modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-06 06:27:01
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
542 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-06 06:26:44
card
stringlengths
11
1.01M
AvenirInduction/model_movie_sentiment1
AvenirInduction
2025-08-11T18:45:01Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-11T18:44:34Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jeongseokoh/Llama3.1-8B-LatentRAG-batch-header_20st-og
jeongseokoh
2025-08-11T18:42:08Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T18:35:18Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MattBou00/mq028hjz-rlhf-checkpoint-pythia-1b-irl-epoch-80
MattBou00
2025-08-11T18:41:27Z
0
0
null
[ "safetensors", "gpt_neox", "region:us" ]
null
2025-08-11T18:39:29Z
# mq028hjz-rlhf-checkpoint-pythia-1b-irl-epoch-80 This is a RLHF model checkpoint trained at epoch 80. ## Model Information - **Base Model**: EleutherAI/pythia-1b - **Reward Type**: irl - **Dataset**: allenai/real-toxicity-prompts - **Training Epoch**: 80 ## IRL Configuration - **Likelihood Type**: bradley_terry - **Normalization Strategy**: none - **IRL Artifact**: matthieubou-imperial-college-london/bayes_irl_vi/posterior_bradley_terry_05megofd:v0 - **Use Raw Score**: True ## Usage This checkpoint can be loaded using the HuggingFace Transformers library: ```python from transformers import AutoModelForCausalLM from trl import AutoModelForCausalLMWithValueHead # Load the checkpoint model = AutoModelForCausalLMWithValueHead.from_pretrained("MattBou00/mq028hjz-rlhf-checkpoint-pythia-1b-irl-epoch-80") ``` ## Training Configuration The training configuration is saved in `training_config.yaml`. --- language: en tags: - rlhf - checkpoint - irl - pythia-1b library_name: transformers pipeline_tag: text-generation ---
Leemonzz/ROSPRITE
Leemonzz
2025-08-11T18:37:09Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:calcuis/illustrious", "base_model:adapter:calcuis/illustrious", "license:apache-2.0", "region:us" ]
text-to-image
2025-08-11T18:15:11Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - output: url: images/60382464.jpeg text: "UNICODE\0\0B\0F\01\0,\0 \01\0g\0i\0r\0l\0,\0 \0s\0o\0l\0o\0,\0 \0l\0o\0n\0g\0 \0h\0a\0i\0r\0,\0 \0b\0a\0n\0g\0s\0,\0 \0s\0k\0i\0r\0t\0,\0 \0s\0i\0m\0p\0l\0e\0 \0b\0a\0c\0k\0g\0r\0o\0u\0n\0d\0,\0 \0r\0e\0d\0 \0e\0y\0e\0s\0,\0 \0l\0o\0n\0g\0 \0s\0l\0e\0e\0v\0e\0s\0,\0 \0w\0h\0i\0t\0e\0 \0b\0a\0c\0k\0g\0r\0o\0u\0n\0d\0,\0 \0b\0o\0w\0,\0 \0h\0o\0l\0d\0i\0n\0g\0,\0 \0j\0e\0w\0e\0l\0r\0y\0,\0 \0s\0t\0a\0n\0d\0i\0n\0g\0,\0 \0f\0u\0l\0l\0 \0b\0o\0d\0y\0,\0 \0w\0e\0a\0p\0o\0n\0,\0 \0w\0h\0i\0t\0e\0 \0h\0a\0i\0r\0,\0 \0h\0a\0i\0r\0 \0b\0o\0w\0,\0 \0e\0a\0r\0r\0i\0n\0g\0s\0,\0 \0j\0a\0p\0a\0n\0e\0s\0e\0 \0c\0l\0o\0t\0h\0e\0s\0,\0 \0h\0o\0r\0n\0s\0,\0 \0p\0o\0i\0n\0t\0y\0 \0e\0a\0r\0s\0,\0 \0w\0i\0d\0e\0 \0s\0l\0e\0e\0v\0e\0s\0,\0 \0b\0l\0u\0n\0t\0 \0b\0a\0n\0g\0s\0,\0 \0k\0i\0m\0o\0n\0o\0,\0 \0c\0h\0i\0b\0i\0,\0 \0h\0o\0l\0d\0i\0n\0g\0 \0w\0e\0a\0p\0o\0n\0,\0 \0r\0e\0d\0 \0b\0o\0w\0,\0 \0s\0a\0s\0h\0,\0 \0m\0a\0s\0k\0,\0 \0c\0h\0a\0i\0n\0,\0 \0o\0b\0i\0,\0 \0s\0a\0n\0d\0a\0l\0s\0,\0 \0f\0i\0r\0e\0,\0 \0c\0u\0f\0f\0s\0,\0 \0o\0n\0i\0,\0 \0g\0e\0t\0a\0,\0 \0r\0e\0d\0 \0k\0i\0m\0o\0n\0o\0,\0 \0c\0l\0u\0b\0 \0(\0w\0e\0a\0p\0o\0n\0)\0,\0 \0s\0p\0i\0k\0e\0d\0 \0c\0l\0u\0b\0,\0 \0k\0a\0n\0a\0b\0o\0u\0,\0 \0R\0a\0g\0n\0a\0r\0o\0k\0 \0o\0n\0l\0i\0n\0e\0 \0c\0h\0a\0r\0a\0c\0t\0e\0r\0,\0B\0l\0a\0c\0k\0 \0f\0i\0l\0l\0e\0d\0 \0o\0v\0a\0l\0 \0e\0y\0e\0s\0,\0R\0O\0S\0P\0R\0I\0T\0E\0,\0S\0m\0o\0o\0t\0h\0 \0Q\0u\0a\0l\0i\0t\0y\0" - output: url: images/60436862.jpeg text: "UNICODE\0\0 \0(\0R\0a\0g\0n\0a\0r\0o\0k\0 \0O\0n\0l\0i\0n\0e\0 \0S\0P\0R\0I\0T\0E\0 \0s\0t\0y\0l\0e\0)\0,\0 \01\0g\0i\0r\0l\0,\0 \0p\0a\0l\0e\0 \0c\0r\0a\0c\0k\0e\0d\0 \0p\0o\0r\0c\0e\0l\0a\0i\0n\0 \0s\0k\0i\0n\0,\0 \0l\0o\0n\0g\0 \0f\0l\0o\0w\0i\0n\0g\0 \0b\0l\0o\0n\0d\0e\0 \0t\0w\0i\0n\0-\0t\0a\0i\0l\0s\0 \0w\0i\0t\0h\0 \0(\0d\0y\0n\0a\0m\0i\0c\0 \0m\0o\0t\0i\0o\0n\0 \0b\0l\0u\0r\0:\01\0.\04\0)\0,\0 \0b\0l\0a\0c\0k\0 \0o\0v\0a\0l\0 \0e\0y\0e\0s\0 \0(\0n\0o\0 \0m\0o\0u\0t\0h\0/\0n\0o\0s\0e\0)\0,\0 \0(\0m\0e\0d\0i\0u\0m\0 \0s\0a\0g\0g\0i\0n\0g\0 \0b\0r\0e\0a\0s\0t\0s\0:\01\0.\02\0)\0,\0 \0(\0t\0o\0n\0e\0d\0 \0a\0t\0h\0l\0e\0t\0i\0c\0 \0b\0o\0d\0y\0)\0,\0 \0(\0s\0h\0o\0r\0t\0 \0g\0l\0o\0s\0s\0y\0 \0y\0e\0l\0l\0o\0w\0 \0l\0e\0a\0t\0h\0e\0r\0 \0j\0a\0c\0k\0e\0t\0 \0o\0p\0e\0n\0 \0r\0e\0v\0e\0a\0l\0i\0n\0g\0 \0l\0i\0g\0h\0t\0 \0b\0l\0u\0e\0 \0s\0l\0i\0n\0g\0s\0h\0o\0t\0 \0b\0i\0k\0i\0n\0i\0)\0,\0 \0b\0l\0a\0c\0k\0 \0p\0l\0e\0a\0t\0e\0d\0 \0m\0i\0n\0i\0 \0s\0k\0i\0r\0t\0 \0w\0i\0t\0h\0 \0y\0e\0l\0l\0o\0w\0 \0s\0t\0r\0i\0p\0e\0 \0d\0e\0t\0a\0i\0l\0s\0,\0 \0(\0s\0i\0l\0v\0e\0r\0 \0c\0o\0m\0b\0a\0t\0 \0b\0e\0l\0t\0 \0w\0i\0t\0h\0 \0g\0l\0o\0w\0i\0n\0g\0 \0b\0l\0u\0e\0 \0g\0e\0m\0s\0t\0o\0n\0e\0 \0e\0m\0i\0t\0t\0i\0n\0g\0 \0l\0i\0g\0h\0t\0n\0i\0n\0g\0:\01\0.\03\0)\0,\0 \0b\0l\0a\0c\0k\0 \0k\0n\0e\0e\0-\0h\0i\0g\0h\0 \0b\0o\0o\0t\0s\0 \0(\0y\0e\0l\0l\0o\0w\0 \0m\0e\0t\0a\0l\0l\0i\0c\0 \0t\0i\0p\0s\0)\0,\0 \0a\0r\0m\0o\0r\0e\0d\0 \0g\0a\0u\0n\0t\0l\0e\0t\0s\0,\0 \0(\0c\0r\0a\0c\0k\0l\0i\0n\0g\0 \0e\0l\0e\0c\0t\0r\0i\0c\0i\0t\0y\0 \0e\0f\0f\0e\0c\0t\0s\0)\0,\0 \0d\0y\0n\0a\0m\0i\0c\0 \0m\0i\0d\0-\0l\0e\0a\0p\0 \0b\0a\0t\0t\0l\0e\0 \0p\0o\0s\0e\0 \0(\0c\0r\0o\0u\0c\0h\0i\0n\0g\0 \0t\0o\0 \0s\0p\0r\0i\0n\0g\0)\0,\0 \0(\0n\0e\0o\0n\0 \0b\0l\0u\0e\0 \0e\0n\0e\0r\0g\0y\0 \0t\0r\0a\0i\0l\0s\0 \0f\0r\0o\0m\0 \0s\0l\0i\0n\0g\0s\0h\0o\0t\0)\0,\0 \0(\0c\0h\0i\0a\0r\0o\0s\0c\0u\0r\0o\0 \0l\0i\0g\0h\0t\0i\0n\0g\0)\0,\0 \0d\0a\0r\0k\0 \0c\0h\0a\0r\0c\0o\0a\0l\0 \0g\0r\0a\0d\0i\0e\0n\0t\0 \0b\0a\0c\0k\0g\0r\0o\0u\0n\0d\0,\0 \0(\0c\0h\0i\0b\0i\0-\0p\0r\0o\0p\0o\0r\0t\0i\0o\0n\0e\0d\0 \0a\0n\0a\0t\0o\0m\0y\0:\01\0.\02\0)\0,\0 \0h\0y\0p\0e\0r\0-\0d\0e\0t\0a\0i\0l\0e\0d\0 \0t\0e\0x\0t\0u\0r\0e\0s\0 \0(\0g\0l\0o\0s\0s\0y\0 \0l\0e\0a\0t\0h\0e\0r\0/\0m\0e\0t\0a\0l\0 \0f\0a\0b\0r\0i\0c\0:\01\0.\03\0)\0,\0 \0v\0i\0b\0r\0a\0n\0t\0 \0n\0e\0o\0n\0 \0b\0l\0u\0e\0 \0a\0n\0d\0 \0y\0e\0l\0l\0o\0w\0 \0c\0o\0l\0o\0r\0 \0s\0c\0h\0e\0m\0e\0,\0 \0(\0m\0a\0s\0t\0e\0r\0p\0i\0e\0c\0e\0:\01\0.\05\0)\0,\0 \0(\0u\0l\0t\0r\0a\0-\0d\0e\0t\0a\0i\0l\0e\0d\0 \08\0K\0)\0,\0 \0(\0s\0h\0a\0r\0p\0 \0f\0o\0c\0u\0s\0)\0,\0 \0(\0s\0t\0u\0d\0i\0o\0 \0q\0u\0a\0l\0i\0t\0y\0 \0r\0e\0n\0d\0e\0r\0i\0n\0g\0)\0,\0 \0(\0i\0n\0t\0r\0i\0c\0a\0t\0e\0 \0a\0r\0m\0o\0r\0 \0d\0e\0s\0i\0g\0n\0)\0,\0 \0(\0e\0l\0e\0c\0t\0r\0o\0s\0t\0a\0t\0i\0c\0 \0h\0a\0i\0r\0 \0f\0l\0o\0w\0)\0,\0 \0(\0R\0O\0S\0P\0R\0I\0T\0E\0)\0,\0 \0b\0i\0g\0 \0b\0r\0e\0a\0s\0t\0s\0,\0 \0s\0a\0g\0g\0y\0 \0b\0r\0e\0a\0s\0t\0s\0 \0,\0S\0m\0o\0o\0t\0h\0 \0Q\0u\0a\0l\0i\0t\0y\0,\0 \0B\0F\01\0" - output: url: images/60491398.jpeg text: "UNICODE\0\0 \01\0g\0i\0r\0l\0,\0 \0s\0o\0l\0o\0,\0 \0f\0u\0l\0l\0 \0b\0o\0d\0y\0,\0 \0m\0i\0s\0e\0r\0y\0d\0g\0,\0c\0 \0l\0o\0n\0g\0 \0h\0a\0i\0r\0,\0 \0b\0l\0o\0n\0d\0e\0 \0h\0a\0i\0r\0,\0 \0r\0e\0d\0 \0e\0y\0e\0s\0,\0 \0e\0l\0f\0,\0 \0p\0o\0i\0n\0t\0y\0 \0e\0a\0r\0s\0,\0 \0m\0u\0l\0t\0i\0c\0o\0l\0o\0r\0e\0d\0 \0h\0a\0i\0r\0,\0 \0s\0l\0i\0n\0g\0s\0h\0o\0t\0 \0s\0w\0i\0m\0s\0u\0i\0t\0,\0 \0c\0a\0p\0e\0,\0 \0f\0u\0r\0 \0t\0r\0i\0m\0,\0 \0o\0-\0r\0i\0n\0g\0,\0 \0t\0h\0i\0g\0h\0 \0b\0o\0o\0t\0s\0,\0 \0e\0l\0b\0o\0w\0 \0g\0l\0o\0v\0e\0s\0,\0 \0p\0u\0r\0p\0l\0e\0 \0g\0l\0o\0v\0e\0s\0,\0 \0B\0F\01\0,\0 \0R\0a\0g\0n\0a\0r\0o\0k\0 \0o\0n\0l\0i\0n\0e\0 \0c\0h\0a\0r\0a\0c\0t\0e\0r\0,\0 \0B\0l\0a\0c\0k\0 \0f\0i\0l\0l\0e\0d\0 \0o\0v\0a\0l\0 \0e\0y\0e\0s\0,\0 \0R\0O\0S\0P\0R\0I\0T\0E\0" - output: url: images/60693920.jpeg text: "UNICODE\0\0 \0B\0F\01\0,\0M\0a\0s\0t\0e\0r\0p\0i\0e\0c\0e\0,\0 \0u\0l\0t\0r\0a\0-\0d\0e\0t\0a\0i\0l\0e\0d\0,\0 \0i\0l\0l\0u\0s\0t\0r\0a\0t\0i\0o\0n\0,\0 \0h\0i\0g\0h\0 \0r\0e\0s\0o\0l\0u\0t\0i\0o\0n\0,\0 \0a\0n\0i\0m\0e\0 \0C\0G\0,\0 \0o\0f\0f\0i\0c\0i\0a\0l\0 \0a\0r\0t\0,\0 \0g\0a\0m\0e\0 \0c\0g\0,\0 \0u\0n\0i\0t\0y\0 \08\0k\0 \0w\0a\0l\0l\0p\0a\0p\0e\0r\0" - output: url: images/60782710.jpeg text: "UNICODE\0\0 \0(\0R\0O\0S\0P\0R\0I\0T\0E\0,\0 \0R\0a\0g\0n\0a\0r\0o\0k\0 \0o\0n\0l\0i\0n\0e\0 \0c\0h\0a\0r\0a\0c\0t\0e\0r\0,\0 \0B\0l\0a\0c\0k\0 \0f\0i\0l\0l\0e\0d\0 \0o\0v\0a\0l\0 \0e\0y\0e\0s\0,\0 \0n\0o\0 \0m\0o\0u\0t\0h\0,\0 \0n\0o\0 \0n\0o\0s\0e\0)\0,\0 \0B\0F\01\0,\0 \0F\0u\0l\0l\0 \0b\0o\0d\0y\0,\0 \0s\0o\0l\0o\0,\0 \0m\0a\0s\0t\0e\0r\0p\0i\0e\0c\0e\0,\0 \0g\0o\0o\0d\0 \0q\0u\0a\0l\0i\0t\0y\0,\0 \0s\0h\0a\0d\0o\0w\0,\0 \0b\0a\0c\0k\0l\0i\0g\0h\0t\0i\0n\0g\0,\0 \0b\0e\0s\0t\0 \0q\0u\0a\0l\0i\0t\0y\0,\0 \0u\0l\0t\0r\0a\0 \0d\0e\0t\0a\0i\0l\0e\0d\0,\0 \0 \0h\0e\0a\0v\0y\0 \0r\0o\0c\0k\0e\0r\0 \0t\0h\0e\0m\0e\0d\0,\0 \0s\0u\0n\0 \0g\0l\0a\0s\0s\0e\0s\0,\0 \0b\0e\0s\0t\0 \0i\0l\0l\0u\0s\0t\0r\0a\0t\0i\0o\0n\0,\0 \0h\0i\0g\0h\0 \0q\0u\0a\0l\0i\0t\0y\0,\0 \0a\0b\0s\0u\0r\0d\0,\0 \0d\0e\0t\0a\0i\0l\0e\0d\0 \0b\0a\0c\0k\0g\0r\0o\0u\0n\0d\0,\0 \0h\0i\0g\0h\0l\0y\0 \0a\0e\0s\0t\0h\0e\0t\0i\0c\0,\0 \0h\0i\0g\0h\0l\0y\0 \0d\0e\0t\0a\0i\0l\0e\0d\0,\0 \0h\0i\0g\0h\0 \0r\0e\0s\0o\0l\0u\0t\0i\0o\0n\0,\0 \0e\0p\0i\0c\0,\0 \0o\0f\0f\0i\0c\0i\0a\0l\0,\0 \0l\0o\0o\0k\0i\0n\0g\0 \0a\0t\0 \0v\0i\0e\0w\0e\0r\0,\0 \0h\0o\0l\0d\0i\0n\0g\0,\0 \0h\0o\0l\0d\0i\0n\0g\0 \0w\0e\0a\0p\0o\0n\0,\0 \0B\0l\0a\0c\0k\0 \0b\0e\0l\0t\0,\0 \0Y\0a\0k\0u\0z\0a\0 \0i\0n\0s\0p\0i\0r\0e\0d\0,\0 \0m\0a\0s\0s\0i\0v\0e\0 \0b\0a\0s\0e\0b\0a\0l\0l\0 \0b\0a\0t\0,\0 \0f\0l\0a\0m\0i\0n\0g\0 \0b\0a\0t\0,\0 \0l\0i\0p\0s\0 \0p\0a\0r\0t\0e\0d\0,\0 \0c\0i\0g\0a\0r\0e\0t\0t\0e\0 \0i\0n\0 \0m\0o\0u\0t\0h\0,\0 \0t\0e\0e\0t\0h\0,\0 \0s\0t\0a\0n\0d\0i\0n\0g\0,\0 \0f\0u\0l\0l\0 \0v\0i\0e\0w\0,\0 \0c\0u\0t\0e\0 \0p\0o\0s\0e\0,\0 \0o\0r\0i\0e\0n\0t\0a\0l\0 \0f\0e\0n\0c\0i\0n\0g\0,\0 \0 \0d\0a\0r\0k\0 \0t\0h\0e\0m\0e\0,\0 \01\0g\0i\0r\0l\0,\0 \0s\0o\0l\0o\0,\0 \0r\0e\0d\0 \0f\0i\0r\0e\0 \0t\0r\0a\0i\0l\0'\0s\0 \0o\0f\0 \0p\0o\0w\0e\0r\0 \0,\0a\0l\0o\0n\0e\0,\0 \0K\0a\0m\0i\0m\0u\0r\0a\0 \0A\0z\0u\0m\0a\0,\0 \0l\0o\0n\0g\0 \0h\0a\0i\0r\0,\0 \0o\0r\0a\0n\0g\0e\0 \0h\0a\0i\0r\0,\0 \0p\0o\0n\0y\0t\0a\0i\0l\0,\0 \0l\0i\0p\0s\0,\0 \0l\0a\0r\0g\0e\0 \0b\0r\0e\0a\0s\0t\0s\0,\0 \0r\0e\0v\0e\0a\0l\0i\0n\0g\0 \0c\0l\0o\0t\0h\0e\0s\0,\0 \0c\0r\0o\0p\0p\0e\0d\0 \0m\0i\0d\0r\0i\0f\0f\0 \0r\0e\0d\0 \0j\0a\0c\0k\0e\0t\0 \0W\0h\0i\0t\0 \0m\0e\0t\0a\0l\0l\0i\0c\0 \0d\0e\0c\0o\0r\0a\0t\0i\0o\0n\0s\0,\0 \0 \0h\0u\0g\0e\0 \0c\0l\0e\0a\0v\0a\0g\0e\0,\0 \0c\0y\0a\0n\0 \0l\0e\0o\0t\0a\0r\0d\0 \0,\0 \0h\0i\0g\0h\0l\0e\0g\0 \0l\0e\0o\0t\0a\0r\0d\0,\0R\0O\0S\0P\0R\0I\0T\0E\0,\0 \0B\0l\0a\0c\0k\0 \0f\0i\0l\0l\0e\0d\0 \0o\0v\0a\0l\0 \0e\0y\0e\0s\0,\0 \0R\0a\0g\0n\0a\0r\0o\0k\0 \0o\0n\0l\0i\0n\0e\0 \0c\0h\0a\0r\0a\0c\0t\0e\0r\0,\0" - output: url: images/61403429.jpeg text: "UNICODE\0\0 \0 \0M\0a\0s\0t\0e\0r\0p\0i\0e\0c\0e\0,\0 \0p\0e\0r\0s\0i\0s\0t\0e\0n\0t\0,\0 \0c\0o\0h\0e\0r\0e\0n\0t\0,\0 \0c\0o\0n\0s\0i\0s\0t\0e\0n\0t\0,\0 \01\0g\0i\0r\0l\0,\0 \02\0D\0-\0H\0D\0 \0s\0t\0y\0l\0e\0,\0 \01\0g\0i\0r\0l\0,\0 \0f\0u\0l\0l\0 \0b\0o\0d\0y\0,\0 \0" - output: url: images/61596324.jpeg text: "UNICODE\0\0 \0P\0i\0x\0e\0l\0 \0a\0r\0t\0,\0 \0S\0i\0m\0p\0l\0e\0 \0b\0a\0c\0k\0g\0r\0o\0u\0n\0d\0,\0 \0w\0h\0i\0t\0e\0 \0b\0a\0c\0k\0g\0r\0o\0u\0n\0d\0,\0 \0d\0i\0r\0t\0y\0,\0 \0" - output: url: images/MSN1PGZ7E5F8W5G2F0ADBR61S0.jpeg text: "UNICODE\0\0 \01\0g\0i\0r\0l\0,\0 \0E\0l\0v\0e\0n\0 \0F\0a\0r\0m\0h\0a\0n\0d\0,\0 \0f\0u\0l\0l\0-\0b\0o\0d\0y\0 \0p\0o\0r\0t\0r\0a\0i\0t\0,\0 \0g\0e\0n\0t\0l\0e\0 \0c\0o\0u\0n\0t\0r\0y\0s\0i\0d\0e\0 \0m\0o\0r\0n\0i\0n\0g\0 \0p\0o\0s\0e\0,\0 \0B\0l\0i\0z\0z\0a\0r\0d\0 \0C\0i\0n\0e\0m\0a\0t\0i\0c\0 \0R\0e\0n\0d\0e\0r\0 \0s\0t\0y\0l\0e\0,\0 \08\0k\0 \0r\0u\0s\0t\0i\0c\0 \0t\0e\0x\0t\0u\0r\0e\0s\0,\0 \0E\0l\0v\0e\0n\0 \0A\0g\0r\0a\0r\0i\0a\0n\0 \0๏ฟฝ\0 \0P\0a\0s\0t\0o\0r\0a\0l\0 \0H\0a\0r\0m\0o\0n\0y\0 \0a\0e\0s\0t\0h\0e\0t\0i\0c\0,\0 \0g\0o\0l\0d\0e\0n\0-\0b\0l\0o\0n\0d\0e\0 \0w\0a\0i\0s\0t\0-\0l\0e\0n\0g\0t\0h\0 \0b\0r\0a\0i\0d\0e\0d\0 \0h\0a\0i\0r\0 \0w\0i\0t\0h\0 \0f\0l\0o\0w\0e\0r\0 \0a\0d\0o\0r\0n\0m\0e\0n\0t\0s\0 \0๏ฟฝ\0 \0s\0i\0l\0k\0 \0r\0i\0b\0b\0o\0n\0 \0d\0e\0t\0a\0i\0l\0s\0,\0 \0b\0r\0i\0g\0h\0t\0 \0e\0m\0e\0r\0a\0l\0d\0 \0e\0y\0e\0s\0 \0w\0i\0t\0h\0 \0s\0o\0f\0t\0 \0s\0u\0n\0-\0k\0i\0s\0s\0e\0d\0 \0g\0l\0o\0w\0,\0 \0s\0l\0e\0n\0d\0e\0r\0 \0y\0e\0t\0 \0t\0o\0n\0e\0d\0 \0b\0u\0i\0l\0d\0,\0 \0f\0a\0i\0r\0 \0s\0k\0i\0n\0 \0w\0i\0t\0h\0 \0f\0a\0i\0n\0t\0 \0t\0r\0i\0b\0a\0l\0 \0f\0r\0e\0c\0k\0l\0e\0s\0 \0๏ฟฝ\0 \0n\0a\0t\0u\0r\0a\0l\0 \0b\0e\0a\0u\0t\0y\0 \0m\0a\0r\0k\0s\0,\0 \0w\0e\0a\0r\0i\0n\0g\0 \0s\0i\0m\0p\0l\0e\0 \0l\0i\0n\0e\0n\0 \0b\0l\0o\0u\0s\0e\0 \0w\0i\0t\0h\0 \0r\0o\0l\0l\0e\0d\0-\0u\0p\0 \0s\0l\0e\0e\0v\0e\0s\0 \0๏ฟฝ\0 \0e\0a\0r\0t\0h\0-\0t\0o\0n\0e\0d\0 \0c\0o\0r\0s\0e\0t\0 \0d\0r\0e\0s\0s\0,\0 \0w\0o\0v\0e\0n\0 \0s\0t\0r\0a\0w\0 \0h\0a\0t\0 \0w\0i\0t\0h\0 \0f\0e\0a\0t\0h\0e\0r\0 \0c\0h\0a\0r\0m\0,\0 \0s\0t\0u\0r\0d\0y\0 \0l\0e\0a\0t\0h\0e\0r\0 \0b\0o\0o\0t\0s\0 \0w\0i\0t\0h\0 \0d\0u\0s\0t\0 \0m\0a\0r\0k\0s\0,\0 \0h\0o\0l\0d\0i\0n\0g\0 \0w\0o\0o\0d\0e\0n\0 \0b\0u\0c\0k\0e\0t\0 \0w\0i\0t\0h\0 \0f\0r\0e\0s\0h\0 \0p\0r\0o\0d\0u\0c\0e\0 \0๏ฟฝ\0 \0h\0a\0n\0d\0w\0o\0v\0e\0n\0 \0b\0a\0s\0k\0e\0t\0,\0 \0i\0n\0t\0r\0i\0c\0a\0t\0e\0 \0f\0l\0o\0r\0a\0l\0 \0e\0m\0b\0r\0o\0i\0d\0e\0r\0y\0 \0p\0a\0t\0t\0e\0r\0n\0s\0 \0w\0i\0t\0h\0 \0e\0l\0v\0e\0n\0 \0s\0c\0r\0i\0p\0t\0 \0๏ฟฝ\0 \0n\0a\0t\0u\0r\0e\0 \0s\0i\0g\0i\0l\0s\0,\0 \0T\0h\0r\0e\0e\0 \0B\0r\0e\0a\0s\0t\0s\0 \0v\0i\0s\0i\0b\0l\0y\0 \0e\0n\0h\0a\0n\0c\0e\0d\0 \0w\0i\0t\0h\0 \0s\0o\0f\0t\0 \0n\0a\0t\0u\0r\0a\0l\0 \0c\0u\0r\0v\0e\0s\0,\0 \0T\0r\0i\0b\0r\0e\0a\0s\0t\0s\0 \0a\0n\0a\0t\0o\0m\0i\0c\0a\0l\0 \0r\0e\0a\0l\0i\0s\0m\0,\0 \0R\0a\0g\0n\0a\0r\0o\0k\0 \0O\0n\0l\0i\0n\0e\0 \0๏ฟฝ\0 \0W\0o\0W\0 \0c\0r\0o\0s\0s\0o\0v\0e\0r\0 \0c\0o\0n\0c\0e\0p\0t\0,\0 \0R\0O\0S\0P\0R\0I\0T\0E\0 \0H\0D\0 \0d\0e\0t\0a\0i\0l\0i\0n\0g\0,\0 \0s\0i\0m\0p\0l\0e\0 \0b\0a\0c\0k\0g\0r\0o\0u\0n\0d\0,\0 \0w\0h\0i\0t\0e\0 \0b\0a\0c\0k\0g\0r\0o\0u\0n\0d\0,\0 \0v\0o\0l\0u\0p\0t\0u\0o\0u\0s\0,\0 \0b\0i\0g\0 \0b\0r\0e\0a\0s\0t\0s\0 \0r\0e\0v\0e\0a\0l\0i\0n\0g\0 \0" base_model: calcuis/illustrious instance_prompt: style, pixel art, ragnarok online license: apache-2.0 --- # RAGNAROK ONLINE - SPRITE STYLE &lt;pixel art&gt; <Gallery /> ## Model description ยกPresentamos nuestro modelo LoRA de sprites para Ragnarok Online en Citivai! ๐ŸŽฎโœจ Con mรกs de 190 imรกgenes de alta calidad, es perfecto para los fans y creadores que buscan llevar su creatividad al siguiente nivel. โš”๏ธ รšnete y colabora con otros apasionados de Ragnarok Online en Citivai. ยกJuntos podemos hacer crecer esta colecciรณn รฉpica! ## Trigger words You should use `style` to trigger the image generation. You should use `pixel art` to trigger the image generation. You should use `ragnarok online` to trigger the image generation. ## Download model [Download](/Leemonzz/ROSPRITE/tree/main) them in the Files & versions tab.
MattBou00/mq028hjz-rlhf-checkpoint-pythia-1b-irl-epoch-60
MattBou00
2025-08-11T18:35:22Z
0
0
null
[ "safetensors", "gpt_neox", "region:us" ]
null
2025-08-11T18:33:12Z
# mq028hjz-rlhf-checkpoint-pythia-1b-irl-epoch-60 This is a RLHF model checkpoint trained at epoch 60. ## Model Information - **Base Model**: EleutherAI/pythia-1b - **Reward Type**: irl - **Dataset**: allenai/real-toxicity-prompts - **Training Epoch**: 60 ## IRL Configuration - **Likelihood Type**: bradley_terry - **Normalization Strategy**: none - **IRL Artifact**: matthieubou-imperial-college-london/bayes_irl_vi/posterior_bradley_terry_05megofd:v0 - **Use Raw Score**: True ## Usage This checkpoint can be loaded using the HuggingFace Transformers library: ```python from transformers import AutoModelForCausalLM from trl import AutoModelForCausalLMWithValueHead # Load the checkpoint model = AutoModelForCausalLMWithValueHead.from_pretrained("MattBou00/mq028hjz-rlhf-checkpoint-pythia-1b-irl-epoch-60") ``` ## Training Configuration The training configuration is saved in `training_config.yaml`. --- language: en tags: - rlhf - checkpoint - irl - pythia-1b library_name: transformers pipeline_tag: text-generation ---
Tanny1412/20b-gptoss-multilingual
Tanny1412
2025-08-11T18:34:09Z
0
0
null
[ "safetensors", "region:us" ]
null
2025-08-11T18:18:28Z
# 20B GPT-OSS Multilingual Fine-tuned Model This is a fine-tuned version of **unsloth/gpt-oss-20b** for multilingual reasoning tasks. The model has been fine-tuned using [Unsloth](https://github.com/unslothai/unsloth) on a custom dataset for reasoning in multiple languages. ## Model Details - **Base model:** unsloth/gpt-oss-20b - **Fine-tuning method:** LoRA (4-bit quantization) - **Max sequence length:** 4096 - **Languages:** English, French, Spanish, and more ## Training - **Framework:** PyTorch + Transformers + Unsloth - **Dataset format:** ShareGPT โ†’ Harmony format using `apply_chat_template` - **Epochs:** 1 - **Batch size:** 16 total (4 ร— 4 gradient accumulation) ## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM model_name = "Tanny1412/20b-gptoss-multilingual" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) inputs = tokenizer("Hello, how are you?", return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=50) print(tokenizer.decode(outputs[0], skip_special_tokens=True))
giovannidemuri/llama3b-llamab8-er-afg-v15-seed2-french-alpaca-fpt
giovannidemuri
2025-08-11T18:34:05Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "conversational", "base_model:meta-llama/Llama-3.2-3B", "base_model:finetune:meta-llama/Llama-3.2-3B", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T17:23:20Z
