modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-08 19:17:42
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 549
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-08 18:30:19
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
harshit345/wav2vec2-large-lv60-timit
|
harshit345
| 2021-12-11T22:38:44Z | 6 | 1 |
transformers
|
[
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"en",
"dataset:timit_asr",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
language: en
datasets:
- timit_asr
tags:
- audio
- automatic-speech-recognition
- speech
license: apache-2.0
---
# Wav2Vec2-Large-LV60-TIMIT
Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60)
on the [timit_asr dataset](https://huggingface.co/datasets/timit_asr).
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import soundfile as sf
import torch
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
model_name = "hktayal345/wav2vec2-large-lv60-timit-asr"
processor = Wav2Vec2Processor.from_pretrained(model_name)
model = Wav2Vec2ForCTC.from_pretrained(model_name)
model.eval()
dataset = load_dataset("timit_asr", split="test").shuffle().select(range(10))
char_translations = str.maketrans({"-": " ", ",": "", ".": "", "?": ""})
def prepare_example(example):
example["speech"], _ = sf.read(example["file"])
example["text"] = example["text"].translate(char_translations)
example["text"] = " ".join(example["text"].split()) # clean up whitespaces
example["text"] = example["text"].lower()
return example
dataset = dataset.map(prepare_example, remove_columns=["file"])
inputs = processor(dataset["speech"], sampling_rate=16000, return_tensors="pt", padding="longest")
with torch.no_grad():
predicted_ids = torch.argmax(model(inputs.input_values).logits, dim=-1)
predicted_ids[predicted_ids == -100] = processor.tokenizer.pad_token_id # see fine-tuning script
predicted_transcripts = processor.tokenizer.batch_decode(predicted_ids)
for reference, predicted in zip(dataset["text"], predicted_transcripts):
print("reference:", reference)
print("predicted:", predicted)
print("--")
```
Here's the output:
```
reference: the emblem depicts the acropolis all aglow
predicted: the amblum depicts the acropolis all a glo
--
reference: don't ask me to carry an oily rag like that
predicted: don't ask me to carry an oily rag like that
--
reference: they enjoy it when i audition
predicted: they enjoy it when i addition
--
reference: set aside to dry with lid on sugar bowl
predicted: set aside to dry with a litt on shoogerbowl
--
reference: a boring novel is a superb sleeping pill
predicted: a bor and novel is a suberb sleeping peel
--
reference: only the most accomplished artists obtain popularity
predicted: only the most accomplished artists obtain popularity
--
reference: he has never himself done anything for which to be hated which of us has
predicted: he has never himself done anything for which to be hated which of us has
--
reference: the fish began to leap frantically on the surface of the small lake
predicted: the fish began to leap frantically on the surface of the small lake
--
reference: or certain words or rituals that child and adult go through may do the trick
predicted: or certain words or rituals that child an adult go through may do the trick
--
reference: are your grades higher or lower than nancy's
predicted: are your grades higher or lower than nancies
--
```
## Fine-Tuning Script
You can find the script used to produce this model
[here](https://colab.research.google.com/drive/1gVaZhFuIXxBDN2pD0esW490azlbQtQ7C?usp=sharing).
**Note:** This model can be fine-tuned further;
[trainer_state.json](https://huggingface.co/harshit345/wav2vec2-large-lv60-timit/blob/main/trainer_state.json)
shows useful details, namely the last state (this checkpoint):
```json
{
"epoch": 29.51,
"eval_loss": 25.424150466918945,
"eval_runtime": 182.9499,
"eval_samples_per_second": 9.183,
"eval_wer": 0.1351704233095107,
"step": 8500
}
```
|
aXhyra/sentiment_trained_31415
|
aXhyra
| 2021-12-11T21:59:51Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: sentiment_trained_31415
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: sentiment
metrics:
- name: F1
type: f1
value: 0.7188262432133108
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sentiment_trained_31415
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2481
- F1: 0.7188
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.2140338797769864e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 31415
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.651 | 1.0 | 11404 | 0.6669 | 0.7141 |
| 0.6066 | 2.0 | 22808 | 0.8160 | 0.7198 |
| 0.503 | 3.0 | 34212 | 1.0659 | 0.7182 |
| 0.386 | 4.0 | 45616 | 1.2481 | 0.7188 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
harshit345/xlsr_wav2vec_english
|
harshit345
| 2021-12-11T21:22:37Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"en",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
language: en
datasets:
- common_voice
metrics:
- wer
- cer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: Wav2Vec2 English by Jonatas Grosman
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice en
type: common_voice
args: en
metrics:
- name: Test WER
type: wer
value: 21.53
- name: Test CER
type: cer
value: 9.66
---
# Wav2vec2-Large-English
Fine-tuned [facebook/wav2vec2-large](https://huggingface.co/facebook/wav2vec2-large) on English using the [Common Voice](https://huggingface.co/datasets/common_voice).
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows...
Using the [ASRecognition](https://github.com/jonatasgrosman/asrecognition) library:
```python
from asrecognition import ASREngine
asr = ASREngine("fr", model_path="jonatasgrosman/wav2vec2-large-english")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
transcriptions = asr.transcribe(audio_paths)
```
Writing your own inference script:
```python
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "en"
MODEL_ID = "jonatasgrosman/wav2vec2-large-english"
SAMPLES = 10
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = batch["sentence"].upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)
for i, predicted_sentence in enumerate(predicted_sentences):
print("-" * 100)
print("Reference:", test_dataset[i]["sentence"])
print("Prediction:", predicted_sentence)
```
| Reference | Prediction |
| ------------- | ------------- |
| "SHE'LL BE ALL RIGHT." | SHELL BE ALL RIGHT |
| SIX | SIX |
| "ALL'S WELL THAT ENDS WELL." | ALLAS WELL THAT ENDS WELL |
| DO YOU MEAN IT? | W MEAN IT |
| THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE, BUT STILL CAUSES REGRESSIONS. | THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE BUT STILL CAUSES REGRESTION |
| HOW IS MOZILLA GOING TO HANDLE AMBIGUITIES LIKE QUEUE AND CUE? | HOW IS MOSILLA GOING TO BANDL AND BE WHIT IS LIKE QU AND QU |
| "I GUESS YOU MUST THINK I'M KINDA BATTY." | RUSTION AS HAME AK AN THE POT |
| NO ONE NEAR THE REMOTE MACHINE YOU COULD RING? | NO ONE NEAR THE REMOTE MACHINE YOU COULD RING |
| SAUCE FOR THE GOOSE IS SAUCE FOR THE GANDER. | SAUCE FOR THE GUCE IS SAUCE FOR THE GONDER |
| GROVES STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD. | GRAFS STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD |
## Evaluation
The model can be evaluated as follows on the English (en) test data of Common Voice.
```python
import torch
import re
import librosa
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "en"
MODEL_ID = "jonatasgrosman/wav2vec2-large-english"
DEVICE = "cuda"
CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
"؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
"{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
"、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
"『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"]
test_dataset = load_dataset("common_voice", LANG_ID, split="test")
wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py
cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py
chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
model.to(DEVICE)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
predictions = [x.upper() for x in result["pred_strings"]]
references = [x.upper() for x in result["sentence"]]
print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
```
**Test Result**:
In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well. Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used.
| Model | WER | CER |
| ------------- | ------------- | ------------- |
| wav2vec2-large-xlsr-53-english | **18.98%** | **8.29%** |
| wav2vec2-large-xlsr-53-greek | 18.99% | 10.60% |
| wav2vec2-large-xlsr-53-hindi | 20.01% | 9.66% |
| wav2vec2-large-960h-lv60-english | 22.03% | 10.39% |
| wav2vec2-base-100h-lv60-english | 24.97% | 11.14% |
|
|
marcolatella/emotion_trained_31415
|
marcolatella
| 2021-12-11T21:18:38Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: emotion_trained_31415
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: emotion
metrics:
- name: F1
type: f1
value: 0.7213200335291519
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# emotion_trained_31415
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9166
- F1: 0.7213
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6.961635072722524e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 31415
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 204 | 0.6182 | 0.7137 |
| No log | 2.0 | 408 | 0.7472 | 0.6781 |
| 0.5084 | 3.0 | 612 | 0.8242 | 0.7236 |
| 0.5084 | 4.0 | 816 | 0.9166 | 0.7213 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
marcolatella/hate_trained_1234567
|
marcolatella
| 2021-12-11T20:59:59Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: hate_trained_1234567
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: hate
metrics:
- name: F1
type: f1
value: 0.7750768993843997
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hate_trained_1234567
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7927
- F1: 0.7751
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.7272339744854407e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 1234567
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.4835 | 1.0 | 563 | 0.4882 | 0.7534 |
| 0.3236 | 2.0 | 1126 | 0.5286 | 0.7590 |
| 0.2191 | 3.0 | 1689 | 0.6103 | 0.7717 |
| 0.1408 | 4.0 | 2252 | 0.7927 | 0.7751 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
marcolatella/hate_trained_31415
|
marcolatella
| 2021-12-11T20:49:00Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: hate_trained_31415
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: hate
metrics:
- name: F1
type: f1
value: 0.7718772273654051
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hate_trained_31415
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8507
- F1: 0.7719
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.7272339744854407e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 31415
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.4817 | 1.0 | 563 | 0.4975 | 0.7678 |
| 0.3311 | 2.0 | 1126 | 0.4965 | 0.7773 |
| 0.2303 | 3.0 | 1689 | 0.7102 | 0.7613 |
| 0.1429 | 4.0 | 2252 | 0.8507 | 0.7719 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
SupriyaArun/squeezebert-uncased-finetuned-squad-finetuned-squad
|
SupriyaArun
| 2021-12-11T20:16:19Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"squeezebert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
---
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: squeezebert-uncased-finetuned-squad-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# squeezebert-uncased-finetuned-squad-finetuned-squad
This model is a fine-tuned version of [SupriyaArun/squeezebert-uncased-finetuned-squad](https://huggingface.co/SupriyaArun/squeezebert-uncased-finetuned-squad) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
lfcc/bert-large-pt-archive
|
lfcc
| 2021-12-11T19:01:44Z | 9 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model_index:
- name: bert-large-pt-archive
results:
- task:
name: Token Classification
type: token-classification
metric:
name: Accuracy
type: accuracy
value: 0.9766762474673703
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-large-pt-archive
This model is a fine-tuned version of [neuralmind/bert-large-portuguese-cased](https://huggingface.co/neuralmind/bert-large-portuguese-cased) on an unkown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0869
- Precision: 0.9280
- Recall: 0.9541
- F1: 0.9409
- Accuracy: 0.9767
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0665 | 1.0 | 765 | 0.1020 | 0.8928 | 0.9566 | 0.9236 | 0.9696 |
| 0.0392 | 2.0 | 1530 | 0.0781 | 0.9229 | 0.9586 | 0.9404 | 0.9757 |
| 0.0201 | 3.0 | 2295 | 0.0809 | 0.9278 | 0.9550 | 0.9412 | 0.9767 |
| 0.0152 | 4.0 | 3060 | 0.0869 | 0.9280 | 0.9541 | 0.9409 | 0.9767 |
### Framework versions
- Transformers 4.10.0.dev0
- Pytorch 1.9.0+cu111
- Datasets 1.10.2
- Tokenizers 0.10.3
|
fractalego/fact-checking
|
fractalego
| 2021-12-11T16:12:13Z | 40 | 9 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"doi:10.57967/hf/0009",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
## Fact checking
This generative model - trained on FEVER - aims to predict whether a claim is consistent with the provided evidence.
### Installation and simple usage
One quick way to install it is to type
```bash
pip install fact_checking
```
and then use the following code:
```python
from transformers import (
GPT2LMHeadModel,
GPT2Tokenizer,
)
from fact_checking import FactChecker
_evidence = """
Justine Tanya Bateman (born February 19, 1966) is an American writer, producer, and actress . She is best known for her regular role as Mallory Keaton on the sitcom Family Ties (1982 -- 1989). Until recently, Bateman ran a production and consulting company, SECTION 5 . In the fall of 2012, she started studying computer science at UCLA.
"""
_claim = 'Justine Bateman is a poet.'
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
fact_checking_model = GPT2LMHeadModel.from_pretrained('fractalego/fact-checking')
fact_checker = FactChecker(fact_checking_model, tokenizer)
is_claim_true = fact_checker.validate(_evidence, _claim)
print(is_claim_true)
```
which gives the output
```bash
False
```
### Probabilistic output with replicas
The output can include a probabilistic component, obtained by iterating a number of times the output generation.
The system generates an ensemble of answers and groups them by Yes or No.
For example, one can ask
```python
from transformers import (
GPT2LMHeadModel,
GPT2Tokenizer,
)
from fact_checking import FactChecker
_evidence = """
Jane writes code for Huggingface.
"""
_claim = 'Jane is an engineer.'
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
fact_checking_model = GPT2LMHeadModel.from_pretrained('fractalego/fact-checking')
fact_checker = FactChecker(fact_checking_model, tokenizer)
is_claim_true = fact_checker.validate_with_replicas(_evidence, _claim)
print(is_claim_true)
```
with output
```bash
{'Y': 0.95, 'N': 0.05}
```
### Score on FEVER
The predictions are evaluated on a subset of the FEVER dev dataset,
restricted to the SUPPORTING and REFUTING options:
| precision | recall | F1|
| --- | --- | --- |
|0.94|0.98|0.96|
These results should be taken with many grains of salt. This is still a work in progress,
and there might be leakage coming from the underlining GPT2 model unnaturally raising the scores.
|
aXhyra/sentiment_trained
|
aXhyra
| 2021-12-11T15:01:36Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: sentiment_trained
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: sentiment
metrics:
- name: F1
type: f1
value: 0.7253452834090693
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sentiment_trained
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2671
- F1: 0.7253
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.2140338797769864e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.6647 | 1.0 | 11404 | 0.6424 | 0.7189 |
| 0.6018 | 2.0 | 22808 | 0.7947 | 0.7170 |
| 0.5004 | 3.0 | 34212 | 1.0811 | 0.7200 |
| 0.3761 | 4.0 | 45616 | 1.2671 | 0.7253 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
deepmind/vision-perceiver-conv
|
deepmind
| 2021-12-11T13:12:42Z | 3,895 | 6 |
transformers
|
[
"transformers",
"pytorch",
"perceiver",
"image-classification",
"dataset:imagenet",
"arxiv:2107.14795",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
datasets:
- imagenet
---
# Perceiver IO for vision (convolutional processing)
Perceiver IO model pre-trained on ImageNet (14 million images, 1,000 classes) at resolution 224x224. It was introduced in the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Jaegle et al. and first released in [this repository](https://github.com/deepmind/deepmind-research/tree/master/perceiver).
Disclaimer: The team releasing Perceiver IO did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
Perceiver IO is a transformer encoder model that can be applied on any modality (text, images, audio, video, ...). The core idea is to employ the self-attention mechanism on a not-too-large set of latent vectors (e.g. 256 or 512), and only use the inputs to perform cross-attention with the latents. This allows for the time and memory requirements of the self-attention mechanism to not depend on the size of the inputs.
To decode, the authors employ so-called decoder queries, which allow to flexibly decode the final hidden states of the latents to produce outputs of arbitrary size and semantics. For image classification, the output is a tensor containing the logits, of shape (batch_size, num_labels).
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/perceiver_architecture.jpg" alt="drawing" width="600"/>
<small> Perceiver IO architecture.</small>
As the time and memory requirements of the self-attention mechanism don't depend on the size of the inputs, the Perceiver IO authors can train the model directly on raw pixel values, rather than on patches as is done in ViT. This particular model employs a simple 2D conv+maxpool preprocessing network on the pixel values, before using the inputs for cross-attention with the latents.
By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by replacing the classification decoder.
## Intended uses & limitations
You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=deepmind/perceiver) to look for other fine-tuned versions on a task that may interest you.
### How to use
Here is how to use this model in PyTorch:
```python
from transformers import PerceiverFeatureExtractor, PerceiverForImageClassificationConvProcessing
import requests
from PIL import Image
feature_extractor = PerceiverFeatureExtractor.from_pretrained("deepmind/vision-perceiver-conv")
model = PerceiverForImageClassificationConvProcessing.from_pretrained("deepmind/vision-perceiver-conv")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
# prepare input
inputs = feature_extractor(image, return_tensors="pt").pixel_values
# forward pass
outputs = model(inputs)
logits = outputs.logits
print("Predicted class:", model.config.id2label[logits.argmax(-1).item()])
>>> should print Predicted class: tabby, tabby cat
```
## Training data
This model was pretrained on [ImageNet](http://www.image-net.org/), a dataset consisting of 14 million images and 1k classes.
## Training procedure
### Preprocessing
Images are center cropped and resized to a resolution of 224x224 and normalized across the RGB channels. Note that data augmentation was used during pre-training, as explained in Appendix H of the [paper](https://arxiv.org/abs/2107.14795).
### Pretraining
Hyperparameter details can be found in Appendix H of the [paper](https://arxiv.org/abs/2107.14795).
## Evaluation results
This model is able to achieve a top-1 accuracy of 82.1 on ImageNet-1k.
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-2107-14795,
author = {Andrew Jaegle and
Sebastian Borgeaud and
Jean{-}Baptiste Alayrac and
Carl Doersch and
Catalin Ionescu and
David Ding and
Skanda Koppula and
Daniel Zoran and
Andrew Brock and
Evan Shelhamer and
Olivier J. H{\'{e}}naff and
Matthew M. Botvinick and
Andrew Zisserman and
Oriol Vinyals and
Jo{\~{a}}o Carreira},
title = {Perceiver {IO:} {A} General Architecture for Structured Inputs {\&}
Outputs},
journal = {CoRR},
volume = {abs/2107.14795},
year = {2021},
url = {https://arxiv.org/abs/2107.14795},
eprinttype = {arXiv},
eprint = {2107.14795},
timestamp = {Tue, 03 Aug 2021 14:53:34 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2107-14795.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
|
fernandoperlar/preprocessing_image
|
fernandoperlar
| 2021-12-11T12:51:29Z | 0 | 0 | null |
[
"region:us"
] | null | 2022-03-02T23:29:05Z |
<br />
<p align="center">
<a href="https://github.com/FernandoPerezLara/image-preprocessing-layer">
<img src="https://huggingface.co/fernandoperlar/preprocessing_image/resolve/main/duck.png" alt="Logo" width="100" height="146">
</a>
<h3 align="center">Image Preprocessing Model</h3>
<p align="center">
Image preprocessing in a convolutional model
<br />
<a href="https://github.com/FernandoPerezLara/image-preprocessing-layer"><strong>Read more about the model »</strong></a>
<br />
<br />
<a href="https://github.com/FernandoPerezLara/image-preprocessing-layer">View Code</a>
·
<a href="https://github.com/FernandoPerezLara/image-preprocessing-layer/issues">Report Bug</a>
·
<a href="https://github.com/FernandoPerezLara/image-preprocessing-layer/discussions">Start a discussion</a>
</p>
</p>
<br />
The main objective of this project is to apply preprocessing to an image dataset while the model is being trained.
The solution has been taken because we do not want to apply preprocessing to the data before training (i.e. create a copy of the data but already preprocessed) because we want to apply data augmentation while the model trains.
The use of `Lambda` layers has been discarded because they do not allow the use of external libraries that do not work with tensors, since we want to use the functions provided by *OpenCV* and *NumPy*.
## Preprocessing
In this example found in this repository we wanted to divide the images from HSV color masks, where it is divided into:
* **Warm zones**: red and white colors are obtained.
* **Warm zones**: The green color is obtained.
* **Cold zones**: The color blue is obtained.
Within the code you can find the declaration of these filters as:
```python
filters = {
"original": lambda x: x,
"red": lambda x: data.getImageTensor(x, (330, 0, 0), (360, 255, 255)) + data.getImageTensor(x, (0, 0, 0), (50, 255, 255)),
"green": lambda x: data.getImageTensor(x, (60, 0, 0), (130, 255, 255)),
"blue": lambda x: data.getImageTensor(x, (180, 0, 0), (270, 255, 255)),
}
```
On the other hand, the preprocessing functions are located inside `scripts/Data.py` file as follows:
```python
def detectColor(self, image, lower, upper):
if tf.is_tensor(image):
temp_image = image.numpy().copy() # Used for training
else:
temp_image = image.copy() # Used for displaying the image
hsv_image = temp_image.copy()
hsv_image = cv.cvtColor(hsv_image, cv.COLOR_RGB2HSV)
mask = cv.inRange(hsv_image, lower, upper)
result = temp_image.copy()
result[np.where(mask == 0)] = 0
return result
def getImageTensor(self, images, lower, upper):
results = []
for img in images:
results.append(np.expand_dims(self.detectColor(img, lower, upper), axis=0))
return np.concatenate(results, axis=0)
```
## Model
The model used to solve our problem was a *CNN* with a preprocessing layer:

This model can be found in the `scripts/Model.py` file in the following function:
```python
def create_model():
class FilterLayer(layers.Layer):
def __init__(self, filter, **kwargs):
self.filter = filter
super(FilterLayer, self).__init__(name="filter_layer", **kwargs)
def call(self, image):
shape = image.shape
[image, ] = tf.py_function(self.filter, [image], [tf.float32])
image = backend.stop_gradient(image)
image.set_shape(shape)
return image
def get_config(self):
return super().get_config()
model = models.Sequential()
model.add(layers.Input(shape=(215, 538, 3)))
model.add(FilterLayer(filter=self.filter))
model.add(layers.Conv2D(32, (3, 3), activation="relu"))
model.add(layers.MaxPooling2D(pool_size=(2, 2)))
model.add(layers.Conv2D(32, (3, 3), activation="relu"))
model.add(layers.GlobalAveragePooling2D())
model.add(layers.Dropout(rate=0.4))
model.add(layers.Dense(32, activation="relu"))
model.add(layers.Dropout(rate=0.4))
model.add(layers.Dense(2, activation="softmax"))
return model
```
## Contributors
This work has been possible thanks to:
- [Fernando Pérez Lara](https://www.linkedin.com/in/fernandoperezlara/) ([**@FernandoPerezLara**](https://github.com/FernandoPerezLara)) for having developed the model to make this idea come true.
## License
Copyright (c) 2021 Fernando Pérez Lara.
Licensed and distributed under the [MIT](LICENSE.txt) license.
|
SupriyaArun/squeezebert-uncased-finetuned-squad
|
SupriyaArun
| 2021-12-11T11:44:12Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"squeezebert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
---
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: squeezebert-uncased-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# squeezebert-uncased-finetuned-squad
This model is a fine-tuned version of [squeezebert/squeezebert-uncased](https://huggingface.co/squeezebert/squeezebert-uncased) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0808
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.2624 | 1.0 | 5533 | 1.1648 |
| 1.0699 | 2.0 | 11066 | 1.0920 |
| 0.9463 | 3.0 | 16599 | 1.0808 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
Jeska/BertjeWDialDataALLQonly07
|
Jeska
| 2021-12-11T05:43:17Z | 10 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:04Z |
---
tags:
- generated_from_trainer
model-index:
- name: BertjeWDialDataALLQonly07
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BertjeWDialDataALLQonly07
This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1135
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 18.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.3589 | 1.0 | 871 | 2.2805 |
| 2.2563 | 2.0 | 1742 | 2.2501 |
| 2.1936 | 3.0 | 2613 | 2.2419 |
| 2.11 | 4.0 | 3484 | 2.2301 |
| 2.0311 | 5.0 | 4355 | 2.2320 |
| 1.969 | 6.0 | 5226 | 2.2276 |
| 1.9148 | 7.0 | 6097 | 2.1621 |
| 1.8569 | 8.0 | 6968 | 2.1876 |
| 1.7978 | 9.0 | 7839 | 2.2011 |
| 1.7602 | 10.0 | 8710 | 2.1280 |
| 1.7166 | 11.0 | 9581 | 2.1644 |
| 1.6651 | 12.0 | 10452 | 2.1246 |
| 1.6141 | 13.0 | 11323 | 2.1264 |
| 1.5759 | 14.0 | 12194 | 2.1143 |
| 1.5478 | 15.0 | 13065 | 2.0982 |
| 1.5311 | 16.0 | 13936 | 2.0993 |
| 1.5187 | 17.0 | 14807 | 2.0979 |
| 1.4809 | 18.0 | 15678 | 2.0338 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0
- Datasets 1.16.1
- Tokenizers 0.10.3
|
explosion/ru_udv25_russiangsd_trf
|
explosion
| 2021-12-11T04:20:44Z | 3 | 2 |
spacy
|
[
"spacy",
"token-classification",
"ru",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- ru
license: cc-by-sa-4.0
model-index:
- name: ru_udv25_russiangsd_trf
results:
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9691241875
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9824666439
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9472333875
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9444586858
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9209803507
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.887152136
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9604810997
---
UD v2.5 benchmarking pipeline for UD_Russian-GSD
| Feature | Description |
| --- | --- |
| **Name** | `ru_udv25_russiangsd_trf` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.2.1,<3.3.0` |
| **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (3014 labels for 6 components)</summary>
| Component | Labels |
| --- | --- |
| **`experimental_char_ner_tokenizer`** | `TOKEN` |
| **`senter`** | `I`, `S` |
| **`tagger`** | `!`, `''`, `'`, `(`, `)`, `,`, `-`, `--`, `.`, `.,`, `/`, `:`, `AFX`, `APOSTROPHE`, `AWP`, `CC`, `CD`, `DT`, `FW`, `IN`, `JJ`, `JJH`, `JJL`, `JJR`, `JJRL`, `JJS`, `NEG`, `NFP`, `NN`, `NNP`, `ORD`, `PRED`, `PRP`, `PRP$`, `RB`, `RBR`, `RBS`, `RP`, `SYM`, `UH`, `VB`, `VBC`, `VBG`, `VBNH`, `VBNL`, `WDT`, `WP`, `WRB`, `X`, ```` |
| **`morphologizer`** | `POS=ADP`, `Animacy=Inan\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Ins\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `POS=CCONJ`, `Animacy=Anim\|Case=Ins\|Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=PUNCT`, `Animacy=Anim\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Number=Plur\|POS=DET`, `Animacy=Inan\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Animacy=Anim\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Perf\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Loc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=SCONJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Animacy=Inan\|Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|Variant=Short\|VerbForm=Part\|Voice=Pass`, `Animacy=Anim\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Animacy=Inan\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON`, `POS=PART\|Polarity=Neg`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Variant=Short`, `Aspect=Imp\|POS=VERB\|VerbForm=Inf\|Voice=Mid`, `Animacy=Anim\|Case=Nom\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Inan\|Case=Nom\|NumType=Card\|POS=NUM`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|NumType=Card\|POS=NUM`, `Case=Nom\|NumType=Card\|POS=NUM`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=DET`, `POS=PART`, `Animacy=Inan\|Case=Ins\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Degree=Cmp\|POS=ADV`, `Animacy=Inan\|Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Animacy=Anim\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `POS=ADV`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|NumType=Card\|POS=NUM`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Gen\|NumType=Card\|POS=NUM`, `Animacy=Inan\|Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Degree=Pos\|POS=ADV`, `Animacy=Anim\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Imp\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Aspect=Imp\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Fin`, `Animacy=Inan\|Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|Variant=Short\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|POS=VERB\|Tense=Pres\|VerbForm=Conv\|Voice=Act`, `Animacy=Anim\|Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Acc\|Gender=Neut\|NumType=Card\|POS=NUM`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Conv\|Voice=Act`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Anim\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET`, `Animacy=Inan\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|Variant=Short\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3`, `Animacy=Inan\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Loc\|NumType=Card\|POS=NUM`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `POS=DET`, `Animacy=Inan\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Animacy=Anim\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Animacy=Anim\|Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|Variant=Short\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Ins\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=NUM`, `Animacy=Anim\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Animacy=Anim\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Animacy=Anim\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET`, `Aspect=Imp\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Fin`, `Animacy=Anim\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Degree=Pos\|Number=Plur\|POS=ADJ\|Variant=Short`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Fin`, `Aspect=Perf\|POS=VERB\|VerbForm=Inf\|Voice=Mid`, `Case=Loc\|Number=Plur\|POS=DET`, `Animacy=Inan\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Aspect=Imp\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Anim\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Dat\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Aspect=Imp\|Case=Dat\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Loc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Aspect=Perf\|Case=Nom\|Number=Plur\|POS=VERB\|Tense=Past\|Variant=Short\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Aspect=Perf\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|NumType=Card\|POS=NUM`, `Animacy=Inan\|Case=Gen\|Number=Plur\|POS=PRON`, `POS=SYM`, `Aspect=Perf\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Aspect=Imp\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Imp\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Case=Ins\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Nom\|Number=Plur\|POS=DET`, `Animacy=Inan\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET`, `Animacy=Anim\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Gen\|Number=Plur\|POS=DET`, `Animacy=Inan\|Aspect=Perf\|Case=Nom\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Animacy=Inan\|Aspect=Perf\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Anim\|Case=Ins\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3`, `Animacy=Inan\|Aspect=Imp\|Case=Nom\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET`, `Foreign=Yes\|POS=X`, `Animacy=Inan\|Case=Loc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Ins\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Loc\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Animacy=Inan\|Aspect=Imp\|Case=Ins\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET`, `Animacy=Anim\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3`, `Animacy=Anim\|Case=Nom\|NumType=Card\|POS=NUM`, `Animacy=Anim\|Case=Acc\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Animacy=Anim\|Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET`, `Aspect=Perf\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON`, `Animacy=Inan\|Case=Acc\|NumType=Card\|POS=NUM`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1`, `Animacy=Inan\|Case=Acc\|Number=Plur\|POS=PRON`, `Animacy=Inan\|Case=Acc\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Loc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|POS=PRON\|Reflex=Yes`, `Animacy=Inan\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Animacy=Inan\|Aspect=Perf\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Number=Plur\|POS=DET`, `Animacy=Anim\|Case=Dat\|Gender=Masc\|NumType=Card\|POS=NUM`, `Animacy=Anim\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Case=Ins\|Number=Plur\|POS=DET`, `Animacy=Anim\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|NumType=Card\|POS=NUM`, `Animacy=Inan\|Aspect=Imp\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Variant=Short`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3`, `Animacy=Inan\|Aspect=Perf\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3`, `Animacy=Inan\|Case=Ins\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Animacy=Inan\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3`, `Animacy=Anim\|Aspect=Perf\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET`, `Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Variant=Short`, `Degree=Cmp\|POS=ADJ`, `Animacy=Anim\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Aspect=Imp\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Animacy=Inan\|Aspect=Perf\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|POS=PRON\|Reflex=Yes`, `Animacy=Inan\|Case=Nom\|Number=Plur\|POS=PRON`, `Animacy=Anim\|Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Degree=Pos\|POS=VERB`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3`, `Animacy=Inan\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Animacy=Inan\|Aspect=Imp\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Imp\|Case=Loc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=3`, `Animacy=Inan\|Aspect=Imp\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=NUM`, `Animacy=Anim\|Case=Ins\|NumType=Card\|POS=NUM`, `Animacy=Inan\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON`, `Animacy=Inan\|Case=Nom\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Ins\|POS=PRON\|Reflex=Yes`, `Animacy=Inan\|Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Ins\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Aspect=Imp\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Animacy=Anim\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Gen\|Gender=Fem\|NumType=Card\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3`, `Animacy=Inan\|Aspect=Imp\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET`, `Animacy=Inan\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Ins\|NumType=Card\|POS=NUM`, `Animacy=Inan\|Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|Variant=Short`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|NumType=Card\|POS=NUM`, `Animacy=Anim\|Case=Nom\|Number=Plur\|POS=PRON`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Aspect=Imp\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Animacy=Anim\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Aspect=Imp\|Case=Nom\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Perf\|Case=Dat\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=PRON`, `Animacy=Anim\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Animacy=Anim\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Animacy=Anim\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Dat\|Gender=Masc\|NumType=Card\|POS=NUM`, `Animacy=Inan\|Case=Dat\|NumType=Card\|POS=NUM`, `POS=ADJ`, `Animacy=Inan\|Case=Ins\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Inan\|Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Aspect=Imp\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Variant=Short`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1`, `Animacy=Inan\|Aspect=Imp\|Case=Nom\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON`, `POS=NOUN`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON`, `Animacy=Inan\|Aspect=Perf\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `POS=X`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3`, `Abbr=Yes\|POS=PROPN`, `Animacy=Inan\|Aspect=Perf\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET`, `Animacy=Inan\|Case=Nom\|Gender=Fem\|NumType=Card\|POS=NUM`, `Animacy=Inan\|Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Animacy=Anim\|Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Inan\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Animacy=Anim\|Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Aspect=Imp\|Case=Dat\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Perf\|Case=Ins\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Animacy=Anim\|Case=Loc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Animacy=Anim\|Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Anim\|Case=Gen\|NumType=Card\|Number=Plur\|POS=NUM`, `Animacy=Inan\|Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Animacy=Anim\|Aspect=Perf\|Case=Nom\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Degree=Sup\|POS=ADV`, `Animacy=Anim\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=NOUN`, `Aspect=Imp\|Case=Nom\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Aspect=Imp\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET`, `Animacy=Anim\|Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|Variant=Short\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Aspect=Perf\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3`, `Animacy=Anim\|Case=Dat\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Inan\|Case=Dat\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Anim\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Aspect=Perf\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2`, `Case=Dat\|POS=PRON\|Reflex=Yes`, `Animacy=Inan\|Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Inan\|Aspect=Perf\|Case=Loc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Foreign=Yes\|POS=NOUN`, `POS=PROPN`, `Animacy=Inan\|Case=Acc\|Gender=Fem\|NumType=Card\|POS=NUM`, `Animacy=Inan\|Case=Loc\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Inan\|Case=Loc\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Animacy=Anim\|Aspect=Perf\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Aspect=Perf\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Nom\|Gender=Masc\|NumType=Card\|POS=NUM`, `Animacy=Anim\|Aspect=Perf\|Case=Nom\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1`, `Animacy=Inan\|Case=Acc\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|POS=AUX\|VerbForm=Inf`, `Animacy=Anim\|Aspect=Perf\|Case=Nom\|Number=Plur\|POS=VERB\|Tense=Past\|Variant=Short\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Aspect=Imp\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Animacy=Anim\|Case=Acc\|NumType=Card\|POS=NUM`, `Animacy=Inan\|Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Aspect=Imp\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Animacy=Anim\|Case=Ins\|Number=Plur\|POS=PRON`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Anim\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Animacy=Inan\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=PRON`, `Aspect=Imp\|POS=AUX\|VerbForm=Conv`, `Animacy=Anim\|Aspect=Imp\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `POS=AUX`, `Case=Dat\|NumType=Card\|POS=NUM`, `Animacy=Anim\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Aspect=Imp\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Aspect=Perf\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Anim\|Case=Gen\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Anim\|Case=Gen\|Number=Plur\|POS=PRON`, `Animacy=Inan\|Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3`, `Animacy=Inan\|Aspect=Imp\|Case=Ins\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=PRON`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|NumType=Card\|POS=NUM`, `Animacy=Anim\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Ins\|NumType=Card\|POS=NUM`, `Animacy=Inan\|Case=Dat\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Anim\|Case=Ins\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Anim\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON`, `Animacy=Inan\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON`, `Animacy=Inan\|Case=Dat\|Number=Plur\|POS=PRON`, `Animacy=Anim\|Case=Ins\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Anim\|Case=Gen\|NumType=Card\|POS=NUM`, `Case=Loc\|Number=Plur\|POS=PRON\|Person=3`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Aspect=Perf\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON`, `Animacy=Anim\|Case=Dat\|Number=Plur\|POS=PRON`, `Case=Ins\|Number=Plur\|POS=PRON\|Person=3`, `Animacy=Inan\|Aspect=Imp\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Animacy=Anim\|Aspect=Perf\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|POS=NUM`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Animacy=Anim\|Case=Dat\|NumType=Card\|POS=NUM`, `Animacy=Anim\|Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|POS=VERB\|VerbForm=Conv`, `Animacy=Inan\|Case=Acc\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Anim\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Aspect=Imp\|Case=Ins\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Ins\|Gender=Masc\|NumType=Card\|POS=NUM`, `Animacy=Inan\|Case=Nom\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3`, `Animacy=Inan\|Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Abbr=Yes\|POS=ADV`, `Animacy=Inan\|Aspect=Imp\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Perf\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Aspect=Imp\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET`, `Animacy=Inan\|Case=Gen\|Gender=Neut\|NumType=Card\|POS=NUM`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=2`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ins\|Number=Sing\|POS=PRON\|Person=1`, `Animacy=Inan\|Case=Ins\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3`, `Animacy=Inan\|Aspect=Imp\|Case=Nom\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Aspect=Imp\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Animacy=Anim\|Case=Gen\|Gender=Masc\|NumType=Card\|POS=NUM`, `Animacy=Inan\|Aspect=Perf\|Case=Ins\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Loc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=PART`, `Animacy=Anim\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=PRON`, `Animacy=Anim\|Case=Acc\|Number=Plur\|POS=DET`, `Animacy=Inan\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON`, `Animacy=Anim\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Ins\|Gender=Neut\|NumType=Card\|POS=NUM`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Aspect=Perf\|Case=Nom\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Inan\|Aspect=Imp\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Loc\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Anim\|Aspect=Imp\|Case=Nom\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Imp\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Aspect=Imp\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Gen\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Inan\|Case=Loc\|NumType=Card\|POS=NUM`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=ADJ\|Variant=Short`, `Animacy=Anim\|Case=Ins\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Animacy=Anim\|Aspect=Perf\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Perf\|Case=Ins\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Gen\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Anim\|Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Abbr=Yes\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3`, `Animacy=Anim\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Animacy=Anim\|Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Dat\|Gender=Fem\|NumType=Card\|POS=NUM`, `Case=Gen\|POS=PRON\|Reflex=Yes`, `Animacy=Inan\|Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|Variant=Short\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=DET`, `Animacy=Inan\|Case=Ins\|Gender=Masc\|NumType=Card\|POS=NUM`, `Animacy=Inan\|Case=Ins\|Gender=Fem\|NumType=Card\|POS=NUM`, `Animacy=Inan\|Aspect=Imp\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Anim\|Case=Nom\|Gender=Fem\|NumType=Card\|POS=NUM`, `Animacy=Anim\|Case=Dat\|Gender=Fem\|NumType=Card\|POS=NUM`, `Animacy=Inan\|Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `Animacy=Anim\|Case=Ins\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `Animacy=Anim\|Case=Gen\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Animacy=Anim\|Case=Gen\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Anim\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|NumType=Card\|POS=NUM`, `Animacy=Inan\|Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `POS=VERB`, `Animacy=Anim\|Aspect=Imp\|Case=Nom\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Loc\|Gender=Masc\|NumType=Card\|POS=NUM`, `Animacy=Anim\|Aspect=Imp\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Imp\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Loc\|Number=Plur\|POS=PRON`, `Animacy=Inan\|Case=Gen\|NumType=Card\|Number=Plur\|POS=NUM`, `Animacy=Anim\|Case=Nom\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET`, `Animacy=Anim\|Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Aspect=Perf\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Aspect=Imp\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=NUM`, `Animacy=Anim\|Case=Loc\|NumType=Card\|POS=NUM`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Animacy=Inan\|Case=Nom\|Gender=Neut\|NumType=Card\|POS=NUM`, `Animacy=Inan\|Aspect=Imp\|Case=Ins\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Loc\|Gender=Fem\|NumType=Card\|POS=NUM`, `Animacy=Anim\|Aspect=Perf\|Case=Ins\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Imp\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|Variant=Short\|VerbForm=Part\|Voice=Pass`, `Animacy=Anim\|Case=Voc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Ins\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Animacy=Inan\|Aspect=Imp\|Case=Ins\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Animacy=Anim\|Aspect=Imp\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Imp\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Imp\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON`, `Animacy=Anim\|Case=Loc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Anim\|Aspect=Imp\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Animacy=Anim\|Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Nom\|NumType=Card\|Number=Plur\|POS=NUM`, `Animacy=Inan\|Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=PRON`, `Animacy=Anim\|Aspect=Perf\|Case=Dat\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Acc\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Anim\|Aspect=Imp\|Case=Ins\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Anim\|Aspect=Perf\|Case=Loc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Anim\|Aspect=Perf\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Aspect=Imp\|Case=Dat\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON`, `Animacy=Inan\|Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Animacy=Anim\|Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Mid`, `Animacy=Inan\|Case=Ins\|Number=Plur\|POS=PRON`, `Animacy=Anim\|Aspect=Perf\|Case=Ins\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=1`, `Animacy=Inan\|Aspect=Imp\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Imp\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Aspect=Imp\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Foreign=Yes\|POS=PROPN`, `Animacy=Inan\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=NUM`, `Animacy=Inan\|Case=Loc\|Gender=Neut\|NumType=Card\|POS=NUM`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON`, `Animacy=Inan\|Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Animacy=Anim\|Case=Gen\|Gender=Fem\|NumType=Card\|POS=NUM`, `Animacy=Anim\|Case=Acc\|Gender=Fem\|NumType=Card\|POS=NUM`, `Animacy=Anim\|Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Aspect=Imp\|Case=Loc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Animacy=Anim\|Case=Nom\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Inan\|Aspect=Perf\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|POS=NUM`, `Animacy=Inan\|Aspect=Perf\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Aspect=Imp\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Animacy=Anim\|Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|Variant=Short\|VerbForm=Part\|Voice=Pass`, `Animacy=Anim\|Aspect=Perf\|Case=Dat\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Aspect=Imp\|Case=Loc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Imp\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Aspect=Imp\|Case=Ins\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin`, `Degree=Cmp\|NumType=Card\|POS=NUM`, `Animacy=Inan\|Aspect=Perf\|Case=Loc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Imp\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Animacy=Anim\|Aspect=Imp\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Aspect=Imp\|Case=Ins\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Imp\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Animacy=Inan\|Case=Acc\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=DET`, `Animacy=Inan\|Aspect=Imp\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Animacy=Anim\|Aspect=Imp\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Aspect=Perf\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|NumType=Card\|POS=NUM`, `Animacy=Anim\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON`, `Animacy=Inan\|Aspect=Imp\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NUM`, `Animacy=Inan\|Case=Nom\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=1`, `Animacy=Inan\|Case=Par\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Animacy=Anim\|Aspect=Imp\|Case=Nom\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Animacy=Inan\|Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Tense=Past\|Variant=Short\|VerbForm=Part\|Voice=Pass`, `Animacy=Anim\|Aspect=Imp\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Nom\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=DET`, `Animacy=Inan\|Case=Ins\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Nom\|NumType=Card\|POS=SYM`, `Animacy=Anim\|Aspect=Imp\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Anim\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Aspect=Imp\|Case=Nom\|Number=Plur\|POS=VERB\|Tense=Past\|Variant=Short\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|POS=VERB\|Tense=Pres\|VerbForm=Conv\|Voice=Mid`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3`, `Animacy=Inan\|Aspect=Imp\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Anim\|Case=Loc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Animacy=Inan\|Aspect=Imp\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Nom\|NumType=Card\|POS=PROPN`, `Animacy=Inan\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Animacy=Inan\|Aspect=Imp\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Number=Sing\|POS=PRON\|Person=2`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=2`, `Animacy=Inan\|Aspect=Imp\|Case=Nom\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1`, `Aspect=Imp\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Abbr=Yes\|POS=DET` |
