modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-06 06:27:01
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
542 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-06 06:26:44
card
stringlengths
11
1.01M
afasdfdfadsf/blockassist-bc-rough_opaque_clam_1754974095
afasdfdfadsf
2025-08-12T04:49:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rough opaque clam", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T04:49:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rough opaque clam --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Protechny/my_awesome_qa_model
Protechny
2025-08-12T04:49:46Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "question-answering", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2025-08-12T04:48:42Z
--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer model-index: - name: my_awesome_qa_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_qa_model This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6203 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 250 | 2.1909 | | 2.6515 | 2.0 | 500 | 1.6735 | | 2.6515 | 3.0 | 750 | 1.6203 | ### Framework versions - Transformers 4.55.0 - Pytorch 2.8.0+cu128 - Datasets 4.0.0 - Tokenizers 0.21.4
NexVeridian/Qwen3-4B-Instruct-2507-4bit
NexVeridian
2025-08-12T04:49:33Z
5
0
mlx
[ "mlx", "safetensors", "qwen3", "text-generation", "conversational", "base_model:Qwen/Qwen3-4B-Instruct-2507", "base_model:quantized:Qwen/Qwen3-4B-Instruct-2507", "license:apache-2.0", "4-bit", "region:us" ]
text-generation
2025-08-06T17:37:54Z
--- library_name: mlx license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-4B-Instruct-2507/blob/main/LICENSE pipeline_tag: text-generation tags: - mlx base_model: Qwen/Qwen3-4B-Instruct-2507 --- # NexVeridian/Qwen3-4B-Instruct-2507-4bit This model [NexVeridian/Qwen3-4B-Instruct-2507-4bit](https://huggingface.co/NexVeridian/Qwen3-4B-Instruct-2507-4bit) was converted to MLX format from [Qwen/Qwen3-4B-Instruct-2507](https://huggingface.co/Qwen/Qwen3-4B-Instruct-2507) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("NexVeridian/Qwen3-4B-Instruct-2507-4bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
RMCian/blockassist-bc-wiry_sturdy_cobra_1754973936
RMCian
2025-08-12T04:46:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry sturdy cobra", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T04:45:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry sturdy cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
amandacute/blockassist-bc-amphibious_plump_ram_1754973806
amandacute
2025-08-12T04:44:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious plump ram", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T04:43:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious plump ram --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
wanpance/blockassist-bc-scavenging_invisible_prawn_1754973689
wanpance
2025-08-12T04:43:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scavenging invisible prawn", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T04:42:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scavenging invisible prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
RMCian/blockassist-bc-wiry_sturdy_cobra_1754973596
RMCian
2025-08-12T04:40:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry sturdy cobra", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T04:40:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry sturdy cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sshan95/clinical-medical-coding-hierarchical-v2
sshan95
2025-08-12T04:40:19Z
0
0
null
[ "pytorch", "hierarchical_medical_coding_v2", "region:us" ]
null
2025-08-11T20:58:43Z
# Clinical Medical Coding Hierarchical Model v2.0 ## πŸš€ Major Upgrade: Hierarchical Architecture This is the **enhanced version** of the clinical medical coding model with a revolutionary **two-stage hierarchical approach** that significantly improves medical coding accuracy and coverage. ## πŸ† Performance Achievements ### **Stage 1: Category Classification** - **F1 Score**: 71.45% 🎯 - **Precision**: 67.79% - **Recall**: 75.54% - **Categories Covered**: 23/34 medical categories - **Use Case**: Medical triage and initial categorization ### **Stage 2: Code Prediction** - **F1 Score**: 24.79% on **7,718 total codes** 🎯 - **Precision**: 22.55% - **Recall**: 27.53% - **Codes Actively Used**: 190/7,718 (2.5%) - **Average Predictions**: 16.07 codes per clinical note - **Use Case**: Specific medical code suggestions ## πŸ—οΈ Architecture Innovation ### **Two-Stage Hierarchical Processing** 1. **Category Classifier**: Identifies broad medical categories (ICD-10-CM, ICD-10-PCS, CPT, HCPCS) 2. **Code Predictor**: Predicts specific codes within identified categories ### **Medical Coding Standards Supported** - **ICD-10-CM**: Clinical diagnoses (21 categories) - **ICD-10-PCS**: Medical procedures (6 categories) - **CPT**: Current procedural terminology (5 categories) - **HCPCS**: Healthcare supplies and equipment (2 categories) - **Total**: 34 medical categories, 7,718 specific codes ## 🎯 Commercial Applications ### **Hospital Deployment Ready** - **71% category accuracy** for medical triage - **25% code prediction** for coding assistance - **Comprehensive coverage** of all major coding standards - **Hierarchical reasoning** mimics clinical thought process ### **Value Propositions** - **"70%+ medical category identification"** - **"Comprehensive 7,700+ code vocabulary"** - **"Two-stage clinical reasoning AI"** - **"Multi-standard medical coding support"** ## 🧠 Model Architecture ### **Foundation Model** - **Base**: Enhanced Clinical BERT from v1.0 model - **Training Data**: 198,152 clinical notes from MIMIC-IV - **Clinical Comprehension**: Leverages proven 31.5% F1 baseline ### **Hierarchical Components** ```python # Stage 1: Category Classification categories = model.predict_categories(clinical_text) # 71.5% F1 # Stage 2: Code Prediction (category-aware) codes = model.predict_codes(clinical_text, categories) # 24.8% F1 ``` ## πŸ“Š Performance Comparison | Metric | v1.0 (1K codes) | v2.0 (7.7K codes) | Improvement | |--------|------------------|-------------------|-------------| | **Code Coverage** | 1,000 codes | 7,718 codes | **+671%** | | **F1 Score** | 31.5% | 24.8% | Competitive* | | **Medical Categories** | None | 71.5% F1 | **New Feature** | | **Architecture** | Single-stage | Hierarchical | **Enhanced** | | **Coding Standards** | Limited | Comprehensive | **Complete** | *25% F1 on 7.7K codes is equivalent to 40%+ F1 on 1K codes in terms of difficulty ## πŸ”§ Usage ### **Category Classification** ```python from transformers import AutoTokenizer import torch import pickle # Load model components tokenizer = AutoTokenizer.from_pretrained("sshan95/clinical-medical-coding-hierarchical-v2") # Load category encoder with open("category_mlb.pkl", "rb") as f: category_encoder = pickle.load(f) # Example clinical text clinical_text = ''' Patient presents with acute chest pain and shortness of breath. History of hypertension and diabetes. ECG shows ST elevation. Troponin levels elevated. Diagnosed with acute myocardial infarction. Initiated on aspirin, metoprolol, and heparin. Cardiac catheterization scheduled. ''' # Tokenize inputs = tokenizer(clinical_text, return_tensors="pt", truncation=True, max_length=384) # Predict categories (Stage 1) # category_outputs = category_model(**inputs) # predicted_categories = (category_outputs > 0.40).float() # Predict codes (Stage 2) # code_outputs = code_model(**inputs, category_probs=predicted_categories) # predicted_codes = (code_outputs > 0.10).float() ``` ### **Expected Categories for Example** - `ICD10_CM_Circulatory` (cardiovascular conditions) - `ICD10_CM_Endocrine_Metabolic` (diabetes) - `CPT_Evaluation_Management` (hospital care) - `CPT_Surgery_Cardiovascular` (procedures) ## πŸ“ˆ Training Details ### **Dataset** - **Source**: MIMIC-IV True Temporal Dataset - **Size**: 198,152 clinical notes - **Codes**: 7,718 unique medical codes - **Categories**: 34 hierarchical medical categories ### **Training Configuration** - **Epochs**: 2 (hierarchical approach converges faster) - **Base Model**: sshan95/clinical-medical-comprehension-model - **Architecture**: Two-stage with gradient accumulation - **Memory Optimization**: Handles large-scale medical coding ### **Performance Progression** - **Epoch 1**: Category 70.6% F1, Code 20.0% F1 - **Epoch 2**: Category 71.5% F1, Code 24.8% F1 - **Trajectory**: Continued improvement expected ## πŸ₯ Clinical Applications ### **Primary Use Cases** 1. **Medical Coding Assistance**: 25% automation rate 2. **Clinical Triage**: 71% category accuracy 3. **Documentation Quality**: Comprehensive code suggestions 4. **Workflow Optimization**: Two-stage processing pipeline ### **Integration Scenarios** - **EMR Systems**: Real-time coding suggestions - **Revenue Cycle**: Automated coding workflow - **Quality Assurance**: Coding accuracy verification - **Clinical Research**: Automated data categorization ## πŸ”¬ Research Significance ### **Technical Contributions** - **Hierarchical Medical Coding**: Novel two-stage architecture - **Large-Scale Performance**: 7.7K codes with competitive F1 - **Clinical Reasoning**: Category-guided code prediction - **Multi-Standard Support**: Comprehensive coding coverage ### **Benchmark Performance** - **Research-Competitive**: 25% F1 on 7K+ codes matches published papers - **Commercial-Viable**: 71% category + 25% code accuracy - **Scalable Architecture**: Handles enterprise medical coding loads ## πŸš€ Version History ### **v2.0 (Current)** - βœ… Hierarchical two-stage architecture - βœ… 7,718 comprehensive code coverage - βœ… 71.5% category classification F1 - βœ… 24.8% code prediction F1 - βœ… Multi-standard medical coding support ### **v1.0** - βœ… Single-stage clinical comprehension - βœ… 1,000 code coverage - βœ… 31.5% F1 score - βœ… Clinical understanding foundation ## πŸ“‹ Model Files - `pytorch_model.bin`: Complete hierarchical model weights - `config.json`: Model configuration and performance metrics - `tokenizer/`: Clinical BERT tokenizer - `category_mlb.pkl`: Category label encoder (34 categories) - `code_mlb.pkl`: Code label encoder (7,718 codes) ## πŸ”— Related Models - **v1.0**: [sshan95/clinical-medical-comprehension-model](https://huggingface.co/sshan95/clinical-medical-comprehension-model) - **Base Model**: [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) ## πŸ“œ Citation If you use this model, please cite the MIMIC-IV dataset and acknowledge the hierarchical clinical comprehension approach. ## πŸ”’ License Please respect MIMIC-IV data usage agreements and healthcare AI deployment guidelines. --- **Created**: 2025-08-11 **Author**: sshan95 **Version**: 2.0 **Architecture**: Hierarchical Clinical Comprehension **Performance**: Research-Grade Medical Coding AI πŸ₯ **Ready for clinical deployment and medical coding automation!** πŸš€
deanb258/segformer-b5-fine-tuned-test
deanb258
2025-08-12T04:40:06Z
0
0
transformers
[ "transformers", "safetensors", "segformer", "vision", "image_segmentation", "generated_from_trainer", "base_model:nvidia/segformer-b2-finetuned-ade-512-512", "base_model:finetune:nvidia/segformer-b2-finetuned-ade-512-512", "license:other", "endpoints_compatible", "region:us" ]
null
2025-08-12T04:39:30Z
--- library_name: transformers license: other base_model: nvidia/segformer-b2-finetuned-ade-512-512 tags: - vision - image_segmentation - generated_from_trainer model-index: - name: segformer-b5-fine-tuned-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b5-fine-tuned-test This model is a fine-tuned version of [nvidia/segformer-b2-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b2-finetuned-ade-512-512) on the deanb258/dataset_latest_full dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 200 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.52.1 - Pytorch 2.6.0+cpu - Datasets 3.6.0 - Tokenizers 0.21.1
megumiin/blockassist-bc-colorful_swift_beaver_1754973480
megumiin
2025-08-12T04:39:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful swift beaver", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T04:39:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful swift beaver --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
giovannidemuri/llama8b-er-afg-v88-seed2-hx
giovannidemuri
2025-08-12T04:39:01Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "conversational", "base_model:meta-llama/Llama-3.1-8B", "base_model:finetune:meta-llama/Llama-3.1-8B", "license:llama3.1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-12T02:39:16Z
--- library_name: transformers license: llama3.1 base_model: meta-llama/Llama-3.1-8B tags: - generated_from_trainer model-index: - name: llama8b-er-afg-v88-seed2-hx results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama8b-er-afg-v88-seed2-hx This model is a fine-tuned version of [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 2 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.52.4 - Pytorch 2.7.1+cu128 - Datasets 3.6.0 - Tokenizers 0.21.2
afasdfdfadsf/blockassist-bc-rough_opaque_clam_1754973435
afasdfdfadsf
2025-08-12T04:38:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rough opaque clam", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T04:38:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rough opaque clam --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ecamli/blockassist-bc-hulking_soft_hippo_1754973483
ecamli
2025-08-12T04:38:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hulking soft hippo", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T04:38:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hulking soft hippo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Jusstin/blockassist-bc-omnivorous_polished_mule_1754973433
Jusstin
2025-08-12T04:38:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "omnivorous polished mule", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T04:37:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - omnivorous polished mule --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Moon-bow/DPoser-X
Moon-bow
2025-08-12T04:38:00Z
0
2
pytorch
[ "pytorch", "3d", "computer-vision", "human-pose-estimation", "diffusion-models", "en", "arxiv:2508.00599", "license:cc-by-nc-4.0", "region:us" ]
null
2025-08-11T08:07:56Z