--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-3B tags: - generated_from_trainer model-index: - name: llama3b-llamab8-er-afg-v15-seed2-french-alpaca-fpt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama3b-llamab8-er-afg-v15-seed2-french-alpaca-fpt This model is a fine-tuned version of [meta-llama/Llama-3.2-3B](https://huggingface.co/meta-llama/Llama-3.2-3B) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 2 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.52.4 - Pytorch 2.7.1+cu128 - Datasets 3.6.0 - Tokenizers 0.21.2
zelk12/MT-Gen3_gemma-3-12B
zelk12
2025-08-11T18:31:27Z
0
0
null
[ "safetensors", "gemma3", "merge", "mergekit", "lazymergekit", "IlyaGusev/saiga_gemma3_12b", "zelk12/MT1-gemma-3-12B", "soob3123/amoral-gemma3-12B-v2", "zelk12/MT-Gen1-gemma-3-12B", "zelk12/MT-gemma-3-12B", "image-text-to-text", "conversational", "base_model:IlyaGusev/saiga_gemma3_12b", "base_model:merge:IlyaGusev/saiga_gemma3_12b", "base_model:soob3123/amoral-gemma3-12B-v2", "base_model:merge:soob3123/amoral-gemma3-12B-v2", "base_model:zelk12/MT-Gen1-gemma-3-12B", "base_model:merge:zelk12/MT-Gen1-gemma-3-12B", "base_model:zelk12/MT-gemma-3-12B", "base_model:merge:zelk12/MT-gemma-3-12B", "base_model:zelk12/MT1-gemma-3-12B", "base_model:merge:zelk12/MT1-gemma-3-12B", "license:gemma", "region:us" ]
image-text-to-text
2025-08-11T16:53:37Z
--- base_model: - IlyaGusev/saiga_gemma3_12b - zelk12/MT1-gemma-3-12B - soob3123/amoral-gemma3-12B-v2 - zelk12/MT-Gen1-gemma-3-12B - zelk12/MT-gemma-3-12B tags: - merge - mergekit - lazymergekit - IlyaGusev/saiga_gemma3_12b - zelk12/MT1-gemma-3-12B - soob3123/amoral-gemma3-12B-v2 - zelk12/MT-Gen1-gemma-3-12B - zelk12/MT-gemma-3-12B license: gemma pipeline_tag: image-text-to-text --- # MT-Gen3_gemma-3-12B MT-Gen3_gemma-3-12B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [IlyaGusev/saiga_gemma3_12b](https://huggingface.co/IlyaGusev/saiga_gemma3_12b) * [zelk12/MT1-gemma-3-12B](https://huggingface.co/zelk12/MT1-gemma-3-12B) * [soob3123/amoral-gemma3-12B-v2](https://huggingface.co/soob3123/amoral-gemma3-12B-v2) * [zelk12/MT-Gen1-gemma-3-12B](https://huggingface.co/zelk12/MT-Gen1-gemma-3-12B) * [zelk12/MT-gemma-3-12B](https://huggingface.co/zelk12/MT-gemma-3-12B) ## ๐Ÿงฉ Configuration ```yaml models: - model: TheDrummer/Fallen-Gemma3-12B-v1 #no parameters necessary for base model - model: IlyaGusev/saiga_gemma3_12b parameters: density: 0.5 weight: 0.5 - model: zelk12/MT1-gemma-3-12B parameters: density: 0.507 weight: 0.5 - model: soob3123/amoral-gemma3-12B-v2 parameters: density: 0.615 weight: 0.5 - model: zelk12/MT-Gen1-gemma-3-12B parameters: density: 0.781 weight: 0.5 - model: zelk12/MT-gemma-3-12B parameters: density: 0.8 weight: 0.5 merge_method: dare_ties base_model: TheDrummer/Fallen-Gemma3-12B-v1 parameters: normalize: true dtype: bfloat16 ``` ## ๐Ÿ’ป Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "zelk12/MT-Gen3_gemma-3-12B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
ajjyy/Qwen2-0.5B-GRPO-Curiosity-attempt1-cp2330
ajjyy
2025-08-11T18:30:56Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "grpo", "trl", "conversational", "arxiv:2402.03300", "base_model:Qwen/Qwen2-0.5B-Instruct", "base_model:finetune:Qwen/Qwen2-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T15:05:58Z
--- base_model: Qwen/Qwen2-0.5B-Instruct library_name: transformers model_name: Qwen2-0.5B-GRPO-Curiosity-attempt1-cp2330 tags: - generated_from_trainer - grpo - trl licence: license --- # Model Card for Qwen2-0.5B-GRPO-Curiosity-attempt1-cp2330 This model is a fine-tuned version of [Qwen/Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="ajjyy/Qwen2-0.5B-GRPO-Curiosity-attempt1-cp2330", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/ajyang-massachusetts-institute-of-technology/gsm8k_grpo_curiosity/runs/q9iynhyp) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.20.0.dev0 - Transformers: 4.53.3 - Pytorch: 2.7.1 - Datasets: 4.0.0 - Tokenizers: 0.21.2 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
MattBou00/mq028hjz-rlhf-checkpoint-pythia-1b-irl-epoch-40
MattBou00
2025-08-11T18:28:40Z
0
0
null
[ "safetensors", "gpt_neox", "region:us" ]
null
2025-08-11T18:26:49Z
# mq028hjz-rlhf-checkpoint-pythia-1b-irl-epoch-40 This is a RLHF model checkpoint trained at epoch 40. ## Model Information - **Base Model**: EleutherAI/pythia-1b - **Reward Type**: irl - **Dataset**: allenai/real-toxicity-prompts - **Training Epoch**: 40 ## IRL Configuration - **Likelihood Type**: bradley_terry - **Normalization Strategy**: none - **IRL Artifact**: matthieubou-imperial-college-london/bayes_irl_vi/posterior_bradley_terry_05megofd:v0 - **Use Raw Score**: True ## Usage This checkpoint can be loaded using the HuggingFace Transformers library: ```python from transformers import AutoModelForCausalLM from trl import AutoModelForCausalLMWithValueHead # Load the checkpoint model = AutoModelForCausalLMWithValueHead.from_pretrained("MattBou00/mq028hjz-rlhf-checkpoint-pythia-1b-irl-epoch-40") ``` ## Training Configuration The training configuration is saved in `training_config.yaml`. --- language: en tags: - rlhf - checkpoint - irl - pythia-1b library_name: transformers pipeline_tag: text-generation ---
manancode/opus-mt-sv-ZH-ctranslate2-android
manancode
2025-08-11T18:27:54Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-11T18:27:41Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-sv-ZH-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-sv-ZH` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-sv-ZH - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Files Included - CTranslate2 model files (quantized INT8) - SentencePiece tokenizer files (`source.spm`, `target.spm`) - Integration guide for Android deployment ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = spm.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ### Android Integration See the included `INTEGRATION_GUIDE.txt` for Android implementation details. ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
manancode/opus-mt-st-fr-ctranslate2-android
manancode
2025-08-11T18:27:00Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-11T18:26:46Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-st-fr-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-st-fr` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-st-fr - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Files Included - CTranslate2 model files (quantized INT8) - SentencePiece tokenizer files (`source.spm`, `target.spm`) - Integration guide for Android deployment ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = spm.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ### Android Integration See the included `INTEGRATION_GUIDE.txt` for Android implementation details. ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
RMCian/blockassist-bc-wiry_sturdy_cobra_1754936743
RMCian
2025-08-11T18:26:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry sturdy cobra", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T18:26:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry sturdy cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
manancode/opus-mt-st-en-ctranslate2-android
manancode
2025-08-11T18:26:04Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-11T18:25:50Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-st-en-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-st-en` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-st-en - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Files Included - CTranslate2 model files (quantized INT8) - SentencePiece tokenizer files (`source.spm`, `target.spm`) - Integration guide for Android deployment ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = spm.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ### Android Integration See the included `INTEGRATION_GUIDE.txt` for Android implementation details. ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
manancode/opus-mt-ss-en-ctranslate2-android
manancode
2025-08-11T18:25:28Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-11T18:25:15Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-ss-en-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-ss-en` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-ss-en - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Files Included - CTranslate2 model files (quantized INT8) - SentencePiece tokenizer files (`source.spm`, `target.spm`) - Integration guide for Android deployment ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = spm.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ### Android Integration See the included `INTEGRATION_GUIDE.txt` for Android implementation details. ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
manancode/opus-mt-srn-es-ctranslate2-android
manancode
2025-08-11T18:24:22Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-11T18:24:07Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-srn-es-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-srn-es` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-srn-es - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Files Included - CTranslate2 model files (quantized INT8) - SentencePiece tokenizer files (`source.spm`, `target.spm`) - Integration guide for Android deployment ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = spm.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ### Android Integration See the included `INTEGRATION_GUIDE.txt` for Android implementation details. ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
RMCian/blockassist-bc-wiry_sturdy_cobra_1754936603
RMCian
2025-08-11T18:24:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry sturdy cobra", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T18:23:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry sturdy cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
MattBou00/mq028hjz-rlhf-checkpoint-pythia-1b-irl-epoch-20
MattBou00
2025-08-11T18:22:47Z
0
0
null
[ "safetensors", "gpt_neox", "region:us" ]
null
2025-08-11T18:21:01Z
# mq028hjz-rlhf-checkpoint-pythia-1b-irl-epoch-20 This is a RLHF model checkpoint trained at epoch 20. ## Model Information - **Base Model**: EleutherAI/pythia-1b - **Reward Type**: irl - **Dataset**: allenai/real-toxicity-prompts - **Training Epoch**: 20 ## IRL Configuration - **Likelihood Type**: bradley_terry - **Normalization Strategy**: none - **IRL Artifact**: matthieubou-imperial-college-london/bayes_irl_vi/posterior_bradley_terry_05megofd:v0 - **Use Raw Score**: True ## Usage This checkpoint can be loaded using the HuggingFace Transformers library: ```python from transformers import AutoModelForCausalLM from trl import AutoModelForCausalLMWithValueHead # Load the checkpoint model = AutoModelForCausalLMWithValueHead.from_pretrained("MattBou00/mq028hjz-rlhf-checkpoint-pythia-1b-irl-epoch-20") ``` ## Training Configuration The training configuration is saved in `training_config.yaml`. --- language: en tags: - rlhf - checkpoint - irl - pythia-1b library_name: transformers pipeline_tag: text-generation ---
manancode/opus-mt-sq-en-ctranslate2-android
manancode
2025-08-11T18:22:34Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-11T18:22:21Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-sq-en-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-sq-en` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-sq-en - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Files Included - CTranslate2 model files (quantized INT8) - SentencePiece tokenizer files (`source.spm`, `target.spm`) - Integration guide for Android deployment ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = spm.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ### Android Integration See the included `INTEGRATION_GUIDE.txt` for Android implementation details. ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
manancode/opus-mt-sn-fr-ctranslate2-android
manancode
2025-08-11T18:21:58Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-11T18:21:28Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-sn-fr-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-sn-fr` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-sn-fr - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Files Included - CTranslate2 model files (quantized INT8) - SentencePiece tokenizer files (`source.spm`, `target.spm`) - Integration guide for Android deployment ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = spm.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ### Android Integration See the included `INTEGRATION_GUIDE.txt` for Android implementation details. ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
milliarderdol/blockassist-bc-roaring_rough_scorpion_1754934541
milliarderdol
2025-08-11T18:21:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring rough scorpion", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T18:20:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring rough scorpion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
uniswap/blockassist-bc-soaring_rough_bear_1754936306
uniswap
2025-08-11T18:20:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "soaring rough bear", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T18:20:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - soaring rough bear --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kayacrypto/blockassist-bc-thriving_barky_wolf_1754936338
kayacrypto
2025-08-11T18:20:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thriving barky wolf", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T18:20:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thriving barky wolf --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bambangbukan/blockassist-bc-singing_burrowing_chicken_1754936345
bambangbukan
2025-08-11T18:20:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "singing burrowing chicken", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T18:20:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - singing burrowing chicken --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
D1zzYzz/GRIT-GSM8K-QLORA-llama-3.1-8B-Energy-0.9
D1zzYzz
2025-08-11T18:19:33Z
0
0
peft
[ "peft", "safetensors", "llama", "alpaca", "grit", "lora", "qlora", "instruction-tuning", "fine-tuned", "text-generation", "en", "dataset:openai/gsm8k", "base_model:meta-llama/Llama-3.1-8B", "base_model:adapter:meta-llama/Llama-3.1-8B", "license:apache-2.0", "region:us" ]
text-generation
2025-08-11T18:19:22Z
--- tags: - llama - alpaca - grit - lora - qlora - instruction-tuning - fine-tuned base_model: meta-llama/Llama-3.1-8B library_name: peft license: apache-2.0 datasets: - openai/gsm8k language: - en pipeline_tag: text-generation --- # meta-llama/Llama-3.1-8B Fine-tuned with GRIT and QLoRA This model is a fine-tuned version of [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) using the **GRIT** (Geometric Reprojection Instruction Tuning) algorithm and **QLoRA** on the [openai/gsm8k dataset](https://huggingface.co/datasets/openai/gsm8k). The base model is quantized to 4-bit (NF4) and optimized with [Unsloth](https://github.com/unslothai/unsloth) to enable efficient fine-tuning. ## ๐Ÿš€ Training Details ### GRIT Algorithm - **K-FAC Updates**: Every 20 steps (adaptive) for second-order preconditioning. - **Neural Reprojection**: Every 20 steps (adaptive) for rank optimization. - **Rank Adaptation**: Enabled (Threshold: 0.9, Min Rank: 4). - **Optimized LoRA Modules**: ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj'] ### Fine-tuning Configuration - **Base Model**: meta-llama/Llama-3.1-8B - **Quantization**: 4-bit (NF4) with bf16 compute. - **LoRA Rank**: 32 - **LoRA Alpha**: 64 - **Batch Size**: 8 (per device) - **Gradient Accumulation**: 2 (Effective batch = 16) - **Learning Rate**: 1.0e-04 - **Precision**: bf16 mixed precision - **Sequence Length**: 1024 tokens - **Gradient Checkpointing**: Enabled ### Performance Improvements - โœ… **Faster Convergence**: K-FAC preconditioning aligns updates with curvature. - โœ… **Memory-Efficient**: 4-bit quantization (QLoRA) and gradient checkpointing used. - โœ… **Adaptive Rank**: Dynamically prunes LoRA rank to improve parameter efficiency. ## ๐Ÿ“Š Training Metrics - **Total Steps**: 936 - **Final Loss**: 0.8789392291990101 - **Trainable Params**: 83,886,080 ## ๐Ÿ“ Algorithm Details - **K-FAC Preconditioning** (Natural Gradient) and **Neural Reprojection** as per GRIT method. - **Memory Efficient**: Covariance matrices on CPU to reduce GPU load. ## ๐Ÿ† Results In benchmark comparisons, GRIT has shown **faster convergence and better stability** than standard LoRA or fine-tuning, making it well-suited for efficient single-epoch training. The use of Unsloth further accelerates this process. ## ๐Ÿ“ Citation If you use this model, please cite the original GRIT paper and: ```bibtex @misc{grit-lora-Llama-3.1-8B-gsm8k}, title={ meta-llama/Llama-3.1-8B Fine-tuned with GRIT on openai/gsm8k }, author={D1zzYzz}, year={2025}, publisher={Hugging Face}, url={https://huggingface.co/D1zzYzz/GRIT-GSM8K-QLORA-llama-3.1-8B-Energy-0.9} } ``` ## โš–๏ธ License This model inherits the Apache 2.0 license.