| **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `dep`, `det`, `expl`, `fixed`, `flat`, `flat:foreign`, `flat:name`, `goeswith`, `iobj`, `list`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `nummod:entity`, `nummod:gov`, `obj`, `obl`, `obl:agent`, `orphan`, `parataxis`, `punct`, `xcomp` |
| **`experimental_edit_tree_lemmatizer`** | `1`, `2`, `4`, `6`, `8`, `10`, `12`, `14`, `16`, `19`, `21`, `23`, `27`, `29`, `31`, `35`, `37`, `39`, `42`, `45`, `49`, `50`, `53`, `55`, `59`, `61`, `62`, `64`, `66`, `68`, `70`, `72`, `75`, `77`, `78`, `81`, `83`, `85`, `87`, `89`, `91`, `94`, `97`, `99`, `101`, `105`, `106`, `107`, `109`, `110`, `112`, `114`, `116`, `118`, `119`, `121`, `123`, `126`, `128`, `130`, `132`, `133`, `135`, `137`, `139`, `0`, `141`, `145`, `147`, `148`, `150`, `152`, `154`, `156`, `158`, `160`, `162`, `166`, `168`, `169`, `171`, `173`, `175`, `177`, `179`, `181`, `182`, `184`, `186`, `188`, `189`, `192`, `193`, `194`, `195`, `197`, `198`, `199`, `202`, `204`, `205`, `206`, `207`, `208`, `210`, `211`, `213`, `216`, `217`, `219`, `221`, `223`, `224`, `226`, `228`, `229`, `231`, `233`, `234`, `237`, `239`, `241`, `242`, `244`, `245`, `247`, `249`, `251`, `253`, `256`, `257`, `260`, `262`, `264`, `266`, `268`, `270`, `272`, `275`, `277`, `279`, `283`, `287`, `289`, `290`, `293`, `294`, `296`, `298`, `300`, `302`, `305`, `307`, `310`, `313`, `315`, `317`, `319`, `322`, `324`, `326`, `328`, `330`, `332`, `335`, `337`, `339`, `340`, `341`, `345`, `346`, `348`, `350`, `353`, `355`, `357`, `360`, `362`, `364`, `366`, `368`, `370`, `372`, `374`, `376`, `378`, `380`, `381`, `384`, `386`, `388`, `391`, `393`, `395`, `397`, `398`, `400`, `401`, `402`, `404`, `408`, `409`, `410`, `412`, `413`, `415`, `416`, `418`, `420`, `421`, `423`, `424`, `426`, `428`, `430`, `432`, `434`, `436`, `438`, `439`, `441`, `443`, `446`, `449`, `453`, `455`, `457`, `248`, `459`, `460`, `462`, `464`, `465`, `467`, `470`, `472`, `474`, `477`, `479`, `480`, `482`, `484`, `485`, `486`, `489`, `491`, `493`, `496`, `498`, `500`, `502`, `504`, `505`, `506`, `508`, `509`, `512`, `513`, `515`, `517`, `520`, `522`, `524`, `525`, `527`, `529`, `531`, `532`, `533`, `535`, `536`, `540`, `542`, `544`, `546`, `548`, `549`, `551`, `552`, `555`, `276`, `556`, `557`, `559`, `560`, `562`, `564`, `565`, `567`, `569`, `570`, `571`, `572`, `574`, `575`, `577`, `578`, `580`, `582`, `584`, `586`, `589`, `591`, `593`, `595`, `597`, `599`, `601`, `602`, `172`, `604`, `605`, `606`, `608`, `610`, `611`, `612`, `614`, `615`, `76`, `617`, `618`, `619`, `621`, `117`, `623`, `624`, `626`, `628`, `629`, `631`, `635`, `637`, `638`, `639`, `641`, `642`, `644`, `645`, `647`, `648`, `650`, `652`, `654`, `656`, `658`, `659`, `661`, `663`, `665`, `666`, `668`, `669`, `671`, `675`, `677`, `678`, `679`, `681`, `682`, `683`, `686`, `687`, `689`, `691`, `693`, `695`, `697`, `699`, `701`, `22`, `703`, `705`, `707`, `710`, `714`, `716`, `718`, `720`, `723`, `725`, `727`, `729`, `731`, `732`, `734`, `737`, `739`, `740`, `743`, `745`, `747`, `748`, `751`, `753`, `754`, `757`, `758`, `760`, `762`, `764`, `766`, `768`, `770`, `772`, `773`, `775`, `776`, `778`, `779`, `780`, `781`, `782`, `783`, `785`, `787`, `789`, `791`, `793`, `794`, `796`, `797`, `800`, `801`, `802`, `803`, `804`, `806`, `807`, `808`, `809`, `810`, `812`, `816`, `818`, `819`, `821`, `823`, `825`, `826`, `827`, `829`, `833`, `834`, `835`, `836`, `838`, `842`, `843`, `844`, `846`, `848`, `849`, `850`, `852`, `854`, `856`, `858`, `860`, `862`, `864`, `866`, `867`, `868`, `870`, `871`, `873`, `874`, `875`, `878`, `880`, `881`, `883`, `887`, `889`, `890`, `891`, `894`, `895`, `896`, `898`, `900`, `902`, `903`, `904`, `907`, `909`, `910`, `911`, `912`, `914`, `916`, `917`, `918`, `919`, `920`, `924`, `925`, `927`, `928`, `931`, `933`, `934`, `936`, `937`, `935`, `938`, `939`, `942`, `944`, `946`, `948`, `949`, `950`, `951`, `953`, `954`, `956`, `958`, `959`, `960`, `962`, `964`, `966`, `968`, `970`, `972`, `974`, `976`, `978`, `980`, `981`, `982`, `984`, `985`, `987`, `988`, `989`, `990`, `991`, `992`, `993`, `995`, `996`, `997`, `998`, `1000`, `1001`, `1002`, `1004`, `1006`, `1008`, `1010`, `1012`, `1013`, `1016`, `1018`, `1019`, `1021`, `1023`, `1024`, `1025`, `1028`, `1030`, `1031`, `1033`, `1034`, `1036`, `1038`, `1039`, `1040`, `1041`, `1043`, `1045`, `1046`, `1048`, `1052`, `1054`, `1055`, `1056`, `1057`, `1062`, `1064`, `1065`, `1067`, `1069`, `1070`, `1072`, `1073`, `1074`, `1075`, `1076`, `1078`, `1080`, `1081`, `1083`, `1085`, `1087`, `1088`, `1089`, `1091`, `1092`, `1093`, `1094`, `1095`, `1096`, `1097`, `1098`, `1100`, `1102`, `1104`, `1106`, `1108`, `1109`, `1110`, `1111`, `1112`, `1113`, `1116`, `1117`, `1119`, `1121`, `1123`, `1124`, `1125`, `1127`, `1129`, `1132`, `1134`, `1135`, `1138`, `1139`, `1141`, `1143`, `1144`, `1145`, `1146`, `1147`, `1149`, `1152`, `1153`, `1155`, `1156`, `1157`, `1159`, `1161`, `1163`, `1165`, `1166`, `1168`, `1169`, `1172`, `1174`, `1176`, `1177`, `1179`, `1183`, `1184`, `1185`, `1186`, `1188`, `1190`, `1193`, `1195`, `1196`, `1200`, `1203`, `1204`, `1206`, `1207`, `1208`, `1209`, `1211`, `1212`, `1214`, `1216`, `1217`, `1218`, `1219`, `1221`, `1223`, `1224`, `1225`, `1227`, `1228`, `1230`, `1232`, `1234`, `1237`, `1238`, `1239`, `1241`, `1243`, `1244`, `1246`, `1248`, `1249`, `1251`, `1252`, `1255`, `1257`, `1259`, `1261`, `1262`, `1263`, `1265`, `1267`, `1268`, `1269`, `1273`, `1275`, `1277`, `1279`, `1281`, `1283`, `1285`, `1287`, `1289`, `1291`, `1293`, `1295`, `1297`, `1299`, `1302`, `1305`, `1306`, `1309`, `1311`, `1312`, `1313`, `1314`, `1315`, `1317`, `1319`, `1321`, `1322`, `1325`, `1326`, `1328`, `1330`, `1331`, `1333`, `325`, `1334`, `1336`, `1338`, `1339`, `1341`, `1343`, `1346`, `1347`, `1348`, `1349`, `1350`, `1352`, `1353`, `1354`, `1355`, `1357`, `1358`, `1359`, `1361`, `1363`, `1365`, `1368`, `1370`, `1371`, `1372`, `1374`, `1376`, `1377`, `1378`, `1380`, `1382`, `1384`, `1385`, `1386`, `1388`, `1389`, `1391`, `1393`, `1395`, `1396`, `1398`, `1399`, `1402`, `1404`, `1405`, `1120`, `1406`, `1408`, `1409`, `1410`, `1412`, `1413`, `1414`, `1415`, `1417`, `1419`, `1421`, `1423`, `1425`, `1426`, `1427`, `1429`, `1431`, `1433`, `1434`, `1436`, `1438`, `1439`, `1441`, `1443`, `1444`, `1445`, `1447`, `1448`, `1449`, `1450`, `1451`, `1452`, `1454`, `1457`, `1458`, `1459`, `1461`, `1463`, `1465`, `1467`, `1468`, `1469`, `1470`, `1472`, `1475`, `1477`, `1479`, `1480`, `1481`, `1483`, `1484`, `1487`, `1489`, `1491`, `1492`, `1493`, `1496`, `1497`, `1499`, `1501`, `1502`, `1504`, `1506`, `1507`, `1508`, `1509`, `1511`, `1513`, `1515`, `1516`, `1517`, `1518`, `1519`, `1521`, `1522`, `1523`, `1525`, `1527`, `1529`, `1531`, `1532`, `1534`, `1535`, `1536`, `1537`, `1539`, `1541`, `1543`, `1545`, `1546`, `1548`, `1549`, `1550`, `1551`, `1552`, `1553`, `1555`, `1557`, `1558`, `1559`, `1560`, `1562`, `1564`, `1566`, `1567`, `1569`, `1571`, `1573`, `1575`, `1576`, `1578`, `1580`, `1581`, `1582`, `1583`, `1584`, `1585`, `1586`, `1588`, `1590`, `1592`, `1593`, `1595`, `1599`, `1601`, `1602`, `1604`, `1606`, `1610`, `1611`, `1613`, `1614`, `1616`, `1617`, `1618`, `1619`, `1621`, `1623`, `1624`, `1626`, `1628`, `1629`, `1631`, `1632`, `1634`, `1635`, `1636`, `1637`, `1638`, `1640`, `1642`, `1644`, `1646`, `1647`, `1649`, `1651`, `1652`, `1654`, `1655`, `1659`, `1663`, `1665`, `1666`, `1667`, `1668`, `1671`, `1672`, `1674`, `1675`, `1677`, `1679`, `1681`, `1685`, `1687`, `1688`, `1689`, `1691`, `1692`, `1695`, `1696`, `1699`, `1701`, `1702`, `1703`, `1705`, `1706`, `1709`, `1710`, `1711`, `1712`, `1714`, `1715`, `1446`, `1718`, `1720`, `1721`, `1722`, `1723`, `1725`, `1727`, `1728`, `1730`, `1732`, `1733`, `1734`, `1736`, `1738`, `1739`, `1741`, `1743`, `1745`, `1746`, `1747`, `1748`, `1749`, `1750`, `1751`, `1753`, `1754`, `1757`, `1758`, `1760`, `1761`, `1763`, `1764`, `1766`, `1767`, `1768`, `1769`, `1770`, `1772`, `1774`, `1775`, `1776`, `1778`, `1780`, `1781`, `1783`, `1785`, `1788`, `1790`, `1792`, `1793`, `1794`, `1795`, `1797`, `1798`, `1800`, `1801`, `1802`, `1804`, `1806`, `1809`, `1810`, `1812`, `1815`, `1817`, `1818`, `1819`, `1821`, `1822`, `1823`, `1824`, `1825`, `1827`, `1828`, `1829`, `1833`, `1834`, `1835`, `1836`, `1837`, `1839`, `1842`, `1844`, `1845`, `1846`, `1848`, `1850`, `1851`, `1852`, `1853`, `1854`, `1855`, `1857`, `1859`, `1862`, `1863`, `1864`, `1865`, `1866`, `1867`, `1868`, `1871`, `1873`, `1874`, `1876`, `1877`, `1879`, `1880`, `1881`, `1885`, `1886`, `1888`, `1889`, `1891`, `1893`, `1894`, `1895`, `1896`, `1898`, `1900`, `1901`, `1902`, `1903`, `1904`, `1905`, `1906`, `1908`, `1911`, `1912`, `1914`, `1916`, `1918`, `1920`, `1921`, `1923`, `1925`, `1927`, `1928`, `1929`, `1931`, `1933`, `1934`, `1935`, `1936`, `1938`, `1940`, `1941`, `1943`, `1945`, `1947`, `1948`, `1950`, `1951`, `1952`, `1954`, `1956`, `1958`, `1960`, `1961`, `1963`, `1965`, `1969`, `1970`, `1971`, `1972`, `1973`, `1974`, `1975`, `1976`, `1977`, `1978`, `1980`, `1982`, `1983`, `1985`, `1987`, `1988`, `1989`, `1990`, `1992`, `1996`, `1997`, `1998`, `1999`, `2000`, `2001`, `717`, `2002`, `2004`, `2007`, `2008`, `2010`, `2011`, `2012`, `2013`, `2015`, `2016`, `2018`, `2020`, `2021`, `2022`, `2024`, `2025`, `2026`, `2029`, `2031`, `2032`, `2033`, `2034`, `2036`, `855`, `2038`, `2040`, `2041`, `2042`, `2044`, `2046`, `2047`, `2048`, `2050`, `2052`, `2054`, `2058`, `2062`, `2063`, `2066`, `2068`, `2070`, `2072`, `2074`, `2075`, `2076`, `2078`, `2079`, `2080`, `2081`, `2083`, `2084`, `2085`, `2088`, `2089`, `2090`, `2091`, `2092`, `2093`, `2094`, `2096`, `2097`, `2098`, `2099`, `2101`, `2104`, `2105`, `2106`, `2107`, `2109`, `2110`, `2115`, `2117`, `2118`, `2121`, `2122`, `2123`, `2124`, `2125`, `2126`, `2127`, `2128`, `2129`, `2130`, `2131`, `2134`, `2135`, `2137`, `2138`, `630`, `2140`, `2143`, `2145`, `2147`, `2148`, `2149`, `2151`, `2152`, `2153`, `2154`, `2155`, `2156`, `2157`, `2159`, `2162`, `2164`, `2165`, `2167`, `2169`, `2170`, `2171`, `2175`, `2176`, `2180`, `2181`, `2183`, `2185`, `2187`, `2189`, `2190`, `2191`, `2194`, `2195`, `2196`, `2198`, `2200`, `2201`, `2202`, `2203`, `2205`, `2206`, `2207`, `2209`, `2211`, `2212`, `2213`, `2215`, `2217`, `2218`, `2219`, `2220`, `2222`, `2223`, `2224`, `2226`, `2228`, `2230`, `2231`, `2233`, `2235`, `2237`, `2239`, `2240`, `2241`, `2242`, `2243`, `2246`, `2247`, `2249`, `2251`, `2252`, `2253`, `2255`, `2256`, `2260`, `2261`, `2263`, `2265`, `2266`, `2267`, `2268`, `2270`, `2271`, `2273`, `2274`, `2277`, `2278`, `2280`, `2282`, `2284`, `2285`, `2287`, `2288`, `2290`, `2291`, `2292`, `2293`, `2294`, `2295`, `2297`, `2299`, `2301`, `2302`, `2303`, `2305`, `2306`, `2308`, `2310`, `2311`, `2313`, `2314`, `2315`, `2316`, `2317`, `2318`, `2321`, `2322`, `2324`, `2325`, `2327`, `2328`, `2329`, `2331`, `2332`, `2333`, `2335`, `2326`, `2336`, `2337`, `2339`, `2340`, `2342`, `2345`, `180`, `2347`, `2348`, `2349`, `2351`, `2352`, `2353`, `2354`, `2356`, `2357`, `2358`, `2360`, `2362`, `2364`, `2366`, `2368`, `2370`, `2372`, `2376`, `2377`, `2378`, `2380`, `2382`, `2383`, `2384`, `2385`, `2386`, `2388`, `2389`, `2391`, `2392`, `2393`, `2395`, `2397`, `2399`, `2400`, `2401`, `2403`, `2405`, `2406`, `2407`, `2409`, `2411`, `2412`, `2413`, `2414`, `2416`, `2417`, `2418`, `2419`, `2420`, `2421`, `2423`, `2424`, `2426`, `2427`, `2428`, `2429`, `2431`, `2432`, `2433`, `2434`, `2435`, `2436`, `2438`, `2439`, `2441`, `2442`, `2444`, `2445`, `2447`, `2448`, `2450`, `2451`, `2452`, `2453`, `2455`, `2456`, `2458`, `2460`, `2462`, `2463`, `2465`, `2468`, `2469`, `2470`, `2471`, `2473`, `2474`, `2476`, `2477`, `2479`, `2480`, `2482`, `2484`, `2488`, `2489`, `2493`, `2496`, `2497`, `2498`, `2499`, `2501`, `2502`, `2503`, `2504`, `2505`, `2506`, `2507`, `2509`, `2510`, `2511`, `2514`, `2517`, `2518`, `2519`, `2520`, `2522`, `2525`, `2528`, `2530`, `2531`, `2532`, `2533`, `2535`, `2536`, `2537`, `2538`, `2540`, `2542`, `2543`, `2545`, `2546`, `2547`, `2551`, `2553`, `2555`, `2557`, `2558`, `2559`, `2561`, `2562`, `2563`, `2566`, `2569`, `2571`, `2572`, `2573`, `2577`, `2578`, `2582`, `2584`, `2586`, `2587`, `2589`, `2591`, `2593`, `2594`, `2598`, `2599`, `2600`, `2601`, `2602`, `2603`, `2604`, `2605`, `2606`, `2607`, `2610`, `2611`, `2612`, `2613`, `2614`, `2616`, `2617`, `2618`, `2619`, `2621`, `2622`, `2623`, `2625`, `2626`, `2628`, `2630`, `2632`, `2633`, `2635`, `2637`, `2639`, `2640`, `2642`, `2644`, `2646`, `2647`, `2648`, `2649`, `2650`, `2652`, `2653`, `2654`, `2655`, `2656`, `2657`, `2659`, `2660`, `2661`, `2662`, `2663`, `2665`, `2666`, `2667`, `2669`, `2671`, `2672`, `2674`, `2675`, `2677`, `2678`, `2679`, `2680`, `2681`, `2683`, `2686`, `2687`, `2689`, `2691`, `2695`, `2696`, `2699`, `2701`, `2703`, `2706`, `2707`, `2708`, `2710`, `2711`, `2712`, `2714`, `2716`, `2718`, `2719`, `2720`, `2721`, `2722`, `2723`, `2725`, `2727`, `2728`, `2729`, `2730`, `2731`, `2732`, `2733`, `96`, `2735`, `2737`, `2739`, `2740`, `2741`, `2742`, `2746`, `2748`, `2750`, `2752`, `2754`, `2755`, `2756`, `2757`, `2758`, `2759`, `2761`, `2762`, `2764`, `2765`, `2767`, `2768`, `2770`, `2771`, `2773`, `2774`, `2775`, `2776`, `528`, `2778`, `2779`, `2781`, `2783`, `2786`, `2788`, `2789`, `2790`, `2791`, `2792`, `2793`, `2795`, `2796`, `2798`, `2799`, `2800`, `2802`, `2803`, `2805`, `2806`, `2807`, `2808`, `2810`, `2812`, `2813`, `2814`, `2815`, `2816`, `2818`, `2820`, `2821`, `2822`, `2823`, `2824`, `2826`, `2827`, `2830`, `2831`, `2833`, `2834`, `2836`, `2837`, `2838`, `2840`, `2841`, `2843`, `2844`, `2846`, `2848`, `2849`, `2850`, `2851`, `2852`, `2853`, `2855`, `2856`, `2858`, `2860`, `2861`, `2408`, `1222`, `2864`, `2865`, `2866`, `2867`, `2869`, `2870`, `2872`, `2873`, `2874`, `2875`, `2876`, `2877`, `2879`, `2880`, `2883`, `2885`, `2886`, `2887`, `2888`, `2890`, `2891`, `2892`, `2893`, `2895`, `2896`, `2897`, `2900`, `2901`, `2902`, `2903`, `2904`, `2906`, `2907`, `2908`, `2909`, `2911`, `2913`, `2914`, `2917`, `2919`, `2920`, `2921`, `2922`, `2924`, `2926`, `2927`, `2929`, `2931`, `2932`, `2934`, `2936`, `2940`, `2942`, `2944`, `2945`, `2946`, `2948`, `2950`, `2951`, `2953`, `2955`, `2956`, `2957`, `2959`, `2960`, `2962`, `2963`, `2964`, `2965`, `2966`, `2968`, `2970`, `2971`, `2972`, `2973`, `2975`, `2976`, `2978`, `2979`, `2980`, `2981`, `2982`, `2984`, `2986`, `2987`, `2989`, `2990`, `2991`, `2992`, `2993`, `2994`, `2995`, `2997`, `2999`, `3000`, `3002`, `3003`, `3004`, `3006`, `3008`, `3009`, `3010`, `3013`, `3014`, `3017`, `3019`, `3022`, `3024`, `3026`, `3027`, `3028`, `3029`, `3030`, `3031`, `3034`, `3035`, `3038`, `3039`, `3041`, `3044`, `3046`, `3047`, `3049`, `3050`, `3052`, `3054`, `3056`, `3057`, `3058`, `3059`, `3060`, `3061`, `3062`, `3063`, `3065`, `3066`, `3068`, `3070`, `3071`, `3073`, `3074`, `3075`, `3077`, `3078`, `3079`, `3080`, `3083`, `3084`, `3087`, `3089`, `3092`, `706`, `1420`, `394`, `3093`, `3094`, `3097`, `3098`, `3099`, `3101`, `616`, `3102`, `3103`, `3104`, `3105`, `3106`, `3108`, `3110`, `3111`, `3112`, `3114`, `3115`, `3118`, `3121`, `3122`, `3124`, `3125`, `3129`, `3132`, `3134`, `3136`, `3140`, `3141`, `3142`, `3144`, `3147`, `3149`, `3150`, `3151`, `3153`, `3155`, `3156`, `3158`, `3159`, `3160`, `3161`, `3162`, `3165`, `3166`, `3169`, `3170`, `3171`, `3173`, `3174`, `3175`, `3177`, `3178`, `3179`, `3180`, `3183`, `3184`, `3186`, `3187`, `3188`, `3189`, `3192`, `3194`, `3195`, `3197`, `3198`, `3199`, `3200`, `3202`, `3205`, `3206`, `3209`, `3210`, `3211`, `3212`, `3213`, `3215`, `3216`, `3217`, `3218`, `3219`, `3222`, `3224`, `3225`, `3226`, `3227`, `3228`, `3229`, `3231`, `201`, `3232`, `3233`, `3234`, `3235`, `3237`, `3239`, `3241`, `3242`, `3243`, `3245`, `3246`, `3247`, `3248`, `3249`, `3250`, `3253`, `3255`, `3257`, `3258`, `3259`, `3260`, `3261`, `3264`, `3265`, `3267`, `3268`, `3269`, `3270`, `3272`, `3273`, `3274`, `3275`, `3277`, `3278`, `3279`, `3280`, `3282`, `3284`, `3285`, `3286`, `3289`, `3291`, `3293`, `3295`, `3296`, `3297`, `3298`, `3299`, `3301`, `3305`, `3306`, `3307`, `3308`, `3310`, `3312`, `3313`, `3314`, `3315`, `3316`, `3317`, `3318`, `3319`, `3321`, `3322`, `3324`, `3325`, `3327`, `3328`, `3329`, `3330`, `3331`, `3333`, `3334`, `2307`, `3336`, `3338`, `3340`, `3341`, `3342`, `3344`, `3345`, `3347`, `3349`, `3350`, `3351`, `3353`, `3354`, `3355`, `3356`, `3357`, `3358`, `3359`, `3361`, `3362`, `3364`, `3369`, `3370`, `3371`, `3373`, `3375`, `3376`, `3377`, `3379`, `3381`, `3382`, `3384`, `3386`, `3388`, `3389`, `3391`, `3392`, `3394`, `3395`, `3397`, `3398`, `3400`, `3403`, `3404`, `3405`, `3407`, `3409`, `3411`, `3412`, `3413`, `3415`, `3417`, `3419`, `3421`, `3422`, `3423`, `3424`, `3425`, `3426`, `3428`, `3429`, `3432`, `3433`, `3434`, `3435`, `3436`, `3437`, `3439`, `3441`, `3443`, `3446`, `3448`, `3449`, `3450`, `3451`, `3452`, `3453`, `3454`, `3455`, `3456`, `3457`, `3458`, `3459`, `3461`, `3463`, `1044`, `3464`, `3465`, `3466`, `3467`, `3468`, `3470`, `3472`, `3473`, `3474`, `3475`, `3476`, `3477`, `3479`, `3480`, `3482`, `3483`, `3485`, `3486`, `3487`, `3489`, `3490`, `3493`, `3494`, `3495`, `3496`, `3497`, `3498`, `3500`, `3502`, `3504`, `3505`, `3506`, `3508`, `3509`, `3511`, `3512`, `3514`, `3515`, `3517`, `3518`, `3519`, `3521`, `3522`, `3523`, `3524`, `3525`, `3526`, `3528`, `3529`, `3531`, `3532`, `3534`, `3536`, `3537`, `3538`, `3539`, `3540`, `3541`, `3542`, `3543`, `3544`, `3545`, `3547`, `3549`, `3550`, `3551`, `3552`, `3553`, `3556`, `3558`, `3561`, `3563`, `3564`, `3566`, `3567`, `3569`, `3571`, `3574`, `3576`, `3577`, `3579`, `3581`, `3583`, `3584`, `3587`, `3588`, `3589`, `3592`, `3593`, `3594`, `3595`, `3597`, `3600`, `3601`, `3602`, `3603`, `3604`, `3605`, `3606`, `3609`, `3610`, `3612`, `3613`, `3614`, `3615`, `3616`, `3617`, `3619`, `3624`, `3627`, `3628`, `3630`, `3632`, `3634`, `3636`, `3637`, `3640`, `3642`, `3643`, `3645`, `3646`, `3648`, `3650`, `3654`, `3655`, `3656`, `3658`, `3659`, `3661`, `3663`, `3665`, `3666`, `3667`, `3669`, `3670`, `3672`, `3673`, `3674`, `3675`, `3677`, `3679`, `3680`, `3681`, `3682`, `3683`, `3684`, `3685`, `3687`, `3688`, `3689`, `3690`, `3691`, `3693`, `3696`, `3697`, `3698`, `3699`, `3700` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_F` | 99.49 |
| `TOKEN_P` | 99.48 |
| `TOKEN_R` | 99.50 |
| `TOKEN_ACC` | 99.94 |
| `SENTS_F` | 96.05 |
| `SENTS_P` | 95.56 |
| `SENTS_R` | 96.55 |
| `TAG_ACC` | 96.91 |
| `POS_ACC` | 98.25 |
| `MORPH_ACC` | 94.72 |
| `DEP_UAS` | 92.10 |
| `DEP_LAS` | 88.72 |
| `LEMMA_ACC` | 94.45 |
|
explosion/ga_udv25_irishidt_trf
|
explosion
| 2021-12-11T03:35:58Z | 6 | 0 |
spacy
|
[
"spacy",
"token-classification",
"ga",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- ga
license: cc-by-sa-4.0
model-index:
- name: ga_udv25_irishidt_trf
results:
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.933360016
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9216991044
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.689782848
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.8981490745
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.8361372813
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.7464812426
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9756637168
---
UD v2.5 benchmarking pipeline for UD_Irish-IDT
| Feature | Description |
| --- | --- |
| **Name** | `ga_udv25_irishidt_trf` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.2.1,<3.3.0` |
| **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (1662 labels for 6 components)</summary>
| Component | Labels |
| --- | --- |
| **`experimental_char_ner_tokenizer`** | `TOKEN` |
| **`senter`** | `I`, `S` |
| **`tagger`** | `!`, `.`, `...`, `?`, `Abr`, `Ad`, `Adj`, `Art`, `CM`, `CU`, `Cmp`, `Cmpd`, `CmpdNoGen`, `Comp`, `Cond`, `Coord`, `Cop`, `Cp`, `Deg`, `Dem`, `Det`, `Dir`, `Foreign`, `FutInd`, `Gn`, `Idf`, `Imper`, `Inf`, `Item`, `Itj`, `Its`, `Loc`, `Nm`, `Noun`, `Num`, `PastImp`, `PastInd`, `Pat`, `Pers`, `Poss`, `Prep`, `PresImp`, `PresInd`, `PresSubj`, `Pron`, `Punct`, `Q`, `Ref`, `Rel`, `Simp`, `Subord`, `Subst`, `Sup`, `Temp`, `Unknown`, `VD`, `VI`, `VT`, `VTI`, `Vb`, `Voc`, `Web`, `cionn` |
| **`morphologizer`** | `POS=ADP`, `Case=NomAcc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=AUX\|Tense=Pres\|VerbForm=Cop`, `Number=Sing\|POS=PRON\|Person=3`, `Mood=Ind\|POS=VERB\|Tense=Fut`, `Definite=Def\|Number=Sing\|POS=DET\|PronType=Art`, `Case=NomAcc\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=SCONJ`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3`, `POS=PART\|PartType=Inf`, `POS=NOUN\|VerbForm=Inf`, `Number=Sing\|POS=ADP\|PronType=Art`, `POS=ADV`, `POS=PUNCT`, `POS=PART\|PartType=Vb\|Polarity=Neg`, `Form=Len\|Mood=Ind\|POS=VERB\|Polarity=Neg\|Tense=Fut`, `Number=Sing\|POS=NOUN`, `POS=CCONJ`, `Case=NomAcc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=NomAcc\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Int\|POS=AUX\|Polarity=Neg\|Tense=Pres\|VerbForm=Cop`, `Degree=Pos\|POS=ADJ`, `POS=PART\|PartType=Vb\|PronType=Rel`, `Form=Len\|Mood=Cnd\|POS=VERB`, `Case=NomAcc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Number=Sing\|POS=ADP\|Person=1`, `Case=NomAcc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Form=Emp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|PronType=Rel\|Tense=Pres`, `Case=NomAcc\|Form=Ecl\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Definite=Def\|Number=Plur\|POS=DET\|PronType=Art`, `Case=NomAcc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Number=Sing\|POS=DET\|Person=1\|Poss=Yes`, `POS=PART\|PartType=Cmpl`, `Form=Ecl\|Mood=Ind\|POS=VERB\|Tense=Past`, `POS=PRON\|PronType=Dem`, `POS=PART\|PartType=Vb`, `Form=Len\|Mood=Ind\|POS=VERB\|Tense=Past`, `Number=Sing\|POS=PRON\|Person=2`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Number=Sing\|POS=PART\|PartType=Comp`, `Degree=Cmp,Sup\|POS=ADJ`, `Case=NomAcc\|Form=Len\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Form=Ecl\|Mood=Ind\|POS=VERB\|Tense=Pres`, `NumType=Card\|POS=NUM`, `POS=ADJ\|VerbForm=Part`, `Number=Plur\|POS=ADP\|Person=1`, `Form=Len\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|Tense=Pres`, `POS=PRON\|PronType=Int`, `Mood=Ind\|POS=VERB\|PronType=Rel\|Tense=Pres`, `Mood=Ind\|POS=VERB\|Polarity=Neg\|Tense=Pres`, `Dialect=Munster\|POS=X`, `POS=ADP\|PrepForm=Cmpd`, `Case=NomAcc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=NomAcc\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Form=Ecl\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past`, `POS=NOUN\|VerbForm=Vnoun`, `Gender=Masc\|Number=Sing\|POS=ADP\|Person=3`, `Gender=Masc\|Number=Sing\|POS=ADP\|Person=3\|Poss=Yes`, `Case=Gen\|Gender=Masc\|NounType=Strong\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Form=Len\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Form=Len\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past`, `Number=Plur\|POS=DET\|Person=3\|Poss=Yes`, `Case=NomAcc\|Form=Ecl\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Mood=Ind\|POS=VERB\|Tense=Past\|Voice=Auto`, `Number=Plur\|POS=PRON\|Person=3`, `Case=Gen\|Definite=Def\|Gender=Masc\|NounType=Weak\|Number=Plur\|POS=NOUN`, `Form=Len\|POS=NOUN\|VerbForm=Inf`, `POS=PART\|PartType=Ad`, `POS=PART\|PartType=Pat`, `POS=NUM`, `Mood=Ind\|POS=VERB\|Tense=Pres`, `Case=NomAcc\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Form=Len\|POS=VERB`, `POS=PRON\|Reflex=Yes`, `POS=VERB`, `Case=NomAcc\|Form=Len\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=NomAcc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=SCONJ\|VerbForm=Cop`, `Form=Len\|Mood=Ind\|POS=VERB\|Polarity=Neg\|Tense=Past`, `Gender=Masc\|Number=Sing\|POS=ADP\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=NomAcc\|Form=HPref\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=DET\|PronType=Dem`, `Form=Len\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past`, `Case=NomAcc\|Form=HPref\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Definite=Def\|Gender=Masc\|NounType=Strong\|Number=Plur\|POS=NOUN`, `Case=Gen\|Definite=Def\|Gender=Fem\|NounType=Strong\|Number=Plur\|POS=NOUN`, `Case=Dat\|Form=Ecl\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Number=Plur\|POS=ADP\|Person=3`, `POS=PART\|PartType=Comp`, `POS=PART`, `Case=NomAcc\|Form=Ecl\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=NomAcc\|Form=Len\|Gender=Fem\|Number=Plur\|POS=NOUN`, `POS=DET\|PronType=Ind`, `Form=Len\|Mood=Ind\|POS=VERB\|Tense=Fut\|Voice=Auto`, `Case=Gen\|Gender=Fem\|NounType=Strong\|Number=Plur\|POS=NOUN`, `Form=Len\|Mood=Ind\|POS=VERB\|Tense=Pres\|Voice=Auto`, `POS=X`, `POS=PART\|PronType=Rel`, `Form=VF\|POS=AUX\|Tense=Pres\|VerbForm=Cop`, `Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes`, `POS=AUX\|Polarity=Neg\|PronType=Rel\|Tense=Pres\|VerbForm=Cop`, `Form=Len\|Mood=Ind\|POS=VERB\|Tense=Pres`, `Case=Gen\|Form=Ecl\|Gender=Fem\|NounType=Strong\|Number=Plur\|POS=NOUN`, `POS=PART\|PartType=Vb\|Polarity=Neg\|PronType=Rel`, `Number=Sing\|POS=PRON\|PronType=Int`, `Abbr=Yes\|POS=X`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=AUX\|Tense=Past\|VerbForm=Cop`, `Number=Sing\|POS=PRON\|Person=1`, `Form=Ecl\|Mood=Ind\|POS=VERB\|Tense=Pres\|Voice=Auto`, `Case=NomAcc\|Form=HPref\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Form=Len\|Mood=Ind\|POS=VERB\|Tense=Fut`, `Case=Gen\|POS=NOUN\|VerbForm=Inf`, `Form=HPref\|POS=DET\|PronType=Ind`, `Case=NomAcc\|Form=Len\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Number=Plur\|POS=PRON\|Person=1`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=NomAcc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Fem\|NounType=Weak\|Number=Plur\|POS=NOUN`, `Case=Gen\|NounType=Strong\|Number=Plur\|POS=ADJ`, `Foreign=Yes\|POS=X`, `Mood=Ind\|POS=VERB\|Tense=Fut\|Voice=Auto`, `Number=Plur\|POS=ADP\|Person=3\|PronType=Emp`, `Mood=Ind\|POS=VERB\|Tense=Past`, `POS=PART\|PartType=Cmpl\|Polarity=Neg\|Tense=Past`, `Number=Plur\|POS=ADP\|Person=3\|Poss=Yes`, `Form=Ecl\|POS=NOUN\|VerbForm=Inf`, `Case=Gen\|Form=Len\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Form=Len\|NumType=Card\|POS=NUM`, `Abbr=Yes\|POS=NUM`, `Case=NomAcc\|NounType=NotSlender\|Number=Plur\|POS=ADJ`, `Case=NomAcc\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Masc\|NounType=Weak\|Number=Plur\|POS=PROPN`, `Mood=Ind\|POS=VERB\|Tense=Pres\|Voice=Auto`, `POS=AUX\|Polarity=Neg\|Tense=Past\|VerbForm=Cop`, `Degree=Pos\|Form=Len\|POS=ADJ`, `Form=Len\|NumType=Ord\|POS=NUM`, `Number=Plur\|POS=ADP\|PronType=Art`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2`, `Form=Len\|Number=Plur\|POS=ADP\|Person=1`, `Case=NomAcc\|Form=Len\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=NomAcc\|Form=Len\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Degree=Pos\|Form=Ecl\|POS=ADJ`, `Mood=Imp\|POS=PART\|PartType=Vb`, `Mood=Cnd\|POS=VERB`, `Number=Sing\|POS=ADP\|Person=1\|Poss=Yes`, `Form=Ecl\|Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1`, `Form=Len\|Mood=Imp\|POS=VERB\|Tense=Past\|Voice=Auto`, `Case=Gen\|Gender=Masc\|NounType=Weak\|Number=Plur\|POS=NOUN`, `POS=PART\|PartType=Num`, `Form=HPref\|NumType=Card\|POS=NUM`, `Form=Len\|Mood=Sub\|POS=VERB\|Polarity=Neg\|Tense=Pres`, `Case=Gen\|Form=Len\|Gender=Masc\|NounType=Strong\|Number=Plur\|POS=NOUN`, `Gender=Fem\|Number=Sing\|POS=ADP\|Person=3`, `Number=Sing\|POS=PRON\|Person=2\|PronType=Emp`, `POS=PART\|PartType=Vb\|Tense=Past`, `Case=NomAcc\|Form=Ecl\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Definite=Def\|Dialect=Ulster\|POS=X`, `Form=Ecl\|Mood=Ind\|POS=VERB\|Tense=Fut`, `POS=PART\|PartType=Vb\|Polarity=Neg\|Tense=Past`, `POS=PART\|PartType=Cmpl\|Polarity=Neg`, `Case=NomAcc\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=ADP\|Poss=Yes`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Form=Len\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Form=Len\|Mood=Imp\|POS=VERB\|Voice=Auto`, `Definite=Def\|POS=DET`, `POS=AUX\|PronType=Rel\|Tense=Pres\|VerbForm=Cop`, `Case=NomAcc\|NounType=Slender\|Number=Plur\|POS=ADJ`, `POS=AUX\|Polarity=Neg\|PronType=Rel\|Tense=Past\|VerbForm=Cop`, `Form=Ecl\|Mood=Cnd\|POS=VERB`, `Case=Gen\|Form=Ecl\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=AUX\|Polarity=Neg\|Tense=Pres\|VerbForm=Cop`, `Form=Len\|Mood=Imp\|POS=VERB\|Tense=Past`, `Case=Gen\|Form=Ecl\|Gender=Masc\|NounType=Strong\|Number=Plur\|POS=NOUN`, `Number=Sing\|POS=ADP\|Person=2`, `Degree=Pos\|Form=HPref\|POS=ADJ`, `Dialect=Munster\|POS=DET\|PronType=Dem`, `Gender=Fem\|Number=Sing\|POS=ADP\|Person=3\|Poss=Yes`, `Case=NomAcc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Number=Plur\|POS=ADP\|Person=1\|PronType=Emp`, `POS=PART\|PartType=Vb\|Polarity=Neg\|PronType=Rel\|Tense=Past`, `POS=PRON\|PronType=Ind`, `Number=Plur\|POS=ADP\|Person=1\|Poss=Yes`, `Gender=Fem\|Number=Sing\|POS=ADP\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|NounType=Weak\|Number=Plur\|POS=ADJ`, `Form=Emp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres`, `Case=NomAcc\|Form=Len\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Form=VF\|POS=AUX\|Polarity=Neg\|Tense=Past\|VerbForm=Cop`, `Case=NomAcc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Gen\|Gender=Fem\|POS=PROPN`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3`, `Form=VF\|POS=AUX\|Polarity=Neg\|PronType=Rel\|Tense=Past\|VerbForm=Cop`, `Case=NomAcc\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Form=Ecl\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=NomAcc\|Form=Emp\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Form=Ecl\|Gender=Masc\|Number=Plur\|POS=PROPN`, `POS=PROPN`, `Mood=Imp\|POS=PART\|PartType=Vb\|Polarity=Neg`, `Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes`, `Form=Ecl\|NumType=Card\|POS=NUM`, `Case=Gen\|Form=Len\|Gender=Masc\|NounType=Weak\|Number=Plur\|POS=NOUN`, `Dialect=Munster\|Mood=Ind\|POS=X\|Tense=Past\|Voice=Auto`, `Number=Sing\|POS=DET\|Person=2\|Poss=Yes`, `Case=Gen\|Number=Sing\|POS=NOUN`, `Mood=Ind\|POS=VERB\|Polarity=Neg\|Tense=Past\|Voice=Auto`, `Definite=Def\|NumType=Card\|POS=NUM`, `Form=Len\|Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1`, `Case=NomAcc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Form=Len\|Mood=Ind\|POS=VERB\|Polarity=Neg\|Tense=Pres`, `Form=Len\|Mood=Cnd\|POS=VERB\|Voice=Auto`, `Mood=Imp\|POS=VERB\|Tense=Past`, `Case=Gen\|Form=Ecl\|Gender=Masc\|NounType=Weak\|Number=Plur\|POS=NOUN`, `Number=Plur\|POS=ADP\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=PROPN`, `Form=Len\|Mood=Ind\|POS=VERB\|Tense=Past\|Voice=Auto`, `Definite=Def\|Form=Ecl\|POS=DET`, `Number=Plur\|POS=ADJ`, `Form=Ecl\|Mood=Ind\|POS=VERB\|Polarity=Neg\|Tense=Fut\|Voice=Auto`, `Form=VF\|POS=AUX\|Tense=Past\|VerbForm=Cop`, `Form=Len\|Number=Sing\|POS=NOUN`, `POS=AUX`, `Gender=Masc\|POS=PRON\|Person=3`, `Case=NomAcc\|Form=Len\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Gen\|Form=Len\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Mood=Int\|POS=PART\|PartType=Vb\|Polarity=Neg`, `Form=Ecl\|Mood=Ind\|POS=VERB\|Polarity=Neg\|Tense=Pres`, `Form=Ecl\|Mood=Imp\|POS=VERB\|Tense=Past`, `Number=Sing\|POS=PRON\|Person=1\|PronType=Emp`, `Case=NomAcc\|Foreign=Yes\|Gender=Fem\|Number=Sing\|POS=X`, `Dialect=Munster\|Form=Len\|Mood=Ind\|Number=Sing\|POS=X\|Person=1\|Tense=Past`, `POS=PART\|PartType=Vb\|PronType=Rel\|Tense=Past`, `Form=Len\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2`, `POS=PART\|PartType=Voc`, `Form=HPref\|POS=NOUN\|VerbForm=Inf`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Degree=Cmp,Sup\|Form=Len\|POS=ADJ`, `POS=NOUN`, `Form=Ecl\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres`, `Case=NomAcc\|Form=Ecl\|Gender=Fem\|Number=Sing\|POS=PROPN`, `POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Emp`, `Number=Plur\|POS=ADP\|Person=2`, `POS=SCONJ\|Tense=Past\|VerbForm=Cop`, `NumType=Ord\|POS=NUM`, `Mood=Int\|POS=AUX\|Polarity=Neg\|Tense=Past\|VerbForm=Cop`, `Gender=Fem\|Number=Sing\|POS=NOUN`, `Number=Plur\|POS=PRON\|Person=3\|PronType=Emp`, `Dialect=Ulster\|POS=X\|VerbForm=Cop`, `Mood=Int\|Number=Sing\|POS=AUX\|PronType=Art\|VerbForm=Cop`, `Case=NomAcc\|Definite=Def\|Gender=Fem\|POS=NOUN`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Form=Ecl\|POS=NOUN\|VerbForm=Vnoun`, `Case=NomAcc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Form=Ecl\|Mood=Sub\|POS=VERB\|Tense=Pres`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Voc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Number=Plur\|POS=ADJ\|PartType=Voc`, `Form=Len\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|Tense=Past`, `Number=Sing\|POS=DET\|PronType=Int`, `Form=Len\|Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3`, `Dialect=Munster\|Form=Len\|Mood=Ind\|POS=VERB\|Tense=Past`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Neg`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres`, `Case=NomAcc\|Gender=Masc\|POS=PROPN`, `Case=Gen\|Form=Len\|Gender=Masc\|POS=PROPN`, `Form=Ecl\|POS=VERB`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres`, `Form=Ecl\|Number=Sing\|POS=NOUN`, `Form=Len\|Mood=Ind\|POS=VERB\|Polarity=Neg\|Tense=Fut\|Voice=Auto`, `POS=AUX\|PronType=Dem\|VerbForm=Cop`, `POS=AUX\|PronType=Rel\|Tense=Past\|VerbForm=Cop`, `Case=NomAcc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Pres`, `Form=Ecl\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past`, `Form=Len\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past`, `Abbr=Yes\|POS=SYM`, `Case=Gen\|Form=Len\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Form=Len\|Mood=Ind\|POS=VERB\|Polarity=Neg\|Tense=Pres\|Voice=Auto`, `POS=PART\|PartType=Cop\|PronType=Rel`, `Form=VF\|POS=AUX\|PronType=Rel\|Tense=Past\|VerbForm=Cop`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past`, `Form=Len\|Number=Sing\|POS=PRON\|Person=2`, `Case=Voc\|Form=Len\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Gender=Masc\|Number=Sing\|POS=ADJ\|PartType=Voc`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Voc\|Form=Len\|Gender=Fem\|POS=PROPN`, `Case=Gen\|Form=HPref\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Dialect=Ulster\|Gender=Masc\|Number=Sing\|POS=X\|Person=3`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=1`, `Form=Ecl\|Mood=Ind\|POS=VERB\|Polarity=Neg\|Tense=Fut`, `Form=Len\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut`, `Case=NomAcc\|Form=HPref\|Gender=Masc\|Number=Sing\|POS=PROPN`, `POS=ADV\|PronType=Int`, `Form=Ecl\|Mood=Cnd\|POS=VERB\|Voice=Auto`, `POS=ADP\|PronType=Art`, `Mood=Int\|POS=AUX\|Tense=Pres\|VerbForm=Cop`, `POS=PART\|PartType=Deg`, `Number=Sing\|POS=ADP\|Person=1\|PronType=Emp`, `Number=Plur\|POS=PRON\|Person=1\|PronType=Emp`, `Gender=Masc\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Cop`, `Foreign=Yes\|POS=ADJ`, `Foreign=Yes\|POS=NOUN`, `Foreign=Yes\|POS=VERB`, `Foreign=Yes\|POS=ADP`, `Abbr=Yes\|POS=PROPN`, `Form=Len\|Mood=Cnd\|Number=Sing\|POS=VERB\|Person=2`, `Case=Voc\|Form=Len\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Form=Len\|Mood=Ind\|POS=VERB\|Polarity=Neg\|Tense=Past\|Voice=Auto`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past`, `Case=NomAcc\|Form=Ecl\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Form=Len\|POS=ADV`, `Case=Voc\|Form=Len\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Number=Plur\|POS=PRON\|Person=2`, `POS=DET`, `Number=Sing\|POS=ADP\|Person=3`, `Mood=Cnd\|POS=VERB\|Voice=Auto`, `Form=Len\|Number=Sing\|POS=ADP\|Person=1`, `Dialect=Munster\|Mood=Imp\|Number=Sing\|POS=X\|Person=2\|Polarity=Neg`, `Dialect=Munster\|POS=X\|PronType=Dem`, `Form=Len\|POS=VERB\|Polarity=Neg`, `Form=Ecl\|Mood=Ind\|POS=VERB\|Polarity=Neg\|Tense=Past`, `Case=Gen\|Gender=Masc\|POS=PROPN`, `Form=Ecl\|NumType=Ord\|POS=NUM`, `Mood=Ind\|POS=VERB\|PronType=Rel\|Tense=Fut`, `Form=Len\|Number=Plur\|POS=ADP\|Person=3`, `Case=NomAcc\|Form=HPref\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Form=Ecl\|Mood=Ind\|POS=VERB\|Tense=Fut\|Voice=Auto`, `Form=Len\|POS=ADJ\|VerbForm=Part`, `Case=Gen\|Form=Len\|Gender=Fem\|POS=PROPN`, `Form=Ecl\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Form=Len\|POS=NOUN\|VerbForm=Inf`, `Degree=Pos\|POS=NOUN`, `POS=AUX\|PartType=Comp\|Tense=Past\|VerbForm=Cop`, `Number=Plur\|POS=DET\|Person=1\|Poss=Yes`, `Case=Dat\|Form=Len\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Form=HPref\|Gender=Fem\|Number=Sing\|POS=PROPN`, `POS=ADP\|Person=3\|Poss=Yes`, `POS=NOUN\|Reflex=Yes`, `Dialect=Ulster\|POS=X\|PartType=Vb\|Polarity=Neg`, `Form=Emp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres`, `Gender=Masc\|Number=Sing\|POS=ADP\|Person=3\|PronType=Emp`, `Form=Ecl\|POS=PART\|PartType=Vb\|PronType=Rel`, `Form=Ecl\|Mood=Cnd\|POS=VERB\|Polarity=Neg`, `Case=Gen\|Form=Ecl\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Form=Len\|Mood=Cnd\|POS=VERB\|Polarity=Neg`, `Form=Len\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Sing\|POS=NOUN`, `Form=Len\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Gender=Masc\|Number=Plur\|POS=PROPN`, `Gender=Masc\|Number=Plur\|POS=NOUN`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=NOUN`, `Form=Ecl\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Form=Len\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Form=HPref\|Gender=Fem\|POS=PROPN`, `Form=Len\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Form=Len\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Form=Len\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Form=HPref\|Gender=Fem\|Number=Sing\|POS=NOUN`, `NounType=Slender\|Number=Plur\|POS=ADJ`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Form=Ecl\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Form=Ecl\|Gender=Fem\|Number=Plur\|POS=NOUN`, `POS=PRON`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Gender=Fem\|Number=Sing\|POS=ADJ`, `Gender=Fem\|Number=Sing\|POS=PROPN`, `Number=Sing\|POS=NOUN\|PartType=Comp`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Form=Ecl\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=PART\|PartType=Cmpl\|Tense=Past`, `Form=Ecl\|Mood=Int\|POS=VERB\|Polarity=Neg`, `Gender=Masc\|Number=Sing\|POS=ADJ`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Art`, `NounType=NotSlender\|Number=Plur\|POS=ADJ`, `Mood=Cnd\|POS=AUX\|VerbForm=Cop`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Form=Len\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres`, `Gender=Masc\|Number=Sing\|POS=INTJ`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Emp`, `Gender=Fem\|Number=Sing\|POS=SCONJ`, `POS=PART\|Tense=Pres\|VerbForm=Cop`, `Case=Gen\|Definite=Def\|Gender=Fem\|NounType=Weak\|Number=Plur\|POS=NOUN`, `Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Number=Sing\|POS=ADJ`, `Form=Ecl\|Gender=Fem\|Number=Sing\|POS=PROPN`, `POS=DET\|PronType=Art`, `Form=Ecl,Emp\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past`, `Form=Ecl\|Mood=Cnd,Int\|POS=VERB`, `Definite=Def\|Dialect=Munster\|Gender=Fem\|Number=Sing\|POS=X`, `POS=AUX\|PronType=Dem`, `POS=AUX\|PartType=Cmpl\|Tense=Pres\|VerbForm=Cop`, `Form=Len\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past`, `POS=PART\|PartType=Inf\|PronType=Rel`, `Form=Ecl\|Number=Plur\|POS=NOUN`, `Form=Len\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres`, `POS=SCONJ\|Tense=Past`, `Form=HPref\|Gender=Masc\|Number=Sing\|POS=ADP\|Person=3`, `Form=Ecl\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Form=HPref\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3`, `POS=INTJ`, `Form=HPref\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Form=Len\|Gender=Fem\|NounType=Strong\|Number=Plur\|POS=NOUN`, `Form=Ecl\|Mood=Sub\|POS=VERB\|Tense=Pres\|Voice=Auto`, `Number=Sing\|POS=VERB\|Person=1`, `Gender=Masc\|POS=PROPN`, `POS=ADP\|PronType=Rel`, `Mood=Ind\|POS=NOUN\|PronType=Rel\|Tense=Pres`, `Form=Ecl\|Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3`, `Gender=Masc\|Number=Plur\|POS=ADJ`, `Form=Ecl\|Mood=Cnd,Int\|POS=VERB\|Voice=Auto`, `Form=Len\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Gender=Fem\|POS=PROPN`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=2`, `Form=HPref\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Dialect=Ulster\|Gender=Masc\|Number=Plur\|POS=X`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=PROPN` |
| **`parser`** | `ROOT`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `case`, `case:voc`, `cc`, `ccomp`, `compound`, `compound:prt`, `conj`, `cop`, `csubj:cleft`, `csubj:cop`, `dep`, `det`, `fixed`, `flat`, `flat:foreign`, `flat:name`, `list`, `mark`, `mark:prt`, `nmod`, `nmod:poss`, `nsubj`, `nummod`, `obj`, `obl`, `obl:prep`, `obl:tmod`, `parataxis`, `punct`, `vocative`, `xcomp`, `xcomp:pred` |