--- license: cc-by-nc-4.0 language: en library_name: pytorch tags: - 3d - computer-vision - human-pose-estimation - diffusion-models - pytorch --- # DPoser-X: Diffusion Model as Robust 3D Whole-body Human Pose Prior <a href="https://arxiv.org/abs/2508.00599" target="_blank"><img src="https://img.shields.io/badge/arXiv-2508.00599-b31b1b.svg"></a> <a href="https://github.com/careless-lu/DPoser" target="_blank"><img src="https://img.shields.io/badge/Code-GitHub-black"></a> <a href="https://dposer.github.io/" target="_blank"><img src="https://img.shields.io/badge/Project-Page-blue"></a> <a href="https://youtu.be/yzwliadFcX0" target="_blank"><img src="https://img.shields.io/badge/Demo-YouTube-red"></a> Official model weights for **DPoser-X**, the first diffusion-based prior for robust 3D whole-body human pose, accepted as an **Oral presentation at ICCV 2025**. ## Model Description **DPoser-X** is a diffusion-based prior designed to overcome the limitations of traditional models like VAEs and NDFs in generating realistic and diverse human poses. Our framework introduces several key innovations: - **🧬 A robust pose prior** based on unconditional diffusion models. - **πŸ” A unified optimization framework** that solves various pose-centric tasks. - **πŸ“‰ A novel truncated timestep scheduling** method optimized specifically for pose data. - **🎯 A mixed training strategy** to effectively model the entire human body, including face and hands. This results in a versatile and powerful prior that achieves state-of-the-art performance on 8 benchmarks for body, hand, face, and whole-body modeling. ## Model Variants This repository contains the weights for the different components of the DPoser-X framework. The file paths in this repository correspond to the structure required by the official code. - **Body Model:** `body/BaseMLP/last.ckpt` - **Hand Model:** `hand/BaseMLP/last.ckpt` - **Face Expression Model:** `face/BaseMLP/last.ckpt` - **Face Shape Model:** `face_shape/BaseMLP/last.ckpt` - **Whole-body Model:** `wholebody/mixed/last.ckpt` All files can be found in the [**Files and versions**](https://huggingface.co/Moon-bow/DPoser-X/tree/main) tab. ## How to Use For the full implementation and instructions, please see our official GitHub repository: [https://github.com/careless-lu/DPoser](https://github.com/careless-lu/DPoser). To use the pretrained models from this hub, you can use the `huggingface_hub` library to download the files into the correct directory structure within your local `pretrained_models` folder. **Example: Using the Terminal (Downloads all models at once)** Make sure you have `huggingface-hub` installed (`pip install huggingface-hub`). Then run the following command from your terminal: ```bash huggingface-cli download Moon-bow/DPoser-X --repo-type model --local-dir pretrained_models --local-dir-use-symlinks False ``` This command will download the entire repository contents into a local folder named `pretrained_models`, preserving the required directory structure. You can then proceed with the instructions in our GitHub repository. **Example: Within Python Code (Automatic Download)** You can also use the `huggingface_hub` library to download the models programmatically: ```python from huggingface_hub import snapshot_download, hf_hub_download # download entire repo filepath = snapshot_download(repo_id="Moon-bow/DPoser-X") # download one file filepath = hf_hub_download(repo_id="Moon-bow/DPoser-X", filename="body/BaseMLP/last.ckpt") ``` ## Citation If you find our work useful, please cite our paper: ``` @article{lu2025dposerx, title={DPoser-X: Diffusion Model as Robust 3D Whole-body Human Pose Prior}, author={Lu, Junzhe and Lin, Jing and Dou, Hongkun and Zeng, Ailing and Deng, Yue and Liu, Xian and Cai, Zhongang and Yang, Lei and Zhang, Yulun and Wang, Haoqian and Liu, Ziwei}, journal={arXiv preprint arXiv:2508.00599}, year={2025} } ```
micostfe/labllmfgptoss
micostfe
2025-08-12T04:34:14Z
0
0
transformers
[ "transformers", "safetensors", "gpt_oss", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/gpt-oss-20b-unsloth-bnb-4bit", "base_model:finetune:unsloth/gpt-oss-20b-unsloth-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "8-bit", "region:us" ]
text-generation
2025-08-12T04:29:57Z
--- base_model: unsloth/gpt-oss-20b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gpt_oss license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** micostfe - **License:** apache-2.0 - **Finetuned from model :** unsloth/gpt-oss-20b-unsloth-bnb-4bit This gpt_oss model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
yokoga/minicompe-model-ptnB
yokoga
2025-08-12T04:32:28Z
0
0
transformers
[ "transformers", "text-generation-inference", "unsloth", "qwen3", "trl", "en", "base_model:unsloth/Qwen3-4B", "base_model:finetune:unsloth/Qwen3-4B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-12T04:32:27Z
--- base_model: unsloth/Qwen3-4B tags: - text-generation-inference - transformers - unsloth - qwen3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** yokoga - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen3-4B This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Ironman288/blockassist-bc-miniature_lanky_vulture_1754971010
Ironman288
2025-08-12T04:31:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "miniature lanky vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T04:30:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - miniature lanky vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
koloni/blockassist-bc-deadly_graceful_stingray_1754971394
koloni
2025-08-12T04:29:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T04:29:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1754972888
IvanJAjebu
2025-08-12T04:29:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T04:29:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1754972751
ggozzy
2025-08-12T04:27:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T04:26:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
afasdfdfadsf/blockassist-bc-rough_opaque_clam_1754972721
afasdfdfadsf
2025-08-12T04:27:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rough opaque clam", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T04:26:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rough opaque clam --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1754972499
IvanJAjebu
2025-08-12T04:22:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T04:22:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
calegpedia/blockassist-bc-stealthy_slimy_rooster_1754970854
calegpedia
2025-08-12T04:20:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy slimy rooster", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T04:20:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy slimy rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
tamewild/4b_v46_merged_e5
tamewild
2025-08-12T04:19:56Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-12T04:17:41Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
alam1n/gtr
alam1n
2025-08-12T04:13:56Z
0
0
null
[ "license:artistic-2.0", "region:us" ]
null
2025-08-12T04:13:56Z
--- license: artistic-2.0 ---
hafidhsoekma/test-g1.7b-2-checkpoint-1000
hafidhsoekma
2025-08-12T04:12:58Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/Qwen3-1.7B-unsloth-bnb-4bit", "base_model:finetune:unsloth/Qwen3-1.7B-unsloth-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-12T04:05:58Z
--- base_model: unsloth/Qwen3-1.7B-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** hafidhsoekma - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen3-1.7B-unsloth-bnb-4bit This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
ggozzy/blockassist-bc-stubby_yapping_mandrill_1754971860
ggozzy
2025-08-12T04:12:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T04:11:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hobson123/blockassist-bc-mammalian_dense_gibbon_1754971490
hobson123
2025-08-12T04:10:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mammalian dense gibbon", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T04:10:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mammalian dense gibbon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
winnieyangwannan/entity_sft_Llama-3.1-8B-Instruct_lora_8_lr_0.0001_6400_all_37_epoch_1_layer_22
winnieyangwannan
2025-08-12T04:07:56Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-12T04:05:42Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
flyingbugs/Qwen2.5-Math-7B-limo-32b
flyingbugs
2025-08-12T04:07:36Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "sft", "conversational", "dataset:flyingbugs/limo-deepseek32b-responses", "base_model:Qwen/Qwen2.5-Math-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-Math-7B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-12T03:26:29Z
--- base_model: Qwen/Qwen2.5-Math-7B-Instruct datasets: flyingbugs/limo-deepseek32b-responses library_name: transformers model_name: Qwen2.5-Math-7B-limo-32b tags: - generated_from_trainer - open-r1 - trl - sft licence: license --- # Model Card for Qwen2.5-Math-7B-limo-32b This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Math-7B-Instruct) on the [flyingbugs/limo-deepseek32b-responses](https://huggingface.co/datasets/flyingbugs/limo-deepseek32b-responses) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="flyingbugs/Qwen2.5-Math-7B-limo-32b", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/jjh233/huggingface/runs/krfigq0z) This model was trained with SFT. ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.5.1+cu121 - Datasets: 3.3.2 - Tokenizers: 0.21.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin GallouΓ©dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
mynamezxc/gemma-function-calling-lora_v1.1
mynamezxc
2025-08-12T04:05:34Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "sft", "endpoints_compatible", "region:us" ]
null
2025-08-12T04:05:00Z
--- library_name: transformers model_name: gemma-function-calling-lora_v1.1 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for gemma-function-calling-lora_v1.1 This model is a fine-tuned version of [None](https://huggingface.co/None). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="mynamezxc/gemma-function-calling-lora_v1.1", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.19.1 - Transformers: 4.55.0 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
ggozzy/blockassist-bc-stubby_yapping_mandrill_1754971354
ggozzy
2025-08-12T04:04:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T04:03:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lulu-2/poca-SoccerTwos
lulu-2
2025-08-12T04:03:28Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2025-08-12T04:03:17Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐢 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: lulu-2/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play πŸ‘€
koloni/blockassist-bc-deadly_graceful_stingray_1754969652
koloni
2025-08-12T04:00:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T03:59:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Jeol/Jinx-gpt-oss-20b-Q4_K_M-GGUF
Jeol
2025-08-12T03:56:22Z
0
0
transformers
[ "transformers", "gguf", "vllm", "llama-cpp", "gguf-my-repo", "text-generation", "base_model:Jinx-org/Jinx-gpt-oss-20b", "base_model:quantized:Jinx-org/Jinx-gpt-oss-20b", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2025-08-12T03:55:13Z
--- library_name: transformers license: apache-2.0 pipeline_tag: text-generation base_model: Jinx-org/Jinx-gpt-oss-20b tags: - vllm - llama-cpp - gguf-my-repo --- # Jeol/Jinx-gpt-oss-20b-Q4_K_M-GGUF This model was converted to GGUF format from [`Jinx-org/Jinx-gpt-oss-20b`](https://huggingface.co/Jinx-org/Jinx-gpt-oss-20b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Jinx-org/Jinx-gpt-oss-20b) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Jeol/Jinx-gpt-oss-20b-Q4_K_M-GGUF --hf-file jinx-gpt-oss-20b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Jeol/Jinx-gpt-oss-20b-Q4_K_M-GGUF --hf-file jinx-gpt-oss-20b-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Jeol/Jinx-gpt-oss-20b-Q4_K_M-GGUF --hf-file jinx-gpt-oss-20b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Jeol/Jinx-gpt-oss-20b-Q4_K_M-GGUF --hf-file jinx-gpt-oss-20b-q4_k_m.gguf -c 2048 ```
afasdfdfadsf/blockassist-bc-rough_opaque_clam_1754970849
afasdfdfadsf
2025-08-12T03:55:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rough opaque clam", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T03:54:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rough opaque clam --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
wanpance/blockassist-bc-scavenging_invisible_prawn_1754970643
wanpance
2025-08-12T03:53:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scavenging invisible prawn", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T03:53:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scavenging invisible prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AshwinKM2005/Hangman_TrexQuant
AshwinKM2005
2025-08-12T03:53:05Z
0
0
transformers
[ "transformers", "safetensors", "deberta-v2", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-12T03:51:47Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
bimobbb/blockassist-bc-energetic_lanky_frog_1754970425
bimobbb
2025-08-12T03:53:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "energetic lanky frog", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T03:51:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - energetic lanky frog --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bralynn/test2
bralynn
2025-08-12T03:52:40Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-12T03:50:12Z
--- base_model: unsloth/qwen3-4b-instruct-2507-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** bralynn - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen3-4b-instruct-2507-unsloth-bnb-4bit This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Jusstin/blockassist-bc-omnivorous_polished_mule_1754970663
Jusstin
2025-08-12T03:51:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "omnivorous polished mule", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T03:51:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - omnivorous polished mule --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hobson123/blockassist-bc-mammalian_dense_gibbon_1754970040
hobson123
2025-08-12T03:46:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mammalian dense gibbon", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T03:46:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mammalian dense gibbon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
outlookAi/OLcGoQXwmy
outlookAi
2025-08-12T03:44:01Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-12T03:26:19Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: Mauy2 --- # Olcgoqxwmy <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `Mauy2` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "Mauy2", "lora_weights": "https://huggingface.co/outlookAi/OLcGoQXwmy/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('outlookAi/OLcGoQXwmy', weight_name='lora.safetensors') image = pipeline('Mauy2').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1200 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/outlookAi/OLcGoQXwmy/discussions) to add images that show off what you’ve made with this LoRA.
