z
85
9
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "dataset:sentence-transformers/reddit-title-body", "dataset:sentence-transformers/embedding-training-data", "arxiv:1904.08375", "arxiv:2104.08663", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - sentence-transformers/reddit-title-body - sentence-transformers/embedding-training-data widget: - text: "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects." license: apache-2.0 --- # doc2query/all-t5-base-v1 This is a [doc2query](https://arxiv.org/abs/1904.08375) model based on T5 (also known as [docT5query](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)). It can be used for: - **Document expansion**: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our [BEIR](https://arxiv.org/abs/2104.08663) paper we showed that BM25+docT5query is a powerful search engine. In the [BEIR repository](https://github.com/UKPLab/beir) we have an example how to use docT5query with Pyserini. - **Domain Specific Training Data Generation**: It can be used to generate training data to learn an embedding model. On [SBERT.net](https://www.sbert.net/examples/unsupervised_learning/query_generation/README.html) we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models. ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration model_name = 'doc2query/all-t5-base-v1' tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) text = "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects." input_ids = tokenizer.encode(text, max_length=384, truncation=True, return_tensors='pt') outputs = model.generate( input_ids=input_ids, max_length=64, do_sample=True, top_p=0.95, num_return_sequences=5) print("Text:") print(text) print("\nGenerated Queries:") for i in range(len(outputs)): query = tokenizer.decode(outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') ``` **Note:** `model.generate()` is non-deterministic. It produces different queries each time you run it. ## Training This model fine-tuned [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) for 570k training steps. For the training script, see the `train_script.py` in this repository. The input-text was truncated to 384 word pieces. Output text was generated up to 64 word pieces. This model was trained on a large collection of datasets. For the exact datasets names and weights see the `data_config.json` in this repository. Most of the datasets are available at [https://huggingface.co/sentence-transformers](https://huggingface.co/sentence-transformers). The datasets include besides others: - (title, body) pairs from [Reddit](https://huggingface.co/datasets/sentence-transformers/reddit-title-body) - (title, body) pairs and (title, answer) pairs from StackExchange and Yahoo Answers! - (title, review) pairs from Amazon reviews - (query, paragraph) pairs from MS MARCO, NQ, and GooAQ - (question, duplicate_question) from Quora and WikiAnswers - (title, abstract) pairs from S2ORC ## Prefix This model was trained **without a prefix**. In contrast to [doc2query/all-with_prefix-t5-base-v1](https://huggingface.co/doc2query/all-with_prefix-t5-base-v1) you cannot specify what type of transformation (answer2question, review2title) etc. you will have. This can lead to a mixture of output values.
doc2query/all-with_prefix-t5-base-v1
doc2query
2021-10-19T12:52:47Z
1,990
10
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "dataset:sentence-transformers/reddit-title-body", "dataset:sentence-transformers/embedding-training-data", "arxiv:1904.08375", "arxiv:2104.08663", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - sentence-transformers/reddit-title-body - sentence-transformers/embedding-training-data widget: - text: "text2reddit: Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects." license: apache-2.0 --- # doc2query/all-with_prefix-t5-base-v1 This is a [doc2query](https://arxiv.org/abs/1904.08375) model based on T5 (also known as [docT5query](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)). It can be used for: - **Document expansion**: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our [BEIR](https://arxiv.org/abs/2104.08663) paper we showed that BM25+docT5query is a powerful search engine. In the [BEIR repository](https://github.com/UKPLab/beir) we have an example how to use docT5query with Pyserini. - **Domain Specific Training Data Generation**: It can be used to generate training data to learn an embedding model. On [SBERT.net](https://www.sbert.net/examples/unsupervised_learning/query_generation/README.html) we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models. ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration model_name = 'doc2query/all-with_prefix-t5-base-v1' tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name) prefix = "answer2question" text = "Python is an interpreted, high-level and general-purpose programming language. Python's design philosophy emphasizes code readability with its notable use of significant whitespace. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects." text = prefix+": "+text input_ids = tokenizer.encode(text, max_length=384, truncation=True, return_tensors='pt') outputs = model.generate( input_ids=input_ids, max_length=64, do_sample=True, top_p=0.95, num_return_sequences=5) print("Text:") print(text) print("\nGenerated Queries:") for i in range(len(outputs)): query = tokenizer.decode(outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') ``` **Note:** `model.generate()` is non-deterministic. It produces different queries each time you run it. ## Training This model fine-tuned [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) for 575k training steps. For the training script, see the `train_script.py` in this repository. The input-text was truncated to 384 word pieces. Output text was generated up to 64 word pieces. This model was trained on a large collection of datasets. For the exact datasets names and weights see the `data_config.json` in this repository. Most of the datasets are available at [https://huggingface.co/sentence-transformers](https://huggingface.co/sentence-transformers). The datasets include besides others: - (title, body) pairs from [Reddit](https://huggingface.co/datasets/sentence-transformers/reddit-title-body) - (title, body) pairs and (title, answer) pairs from StackExchange and Yahoo Answers! - (title, review) pairs from Amazon reviews - (query, paragraph) pairs from MS MARCO, NQ, and GooAQ - (question, duplicate_question) from Quora and WikiAnswers - (title, abstract) pairs from S2ORC ## Prefix This model was trained **with a prefix**: You start the text with a specific index that defines what type out output text you would like to receive. Depending on the prefix, the output is different. E.g. the above text about Python produces the following output: | Prefix | Output | | --- | --- | | answer2question | Why should I use python in my business? ; What is the difference between Python and.NET? ; what is the python design philosophy? | | review2title | Python a powerful and useful language ; A new and improved programming language ; Object-oriented, practical and accessibl | | abstract2title | Python: A Software Development Platform ; A Research Guide for Python X: Conceptual Approach to Programming ; Python : Language and Approach | | text2query | is python a low level language? ; what is the primary idea of python? ; is python a programming language? | These are all available pre-fixes: - text2reddit - question2title - answer2question - abstract2title - review2title - news2title - text2query - question2question For the datasets and weights for the different pre-fixes see `data_config.json` in this repository.