| **`experimental_edit_tree_lemmatizer`** | `1`, `2`, `4`, `7`, `10`, `11`, `13`, `15`, `16`, `17`, `19`, `21`, `25`, `27`, `28`, `30`, `32`, `34`, `36`, `37`, `40`, `42`, `44`, `46`, `51`, `54`, `56`, `59`, `62`, `64`, `66`, `68`, `70`, `72`, `73`, `74`, `77`, `81`, `83`, `85`, `88`, `89`, `91`, `93`, `96`, `99`, `100`, `102`, `104`, `108`, `114`, `116`, `119`, `120`, `121`, `123`, `126`, `127`, `128`, `131`, `133`, `135`, `137`, `138`, `139`, `142`, `144`, `145`, `147`, `149`, `151`, `153`, `157`, `159`, `161`, `164`, `165`, `169`, `171`, `173`, `176`, `181`, `183`, `185`, `186`, `188`, `189`, `191`, `193`, `194`, `195`, `197`, `199`, `201`, `202`, `205`, `207`, `209`, `210`, `213`, `216`, `217`, `220`, `221`, `223`, `225`, `227`, `228`, `230`, `232`, `233`, `236`, `238`, `240`, `241`, `242`, `244`, `246`, `247`, `249`, `251`, `252`, `254`, `256`, `257`, `259`, `264`, `267`, `268`, `271`, `273`, `275`, `276`, `278`, `279`, `280`, `282`, `283`, `285`, `286`, `289`, `291`, `293`, `295`, `296`, `299`, `301`, `302`, `303`, `304`, `305`, `306`, `308`, `310`, `311`, `312`, `315`, `318`, `319`, `320`, `321`, `323`, `325`, `327`, `328`, `332`, `334`, `336`, `339`, `341`, `343`, `346`, `348`, `350`, `353`, `355`, `358`, `359`, `361`, `363`, `365`, `366`, `367`, `368`, `370`, `371`, `373`, `376`, `378`, `380`, `381`, `384`, `385`, `386`, `389`, `390`, `392`, `396`, `398`, `400`, `401`, `402`, `405`, `407`, `409`, `410`, `411`, `413`, `415`, `416`, `419`, `421`, `422`, `423`, `426`, `427`, `428`, `429`, `430`, `431`, `432`, `433`, `434`, `437`, `438`, `439`, `440`, `441`, `442`, `443`, `446`, `449`, `453`, `455`, `457`, `458`, `459`, `461`, `462`, `464`, `466`, `469`, `471`, `473`, `475`, `478`, `479`, `480`, `482`, `483`, `485`, `487`, `490`, `491`, `492`, `495`, `496`, `497`, `500`, `502`, `505`, `507`, `509`, `512`, `513`, `515`, `516`, `518`, `520`, `522`, `523`, `525`, `527`, `530`, `531`, `532`, `534`, `536`, `537`, `538`, `540`, `541`, `542`, `545`, `546`, `548`, `549`, `551`, `554`, `557`, `560`, `562`, `564`, `565`, `567`, `570`, `571`, `573`, `574`, `578`, `579`, `581`, `585`, `587`, `590`, `591`, `592`, `596`, `597`, `598`, `599`, `600`, `602`, `604`, `605`, `606`, `608`, `609`, `611`, `613`, `614`, `616`, `618`, `619`, `621`, `623`, `624`, `627`, `628`, `629`, `630`, `632`, `633`, `635`, `636`, `637`, `640`, `642`, `644`, `646`, `648`, `649`, `651`, `653`, `655`, `656`, `657`, `659`, `660`, `663`, `665`, `667`, `669`, `673`, `675`, `676`, `678`, `682`, `683`, `686`, `688`, `690`, `691`, `693`, `696`, `698`, `702`, `705`, `708`, `710`, `711`, `712`, `714`, `715`, `717`, `719`, `721`, `722`, `724`, `725`, `727`, `729`, `734`, `736`, `738`, `739`, `742`, `743`, `744`, `746`, `750`, `751`, `753`, `755`, `756`, `758`, `759`, `760`, `761`, `762`, `764`, `766`, `767`, `769`, `770`, `771`, `772`, `773`, `774`, `777`, `778`, `780`, `781`, `783`, `784`, `785`, `787`, `789`, `790`, `793`, `794`, `796`, `798`, `800`, `802`, `803`, `805`, `808`, `809`, `810`, `811`, `813`, `815`, `816`, `817`, `820`, `822`, `827`, `828`, `830`, `833`, `836`, `837`, `838`, `841`, `842`, `843`, `845`, `847`, `849`, `850`, `852`, `24`, `854`, `856`, `859`, `860`, `861`, `862`, `863`, `864`, `866`, `868`, `869`, `870`, `873`, `874`, `877`, `878`, `879`, `881`, `884`, `886`, `888`, `889`, `890`, `893`, `894`, `897`, `898`, `900`, `902`, `905`, `908`, `909`, `910`, `911`, `912`, `913`, `915`, `916`, `917`, `919`, `921`, `924`, `926`, `927`, `928`, `929`, `930`, `932`, `935`, `937`, `941`, `943`, `945`, `946`, `948`, `950`, `951`, `953`, `954`, `955`, `958`, `960`, `963`, `965`, `966`, `967`, `968`, `969`, `971`, `974`, `976`, `978`, `979`, `981`, `982`, `983`, `984`, `985`, `986`, `988`, `990`, `992`, `994`, `997`, `998`, `999`, `1001`, `1003`, `1004`, `1006`, `1008`, `1010`, `1011`, `1012`, `1015`, `1017`, `1019`, `1020`, `1021`, `1022`, `1025`, `1028`, `1030`, `1032`, `1033`, `1035`, `1036`, `1039`, `1040`, `1041`, `1042`, `1044`, `1045`, `1046`, `1047`, `1048`, `1049`, `1051`, `1053`, `1055`, `1056`, `1057`, `1058`, `1061`, `1062`, `1064`, `1065`, `1068`, `1070`, `1071`, `1073`, `1074`, `1076`, `1078`, `1080`, `1082`, `1084`, `1086`, `1087`, `1088`, `1089`, `1090`, `1091`, `1092`, `1093`, `1095`, `1097`, `1100`, `1101`, `1103`, `1105`, `1106`, `1108`, `1110`, `1113`, `1114`, `1115`, `1117`, `1118`, `1120`, `1123`, `1127`, `1128`, `1129`, `1131`, `1135`, `1137`, `1138`, `1140`, `1141`, `1143`, `1144`, `1145`, `818`, `1146`, `1148`, `1149`, `1150`, `1152`, `1154`, `1157`, `1159`, `1160`, `1163`, `1166`, `1168`, `1170`, `1171`, `1173`, `1174`, `1176`, `1179`, `1180`, `1182`, `1183`, `1184`, `1186`, `1187`, `1188`, `1189`, `1191`, `1192`, `1195`, `1198`, `1199`, `1200`, `1201`, `1202`, `1205`, `1206`, `1208`, `1210`, `1212`, `1214`, `1215`, `1217`, `1218`, `1219`, `1220`, `1223`, `1227`, `1228`, `1230`, `1231`, `1233`, `1235`, `1236`, `1240`, `1242`, `1244`, `1245`, `1247`, `1248`, `1249`, `1251`, `1252`, `1253`, `1254`, `1255`, `1256`, `1259`, `1260`, `1263`, `1264`, `1267`, `1270`, `1272`, `1273`, `1275`, `1277`, `1279`, `1281`, `1282`, `1283`, `1285`, `1286`, `1288`, `1290`, `1292`, `1295`, `1297`, `1298`, `1299`, `1301`, `1302`, `1305`, `1306`, `1308`, `1309`, `1310`, `1311`, `1313`, `1315`, `1317`, `1318`, `1319`, `1321`, `1323`, `1325`, `1326`, `1327`, `1330`, `1333`, `1336`, `1338`, `1339`, `1340`, `1341`, `1343`, `0`, `1345`, `1347`, `1350`, `1352`, `1356`, `1359`, `1360`, `1361`, `1362`, `1365`, `1367`, `1368`, `1369`, `1371`, `1373`, `1375`, `1378`, `1379`, `1382`, `1384`, `1387`, `1390`, `1392`, `1395`, `1396`, `1397`, `1400`, `1403`, `1406`, `1407`, `1410`, `1411`, `1412`, `1414`, `1416`, `1418`, `1421`, `1422`, `1423`, `1424`, `1426`, `1429`, `1431`, `1433`, `1436`, `1437`, `1442`, `1443`, `1445`, `1446`, `1448`, `1449`, `1450`, `1451`, `1452`, `1453`, `1454`, `1457`, `1460`, `1462`, `1463`, `1466`, `1467`, `1470`, `1471`, `1473`, `1474`, `1477`, `1479`, `1480`, `1481`, `1484`, `1486`, `1489`, `1492`, `1495`, `1496`, `1497`, `1498`, `1501`, `1502`, `1505`, `1506`, `1508`, `1509`, `1510`, `1511`, `1513`, `1514`, `1516`, `1518`, `1521`, `1523`, `1527`, `1528`, `1531`, `1532`, `1534`, `1537`, `1540`, `1541`, `1544`, `1545`, `1547`, `1548`, `1549`, `1550`, `1551`, `1552`, `1553`, `1554`, `1555`, `1557`, `1558`, `1559`, `1560`, `1561`, `1563`, `1565`, `1566`, `1567`, `1569`, `1571`, `1573`, `1576`, `1578`, `1579`, `1580`, `1582`, `1583`, `1211`, `1585`, `1587`, `1588`, `1590`, `1593`, `1595`, `1596`, `1597`, `1598`, `1599`, `1602`, `1604`, `1606`, `1608`, `1610`, `1611`, `1612`, `1613`, `1615`, `1617`, `1618`, `1620`, `1622`, `1623`, `1624`, `1625`, `1626`, `1629`, `1630`, `1632`, `1633`, `1634`, `1637`, `1639`, `65`, `1641`, `1643`, `1644`, `1646`, `1648`, `1649`, `1650`, `1651`, `1652`, `1654`, `1655`, `1658`, `1660`, `1661`, `1662`, `1663`, `1665`, `1666`, `1668`, `1669`, `1671`, `1672`, `1675`, `1676`, `1680`, `1681`, `1682`, `1684`, `1687`, `1689`, `1690`, `1691`, `1692`, `1693`, `1695`, `1696`, `1698`, `1699`, `1700`, `1702`, `1703`, `1704`, `1706`, `1707`, `1708`, `1709`, `1712`, `1715`, `1716`, `1719`, `1722`, `1724`, `1725`, `1726`, `1727`, `1729`, `1730`, `1731`, `1733`, `1736`, `1738`, `1739`, `1742`, `1745`, `1746`, `1747`, `1749`, `1750`, `1752`, `1753`, `1754`, `1757`, `1758`, `1761`, `1764`, `1765`, `1766`, `1767`, `1768`, `1769`, `1771`, `1772`, `1774`, `1776`, `1777`, `1780`, `1783`, `1784`, `1787`, `1789`, `1791`, `1792`, `1794`, `1797`, `1798`, `1800`, `1803`, `1804`, `1807`, `1808`, `1810`, `1812`, `1814`, `1815`, `1817`, `1819`, `1820`, `1822`, `1824`, `1825`, `1826`, `1827`, `1830`, `1832`, `1833`, `1836`, `1840`, `1843`, `1844`, `1846`, `1849`, `1851`, `1853`, `1854`, `1857`, `1859`, `1860`, `1861`, `1862`, `1863`, `1864`, `1865`, `1868`, `1869`, `1872`, `1873`, `1875`, `1877`, `1878`, `1879`, `1882`, `1884`, `1886`, `1888`, `1889`, `1892`, `1895`, `1898`, `1899`, `1901`, `1903`, `1904`, `1905`, `1907`, `1910`, `1912`, `1913`, `1914`, `1917`, `1919`, `1921`, `1924`, `1925`, `1926`, `1928`, `1931`, `1934`, `1936`, `1938`, `1939`, `1636`, `1942`, `1945`, `1947`, `1948`, `1949`, `1950`, `1952`, `1954`, `1956`, `1957`, `1959`, `1961`, `1963`, `1964`, `1965`, `1968`, `1969`, `1970`, `1971`, `1973`, `1974`, `1978`, `1980`, `1981`, `1983`, `1984`, `1987`, `1990`, `1991`, `1994`, `1995`, `1996`, `1997`, `1998`, `1999`, `2001`, `2003`, `2004`, `2006`, `2008`, `2010` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_F` | 99.74 |
| `TOKEN_P` | 99.73 |
| `TOKEN_R` | 99.74 |
| `TOKEN_ACC` | 99.95 |
| `SENTS_F` | 97.57 |
| `SENTS_P` | 97.35 |
| `SENTS_R` | 97.78 |
| `TAG_ACC` | 93.34 |
| `POS_ACC` | 92.17 |
| `MORPH_ACC` | 68.98 |
| `DEP_UAS` | 83.61 |
| `DEP_LAS` | 74.65 |
| `LEMMA_ACC` | 89.81 |
|
explosion/vi_udv25_vietnamesevtb_trf
|
explosion
| 2021-12-11T02:51:16Z | 8 | 0 |
spacy
|
[
"spacy",
"token-classification",
"vi",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- vi
license: cc-by-sa-4.0
model-index:
- name: vi_udv25_vietnamesevtb_trf
results:
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.8805048216
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9018631331
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9695345305
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.8934519139
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.6807696182
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.6063552526
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.943275972
---
UD v2.5 benchmarking pipeline for UD_Vietnamese-VTB
| Feature | Description |
| --- | --- |
| **Name** | `vi_udv25_vietnamesevtb_trf` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.2.1,<3.3.0` |
| **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (81 labels for 6 components)</summary>
| Component | Labels |
| --- | --- |
| **`experimental_char_ner_tokenizer`** | `TOKEN` |
| **`senter`** | `I`, `S` |
| **`tagger`** | `!`, `"`, `,`, `-`, `.`, `...`, `:`, `;`, `?`, `@`, `A`, `C`, `CC`, `E`, `I`, `L`, `LBKT`, `M`, `N`, `NP`, `Nb`, `Nc`, `Np`, `Nu`, `Ny`, `P`, `R`, `RBKT`, `T`, `V`, `VP`, `X`, `Y`, `Z` |
| **`morphologizer`** | `POS=NOUN`, `POS=ADP`, `POS=X\|Polarity=Neg`, `POS=VERB`, `POS=ADJ`, `POS=PUNCT`, `POS=X`, `POS=SCONJ`, `NumType=Card\|POS=NUM`, `POS=DET`, `POS=CCONJ`, `POS=PROPN`, `POS=AUX`, `POS=PART`, `POS=INTJ` |
| **`parser`** | `ROOT`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `dep`, `det`, `discourse`, `iobj`, `list`, `mark`, `nmod`, `nsubj`, `nummod`, `obj`, `obl`, `parataxis`, `punct`, `xcomp` |
| **`experimental_edit_tree_lemmatizer`** | `0` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_F` | 87.90 |
| `TOKEN_P` | 86.84 |
| `TOKEN_R` | 89.00 |
| `TOKEN_ACC` | 98.42 |
| `SENTS_F` | 94.33 |
| `SENTS_P` | 96.23 |
| `SENTS_R` | 92.50 |
| `TAG_ACC` | 88.05 |
| `POS_ACC` | 90.19 |
| `MORPH_ACC` | 96.95 |
| `DEP_UAS` | 68.08 |
| `DEP_LAS` | 60.64 |
| `LEMMA_ACC` | 89.35 |
|
explosion/sv_udv25_swedishtalbanken_trf
|
explosion
| 2021-12-11T02:06:26Z | 3 | 0 |
spacy
|
[
"spacy",
"token-classification",
"sv",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- sv
license: cc-by-sa-4.0
model-index:
- name: sv_udv25_swedishtalbanken_trf
results:
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9786647611
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9882605145
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.979685586
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9736654078
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9213699406
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8938579111
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9801587302
---
UD v2.5 benchmarking pipeline for UD_Swedish-Talbanken
| Feature | Description |
| --- | --- |
| **Name** | `sv_udv25_swedishtalbanken_trf` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.2.1,<3.3.0` |
| **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (1206 labels for 6 components)</summary>
| Component | Labels |
| --- | --- |
| **`experimental_char_ner_tokenizer`** | `TOKEN` |
| **`senter`** | `I`, `S` |
| **`tagger`** | `AB`, `AB\|AN`, `AB\|KOM`, `AB\|POS`, `AB\|SMS`, `AB\|SUV`, `DT\|NEU\|SIN\|DEF`, `DT\|NEU\|SIN\|IND`, `DT\|NEU\|SIN\|IND/DEF`, `DT\|UTR/NEU\|PLU\|DEF`, `DT\|UTR/NEU\|PLU\|IND`, `DT\|UTR/NEU\|PLU\|IND/DEF`, `DT\|UTR/NEU\|SIN/PLU\|IND`, `DT\|UTR/NEU\|SIN\|DEF`, `DT\|UTR/NEU\|SIN\|IND`, `DT\|UTR\|SIN\|DEF`, `DT\|UTR\|SIN\|IND`, `DT\|UTR\|SIN\|IND/DEF`, `HA`, `HD\|NEU\|SIN\|IND`, `HD\|UTR/NEU\|PLU\|IND`, `HD\|UTR\|SIN\|IND`, `HP\|-\|-\|-`, `HP\|NEU\|SIN\|IND`, `HP\|UTR/NEU\|PLU\|IND`, `HP\|UTR\|SIN\|IND`, `HS\|DEF`, `IE`, `IN`, `JJ`, `JJ\|AN`, `JJ\|KOM\|UTR/NEU\|SIN/PLU\|IND/DEF\|NOM`, `JJ\|POS\|MAS\|SIN\|DEF\|GEN`, `JJ\|POS\|MAS\|SIN\|DEF\|NOM`, `JJ\|POS\|NEU\|SIN\|IND/DEF\|NOM`, `JJ\|POS\|NEU\|SIN\|IND\|NOM`, `JJ\|POS\|UTR/NEU\|PLU\|IND/DEF\|GEN`, `JJ\|POS\|UTR/NEU\|PLU\|IND/DEF\|NOM`, `JJ\|POS\|UTR/NEU\|PLU\|IND\|NOM`, `JJ\|POS\|UTR/NEU\|SIN/PLU\|IND/DEF\|NOM`, `JJ\|POS\|UTR/NEU\|SIN\|DEF\|NOM`, `JJ\|POS\|UTR\|-\|-\|SMS`, `JJ\|POS\|UTR\|SIN\|IND/DEF\|NOM`, `JJ\|POS\|UTR\|SIN\|IND\|GEN`, `JJ\|POS\|UTR\|SIN\|IND\|NOM`, `JJ\|SUV\|MAS\|SIN\|DEF\|NOM`, `JJ\|SUV\|UTR/NEU\|PLU\|DEF\|NOM`, `JJ\|SUV\|UTR/NEU\|SIN/PLU\|DEF\|NOM`, `JJ\|SUV\|UTR/NEU\|SIN/PLU\|IND\|NOM`, `KN`, `MAD`, `MID`, `NN`, `NN\|-\|-\|-\|-`, `NN\|AN`, `NN\|NEU\|-\|-\|SMS`, `NN\|NEU\|PLU\|DEF\|GEN`, `NN\|NEU\|PLU\|DEF\|NOM`, `NN\|NEU\|PLU\|IND\|GEN`, `NN\|NEU\|PLU\|IND\|NOM`, `NN\|NEU\|SIN\|DEF\|GEN`, `NN\|NEU\|SIN\|DEF\|NOM`, `NN\|NEU\|SIN\|IND`, `NN\|NEU\|SIN\|IND\|GEN`, `NN\|NEU\|SIN\|IND\|NOM`, `NN\|SMS`, `NN\|UTR\|-\|-\|-`, `NN\|UTR\|-\|-\|SMS`, `NN\|UTR\|PLU\|DEF\|GEN`, `NN\|UTR\|PLU\|DEF\|NOM`, `NN\|UTR\|PLU\|IND\|GEN`, `NN\|UTR\|PLU\|IND\|NOM`, `NN\|UTR\|SIN\|DEF\|GEN`, `NN\|UTR\|SIN\|DEF\|NOM`, `NN\|UTR\|SIN\|IND\|GEN`, `NN\|UTR\|SIN\|IND\|NOM`, `PAD`, `PC\|PRF\|NEU\|SIN\|IND\|NOM`, `PC\|PRF\|UTR/NEU\|PLU\|IND/DEF\|GEN`, `PC\|PRF\|UTR/NEU\|PLU\|IND/DEF\|NOM`, `PC\|PRF\|UTR/NEU\|SIN\|DEF\|NOM`, `PC\|PRF\|UTR\|SIN\|IND\|NOM`, `PC\|PRS\|UTR/NEU\|SIN/PLU\|IND/DEF\|NOM`, `PL`, `PM`, `PM\|GEN`, `PM\|NOM`, `PM\|SMS`, `PN\|MAS\|SIN\|DEF\|SUB/OBJ`, `PN\|NEU\|SIN\|DEF`, `PN\|NEU\|SIN\|DEF\|SUB/OBJ`, `PN\|NEU\|SIN\|IND\|SUB/OBJ`, `PN\|UTR/NEU\|PLU\|DEF\|OBJ`, `PN\|UTR/NEU\|PLU\|DEF\|SUB`, `PN\|UTR/NEU\|PLU\|DEF\|SUB/OBJ`, `PN\|UTR/NEU\|PLU\|IND\|SUB/OBJ`, `PN\|UTR/NEU\|SIN/PLU\|DEF\|OBJ`, `PN\|UTR\|PLU\|DEF\|OBJ`, `PN\|UTR\|PLU\|DEF\|SUB`, `PN\|UTR\|SIN\|DEF\|NOM`, `PN\|UTR\|SIN\|DEF\|OBJ`, `PN\|UTR\|SIN\|DEF\|SUB`, `PN\|UTR\|SIN\|DEF\|SUB/OBJ`, `PN\|UTR\|SIN\|IND\|NOM`, `PN\|UTR\|SIN\|IND\|SUB`, `PN\|UTR\|SIN\|IND\|SUB/OBJ`, `PP`, `PS\|NEU\|SIN\|DEF`, `PS\|UTR/NEU\|PLU\|DEF`, `PS\|UTR/NEU\|SIN/PLU\|DEF`, `PS\|UTR\|SIN\|DEF`, `RG\|NEU\|SIN\|IND\|NOM`, `RG\|NOM`, `RG\|SMS`, `RG\|UTR\|SIN\|IND\|NOM`, `RO\|MAS\|SIN\|IND/DEF\|NOM`, `RO\|NOM`, `SN`, `UO`, `VB\|AN`, `VB\|IMP\|AKT`, `VB\|IMP\|SFO`, `VB\|INF\|AKT`, `VB\|INF\|SFO`, `VB\|KON\|PRS\|AKT`, `VB\|KON\|PRT\|AKT`, `VB\|PRS\|AKT`, `VB\|PRS\|SFO`, `VB\|PRT\|AKT`, `VB\|PRT\|SFO`, `VB\|SUP\|AKT`, `VB\|SUP\|SFO` |
| **`morphologizer`** | `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Com\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Com\|Number=Sing\|POS=NOUN`, `POS=ADP`, `Case=Nom\|Definite=Ind\|Gender=Com\|Number=Plur\|POS=NOUN`, `Case=Nom\|Definite=Def\|Gender=Com\|Number=Sing\|POS=NOUN`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `POS=PUNCT`, `Definite=Def\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Prs`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Abbr=Yes\|POS=ADV`, `POS=SCONJ`, `POS=ADV`, `Case=Nom\|Definite=Ind\|Gender=Com\|NumType=Card\|Number=Sing\|POS=NUM`, `Mood=Ind\|POS=AUX\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=PART`, `POS=VERB\|VerbForm=Inf`, `Definite=Def\|Gender=Com\|Number=Sing\|POS=PRON\|PronType=Prs`, `Number=Plur\|POS=DET\|PronType=Tot`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=NOUN`, `POS=CCONJ`, `Definite=Def\|Number=Plur\|POS=DET\|PronType=Art`, `POS=PRON\|PronType=Rel`, `Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Degree=Pos\|POS=ADV`, `Definite=Def\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Definite=Def\|Gender=Com\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `POS=VERB\|VerbForm=Sup\|Voice=Act`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=PART\|Polarity=Neg`, `Case=Nom\|Degree=Pos\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Gender=Com\|Number=Plur\|POS=NOUN`, `Degree=Cmp\|POS=ADV`, `POS=VERB\|VerbForm=Inf\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Def\|Gender=Com\|Number=Plur\|POS=NOUN`, `Degree=Sup\|POS=ADV`, `Case=Nom\|NumType=Card\|POS=NUM`, `Abbr=Yes\|POS=NOUN`, `Case=Nom\|Definite=Def\|Degree=Sup\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Mood=Imp\|POS=VERB\|VerbForm=Fin\|Voice=Act`, `POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=NOUN`, `POS=AUX\|VerbForm=Inf\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=ADJ\|Tense=Past\|VerbForm=Part`, `Case=Nom\|Definite=Def\|Number=Plur\|POS=PRON\|PronType=Prs`, `Case=Nom\|Number=Plur\|POS=ADJ\|Tense=Past\|VerbForm=Part`, `POS=AUX\|VerbForm=Sup\|Voice=Act`, `Case=Acc\|Definite=Def\|Number=Plur\|POS=PRON\|PronType=Rcp`, `POS=VERB\|VerbForm=Sup\|Voice=Pass`, `Mood=Ind\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Definite=Def\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|POS=ADJ`, `Definite=Ind\|Number=Sing\|POS=DET\|PronType=Tot`, `Definite=Ind\|Gender=Com\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Definite=Ind\|Gender=Com\|Number=Sing\|POS=ADJ\|Tense=Past\|VerbForm=Part`, `Definite=Ind\|POS=DET\|PronType=Ind`, `Case=Nom\|Definite=Def\|Number=Sing\|POS=ADJ\|Tense=Past\|VerbForm=Part`, `Case=Nom\|POS=ADJ\|Tense=Pres\|VerbForm=Part`, `Definite=Ind\|Gender=Com\|Number=Sing\|POS=DET\|PronType=Ind`, `Definite=Def\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Def\|Gender=Com\|Number=Sing\|POS=PRON\|PronType=Prs`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Definite=Def\|Gender=Com\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Definite=Def\|Gender=Neut\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Def\|Gender=Com\|Number=Sing\|POS=PRON\|PronType=Prs`, `Definite=Def\|Number=Plur\|POS=PRON\|PronType=Dem`, `Definite=Def\|Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Definite=Def\|Number=Plur\|POS=PRON\|PronType=Prs`, `Case=Nom\|Definite=Def\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Gender=Com\|Number=Sing\|POS=ADJ`, `Gender=Com\|Number=Sing\|POS=DET\|PronType=Tot`, `Definite=Def\|Gender=Com\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Definite=Ind\|Gender=Com\|Number=Sing\|POS=NOUN`, `POS=NOUN`, `Case=Nom\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Com\|Number=Sing\|POS=PRON\|PronType=Ind`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Definite=Ind\|Number=Plur\|POS=PRON\|PronType=Tot`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Definite=Ind\|Number=Plur\|POS=PRON\|PronType=Ind`, `Definite=Def\|POS=PRON\|Poss=Yes\|PronType=Ind`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Gender=Com\|POS=NOUN`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Tot`, `Case=Gen\|Definite=Def\|Gender=Com\|Number=Sing\|POS=NOUN`, `Case=Acc\|Definite=Def\|POS=PRON\|PronType=Prs`, `Definite=Def\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Case=Nom\|POS=PROPN`, `Case=Nom\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Case=Nom\|Definite=Def\|Gender=Com\|Number=Plur\|POS=PRON\|PronType=Prs`, `Definite=Def\|Number=Plur\|POS=DET\|PronType=Prs`, `Case=Gen\|Number=Plur\|POS=ADJ\|Tense=Past\|VerbForm=Part`, `Case=Acc\|Definite=Def\|Gender=Com\|Number=Plur\|POS=PRON\|PronType=Prs`, `Definite=Ind\|Number=Plur\|POS=PRON\|PronType=Rel`, `Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin`, `Definite=Ind\|Number=Plur\|POS=PRON\|PronType=Int`, `Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|POS=PROPN`, `POS=PROPN`, `Definite=Ind\|Gender=Com\|Number=Sing\|POS=DET\|PronType=Int`, `Definite=Ind\|Gender=Com\|Number=Sing\|POS=PRON\|PronType=Tot`, `Gender=Neut\|POS=NOUN`, `Case=Gen\|Definite=Def\|Gender=Com\|Number=Plur\|POS=NOUN`, `Definite=Ind\|Number=Plur\|POS=DET\|PronType=Int`, `Definite=Ind\|Gender=Com\|Number=Sing\|POS=DET\|PronType=Neg`, `POS=VERB\|VerbForm=Sup`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Foreign=Yes\|POS=NOUN`, `Foreign=Yes\|POS=ADJ`, `Definite=Def\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Definite=Ind\|Number=Plur\|POS=DET\|PronType=Ind`, `POS=SYM`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Definite=Def\|Number=Sing\|POS=DET\|PronType=Tot`, `Definite=Ind\|Gender=Com\|Number=Sing\|POS=PRON\|PronType=Ind`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Definite=Ind\|Degree=Sup\|POS=ADJ`, `Definite=Def\|Gender=Com\|Number=Sing\|POS=PRON\|PronType=Dem`, `Definite=Ind\|Gender=Com\|Number=Sing\|POS=PRON\|PronType=Neg`, `Mood=Sub\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Degree=Pos\|Gender=Com\|POS=ADJ`, `Definite=Def\|Gender=Com\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Ind\|Gender=Com\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Definite=Def\|Number=Plur\|POS=PRON\|PronType=Ind`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Prs`, `Definite=Ind\|POS=DET\|PronType=Prs`, `Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Prs`, `Definite=Def\|POS=PRON\|Poss=Yes\|PronType=Rel`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Definite=Def\|Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Ind`, `Definite=Def\|Gender=Com\|Number=Sing\|POS=DET\|PronType=Prs`, `Abbr=Yes\|POS=ADJ`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Definite=Ind\|Gender=Com\|Number=Sing\|POS=PRON\|PronType=Rel`, `NumType=Card\|POS=NUM`, `POS=INTJ`, `Definite=Ind\|Gender=Com\|Number=Sing\|POS=PRON\|PronType=Int`, `Degree=Sup\|POS=ADV\|Polarity=Neg`, `Definite=Ind\|Gender=Com\|Number=Sing\|POS=DET\|PronType=Tot`, `Definite=Ind\|Gender=Com\|Number=Sing\|POS=PRON\|PronType=Prs`, `Definite=Def\|POS=PRON\|Poss=Yes\|PronType=Int`, `POS=ADV\|Polarity=Neg`, `Definite=Ind\|Number=Sing\|POS=DET\|PronType=Ind`, `POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Com\|Number=Sing\|POS=PRON\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Definite=Def\|Gender=Com\|Number=Sing\|POS=PRON\|PronType=Tot`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Neg`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Definite=Ind\|Number=Plur\|POS=DET\|PronType=Neg`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Definite=Def\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Tot`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Neg`, `Gender=Com\|Number=Sing\|POS=DET\|PronType=Prs`, `Mood=Imp\|POS=VERB\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Definite=Def\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Acc\|Definite=Def\|POS=PRON\|PronType=Ind`, `Foreign=Yes\|POS=ADP`, `Definite=Ind\|Gender=Com\|Number=Sing\|POS=DET\|PronType=Prs`, `Definite=Def\|POS=PRON\|Poss=Yes\|PronType=Dem`, `Abbr=Yes\|Mood=Imp\|POS=VERB\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Com\|Number=Sing\|POS=PRON\|PronType=Rel`, `Foreign=Yes\|POS=CCONJ`, `POS=DET\|PronType=Art`, `Definite=Ind\|Number=Sing\|POS=DET\|PronType=Prs`, `Definite=Ind\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Nom\|Definite=Def\|Gender=Com\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Def\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Acc\|Definite=Def\|Number=Plur\|POS=PRON\|PronType=Tot`, `Definite=Def\|Number=Plur\|POS=PRON\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Com\|Number=Sing\|POS=ADJ`, `Definite=Def\|Number=Plur\|POS=PRON\|PronType=Tot`, `Degree=Pos\|POS=ADV\|Polarity=Neg`, `Mood=Sub\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=PRON\|PronType=Ind`, `Definite=Ind\|POS=DET\|PronType=Neg`, `Definite=Ind\|Number=Plur\|POS=PRON\|PronType=Neg`, `POS=CCONJ\|Polarity=Neg`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Definite=Def\|Number=Plur\|POS=PRON\|PronType=Tot`, `Definite=Def\|Number=Plur\|POS=DET\|PronType=Tot`, `Mood=Imp\|POS=AUX\|VerbForm=Fin\|Voice=Act`, `Foreign=Yes\|POS=ADV`, `Definite=Def\|POS=PRON\|Poss=Yes\|PronType=Rcp`, `Case=Acc\|Definite=Def\|POS=PRON\|Polarity=Neg\|PronType=Ind` |
| **`parser`** | `ROOT`, `acl`, `acl:cleft`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound`, `compound:prt`, `conj`, `cop`, `csubj`, `csubj:pass`, `dep`, `det`, `discourse`, `dislocated`, `expl`, `fixed`, `flat:name`, `iobj`, `list`, `mark`, `nmod`, `nmod:poss`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `obl:agent`, `orphan`, `parataxis`, `punct`, `xcomp` |
| **`experimental_edit_tree_lemmatizer`** | `1`, `2`, `4`, `6`, `8`, `10`, `13`, `15`, `17`, `18`, `20`, `22`, `24`, `27`, `30`, `32`, `34`, `37`, `39`, `41`, `43`, `45`, `47`, `50`, `54`, `56`, `60`, `62`, `64`, `66`, `68`, `70`, `72`, `0`, `73`, `76`, `77`, `79`, `81`, `83`, `85`, `87`, `88`, `90`, `92`, `94`, `97`, `99`, `102`, `104`, `105`, `107`, `108`, `109`, `110`, `111`, `112`, `114`, `116`, `117`, `119`, `120`, `122`, `123`, `125`, `126`, `129`, `130`, `131`, `134`, `139`, `140`, `141`, `143`, `146`, `148`, `149`, `151`, `153`, `155`, `157`, `158`, `160`, `162`, `164`, `166`, `167`, `169`, `173`, `176`, `178`, `179`, `181`, `182`, `183`, `184`, `186`, `189`, `193`, `195`, `197`, `198`, `199`, `203`, `204`, `205`, `206`, `207`, `208`, `209`, `210`, `212`, `215`, `217`, `218`, `219`, `222`, `224`, `225`, `227`, `229`, `232`, `233`, `234`, `236`, `238`, `240`, `241`, `243`, `246`, `248`, `249`, `250`, `252`, `255`, `257`, `260`, `262`, `264`, `265`, `266`, `269`, `271`, `274`, `276`, `278`, `279`, `281`, `282`, `285`, `286`, `288`, `290`, `292`, `293`, `295`, `296`, `298`, `300`, `301`, `302`, `303`, `304`, `305`, `306`, `307`, `309`, `311`, `312`, `315`, `316`, `317`, `319`, `322`, `323`, `324`, `326`, `329`, `331`, `333`, `334`, `335`, `337`, `339`, `341`, `342`, `343`, `345`, `347`, `348`, `350`, `351`, `353`, `354`, `356`, `357`, `359`, `360`, `362`, `363`, `365`, `369`, `372`, `374`, `377`, `378`, `380`, `381`, `383`, `384`, `386`, `388`, `389`, `390`, `392`, `395`, `397`, `398`, `399`, `401`, `402`, `403`, `404`, `405`, `406`, `407`, `408`, `410`, `411`, `412`, `413`, `414`, `415`, `418`, `419`, `420`, `421`, `423`, `424`, `425`, `426`, `428`, `430`, `431`, `432`, `433`, `434`, `436`, `440`, `442`, `444`, `446`, `448`, `449`, `453`, `454`, `457`, `458`, `459`, `460`, `462`, `463`, `464`, `466`, `468`, `469`, `471`, `472`, `474`, `475`, `478`, `479`, `480`, `481`, `482`, `483`, `486`, `487`, `488`, `489`, `490`, `492`, `494`, `495`, `498`, `500`, `501`, `502`, `503`, `504`, `506`, `507`, `508`, `509`, `513`, `514`, `516`, `517`, `519`, `520`, `521`, `522`, `523`, `525`, `526`, `528`, `530`, `534`, `536`, `537`, `538`, `539`, `540`, `543`, `545`, `547`, `549`, `550`, `551`, `552`, `554`, `555`, `557`, `559`, `560`, `562`, `565`, `568`, `571`, `574`, `575`, `576`, `577`, `578`, `582`, `583`, `585`, `586`, `588`, `589`, `591`, `592`, `594`, `596`, `598`, `601`, `602`, `604`, `605`, `606`, `607`, `608`, `609`, `610`, `611`, `612`, `613`, `615`, `616`, `617`, `618`, `620`, `622`, `623`, `624`, `625`, `627`, `628`, `629`, `631`, `633`, `635`, `637`, `638`, `640`, `641`, `644`, `645`, `649`, `650`, `652`, `653`, `655`, `656`, `658`, `660`, `662`, `663`, `664`, `666`, `669`, `671`, `672`, `676`, `677`, `680`, `681`, `682`, `685`, `687`, `688`, `690`, `691`, `693`, `694`, `696`, `697`, `698`, `699`, `700`, `702`, `703`, `704`, `706`, `709`, `711`, `712`, `713`, `714`, `715`, `716`, `718`, `719`, `720`, `723`, `724`, `726`, `728`, `730`, `731`, `732`, `734`, `735`, `736`, `737`, `738`, `739`, `740`, `742`, `743`, `745`, `746`, `748`, `750`, `751`, `752`, `753`, `754`, `756`, `757`, `758`, `760`, `762`, `763`, `764`, `765`, `766`, `767`, `768`, `769`, `770`, `771`, `772`, `774`, `776`, `777`, `779`, `780`, `781`, `782`, `783`, `784`, `785`, `787`, `788`, `789`, `790`, `791`, `793`, `794`, `797`, `799`, `801`, `802`, `803`, `806`, `808`, `809`, `810`, `812`, `813`, `815`, `816`, `817`, `819`, `820`, `822`, `824`, `825`, `826`, `828`, `829`, `832`, `833`, `835`, `837`, `839`, `840`, `841`, `842`, `843`, `845`, `846`, `849`, `851`, `854`, `857`, `858`, `861`, `862`, `863`, `865`, `866`, `867`, `868`, `869`, `870`, `871`, `873`, `875`, `876`, `878`, `880`, `883`, `884`, `887`, `888`, `889`, `890`, `891`, `893`, `894`, `897`, `898`, `529`, `900`, `901`, `902`, `903`, `904`, `905`, `906`, `909`, `911`, `913`, `914`, `915`, `916`, `918`, `919`, `920`, `922`, `923`, `925`, `926`, `927`, `928`, `929`, `931`, `932`, `934`, `936`, `938`, `939`, `940`, `941`, `942`, `943`, `944`, `945`, `946`, `947`, `948`, `949`, `950`, `952`, `953`, `954`, `956`, `957`, `958`, `959`, `961`, `962`, `965`, `967`, `968`, `970`, `971`, `972`, `973`, `976`, `977`, `979`, `982`, `983`, `984`, `985`, `986`, `988`, `989`, `990`, `993`, `994`, `996`, `998`, `999`, `1001`, `1002`, `1003`, `1005`, `1006`, `1007`, `1009`, `1010`, `1012`, `1016`, `1018`, `1020`, `1021`, `1023`, `1024`, `1026`, `1027`, `1029`, `1030`, `1031`, `1032`, `1033`, `1034`, `1036`, `1037`, `1038`, `1040`, `1042`, `1044`, `223`, `1045`, `1046`, `1049`, `1052`, `1054`, `1057`, `1058`, `1061`, `1062`, `1063`, `1064`, `1065`, `1067`, `1068`, `1069`, `1070`, `1071`, `1072`, `1074`, `1077`, `1079`, `1080`, `1081`, `1083`, `1084`, `1086`, `1087`, `1088`, `1090`, `1092`, `1093`, `1094`, `1095`, `1096`, `1097`, `1098`, `1099`, `1100`, `1102`, `1105`, `1106`, `1107`, `1109`, `1110`, `1111`, `1112`, `1113`, `1114`, `1115`, `1116`, `1117`, `1118`, `1121`, `1123`, `1126`, `1128`, `1129`, `1130`, `1131`, `1132`, `1133`, `1135`, `1136`, `1137`, `1138`, `1139`, `1141`, `1142`, `1143`, `1144`, `1145`, `1148`, `1149`, `1150`, `1152`, `1154`, `1155`, `1157`, `1158`, `1159`, `1160`, `1162`, `1163`, `1164`, `1166`, `1167`, `1168`, `1170`, `1173`, `1174`, `1176`, `1178`, `1179`, `1180`, `1182`, `1183`, `1184`, `1186`, `1187`, `1188`, `1191`, `1192`, `1193`, `1194`, `1195`, `1196`, `1197`, `1198`, `1199`, `1200`, `1201`, `1203`, `1204`, `1206`, `1207`, `1209`, `1211`, `1212`, `1213`, `1214`, `1215`, `1216`, `1218`, `1219`, `1220`, `1221`, `1224`, `1225`, `1227`, `1228`, `1229`, `1231`, `1232`, `1233`, `1235`, `1237`, `1240`, `1243`, `1246`, `1248`, `1249`, `1251`, `1252`, `1254`, `1257`, `1258`, `1260`, `1263`, `1264`, `1265`, `1267`, `1269`, `1270`, `1272`, `1273`, `1275`, `1276`, `1278`, `1280`, `1281`, `1282`, `1284`, `297`, `1285`, `1287`, `1289`, `1291`, `1292`, `1293`, `1294`, `1295`, `1297`, `1299`, `1301`, `1303`, `1305`, `1308`, `1309`, `1310`, `1312` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_F` | 99.95 |
| `TOKEN_P` | 99.95 |
| `TOKEN_R` | 99.96 |
| `TOKEN_ACC` | 99.99 |
| `SENTS_F` | 98.02 |
| `SENTS_P` | 98.02 |
| `SENTS_R` | 98.02 |
| `TAG_ACC` | 97.87 |
| `POS_ACC` | 98.83 |
| `MORPH_ACC` | 97.97 |
| `DEP_UAS` | 92.14 |
| `DEP_LAS` | 89.39 |
| `LEMMA_ACC` | 97.37 |
|
jimmyliao/distilbert-base-uncased-finetuned-cola
|
jimmyliao
| 2021-12-11T01:27:10Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- matthews_correlation
model-index:
- name: distilbert-base-uncased-finetuned-cola
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: cola
metrics:
- name: Matthews Correlation
type: matthews_correlation
value: 0.541356878970505
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8394
- Matthews Correlation: 0.5414
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.5259 | 1.0 | 535 | 0.5429 | 0.4064 |
| 0.342 | 2.0 | 1070 | 0.5270 | 0.5081 |
| 0.234 | 3.0 | 1605 | 0.6115 | 0.5268 |
| 0.1703 | 4.0 | 2140 | 0.7344 | 0.5387 |
| 0.1283 | 5.0 | 2675 | 0.8394 | 0.5414 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.8.0+cpu
- Datasets 1.16.1
- Tokenizers 0.10.3
|
pietrotrope/hate_trained
|
pietrotrope
| 2021-12-11T01:00:50Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: hate_trained
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: hate
metrics:
- name: F1
type: f1
value: 0.7730369969869401
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hate_trained
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9661
- F1: 0.7730
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 9.303025140957233e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.4767 | 1.0 | 2250 | 0.5334 | 0.7717 |
| 0.4342 | 2.0 | 4500 | 0.7633 | 0.7627 |
| 0.3813 | 3.0 | 6750 | 0.9452 | 0.7614 |
| 0.3118 | 4.0 | 9000 | 0.9661 | 0.7730 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
explosion/sr_udv25_serbianset_trf
|
explosion
| 2021-12-11T00:35:48Z | 0 | 0 |
spacy
|
[
"spacy",
"token-classification",
"sr",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- sr
license: cc-by-sa-4.0
model-index:
- name: sr_udv25_serbianset_trf
results:
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9586425415
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9855749187
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9605169898
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9593563717
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9372300605
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.9024858432
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9803554724
---
UD v2.5 benchmarking pipeline for UD_Serbian-SET
| Feature | Description |
| --- | --- |
| **Name** | `sr_udv25_serbianset_trf` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.2.1,<3.3.0` |
| **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (2603 labels for 6 components)</summary>
| Component | Labels |
| --- | --- |
| **`experimental_char_ner_tokenizer`** | `TOKEN` |
| **`senter`** | `I`, `S` |
| **`tagger`** | `Agcfpay`, `Agcfpgy`, `Agcfpiy`, `Agcfply`, `Agcfpny`, `Agcfsay`, `Agcfsdy`, `Agcfsgy`, `Agcfsiy`, `Agcfsly`, `Agcfsny`, `Agcmpay`, `Agcmpgy`, `Agcmpiy`, `Agcmpny`, `Agcmsayn`, `Agcmsdy`, `Agcmsgy`, `Agcmsiy`, `Agcmsly`, `Agcmsny`, `Agcnply`, `Agcnpny`, `Agcnsay`, `Agcnsdy`, `Agcnsgy`, `Agcnsiy`, `Agcnsly`, `Agcnsny`, `Agpfpay`, `Agpfpdy`, `Agpfpgy`, `Agpfpiy`, `Agpfply`, `Agpfpny`, `Agpfsay`, `Agpfsdy`, `Agpfsgy`, `Agpfsiy`, `Agpfsly`, `Agpfsny`, `Agpmpay`, `Agpmpdy`, `Agpmpgy`, `Agpmpiy`, `Agpmply`, `Agpmpny`, `Agpmsann`, `Agpmsayn`, `Agpmsayy`, `Agpmsdy`, `Agpmsgn`, `Agpmsgy`, `Agpmsiy`, `Agpmsly`, `Agpmsnn`, `Agpmsny`, `Agpnpay`, `Agpnpdy`, `Agpnpgy`, `Agpnpiy`, `Agpnply`, `Agpnpny`, `Agpnsay`, `Agpnsdy`, `Agpnsgn`, `Agpnsgy`, `Agpnsiy`, `Agpnsly`, `Agpnsny`, `Agsfpay`, `Agsfpgy`, `Agsfpiy`, `Agsfpny`, `Agsfsay`, `Agsfsgy`, `Agsfsiy`, `Agsfsny`, `Agsmpay`, `Agsmpdy`, `Agsmpgy`, `Agsmply`, `Agsmpny`, `Agsmsayn`, `Agsmsayy`, `Agsmsgy`, `Agsmsiy`, `Agsmsly`, `Agsmsny`, `Agsnpay`, `Agsnpgy`, `Agsnpny`, `Agsnsgy`, `Agsnsiy`, `Agsnsny`, `Appfpay`, `Appfpdy`, `Appfpgy`, `Appfpiy`, `Appfply`, `Appfpny`, `Appfsay`, `Appfsgy`, `Appfsiy`, `Appfsly`, `Appfsny`, `Appmpay`, `Appmpgy`, `Appmpiy`, `Appmply`, `Appmpny`, `Appmsann`, `Appmsayn`, `Appmsayy`, `Appmsdy`, `Appmsgy`, `Appmsiy`, `Appmsly`, `Appmsnn`, `Appmsny`, `Appnpay`, `Appnpgy`, `Appnpiy`, `Appnpny`, `Appnsay`, `Appnsgy`, `Appnsiy`, `Appnsly`, `Appnsny`, `Aspfpay`, `Aspfpgy`, `Aspfply`, `Aspfpny`, `Aspfsay`, `Aspfsdy`, `Aspfsgy`, `Aspfsiy`, `Aspfsly`, `Aspfsny`, `Aspmpay`, `Aspmpgy`, `Aspmpny`, `Aspmsann`, `Aspmsayy`, `Aspmsdy`, `Aspmsgy`, `Aspmsiy`, `Aspmsly`, `Aspmsnn`, `Aspnpay`, `Aspnsay`, `Aspnsgy`, `Aspnsly`, `Aspnsny`, `Cc`, `Cs`, `I`, `Mdc`, `Mdm`, `Mdo`, `Mds`, `Mlc`, `Mlc--i`, `Mlcf-a`, `Mlcf-g`, `Mlcf-n`, `Mlcfpa`, `Mlcfpg`, `Mlcfsa`, `Mlcfsd`, `Mlcfsg`, `Mlcfsi`, `Mlcfsl`, `Mlcfsn`, `Mlcm-a`, `Mlcm-n`, `Mlcmpn`, `Mlcmsan`, `Mlcmsay`, `Mlcmsd`, `Mlcmsg`, `Mlcmsi`, `Mlcmsl`, `Mlcmsn`, `Mlcn-n`, `Mlcnsa`, `Mlcnsl`, `Mlcnsn`, `Mlofpa`, `Mlofpd`, `Mlofpg`, `Mlofpi`, `Mlofpl`, `Mlofpn`, `Mlofsa`, `Mlofsd`, `Mlofsg`, `Mlofsi`, `Mlofsl`, `Mlofsn`, `Mlompa`, `Mlompd`, `Mlompg`, `Mlompi`, `Mlompl`, `Mlompn`, `Mlomsan`, `Mlomsay`, `Mlomsd`, `Mlomsg`, `Mlomsi`, `Mlomsl`, `Mlomsn`, `Mlonpa`, `Mlonpg`, `Mlonpl`, `Mlonsa`, `Mlonsg`, `Mlonsi`, `Mlonsl`, `Mlonsn`, `Mls`, `Mlsf-a`, `Mlsf-g`, `Mlsf-i`, `Mlsf-l`, `Mlsf-n`, `Mlsm-a`, `Mlsm-n`, `Ncfpa`, `Ncfpd`, `Ncfpg`, `Ncfpi`, `Ncfpl`, `Ncfpn`, `Ncfsa`, `Ncfsd`, `Ncfsg`, `Ncfsi`, `Ncfsl`, `Ncfsn`, `Ncmpa`, `Ncmpd`, `Ncmpg`, `Ncmpi`, `Ncmpl`, `Ncmpn`, `Ncmsan`, `Ncmsay`, `Ncmsd`, `Ncmsg`, `Ncmsi`, `Ncmsl`, `Ncmsn`, `Ncmsv`, `Ncnpa`, `Ncnpd`, `Ncnpg`, `Ncnpi`, `Ncnpl`, `Ncnpn`, `Ncnsa`, `Ncnsd`, `Ncnsg`, `Ncnsi`, `Ncnsl`, `Ncnsn`, `Npfpd`, `Npfpg`, `Npfpn`, `Npfsa`, `Npfsd`, `Npfsg`, `Npfsi`, `Npfsl`, `Npfsn`, `Npmpa`, `Npmpd`, `Npmpg`, `Npmpi`, `Npmpn`, `Npmsan`, `Npmsay`, `Npmsd`, `Npmsg`, `Npmsi`, `Npmsl`, `Npmsn`, `Npnpn`, `Npnsa`, `Npnsd`, `Npnsg`, `Npnsi`, `Npnsl`, `Npnsn`, `Pd-fpa`, `Pd-fpd`, `Pd-fpg`, `Pd-fpi`, `Pd-fpl`, `Pd-fpn`, `Pd-fsa`, `Pd-fsd`, `Pd-fsg`, `Pd-fsi`, `Pd-fsl`, `Pd-fsn`, `Pd-mpa`, `Pd-mpd`, `Pd-mpg`, `Pd-mpl`, `Pd-mpn`, `Pd-msan`, `Pd-msay`, `Pd-msd`, `Pd-msg`, `Pd-msi`, `Pd-msl`, `Pd-msn`, `Pd-npa`, `Pd-npd`, `Pd-npg`, `Pd-npl`, `Pd-npn`, `Pd-nsa`, `Pd-nsd`, `Pd-nsg`, `Pd-nsi`, `Pd-nsl`, `Pd-nsn`, `Pi--sn`, `Pi-fpa`, `Pi-fpd`, `Pi-fpg`, `Pi-fpi`, `Pi-fpl`, `Pi-fpn`, `Pi-fsa`, `Pi-fsd`, `Pi-fsg`, `Pi-fsi`, `Pi-fsl`, `Pi-fsn`, `Pi-mpa`, `Pi-mpd`, `Pi-mpg`, `Pi-mpi`, `Pi-mpl`, `Pi-mpn`, `Pi-msan`, `Pi-msay`, `Pi-msd`, `Pi-msg`, `Pi-msi`, `Pi-msl`, `Pi-msn`, `Pi-npa`, `Pi-npd`, `Pi-npg`, `Pi-npl`, `Pi-npn`, `Pi-nsa`, `Pi-nsg`, `Pi-nsi`, `Pi-nsl`, `Pi-nsn`, `Pi3m-a`, `Pi3m-d`, `Pi3m-g`, `Pi3m-n`, `Pi3n-a`, `Pi3n-g`, `Pi3n-i`, `Pi3n-l`, `Pi3n-n`, `Pp1-pa`, `Pp1-pd`, `Pp1-pg`, `Pp1-pi`, `Pp1-pl`, `Pp1-pn`, `Pp1-sa`, `Pp1-sd`, `Pp1-sn`, `Pp2-pa`, `Pp2-pd`, `Pp2-pl`, `Pp2-pn`, `Pp3-pa`, `Pp3-pd`, `Pp3-pg`, `Pp3-pi`, `Pp3-pl`, `Pp3fpn`, `Pp3fsa`, `Pp3fsd`, `Pp3fsg`, `Pp3fsi`, `Pp3fsl`, `Pp3fsn`, `Pp3mpn`, `Pp3msa`, `Pp3msd`, `Pp3msg`, `Pp3msi`, `Pp3msl`, `Pp3msn`, `Pp3npn`, `Pp3nsa`, `Pp3nsn`, `Pq-fpa`, `Pq-fsl`, `Pq-fsn`, `Pq-mpn`, `Pq-msn`, `Pq-nsn`, `Pq3n-n`, `Ps1fpa`, `Ps1fpd`, `Ps1fpg`, `Ps1fpn`, `Ps1fsa`, `Ps1fsd`, `Ps1fsg`, `Ps1fsl`, `Ps1fsn`, `Ps1mpa`, `Ps1mpd`, `Ps1mpg`, `Ps1mpl`, `Ps1mpn`, `Ps1msan`, `Ps1msd`, `Ps1msg`, `Ps1msn`, `Ps1nsa`, `Ps1nsg`, `Ps1nsl`, `Ps1nsn`, `Ps2fpl`, `Ps2fpn`, `Ps2msan`, `Ps2nsl`, `Ps2nsn`, `Ps3fpa`, `Ps3fpg`, `Ps3fpl`, `Ps3fpn`, `Ps3fsa`, `Ps3fsd`, `Ps3fsg`, `Ps3fsi`, `Ps3fsl`, `Ps3fsn`, `Ps3mpa`, `Ps3mpd`, `Ps3mpg`, `Ps3mpl`, `Ps3mpn`, `Ps3msan`, `Ps3msd`, `Ps3msg`, `Ps3msi`, `Ps3msl`, `Ps3msn`, `Ps3npa`, `Ps3npg`, `Ps3npl`, `Ps3nsa`, `Ps3nsg`, `Ps3nsl`, `Ps3nsn`, `Px--sa`, `Px--sd`, `Px--sg`, `Px--si`, `Px--sl`, `Px-fpa`, `Px-fpg`, `Px-fpi`, `Px-fpl`, `Px-fsa`, `Px-fsd`, `Px-fsg`, `Px-fsi`, `Px-fsl`, `Px-mpa`, `Px-mpd`, `Px-mpg`, `Px-mpi`, `Px-mpl`, `Px-msan`, `Px-msay`, `Px-msd`, `Px-msg`, `Px-msi`, `Px-msl`, `Px-npa`, `Px-npg`, `Px-npl`, `Px-nsa`, `Px-nsg`, `Qo`, `Qq`, `Qz`, `Rgc`, `Rgp`, `Rgs`, `Rr`, `Sa`, `Sd`, `Sg`, `Si`, `Sl`, `Vaa1p`, `Vaa1s`, `Vaa3p`, `Vaa3s`, `Vaf3p`, `Vaf3s`, `Van`, `Vap-pf`, `Vap-pm`, `Vap-pn`, `Vap-sf`, `Vap-sm`, `Vap-sn`, `Var1p`, `Var1s`, `Var2p`, `Var3p`, `Var3s`, `Vma3s`, `Vmf1p`, `Vmf1s`, `Vmf2p`, `Vmf3p`, `Vmf3s`, `Vmm1p`, `Vmm2p`, `Vmn`, `Vmp-pf`, `Vmp-pm`, `Vmp-pn`, `Vmp-sf`, `Vmp-sm`, `Vmp-sn`, `Vmr1p`, `Vmr1s`, `Vmr2p`, `Vmr3p`, `Vmr3s`, `X`, `Xf`, `Y`, `Z` |
| **`morphologizer`** | `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Loc\|POS=ADP`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=SCONJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|POS=ADP`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=PUNCT`, `POS=CCONJ`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Loc\|Gender=Neut\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Degree=Pos\|POS=ADV`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `NumType=Card\|POS=NUM`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|POS=ADP`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `POS=X`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `NumType=Ord\|POS=NUM`, `Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `POS=PART\|Polarity=Neg`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Ins\|POS=ADP`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Degree=Pos\|POS=ADV\|PronType=Dem`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Acc\|Gender=Fem\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `POS=DET`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Degree=Cmp\|POS=ADV`, `Case=Nom\|Gender=Neut\|POS=PRON\|PronType=Int,Rel`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `POS=VERB\|VerbForm=Inf`, `POS=PART`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=ADV\|Tense=Past\|VerbForm=Conv`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Gender=Neut\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Gen\|Gender=Neut\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Anim\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `POS=AUX\|VerbForm=Inf`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Ins\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Degree=Pos\|POS=DET\|PronType=Ind`, `Animacy=Inan\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Degree=Pos\|POS=ADV\|PronType=Neg`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Degree=Cmp\|POS=DET`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Gender=Neut\|POS=PRON\|PronType=Int,Rel`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Case=Nom\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Masc\|POS=PRON\|PronType=Neg`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Degree=Pos\|POS=ADV\|PronType=Int,Rel`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=DET`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Ins\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Loc\|Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Masc\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=NUM`, `Animacy=Inan\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Degree=Pos\|POS=ADV\|PronType=Tot`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `POS=ADV`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Animacy=Inan\|Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|POS=PRON\|PronType=Ind`, `Case=Loc\|Gender=Neut\|POS=PRON\|PronType=Int,Rel`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `NumType=Ord\|POS=ADJ`, `Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Animacy=Inan\|Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Masc\|POS=PRON\|PronType=Neg`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|POS=ADP`, `Degree=Sup\|POS=ADV`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Degree=Pos\|POS=DET`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Loc\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=NUM`, `Degree=Pos\|POS=ADV\|PronType=Ind`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Loc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|Poss=Yes`, `POS=ADV\|Tense=Pres\|VerbForm=Conv`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|NumType=Mult\|POS=NUM`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Loc\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|POS=PRON\|PronType=Int,Rel`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Ins\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NUM`, `Gender=Fem\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Ins\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Loc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Ins\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Ins\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=NUM`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Gender=Neut\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Gender=Neut\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Ind`, `POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `NumType=Mult\|POS=NUM`, `Case=Nom\|Gender=Masc\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Loc\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Dat\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Neut\|POS=PRON\|PronType=Neg`, `Case=Dat\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Gen\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Animacy=Anim\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Dat\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Neut\|POS=PRON\|PronType=Int,Rel`, `Case=Dat\|Gender=Masc\|POS=PRON\|PronType=Int,Rel`, `Case=Nom\|Gender=Fem\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Acc\|Gender=Neut\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Loc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Loc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Degree=Pos\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Neut\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Ins\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=NUM`, `Degree=Sup\|POS=DET`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Loc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Animacy=Inan\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Anim\|Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Nom\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Ins\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Loc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Ind`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Loc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Masc\|POS=PRON\|PronType=Tot`, `Case=Nom\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Loc\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|NumType=Mult\|POS=NUM`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Fem\|NumType=Mult\|POS=NUM`, `Case=Gen\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Animacy=Inan\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Ins\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Gender=Neut\|POS=PRON\|PronType=Neg`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Loc\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Neg`, `Case=Nom\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Loc\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Loc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|POS=PRON\|PronType=Ind`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|POS=PRON\|PronType=Int,Rel`, `Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Ins\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Loc\|Gender=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Fem\|NumType=Mult\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Masc\|POS=PRON\|PronType=Ind`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Loc\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Loc\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Loc\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Loc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Ins\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Ins\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Dat\|Gender=Masc\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Ins\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin`, `Case=Nom\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Gender=Neut\|POS=PRON\|PronType=Int,Rel`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=NUM`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Ins\|Gender=Fem\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Loc\|Gender=Fem\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Ins\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Ins\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Ins\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Tot`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Loc\|Gender=Fem\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NUM`, `Animacy=Inan\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Dat\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Ins\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=NUM`, `Case=Loc\|Gender=Neut\|POS=PRON\|PronType=Ind`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Neg`, `Case=Ins\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Ins\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Neg`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Ins\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Gen\|Gender=Fem\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Neg`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Masc\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Masc\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|NumType=Mult\|POS=NUM`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Gen\|Gender=Neut\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Gender=Neut\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Neg`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Degree=Pos\|POS=DET\|PronType=Dem`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Fem\|NumType=Mult\|POS=NUM`, `Animacy=Anim\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Neg`, `Case=Loc\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Loc\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Loc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Ins\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Poss=Yes`, `POS=SYM`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=DET`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `POS=INTJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Neg`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Ins\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Loc\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=DET`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Nom\|Gender=Masc\|NumType=Mult\|POS=NUM`, `Case=Acc\|Gender=Masc\|POS=PRON\|PronType=Neg`, `Case=Gen\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Gen\|Gender=Masc\|POS=PRON\|PronType=Int,Rel`, `Animacy=Anim\|Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=DET`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Ind`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Loc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Ind`, `Case=Ins\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Neg`, `POS=ADV\|VerbForm=Part`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs` |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `dep`, `det`, `det:numgov`, `discourse`, `fixed`, `flat`, `list`, `mark`, `nmod`, `nsubj`, `nummod`, `nummod:gov`, `obj`, `obl`, `orphan`, `parataxis`, `punct`, `xcomp` |