John6666/nova-mature-xl-v10-sdxl
John6666
2025-08-12T03:42:04Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "mature", "2D", "2.5D", "illustration", "digital art", "colorful", "fantasy", "landscape", "merge", "noobai", "Illustrious XL v2.0", "illustrious", "en", "base_model:Laxhar/noobai-XL-1.1", "base_model:merge:Laxhar/noobai-XL-1.1", "base_model:OnomaAIResearch/Illustrious-XL-v2.0", "base_model:merge:OnomaAIResearch/Illustrious-XL-v2.0", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-08-12T03:37:10Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - mature - 2D - 2.5D - illustration - digital art - colorful - fantasy - landscape - merge - noobai - Illustrious XL v2.0 - illustrious base_model: - OnomaAIResearch/Illustrious-XL-v2.0 - Laxhar/noobai-XL-1.1 --- Original model is [here](https://civitai.com/models/1859777/nova-mature-xl?modelVersionId=2104871). This model created by [Crody](https://civitai.com/user/Crody).
John6666/noobai-v-pred-10-with-eq-vae-experimental-eq-vae-sdxl
John6666
2025-08-12T03:37:08Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "less noisy", "cleaner colors", "finetune", "EQVAE", "v-pred", "merge", "noobai", "illustrious", "en", "base_model:Anzhc/MS-LC-EQ-D-VR_VAE", "base_model:merge:Anzhc/MS-LC-EQ-D-VR_VAE", "base_model:Laxhar/noobai-XL-Vpred-1.0", "base_model:merge:Laxhar/noobai-XL-Vpred-1.0", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-08-12T03:30:32Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - less noisy - cleaner colors - finetune - EQVAE - v-pred - merge - noobai - illustrious base_model: - Laxhar/noobai-XL-Vpred-1.0 - Anzhc/MS-LC-EQ-D-VR_VAE --- Original model is [here](https://civitai.com/models/1858821/noobai-v-pred-10-with-eq-vae?modelVersionId=2103794). The author is [here](https://huggingface.co/Bluvoll). This model created by [bluvoll](https://civitai.com/user/bluvoll).
Sayemahsjn/blockassist-bc-playful_feline_octopus_1754968608
Sayemahsjn
2025-08-12T03:35:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T03:35:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
afasdfdfadsf/blockassist-bc-rough_opaque_clam_1754969461
afasdfdfadsf
2025-08-12T03:32:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rough opaque clam", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T03:31:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rough opaque clam --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnsahFredd/embedding_model
AnsahFredd
2025-08-12T03:28:10Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-08-12T03:06:00Z
--- library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
John6666/haxcelsior-v8-sdxl
John6666
2025-08-12T03:24:29Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "girls", "noobai", "illustrious", "en", "base_model:Laxhar/noobai-XL-1.1", "base_model:finetune:Laxhar/noobai-XL-1.1", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-08-12T03:17:44Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - girls - noobai - illustrious base_model: Laxhar/noobai-XL-1.1 --- Original model is [here](https://civitai.com/models/1451175/haxcelsior?modelVersionId=2100023). This model created by [xeper](https://civitai.com/user/xeper).
Jusstin/blockassist-bc-omnivorous_polished_mule_1754968957
Jusstin
2025-08-12T03:23:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "omnivorous polished mule", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T03:23:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - omnivorous polished mule --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Obiwank107/blockassist-bc-tame_foxy_aardvark_1754965474
Obiwank107
2025-08-12T03:18:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tame foxy aardvark", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T03:18:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tame foxy aardvark --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
blendinl/moondream2drain
blendinl
2025-08-12T03:17:40Z
0
0
null
[ "safetensors", "moondream1", "image-text-to-text", "custom_code", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-08-12T01:59:50Z
--- license: apache-2.0 pipeline_tag: image-text-to-text --- Moondream is a small vision language model designed to run efficiently everywhere. [Website](https://moondream.ai/) / [Demo](https://moondream.ai/playground) / [GitHub](https://github.com/vikhyat/moondream) This repository contains the latest (**2025-06-21**) release of Moondream, as well as [historical releases](https://huggingface.co/vikhyatk/moondream2/blob/main/versions.txt). The model is updated frequently, so we recommend specifying a revision as shown below if you're using it in a production application. ### Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer from PIL import Image model = AutoModelForCausalLM.from_pretrained( "vikhyatk/moondream2", revision="2025-06-21", trust_remote_code=True, device_map={"": "cuda"} # ...or 'mps', on Apple Silicon ) # Captioning print("Short caption:") print(model.caption(image, length="short")["caption"]) print("\nNormal caption:") for t in model.caption(image, length="normal", stream=True)["caption"]: # Streaming generation example, supported for caption() and detect() print(t, end="", flush=True) print(model.caption(image, length="normal")) # Visual Querying print("\nVisual query: 'How many people are in the image?'") print(model.query(image, "How many people are in the image?")["answer"]) # Object Detection print("\nObject detection: 'face'") objects = model.detect(image, "face")["objects"] print(f"Found {len(objects)} face(s)") # Pointing print("\nPointing: 'person'") points = model.point(image, "person")["points"] print(f"Found {len(points)} person(s)") ``` ### Changelog **2025-06-21** ([full release notes](https://moondream.ai/blog/moondream-2025-06-21-release)) * **Grounded Reasoning** Introduces a new step-by-step reasoning mode that explicitly grounds reasoning in spatial positions within the image before answering, leading to more precise visual interpretation (e.g., chart median calculations, accurate counting). Enable with `reasoning=True` in the `query` skill to trade off speed vs. accuracy. * **Sharper Object Detection** Uses reinforcement learning on higher-quality bounding-box annotations to reduce object clumping and improve fine-grained detections (e.g., distinguishing β€œblue bottle” vs. β€œbottle”). * **Faster Text Generation** Yields 20–40 % faster response generation via a new β€œsuperword” tokenizer and lightweight tokenizer transfer hypernetwork, which reduces the number of tokens emitted without loss in accuracy and eases future multilingual extensions. * **Improved UI Understanding** Boosts ScreenSpot (UI element localization) performance from an F1\@0.5 of 60.3 to 80.4, making Moondream more effective for UI-focused applications. * **Reinforcement Learning Enhancements** RL fine-tuning applied across 55 vision-language tasks to reinforce grounded reasoning and detection capabilities, with a roadmap to expand to \~120 tasks in the next update. **2025-04-15** ([full release notes](https://moondream.ai/blog/moondream-2025-04-14-release)) 1. Improved chart understanding (ChartQA up from 74.8 to 77.5, 82.2 with PoT) 2. Added temperature and nucleus sampling to reduce repetitive outputs 3. Better OCR for documents and tables (prompt with β€œTranscribe the text” or β€œTranscribe the text in natural reading order”) 4. Object detection supports document layout detection (figure, formula, text, etc) 5. UI understanding (ScreenSpot F1\@0.5 up from 53.3 to 60.3) 6. Improved text understanding (DocVQA up from 76.5 to 79.3, TextVQA up from 74.6 to 76.3) **2025-03-27** ([full release notes](https://moondream.ai/blog/moondream-2025-03-27-release)) 1. Added support for long-form captioning 2. Open vocabulary image tagging 3. Improved counting accuracy (e.g. CountBenchQA increased from 80 to 86.4) 4. Improved text understanding (e.g. OCRBench increased from 58.3 to 61.2) 5. Improved object detection, especially for small objects (e.g. COCO up from 30.5 to 51.2) 6. Fixed token streaming bug affecting multi-byte unicode characters 7. gpt-fast style `compile()` now supported in HF Transformers implementation
yongxianwei/Qwen2-VL-7B-Geometry
yongxianwei
2025-08-12T03:17:32Z
59
0
null
[ "safetensors", "qwen2_vl", "license:apache-2.0", "region:us" ]
null
2025-05-22T10:51:18Z
--- license: apache-2.0 ---
calegpedia/blockassist-bc-stealthy_slimy_rooster_1754966907
calegpedia
2025-08-12T03:14:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy slimy rooster", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T03:14:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy slimy rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kevinshin/qwen3-1.7b-dpo-beta-0.01-lr-1e-6-epoch-1-batch-16
kevinshin
2025-08-12T03:11:00Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "trl", "dpo", "conversational", "dataset:kevinshin/wildchat-5k-writing-1k-pref", "arxiv:2305.18290", "base_model:Qwen/Qwen3-1.7B", "base_model:finetune:Qwen/Qwen3-1.7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T19:41:30Z
--- base_model: Qwen/Qwen3-1.7B datasets: kevinshin/wildchat-5k-writing-1k-pref library_name: transformers model_name: qwen3-1.7b-dpo-beta-0.01-lr-1e-6-epoch-1-batch-16 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for qwen3-1.7b-dpo-beta-0.01-lr-1e-6-epoch-1-batch-16 This model is a fine-tuned version of [Qwen/Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B) on the [kevinshin/wildchat-5k-writing-1k-pref](https://huggingface.co/datasets/kevinshin/wildchat-5k-writing-1k-pref) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="kevinshin/qwen3-1.7b-dpo-beta-0.01-lr-1e-6-epoch-1-batch-16", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/myungjune-sogang-university/general_remo_train/runs/o28itf9i) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.19.1 - Transformers: 4.54.0 - Pytorch: 2.6.0+cu126 - Datasets: 4.0.0 - Tokenizers: 0.21.2 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
hobson123/blockassist-bc-mammalian_dense_gibbon_1754967940
hobson123
2025-08-12T03:10:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mammalian dense gibbon", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T03:10:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mammalian dense gibbon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
afasdfdfadsf/blockassist-bc-rough_opaque_clam_1754967991
afasdfdfadsf
2025-08-12T03:08:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rough opaque clam", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T03:07:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rough opaque clam --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jwang3vsu/tuning_results
jwang3vsu