Jeska/autonlp-vaccinfaq-22144706
Jeska
2021-10-19T12:33:52Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "unk", "dataset:Jeska/autonlp-data-vaccinfaq", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - Jeska/autonlp-data-vaccinfaq co2_eq_emissions: 27.135492487925884 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 22144706 - CO2 Emissions (in grams): 27.135492487925884 ## Validation Metrics - Loss: 1.81697416305542 - Accuracy: 0.6377269139700079 - Macro F1: 0.5181293370145044 - Micro F1: 0.6377269139700079 - Weighted F1: 0.631117826235572 - Macro Precision: 0.5371452512845428 - Micro Precision: 0.6377269139700079 - Weighted Precision: 0.6655055695465463 - Macro Recall: 0.5609328178925124 - Micro Recall: 0.6377269139700079 - Weighted Recall: 0.6377269139700079 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Jeska/autonlp-vaccinfaq-22144706 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Jeska/autonlp-vaccinfaq-22144706", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Jeska/autonlp-vaccinfaq-22144706", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
DeepESP/gpt2-spanish-medium
DeepESP
2021-10-19T08:53:15Z
289
9
transformers
[ "transformers", "pytorch", "tf", "jax", "gpt2", "text-generation", "GPT-2", "Spanish", "ebooks", "nlg", "es", "dataset:ebooks", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- language: es tags: - GPT-2 - Spanish - ebooks - nlg datasets: - ebooks widget: - text: "Quisiera saber que va a suceder" license: mit --- # GPT2-Spanish GPT2-Spanish is a language generation model trained from scratch with 11.5GB of Spanish texts and with a Byte Pair Encoding (BPE) tokenizer that was trained for this purpose. The parameters used are the same as the medium version of the original OpenAI GPT2 model. ## Corpus This model was trained with a corpus of 11.5GB of texts corresponding to 3.5GB of Wikipedia articles and 8GB of books (narrative, short stories, theater, poetry, essays, and popularization). ## Tokenizer The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for Unicode characters) and a vocabulary size of 50257. The inputs are sequences of 1024 consecutive tokens. This tokenizer was trained from scratch with the Spanish corpus, since it was evidenced that the tokenizer of the English models presented limitations to capture the semantic relations of Spanish, due to the morphosyntactic differences between both languages. Apart from the special token "<|endoftext|>" for text ending in the OpenAI GPT-2 models, the tokens "<|talk|>", "<|ax1|>", "<|ax2|>" (..)"<|ax9|>" were included so that they can serve as prompts in future training. ## Training The model and tokenizer were trained using the Hugging Face libraries with an Nvidia Tesla V100 GPU with 16GB memory on Google Colab servers. ## Authors The model was trained by Alejandro Oñate Latorre (Spain) and Jorge Ortiz Fuentes (Chile), members of -Deep ESP-, an open-source community on Natural Language Processing in Spanish (https://t.me/joinchat/VoEp1bPrDYEexc6h). Thanks to the members of the community who collaborated with funding for the initial tests. ## Cautions The model generates texts according to the patterns learned in the training corpus. These data were not filtered, therefore, the model could generate offensive or discriminatory content.
DeepESP/gpt2-spanish
DeepESP
2021-10-19T08:52:48Z
5,155
36
transformers
[ "transformers", "pytorch", "tf", "jax", "gpt2", "text-generation", "GPT-2", "Spanish", "ebooks", "nlg", "es", "dataset:ebooks", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- language: es tags: - GPT-2 - Spanish - ebooks - nlg datasets: - ebooks widget: - text: "Quisiera saber que va a suceder" license: mit --- # GPT2-Spanish GPT2-Spanish is a language generation model trained from scratch with 11.5GB of Spanish texts and with a Byte Pair Encoding (BPE) tokenizer that was trained for this purpose. The parameters used are the same as the small version of the original OpenAI GPT2 model. ## Corpus This model was trained with a corpus of 11.5GB of texts corresponding to 3.5GB of Wikipedia articles and 8GB of books (narrative, short stories, theater, poetry, essays, and popularization). ## Tokenizer The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for Unicode characters) and a vocabulary size of 50257. The inputs are sequences of 1024 consecutive tokens. This tokenizer was trained from scratch with the Spanish corpus, since it was evidenced that the tokenizer of the English models presented limitations to capture the semantic relations of Spanish, due to the morphosyntactic differences between both languages. Apart from the special token "<|endoftext|>" for text ending in the OpenAI GPT-2 models, the tokens "<|talk|>", "<|ax1|>", "<|ax2|>" (..)"<|ax9|>" were included so that they can serve as prompts in future training. ## Training The model and tokenizer were trained using the Hugging Face libraries with an Nvidia Tesla V100 GPU with 16GB memory on Google Colab servers. ## Authors The model was trained by Alejandro Oñate Latorre (Spain) and Jorge Ortiz Fuentes (Chile), members of -Deep ESP-, an open-source community on Natural Language Processing in Spanish (https://t.me/joinchat/VoEp1bPrDYEexc6h). Thanks to the members of the community who collaborated with funding for the initial tests. ## Cautions The model generates texts according to the patterns learned in the training corpus. These data were not filtered, therefore, the model could generate offensive or discriminatory content.
Tarang1998/autonlp-pegasus-21664560
Tarang1998
2021-10-19T05:22:41Z
6
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autonlp", "unk", "dataset:Tarang1998/autonlp-data-pegasus", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - Tarang1998/autonlp-data-pegasus co2_eq_emissions: 5.680803958729511 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 21664560 - CO2 Emissions (in grams): 5.680803958729511 ## Validation Metrics - Loss: 1.7488420009613037 - Rouge1: 38.1491 - Rouge2: 18.6257 - RougeL: 26.8448 - RougeLsum: 32.2433 - Gen Len: 49.0 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/Tarang1998/autonlp-pegasus-21664560 ```
tiennvcs/distilbert-base-uncased-finetuned-squad
tiennvcs
2021-10-19T02:41:19Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
yazdipour/sparql-qald9-t5-base-2021-10-19_00-15
yazdipour
2021-10-19T00:37:58Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: sparql-qald9-t5-base-2021-10-19_00-15 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sparql-qald9-t5-base-2021-10-19_00-15 This model is a fine-tuned version of [yazdipour/text-to-sparql-t5-base-2021-10-18_16-15](https://huggingface.co/yazdipour/text-to-sparql-t5-base-2021-10-18_16-15) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | P | R | F1 | Bleu-score | Bleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:------:|:----------:|:-----------------------------------------------------------------------------:|:-------:| | No log | 1.0 | 51 | 1.8998 | 19.0 | 0.3634 | 0.0387 | 0.1963 | 9.9428 | [71.94645844952593, 49.30006086427267, 35.36503683858004, 28.145941921072225] | 0.2294 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