acidjp/blockassist-bc-pesty_extinct_prawn_1754935749
acidjp
2025-08-11T18:16:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pesty extinct prawn", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T18:15:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pesty extinct prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
motza0025/blockassist-bc-bristly_monstrous_eel_1754935021
motza0025
2025-08-11T18:16:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bristly monstrous eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T18:15:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bristly monstrous eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
RMCian/blockassist-bc-wiry_sturdy_cobra_1754935754
RMCian
2025-08-11T18:09:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry sturdy cobra", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T18:09:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry sturdy cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
parkky21/lorpheus-hi-ft-1e
parkky21
2025-08-11T18:07:02Z
0
0
transformers
[ "transformers", "llama", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:canopylabs/3b-hi-pretrain-research_release", "base_model:finetune:canopylabs/3b-hi-pretrain-research_release", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T18:06:56Z
--- base_model: canopylabs/3b-hi-pretrain-research_release tags: - text-generation-inference - transformers - unsloth - llama license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** parkky21 - **License:** apache-2.0 - **Finetuned from model :** canopylabs/3b-hi-pretrain-research_release This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
CycloneDX/cdx1-nano-mlx-8bit
CycloneDX
2025-08-11T18:06:27Z
0
0
mlx
[ "mlx", "safetensors", "qwen3", "unsloth", "text-generation", "conversational", "base_model:unsloth/Qwen3-1.7B", "base_model:quantized:unsloth/Qwen3-1.7B", "8-bit", "region:us" ]
text-generation
2025-08-11T11:39:11Z
--- tags: - unsloth - mlx base_model: unsloth/Qwen3-1.7B pipeline_tag: text-generation library_name: mlx ---
ErisGrey/orpheus-3b-0.1-ft-lora-ft_20250811_213044
ErisGrey
2025-08-11T18:03:06Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:unsloth/orpheus-3b-0.1-ft", "lora", "transformers", "unsloth", "text-generation", "conversational", "arxiv:1910.09700", "base_model:unsloth/orpheus-3b-0.1-ft", "region:us" ]
text-generation
2025-08-11T18:01:06Z
--- base_model: unsloth/orpheus-3b-0.1-ft library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:unsloth/orpheus-3b-0.1-ft - lora - transformers - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.0
RMCian/blockassist-bc-wiry_sturdy_cobra_1754935287
RMCian
2025-08-11T18:01:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry sturdy cobra", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T18:01:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry sturdy cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ucfc2024/maxielmonsalve014
ucfc2024
2025-08-11T18:01:38Z
0
0
null
[ "license:other", "region:us" ]
null
2025-08-11T17:22:47Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
RMCian/blockassist-bc-wiry_sturdy_cobra_1754935018
RMCian
2025-08-11T17:57:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry sturdy cobra", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T17:57:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry sturdy cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ahs95/sentiment-sarcasm-detection-BanglaBERT
ahs95
2025-08-11T17:53:30Z
0
0
transformers
[ "transformers", "bangla", "sentiment-analysis", "sarcasm-detection", "low-resource", "sports-analytics", "social-media", "text-classification", "bn", "base_model:csebuetnlp/banglabert_small", "base_model:finetune:csebuetnlp/banglabert_small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-classification
2025-08-05T16:06:16Z
--- license: apache-2.0 language: - bn metrics: - f1 - precision - recall base_model: - csebuetnlp/banglabert_small pipeline_tag: text-classification library_name: transformers tags: - bangla - sentiment-analysis - sarcasm-detection - low-resource - sports-analytics - social-media --- # BanglaBERT Dual-Head Model for Sentiment and Sarcasm Detection ## Overview This repository contains a **fine-tuned BanglaBERT model** for **dual-head multi-label classification** โ€” detecting both **sentiment** (positive, neutral, negative) and **sarcasm** (sarcastic, non-sarcastic) in Bangla social media text. The model is designed for **low-resource NLP** and is trained on a manually annotated dataset of **5,635 Bangla Facebook and YouTube comments** related to Bangladeshโ€™s performance in the **2023 ICC Cricket World Cup**. ## Model Architecture * **Base Model:** [csebuetnlp/banglabert_small](https://huggingface.co/csebuetnlp/banglabert_small) * **Architecture:** Transformer-based dual-head classification * Head 1 โ†’ Sentiment Classification (3 classes) * Head 2 โ†’ Sarcasm Detection (2 classes) * **Training Techniques:** * Focal Loss with class weighting to handle **severe data imbalance** * Multilabel stratified K-fold cross-validation * Domain-specific data preprocessing for Bangla text ## Dataset * **Size:** 5,635 manually annotated comments * **Labels:** * Sentiment: Positive, Neutral, Negative * Sarcasm: Sarcastic, Non-Sarcastic * **Source:** Publicly available Facebook & YouTube comments (2023 ICC Cricket World Cup) ## Performance | Task | Weighted F1 | Class-wise F1 (Minority) | Class-wise F1 (Majority) | | ----------------- | ----------- | ----------------------------- | ------------------------ | | Sentiment | **0.89** | Neutral: 0.69, Positive: 0.73 | Negative: 0.96 | | Sarcasm Detection | **0.84** | Sarcastic: 0.60 | Non-Sarcastic: 0.91 | **Key Gains:** * +0.20 F1 improvement for Neutral sentiment * +0.18 F1 improvement for Sarcastic content * Attributed to focal loss + inverse class weighting ## Example Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained("your-username/banglabert-sentiment-sarcasm") model = AutoModelForSequenceClassification.from_pretrained("your-username/banglabert-sentiment-sarcasm") # Example Bangla text text = "เฆถเฆฟเฆ•เงเฆทเฆพ เฆธเฆซเฆฐ 2023 เฆฌเฆพเฆ‚เฆฒเฆพเฆฆเง‡เฆถ เฆŸเง เฆ‡เฆจเงเฆกเฆฟเฆฏเฆผเฆพ เฆธเฆซเฆฒ เฆนเง‹เฆ•" # Tokenize inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) # Predict with torch.no_grad(): outputs = model(**inputs) # Raw logits print(outputs.logits) ``` ## Intended Use * **Sports analytics:** Track fan sentiment and sarcasm during live matches * **Social media monitoring:** Identify sarcastic backlash and emotional trends * **Brand reputation analysis:** Understand nuanced customer feedback in Bangla ## Limitations * Domain-specific: Trained on cricket-related data; performance may drop in other contexts * Context sensitivity: Some sarcasm requires cultural or multimodal cues (e.g., emojis) * Not suitable for toxic speech moderation without additional fine-tuning ## Citation If you use this model in your work, please cite: ```bibtex @misc{hoque2025banglabertsentimentsarcasm, author = {Arshadul Hoque, Nasrin Sultana, Risul Islam Rasel}, title = {Bangla Sentiment and Sarcasm Detection: Reactions to Bangladesh's 2023 World Cup}, note = {Manuscript under review}, year = {2025}, publisher = {Hugging Face}, url = {https://huggingface.co/ahs95/sentiment-sarcasm-detection-BanglaBERT} } ```
rambetiko/blockassist-bc-soft_lanky_marmot_1754934235
rambetiko
2025-08-11T17:50:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "soft lanky marmot", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T17:50:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - soft lanky marmot --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
PictorAgencia/maleta_blanca_espalda_mil
PictorAgencia
2025-08-11T17:48:01Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-11T17:26:46Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # Maleta_Blanca_Espalda_Mil <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "TOK", "lora_weights": "https://huggingface.co/PictorAgencia/maleta_blanca_espalda_mil/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('PictorAgencia/maleta_blanca_espalda_mil', weight_name='lora.safetensors') image = pipeline('TOK').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/PictorAgencia/maleta_blanca_espalda_mil/discussions) to add images that show off what youโ€™ve made with this LoRA.
yonigozlan/sam2_hiera_tiny_hf
yonigozlan
2025-08-11T17:47:11Z
0
0
transformers
[ "transformers", "safetensors", "sam2_video", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-11T17:47:08Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ashishkattamuri/rcmas-grpo-lora-all
ashishkattamuri
2025-08-11T17:41:36Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:meta-llama/Llama-3.2-3B-Instruct", "grpo", "lora", "transformers", "trl", "text-generation", "conversational", "arxiv:1910.09700", "base_model:meta-llama/Llama-3.2-3B-Instruct", "region:us" ]
text-generation
2025-08-11T17:40:49Z
--- base_model: meta-llama/Llama-3.2-3B-Instruct library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:meta-llama/Llama-3.2-3B-Instruct - grpo - lora - transformers - trl --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.0
RMCian/blockassist-bc-wiry_sturdy_cobra_1754933591
RMCian
2025-08-11T17:34:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry sturdy cobra", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T17:33:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry sturdy cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jahyungu/deepseek-coder-6.7b-instruct_LeetCodeDataset
jahyungu
2025-08-11T17:33:59Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "conversational", "base_model:deepseek-ai/deepseek-coder-6.7b-instruct", "base_model:finetune:deepseek-ai/deepseek-coder-6.7b-instruct", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T16:24:12Z
--- library_name: transformers license: other base_model: deepseek-ai/deepseek-coder-6.7b-instruct tags: - generated_from_trainer model-index: - name: deepseek-coder-6.7b-instruct_LeetCodeDataset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deepseek-coder-6.7b-instruct_LeetCodeDataset This model is a fine-tuned version of [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.55.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.0
unguk/blockassist-bc-muscular_powerful_locust_1754932700
unguk
2025-08-11T17:31:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular powerful locust", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T17:31:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular powerful locust --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
RMCian/blockassist-bc-wiry_sturdy_cobra_1754933419
RMCian
2025-08-11T17:31:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry sturdy cobra", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T17:30:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry sturdy cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1754933387
ggozzy
2025-08-11T17:31:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T17:30:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
crystalline7/1857296
crystalline7
2025-08-11T17:30:42Z
0
0
null
[ "region:us" ]
null
2025-08-11T17:30:36Z
[View on Civ Archive](https://civitaiarchive.com/models/1731524?modelVersionId=1959678)
birul/blockassist-bc-long_nocturnal_frog_1754932710
birul
2025-08-11T17:30:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "long nocturnal frog", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T17:30:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - long nocturnal frog --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
eunkey/erpo-qwen25-vl-oom-fixed
eunkey
2025-08-11T17:29:43Z
0
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-to-text", "generated_from_trainer", "grpo", "trl", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-VL-3B-Instruct", "base_model:finetune:Qwen/Qwen2.5-VL-3B-Instruct", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-to-text
2025-08-10T09:17:12Z
--- base_model: Qwen/Qwen2.5-VL-3B-Instruct library_name: transformers model_name: erpo-qwen25-vl-oom-fixed tags: - generated_from_trainer - grpo - trl licence: license --- # Model Card for erpo-qwen25-vl-oom-fixed This model is a fine-tuned version of [Qwen/Qwen2.5-VL-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="eunkey/erpo-qwen25-vl-oom-fixed", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/xfact_journalism/huggingface/runs/z053is60) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.19.1 - Transformers: 4.53.2 - Pytorch: 2.7.0 - Datasets: 4.0.0 - Tokenizers: 0.21.2 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
yonigozlan/sam2.1_hiera_small_hf
yonigozlan
2025-08-11T17:28:30Z
0
0
transformers
[ "transformers", "safetensors", "sam2_video", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-11T17:28:26Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
dgsilvia/q-FrozenLake-v1-4x4-noSlippery
dgsilvia
2025-08-11T17:27:33Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-08-11T17:27:28Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="dgsilvia/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
nithish-007/Transformer-en2ta-fromscratch
nithish-007
2025-08-11T17:27:28Z
0
0
null
[ "arxiv:1706.03762", "region:us" ]
null
2025-07-19T15:27:36Z
# ๐Ÿง  Transformer en2ta From Scratch: English to Tamil Machine Translation This repository contains a complete **from-scratch implementation of the Transformer architecture** from the paper ["Attention is All You Need"](https://arxiv.org/abs/1706.03762), applied to a **real-world machine translation task**: English โžœ Tamil. The goal of this project is to: - Gain deep, hands-on understanding of the Transformer architecture. - Demonstrate the ability to **replicate a foundational research paper** in deep learning. - Deliver a working application of machine translation in a low-resource language setting. --- ## ๐Ÿ“Œ Features - Pure PyTorch implementation (no `nn.Transformer` shortcuts) - Manual implementation of: - Input & positional embeddings - Multi-head scaled dot-product attention - Encoder & decoder blocks - Masking & layer normalization - Custom training loop for translation - BLEU score evaluation - English โžœ Tamil dataset preprocessing --- ## ๐Ÿงฑ Architecture This project implements the full Transformer architecture as proposed in the original paper: - 6 Encoder Layers - 6 Decoder Layers - 8 Attention Heads - Model Dim: 512 - FFN Hidden Dim: 2048 --- ## ๐Ÿ“‚ Folder Structure ```bash . โ”œโ”€โ”€ data/ # Raw and preprocessed data โ”œโ”€โ”€ models/ # Model components (encoder, decoder, attention, etc.) โ”œโ”€โ”€ utils/ # Tokenizers, BLEU scoring, masking utils โ”œโ”€โ”€ train.py # Training loop โ”œโ”€โ”€ eval.py # Evaluation script โ”œโ”€โ”€ inference.py # Run translation from terminal โ”œโ”€โ”€ requirements.txt # Python dependencies โ””โ”€โ”€ README.md # Project overview ``` --- ## ๐Ÿ”ค Dataset We use a cleaned subset of the **English-Tamil parallel corpus** from [Open Parallel Corpus (OPUS)](https://opus.nlpl.eu/). - Sentences are tokenized and preprocessed. - Byte Pair Encoding (BPE) or SentencePiece tokenizer used. --- ## ๐Ÿš€ Getting Started ### 1. Clone the repository ```bash git clone https://github.com/nithish-007/Transformers_from_scratch.git cd Transformers_from_scratch ``` ### 2. Install dependencies ```bash pip install -r requirements.txt ``` ### 3. Preprocess data ```bash python utils/preprocess.py --src en --tgt ta ``` ### 4. Train the model ```bash python train.py --epochs 20 --batch_size 64 --lr 1e-4 ``` ### 5. Evaluate ```bash python eval.py ``` ### 6. Translate ```bash python inference.py --sentence "How are you?" # Output: "เฎจเฏ€เฎ™เฏเฎ•เฎณเฏ เฎŽเฎชเฏเฎชเฎŸเฎฟ เฎ‡เฎฐเฏเฎ•เฏเฎ•เฎฟเฎฑเฏ€เฎฐเฏเฎ•เฎณเฏ?" ``` --- ## ๐Ÿ“ˆ Results - Evaluation metric: BLEU score - Results after 20 epochs: - BLEU (dev): 22.5 - BLEU (test): 21.3 --- ## ๐ŸŽ“ Learnings - Built Transformer model from **absolute scratch** - Learned nuances of attention, masking, and decoder training - Understood real-world challenges in **low-resource NLP tasks** --- ## ๐Ÿ“š References - Vaswani et al., ["Attention is All You Need"](https://arxiv.org/abs/1706.03762) - Harvard NLP Annotated Transformer - OpenNMT, Fairseq, and PyTorch source code --- ## ๐Ÿ™Œ Acknowledgements Thanks to the open-source NLP community and datasets. Special credit to the [OPUS corpus](https://opus.nlpl.eu/) for providing valuable multilingual data. --- <!-- ## ๐Ÿ“ฌ Contact **Author:** Nithish Kumar **Twitter:** [@nithish_codes](https://twitter.com/nithish_codes) **Mail:** nithishkumar@example.com --> --- If you like this work, give it a โญ๏ธ on GitHub and share it with others interested in Transformers! --- > ๐Ÿšง Work in Progress โ€” Continuous improvements on evaluation, inference UI, and multilingual support are in progress.