| **`experimental_edit_tree_lemmatizer`** | `1`, `3`, `5`, `7`, `9`, `10`, `12`, `14`, `16`, `17`, `19`, `21`, `23`, `25`, `27`, `29`, `31`, `33`, `35`, `38`, `40`, `41`, `43`, `45`, `47`, `49`, `51`, `53`, `56`, `58`, `60`, `62`, `64`, `66`, `68`, `70`, `73`, `74`, `77`, `80`, `82`, `84`, `86`, `88`, `90`, `92`, `94`, `96`, `98`, `100`, `104`, `105`, `107`, `109`, `111`, `113`, `116`, `118`, `120`, `121`, `124`, `126`, `128`, `130`, `132`, `134`, `136`, `138`, `141`, `143`, `145`, `147`, `150`, `153`, `155`, `157`, `159`, `160`, `162`, `164`, `166`, `167`, `168`, `170`, `172`, `174`, `175`, `176`, `178`, `180`, `182`, `184`, `188`, `190`, `191`, `194`, `196`, `198`, `199`, `201`, `202`, `205`, `207`, `209`, `211`, `214`, `217`, `219`, `221`, `223`, `225`, `227`, `229`, `231`, `233`, `237`, `239`, `241`, `243`, `245`, `83`, `246`, `247`, `249`, `253`, `255`, `258`, `260`, `262`, `263`, `265`, `269`, `271`, `272`, `274`, `275`, `276`, `277`, `278`, `280`, `282`, `283`, `285`, `287`, `289`, `291`, `292`, `293`, `294`, `295`, `297`, `298`, `299`, `301`, `302`, `304`, `306`, `308`, `310`, `312`, `314`, `315`, `317`, `320`, `321`, `323`, `325`, `327`, `328`, `330`, `332`, `333`, `335`, `337`, `338`, `340`, `341`, `342`, `343`, `346`, `250`, `348`, `349`, `350`, `351`, `353`, `354`, `356`, `358`, `360`, `362`, `364`, `365`, `367`, `369`, `371`, `373`, `375`, `376`, `378`, `380`, `382`, `384`, `385`, `386`, `388`, `391`, `395`, `398`, `400`, `402`, `404`, `406`, `409`, `413`, `415`, `419`, `421`, `424`, `426`, `427`, `428`, `429`, `430`, `431`, `432`, `434`, `436`, `438`, `440`, `442`, `444`, `446`, `447`, `449`, `450`, `452`, `454`, `455`, `457`, `459`, `461`, `462`, `463`, `465`, `466`, `468`, `470`, `472`, `474`, `476`, `477`, `478`, `480`, `483`, `485`, `486`, `489`, `491`, `492`, `497`, `498`, `500`, `501`, `502`, `503`, `504`, `507`, `508`, `509`, `510`, `512`, `513`, `515`, `516`, `518`, `519`, `521`, `523`, `524`, `526`, `527`, `529`, `531`, `532`, `533`, `535`, `538`, `540`, `542`, `543`, `545`, `547`, `550`, `552`, `553`, `556`, `557`, `558`, `561`, `562`, `563`, `566`, `567`, `569`, `571`, `572`, `574`, `576`, `578`, `580`, `582`, `583`, `586`, `588`, `590`, `592`, `594`, `596`, `600`, `601`, `603`, `606`, `607`, `609`, `610`, `611`, `613`, `614`, `615`, `616`, `618`, `620`, `623`, `624`, `626`, `627`, `629`, `630`, `632`, `635`, `637`, `639`, `641`, `642`, `643`, `645`, `647`, `648`, `649`, `652`, `654`, `655`, `658`, `660`, `662`, `665`, `667`, `668`, `670`, `672`, `674`, `675`, `676`, `678`, `680`, `682`, `683`, `684`, `685`, `687`, `688`, `690`, `691`, `693`, `694`, `696`, `697`, `699`, `701`, `703`, `705`, `707`, `708`, `709`, `710`, `711`, `713`, `714`, `716`, `717`, `718`, `721`, `723`, `725`, `726`, `730`, `732`, `734`, `735`, `736`, `737`, `739`, `740`, `741`, `742`, `744`, `746`, `747`, `749`, `750`, `752`, `754`, `755`, `756`, `757`, `760`, `761`, `762`, `763`, `765`, `768`, `769`, `771`, `772`, `773`, `774`, `775`, `777`, `780`, `781`, `783`, `784`, `785`, `787`, `789`, `790`, `791`, `792`, `794`, `797`, `798`, `800`, `802`, `803`, `806`, `808`, `811`, `813`, `815`, `817`, `819`, `822`, `825`, `827`, `829`, `831`, `833`, `835`, `836`, `838`, `839`, `842`, `845`, `848`, `850`, `851`, `852`, `853`, `855`, `856`, `858`, `860`, `862`, `864`, `866`, `867`, `868`, `871`, `874`, `875`, `876`, `877`, `878`, `880`, `883`, `884`, `885`, `887`, `889`, `890`, `894`, `895`, `896`, `898`, `899`, `901`, `902`, `903`, `904`, `905`, `908`, `909`, `910`, `911`, `913`, `915`, `916`, `917`, `919`, `920`, `921`, `922`, `923`, `925`, `927`, `928`, `929`, `931`, `932`, `934`, `935`, `937`, `938`, `941`, `943`, `945`, `946`, `947`, `948`, `950`, `951`, `952`, `953`, `954`, `955`, `957`, `959`, `962`, `964`, `965`, `966`, `969`, `971`, `972`, `973`, `975`, `977`, `978`, `980`, `982`, `983`, `985`, `986`, `987`, `989`, `990`, `992`, `994`, `996`, `998`, `999`, `1001`, `1002`, `1005`, `1007`, `1009`, `1012`, `1014`, `1016`, `1018`, `1020`, `1022`, `1025`, `1026`, `1028`, `1029`, `1031`, `1033`, `1035`, `1036`, `374`, `1038`, `1039`, `1040`, `1041`, `1042`, `1043`, `1045`, `1047`, `1050`, `1053`, `1054`, `1055`, `1056`, `1057`, `1059`, `1060`, `1061`, `1063`, `1064`, `1065`, `1066`, `1068`, `1070`, `1072`, `1074`, `1075`, `1077`, `1079`, `1080`, `1082`, `1083`, `1084`, `1087`, `1090`, `1091`, `1092`, `1093`, `1095`, `1096`, `1097`, `1100`, `1101`, `1102`, `1103`, `1104`, `1106`, `1108`, `1110`, `1112`, `1114`, `1115`, `1116`, `1117`, `1118`, `1119`, `1120`, `1122`, `1123`, `1125`, `1126`, `1127`, `1129`, `1130`, `1131`, `1132`, `1133`, `1134`, `1135`, `1136`, `1137`, `1139`, `1141`, `1142`, `1143`, `1144`, `1146`, `1148`, `1150`, `1151`, `1152`, `1153`, `1155`, `1157`, `1158`, `1159`, `1160`, `1162`, `1165`, `1167`, `1168`, `1169`, `1170`, `1172`, `1174`, `1177`, `1179`, `1181`, `1183`, `1184`, `1187`, `1189`, `1190`, `1193`, `1194`, `1195`, `1196`, `1197`, `1199`, `1200`, `1201`, `1202`, `1203`, `1205`, `1207`, `1210`, `1211`, `1212`, `1213`, `1215`, `1216`, `1218`, `1219`, `1221`, `1222`, `1223`, `1224`, `1227`, `1228`, `1230`, `1232`, `1235`, `1236`, `1237`, `1239`, `1241`, `1242`, `1244`, `1246`, `1248`, `1250`, `1253`, `1255`, `1256`, `1258`, `1259`, `1260`, `1261`, `1262`, `1263`, `1265`, `1266`, `1267`, `1269`, `1272`, `1275`, `1277`, `1279`, `1281`, `1283`, `1285`, `1287`, `1289`, `1291`, `1292`, `1293`, `1295`, `1296`, `1297`, `1298`, `1300`, `1303`, `1304`, `1306`, `1308`, `1310`, `1311`, `1312`, `1313`, `1315`, `1316`, `1317`, `1318`, `1319`, `1320`, `1321`, `1322`, `1323`, `1325`, `1326`, `1327`, `1329`, `1331`, `1332`, `1333`, `1334`, `1335`, `1336`, `1338`, `1339`, `1340`, `1342`, `1344`, `1346`, `1347`, `1349`, `1350`, `1353`, `1356`, `1357`, `1358`, `1359`, `1360`, `1361`, `1362`, `1363`, `1364`, `1367`, `1368`, `1369`, `1370`, `1371`, `1372`, `1373`, `1374`, `1376`, `1377`, `1379`, `1381`, `1382`, `1384`, `1385`, `1386`, `1387`, `1388`, `1390`, `1391`, `1392`, `1393`, `1395`, `1396`, `1398`, `1399`, `1401`, `1402`, `1404`, `1405`, `1406`, `1408`, `1409`, `1410`, `1412`, `1413`, `1415`, `1417`, `1418`, `1420`, `1421`, `1422`, `1423`, `1424`, `1425`, `1426`, `1428`, `1429`, `1430`, `1431`, `1433`, `1434`, `1435`, `1436`, `1437`, `1438`, `1439`, `1441`, `1442`, `1444`, `1445`, `1447`, `1448`, `1449`, `1450`, `1451`, `1452`, `1453`, `1454`, `1456`, `1458`, `1461`, `1462`, `1463`, `1464`, `1467`, `1469`, `1471`, `1472`, `1474`, `1475`, `1477`, `1479`, `1481`, `1483`, `1484`, `1485`, `1486`, `1487`, `1488`, `1490`, `1492`, `1493`, `1496`, `1497`, `1499`, `1500`, `1502`, `1503`, `1504`, `1505`, `1052`, `1507`, `1508`, `1510`, `1513`, `1515`, `1516`, `1518`, `1519`, `1520`, `1521`, `1523`, `1524`, `1525`, `1526`, `1527`, `1528`, `1529`, `1531`, `1533`, `1534`, `1535`, `1536`, `1537`, `1538`, `1540`, `1541`, `1542`, `1543`, `1544`, `1545`, `1546`, `1547`, `1548`, `1549`, `1550`, `1551`, `1552`, `1553`, `1554`, `1556`, `1557`, `1558`, `1560`, `1561`, `1562`, `1563`, `1564`, `1565`, `1566`, `1567`, `1568`, `1569`, `1571`, `1573`, `1574`, `1576`, `1578`, `1580`, `1581`, `1583`, `1585`, `1586`, `1587`, `1588`, `1589`, `1591`, `1592`, `1593`, `1594`, `1596`, `1597`, `1598`, `1600`, `1602`, `1605`, `1606`, `1607`, `1609`, `1611`, `1612`, `1613`, `1614`, `1616`, `1619`, `1623`, `1624`, `1626`, `1627`, `1628`, `1629`, `1631`, `1633`, `1635`, `1637`, `1638`, `1639`, `1640`, `1641`, `1642`, `1643`, `1645`, `1646`, `1648`, `1649`, `1650`, `1651`, `1652`, `1653`, `1654`, `1655`, `1656`, `1658`, `1659`, `1660`, `1661`, `1662`, `1663`, `1664`, `1665`, `1666`, `1667`, `1669`, `1670`, `1672`, `1673`, `1674`, `1677`, `372`, `1678`, `1680`, `1682`, `1683`, `1684`, `1685`, `1687`, `1689`, `1690`, `1692`, `1694`, `1695`, `1696`, `1697`, `1698`, `1700`, `1702`, `1703`, `1704`, `1706`, `1708`, `1709`, `1710`, `1712`, `1713`, `1715`, `1717`, `1720`, `1722`, `1724`, `1726`, `1728`, `1730`, `1731`, `1732`, `1734`, `1735`, `1737`, `1739`, `1741`, `1743`, `1744`, `1745`, `1746`, `1747`, `1748`, `1751`, `1753`, `1755`, `1757`, `1758`, `1759`, `1760`, `1762`, `1764`, `1766`, `1767`, `1768`, `1770`, `1772`, `1773`, `1776`, `1777`, `1778`, `1779`, `1781`, `1783`, `1784`, `1785`, `1787`, `1789`, `1790`, `1791`, `1793`, `1794`, `1795`, `1799`, `1800`, `1802`, `1803`, `1804`, `1806`, `1807`, `1808`, `1809`, `1812`, `1813`, `1814`, `1816`, `1817`, `1819`, `1820`, `1821`, `1822`, `1823`, `1824`, `1826`, `1828`, `1830`, `1831`, `1832`, `1834`, `1837`, `1838`, `1840`, `1841`, `1842`, `1844`, `1845`, `1847`, `1848`, `1850`, `1851`, `1853`, `1854`, `1855`, `1856`, `1859`, `1860`, `1862`, `1864`, `1865`, `1866`, `1868`, `1869`, `1870`, `1871`, `1873`, `1874`, `1875`, `1876`, `1877`, `1878`, `1879`, `1880`, `1881`, `1883`, `1884`, `1885`, `1886`, `1888`, `1889`, `1890`, `1891`, `1892`, `1894`, `1895`, `61`, `1896`, `1898`, `1899`, `1901`, `1902`, `1903`, `1905`, `1907`, `1908`, `1910`, `1912`, `1914`, `1915`, `1916`, `1917`, `1919`, `133`, `1920`, `1921`, `1922`, `1923`, `1924`, `1925`, `1926`, `1928`, `1931`, `1932`, `1933`, `1934`, `1935`, `1936`, `1937`, `1939`, `1940`, `1943`, `1945`, `1946`, `1947`, `1949`, `1950`, `1952`, `1955`, `1956`, `1957`, `1958`, `1959`, `1960`, `1962`, `1964`, `1965`, `1968`, `1969`, `1970`, `1971`, `1972`, `1973`, `1975`, `1977`, `1979`, `1980`, `1982`, `1984`, `1986`, `1989`, `1990`, `1992`, `1993`, `1995`, `1997`, `1999`, `2001`, `2003`, `2005`, `2006`, `2008`, `2009`, `2010`, `2011`, `2012`, `2014`, `2016`, `2017`, `2018`, `2019`, `2021`, `2022`, `2024`, `2026`, `2027`, `2030`, `2032`, `2035`, `2037`, `2039`, `2040`, `2041`, `2042`, `2043`, `2045`, `2047` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_F` | 99.92 |
| `TOKEN_P` | 99.91 |
| `TOKEN_R` | 99.94 |
| `TOKEN_ACC` | 100.00 |
| `SENTS_F` | 98.04 |
| `SENTS_P` | 98.31 |
| `SENTS_R` | 97.76 |
| `TAG_ACC` | 95.86 |
| `POS_ACC` | 98.56 |
| `MORPH_ACC` | 96.05 |
| `DEP_UAS` | 93.72 |
| `DEP_LAS` | 90.25 |
| `LEMMA_ACC` | 95.94 |
|
explosion/ro_udv25_romaniannonstandard_trf
|
explosion
| 2021-12-10T23:04:41Z | 0 | 0 |
spacy
|
[
"spacy",
"token-classification",
"ro",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- ro
license: cc-by-sa-4.0
model-index:
- name: ro_udv25_romaniannonstandard_trf
results:
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9385375334
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9765972953
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9364320998
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9399476397
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9256250793
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8749206752
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9699570815
---
UD v2.5 benchmarking pipeline for UD_Romanian-Nonstandard
| Feature | Description |
| --- | --- |
| **Name** | `ro_udv25_romaniannonstandard_trf` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.2.1,<3.3.0` |
| **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (7445 labels for 6 components)</summary>
| Component | Labels |
| --- | --- |
| **`experimental_char_ner_tokenizer`** | `TOKEN` |
| **`senter`** | `I`, `S` |
| **`tagger`** | `AdpType=Prep\|Case=Acc`, `Afp`, `Afpf--n`, `Afpfp-n`, `Afpfpon`, `Afpfpoy`, `Afpfprn`, `Afpfpry`, `Afpfson`, `Afpfsoy`, `Afpfsrn`, `Afpfsry`, `Afpmp-n`, `Afpmpoy`, `Afpmprn`, `Afpmpry`, `Afpmpvy`, `Afpms-n`, `Afpmsoy`, `Afpmsrn`, `Afpmsry`, `Afpmsvn`, `Afpmsvy`, `COLON`, `COMMA`, `Cccsp`, `Cccsz`, `Ccssp`, `Ccssz`, `Cscsp`, `Csssp`, `DASH`, `DBLQ`, `Dd3-po---e`, `Dd3-po---o`, `Dd3fpo`, `Dd3fpr`, `Dd3fpr---e`, `Dd3fpr---o`, `Dd3fso`, `Dd3fso---e`, `Dd3fso---o`, `Dd3fsr`, `Dd3fsr---e`, `Dd3fsr---o`, `Dd3mpo`, `Dd3mpr`, `Dd3mpr---e`, `Dd3mpr---o`, `Dd3mso`, `Dd3mso---e`, `Dd3mso---o`, `Dd3msr`, `Dd3msr---e`, `Dd3msr---o`, `Dh1mp`, `Dh1ms`, `Dh2mp`, `Dh2ms`, `Dh3fp`, `Dh3mp`, `Dh3ms`, `Di3--r`, `Di3-po`, `Di3-sr`, `Di3fp`, `Di3fpo`, `Di3fpr`, `Di3fso`, `Di3fsr`, `Di3mpr`, `Di3mso`, `Di3msr`, `Ds1fp-p`, `Ds1fp-s`, `Ds1fsop`, `Ds1fsos`, `Ds1fsrp`, `Ds1fsrs`, `Ds1mp-p`, `Ds1mp-s`, `Ds1ms-p`, `Ds1ms-s`, `Ds2fp-p`, `Ds2fp-s`, `Ds2fsop`, `Ds2fsos`, `Ds2fsrp`, `Ds2fsrs`, `Ds2mp-p`, `Ds2mp-s`, `Ds2ms-p`, `Ds2ms-s`, `Ds3fp-s`, `Ds3fsos`, `Ds3fsrs`, `Ds3mp-s`, `Ds3ms-s`, `Dw3--r`, `Dw3-po`, `Dw3fpr`, `Dw3fso`, `Dw3fsr`, `Dw3mpr`, `Dw3mso`, `Dw3msr`, `Dz3fpr`, `Dz3fsr`, `Dz3msr`, `EXCL`, `EXCLHELLIP`, `HELLIP`, `I`, `LPAR`, `M`, `Mc-p-l`, `Mcfp-l`, `Mcfpol`, `Mcfprln`, `Mcfsoln`, `Mcfsoly`, `Mcfsrln`, `Mcfsrly`, `Mcmp-l`, `Mcms-ln`, `Mcmsoly`, `Mcmsrl`, `Mcmsrly`, `Mffsrln`, `Ml-po`, `Mlfpr`, `Mlmpr`, `Mmfpr-n`, `Mmmpr-n`, `Mmmsr-n`, `Mo---l`, `Mo---ln`, `Mo-s-r`, `Mofprln`, `Mofprly`, `Mofs-l`, `Mofs-ly`, `Mofsrln`, `Mofsrly`, `Momp-ln`, `Moms-l`, `Moms-ln`, `Momsoly`, `Momsrly`, `Ncfpoy`, `Ncfprn`, `Ncfpry`, `Ncfpvy`, `Ncfson`, `Ncfsoy`, `Ncfsrn`, `Ncfsry`, `Ncfsvn`, `Ncfsvy`, `Ncmpoy`, `Ncmprn`, `Ncmpry`, `Ncmpvy`, `Ncmson`, `Ncmsoy`, `Ncmsrn`, `Ncmsry`, `Ncmsvn`, `Ncmsvy`, `Ncnsrn`, `Np`, `Npfpoy`, `Npfprn`, `Npfpry`, `Npfsoy`, `Npfsrn`, `Npfsry`, `Npfsvn`, `Npmpoy`, `Npmprn`, `Npmpry`, `Npmsoy`, `Npmsrn`, `Npmsry`, `Npmsvn`, `Npmsvy`, `PERIOD`, `Pd3-po`, `Pd3-po---o`, `Pd3fpo`, `Pd3fpr`, `Pd3fso`, `Pd3fsr`, `Pd3mpo`, `Pd3mpr`, `Pd3mso`, `Pd3msr`, `Ph1mp`, `Ph1ms`, `Ph2mp`, `Ph2ms`, `Ph3--r`, `Ph3fp`, `Ph3fsr`, `Ph3mp`, `Ph3mpo`, `Ph3mpr`, `Ph3ms`, `Ph3mso`, `Pi3--r`, `Pi3-po`, `Pi3-so`, `Pi3-sr`, `Pi3fpo`, `Pi3fpr`, `Pi3fso`, `Pi3fsr`, `Pi3mpo`, `Pi3mpr`, `Pi3mpry`, `Pi3mso`, `Pi3msr`, `Pi3msry`, `Pp1-pa--------s`, `Pp1-pa--------w`, `Pp1-pd--------s`, `Pp1-pd--------w`, `Pp1-pr`, `Pp1-sa--------s`, `Pp1-sa--------w`, `Pp1-sd--------s`, `Pp1-sd--------w`, `Pp1-sr`, `Pp2-pa--------s`, `Pp2-pa--------w`, `Pp2-pd--------s`, `Pp2-pd--------w`, `Pp2-po`, `Pp2-pr`, `Pp2-sa--------s`, `Pp2-sa--------w`, `Pp2-sd--------s`, `Pp2-sd--------w`, `Pp2-so`, `Pp2-sr`, `Pp3-pd--------s`, `Pp3-pd--------w`, `Pp3-po`, `Pp3-pr`, `Pp3-sd--------w`, `Pp3-so`, `Pp3fpa--------s`, `Pp3fpa--------w`, `Pp3fpr`, `Pp3fsa--------s`, `Pp3fsa--------w`, `Pp3fsd--------s`, `Pp3fso`, `Pp3fsoy`, `Pp3fsr`, `Pp3mpa--------s`, `Pp3mpa--------w`, `Pp3mpo`, `Pp3mpr`, `Pp3msa--------s`, `Pp3msa--------w`, `Pp3msd--------s`, `Pp3mso`, `Pp3msr`, `Pp3msry`, `Ps1fp-p`, `Ps1fp-s`, `Ps1fsrp`, `Ps1fsrs`, `Ps1mp-p`, `Ps1ms-p`, `Ps1ms-s`, `Ps2fp-p`, `Ps2fp-s`, `Ps2fsrp`, `Ps2fsrs`, `Ps2mp-s`, `Ps2ms-p`, `Ps2ms-s`, `Ps3fp-s`, `Ps3fsrs`, `Ps3mp-s`, `Ps3ms-s`, `Pw3--r`, `Pw3-po`, `Pw3-pr`, `Pw3-pry`, `Pw3-so`, `Pw3fpr`, `Pw3fpry`, `Pw3fso`, `Pw3fsr`, `Pw3fsry`, `Pw3mpr`, `Pw3mpry`, `Pw3mso`, `Pw3msr`, `Pw3msry`, `Px3--a--------s`, `Px3--a--------w`, `Px3--d--------s`, `Px3--d--------w`, `Px3--d-------w`, `Pz3-so`, `Pz3-sr`, `Pz3fsr`, `Pz3mso`, `Pz3msr`, `QUEST`, `QUOT`, `Qn`, `Qs`, `Qz`, `RPAR`, `Rg`, `Ri`, `Rw`, `Rz`, `SCOLON`, `Sp`, `Spca`, `Spcg`, `Spsa`, `Spsd`, `Spsg`, `TILDA`, `Td-po`, `Tdfpr`, `Tdfso`, `Tdfsr`, `Tdmpr`, `Tdmso`, `Tdmsr`, `Tf-so`, `Tffsr`, `Tfmso`, `Tfmsr`, `Ti-po`, `Ti-pr`, `Tifso`, `Tifsr`, `Timso`, `Timsr`, `Tsfpr`, `Tsfso`, `Tsfsr`, `Tsmpr`, `Tsmsr`, `Vag-----p`, `Vag-----z`, `Vaii1p`, `Vaii1s`, `Vaii2p`, `Vaii2s`, `Vaii3p`, `Vaii3s`, `Vail3s`, `Vaip1p`, `Vaip1s`, `Vaip2p`, `Vaip2s`, `Vaip3`, `Vaip3p`, `Vaip3s`, `Vais1p`, `Vais1s`, `Vais2p`, `Vais2s`, `Vais3p`, `Vais3s`, `Vam-2p`, `Vam-2p---l`, `Vam-2s--p`, `Vam-2s--z`, `Vam-2s-p`, `Vam-2s-z`, `Vamip3p`, `Vamip3s`, `Vamn`, `Vamsp3`, `Van`, `Van------l`, `Vap`, `Vap--sm-p`, `Vasp1p`, `Vasp1s`, `Vasp2p`, `Vasp2s`, `Vasp3`, `Vasp3s`, `Vmg-----p`, `Vmg-----z`, `Vmii1p`, `Vmii1s`, `Vmii2p`, `Vmii2s`, `Vmii3p`, `Vmii3s`, `Vmil1s`, `Vmil2p`, `Vmil2s`, `Vmil3p`, `Vmil3s`, `Vmip1p`, `Vmip1s`, `Vmip2p`, `Vmip2s`, `Vmip3`, `Vmip3p`, `Vmip3s`, `Vmis1p`, `Vmis1s`, `Vmis2p`, `Vmis2s`, `Vmis3p`, `Vmis3s`, `Vmm-2p`, `Vmm-2p---l`, `Vmm-2s--p`, `Vmm-2s--z`, `Vmn`, `Vmn------l`, `Vmp`, `Vmp--pf-p`, `Vmp--pf-z`, `Vmp--pm-p`, `Vmp--pm-z`, `Vmp--sf-p--o`, `Vmp--sf-p--r`, `Vmp--sf-z--r`, `Vmp--sm-p`, `Vmp--sm-z`, `Vmsp1p`, `Vmsp1s`, `Vmsp2p`, `Vmsp2s`, `Vmsp3`, `Vmsp3s`, `X`, `Y` |
| **`morphologizer`** | `AdpType=Prep\|Case=Acc\|POS=ADP`, `Case=Acc,Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc,Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=PUNCT`, `Case=Acc,Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int,Rel`, `POS=ADV\|PronType=Int,Rel`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Strength=Weak`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=ADV`, `Case=Acc,Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres`, `Case=Acc,Nom\|Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|PronType=Ind`, `Case=Acc,Nom\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Acc,Nom\|POS=PRON\|Person=3\|PronType=Int,Rel`, `POS=CCONJ\|Polarity=Pos`, `Compound=Yes\|POS=SCONJ\|Polarity=Pos`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|POS=PRON\|Person=3\|PronType=Prs\|Strength=Weak`, `Case=Acc,Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Acc,Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc,Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat,Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=PART\|PartType=Sub`, `Mood=Sub\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc,Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Strength=Strong`, `POS=VERB\|VerbForm=Inf`, `Case=Acc,Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=ADV\|Polarity=Neg`, `Case=Dat,Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc,Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Strength=Weak`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|Position=Prenom\|PronType=Dem`, `POS=AUX\|Polarity=Pos\|VerbForm=Ger`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `POS=VERB\|Polarity=Pos\|VerbForm=Ger`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Strength=Strong`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Strength=Strong`, `Case=Voc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=INTJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `POS=SCONJ\|Polarity=Pos`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Dat,Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Strength=Weak`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres`, `Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|VerbForm=Part`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Acc,Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `AdpType=Prep\|Case=Acc\|Compound=Yes\|POS=ADP`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc,Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc,Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Dat,Gen\|Definite=Def\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc,Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc,Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc,Nom\|Number=Sing\|POS=PRON\|Person=3\|PronType=Neg`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind`, `Case=Acc,Nom\|POS=DET\|Person=3\|PronType=Int,Rel`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Strength=Strong`, `Case=Voc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc,Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Dat,Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Strength=Weak`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Strength=Weak`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Strength=Weak`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Strength=Weak`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Strength=Weak`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Strength=Strong`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=DET\|Person=3\|PronType=Ind`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Strength=Strong`, `Case=Acc,Nom\|Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|Position=Postnom\|PronType=Dem`, `Case=Acc,Nom\|Definite=Ind\|Gender=Fem\|NumForm=Word\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc,Nom\|Definite=Ind\|Gender=Fem\|NumForm=Word\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres`, `POS=AUX\|VerbForm=Part`, `POS=VERB\|VerbForm=Part`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin`, `POS=PART\|PartType=Inf`, `Case=Dat,Gen\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|VerbForm=Part`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|PronType=Prs`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Art`, `Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc,Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int,Rel`, `NumForm=Word\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Art`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Strength=Strong`, `Mood=Sub\|POS=AUX\|Person=3\|Tense=Pres`, `Gender=Masc\|NumForm=Word\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Dat\|POS=PRON\|Person=3\|PronType=Prs\|Strength=Weak`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Strength=Strong`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Strength=Weak`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int,Rel`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|VerbForm=Part`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Strength=Strong`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=2\|Polarity=Pos`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|Position=Prenom\|PronType=Dem`, `Case=Dat,Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|POS=PRON\|Person=3\|PronType=Prs\|Strength=Strong`, `Case=Acc,Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int,Rel`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Strength=Strong`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|PronType=Prs`, `Case=Dat,Gen\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Dat,Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=PROPN`, `NumForm=Digit\|POS=NUM`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Case=Dat,Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|VerbForm=Part`, `POS=PROPN`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Neg`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc,Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Compound=Yes\|POS=CCONJ\|Polarity=Neg`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Strength=Strong`, `Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=2\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Strength=Strong`, `POS=AUX\|VerbForm=Inf`, `AdpType=Prep\|Case=Gen\|Compound=Yes\|POS=ADP`, `Case=Dat,Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|Position=Postnom\|PronType=Dem`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|PronType=Prs`, `Case=Acc,Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int,Rel`, `Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|PronType=Prs`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat,Gen\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres`, `Case=Acc,Nom\|Definite=Ind\|Gender=Fem\|NumForm=Word\|NumType=Frac\|Number=Sing\|POS=NUM`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat,Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc,Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=DET\|Person=2\|PronType=Emp`, `Case=Acc,Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc,Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `POS=VERB\|Polarity=Neg\|VerbForm=Ger`, `Case=Acc,Nom\|Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|PronType=Int,Rel`, `Case=Dat,Gen\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Emp`, `Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Emp`, `Gender=Fem\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Strength=Weak`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Variant=Long\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Emp`, `Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|VerbForm=Part`, `Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=2\|PronType=Prs`, `Case=Voc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=DET\|Person=3\|Position=Prenom\|PronType=Dem`, `Case=Acc,Nom\|Definite=Def\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int,Rel`, `Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|VerbForm=Part`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Dat,Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Int,Rel`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Neg`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|PronType=Prs`, `Mood=Sub\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Strength=Weak`, `Case=Acc,Nom\|Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|Position=Prenom\|PronType=Dem`, `Case=Dat,Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Case=Voc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|PronType=Prs`, `Case=Acc,Nom\|Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=DET\|Person=3\|PronType=Dem`, `Compound=Yes\|POS=CCONJ\|Polarity=Pos`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|Position=Postnom\|PronType=Dem`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|Position=Postnom\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Dat,Gen\|Gender=Fem\|NumForm=Word\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Dat,Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Acc,Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Voc\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc,Nom\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Art`, `Case=Dat\|POS=PRON\|Person=3\|PronType=Prs\|Strength=Strong`, `Case=Dat,Gen\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int,Rel`, `Case=Acc,Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NOUN`, `AdpType=Prep\|Case=Gen\|POS=ADP`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int,Rel`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Strength=Strong`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|PronType=Prs`, `Case=Dat,Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Neg`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Emp`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past`, `Case=Dat,Gen\|Number=Plur\|POS=DET\|Person=3\|PronType=Ind`, `Gender=Fem\|NumForm=Word\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc,Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|VerbForm=Part`, `Case=Acc,Nom\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM\|PronType=Tot`, `Case=Acc,Nom\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc,Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|PronType=Prs`, `POS=VERB\|Variant=Long\|VerbForm=Inf`, `Definite=Ind\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Dat,Gen\|Gender=Masc\|Number=Plur\|POS=DET\|Person=3\|PronType=Dem`, `AdpType=Prep\|Case=Dat\|POS=ADP`, `Case=Dat,Gen\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Strength=Weak`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Strength=Weak`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Strength=Strong`, `Case=Acc,Nom\|Definite=Def\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Acc,Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|PronType=Prs`, `Case=Dat,Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|PronType=Prs`, `Compound=Yes\|POS=ADV\|Polarity=Neg`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Art`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|PronType=Prs`, `Case=Dat,Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int,Rel`, `Case=Dat,Gen\|NumType=Card\|Number=Plur\|POS=NUM\|PronType=Tot`, `Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Definite=Ind\|NumForm=Word\|NumType=Ord\|POS=NUM`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind`, `Gender=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Imp\|VerbForm=Fin`, `Case=Acc,Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `POS=AUX\|Variant=Long\|VerbForm=Inf`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Case=Dat,Gen\|Definite=Ind\|Gender=Fem\|NumForm=Word\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Dat,Gen\|Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|PronType=Ind`, `Case=Dat,Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|Position=Postnom\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|VerbForm=Part`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Strength=Strong`, `POS=X`, `Case=Dat,Gen\|Number=Plur\|POS=DET\|Person=3\|Position=Prenom\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Neg\|VerbForm=Fin`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|PronType=Prs`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|PronType=Prs`, `Case=Dat,Gen\|Number=Plur\|POS=DET\|Person=3\|Position=Postnom\|PronType=Dem`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Strength=Weak`, `Case=Dat,Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|PronType=Prs`, `Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|PronType=Prs`, `Case=Acc,Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=NUM`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Emp`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc,Nom\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM\|PronType=Tot`, `Case=Acc,Nom\|Number=Plur\|POS=DET\|PronType=Ind`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|VerbForm=Part`, `Case=Acc,Nom\|Definite=Ind\|Gender=Fem\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Dat,Gen\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int,Rel`, `Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=2\|PronType=Prs`, `Gender=Fem\|Number=Plur\|Number[psor]=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc,Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Mood=Imp\|Number=Plur\|POS=AUX\|Person=2`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Case=Dat,Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `POS=AUX\|Polarity=Neg\|VerbForm=Ger`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Dat,Gen\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres`, `Case=Acc,Nom\|POS=DET\|Person=3\|PronType=Ind`, `Case=Voc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Dat,Gen\|Number=Sing\|POS=PRON\|Person=3\|PronType=Neg`, `POS=CCONJ\|Polarity=Neg`, `Case=Dat,Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Voc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc,Nom\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Dat,Gen\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=DET\|Person=3\|Position=Postnom\|PronType=Dem`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Polite=Form\|PronType=Prs`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|Position=Prenom\|PronType=Dem`, `Case=Acc,Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Acc,Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc,Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Past`, `Gender=Masc\|Number=Sing\|POS=AUX\|Polarity=Pos\|VerbForm=Part`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Emp`, `Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int,Rel`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|Position=Postnom\|PronType=Dem`, `Case=Voc\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Acc,Nom\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Acc,Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Voc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `POS=PRON\|Polarity=Pos`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Emp`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Case=Acc,Nom\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind`, `Case=Dat,Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=DET\|Person=2\|PronType=Emp`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Imp`, `Case=Dat,Gen\|Number=Plur\|POS=PRON\|Person=3\|Position=Postnom\|PronType=Dem`, `Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc,Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres`, `Case=Acc,Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int,Rel`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Emp`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres`, `Gender=Masc\|Number=Plur\|POS=DET\|Person=3\|PronType=Emp`, `Case=Dat,Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Gender=Fem\|Number=Plur\|Number[psor]=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres`, `Gender=Fem\|Number=Plur\|Number[psor]=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat,Gen\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Compound=Yes\|POS=ADP\|Polarity=Pos`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Emp`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=ADJ`, `Case=Voc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat,Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|Position=Prenom\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin`, `Case=Dat,Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind`, `Case=Dat,Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Emp`, `Case=Dat,Gen\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=2\|Polarity=Neg`, `Case=Acc,Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int,Rel`, `POS=ADV\|PronType=Ind`, `Case=Acc,Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Acc,Nom\|Definite=Def\|Gender=Fem\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `POS=AUX\|Polarity=Pos`, `Case=Acc,Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Imp`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres`, `NumForm=Roman\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Voc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Definite=Ind\|Gender=Masc\|NumForm=Word\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Dat,Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pqp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres`, `Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Imp`, `Definite=Ind\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Plur\|POS=NUM`, `Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat,Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Ind`, `Mood=Imp\|Number=Plur\|POS=AUX\|Person=2\|Variant=Long\|VerbForm=Fin`, `Mood=Imp\|Number=Plur\|POS=AUX\|Person=2\|Variant=Long`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Imp`, `Case=Acc,Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Dat,Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Int,Rel`, `Case=Acc,Nom\|POS=PRON\|Person=3\|PronType=Emp`, `NumForm=Word\|NumType=Ord\|POS=NUM`, `Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Emp`, `Case=Dat,Gen\|Number=Plur\|POS=DET\|Person=3\|PronType=Int,Rel`, `Case=Acc,Nom\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int,Rel`, `Case=Dat,Gen\|Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|PronType=Dem`, `Gender=Masc\|Number=Plur\|POS=DET\|Person=1\|PronType=Emp`, `Gender=Masc\|Number=Sing\|POS=DET\|Person=1\|PronType=Emp`, `Mood=Imp\|Number=Plur\|POS=AUX\|Person=2\|VerbForm=Fin`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Art`, `Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Dat,Gen\|Definite=Def\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|PronType=Emp`, `Case=Dat,Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Definite=Ind\|Degree=Pos\|Gender=Fem\|POS=ADJ`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres`, `Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|PronType=Ind`, `Case=Voc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Past`, `Case=Dat,Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat,Gen\|Definite=Def\|Gender=Fem\|NumForm=Word\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Dat,Gen\|Definite=Def\|Gender=Masc\|NumForm=Word\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Dat,Gen\|Number=Plur\|POS=DET\|PronType=Ind`, `Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos`, `Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Int,Rel`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pqp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pqp\|VerbForm=Fin`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Neg`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pqp`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes\|Strength=Weak`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Dat\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes\|Strength=Weak`, `Case=Dat,Gen\|Number=Plur\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|POS=AUX\|Person=3\|Tense=Pres`, `Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Neg`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes\|Strength=Strong`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat,Gen\|Number=Sing\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Int,Rel`, `Case=Acc,Nom\|Gender=Masc\|NumForm=Word\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc,Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|POS=ADJ`, `POS=DET`, `Case=Acc,Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `POS=ADP`, `Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc,Nom\|Definite=Def\|Gender=Fem\|NumForm=Word\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=DET\|Person=3\|PronType=Int,Rel`, `Case=Acc,Nom\|Definite=Ind\|Gender=Fem\|NumForm=Word\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Acc,Nom\|Definite=Ind\|Gender=Fem\|NumType=Mult\|Number=Plur\|POS=NUM`, `Case=Acc,Nom\|Definite=Ind\|Gender=Masc\|NumType=Mult\|Number=Plur\|POS=NUM`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp`, `Case=Dat,Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Mood=Ind\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Dat,Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Emp`, `Case=Acc,Nom\|Definite=Def\|Gender=Fem\|NumForm=Word\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Acc,Nom\|Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|PronType=Neg`, `Case=Dat,Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Degree=Pos\|POS=ADJ`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Acc,Nom\|Definite=Ind\|Gender=Masc\|NumType=Mult\|Number=Sing\|POS=NUM`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Part`, `Case=Acc,Nom\|Definite=Def\|Gender=Masc\|NumForm=Word\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=ADV\|Person=3\|PronType=Int,Rel`, `Case=Dat,Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Polite=Form\|PronType=Prs` |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advcl:tcl`, `advmod`, `advmod:tmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `cc:preconj`, `ccomp`, `ccomp:pmod`, `compound`, `conj`, `cop`, `csubj`, `csubj:pass`, `dep`, `det`, `discourse`, `expl`, `expl:impers`, `expl:pass`, `expl:poss`, `expl:pv`, `fixed`, `flat`, `iobj`, `mark`, `nmod`, `nmod:agent`, `nmod:pmod`, `nmod:tmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `orphan`, `parataxis`, `punct`, `vocative`, `xcomp` |