castorini/tct_colbert-v2-msmarco-cqe
castorini
2021-10-18T23:34:32Z
9
2
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
This model is to reproduce Contextualized Query Embeddings for Conversational Search described in the following paper: > Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. [Contextualized Query Embeddings for Conversational Search.](https://cs.uwaterloo.ca/~jimmylin/publications/Lin_etal_EMNLP2021.pdf) EMNLP, Nov 2021. This model is finetuend only on query ecoder with frezzed passage encoder. The starting point is the [tct_colbert-msmarco](https://huggingface.co/castorini/tct_colbert-msmarco/tree/main). The detailed usage of the model will be out soon on [Chatty Goose](https://github.com/castorini/chatty-goose). You can also check the fine-tuning and inference using tensorflow in our [CQE repo](https://github.com/castorini/CQE)
mmcquade11/autonlp-imdb-test-21134442
mmcquade11
2021-10-18T20:16:41Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:mmcquade11/autonlp-data-imdb-test", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - mmcquade11/autonlp-data-imdb-test co2_eq_emissions: 298.7849611952843 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 21134442 - CO2 Emissions (in grams): 298.7849611952843 ## Validation Metrics - Loss: 0.21618066728115082 - Accuracy: 0.9393 - Precision: 0.9360730593607306 - Recall: 0.943 - AUC: 0.98362804 - F1: 0.9395237620803029 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/mmcquade11/autonlp-imdb-test-21134442 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("mmcquade11/autonlp-imdb-test-21134442", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("mmcquade11/autonlp-imdb-test-21134442", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
gagan3012/pickuplines
gagan3012
2021-10-18T19:53:36Z
7
2
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer model-index: - name: pickuplines results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pickuplines This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.7873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100.0 ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
mmcquade11/autonlp-imdb-test-21134453
mmcquade11
2021-10-18T17:47:59Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autonlp", "en", "dataset:mmcquade11/autonlp-data-imdb-test", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - mmcquade11/autonlp-data-imdb-test co2_eq_emissions: 38.102565360610484 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 21134453 - CO2 Emissions (in grams): 38.102565360610484 ## Validation Metrics - Loss: 0.172550767660141 - Accuracy: 0.9355 - Precision: 0.9362853135644159 - Recall: 0.9346 - AUC: 0.98267064 - F1: 0.9354418977079372 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/mmcquade11/autonlp-imdb-test-21134453 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("mmcquade11/autonlp-imdb-test-21134453", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("mmcquade11/autonlp-imdb-test-21134453", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
JonatanGk/roberta-base-ca-finetuned-hate-speech-offensive-catalan
JonatanGk
2021-10-18T17:10:50Z
6
1
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-base-ca-finetuned-mnli results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-ca-finetuned-mnli This model is a fine-tuned version of [BSC-TeMU/roberta-base-ca](https://huggingface.co/BSC-TeMU/roberta-base-ca) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4137 - Accuracy: 0.8778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3699 | 1.0 | 1255 | 0.3712 | 0.8669 | | 0.3082 | 2.0 | 2510 | 0.3401 | 0.8766 | | 0.2375 | 3.0 | 3765 | 0.4137 | 0.8778 | | 0.1889 | 4.0 | 5020 | 0.4671 | 0.8733 | | 0.1486 | 5.0 | 6275 | 0.5205 | 0.8749 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
maxspaziani/bert-base-italian-uncased-finetuned-ComunaliRoma
maxspaziani
2021-10-18T16:34:41Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer model-index: - name: bert-base-italian-uncased-finetuned-ComunaliRoma results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-italian-uncased-finetuned-ComunaliRoma This model is a fine-tuned version of [dbmdz/bert-base-italian-uncased](https://huggingface.co/dbmdz/bert-base-italian-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0398 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 156 | 3.1907 | | No log | 2.0 | 312 | 3.0522 | | No log | 3.0 | 468 | 3.0203 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
cambridgeltl/trans-encoder-bi-simcse-roberta-large
cambridgeltl
2021-10-18T13:29:43Z
7
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "arxiv:2109.13059", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: en tags: - sentence-embeddings - sentence-similarity - dual-encoder ### cambridgeltl/trans-encoder-bi-simcse-roberta-large An unsupervised sentence encoder (bi-encoder) proposed by [Liu et al. (2021)](https://arxiv.org/pdf/2109.13059.pdf). The model is trained with unlabelled sentence pairs sampled from STS2012-2016, STS-b, and SICK-R, using [princeton-nlp/unsup-simcse-roberta-large](https://huggingface.co/princeton-nlp/unsup-simcse-roberta-large) as the base model. Please use `[CLS]` (before pooler) as the representation of the input. ### Citation ```bibtex @article{liu2021trans, title={Trans-Encoder: Unsupervised sentence-pair modelling through self-and mutual-distillations}, author={Liu, Fangyu and Jiao, Yunlong and Massiah, Jordan and Yilmaz, Emine and Havrylov, Serhii}, journal={arXiv preprint arXiv:2109.13059}, year={2021} } ```
lewtun/results
lewtun
2021-10-18T13:16:42Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: results results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.925 - name: F1 type: f1 value: 0.9251012149383893 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2147 - Accuracy: 0.925 - F1: 0.9251 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8221 | 1.0 | 250 | 0.3106 | 0.9125 | 0.9102 | | 0.2537 | 2.0 | 500 | 0.2147 | 0.925 | 0.9251 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1+cu102 - Datasets 1.13.0 - Tokenizers 0.10.3
yazdipour/text-to-sparql-t5-small-2021-10-18_12-12
yazdipour