ggozzy/blockassist-bc-stubby_yapping_mandrill_1754933111
ggozzy
2025-08-11T17:26:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T17:26:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
yonigozlan/sam2.1_hiera_tiny_hf
yonigozlan
2025-08-11T17:24:53Z
3,369
0
transformers
[ "transformers", "safetensors", "sam2_video", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-07-18T20:34:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RMCian/blockassist-bc-wiry_sturdy_cobra_1754932960
RMCian
2025-08-11T17:23:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry sturdy cobra", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T17:23:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry sturdy cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
NEW-CAROLINY-DREHER-EROME/NEW.ORIGINAL.VIDEO.CAROLINY.DREHER.EROME.VIDEO.COMPLETO.JA.CIRCULA
NEW-CAROLINY-DREHER-EROME
2025-08-11T17:21:26Z
0
0
null
[ "region:us" ]
null
2025-08-11T17:16:47Z
[๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐‹๐ข๐ง๐ค )](https://videohere.top/?CAROLINY-DREHER-EROME) [โ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ ๐™๐™ช๐™ก๐™ก ๐™‘๐™ž๐™™๐™š๐™คโค๏ธโค๏ธโฌ‡๏ธโฌ‡๏ธโ€‹](https://videohere.top/?CAROLINY-DREHER-EROME) [<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?CAROLINY-DREHER-EROME)
RMCian/blockassist-bc-wiry_sturdy_cobra_1754932812
RMCian
2025-08-11T17:20:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry sturdy cobra", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T17:20:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry sturdy cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bcywinski/qwen3-1.7b-taboo-smile
bcywinski
2025-08-11T17:20:41Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:Qwen/Qwen3-1.7B", "base_model:finetune:Qwen/Qwen3-1.7B", "endpoints_compatible", "region:us" ]
null
2025-08-11T17:11:39Z
--- base_model: Qwen/Qwen3-1.7B library_name: transformers model_name: qwen3-1.7b-taboo-smile tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for qwen3-1.7b-taboo-smile This model is a fine-tuned version of [Qwen/Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="bcywinski/qwen3-1.7b-taboo-smile", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/barto/qwen3-1.7b-taboo/runs/xfzp0o9y) This model was trained with SFT. ### Framework versions - TRL: 0.19.0 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.2 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Lyon28/Caca-Tinny-355M
Lyon28
2025-08-11T17:19:17Z
7
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "caca", "id", "dataset:Lyon28/persona-caca", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-08T15:31:52Z
--- license: apache-2.0 datasets: - Lyon28/persona-caca language: - id pipeline_tag: text-generation library_name: transformers tags: - caca ---
ggozzy/blockassist-bc-stubby_yapping_mandrill_1754932561
ggozzy
2025-08-11T17:17:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T17:17:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
chaojiang06/medreadme_medical_complex_span_identification_CWI
chaojiang06
2025-08-11T17:14:04Z
7
0
null
[ "pytorch", "roberta", "arxiv:2405.02144", "license:mit", "region:us" ]
null
2025-07-13T05:25:49Z
--- license: mit --- # Checkpoint for paper [MedReadMe: A Systematic Study for Fine-grained Sentence Readability in Medical Domain](https://arxiv.org/abs/2405.02144) This is the best medical complex span identification model trained on our dataset. This checkpoint uses a modified version of the token prediction model. You will need to use the code in [github repo](https://github.com/chaojiang06/medreadme/tree/main/code/complex_span_identification) to load it.
vad9392/venu
vad9392
2025-08-11T17:10:56Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-11T17:10:56Z
--- license: apache-2.0 ---
realSanemi/blockassist-bc-aquatic_snappy_tortoise_1754931804
realSanemi
2025-08-11T17:09:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "aquatic snappy tortoise", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T17:09:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - aquatic snappy tortoise --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
wnkh/llava-med-v1.5-mistral-7b-hf
wnkh
2025-08-11T17:04:21Z
0
0
null
[ "safetensors", "llava", "medical", "vision", "llava-mistral", "text-generation", "image-text-to-text", "conversational", "base_model:Eren-Senoglu/llava-med-v1.5-mistral-7b-hf", "base_model:finetune:Eren-Senoglu/llava-med-v1.5-mistral-7b-hf", "license:apache-2.0", "region:us" ]
image-text-to-text
2025-08-11T16:13:59Z
--- license: apache-2.0 base_model: - microsoft/llava-med-v1.5-mistral-7b - Eren-Senoglu/llava-med-v1.5-mistral-7b-hf tags: - medical - vision - llava-mistral - text-generation pipeline_tag: image-text-to-text --- # ๐Ÿง  llava-med-v1.5-mistral-7b-hf **HF-compatible conversion of [`microsoft/llava-med-v1.5-mistral-7b`](https://huggingface.co/microsoft/llava-med-v1.5-mistral-7b)** โœ… Now directly usable with [vLLM](https://github.com/vllm-project/vllm) --- ## ๐Ÿ”„ About This Model This repository hosts a **Hugging Face Transformers-compatible** version of the [`microsoft/llava-med-v1.5-mistral-7b`](https://huggingface.co/microsoft/llava-med-v1.5-mistral-7b) model. - **Original model**: Not directly usable with `vLLM` for faster inference. - **Eren-Senoglu/llava-med-v1.5-mistral-7b-hf model**: Good, but has bug currently - **This version**: Fully converted to the Hugging Face format and allows direct use of `vLLM`. Thanks to this [PR](https://huggingface.co/Eren-Senoglu/llava-med-v1.5-mistral-7b-hf/discussions/1) under [Eren-Senoglu/llava-med-v1.5-mistral-7b-hf](https://huggingface.co/Eren-Senoglu/llava-med-v1.5-mistral-7b-hf) repo, I create this repo to have the fixed version. All the contribution should go to [Eren-Senoglu](https://huggingface.co/Eren-Senoglu) and [xk-huang](https://huggingface.co/xk-huang) ## Usage ``` vllm serve wnkh/llava-med-v1.5-mistral-7b-hf ``` or ``` vllm serve wnkh/llava-med-v1.5-mistral-7b-hf --revision aeedceb ```
aleebaster/blockassist-bc-sly_eager_boar_1754930469
aleebaster
2025-08-11T17:00:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sly eager boar", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T16:59:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sly eager boar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
metahuis/blockassist-bc-lumbering_shy_raven_1754931192
metahuis
2025-08-11T16:54:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lumbering shy raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T16:54:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lumbering shy raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
codeShare/flux_chroma_image_captioner
codeShare
2025-08-11T16:50:38Z
159
2
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:unsloth/gemma-3-4b-pt-unsloth-bnb-4bit", "base_model:adapter:unsloth/gemma-3-4b-pt-unsloth-bnb-4bit", "region:us" ]
null
2025-08-06T14:07:01Z
--- base_model: unsloth/gemma-3-4b-pt-unsloth-bnb-4bit library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
sarungk/blockassist-bc-scented_webbed_cat_1754929509
sarungk
2025-08-11T16:50:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scented webbed cat", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T16:49:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scented webbed cat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1754930908
ggozzy
2025-08-11T16:49:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T16:49:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
briaai/BRIA-3.1-ControlNet-Union
briaai
2025-08-11T16:49:13Z
4
0
diffusers
[ "diffusers", "license:other", "region:us" ]
null
2025-05-04T11:57:59Z
--- license: other license_name: bria-legal-lobby license_link: https://bria.ai/legal-lobby --- # BRIA-3.1 ControlNet Union Model Card BRIA-3.1 ControlNet-Union, trained on the foundation of [BRIA-3.1 Text-to-Image](https://huggingface.co/briaai/BRIA-3.1), supports 6 control modes, including depth (0), canny (1), colorgrid (2), recolor (3), tile (4), pose (5). This model can be jointly used with other ControlNets. Built with a strong commitment to legal compliance and responsible AI practices, this model ensures safe and scalable generative image capabilities for commercial use. [CLICK HERE FOR A DEMO](https://huggingface.co/spaces/briaai/BRIA-3.1-ControlNet-Union) For more information, please visit our [website](https://bria.ai/). Join our [Discord community](https://discord.gg/Nxe9YW9zHS) for more information, tutorials, tools, and to connect with other users! ### Get Access BRIA-3.1-ControlNet-Union requires access to BRIA-3.1 Text-to-Image. For more information, [click here](https://huggingface.co/briaai/BRIA-3.1). ### Model Description - **Developed by:** BRIA AI - **Model type:** Latent Flow-Matching Text-to-Image Model - **License:** [Commercial licensing terms & conditions.](https://bria.ai/customer-general-terms-and-conditions) - Purchase is required to license and access the model. - **Model Description:** ControlNet Union for BRIA-3.1 Text-to-Image model. The model generates images guided by text and a conditioned image. - **Resources for more information:** [BRIA AI](https://bria.ai/) ## Control Mode | Control Mode | Description | |:------------:|:-----------:| |0|depth |1|canny |2|colorgrid |3|recolor |4|tile |5|pose ```python ``` ### Installations ```bash pip install -qr https://huggingface.co/briaai/BRIA-3.1/resolve/main/requirements.txt pip install diffusers==0.30.2, hf_hub_download ``` ```python from huggingface_hub import hf_hub_download import os try: local_dir = os.path.dirname(__file__) except: local_dir = '.' hf_hub_download(repo_id="briaai/BRIA-3.1", filename='pipeline_bria.py', local_dir=local_dir) hf_hub_download(repo_id="briaai/BRIA-3.1", filename='transformer_bria.py', local_dir=local_dir) hf_hub_download(repo_id="briaai/BRIA-3.1", filename='bria_utils.py', local_dir=local_dir) hf_hub_download(repo_id="briaai/BRIA-3.1-ControlNet-Union", filename='pipeline_bria_controlnet.py', local_dir=local_dir) hf_hub_download(repo_id="briaai/BRIA-3.1-ControlNet-Union", filename='controlnet_bria.py', local_dir=local_dir) ``` # Inference ```python import torch from diffusers.utils import load_image from controlnet_bria import BriaControlNetModel from pipeline_bria_controlnet import BriaControlNetPipeline import PIL.Image as Image RATIO_CONFIGS_1024 = { 0.6666666666666666: {"width": 832, "height": 1248}, 0.7432432432432432: {"width": 880, "height": 1184}, 0.8028169014084507: {"width": 912, "height": 1136}, 1.0: {"width": 1024, "height": 1024}, 1.2456140350877194: {"width": 1136, "height": 912}, 1.3454545454545455: {"width": 1184, "height": 880}, 1.4339622641509433: {"width": 1216, "height": 848}, 1.5: {"width": 1248, "height": 832}, 1.5490196078431373: {"width": 1264, "height": 816}, 1.62: {"width": 1296, "height": 800}, 1.7708333333333333: {"width": 1360, "height": 768}, } def resize_img(control_image): image_ratio = control_image.width / control_image.height ratio = min(RATIO_CONFIGS_1024.keys(), key=lambda k: abs(k - image_ratio)) to_height = RATIO_CONFIGS_1024[ratio]["height"] to_width = RATIO_CONFIGS_1024[ratio]["width"] resized_image = control_image.resize((to_width, to_height), resample=Image.Resampling.LANCZOS) return resized_image base_model = 'briaai/BRIA-3.1' controlnet_model = 'briaai/BRIA-3.1-ControlNet-Union' controlnet = BriaControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16) pipeline = BriaControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, trust_remote_code=True) pipeline = pipeline.to(device="cuda", dtype=torch.bfloat16) control_image_canny = load_image("https://huggingface.co/briaai/BRIA-3.1-ControlNet-Union/resolve/main/images/canny.jpg") controlnet_conditioning_scale = 1.0 control_mode = 1 control_image_canny = resize_img(control_image_canny) width, height = control_image_canny.size prompt = 'In a serene living room, someone rests on a sapphire blue couch, diligently drawing in a rose-tinted notebook, with a sleek black coffee table, a muted green wall, an elegant geometric lamp, and a lush potted palm enhancing the peaceful ambiance.' generator = torch.Generator(device="cuda").manual_seed(555) image = pipeline( prompt, control_image=control_image_canny, control_mode=control_mode, width=width, height=height, controlnet_conditioning_scale=controlnet_conditioning_scale, num_inference_steps=50, max_sequence_length=128, guidance_scale=5, generator=generator, negative_prompt="Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate" ).images[0] print(image) ``` # Multi-Controls Inference ```python import torch from diffusers.utils import load_image from controlnet_bria import BriaControlNetModel, BriaMultiControlNetModel from pipeline_bria_controlnet import BriaControlNetPipeline import PIL.Image as Image base_model = 'briaai/BRIA-3.1' controlnet_model = 'briaai/BRIA-3.1-ControlNet-Union' controlnet = BriaControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16) controlnet = BriaMultiControlNetModel([controlnet]) pipe = BriaControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16, trust_remote_code=True) pipe.to("cuda") control_image_colorgrid = load_image("https://huggingface.co/briaai/BRIA-3.1-ControlNet-Union/resolve/main/images/colorgrid.jpg") control_image_pose = load_image("https://huggingface.co/briaai/BRIA-3.1-ControlNet-Union/resolve/main/images/pose.jpg") control_image = [control_image_colorgrid, control_image_pose] controlnet_conditioning_scale = [0.5, 0.5] control_mode = [2, 5] width, height = control_image[0].size prompt = 'Two kids in jackets play near a tent in a forest.' generator = torch.Generator(device="cuda").manual_seed(555) image = pipe( prompt, control_image=control_image, control_mode=control_mode, width=width, height=height, controlnet_conditioning_scale=controlnet_conditioning_scale, num_inference_steps=50, max_sequence_length=128, guidance_scale=5, generator=generator, negative_prompt="Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate" ).images[0] ```
Sampath1987/enery-embeddings
Sampath1987
2025-08-11T16:48:52Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "sentence-similarity", "feature-extraction", "dense", "generated_from_trainer", "dataset_size:3110", "loss:MultipleNegativesRankingLoss", "arxiv:1908.10084", "arxiv:1705.00652", "base_model:sentence-transformers/all-MiniLM-L12-v2", "base_model:finetune:sentence-transformers/all-MiniLM-L12-v2", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-08-11T16:15:20Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - dense - generated_from_trainer - dataset_size:3110 - loss:MultipleNegativesRankingLoss base_model: sentence-transformers/all-MiniLM-L12-v2 widget: - source_sentence: What safeguards are recommended for the failure of temperature control related to TIC-11865? sentences: - '|Parameter|Guideword|Cause|Consequence|Safeguards|Recommendation|By| |---|---|---|---|---|---|---| |Flow|Other Than|Blowdown valve BV<br>11014 and BV<br>11009 failing open.|Gas routed to cold<br>flare.|||| |Flow|Other Than|Bypass around<br>PSVs 11809 and<br>11810|Gas routed to cold<br>flare.|||| |Flow|Other Than|XV inboard of export<br>metering open<br>during import or fails<br>open during import.|Unable to compress<br>import gas to required<br>gas pressure,<br>potentially delaying<br>plant start-up.|||| |Pressure|Less|||||| |Pressure|More|||||| |Temperature|Less|||||| |Temperature|More|||||| |Level|Less|||||| |Level|More|||||| |Composition|As Well As|||||| |Composition|Part Off|||||| |Composition|Other than|||||| |Other|Corrosion|||||| |Other|Operating<br>Mode|||||| |Other|Start Up /<br>Shutdown|||||| Page 19 of 39 KAT-ENG-S-TMP-0002 Version 1.0' - '|Parameter|Guideword|Cause|Consequence|Safeguards|Recommendation|By| |---|---|---|---|---|---|---| |Flow|Less|Low import gas<br>demand rates less<br>than system turndown<br>capability.|PV-11200 is unable<br>to control pressure,<br>resulting in system<br>instability and risk of<br>damage to<br>equipment/piping due<br>to pressure surges.<br>Risk of damage to<br>heater H-1120 and<br>internal plates,<br>resulting in loss of<br>containment of gas to<br>the heating medium<br>side.<br>Overpressurisation of<br>heating medium<br>system with loss of<br>containment of<br>hydrocarbon gas,<br>resulting in<br>fire/explosion.|Bursting discs PSV-<br>19030A/B on shell-<br>side.<br>High high pressure<br>trip PAHH-19040 on<br>heating medium<br>system.<br>|9. Update operating<br>procedures to define how<br>the gas import will be<br>controlled at low import<br>rates. Consider manual<br>operation or batch import<br>of gas.<br> <br>10. Review SIL<br>determination for PAHH-<br>19040, and ensure it<br>remains valid for the<br>hazards of high pressure.<br>Verify it considers initiating<br>cause of plate failure due<br>to operation of heater at<br>low turn down rates (to<br>reflect difficulty in pressure<br>control resulting in potential<br>pressure surges). Verify<br>the achieved IL of the<br>installed SIF.|JC<br> <br> <br> <br> <br> <br> <br>JC| |Flow|Less|Low import gas<br>demand rates less<br>than system turndown<br>capability.|PV-11200 is unable<br>to control pressure,<br>resulting in system<br>instability and risk of<br>damage to<br>equipment/piping due<br>to pressure surges.<br>Risk of damage to<br>heater H-1120 and<br>internal plates,<br>resulting in loss of<br>containment of gas to<br>the heating medium<br>side.<br>Overpressurisation of<br>heating medium<br>system with loss of<br>containment of<br>hydrocarbon gas,<br>resulting in<br>fire/explosion.|Bursting discs PSV-<br>19030A/B on shell-<br>side.<br>High high pressure<br>trip PAHH-19040 on<br>heating medium<br>system.<br>|10. Review SIL<br>determination for PAHH-<br>19040, and ensure it<br>remains valid for the<br>hazards of high pressure.<br>Verify it considers initiating<br>cause of plate failure due<br>to operation of heater at<br>low turn down rates (to<br>reflect difficulty in pressure<br>control resulting in potential<br>pressure surges). Verify<br>the achieved IL of the<br>installed SIF.|10. Review SIL<br>determination for PAHH-<br>19040, and ensure it<br>remains valid for the<br>hazards of high pressure.