| **`experimental_edit_tree_lemmatizer`** | `1`, `3`, `4`, `6`, `8`, `12`, `14`, `16`, `19`, `23`, `29`, `30`, `32`, `35`, `37`, `39`, `40`, `45`, `46`, `47`, `51`, `53`, `54`, `57`, `61`, `63`, `65`, `66`, `69`, `33`, `71`, `73`, `76`, `79`, `80`, `84`, `86`, `87`, `88`, `89`, `92`, `95`, `97`, `100`, `103`, `105`, `107`, `110`, `112`, `113`, `115`, `117`, `120`, `121`, `123`, `125`, `126`, `128`, `130`, `132`, `133`, `136`, `140`, `143`, `145`, `147`, `58`, `148`, `151`, `154`, `157`, `159`, `163`, `165`, `167`, `171`, `174`, `176`, `178`, `180`, `182`, `184`, `185`, `187`, `188`, `190`, `192`, `196`, `197`, `199`, `200`, `202`, `206`, `208`, `210`, `211`, `213`, `215`, `216`, `219`, `221`, `223`, `225`, `226`, `228`, `230`, `232`, `236`, `238`, `241`, `242`, `244`, `246`, `248`, `251`, `253`, `255`, `258`, `260`, `264`, `265`, `267`, `272`, `275`, `278`, `280`, `281`, `284`, `286`, `287`, `290`, `291`, `292`, `295`, `296`, `298`, `300`, `301`, `302`, `305`, `306`, `307`, `309`, `310`, `312`, `314`, `315`, `317`, `319`, `321`, `323`, `324`, `327`, `330`, `332`, `334`, `335`, `337`, `339`, `340`, `343`, `344`, `345`, `346`, `350`, `351`, `353`, `355`, `357`, `360`, `362`, `366`, `368`, `369`, `370`, `371`, `224`, `374`, `376`, `378`, `379`, `381`, `384`, `385`, `386`, `388`, `389`, `391`, `392`, `393`, `396`, `398`, `399`, `403`, `406`, `408`, `411`, `413`, `415`, `418`, `422`, `423`, `426`, `427`, `431`, `433`, `436`, `438`, `440`, `442`, `445`, `448`, `449`, `450`, `451`, `452`, `454`, `455`, `457`, `459`, `460`, `462`, `464`, `466`, `468`, `471`, `472`, `473`, `474`, `475`, `478`, `481`, `482`, `485`, `486`, `488`, `490`, `492`, `494`, `495`, `497`, `498`, `499`, `501`, `503`, `504`, `506`, `508`, `510`, `513`, `514`, `515`, `516`, `518`, `519`, `521`, `523`, `524`, `526`, `527`, `528`, `530`, `533`, `96`, `537`, `538`, `539`, `542`, `544`, `545`, `547`, `548`, `553`, `555`, `556`, `558`, `559`, `561`, `562`, `563`, `565`, `566`, `570`, `572`, `573`, `575`, `577`, `578`, `579`, `581`, `583`, `584`, `586`, `588`, `589`, `592`, `594`, `595`, `596`, `598`, `599`, `600`, `601`, `604`, `606`, `607`, `608`, `612`, `613`, `616`, `619`, `621`, `623`, `625`, `628`, `629`, `630`, `632`, `635`, `636`, `173`, `639`, `641`, `643`, `647`, `649`, `651`, `654`, `656`, `658`, `659`, `661`, `662`, `663`, `666`, `668`, `669`, `670`, `672`, `673`, `676`, `677`, `679`, `681`, `683`, `685`, `687`, `689`, `690`, `691`, `693`, `694`, `695`, `696`, `698`, `699`, `701`, `702`, `703`, `704`, `705`, `706`, `708`, `712`, `713`, `716`, `718`, `720`, `722`, `724`, `725`, `729`, `732`, `734`, `735`, `736`, `739`, `742`, `745`, `747`, `750`, `753`, `755`, `758`, `759`, `761`, `763`, `764`, `766`, `768`, `769`, `771`, `772`, `774`, `777`, `778`, `781`, `784`, `785`, `787`, `790`, `794`, `797`, `800`, `801`, `802`, `804`, `807`, `809`, `814`, `817`, `820`, `821`, `822`, `824`, `827`, `828`, `829`, `832`, `834`, `836`, `837`, `839`, `840`, `841`, `843`, `844`, `846`, `847`, `848`, `850`, `851`, `852`, `855`, `116`, `856`, `860`, `861`, `863`, `866`, `868`, `869`, `871`, `874`, `875`, `877`, `879`, `881`, `884`, `886`, `888`, `890`, `891`, `892`, `894`, `897`, `898`, `900`, `901`, `902`, `904`, `905`, `908`, `913`, `914`, `916`, `917`, `918`, `921`, `922`, `924`, `927`, `929`, `932`, `934`, `935`, `937`, `939`, `941`, `943`, `946`, `948`, `949`, `951`, `952`, `954`, `955`, `956`, `958`, `960`, `963`, `965`, `968`, `971`, `972`, `974`, `978`, `981`, `983`, `984`, `986`, `988`, `989`, `991`, `992`, `994`, `997`, `998`, `1000`, `1001`, `1002`, `1004`, `1006`, `1007`, `1008`, `1010`, `1011`, `1013`, `1014`, `1015`, `1017`, `1019`, `1022`, `1024`, `1029`, `1030`, `1032`, `1034`, `767`, `1035`, `1036`, `1037`, `1038`, `1040`, `1041`, `1042`, `1044`, `1045`, `1046`, `1049`, `1050`, `1052`, `1053`, `1055`, `1058`, `1061`, `1065`, `1067`, `1068`, `1071`, `1072`, `1074`, `1076`, `1078`, `1080`, `1081`, `1083`, `1084`, `1086`, `1087`, `1090`, `1091`, `1093`, `1097`, `1098`, `1099`, `1100`, `1102`, `1105`, `1106`, `1107`, `1110`, `1111`, `1113`, `1116`, `1123`, `1126`, `1127`, `1128`, `1129`, `1131`, `1132`, `1133`, `1135`, `1137`, `1139`, `1141`, `1144`, `1145`, `1147`, `1149`, `1150`, `1152`, `1154`, `1155`, `1156`, `1157`, `1158`, `1115`, `1159`, `1160`, `1162`, `1163`, `1164`, `1165`, `1168`, `1170`, `1172`, `1173`, `1174`, `1175`, `1176`, `1177`, `1178`, `1179`, `1181`, `1183`, `1184`, `1186`, `1187`, `1191`, `1195`, `1197`, `1198`, `1200`, `1201`, `1203`, `1205`, `1207`, `1209`, `1211`, `1212`, `1214`, `1215`, `1217`, `1219`, `1220`, `1223`, `1225`, `1227`, `183`, `1228`, `1231`, `1232`, `1234`, `1237`, `1239`, `1240`, `1242`, `1245`, `1247`, `1248`, `1249`, `1251`, `1252`, `1254`, `1255`, `1257`, `1259`, `1261`, `1263`, `1264`, `1266`, `1268`, `1272`, `1273`, `1277`, `1278`, `1280`, `1281`, `1282`, `1285`, `1286`, `1290`, `1291`, `1294`, `1296`, `1298`, `1300`, `1301`, `1303`, `1305`, `1308`, `1309`, `1310`, `1311`, `1312`, `1314`, `1316`, `1318`, `1320`, `1322`, `1324`, `1325`, `1327`, `1329`, `1331`, `1333`, `1335`, `1337`, `1338`, `1339`, `1341`, `1342`, `1343`, `1344`, `1346`, `1347`, `1350`, `142`, `1354`, `1355`, `1357`, `1358`, `1360`, `1362`, `1365`, `1366`, `1367`, `1368`, `1369`, `744`, `1370`, `1372`, `1373`, `1374`, `1375`, `1376`, `1377`, `1378`, `1380`, `1381`, `1382`, `1383`, `1386`, `1388`, `1389`, `1390`, `1394`, `1396`, `1399`, `1402`, `1405`, `1407`, `1409`, `1411`, `1412`, `1413`, `1414`, `1418`, `1419`, `1421`, `1422`, `1423`, `1424`, `1426`, `1427`, `1430`, `1432`, `1433`, `1434`, `1436`, `1438`, `1439`, `1440`, `1441`, `1442`, `1443`, `1446`, `1447`, `1448`, `1449`, `1450`, `1454`, `1456`, `1458`, `1459`, `1460`, `1464`, `1465`, `1467`, `1468`, `1469`, `1470`, `1472`, `1473`, `1475`, `1478`, `1479`, `1481`, `1483`, `1484`, `1486`, `1003`, `1489`, `1491`, `1493`, `1496`, `1498`, `1499`, `1501`, `1503`, `1506`, `1508`, `1511`, `1514`, `1515`, `1517`, `1518`, `1521`, `1522`, `1523`, `1524`, `1525`, `1528`, `1530`, `1531`, `1532`, `1533`, `1537`, `1539`, `1541`, `1542`, `1543`, `1545`, `1546`, `1547`, `1549`, `1550`, `1551`, `1552`, `1553`, `1555`, `1558`, `1559`, `1561`, `1562`, `1564`, `1566`, `1568`, `1570`, `1572`, `1576`, `1577`, `1579`, `1580`, `1582`, `1584`, `1585`, `1588`, `1590`, `1592`, `1593`, `1594`, `1596`, `1597`, `1599`, `1600`, `1601`, `1603`, `1605`, `1607`, `1609`, `1613`, `1615`, `1617`, `1619`, `1622`, `1623`, `1624`, `1625`, `1626`, `1627`, `1628`, `1629`, `1630`, `1633`, `1636`, `1638`, `1639`, `1640`, `1641`, `1643`, `1645`, `1647`, `1649`, `1652`, `1655`, `1656`, `1658`, `1660`, `1662`, `1665`, `1667`, `1669`, `1670`, `1671`, `1673`, `1674`, `1677`, `1678`, `1679`, `1680`, `1683`, `1686`, `1688`, `1689`, `1691`, `1693`, `1694`, `1696`, `1698`, `1699`, `1703`, `1704`, `1707`, `1708`, `1710`, `1712`, `1714`, `1716`, `1718`, `1720`, `1722`, `1724`, `1725`, `1726`, `1727`, `1729`, `1730`, `1731`, `1733`, `1734`, `1736`, `1737`, `1740`, `1741`, `1743`, `1744`, `1746`, `1747`, `1749`, `1750`, `1751`, `1752`, `1754`, `1755`, `1757`, `1758`, `1760`, `1762`, `1764`, `1766`, `1767`, `1769`, `1771`, `1774`, `1777`, `1779`, `1780`, `1781`, `1783`, `1785`, `1786`, `1789`, `1790`, `1793`, `1796`, `1799`, `1800`, `1802`, `1804`, `1805`, `1807`, `1809`, `1810`, `1813`, `1815`, `1817`, `1819`, `1822`, `1823`, `1825`, `1826`, `1827`, `1829`, `1830`, `1833`, `1835`, `1837`, `1840`, `1843`, `1844`, `1846`, `1848`, `1850`, `1853`, `1854`, `1855`, `1857`, `1859`, `1863`, `1865`, `1867`, `1870`, `1872`, `1873`, `1874`, `1875`, `1876`, `1878`, `1879`, `1880`, `1882`, `1884`, `1885`, `1888`, `1889`, `1892`, `1893`, `1895`, `1896`, `1897`, `1898`, `1899`, `1901`, `1903`, `1905`, `1907`, `1909`, `1911`, `1913`, `1915`, `1916`, `1918`, `1919`, `1921`, `1923`, `1925`, `1928`, `1931`, `1933`, `1935`, `1936`, `1938`, `1940`, `1943`, `1945`, `1946`, `1948`, `1951`, `1954`, `1956`, `1957`, `1958`, `1960`, `1962`, `1963`, `1965`, `1967`, `1969`, `1971`, `1973`, `1976`, `1977`, `1979`, `1981`, `1984`, `1986`, `1988`, `1989`, `1991`, `1994`, `1996`, `1999`, `2000`, `2001`, `2003`, `2004`, `2006`, `2008`, `2010`, `2011`, `2016`, `2017`, `2019`, `2020`, `2022`, `2023`, `2024`, `2025`, `2026`, `2027`, `2029`, `2031`, `2033`, `2034`, `2035`, `2036`, `2038`, `2041`, `2042`, `2043`, `2045`, `2047`, `2048`, `2049`, `2051`, `2053`, `2055`, `2057`, `2060`, `2063`, `2064`, `2066`, `2067`, `2068`, `2070`, `2071`, `2072`, `2073`, `2074`, `2075`, `2076`, `2079`, `2080`, `2082`, `2083`, `2084`, `2085`, `2086`, `2087`, `2089`, `2092`, `2094`, `2095`, `2098`, `2100`, `2102`, `2104`, `2105`, `2107`, `2109`, `2110`, `2112`, `2115`, `2117`, `2119`, `2120`, `2121`, `2123`, `2124`, `1482`, `2125`, `2127`, `2129`, `2132`, `2134`, `2137`, `2139`, `2140`, `2143`, `2146`, `2147`, `2148`, `2149`, `2150`, `2152`, `2154`, `2156`, `2157`, `2158`, `2159`, `2160`, `2161`, `2162`, `2164`, `2166`, `2168`, `2169`, `2170`, `2171`, `2173`, `2174`, `2177`, `2178`, `2180`, `2182`, `2183`, `2186`, `2188`, `2189`, `2191`, `2192`, `2193`, `2194`, `2195`, `2197`, `2198`, `2199`, `2200`, `2202`, `2206`, `2208`, `2209`, `2211`, `2214`, `2216`, `2217`, `2220`, `2221`, `2222`, `2223`, `2224`, `2225`, `2226`, `2228`, `2229`, `2230`, `2232`, `2234`, `2236`, `2237`, `2239`, `2241`, `2242`, `2243`, `2244`, `2245`, `2246`, `2248`, `2249`, `2251`, `2252`, `2172`, `2254`, `2256`, `2257`, `2258`, `2259`, `2261`, `2262`, `2263`, `2265`, `2267`, `2268`, `2270`, `2274`, `2277`, `2279`, `2280`, `2281`, `2282`, `2284`, `2286`, `2287`, `2291`, `2293`, `2294`, `2296`, `2297`, `2298`, `2300`, `2303`, `2305`, `2307`, `2308`, `2310`, `2312`, `2314`, `2316`, `2317`, `2319`, `2321`, `2323`, `2325`, `2326`, `2328`, `2329`, `2330`, `2331`, `2332`, `2333`, `2334`, `2336`, `2338`, `2341`, `2343`, `2345`, `2348`, `2349`, `2351`, `2352`, `2353`, `2355`, `2356`, `2358`, `2359`, `2361`, `2362`, `2364`, `2366`, `2368`, `2369`, `2371`, `2373`, `2375`, `2377`, `2378`, `2379`, `2381`, `2382`, `2383`, `2384`, `2385`, `2387`, `2389`, `2392`, `2395`, `2396`, `2398`, `2399`, `2400`, `2404`, `2405`, `2406`, `2410`, `2411`, `2412`, `2413`, `2415`, `2418`, `2420`, `2421`, `2424`, `2425`, `2426`, `2429`, `2432`, `2434`, `2436`, `2437`, `2439`, `2440`, `2441`, `2443`, `2444`, `2446`, `2447`, `2450`, `2452`, `2454`, `2456`, `2459`, `2461`, `2464`, `2465`, `2467`, `2469`, `2471`, `2473`, `2474`, `2476`, `2478`, `2480`, `2481`, `2482`, `2483`, `2484`, `2486`, `2488`, `2489`, `2490`, `2491`, `2493`, `2495`, `2497`, `2499`, `2500`, `2502`, `2503`, `2505`, `2506`, `2507`, `2509`, `2511`, `2513`, `2514`, `2516`, `2518`, `2519`, `2521`, `2522`, `2524`, `2527`, `2528`, `2529`, `2531`, `2533`, `2534`, `2536`, `2537`, `2538`, `2540`, `2542`, `2543`, `2545`, `2546`, `2547`, `2549`, `2550`, `2552`, `2553`, `2556`, `2558`, `2560`, `2561`, `2562`, `2563`, `2564`, `2566`, `2567`, `2568`, `2572`, `2573`, `2574`, `2576`, `2577`, `2579`, `2580`, `2581`, `2583`, `2584`, `2585`, `2586`, `2587`, `2588`, `2589`, `2590`, `2591`, `2592`, `2594`, `2595`, `2598`, `2599`, `2603`, `2604`, `2606`, `2607`, `2608`, `2609`, `2612`, `2616`, `2619`, `2620`, `2622`, `2624`, `2625`, `2626`, `2627`, `2628`, `2631`, `2633`, `2635`, `2637`, `2638`, `2640`, `2641`, `2642`, `2643`, `2645`, `2646`, `2647`, `2649`, `2651`, `2654`, `2655`, `2658`, `2660`, `2661`, `2662`, `2663`, `2665`, `2666`, `1717`, `2667`, `2668`, `2669`, `2670`, `2671`, `2673`, `2674`, `2675`, `2676`, `2678`, `2680`, `2681`, `2684`, `2685`, `2687`, `2688`, `2690`, `2691`, `2692`, `2694`, `2695`, `2696`, `2697`, `2699`, `2701`, `2702`, `2705`, `2708`, `2709`, `2711`, `2714`, `2715`, `2716`, `2718`, `2721`, `2723`, `2724`, `2727`, `2728`, `2729`, `2732`, `2734`, `2737`, `2739`, `2740`, `2742`, `2743`, `2745`, `2748`, `2751`, `2754`, `2755`, `2756`, `2757`, `2758`, `2760`, `2762`, `2764`, `2765`, `2766`, `2428`, `2767`, `2768`, `2769`, `2770`, `2771`, `2774`, `2777`, `2779`, `2782`, `2783`, `2784`, `2786`, `2788`, `2789`, `2790`, `2791`, `2792`, `2794`, `2795`, `2796`, `2797`, `2799`, `2800`, `2801`, `2803`, `2807`, `2808`, `2809`, `2812`, `2816`, `2819`, `2822`, `2823`, `2824`, `2826`, `2827`, `2828`, `2830`, `2831`, `2832`, `2833`, `2834`, `2835`, `2837`, `2839`, `2840`, `2842`, `2843`, `2845`, `2846`, `2847`, `2848`, `2849`, `2851`, `2853`, `2854`, `2855`, `2856`, `2857`, `2858`, `2859`, `2860`, `2861`, `2862`, `2864`, `2865`, `2866`, `2868`, `2872`, `2875`, `2876`, `2878`, `2880`, `2881`, `2882`, `2883`, `2885`, `2886`, `2888`, `2889`, `2890`, `2891`, `2893`, `2894`, `2895`, `2896`, `2897`, `2898`, `2899`, `2902`, `2904`, `2906`, `2907`, `2908`, `2909`, `2912`, `2913`, `2915`, `2916`, `2917`, `2918`, `2921`, `2922`, `2923`, `2924`, `2925`, `2926`, `2928`, `2930`, `2931`, `2935`, `2936`, `2937`, `2938`, `2940`, `2233`, `2942`, `2944`, `2945`, `2947`, `2948`, `2949`, `2951`, `923`, `2952`, `2953`, `2954`, `2955`, `2957`, `2959`, `2962`, `2964`, `2966`, `2967`, `2969`, `2972`, `2973`, `2974`, `2976`, `1715`, `2977`, `2979`, `2980`, `36`, `2981`, `2983`, `2985`, `2986`, `2990`, `2991`, `2993`, `2995`, `2997`, `2998`, `3001`, `3002`, `3003`, `3005`, `3006`, `3007`, `3009`, `3012`, `3014`, `3015`, `3016`, `3018`, `3020`, `3021`, `3022`, `3023`, `3026`, `3028`, `3029`, `3030`, `3032`, `3035`, `3037`, `3039`, `3040`, `3042`, `3044`, `3047`, `3050`, `3052`, `3053`, `3041`, `3054`, `3055`, `3056`, `3057`, `3058`, `3059`, `3061`, `3062`, `3064`, `3066`, `3067`, `3068`, `3070`, `3071`, `3072`, `3073`, `3075`, `3078`, `3082`, `3084`, `3086`, `3087`, `3088`, `3090`, `3091`, `3092`, `3095`, `3096`, `3097`, `3099`, `3100`, `3102`, `3107`, `3109`, `3111`, `3112`, `3114`, `3116`, `3118`, `3120`, `3121`, `3123`, `3124`, `3126`, `3127`, `3129`, `3130`, `3133`, `3134`, `3135`, `3136`, `3137`, `3138`, `3139`, `3140`, `3142`, `3144`, `3145`, `3146`, `3147`, `3148`, `3149`, `3150`, `3151`, `3153`, `3155`, `3157`, `3158`, `3159`, `3160`, `3161`, `3163`, `3165`, `3167`, `3168`, `3170`, `3171`, `3172`, `3174`, `3176`, `3178`, `3180`, `3181`, `3184`, `3185`, `3186`, `3188`, `3189`, `3190`, `3192`, `3194`, `3195`, `3196`, `3197`, `3200`, `3201`, `3202`, `3203`, `3204`, `3205`, `3206`, `3207`, `3210`, `3211`, `3213`, `3214`, `3217`, `3218`, `3220`, `3222`, `3224`, `3227`, `3229`, `3230`, `3231`, `3233`, `3234`, `3235`, `3236`, `3237`, `3240`, `3241`, `3243`, `3245`, `3247`, `3250`, `3252`, `3253`, `3254`, `3255`, `3257`, `3259`, `3260`, `3262`, `3264`, `3266`, `3268`, `3269`, `3271`, `3273`, `3275`, `3277`, `3278`, `3141`, `3279`, `3280`, `3281`, `3282`, `3284`, `3285`, `3287`, `3288`, `3290`, `3291`, `3293`, `3294`, `3296`, `3297`, `3299`, `3300`, `3302`, `3304`, `3305`, `3306`, `3308`, `3309`, `3311`, `3313`, `3314`, `3315`, `3316`, `3317`, `3319`, `3321`, `3323`, `3324`, `3325`, `3327`, `3329`, `3332`, `3333`, `3334`, `3336`, `3337`, `3338`, `3340`, `3341`, `3342`, `3344`, `3346`, `3348`, `3351`, `3353`, `3355`, `3357`, `3360`, `3361`, `3364`, `3367`, `3369`, `3370`, `3372`, `3373`, `3374`, `3377`, `3379`, `3380`, `3382`, `3384`, `3385`, `3387`, `3389`, `3391`, `3392`, `3393`, `3394`, `3395`, `3397`, `3399`, `3400`, `3402`, `3403`, `3404`, `3405`, `3406`, `3407`, `3408`, `3412`, `3414`, `3416`, `3418`, `3420`, `3422`, `3423`, `3424`, `3425`, `3426`, `3428`, `3429`, `3431`, `3432`, `3435`, `3436`, `3438`, `3439`, `3441`, `3443`, `3445`, `3447`, `3450`, `3451`, `3453`, `3455`, `3456`, `3457`, `3458`, `3459`, `3461`, `3462`, `3464`, `3465`, `3467`, `3469`, `3471`, `3473`, `3474`, `3475`, `3476`, `3478`, `3479`, `3481`, `3482`, `3484`, `3487`, `3488`, `3489`, `3491`, `3492`, `3493`, `3494`, `3497`, `3500`, `3501`, `3502`, `3504`, `3506`, `3507`, `3508`, `3511`, `3515`, `3516`, `3518`, `3521`, `3524`, `3526`, `3528`, `3529`, `3532`, `3535`, `3537`, `3538`, `3539`, `3540`, `3541`, `3543`, `3545`, `3546`, `3547`, `3548`, `3549`, `3550`, `3551`, `3553`, `3555`, `3556`, `3557`, `3559`, `3561`, `3563`, `3564`, `3565`, `3567`, `3570`, `3572`, `3574`, `3575`, `3577`, `3579`, `3581`, `3582`, `3584`, `3585`, `3587`, `3588`, `3590`, `3591`, `3592`, `3594`, `3596`, `3599`, `3600`, `3603`, `3605`, `3606`, `3607`, `3608`, `3610`, `3612`, `3615`, `3617`, `3618`, `3619`, `3620`, `3621`, `3623`, `3624`, `3625`, `3626`, `3628`, `3629`, `3630`, `3632`, `3633`, `3635`, `3637`, `3639`, `3642`, `3643`, `3645`, `3646`, `3649`, `3650`, `3652`, `3653`, `3655`, `3656`, `3657`, `3658`, `3659`, `3662`, `3664`, `3665`, `3666`, `3668`, `3671`, `3672`, `3674`, `3676`, `3678`, `3679`, `3680`, `3681`, `3683`, `3684`, `3685`, `3687`, `3688`, `3689`, `3690`, `3691`, `3693`, `3694`, `3695`, `3697`, `3698`, `3699`, `3700`, `3702`, `3703`, `3704`, `3706`, `3709`, `3712`, `3713`, `3714`, `3718`, `3719`, `3721`, `3722`, `3724`, `3725`, `3726`, `3727`, `3730`, `3731`, `3732`, `3734`, `3735`, `3737`, `3739`, `3742`, `3743`, `3744`, `3745`, `3746`, `3747`, `3748`, `3750`, `3752`, `3753`, `3755`, `3757`, `3759`, `3760`, `3762`, `3763`, `3764`, `3765`, `3766`, `3768`, `3770`, `3771`, `3774`, `3775`, `3776`, `3778`, `3779`, `3780`, `3782`, `3784`, `3785`, `3786`, `3789`, `3792`, `3794`, `3795`, `3796`, `3798`, `3799`, `3800`, `3802`, `3803`, `3805`, `3807`, `3808`, `3809`, `3812`, `3815`, `3817`, `3818`, `3819`, `3821`, `3823`, `3824`, `3826`, `3828`, `3829`, `3831`, `3833`, `3834`, `3836`, `3839`, `3840`, `3843`, `3846`, `3849`, `3851`, `3852`, `3853`, `3855`, `3856`, `3859`, `3860`, `3862`, `3864`, `3865`, `3866`, `3868`, `3870`, `3871`, `3872`, `3874`, `3875`, `3876`, `3878`, `3879`, `3880`, `3881`, `3882`, `3884`, `3886`, `3887`, `3890`, `3891`, `3892`, `3893`, `3894`, `3896`, `3897`, `3899`, `3900`, `3901`, `3903`, `3904`, `3905`, `3906`, `3907`, `3908`, `3909`, `3910`, `3911`, `3912`, `3913`, `3915`, `3916`, `3919`, `3921`, `3923`, `3924`, `3926`, `3927`, `3928`, `3930`, `3931`, `3932`, `3934`, `3936`, `3939`, `3941`, `3942`, `3943`, `3946`, `3948`, `3949`, `3950`, `3951`, `3952`, `3954`, `3956`, `3957`, `3958`, `3960`, `3961`, `3964`, `3967`, `3968`, `3971`, `3974`, `3975`, `3976`, `3979`, `3981`, `3983`, `3985`, `3986`, `3989`, `3990`, `3993`, `3994`, `3995`, `3996`, `3997`, `3998`, `3999`, `4001`, `4003`, `4004`, `4005`, `4007`, `4009`, `4010`, `4011`, `4013`, `4014`, `4015`, `4017`, `4019`, `4022`, `4023`, `4025`, `4026`, `4027`, `4028`, `4029`, `4030`, `4032`, `4035`, `4037`, `4040`, `4041`, `4042`, `4043`, `4045`, `4048`, `4051`, `4053`, `4055`, `4057`, `4058`, `4059`, `4060`, `4061`, `4062`, `4063`, `4065`, `4067`, `4068`, `4070`, `4072`, `4073`, `4074`, `4075`, `4077`, `4080`, `4081`, `4083`, `4085`, `4088`, `4089`, `4091`, `4093`, `4094`, `4095`, `4096`, `4098`, `4101`, `4102`, `4104`, `4105`, `4106`, `4108`, `4109`, `4111`, `4112`, `4113`, `4115`, `4117`, `4119`, `4122`, `4123`, `4124`, `4125`, `4126`, `4127`, `4128`, `4130`, `4131`, `4134`, `4135`, `4136`, `4137`, `4138`, `4139`, `4141`, `4143`, `4145`, `4147`, `4148`, `4150`, `4151`, `4154`, `4155`, `4157`, `4159`, `4160`, `4163`, `4164`, `4166`, `4169`, `4171`, `4172`, `4173`, `4175`, `4176`, `4177`, `4179`, `4180`, `4181`, `4183`, `4184`, `4185`, `4187`, `4188`, `4190`, `4191`, `4193`, `4194`, `4195`, `4198`, `4201`, `4204`, `4205`, `4206`, `4209`, `4210`, `4212`, `4215`, `4216`, `4218`, `4219`, `4224`, `4225`, `4227`, `4229`, `4230`, `4231`, `4232`, `4234`, `4236`, `4237`, `4238`, `4239`, `4242`, `4244`, `4246`, `4247`, `4250`, `4251`, `4253`, `4256`, `4260`, `4261`, `4263`, `4265`, `4267`, `4268`, `4269`, `4270`, `4272`, `4274`, `4277`, `4278`, `4279`, `4281`, `4282`, `4284`, `4286`, `4287`, `4288`, `4291`, `4293`, `4294`, `4295`, `4296`, `4298`, `4299`, `4301`, `4303`, `4305`, `4306`, `4307`, `4308`, `4309`, `4310`, `4313`, `4315`, `4317`, `4319`, `4320`, `4322`, `4324`, `4326`, `4328`, `4329`, `4331`, `4332`, `4333`, `4334`, `4335`, `4336`, `4338`, `4340`, `4343`, `4344`, `4346`, `4347`, `4348`, `4349`, `4351`, `4353`, `4355`, `4357`, `4358`, `4359`, `4360`, `4361`, `4362`, `4363`, `4365`, `4367`, `4369`, `4372`, `4373`, `4374`, `4375`, `4379`, `4381`, `4383`, `4385`, `4386`, `4388`, `4389`, `4391`, `4392`, `4393`, `4395`, `4396`, `4399`, `4400`, `4402`, `4404`, `4406`, `4407`, `4411`, `4412`, `4413`, `4414`, `4415`, `4418`, `4420`, `4422`, `4425`, `4426`, `4428`, `4429`, `4430`, `4432`, `4433`, `4435`, `4438`, `4440`, `4442`, `4444`, `4445`, `4446`, `4448`, `4450`, `4451`, `4452`, `4455`, `4457`, `4459`, `4461`, `4462`, `4464`, `4467`, `4468`, `4469`, `4470`, `4471`, `4473`, `4474`, `4475`, `4478`, `4480`, `4483`, `4485`, `4487`, `4488`, `4490`, `4491`, `4493`, `867`, `4494`, `4496`, `4497`, `4498`, `4499`, `4500`, `4501`, `4503`, `4505`, `4507`, `4508`, `4509`, `4510`, `4512`, `4515`, `4517`, `4518`, `4519`, `4521`, `1589`, `4522`, `4524`, `4525`, `4527`, `4529`, `4531`, `4533`, `4534`, `4535`, `4537`, `4538`, `4539`, `4540`, `4541`, `4542`, `4543`, `4544`, `4545`, `4546`, `4547`, `4549`, `4551`, `4552`, `4553`, `4554`, `4556`, `4557`, `4558`, `4559`, `4562`, `4563`, `4566`, `4567`, `4569`, `4570`, `4572`, `4574`, `4576`, `4577`, `4579`, `4580`, `4581`, `4583`, `4585`, `4586`, `4588`, `4591`, `4592`, `4594`, `4595`, `4596`, `4597`, `4598`, `4599`, `4600`, `4601`, `4603`, `4606`, `4608`, `4609`, `4610`, `4612`, `4614`, `4616`, `4617`, `4620`, `4621`, `4623`, `4624`, `4625`, `4626`, `4627`, `4629`, `4631`, `4633`, `4635`, `4636`, `4637`, `4638`, `4639`, `4640`, `4642`, `4644`, `4646`, `4647`, `4648`, `4649`, `4650`, `4651`, `4653`, `4655`, `4657`, `4658`, `4659`, `4661`, `4662`, `4663`, `4664`, `4665`, `4667`, `4668`, `4669`, `4671`, `4673`, `4675`, `4676`, `4680`, `4681`, `4683`, `4684`, `4686`, `4687`, `4690`, `4693`, `4695`, `4696`, `4699`, `4700`, `4702`, `4703`, `4704`, `4707`, `4708`, `4709`, `4710`, `4711`, `4713`, `4715`, `4716`, `4718`, `4719`, `4721`, `4726`, `4727`, `4729`, `4731`, `4735`, `4737`, `4738`, `4739`, `4741`, `4743`, `4744`, `4748`, `4749`, `4753`, `4755`, `4756`, `4757`, `4758`, `4759`, `4761`, `4763`, `4764`, `4766`, `4768`, `4769`, `4770`, `4772`, `4774`, `4775`, `4777`, `4779`, `4780`, `4782`, `4783`, `4785`, `4787`, `4788`, `4791`, `4792`, `4793`, `4795`, `4797`, `4801`, `4802`, `4804`, `4806`, `4808`, `4809`, `4810`, `4811`, `4813`, `4815`, `4817`, `4818`, `4820`, `4821`, `4823`, `4826`, `4827`, `4828`, `4830`, `4831`, `4833`, `4834`, `4838`, `4840`, `4843`, `4845`, `4847`, `4848`, `4849`, `4850`, `4851`, `4854`, `4855`, `4856`, `4858`, `4860`, `4862`, `4863`, `4864`, `4866`, `4867`, `4869`, `4871`, `4872`, `4874`, `4875`, `4876`, `4878`, `4880`, `4881`, `4883`, `4885`, `4886`, `4889`, `4890`, `4892`, `4893`, `4894`, `4896`, `4897`, `4899`, `4900`, `4902`, `4903`, `4904`, `4905`, `4907`, `4908`, `4909`, `4911`, `4913`, `4914`, `4918`, `4920`, `4922`, `4924`, `4925`, `4926`, `4927`, `4928`, `4929`, `4931`, `4932`, `4933`, `4934`, `4935`, `4937`, `813`, `4941`, `4943`, `4945`, `4946`, `4947`, `4948`, `4950`, `4952`, `4954`, `4955`, `4956`, `4959`, `4962`, `4963`, `4964`, `4967`, `4969`, `4970`, `4972`, `4973`, `4974`, `4976`, `4977`, `4978`, `4980`, `4982`, `4984`, `4986`, `4989`, `4990`, `4991`, `4992`, `4994`, `4995`, `4997`, `4999`, `5002`, `5003`, `5004`, `5005`, `5007`, `5009`, `5010`, `5013`, `5014`, `5016`, `5017`, `5018`, `5019`, `5020`, `5021`, `5022`, `5024`, `5025`, `5026`, `5027`, `5029`, `5030`, `5032`, `5034`, `5035`, `5036`, `5037`, `5039`, `5042`, `5043`, `5045`, `5046`, `5049`, `5051`, `5053`, `5054`, `5056`, `5057`, `5058`, `5061`, `5063`, `5066`, `5068`, `5069`, `5070`, `5071`, `5072`, `5075`, `5077`, `5078`, `5080`, `5082`, `5084`, `5085`, `5087`, `5089`, `5090`, `5092`, `5094`, `5095`, `5096`, `5099`, `5100`, `5101`, `5102`, `5104`, `5105`, `5107`, `5109`, `5110`, `5112`, `5116`, `5120`, `5121`, `5122`, `5124`, `5125`, `5127`, `5128`, `5129`, `5132`, `5133`, `5135`, `5138`, `5141`, `5142`, `5143`, `5144`, `5145`, `5146`, `5148`, `5150`, `5151`, `5154`, `5155`, `5156`, `5159`, `5162`, `5163`, `5164`, `5165`, `5166`, `5168`, `5169`, `5170`, `5172`, `5173`, `5174`, `5176`, `5177`, `5179`, `5181`, `5182`, `957`, `5183`, `5184`, `5185`, `5188`, `5189`, `5191`, `5192`, `5195`, `5196`, `5198`, `5200`, `5201`, `5203`, `5204`, `5205`, `5207`, `5208`, `5210`, `5211`, `5214`, `5215`, `5216`, `5217`, `5218`, `5219`, `5220`, `5221`, `5222`, `5224`, `5225`, `5226`, `5227`, `5229`, `5231`, `5232`, `5234`, `5235`, `5237`, `5238`, `5240`, `5241`, `5242`, `5245`, `5246`, `5251`, `5253`, `5256`, `5257`, `2677`, `5259`, `5261`, `5263`, `5264`, `5266`, `5267`, `5271`, `5274`, `5275`, `5279`, `5280`, `5281`, `5283`, `5285`, `5287`, `5289`, `5290`, `5291`, `5293`, `5296`, `5297`, `5299`, `5300`, `5301`, `5302`, `5305`, `5307`, `5309`, `5311`, `5314`, `5315`, `5316`, `5317`, `5319`, `5320`, `5321`, `5323`, `5324`, `5326`, `5327`, `5329`, `5331`, `5332`, `5333`, `5334`, `5336`, `5337`, `5339`, `5340`, `5341`, `5343`, `5346`, `5347`, `5348`, `5349`, `5351`, `5352`, `5353`, `5354`, `5356`, `5357`, `1020`, `5358`, `5359`, `5360`, `5361`, `5362`, `5363`, `5364`, `5365`, `5367`, `5369`, `5370`, `5371`, `5373`, `5374`, `5377`, `5379`, `5382`, `5383`, `5384`, `5386`, `5387`, `5389`, `5390`, `5393`, `5394`, `5396`, `5397`, `5399`, `5400`, `5402`, `5403`, `5404`, `4463`, `5406`, `5409`, `5410`, `5412`, `5413`, `5415`, `5416`, `5417`, `5419`, `5420`, `5421`, `5422`, `5423`, `5425`, `5428`, `5429`, `5431`, `5432`, `5434`, `5435`, `5437`, `5439`, `5441`, `5446`, `5447`, `5450`, `5452`, `5453`, `5456`, `5458`, `5462`, `5464`, `5465`, `5467`, `5468`, `5469`, `5470`, `5471`, `5473`, `5475`, `5476`, `5477`, `5479`, `5480`, `5482`, `5484`, `5485`, `5487`, `5489`, `3877`, `5490`, `5492`, `5493`, `5494`, `5497`, `5498`, `5499`, `5500`, `5503`, `5505`, `5506`, `5509`, `5510`, `5511`, `5513`, `5514`, `5517`, `5520`, `5521`, `5522`, `5524`, `5526`, `5529`, `5530`, `5531`, `5532`, `5533`, `5534`, `5535`, `5536`, `5537`, `5539`, `5540`, `5542`, `5543`, `5545`, `5546`, `5548`, `5549`, `5550`, `5552`, `5554`, `5556`, `5557`, `5559`, `5560`, `3089`, `5563`, `5564`, `5565`, `5567`, `5569`, `5570`, `5572`, `5575`, `5576`, `5578`, `5579`, `5580`, `5582`, `5583`, `5584`, `5585`, `5587`, `5589`, `5590`, `5591`, `5595`, `5597`, `5598`, `5599`, `5602`, `5603`, `5606`, `5608`, `5611`, `5613`, `4981`, `5614`, `5616`, `5617`, `5622`, `5623`, `5624`, `5625`, `5626`, `5627`, `5630`, `5631`, `5633`, `5634`, `5635`, `5637`, `3169`, `5639`, `5641`, `5643`, `5645`, `5646`, `5649`, `5651`, `5654`, `5655`, `5657`, `5659`, `5660`, `5662`, `5663`, `5664`, `5665`, `5667`, `5668`, `5669`, `5670`, `5671`, `5672`, `5673`, `5676`, `5681`, `5682`, `5683`, `5684`, `5685`, `5687`, `5689`, `5691`, `5693`, `5694`, `5698`, `5700`, `5702`, `5703`, `5704`, `5706`, `5708`, `5709`, `5710`, `5713`, `5715`, `5717`, `5718`, `5719`, `5723`, `5724`, `5725`, `5726`, `5728`, `5730`, `5731`, `5733`, `5734`, `5736`, `5738`, `5741`, `5743`, `5744`, `5747`, `5748`, `5749`, `5751`, `5752`, `5754`, `5756`, `5757`, `5759`, `5760`, `5761`, `5762`, `5763`, `5764`, `5766`, `5768`, `5770`, `5771`, `5773`, `5775`, `5776`, `5777`, `5778`, `5780`, `5782`, `5784`, `5786`, `5787`, `5788`, `5790`, `5791`, `5792`, `5795`, `5796`, `5798`, `5799`, `5800`, `5801`, `5802`, `5805`, `5806`, `5811`, `5813`, `5814`, `5815`, `5816`, `5817`, `5818`, `5820`, `5821`, `5822`, `5823`, `5824`, `5827`, `5830`, `5832`, `5833`, `5834`, `5836`, `5837`, `5839`, `5840`, `5841`, `5842`, `5845`, `5847`, `5849`, `5851`, `5853`, `5856`, `5859`, `5862`, `5863`, `5865`, `5867`, `5868`, `5870`, `5872`, `5873`, `5875`, `5876`, `5877`, `5878`, `5879`, `5881`, `5883`, `5886`, `5887`, `5888`, `5889`, `5891`, `5892`, `5895`, `5896`, `5898`, `5900`, `5903`, `5904`, `5905`, `5906`, `5908`, `5909`, `5912`, `5915`, `5916`, `5917`, `5918`, `5919`, `5920`, `5922`, `5923`, `5925`, `5927`, `5928`, `5929`, `5931`, `5932`, `5933`, `5935`, `5939`, `5940`, `5941`, `5943`, `5945`, `5947`, `5948`, `5950`, `5951`, `5952`, `5955`, `5956`, `5957`, `5958`, `5959`, `5961`, `5962`, `5963`, `5964`, `5965`, `5967`, `5968`, `5969`, `5970`, `5971`, `5972`, `5974`, `5976`, `5977`, `5978`, `5980`, `5982`, `5983`, `5984`, `5986`, `5987`, `5988`, `5990`, `5991`, `5993`, `5995`, `5996`, `5999`, `6000`, `6003`, `6004`, `6006`, `6009`, `6010`, `6011`, `6012`, `6013`, `6015`, `6016`, `6019`, `6020`, `6022`, `6024`, `6025`, `6028`, `6031`, `6032`, `6036`, `6037`, `6039`, `6040`, `6041`, `6042`, `6044`, `6046`, `6047`, `6048`, `6049`, `6050`, `6051`, `6052`, `6054`, `6056`, `6057`, `6058`, `6059`, `6061`, `6062`, `6063`, `6065`, `6066`, `6068`, `6069`, `6071`, `6072`, `6073`, `6074`, `6075`, `6076`, `6078`, `6079`, `6080`, `6082`, `6083`, `6085`, `6087`, `6088`, `6090`, `6091`, `6092`, `6094`, `6095`, `6096`, `6097`, `6099`, `6100`, `6102`, `6104`, `6106`, `6108`, `6109`, `6110`, `6111`, `6112`, `6115`, `6118`, `6121`, `6123`, `6124`, `6125`, `6127`, `6128`, `6129`, `6130`, `6131`, `6132`, `6133`, `6134`, `6135`, `6136`, `6137`, `6138`, `6139`, `6140`, `6141`, `6142`, `6143`, `6144`, `6145`, `6147`, `6149`, `6151`, `6153`, `6154`, `6155`, `6156`, `6157`, `6158`, `6160`, `6161`, `6162`, `6163`, `6165`, `6166`, `6167`, `6168`, `6169`, `6170`, `6172`, `6174`, `6176`, `6177`, `6178`, `6180`, `6183`, `6185`, `6188`, `6190`, `6194`, `6196`, `6197`, `6198`, `6199`, `6201`, `6202`, `6203`, `6206`, `6207`, `6210`, `6211`, `6212`, `6214`, `6215`, `6218`, `6219`, `6220`, `6222`, `6223`, `6224`, `6225`, `6226`, `6228`, `6229`, `6230`, `6232`, `6236`, `6238`, `6240`, `6242`, `6243`, `6245`, `6246`, `6247`, `6249`, `6250`, `6252`, `6253`, `6255`, `6257`, `6258`, `6261`, `6262`, `6263`, `6264`, `6266`, `6268`, `6269`, `6270`, `6273`, `6274`, `6275`, `6276`, `6277`, `6278`, `6280`, `6282`, `6283`, `6284`, `6287`, `6289`, `6290`, `6291`, `6292`, `6293`, `6295`, `1732`, `6296`, `6299`, `6300`, `6302`, `6303`, `6305`, `6306`, `6307`, `6308`, `6309`, `6310`, `6311`, `6312`, `6315`, `6317`, `6319`, `6320`, `6322`, `6323`, `6324`, `6325`, `6328`, `6330`, `6331`, `6332`, `6333`, `6334`, `6336`, `6338`, `6339`, `6341`, `6343`, `6345`, `6347`, `6348`, `6349`, `6351`, `6352`, `6354`, `6357`, `6358`, `6360`, `6361`, `6362`, `6364`, `6365`, `6367`, `6369`, `6370`, `6371`, `111`, `6372`, `6373`, `2065`, `6374`, `6375`, `6377`, `6378`, `6380`, `6381`, `6382`, `6384`, `6385`, `6386`, `6387`, `6388`, `6391`, `6392`, `6393`, `6394`, `6396`, `6397`, `6399`, `6400`, `6401`, `6402`, `6404`, `6407`, `6408`, `6409`, `6411`, `6414`, `6416`, `6418`, `6419`, `6421`, `6422`, `6423`, `6425`, `6426`, `6428`, `6429`, `6430`, `6431`, `6432`, `6434`, `6435`, `6436`, `6437`, `6438`, `6440`, `6441`, `6442`, `6443`, `6444`, `6445`, `6447`, `6449`, `6451`, `6452`, `6455`, `6456`, `6457`, `6458`, `6459`, `6460`, `6462`, `6463`, `6464`, `6465`, `6466`, `6469`, `6470`, `6471`, `6473`, `6474`, `6475`, `6476`, `6478`, `6480`, `6481`, `6482`, `6485`, `6486`, `6487`, `6488`, `6489`, `6490`, `6491`, `6493`, `6494`, `6495`, `6497`, `6498`, `6499`, `5134`, `6500`, `6501`, `6502`, `6503`, `6504`, `6506`, `6508`, `6509`, `6510`, `6511`, `6512`, `6514`, `6515`, `6516`, `6517`, `6518`, `6519`, `6520`, `6521`, `6523`, `6526`, `6527`, `6529`, `6531`, `6533`, `6535`, `6536`, `6537`, `6538`, `6539`, `6540`, `6543`, `6544`, `6545`, `6547`, `6550`, `6551`, `6552`, `6553`, `6554`, `6555`, `6557`, `6559`, `6560`, `6561`, `6562`, `6564`, `6565`, `6567`, `6568`, `6569`, `6570`, `6571`, `6574`, `6575`, `6578`, `6579`, `6580`, `6581`, `6583`, `6584`, `6586`, `6588`, `6589`, `6591`, `6593`, `6595`, `6597`, `6599`, `6600`, `6601`, `6602`, `6604`, `6605`, `6607`, `6609`, `6611`, `6614`, `6615`, `6616`, `6618`, `6619`, `6620`, `6622`, `6623`, `1924`, `6626`, `6628`, `6629`, `6631`, `6633`, `6635`, `6637`, `6638`, `6639`, `6641`, `6643`, `6644`, `6647`, `6649`, `6650`, `6651`, `6652`, `6654`, `6655`, `6656`, `6658`, `6659`, `6661`, `6662`, `6663`, `6664`, `6665`, `6666`, `6667`, `6669`, `6670`, `6672`, `6673`, `6674`, `6675`, `6676`, `6678`, `6680`, `6681`, `6682`, `6684`, `6685`, `6689`, `6690`, `6691`, `6694`, `6696`, `6697`, `6698`, `6699`, `6701`, `6702`, `6703`, `6704`, `6706`, `6707`, `6709`, `6710`, `6712`, `6714`, `6715`, `6717`, `6718`, `6719`, `6720`, `6721`, `6724`, `6725`, `6727`, `6730`, `6732`, `6733`, `6736`, `6739`, `6740`, `6743`, `6745`, `6746`, `6747`, `6748`, `6749`, `6751`, `6754`, `6755`, `6756`, `6757`, `6758`, `6759`, `6761`, `6763`, `6765`, `6768`, `6770`, `6773`, `6774`, `6775`, `6777`, `6778`, `6780`, `6783`, `6784`, `6785`, `6787`, `6789`, `6790`, `6792`, `6796`, `6799`, `6800`, `6801`, `6802`, `6803`, `6805`, `6807`, `6808`, `6810`, `6812`, `6814`, `6817`, `6819`, `6821`, `6822`, `6824`, `6826`, `6828`, `6829`, `6830`, `6832`, `6834`, `6835`, `6836`, `6839`, `6841`, `6844`, `6846`, `6848`, `6850`, `6851`, `6852`, `6853`, `6854`, `6855`, `6856`, `6858`, `6859`, `6860`, `6862`, `6863`, `6864`, `6866`, `6868`, `6869`, `6871`, `6873`, `6877`, `6880`, `6884`, `6885`, `6887`, `6888`, `6889`, `6892`, `6893`, `6894`, `6895`, `6898`, `6900`, `6901`, `6902`, `6904`, `6905`, `6906`, `6907`, `6909`, `6911`, `6914`, `6915`, `6916`, `6918`, `6919`, `6921`, `6922`, `6923`, `6924`, `6925`, `6926`, `6929`, `6930`, `6931`, `6934`, `6935`, `6937`, `6939`, `6940`, `6941`, `6944`, `6946`, `6947`, `6948`, `6950`, `6952`, `6954`, `6956`, `6957`, `6959`, `6960`, `6961`, `6963`, `6964`, `6965`, `6966`, `6968`, `6969`, `6970`, `6971`, `6972`, `6973`, `6974`, `6975`, `6977`, `1222`, `6979`, `6980`, `6981`, `6982`, `6983`, `6984`, `6985`, `6987`, `6988`, `6989`, `6990`, `6991`, `6992`, `6993`, `6994`, `6997`, `6998`, `7000`, `7001`, `7002`, `7003`, `7004`, `7007`, `7009`, `7010`, `7011`, `7013`, `7014`, `7016`, `7017`, `7019`, `7020`, `7021`, `7023`, `7024`, `7026`, `2231`, `7027`, `7028`, `7029`, `7031`, `7032`, `7033`, `7034`, `7035`, `7037`, `7038`, `7039`, `7040`, `7042`, `7043`, `7044`, `7045`, `7046`, `7048`, `7049`, `7051`, `7053`, `7055`, `7059`, `7060`, `7061`, `7062`, `7064`, `7065`, `7067`, `7068`, `7071`, `7072`, `7073`, `7074`, `7076`, `7077`, `7081`, `7084`, `7085`, `7088`, `7090`, `7092`, `7093`, `7095`, `7096`, `7097`, `7098`, `7100`, `7101`, `7102`, `7104`, `7107`, `7108`, `7112`, `7113`, `7115`, `7116`, `7117`, `7120`, `7121`, `7122`, `7123`, `7124`, `7125`, `7126`, `7128`, `7131`, `7132`, `7133`, `7134`, `7135`, `7138`, `7140`, `7141`, `7142`, `7143`, `7145`, `7146`, `7148`, `7149`, `7152`, `7156`, `7158`, `7159`, `7160`, `7161`, `7162`, `7163`, `7166`, `7169`, `7170`, `7173`, `7174`, `7177`, `7178`, `7179`, `7180`, `7181`, `7183`, `7184`, `7185`, `7186`, `7188`, `7189`, `7191`, `7192`, `7195`, `7198`, `7199`, `7201`, `7203`, `7204`, `7205`, `7206`, `7208`, `7213`, `7215`, `7216`, `7219`, `7221`, `7224`, `7225`, `7227`, `7229`, `7231`, `7232`, `7235`, `7236`, `7237`, `7239`, `7240`, `7242`, `7243`, `7245`, `7246`, `7247`, `7248`, `7252`, `7253`, `7254`, `7256`, `7258`, `7259`, `7260`, `7262`, `7263`, `7264`, `7266`, `7268`, `7270`, `7271`, `7272`, `7273`, `7274`, `7276`, `7277`, `7278`, `7281`, `7282`, `7283`, `7286`, `7288`, `7290`, `1256`, `7291`, `7292`, `7293`, `7295`, `7298`, `7299`, `7301`, `7302`, `7303`, `7304`, `7306`, `7307`, `7308`, `7310`, `7312`, `7313`, `7316`, `7317`, `7318`, `7319`, `7320`, `7323`, `7324`, `7326`, `7328`, `7331`, `7332`, `7334`, `7336`, `7337`, `7338`, `7340`, `7342`, `7343`, `7344`, `7345`, `7346`, `7347`, `7348`, `7350`, `7352`, `7353`, `5131`, `7354`, `7356`, `7358`, `7360`, `7362`, `7363`, `7366`, `7367`, `7368`, `7369`, `7373`, `7374`, `7375`, `7376`, `7377`, `7378`, `7379`, `7382`, `7383`, `7384`, `7385`, `7386`, `7387`, `7388`, `7389`, `7392`, `7395`, `7397`, `7398`, `7400`, `7402`, `7405`, `7406`, `7408`, `7410`, `7411`, `7412`, `7414`, `7416`, `7417`, `7419`, `7421`, `7423`, `7425`, `7427`, `7428`, `7429`, `7430`, `7432`, `7434`, `7435`, `7436`, `7437`, `7439`, `7440`, `7443`, `7444`, `7445`, `7447`, `7448`, `7449`, `7451`, `7453`, `7454`, `7456`, `7458`, `7459`, `7460`, `7462`, `7463`, `7464`, `7465`, `7466`, `7467`, `7468`, `7469`, `7470`, `7471`, `7472`, `7475`, `7477`, `7478`, `7479`, `7481`, `7482`, `7483`, `7484`, `7485`, `7486`, `7487`, `7488`, `7490`, `7492`, `7496`, `7497`, `7498`, `7500`, `7501`, `7503`, `7505`, `7506`, `7509`, `7511`, `7512`, `7514`, `7515`, `7516`, `7518`, `7522`, `7523`, `7524`, `7255`, `7526`, `7527`, `7530`, `7532`, `7533`, `7535`, `7536`, `7539`, `7541`, `7544`, `7547`, `7548`, `7550`, `7552`, `7553`, `7555`, `7556`, `7558`, `7559`, `7560`, `7561`, `7563`, `7564`, `7565`, `7566`, `7567`, `7569`, `7571`, `7575`, `7577`, `7578`, `7580`, `7581`, `7585`, `7586`, `7588`, `7590`, `7593`, `7595`, `7597`, `7599`, `7600`, `7601`, `7603`, `7605`, `7607`, `7608`, `7609`, `7610`, `7611`, `7612`, `7613`, `7614`, `7615`, `7616`, `7617`, `7619`, `7620`, `7621`, `7622`, `7623`, `7625`, `7628`, `7630`, `7631`, `7632`, `7634`, `7635`, `3191`, `7636`, `7637`, `7639`, `7641`, `7642`, `7643`, `7644`, `7645`, `7646`, `7647`, `7648`, `7649`, `7650`, `7652`, `7653`, `7654`, `7655`, `7657`, `7658`, `7659`, `7660`, `7661`, `7662`, `7664`, `7665`, `7667`, `7668`, `7670`, `7672`, `7673`, `7674`, `7675`, `7677`, `7678`, `7679`, `7680`, `7681`, `7682`, `7684`, `7686`, `7687`, `7688`, `7690`, `7692`, `7693`, `7695`, `7696`, `7698`, `7700`, `7701`, `7703`, `7704`, `7707`, `7710`, `7711`, `7713`, `7714`, `7715`, `7717`, `7718`, `7719`, `7721`, `7722`, `7723`, `7725`, `7726`, `7728`, `7729`, `7730`, `7731`, `7732`, `7733`, `7734`, `7735`, `7737`, `7739`, `7741`, `7743`, `7744`, `7745`, `7748`, `7750`, `7752`, `7753`, `7755`, `7756`, `7757`, `7758`, `7759`, `7760`, `7761`, `7762`, `7763`, `7764`, `7765`, `7766`, `7767`, `7768`, `7769`, `7771`, `7772`, `7774`, `7775`, `7776`, `7778`, `7779`, `7781`, `7782`, `7784`, `7785`, `7788`, `7789`, `7790`, `7791`, `7793`, `7794`, `7796`, `7798`, `7800`, `7801`, `7803`, `7804`, `7806`, `7808`, `7810`, `7811`, `7813`, `7816`, `7817`, `7819`, `7822`, `7824`, `7826`, `7828`, `7831`, `7833`, `7834`, `7836`, `7838`, `7840`, `7841`, `7842`, `7844`, `7846`, `7848`, `7850`, `7851`, `7852`, `7853`, `7854`, `7855`, `7856`, `7857`, `7859`, `7860`, `7861`, `7862`, `7863`, `7866`, `7868`, `7871`, `7873`, `7875`, `7876`, `7878`, `7880`, `7883`, `7884`, `7885`, `7886`, `7888`, `7889`, `7891`, `7894`, `7895`, `7896`, `7898`, `7899`, `7900`, `7901`, `7902`, `7903`, `7905`, `7907`, `7909`, `7910`, `7912`, `7914`, `7915`, `7916`, `7917`, `7919`, `5472`, `7920`, `7921`, `7922`, `7923`, `7924`, `7926`, `7928`, `7930`, `7931`, `7933`, `7934`, `7935`, `7937`, `7938`, `7939`, `7941`, `7942`, `7945`, `7946`, `7947`, `7948`, `7951`, `7952`, `7953`, `7955`, `7956`, `7959`, `7960`, `7961`, `7962`, `7963`, `7964`, `7965`, `7966`, `7967`, `7969`, `7970`, `7971`, `7972`, `7974`, `7975`, `7976`, `7977`, `7978`, `7979`, `7982`, `7984`, `7985`, `7987`, `7988`, `7989`, `7990`, `7992`, `7993`, `7994`, `7995`, `7997`, `7998`, `7999`, `8000`, `8001`, `8002`, `8007`, `8008`, `8009`, `8011`, `8012`, `8014`, `8016`, `8019`, `8021`, `8023`, `8025`, `8027`, `8028`, `8030`, `8031`, `8032`, `8033`, `8035`, `8037`, `3820`, `8038`, `8040`, `8042`, `8044`, `8046`, `8047`, `8048`, `8049`, `2686`, `8050`, `8051`, `8053`, `8054`, `8055`, `8056`, `8058`, `8061`, `8062`, `8064`, `8065`, `8066`, `8067`, `8068`, `8069`, `8071`, `8072`, `8073`, `8074`, `8075`, `8076`, `8077`, `8078`, `8079`, `8080`, `8081`, `8083`, `8084`, `8085`, `8086`, `8087`, `8088`, `8090`, `8091`, `8093`, `8094`, `8095`, `8097`, `8098`, `8099`, `8101`, `8103`, `8104`, `8106`, `8108`, `8109`, `8110`, `8111`, `8112`, `8113`, `8115`, `8117`, `8118`, `8119`, `8120`, `8121`, `8124`, `8125`, `8127`, `8128`, `8129`, `8130`, `8131`, `8132`, `8133`, `8134`, `8136`, `8137`, `8139`, `8141`, `8142`, `8144`, `8145`, `8147`, `8151`, `8154`, `8155`, `8157`, `8158`, `8160`, `8161`, `8162`, `8164`, `8166`, `8167`, `8168`, `8169`, `8170`, `8171`, `8173`, `8174`, `8176`, `8177`, `8178`, `8179`, `8181`, `8182`, `8183`, `8185`, `8186`, `8187`, `8188`, `8189`, `8190`, `8191`, `8192`, `8193`, `8194`, `8195`, `8197`, `8199`, `8201`, `8202`, `8203`, `7736`, `8204`, `8205`, `8206`, `8207`, `8209`, `8210`, `8211`, `8213`, `8215`, `8216`, `8218`, `8219`, `8220`, `8221`, `8222`, `8223`, `7839`, `8224`, `8225`, `8227`, `2984`, `8229`, `8230`, `8231`, `8232`, `8235`, `8237`, `8239`, `8240`, `8241`, `8245`, `8246`, `8248`, `8249`, `8250`, `8253`, `8254`, `8256`, `8257`, `8259`, `8260`, `8261`, `8263`, `8264`, `8265`, `8266`, `8267`, `8268`, `8269`, `8271`, `8272`, `8273`, `8274`, `8275`, `8280`, `8281`, `8282`, `8284`, `8285`, `8286`, `8287`, `8288`, `8290`, `8291`, `8292`, `8293`, `8294`, `8295`, `8297`, `8299`, `8300`, `8301`, `8302`, `8303`, `8306`, `8308`, `8309`, `8310`, `8312`, `8313`, `8314`, `8316`, `8317`, `8319`, `8321`, `8323`, `8325`, `8326`, `8327`, `8329`, `8330`, `8331`, `8332`, `8333`, `8336`, `8338`, `8339`, `8296`, `8340`, `8342`, `8343`, `8344`, `8345`, `8347`, `8349`, `8350`, `8352`, `8357`, `8359`, `8360`, `8361`, `8362`, `8363`, `8365`, `8366`, `8367`, `8369`, `8370`, `8372`, `8373`, `8375`, `8377`, `8378`, `8379`, `8381`, `8382`, `8383`, `8385`, `8388`, `8389`, `8391`, `8392`, `8394`, `8396`, `8398`, `8270`, `8399`, `8402`, `8404`, `8405`, `8407`, `8409`, `8411`, `8412`, `8414`, `8415`, `8417`, `8419`, `8420`, `8423`, `8426`, `8427`, `8428`, `8431`, `8432`, `8433`, `8434`, `8435`, `8437`, `8438`, `8441`, `8443`, `8444`, `8445`, `8446`, `8447`, `8449`, `8453`, `8455`, `8457`, `8459`, `8460`, `8462`, `8463`, `8464`, `8466`, `8467`, `8468`, `8469`, `8470`, `8472`, `8473`, `8474`, `8475`, `8476`, `8478`, `8479`, `8481`, `8484`, `8485`, `8486`, `8488`, `8489`, `8491`, `8494`, `8495`, `8496`, `8497`, `8498`, `8499`, `8500`, `8503`, `8505`, `8506`, `8508`, `8509`, `8510`, `8511`, `8512`, `8513`, `8514`, `8515`, `8516`, `8517`, `8519`, `8521`, `8522`, `8523`, `8524`, `8525`, `8526`, `8527`, `8529`, `8530`, `8532`, `8535`, `8537`, `8538`, `8539`, `8541`, `8542`, `8543`, `8544`, `8549`, `8550`, `8551`, `8552`, `8553`, `8554`, `8555`, `8557`, `8558`, `8559`, `8562`, `8563`, `8564`, `8566`, `8569`, `8570`, `8571`, `8573`, `8575`, `8577`, `8578`, `8579`, `8580`, `8581`, `8584`, `8585`, `8586`, `8587`, `8589`, `8590`, `8592`, `8593`, `8594`, `8595`, `8597`, `8598`, `8600`, `8601`, `8602`, `8604`, `8605`, `8608`, `8610`, `8611`, `8612`, `8613`, `8614`, `8615`, `8616`, `8618`, `8619`, `8620`, `8621`, `8622`, `8625`, `8627`, `8629`, `8630`, `8632`, `8634`, `8636`, `8637`, `8638`, `8640`, `8642`, `8643`, `8644`, `8646`, `8647`, `8649`, `8650`, `8651`, `8653`, `8655`, `8656`, `8657`, `8658`, `8659`, `8660`, `8662`, `8664`, `8665`, `8666`, `8667`, `8669`, `8670`, `8671`, `8673`, `8674`, `8675`, `8676`, `8677`, `8678`, `8679`, `8680`, `8681`, `8683`, `8685`, `8687`, `8689`, `8691`, `8692`, `8693`, `8694`, `8696`, `8697`, `8698`, `8700`, `8701`, `8702`, `8703`, `8704`, `8705`, `8706`, `8707`, `8708`, `8709`, `8710`, `8712`, `8713`, `8715`, `8717`, `8719`, `8722`, `8723`, `8725`, `8726`, `8727`, `8729`, `8730`, `8732`, `8734`, `8736`, `8738`, `8739`, `8740`, `8741`, `8743`, `8744`, `8745`, `8747`, `8748`, `8752`, `8753`, `8754`, `8755`, `8756`, `8757`, `8758`, `8760`, `8761`, `8762`, `8763`, `8765`, `8766`, `8767`, `8768`, `8770`, `8771`, `8773`, `8774`, `8775`, `8776`, `8778`, `8779`, `8780`, `8781`, `8782`, `8785`, `8786`, `8787`, `8789`, `8790`, `8791`, `8793`, `8795`, `8798`, `8800`, `8801`, `8802`, `8804`, `8805`, `8807`, `8808`, `8809`, `8810`, `8813`, `8815`, `8816`, `8817`, `8819`, `8820`, `8821`, `8822`, `8823`, `401`, `8824`, `8826`, `8827`, `8829`, `8830`, `8831`, `8833`, `8835`, `8837`, `8839`, `8840`, `8841`, `8842`, `8844`, `8845`, `8847`, `8849`, `8851`, `8852`, `8853`, `8855`, `8857`, `8858`, `8859`, `8864`, `8865`, `8866`, `8867`, `8869`, `8870`, `8871`, `8874`, `8877`, `8879`, `8880`, `8881`, `8883`, `8884`, `8886`, `8887`, `8890`, `8891`, `8892`, `8893`, `8895`, `8897`, `8899`, `8900`, `8901`, `8903`, `8906`, `8907`, `8909`, `8911`, `8914`, `8916`, `8917`, `8919`, `8920`, `8921`, `8922`, `8923`, `8927`, `8928`, `8930`, `8931`, `8933`, `8934`, `8937`, `8939`, `8940`, `8941`, `8942`, `8944`, `8945`, `8947`, `8948`, `8949`, `8950`, `8951`, `8953`, `8954`, `8955`, `8958`, `8960`, `8962`, `8965`, `8966`, `8967`, `8968`, `8969`, `8970`, `8971`, `8972`, `8974`, `8976`, `8977`, `8978`, `8979`, `8980`, `8981`, `8982`, `8983`, `8984`, `8985`, `8987`, `8991`, `8992`, `8993`, `8994`, `8995`, `8996`, `8998`, `8999`, `9000`, `9002`, `9003`, `9004`, `9005`, `9007`, `9009`, `9010`, `9011`, `9014`, `9015`, `9016`, `9018`, `9019`, `9020`, `9022`, `9024`, `9025`, `9026`, `9028`, `9030`, `9031`, `9032`, `9034`, `9035`, `9037`, `9038`, `9039`, `9042`, `9043`, `9044`, `9046`, `9048`, `9050`, `9051`, `9053`, `9054`, `9055`, `9057`, `9058`, `8932`, `9059`, `9060`, `9061`, `9062`, `9064`, `9068`, `1932`, `9069`, `9070`, `9071`, `9072`, `9073`, `9074`, `9076`, `9079`, `9080`, `9083`, `9084`, `9087`, `9088`, `9090`, `9091`, `9093`, `9095`, `9096`, `9097`, `9098`, `9100`, `9103`, `9104`, `9105`, `9106`, `9107`, `9108`, `9109`, `9110`, `9111`, `9112`, `9113`, `9114`, `9116`, `9119`, `9120`, `9121`, `9122`, `9123`, `9124`, `9127`, `9128`, `9129`, `9130`, `9131`, `9132`, `9133`, `9134`, `9135`, `9136`, `9138`, `9139`, `9141`, `9142`, `9144`, `9145`, `9146`, `9148`, `9149`, `9150`, `9152`, `9153`, `9156`, `9158`, `9160`, `9162`, `9165`, `7986`, `9168`, `9170`, `9171`, `9172`, `9173`, `9175`, `9176`, `9177`, `9179`, `9180`, `9182`, `9183`, `9185`, `9188`, `9190`, `9191`, `9192`, `9194`, `9198`, `9200`, `9201`, `9202`, `9204`, `9206`, `9207`, `5871`, `9210`, `9211`, `9213`, `9214`, `9215`, `9217`, `9218`, `9220`, `9221`, `9222`, `9226`, `9228`, `9230`, `9231`, `9233`, `9234`, `9235`, `9238`, `9239`, `9241`, `9242`, `9244`, `9246`, `9249`, `9251`, `9252`, `9255`, `9256`, `9259`, `9260`, `9262`, `9263`, `9265`, `9269`, `9270`, `9273`, `9274`, `9277`, `3858`, `9279`, `9281`, `9282`, `9284`, `9287`, `7598`, `9289`, `9292`, `9294`, `9295`, `9296`, `9297`, `9298`, `9299`, `9301`, `9302`, `9304`, `9306`, `9308`, `9311`, `9312`, `9313`, `9314`, `9318`, `9320`, `9322`, `9325`, `9326`, `9327`, `9329`, `9331`, `9333`, `9334`, `9336`, `9338`, `9339`, `9340`, `9341`, `9342`, `9343`, `9344`, `9346`, `9347`, `9349`, `9350`, `9352`, `9353`, `9355`, `9358`, `9359`, `9360`, `9363`, `9365`, `9368`, `9369`, `9371`, `9373`, `9374`, `9375`, `9376`, `9377`, `9379`, `9382`, `9383`, `9384`, `9387`, `9388`, `9389`, `9390`, `9391`, `9392`, `9393`, `9395`, `9396`, `9398`, `9400`, `9401`, `9404`, `9406`, `9409`, `9410`, `9412`, `9414`, `9416`, `9417`, `9418`, `9420`, `9421`, `9424`, `9426`, `9428`, `9429`, `9431`, `9432`, `9433`, `9434`, `9435`, `9436`, `9438`, `9441`, `9443`, `9445`, `9446`, `9447`, `9448`, `9449`, `9450`, `9451`, `9453`, `9454`, `9455`, `9457`, `9458`, `9459`, `9460`, `9461`, `9462`, `9463`, `9464`, `9465`, `9467`, `9469`, `9471`, `9474`, `9476`, `9477`, `9478`, `9479`, `9480`, `973`, `9482`, `9483`, `9485`, `9486`, `9488`, `9489`, `9490`, `9492`, `9493`, `9495`, `9496`, `9498`, `9499`, `9501`, `9502`, `9504`, `9506`, `9507`, `9508`, `9511`, `9512`, `9514`, `9515`, `9518`, `9519`, `9521`, `9523`, `9524`, `9526`, `9528`, `9531`, `9533`, `9534`, `9535`, `9537`, `9539`, `9540`, `9541`, `9543`, `9545`, `9546`, `9548`, `9549`, `9550`, `9551`, `9554`, `9555`, `9556`, `9557`, `9559`, `9561`, `9562`, `9565`, `9567`, `9570`, `9571`, `9573`, `7877`, `9575`, `9578`, `9580`, `9582`, `9583`, `9586`, `9587`, `9588`, `9589`, `9591`, `9592`, `9593`, `9594`, `9595`, `9597`, `9599`, `9601`, `9603`, `9604`, `9605`, `9607`, `9610`, `5979`, `9611`, `9612`, `9613`, `9614`, `9616`, `9617`, `9618`, `9620`, `9621`, `9622`, `9624`, `9627`, `9629`, `9630`, `9632`, `9633`, `9636`, `9637`, `9638`, `9640`, `9641`, `9642`, `9644`, `9646`, `9647`, `9649`, `9650`, `9653`, `9656`, `9657`, `9658`, `9659`, `9660`, `9662`, `9663`, `9664`, `9665`, `9666`, `9667`, `9670`, `9673`, `9675`, `9677`, `9679`, `9681`, `9682`, `9683`, `9684`, `9686`, `9688`, `9689`, `9690`, `9692`, `9693`, `9695`, `9696`, `9697`, `9699`, `9701`, `9703`, `9705`, `9707`, `9710`, `9713`, `9714`, `9715`, `9717`, `9718`, `9721`, `9722`, `9724`, `9725`, `9726`, `9727`, `9729`, `9730`, `9731`, `9732`, `9733`, `9735`, `9737`, `9739`, `9740`, `9741`, `9744`, `9747`, `9748`, `9750`, `9751`, `9753`, `9754`, `9755`, `9756`, `9758`, `9759`, `9760`, `9761`, `9762`, `9764`, `9768`, `9770`, `9772`, `9774`, `9776`, `9777`, `9779`, `9780`, `9782`, `9783`, `9784`, `9787`, `9789`, `9790`, `9791`, `9793`, `9794`, `9795`, `9796`, `9797`, `9798`, `9799`, `9800`, `9803`, `9805`, `9807`, `9809`, `9810`, `9811`, `9813`, `9816`, `9817`, `9819`, `9820`, `9822`, `9823`, `9824`, `9825`, `9827`, `9828`, `9830`, `9831`, `9832`, `9834`, `9836`, `9837`, `9839`, `9840`, `9841`, `9842`, `9844`, `9845`, `9846`, `9847`, `9848`, `9850`, `9851`, `9853`, `9854`, `9855`, `9856`, `9857`, `2337`, `8520`, `9858`, `9861`, `9862`, `9757`, `9864`, `9865`, `9867`, `9868`, `9870`, `9871`, `9872`, `9873`, `9874`, `9877`, `9878`, `9879`, `9880`, `9882`, `9884`, `9885`, `9887`, `9889`, `9890`, `9892`, `9894`, `9895`, `9897`, `9899`, `9901`, `9903`, `9906`, `9907`, `9909`, `9911`, `9914`, `9916`, `9918`, `9919`, `9920`, `9922`, `9924`, `9927`, `9929`, `9930`, `9932`, `9935`, `9936`, `9938`, `9939`, `9940`, `9941`, `9942`, `9943`, `9944`, `9945`, `9946`, `9947`, `9948`, `9949`, `9950`, `9951`, `9952`, `9953`, `9955`, `9956`, `9957`, `9958`, `9960`, `9962`, `9963`, `9964`, `9965`, `9967`, `9968`, `9970`, `9971`, `9974`, `9977`, `9978`, `9980`, `9981`, `6878`, `9982`, `9984`, `9985`, `9987`, `9988`, `9989`, `9992`, `9993`, `9994`, `9995`, `9999`, `10001`, `10002`, `10003`, `10004`, `10006`, `10007`, `1912`, `10008`, `10011`, `10013`, `10014`, `10016`, `10017`, `10019`, `10020`, `10023`, `10025`, `10028`, `10029`, `10030`, `10033`, `10034`, `10036`, `10038`, `10039`, `10040`, `10041`, `10042`, `10044`, `10046`, `10048`, `10050`, `10051`, `10053`, `10055`, `10057`, `10058`, `10060`, `10061`, `10062`, `10063`, `10065`, `10066`, `10069`, `10070`, `10071`, `10073`, `10076`, `10078`, `10079`, `10081`, `10085`, `10086`, `10091`, `10092`, `10093`, `10094`, `10096`, `10098`, `10099`, `10100`, `10101`, `10104`, `10105`, `10106`, `10107`, `10110`, `10111`, `10112`, `10114`, `10115`, `10116`, `10118`, `10119`, `10120`, `10123`, `10124`, `10125`, `10127`, `10128`, `10129`, `10130`, `10131`, `10133`, `10134`, `10136`, `10138`, `10139`, `10142`, `10143`, `10146`, `10148`, `10149`, `10150`, `10152`, `10154`, `10156`, `10159`, `10161`, `10163`, `10164`, `10165`, `10167`, `10168`, `10169`, `10170`, `10171`, `10172`, `10175`, `10176`, `10177`, `10180`, `10183`, `10185`, `10186`, `10187`, `10189`, `10191`, `10193`, `10195`, `10196`, `10197`, `10198`, `10199`, `10200`, `10202`, `10203`, `10204`, `10207`, `10208`, `10210`, `10211`, `10213`, `10214`, `10215`, `10217`, `10218`, `10220`, `10222`, `10224`, `10225`, `10227`, `10228`, `10230`, `10232`, `10234`, `10235`, `10237`, `10238`, `10239`, `10241`, `10242`, `10243`, `10245`, `10248`, `10249`, `10251`, `10252`, `10253`, `10255`, `10258`, `10259`, `10260`, `10261`, `10262`, `10263`, `10265`, `10267`, `10268`, `10269`, `10270`, `10272`, `10273`, `10275`, `10276`, `10277`, `10278`, `10279`, `10280`, `10281`, `10284`, `10285`, `10287`, `10288`, `10291`, `10292`, `10294`, `10296`, `10297`, `10298`, `10300`, `10302`, `10303`, `10304`, `10306`, `10307`, `10308`, `10309`, `10312`, `10313`, `10314`, `10315`, `10316`, `10317`, `10318`, `10319`, `10320`, `10321`, `10323`, `10324`, `10327`, `10328`, `10329`, `10330`, `10332`, `10333`, `10335`, `10336`, `10337`, `10340`, `10341`, `10343`, `10344`, `10345`, `10346`, `10347`, `10348`, `10349`, `10350`, `10351`, `10352`, `10353`, `10354`, `10356`, `10357`, `10359`, `10360`, `10363`, `10365`, `10366`, `10368`, `10370`, `10371`, `10372`, `10373`, `10374`, `10375`, `10376`, `10377` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_F` | 99.06 |
| `TOKEN_P` | 99.06 |
| `TOKEN_R` | 99.06 |
| `TOKEN_ACC` | 99.77 |
| `SENTS_F` | 97.00 |
| `SENTS_P` | 97.32 |
| `SENTS_R` | 96.67 |
| `TAG_ACC` | 93.85 |
| `POS_ACC` | 97.66 |
| `MORPH_ACC` | 93.64 |
| `DEP_UAS` | 92.56 |
| `DEP_LAS` | 87.49 |
| `LEMMA_ACC` | 93.99 |
|
marcolatella/irony_trained
|
marcolatella
| 2021-12-10T23:03:44Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: irony_trained
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: irony
metrics:
- name: F1
type: f1
value: 0.6946397550129713
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# irony_trained
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6720
- F1: 0.6946
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.6375567293432486e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.6643 | 1.0 | 716 | 0.5958 | 0.6776 |
| 0.5633 | 2.0 | 1432 | 0.8863 | 0.6759 |
| 0.348 | 3.0 | 2148 | 1.4215 | 0.6817 |
| 0.2192 | 4.0 | 2864 | 1.6720 | 0.6946 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
emre/wav2vec-tr-lite-AG
|
emre
| 2021-12-10T22:46:25Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"tr",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
language: tr
datasets:
- common_voice
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
license: apache-2.0
model-index:
- name: XLSR Wav2Vec2 Turkish by Davut Emre TASAR
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice tr
type: common_voice
args: tr
metrics:
- name: Test WER
type: wer
---
# wav2vec-tr-lite-AG
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "tr", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("emre/wav2vec-tr-lite-AG")
model = Wav2Vec2ForCTC.from_pretrained("emre/wav2vec-tr-lite-AG")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00005
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.4388 | 3.7 | 400 | 1.366 | 0.9701 |
| 0.3766 | 7.4 | 800 | 0.4914 | 0.5374 |
| 0.2295 | 11.11 | 1200 | 0.3934 | 0.4125 |
| 0.1121 | 14.81 | 1600 | 0.3264 | 0.2904 |
| 0.1473 | 18.51 | 2000 | 0.3103 | 0.2671 |
| 0.1013 | 22.22 | 2400 | 0.2589 | 0.2324 |
| 0.0704 | 25.92 | 2800 | 0.2826 | 0.2339 |
| 0.0537 | 29.63 | 3200 | 0.2704 | 0.2309 |
### Framework versions
- Transformers 4.12.0.dev0
- Pytorch 1.8.1
- Datasets 1.14.1.dev0
- Tokenizers 0.10.3
|
huggingtweets/studiocanaluk
|
huggingtweets
| 2021-12-10T22:08:55Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1302895184070483968/nK3jFcnc_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">StudiocanalUK</div>
<div style="text-align: center; font-size: 14px;">@studiocanaluk</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from StudiocanalUK.