2021-10-18T13:14:26Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model-index: - name: text-to-sparql-t5-small-2021-10-18_12-12 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text-to-sparql-t5-small-2021-10-18_12-12 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3284 - Gen Len: 19.0 - Bertscorer-p: 0.5420 - Bertscorer-r: 0.0732 - Bertscorer-f1: 0.2972 - Sacrebleu-score: 4.8763 - Sacrebleu-precisions: [87.2581084764241, 73.48869132519009, 64.19139944127409, 58.342420937840785] - Bleu-bp: 0.0697 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | Bertscorer-p | Bertscorer-r | Bertscorer-f1 | Sacrebleu-score | Sacrebleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------------:|:------------:|:-------------:|:---------------:|:----------------------------------------------------------------------------:|:-------:| | 0.4209 | 1.0 | 4772 | 0.3284 | 19.0 | 0.5420 | 0.0732 | 0.2972 | 4.8763 | [87.2581084764241, 73.48869132519009, 64.19139944127409, 58.342420937840785] | 0.0697 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
AyushPJ/test-squad-trained-finetuned-squad
AyushPJ
2021-10-18T11:01:55Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: test-squad-trained-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-squad-trained-finetuned-squad This model was trained from scratch on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.11.3 - Pytorch 1.7.1+cu110 - Datasets 1.13.3 - Tokenizers 0.10.3
yazdipour/text-to-sparql-t5-small-2021-10-18_09-32
yazdipour
2021-10-18T10:33:05Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null metrics: - f1 model-index: - name: text-to-sparql-t5-small-2021-10-18_09-32 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation metrics: - name: F1 type: f1 value: 0.26458749175071716 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text-to-sparql-t5-small-2021-10-18_09-32 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5119 - Gen Len: 19.0 - P: 0.4884 - R: 0.0583 - F1: 0.2646 - Score: 3.5425 - Bleu-precisions: [82.80295919500207, 62.695879280325016, 50.2215675749897, 44.03052700138759] - Bleu-bp: 0.0609 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | P | R | F1 | Score | Bleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:------:|:------:|:----------------------------------------------------------------------------:|:-------:| | 0.7088 | 1.0 | 4772 | 0.5119 | 19.0 | 0.4884 | 0.0583 | 0.2646 | 3.5425 | [82.80295919500207, 62.695879280325016, 50.2215675749897, 44.03052700138759] | 0.0609 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
Ching/negation_detector
Ching
2021-10-18T10:32:43Z
11
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
This question answering model was fine tuned to detect negation expressions How to use: question: negation context: That is not safe! Answer: not question: negation context: Weren't we going to go to the moon? Answer: Weren't
CAMeL-Lab/bert-base-arabic-camelbert-ca-pos-egy
CAMeL-Lab
2021-10-18T10:18:01Z
134
2
transformers
[ "transformers", "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: - ar license: apache-2.0 widget: - text: 'عامل ايه ؟' --- # CAMeLBERT-CA POS-EGY Model ## Model description **CAMeLBERT-CA POS-EGY Model** is a Egyptian Arabic POS tagging model that was built by fine-tuning the [CAMeLBERT-CA](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-ca/) model. For the fine-tuning, we used the ARZTB dataset . Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-CA POS-EGY model as part of the transformers pipeline. This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon. #### How to use To use the model with a transformers pipeline: ```python >>> from transformers import pipeline >>> pos = pipeline('token-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-ca-pos-egy') >>> text = 'عامل ايه ؟' >>> pos(text) [{'entity': 'adj', 'score': 0.9990943, 'index': 1, 'word': 'عامل', 'start': 0, 'end': 4}, {'entity': 'pron_interrog', 'score': 0.99863535, 'index': 2, 'word': 'ايه', 'start': 5, 'end': 8}, {'entity': 'punc', 'score': 0.99990875, 'index': 3, 'word': '؟', 'start': 9, 'end': 10}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
CAMeL-Lab/bert-base-arabic-camelbert-mix-pos-glf
CAMeL-Lab
2021-10-18T10:16:30Z
20
1
transformers
[ "transformers", "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: - ar license: apache-2.0 widget: - text: 'شلونك ؟ شخبارك ؟' --- # CAMeLBERT-Mix POS-GLF Model ## Model description **CAMeLBERT-Mix POS-GLF Model** is a Gulf Arabic POS tagging model that was built by fine-tuning the [CAMeLBERT-Mix](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-mix/) model. For the fine-tuning, we used the [Gumar](https://camel.abudhabi.nyu.edu/annotated-gumar-corpus/) dataset . Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-Mix POS-GLF model as part of the transformers pipeline. This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon. #### How to use To use the model with a transformers pipeline: ```python >>> from transformers import pipeline >>> pos = pipeline('token-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-mix-pos-glf') >>> text = 'شلونك ؟ شخبارك ؟' >>> pos(text) [{'entity': 'pron_interrog', 'score': 0.82657206, 'index': 1, 'word': 'شلون', 'start': 0, 'end': 4}, {'entity': 'prep', 'score': 0.9771731, 'index': 2, 'word': '##ك', 'start': 4, 'end': 5}, {'entity': 'punc', 'score': 0.9999568, 'index': 3, 'word': '؟', 'start': 6, 'end': 7}, {'entity': 'noun', 'score': 0.9977217, 'index': 4, 'word': 'ش', 'start': 8, 'end': 9}, {'entity': 'noun', 'score': 0.99993783, 'index': 5, 'word': '##خبار', 'start': 9, 'end': 13}, {'entity': 'prep', 'score': 0.5309442, 'index': 6, 'word': '##ك', 'start': 13, 'end': 14}, {'entity': 'punc', 'score': 0.9999575, 'index': 7, 'word': '؟', 'start': 15, 'end': 16}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
CAMeL-Lab/bert-base-arabic-camelbert-da-pos-egy
CAMeL-Lab
2021-10-18T10:15:37Z
9
1
transformers
[ "transformers", "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: - ar license: apache-2.0 widget: - text: 'عامل ايه ؟' --- # CAMeLBERT-DA POS-EGY Model ## Model description **CAMeLBERT-DA POS-EGY Model** is a Egyptian Arabic POS tagging model that was built by fine-tuning the [CAMeLBERT-DA](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-da/) model. For the fine-tuning, we used the ARZTB dataset . Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-DA POS-EGY model as part of the transformers pipeline. This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon. #### How to use To use the model with a transformers pipeline: ```python >>> from transformers import pipeline >>> pos = pipeline('token-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-da-pos-egy') >>> text = 'عامل ايه ؟' >>> pos(text) [{'entity': 'adj', 'score': 0.99843216, 'index': 1, 'word': 'عامل', 'start': 0, 'end': 4}, {'entity': 'pron_interrog', 'score': 0.9990083, 'index': 2, 'word': 'ايه', 'start': 5, 'end': 8}, {'entity': 'punc', 'score': 0.82973784, 'index': 3, 'word': '؟', 'start': 9, 'end': 10}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
CAMeL-Lab/bert-base-arabic-camelbert-ca-pos-msa