<br>Verify it considers initiating<br>cause of plate failure due<br>to operation of heater at<br>low turn down rates (to<br>reflect difficulty in pressure<br>control resulting in potential<br>pressure surges). Verify<br>the achieved IL of the<br>installed SIF.| |Flow|More|Spurious opening of<br>PV-11200.|High pressure gas<br>routed to downstream<br>compression system.<br>Potential to exceed<br>pressure rating of<br>downstream<br>piping/equipment<br>(OPR >3). Risk of<br>loss of containment<br>of hydrocarbon gas at<br>110-150 barg,<br>resulting in<br>fire/explosion.|PSV-11807A/B (sized<br>for PV11200 failed<br>open).<br>PAHH-11839 set at<br>21 barg (initiates<br>closure of NSV-<br>11060).||| Page 31 of 80 KAT-ENG-S-TMP-0001 Version 1.0' - '**Document Revision History:** |Col1|Col2|Col3|Col4|Col5|Col6| |---|---|---|---|---|---| ||||||| ||||||| ||||||| ||||||| |B1|13/05/2024|Issued for HAZOP|RE|IK|IK| |Revision|Date|Reason For Issue|Originator|Checker|Approver| Page 2 of 19 KAT-ENG-S-TMP-0002 Version 3.0' - source_sentence: How often does the CATS drains vessel typically reach a high level according to the excerpt? sentences: - '**Appendix I - Attendance Sheet** |Job|Armada Kraken FPSO โ€“ SKIMS RBA Session|Col3|Col4|Col5| |---|---|---|---|---| |**Date**<br>|**07/03/24**|||| |**your name**|**your name**|**your name**|**your role**|**your company**| |Ian Kirkwood|Ian Kirkwood|Ian Kirkwood|Independent Facilitator|Katoni| |Ian Kirkwood|Ian Kirkwood|Ian Kirkwood|email:Ian.Kirkwood@katoni.com|email:Ian.Kirkwood@katoni.com| |Edmund Lau|Edmund Lau|Edmund Lau|Scribe|Katoni| |Edmund Lau|Edmund Lau|Edmund Lau|email:Edmund.Lau@katoni.com|email:Edmund.Lau@katoni.com| |Helen Drewery|Helen Drewery|Helen Drewery|HSEQ Manager|Bumi Armada| |Helen Drewery|Helen Drewery|Helen Drewery|email:h.drewery@bumiarmada.com|email:h.drewery@bumiarmada.com| |Campbell Ross|Campbell Ross|Campbell Ross|Marine Superintendent|Bumi Armada| |Campbell Ross|Campbell Ross|Campbell Ross|email: campbell.ross@bumiarmada.com|email: campbell.ross@bumiarmada.com| |Rod MacLeod|Rod MacLeod|Rod MacLeod|VP Operations|Bumi Armada| |Rod MacLeod|Rod MacLeod|Rod MacLeod|email: rod.m@bumiarmada.com|email: rod.m@bumiarmada.com| |Susan MacGregor|Susan MacGregor|Susan MacGregor|Asset Integrity Engineer|Bumi Armada| |Susan MacGregor|Susan MacGregor|Susan MacGregor|email: susan.macgregor@bumiarmada.com|email: susan.macgregor@bumiarmada.com| |Andrew Comley|Andrew Comley|Andrew Comley|Marine Structural TA|A Comley Ltd| |Andrew Comley|Andrew Comley|Andrew Comley|email:andrew.comley@acomleyltd.com|email:andrew.comley@acomleyltd.com| |Kiran Vinjam|Kiran Vinjam|Kiran Vinjam|TBC|Imrandd| |Kiran Vinjam|Kiran Vinjam|Kiran Vinjam|email:Kiran.V@imrandd.com|email:Kiran.V@imrandd.com| |Ranald Cartwright|Ranald Cartwright|Ranald Cartwright|TBC|Imrandd| |Ranald Cartwright|Ranald Cartwright|Ranald Cartwright|email:Ranald.C@imrandd.com|email:Ranald.C@imrandd.com| Page 15 of 22 KAT-ENG-S-TMP-0002 Version 3.0' - 'The pigging operation is heavily reliant on procedural controls to ensure the correct sequence of operation is followed and safety of the asset and personnel is ensured. Valve interlocks shall be fitted to operational valves to minimise risk of mal-operation. Page 7 of 36' - 'DOCUMENT TITLE CATS HAZOP Terms of Reference DOCUMENT No. CHR202-E-001-S-TOR-0001-REVB2 ### **5. Agenda** Facilitated session of approximately 2hrs in duration, held as a Teams conference call meeting between team members. Date: **2nd June 2021** Time: **14:30 - 16:30** Location: **Teams meeting** Room: **N/A** The programme will be based on the suggested outline below; |Item<br>No|Item|Approximate Duration| |---|---|---| |1|Introductions.|5 mins| |2|Discussion on project scope, agreement on scope<br>and extent of study and identification of study nodes.|10 mins| |4|HAZOP (main study)<br> For node to be studied (1 off):<br>- Define the design intent and operating<br>conditions of the node.<br>- Apply guidewords.<br>- Record deviations from the design intent.|90 mins| |5|Summarise HAZOP outcomes and agree action plan.|10 mins| |||**Total 2 hours**| ### **6. Attendees** The following attendees will be required to attend the HAZOP session (or send a deputy): |Name|Position|Company|Role| |---|---|---|---| |Ian Kirkwood|Tech Safety<br>Engineer|Katoni|Facilitator| |Craig Cuthbertson|Process Engineer|Katoni|Scribe| |James Keachie|Lead Process<br>Engineer|Katoni|Discipline| |Duncan Brown|Piping Engineer /<br>Project Manager|Katoni|Discipline| |Gary Sorrie|Modifications Project<br>Engineer (Execute)|Harbour Energy|Discipline| |Ian Minto|Technical Safety<br>Technical Authority|Harbour Energy|Discipline| |Ewan Sinton|HOLD|Harbour Energy|Discipline| |Barry Milne|HOLD|Harbour Energy|Discipline| |Gary Robinson|HOLD|Harbour Energy|Discipline| Page 10 of 32' - source_sentence: Who is responsible for the recommendation related to the local facility for venting and draining of the exchanger shell? sentences: - '|Parameter|Guideword|Cause|Consequence|Safeguards|Recommendation|By| |---|---|---|---|---|---|---| |Other|Emergency<br>Shutdown /<br>Blowdown|||||| |Other|Control of the<br>Plant|||||| |Other|Availability<br>(reliability,<br>sparing, etc)|||||| |Other|Maintenance|Single stream PSVs /<br>Bursting discs.|Shutdown of import<br>heater to replace PSVs<br>/ Bursting discs.||21. Evaluate the<br>requirement for dual<br>stream interlocked PSVs<br>and bursting discs<br>(design).<br>(Closed out)|Andrew<br>Keatings,<br>WGE(NS)| |Other|Maintenance|No local facility for<br>venting and draining<br>of exchanger shell.|Loss of containment<br>during removal of<br>plate.||22. Investigate the<br>requirement for installing<br>suitable vent and drain<br>points on the exchanger<br>(design).<br>(Closed out)|Andrew<br>Keatings,<br>WGE(NS)| |Other|Condition<br>monitoring|||||| |Other|Inspection /<br>testing -|||||| |Other|Accessibility /<br>mechanical<br>handling|||||| |Other|Isolation / re-<br>instatement|||||| Page 25 of 39 KAT-ENG-S-TMP-0002 Version 1.0' - '**Appendix III - Typical HAZID Worksheet** |[project title] - HAZID Worksheet|Col2|Rev: A1|Date: 15/11/23|By: Katoni Engineering| |---|---|---|---|---| |**System:**Power Generation|**Node:**1|**Description:**Temporary power generation package, electrical and diesel system tie-ins.|**Description:**Temporary power generation package, electrical and diesel system tie-ins.|**Description:**Temporary power generation package, electrical and diesel system tie-ins.| |**Design Intent:**The design intent is to allow connection of a packaged Temporary Diesel Driven Generator unit to the Western Isles to provide<br>additional power supply for DFPV activities in the event of loss of import gas.<br>Flow โ€“ [xx] m3/hr<br>Pressure โ€“ Design: [xx/xx] barg, Operating: [xx] barg<br>Temperature โ€“ Design: [-x/x]oC, Operating: [xx]oC<br>Composition โ€“ [fluid details]|**Design Intent:**The design intent is to allow connection of a packaged Temporary Diesel Driven Generator unit to the Western Isles to provide<br>additional power supply for DFPV activities in the event of loss of import gas.<br>Flow โ€“ [xx] m3/hr<br>Pressure โ€“ Design: [xx/xx] barg, Operating: [xx] barg<br>Temperature โ€“ Design: [-x/x]oC, Operating: [xx]oC<br>Composition โ€“ [fluid details]|**Design Intent:**The design intent is to allow connection of a packaged Temporary Diesel Driven Generator unit to the Western Isles to provide<br>additional power supply for DFPV activities in the event of loss of import gas.<br>Flow โ€“ [xx] m3/hr<br>Pressure โ€“ Design: [xx/xx] barg, Operating: [xx] barg<br>Temperature โ€“ Design: [-x/x]oC, Operating: [xx]oC<br>Composition โ€“ [fluid details]|**Design Intent:**The design intent is to allow connection of a packaged Temporary Diesel Driven Generator unit to the Western Isles to provide<br>additional power supply for DFPV activities in the event of loss of import gas.<br>Flow โ€“ [xx] m3/hr<br>Pressure โ€“ Design: [xx/xx] barg, Operating: [xx] barg<br>Temperature โ€“ Design: [-x/x]oC, Operating: [xx]oC<br>Composition โ€“ [fluid details]|**Design Intent:**The design intent is to allow connection of a packaged Temporary Diesel Driven Generator unit to the Western Isles to provide<br>additional power supply for DFPV activities in the event of loss of import gas.<br>Flow โ€“ [xx] m3/hr<br>Pressure โ€“ Design: [xx/xx] barg, Operating: [xx] barg<br>Temperature โ€“ Design: [-x/x]oC, Operating: [xx]oC<br>Composition โ€“ [fluid details]| |Guideword|Hazard|Cause|Consequence|Safeguards<br>in place|Ranking|Col7|Col8|Recommendations /<br>Comments /<br>Additional<br>Safeguards|Action| |---|---|---|---|---|---|---|---|---|---| |**Guideword**|**Hazard**|**Cause**|**Consequence**|**Safeguards**<br>**in place**|**L**|** C**|**Risk**|**Risk**|**Risk**| |Process<br>Parameters|||||||||| |Equipment<br>Parameters|||||||||| |Occupational|||||||||| |Maintenance|||||||||| |Construction /<br>Commissioning|||||||||| |Fire / Explosion|||||||||| |~~Blowout~~|||||||||| |Non Process<br>Fire|||||||||| |Ignition Sources|||||||||| |~~Explosives~~|||||||||| |Layout|||||||||| Page 20 of 29' - '|Parameter|Guideword|Cause|Consequence|Safeguards|Recommendation|By| |---|---|---|---|---|---|---| |Flow|As Well As|Oil & solids<br>contaminated<br>heating media<br>supply.|Potential fouling of the<br>heat exchanger and<br>reduction in efficiency.<br> <br>Potential failing of the<br>valves.|Plate pack can be<br>removed, cleaned and<br>if necessary, replaced.|19. Consider filtration<br>requirement for heating<br>media (design).<br>(Closed out)<br>20. Evaluate the most<br>appropriate valve<br>specification for the<br>contaminated heating<br>media (design).<br>(Closed out)|Andrew<br>Keatings,<br>WGE(NS)<br> <br>Archie<br>Murdoch,<br>WGE(NS)| |Pressure|Less|||||| |Pressure|More|||||| |Temperature|Less|||||| |Temperature|More|||||| |Level|Less|||||| |Level|More|||||| |Composition|As Well As|||||| |Composition|Part Off|||||| |Composition|Other than|||||| |Other|Corrosion|||||| |Other|Operating<br>Mode|||||| |Other|Start Up /<br>Shutdown|||||| Page 24 of 39 KAT-ENG-S-TMP-0002 Version 1.0' - source_sentence: What is the significance of training and clarity of roles and responsibilities in relation to new starts? sentences: - '|Guideword|Guideword Prompt|Cause Prompt|HAZID Consequence<br>Prompt| |---|---|---|---| |Training|New Starts<br>Clarity of roles and<br>responsibilities<br>Inductions<br>Local customs /<br>standards|Human Error<br>Insufficient training /<br>monitoring of new<br>starts<br>Changes in systems<br>Lack of experience<br>Reviews|Injury<br>Fatality| |Safety Critical<br>Tasks|||Injury<br>Fatality| |Vendor<br>Equipment|Insulation<br>Location<br>Adjacent equipment,<br>valves, gauges etc|Operators unable to<br>access equipment|Non Optimal Design<br>| |Management<br>System|Documentation<br>Monitoring and<br>reporting<br>Permits and consents<br>Internal standards|Changes to existing<br>procedure and<br>requirements|| Page 33 of 36' - "**6. SECT Identification Meeting**\n\n\n**6.1** **Facilities**\n\n\nThe study\ \ will be held as a face-to-face meeting between team members, with option to\ \ dial in to the\nTeams conference call for those unable to attend in person.\n\ \n\n**6.2** **Reference Documents**\n\n\nThe following information sets will be\ \ provided to each participant:\n\n\n - Apache Management of SECT Procedure (Ref\ \ /1/)\n\n\nAll other reference documents, such as Performance Standards, Safety\ \ Case, Operating Procedures\netc will be made available for reference and use\ \ as required.\n\n\n**6.3** **Methodology**\n\n\nThe SECT Identification study\ \ will be a multidiscipline meeting with representatives from Katoni and\nApache.\n\ \n\nThe main approach to task identification to date (during desktop exercise)\ \ has been by review of\ncomprehensive lists of tasks, with input from the Apache\ \ Human Factors specialist and the Forties Delta\nOIM.\n\n\nThe list-based task\ \ identification was completed for the following task groups:\n\n|Group of Tasks|Description|\n\ |---|---|\n|**Operational**|Operating procedures are available for a large variety\ \ of<br>tasks on the Forties Delta.|\n|**Maintenance/Inspection/Testing**|Review\ \ of the Performance Standards has been performed<br>to help create a list, on\ \ the basis that Performance Standards<br>have been assigned to SECEs protecting\ \ against MAHs|\n|**Process Upset**|Review of LOPA workshops for critical alarms\ \ and all credit<br>taken for Human Intervention.|\n\n\n\nThe workshop shall serve\ \ as a means to review the list that has been compiled for accuracy, and to add\n\ any additional tasks to the register.\n\n\nFollowing completion of the SECT register,\ \ the consequence of the task failure and the degree of\nhuman involvement shall\ \ be assessed for each task. A matrix will be used, as defined within the\nApache\ \ SECTA Procedure, as shown in Table 6-1, Table 6-2 and Table 6-3 (Ref /1/).\n\ \n\nPage 7 of 13\nKAT-ENG-S-TMP-0006 Version 1.0" - '**6. Identifying hazard boundaries & cascaded protection** One of the frequent causes of incorrect SIL assessment resulting in over-protection is the failure to clearly demark individual hazards and take credit for the SIFโ€™s of upstream equipment. Firstly, it is important wherever possible that the analysis is carried out in the process flow direction. Secondly, where a potential cause of the hazard (demand rate) relates to upstream process conditions or equipment failures, it is important to โ€œtake creditโ€ for the SIL level of upstream SIF(s). For example, if a pressure vessel is estimated to have a demand rate for over-pressure at once per year and is given a SIL2 assessment, then the demand rate for over pressure for equipment immediately downstream of this vessel (to the same pressure rating) is reduced by the SIL2 factor of 100 to 1000. (put another way, for the downstream over-pressure to develop there would have to be an initiating cause PLUS failure of the SIS protecting the upstream equipment.) It is important to only consider the consequences of hazards related to the specific item of equipment being assessed, and not include downstream equipment. For example, it may be that there is no overpressure hazard for the vessel under consideration but there will be for the next vessel downstream. The downstream items will subsequently be assessed in their own right, taking credit for any upstream SIFโ€™s. It may be that analysis of an item of downstream equipment will cause one to go back and increase the SIL for some upstream equipment for convenience, but this is best considered when the downstream equipment is reached, or sometimes even when implementation is being designed. If this is not followed then it is easy for the assessment to result in even minor hazards cascading to the worst-case scenario, with high SILs assigned to more items of equipment than is necessary. Page 13 of 32 KAT-ENG-S-TMP-0002 Version 5.0' - source_sentence: What are some potential causes of accidents mentioned for occupational safety? sentences: - "**Appendix II - Reference Documentation for HAZOP**\n\n\nThe relevant process\ \ safety information provided by Bumi Armada for the HAZOP\n\n\n - P&IDs,\n\n\ \ - Piping class specifications (electronically),\n\n - Line list (electronically\ \ as required),\n\n - C&Es,\n\n - RGA/LOPA Reports (electronically as required),\n\ \n - Scenarios considered for sizing devices (such as PSVs) (electronically as\ \ required),\n\n - Set point register (electronically as required),\n\n - Facility\ \ plot plan/unit layout drawings (electronically as required),\n\n - Locked valve\ \ register (electronically as required),\n\n - Operating procedures (electronically\ \ if required),\n\n - Control system philosophy and description (electronically\ \ as required).\n\n - Isolation / Blowdown / Relief Philosophy\n\n\nPage 18 of\ \ 23" - '|Parameter|Guideword|Cause|Consequence|Safeguards|Recommendation|By| |---|---|---|---|---|---|---| ||Accessibility /<br>mechanical<br>handling|||||| ||Isolation / re-<br>instatement|||||| ||Depressurising<br>/ purging /<br>venting|||||| ||Washing /<br>draining / gas<br>freeing|||||| ||Personnel<br>Hazards (toxic<br>gas, radiation,<br>noise,<br>vibration, etc.)|||||| ||Lessons<br>Learnt|||||| Page 23 of 28 KAT-ENG-S-TMP-0002 Version 2.0' - '|Guideword|Guideword Prompt|Cause Prompt|HAZID Consequence<br>Prompt| |---|---|---|---| |~~Diving~~|~~SIMOPS~~ <br>~~Support Vessel~~<br>~~Procedures~~|~~Equipment Failure~~ <br>~~Human error~~|~~Fatality~~| |~~Radiation~~|~~Ionising Radiation (LSA~~ <br>~~Scale)~~<br>~~Nucleonics~~ <br>~~NDT~~ <br>~~Disposal~~||~~Injury~~| |Safety Systems|Fire & Gas Detection<br>Isolations<br>~~ESD~~ <br>~~Blowdown~~ <br>Passive Fire Detection<br>Active Fire Protection<br>(water & foam)<br>~~Fire Walls~~ <br>~~Blast Walls~~<br>Bunds<br>Drains<br>~~CO2 Systems~~ <br>~~Water Mist System~~<br>~~Inergen~~ <br>Hydrants / Hose reels<br>~~Helideck Hydrants~~ <br>~~HIPPS~~|Equipment failure|Failure to manage<br>hazards| |~~Flaring / Venting~~|~~Normal~~<br>~~Emergency~~<br>~~Peak Load~~ <br>~~Thermal Radiation~~ <br>~~Flammable Cloud~~ <br>~~Toxic Cloud~~<br>~~Molecular Weight~~<br>~~Ignition Systems~~|~~Unignited flare~~<br>~~Composition change~~ <br>~~Rate change~~|~~Exposure of personnel~~ <br>~~and plant to thermal~~ <br>~~radiation, flammable &~~ <br>~~toxic concentrations.~~| |Control Systems|DCS failure<br>Alarms and trips<br>Overrides and resets<br>Control room<br>Ergonomics<br>Control room location<br>Hydraulic lines<br>Human Factors|Equipment failure<br>Human error<br>Alarm handling<br>Operator interface โ€“<br>(controls easy to<br>identify and reach)<br>Consistent terminology<br>Clear labelling<br>Familiar language<br>Confusing control<br>status<br>Alarm overload<br>Consistent alarms<br>Consistent executive<br>actions / philosophy<br>Plant trip|Operator overload โ€“<br>poor decisions<br>Escalation of event<br>Incorrect actions<br>Injury<br>Fatality| Page 30 of 36' pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy model-index: - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2 results: - task: type: triplet name: Triplet dataset: name: ai job validation type: ai-job-validation metrics: - type: cosine_accuracy value: 0.9664948582649231 name: Cosine Accuracy --- # SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) on the emb_fn dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) <!