2025-08-12T03:05:27Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "phi3", "text-generation", "generated_from_trainer", "sft", "trl", "conversational", "custom_code", "base_model:microsoft/Phi-3-mini-4k-instruct", "base_model:finetune:microsoft/Phi-3-mini-4k-instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T21:11:48Z
--- base_model: microsoft/Phi-3-mini-4k-instruct library_name: transformers model_name: tuning_results tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for tuning_results This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="jwang3vsu/tuning_results", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.0 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
mamann/blockassist-bc-screeching_agile_coral_1754966135
mamann
2025-08-12T03:03:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "screeching agile coral", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T03:03:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - screeching agile coral --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
akhyar919/model-name
akhyar919
2025-08-12T03:02:53Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-12T03:02:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
afasdfdfadsf/blockassist-bc-rough_opaque_clam_1754967574
afasdfdfadsf
2025-08-12T03:01:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rough opaque clam", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T03:00:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rough opaque clam --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
MMS-VIDEOS-18-tau-viral-video-Clip/New.full.videos.tau.Viral.Video.Official.Tutorial
MMS-VIDEOS-18-tau-viral-video-Clip
2025-08-12T03:00:40Z
0
0
null
[ "region:us" ]
null
2025-08-12T03:00:23Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?leaked-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
Manel/Vocos
Manel
2025-08-12T02:53:41Z
195
0
transformers
[ "transformers", "safetensors", "vocos", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-07-04T21:03:53Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
roachkins/omega_6yKbJIe
roachkins
2025-08-12T02:50:21Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-12T02:50:20Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
Osrivers/sdxlNuclearGeneralPurposeV3Semi_v30.safetensors
Osrivers
2025-08-12T02:49:03Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2025-08-12T02:23:26Z
--- license: creativeml-openrail-m ---
koloni/blockassist-bc-deadly_graceful_stingray_1754965264
koloni
2025-08-12T02:47:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T02:47:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hanyang1/turtle_policy081102
hanyang1
2025-08-12T02:47:02Z
0
0
lerobot
[ "lerobot", "safetensors", "robotics", "act", "dataset:hanyang1/record-test081102", "arxiv:2304.13705", "license:apache-2.0", "region:us" ]
robotics
2025-08-12T02:46:46Z
--- datasets: hanyang1/record-test081102 library_name: lerobot license: apache-2.0 model_name: act pipeline_tag: robotics tags: - lerobot - robotics - act --- # Model Card for act <!-- Provide a quick summary of what the model is/does. --> [Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash lerobot-train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash lerobot-record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
FluidInference/Qwen3-4B-int8-ov
FluidInference
2025-08-12T02:46:39Z
0
0
null
[ "openvino", "qwen3", "base_model:Qwen/Qwen3-4B", "base_model:quantized:Qwen/Qwen3-4B", "license:apache-2.0", "region:us" ]
null
2025-08-12T00:24:23Z
--- license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-4B/blob/main/LICENSE base_model: - Qwen/Qwen3-4B base_model_relation: quantized --- # Qwen3-4B-int8-ov * Model creator: [Qwen](https://huggingface.co/Qwen) * Original model: [Qwen3-4B](https://huggingface.co/Qwen/Qwen3-4B) ## Description This is [Qwen3-4B](https://huggingface.co/Qwen/Qwen3-4B) model converted to the [OpenVINOβ„’ IR](https://docs.openvino.ai/2025/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT8 by [NNCF](https://github.com/openvinotoolkit/nncf). ## Quantization Parameters Weight compression was performed using `nncf.compress_weights` with the following parameters: * mode: **INT8_ASYM** For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2025/openvino-workflow/model-optimization-guide/weight-compression.html). ## Compatibility The provided OpenVINOβ„’ IR model is compatible with: * OpenVINO version 2025.1.0 and higher * Optimum Intel 1.24.0 and higher ## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) 1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend: ``` pip install optimum[openvino] ``` 2. Run model inference: ``` from transformers import AutoTokenizer from optimum.intel.openvino import OVModelForCausalLM model_id = "FluidInference/qwen3-4b-int8-ov" tokenizer = AutoTokenizer.from_pretrained(model_id) model = OVModelForCausalLM.from_pretrained(model_id) inputs = tokenizer("What is OpenVINO?", return_tensors="pt") outputs = model.generate(**inputs, max_length=200) text = tokenizer.batch_decode(outputs)[0] print(text) ``` For more examples and possible optimizations, refer to the [Inference with Optimum Intel](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-optimum-intel.html). ## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai) 1. Install packages required for using OpenVINO GenAI. ``` pip install openvino-genai huggingface_hub ``` 2. Download model from HuggingFace Hub ``` import huggingface_hub as hf_hub model_id = "FluidInference/qwen3-4b-int8-ov" model_path = "qwen3-4b-int8-ov" hf_hub.snapshot_download(model_id, local_dir=model_path) ``` 3. Run model inference: ``` import openvino_genai as ov_genai device = "CPU" pipe = ov_genai.LLMPipeline(model_path, device) pipe.get_tokenizer().set_chat_template(pipe.get_tokenizer().chat_template) print(pipe.generate("What is OpenVINO?", max_length=200)) ``` More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-genai.html) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples) You can find more detaild usage examples in OpenVINO Notebooks: - [LLM](https://openvinotoolkit.github.io/openvino_notebooks/?search=LLM) - [RAG text generation](https://openvinotoolkit.github.io/openvino_notebooks/?search=RAG+system&tasks=Text+Generation) ## Limitations Check the original [model card](https://huggingface.co/Qwen/Qwen3-4B) for limitations. ## Legal information The original model is distributed under [Apache License Version 2.0](https://huggingface.co/Qwen/Qwen3-4B/blob/main/LICENSE) license. More details can be found in [Qwen3-4B](https://huggingface.co/Qwen/Qwen3-4B). ## Disclaimer Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.
jerrrycans/watermark20000
jerrrycans
2025-08-12T02:43:14Z
0
0
diffusers
[ "diffusers", "flux", "image-to-image", "lora", "replicate", "base_model:black-forest-labs/FLUX.1-Kontext-dev", "base_model:adapter:black-forest-labs/FLUX.1-Kontext-dev", "license:other", "region:us" ]
image-to-image
2025-08-12T01:28:04Z
--- license: other license_name: flux1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev/blob/main/LICENSE.md tags: - flux - image-to-image - lora - diffusers - replicate base_model: black-forest-labs/FLUX.1-Kontext-dev pipeline_tag: image-to-image # widget: # - src: https://... # text: >- # prompt # output: # url: https://... instance_prompt: remove all the watermarks from this image, all watermarks that are over this image --- # Watermark20000 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-Kontext-dev image-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using: https://replicate.com/replicate/fast-flux-kontext-trainer/train ## Prompt instruction You should use `remove all the watermarks from this image, all watermarks that are over this image` as part of the prompt instruction for your image-to-image editing. ## Training details - Steps: 20000 - Learning rate: 0.001 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/jerrrycans/watermark20000/discussions) to add images that show off what you’ve made with this LoRA.
Osrivers/hidream_i1_full_uncensored_fp8_v0.2.safetensors
Osrivers
2025-08-12T02:42:22Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2025-08-12T02:42:22Z
--- license: creativeml-openrail-m ---
quanxuantruong/tqa-stage1-t5-full-7epoch-final
quanxuantruong
2025-08-12T02:41:16Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google/flan-t5-base", "base_model:finetune:google/flan-t5-base", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2025-08-11T16:23:53Z
--- library_name: transformers license: apache-2.0 base_model: google/flan-t5-base tags: - generated_from_trainer model-index: - name: tqa-stage1-t5-full-7epoch-final results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tqa-stage1-t5-full-7epoch-final This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.2
nightmedia/Luth-1.7B-Instruct-bf16-mlx
nightmedia
2025-08-12T02:39:08Z
0
0
mlx
[ "mlx", "safetensors", "qwen3", "text-generation", "conversational", "fr", "en", "dataset:kurakurai/luth-sft", "base_model:kurakurai/Luth-1.7B-Instruct", "base_model:finetune:kurakurai/Luth-1.7B-Instruct", "license:apache-2.0", "region:us" ]
text-generation
2025-08-12T02:02:54Z
--- library_name: mlx license: apache-2.0 datasets: - kurakurai/luth-sft language: - fr - en base_model: kurakurai/Luth-1.7B-Instruct pipeline_tag: text-generation tags: - mlx --- # Luth-1.7B-Instruct-bf16-mlx This model [Luth-1.7B-Instruct-bf16-mlx](https://huggingface.co/Luth-1.7B-Instruct-bf16-mlx) was converted to MLX format from [kurakurai/Luth-1.7B-Instruct](https://huggingface.co/kurakurai/Luth-1.7B-Instruct) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("Luth-1.7B-Instruct-bf16-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
imgailab/flux1-trtx-schnell-fp8-ada
imgailab
2025-08-12T02:38:06Z
0
0
tensorrt-rtx
[ "tensorrt-rtx", "flux1-schnell", "flux1", "fp8", "schnell", "optimized", "base_model:black-forest-labs/FLUX.1-schnell", "base_model:finetune:black-forest-labs/FLUX.1-schnell", "license:apache-2.0", "region:us" ]
null
2025-08-12T02:38:03Z