CAMeL-Lab
2021-10-18T09:44:57Z
7
0
transformers
[ "transformers", "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: - ar license: apache-2.0 widget: - text: 'إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع' --- # CAMeLBERT-CA POS-MSA Model ## Model description **CAMeLBERT-CA POS-MSA Model** is a Modern Standard Arabic (MSA) POS tagging model that was built by fine-tuning the [CAMeLBERT-CA](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-ca/) model. For the fine-tuning, we used the [PATB](https://dl.acm.org/doi/pdf/10.5555/1621804.1621808) dataset. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-CA POS-MSA model as part of the transformers pipeline. This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon. #### How to use To use the model with a transformers pipeline: ```python >>> from transformers import pipeline >>> pos = pipeline('token-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-ca-pos-msa') >>> text = 'إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع' >>> pos(text) [{'entity': 'noun', 'score': 0.9999758, 'index': 1, 'word': 'إمارة', 'start': 0, 'end': 5}, {'entity': 'noun_prop', 'score': 0.9997559, 'index': 2, 'word': 'أبوظبي', 'start': 6, 'end': 12}, {'entity': 'pron', 'score': 0.99996257, 'index': 3, 'word': 'هي', 'start': 13, 'end': 15}, {'entity': 'noun', 'score': 0.9958452, 'index': 4, 'word': 'إحدى', 'start': 16, 'end': 20}, {'entity': 'noun', 'score': 0.9999635, 'index': 5, 'word': 'إما', 'start': 21, 'end': 24}, {'entity': 'noun', 'score': 0.99991685, 'index': 6, 'word': '##رات', 'start': 24, 'end': 27}, {'entity': 'noun', 'score': 0.99997497, 'index': 7, 'word': 'دولة', 'start': 28, 'end': 32}, {'entity': 'noun', 'score': 0.9999795, 'index': 8, 'word': 'الإمارات', 'start': 33, 'end': 41}, {'entity': 'adj', 'score': 0.99924207, 'index': 9, 'word': 'العربية', 'start': 42, 'end': 49}, {'entity': 'adj', 'score': 0.99994195, 'index': 10, 'word': 'المتحدة', 'start': 50, 'end': 57}, {'entity': 'noun_num', 'score': 0.9997414, 'index': 11, 'word': 'السبع', 'start': 58, 'end': 63}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
CAMeL-Lab/bert-base-arabic-camelbert-mix-pos-msa
CAMeL-Lab
2021-10-18T09:44:42Z
1,178
1
transformers
[ "transformers", "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: - ar license: apache-2.0 widget: - text: 'إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع' --- # CAMeLBERT-Mix POS-MSA Model ## Model description **CAMeLBERT-Mix POS-MSA Model** is a Modern Standard Arabic (MSA) POS tagging model that was built by fine-tuning the [CAMeLBERT-Mix](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-mix/) model. For the fine-tuning, we used the [PATB](https://dl.acm.org/doi/pdf/10.5555/1621804.1621808) dataset. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-Mix POS-MSA model as part of the transformers pipeline. This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon. #### How to use To use the model with a transformers pipeline: ```python >>> from transformers import pipeline >>> pos = pipeline('token-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-mix-pos-msa') >>> text = 'إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع' >>> pos(text) [{'entity': 'noun', 'score': 0.9999592, 'index': 1, 'word': 'إمارة', 'start': 0, 'end': 5}, {'entity': 'noun_prop', 'score': 0.9997877, 'index': 2, 'word': 'أبوظبي', 'start': 6, 'end': 12}, {'entity': 'pron', 'score': 0.9998405, 'index': 3, 'word': 'هي', 'start': 13, 'end': 15}, {'entity': 'noun', 'score': 0.9697179, 'index': 4, 'word': 'إحدى', 'start': 16, 'end': 20}, {'entity': 'noun', 'score': 0.99967164, 'index': 5, 'word': 'إما', 'start': 21, 'end': 24}, {'entity': 'noun', 'score': 0.99980617, 'index': 6, 'word': '##رات', 'start': 24, 'end': 27}, {'entity': 'noun', 'score': 0.99997973, 'index': 7, 'word': 'دولة', 'start': 28, 'end': 32}, {'entity': 'noun', 'score': 0.99995637, 'index': 8, 'word': 'الإمارات', 'start': 33, 'end': 41}, {'entity': 'adj', 'score': 0.9983974, 'index': 9, 'word': 'العربية', 'start': 42, 'end': 49}, {'entity': 'adj', 'score': 0.9999469, 'index': 10, 'word': 'المتحدة', 'start': 50, 'end': 57}, {'entity': 'noun_num', 'score': 0.9993273, 'index': 11, 'word': 'السبع', 'start': 58, 'end': 63}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
CAMeL-Lab/bert-base-arabic-camelbert-msa-pos-msa
CAMeL-Lab
2021-10-18T09:34:42Z
22
0
transformers
[ "transformers", "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: - ar license: apache-2.0 widget: - text: 'إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع' --- # CAMeLBERT-MSA POS-MSA Model ## Model description **CAMeLBERT-MSA POS-MSA Model** is a Modern Standard Arabic (MSA) POS tagging model that was built by fine-tuning the [CAMeLBERT-MSA](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-msa/) model. For the fine-tuning, we used the [PATB](https://dl.acm.org/doi/pdf/10.5555/1621804.1621808) dataset . Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-MSA POS-MSA model as part of the transformers pipeline. This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon. #### How to use To use the model with a transformers pipeline: ```python >>> from transformers import pipeline >>> pos = pipeline('token-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-msa-pos-msa') >>> text = 'إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع' >>> pos(text) [{'entity': 'noun', 'score': 0.9999764, 'index': 1, 'word': 'إمارة', 'start': 0, 'end': 5}, {'entity': 'noun_prop', 'score': 0.99991846, 'index': 2, 'word': 'أبوظبي', 'start': 6, 'end': 12}, {'entity': 'pron', 'score': 0.9998356, 'index': 3, 'word': 'هي', 'start': 13, 'end': 15}, {'entity': 'noun', 'score': 0.99368894, 'index': 4, 'word': 'إحدى', 'start': 16, 'end': 20}, {'entity': 'noun', 'score': 0.9999426, 'index': 5, 'word': 'إما', 'start': 21, 'end': 24}, {'entity': 'noun', 'score': 0.9999339, 'index': 6, 'word': '##رات', 'start': 24, 'end': 27}, {'entity': 'noun', 'score': 0.99996775, 'index': 7, 'word': 'دولة', 'start': 28, 'end': 32}, {'entity': 'noun', 'score': 0.99996895, 'index': 8, 'word': 'الإمارات', 'start': 33, 'end': 41}, {'entity': 'adj', 'score': 0.99990183, 'index': 9, 'word': 'العربية', 'start': 42, 'end': 49}, {'entity': 'adj', 'score': 0.9999347, 'index': 10, 'word': 'المتحدة', 'start': 50, 'end': 57}, {'entity': 'noun_num', 'score': 0.99931145, 'index': 11, 'word': 'السبع', 'start': 58, 'end': 63}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
rifkat/uztext_568Mb_Roberta_BPE
rifkat
2021-10-18T05:32:18Z
6
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
<p><b>UzRoBerta model.</b> Pre-prepared model in Uzbek (Cyrillic script) to model the masked language and predict the next sentences. <p><b>Training data.</b> UzBERT model was pretrained on &asymp;167K news articles (&asymp;568Mb).