-- at revision c004d8e3e901237d8fa7e9fff12774962e391ce5 --> - **Maximum Sequence Length:** 128 tokens - **Output Dimensionality:** 384 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - emb_fn <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': 'BertModel'}) (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the ๐Ÿค— Hub model = SentenceTransformer("Sampath1987/enery-embeddings") # Run inference sentences = [ 'What are some potential causes of accidents mentioned for occupational safety?', '|Guideword|Guideword Prompt|Cause Prompt|HAZID Consequence<br>Prompt|\n|---|---|---|---|\n|~~Diving~~|~~SIMOPS~~ <br>~~Support Vessel~~<br>~~Procedures~~|~~Equipment Failure~~ <br>~~Human error~~|~~Fatality~~|\n|~~Radiation~~|~~Ionising Radiation (LSA~~ <br>~~Scale)~~<br>~~Nucleonics~~ <br>~~NDT~~ <br>~~Disposal~~||~~Injury~~|\n|Safety Systems|Fire & Gas Detection<br>Isolations<br>~~ESD~~ <br>~~Blowdown~~ <br>Passive Fire Detection<br>Active Fire Protection<br>(water & foam)<br>~~Fire Walls~~ <br>~~Blast Walls~~<br>Bunds<br>Drains<br>~~CO2 Systems~~ <br>~~Water Mist System~~<br>~~Inergen~~ <br>Hydrants / Hose reels<br>~~Helideck Hydrants~~ <br>~~HIPPS~~|Equipment failure|Failure to manage<br>hazards|\n|~~Flaring / Venting~~|~~Normal~~<br>~~Emergency~~<br>~~Peak Load~~ <br>~~Thermal Radiation~~ <br>~~Flammable Cloud~~ <br>~~Toxic Cloud~~<br>~~Molecular Weight~~<br>~~Ignition Systems~~|~~Unignited flare~~<br>~~Composition change~~ <br>~~Rate change~~|~~Exposure of personnel~~ <br>~~and plant to thermal~~ <br>~~radiation, flammable &~~ <br>~~toxic concentrations.~~|\n|Control Systems|DCS failure<br>Alarms and trips<br>Overrides and resets<br>Control room<br>Ergonomics<br>Control room location<br>Hydraulic lines<br>Human Factors|Equipment failure<br>Human error<br>Alarm handling<br>Operator interface โ€“<br>(controls easy to<br>identify and reach)<br>Consistent terminology<br>Clear labelling<br>Familiar language<br>Confusing control<br>status<br>Alarm overload<br>Consistent alarms<br>Consistent executive<br>actions / philosophy<br>Plant trip|Operator overload โ€“<br>poor decisions<br>Escalation of event<br>Incorrect actions<br>Injury<br>Fatality|\n\n\nPage 30 of 36', '|Parameter|Guideword|Cause|Consequence|Safeguards|Recommendation|By|\n|---|---|---|---|---|---|---|\n||Accessibility /<br>mechanical<br>handling||||||\n||Isolation / re-<br>instatement||||||\n||Depressurising<br>/ purging /<br>venting||||||\n||Washing /<br>draining / gas<br>freeing||||||\n||Personnel<br>Hazards (toxic<br>gas, radiation,<br>noise,<br>vibration, etc.)||||||\n||Lessons<br>Learnt||||||\n\n\n\nPage 23 of 28\nKAT-ENG-S-TMP-0002 Version 2.0', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities) # tensor([[1.0000, 0.4921, 0.0253], # [0.4921, 1.0000, 0.1642], # [0.0253, 0.1642, 1.0000]]) ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Triplet * Dataset: `ai-job-validation` * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:--------------------|:-----------| | **cosine_accuracy** | **0.9665** | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### emb_fn * Dataset: emb_fn * Size: 3,110 training samples * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | string | | details | <ul><li>min: 5 tokens</li><li>mean: 18.11 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 120.3 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 119.46 tokens</li><li>max: 128 tokens</li></ul> | * Samples: | anchor | positive | negative | |:---------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>What attaches to the platform infrastructure according to the HAZID worksheet for temporary power generation?</code> | <code>**Appendix IX- HAZID Worksheet**<br><br><br><br><br><br><br>\|SER201 โ€“ Temporary Power Generation - HAZID<br>Worksheet\|Col2\|Rev: B1\|Date: 28-06-2022\|By: Katoni Engineering\|<br>\|---\|---\|---\|---\|---\|<br>\|**System:**Diesel Supply\|**Node:**1\|**Description:**Drilling platform weather deck temporary power generation package and diesel<br>system\|**Description:**Drilling platform weather deck temporary power generation package and diesel<br>system\|**Description:**Drilling platform weather deck temporary power generation package and diesel<br>system\|<br>\|**Scope:**<br>The scope covers installation of temporary power generation equipment including diesel distribution system and tie-in, day tank diesel tie-in and day<br>generator diesel supply and return configuration and integrate them with the platform infrastructure.<br>**Activities:** <br>โ€ข<br>Lifting, isolations, tie-ins of Temporary Power Generator package (3 No. Containerised Generators, 1 No. Transformer & 1 No. Fuel Skid)<br>โ€ข<br>Installation and tie-ins of diesel dis...</code> | <code>**5. Node Identification**<br><br><br>The HAZID study will be based on a single node covering the following areas:<br><br><br>**Node 1** - Temporary power generation package, electrical and diesel system tie-ins.<br><br><br>The above listed node will be subjected to team agreement at the HAZID session.<br><br><br>**6. Agenda**<br><br><br>Facilitated session of approximately 3hrs in duration, held as a Teams video conference call between<br>team members.<br><br><br>Date: **15** **[th]** **Nov 2023**<br><br><br>Time: **13:00 โ€“ 16:00**<br><br><br>Location: **Microsoft Teams Meeting**<br><br><br>Room: **N/A**<br><br><br>The programme will be based on the suggested outline below:<br><br><br><br><br><br><br><br><br><br>\|Item<br>No\|Item\|Approximate Duration\|<br>\|---\|---\|---\|<br>\|1\|Introductions.\|5 mins\|<br>\|2\|Overview of project scope, agreement on scope and<br>extent of study.\|10 mins\|<br>\|3\|HAZID (main study)<br>- Define the scope of the node and activities to be<br>carried out.<br>- Apply guidewords.<br>- Record identified hazards and mitigations.\|145 mins*\|<br>\|4\|Summarise HAZID outcomes and agree action plan.\|10 mins\|<br>\|\|\|*...</code> | | <code>What is the PFD value for the level indication of 26VG001 in the report?</code> | <code>**Dana Petroleum PLC**<br><br><br>**Procedure**<br><br><br>**Functional Safety Management Procedure**<br><br><br><br>Revision No. 04<br>Revision Date 01-Apr-2015<br>Page No. page 22 of 72<br><br><br><br>**Table 3 - Environmental Calibrated Risk Graph Parameters**<br><br><br><br><br><br><br><br><br><br>\|Risk<br>Parameter\|Category\|Description\|Remarks\|<br>\|---\|---\|---\|---\|<br>\|Consequenc<br>e โ€œCโ€\|C0\|No Requirements\|\|<br>\|Consequenc<br>e โ€œCโ€\|CA <br>Negligable\|Little or no known impact on<br>environment or ecosystem.<br>Contained locally with no remediation<br>required.\|\|<br>\|Consequenc<br>e โ€œCโ€\|CB <br>Minor\|Localised minimal impact on<br>environment or ecosystem. Any<br>reduced environmental quality is<br>short lived with no mitigation or<br>remedial effort required.\|\|<br>\|Consequenc<br>e โ€œCโ€\|CC <br>Significant\|Uncontained or sustained release<br>impacting on the immediate vicinity.<br>Limited damage which is easily<br>remediated over a short term\|\|<br>\|Consequenc<br>e โ€œCโ€\|CD <br>Major\|Severe lasting ecological damage to<br>immediate vicinity. Widespread<br>impact with major contribu...</code> | <code>\|Guideword\|Guideword Prompt\|Cause Prompt\|HAZID Consequence<br>Prompt\|<br>\|---\|---\|---\|---\|<br>\|~~Diving~~\|~~SIMOPS~~<br>~~Support Vessel~~<br>~~Procedures~~\|~~Equipment Failure~~<br>~~Human error~~\|~~Fatality~~\|<br>\|~~Radiation~~\|~~Ionising Radiation (LSA~~ <br>~~Scale)~~<br>~~Nucleonics~~<br>~~NDT~~<br>~~Disposal~~\|\|~~Injury~~\|<br>\|Safety Systems\|Fire & Gas Detection<br>Isolations<br>ESD<br>~~Blowdown~~<br>Passive Fire Detection<br>Active Fire Protection<br>(water & foam)<br>Fire Walls<br>Blast Walls<br>Bunds<br>Drains<br>CO2 Systems<br>Water Mist System<br>Inergen<br>Hydrants / Hose reels<br>~~Helideck Hydrants~~<br>~~HIPPS~~\|Equipment failure\|Failure to manage<br>hazards\|<br>\|~~Flaring / Venting~~\|~~Normal~~<br>~~Emergency~~<br>~~Peak Load~~<br>~~Thermal Radiation~~<br>~~Flammable Cloud~~<br>~~Toxic Cloud~~<br>~~Molecular Weight~~<br>~~Ignition Systems~~\|~~Unignited flare~~<br>~~Composition change~~<br>~~Rate change~~\|~~Exposure of personnel~~<br>~~and plant to thermal~~ <br>~~radiation, flammable...</code> | | <code>What precautions should be taken regarding media dust following a media spare changeout?</code> | <code>**Appendix II - HAZOP Guidewords**<br><br><br>**Parameter** **Guideword**<br><br>**Flow** No / Less<br><br>More<br><br>Reverse<br><br>Misdirected<br><br>**Pressure** Less (including vacuum)<br>More (including surge, hammer and slugging)<br><br>**Temperature** Less<br><br>More<br><br>**Level** Less<br><br>(including interface) More<br><br>**Composition** As Well As (something extra)<br>(component, concentration or Part Off (something missing)<br>phase)<br><br>Other Than (something different)<br><br>**Other**<br><br>Corrosion / Erosion<br><br>Operating Mode<br>Start Up / Shutdown<br>Emergency Shutdown / Blowdown<br><br>Control of the Plant<br><br>Availability of the Plant (reliability, sparing, etc.)<br><br>Maintenance of the Plant<br><br> - condition monitoring<br><br> - inspection / testing <br> - accessibility / mechanical handling<br><br> - isolation / re-instatement<br><br> - depressurising / purging / venting<br><br> - washing / draining / gas freeing<br>Personnel Hazards (toxic gas, radiation, noise, vibration, etc.)<br><br>Lessons Le...</code> | <code>**3. HAZID Meeting**<br><br><br>**3.1** **Methodology**<br><br>The HAZID will be a multidiscipline meeting with representatives from Dana, Samphire and Katoni.<br><br><br>The approach will be one of a team based structured โ€˜brainstormingโ€™ using typical guidewords, as shown<br>in Appendix III - HAZID Guidewords, to prompt discussion. Hazards identified shall be risk ranked in<br>accordance with Danaโ€™s Risk Assessment Matrix /1/.<br><br><br>**3.2** **Reporting**<br><br>The findings of the study will be recorded on Word software. A typical example of the HAZID recording<br>format is illustrated in Appendix IV - HAZID Worksheet.<br><br>When a recommendation is generated this will be clearly identified. Once all recommendations are<br>closed and approved by either the Katoni Technical Safety Engineer or Project Manager, the HAZID<br>report will be re-issued. The report will include completed responses in full and will be issued for client<br>acceptance. For a recommendation to be properly closed out, the response must be supported by<br>evidence that it h...</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false } ``` ### Evaluation Dataset #### emb_fn * Dataset: emb_fn * Size: 388 evaluation samples * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> * Approximate statistics based on the first 388 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | string | | details | <ul><li>min: 9 tokens</li><li>mean: 18.14 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 118.57 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 118.84 tokens</li><li>max: 128 tokens</li></ul> | * Samples: | anchor | positive | negative | |:-----------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>What two options are available for the death/injury parameter in the safety risk graph?</code> | <code>**5.4** **Multiple causes**<br><br>Where there are multiple initiating causes of the same hazardous scenario, initiating cause likelihoods<br>should be addressed by either:<br><br><br> - Summing the initiating causes and selecting the appropriate demand rate (W1/W2/W3),<br>where the other parameters of the risk graph are identical (occupancy, probability of fatality<br>and probability of avoidance for a SIL). This is the preferred method.<br><br> - Assessing each Initiating cause separately and evaluating the IL for each one. Then a<br>judgement should be made regarding what the overall IL for the hazard should be. For<br>example, if there are many initiating causes for the same hazard assessed as SIL1, then an<br>overall SIL2 may be appropriate.<br><br><br>Page 12 of 32<br>KAT-ENG-S-TMP-0002 Version 5.0</code> | <code>\|Guideword\|Hazard\|Cause\|Consequence\|Safeguard(s)\|Ranking\|Col7\|Col8\|Col9\|Action /<br>Recommendation\|Action<br>by\|Target<br>Date\|<br>\|---\|---\|---\|---\|---\|---\|---\|---\|---\|---\|---\|---\|<br>\|**Guideword**\|**Hazard**\|**Cause**\|**Consequence**\|**Safeguard(s)**\|**Type**\|**Sev.**\|**Lik.**\|**Risk**\|**Risk**\|**Risk**\|**Risk**\|<br>\|Electricity\|\|\|\|\|\|\|\|\|\|\|\|<br>\|Ergonomics<br>hazards\|\|\|\|\|\|\|\|\|\|\|\|<br>\|Worksite\|\|\|\|\|\|\|\|\|\|\|\|<br>\|Organisation<br>and planning\|\|\|\|\|\|\|\|\|\|\|\|<br>\|Emergency<br>response\|\|\|\|\|\|\|\|\|\|\|\|<br>\|Electromagneti<br>c radiation\|\|\|\|\|\|\|\|\|\|\|\|<br>\|Ionisation<br>radiation\|\|\|\|\|\|\|\|\|\|\|\|<br>\|Asphyxiation\|\|\|\|\|\|\|\|\|\|\|\|<br>\|Toxic /<br>Carcinogens\|\|\|\|\|\|\|\|\|\|\|\|<br>\|Loss of utilities\|\|\|\|\|\|\|\|\|\|\|\|<br>\|Diving\|\|\|\|\|\|\|\|\|\|\|\|<br>\|Platform<br>intakes /<br>discharges\|\|\|\|\|\|\|\|\|\|\|\|<br>\|Waste /<br>discharge\|\|\|\|\|\|\|\|\|\|\|\|<br>\|Portable /<br>temporary<br>equipment\|\|\|\|\|\|\|\|\|\|\|\|<br>\|Work\|\|\|\|\|\|\|\|\|\|\|\|<br>\|Isolation of<br>safety systems\|\|\|\|\|\|\|\|\|\|\|\|<br>\|\|\|\|\|\|\|\|\|\|\|\|\|<br><br><br><br>Page 14 of 22<br>KAT-ENG-S-TMP-0002 Version 3.0</code> | | <code>What does a frequency rating of 1 correspond to in the Generic '8x8' Risk Matrix?</code> | <code>Risk Assessment Matrices OMS-2A-02<br><br><br>**4.2** **Consequences โ€“ Environmental Risks**<br><br><br><br>\|Severity\|Environmental โ€“ Atmospheric\|Environmental โ€“ Water\|<br>\|---\|---\|---\|<br>\|A\|An unintentional release of gas amounting to a<br>CO2 equivalent of >200,000 tonnes\|A release to sea assessed to cause damage to the receiving environment or<br>species over a period of >12 months that requires a shoreline response\|<br>\|B\|An unintentional release of gas amounting to a<br>CO2 equivalent of >100,000 tonnes\|A release to sea assessed to cause damage to the receiving environment or<br>species over a period of >12 months that does not do involve a shoreline<br>response\|<br>\|C\|An unintentional release of gas amounting to a<br>CO2 equivalent of >50,000 tonnes\|A release to sea assessed to cause damage to the receiving environment or<br>species over a period of >6 months\|<br>\|D\|An unintentional release of gas amounting to a<br>CO2 equivalent of >25,000 tonnes\|A release to sea assessed to cause damage to the receiving environm...</code> | <code>Risk Assessment Matrices OMS-2A-02<br><br><br>**4.3** **Consequences โ€“ Business, Social and Governance Risks**<br><br><br><br><br><br><br><br>\|Severity\|Business โ€“ Additional Guidance\|<br>\|---\|---\|<br>\|A\|Catastrophic loss of company value (e.g. catastrophic drop in share price)\|<br>\|B\|Loss of single asset or other significant / material facility to Serica<br>Significant drop in share price\|<br>\|C\|Loss of Licence to Operate Facility<br>Significant prolonged Enforcement Action / Prosecution by a regulatory body.<br>Significant prolonged adverse media coverage.<br>Loss of Shareholder confidence.\|<br>\|D\|Prosecution / civil sanctions by regulatory body e.g. HSE, BEIS or ICO Prosecution / Prohibition Notice / significant level of<br>Enforcement Action. Regulatory Investigation.<br>Prolonged adverse media coverage<br>Loss of partner confidence\|<br>\|E\|Enforcement Action by a regulatory body (or potential for prosecution), e.g. HSE Improvement Notice, ICO Enforcement Notice.<br>Reportable event which may lead to regulatory investigation.<br>Shor...</code> | | <code>What recommendation is given regarding control system capacity?</code> | <code>\|Parameter\|Guideword\|Cause\|Consequence\|Safeguards\|Recommendation\|By\|<br>\|---\|---\|---\|---\|---\|---\|---\|<br>\|Flow\|As Well As\|Oil & solids<br>contaminated<br>heating media<br>supply.\|Potential fouling of the<br>heat exchanger and<br>reduction in efficiency.<br> <br>Potential failing of the<br>valves.\|Plate pack can be<br>removed, cleaned and<br>if necessary, replaced.\|19. Consider filtration<br>requirement for heating<br>media (design).<br>(Closed out)<br>20. Evaluate the most<br>appropriate valve<br>specification for the<br>contaminated heating<br>media (design).<br>(Closed out)\|Andrew<br>Keatings,<br>WGE(NS)<br> <br>Archie<br>Murdoch,<br>WGE(NS)\|<br>\|Pressure\|Less\|\|\|\|\|\|<br>\|Pressure\|More\|\|\|\|\|\|<br>\|Temperature\|Less\|\|\|\|\|\|<br>\|Temperature\|More\|\|\|\|\|\|<br>\|Level\|Less\|\|\|\|\|\|<br>\|Level\|More\|\|\|\|\|\|<br>\|Composition\|As Well As\|\|\|\|\|\|<br>\|Composition\|Part Off\|\|\|\|\|\|<br>\|Composition\|Other than\|\|\|\|\|\|<br>\|Other\|Corrosion\|\|\|\|\|\|<br>\|Other\|Operating<br>Mode\|\|\|\|\|\|<br>\|Other\|Start Up /<br>Shutdown\|\|\|\|\|\|<br><br><br><br>Page 24 of 39<br>KAT-ENG-S-TMP-0002 Version 1.0</code> | <code>**8. Risk graphs**<br><br><br>**8.1** **Safety risk graph**<br><br>Experience in the application of the IEC61511 process has resulted in the development of a calibrated<br>safety risk graph that allows a quick and consistent application of the assessment process. It also allows<br>the application of modifiers and IPLโ€™s but only as factors of 10 (in line with the order of magnitude<br>approach of IEC61511. This is shown in figure 8-1. There are four parameters that have to be assessed,<br>as follows. Each of these is described in more detail in the corresponding section below.<br><br><br>**(1) Exposure** (mean number of people in hazard zone at any time, affected by manning<br>levels and hazard range and consideration of dependency with the hazard scenario)<br><br><br>**(2) Death/Injury** (2 options, selection of death or injury dependent on hazard energy<br>magnitude)<br><br><br>**(3) Possibility of avoidance of hazard** (2 options, dependent on rate of development of<br>hazard, any independent warnings that might be available; also used to accomm...</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `learning_rate`: 2e-05 - `num_train_epochs`: 5 - `warmup_ratio`: 0.1 #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `hub_revision`: None - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `liger_kernel_config`: None - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional - `router_mapping`: {} - `learning_rate_mapping`: {} </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | ai-job-validation_cosine_accuracy | |:------:|:----:|:-------------:|:---------------:|:---------------------------------:| | -1 | -1 | - | - | 0.6314 | | 2.0408 | 100 | 2.9918 | 2.1239 | 0.9304 | | 4.0816 | 200 | 1.7066 | 1.4476 | 0.9665 | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 5.1.0 - Transformers: 4.53.3 - PyTorch: 2.8.0+cu128 - Accelerate: 1.9.0 - Datasets: 4.0.0 - Tokenizers: 0.21.2 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