--- library_name: tensorrt-rtx license: apache-2.0 base_model: black-forest-labs/FLUX.1-schnell tags: - tensorrt-rtx - flux1 - fp8 - schnell - optimized inference: false --- # FLUX1 TensorRT-RTX: SCHNELL-Fp8 πŸ”¨ Building Optimized TensorRT-RTX engines for **FLUX1** on **Fp8** architecture with **SCHNELL** quantization. ## 🎯 This Repository **One variant, one download** - only get exactly what you need! - **Model**: FLUX1 - **Architecture**: Fp8 (Compute Capability 8.0+) - **Quantization**: SCHNELL - **Memory**: TBD - **Speed**: TBD for 1024x1024 generation ## πŸš€ Quick Start ### Automatic (Recommended) ```bash # ImageAI server downloads automatically curl -X POST "http://localhost:8001/generate" \ -H "Content-Type: application/json" \ -d '{ "prompt": "a beautiful landscape", "model": "flux1-tensorrt_rtx:schnell", "width": 1024, "height": 1024 }' ``` ### Manual Download ```python from huggingface_hub import snapshot_download # Download this specific variant only engines_path = snapshot_download( repo_id="imgailab/flux1-trtx-schnell-fp8-ada" ) # Engines are in: engines_path/engines/*.plan ``` ### Direct Integration ```python from imageai_server.tensorrt.nvidia_sdxl_pipeline import NVIDIASDXLPipeline pipeline = NVIDIASDXLPipeline() pipeline.load_engines( engine_dir=f"{engines_path}/engines", framework_model_dir=f"{engines_path}/framework", onnx_dir=f"{engines_path}/onnx" ) pipeline.activate_engines() images, time_ms = pipeline.infer( prompt="a serene mountain landscape", height=1024, width=1024 ) ``` ## πŸ“Š Performance | Metric | Value | |--------|-------| | **Memory Usage** | TBD | | **Inference Speed** | TBD | | **Resolution** | 1024x1024 (optimized) | | **Batch Size** | 1 (optimized) | | **Precision** | SCHNELL | ## πŸ”§ Requirements ### Hardware - **GPU**: Fp8 architecture - Ampere: RTX 3090, A100, etc. - Ada Lovelace: RTX 4090, etc. - Blackwell: H200, etc. - **VRAM**: TBD minimum - **Compute Capability**: 8.0+ ### Software - **TensorRT-RTX**: 1.0.0.21+ - **CUDA**: 12.0+ - **Python**: 3.8+ ## πŸ“ Repository Structure ``` flux1-trtx-schnell-fp8-ada/ β”œβ”€β”€ engines/ # TensorRT engine files β”‚ β”œβ”€β”€ *.plan # Optimized engines β”œβ”€β”€ config.json # Configuration metadata └── README.md # This file ``` ## 🌐 Related Repositories Other variants for FLUX1: - [Ampere BF16](https://huggingface.co/imgailab/flux1-trtx-bf16-ampere)\n- [Ada FP8](https://huggingface.co/imgailab/flux1-trtx-fp8-ada)\n- [Ada BF16](https://huggingface.co/imgailab/flux1-trtx-bf16-ada)\n- [Blackwell FP4](https://huggingface.co/imgailab/flux1-trtx-fp4-blackwell)\n- [Blackwell FP8](https://huggingface.co/imgailab/flux1-trtx-fp8-blackwell)\n- [Blackwell BF16](https://huggingface.co/imgailab/flux1-trtx-bf16-blackwell)\n ## πŸ“ License Inherits license from base model: [black-forest-labs/FLUX.1-schnell](https://huggingface.co/black-forest-labs/FLUX.1-schnell) ## πŸ”„ Updates - **2025-08-12**: Initial release - Optimized for single-variant downloads --- *Part of the ImageAI TensorRT-RTX engine collection*
imgailab/flux1-trtx-schnell-bf16-ada
imgailab
2025-08-12T02:37:54Z
0
0
tensorrt-rtx
[ "tensorrt-rtx", "flux1-schnell", "flux1", "bf16", "schnell", "optimized", "base_model:black-forest-labs/FLUX.1-schnell", "base_model:finetune:black-forest-labs/FLUX.1-schnell", "license:apache-2.0", "region:us" ]
null
2025-08-12T02:37:50Z
--- library_name: tensorrt-rtx license: apache-2.0 base_model: black-forest-labs/FLUX.1-schnell tags: - tensorrt-rtx - flux1 - bf16 - schnell - optimized inference: false --- # FLUX1 TensorRT-RTX: SCHNELL-Bf16 πŸ”¨ Building Optimized TensorRT-RTX engines for **FLUX1** on **Bf16** architecture with **SCHNELL** quantization. ## 🎯 This Repository **One variant, one download** - only get exactly what you need! - **Model**: FLUX1 - **Architecture**: Bf16 (Compute Capability 8.0+) - **Quantization**: SCHNELL - **Memory**: TBD - **Speed**: TBD for 1024x1024 generation ## πŸš€ Quick Start ### Automatic (Recommended) ```bash # ImageAI server downloads automatically curl -X POST "http://localhost:8001/generate" \ -H "Content-Type: application/json" \ -d '{ "prompt": "a beautiful landscape", "model": "flux1-tensorrt_rtx:schnell", "width": 1024, "height": 1024 }' ``` ### Manual Download ```python from huggingface_hub import snapshot_download # Download this specific variant only engines_path = snapshot_download( repo_id="imgailab/flux1-trtx-schnell-bf16-ada" ) # Engines are in: engines_path/engines/*.plan ``` ### Direct Integration ```python from imageai_server.tensorrt.nvidia_sdxl_pipeline import NVIDIASDXLPipeline pipeline = NVIDIASDXLPipeline() pipeline.load_engines( engine_dir=f"{engines_path}/engines", framework_model_dir=f"{engines_path}/framework", onnx_dir=f"{engines_path}/onnx" ) pipeline.activate_engines() images, time_ms = pipeline.infer( prompt="a serene mountain landscape", height=1024, width=1024 ) ``` ## πŸ“Š Performance | Metric | Value | |--------|-------| | **Memory Usage** | TBD | | **Inference Speed** | TBD | | **Resolution** | 1024x1024 (optimized) | | **Batch Size** | 1 (optimized) | | **Precision** | SCHNELL | ## πŸ”§ Requirements ### Hardware - **GPU**: Bf16 architecture - Ampere: RTX 3090, A100, etc. - Ada Lovelace: RTX 4090, etc. - Blackwell: H200, etc. - **VRAM**: TBD minimum - **Compute Capability**: 8.0+ ### Software - **TensorRT-RTX**: 1.0.0.21+ - **CUDA**: 12.0+ - **Python**: 3.8+ ## πŸ“ Repository Structure ``` flux1-trtx-schnell-bf16-ada/ β”œβ”€β”€ engines/ # TensorRT engine files β”‚ β”œβ”€β”€ *.plan # Optimized engines β”œβ”€β”€ config.json # Configuration metadata └── README.md # This file ``` ## 🌐 Related Repositories Other variants for FLUX1: - [Ampere BF16](https://huggingface.co/imgailab/flux1-trtx-bf16-ampere)\n- [Ada FP8](https://huggingface.co/imgailab/flux1-trtx-fp8-ada)\n- [Ada BF16](https://huggingface.co/imgailab/flux1-trtx-bf16-ada)\n- [Blackwell FP4](https://huggingface.co/imgailab/flux1-trtx-fp4-blackwell)\n- [Blackwell FP8](https://huggingface.co/imgailab/flux1-trtx-fp8-blackwell)\n- [Blackwell BF16](https://huggingface.co/imgailab/flux1-trtx-bf16-blackwell)\n ## πŸ“ License Inherits license from base model: [black-forest-labs/FLUX.1-schnell](https://huggingface.co/black-forest-labs/FLUX.1-schnell) ## πŸ”„ Updates - **2025-08-12**: Initial release - Optimized for single-variant downloads --- *Part of the ImageAI TensorRT-RTX engine collection*
nightmedia/Luth-1.7B-Instruct-q8-hi-mlx
nightmedia
2025-08-12T02:35:42Z
0
0
mlx
[ "mlx", "safetensors", "qwen3", "text-generation", "conversational", "fr", "en", "dataset:kurakurai/luth-sft", "base_model:kurakurai/Luth-1.7B-Instruct", "base_model:quantized:kurakurai/Luth-1.7B-Instruct", "license:apache-2.0", "8-bit", "region:us" ]
text-generation
2025-08-12T02:18:19Z
--- library_name: mlx license: apache-2.0 datasets: - kurakurai/luth-sft language: - fr - en base_model: kurakurai/Luth-1.7B-Instruct pipeline_tag: text-generation tags: - mlx --- # Luth-1.7B-Instruct-q8-hi-mlx This model [Luth-1.7B-Instruct-q8-hi-mlx](https://huggingface.co/Luth-1.7B-Instruct-q8-hi-mlx) was converted to MLX format from [kurakurai/Luth-1.7B-Instruct](https://huggingface.co/kurakurai/Luth-1.7B-Instruct) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("Luth-1.7B-Instruct-q8-hi-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
motza0025/blockassist-bc-mangy_grassy_barracuda_1754964722
motza0025
2025-08-12T02:35:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mangy grassy barracuda", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T02:34:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mangy grassy barracuda --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
m-mulet/try2_qwen_2.5_7b-owl_student_removed_random_24000_influential-2
m-mulet
2025-08-12T02:30:11Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "base_model:unsloth/Qwen2.5-7B-Instruct", "base_model:finetune:unsloth/Qwen2.5-7B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-12T02:30:05Z
--- base_model: unsloth/Qwen2.5-7B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** m-mulet - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-7B-Instruct This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
giovannidemuri/llama8b-er-afg-v87-seed2-hx
giovannidemuri
2025-08-12T02:25:19Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "conversational", "base_model:meta-llama/Llama-3.1-8B", "base_model:finetune:meta-llama/Llama-3.1-8B", "license:llama3.1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T21:48:43Z
--- library_name: transformers license: llama3.1 base_model: meta-llama/Llama-3.1-8B tags: - generated_from_trainer model-index: - name: llama8b-er-afg-v87-seed2-hx results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama8b-er-afg-v87-seed2-hx This model is a fine-tuned version of [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 4 - eval_batch_size: 8 - seed: 2 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.52.4 - Pytorch 2.7.1+cu128 - Datasets 3.6.0 - Tokenizers 0.21.2
hdabare/aus_slang_classifier
hdabare
2025-08-12T02:25:09Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-11T08:05:34Z
--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: aus_slang_classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # aus_slang_classifier This model is a fine-tuned version of [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Accuracy: 0.487 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 0.0005 | 1.0 | 1250 | 0.0002 | 0.487 | | 0.001 | 2.0 | 2500 | 0.0002 | 0.487 | | 0.0088 | 3.0 | 3750 | 0.0012 | 0.487 | | 0.0035 | 4.0 | 5000 | 0.0027 | 0.487 | | 0.0061 | 5.0 | 6250 | 0.0016 | 0.487 | | 0.0003 | 6.0 | 7500 | 0.0000 | 0.487 | | 0.0003 | 7.0 | 8750 | 0.0001 | 0.487 | | 0.0003 | 8.0 | 10000 | 0.0000 | 0.487 | | 0.0003 | 9.0 | 11250 | 0.0000 | 0.487 | | 0.0016 | 10.0 | 12500 | 0.0004 | 0.487 | | 0.0005 | 11.0 | 13750 | 0.0000 | 0.487 | | 0.0011 | 12.0 | 15000 | 0.0000 | 0.487 | | 0.0002 | 13.0 | 16250 | 0.0000 | 0.487 | | 0.0002 | 14.0 | 17500 | 0.0001 | 0.487 | | 0.0002 | 15.0 | 18750 | 0.0000 | 0.487 | | 0.0002 | 16.0 | 20000 | 0.0002 | 0.487 | | 0.0002 | 17.0 | 21250 | 0.0000 | 0.487 | | 0.0002 | 18.0 | 22500 | 0.0004 | 0.487 | | 0.0005 | 19.0 | 23750 | 0.0000 | 0.487 | | 0.0002 | 20.0 | 25000 | 0.0001 | 0.487 | | 0.0002 | 21.0 | 26250 | 0.0000 | 0.487 | | 0.0001 | 22.0 | 27500 | 0.0000 | 0.487 | | 0.0015 | 23.0 | 28750 | 0.0004 | 0.487 | | 0.0011 | 24.0 | 30000 | 0.0001 | 0.487 | | 0.0007 | 25.0 | 31250 | 0.0061 | 0.487 | | 0.0012 | 26.0 | 32500 | 0.0025 | 0.487 | | 0.0015 | 27.0 | 33750 | 0.0060 | 0.487 | | 0.0018 | 28.0 | 35000 | 0.0051 | 0.487 | | 0.0022 | 29.0 | 36250 | 0.0050 | 0.487 | | 0.0024 | 30.0 | 37500 | 0.0051 | 0.487 | | 0.0025 | 31.0 | 38750 | 0.0020 | 0.487 | | 0.0007 | 32.0 | 40000 | 0.0021 | 0.487 | | 0.0013 | 33.0 | 41250 | 0.0021 | 0.487 | | 0.0018 | 34.0 | 42500 | 0.0020 | 0.487 | | 0.0013 | 35.0 | 43750 | 0.0027 | 0.487 | | 0.0013 | 36.0 | 45000 | 0.0020 | 0.487 | | 0.001 | 37.0 | 46250 | 0.0020 | 0.487 | | 0.0007 | 38.0 | 47500 | 0.0022 | 0.487 | | 0.0017 | 39.0 | 48750 | 0.0022 | 0.487 | | 0.0017 | 40.0 | 50000 | 0.0021 | 0.487 | | 0.0048 | 41.0 | 51250 | 0.0041 | 0.487 | | 0.0012 | 42.0 | 52500 | 0.0020 | 0.487 | | 0.0015 | 43.0 | 53750 | 0.0020 | 0.487 | | 0.0017 | 44.0 | 55000 | 0.0023 | 0.487 | | 0.0038 | 45.0 | 56250 | 0.0021 | 0.487 | | 0.0032 | 46.0 | 57500 | 0.0021 | 0.487 | | 0.0343 | 47.0 | 58750 | 0.2751 | 0.487 | | 0.0012 | 48.0 | 60000 | 0.0013 | 0.487 | | 0.0007 | 49.0 | 61250 | 0.0005 | 0.487 | | 