yazdipour/text-to-sparql-t5-base-2021-10-17_23-40
yazdipour
2021-10-18T02:23:08Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null metrics: - f1 model-index: - name: text-to-sparql-t5-base-2021-10-17_23-40 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation metrics: - name: F1 type: f1 value: 0.2649857699871063 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text-to-sparql-t5-base-2021-10-17_23-40 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2645 - Gen Len: 19.0 - P: 0.5125 - R: 0.0382 - F1: 0.2650 - Score: 5.1404 - Bleu-precisions: [88.49268497650789, 75.01025204252232, 66.60779038484033, 63.18383699935422] - Bleu-bp: 0.0707 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | P | R | F1 | Score | Bleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:------:|:------:|:----------------------------------------------------------------------------:|:-------:| | 0.3513 | 1.0 | 4807 | 0.2645 | 19.0 | 0.5125 | 0.0382 | 0.2650 | 5.1404 | [88.49268497650789, 75.01025204252232, 66.60779038484033, 63.18383699935422] | 0.0707 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
airKlizz/bart-large-multi-fr-wiki-news
airKlizz
2021-10-17T20:10:41Z
4
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "fr", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: fr license: mit ---
yazdipour/text-to-sparql-t5-small-2021-10-17_18-47
yazdipour
2021-10-17T19:48:35Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null metrics: - f1 model-index: - name: text-to-sparql-t5-small-2021-10-17_18-47 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation metrics: - name: F1 type: f1 value: 0.2345714420080185 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text-to-sparql-t5-small-2021-10-17_18-47 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5258 - Gen Len: 19.0 - P: 0.4582 - R: 0.0278 - F1: 0.2346 - Score: 3.5848 - Bleu-precisions: [82.57739877107295, 62.13358857503344, 48.43062944877681, 41.90172321318059] - Bleu-bp: 0.0631 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | P | R | F1 | Score | Bleu-precisions | Bleu-bp | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:------:|:------:|:----------------------------------------------------------------------------:|:-------:| | 0.7575 | 1.0 | 4807 | 0.5258 | 19.0 | 0.4582 | 0.0278 | 0.2346 | 3.5848 | [82.57739877107295, 62.13358857503344, 48.43062944877681, 41.90172321318059] | 0.0631 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
ltrctelugu/ltrc-roberta
ltrctelugu
2021-10-17T16:45:03Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
RoBERTa trained on 8.8 Million Telugu Sentences
Anorak/nirvana
Anorak
2021-10-17T15:48:15Z
5
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autonlp", "unk", "dataset:Anorak/autonlp-data-Niravana-test2", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - Anorak/autonlp-data-Niravana-test2 co2_eq_emissions: 4.214012748213151 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 20384195 - CO2 Emissions (in grams): 4.214012748213151 ## Validation Metrics - Loss: 1.0120062828063965 - Rouge1: 41.1808 - Rouge2: 26.2564 - RougeL: 31.3106 - RougeLsum: 38.9991 - Gen Len: 58.45 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/Anorak/autonlp-Niravana-test2-20384195 ```
huggingtweets/polanypolany
huggingtweets
2021-10-17T15:24:30Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/polanypolany/1634484266681/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1444774582460862470/wghFqFlb_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">T.J. Eckleburg</div> <div style="text-align: center; font-size: 14px;">@polanypolany</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from T.J. Eckleburg. | Data | T.J. Eckleburg | | --- | --- | | Tweets downloaded | 67 | | Retweets | 5 | | Short tweets | SHORT_TWEETS | | Tweets kept | 32 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2c7a8kmb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @polanypolany's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1itg14or) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1itg14or/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/polanypolany') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
CAMeL-Lab/bert-base-arabic-camelbert-msa-did-madar-twitter5
CAMeL-Lab
2021-10-17T13:35:38Z
1,090
2
transformers
[ "transformers", "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: - ar license: apache-2.0 widget: - text: "عامل ايه ؟" --- # CAMeLBERT-MSA DID MADAR Twitter-5 Model ## Model description **CAMeLBERT-MSA DID MADAR Twitter-5 Model** is a dialect identification (DID) model that was built by fine-tuning the [CAMeLBERT-MSA](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-msa/) model. For the fine-tuning, we used the [MADAR Twitter-5](https://camel.abudhabi.nyu.edu/madar-shared-task-2019/) dataset, which includes 21 labels. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-MSA DID MADAR Twitter-5 model as part of the transformers pipeline. This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon. #### How to use To use the model with a transformers pipeline: ```python >>> from transformers import pipeline >>> did = pipeline('text-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-msa-did-madar-twitter5') >>> sentences = ['عامل ايه ؟', 'شلونك ؟ شخبارك ؟'] >>> did(sentences) [{'label': 'Egypt', 'score': 0.5741344094276428}, {'label': 'Kuwait', 'score': 0.5225679278373718}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
biu-nlp/cdlm
biu-nlp
2021-10-17T12:24:59Z
45
1
transformers
[ "transformers", "pytorch", "longformer", "fill-mask", "cdlm", "en", "arxiv:2101.00406", "license:apache-2.0", "autotrain_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: en tags: - longformer - cdlm license: apache-2.0 inference: false --- # Cross-Document Language Modeling CDLM: Cross-Document Language Modeling. Avi Caciularu, Arman Cohan, Iz Beltagy, Matthew E Peters, Arie Cattan and Ido Dagan. In EMNLP Findings, 2021. [PDF](https://arxiv.org/pdf/2101.00406.pdf) Please note that during our pretraining we used the document and sentence separators, which you might want to add to your data. The document and sentence separators are `<doc-s>`, `</doc-s>` (the last two tokens in the vocabulary), and `<s>`, `</s>`, respectively. ```python from transformers import AutoTokenizer, AutoModel # load model and tokenizer tokenizer = AutoTokenizer.from_pretrained('biu-nlp/cdlm') model = AutoModel.from_pretrained('biu-nlp/cdlm') ``` The original repo is [here](https://github.com/aviclu/CDLM). If you find our work useful, please cite the paper as: ```python @article{caciularu2021cross, title={Cross-Document Language Modeling}, author={Caciularu, Avi and Cohan, Arman and Beltagy, Iz and Peters, Matthew E and Cattan, Arie and Dagan, Ido}, journal={Findings of the Association for Computational Linguistics: EMNLP 2021}, year={2021} } ```
CAMeL-Lab/bert-base-arabic-camelbert-msa-poetry
CAMeL-Lab
2021-10-17T12:10:36Z
10
0
transformers