cprat/Taxi-v3
cprat
2025-08-11T16:46:10Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-08-11T16:46:06Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.67 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="cprat/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
kittygirlhere/blockassist-bc-twitchy_beaked_coral_1754927143
kittygirlhere
2025-08-11T16:43:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "twitchy beaked coral", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T16:42:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - twitchy beaked coral --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
motza0025/blockassist-bc-prehistoric_sleek_chameleon_1754929104
motza0025
2025-08-11T16:38:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "prehistoric sleek chameleon", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T16:38:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - prehistoric sleek chameleon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
RMCian/blockassist-bc-wiry_sturdy_cobra_1754929958
RMCian
2025-08-11T16:33:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry sturdy cobra", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T16:33:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry sturdy cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Jovar1/blockassist-bc-bold_hulking_rooster_1754929892
Jovar1
2025-08-11T16:33:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bold hulking rooster", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T16:32:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bold hulking rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1754929807
ggozzy
2025-08-11T16:31:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T16:31:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dacryt/blockassist-bc-voracious_vicious_gecko_1754927767
Dacryt
2025-08-11T16:28:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "voracious vicious gecko", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T16:28:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - voracious vicious gecko --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
RMCian/blockassist-bc-wiry_sturdy_cobra_1754929472
RMCian
2025-08-11T16:25:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry sturdy cobra", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T16:25:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry sturdy cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
annahahn/v3000q
annahahn
2025-08-11T16:24:03Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-11T15:11:43Z
--- license: apache-2.0 ---
jahyungu/deepseek-math-7b-instruct_LeetCodeDataset
jahyungu
2025-08-11T16:22:05Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "conversational", "base_model:deepseek-ai/deepseek-math-7b-instruct", "base_model:finetune:deepseek-ai/deepseek-math-7b-instruct", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T15:17:49Z
--- library_name: transformers license: other base_model: deepseek-ai/deepseek-math-7b-instruct tags: - generated_from_trainer model-index: - name: deepseek-math-7b-instruct_LeetCodeDataset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deepseek-math-7b-instruct_LeetCodeDataset This model is a fine-tuned version of [deepseek-ai/deepseek-math-7b-instruct](https://huggingface.co/deepseek-ai/deepseek-math-7b-instruct) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.55.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.0
hdong0/Qwen2.5-Math-1.5B-GRPO_deepscaler_prompt1
hdong0
2025-08-11T16:21:33Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:agentica-org/DeepScaleR-Preview-Dataset", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-1.5B", "base_model:finetune:Qwen/Qwen2.5-Math-1.5B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T13:30:53Z
--- base_model: Qwen/Qwen2.5-Math-1.5B datasets: agentica-org/DeepScaleR-Preview-Dataset library_name: transformers model_name: Qwen2.5-Math-1.5B-GRPO_deepscaler_prompt1 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen2.5-Math-1.5B-GRPO_deepscaler_prompt1 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-1.5B](https://huggingface.co/Qwen/Qwen2.5-Math-1.5B) on the [agentica-org/DeepScaleR-Preview-Dataset](https://huggingface.co/datasets/agentica-org/DeepScaleR-Preview-Dataset) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="hdong0/Qwen2.5-Math-1.5B-GRPO_deepscaler_prompt1", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.18.0.dev0 - Transformers: 4.52.0.dev0 - Pytorch: 2.6.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1754927457
coelacanthxyz
2025-08-11T16:18:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky thriving grouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T16:18:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky thriving grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
daslab-testing/Qwen3-1.7B-FPQuant-QAT-NVFP4-200steps
daslab-testing
2025-08-11T16:17:25Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "fp_quant", "region:us" ]
text-generation
2025-08-11T16:16:12Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
bph/dpo-DialoGPT-small-debug
bph
2025-08-11T16:15:24Z
0
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "trl", "dpo", "conversational", "arxiv:2305.18290", "base_model:microsoft/DialoGPT-small", "base_model:finetune:microsoft/DialoGPT-small", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T16:07:29Z
--- base_model: microsoft/DialoGPT-small library_name: transformers model_name: dpo-DialoGPT-small-debug tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for dpo-DialoGPT-small-debug This model is a fine-tuned version of [microsoft/DialoGPT-small](https://huggingface.co/microsoft/DialoGPT-small). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="bph/dpo-DialoGPT-small-debug", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/benjheymann/dpo-DialoGPT-small-debug/runs/ymg8nfuw) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.0 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
kapalbalap/blockassist-bc-peaceful_wary_owl_1754928669
kapalbalap
2025-08-11T16:12:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "peaceful wary owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T16:11:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - peaceful wary owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
wildansofhal/IndoBERT-Sentiment-Analysis8v2
wildansofhal
2025-08-11T16:10:53Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:indobenchmark/indobert-base-p1", "base_model:finetune:indobenchmark/indobert-base-p1", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-11T16:10:23Z
--- library_name: transformers license: mit base_model: indobenchmark/indobert-base-p1 tags: - generated_from_trainer metrics: - accuracy model-index: - name: IndoBERT-Sentiment-Analysis8v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IndoBERT-Sentiment-Analysis8v2 This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4324 - Accuracy: 0.9077 - F1 Score: 0.9073 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | |:-------------:|:------:|:----:|:---------------:|:--------:|:--------:| | 0.6356 | 0.1096 | 50 | 0.6418 | 0.65 | 0.6481 | | 0.6133 | 0.2193 | 100 | 0.5997 | 0.6782 | 0.6750 | | 0.5781 | 0.3289 | 150 | 0.5178 | 0.7449 | 0.7445 | | 0.5433 | 0.4386 | 200 | 0.4351 | 0.8051 | 0.8051 | | 0.4154 | 0.5482 | 250 | 0.4331 | 0.8026 | 0.8019 | | 0.467 | 0.6579 | 300 | 0.3819 | 0.8462 | 0.8459 | | 0.3623 | 0.7675 | 350 | 0.4463 | 0.8410 | 0.8397 | | 0.3316 | 0.8772 | 400 | 0.4174 | 0.8551 | 0.8548 | | 0.3407 | 0.9868 | 450 | 0.5784 | 0.8141 | 0.8101 | | 0.2882 | 1.0965 | 500 | 0.4091 | 0.8769 | 0.8768 | | 0.2379 | 1.2061 | 550 | 0.5138 | 0.8603 | 0.8590 | | 0.2828 | 1.3158 | 600 | 0.5102 | 0.8744 | 0.8730 | | 0.2148 | 1.4254 | 650 | 0.4847 | 0.8833 | 0.8824 | | 0.262 | 1.5351 | 700 | 0.4366 | 0.8987 | 0.8981 | | 0.3484 | 1.6447 | 750 | 0.3786 | 0.9090 | 0.9086 | | 0.1367 | 1.7544 | 800 | 0.4582 | 0.8949 | 0.8942 | | 0.2344 | 1.8640 | 850 | 0.4343 | 0.9064 | 0.9060 | | 0.2519 | 1.9737 | 900 | 0.4315 | 0.9077 | 0.9073 | ### Framework versions - Transformers 4.55.0 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
Bijima/mistral-7b-modern-npc
Bijima
2025-08-11T16:09:56Z
0
0
null
[ "gguf", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-11T15:12:15Z
--- license: apache-2.0 ---
SvalTek/ColdBrew-12B-Nemo-test2
SvalTek
2025-08-11T16:05:24Z
0
0
null
[ "safetensors", "mistral", "merge", "lazymergekit", "region:us" ]
null
2025-08-11T16:00:44Z
--- base_model: SvalTek/Qwen3-ColdBrew-14B tags: - merge - lazymergekit --- # ColdBrew-12B-Nemo-test2 ## ๐Ÿงฉ Configuration ```yaml name: ColdBrew-12B-Nemo-test2 models: - model: SvalTek/ColdBrew-12B-Nemo-test1 parameters: weight: 1.0 - model: elinas/Chronos-Gold-12B-1.0 parameters: weight: 0.3 base_model: SvalTek/ColdBrew-12B-Nemo-test1 merge_method: task_arithmetic chat_template: "chatml" tokenizer: source: union # keep everyoneโ€™s vocab; union is a documented option tokens: "<|im_start|>": source: "elinas/Chronos-Gold-12B-1.0" force: true "<|im_end|>": source: "elinas/Chronos-Gold-12B-1.0" force: true dtype: bfloat16 normalize: true int8_mask: true ``` ## ๐Ÿ’ป Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "SvalTek/ColdBrew-12B-Nemo-test2" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
BinBashir/SmallNaijaBert_on_jumia_dataset
BinBashir
2025-08-11T16:04:48Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-11T16:04:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
afasdfdfadsf/blockassist-bc-exotic_slimy_horse_1754928140
afasdfdfadsf
2025-08-11T16:04:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "exotic slimy horse", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T16:03:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - exotic slimy horse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1754927862
IvanJAjebu
2025-08-11T15:59:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T15:58:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
apriasmoro/320b708d-ec59-47ef-94a4-9b7a16694a01
apriasmoro
2025-08-11T15:59:08Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "trl", "grpo", "axolotl", "conversational", "arxiv:2402.03300", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-11T15:58:53Z
--- library_name: transformers model_name: app/checkpoints/4485b45c-26b1-485f-b391-5493eea942f6/320b708d-ec59-47ef-94a4-9b7a16694a01 tags: - generated_from_trainer - trl - grpo - axolotl licence: license --- # Model Card for app/checkpoints/4485b45c-26b1-485f-b391-5493eea942f6/320b708d-ec59-47ef-94a4-9b7a16694a01 This model is a fine-tuned version of [None](https://huggingface.co/None). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="None", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.0 - Pytorch: 2.7.1+cu128 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
New-Clip-Lil-tay-viral-video-Link-on/Exclusive.Orginal.full.Videos.Lil.tay.Lil.tay.viral.video.Official.Tutorial
New-Clip-Lil-tay-viral-video-Link-on
2025-08-11T15:57:50Z
0
0
null
[ "region:us" ]
null
2025-08-11T15:57:40Z
<a href="https://sdu.sk/Kyl"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="fsd" /></a> <a href="https://sdu.sk/Kyl" rel="nofollow">โ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ (๐—ฆ๐—ถ๐—ด๐—ป ๐—จ๐—ฝ ๐˜๐—ผ ๐™๐™ช๐™ก๐™ก ๐—ช๐—ฎ๐˜๐—ฐ๐—ต ๐™‘๐™ž๐™™๐™š๐™คโค๏ธโค๏ธ)</a> <a href="https://sdu.sk/Kyl" rel="nofollow">๐Ÿ”ด โžคโ–บโœ…๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐ฅ๐ข๐ง๐ค)</a>
lil-tay-viral-video-new-link/Orginal.18.full.Videos.lil.tay.viral.video.Official
lil-tay-viral-video-new-link
2025-08-11T15:53:22Z
0
0
null
[ "region:us" ]
null
2025-08-11T15:53:13Z
<a href="https://sdu.sk/Kyl"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="fsd" /></a> <a href="https://sdu.sk/Kyl" rel="nofollow">โ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ (๐—ฆ๐—ถ๐—ด๐—ป ๐—จ๐—ฝ ๐˜๐—ผ ๐™๐™ช๐™ก๐™ก ๐—ช๐—ฎ๐˜๐—ฐ๐—ต ๐™‘๐™ž๐™™๐™š๐™คโค๏ธโค๏ธ)</a> <a href="https://sdu.sk/Kyl" rel="nofollow">๐Ÿ”ด โžคโ–บโœ…๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐ฅ๐ข๐ง๐ค)</a>
Jovar1/blockassist-bc-bold_hulking_rooster_1754927461
Jovar1
2025-08-11T15:52:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bold hulking rooster", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T15:51:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bold hulking rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ArtusDev/baichuan-inc_Baichuan-M2-32B-EXL3
ArtusDev
2025-08-11T15:50:57Z
0
0
transformers
[ "transformers", "chat", "exl3", "en", "zh", "base_model:baichuan-inc/Baichuan-M2-32B", "base_model:quantized:baichuan-inc/Baichuan-M2-32B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-11T13:39:56Z
--- base_model: baichuan-inc/Baichuan-M2-32B base_model_relation: quantized quantized_by: ArtusDev license: apache-2.0 tags: - chat - exl3 library_name: transformers language: - en - zh --- ## EXL3 Quants of baichuan-inc/Baichuan-M2-32B EXL3 quants of [baichuan-inc/Baichuan-M2-32B](https://huggingface.co/baichuan-inc/Baichuan-M2-32B) using <a href="https://github.com/turboderp-org/exllamav3/">exllamav3</a> for quantization. ### Quants | Quant(Revision) | Bits per Weight | Head Bits | | -------- | ---------- | --------- | | [2.5_H6](https://huggingface.co/ArtusDev/baichuan-inc_Baichuan-M2-32B-EXL3/tree/2.5bpw_H6) | 2.5 | 6 | | [3.0_H6](https://huggingface.co/ArtusDev/baichuan-inc_Baichuan-M2-32B-EXL3/tree/3.0bpw_H6) | 3.0 | 6 | | [3.5_H6](https://huggingface.co/ArtusDev/baichuan-inc_Baichuan-M2-32B-EXL3/tree/3.5bpw_H6) | 3.5 | 6 | | [4.0_H6](https://huggingface.co/ArtusDev/baichuan-inc_Baichuan-M2-32B-EXL3/tree/4.0bpw_H6) | 4.0 | 6 | | [4.5_H6](https://huggingface.co/ArtusDev/baichuan-inc_Baichuan-M2-32B-EXL3/tree/4.5bpw_H6) | 4.5 | 6 | | [5.0_H6](https://huggingface.co/ArtusDev/baichuan-inc_Baichuan-M2-32B-EXL3/tree/5.0bpw_H6) | 5.0 | 6 | | [6.0_H6](https://huggingface.co/ArtusDev/baichuan-inc_Baichuan-M2-32B-EXL3/tree/6.0bpw_H6) | 6.0 | 6 | | [8.0_H8](https://huggingface.co/ArtusDev/baichuan-inc_Baichuan-M2-32B-EXL3/tree/8.0bpw_H8) | 8.0 | 8 | ### Downloading quants with huggingface-cli <details> <summary>Click to view download instructions</summary> Install hugginface-cli: ```bash pip install -U "huggingface_hub[cli]" ``` Download quant by targeting the specific quant revision (branch): ``` huggingface-cli download ArtusDev/baichuan-inc_Baichuan-M2-32B-EXL3 --revision "5.0bpw_H6" --local-dir ./ ``` </details>
yoriis/ce-task-70
yoriis
2025-08-11T15:49:56Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "cross-encoder", "reranker", "generated_from_trainer", "dataset_size:14287", "loss:BinaryCrossEntropyLoss", "text-ranking", "arxiv:1908.10084", "base_model:yoriis/ce-final", "base_model:finetune:yoriis/ce-final", "model-index", "region:us" ]
text-ranking
2025-08-11T15:49:26Z