| Data | StudiocanalUK |
| --- | --- |
| Tweets downloaded | 3234 |
| Retweets | 529 |
| Short tweets | 226 |
| Tweets kept | 2479 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3j3agdl5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @studiocanaluk's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/28qyfq4n) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/28qyfq4n/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/studiocanaluk')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
nateraw/rare-puppers-123
|
nateraw
| 2021-12-10T21:18:44Z | 95 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"huggingpics",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-03-02T23:29:05Z |
---
tags:
- image-classification
- pytorch
- huggingpics
metrics:
- accuracy
model-index:
- name: rare-puppers-123
results:
- task:
name: Image Classification
type: image-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.9701492786407471
---
# rare-puppers-123
Autogenerated by HuggingPics🤗🖼️
Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
## Example Images
#### corgi

#### samoyed

#### shiba inu

|
explosion/nb_udv25_norwegianbokmaal_trf
|
explosion
| 2021-12-10T19:59:46Z | 1 | 0 |
spacy
|
[
"spacy",
"token-classification",
"nb",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- nb
license: cc-by-sa-4.0
model-index:
- name: nb_udv25_norwegianbokmaal_trf
results:
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9916412329
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9913112816
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9842448239
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9882042399
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9563180335
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.9390763849
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9879568106
---
UD v2.5 benchmarking pipeline for UD_Norwegian-Bokmaal
| Feature | Description |
| --- | --- |
| **Name** | `nb_udv25_norwegianbokmaal_trf` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.2.1,<3.3.0` |
| **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (1240 labels for 6 components)</summary>
| Component | Labels |
| --- | --- |
| **`experimental_char_ner_tokenizer`** | `TOKEN` |
| **`senter`** | `I`, `S` |
| **`tagger`** | `ADJ`, `ADP`, `ADV`, `AUX`, `CCONJ`, `DET`, `INTJ`, `NOUN`, `NUM`, `PART`, `PRON`, `PROPN`, `PUNCT`, `SCONJ`, `SYM`, `VERB`, `X` |
| **`morphologizer`** | `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=CCONJ`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=SCONJ`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Definite=Ind\|Gender=Neut\|Number=Plur\|POS=NOUN`, `POS=PUNCT`, `Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin`, `POS=ADP`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Definite=Def\|Degree=Pos\|Number=Sing\|POS=ADJ`, `POS=PROPN`, `POS=X`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Definite=Def\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=PRON\|PronType=Rel`, `Mood=Ind\|POS=AUX\|Tense=Pres\|VerbForm=Fin`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Definite=Ind\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Number=Plur\|POS=ADJ\|VerbForm=Part`, `Definite=Ind\|Gender=Fem\|Number=Plur\|POS=NOUN`, `POS=ADV`, `Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Definite=Ind\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `POS=VERB\|VerbForm=Part`, `Definite=Ind\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Degree=Pos\|Number=Plur\|POS=ADJ`, `NumType=Card\|Number=Plur\|POS=NUM`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=PART`, `POS=VERB\|VerbForm=Inf`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|POS=AUX\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|POS=PROPN`, `POS=NOUN`, `Gender=Masc\|POS=PROPN`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Abbr=Yes\|POS=PROPN`, `POS=PART\|Polarity=Neg`, `Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|POS=PROPN`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Definite=Def\|Degree=Sup\|POS=ADJ`, `Case=Gen\|Gender=Fem\|POS=PROPN`, `Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Definite=Ind\|Degree=Sup\|POS=ADJ`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Gender=Neut\|POS=PROPN`, `Number=Plur\|POS=DET\|PronType=Int`, `Definite=Def\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Definite=Def\|POS=DET\|PronType=Dem`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Abbr=Yes\|Case=Gen\|POS=PROPN`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Degree=Cmp\|POS=ADJ`, `POS=ADJ\|VerbForm=Part`, `Gender=Neut\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Abbr=Yes\|POS=ADP`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=NOUN`, `POS=AUX\|VerbForm=Part`, `POS=PRON\|PronType=Int`, `Gender=Fem\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Prs`, `Number=Plur\|POS=DET\|PronType=Ind`, `Degree=Pos\|POS=ADJ`, `Animacy=Hum\|Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `POS=VERB\|VerbForm=Inf\|Voice=Pass`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Animacy=Hum\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Animacy=Hum\|Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Number=Plur\|POS=DET\|Polarity=Neg\|PronType=Neg`, `NumType=Card\|POS=NUM`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `POS=DET\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Neut\|POS=PROPN`, `Gender=Masc\|Number=Sing\|POS=DET\|Polarity=Neg\|PronType=Neg`, `Definite=Def\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=AUX\|VerbForm=Inf`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Number=Plur\|POS=DET\|PronType=Tot`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Number=Plur\|POS=DET\|PronType=Prs`, `POS=SYM`, `Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Hum\|Case=Nom\|Number=Sing\|POS=PRON\|PronType=Prs`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Abbr=Yes\|POS=ADV`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Definite=Def\|POS=DET\|PronType=Prs`, `Animacy=Hum\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Neut\|POS=NOUN`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Definite=Def\|NumType=Card\|POS=NUM`, `Mood=Imp\|POS=VERB\|VerbForm=Fin`, `Definite=Ind\|Number=Plur\|POS=NOUN`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Animacy=Hum\|Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=3\|Polarity=Neg\|PronType=Neg,Prs`, `Number=Plur\|POS=PRON\|Person=3\|Polarity=Neg\|PronType=Neg,Prs`, `Definite=Def\|NumType=Card\|Number=Sing\|POS=NUM`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Animacy=Hum\|Number=Sing\|POS=PRON\|PronType=Art,Prs`, `Mood=Imp\|POS=AUX\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=3\|PronType=Prs,Tot`, `Number=Plur\|POS=ADJ`, `Gender=Masc\|POS=NOUN`, `Abbr=Yes\|POS=NOUN`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Prs`, `POS=INTJ`, `Animacy=Hum\|Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Animacy=Hum\|Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=ADJ`, `Animacy=Hum\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Animacy=Hum\|Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Number=Sing\|POS=PRON\|Polarity=Neg\|PronType=Neg`, `Case=Gen\|POS=NOUN`, `Definite=Ind\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|POS=PROPN`, `Animacy=Hum\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Prs`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Definite=Def\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Hum\|Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Animacy=Hum\|Case=Nom\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Degree=Sup\|POS=ADJ`, `Animacy=Hum\|POS=PRON\|PronType=Int`, `POS=DET\|PronType=Ind`, `Definite=Def\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Fem\|POS=NOUN`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs,Tot`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Gender=Neut\|Number=Sing\|POS=DET\|Polarity=Neg\|PronType=Neg`, `Number=Plur\|POS=NOUN`, `POS=PRON\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Definite=Ind\|Number=Sing\|POS=VERB\|VerbForm=Part`, `Case=Gen\|Definite=Def\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem,Ind`, `Animacy=Hum\|POS=PRON\|Poss=Yes\|PronType=Int`, `Abbr=Yes\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Abbr=Yes\|Definite=Def,Ind\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Rcp`, `Definite=Ind\|Degree=Pos\|POS=ADJ`, `Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|NumType=Card\|Number=Plur\|POS=NUM`, `Abbr=Yes\|Definite=Def,Ind\|Gender=Neut\|Number=Plur,Sing\|POS=NOUN`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Tot`, `Abbr=Yes\|Definite=Def,Ind\|Gender=Masc\|Number=Plur,Sing\|POS=NOUN`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Prs`, `Animacy=Hum\|Case=Gen,Nom\|Number=Sing\|POS=PRON\|PronType=Art,Prs`, `Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Hum\|Case=Gen\|Number=Sing\|POS=PRON\|PronType=Art,Prs`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Definite=Ind\|Gender=Masc\|POS=NOUN`, `Definite=Def\|Number=Plur\|POS=NOUN`, `Number=Sing\|POS=ADJ\|VerbForm=Part`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Abbr=Yes\|Gender=Masc\|POS=NOUN`, `Abbr=Yes\|Case=Gen\|POS=NOUN`, `Abbr=Yes\|Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Abbr=Yes\|Degree=Pos\|POS=ADJ`, `Case=Gen\|Gender=Fem\|POS=NOUN`, `Case=Gen\|Degree=Cmp\|POS=ADJ`, `Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=NOUN` |
| **`parser`** | `ROOT`, `acl`, `acl:cleft`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound`, `compound:prt`, `conj`, `cop`, `csubj`, `dep`, `det`, `discourse`, `expl`, `flat:foreign`, `flat:name`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `orphan`, `parataxis`, `punct`, `reparandum`, `xcomp` |
| **`experimental_edit_tree_lemmatizer`** | `1`, `2`, `4`, `6`, `8`, `10`, `12`, `14`, `16`, `18`, `20`, `22`, `24`, `26`, `28`, `32`, `34`, `36`, `38`, `40`, `42`, `44`, `47`, `49`, `51`, `52`, `54`, `56`, `58`, `59`, `60`, `62`, `64`, `65`, `67`, `69`, `70`, `71`, `73`, `75`, `78`, `81`, `83`, `87`, `89`, `93`, `96`, `98`, `99`, `100`, `102`, `104`, `106`, `110`, `112`, `115`, `116`, `118`, `120`, `122`, `124`, `128`, `131`, `133`, `135`, `137`, `140`, `142`, `143`, `144`, `145`, `147`, `149`, `151`, `153`, `154`, `156`, `158`, `159`, `162`, `165`, `166`, `168`, `169`, `171`, `173`, `175`, `177`, `179`, `180`, `182`, `184`, `185`, `186`, `187`, `189`, `190`, `192`, `193`, `194`, `195`, `198`, `199`, `201`, `203`, `204`, `207`, `209`, `211`, `214`, `217`, `218`, `219`, `220`, `223`, `225`, `227`, `228`, `229`, `231`, `232`, `233`, `235`, `236`, `239`, `240`, `243`, `246`, `248`, `249`, `250`, `251`, `254`, `257`, `259`, `261`, `263`, `266`, `267`, `270`, `272`, `274`, `275`, `276`, `279`, `282`, `283`, `284`, `285`, `286`, `289`, `290`, `291`, `292`, `294`, `298`, `302`, `304`, `305`, `306`, `309`, `310`, `311`, `314`, `315`, `316`, `317`, `319`, `320`, `322`, `46`, `324`, `326`, `327`, `329`, `330`, `331`, `332`, `334`, `335`, `336`, `337`, `339`, `340`, `341`, `343`, `344`, `346`, `348`, `349`, `352`, `353`, `354`, `356`, `357`, `358`, `359`, `361`, `363`, `364`, `365`, `367`, `369`, `372`, `374`, `375`, `376`, `377`, `378`, `380`, `381`, `384`, `385`, `387`, `389`, `391`, `394`, `396`, `397`, `400`, `403`, `405`, `406`, `408`, `409`, `410`, `411`, `413`, `415`, `416`, `418`, `420`, `422`, `423`, `424`, `426`, `428`, `429`, `431`, `432`, `433`, `434`, `435`, `437`, `438`, `440`, `442`, `445`, `446`, `448`, `449`, `450`, `451`, `452`, `453`, `456`, `458`, `459`, `460`, `461`, `462`, `465`, `466`, `468`, `469`, `471`, `474`, `475`, `476`, `477`, `479`, `480`, `482`, `485`, `486`, `488`, `489`, `491`, `492`, `493`, `494`, `495`, `497`, `498`, `499`, `500`, `502`, `503`, `504`, `505`, `506`, `507`, `509`, `510`, `511`, `513`, `517`, `518`, `519`, `521`, `522`, `525`, `526`, `528`, `529`, `533`, `537`, `539`, `541`, `543`, `545`, `546`, `547`, `549`, `550`, `552`, `553`, `554`, `555`, `557`, `558`, `559`, `560`, `561`, `562`, `563`, `564`, `566`, `568`, `570`, `574`, `575`, `576`, `577`, `579`, `581`, `582`, `583`, `585`, `586`, `587`, `589`, `590`, `591`, `593`, `595`, `597`, `599`, `602`, `603`, `604`, `605`, `607`, `608`, `610`, `611`, `612`, `614`, `616`, `617`, `619`, `620`, `621`, `624`, `626`, `628`, `630`, `632`, `635`, `636`, `639`, `640`, `642`, `645`, `647`, `650`, `651`, `652`, `655`, `657`, `658`, `659`, `661`, `662`, `663`, `664`, `665`, `666`, `667`, `668`, `669`, `670`, `672`, `673`, `676`, `677`, `678`, `681`, `682`, `683`, `684`, `686`, `687`, `688`, `690`, `692`, `693`, `694`, `695`, `697`, `698`, `699`, `700`, `701`, `702`, `704`, `705`, `707`, `709`, `710`, `711`, `712`, `713`, `714`, `715`, `716`, `717`, `719`, `721`, `723`, `726`, `728`, `729`, `730`, `731`, `732`, `733`, `734`, `736`, `737`, `738`, `739`, `741`, `742`, `743`, `745`, `746`, `747`, `748`, `749`, `750`, `751`, `753`, `754`, `757`, `759`, `760`, `761`, `762`, `763`, `765`, `767`, `768`, `770`, `771`, `772`, `773`, `775`, `777`, `778`, `779`, `780`, `781`, `783`, `784`, `785`, `786`, `787`, `788`, `789`, `790`, `791`, `792`, `795`, `798`, `799`, `801`, `802`, `803`, `805`, `806`, `809`, `811`, `812`, `814`, `815`, `816`, `817`, `818`, `820`, `822`, `823`, `824`, `825`, `826`, `827`, `828`, `829`, `830`, `832`, `833`, `836`, `838`, `839`, `840`, `841`, `843`, `844`, `845`, `846`, `847`, `848`, `850`, `851`, `852`, `853`, `854`, `855`, `857`, `858`, `859`, `860`, `862`, `864`, `865`, `868`, `869`, `870`, `871`, `872`, `873`, `874`, `876`, `877`, `878`, `881`, `883`, `884`, `885`, `886`, `887`, `888`, `889`, `890`, `892`, `893`, `894`, `896`, `897`, `898`, `899`, `901`, `902`, `905`, `908`, `911`, `912`, `913`, `915`, `916`, `917`, `918`, `919`, `920`, `921`, `925`, `927`, `928`, `929`, `930`, `932`, `936`, `937`, `938`, `940`, `941`, `943`, `944`, `947`, `948`, `950`, `952`, `953`, `955`, `957`, `959`, `962`, `964`, `966`, `967`, `968`, `969`, `971`, `972`, `973`, `974`, `977`, `978`, `117`, `41`, `979`, `980`, `981`, `982`, `983`, `985`, `988`, `989`, `990`, `992`, `994`, `995`, `996`, `998`, `999`, `1000`, `1001`, `1002`, `1003`, `1004`, `1007`, `1009`, `1010`, `1011`, `1012`, `1013`, `1014`, `1015`, `1016`, `1017`, `1018`, `1019`, `1020`, `1021`, `1022`, `1023`, `1024`, `1025`, `1026`, `1029`, `1031`, `1035`, `1037`, `1039`, `1040`, `1041`, `1043`, `1044`, `1045`, `1048`, `1049`, `1050`, `1051`, `1053`, `1056`, `1058`, `1059`, `1060`, `1061`, `1064`, `1066`, `1068`, `1070`, `1071`, `1072`, `1075`, `1078`, `1079`, `1080`, `1081`, `1084`, `1085`, `1088`, `1090`, `1093`, `1095`, `1099`, `1102`, `1103`, `1105`, `1106`, `1107`, `1109`, `1110`, `1111`, `1113`, `1115`, `1116`, `1121`, `1123`, `1124`, `1126`, `1128`, `1129`, `1130`, `1131`, `1133`, `1134`, `1136`, `1137`, `1138`, `1139`, `1141`, `1143`, `1144`, `1145`, `1147`, `1148`, `1149`, `1150`, `1151`, `1153`, `1154`, `1156`, `1157`, `1158`, `1162`, `1163`, `1165`, `1166`, `1167`, `1168`, `1169`, `1170`, `1171`, `1172`, `1173`, `1174`, `1175`, `1176`, `1030`, `1179`, `1180`, `1182`, `1184`, `1185`, `1186`, `1187`, `1188`, `1189`, `1190`, `1191`, `1192`, `1193`, `1195`, `1198`, `1199`, `1201`, `1202`, `1204`, `1205`, `1206`, `1207`, `1211`, `1213`, `1214`, `1216`, `1219`, `1220`, `1221`, `1222`, `1223`, `1224`, `1225`, `1226`, `1228`, `1230`, `1232`, `1234`, `1235`, `1238`, `1239`, `1240`, `1241`, `1242`, `1244`, `1247`, `1248`, `1249`, `1250`, `1251`, `1253`, `1254`, `1255`, `1256`, `1257`, `1258`, `1259`, `1262`, `1263`, `1265`, `1267`, `515`, `1268`, `1269`, `1271`, `1273`, `1274`, `1275`, `1276`, `1277`, `1279`, `1280`, `1282`, `1283`, `1284`, `1285`, `1287`, `1289`, `1291`, `1292`, `1294`, `1297`, `1298`, `1299`, `1302`, `1303`, `1305`, `1307`, `1308`, `1309`, `1311`, `1312`, `1313`, `1314`, `1315`, `1316`, `1317`, `1318`, `1320`, `1321`, `1322`, `1324`, `1325`, `1326`, `1329`, `1331`, `1334`, `1336`, `1337`, `1340`, `1341`, `1342`, `1343`, `1346`, `1348`, `1349`, `1350`, `1352`, `1353`, `1355`, `1357`, `1358`, `1359`, `1361`, `965`, `1362`, `1363`, `1364`, `1366`, `1369`, `1370`, `1371`, `1372`, `1373`, `1375`, `1376`, `1377`, `1379`, `1381`, `1382`, `1383`, `1385`, `1387`, `1388`, `1390`, `1392`, `1393`, `1394`, `1395`, `1396`, `1397`, `1398`, `1399`, `1400`, `1402`, `1403`, `1405`, `1406`, `1407`, `1409`, `1411`, `1412`, `1413`, `1414`, `1418`, `1419`, `1420`, `1421`, `1423`, `1424`, `1425`, `1427`, `1428`, `1429`, `1430`, `1432`, `1433`, `1435`, `1437`, `1438`, `1441`, `1442`, `1444`, `1446`, `1447`, `1449`, `1453`, `1455`, `1457`, `1458`, `1460`, `1462`, `1463`, `1464`, `1466`, `1469`, `1470`, `1471`, `1473`, `1475`, `1476`, `1477`, `1478`, `1479`, `1482`, `1483`, `1484`, `1486`, `1487`, `1489`, `1491`, `1493`, `1494`, `1495`, `1496`, `1497`, `1498`, `1499`, `1500`, `1501`, `1502`, `1503`, `1504`, `1506`, `1507`, `1508`, `1510`, `1511`, `1512`, `1513`, `1516`, `1517`, `1518`, `1519`, `1520`, `1521`, `1522`, `1523`, `849` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_F` | 100.00 |
| `TOKEN_P` | 100.00 |
| `TOKEN_R` | 100.00 |
| `TOKEN_ACC` | 100.00 |
| `SENTS_F` | 98.80 |
| `SENTS_P` | 98.84 |
| `SENTS_R` | 98.75 |
| `TAG_ACC` | 99.16 |
| `POS_ACC` | 99.13 |
| `MORPH_ACC` | 98.42 |
| `DEP_UAS` | 95.63 |
| `DEP_LAS` | 93.91 |
| `LEMMA_ACC` | 98.82 |
|
SupriyaArun/distilbert-base-uncased-finetuned-squad
|
SupriyaArun
| 2021-12-10T19:20:59Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: distilbert-base-uncased-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-squad
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1569
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.2213 | 1.0 | 5533 | 1.1560 |
| 0.943 | 2.0 | 11066 | 1.1227 |
| 0.7633 | 3.0 | 16599 | 1.1569 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
explosion/lt_udv25_lithuanianalksnis_trf
|
explosion
| 2021-12-10T19:13:26Z | 6 | 0 |
spacy
|
[
"spacy",
"token-classification",
"lt",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- lt
license: cc-by-sa-4.0
model-index:
- name: lt_udv25_lithuanianalksnis_trf
results:
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9542839843
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9806669262
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9549759958
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9045621622
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.8811484062
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8361832383
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9565217391
---
UD v2.5 benchmarking pipeline for UD_Lithuanian-ALKSNIS
| Feature | Description |
| --- | --- |
| **Name** | `lt_udv25_lithuanianalksnis_trf` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.2.1,<3.3.0` |
| **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (3674 labels for 6 components)</summary>
| Component | Labels |
| --- | --- |
| **`experimental_char_ner_tokenizer`** | `TOKEN` |
| **`senter`** | `I`, `S` |
| **`tagger`** | `.`, `akr.`, `bdv.aukšt.mot.dgs.K.`, `bdv.aukšt.mot.dgs.V.`, `bdv.aukšt.mot.dgs.Vt.`, `bdv.aukšt.mot.dgs.Įn.`, `bdv.aukšt.mot.vns.G.`, `bdv.aukšt.mot.vns.K.`, `bdv.aukšt.mot.vns.V.`, `bdv.aukšt.vyr.dgs.G.`, `bdv.aukšt.vyr.dgs.K.`, `bdv.aukšt.vyr.dgs.N.`, `bdv.aukšt.vyr.dgs.V.`, `bdv.aukšt.vyr.dgs.Vt.`, `bdv.aukšt.vyr.dgs.Įn.`, `bdv.aukšt.vyr.vns.G.`, `bdv.aukšt.vyr.vns.K.`, `bdv.aukšt.vyr.vns.N.`, `bdv.aukšt.vyr.vns.V.`, `bdv.aukšt.vyr.vns.Vt.`, `bdv.aukšt.vyr.vns.Įn.`, `bdv.aukšč.bev.`, `bdv.aukšč.mot.dgs.G.`, `bdv.aukšč.mot.dgs.K.`, `bdv.aukšč.mot.dgs.V.`, `bdv.aukšč.mot.dgs.Įn.`, `bdv.aukšč.mot.vns.K.`, `bdv.aukšč.mot.vns.V.`, `bdv.aukšč.mot.vns.Vt.`, `bdv.aukšč.mot.vns.Įn.`, `bdv.aukšč.vyr.dgs.G.`, `bdv.aukšč.vyr.dgs.K.`, `bdv.aukšč.vyr.dgs.V.`, `bdv.aukšč.vyr.dgs.Vt.`, `bdv.aukšč.vyr.dgs.Įn.`, `bdv.aukšč.vyr.vns.G.`, `bdv.aukšč.vyr.vns.K.`, `bdv.aukšč.vyr.vns.V.`, `bdv.aukšč.vyr.vns.Įn.`, `bdv.aukšč.įvardž.mot.vns.K.`, `bdv.nelygin.`, `bdv.nelygin..vyr.vns.K.`, `bdv.nelygin.bev.`, `bdv.nelygin.mot.dgs.G.`, `bdv.nelygin.mot.dgs.K.`, `bdv.nelygin.mot.dgs.N.`, `bdv.nelygin.mot.dgs.V`, `bdv.nelygin.mot.dgs.V.`, `bdv.nelygin.mot.dgs.Vt.`, `bdv.nelygin.mot.dgs.Įn.`, `bdv.nelygin.mot.vns.G.`, `bdv.nelygin.mot.vns.K.`, `bdv.nelygin.mot.vns.N.`, `bdv.nelygin.mot.vns.V.`, `bdv.nelygin.mot.vns.Vt.`, `bdv.nelygin.mot.vns.Įn.`, `bdv.nelygin.vyr.dgs.G.`, `bdv.nelygin.vyr.dgs.K.`, `bdv.nelygin.vyr.dgs.N.`, `bdv.nelygin.vyr.dgs.V.`, `bdv.nelygin.vyr.dgs.Vt.`, `bdv.nelygin.vyr.dgs.Įn.`, `bdv.nelygin.vyr.vns.G.`, `bdv.nelygin.vyr.vns.K.`, `bdv.nelygin.vyr.vns.N.`, `bdv.nelygin.vyr.vns.V.`, `bdv.nelygin.vyr.vns.Vt.`, `bdv.nelygin.vyr.vns.Įn.`, `bdv.nelygin.įvardž.mot.dgs.G.`, `bdv.nelygin.įvardž.mot.dgs.K.`, `bdv.nelygin.įvardž.mot.dgs.N.`, `bdv.nelygin.įvardž.mot.dgs.V.`, `bdv.nelygin.įvardž.mot.dgs.Įn.`, `bdv.nelygin.įvardž.mot.vns.G.`, `bdv.nelygin.įvardž.mot.vns.K.`, `bdv.nelygin.įvardž.mot.vns.N.`, `bdv.nelygin.įvardž.mot.vns.V.`, `bdv.nelygin.įvardž.mot.vns.Vt.`, `bdv.nelygin.įvardž.mot.vns.Įn.`, `bdv.nelygin.įvardž.vyr.dgs.G.`, `bdv.nelygin.įvardž.vyr.dgs.K.`, `bdv.nelygin.įvardž.vyr.dgs.V.`, `bdv.nelygin.įvardž.vyr.dgs.Vt.`, `bdv.nelygin.įvardž.vyr.dgs.Įn.`, `bdv.nelygin.įvardž.vyr.vns.G.`, `bdv.nelygin.įvardž.vyr.vns.K.`, `bdv.nelygin.įvardž.vyr.vns.N.`, `bdv.nelygin.įvardž.vyr.vns.V.`, `bdv.nelygin.įvardž.vyr.vns.Vt.`, `bdv.nelygin.įvardž.vyr.vns.Įn.`, `būdv.nelygin.įvardž.vyr.dgs.K.`, `dkt.`, `dkt.bendr.dgs.V.`, `dkt.bendr.vns.K.`, `dkt.bendr.vns.N.`, `dkt.bendr.vns.V.`, `dkt.mot.`, `dkt.mot.dgs.G.`, `dkt.mot.dgs.K.`, `dkt.mot.dgs.N.`, `dkt.mot.dgs.V.`, `dkt.mot.dgs.Vt.`, `dkt.mot.dgs.Įn.`, `dkt.mot.vns.G.`, `dkt.mot.vns.Il.`, `dkt.mot.vns.K`, `dkt.mot.vns.K.`, `dkt.mot.vns.N.`, `dkt.mot.vns.V.`, `dkt.mot.vns.Vt.`, `dkt.mot.vns.Įn.`, `dkt.mot.vns.Įv.`, `dkt.mot.vns.Š.`, `dkt.sngr.vyr.dgs.G.`, `dkt.sngr.vyr.dgs.K.`, `dkt.sngr.vyr.dgs.V.`, `dkt.sngr.vyr.dgs.Įn.`, `dkt.sngr.vyr.vns.G.`, `dkt.sngr.vyr.vns.K.`, `dkt.sngr.vyr.vns.N.`, `dkt.sngr.vyr.vns.V.`, `dkt.sngr.vyr.vns.Įn.`, `dkt.tikr.`, `dkt.tikr.mot.`, `dkt.tikr.mot.dgs.K.`, `dkt.tikr.mot.vns.G.`, `dkt.tikr.mot.vns.K.`, `dkt.tikr.mot.vns.N.`, `dkt.tikr.mot.vns.V.`, `dkt.tikr.mot.vns.Vt.`, `dkt.tikr.mot.vns.Įn.`, `dkt.tikr.vyr.dgs.K.`, `dkt.tikr.vyr.vns.G.`, `dkt.tikr.vyr.vns.K.`, `dkt.tikr.vyr.vns.N.`, `dkt.tikr.vyr.vns.V.`, `dkt.tikr.vyr.vns.Vt.`, `dkt.tikr.vyr.vns.Įn.`, `dkt.vyr.`, `dkt.vyr.dgs.G.`, `dkt.vyr.dgs.K.`, `dkt.vyr.dgs.N.`, `dkt.vyr.dgs.V.`, `dkt.vyr.dgs.Vt.`, `dkt.vyr.dgs.v.`, `dkt.vyr.dgs.Įn.`, `dkt.vyr.vns,K.`, `dkt.vyr.vns.G.`, `dkt.vyr.vns.Il.`, `dkt.vyr.vns.K.`, `dkt.vyr.vns.N.`, `dkt.vyr.vns.V.`, `dkt.vyr.vns.Vt.`, `dkt.vyr.vns.vt.`, `dkt.vyr.vns.Įn.`, `dkt.vyr.vns.Š.`, `dktv.mot.vns.K.`, `dll`, `dll.`, `dlv.neveik.es.mot.vns.V.`, `jng.`, `jst.`, `kita`, `kita.`, `prl.G.`, `prl.K.`, `prl.Įn.`, `prv.aukšt.`, `prv.aukšč.`, `prv.nelygin.`, `prv.neygin.`, `prv.sampl.nelygin.`, `samp.įv.mot.dgs.N.`, `sampl.dll.`, `sampl.jng.`, `sampl.jst.`, `sampl.prv.`, `sampl.prv.nelyg.`, `sampl.prv.nelygin.`, `sampl.sktv.`, `sampl.sktv.raid.kiek.`, `sampl.sutr.`, `sampl.užs.`, `sampl.vksm.pad.es.`, `sampl.įv.`, `sampl.įv.G.`, `sampl.įv.K.`, `sampl.įv.V.`, `sampl.įv.bev.`, `sampl.įv.mot.dgs.G.`, `sampl.įv.mot.dgs.K.`, `sampl.įv.mot.dgs.V.`, `sampl.įv.mot.dgs.Vt.`, `sampl.įv.mot.dgs.Įn.`, `sampl.įv.mot.vns.G.`, `sampl.įv.mot.vns.K.`, `sampl.įv.mot.vns.N.`, `sampl.įv.mot.vns.V.`, `sampl.įv.mot.vns.Vt.`, `sampl.įv.mot.vns.Įn.`, `sampl.įv.vyr.dgs.G.`, `sampl.įv.vyr.dgs.K.`, `sampl.įv.vyr.dgs.N.`, `sampl.įv.vyr.dgs.V.`, `sampl.įv.vyr.dgs.Vt.`, `sampl.įv.vyr.dgs.Įn.`, `sampl.įv.vyr.vns.G.`, `sampl.įv.vyr.vns.K.`, `sampl.įv.vyr.vns.V.`, `sampl.įv.vyr.vns.Vt.`, `sampl.įv.vyr.vns.Įn.`, `sampl.įv.Įn.`, `sktv.`, `sktv.arab`, `sktv.arab.`, `sktv.kelint.mot.vns.Vt.`, `sktv.kelint.įvardž.mot.vns.V.`, `sktv.kelint.įvardž.vyr.vns.G.`, `sktv.kiek.mot.V.`, `sktv.kiek.vyr.dgs.G.`, `sktv.mišr.`, `sktv.mišr.kelint.įvardž.mot.vns.G.`, `sktv.mišr.kelint.įvardž.mot.vns.K.`, `sktv.mišr.kelint.įvardž.mot.vns.V.`, `sktv.mišr.kelint.įvardž.vyr.vns.G.`, `sktv.mišr.kelint.įvardž.vyr.vns.K.`, `sktv.mišr.kelint.įvardž.vyr.vns.Vt.`, `sktv.raid.daugin.vyr.G.`, `sktv.raid.daugin.vyr.K.`, `sktv.raid.kelint.bev.`, `sktv.raid.kelint.mot.vns.K.`, `sktv.raid.kelint.mot.vns.V.`, `sktv.raid.kelint.mot.vns.Vt.`, `sktv.raid.kelint.vyr.dgs.K.`, `sktv.raid.kelint.vyr.dgs.V.`, `sktv.raid.kelint.vyr.dgs.Vt.`, `sktv.raid.kelint.vyr.dgs.Įn.`, `sktv.raid.kelint.vyr.vns.G.`, `sktv.raid.kelint.vyr.vns.K.`, `sktv.raid.kelint.vyr.vns.V.`, `sktv.raid.kelint.vyr.vns.Vt.`, `sktv.raid.kelint.įvardž.mot.vns.G.`, `sktv.raid.kelint.įvardž.mot.vns.K.`, `sktv.raid.kelint.įvardž.mot.vns.N.`, `sktv.raid.kelint.įvardž.mot.vns.V.`, `sktv.raid.kelint.įvardž.mot.vns.Vt.`, `sktv.raid.kelint.įvardž.vyr.dgs.K.`, `sktv.raid.kelint.įvardž.vyr.dgs.N.`, `sktv.raid.kelint.įvardž.vyr.dgs.V.`, `sktv.raid.kelint.įvardž.vyr.dgs.Įn.`, `sktv.raid.kelint.įvardž.vyr.vns.G.`, `sktv.raid.kelint.įvardž.vyr.vns.K.`, `sktv.raid.kelint.įvardž.vyr.vns.V.`, `sktv.raid.kiek.`, `sktv.raid.kiek.K.`, `sktv.raid.kiek.mot.G.`, `sktv.raid.kiek.mot.K.`, `sktv.raid.kiek.mot.N.`, `sktv.raid.kiek.mot.V.`, `sktv.raid.kiek.mot.Vt.`, `sktv.raid.kiek.mot.dgs.V.`, `sktv.raid.kiek.mot.vns.G.`, `sktv.raid.kiek.mot.vns.K.`, `sktv.raid.kiek.mot.vns.Įn.`, `sktv.raid.kiek.mot.Įn.`, `sktv.raid.kiek.vyr.G.`, `sktv.raid.kiek.vyr.K.`, `sktv.raid.kiek.vyr.N.`, `sktv.raid.kiek.vyr.V.`, `sktv.raid.kiek.vyr.Vt.`, `sktv.raid.kiek.vyr.dgs.K.`, `sktv.raid.kiek.vyr.dgs.V.`, `sktv.raid.kiek.vyr.vns.G.`, `sktv.raid.kiek.vyr.vns.K.`, `sktv.raid.kiek.vyr.vns.V.`, `sktv.raid.kiek.vyr.Įn.`, `sktv.raid.kiekin.mot.vns.G.`, `sktv.raid.kiekin.mot.vns.V.`, `sktv.raid.kuopin.G.`, `sktv.rom.`, `skyr.`, `sutr.`, `tęs`, `tęs.`, `tęs.sktv.raid.kelint.vyr.vns.G.`, `tęs.įv.vyr.dgs.G.`, `tęs.įv.vyr.dgs.N.`, `tęs.įv.vyr.vns.G.`, `tęs.įv.vyr.vns.N.`, `tęs.įv.vyr.vns.V.`, `tęs.įv.vyr.vns.Įn.`, `užs.`, `vksm.asm.liep.dgs.1.`, `vksm.asm.liep.dgs.2.`, `vksm.asm.liep.vns.2.`, `vksm.asm.liep.vns.3.`, `vksm.asm.neig.liep.dgs.2.`, `vksm.asm.neig.liep.vns.2.`, `vksm.asm.neig.sngr.liep.dgs.2.`, `vksm.asm.neig.sngr.tar.3.`, `vksm.asm.neig.sngr.tar.dgs.1.`, `vksm.asm.neig.sngr.tar.vns.1.`, `vksm.asm.neig.sngr.tar.vns.3.`, `vksm.asm.neig.sngr.tiesiog.būs.vns.2.`, `vksm.asm.neig.sngr.tiesiog.būs.vns.3.`, `vksm.asm.neig.sngr.tiesiog.būt-k.3.`, `vksm.asm.neig.sngr.tiesiog.būt-k.dgs.3.`, `vksm.asm.neig.sngr.tiesiog.būt-k.vns.1.`, `vksm.asm.neig.sngr.tiesiog.būt-k.vns.3.`, `vksm.asm.neig.sngr.tiesiog.es.3.`, `vksm.asm.neig.sngr.tiesiog.es.dgs.3.`, `vksm.asm.neig.sngr.tiesiog.es.vns.1.`, `vksm.asm.neig.sngr.tiesiog.es.vns.3.`, `vksm.asm.neig.tar.3.`, `vksm.asm.neig.tar.dgs.1.`, `vksm.asm.neig.tar.dgs.3.`, `vksm.asm.neig.tar.vns.1.`, `vksm.asm.neig.tar.vns.2.`, `vksm.asm.neig.tar.vns.3.`, `vksm.asm.neig.tiesiog.būs.3.`, `vksm.asm.neig.tiesiog.būs.dgs.1.`, `vksm.asm.neig.tiesiog.būs.dgs.3.`, `vksm.asm.neig.tiesiog.būs.vns.1.`, `vksm.asm.neig.tiesiog.būs.vns.2.`, `vksm.asm.neig.tiesiog.būs.vns.3.`, `vksm.asm.neig.tiesiog.būt-d.vns.1.`, `vksm.asm.neig.tiesiog.būt-d.vns.3.`, `vksm.asm.neig.tiesiog.būt-k.3.`, `vksm.asm.neig.tiesiog.būt-k.dgs.1.`, `vksm.asm.neig.tiesiog.būt-k.dgs.3.`, `vksm.asm.neig.tiesiog.būt-k.vns.1.`, `vksm.asm.neig.tiesiog.būt-k.vns.2.`, `vksm.asm.neig.tiesiog.būt-k.vns.3.`, `vksm.asm.neig.tiesiog.es.3.`, `vksm.asm.neig.tiesiog.es.dgs.1.`, `vksm.asm.neig.tiesiog.es.dgs.2.`, `vksm.asm.neig.tiesiog.es.dgs.3.`, `vksm.asm.neig.tiesiog.es.vns.1.`, `vksm.asm.neig.tiesiog.es.vns.2.`, `vksm.asm.neig.tiesiog.es.vns.3.`, `vksm.asm.sngr.liep.dgs.1.`, `vksm.asm.sngr.liep.dgs.2.`, `vksm.asm.sngr.liep.vns.2.`, `vksm.asm.sngr.tar.3.`, `vksm.asm.sngr.tar.dgs.3.`, `vksm.asm.sngr.tar.vns.1.`, `vksm.asm.sngr.tar.vns.3.`, `vksm.asm.sngr.tiesiog.būs.dgs.1.`, `vksm.asm.sngr.tiesiog.būs.dgs.2.`, `vksm.asm.sngr.tiesiog.būs.dgs.3.`, `vksm.asm.sngr.tiesiog.būs.vns.2.`, `vksm.asm.sngr.tiesiog.būs.vns.3.`, `vksm.asm.sngr.tiesiog.būt-d.dgs.3.`, `vksm.asm.sngr.tiesiog.būt-d.vns.1.`, `vksm.asm.sngr.tiesiog.būt-d.vns.3.`, `vksm.asm.sngr.tiesiog.būt-k.3.`, `vksm.asm.sngr.tiesiog.būt-k.dgs.1.`, `vksm.asm.sngr.tiesiog.būt-k.dgs.3.`, `vksm.asm.sngr.tiesiog.būt-k.vns.1.`, `vksm.asm.sngr.tiesiog.būt-k.vns.3.`, `vksm.asm.sngr.tiesiog.es.3.`, `vksm.asm.sngr.tiesiog.es.dgs.1.`, `vksm.asm.sngr.tiesiog.es.dgs.3.`, `vksm.asm.sngr.tiesiog.es.vns.1.`, `vksm.asm.sngr.tiesiog.es.vns.2.`, `vksm.asm.sngr.tiesiog.es.vns.3.`, `vksm.asm.tar.3.`, `vksm.asm.tar.dgs.1.`, `vksm.asm.tar.dgs.2.`, `vksm.asm.tar.dgs.3.`, `vksm.asm.tar.vns.1.`, `vksm.asm.tar.vns.2.`, `vksm.asm.tar.vns.3.`, `vksm.asm.tiesiog.būs.3.`, `vksm.asm.tiesiog.būs.dgs.1.`, `vksm.asm.tiesiog.būs.dgs.2.`, `vksm.asm.tiesiog.būs.dgs.3.`, `vksm.asm.tiesiog.būs.vns.1.`, `vksm.asm.tiesiog.būs.vns.2.`, `vksm.asm.tiesiog.būs.vns.3.`, `vksm.asm.tiesiog.būt-d.3.`, `vksm.asm.tiesiog.būt-d.dgs.3.`, `vksm.asm.tiesiog.būt-d.vns.1.`, `vksm.asm.tiesiog.būt-d.vns.2.`, `vksm.asm.tiesiog.būt-d.vns.3.`, `vksm.asm.tiesiog.būt-k.`, `vksm.asm.tiesiog.būt-k.3.`, `vksm.asm.tiesiog.būt-k.dgs.1.`, `vksm.asm.tiesiog.būt-k.dgs.2.`, `vksm.asm.tiesiog.būt-k.dgs.3.`, `vksm.asm.tiesiog.būt-k.vns.1.`, `vksm.asm.tiesiog.būt-k.vns.2.`, `vksm.asm.tiesiog.būt-k.vns.3.`, `vksm.asm.tiesiog.es.3.`, `vksm.asm.tiesiog.es.dgs.1.`, `vksm.asm.tiesiog.es.dgs.2.`, `vksm.asm.tiesiog.es.dgs.3.`, `vksm.asm.tiesiog.es.vns.1.`, `vksm.asm.tiesiog.es.vns.2.`, `vksm.asm.tiesiog.es.vns.3.`, `vksm.bndr.`, `vksm.bndr.neig.`, `vksm.bndr.neig.sngr.`, `vksm.bndr.sngr.`, `vksm.dlv.neig.neveik.būt.bev.`, `vksm.dlv.neig.neveik.būt.mot.dgs.G.`, `vksm.dlv.neig.neveik.būt.mot.dgs.K.`, `vksm.dlv.neig.neveik.būt.mot.dgs.V.`, `vksm.dlv.neig.neveik.būt.mot.vns.K.`, `vksm.dlv.neig.neveik.būt.mot.vns.V.`, `vksm.dlv.neig.neveik.būt.vyr.dgs.N.`, `vksm.dlv.neig.neveik.būt.vyr.dgs.V.`, `vksm.dlv.neig.neveik.būt.vyr.vns.G.`, `vksm.dlv.neig.neveik.būt.vyr.vns.N.`, `vksm.dlv.neig.neveik.būt.vyr.vns.V.`, `vksm.dlv.neig.neveik.es.bev.`, `vksm.dlv.neig.neveik.es.mot.dgs.K.`, `vksm.dlv.neig.neveik.es.mot.dgs.V.`, `vksm.dlv.neig.neveik.es.mot.vns.G.`, `vksm.dlv.neig.neveik.es.mot.vns.K.`, `vksm.dlv.neig.neveik.es.mot.vns.V.`, `vksm.dlv.neig.neveik.es.mot.vns.Įn.`, `vksm.dlv.neig.neveik.es.vyr.dgs.G.`, `vksm.dlv.neig.neveik.es.vyr.dgs.K.`, `vksm.dlv.neig.neveik.es.vyr.dgs.V.`, `vksm.dlv.neig.neveik.es.vyr.vns.V.`, `vksm.dlv.neig.neveik.es.įvardž.mot.dgs.V.`, `vksm.dlv.neig.reik.bev.`, `vksm.dlv.neig.reik.mot.dgs.K.`, `vksm.dlv.neig.reik.mot.vns.V.`, `vksm.dlv.neig.reik.vyr.vns.V.`, `vksm.dlv.neig.sngr.neveik.būt.bev.`, `vksm.dlv.neig.sngr.neveik.es.bev.`, `vksm.dlv.neig.sngr.veik.būt-k.vyr.dgs.V.`, `vksm.dlv.neig.sngr.veik.es.vyr.vns.V.`, `vksm.dlv.neig.veik.būt-k.bev.`, `vksm.dlv.neig.veik.būt-k.vyr.dgs.V.`, `vksm.dlv.neig.veik.būt-k.vyr.dgs.Įn.`, `vksm.dlv.neig.veik.būt-k.vyr.vns.G.`, `vksm.dlv.neig.veik.būt-k.vyr.vns.V.`, `vksm.dlv.neig.veik.es.mot.dgs.K.`, `vksm.dlv.neig.veik.es.mot.vns.N.`, `vksm.dlv.neig.veik.es.mot.vns.V.`, `vksm.dlv.neig.veik.es.mot.vns.Įn.`, `vksm.dlv.neig.veik.es.vyr.dgs.G.`, `vksm.dlv.neig.veik.es.vyr.dgs.N.`, `vksm.dlv.neig.veik.es.vyr.dgs.V.`, `vksm.dlv.neig.veik.es.vyr.dgs.Įn.`, `vksm.dlv.neig.veik.es.vyr.vns.K.`, `vksm.dlv.neig.veik.es.vyr.vns.N.`, `vksm.dlv.neig.veik.es.vyr.vns.V.`, `vksm.dlv.neig.veik.es.įvardž.vyr.dgs.V.`, `vksm.dlv.neig.veik.es.įvardž.vyr.dgs.Įn.`, `vksm.dlv.neveik.būs.vyr.vns.G.`, `vksm.dlv.neveik.būs.vyr.vns.N.`, `vksm.dlv.neveik.būt-k.vyr.dgs.V.`, `vksm.dlv.neveik.būt-k.vyr.vns.V.`, `vksm.dlv.neveik.būt.bev.`, `vksm.dlv.neveik.būt.mot.V.`, `vksm.dlv.neveik.būt.mot.dgs.G.`, `vksm.dlv.neveik.būt.mot.dgs.K`, `vksm.dlv.neveik.būt.mot.dgs.K.`, `vksm.dlv.neveik.būt.mot.dgs.N.`, `vksm.dlv.neveik.būt.mot.dgs.V.`, `vksm.dlv.neveik.būt.mot.dgs.Įn.`, `vksm.dlv.neveik.būt.mot.vns.G.`, `vksm.dlv.neveik.būt.mot.vns.K.`, `vksm.dlv.neveik.būt.mot.vns.N.`, `vksm.dlv.neveik.būt.mot.vns.V`, `vksm.dlv.neveik.būt.mot.vns.V.`, `vksm.dlv.neveik.būt.mot.vns.Vt.`, `vksm.dlv.neveik.būt.mot.vns.Įn.`, `vksm.dlv.neveik.būt.vyr.dgs.G.`, `vksm.dlv.neveik.būt.vyr.dgs.K.`, `vksm.dlv.neveik.būt.vyr.dgs.N.`, `vksm.dlv.neveik.būt.vyr.dgs.V`, `vksm.dlv.neveik.būt.vyr.dgs.V.`, `vksm.dlv.neveik.būt.vyr.dgs.Vt.`, `vksm.dlv.neveik.būt.vyr.dgs.Įn.`, `vksm.dlv.neveik.būt.vyr.vns.G.`, `vksm.dlv.neveik.būt.vyr.vns.K.`, `vksm.dlv.neveik.būt.vyr.vns.N.`, `vksm.dlv.neveik.būt.vyr.vns.V`, `vksm.dlv.neveik.būt.vyr.vns.V.`, `vksm.dlv.neveik.būt.vyr.vns.Vt.`, `vksm.dlv.neveik.būt.vyr.vns.Įn.`, `vksm.dlv.neveik.būt.įvardž.mot.dgs.G.`, `vksm.dlv.neveik.būt.įvardž.mot.dgs.K.`, `vksm.dlv.neveik.būt.įvardž.vyr.dgs.G.`, `vksm.dlv.neveik.būt.įvardž.vyr.dgs.K.`, `vksm.dlv.neveik.būt.įvardž.vyr.dgs.V.`, `vksm.dlv.neveik.būt.įvardž.vyr.vns.K.`, `vksm.dlv.neveik.būt.įvardž.vyr.vns.V.`, `vksm.dlv.neveik.būts.vyr.dgs.V.`, `vksm.dlv.neveik.es.bev.`, `vksm.dlv.neveik.es.mot.V.`, `vksm.dlv.neveik.es.mot.dgs.G.`, `vksm.dlv.neveik.es.mot.dgs.K.`, `vksm.dlv.neveik.es.mot.dgs.N.`, `vksm.dlv.neveik.es.mot.dgs.V.`, `vksm.dlv.neveik.es.mot.dgs.Vt.`, `vksm.dlv.neveik.es.mot.dgs.Įn.`, `vksm.dlv.neveik.es.mot.vns.G.`, `vksm.dlv.neveik.es.mot.vns.K.`, `vksm.dlv.neveik.es.mot.vns.N.`, `vksm.dlv.neveik.es.mot.vns.V`, `vksm.dlv.neveik.es.mot.vns.V.`, `vksm.dlv.neveik.es.mot.vns.Vt.`, `vksm.dlv.neveik.es.mot.vns.Įn.`, `vksm.dlv.neveik.es.vyr.dgs.G.`, `vksm.dlv.neveik.es.vyr.dgs.K.`, `vksm.dlv.neveik.es.vyr.dgs.N.`, `vksm.dlv.neveik.es.vyr.dgs.V.`, `vksm.dlv.neveik.es.vyr.dgs.Įn.`, `vksm.dlv.neveik.es.vyr.vns.G.`, `vksm.dlv.neveik.es.vyr.vns.K.`, `vksm.dlv.neveik.es.vyr.vns.N.`, `vksm.dlv.neveik.es.vyr.vns.V.`, `vksm.dlv.neveik.es.vyr.vns.Įn.`, `vksm.dlv.neveik.es.įvardž.mot.dgs.K.`, `vksm.dlv.neveik.es.įvardž.mot.dgs.V.`, `vksm.dlv.neveik.es.įvardž.mot.dgs.Įn.`, `vksm.dlv.neveik.es.įvardž.mot.vns.G.`, `vksm.dlv.neveik.es.įvardž.mot.vns.K.`, `vksm.dlv.neveik.es.įvardž.mot.vns.N.`, `vksm.dlv.neveik.es.įvardž.mot.vns.V.`, `vksm.dlv.neveik.es.įvardž.vyr.dgs.G.`, `vksm.dlv.neveik.es.įvardž.vyr.dgs.K.`, `vksm.dlv.neveik.es.įvardž.vyr.dgs.N.`, `vksm.dlv.neveik.es.įvardž.vyr.dgs.V.`, `vksm.dlv.neveik.es.įvardž.vyr.vns.G.`, `vksm.dlv.neveik.es.įvardž.vyr.vns.K.`, `vksm.dlv.neveik.es.įvardž.vyr.vns.N.`, `vksm.dlv.neveik.es.įvardž.vyr.vns.V.`, `vksm.dlv.neveik.es.įvardž.vyr.vns.Įn.`, `vksm.dlv.neveik.mot.vns.V.`, `vksm.dlv.neveik.vyr.dgs.K.`, `vksm.dlv.neveik.įvardž.es.mot.vns.Vt.`, `vksm.dlv.neveik.įvardž.es.vyr.dgs.K.`, `vksm.dlv.neveik.įvardž.es.vyr.vns.K.`, `vksm.dlv.reik.bev.`, `vksm.dlv.reik.mot.vns.V.`, `vksm.dlv.reik.vyr.dgs.K.`, `vksm.dlv.reik.vyr.dgs.V.`, `vksm.dlv.reik.vyr.vns.V.`, `vksm.dlv.sngr.neveik.būt.bev.`, `vksm.dlv.sngr.neveik.būt.mot.dgs.G.`, `vksm.dlv.sngr.neveik.būt.mot.dgs.V.`, `vksm.dlv.sngr.neveik.būt.mot.vns.V.`, `vksm.dlv.sngr.neveik.būt.mot.vns.Vt.`, `vksm.dlv.sngr.neveik.būt.vyr.dgs.G.`, `vksm.dlv.sngr.neveik.būt.vyr.dgs.V.`, `vksm.dlv.sngr.neveik.būt.vyr.dgs.Vt.`, `vksm.dlv.sngr.neveik.būt.vyr.dgs.Įn.`, `vksm.dlv.sngr.neveik.būt.vyr.vns.G.`, `vksm.dlv.sngr.neveik.būt.vyr.vns.K.`, `vksm.dlv.sngr.neveik.būt.vyr.vns.V.`, `vksm.dlv.sngr.neveik.es.bev.`, `vksm.dlv.sngr.neveik.es.mot.dgs.V.`, `vksm.dlv.sngr.neveik.es.mot.vns.V.`, `vksm.dlv.sngr.neveik.es.vyr.dgs.Įn.`, `vksm.dlv.sngr.neveik.es.vyr.vns.V.`, `vksm.dlv.sngr.veik.būt-k.bev.`, `vksm.dlv.sngr.veik.būt-k.mot.dgs.G.`, `vksm.dlv.sngr.veik.būt-k.mot.dgs.K.`, `vksm.dlv.sngr.veik.būt-k.mot.dgs.V.`, `vksm.dlv.sngr.veik.būt-k.mot.dgs.Įn.`, `vksm.dlv.sngr.veik.būt-k.mot.vns.G.`, `vksm.dlv.sngr.veik.būt-k.mot.vns.K.`, `vksm.dlv.sngr.veik.būt-k.mot.vns.V.`, `vksm.dlv.sngr.veik.būt-k.mot.vns.Įn.`, `vksm.dlv.sngr.veik.būt-k.vyr.dgs.G.`, `vksm.dlv.sngr.veik.būt-k.vyr.dgs.K.`, `vksm.dlv.sngr.veik.būt-k.vyr.dgs.V.`, `vksm.dlv.sngr.veik.būt-k.vyr.dgs.Įn.`, `vksm.dlv.sngr.veik.būt-k.vyr.vns.G.`, `vksm.dlv.sngr.veik.būt-k.vyr.vns.K.`, `vksm.dlv.sngr.veik.būt-k.vyr.vns.V.`, `vksm.dlv.sngr.veik.es.mot.dgs.K.`, `vksm.dlv.sngr.veik.es.mot.dgs.V.`, `vksm.dlv.sngr.veik.es.mot.dgs.Įn.`, `vksm.dlv.sngr.veik.es.mot.vns.K.`, `vksm.dlv.sngr.veik.es.vyr.dgs.G.`, `vksm.dlv.sngr.veik.es.vyr.dgs.K.`, `vksm.dlv.sngr.veik.es.vyr.dgs.N.`, `vksm.dlv.sngr.veik.es.vyr.dgs.V.`, `vksm.dlv.sngr.veik.es.vyr.vns.G.`, `vksm.dlv.sngr.veik.es.vyr.vns.K.`, `vksm.dlv.sngr.veik.es.vyr.vns.N.`, `vksm.dlv.sngr.veik.es.vyr.vns.V.`, `vksm.dlv.sngr.veik.es.įvardž.mot.vns.K.`, `vksm.dlv.veik.būs.vyr.vns.V.`, `vksm.dlv.veik.būt-k.bev.`, `vksm.dlv.veik.būt-k.mot.dgs.G.`, `vksm.dlv.veik.būt-k.mot.dgs.K.`, `vksm.dlv.veik.būt-k.mot.dgs.N.`, `vksm.dlv.veik.būt-k.mot.dgs.V.`, `vksm.dlv.veik.būt-k.mot.dgs.Vt.`, `vksm.dlv.veik.būt-k.mot.vns.G.`, `vksm.dlv.veik.būt-k.mot.vns.K.`, `vksm.dlv.veik.būt-k.mot.vns.N.`, `vksm.dlv.veik.būt-k.mot.vns.V.`, `vksm.dlv.veik.būt-k.mot.vns.Įn.`, `vksm.dlv.veik.būt-k.vyr.dgs.G.`, `vksm.dlv.veik.būt-k.vyr.dgs.K.`, `vksm.dlv.veik.būt-k.vyr.dgs.N.`, `vksm.dlv.veik.būt-k.vyr.dgs.V.`, `vksm.dlv.veik.būt-k.vyr.dgs.Įn.`, `vksm.dlv.veik.būt-k.vyr.vns.G.`, `vksm.dlv.veik.būt-k.vyr.vns.K.`, `vksm.dlv.veik.būt-k.vyr.vns.N.`, `vksm.dlv.veik.būt-k.vyr.vns.V.`, `vksm.dlv.veik.būt-k.vyr.vns.Vt.`, `vksm.dlv.veik.būt-k.vyr.vns.Įn.`, `vksm.dlv.veik.būt-k.įvardž.vyr.dgs.K.`, `vksm.dlv.veik.būt-k.įvardž.vyr.dgs.V.`, `vksm.dlv.veik.būt-k.įvardž.vyr.vns.K.`, `vksm.dlv.veik.būt-k.įvardž.vyr.vns.V.`, `vksm.dlv.veik.būt-k.įvardž.vyr.vns.Įn.`, `vksm.dlv.veik.būt.k.vyr.dgs.V.`, `vksm.dlv.veik.es.mot.dgs.G.`, `vksm.dlv.veik.es.mot.dgs.K.`, `vksm.dlv.veik.es.mot.dgs.N.`, `vksm.dlv.veik.es.mot.dgs.V.`, `vksm.dlv.veik.es.mot.dgs.Vt.`, `vksm.dlv.veik.es.mot.dgs.Įn.`, `vksm.dlv.veik.es.mot.vns.G.`, `vksm.dlv.veik.es.mot.vns.K.`, `vksm.dlv.veik.es.mot.vns.N.`, `vksm.dlv.veik.es.mot.vns.V`, `vksm.dlv.veik.es.mot.vns.V.`, `vksm.dlv.veik.es.mot.vns.Vt.`, `vksm.dlv.veik.es.mot.vns.Įn.`, `vksm.dlv.veik.es.vyr.dgs.G.`, `vksm.dlv.veik.es.vyr.dgs.K.`, `vksm.dlv.veik.es.vyr.dgs.N.`, `vksm.dlv.veik.es.vyr.dgs.V.`, `vksm.dlv.veik.es.vyr.dgs.Vt.`, `vksm.dlv.veik.es.vyr.dgs.Įn.`, `vksm.dlv.veik.es.vyr.vns.G.`, `vksm.dlv.veik.es.vyr.vns.K.`, `vksm.dlv.veik.es.vyr.vns.N.`, `vksm.dlv.veik.es.vyr.vns.V.`, `vksm.dlv.veik.es.vyr.vns.Vt.`, `vksm.dlv.veik.es.vyr.vns.Įn.`, `vksm.dlv.veik.es.įvardž.mot.vns.K.`, `vksm.dlv.veik.es.įvardž.mot.vns.V.`, `vksm.dlv.veik.es.įvardž.vyr.dgs.K.`, `vksm.dlv.veik.es.įvardž.vyr.vns.K.`, `vksm.dlv.veik.es.įvardž.vyr.vns.N.`, `vksm.neig.dlv.neveik.es.mot.vns.V.`, `vksm.neveik.būt.vyr.dgs.V.`, `vksm.pad.būt-k.`, `vksm.pad.es.`, `vksm.pad.es.sngr.`, `vksm.pad.neig.būt-k.`, `vksm.pad.neig.es.`, `vksm.pad.neig.sngr.būt-k.`, `vksm.pad.neig.sngr.es.`, `vksm.pad.sngr.būt-k.`, `vksm.pad.sngr.es.`, `vksm.padlv.sngr.es.`, `vksm.pusd.mot.dgs.`, `vksm.pusd.mot.vns.`, `vksm.pusd.neig.mot.vns.`, `vksm.pusd.neig.vyr.dgs.`, `vksm.pusd.neig.vyr.vns.`, `vksm.pusd.sngr.mot.dgs.`, `vksm.pusd.sngr.mot.vns.`, `vksm.pusd.sngr.vyr.dgs.`, `vksm.pusd.sngr.vyr.vns.`, `vksm.pusd.vyr.dgs.`, `vksm.pusd.vyr.vns.`, `vksm.sngr.pad.es.`, `įv.G.`, `įv.K.`, `įv.N.`, `įv.V.`, `įv.bev.`, `įv.dgs.G.`, `įv.dgs.K.`, `įv.dgs.N.`, `įv.dgs.V.`, `įv.dgs.Vt.`, `įv.dgs.Įn.`, `įv.dvisk.V.`, `įv.mot.G.`, `įv.mot.K.`, `įv.mot.V.`, `įv.mot.dgs.G.`, `įv.mot.dgs.K.`, `įv.mot.dgs.N.`, `įv.mot.dgs.V.`, `įv.mot.dgs.Vt.`, `įv.mot.dgs.Įn.`, `įv.mot.dvisk.N.`, `įv.mot.dvisk.V.`, `įv.mot.vns.G.`, `įv.mot.vns.K.`, `įv.mot.vns.N.`, `įv.mot.vns.V.`, `įv.mot.vns.Vt.`, `įv.mot.vns.Įn.`, `įv.vns.G.`, `įv.vns.K.`, `įv.vns.N.`, `įv.vns.V.`, `įv.vns.Vt.`, `įv.vns.Įn.`, `įv.vyr.G.`, `įv.vyr.K.`, `įv.vyr.N.`, `įv.vyr.V.`, `įv.vyr.dgs.G.`, `įv.vyr.dgs.K.`, `įv.vyr.dgs.N.`, `įv.vyr.dgs.V.`, `įv.vyr.dgs.Vt.`, `įv.vyr.dgs.Įn.`, `įv.vyr.dvisk.G.`, `įv.vyr.dvisk.K.`, `įv.vyr.dvisk.V.`, `įv.vyr.vns.G.`, `įv.vyr.vns.K.`, `įv.vyr.vns.N.`, `įv.vyr.vns.V.`, `įv.vyr.vns.Vt.`, `įv.vyr.vns.Įn.`, `įv.vyr.Įn,`, `įv.Įn.`, `įv.įvardž.bev.`, `įv.įvardž.mot.vns.K.`, `įv.įvardž.mot.vns.V.` |
| **`morphologizer`** | `Definite=Ind\|Gender=Neut\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `POS=VERB\|Polarity=Pos\|VerbForm=Inf`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Ger`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=CCONJ`, `POS=PUNCT`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Abbr=Yes\|POS=X`, `AdpType=Prep\|Case=Gen\|POS=ADP`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Cnd\|POS=VERB\|Person=3\|Polarity=Pos\|VerbForm=Fin`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Degree=Pos\|POS=ADV`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Degree=Pos\|Hyph=Yes\|POS=ADV`, `Hyph=Yes\|POS=X`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `POS=SCONJ`, `Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Definite=Ind\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Definite=Ind\|POS=PRON\|PronType=Ind`, `POS=PART`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Ins\|Gender=Masc\|NumForm=Word\|NumType=Card\|POS=NUM`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Ins\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Definite=Ind\|Gender=Neut\|POS=DET\|PronType=Dem`, `Mood=Ind\|POS=AUX\|Person=3\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Definite=Ind\|Degree=Pos\|Gender=Neut\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Ger`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin`, `POS=VERB\|Polarity=Pos\|Reflex=Yes\|VerbForm=Inf`, `Degree=Cmp\|POS=ADV`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Ind\|POS=VERB\|Person=3\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Definite=Ind\|NumForm=Digit\|POS=NUM`, `Case=Gen\|Gender=Masc\|NumForm=Word\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|NumForm=Word\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Dat\|Definite=Ind\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Nom\|Gender=Masc\|NumForm=Word\|NumType=Card\|Number=Plur\|POS=NUM`, `NumForm=Word\|NumType=Card\|POS=NUM`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Plur\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Hyph=Yes\|POS=PART`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|Polarity=Pos\|VerbForm=Fin`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `AdpType=Prep\|Case=Acc\|POS=ADP`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Pos\|VerbForm=Fin`, `Case=Gen\|Definite=Def\|Gender=Fem\|NumForm=Combi\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Def\|Gender=Fem\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Definite=Ind\|NumForm=Roman\|POS=NUM`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Gender=Fem\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Mood=Nec\|Number=Sing\|POS=VERB\|Polarity=Pos\|VerbForm=Part`, `Case=Nom\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Aspect=Perf\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `Degree=Sup\|POS=ADV`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Mood=Nec\|Number=Plur\|POS=VERB\|Polarity=Neg\|VerbForm=Part`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Fem\|NumForm=Word\|NumType=Card\|Number=Sing\|POS=NUM`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Neg\|Tense=Fut\|VerbForm=Fin`, `Case=Gen\|Definite=Def\|Gender=Masc\|NumForm=Combi\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `AdpType=Prep\|Case=Ins\|POS=ADP`, `Case=Gen\|Definite=Ind\|Gender=Masc\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|NumForm=Word\|NumType=Card\|POS=NUM`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN\|Reflex=Yes`, `Case=Ins\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Definite=Ind\|Gender=Neut\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `POS=INTJ`, `Definite=Ind\|Gender=Neut\|NumForm=Word\|NumType=Ord\|POS=NUM`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|POS=PRON\|PronType=Neg`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|NumForm=Word\|NumType=Card\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Mood=Ind\|POS=AUX\|Person=3\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Definite=Ind\|Gender=Neut\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Definite=Ind\|Gender=Neut\|Hyph=Yes\|POS=PRON\|PronType=Ind`, `Definite=Ind\|Gender=Neut\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Neg\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|POS=PRON\|PronType=Int`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Aspect=Perf\|Definite=Ind\|Gender=Neut\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Hyph=Yes\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Ger`, `Definite=Ind\|Gender=Neut\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Aspect=Hab\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Hab\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Neg\|Reflex=Yes\|VerbForm=Fin`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Neg\|Reflex=Yes\|Tense=Past\|VerbForm=Fin`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Abbr=Yes\|POS=NOUN`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Neg`, `Hyph=Yes\|POS=SCONJ`, `Aspect=Perf\|Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Neg\|Tense=Fut\|VerbForm=Fin`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Emp`, `Case=Acc\|Definite=Def\|Gender=Masc\|NumForm=Combi\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Mood=Nec\|Number=Plur\|POS=VERB\|Polarity=Pos\|VerbForm=Part`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Definite=Def\|Gender=Masc\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Ind\|POS=PRON\|PronType=Int`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Pos\|VerbForm=Fin`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Gender=Masc\|POS=NOUN`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Gen\|Definite=Ind\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Ger`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Sing\|POS=DET\|PronType=Int`, `Mood=Ind\|POS=AUX\|Person=3\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin`, `Aspect=Perf\|POS=AUX\|Polarity=Pos\|Tense=Past\|VerbForm=Ger`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Definite=Ind\|Gender=Fem\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Mood=Ind\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Neg\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Definite=Ind\|Hyph=Yes\|POS=PRON\|PronType=Int`, `Mood=Cnd\|POS=AUX\|Person=3\|Polarity=Pos\|VerbForm=Fin`, `POS=AUX\|Polarity=Pos\|Tense=Pres\|VerbForm=Ger`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|NumForm=Word\|NumType=Card\|POS=NUM`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Aspect=Perf\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Fin`, `Case=Loc\|Gender=Fem\|NumForm=Word\|NumType=Card\|POS=NUM`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Hyph=Yes\|POS=ADV`, `Case=Gen\|Gender=Masc\|NumForm=Word\|NumType=Card\|POS=NUM`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Emp`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Ins\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Definite=Ind\|Gender=Neut\|POS=VERB\|Polarity=Neg\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Neg\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Ind\|Gender=Masc\|POS=PRON\|PronType=Ind`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN\|Reflex=Yes`, `Case=Nom\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Definite=Ind\|Gender=Neut\|Hyph=Yes\|POS=DET\|PronType=Tot`, `Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|VerbForm=Conv`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Ind\|POS=VERB\|Person=3\|Polarity=Neg\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|VerbForm=Fin`, `Case=Ins\|Definite=Ind\|POS=PRON\|PronType=Int`, `Case=Nom\|Definite=Def\|Gender=Fem\|NumForm=Combi\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Gen\|NumForm=Word\|NumType=Card\|POS=NUM`, `Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|VerbForm=Conv`, `Case=Acc\|Definite=Ind\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Foreign=Yes\|POS=