[ "transformers", "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:1905.05700", "arxiv:2103.06678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: - ar license: apache-2.0 widget: - text: 'الخيل والليل والبيداء تعرفني [SEP] والسيف والرمح والقرطاس والقلم' --- # CAMeLBERT-MSA Poetry Classification Model ## Model description **CAMeLBERT-MSA Poetry Classification Model** is a poetry classification model that was built by fine-tuning the [CAMeLBERT Modern Standard Arabic (MSA)](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-msa/) model. For the fine-tuning, we used the [APCD](https://arxiv.org/pdf/1905.05700.pdf) dataset. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-MSA Poetry Classification model as part of the transformers pipeline. This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon. #### How to use To use the model with a transformers pipeline: ```python >>> from transformers import pipeline >>> poetry = pipeline('text-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-msa-poetry') >>> # A list of verses where each verse consists of two parts. >>> verses = [ ['الخيل والليل والبيداء تعرفني' ,'والسيف والرمح والقرطاس والقلم'], ['قم للمعلم وفه التبجيلا' ,'كاد المعلم ان يكون رسولا'] ] >>> # A function that concatenates the halves of each verse by using the [SEP] token. >>> join_verse = lambda half: ' [SEP] '.join(half) >>> # Apply this to all the verses in the list. >>> verses = [join_verse(verse) for verse in verses] >>> poetry(sentences) [{'label': 'البسيط', 'score': 0.9914996027946472}, {'label': 'الكامل', 'score': 0.917242169380188}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment
CAMeL-Lab
2021-10-17T12:08:30Z
475
5
transformers
[ "transformers", "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: - ar license: apache-2.0 widget: - text: "أنا بخير" --- # CAMeLBERT MSA SA Model ## Model description **CAMeLBERT MSA SA Model** is a Sentiment Analysis (SA) model that was built by fine-tuning the [CAMeLBERT Modern Standard Arabic (MSA)](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-msa/) model. For the fine-tuning, we used the [ASTD](https://aclanthology.org/D15-1299.pdf), [ArSAS](http://lrec-conf.org/workshops/lrec2018/W30/pdf/22_W30.pdf), and [SemEval](https://aclanthology.org/S17-2088.pdf) datasets. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT MSA SA model directly as part of our [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) SA component (*recommended*) or as part of the transformers pipeline. #### How to use To use the model with the [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) SA component: ```python >>> from camel_tools.sentiment import SentimentAnalyzer >>> sa = SentimentAnalyzer("CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment") >>> sentences = ['أنا بخير', 'أنا لست بخير'] >>> sa.predict(sentences) >>> ['positive', 'negative'] ``` You can also use the SA model directly with a transformers pipeline: ```python >>> from transformers import pipeline >>> sa = pipeline('sentiment-analysis', model='CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment') >>> sentences = ['أنا بخير', 'أنا لست بخير'] >>> sa(sentences) [{'label': 'positive', 'score': 0.9616648554801941}, {'label': 'negative', 'score': 0.9779177904129028}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
castorini/monot5-base-msmarco-10k
castorini
2021-10-17T11:24:22Z
3,178
14
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
This model is a T5-base reranker fine-tuned on the MS MARCO passage dataset for 10k steps (or 1 epoch). This model usually has a better zero-shot performance than `monot5-base-msmarco`, i.e., it performs better on datasets different from MS MARCO. For more details on how to use it, check the following links: - [A simple reranking example](https://github.com/castorini/pygaggle#a-simple-reranking-example) - [Rerank MS MARCO passages](https://github.com/castorini/pygaggle/blob/master/docs/experiments-msmarco-passage-subset.md) - [Rerank Robust04 documents](https://github.com/castorini/pygaggle/blob/master/docs/experiments-robust04-monot5-gpu.md) Paper describing the model: [Document Ranking with a Pretrained Sequence-to-Sequence Model](https://www.aclweb.org/anthology/2020.findings-emnlp.63/)
CAMeL-Lab/bert-base-arabic-camelbert-mix-did-madar-corpus26
CAMeL-Lab
2021-10-17T11:17:23Z
29
3
transformers
[ "transformers", "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: - ar license: apache-2.0 widget: - text: "عامل ايه ؟" --- # CAMeLBERT-Mix DID Madar Corpus26 Model ## Model description **CAMeLBERT-Mix DID Madar Corpus26 Model** is a dialect identification (DID) model that was built by fine-tuning the [CAMeLBERT-Mix](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-mix/) model. For the fine-tuning, we used the [MADAR Corpus 26](https://camel.abudhabi.nyu.edu/madar-shared-task-2019/) dataset, which includes 26 labels. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-Mix DID Madar Corpus26 model as part of the transformers pipeline. This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon. #### How to use To use the model with a transformers pipeline: ```python >>> from transformers import pipeline >>> did = pipeline('text-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-mix-did-madar26') >>> sentences = ['عامل ايه ؟', 'شلونك ؟ شخبارك ؟'] >>> did(sentences) [{'label': 'CAI', 'score': 0.8751305937767029}, {'label': 'DOH', 'score': 0.9867215156555176}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
CAMeL-Lab/bert-base-arabic-camelbert-da-sentiment
CAMeL-Lab
2021-10-17T11:15:54Z
7,487
43
transformers
[ "transformers", "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: - ar license: apache-2.0 widget: - text: "أنا بخير" --- # CAMeLBERT-DA SA Model ## Model description **CAMeLBERT-DA SA Model** is a Sentiment Analysis (SA) model that was built by fine-tuning the [CAMeLBERT Dialectal Arabic (DA)](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-da/) model. For the fine-tuning, we used the [ASTD](https://aclanthology.org/D15-1299.pdf), [ArSAS](http://lrec-conf.org/workshops/lrec2018/W30/pdf/22_W30.pdf), and [SemEval](https://aclanthology.org/S17-2088.pdf) datasets. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)." * Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-DA SA model directly as part of our [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) SA component (*recommended*) or as part of the transformers pipeline. #### How to use To use the model with the [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) SA component: ```python >>> from camel_tools.sentiment import SentimentAnalyzer >>> sa = SentimentAnalyzer("CAMeL-Lab/bert-base-arabic-camelbert-da-sentiment") >>> sentences = ['أنا بخير', 'أنا لست بخير'] >>> sa.predict(sentences) >>> ['positive', 'negative'] ``` You can also use the SA model directly with a transformers pipeline: ```python >>> from transformers import pipeline >>> sa = pipeline('text-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-da-sentiment') >>> sentences = ['أنا بخير', 'أنا لست بخير'] >>> sa(sentences) [{'label': 'positive', 'score': 0.9616648554801941}, {'label': 'negative', 'score': 0.9779177904129028}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
CAMeL-Lab/bert-base-arabic-camelbert-ca-ner
CAMeL-Lab
2021-10-17T11:14:08Z
30
2
transformers
[ "transformers", "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: - ar license: apache-2.0 widget: - text: "إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع" --- # CAMeLBERT-CA NER Model ## Model description **CAMeLBERT-CA NER Model** is a Named Entity Recognition (NER) model that was built by fine-tuning the [CAMeLBERT Classical Arabic (CA)](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-ca/) model. For the fine-tuning, we used the [ANERcorp](https://camel.abudhabi.nyu.edu/anercorp/) dataset. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)." * Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-CA NER model directly as part of our [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) NER component (*recommended*) or as part of the transformers pipeline. #### How to use To use the model with the [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) NER component: ```python >>> from camel_tools.ner import NERecognizer >>> from camel_tools.tokenizers.word import simple_word_tokenize >>> ner = NERecognizer('CAMeL-Lab/bert-base-arabic-camelbert-ca-ner') >>> sentence = simple_word_tokenize('إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع') >>> ner.predict_sentence(sentence) >>> ['O', 'B-LOC', 'O', 'O', 'O', 'O', 'B-LOC', 'I-LOC', 'I-LOC', 'O'] ``` You can also use the NER model directly with a transformers pipeline: ```python >>> from transformers import pipeline >>> ner = pipeline('ner', model='CAMeL-Lab/bert-base-arabic-camelbert-ca-ner') >>> ner("إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع") [{'word': 'أبوظبي', 'score': 0.9895730018615723, 'entity': 'B-LOC', 'index': 2, 'start': 6, 'end': 12}, {'word': 'الإمارات', 'score': 0.8156259655952454, 'entity': 'B-LOC', 'index': 8, 'start': 33, 'end': 41}, {'word': 'العربية', 'score': 0.890906810760498, 'entity': 'I-LOC', 'index': 9, 'start': 42, 'end': 49}, {'word': 'المتحدة', 'score': 0.8169114589691162, 'entity': 'I-LOC', 'index': 10, 'start': 50, 'end': 57}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a da of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