--- tags: - sentence-transformers - cross-encoder - reranker - generated_from_trainer - dataset_size:14287 - loss:BinaryCrossEntropyLoss base_model: yoriis/ce-final pipeline_tag: text-ranking library_name: sentence-transformers metrics: - accuracy - accuracy_threshold - f1 - f1_threshold - precision - recall - average_precision model-index: - name: CrossEncoder based on yoriis/ce-final results: - task: type: cross-encoder-classification name: Cross Encoder Classification dataset: name: eval type: eval metrics: - type: accuracy value: 0.9767002518891688 name: Accuracy - type: accuracy_threshold value: 0.6093786954879761 name: Accuracy Threshold - type: f1 value: 0.8514056224899598 name: F1 - type: f1_threshold value: 0.08044017106294632 name: F1 Threshold - type: precision value: 0.8412698412698413 name: Precision - type: recall value: 0.8617886178861789 name: Recall - type: average_precision value: 0.8904592423807994 name: Average Precision --- # CrossEncoder based on yoriis/ce-final This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [yoriis/ce-final](https://huggingface.co/yoriis/ce-final) using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search. ## Model Details ### Model Description - **Model Type:** Cross Encoder - **Base model:** [yoriis/ce-final](https://huggingface.co/yoriis/ce-final) <!-- at revision 83b2db24dab0f081cc808ae8789a4d5469c79682 --> - **Maximum Sequence Length:** 512 tokens - **Number of Output Labels:** 1 label <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder) ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import CrossEncoder # Download from the ๐Ÿค— Hub model = CrossEncoder("yoriis/ce-task-70") # Get scores for pairs of texts pairs = [ ['ู…ุง ุงู„ู…ุฎู„ูˆู‚ุงุช ุงู„ุชูŠ ุชุณุจุญ ุงู„ู„ู‡ุŸ', 'ูŠุง ุจู†ูŠ ุขุฏู… ุฅู…ุง ูŠุฃุชูŠู†ูƒู… ุฑุณู„ ู…ู†ูƒู… ูŠู‚ุตูˆู† ุนู„ูŠูƒู… ุขูŠุงุชูŠ ูู…ู† ุงุชู‚ู‰ ูˆุฃุตู„ุญ ูู„ุง ุฎูˆู ุนู„ูŠู‡ู… ูˆู„ุง ู‡ู… ูŠุญุฒู†ูˆู†. ูˆุงู„ุฐูŠู† ูƒุฐุจูˆุง ุจุขูŠุงุชู†ุง ูˆุงุณุชูƒุจุฑูˆุง ุนู†ู‡ุง ุฃูˆู„ุฆูƒ ุฃุตุญุงุจ ุงู„ู†ุงุฑ ู‡ู… ููŠู‡ุง ุฎุงู„ุฏูˆู†. ูู…ู† ุฃุธู„ู… ู…ู…ู† ุงูุชุฑู‰ ุนู„ู‰ ุงู„ู„ู‡ ูƒุฐุจุง ุฃูˆ ูƒุฐุจ ุจุขูŠุงุชู‡ ุฃูˆู„ุฆูƒ ูŠู†ุงู„ู‡ู… ู†ุตูŠุจู‡ู… ู…ู† ุงู„ูƒุชุงุจ ุญุชู‰ ุฅุฐุง ุฌุงุกุชู‡ู… ุฑุณู„ู†ุง ูŠุชูˆููˆู†ู‡ู… ู‚ุงู„ูˆุง ุฃูŠู† ู…ุง ูƒู†ุชู… ุชุฏุนูˆู† ู…ู† ุฏูˆู† ุงู„ู„ู‡ ู‚ุงู„ูˆุง ุถู„ูˆุง ุนู†ุง ูˆุดู‡ุฏูˆุง ุนู„ู‰ ุฃู†ูุณู‡ู… ุฃู†ู‡ู… ูƒุงู†ูˆุง ูƒุงูุฑูŠู†.'], ['ุงุชู‡ู… ุงู„ู‚ุฑุขู† ุจุฃู†ู‡ ุงู„ุณุจุจ ููŠ ุงู„ุฏูƒุชุงุชูˆุฑูŠุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ ู„ูƒูˆู†ู‡ ุฃุจุงุญ ุถุฑุจ ุงู„ู†ุณุงุก ููŠ ุญุงู„ุฉ ุงู„ู†ุดูˆุฒุŒ ูƒูŠู ู†ุฑุฏ ุนู„ู‰ ุฐู„ูƒุŸ', 'ุฅุฐ ู‚ุงู„ ุงู„ู„ู‡ ูŠุง ุนูŠุณู‰ ุงุจู† ู…ุฑูŠู… ุงุฐูƒุฑ ู†ุนู…ุชูŠ ุนู„ูŠูƒ ูˆุนู„ู‰ ูˆุงู„ุฏุชูƒ ุฅุฐ ุฃูŠุฏุชูƒ ุจุฑูˆุญ ุงู„ู‚ุฏุณ ุชูƒู„ู… ุงู„ู†ุงุณ ููŠ ุงู„ู…ู‡ุฏ ูˆูƒู‡ู„ุง ูˆุฅุฐ ุนู„ู…ุชูƒ ุงู„ูƒุชุงุจ ูˆุงู„ุญูƒู…ุฉ ูˆุงู„ุชูˆุฑุงุฉ ูˆุงู„ุฅู†ุฌูŠู„ ูˆุฅุฐ ุชุฎู„ู‚ ู…ู† ุงู„ุทูŠู† ูƒู‡ูŠุฆุฉ ุงู„ุทูŠุฑ ุจุฅุฐู†ูŠ ูุชู†ูุฎ ููŠู‡ุง ูุชูƒูˆู† ุทูŠุฑุง ุจุฅุฐู†ูŠ ูˆุชุจุฑุฆ ุงู„ุฃูƒู…ู‡ ูˆุงู„ุฃุจุฑุต ุจุฅุฐู†ูŠ ูˆุฅุฐ ุชุฎุฑุฌ ุงู„ู…ูˆุชู‰ ุจุฅุฐู†ูŠ ูˆุฅุฐ ูƒููุช ุจู†ูŠ ุฅุณุฑุงุฆูŠู„ ุนู†ูƒ ุฅุฐ ุฌุฆุชู‡ู… ุจุงู„ุจูŠู†ุงุช ูู‚ุงู„ ุงู„ุฐูŠู† ูƒูุฑูˆุง ู…ู†ู‡ู… ุฅู† ู‡ุฐุง ุฅู„ุง ุณุญุฑ ู…ุจูŠู†. ูˆุฅุฐ ุฃูˆุญูŠุช ุฅู„ู‰ ุงู„ุญูˆุงุฑูŠูŠู† ุฃู† ุขู…ู†ูˆุง ุจูŠ ูˆุจุฑุณูˆู„ูŠ ู‚ุงู„ูˆุง ุขู…ู†ุง ูˆุงุดู‡ุฏ ุจุฃู†ู†ุง ู…ุณู„ู…ูˆู†.'], ['ู…ุง ู‡ูˆ ุงู„ุฌู‡ุงุฏุŸ', '[PASSAGE_NOT_FOUND]'], ['ู‡ู„ ูƒุงู† ุณูŠุฏู†ุง ูŠูˆุณู ุนู„ูŠู‡ ุงู„ุณู„ุงู… ุฑุณูˆู„ุง ุฃู… ู†ุจูŠุงุŸ', 'ุงู„ุฑุฌุงู„ ู‚ูˆุงู…ูˆู† ุนู„ู‰ ุงู„ู†ุณุงุก ุจู…ุง ูุถู„ ุงู„ู„ู‡ ุจุนุถู‡ู… ุนู„ู‰ ุจุนุถ ูˆุจู…ุง ุฃู†ูู‚ูˆุง ู…ู† ุฃู…ูˆุงู„ู‡ู… ูุงู„ุตุงู„ุญุงุช ู‚ุงู†ุชุงุช ุญุงูุธุงุช ู„ู„ุบูŠุจ ุจู…ุง ุญูุธ ุงู„ู„ู‡ ูˆุงู„ู„ุงุชูŠ ุชุฎุงููˆู† ู†ุดูˆุฒู‡ู† ูุนุธูˆู‡ู† ูˆุงู‡ุฌุฑูˆู‡ู† ููŠ ุงู„ู…ุถุงุฌุน ูˆุงุถุฑุจูˆู‡ู† ูุฅู† ุฃุทุนู†ูƒู… ูู„ุง ุชุจุบูˆุง ุนู„ูŠู‡ู† ุณุจูŠู„ุง ุฅู† ุงู„ู„ู‡ ูƒุงู† ุนู„ูŠุง ูƒุจูŠุฑุง. ูˆุฅู† ุฎูุชู… ุดู‚ุงู‚ ุจูŠู†ู‡ู…ุง ูุงุจุนุซูˆุง ุญูƒู…ุง ู…ู† ุฃู‡ู„ู‡ ูˆุญูƒู…ุง ู…ู† ุฃู‡ู„ู‡ุง ุฅู† ูŠุฑูŠุฏุง ุฅุตู„ุงุญุง ูŠูˆูู‚ ุงู„ู„ู‡ ุจูŠู†ู‡ู…ุง ุฅู† ุงู„ู„ู‡ ูƒุงู† ุนู„ูŠู…ุง ุฎุจูŠุฑุง.'], ['ู…ุง ู‡ูŠ ุงู„ู…ู†ุงูุน ุงู„ุตุญูŠุฉ ู„ุตู„ุงุฉ ุงู„ูุฌุฑุŸ', 'ูˆู‚ุงู„ ุงู„ู„ู‡ ู„ุง ุชุชุฎุฐูˆุง ุฅู„ู‡ูŠู† ุงุซู†ูŠู† ุฅู†ู…ุง ู‡ูˆ ุฅู„ู‡ ูˆุงุญุฏ ูุฅูŠุงูŠ ูุงุฑู‡ุจูˆู†. ูˆู„ู‡ ู…ุง ููŠ ุงู„ุณู…ุงูˆุงุช ูˆุงู„ุฃุฑุถ ูˆู„ู‡ ุงู„ุฏูŠู† ูˆุงุตุจุง ุฃูุบูŠุฑ ุงู„ู„ู‡ ุชุชู‚ูˆู†. ูˆู…ุง ุจูƒู… ู…ู† ู†ุนู…ุฉ ูู…ู† ุงู„ู„ู‡ ุซู… ุฅุฐุง ู…ุณูƒู… ุงู„ุถุฑ ูุฅู„ูŠู‡ ุชุฌุฃุฑูˆู†. ุซู… ุฅุฐุง ูƒุดู ุงู„ุถุฑ ุนู†ูƒู… ุฅุฐุง ูุฑูŠู‚ ู…ู†ูƒู… ุจุฑุจู‡ู… ูŠุดุฑูƒูˆู†. ู„ูŠูƒูุฑูˆุง ุจู…ุง ุขุชูŠู†ุงู‡ู… ูุชู…ุชุนูˆุง ูุณูˆู ุชุนู„ู…ูˆู†.'], ] scores = model.predict(pairs) print(scores.shape) # (5,) # Or rank different texts based on similarity to a single text ranks = model.rank( 'ู…ุง ุงู„ู…ุฎู„ูˆู‚ุงุช ุงู„ุชูŠ ุชุณุจุญ ุงู„ู„ู‡ุŸ', [ 'ูŠุง ุจู†ูŠ ุขุฏู… ุฅู…ุง ูŠุฃุชูŠู†ูƒู… ุฑุณู„ ู…ู†ูƒู… ูŠู‚ุตูˆู† ุนู„ูŠูƒู… ุขูŠุงุชูŠ ูู…ู† ุงุชู‚ู‰ ูˆุฃุตู„ุญ ูู„ุง ุฎูˆู ุนู„ูŠู‡ู… ูˆู„ุง ู‡ู… ูŠุญุฒู†ูˆู†. ูˆุงู„ุฐูŠู† ูƒุฐุจูˆุง ุจุขูŠุงุชู†ุง ูˆุงุณุชูƒุจุฑูˆุง ุนู†ู‡ุง ุฃูˆู„ุฆูƒ ุฃุตุญุงุจ ุงู„ู†ุงุฑ ู‡ู… ููŠู‡ุง ุฎุงู„ุฏูˆู†. ูู…ู† ุฃุธู„ู… ู…ู…ู† ุงูุชุฑู‰ ุนู„ู‰ ุงู„ู„ู‡ ูƒุฐุจุง ุฃูˆ ูƒุฐุจ ุจุขูŠุงุชู‡ ุฃูˆู„ุฆูƒ ูŠู†ุงู„ู‡ู… ู†ุตูŠุจู‡ู… ู…ู† ุงู„ูƒุชุงุจ ุญุชู‰ ุฅุฐุง ุฌุงุกุชู‡ู… ุฑุณู„ู†ุง ูŠุชูˆููˆู†ู‡ู… ู‚ุงู„ูˆุง ุฃูŠู† ู…ุง ูƒู†ุชู… ุชุฏุนูˆู† ู…ู† ุฏูˆู† ุงู„ู„ู‡ ู‚ุงู„ูˆุง ุถู„ูˆุง ุนู†ุง ูˆุดู‡ุฏูˆุง ุนู„ู‰ ุฃู†ูุณู‡ู… ุฃู†ู‡ู… ูƒุงู†ูˆุง ูƒุงูุฑูŠู†.', 'ุฅุฐ ู‚ุงู„ ุงู„ู„ู‡ ูŠุง ุนูŠุณู‰ ุงุจู† ู…ุฑูŠู… ุงุฐูƒุฑ ู†ุนู…ุชูŠ ุนู„ูŠูƒ ูˆุนู„ู‰ ูˆุงู„ุฏุชูƒ ุฅุฐ ุฃูŠุฏุชูƒ ุจุฑูˆุญ ุงู„ู‚ุฏุณ ุชูƒู„ู… ุงู„ู†ุงุณ ููŠ ุงู„ู…ู‡ุฏ ูˆูƒู‡ู„ุง ูˆุฅุฐ ุนู„ู…ุชูƒ ุงู„ูƒุชุงุจ ูˆุงู„ุญูƒู…ุฉ ูˆุงู„ุชูˆุฑุงุฉ ูˆุงู„ุฅู†ุฌูŠู„ ูˆุฅุฐ ุชุฎู„ู‚ ู…ู† ุงู„ุทูŠู† ูƒู‡ูŠุฆุฉ ุงู„ุทูŠุฑ ุจุฅุฐู†ูŠ ูุชู†ูุฎ ููŠู‡ุง ูุชูƒูˆู† ุทูŠุฑุง ุจุฅุฐู†ูŠ ูˆุชุจุฑุฆ ุงู„ุฃูƒู…ู‡ ูˆุงู„ุฃุจุฑุต ุจุฅุฐู†ูŠ ูˆุฅุฐ ุชุฎุฑุฌ ุงู„ู…ูˆุชู‰ ุจุฅุฐู†ูŠ ูˆุฅุฐ ูƒููุช ุจู†ูŠ ุฅุณุฑุงุฆูŠู„ ุนู†ูƒ ุฅุฐ ุฌุฆุชู‡ู… ุจุงู„ุจูŠู†ุงุช ูู‚ุงู„ ุงู„ุฐูŠู† ูƒูุฑูˆุง ู…ู†ู‡ู… ุฅู† ู‡ุฐุง ุฅู„ุง ุณุญุฑ ู…ุจูŠู†. ูˆุฅุฐ ุฃูˆุญูŠุช ุฅู„ู‰ ุงู„ุญูˆุงุฑูŠูŠู† ุฃู† ุขู…ู†ูˆุง ุจูŠ ูˆุจุฑุณูˆู„ูŠ ู‚ุงู„ูˆุง ุขู…ู†ุง ูˆุงุดู‡ุฏ ุจุฃู†ู†ุง ู…ุณู„ู…ูˆู†.', '[PASSAGE_NOT_FOUND]', 'ุงู„ุฑุฌุงู„ ู‚ูˆุงู…ูˆู† ุนู„ู‰ ุงู„ู†ุณุงุก ุจู…ุง ูุถู„ ุงู„ู„ู‡ ุจุนุถู‡ู… ุนู„ู‰ ุจุนุถ ูˆุจู…ุง ุฃู†ูู‚ูˆุง ู…ู† ุฃู…ูˆุงู„ู‡ู… ูุงู„ุตุงู„ุญุงุช ู‚ุงู†ุชุงุช ุญุงูุธุงุช ู„ู„ุบูŠุจ ุจู…ุง ุญูุธ ุงู„ู„ู‡ ูˆุงู„ู„ุงุชูŠ ุชุฎุงููˆู† ู†ุดูˆุฒู‡ู† ูุนุธูˆู‡ู† ูˆุงู‡ุฌุฑูˆู‡ู† ููŠ ุงู„ู…ุถุงุฌุน ูˆุงุถุฑุจูˆู‡ู† ูุฅู† ุฃุทุนู†ูƒู… ูู„ุง ุชุจุบูˆุง ุนู„ูŠู‡ู† ุณุจูŠู„ุง ุฅู† ุงู„ู„ู‡ ูƒุงู† ุนู„ูŠุง ูƒุจูŠุฑุง. ูˆุฅู† ุฎูุชู… ุดู‚ุงู‚ ุจูŠู†ู‡ู…ุง ูุงุจุนุซูˆุง ุญูƒู…ุง ู…ู† ุฃู‡ู„ู‡ ูˆุญูƒู…ุง ู…ู† ุฃู‡ู„ู‡ุง ุฅู† ูŠุฑูŠุฏุง ุฅุตู„ุงุญุง ูŠูˆูู‚ ุงู„ู„ู‡ ุจูŠู†ู‡ู…ุง ุฅู† ุงู„ู„ู‡ ูƒุงู† ุนู„ูŠู…ุง ุฎุจูŠุฑุง.', 'ูˆู‚ุงู„ ุงู„ู„ู‡ ู„ุง ุชุชุฎุฐูˆุง ุฅู„ู‡ูŠู† ุงุซู†ูŠู† ุฅู†ู…ุง ู‡ูˆ ุฅู„ู‡ ูˆุงุญุฏ ูุฅูŠุงูŠ ูุงุฑู‡ุจูˆู†. ูˆู„ู‡ ู…ุง ููŠ ุงู„ุณู…ุงูˆุงุช ูˆุงู„ุฃุฑุถ ูˆู„ู‡ ุงู„ุฏูŠู† ูˆุงุตุจุง ุฃูุบูŠุฑ ุงู„ู„ู‡ ุชุชู‚ูˆู†. ูˆู…ุง ุจูƒู… ู…ู† ู†ุนู…ุฉ ูู…ู† ุงู„ู„ู‡ ุซู… ุฅุฐุง ู…ุณูƒู… ุงู„ุถุฑ ูุฅู„ูŠู‡ ุชุฌุฃุฑูˆู†. ุซู… ุฅุฐุง ูƒุดู ุงู„ุถุฑ ุนู†ูƒู… ุฅุฐุง ูุฑูŠู‚ ู…ู†ูƒู… ุจุฑุจู‡ู… ูŠุดุฑูƒูˆู†. ู„ูŠูƒูุฑูˆุง ุจู…ุง ุขุชูŠู†ุงู‡ู… ูุชู…ุชุนูˆุง ูุณูˆู ุชุนู„ู…ูˆู†.', ] ) # [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Cross Encoder Classification * Dataset: `eval` * Evaluated with [<code>CrossEncoderClassificationEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderClassificationEvaluator) | Metric | Value | |:----------------------|:-----------| | accuracy | 0.9767 | | accuracy_threshold | 0.6094 | | f1 | 0.8514 | | f1_threshold | 0.0804 | | precision | 0.8413 | | recall | 0.8618 | | **average_precision** | **0.8905** | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 14,287 training samples * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | label | |:--------|:------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 11 characters</li><li>mean: 41.23 characters</li><li>max: 201 characters</li></ul> | <ul><li>min: 19 characters</li><li>mean: 213.75 characters</li><li>max: 1086 characters</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.08</li><li>max: 1.0</li></ul> | * Samples: | sentence_0 | sentence_1 | label | |:---------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------| | <code>ู…ุง ุงู„ู…ุฎู„ูˆู‚ุงุช ุงู„ุชูŠ ุชุณุจุญ ุงู„ู„ู‡ุŸ</code> | <code>ูŠุง ุจู†ูŠ ุขุฏู… ุฅู…ุง ูŠุฃุชูŠู†ูƒู… ุฑุณู„ ู…ู†ูƒู… ูŠู‚ุตูˆู† ุนู„ูŠูƒู… ุขูŠุงุชูŠ ูู…ู† ุงุชู‚ู‰ ูˆุฃุตู„ุญ ูู„ุง ุฎูˆู ุนู„ูŠู‡ู… ูˆู„ุง ู‡ู… ูŠุญุฒู†ูˆู†. ูˆุงู„ุฐูŠู† ูƒุฐุจูˆุง ุจุขูŠุงุชู†ุง ูˆุงุณุชูƒุจุฑูˆุง ุนู†ู‡ุง ุฃูˆู„ุฆูƒ ุฃุตุญุงุจ ุงู„ู†ุงุฑ ู‡ู… ููŠู‡ุง ุฎุงู„ุฏูˆู†. ูู…ู† ุฃุธู„ู… ู…ู…ู† ุงูุชุฑู‰ ุนู„ู‰ ุงู„ู„ู‡ ูƒุฐุจุง ุฃูˆ ูƒุฐุจ ุจุขูŠุงุชู‡ ุฃูˆู„ุฆูƒ ูŠู†ุงู„ู‡ู… ู†ุตูŠุจู‡ู… ู…ู† ุงู„ูƒุชุงุจ ุญุชู‰ ุฅุฐุง ุฌุงุกุชู‡ู… ุฑุณู„ู†ุง ูŠุชูˆููˆู†ู‡ู… ู‚ุงู„ูˆุง ุฃูŠู† ู…ุง ูƒู†ุชู… ุชุฏุนูˆู† ู…ู† ุฏูˆู† ุงู„ู„ู‡ ู‚ุงู„ูˆุง ุถู„ูˆุง ุนู†ุง ูˆุดู‡ุฏูˆุง ุนู„ู‰ ุฃู†ูุณู‡ู… ุฃู†ู‡ู… ูƒุงู†ูˆุง ูƒุงูุฑูŠู†.</code> | <code>0.0</code> | | <code>ุงุชู‡ู… ุงู„ู‚ุฑุขู† ุจุฃู†ู‡ ุงู„ุณุจุจ ููŠ ุงู„ุฏูƒุชุงุชูˆุฑูŠุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ ู„ูƒูˆู†ู‡ ุฃุจุงุญ ุถุฑุจ ุงู„ู†ุณุงุก ููŠ ุญุงู„ุฉ ุงู„ู†ุดูˆุฒุŒ ูƒูŠู ู†ุฑุฏ ุนู„ู‰ ุฐู„ูƒุŸ</code> | <code>ุฅุฐ ู‚ุงู„ ุงู„ู„ู‡ ูŠุง ุนูŠุณู‰ ุงุจู† ู…ุฑูŠู… ุงุฐูƒุฑ ู†ุนู…ุชูŠ ุนู„ูŠูƒ ูˆุนู„ู‰ ูˆุงู„ุฏุชูƒ ุฅุฐ ุฃูŠุฏุชูƒ ุจุฑูˆุญ ุงู„ู‚ุฏุณ ุชูƒู„ู… ุงู„ู†ุงุณ ููŠ ุงู„ู…ู‡ุฏ ูˆูƒู‡ู„ุง ูˆุฅุฐ ุนู„ู…ุชูƒ ุงู„ูƒุชุงุจ ูˆุงู„ุญูƒู…ุฉ ูˆุงู„ุชูˆุฑุงุฉ ูˆุงู„ุฅู†ุฌูŠู„ ูˆุฅุฐ ุชุฎู„ู‚ ู…ู† ุงู„ุทูŠู† ูƒู‡ูŠุฆุฉ ุงู„ุทูŠุฑ ุจุฅุฐู†ูŠ ูุชู†ูุฎ ููŠู‡ุง ูุชูƒูˆู† ุทูŠุฑุง ุจุฅุฐู†ูŠ ูˆุชุจุฑุฆ ุงู„ุฃูƒู…ู‡ ูˆุงู„ุฃุจุฑุต ุจุฅุฐู†ูŠ ูˆุฅุฐ ุชุฎุฑุฌ ุงู„ู…ูˆุชู‰ ุจุฅุฐู†ูŠ ูˆุฅุฐ ูƒููุช ุจู†ูŠ ุฅุณุฑุงุฆูŠู„ ุนู†ูƒ ุฅุฐ ุฌุฆุชู‡ู… ุจุงู„ุจูŠู†ุงุช ูู‚ุงู„ ุงู„ุฐูŠู† ูƒูุฑูˆุง ู…ู†ู‡ู… ุฅู† ู‡ุฐุง ุฅู„ุง ุณุญุฑ ู…ุจูŠู†. ูˆุฅุฐ ุฃูˆุญูŠุช ุฅู„ู‰ ุงู„ุญูˆุงุฑูŠูŠู† ุฃู† ุขู…ู†ูˆุง ุจูŠ ูˆุจุฑุณูˆู„ูŠ ู‚ุงู„ูˆุง ุขู…ู†ุง ูˆุงุดู‡ุฏ ุจุฃู†ู†ุง ู…ุณู„ู…ูˆู†.</code> | <code>0.0</code> | | <code>ู…ุง ู‡ูˆ ุงู„ุฌู‡ุงุฏุŸ</code> | <code>[PASSAGE_NOT_FOUND]</code> | <code>0.0</code> | * Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters: ```json { "activation_fn": "torch.nn.modules.linear.Identity", "pos_weight": null } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `num_train_epochs`: 4 - `fp16`: True #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 8 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `hub_revision`: None - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `liger_kernel_config`: None - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional - `router_mapping`: {} - `learning_rate_mapping`: {} </details> ### Training Logs | Epoch | Step | Training Loss | eval_average_precision | |:------:|:----:|:-------------:|:----------------------:| | 0.2800 | 500 | 0.181 | 0.8232 | | 0.5599 | 1000 | 0.1431 | 0.8457 | | 0.8399 | 1500 | 0.116 | 0.8569 | | 1.0 | 1786 | - | 0.8621 | | 1.1198 | 2000 | 0.1187 | 0.8696 | | 1.3998 | 2500 | 0.1166 | 0.8764 | | 1.6797 | 3000 | 0.1126 | 0.8871 | | 1.9597 | 3500 | 0.1155 | 0.8902 | | 2.0 | 3572 | - | 0.8852 | | 2.2396 | 4000 | 0.0905 | 0.8877 | | 2.5196 | 4500 | 0.1201 | 0.8886 | | 2.7996 | 5000 | 0.0995 | 0.8901 | | 3.0 | 5358 | - | 0.8898 | | 3.0795 | 5500 | 0.0836 | 0.8882 | | 3.3595 | 6000 | 0.0726 | 0.8867 | | 3.6394 | 6500 | 0.1126 | 0.8919 | | 3.9194 | 7000 | 0.0827 | 0.8903 | | 4.0 | 7144 | - | 0.8905 | ### Framework Versions - Python: 3.11.13 - Sentence Transformers: 5.0.0 - Transformers: 4.55.0 - PyTorch: 2.6.0+cu124 - Accelerate: 1.9.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
Kriptoreis53/blockassist-bc-hardy_nimble_cow_1754927272
Kriptoreis53
2025-08-11T15:49:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hardy nimble cow", "arxiv:2504.07091", "region:us" ]
null
2025-08-11T15:49:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hardy nimble cow --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
indian-college-girl-viral-mms-video-clip/Hot.Indian.College.Girl.Viral.Mms.Video.with.Teacher.at.College.Room.video
indian-college-girl-viral-mms-video-clip
2025-08-11T15:46:12Z
0
0
null
[ "region:us" ]
null
2025-08-11T15:46:02Z
<a href="https://sdu.sk/Kyl"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="fsd" /></a> <a href="https://sdu.sk/Kyl" rel="nofollow">โ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ (๐—ฆ๐—ถ๐—ด๐—ป ๐—จ๐—ฝ ๐˜๐—ผ ๐™๐™ช๐™ก๐™ก ๐—ช๐—ฎ๐˜๐—ฐ๐—ต ๐™‘๐™ž๐™™๐™š๐™คโค๏ธโค๏ธ)</a> <a href="https://sdu.sk/Kyl" rel="nofollow">๐Ÿ”ด โžคโ–บโœ…๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐ฅ๐ข๐ง๐ค)</a>
tiny-random/glm-4.5v
tiny-random
2025-08-11T15:45:19Z
0
0
transformers
[ "transformers", "safetensors", "glm4v_moe", "image-text-to-text", "conversational", "base_model:zai-org/GLM-4.5V", "base_model:finetune:zai-org/GLM-4.5V", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-08-11T15:45:16Z
--- library_name: transformers pipeline_tag: image-text-to-text inference: true widget: - text: Hello! example_title: Hello world group: Python base_model: - zai-org/GLM-4.5V --- This tiny model is for debugging. It is randomly initialized with the config adapted from [zai-org/GLM-4.5V](https://huggingface.co/zai-org/GLM-4.5V). ### Example usage: ```python import torch from transformers import AutoProcessor, Glm4vMoeForConditionalGeneration model_id = "tiny-random/glm-4.5v" messages = [ { "role": "user", "content": [ { "type": "image", "url": "https://upload.wikimedia.org/wikipedia/commons/f/fa/Grayscale_8bits_palette_sample_image.png" }, { "type": "text", "text": "describe this image" } ], } ] processor = AutoProcessor.from_pretrained(model_id) model = Glm4vMoeForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", ) inputs = processor.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_dict=True, return_tensors="pt" ).to(model.device) inputs.pop("token_type_ids", None) generated_ids = model.generate(**inputs, max_new_tokens=16) output_text = processor.decode(generated_ids[0][inputs["input_ids"].shape[1]:], skip_special_tokens=False) print(output_text) ``` ### Codes to create this repo: ```python import json from pathlib import Path import accelerate import torch from huggingface_hub import file_exists, hf_hub_download from transformers import ( AutoConfig, AutoModelForCausalLM, AutoProcessor, GenerationConfig, Glm4vForConditionalGeneration, Glm4vMoeForConditionalGeneration, set_seed, ) from transformers.models.glm4v_moe.modeling_glm4v_moe import Glm4vMoeTextTopkRouter source_model_id = "zai-org/GLM-4.5V" save_folder = "/tmp/tiny-random/glm-4.5v" processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True) processor.save_pretrained(save_folder) with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: config_json = json.load(f) config_json['text_config'].update({ "hidden_size": 32, "head_dim": 32, "intermediate_size": 128, "first_k_dense_replace": 1, "moe_intermediate_size": 64, "num_attention_heads": 2, "num_key_value_heads": 1, "num_hidden_layers": 2, # one dense, one moe "tie_word_embeddings": True, }) config_json['text_config']['rope_scaling']['mrope_section'] = [2, 2, 4] config_json['vision_config']['hidden_size'] = 64 config_json['vision_config']['depth'] = 2 config_json['vision_config']['num_heads'] = 2 config_json['vision_config']['intermediate_size'] = 128 config_json['vision_config']['out_hidden_size'] = config_json['text_config']['hidden_size'] with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) config = AutoConfig.from_pretrained( save_folder, trust_remote_code=True, ) print(config) torch.set_default_dtype(torch.bfloat16) model = Glm4vMoeForConditionalGeneration(config) torch.set_default_dtype(torch.float32) if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) set_seed(42) model = model.cpu() # cpu is more stable for random initialization across machines num_params = sum(p.numel() for p in model.parameters()) with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.1) print(name, p.shape, p.dtype, p.device, f'{p.numel() / num_params * 100: .2f}%') for _, m in sorted(model.named_modules()): if isinstance(m, Glm4vMoeTextTopkRouter): assert 'e_score_correction_bias' in m.state_dict() torch.nn.init.normal_(m.e_score_correction_bias, 0, 1) model.save_pretrained(save_folder) print(model) ``` ### Printing the model: ```text Glm4vMoeForConditionalGeneration( (model): Glm4vMoeModel( (visual): Glm4vMoeVisionModel( (embeddings): Glm4vMoeVisionEmbeddings( (position_embedding): Embedding(576, 64) ) (patch_embed): Glm4vMoeVisionPatchEmbed( (proj): Conv3d(3, 64, kernel_size=(2, 14, 14), stride=(2, 14, 14)) ) (rotary_pos_emb): Glm4vMoeVisionRotaryEmbedding() (blocks): ModuleList( (0-1): 2 x Glm4vMoeVisionBlock( (norm1): Glm4vMoeRMSNorm((64,), eps=1e-05) (norm2): Glm4vMoeRMSNorm((64,), eps=1e-05) (attn): Glm4vMoeVisionAttention( (qkv): Linear(in_features=64, out_features=192, bias=False) (proj): Linear(in_features=64, out_features=64, bias=False) ) (mlp): Glm4vMoeisionMlp( (gate_proj): Linear(in_features=64, out_features=32, bias=False) (up_proj): Linear(in_features=64, out_features=32, bias=False) (down_proj): Linear(in_features=32, out_features=64, bias=False) (act_fn): SiLU() ) ) ) (merger): Glm4vMoeVisionPatchMerger( (proj): Linear(in_features=32, out_features=32, bias=False) (post_projection_norm): LayerNorm((32,), eps=1e-05, elementwise_affine=True) (gate_proj): Linear(in_features=32, out_features=128, bias=False) (up_proj): Linear(in_features=32, out_features=128, bias=False) (down_proj): Linear(in_features=128, out_features=32, bias=False) (act1): GELU(approximate='none') (act_fn): SiLU() ) (post_conv_layernorm): Glm4vMoeRMSNorm((64,), eps=1e-05) (downsample): Conv2d(64, 32, kernel_size=(2, 2), stride=(2, 2)) (post_layernorm): Glm4vMoeRMSNorm((64,), eps=1e-05) ) (language_model): Glm4vMoeTextModel( (embed_tokens): Embedding(151552, 32, padding_idx=151329) (layers): ModuleList( (0): Glm4vMoeTextDecoderLayer( (self_attn): Glm4vMoeTextAttention( (q_proj): Linear(in_features=32, out_features=64, bias=True) (k_proj): Linear(in_features=32, out_features=32, bias=True) (v_proj): Linear(in_features=32, out_features=32, bias=True) (o_proj): Linear(in_features=64, out_features=32, bias=False) ) (mlp): Glm4vMoeTextMLP( (gate_proj): Linear(in_features=32, out_features=128, bias=False) (up_proj): Linear(in_features=32, out_features=128, bias=False) (down_proj): Linear(in_features=128, out_features=32, bias=False) (act_fn): SiLU() ) (input_layernorm): Glm4vMoeTextRMSNorm((32,), eps=1e-05) (post_attention_layernorm): Glm4vMoeTextRMSNorm((32,), eps=1e-05) ) (1): Glm4vMoeTextDecoderLayer( (self_attn): Glm4vMoeTextAttention( (q_proj): Linear(in_features=32, out_features=64, bias=True) (k_proj): Linear(in_features=32, out_features=32, bias=True) (v_proj): Linear(in_features=32, out_features=32, bias=True) (o_proj): Linear(in_features=64, out_features=32, bias=False) ) (mlp): Glm4vMoeTextMoE( (experts): ModuleList( (0-127): 128 x Glm4vMoeTextMLP( (gate_proj): Linear(in_features=32, out_features=64, bias=False) (up_proj): Linear(in_features=32, out_features=64, bias=False) (down_proj): Linear(in_features=64, out_features=32, bias=False) (act_fn): SiLU() ) ) (gate): Glm4vMoeTextTopkRouter() (shared_experts): Glm4vMoeTextMLP( (gate_proj): Linear(in_features=32, out_features=64, bias=False) (up_proj): Linear(in_features=32, out_features=64, bias=False) (down_proj): Linear(in_features=64, out_features=32, bias=False) (act_fn): SiLU() ) ) (input_layernorm): Glm4vMoeTextRMSNorm((32,), eps=1e-05) (post_attention_layernorm): Glm4vMoeTextRMSNorm((32,), eps=1e-05) ) ) (norm): Glm4vMoeRMSNorm((32,), eps=1e-05) (rotary_emb): Glm4vMoeTextRotaryEmbedding() ) ) (lm_head): Linear(in_features=32, out_features=151552, bias=False) ) ```
SoFairOA/software-mentions-models
SoFairOA
2025-08-11T15:44:36Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-13T10:47:05Z
--- license: apache-2.0 --- # Softcite models developed in the SoFAIR EU Project The goal of this GROBID module is to recognize any software mentions in scholar textual documents, publisher XML and PDF. It uses as training data the Softcite Dataset developed by James Howison Lab at the University of Texas at Austin. This annotated corpus and the present software text mining component have been developed supported by a grant from the Alfred P. Sloan foundation to improve credit for research software. Github: https://github.com/softcite/software-mentions Original author: Patrice Lopez Current authors: SoFAIR Project These models have been migrated from AWS S3.