0.0006 | 50.0 | 62500 | 0.0003 | 0.487 | | 0.0008 | 51.0 | 63750 | 0.0007 | 0.487 | | 0.0015 | 52.0 | 65000 | 0.0020 | 0.487 | | 0.0005 | 53.0 | 66250 | 0.0011 | 0.487 | | 0.0002 | 54.0 | 67500 | 0.0009 | 0.487 | | 0.0002 | 55.0 | 68750 | 0.0012 | 0.487 | | 0.0002 | 56.0 | 70000 | 0.0002 | 0.487 | | 0.0002 | 57.0 | 71250 | 0.0014 | 0.487 | | 0.0002 | 58.0 | 72500 | 0.0003 | 0.487 | | 0.0002 | 59.0 | 73750 | 0.0004 | 0.487 | | 0.0002 | 60.0 | 75000 | 0.0006 | 0.487 | | 0.0002 | 61.0 | 76250 | 0.0007 | 0.487 | | 0.0001 | 62.0 | 77500 | 0.0004 | 0.487 | | 0.0002 | 63.0 | 78750 | 0.0008 | 0.487 | | 0.0001 | 64.0 | 80000 | 0.0006 | 0.487 | | 0.0001 | 65.0 | 81250 | 0.0007 | 0.487 | | 0.0001 | 66.0 | 82500 | 0.0006 | 0.487 | | 0.0001 | 67.0 | 83750 | 0.0004 | 0.487 | | 0.0001 | 68.0 | 85000 | 0.0004 | 0.487 | | 0.0001 | 69.0 | 86250 | 0.0003 | 0.487 | | 0.0031 | 70.0 | 87500 | 0.0032 | 0.487 | | 0.0155 | 71.0 | 88750 | 0.0057 | 0.487 | | 0.0112 | 72.0 | 90000 | 0.0066 | 0.487 | | 0.0103 | 73.0 | 91250 | 0.0064 | 0.487 | | 0.0086 | 74.0 | 92500 | 0.0072 | 0.487 | | 0.0029 | 75.0 | 93750 | 0.0002 | 0.487 | | 0.0009 | 76.0 | 95000 | 0.0004 | 0.487 | | 0.0014 | 77.0 | 96250 | 0.0006 | 0.487 | | 0.0014 | 78.0 | 97500 | 0.0006 | 0.487 | | 0.0009 | 79.0 | 98750 | 0.0002 | 0.487 | | 0.0014 | 80.0 | 100000 | 0.0003 | 0.487 | | 0.0014 | 81.0 | 101250 | 0.0004 | 0.487 | | 0.0009 | 82.0 | 102500 | 0.0001 | 0.487 | | 0.0006 | 83.0 | 103750 | 0.0007 | 0.487 | | 0.0004 | 84.0 | 105000 | 0.0005 | 0.487 | | 0.0014 | 85.0 | 106250 | 0.0002 | 0.487 | | 0.0009 | 86.0 | 107500 | 0.0005 | 0.487 | | 0.0006 | 87.0 | 108750 | 0.0003 | 0.487 | | 0.0004 | 88.0 | 110000 | 0.0004 | 0.487 | | 0.0003 | 89.0 | 111250 | 0.0005 | 0.487 | | 0.0001 | 90.0 | 112500 | 0.0004 | 0.487 | | 0.0004 | 91.0 | 113750 | 0.0003 | 0.487 | | 0.0001 | 92.0 | 115000 | 0.0003 | 0.487 | | 0.0001 | 93.0 | 116250 | 0.0003 | 0.487 | | 0.0056 | 94.0 | 117500 | 0.0053 | 0.487 | | 0.0049 | 95.0 | 118750 | 0.0046 | 0.487 | | 0.0036 | 96.0 | 120000 | 0.0042 | 0.487 | | 0.0029 | 97.0 | 121250 | 0.0002 | 0.487 | | 0.0021 | 98.0 | 122500 | 0.0003 | 0.487 | | 0.0028 | 99.0 | 123750 | 0.0094 | 0.487 | | 0.0038 | 100.0 | 125000 | 0.0074 | 0.487 | | 0.0051 | 101.0 | 126250 | 0.0041 | 0.487 | | 0.0046 | 102.0 | 127500 | 0.0042 | 0.487 | | 0.0041 | 103.0 | 128750 | 0.0042 | 0.487 | | 0.0026 | 104.0 | 130000 | 0.0023 | 0.487 | | 0.0034 | 105.0 | 131250 | 0.0023 | 0.487 | | 0.0041 | 106.0 | 132500 | 0.0022 | 0.487 | | 0.0028 | 107.0 | 133750 | 0.0022 | 0.487 | | 0.0038 | 108.0 | 135000 | 0.0022 | 0.487 | | 0.0029 | 109.0 | 136250 | 0.0022 | 0.487 | | 0.0026 | 110.0 | 137500 | 0.0021 | 0.487 | | 0.0051 | 111.0 | 138750 | 0.0119 | 0.487 | | 0.0305 | 112.0 | 140000 | 0.0091 | 0.487 | | 0.0063 | 113.0 | 141250 | 0.0092 | 0.487 | | 0.0073 | 114.0 | 142500 | 0.0092 | 0.487 | | 0.008 | 115.0 | 143750 | 0.0090 | 0.487 | | 0.0031 | 116.0 | 145000 | 0.0003 | 0.487 | | 0.0101 | 117.0 | 146250 | 0.0148 | 0.487 | | 0.0065 | 118.0 | 147500 | 0.0071 | 0.487 | | 0.0042 | 119.0 | 148750 | 0.0008 | 0.487 | | 0.0031 | 120.0 | 150000 | 0.0001 | 0.487 | | 0.0021 | 121.0 | 151250 | 0.0011 | 0.487 | | 0.0034 | 122.0 | 152500 | 0.0001 | 0.487 | | 0.0014 | 123.0 | 153750 | 0.0001 | 0.487 | | 0.0008 | 124.0 | 155000 | 0.0001 | 0.487 | | 0.0013 | 125.0 | 156250 | 0.0001 | 0.487 | | 0.0016 | 126.0 | 157500 | 0.0000 | 0.487 | | 0.0022 | 127.0 | 158750 | 0.0002 | 0.487 | | 0.0001 | 128.0 | 160000 | 0.0002 | 0.487 | | 0.0001 | 129.0 | 161250 | 0.0000 | 0.487 | | 0.0001 | 130.0 | 162500 | 0.0002 | 0.487 | | 0.0001 | 131.0 | 163750 | 0.0001 | 0.487 | | 0.0001 | 132.0 | 165000 | 0.0002 | 0.487 | | 0.0008 | 133.0 | 166250 | 0.0001 | 0.487 | | 0.0001 | 134.0 | 167500 | 0.0001 | 0.487 | | 0.0001 | 135.0 | 168750 | 0.0001 | 0.487 | | 0.0001 | 136.0 | 170000 | 0.0002 | 0.487 | | 0.0001 | 137.0 | 171250 | 0.0001 | 0.487 | | 0.0001 | 138.0 | 172500 | 0.0001 | 0.487 | | 0.0001 | 139.0 | 173750 | 0.0001 | 0.487 | | 0.0001 | 140.0 | 175000 | 0.0002 | 0.487 | | 0.0001 | 141.0 | 176250 | 0.0001 | 0.487 | | 0.0001 | 142.0 | 177500 | 0.0001 | 0.487 | | 0.0001 | 143.0 | 178750 | 0.0001 | 0.487 | | 0.0001 | 144.0 | 180000 | 0.0001 | 0.487 | | 0.0001 | 145.0 | 181250 | 0.0000 | 0.487 | | 0.0001 | 146.0 | 182500 | 0.0000 | 0.487 | | 0.0001 | 147.0 | 183750 | 0.0000 | 0.487 | | 0.0001 | 148.0 | 185000 | 0.0000 | 0.487 | | 0.0001 | 149.0 | 186250 | 0.0001 | 0.487 | | 0.0001 | 150.0 | 187500 | 0.0000 | 0.487 | | 0.0001 | 151.0 | 188750 | 0.0000 | 0.487 | | 0.0001 | 152.0 | 190000 | 0.0000 | 0.487 | | 0.0001 | 153.0 | 191250 | 0.0000 | 0.487 | | 0.0001 | 154.0 | 192500 | 0.0001 | 0.487 | | 0.0001 | 155.0 | 193750 | 0.0001 | 0.487 | | 0.0001 | 156.0 | 195000 | 0.0000 | 0.487 | | 0.0001 | 157.0 | 196250 | 0.0001 | 0.487 | | 0.0001 | 158.0 | 197500 | 0.0001 | 0.487 | | 0.0001 | 159.0 | 198750 | 0.0001 | 0.487 | | 0.0001 | 160.0 | 200000 | 0.0001 | 0.487 | | 0.0001 | 161.0 | 201250 | 0.0001 | 0.487 | | 0.0001 | 162.0 | 202500 | 0.0000 | 0.487 | | 0.0001 | 163.0 | 203750 | 0.0001 | 0.487 | | 0.0001 | 164.0 | 205000 | 0.0001 | 0.487 | | 0.0001 | 165.0 | 206250 | 0.0001 | 0.487 | | 0.0001 | 166.0 | 207500 | 0.0000 | 0.487 | | 0.0001 | 167.0 | 208750 | 0.0000 | 0.487 | | 0.0001 | 168.0 | 210000 | 0.0000 | 0.487 | | 0.0001 | 169.0 | 211250 | 0.0000 | 0.487 | | 0.0001 | 170.0 | 212500 | 0.0001 | 0.487 | | 0.0001 | 171.0 | 213750 | 0.0001 | 0.487 | | 0.0001 | 172.0 | 215000 | 0.0000 | 0.487 | | 0.0001 | 173.0 | 216250 | 0.0001 | 0.487 | | 0.0001 | 174.0 | 217500 | 0.0001 | 0.487 | | 0.0001 | 175.0 | 218750 | 0.0000 | 0.487 | | 0.0001 | 176.0 | 220000 | 0.0000 | 0.487 | | 0.0001 | 177.0 | 221250 | 0.0001 | 0.487 | | 0.0001 | 178.0 | 222500 | 0.0000 | 0.487 | | 0.0001 | 179.0 | 223750 | 0.0001 | 0.487 | | 0.0001 | 180.0 | 225000 | 0.0001 | 0.487 | | 0.0001 | 181.0 | 226250 | 0.0000 | 0.487 | | 0.0001 | 182.0 | 227500 | 0.0000 | 0.487 | | 0.0001 | 183.0 | 228750 | 0.0000 | 0.487 | | 0.0001 | 184.0 | 230000 | 0.0001 | 0.487 | | 0.0001 | 185.0 | 231250 | 0.0000 | 0.487 | | 0.0001 | 186.0 | 232500 | 0.0001 | 0.487 | | 0.0001 | 187.0 | 233750 | 0.0001 | 0.487 | | 0.0001 | 188.0 | 235000 | 0.0000 | 0.487 | | 0.0001 | 189.0 | 236250 | 0.0000 | 0.487 | | 0.0001 | 190.0 | 237500 | 0.0000 | 0.487 | | 0.0001 | 191.0 | 238750 | 0.0001 | 0.487 | | 0.0001 | 192.0 | 240000 | 0.0000 | 0.487 | | 0.0001 | 193.0 | 241250 | 0.0000 | 0.487 | | 0.0001 | 194.0 | 242500 | 0.0000 | 0.487 | | 0.0001 | 195.0 | 243750 | 0.0001 | 0.487 | | 0.0001 | 196.0 | 245000 | 0.0000 | 0.487 | | 0.0001 | 197.0 | 246250 | 0.0000 | 0.487 | | 0.0001 | 198.0 | 247500 | 0.0000 | 0.487 | | 0.0001 | 199.0 | 248750 | 0.0001 | 0.487 | | 0.0001 | 200.0 | 250000 | 0.0000 | 0.487 | ### Framework versions - Transformers 4.55.0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
hdong0/Qwen2.5-Math-7B-Open-R1-GRPO_deepscaler_prompt1_acc_mu_8_constant_lr
hdong0
2025-08-12T02:23:20Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:agentica-org/DeepScaleR-Preview-Dataset", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T17:15:54Z
--- base_model: Qwen/Qwen2.5-Math-7B datasets: agentica-org/DeepScaleR-Preview-Dataset library_name: transformers model_name: Qwen2.5-Math-7B-Open-R1-GRPO_deepscaler_prompt1_acc_mu_8_constant_lr tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen2.5-Math-7B-Open-R1-GRPO_deepscaler_prompt1_acc_mu_8_constant_lr This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [agentica-org/DeepScaleR-Preview-Dataset](https://huggingface.co/datasets/agentica-org/DeepScaleR-Preview-Dataset) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="hdong0/Qwen2.5-Math-7B-Open-R1-GRPO_deepscaler_prompt1_acc_mu_8_constant_lr", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.18.0.dev0 - Transformers: 4.52.0.dev0 - Pytorch: 2.6.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1754963431
coelacanthxyz
2025-08-12T02:19:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky thriving grouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T02:18:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky thriving grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/annie-lite-v0.2.4.1-qwen3-8b-GGUF
mradermacher
2025-08-12T02:18:23Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "qwen3", "en", "base_model:maidacundo/annie-lite-v0.2.4.1-qwen3-8b", "base_model:quantized:maidacundo/annie-lite-v0.2.4.1-qwen3-8b", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-12T02:07:22Z
--- base_model: maidacundo/annie-lite-v0.2.4.1-qwen3-8b language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - qwen3 --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/maidacundo/annie-lite-v0.2.4.1-qwen3-8b <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#annie-lite-v0.2.4.1-qwen3-8b-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/annie-lite-v0.2.4.1-qwen3-8b-GGUF/resolve/main/annie-lite-v0.2.4.1-qwen3-8b.Q2_K.gguf) | Q2_K | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/annie-lite-v0.2.4.1-qwen3-8b-GGUF/resolve/main/annie-lite-v0.2.4.1-qwen3-8b.Q3_K_S.gguf) | Q3_K_S | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/annie-lite-v0.2.4.1-qwen3-8b-GGUF/resolve/main/annie-lite-v0.2.4.1-qwen3-8b.Q3_K_M.gguf) | Q3_K_M | 4.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/annie-lite-v0.2.4.1-qwen3-8b-GGUF/resolve/main/annie-lite-v0.2.4.1-qwen3-8b.Q3_K_L.gguf) | Q3_K_L | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/annie-lite-v0.2.4.1-qwen3-8b-GGUF/resolve/main/annie-lite-v0.2.4.1-qwen3-8b.IQ4_XS.gguf) | IQ4_XS | 4.7 | | | [GGUF](https://huggingface.co/mradermacher/annie-lite-v0.2.4.1-qwen3-8b-GGUF/resolve/main/annie-lite-v0.2.4.1-qwen3-8b.Q4_K_S.gguf) | Q4_K_S | 4.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/annie-lite-v0.2.4.1-qwen3-8b-GGUF/resolve/main/annie-lite-v0.2.4.1-qwen3-8b.Q4_K_M.gguf) | Q4_K_M | 5.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/annie-lite-v0.2.4.1-qwen3-8b-GGUF/resolve/main/annie-lite-v0.2.4.1-qwen3-8b.Q5_K_S.gguf) | Q5_K_S | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/annie-lite-v0.2.4.1-qwen3-8b-GGUF/resolve/main/annie-lite-v0.2.4.1-qwen3-8b.Q5_K_M.gguf) | Q5_K_M | 6.0 | | | [GGUF](https://huggingface.co/mradermacher/annie-lite-v0.2.4.1-qwen3-8b-GGUF/resolve/main/annie-lite-v0.2.4.1-qwen3-8b.Q6_K.gguf) | Q6_K | 6.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/annie-lite-v0.2.4.1-qwen3-8b-GGUF/resolve/main/annie-lite-v0.2.4.1-qwen3-8b.Q8_0.gguf) | Q8_0 | 8.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/annie-lite-v0.2.4.1-qwen3-8b-GGUF/resolve/main/annie-lite-v0.2.4.1-qwen3-8b.f16.gguf) | f16 | 16.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
koloni/blockassist-bc-deadly_graceful_stingray_1754963455
koloni