CAMeL-Lab/bert-base-arabic-camelbert-da-ner
CAMeL-Lab
2021-10-17T11:13:27Z
49
0
transformers
[ "transformers", "pytorch", "tf", "bert", "token-classification", "ar", "arxiv:2103.06678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- language: - ar license: apache-2.0 widget: - text: "إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع" --- # CAMeLBERT-DA NER Model ## Model description **CAMeLBERT-DA NER Model** is a Named Entity Recognition (NER) model that was built by fine-tuning the [CAMeLBERT Dialectal Arabic (DA)](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-da/) model. For the fine-tuning, we used the [ANERcorp](https://camel.abudhabi.nyu.edu/anercorp/) dataset. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)." * Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-DA NER model directly as part of our [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) NER component (*recommended*) or as part of the transformers pipeline. #### How to use To use the model with the [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) NER component: ```python >>> from camel_tools.ner import NERecognizer >>> from camel_tools.tokenizers.word import simple_word_tokenize >>> ner = NERecognizer('CAMeL-Lab/bert-base-arabic-camelbert-da-ner') >>> sentence = simple_word_tokenize('إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع') >>> ner.predict_sentence(sentence) >>> ['O', 'B-LOC', 'O', 'O', 'O', 'O', 'B-LOC', 'I-LOC', 'I-LOC', 'O'] ``` You can also use the NER model directly with a transformers pipeline: ```python >>> from transformers import pipeline >>> ner = pipeline('ner', model='CAMeL-Lab/bert-base-arabic-camelbert-da-ner') >>> ner("إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع") [{'word': 'أبوظبي', 'score': 0.9895730018615723, 'entity': 'B-LOC', 'index': 2, 'start': 6, 'end': 12}, {'word': 'الإمارات', 'score': 0.8156259655952454, 'entity': 'B-LOC', 'index': 8, 'start': 33, 'end': 41}, {'word': 'العربية', 'score': 0.890906810760498, 'entity': 'I-LOC', 'index': 9, 'start': 42, 'end': 49}, {'word': 'المتحدة', 'score': 0.8169114589691162, 'entity': 'I-LOC', 'index': 10, 'start': 50, 'end': 57}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a da of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
CAMeL-Lab/bert-base-arabic-camelbert-msa-did-nadi
CAMeL-Lab
2021-10-17T11:05:21Z
33
0
transformers
[ "transformers", "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: - ar license: apache-2.0 widget: - text: "عامل ايه ؟" --- # CAMeLBERT-MSA DID NADI Model ## Model description **CAMeLBERT-MSA DID NADI Model** is a dialect identification (DID) model that was built by fine-tuning the [CAMeLBERT Modern Standard Arabic (MSA)](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-msa/) model. For the fine-tuning, we used the [NADI Coountry-level](https://sites.google.com/view/nadi-shared-task) dataset, which includes 21 labels. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-MSA DID NADI model as part of the transformers pipeline. This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon. #### How to use To use the model with a transformers pipeline: ```python >>> from transformers import pipeline >>> did = pipeline('text-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-msa-did-nadi') >>> sentences = ['عامل ايه ؟', 'شلونك ؟ شخبارك ؟'] >>> did(sentences) [{'label': 'Egypt', 'score': 0.9242768287658691}, {'label': 'Saudi_Arabia', 'score': 0.3400847613811493}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
CAMeL-Lab/bert-base-arabic-camelbert-mix-did-nadi
CAMeL-Lab
2021-10-17T11:05:12Z
5
0
transformers
[ "transformers", "pytorch", "tf", "bert", "text-classification", "ar", "arxiv:2103.06678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: - ar license: apache-2.0 widget: - text: "عامل ايه ؟" --- # CAMeLBERT-Mix DID NADI Model ## Model description **CAMeLBERT-Mix DID NADI Model** is a dialect identification (DID) model that was built by fine-tuning the [CAMeLBERT-Mix](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-mix/) model. For the fine-tuning, we used the [NADI Coountry-level](https://sites.google.com/view/nadi-shared-task) dataset, which includes 21 labels. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-Mix DID NADI model as part of the transformers pipeline. This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon. #### How to use To use the model with a transformers pipeline: ```python >>> from transformers import pipeline >>> did = pipeline('text-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-mix-did-nadi') >>> sentences = ['عامل ايه ؟', 'شلونك ؟ شخبارك ؟'] >>> did(sentences) [{'label': 'Egypt', 'score': 0.920274019241333}, {'label': 'Saudi_Arabia', 'score': 0.26750022172927856}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
lucius/distilroberta-base-finetuned-wikitext2
lucius
2021-10-17T10:40:14Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8340 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0827 | 1.0 | 2406 | 1.9227 | | 1.9993 | 2.0 | 4812 | 1.8828 | | 1.9614 | 3.0 | 7218 | 1.8172 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
lucius/distilgpt2-finetuned-wikitext2
lucius
2021-10-17T09:45:49Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7608 | 1.0 | 2334 | 3.6655 | | 3.6335 | 2.0 | 4668 | 3.6455 | | 3.6066 | 3.0 | 7002 | 3.6424 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
Razan/QAIDeptModel
Razan
2021-10-17T07:00:56Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer model-index: - name: QAIDeptModel results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # QAIDeptModel This model is a fine-tuned version of [aubmindlab/bert-base-arabertv2](https://huggingface.co/aubmindlab/bert-base-arabertv2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 105 | 2.6675 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
huggingtweets/rias_hot
huggingtweets
2021-10-17T02:28:08Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/rias_hot/1634437684641/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1427157680863522818/jqfniv6o_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">RiasHot</div> <div style="text-align: center; font-size: 14px;">@rias_hot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from RiasHot. | Data | RiasHot | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 136 | | Short tweets | 905 | | Tweets kept | 2204 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2bwco1hp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rias_hot's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/n6fp7izq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/n6fp7izq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rias_hot') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)