X`, `Case=Acc\|Definite=Def\|Gender=Fem\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Acc\|Definite=Def\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Loc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `POS=PROPN`, `Aspect=Perf\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Ger`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|VerbForm=Fin`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Neg\|Tense=Fut\|VerbForm=Fin`, `Case=Gen\|Gender=Fem\|NumForm=Word\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Ger`, `Case=Nom\|Definite=Ind\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Definite=Ind\|Gender=Neut\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Def\|Gender=Fem\|NumForm=Combi\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|VerbForm=Conv`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Definite=Ind\|Hyph=Yes\|POS=NUM`, `POS=VERB\|Polarity=Neg\|Reflex=Yes\|Tense=Pres\|VerbForm=Ger`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Dat\|Definite=Ind\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin`, `Case=Ins\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Definite=Ind\|Gender=Neut\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|VerbForm=Conv`, `Case=Acc\|Definite=Ind\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Fem\|NumForm=Word\|NumType=Card\|POS=NUM`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Neg`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|VerbForm=Fin`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|VerbForm=Fin`, `Case=Gen\|Definite=Ind\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Nom\|Definite=Ind\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Gen\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Mood=Ind\|POS=VERB\|Person=3\|Polarity=Neg\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|Tense=Fut\|VerbForm=Fin`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|VerbForm=Fin`, `Case=Ins\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|VerbForm=Conv`, `Case=Acc\|Definite=Ind\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|Tense=Fut\|VerbForm=Fin`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=AUX\|Polarity=Pos\|VerbForm=Inf`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Hyph=Yes\|POS=CCONJ`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Mood=Nec\|Number=Sing\|POS=VERB\|Polarity=Pos\|VerbForm=Part`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Emp`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=X`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Ger`, `Aspect=Perf\|Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Gender=Fem\|POS=PRON\|PronType=Ind`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Definite=Ind\|Gender=Neut\|POS=VERB\|Polarity=Neg\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Neg\|Reflex=Yes\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Definite=Ind\|POS=PRON\|PronType=Int`, `Case=Ins\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Dual\|POS=PRON\|PronType=Ind`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Neg`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Emp`, `Aspect=Perf\|Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Definite=Ind\|Degree=Pos\|POS=ADJ`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Definite=Ind\|Gender=Neut\|Mood=Nec\|POS=VERB\|Polarity=Pos\|VerbForm=Part`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Acc\|Gender=Fem\|NumForm=Word\|NumType=Card\|POS=NUM`, `Aspect=Perf\|Case=Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Loc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Emp`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Emp`, `Definite=Def\|Gender=Neut\|POS=DET\|PronType=Dem`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Dual\|POS=PRON\|PronType=Ind`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Ind\|Hyph=Yes\|POS=PRON\|PronType=Int`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Foreign=Yes\|Hyph=Yes\|POS=X`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Emp`, `Case=Ins\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Definite=Ind\|Degree=Sup\|Gender=Neut\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `POS=ADV`, `Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|VerbForm=Conv`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Neg\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Gen\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `POS=SYM`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Acc\|Definite=Ind\|Gender=Masc\|NumForm=Word\|NumType=Mult\|POS=NUM`, `Case=Nom\|Gender=Fem\|NumForm=Word\|NumType=Card\|Number=Plur\|POS=NUM`, `Aspect=Perf\|Case=Loc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Sing\|POS=PRON\|PronType=Ind`, `Definite=Ind\|Gender=Neut\|POS=DET\|PronType=Tot`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Neg\|VerbForm=Fin`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Emp`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Loc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=3\|Polarity=Pos\|VerbForm=Fin`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Definite=Ind\|NumForm=Combi\|POS=NUM`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Neg`, `Case=Acc\|Definite=Ind\|Gender=Masc\|POS=PRON\|PronType=Ind`, `Case=Dat\|Gender=Fem\|NumForm=Word\|NumType=Card\|POS=NUM`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Ind\|Gender=Masc\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Ind\|POS=PRON\|PronType=Neg`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Gen\|Definite=Ind\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Neg\|Reflex=Yes\|Tense=Fut\|VerbForm=Fin`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Definite=Ind\|Gender=Masc\|POS=PRON\|PronType=Int`, `Aspect=Perf\|Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Loc\|Definite=Ind\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin`, `Case=Acc\|Definite=Ind\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Loc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Case=Loc\|Definite=Ind\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Neg\|VerbForm=Fin`, `Case=Dat\|Definite=Ind\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|VerbForm=Conv`, `Case=Gen\|Definite=Ind\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Ins\|Gender=Fem\|NumForm=Word\|NumType=Card\|POS=NUM`, `Case=Acc\|Definite=Ind\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Perf\|Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Ind\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Cnd\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|VerbForm=Fin`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Ins\|Definite=Ind\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Ins\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Hab\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Neg\|Tense=Past\|VerbForm=Fin`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|VerbForm=Conv`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|VerbForm=Fin`, `Aspect=Hab\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Aspect=Perf\|Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Ill\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Com\|Number=Sing\|POS=NOUN`, `Case=Loc\|Definite=Ind\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|Tense=Past\|VerbForm=Fin`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Ins\|Definite=Def\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Ind\|Gender=Fem\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Loc\|Definite=Ind\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Loc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Ind\|Gender=Fem\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Definite=Ind\|POS=NUM`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Emp`, `Case=Gen\|Definite=Def\|Gender=Fem\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Hyph=Yes\|NumForm=Word\|NumType=Card\|POS=NUM`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Ind\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `POS=VERB\|Polarity=Neg\|VerbForm=Inf`, `Aspect=Perf\|Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|POS=VERB\|Polarity=Neg\|Reflex=Yes\|Tense=Past\|VerbForm=Ger`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Neg`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|Reflex=Yes\|VerbForm=Fin`, `Case=Gen\|Definite=Ind\|POS=PRON\|PronType=Ind`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Case=Dat\|Definite=Ind\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Neg\|Reflex=Yes\|VerbForm=Fin`, `Case=Ins\|Definite=Ind\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Neg\|VerbForm=Fin`, `Case=Nom\|Definite=Ind\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|Reflex=Yes\|Tense=Fut\|VerbForm=Fin`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN\|Reflex=Yes`, `Aspect=Perf\|Case=Ins\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Cnd\|POS=VERB\|Person=3\|Polarity=Neg\|Reflex=Yes\|VerbForm=Fin`, `POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres`, `Definite=Ind\|Gender=Masc\|POS=PRON\|PronType=Ind`, `Case=Acc\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Loc\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Loc\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Loc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Mood=Cnd\|POS=VERB\|Person=3\|Polarity=Neg\|VerbForm=Fin`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Sing\|POS=PRON\|PronType=Ind`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|VerbForm=Fin`, `Aspect=Perf\|Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|VerbForm=Conv`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Neg\|VerbForm=Fin`, `Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Loc\|Definite=Def\|Gender=Fem\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Def\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Emp`, `POS=VERB\|Polarity=Neg\|Reflex=Yes\|VerbForm=Inf`, `Case=Dat\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Emp`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Fut\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Emp`, `Case=Ins\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Definite=Ind\|Gender=Neut\|POS=AUX\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|Reflex=Yes\|VerbForm=Fin`, `Case=Dat\|Definite=Ind\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Reflex=Yes\|VerbForm=Fin`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Gender=Fem\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Neg\|Tense=Fut\|VerbForm=Fin`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|NumForm=Word\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Ill\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|VerbForm=Fin`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=2\|Polarity=Pos\|VerbForm=Fin`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Abbr=Yes\|Hyph=Yes\|POS=X`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=1\|Polarity=Pos\|VerbForm=Fin`, `Aspect=Hab\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Neg`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin`, `POS=PUNCT\|PunctType=Peri`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Loc\|Definite=Def\|Gender=Masc\|NumForm=Combi\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Dat\|Definite=Def\|Gender=Fem\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Dat\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Neg`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Emp`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN\|Reflex=Yes`, `Gender=Fem\|POS=PROPN`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=NOUN\|Reflex=Yes`, `Case=Gen\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Ins\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Loc\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN\|Reflex=Yes`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Neg`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|NumForm=Word\|NumType=Card\|POS=NUM`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Neg\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin`, `Case=Ins\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `POS=NOUN`, `Gender=Masc\|Number=Sing\|POS=NOUN`, `Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Loc\|Definite=Ind\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Loc\|Gender=Masc\|NumForm=Word\|NumType=Card\|POS=NUM`, `Case=Dat\|Gender=Masc\|NumForm=Word\|NumType=Card\|POS=NUM`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|Reflex=Yes\|VerbForm=Fin`, `Definite=Ind\|Gender=Neut\|Mood=Nec\|POS=VERB\|Polarity=Neg\|VerbForm=Part`, `Case=Dat\|Definite=Ind\|Number=Sing\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Sing\|POS=PRON\|PronType=Ind`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin`, `Case=Ins\|Gender=Fem\|NumForm=Word\|NumType=Card\|Number=Sing\|POS=NUM`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Ind\|Gender=Fem\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|VerbForm=Conv`, `Case=Acc\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Definite=Ind\|Gender=Neut\|Hyph=Yes\|POS=PRON\|PronType=Int`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Neg\|Reflex=Yes\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|Reflex=Yes\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Neg\|Tense=Past\|VerbForm=Fin`, `Case=Loc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Sing\|POS=PRON\|PronType=Ind`, `Aspect=Perf\|Definite=Ind\|Gender=Neut\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Definite=Ind\|Hyph=Yes\|POS=PRON\|PronType=Int`, `Case=Nom\|Definite=Ind\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Ins\|Definite=Ind\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Mood=Nec\|Number=Plur\|POS=VERB\|Polarity=Pos\|VerbForm=Part`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=X`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=NOUN\|Reflex=Yes`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Definite=Ind\|POS=PRON\|PronType=Neg`, `Aspect=Hab\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Definite=Ind\|Hyph=Yes\|POS=PRON\|PronType=Int`, `Case=Loc\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Sing\|POS=DET\|PronType=Int`, `Aspect=Hab\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Neg\|Tense=Past\|VerbForm=Fin`, `Aspect=Hab\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Fin`, `Aspect=Hab\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|Tense=Past\|VerbForm=Fin`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=AUX\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Neg\|VerbForm=Fin`, `Hyph=Yes\|POS=INTJ`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Gender=Fem\|NumForm=Word\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Fut\|VerbForm=Part\|Voice=Pass`, `Aspect=Hab\|Mood=Ind\|POS=AUX\|Person=3\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Definite=Ind\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Com\|Number=Sing\|POS=NOUN`, `Aspect=Hab\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Fin`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Aspect=Perf\|Definite=Ind\|Gender=Neut\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Com\|Number=Sing\|POS=NOUN`, `Case=Acc\|Definite=Ind\|NumForm=Word\|NumType=Sets\|POS=NUM`, `Case=Gen\|Definite=Ind\|Gender=Masc\|NumForm=Word\|NumType=Mult\|POS=NUM`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|Reflex=Yes\|Tense=Past\|VerbForm=Fin`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Polarity=Pos\|Tense=Past\|VerbForm=Fin`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Neg\|Reflex=Yes\|Tense=Fut\|VerbForm=Fin`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Definite=Ind\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Neg\|Reflex=Yes\|Tense=Past\|VerbForm=Fin`, `Case=Ins\|Definite=Ind\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Neg\|VerbForm=Fin`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Sing\|POS=DET\|PronType=Dem`, `Aspect=Hab\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|Tense=Fut\|VerbForm=Fin`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Fut\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Dual\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Gender=Com\|Number=Plur\|POS=NOUN`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=3\|Polarity=Pos\|VerbForm=Fin`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Mood=Nec\|Number=Sing\|POS=VERB\|Polarity=Neg\|VerbForm=Part`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Dual\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Dual\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|Reflex=Yes\|Tense=Fut\|VerbForm=Fin`, `Case=Nom\|Definite=Ind\|Number=Dual\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Perf\|Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN\|Reflex=Yes`, `Case=Loc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Mood=Nec\|Number=Sing\|POS=VERB\|Polarity=Neg\|VerbForm=Part`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Definite=Ind\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ins\|Definite=Ind\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Plur\|POS=NUM`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|VerbForm=Fin`, `Case=Nom\|Definite=Ind\|Hyph=Yes\|POS=PRON\|PronType=Ind`, `Case=Ins\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Ins\|Definite=Ind\|POS=PRON\|PronType=Ind`, `Aspect=Perf\|Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|VerbForm=Fin`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|NumType=Card\|POS=NUM`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Definite=Ind\|Hyph=Yes\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Def\|Gender=Fem\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Loc\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Gender=Fem\|Number=Sing\|POS=AUX\|Polarity=Pos\|VerbForm=Conv`, `Case=Loc\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Ins\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Fem\|POS=PRON\|PronType=Ind`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Hyph=Yes\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Sing\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Hyph=Yes\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Ind\|Gender=Fem\|NumForm=Word\|Number=Sing\|POS=NUM`, `Case=Loc\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Fem\|NumForm=Word\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Def\|Gender=Masc\|NumForm=Word\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|VerbForm=Conv`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|Reflex=Yes\|VerbForm=Fin`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Loc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Ins\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Ins\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Gender=Fem\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|Voice=Pass`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Pass` |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `advmod:emph`, `amod`, `appos`, `case`, `cc`, `ccomp`, `conj`, `cop`, `csubj`, `dep`, `det`, `flat`, `flat:foreign`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `nummod:gov`, `obj`, `obl`, `obl:arg`, `orphan`, `parataxis`, `punct`, `xcomp` |
| **`experimental_edit_tree_lemmatizer`** | `2`, `3`, `5`, `7`, `9`, `12`, `16`, `18`, `19`, `21`, `24`, `26`, `30`, `32`, `34`, `37`, `39`, `41`, `43`, `44`, `46`, `48`, `50`, `52`, `55`, `59`, `62`, `64`, `66`, `68`, `70`, `72`, `74`, `75`, `77`, `79`, `81`, `84`, `86`, `88`, `90`, `92`, `94`, `96`, `98`, `101`, `103`, `105`, `107`, `109`, `110`, `111`, `113`, `115`, `117`, `119`, `121`, `123`, `125`, `127`, `129`, `131`, `133`, `135`, `137`, `139`, `142`, `146`, `148`, `151`, `153`, `155`, `158`, `162`, `165`, `167`, `168`, `170`, `173`, `175`, `177`, `180`, `182`, `184`, `185`, `187`, `189`, `190`, `194`, `195`, `196`, `197`, `200`, `202`, `204`, `205`, `206`, `207`, `208`, `209`, `211`, `213`, `216`, `217`, `219`, `220`, `222`, `224`, `225`, `227`, `231`, `234`, `238`, `242`, `246`, `249`, `251`, `252`, `255`, `258`, `261`, `263`, `265`, `267`, `269`, `272`, `274`, `276`, `278`, `281`, `284`, `285`, `287`, `289`, `292`, `294`, `295`, `297`, `299`, `301`, `303`, `306`, `308`, `310`, `313`, `314`, `317`, `319`, `323`, `325`, `328`, `331`, `333`, `336`, `339`, `341`, `344`, `346`, `350`, `353`, `356`, `359`, `360`, `363`, `366`, `368`, `371`, `374`, `376`, `378`, `380`, `382`, `384`, `385`, `387`, `389`, `390`, `391`, `393`, `395`, `397`, `402`, `403`, `404`, `406`, `408`, `409`, `413`, `415`, `417`, `419`, `420`, `423`, `424`, `426`, `429`, `432`, `434`, `436`, `439`, `442`, `445`, `447`, `448`, `450`, `452`, `455`, `456`, `458`, `460`, `463`, `465`, `468`, `472`, `475`, `477`, `480`, `482`, `483`, `485`, `487`, `488`, `489`, `491`, `492`, `494`, `496`, `497`, `500`, `501`, `502`, `504`, `505`, `506`, `508`, `509`, `513`, `515`, `518`, `519`, `521`, `522`, `523`, `525`, `527`, `529`, `533`, `535`, `538`, `541`, `542`, `545`, `547`, `550`, `552`, `554`, `555`, `557`, `560`, `561`, `563`, `566`, `569`, `572`, `574`, `577`, `580`, `582`, `584`, `589`, `594`, `596`, `599`, `600`, `602`, `604`, `607`, `609`, `611`, `613`, `615`, `616`, `619`, `623`, `625`, `628`, `629`, `631`, `633`, `635`, `638`, `640`, `642`, `645`, `647`, `649`, `653`, `655`, `658`, `660`, `661`, `663`, `665`, `666`, `668`, `670`, `671`, `672`, `673`, `675`, `678`, `679`, `681`, `683`, `685`, `688`, `691`, `693`, `697`, `699`, `700`, `702`, `703`, `704`, `705`, `706`, `707`, `709`, `714`, `715`, `717`, `719`, `721`, `722`, `725`, `726`, `728`, `730`, `732`, `735`, `738`, `739`, `741`, `742`, `743`, `746`, `748`, `750`, `754`, `755`, `757`, `759`, `761`, `762`, `765`, `768`, `770`, `773`, `774`, `777`, `781`, `784`, `785`, `788`, `791`, `793`, `795`, `796`, `799`, `801`, `803`, `805`, `807`, `808`, `811`, `813`, `814`, `816`, `817`, `818`, `822`, `825`, `827`, `829`, `831`, `835`, `836`, `838`, `839`, `841`, `843`, `844`, `846`, `849`, `850`, `851`, `854`, `855`, `856`, `857`, `858`, `859`, `860`, `861`, `367`, `862`, `865`, `867`, `868`, `869`, `870`, `873`, `874`, `875`, `878`, `879`, `882`, `886`, `888`, `890`, `893`, `895`, `898`, `900`, `901`, `902`, `903`, `905`, `907`, `908`, `910`, `912`, `914`, `915`, `917`, `919`, `921`, `922`, `924`, `928`, `929`, `930`, `931`, `932`, `935`, `936`, `938`, `940`, `942`, `944`, `945`, `947`, `951`, `953`, `956`, `958`, `959`, `961`, `963`, `965`, `967`, `969`, `970`, `972`, `975`, `976`, `977`, `979`, `980`, `981`, `983`, `987`, `990`, `992`, `993`, `995`, `996`, `998`, `1000`, `1002`, `1004`, `1006`, `1008`, `1009`, `1012`, `1014`, `1015`, `1016`, `1018`, `1019`, `1022`, `1024`, `1026`, `1028`, `1029`, `1033`, `1036`, `1038`, `1040`, `1042`, `1047`, `1049`, `1051`, `1053`, `1055`, `1057`, `1060`, `1063`, `1065`, `1067`, `1069`, `1070`, `1071`, `1073`, `1075`, `1078`, `1080`, `1082`, `1084`, `1086`, `1089`, `1092`, `1093`, `1094`, `1095`, `1096`, `1098`, `1100`, `1102`, `1104`, `1105`, `1107`, `1108`, `1110`, `1113`, `1115`, `1118`, `1121`, `1123`, `1124`, `1126`, `1127`, `1129`, `1131`, `1134`, `1137`, `1141`, `1142`, `1144`, `1146`, `1148`, `1150`, `1151`, `1153`, `1154`, `1156`, `1158`, `1159`, `1162`, `1164`, `1166`, `1169`, `1173`, `1175`, `1178`, `1180`, `1183`, `1184`, `1186`, `1187`, `1189`, `1191`, `1194`, `1196`, `1197`, `1198`, `1200`, `1201`, `1203`, `1205`, `1207`, `1210`, `1212`, `1215`, `1216`, `1218`, `1220`, `1223`, `1224`, `1227`, `1229`, `1232`, `1234`, `1235`, `1238`, `1241`, `1242`, `1243`, `1246`, `1247`, `1249`, `1251`, `1252`, `1253`, `1256`, `1259`, `1262`, `1264`, `1267`, `1269`, `1271`, `1272`, `1275`, `1277`, `1278`, `1280`, `1282`, `1284`, `1285`, `1288`, `1291`, `1293`, `1296`, `1298`, `1300`, `1301`, `1302`, `1303`, `1305`, `1307`, `1309`, `1312`, `1315`, `1316`, `1319`, `1320`, `1321`, `1322`, `1323`, `1324`, `1327`, `1330`, `1333`, `1334`, `1335`, `1336`, `1339`, `1341`, `1344`, `1345`, `1347`, `1349`, `1350`, `1351`, `1352`, `1354`, `1357`, `1358`, `1359`, `1360`, `1362`, `1365`, `1368`, `1369`, `1370`, `1372`, `1374`, `1376`, `1377`, `1379`, `1382`, `1385`, `1386`, `1390`, `1393`, `1394`, `1396`, `1398`, `1400`, `1403`, `1405`, `1408`, `1410`, `1413`, `1415`, `1418`, `1420`, `1421`, `1423`, `1424`, `1426`, `1428`, `1429`, `1432`, `1434`, `1436`, `1438`, `1441`, `1443`, `1444`, `1445`, `1447`, `1449`, `1450`, `1451`, `1453`, `1455`, `1457`, `1458`, `1460`, `1461`, `1463`, `1465`, `1467`, `1470`, `1472`, `1474`, `1476`, `1477`, `1479`, `1481`, `1482`, `1483`, `1484`, `1486`, `1489`, `1492`, `1494`, `1495`, `1497`, `1498`, `1501`, `1503`, `1505`, `1506`, `1507`, `1508`, `1510`, `1511`, `1514`, `1515`, `1518`, `1521`, `1524`, `1526`, `1529`, `1532`, `1533`, `1534`, `1537`, `1539`, `1540`, `1542`, `1544`, `1545`, `1547`, `1549`, `1550`, `1551`, `1552`, `1553`, `1555`, `1557`, `1559`, `1562`, `1565`, `1568`, `1570`, `1571`, `1574`, `1576`, `1579`, `1580`, `1582`, `1583`, `1585`, `1586`, `1588`, `1590`, `1591`, `1592`, `1594`, `1595`, `1597`, `1598`, `1600`, `1602`, `1605`, `1607`, `1608`, `1609`, `1611`, `1613`, `1615`, `1616`, `1617`, `1620`, `1621`, `1623`, `1624`, `1625`, `1628`, `1630`, `1632`, `1634`, `1635`, `1636`, `1638`, `1639`, `1641`, `1643`, `1644`, `1647`, `1649`, `1650`, `1651`, `1652`, `1654`, `1656`, `1657`, `1658`, `1659`, `1660`, `1661`, `1663`, `1664`, `1665`, `1666`, `1669`, `1672`, `1673`, `1674`, `1675`, `1678`, `1679`, `1682`, `1685`, `1686`, `1689`, `1690`, `1691`, `1693`, `1694`, `1695`, `1697`, `1699`, `1701`, `1702`, `1704`, `1706`, `1707`, `1709`, `1711`, `1713`, `1715`, `1716`, `1720`, `1722`, `1724`, `1726`, `1727`, `1728`, `1729`, `1732`, `1733`, `1736`, `1737`, `1740`, `1741`, `1742`, `1744`, `1747`, `1749`, `1751`, `1755`, `1756`, `1757`, `1759`, `1761`, `1763`, `1764`, `1766`, `1769`, `1771`, `1772`, `1774`, `1776`, `1777`, `1780`, `1781`, `1782`, `1784`, `1785`, `1787`, `1789`, `1790`, `1791`, `1794`, `1796`, `1798`, `1801`, `1802`, `1805`, `1806`, `1807`, `1808`, `1811`, `1812`, `1815`, `1818`, `1821`, `1823`, `1825`, `1828`, `1830`, `1832`, `1835`, `1836`, `1839`, `1841`, `1844`, `1847`, `1850`, `1852`, `1853`, `1854`, `1855`, `1856`, `1857`, `1860`, `1862`, `1863`, `1864`, `1866`, `1867`, `1869`, `1870`, `1871`, `1874`, `1876`, `1878`, `1879`, `1882`, `1885`, `1887`, `1890`, `1893`, `1896`, `1898`, `1900`, `1902`, `1903`, `1904`, `1905`, `1906`, `1909`, `1912`, `1913`, `1917`, `1919`, `1921`, `1924`, `1925`, `1926`, `1928`, `1929`, `1931`, `1933`, `1935`, `1936`, `1937`, `1939`, `1941`, `1944`, `1946`, `1947`, `1950`, `1951`, `1954`, `1955`, `1957`, `1958`, `1960`, `1961`, `1964`, `1966`, `1968`, `1970`, `1971`, `1972`, `1975`, `1977`, `1980`, `1982`, `1983`, `1984`, `1985`, `1986`, `1987`, `1988`, `1991`, `1993`, `1995`, `1996`, `1997`, `1999`, `2000`, `2001`, `2003`, `2005`, `2008`, `2011`, `2012`, `2014`, `2017`, `2018`, `2019`, `2020`, `2022`, `2024`, `2025`, `2027`, `2029`, `2031`, `2032`, `2035`, `2036`, `2039`, `2040`, `2041`, `2044`, `2045`, `40`, `2046`, `2048`, `2049`, `2052`, `2055`, `2056`, `2058`, `2059`, `2061`, `2063`, `2066`, `2068`, `2069`, `2071`, `2072`, `2074`, `2076`, `2077`, `2078`, `2079`, `2080`, `2082`, `2084`, `2086`, `2087`, `2088`, `2090`, `2091`, `2094`, `2097`, `2098`, `2100`, `2102`, `2103`, `2104`, `2106`, `2107`, `2108`, `2111`, `2113`, `2114`, `2116`, `2118`, `2121`, `2124`, `2126`, `2128`, `2130`, `2134`, `2137`, `2139`, `2141`, `2143`, `2145`, `2146`, `2148`, `2150`, `2152`, `2155`, `2157`, `2160`, `2161`, `2163`, `2164`, `2165`, `2166`, `2167`, `2169`, `2170`, `2171`, `2174`, `2177`, `2178`, `2179`, `2180`, `2182`, `2185`, `2186`, `2187`, `2189`, `2190`, `2191`, `2192`, `2194`, `2195`, `2196`, `2199`, `2200`, `2202`, `2204`, `2206`, `2207`, `2208`, `2211`, `2213`, `2214`, `2215`, `2216`, `2217`, `2219`, `2220`, `2221`, `2222`, `2223`, `2225`, `2226`, `2227`, `2228`, `2230`, `2232`, `2234`, `2237`, `2239`, `2240`, `2241`, `2242`, `2243`, `2244`, `2245`, `2246`, `2247`, `2249`, `2251`, `2254`, `2256`, `2257`, `2258`, `2260`, `2261`, `2263`, `2266`, `2268`, `2269`, `2270`, `2271`, `2272`, `2273`, `2274`, `2275`, `2276`, `2279`, `2281`, `2283`, `2284`, `2285`, `2286`, `2287`, `2289`, `2291`, `2294`, `2295`, `2297`, `2298`, `2301`, `2302`, `2303`, `2304`, `2305`, `2306`, `2308`, `2310`, `2311`, `2312`, `2313`, `2314`, `2315`, `2316`, `2317`, `2318`, `2319`, `2322`, `2324`, `2326`, `2327`, `2330`, `2331`, `2332`, `2334`, `2335`, `2336`, `2337`, `2338`, `2339`, `2340`, `2341`, `2342`, `2343`, `2344`, `2345`, `2346`, `2347`, `2348`, `2349`, `2351`, `2353`, `2354`, `2356`, `2357`, `2358`, `2359`, `2360`, `2361`, `2362`, `2363`, `2364`, `2365`, `2366`, `2367`, `2368`, `2369`, `2370`, `2371`, `2372`, `2375`, `2376`, `2377`, `2378`, `2379`, `2380`, `2381`, `2382`, `2383`, `2384`, `2385`, `2386`, `2387`, `2388`, `2389`, `2390`, `2391`, `2392`, `2393`, `2394`, `2395`, `2396`, `2398`, `2399`, `2401`, `2403`, `2404`, `2405`, `2406`, `2407`, `2410`, `2411`, `2413`, `2414`, `2415`, `2416`, `2417`, `2418`, `2419`, `2420`, `2421`, `2422`, `2423`, `2424`, `2425`, `2426`, `2429`, `2430`, `2432`, `2433`, `2435`, `2437`, `2440`, `2443`, `2444`, `2445`, `2446`, `2447`, `2448`, `2450`, `2451`, `2452`, `2453`, `2454`, `2455`, `2456`, `2457`, `2458`, `2459`, `2460`, `2461`, `2462`, `2463`, `2466`, `2468`, `2469`, `2470`, `2471`, `2472`, `2473`, `2474`, `2475`, `2476`, `2477`, `2478`, `2480`, `2482`, `2483`, `2484`, `2485`, `2486`, `2487`, `2488`, `2489`, `2491`, `2493`, `2495`, `2496`, `2498`, `2500`, `2501`, `2504`, `2505`, `2506`, `2508`, `2509`, `2511`, `2513`, `2515`, `2516`, `2518`, `2519`, `2520`, `2522`, `2525`, `2526`, `2528`, `2530`, `2532`, `2533`, `2534`, `2535`, `2537`, `2539`, `2540`, `2541`, `2542`, `2543`, `2544`, `2546`, `2548`, `2550`, `2552`, `2553`, `2555`, `2557`, `2558`, `2560`, `2561`, `2564`, `2565`, `2566`, `2567`, `2568`, `2570`, `2572`, `2574`, `2578`, `2579`, `2580`, `2581`, `2583`, `2584`, `2585`, `2586`, `2588`, `2589`, `2590`, `2591`, `2594`, `2596`, `2597`, `2599`, `2600`, `2601`, `2602`, `2603`, `2606`, `2609`, `2612`, `2613`, `2617`, `2618`, `2621`, `2622`, `2625`, `2629`, `2631`, `2633`, `2634`, `2636`, `2637`, `2638`, `2639`, `2640`, `2641`, `2643`, `2645`, `2647`, `2649`, `2650`, `2651`, `2653`, `2654`, `2657`, `2658`, `2659`, `2660`, `2662`, `2663`, `2665`, `2669`, `2671`, `2673`, `2676`, `2677`, `2678`, `2680`, `2682`, `2684`, `2687`, `2690`, `2692`, `2694`, `2696`, `2697`, `2698`, `2699`, `2700`, `2701`, `2702`, `2703`, `2704`, `2705`, `2706`, `2708`, `2710`, `2711`, `2712`, `2713`, `2716`, `2718`, `2721`, `2722`, `2725`, `2726`, `2727`, `2730`, `2731`, `2732`, `2733`, `2737`, `2740`, `2741`, `2742`, `2744`, `2747`, `2750`, `2752`, `2754`, `2756`, `2757`, `2760`, `2762`, `2765`, `2768`, `2769`, `2772`, `2775`, `2778`, `2779`, `2780`, `2782`, `2784`, `2786`, `2787`, `2789`, `2790`, `2791`, `2794`, `2795`, `2797`, `2799`, `2800`, `2801`, `2803`, `2804`, `2805`, `2808`, `2810`, `2811`, `2812`, `2815`, `2817`, `2818`, `2819`, `2821`, `2822`, `2823`, `2824`, `2826`, `2828`, `2829`, `2830`, `2833`, `2834`, `2836`, `2838`, `2839`, `2842`, `2845`, `2847`, `2848`, `2849`, `2851`, `2854`, `2856`, `2859`, `2861`, `2863`, `2864`, `2865`, `2866`, `2867`, `2870`, `2873`, `2874`, `2876`, `2880`, `2882`, `2884`, `2887`, `2889`, `2890`, `2893`, `2895`, `2897`, `2899`, `2900`, `2901`, `2904`, `2905`, `2907`, `2909`, `2911`, `2912`, `2914`, `2916`, `2917`, `2918`, `2919`, `2922`, `2925`, `2926`, `2855`, `2928`, `2930`, `2932`, `2933`, `2936`, `2937`, `2939`, `2940`, `2941`, `2942`, `2943`, `2945`, `2946`, `2948`, `2952`, `2954`, `2957`, `2958`, `2961`, `2962`, `2963`, `2965`, `2967`, `2969`, `2971`, `2974`, `2976`, `2979`, `2980`, `2981`, `2982`, `2984`, `2985`, `2987`, `2989`, `2991`, `2993`, `2995`, `2997`, `2998`, `2999`, `3000`, `3001`, `3002`, `3004`, `3005`, `3007`, `3008`, `3009`, `3010`, `3011`, `3012`, `3013`, `3015`, `3017`, `3019`, `3021`, `3022`, `3023`, `3024`, `3025`, `3027`, `3028`, `3030`, `3031`, `3033`, `3036`, `3039`, `3040`, `3042`, `3045`, `3047`, `3049`, `3050`, `3053`, `3054`, `3055`, `3056`, `3057`, `3058`, `3059`, `3061`, `3062`, `3063`, `3064`, `3066`, `3067`, `3068`, `3069`, `3071`, `3073`, `3074`, `3077`, `3078`, `3080`, `3081`, `3083`, `3084`, `3085`, `3086`, `3087`, `3088`, `3089`, `3090`, `3091`, `3093`, `3095`, `3096`, `3098`, `3100`, `3101`, `3102`, `3103`, `3104`, `3107`, `3109`, `3113`, `3114`, `3115`, `3116`, `3117`, `3119`, `3120`, `3123`, `3124`, `3125`, `3128`, `3130`, `3133`, `3134`, `3136`, `3137`, `3139`, `3140`, `3141`, `3142`, `3143`, `3145`, `3147`, `3148`, `3150`, `3151`, `3153`, `3154`, `3157`, `3158`, `3159`, `3161`, `3163`, `3164`, `3165`, `3166`, `3167`, `3169`, `3170`, `3173`, `3174`, `3177`, `3178`, `3179`, `3182`, `3185`, `3187`, `3190`, `3191`, `3192`, `3193`, `3194`, `3195`, `3196`, `3197`, `3198`, `3199`, `3200`, `3201`, `3203`, `3205`, `3206`, `3209`, `3212`, `3213`, `3215`, `3216`, `3217`, `3218`, `3219`, `3220`, `3222`, `3225`, `3226`, `3229`, `3232`, `3234`, `3236`, `3237`, `3240`, `3241`, `3242`, `3243`, `3244`, `3245`, `3246`, `3247`, `3248`, `3249`, `3250`, `3252`, `3255`, `3257`, `3258`, `3259`, `3260`, `3261`, `3262`, `3263`, `3264`, `3266`, `3267`, `3268`, `3269`, `3272`, `3273`, `3276`, `3279`, `3282`, `3283`, `3285`, `3286`, `3287`, `3289`, `3292`, `3294`, `3297`, `3299`, `3301`, `3303`, `3305`, `3307`, `3309`, `3310`, `3311`, `3312`, `3313`, `3314`, `3315`, `3317`, `3318`, `3319`, `3322`, `3324`, `3325`, `3328`, `3330`, `3331`, `3333`, `3334`, `3337`, `3341`, `3342`, `3344`, `3345`, `3347`, `3349`, `3350`, `3352`, `3354`, `3355`, `3356`, `3357`, `3358`, `3359`, `3360`, `3361`, `3362`, `3364`, `3365`, `3366`, `3367`, `3368`, `3370`, `3373`, `3374`, `3375`, `3376`, `3377`, `3378`, `3379`, `3380`, `3381`, `3382`, `3385`, `3386`, `3388`, `3390`, `3391`, `3392`, `3394`, `3395`, `3396`, `3397`, `3398`, `3399`, `3400`, `3401`, `3402`, `3404`, `3406`, `3407`, `3408`, `3409`, `3410`, `3411`, `3412`, `3413`, `3414`, `3415`, `3416`, `3418`, `3420`, `3423`, `3426`, `3429`, `3430`, `3431`, `3432`, `3433`, `3434`, `3435`, `3436`, `3437`, `3440`, `3441`, `3442`, `3445`, `3446`, `3448`, `3449`, `3451`, `3453`, `3455`, `3457`, `3458`, `3459`, `3460`, `3461`, `3462`, `3463`, `3464`, `3465`, `3466`, `3468`, `3469`, `3473`, `3474`, `3475`, `3477`, `3478`, `3479`, `3481`, `3482`, `3483`, `3485`, `3488`, `3489`, `3490`, `3491`, `3492`, `3493`, `3495`, `3496`, `3497`, `3498`, `3499`, `3500`, `3501`, `3502`, `3503`, `3504`, `3505`, `3506`, `3509`, `3510`, `3511`, `3512`, `3514`, `3516`, `3517`, `3518`, `3519`, `3520`, `3521`, `3522`, `3523`, `3524`, `3525`, `3526`, `3527`, `3528`, `3529`, `3530`, `3531`, `3532`, `3535`, `3536`, `3537`, `3538`, `3539`, `3540`, `3542`, `3543`, `3546`, `3547`, `3548`, `3549`, `3550`, `3551`, `3552`, `3553` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_F` | 99.96 |
| `TOKEN_P` | 99.94 |
| `TOKEN_R` | 99.98 |
| `TOKEN_ACC` | 100.00 |
| `SENTS_F` | 95.65 |
| `SENTS_P` | 96.84 |
| `SENTS_R` | 94.49 |
| `TAG_ACC` | 95.43 |
| `POS_ACC` | 98.07 |
| `MORPH_ACC` | 95.50 |
| `DEP_UAS` | 88.11 |
| `DEP_LAS` | 83.62 |
| `LEMMA_ACC` | 90.46 |
|
explosion/lv_udv25_latvianlvtb_trf
|
explosion
| 2021-12-10T18:27:19Z | 1 | 2 |
spacy
|
[
"spacy",
"token-classification",
"lv",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- lv
license: cc-by-sa-4.0
model-index:
- name: lv_udv25_latvianlvtb_trf
results:
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9158590393
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9793637642
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9568769509
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.953872229
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9130165092
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8774541377
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9776570048
---
UD v2.5 benchmarking pipeline for UD_Latvian-LVTB
| Feature | Description |
| --- | --- |
| **Name** | `lv_udv25_latvianlvtb_trf` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.2.1,<3.3.0` |
| **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (6012 labels for 6 components)</summary>
| Component | Labels |
| --- | --- |
| **`experimental_char_ner_tokenizer`** | `TOKEN` |
| **`senter`** | `I`, `S` |
| **`tagger`** | `X`, `affpanc`, `affpanp`, `affpayc`, `affpayp`, `affpays`, `affpdnc`, `affpdnp`, `affpdyc`, `affpdyp`, `affpdys`, `affpgnp`, `affpgyc`, `affpgyp`, `affplnc`, `affplnp`, `affplyc`, `affplyp`, `affpnnc`, `affpnnp`, `affpnyc`, `affpnyp`, `affpnys`, `affsanc`, `affsanp`, `affsayc`, `affsayp`, `affsays`, `affsdnc`, `affsdnp`, `affsdyc`, `affsdyp`, `affsgnc`, `affsgnp`, `affsgyc`, `affsgyp`, `affsgys`, `affslnc`, `affslnp`, `affslyc`, `affslyp`, `affslys`, `affsnnc`, `affsnnp`, `affsnyc`, `affsnyp`, `affsnys`, `affsvyp`, `afmpanc`, `afmpanp`, `afmpayc`, `afmpayp`, `afmpays`, `afmpdnc`, `afmpdnp`, `afmpdyc`, `afmpdyp`, `afmpdys`, `afmpgnc`, `afmpgnp`, `afmpgyc`, `afmpgyp`, `afmpgys`, `afmplnc`, `afmplnp`, `afmplyc`, `afmplyp`, `afmplys`, `afmpnnc`, `afmpnnp`, `afmpnyc`, `afmpnyp`, `afmpnys`, `afmpvyp`, `afmsanc`, `afmsanp`, `afmsayc`, `afmsayp`, `afmsays`, `afmsdnc`, `afmsdnp`, `afmsdyc`, `afmsdyp`, `afmsdys`, `afmsgnc`, `afmsgnp`, `afmsgyc`, `afmsgyp`, `afmsgys`, `afmslnc`, `afmslnp`, `afmslyc`, `afmslyp`, `afmslys`, `afmsnnc`, `afmsnnp`, `afmsnyc`, `afmsnyp`, `afmsnys`, `arfpanp`, `arfpayp`, `arfpdnp`, `arfpdyc`, `arfpdyp`, `arfpgnp`, `arfpgyp`, `arfplnc`, `arfplnp`, `arfplyc`, `arfplyp`, `arfpnnc`, `arfpnnp`, `arfpnyp`, `arfpnys`, `arfsanp`, `arfsayp`, `arfsdnp`, `arfsdyp`, `arfsgnc`, `arfsgnp`, `arfsgyp`, `arfslnp`, `arfslyp`, `arfsnnc`, `arfsnnp`, `arfsnyc`, `arfsnyp`, `arfsvyp`, `armpanp`, `armpayc`, `armpayp`, `armpdnp`, `armpdyc`, `armpdyp`, `armpdys`, `armpgnp`, `armpgyp`, `armplnp`, `armplyc`, `armplyp`, `armpnnc`, `armpnnp`, `armpnyc`, `armpnyp`, `armsanp`, `armsayc`, `armsayp`, `armsdnp`, `armsdyp`, `armsgnp`, `armsgyp`, `armslnp`, `armslyp`, `armsnnp`, `armsnyp`, `armsnys`, `cc`, `cs`, `i`, `mcc0p0`, `mccfpa`, `mccmpn`, `mccmsa`, `mcs0p0`, `mcsfp0`, `mcsfpa`, `mcsfpd`, `mcsfpg`, `mcsfpl`, `mcsfpn`, `mcsfsa`, `mcsfsd`, `mcsfsg`, `mcsfsl`, `mcsfsn`, `mcsmpa`, `mcsmpd`, `mcsmpg`, `mcsmpl`, `mcsmpn`, `mcsmsa`, `mcsmsd`, `mcsmsg`, `mcsmsl`, `mcsmsn`, `mfcfsa`, `mfcfsg`, `mfcfsn`, `mfsmsg`, `mocfsg`, `mocmsg`, `mosfpa`, `mosfpd`, `mosfpg`, `mosfpl`, `mosfpn`, `mosfsa`, `mosfsd`, `mosfsg`, `mosfsl`, `mosfsn`, `mosmpa`, `mosmpd`, `mosmpg`, `mosmpl`, `mosmpn`, `mosmsa`, `mosmsd`, `mosmsg`, `mosmsl`, `mosmsn`, `n0msa1`, `nc0000`, `nc000g`, `nc00g1`, `nc00gg`, `ncfda4`, `ncfda5`, `ncfda6`, `ncfdd4`, `ncfdd5`, `ncfdd6`, `ncfdg4`, `ncfdg5`, `ncfdg6`, `ncfdgg`, `ncfdl4`, `ncfdl5`, `ncfdl6`, `ncfdn4`, `ncfdn5`, `ncfdn6`, `ncfpa4`, `ncfpa5`, `ncfpa6`, `ncfpar`, `ncfpd4`, `ncfpd5`, `ncfpd6`, `ncfpdr`, `ncfpg1`, `ncfpg2`, `ncfpg4`, `ncfpg5`, `ncfpg6`, `ncfpgg`, `ncfpl4`, `ncfpl5`, `ncfpl6`, `ncfpn1`, `ncfpn4`, `ncfpn5`, `ncfpn6`, `ncfpnr`, `ncfsa1`, `ncfsa2`, `ncfsa4`, `ncfsa5`, `ncfsa6`, `ncfsar`, `ncfsd4`, `ncfsd5`, `ncfsd6`, `ncfsg1`, `ncfsg4`, `ncfsg5`, `ncfsg6`, `ncfsgg`, `ncfsgr`, `ncfsl1`, `ncfsl4`, `ncfsl5`, `ncfsl6`, `ncfslr`, `ncfsn4`, `ncfsn5`, `ncfsn6`, `ncfsnr`, `ncfsv4`, `ncfsv5`, `ncfva4`, `ncfva5`, `ncfvd5`, `ncfvg4`, `ncfvg5`, `ncfvl4`, `ncfvl5`, `ncfvn5`, `ncm000`, `ncmda1`, `ncmda2`, `ncmda6`, `ncmdd1`, `ncmdd2`, `ncmdd3`, `ncmdd6`, `ncmdg1`, `ncmdg2`, `ncmdg3`, `ncmdg6`, `ncmdgg`, `ncmdl1`, `ncmdl2`, `ncmdn1`, `ncmdn2`, `ncmdn6`, `ncmpa1`, `ncmpa2`, `ncmpa3`, `ncmpa4`, `ncmpd1`, `ncmpd2`, `ncmpd3`, `ncmpd5`, `ncmpg1`, `ncmpg2`, `ncmpg3`, `ncmpg4`, `ncmpg5`, `ncmpg6`, `ncmpgg`, `ncmpl1`, `ncmpl2`, `ncmpl3`, `ncmpl4`, `ncmpn0`, `ncmpn1`, `ncmpn2`, `ncmpn3`, `ncmpn4`, `ncmpn5`, `ncmpv1`, `ncmpv2`, `ncmsa1`, `ncmsa2`, `ncmsa3`, `ncmsa4`, `ncmsa5`, `ncmsd1`, `ncmsd2`, `ncmsd3`, `ncmsd4`, `ncmsg0`, `ncmsg1`, `ncmsg2`, `ncmsg3`, `ncmsg4`, `ncmsgg`, `ncmsgr`, `ncmsl1`, `ncmsl2`, `ncmsl3`, `ncmsl4`, `ncmsl5`, `ncmsn1`, `ncmsn2`, `ncmsn3`, `ncmsn4`, `ncmsnr`, `ncmsv1`, `ncmsv2`, `ncmva1`, `ncmva3`, `ncmvd1`, `ncmvd3`, `ncmvg1`, `ncmvg3`, `ncmvl1`, `ncmvl3`, `ncmvn1`, `ncmvn3`, `np0000`, `npfda4`, `npfdd4`, `npfdd6`, `npfdg1`, `npfdg4`, `npfdg6`, `npfdl4`, `npfdl6`, `npfdn4`, `npfdn5`, `npfdn6`, `npfpa5`, `npfpd5`, `npfpg2`, `npfpg4`, `npfpn4`, `npfpn5`, `npfsa4`, `npfsa5`, `npfsa6`, `npfsd4`, `npfsd5`, `npfsg1`, `npfsg3`, `npfsg4`, `npfsg5`, `npfsg6`, `npfsl4`, `npfsl5`, `npfsl6`, `npfsn3`, `npfsn4`, `npfsn5`, `npfsn6`, `npfsv4`, `npfsv5`, `npmda1`, `npmda2`, `npmdd1`, `npmdd2`, `npmdg1`, `npmdg2`, `npmdl1`, `npmdl2`, `npmdn1`, `npmdn2`, `npmpa1`, `npmpd1`, `npmpd2`, `npmpg1`, `npmpg2`, `npmpgg`, `npmpl1`, `npmpl2`, `npmpn1`, `npmpn2`, `npmsa1`, `npmsa2`, `npmsa3`, `npmsa4`, `npmsa5`, `npmsd1`, `npmsd2`, `npmsd3`, `npmsd4`, `npmsd5`, `npmsg0`, `npmsg1`, `npmsg2`, `npmsg3`, `npmsg4`, `npmsg5`, `npmsl1`, `npmsl2`, `npmsn1`, `npmsn2`, `npmsn3`, `npmsn4`, `npmsn5`, `npmsv1`, `npmsv2`, `pd0fpan`, `pd0fpdn`, `pd0fpgn`, `pd0fpln`, `pd0fpnn`, `pd0fsan`, `pd0fsdn`, `pd0fsgn`, `pd0fsln`, `pd0fsnn`, `pd0mpan`, `pd0mpdn`, `pd0mpgn`, `pd0mpln`, `pd0mply`, `pd0mpnn`, `pd0msan`, `pd0msdn`, `pd0msgn`, `pd0msln`, `pd0msnn`, `pd3fpan`, `pd3fpdn`, `pd3fpgn`, `pd3fpln`, `pd3fpnn`, `pd3fsan`, `pd3fsdn`, `pd3fsgn`, `pd3fsln`, `pd3fsnn`, `pd3mpan`, `pd3mpdn`, `pd3mpgn`, `pd3mpln`, `pd3mpnn`, `pd3msan`, `pd3msdn`, `pd3msgn`, `pd3msln`, `pd3msnn`, `pg0fpan`, `pg0fpdn`, `pg0fpgn`, `pg0fpln`, `pg0fpnn`, `pg0fsan`, `pg0fsdn`, `pg0fsgn`, `pg0fsln`, `pg0fsnn`, `pg0mpan`, `pg0mpdn`, `pg0mpgn`, `pg0mpln`, `pg0mpnn`, `pg0msan`, `pg0msdn`, `pg0msgn`, `pg0msln`, `pg0msnn`, `pi000an`, `pi000ay`, `pi000dn`, `pi000dy`, `pi000gn`, `pi000gy`, `pi000nn`, `pi000ny`, `pi0fpan`, `pi0fpay`, `pi0fpdn`, `pi0fpgn`, `pi0fpgy`, `pi0fpln`, `pi0fply`, `pi0fpnn`, `pi0fpny`, `pi0fsan`, `pi0fsay`, `pi0fsdn`, `pi0fsgn`, `pi0fsgy`, `pi0fsln`, `pi0fsnn`, `pi0fsny`, `pi0mpan`, `pi0mpay`, `pi0mpdn`, `pi0mpgn`, `pi0mpgy`, `pi0mpln`, `pi0mpnn`, `pi0mpny`, `pi0msan`, `pi0msay`, `pi0msdn`, `pi0msdy`, `pi0msgn`, `pi0msgy`, `pi0msln`, `pi0msly`, `pi0msnn`, `pi0msny`, `pi3msnn`, `pp10pan`, `pp10pdn`, `pp10pgn`, `pp10pln`, `pp10pnn`, `pp10san`, `pp10sdn`, `pp10sgn`, `pp10sln`, `pp10snn`, `pp1mpgn`, `pp20pan`, `pp20pdn`, `pp20pgn`, `pp20pnn`, `pp20san`, `pp20sdn`, `pp20sgn`, `pp20sln`, `pp20snn`, `pp2fsln`, `pp3fpan`, `pp3fpdn`, `pp3fpgn`, `pp3fpnn`, `pp3fsan`, `pp3fsdn`, `pp3fsgn`, `pp3fsln`, `pp3fsnn`, `pp3mpan`, `pp3mpdn`, `pp3mpgn`, `pp3mpln`, `pp3mpnn`, `pp3msan`, `pp3msdn`, `pp3msgn`, `pp3msln`, `pp3msnn`, `pq000an`, `pq000dn`, `pq000gn`, `pq000nn`, `pq0fpan`, `pq0fpnn`, `pq0fsnn`, `pq0mpnn`, `pq0msan`, `pq0msdn`, `pq0msln`, `pq0msnn`, `pr000an`, `pr000dn`, `pr000gn`, `pr000nn`, `pr00pgn`, `pr0fpan`, `pr0fpdn`, `pr0fpgn`, `pr0fpln`, `pr0fpnn`, `pr0fsan`, `pr0fsdn`, `pr0fsgn`, `pr0fsln`, `pr0fsnn`, `pr0mpan`, `pr0mpdn`, `pr0mpgn`, `pr0mpln`, `pr0mpnn`, `pr0msan`, `pr0msdn`, `pr0msgn`, `pr0msln`, `pr0msnn`, `ps0fpan`, `ps0fpdn`, `ps0fpgn`, `ps0fpln`, `ps0fpnn`, `ps0fsan`, `ps0fsdn`, `ps0fsgn`, `ps0fsln`, `ps0fsnn`, `ps0mpan`, `ps0mpdn`, `ps0mpgn`, `ps0mpln`, `ps0mpnn`, `ps0msan`, `ps0msdn`, `ps0msgn`, `ps0msln`, `ps0msnn`, `ps10sgn`, `ps1mpnn`, `ps1msgn`, `ps1msnn`, `ps2fsnn`, `px000an`, `px000dn`, `px000gn`, `px000ln`, `q`, `r0c`, `r0m`, `r0p`, `r0q`, `r0t`, `rcc`, `rcm`, `rcp`, `rcq`, `rct`, `rpc`, `rpm`, `rpp`, `rpq`, `rpt`, `rrm`, `rrp`, `rrt`, `rsm`, `rsp`, `rsq`, `rst`, `sp00`, `sppd`, `sppg`, `spsa`, `spsd`, `spsg`, `stpg`, `stsg`, `vcnc0ii00an`, `vcnc0ii00ay`, `vcnd0ii00an`, `vcnifi130an`, `vcnifii1pan`, `vcnifii1pay`, `vcnifii1san`, `vcnifii1say`, `vcnifii2pan`, `vcnifii2pay`, `vcnifii2san`, `vcnifii2say`, `vcnifii30an`, `vcnifii30ay`, `vcnipii1pan`, `vcnipii1pay`, `vcnipii1san`, `vcnipii1say`, `vcnipii2pan`, `vcnipii2pay`, `vcnipii2san`, `vcnipii2say`, `vcnipii30an`, `vcnipii30ay`, `vcnisii1pan`, `vcnisii1pay`, `vcnisii1san`, `vcnisii1say`, `vcnisii2pay`, `vcnisii30an`, `vcnisii30ay`, `vcnist330an`, `vcnm0ii2pan`, `vcnm0ii2san`, `vcnn0ii000n`, `vcnn0ii000y`, `vcnn0ii00an`, `vcnn0t3000n`, `vcnpdfpnasnpn`, `vcnpdfsaasypn`, `vcnpdfsgapypn`, `vcnpdfsnapnpn`, `vcnpdfsnasnpn`, `vcnpdmplasypn`, `vcnpdmpnasnpn`, `vcnpdmsaasnpy`, `vcnpdmsaasypn`, `vcnpdmsnasn0n`, `vcnpdmsnasnpn`, `vcnppfsn0000n`, `vcnppmpn0000n`, `vcnppmsn0000n`, `vcnpu0000000n`, `vcnrfii00an`, `vcnrpii00an`, `vcnrpii00ay`, `venipi130an`, `venipi130ay`, `venisi130an`, `veyifii30an`, `veyipi130an`, `veyipi130ay`, `veyipi330an`, `veyipii30an`, `veyipii30ay`, `veyisi130an`, `veyisi330an`, `veyisii30an`, `veyisii30ay`, `veypdmpnasnpn`, `veypdmsnasnpn`, `vgnpdmsgapypn`, `vmnc0i100an`, `vmnc0i100ay`, `vmnc0i10say`, `vmnc0i200an`, `vmnc0i300an`, `vmnc0i300ay`, `vmnc0ii000n`, `vmnc0ii00an`, `vmnc0ii00ay`, `vmnc0t100an`, `vmnc0t100ay`, `vmnc0t200an`, `vmnc0t200ay`, `vmnc0t300an`, `vmnc0t300ay`, `vmnc0ti00an`, `vmnd0i100an`, `vmnd0i200an`, `vmnd0i300an`, `vmnd0ii00an`, `vmnd0t100an`, `vmnd0t130an`, `vmnd0t200an`, `vmnd0t300an`, `vmnd0ti00an`, `vmnd0ti00pn`, `vmnifi11pan`, `vmnifi11pay`, `vmnifi11san`, `vmnifi11say`, `vmnifi12pan`, `vmnifi12san`, `vmnifi130an`, `vmnifi130ay`, `vmnifi13san`, `vmnifi21pan`, `vmnifi21san`, `vmnifi21say`, `vmnifi22san`, `vmnifi230an`, `vmnifi230ay`, `vmnifi31pan`, `vmnifi32san`, `vmnifi32say`, `vmnifi330an`, `vmnifi330ay`, `vmnifii1san`, `vmnifii2san`, `vmnifii30an`, `vmnifii30ay`, `vmnift11pan`, `vmnift11pay`, `vmnift11san`, `vmnift11say`, `vmnift12pan`, `vmnift12san`, `vmnift12say`, `vmnift130an`, `vmnift130ay`, `vmnift21pan`, `vmnift21pay`, `vmnift21san`, `vmnift21say`, `vmnift22pan`, `vmnift22pay`, `vmnift22san`, `vmnift22say`, `vmnift230an`, `vmnift230ay`, `vmnift31pan`, `vmnift31pay`, `vmnift31san`, `vmnift31say`, `vmnift32pan`, `vmnift32san`, `vmnift32say`, `vmnift330an`, `vmnift330ay`, `vmnifti1san`, `vmnifti2san`, `vmnifti30an`, `vmnim0230an`, `vmnipi11pan`, `vmnipi11pay`, `vmnipi11san`, `vmnipi12pan`, `vmnipi12san`, `vmnipi130an`, `vmnipi130ay`, `vmnipi21pan`, `vmnipi21san`, `vmnipi22pan`, `vmnipi22pay`, `vmnipi22san`, `vmnipi230an`, `vmnipi230ay`, `vmnipi23san`, `vmnipi31pan`, `vmnipi31san`, `vmnipi31say`, `vmnipi32pan`, `vmnipi32san`, `vmnipi330an`, `vmnipi330ay`, `vmnipii1pan`, `vmnipii1san`, `vmnipii2pan`, `vmnipii2pay`, `vmnipii2san`, `vmnipii30an`, `vmnipii30ay`, `vmnipt110an`, `vmnipt11pan`, `vmnipt11pay`, `vmnipt11san`, `vmnipt11say`, `vmnipt12pan`, `vmnipt12san`, `vmnipt12say`, `vmnipt130an`, `vmnipt130ay`, `vmnipt21pan`, `vmnipt21pay`, `vmnipt21san`, `vmnipt21say`, `vmnipt22pan`, `vmnipt22san`, `vmnipt22say`, `vmnipt230an`, `vmnipt230ay`, `vmnipt23san`, `vmnipt31pan`, `vmnipt31pay`, `vmnipt31san`, `vmnipt31say`, `vmnipt32pan`, `vmnipt32san`, `vmnipt32say`, `vmnipt330an`, `vmnipt330ay`, `vmnipti1pan`, `vmnipti1san`, `vmnipti2pan`, `vmnipti30an`, `vmnipti30ay`, `vmnipti3san`, `vmnisi11pan`, `vmnisi11san`, `vmnisi11say`, `vmnisi12san`, `vmnisi130an`, `vmnisi130ay`, `vmnisi21pan`, `vmnisi21san`, `vmnisi22pan`, `vmnisi230an`, `vmnisi230ay`, `vmnisi31pan`, `vmnisi31san`, `vmnisi31say`, `vmnisi330an`, `vmnisi330ay`, `vmnisii1pan`, `vmnisii1pay`, `vmnisii1san`, `vmnisii2san`, `vmnisii30an`, `vmnisii30ay`, `vmnist11pan`, `vmnist11pay`, `vmnist11san`, `vmnist11say`, `vmnist12pan`, `vmnist12san`, `vmnist130an`, `vmnist130ay`, `vmnist21pan`, `vmnist21pay`, `vmnist21san`, `vmnist21say`, `vmnist230an`, `vmnist230ay`, `vmnist31pan`, `vmnist31pay`, `vmnist31san`, `vmnist31say`, `vmnist32pan`, `vmnist32san`, `vmnist32say`, `vmnist330an`, `vmnist330ay`, `vmnisti1san`, `vmnisti30an`, `vmnisti30ay`, `vmnm0i12pan`, `vmnm0i12pay`, `vmnm0i12san`, `vmnm0i12say`, `vmnm0i21san`, `vmnm0i22pan`, `vmnm0i22san`, `vmnm0i32pan`, `vmnm0i32san`, `vmnm0i32say`, `vmnm