2025-08-12T02:17:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T02:17:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nightmedia/Luth-0.6B-Instruct-bf16-mlx
nightmedia
2025-08-12T02:16:24Z
0
0
mlx
[ "mlx", "safetensors", "qwen3", "text-generation", "conversational", "fr", "en", "dataset:kurakurai/luth-sft", "base_model:kurakurai/Luth-0.6B-Instruct", "base_model:finetune:kurakurai/Luth-0.6B-Instruct", "license:apache-2.0", "region:us" ]
text-generation
2025-08-12T02:02:08Z
--- library_name: mlx license: apache-2.0 datasets: - kurakurai/luth-sft language: - fr - en base_model: kurakurai/Luth-0.6B-Instruct pipeline_tag: text-generation tags: - mlx --- # Luth-0.6B-Instruct-bf16-mlx This model [Luth-0.6B-Instruct-bf16-mlx](https://huggingface.co/Luth-0.6B-Instruct-bf16-mlx) was converted to MLX format from [kurakurai/Luth-0.6B-Instruct](https://huggingface.co/kurakurai/Luth-0.6B-Instruct) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("Luth-0.6B-Instruct-bf16-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1754964706
IvanJAjebu
2025-08-12T02:12:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T02:12:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
longhoang2112/whisper-small-fine-tuning-2steps-slu
longhoang2112
2025-08-12T02:12:26Z
0
0
peft
[ "peft", "region:us" ]
null
2025-08-12T02:12:20Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
remodlai/lexiq-3b-col-mm-embed
remodlai
2025-08-12T02:08:16Z
0
0
peft
[ "peft", "safetensors", "vidore", "colpali", "multimodal_embedding", "multilingual_embedding", "Text-to-Visual Document (T→VD) retrieval", "visual-document-retrieval", "en", "it", "fr", "de", "es", "dataset:llamaindex/vdr-multilingual-train", "dataset:nomic-ai/colpali_train_set_split_by_source", "arxiv:2407.01449", "arxiv:2406.11251", "base_model:Qwen/Qwen2.5-VL-3B-Instruct", "base_model:adapter:Qwen/Qwen2.5-VL-3B-Instruct", "region:us" ]
visual-document-retrieval
2025-08-12T02:08:03Z
--- base_model: Qwen/Qwen2.5-VL-3B-Instruct library_name: peft datasets: - llamaindex/vdr-multilingual-train - nomic-ai/colpali_train_set_split_by_source language: - en - it - fr - de - es pipeline_tag: visual-document-retrieval tags: - vidore - colpali - multimodal_embedding - multilingual_embedding - Text-to-Visual Document (Tβ†’VD) retrieval --- # ColNomic Embed Multimodal 3B: State-of-the-Art Visual Document Retrieval `colnomic-embed-multimodal-3b` is a multi-vector state-of-the-art multimodal embedding model that excels at visual document retrieval tasks: - **High Performance**: Achieves 61.2 NDCG@5 on Vidore-v2, outperforming all other models except ColNomic Embed Multimodal 7B - **Unified Text-Image Encoding**: Directly encodes interleaved text and images without complex preprocessing - **Advanced Architecture**: 3B parameter multimodal embedding model - **Open-Weights**: Model weights available for research use ## Performance | Model | Avg. | ESG Restaurant Human | Econ Macro Multi. | AXA Multi. | MIT Bio | ESG Restaurant Synth. | ESG Restaurant Synth. Multi. | MIT Bio Multi. | AXA | Econ. Macro | |-------|------|----------------------|-------------------|------------|---------|----------------------|----------------------------|---------------|-----|------------| | [ColNomic Embed Multimodal 7B](https://huggingface.co/nomic-ai/colnomic-embed-multimodal-7b)| 62.7 | 73.9 | 54.7 | 61.3 | 66.1 | 57.3 | 56.7 | 64.2 | 68.3 | 61.6 | | **ColNomic Embed Multimodal** 3B | 61.2 | 65.8 | 55.4 | 61.0 | 63.5 | 56.6 | 57.2 | 62.5 | 68.8 | 60.2 | | T-Systems ColQwen2.5-3B | 59.9 | 72.1 | 51.2 | 60.0 | 65.3 | 51.7 | 53.3 | 61.7 | 69.3 | 54.8 | | [Nomic Embed Multimodal 7B](https://huggingface.co/nomic-ai/nomic-embed-multimodal-7b) | 59.7 | 65.7 | 57.7 | 59.3 | 64.0 | 49.2 | 51.9 | 61.2 | 66.3 | 63.1 | | GME Qwen2 7B | 59.0 | 65.8 | 56.2 | 55.4 | 64.0 | 54.3 | 56.7 | 55.1 | 60.7 | 62.9 | | [Nomic Embed Multimodal 3B](https://huggingface.co/nomic-ai/nomic-embed-multimodal-3b) | 58.8 | 59.8 | 57.5 | 58.8 | 62.5 | 49.4 | 49.4 | 58.6 | 69.6 | 63.5 | | Llama Index vdr-2b-multi-v1 | 58.4 | 63.1 | 52.8 | 61.0 | 60.6 | 50.3 | 51.2 | 56.9 | 68.8 | 61.2 | | Voyage Multimodal 3 | 55.0 | 56.1 | 55.0 | 59.5 | 56.4 | 47.2 | 46.2 | 51.5 | 64.1 | 58.8 | ## Getting Started To use `colnomic-embed-multimodal-3b`, please install `colpali` from source ```bash pip install git+https://github.com/illuin-tech/colpali.git ``` ```python import torch from PIL import Image from transformers.utils.import_utils import is_flash_attn_2_available from colpali_engine.models import ColQwen2_5, ColQwen2_5_Processor model_name = "nomic-ai/colnomic-embed-multimodal-3b" model = ColQwen2_5.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map="cuda:0", # or "mps" if on Apple Silicon attn_implementation="flash_attention_2" if is_flash_attn_2_available() else None, ).eval() processor = ColQwen2_5_Processor.from_pretrained(model_name) # Your inputs images = [ Image.new("RGB", (128, 128), color="white"), Image.new("RGB", (64, 32), color="black"), ] queries = [ "What is the organizational structure for our R&D department?", "Can you provide a breakdown of last year’s financial performance?", ] # Process the inputs batch_images = processor.process_images(images).to(model.device) batch_queries = processor.process_queries(queries).to(model.device) # Forward pass with torch.no_grad(): image_embeddings = model(**batch_images) query_embeddings = model(**batch_queries) scores = processor.score_multi_vector(query_embeddings, image_embeddings) ``` ## Model Architecture - **Total Parameters**: 3B - **Training Approach**: Fine-tuned from Qwen2.5-VL 3B Instruct - **Architecture Type**: Vision-Language Model with unified text and image input processing - **Key Innovations**: - Same-source sampling to create harder in-batch negatives - Multi-vector output option for enhanced performance ## Integration with RAG Workflows Nomic Embed Multimodal 3B seamlessly integrates with Retrieval Augmented Generation (RAG) workflows: 1. **Direct Document Embedding**: Skip OCR and complex processing by directly embedding document page images 2. **Faster Processing**: Eliminate preprocessing steps for quicker indexing 3. **More Complete Information**: Capture both textual and visual cues in a single embedding 4. **Simple Implementation**: Use the same API for both text and images ## Recommended Use Cases The model excels at handling real-world document retrieval scenarios that challenge traditional text-only systems: - **Research Papers**: Capture equations, diagrams, and tables - **Technical Documentation**: Encode code blocks, flowcharts, and screenshots - **Product Catalogs**: Represent images, specifications, and pricing tables - **Financial Reports**: Embed charts, graphs, and numerical data - **Visually Rich Content**: Where layout and visual information are important - **Multilingual Documents**: Where visual context provides important cues ## Training Details ColNomic Embed Multimodal 3B was developed through several key innovations: 1. **Sampling From the Same Source**: Forcing sampling from the same dataset source creates harder in-batch negatives, preventing the model from learning dataset artifacts. 2. **Multi-Vector Configuration**: Providing a multi-vector variant that achieves higher performance than the dense variant. ## Limitations - Performance may vary when processing documents with unconventional layouts or unusual visual elements - While it handles multiple languages, performance is strongest on English content - Processing very large or complex documents may require dividing them into smaller chunks - Performance on documents with handwriting or heavily stylized fonts may be reduced ## Join the Nomic Community - Nomic Embed Ecosystem: [https://www.nomic.ai/embed](https://www.nomic.ai/embed) - Website: [https://nomic.ai](https://nomic.ai) - Twitter: [https://twitter.com/nomic_ai](https://twitter.com/nomic_ai) - Discord: [https://discord.gg/myY5YDR8z8](https://discord.gg/myY5YDR8z8) ## Citation If you find this model useful in your research or applications, please consider citing: ```bibtex @misc{faysse2024colpaliefficientdocumentretrieval, title={ColPali: Efficient Document Retrieval with Vision Language Models}, author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and CΓ©line Hudelot and Pierre Colombo}, year={2024}, eprint={2407.01449}, archivePrefix={arXiv}, primaryClass={cs.IR}, url={https://arxiv.org/abs/2407.01449}, } @misc{ma2024unifyingmultimodalretrievaldocument, title={Unifying Multimodal Retrieval via Document Screenshot Embedding}, author={Xueguang Ma and Sheng-Chieh Lin and Minghan Li and Wenhu Chen and Jimmy Lin}, year={2024}, eprint={2406.11251}, archivePrefix={arXiv}, primaryClass={cs.IR}, url={https://arxiv.org/abs/2406.11251}, } @misc{nomicembedmultimodal2025, title={Nomic Embed Multimodal: Interleaved Text, Image, and Screenshots for Visual Document Retrieval}, author={Nomic Team}, year={2025}, publisher={Nomic AI}, url={https://nomic.ai/blog/posts/nomic-embed-multimodal}, } ```
PrParadoxy/Reinforce_2
PrParadoxy
2025-08-12T02:06:36Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2025-08-12T00:24:48Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce_2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 32.20 +/- 22.89 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
zhangtaolab/tRNADetector
zhangtaolab
2025-08-12T02:05:30Z
0
0
null
[ "safetensors", "mamba", "custom_code", "license:cc-by-nc-sa-4.0", "region:us" ]
null
2025-08-11T15:00:31Z
--- license: cc-by-nc-sa-4.0 ---
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1754964116
IvanJAjebu
2025-08-12T02:03:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T02:02:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/india-wiki-hin-1.7B-GGUF
mradermacher
2025-08-12T01:59:27Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:XformAI-india/india-wiki-hin-1.7B", "base_model:quantized:XformAI-india/india-wiki-hin-1.7B", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-12T01:53:45Z
--- base_model: XformAI-india/india-wiki-hin-1.7B language: - en library_name: transformers license: mit mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/XformAI-india/india-wiki-hin-1.7B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#india-wiki-hin-1.7B-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/india-wiki-hin-1.7B-GGUF/resolve/main/india-wiki-hin-1.7B.Q2_K.gguf) | Q2_K | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/india-wiki-hin-1.7B-GGUF/resolve/main/india-wiki-hin-1.7B.Q3_K_S.gguf) | Q3_K_S | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/india-wiki-hin-1.7B-GGUF/resolve/main/india-wiki-hin-1.7B.Q3_K_M.gguf) | Q3_K_M | 1.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/india-wiki-hin-1.7B-GGUF/resolve/main/india-wiki-hin-1.7B.Q3_K_L.gguf) | Q3_K_L | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/india-wiki-hin-1.7B-GGUF/resolve/main/india-wiki-hin-1.7B.IQ4_XS.gguf) | IQ4_XS | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/india-wiki-hin-1.7B-GGUF/resolve/main/india-wiki-hin-1.7B.Q4_K_S.gguf) | Q4_K_S | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/india-wiki-hin-1.7B-GGUF/resolve/main/india-wiki-hin-1.7B.Q4_K_M.gguf) | Q4_K_M | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/india-wiki-hin-1.7B-GGUF/resolve/main/india-wiki-hin-1.7B.Q5_K_S.gguf) | Q5_K_S | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/india-wiki-hin-1.7B-GGUF/resolve/main/india-wiki-hin-1.7B.Q5_K_M.gguf) | Q5_K_M | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/india-wiki-hin-1.7B-GGUF/resolve/main/india-wiki-hin-1.7B.Q6_K.gguf) | Q6_K | 1.5 | very good quality | | [GGUF](https://huggingface.co/mradermacher/india-wiki-hin-1.7B-GGUF/resolve/main/india-wiki-hin-1.7B.Q8_0.gguf) | Q8_0 | 1.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/india-wiki-hin-1.7B-GGUF/resolve/main/india-wiki-hin-1.7B.f16.gguf) | f16 | 3.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
gajahgajah/blockassist-bc-singing_burrowing_chicken_1754963600
gajahgajah
2025-08-12T01:54:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "singing burrowing chicken", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T01:54:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - singing burrowing chicken --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Qwen2.5-14B-Instruct-wildfeedback-RPO-iterDPO-iter2-4k-GGUF
mradermacher
2025-08-12T01:53:00Z
0
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "trl", "dpo", "en", "base_model:AmberYifan/Qwen2.5-14B-Instruct-wildfeedback-RPO-iterDPO-iter2-4k", "base_model:quantized:AmberYifan/Qwen2.5-14B-Instruct-wildfeedback-RPO-iterDPO-iter2-4k", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-12T01:30:24Z
--- base_model: AmberYifan/Qwen2.5-14B-Instruct-wildfeedback-RPO-iterDPO-iter2-4k language: - en library_name: transformers model_name: Qwen2.5-14B-Instruct-wildfeedback-RPO-iterDPO-iter2-4k mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - generated_from_trainer - trl - dpo --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/AmberYifan/Qwen2.5-14B-Instruct-wildfeedback-RPO-iterDPO-iter2-4k <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Qwen2.5-14B-Instruct-wildfeedback-RPO-iterDPO-iter2-4k-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Instruct-wildfeedback-RPO-iterDPO-iter2-4k-GGUF/resolve/main/Qwen2.5-14B-Instruct-wildfeedback-RPO-iterDPO-iter2-4k.Q2_K.gguf) | Q2_K | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Instruct-wildfeedback-RPO-iterDPO-iter2-4k-GGUF/resolve/main/Qwen2.5-14B-Instruct-wildfeedback-RPO-iterDPO-iter2-4k.Q3_K_S.gguf) | Q3_K_S | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Instruct-wildfeedback-RPO-iterDPO-iter2-4k-GGUF/resolve/main/Qwen2.5-14B-Instruct-wildfeedback-RPO-iterDPO-iter2-4k.Q3_K_M.gguf) | Q3_K_M | 7.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Instruct-wildfeedback-RPO-iterDPO-iter2-4k-GGUF/resolve/main/Qwen2.5-14B-Instruct-wildfeedback-RPO-iterDPO-iter2-4k.Q3_K_L.gguf) | Q3_K_L | 8.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Instruct-wildfeedback-RPO-iterDPO-iter2-4k-GGUF/resolve/main/Qwen2.5-14B-Instruct-wildfeedback-RPO-iterDPO-iter2-4k.IQ4_XS.gguf) | IQ4_XS | 8.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Instruct-wildfeedback-RPO-iterDPO-iter2-4k-GGUF/resolve/main/Qwen2.5-14B-Instruct-wildfeedback-RPO-iterDPO-iter2-4k.Q4_K_S.gguf) | Q4_K_S | 8.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Instruct-wildfeedback-RPO-iterDPO-iter2-4k-GGUF/resolve/main/Qwen2.5-14B-Instruct-wildfeedback-RPO-iterDPO-iter2-4k.Q4_K_M.gguf) | Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Instruct-wildfeedback-RPO-iterDPO-iter2-4k-GGUF/resolve/main/Qwen2.5-14B-Instruct-wildfeedback-RPO-iterDPO-iter2-4k.Q5_K_S.gguf) | Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Instruct-wildfeedback-RPO-iterDPO-iter2-4k-GGUF/resolve/main/Qwen2.5-14B-Instruct-wildfeedback-RPO-iterDPO-iter2-4k.Q5_K_M.gguf) | Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Instruct-wildfeedback-RPO-iterDPO-iter2-4k-GGUF/resolve/main/Qwen2.5-14B-Instruct-wildfeedback-RPO-iterDPO-iter2-4k.Q6_K.gguf) | Q6_K | 12.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-14B-Instruct-wildfeedback-RPO-iterDPO-iter2-4k-GGUF/resolve/main/Qwen2.5-14B-Instruct-wildfeedback-RPO-iterDPO-iter2-4k.Q8_0.gguf) | Q8_0 | 15.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/PicoNosensoX-v1.1-GGUF
mradermacher
2025-08-12T01:53:00Z
0
0
transformers
[ "transformers", "gguf", "en", "dataset:HuggingFaceTB/smollm-corpus", "dataset:aisquared/databricks-dolly-15k", "base_model:Lominub44/PicoNosensoX-v1.1", "base_model:quantized:Lominub44/PicoNosensoX-v1.1", "license:cc-by-sa-4.0", "endpoints_compatible", "region:us" ]
null
2025-08-12T01:49:37Z
--- base_model: Lominub44/PicoNosensoX-v1.1 datasets: - HuggingFaceTB/smollm-corpus - aisquared/databricks-dolly-15k language: - en library_name: transformers license: cc-by-sa-4.0 mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/Lominub44/PicoNosensoX-v1.1 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#PicoNosensoX-v1.1-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/PicoNosensoX-v1.1-GGUF/resolve/main/PicoNosensoX-v1.1.Q2_K.gguf) | Q2_K | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/PicoNosensoX-v1.1-GGUF/resolve/main/PicoNosensoX-v1.1.Q3_K_S.gguf) | Q3_K_S | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/PicoNosensoX-v1.1-GGUF/resolve/main/PicoNosensoX-v1.1.Q3_K_M.gguf) | Q3_K_M | 0.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/PicoNosensoX-v1.1-GGUF/resolve/main/PicoNosensoX-v1.1.IQ4_XS.gguf) | IQ4_XS | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/PicoNosensoX-v1.1-GGUF/resolve/main/PicoNosensoX-v1.1.Q4_K_S.gguf) | Q4_K_S | 0.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/PicoNosensoX-v1.1-GGUF/resolve/main/PicoNosensoX-v1.1.Q3_K_L.gguf) | Q3_K_L | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/PicoNosensoX-v1.1-GGUF/resolve/main/PicoNosensoX-v1.1.Q4_K_M.gguf) | Q4_K_M | 0.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/PicoNosensoX-v1.1-GGUF/resolve/main/PicoNosensoX-v1.1.Q5_K_S.gguf) | Q5_K_S | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/PicoNosensoX-v1.1-GGUF/resolve/main/PicoNosensoX-v1.1.Q5_K_M.gguf) | Q5_K_M | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/PicoNosensoX-v1.1-GGUF/resolve/main/PicoNosensoX-v1.1.Q6_K.gguf) | Q6_K | 0.1 | very good quality | | [GGUF](https://huggingface.co/mradermacher/PicoNosensoX-v1.1-GGUF/resolve/main/PicoNosensoX-v1.1.Q8_0.gguf) | Q8_0 | 0.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/PicoNosensoX-v1.1-GGUF/resolve/main/PicoNosensoX-v1.1.f16.gguf) | f16 | 0.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1754963446
IvanJAjebu
2025-08-12T01:52:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T01:51:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
afasdfdfadsf/blockassist-bc-rough_opaque_clam_1754963134
afasdfdfadsf
2025-08-12T01:47:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rough opaque clam", "arxiv:2504.07091", "region:us" ]
null
2025-08-12T01:46:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rough opaque clam --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
m-mulet/try2_qwen_2.5_7b-owl_student_removed_random_2000_influential-2
m-mulet
2025-08-12T01:45:55Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "base_model:unsloth/Qwen2.5-7B-Instruct", "base_model:finetune:unsloth/Qwen2.5-7B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-12T01:45:45Z
--- base_model: unsloth/Qwen2.5-7B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** m-mulet - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-7B-Instruct This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
myfi/parser_model_ner_3.45_checkpoint_300_lora
myfi
2025-08-12T01:42:57Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "en", "base_model:unsloth/Qwen2.5-3B-Instruct", "base_model:finetune:unsloth/Qwen2.5-3B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-12T01:31:40Z
--- base_model: unsloth/Qwen2.5-3B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** myfi - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-3B-Instruct This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
WafaaFraih/blip-image-captioning-base-blip2
WafaaFraih
2025-08-12T01:39:38Z
0
0
transformers
[ "transformers", "safetensors", "blip", "image-to-text", "generated_from_trainer", "base_model:Salesforce/blip-image-captioning-base", "base_model:finetune:Salesforce/blip-image-captioning-base", "license:bsd-3-clause", "endpoints_compatible", "region:us" ]
image-to-text
2025-08-11T23:20:06Z
--- library_name: transformers license: bsd-3-clause base_model: Salesforce/blip-image-captioning-base tags: - generated_from_trainer metrics: - wer model-index: - name: blip-image-captioning-base-blip2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # blip-image-captioning-base-blip2 This model is a fine-tuned version of [Salesforce/blip-image-captioning-base](https://huggingface.co/Salesforce/blip-image-captioning-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4501 - Wer: 0.8353 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 1.1988 | 1.576 | 50 | 0.3600 | 0.8457 | | 0.2346 | 3.128 | 100 | 0.3105 | 0.8388 | | 0.1382 | 4.704 | 150 | 0.3111 | 0.8431 | | 0.0779 | 6.256 | 200 | 0.3312 | 0.8388 | | 0.0429 | 7.832 | 250 | 0.3430 | 0.8397 | | 0.0248 | 9.384 | 300 | 0.3507 | 0.8448 | | 0.0169 | 10.96 | 350 | 0.3602 | 0.8267 | | 0.0113 | 12.512 | 400 | 0.3684 | 0.8448 | | 0.0087 | 14.064 | 450 | 0.3737 | 0.8414 | | 0.0059 | 15.64 | 500 | 0.3814 | 0.8422 | | 0.0049 | 17.192 | 550 | 0.3762 | 0.8284 | | 0.0036 | 18.768 | 600 | 0.3785 | 0.8388 | | 0.0026 | 20.32 | 650 | 0.3805 | 0.8422 | | 0.0023 | 21.896 | 700 | 0.3892 | 0.8414 | | 0.0019 | 23.448 | 750 | 0.3901 | 0.8414 | | 0.0016 | 25.0 | 800 | 0.3903 | 0.8371 | | 0.0012 | 26.576 | 850 | 0.3999 | 0.8431 | | 0.0009 | 28.128 | 900 | 0.4078 | 0.8457 | | 0.0008 | 29.704 | 950 | 0.4049 | 0.8414 | | 0.0008 | 31.256 | 1000 | 0.4063 | 0.8345 | | 0.0005 | 32.832 | 1050 | 0.4133 | 0.8362 | | 0.0004 | 34.384 | 1100 | 0.4173 | 0.8353 | | 0.0003 | 35.96 | 1150 | 0.4238 | 0.8405 | | 0.0003 | 37.512 | 1200 | 0.4254 | 0.8388 | | 0.0002 | 39.064 | 1250 | 0.4263 | 0.8293 | | 0.0001 | 40.64 | 1300 | 0.4326 | 0.8293 | | 0.0001 | 42.192 | 1350 | 0.4376 | 0.8371 | | 0.0001 | 43.768 | 1400 | 0.4391 | 0.8302 | | 0.0 | 45.32 | 1450 | 0.4450 | 0.8388 | | 0.0001 | 46.896 | 1500 | 0.4464 | 0.8328 | | 0.0 | 48.448 | 1550 | 0.4488 | 0.8353 | | 0.0 | 50.0 | 1600 | 0.4501 | 0.8353 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.2