0ii1pan`, `vmnm0ii2pan`, `vmnm0ii2san`, `vmnm0t11san`, `vmnm0t12pan`, `vmnm0t12pay`, `vmnm0t12san`, `vmnm0t12say`, `vmnm0t130an`, `vmnm0t21san`, `vmnm0t21say`, `vmnm0t22pan`, `vmnm0t22san`, `vmnm0t22say`, `vmnm0t230an`, `vmnm0t31san`, `vmnm0t32pan`, `vmnm0t32pay`, `vmnm0t32san`, `vmnm0t32say`, `vmnm0ti2pan`, `vmnm0ti2san`, `vmnmpi130ay`, `vmnmpi32san`, `vmnmpii2pan`, `vmnmpt12pan`, `vmnmpt12say`, `vmnmpt130ay`, `vmnmpt22san`, `vmnmpt32pan`, `vmnmpt32san`, `vmnn0i1000n`, `vmnn0i1000y`, `vmnn0i100an`, `vmnn0i130an`, `vmnn0i2000n`, `vmnn0i2000y`, `vmnn0i200an`, `vmnn0i3000n`, `vmnn0i3000y`, `vmnn0i300an`, `vmnn0ii000n`, `vmnn0ii000y`, `vmnn0t1000n`, `vmnn0t1000y`, `vmnn0t100an`, `vmnn0t2000n`, `vmnn0t2000y`, `vmnn0t200an`, `vmnn0t3000n`, `vmnn0t3000y`, `vmnn0t300an`, `vmnn0ti000n`, `vmnn0ti00an`, `vmnpdfpaapnpn`, `vmnpdfpaapypn`, `vmnpdfpaasnpn`, `vmnpdfpaasypn`, `vmnpdfpappnpn`, `vmnpdfpappnpy`, `vmnpdfpappypn`, `vmnpdfpapsnpn`, `vmnpdfpapsnpy`, `vmnpdfpapsypn`, `vmnpdfpdapnpn`, `vmnpdfpdapnpy`, `vmnpdfpdapypn`, `vmnpdfpdapysn`, `vmnpdfpdasnpn`, `vmnpdfpdasypn`, `vmnpdfpdppnpn`, `vmnpdfpdppnpy`, `vmnpdfpdppypn`, `vmnpdfpdpsnpn`, `vmnpdfpdpsypn`, `vmnpdfpdpsypy`, `vmnpdfpgapncn`, `vmnpdfpgapypn`, `vmnpdfpgppnpn`, `vmnpdfpgppnpy`, `vmnpdfpgppypn`, `vmnpdfpgpsnpn`, `vmnpdfpgpsypn`, `vmnpdfplapnpn`, `vmnpdfplapypn`, `vmnpdfplasnpn`, `vmnpdfplasypn`, `vmnpdfplppnpy`, `vmnpdfplpsnpn`, `vmnpdfplpsypn`, `vmnpdfpnapn0n`, `vmnpdfpnapnpn`, `vmnpdfpnapnpy`, `vmnpdfpnapypn`, `vmnpdfpnasnpn`, `vmnpdfpnasypn`, `vmnpdfpnasypy`, `vmnpdfpnppnpn`, `vmnpdfpnppnpy`, `vmnpdfpnppypn`, `vmnpdfpnpsnpn`, `vmnpdfpnpsnpy`, `vmnpdfpnpsypn`, `vmnpdfpnpsypy`, `vmnpdfsaapn0n`, `vmnpdfsaapncn`, `vmnpdfsaapnpn`, `vmnpdfsaapnpy`, `vmnpdfsaapypn`, `vmnpdfsaasnpn`, `vmnpdfsaasypn`, `vmnpdfsappnpn`, `vmnpdfsappnpy`, `vmnpdfsappypn`, `vmnpdfsappypy`, `vmnpdfsapsncn`, `vmnpdfsapsnpn`, `vmnpdfsapsnpy`, `vmnpdfsapsypn`, `vmnpdfsdapnpn`, `vmnpdfsdapypn`, `vmnpdfsdasnpn`, `vmnpdfsdasypn`, `vmnpdfsdppnpn`, `vmnpdfsdppypn`, `vmnpdfsdpsnpn`, `vmnpdfsdpsnpy`, `vmnpdfsdpsypn`, `vmnpdfsgapnpn`, `vmnpdfsgapypn`, `vmnpdfsgasnpn`, `vmnpdfsgasypn`, `vmnpdfsgppnpn`, `vmnpdfsgppnpy`, `vmnpdfsgppypn`, `vmnpdfsgpsnpn`, `vmnpdfsgpsypn`, `vmnpdfsgpsypy`, `vmnpdfslapnpn`, `vmnpdfslapypn`, `vmnpdfslasnpn`, `vmnpdfslasypn`, `vmnpdfslppnpn`, `vmnpdfslppypn`, `vmnpdfslpsnpn`, `vmnpdfslpsypn`, `vmnpdfslpsypy`, `vmnpdfsnapnpn`, `vmnpdfsnapnpy`, `vmnpdfsnapypn`, `vmnpdfsnapysn`, `vmnpdfsnasn0n`, `vmnpdfsnasnpn`, `vmnpdfsnasnpy`, `vmnpdfsnasypn`, `vmnpdfsnppncn`, `vmnpdfsnppnpn`, `vmnpdfsnppnpy`, `vmnpdfsnppypn`, `vmnpdfsnppypy`, `vmnpdfsnpsncn`, `vmnpdfsnpsnpn`, `vmnpdfsnpsnpy`, `vmnpdfsnpsypn`, `vmnpdfsnpsypy`, `vmnpdmpaapnpn`, `vmnpdmpaapycn`, `vmnpdmpaapypn`, `vmnpdmpaasnpn`, `vmnpdmpaasypn`, `vmnpdmpappnpn`, `vmnpdmpappypn`, `vmnpdmpapsnpn`, `vmnpdmpapsnpy`, `vmnpdmpapsypn`, `vmnpdmpapsypy`, `vmnpdmpdapnpn`, `vmnpdmpdapypn`, `vmnpdmpdasnpn`, `vmnpdmpdasypn`, `vmnpdmpdppnpn`, `vmnpdmpdppycn`, `vmnpdmpdppypn`, `vmnpdmpdpsnpn`, `vmnpdmpdpsnpy`, `vmnpdmpdpsycn`, `vmnpdmpdpsypn`, `vmnpdmpdpsypy`, `vmnpdmpgapnpn`, `vmnpdmpgapypn`, `vmnpdmpgasnpn`, `vmnpdmpgasypn`, `vmnpdmpgppypn`, `vmnpdmpgpsnpn`, `vmnpdmpgpsypn`, `vmnpdmpgpsypy`, `vmnpdmplapnpn`, `vmnpdmplapypn`, `vmnpdmplpsnpn`, `vmnpdmplpsypn`, `vmnpdmpnapnpn`, `vmnpdmpnapypn`, `vmnpdmpnasnpn`, `vmnpdmpnasypn`, `vmnpdmpnppn0n`, `vmnpdmpnppnpn`, `vmnpdmpnppnpy`, `vmnpdmpnppypn`, `vmnpdmpnpsnpn`, `vmnpdmpnpsnpy`, `vmnpdmpnpsypn`, `vmnpdmpnpsypy`, `vmnpdmpvppypn`, `vmnpdmsaapnpn`, `vmnpdmsaapypn`, `vmnpdmsaasnpn`, `vmnpdmsaasypn`, `vmnpdmsappnpn`, `vmnpdmsappnpy`, `vmnpdmsappypn`, `vmnpdmsappypy`, `vmnpdmsapsnpn`, `vmnpdmsapsnpy`, `vmnpdmsapsypn`, `vmnpdmsapsypy`, `vmnpdmsdapnpn`, `vmnpdmsdapypn`, `vmnpdmsdasnpn`, `vmnpdmsdppnpn`, `vmnpdmsdppypn`, `vmnpdmsdppypy`, `vmnpdmsdpsnpn`, `vmnpdmsdpsypn`, `vmnpdmsdpsypy`, `vmnpdmsgapnpn`, `vmnpdmsgapypn`, `vmnpdmsgasnpn`, `vmnpdmsgasypn`, `vmnpdmsgppnpn`, `vmnpdmsgppy0n`, `vmnpdmsgppypn`, `vmnpdmsgppypy`, `vmnpdmsgpsnpn`, `vmnpdmsgpsycn`, `vmnpdmsgpsypn`, `vmnpdmsgpsypy`, `vmnpdmslapnpn`, `vmnpdmslapypn`, `vmnpdmslasnpn`, `vmnpdmslasypn`, `vmnpdmslppnpn`, `vmnpdmslppy0n`, `vmnpdmslppypn`, `vmnpdmslpsnpn`, `vmnpdmslpsypn`, `vmnpdmsnapnpn`, `vmnpdmsnapnpy`, `vmnpdmsnapypn`, `vmnpdmsnasn0n`, `vmnpdmsnasnpn`, `vmnpdmsnasnpy`, `vmnpdmsnasypn`, `vmnpdmsnppnpn`, `vmnpdmsnppnpy`, `vmnpdmsnppypn`, `vmnpdmsnppypy`, `vmnpdmsnpsnpn`, `vmnpdmsnpsnpy`, `vmnpdmsnpsycn`, `vmnpdmsnpsypn`, `vmnpdmsnpsypy`, `vmnppfpn0000y`, `vmnppfsn0000n`, `vmnppmpn0000n`, `vmnppmpnap00n`, `vmnppmpnap0pn`, `vmnppmpnap0py`, `vmnppmsn0000n`, `vmnpu0000000n`, `vmnpu0000000y`, `vmnpu000000pn`, `vmnpu00000n0n`, `vmnpu000apnpn`, `vmnpumpgpsnpn`, `vmnr0t100an`, `vmnr0t3000n`, `vmnrfi100an`, `vmnrft100an`, `vmnrft200an`, `vmnrft200ay`, `vmnrft300an`, `vmnrpi1000y`, `vmnrpi100an`, `vmnrpi2000n`, `vmnrpi200an`, `vmnrpi300an`, `vmnrpii00an`, `vmnrpii00ay`, `vmnrpt100an`, `vmnrpt100ay`, `vmnrpt200an`, `vmnrpt200ay`, `vmnrpt300an`, `vmnrpt300ay`, `vmyc0i100an`, `vmyc0i100ay`, `vmyc0i200an`, `vmyc0i200ay`, `vmyc0i300an`, `vmyc0i300ay`, `vmyc0t100an`, `vmyc0t200an`, `vmyc0t300an`, `vmyc0ti00an`, `vmyd0i100an`, `vmyd0i200an`, `vmyd0i300an`, `vmyd0ii00an`, `vmyd0t100an`, `vmyd0t200an`, `vmyd0t300an`, `vmyd0ti00an`, `vmyifi11pan`, `vmyifi11san`, `vmyifi11say`, `vmyifi12pan`, `vmyifi12san`, `vmyifi130an`, `vmyifi130ay`, `vmyifi21san`, `vmyifi230an`, `vmyifi230ay`, `vmyifi31pan`, `vmyifi31san`, `vmyifi31say`, `vmyifi32san`, `vmyifi330an`, `vmyifi330ay`, `vmyift11pan`, `vmyift130an`, `vmyift21san`, `vmyift31pan`, `vmyift32san`, `vmyift330an`, `vmyifti1san`, `vmyifti30an`, `vmyipi110ay`, `vmyipi11pan`, `vmyipi11san`, `vmyipi12pan`, `vmyipi12san`, `vmyipi12say`, `vmyipi130an`, `vmyipi130ay`, `vmyipi21pan`, `vmyipi21san`, `vmyipi21say`, `vmyipi22pan`, `vmyipi22san`, `vmyipi230an`, `vmyipi230ay`, `vmyipi31pan`, `vmyipi31san`, `vmyipi31say`, `vmyipi32pan`, `vmyipi32san`, `vmyipi330an`, `vmyipi330ay`, `vmyipii1pan`, `vmyipt11pan`, `vmyipt11san`, `vmyipt12san`, `vmyipt130an`, `vmyipt130ay`, `vmyipt21san`, `vmyipt22san`, `vmyipt230an`, `vmyipt31pan`, `vmyipt31san`, `vmyipt31say`, `vmyipt32pan`, `vmyipt32san`, `vmyipt32say`, `vmyipt330an`, `vmyipt330ay`, `vmyipti1pan`, `vmyipti1san`, `vmyipti2pan`, `vmyipti30an`, `vmyipti30ay`, `vmyisi11pan`, `vmyisi11san`, `vmyisi12san`, `vmyisi130an`, `vmyisi130ay`, `vmyisi13pan`, `vmyisi21pan`, `vmyisi21san`, `vmyisi22san`, `vmyisi230an`, `vmyisi230ay`, `vmyisi31pan`, `vmyisi31san`, `vmyisi31say`, `vmyisi32san`, `vmyisi330an`, `vmyisi330ay`, `vmyisii1san`, `vmyisii30an`, `vmyist11pan`, `vmyist11san`, `vmyist130an`, `vmyist21pan`, `vmyist230an`, `vmyist230ay`, `vmyist31pan`, `vmyist31san`, `vmyist32pan`, `vmyist330an`, `vmyist330ay`, `vmyisti1pan`, `vmyisti1san`, `vmyisti30an`, `vmyisti30ay`, `vmym0i11san`, `vmym0i12pan`, `vmym0i12san`, `vmym0i12say`, `vmym0i22pan`, `vmym0i22san`, `vmym0i22say`, `vmym0i32pan`, `vmym0i32pay`, `vmym0i32san`, `vmym0t22pan`, `vmym0t22san`, `vmym0t32pan`, `vmym0t32san`, `vmympi32san`, `vmympt32san`, `vmyn0i1000n`, `vmyn0i1000y`, `vmyn0i2000n`, `vmyn0i3000n`, `vmyn0i3000y`, `vmyn0ii000n`, `vmyn0ii00an`, `vmyn0t1000n`, `vmyn0t1000y`, `vmyn0t100an`, `vmyn0t2000n`, `vmyn0t3000n`, `vmyn0t3000y`, `vmyn0ti000n`, `vmypdfpaasnpn`, `vmypdfpnasnpn`, `vmypdfpnasnpy`, `vmypdfpnasypn`, `vmypdfpnppypn`, `vmypdfsaasnpn`, `vmypdfsaasnpy`, `vmypdfsnasn0n`, `vmypdfsnasnpn`, `vmypdmpaapnpn`, `vmypdmpaasypn`, `vmypdmpnasn0n`, `vmypdmpnasnpn`, `vmypdmsaapnpn`, `vmypdmsaasnpn`, `vmypdmsnasn0n`, `vmypdmsnasnpn`, `vmypdmsnasnpy`, `vmypdmsnpsnpn`, `vmyppf0n0000n`, `vmyppfsn0000n`, `vmyppfsn0000y`, `vmyppm0n0000n`, `vmyppmpn0000n`, `vmyppms00000n`, `vmyppmsn0000n`, `vmypu0000000n`, `vmypu0000000y`, `vmypu000000pn`, `vmypumsnasnpn`, `vmyrfi100an`, `vmyrpi200an`, `vmyrpi300an`, `vmyrpt100an`, `vmyrpt300an`, `vmyrpt300ay`, `vonc0i100an`, `vonc0i100ay`, `vonc0i300an`, `vonc0i300ay`, `vonc0t300ay`, `vond0i100an`, `vond0t300an`, `vondpi300an`, `vonifi11pay`, `vonifi12pay`, `vonifi130an`, `vonifi130ay`, `vonifi230an`, `vonifi31pan`, `vonifi31san`, `vonifi31say`, `vonifi32san`, `vonifi32say`, `vonifi330an`, `vonifi330ay`, `vonift31say`, `vonift32san`, `vonift330an`, `vonift330ay`, `vonipi11pan`, `vonipi11pay`, `vonipi11san`, `vonipi11say`, `vonipi12pan`, `vonipi130an`, `vonipi130ay`, `vonipi21pan`, `vonipi230an`, `vonipi230ay`, `vonipi300ay`, `vonipi31pan`, `vonipi31pay`, `vonipi31san`, `vonipi31say`, `vonipi32pan`, `vonipi32pay`, `vonipi32san`, `vonipi32say`, `vonipi330an`, `vonipi330ay`, `vonipii30an`, `vonipt130an`, `vonipt230an`, `vonipt31pan`, `vonipt31pay`, `vonipt31san`, `vonipt31say`, `vonipt32pan`, `vonipt32san`, `vonipt330an`, `vonipt330ay`, `vonisi11san`, `vonisi11say`, `vonisi130an`, `vonisi130ay`, `vonisi230an`, `vonisi31pan`, `vonisi31pay`, `vonisi31san`, `vonisi31say`, `vonisi32pan`, `vonisi330an`, `vonisi330ay`, `vonist130an`, `vonist330an`, `vonist330ay`, `vonm0i32san`, `vonmpi32san`, `vonn0i3000n`, `vonn0t3000n`, `vonpdfpn00npy`, `vonpdfpnasnpn`, `vonpdfsnasnpn`, `vonpdfsnasnpy`, `vonpdmpnasnpn`, `vonpdmsnasnpn`, `vonpdmsnpsnpn`, `vonpdmsnpsypn`, `vonppfsn0000n`, `vonppmsn0000n`, `vonppmsn0000y`, `vonpu0000000n`, `vonpu0000000y`, `vonrft300an`, `vonrpi100ay`, `vonrpi300an`, `vonrpi300ay`, `vonrpt300an`, `vonrpt300ay`, `voyc0i100an`, `voyc0i100ay`, `voyc0i300an`, `voyc0i300ay`, `voyc0t300an`, `voyd0i100an`, `voyifi12san`, `voyifi130an`, `voyifi330an`, `voyifi330ay`, `voyifii30an`, `voyipi11pan`, `voyipi11san`, `voyipi11say`, `voyipi130an`, `voyipi130ay`, `voyipi230ay`, `voyipi300ay`, `voyipi31pan`, `voyipi31san`, `voyipi31say`, `voyipi32pan`, `voyipi330an`, `voyipi330ay`, `voyipii30an`, `voyipt11pan`, `voyipt130an`, `voyipt31san`, `voyipt32san`, `voyipt330an`, `voyipt330ay`, `voyisi11pan`, `voyisi11san`, `voyisi11say`, `voyisi130an`, `voyisi230an`, `voyisi31san`, `voyisi31say`, `voyisi330an`, `voyisi330ay`, `voyist11san`, `voyist330an`, `voym0i12pay`, `voyn0i1000n`, `voyn0i3000n`, `voyn0t1000n`, `voyp0msnap00n`, `voypdfsnasnpn`, `voypdmpnasnpn`, `voypdmsnasnpn`, `voypdmsnasnpy`, `voypu0000000n`, `voyrfi100an`, `voyrpi100an`, `voyrpi300ay`, `vpnc0i100an`, `vpnc0i300an`, `vpnd0i100an`, `vpnd0t100an`, `vpnifi12san`, `vpnifi130an`, `vpnifi31pan`, `vpnifi330an`, `vpnift130an`, `vpnift31pan`, `vpnipi11pan`, `vpnipi11pay`, `vpnipi11san`, `vpnipi130an`, `vpnipi130ay`, `vpnipi330an`, `vpnipt11pan`, `vpnipt11san`, `vpnipt130an`, `vpnipt31pan`, `vpnisi11pan`, `vpnisi11san`, `vpnisi11say`, `vpnisi130an`, `vpnisi130ay`, `vpnisi230an`, `vpnisi31san`, `vpnisi330an`, `vpnist11san`, `vpnist130an`, `vpnist330an`, `vpnisti30an`, `vpnm0i12san`, `vpnm0i32san`, `vpnm0t32san`, `vpnn0i1000n`, `vpnn0i3000n`, `vpnn0t1000n`, `vpnn0t3000n`, `vpnpdfpnasnpn`, `vpnpdfsgasypn`, `vpnpdfsnasnpn`, `vpnpdmpnasnpn`, `vpnpdmsnasnpn`, `vpnpdmsnpsnpn`, `vpnppmsn0000n`, `vpnpu0000000n`, `vpyifi130an`, `vpyipi130an`, `vpyisi130an`, `vtnc0i100an`, `vtnc0i100ay`, `vtnc0t200an`, `vtnd0i100an`, `vtnifi11pay`, `vtnifi11san`, `vtnifi130an`, `vtnifi130ay`, `vtnift130an`, `vtnipi11pan`, `vtnipi11san`, `vtnipi130an`, `vtnipi130ay`, `vtnipi230an`, `vtnipii30an`, `vtnipt230an`, `vtnipt330an`, `vtnisi11san`, `vtnisi12san`, `vtnisi130an`, `vtnisi130ay`, `vtnist330an`, `vtnn0i1000n`, `vtnn0i100an`, `vtnn0t1000n`, `vtnpdfpnasnpn`, `vtnpdfsnasnpn`, `vtnpdmpnasnpn`, `vtnpdmsnasnpn`, `vtnppmsn0000n`, `vtnpu0000000n`, `vtnrpi100an`, `vtyc0i300ay`, `vtyifi330an`, `vtyipi11san`, `vtyipi130an`, `vtyipi130ay`, `vtyipi330an`, `vtyipi330ay`, `vtyipt11pay`, `vtyipt11say`, `vtyipt130an`, `vtyipt330an`, `vtyisi11san`, `vtyisi130an`, `vtyisi330an`, `vtyist11pan`, `vtyist11san`, `vtyist130an`, `vtyist330an`, `vtyn0i1000n`, `vtyn0i3000n`, `vtyn0t1000n`, `vtyn0t3000n`, `vtypdfsnasnpn`, `vtypdmsnasnpn`, `xf`, `xn`, `xo`, `xu`, `xx`, `ya`, `yd`, `yn`, `yp`, `yr`, `yv`, `z_`, `zb`, `zc`, `zd`, `zo`, `zq`, `zs`, `zx` |
| **`morphologizer`** | `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `POS=PUNCT`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=PART`, `POS=CCONJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Evident=Fh\|Mood=Ind\|POS=AUX\|Person=3\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=ADP`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=VERB\|Polarity=Pos\|VerbForm=Conv`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN\|Typo=Yes`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Degree=Pos\|POS=ADV`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Perf\|Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=ADV`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `NumType=Card\|POS=NUM`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Coll\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=ADV\|PronType=Dem`, `POS=ADV\|PronType=Int`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Dat\|Gender=Fem\|Number=Ptan\|POS=PROPN`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Ptan\|POS=PROPN`, `Aspect=Perf\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN\|Typo=Yes`, `POS=SCONJ`, `Mood=Cnd\|POS=VERB\|Polarity=Pos\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|POS=PRON\|PronType=Rel`, `POS=AUX\|Polarity=Pos\|VerbForm=Inf`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Aspect=Perf\|Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `POS=VERB\|Polarity=Pos\|VerbForm=Inf`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Loc\|Gender=Fem\|Number=Ptan\|POS=NOUN`, `POS=VERB\|Polarity=Pos\|Reflex=Yes\|VerbForm=Conv`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|POS=PRON\|PronType=Rel`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `POS=CCONJ\|Polarity=Neg`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|Person=3\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Coll\|POS=NOUN`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Evident=Fh\|Mood=Ind\|POS=AUX\|Person=3\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Degree=Cmp\|POS=ADV`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Abbr=Yes\|POS=PROPN`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Rel`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Ptan\|POS=NOUN`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Neg\|Reflex=Yes\|VerbForm=Fin\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Tot`, `Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `POS=ADV\|PronType=Neg`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Ptan\|POS=NOUN`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `POS=VERB\|Polarity=Pos\|Reflex=Yes\|VerbForm=Inf`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|Reflex=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Aspect=Perf\|Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|POS=PRON\|PronType=Ind,Neg`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Neg\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Mood=Imp\|Number=Plur\|POS=AUX\|Person=2\|Polarity=Pos\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Tot`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Loc\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Nom\|POS=PRON\|PronType=Rel`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Loc\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Tot`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Cnd\|POS=VERB\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=ADV\|PronType=Ind`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Polarity=Neg\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Neg\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Ptan\|POS=NOUN`, `Aspect=Imp\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Ptan\|POS=NOUN`, `Case=Loc\|Gender=Masc\|Number=Coll\|POS=NOUN`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Evident=Nfh\|Mood=Qot\|POS=VERB\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Evident=Nfh\|Mood=Qot\|POS=AUX\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Evident=Nfh\|Mood=Qot\|POS=AUX\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Evident=Nfh\|Mood=Qot\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Evident=Nfh\|Mood=Qot\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Ptan\|POS=NOUN`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Tot`, `Mood=Cnd\|POS=AUX\|Polarity=Pos\|VerbForm=Fin\|Voice=Act`, `Mood=Cnd\|POS=AUX\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Mood=Nec\|POS=VERB\|Polarity=Pos\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Evident=Fh\|Mood=Ind\|POS=AUX\|Person=3\|Polarity=Pos\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Loc\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `POS=PART\|Polarity=Neg`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Polarity=Pos\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Acc\|POS=PRON\|PronType=Int`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `POS=VERB\|Polarity=Neg\|Reflex=Yes\|VerbForm=Conv`, `Evident=Fh\|Mood=Ind\|POS=AUX\|Person=3\|Polarity=Neg\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Aspect=Perf\|Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Loc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind,Neg`, `Mood=Nec\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Tot`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind,Neg`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Loc\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=AUX\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|POS=PRON\|PronType=Ind`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Imp\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Ptan\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Ptan\|POS=NOUN`, `Case=Acc\|POS=PRON\|PronType=Ind`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Polarity=Neg\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `POS=VERB\|Polarity=Neg\|VerbForm=Inf`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Aspect=Perf\|Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Fem\|NumType=Frac\|Number=Sing\|POS=NUM`, `Mood=Cnd\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|VerbForm=Fin\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Imp\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Neg\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Ptan\|POS=NOUN`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Polarity=Pos\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Aspect=Perf\|Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Masc\|Number=Ptan\|POS=PROPN`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `POS=NOUN`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel\|Typo=Yes`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `NumType=Ord\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Aspect=Perf\|Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `POS=PROPN`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Gender=Masc\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|PronType=Dem`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|Person=3\|PronType=Dem`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Evident=Fh\|Mood=Ind\|POS=AUX\|Person=3\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `POS=VERB\|Polarity=Neg\|VerbForm=Conv`, `Mood=Nec\|POS=AUX\|Polarity=Pos\|VerbForm=Fin\|Voice=Act`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Aspect=Imp\|Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Coll\|POS=NOUN`, `Abbr=Yes\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Coll\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Coll\|POS=NOUN`, `Aspect=Perf\|Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `POS=SYM`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN\|Typo=Yes`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Tot`, `Foreign=Yes\|POS=X\|Typo=Yes`, `Aspect=Perf\|Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `POS=CCONJ\|Typo=Yes`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Case=Dat\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|Typo=Yes`, `POS=X\|Typo=Yes`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Aspect=Imp\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Abbr=Yes\|POS=SYM`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Tot`, `Mood=Cnd\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Aspect=Perf\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Foreign=Yes\|POS=X`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel\|Typo=Yes`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|Tense=Pres\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Typo=Yes`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=AUX\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|POS=NOUN`, `Aspect=Imp\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem\|Typo=Yes`, `Aspect=Perf\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Tot`, `Aspect=Perf\|Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|Typo=Yes\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem\|Typo=Yes`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN\|Typo=Yes`, `Case=Loc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Ptan\|POS=PROPN`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Gen\|POS=DET\|PronType=Rel`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `POS=PART\|Typo=Yes`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|VerbForm=Fin\|Voice=Act`, `POS=ADV\|PronType=Int,Neg`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Neg\|Reflex=Yes\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|Reflex=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Perf\|Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|POS=PRON\|PronType=Ind,Neg`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|POS=DET\|PronType=Ind,Neg`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Tot`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Neg\|Reflex=Yes\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Neg\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Aspect=Imp\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind,Neg`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=AUX\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Typo=Yes`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Nom\|POS=PRON\|PronType=Int`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|VerbForm=Conv`, `Case=Acc\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind,Neg`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|POS=PRON\|PronType=Int`, `Case=Gen\|POS=PRON\|PronType=Int`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `POS=ADV\|PronType=Tot`, `Aspect=Imp\|Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|VerbForm=Conv`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Tot`, `Aspect=Perf\|Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind,Neg`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind,Neg`, `Aspect=Imp\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Degree=Sup\|POS=ADV`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem`, `Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|POS=DET\|PronType=Ind`, `Case=Acc\|POS=PRON\|PronType=Ind,Neg`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Aspect=Perf\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|VerbForm=Conv`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|VerbForm=Conv`, `Case=Dat\|Gender=Masc\|Number=Ptan\|POS=PROPN`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Reflex=Yes\|VerbForm=Conv`, `POS=INTJ`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Loc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|VerbForm=Conv`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Aspect=Perf\|Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Tot`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Tot`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind,Neg`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind,Neg`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Loc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|PronType=Dem`, `Aspect=Imp\|Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Neg\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=PART\|Polarity=Pos`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|VerbForm=Conv`, `Case=Dat\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Coll\|POS=NOUN`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Tot`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Polarity=Neg\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Aspect=Perf\|Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|VerbForm=Conv`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Loc\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Aspect=Imp\|Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `POS=ADV\|Typo=Yes`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Polarity=Neg\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Fem\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|VerbForm=Conv`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Tot`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Abbr=Yes\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Aspect=Perf\|Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Aspect=Imp\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Aspect=Imp\|Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|Typo=Yes\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Mood=Nec\|POS=VERB\|Person=3\|Polarity=Pos\|VerbForm=Fin\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Neg\|Reflex=Yes\|VerbForm=Fin\|Voice=Act`, `NumType=Mult\|POS=ADV`, `Aspect=Imp\|Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Neg\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|NumType=Frac\|Number=Sing\|POS=NUM`, `Case=Loc\|Gender=Masc\|Number=Ptan\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind,Neg`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Evident=Nfh\|Mood=Qot\|POS=AUX\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Aspect=Perf\|Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN\|PronType=Ind`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Rel`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|Person=3\|PronType=Dem`, `Aspect=Imp\|Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=NOUN\|Typo=Yes`, `Aspect=Perf\|Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|POS=PRON\|PronType=Ind`, `Evident=Nfh\|Mood=Qot\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind\|Typo=Yes`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=ADP\|Typo=Yes`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Tot`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|VerbForm=Conv`, `Evident=Fh\|Mood=Ind\|POS=AUX\|Person=3\|Polarity=Neg\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN\|PronType=Int`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind,Neg`, `Case=Gen\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Aspect=Perf\|Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|POS=PRON\|PronType=Ind`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Rel`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|VerbForm=Conv`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Aspect=Imp\|Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind,Neg`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind,Neg`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind,Neg`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Typo=Yes`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Aspect=Perf\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|POS=DET\|PronType=Rel`, `Case=Loc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|Reflex=Yes\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem\|Typo=Yes`, `Case=Nom\|POS=DET\|PronType=Ind,Neg`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Loc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=1\|Polarity=Neg\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Voc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Neg\|Tense=Fut\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Neg\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind,Neg`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Tot`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|Reflex=Yes\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Number=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=AUX\|Polarity=Pos\|VerbForm=Conv`, `Case=Acc\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Reflex=Yes\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Acc\|POS=DET\|PronType=Int`, `Aspect=Perf\|Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `POS=VERB\|Polarity=Neg\|Reflex=Yes\|VerbForm=Inf`, `Aspect=Imp\|Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Gen\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Ptan\|POS=PROPN`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind,Neg`, `Aspect=Imp\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `POS=VERB\|Person=3\|Polarity=Pos\|VerbForm=Inf\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN\|PronType=Dem`, `Aspect=Imp\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Dat\|POS=DET\|PronType=Rel`, `POS=VERB\|Polarity=Pos\|VerbForm=Inf\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=AUX\|Polarity=Pos\|VerbForm=Conv`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Aspect=Perf\|Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Abbr=Yes\|POS=ADV`, `Aspect=Imp\|Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Aspect=Imp\|Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=AUX\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Definite=Ind\|POS=VERB\|Polarity=Pos\|VerbForm=Conv\|Voice=Act`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Rel`, `Evident=Nfh\|Mood=Qot\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Coll\|POS=NOUN\|PronType=Int`, `POS=VERB\|Polarity=Pos\|Typo=Yes\|VerbForm=Inf`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Acc\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|Typo=Yes\|VerbForm=Part\|Voice=Act`, `Mood=Nec\|POS=AUX\|Polarity=Pos\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Loc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Loc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ\|Typo=Yes`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|VerbForm=Conv`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Fem\|Number=Ptan\|POS=PROPN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|Reflex=Yes\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Evident=Nfh\|Mood=Qot\|POS=VERB\|Polarity=Neg\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Loc\|Gender=Fem\|Number=Coll\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind,Neg`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|PronType=Dem\|Typo=Yes`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Neg\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `POS=AUX\|Polarity=Pos\|VerbForm=Inf\|Voice=Act`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN\|Typo=Yes`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Aspect=Imp\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Mood=Cnd\|POS=VERB\|Polarity=Neg\|Reflex=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Rel\|Typo=Yes`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Rel`, `Case=Loc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `POS=PUNCT\|Typo=Yes`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=AUX\|Polarity=Pos\|VerbForm=Conv`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN\|Typo=Yes`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Evident=Nfh\|Mood=Qot\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Case=Gen\|POS=PRON\|PronType=Rel`, `Mood=Imp\|POS=VERB\|Person=3\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `POS=SCONJ\|Typo=Yes`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|Typo=Yes\|VerbForm=Part\|Voice=Pass`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Pres\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|POS=DET\|PronType=Ind`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind,Neg`, `Aspect=Imp\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN\|Typo=Yes`, `Case=Nom\|Gender=Fem\|Number=Ptan\|POS=PROPN`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|Typo=Yes`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Definite=Ind\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|Reflex=Yes\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Degree=Pos\|POS=ADV\|Typo=Yes`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Pres\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|POS=VERB\|Person=3\|Polarity=Pos\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Pos\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=2\|Polarity=Pos\|VerbForm=Fin\|Voice=Act`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Typo=Yes`, `Abbr=Yes\|POS=SYM\|Typo=Yes`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=X`, `POS=ADV\|PronType=Neg\|Typo=Yes`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind,Neg`, `Aspect=Perf\|Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `POS=AUX\|Polarity=Pos\|VerbForm=Conv`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|VerbForm=Conv\|Voice=Act`, `Aspect=Perf\|Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Rel`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Rel`, `Aspect=Perf\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Mood=Nec\|POS=VERB\|Polarity=Pos\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Tot`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|Reflex=Yes\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Aspect=Imp\|Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Nec\|POS=VERB\|Polarity=Pos\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Case=Acc\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Reflex=Yes\|VerbForm=Fin\|Voice=Act`, `POS=VERB\|Polarity=Pos\|Typo=Yes\|VerbForm=Inf\|Voice=Act`, `Aspect=Imp\|Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|Typo=Yes\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind,Neg`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Past\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `POS=ADV\|PronType=Ind,Neg`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=AUX\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|VerbForm=Conv\|Voice=Pass`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Evident=Nfh\|Mood=Qot\|POS=VERB\|Polarity=Pos\|VerbForm=Fin`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|Typo=Yes`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=AUX\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|Typo=Yes\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Evident=Nfh\|Mood=Qot\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Past\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=DET`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Loc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|Reflex=Yes\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN\|Typo=Yes`, `Evident=Nfh\|Mood=Qot\|POS=VERB\|Polarity=Neg\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=AUX\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Dat\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `POS=VERB\|Polarity=Pos\|Reflex=Yes\|VerbForm=Inf\|Voice=Act`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN\|PronType=Dem`, `Aspect=Imp\|Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Definite=Ind\|POS=VERB\|Polarity=Pos\|VerbForm=Conv`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|VerbForm=Part`, `Evident=Nfh\|Mood=Qot\|POS=VERB\|Polarity=Pos\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN\|PronType=Int`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Rel`, `Aspect=Imp\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN\|Typo=Yes`, `Aspect=Perf\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=AUX\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Ptan\|POS=NOUN\|Typo=Yes`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|Typo=Yes`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|Reflex=Yes\|Tense=Pres\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Degree=Cmp\|POS=ADV\|Typo=Yes`, `POS=NOUN\|Typo=Yes`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|Typo=Yes`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem\|Typo=Yes`, `Case=Acc\|Gender=Masc\|Number=Ptan\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Ptan\|POS=NOUN\|Typo=Yes`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Typo=Yes`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem\|Typo=Yes`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Typo=Yes`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN\|Typo=Yes`, `POS=AUX\|Polarity=Neg\|VerbForm=Inf`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN\|Typo=Yes`, `Case=Dat\|Gender=Masc\|Number=Coll\|POS=NOUN`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Past\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|Typo=Yes\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Rel`, `Mood=Cnd\|POS=VERB\|Polarity=Pos\|VerbForm=Fin`, `Case=Nom\|Gender=Fem\|Number=Ptan\|POS=NOUN\|Typo=Yes`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Typo=Yes`, `Mood=Nec\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Fem\|NumType=Frac\|Number=Sing\|POS=NUM`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Polarity=Neg\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|NumType=Frac\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|Typo=Yes\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM\|Typo=Yes`, `Case=Acc\|Gender=Fem\|Number=Ptan\|POS=PROPN`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=DET`, `Aspect=Imp\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|VerbForm=Conv\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=AUX\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Typo=Yes`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Voice=Act`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=DET`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Typo=Yes`, `Case=Loc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Past\|Typo=Yes\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem,Neg`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Fut\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN\|Typo=Yes`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Polarity=Neg\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|POS=DET\|PronType=Ind,Neg`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Polarity=Neg\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Evident=Fh\|Mood=Ind\|POS=AUX\|Person=3\|Polarity=Pos\|Tense=Pres\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=AUX\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Neg\|VerbForm=Conv\|Voice=Act`, `Aspect=Imp\|Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Voc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `POS=ADV\|PronType=Int\|Typo=Yes`, `Case=Dat\|POS=PRON\|PronType=Ind,Neg`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Neg\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Polarity=Neg\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Tot`, `Evident=Fh\|Mood=Ind\|POS=VERB\|Person=3\|Polarity=Neg\|Tense=Past\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot\|Typo=Yes`, `Evident=Fh\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Polarity=Pos\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Typo=Yes`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind,Neg`, `Case=Nom\|Gender=Fem\|Number=Coll\|POS=NOUN`, `Aspect=Perf\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Voc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Typo=Yes`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=NOUN\|Typo=Yes`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Evident=Fh\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Neg\|Reflex=Yes\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Gen\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Past\|Typo=Yes\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Cnd\|POS=VERB\|Polarity=Pos\|Typo=Yes\|VerbForm=Fin\|Voice=Act`, `Abbr=Yes\|POS=VERB`, `Aspect=Imp\|Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `NumType=Ord\|POS=ADJ\|Typo=Yes`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=VERB\|Polarity=Pos\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN\|PronType=Neg`, `Aspect=Perf\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Reflex=Yes\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=VERB\|Polarity=Neg\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind,Neg`, `Aspect=Perf\|Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=AUX\|Polarity=Pos\|Tense=Past\|VerbForm=Part\|Voice=Act` |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `csubj:pass`, `dep`, `det`, `discourse`, `dislocated`, `fixed`, `flat`, `flat:foreign`, `flat:name`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `orphan`, `parataxis`, `punct`, `vocative`, `xcomp` |
| **`experimental_edit_tree_lemmatizer`** | `0`, `2`, `4`, `6`, `8`, `10`, `11`, `13`, `15`, `18`, `20`, `22`, `26`, `28`, `31`, `34`, `37`, `39`, `41`, `43`, `45`, `47`, `49`, `52`, `54`, `56`, `58`, `60`, `61`, `64`, `66`, `67`, `69`, `71`, `73`, `74`, `76`, `78`, `80`, `83`, `85`, `86`, `87`, `89`, `91`, `93`, `95`, `97`, `98`, `101`, `104`, `107`, `109`, `110`, `112`, `113`, `116`, `119`, `122`, `124`, `126`, `128`, `131`, `134`, `138`, `140`, `142`, `145`, `147`, `149`, `152`, `153`, `155`, `157`, `160`, `163`, `164`, `166`, `168`, `172`, `175`, `177`, `179`, `181`, `183`, `184`, `187`, `190`, `193`, `195`, `196`, `198`, `200`, `201`, `203`, `205`, `208`, `209`, `210`, `212`, `214`, `218`, `220`, `222`, `224`, `227`, `230`, `233`, `235`, `237`, `239`, `243`, `245`, `246`, `248`, `250`, `251`, `253`, `255`, `256`, `259`, `260`, `262`, `265`, `269`, `272`, `274`, `275`, `276`, `278`, `281`, `283`, `287`, `291`, `293`, `295`, `298`, `300`, `303`, `305`, `306`, `308`, `311`, `313`, `314`, `316`, `319`, `322`, `324`, `326`, `328`, `329`, `332`, `333`, `335`, `337`, `339`, `341`, `343`, `345`, `348`, `349`, `350`, `352`, `354`, `355`, `358`, `359`, `361`, `362`, `365`, `368`, `370`, `372`, `374`, `376`, `377`, `379`, `381`, `382`, `384`, `387`, `389`, `390`, `392`, `396`, `398`, `400`, `401`, `405`, `408`, `409`, `410`, `412`, `415`, `417`, `419`, `420`, `422`, `425`, `426`, `428`, `430`, `432`, `434`, `436`, `438`, `439`, `440`, `443`, `445`, `447`, `448`, `450`, `452`, `454`, `455`, `458`, `461`, `462`, `464`, `466`, `468`, `469`, `471`, `473`, `474`, `476`, `477`, `480`, `483`, `484`, `485`, `487`, `488`, `491`, `494`, `495`, `497`, `498`, `499`, `500`, `501`, `502`, `504`, `506`, `508`, `510`, `511`, `512`, `513`, `515`, `517`, `518`, `519`, `520`, `524`, `525`, `527`, `529`, `532`, `535`, `536`, `537`, `539`, `540`, `541`, `543`, `546`, `548`, `549`, `550`, `551`, `553`, `555`, `556`, `560`, `562`, `564`, `566`, `567`, `569`, `571`, `572`, `575`, `577`, `579`, `582`, `584`, `585`, `586`, `587`, `588`, `593`, `595`, `596`, `599`, `601`, `603`, `605`, `607`, `610`, `613`, `616`, `619`, `622`, `624`, `625`, `627`, `629`, `631`, `633`, `636`, `638`, `640`, `642`, `644`, `645`, `646`, `650`, `651`, `653`, `655`, `657`, `660`, `662`, `665`, `667`, `668`, `670`, `673`, `676`, `678`, `680`, `681`, `682`, `684`, `687`, `688`, `690`, `691`, `692`, `693`, `694`, `697`, `699`, `700`, `701`, `702`, `705`, `706`, `708`, `709`, `712`, `714`, `715`, `718`, `721`, `723`, `725`, `726`, `728`, `729`, `731`, `732`, `733`, `735`, `736`, `737`, `738`, `739`, `741`, `743`, `745`, `746`, `748`, `749`, `750`, `751`, `753`, `754`, `755`, `756`, `758`, `759`, `760`, `761`, `762`, `764`, `766`, `767`, `768`, `771`, `773`, `774`, `775`, `776`, `777`, `778`, `779`, `781`, `783`, `785`, `786`, `787`, `790`, `791`, `792`, `793`, `795`, `796`, `798`, `799`, `800`, `801`, `804`, `805`, `806`, `807`, `808`, `809`, `810`, `811`, `812`, `813`, `814`, `816`, `823`, `825`, `826`, `828`, `830`, `831`, `832`, `835`, `838`, `839`, `840`, `842`, `843`, `844`, `846`, `847`, `849`, `851`, `853`, `855`, `856`, `858`, `859`, `861`, `862`, `864`, `865`, `866`, `869`, `870`, `871`, `873`, `876`, `878`, `879`, `880`, `881`, `882`, `883`, `886`, `888`, `889`, `891`, `894`, `897`, `898`, `899`, `900`, `901`, `904`, `907`, `908`, `909`, `912`, `914`, `916`, `917`, `919`, `921`, `922`, `923`, `925`, `928`, `930`, `932`, `933`, `936`, `937`, `938`, `940`, `942`, `943`, `944`, `946`, `947`, `949`, `951`, `953`, `955`, `956`, `957`, `961`, `963`, `966`, `967`, `968`, `969`, `972`, `974`, `976`, `977`, `979`, `981`, `982`, `983`, `986`, `988`, `989`, `990`, `991`, `995`, `998`, `999`, `1002`, `1004`, `1007`, `1008`, `1009`, `1012`, `1015`, `1016`, `1018`, `1019`, `1021`, `1024`, `1027`, `1028`, `1031`, `1034`, `1035`, `1037`, `1039`, `1041`, `1043`, `1044`, `1046`, `1049`, `1051`, `1053`, `1054`, `1056`, `1058`, `1060`, `1061`, `1062`, `1064`, `1065`, `1067`, `1069`, `1070`, `1071`, `1073`, `1074`, `1075`, `1076`, `1078`, `1079`, `1082`, `1083`, `1085`, `1088`, `1089`, `1092`, `1095`, `1097`, `1099`, `1100`, `1102`, `1104`, `1105`, `1108`, `1110`, `1114`, `1116`, `1117`, `1119`, `1121`, `1123`, `1127`, `1128`, `1129`, `1130`, `1131`, `1133`, `1135`, `1137`, `1139`, `1140`, `1142`, `1143`, `1145`, `1147`, `1149`, `1150`, `1153`, `1158`, `1160`, `1162`, `1167`, `1168`, `1169`, `1171`, `1172`, `1174`, `1176`, `1178`, `1180`, `1181`, `1182`, `1183`, `1185`, `1188`, `1191`, `1193`, `1195`, `1196`, `1197`, `1200`, `1201`, `1204`, `1205`, `1206`, `1208`, `1209`, `1211`, `1213`, `1216`, `1218`, `1220`, `1221`, `1222`, `1223`, `1225`, `1226`, `1227`, `1229`, `1230`, `1232`, `1233`, `1235`, `1236`, `1237`, `1238`, `1240`, `1241`, `1242`, `1243`, `1245`, `1247`, `1248`, `1250`, `1251`, `1252`, `1253`, `1255`, `1256`, `1257`, `1258`, `1259`, `1260`, `1261`, `1262`, `1263`, `1264`, `1267`, `1269`, `1270`, `1272`, `1274`, `523`, `1276`, `1279`, `1280`, `1281`, `1282`, `1284`, `1285`, `1287`, `1289`, `1292`, `1293`, `1294`, `1297`, `1298`, `1300`, `1301`, `1305`, `1307`, `1309`, `1310`, `1313`, `1314`, `1317`, `1318`, `1319`, `1321`, `1323`, `1324`, `1325`, `1326`, `1327`, `1329`, `1330`, `1333`, `1335`, `1337`, `1338`, `1340`, `1342`, `1344`, `1346`, `1347`, `1350`, `1351`, `1353`, `1356`, `1357`, `1358`, `1360`, `1362`, `1364`, `1367`, `1368`, `1369`, `1370`, `1371`, `1373`, `1375`, `1377`, `1378`, `1381`, `1383`, `1384`, `1386`, `1388`, `1390`, `1391`, `1392`, `1393`, `1395`, `1396`, `1398`, `1399`, `1401`, `1402`, `1403`, `1405`, `1406`, `1407`, `1408`, `1410`, `1411`, `1412`, `1413`, `1416`, `1418`, `1419`, `1422`, `1423`, `1425`, `1427`, `1428`, `1431`, `1432`, `1433`, `1434`, `1437`, `1438`, `1439`, `1441`, `1442`, `1443`, `1444`, `1445`, `1446`, `1448`, `1450`, `1452`, `1454`, `1455`, `1456`, `1457`, `1458`, `1460`, `1462`, `1466`, `1467`, `1469`, `1470`, `1474`, `1476`, `1477`, `1479`, `1481`, `1482`, `1483`, `1484`, `1485`, `1487`, `1489`, `1492`, `1493`, `1495`, `1496`, `1498`, `1499`, `1501`, `1502`, `1503`, `1506`, `1507`, `1508`, `1509`, `1511`, `1513`, `1514`, `1517`, `1518`, `1520`, `1523`, `1525`, `1527`, `1528`, `1530`, `1532`, `1534`, `1535`, `1536`, `1537`, `1539`, `1540`, `1542`, `1543`, `1545`, `1546`, `1547`, `1549`, `1551`, `1552`, `1553`, `1554`, `1557`, `1558`, `1560`, `1562`, `1564`, `1567`, `1569`, `1571`, `1572`, `1573`, `1574`, `1576`, `1577`, `1579`, `1581`, `1583`, `1584`, `1531`, `1585`, `1587`, `1588`, `1589`, `1591`, `1592`, `1595`, `1596`, `1598`, `1600`, `1601`, `1604`, `1605`, `1607`, `1608`, `1610`, `1612`, `1613`, `1616`, `1618`, `1619`, `1621`, `1623`, `1625`, `1626`, `1629`, `1630`, `1631`, `1633`, `1637`, `1639`, `1640`, `1642`, `1643`, `1645`, `1647`, `1648`, `1651`, `1652`, `1654`, `1655`, `1656`, `1657`, `1659`, `1661`, `1664`, `1665`, `1668`, `1670`, `1672`, `1673`, `1674`, `1675`, `1678`, `1679`, `1681`, `1682`, `1685`, `1688`, `1690`, `1692`, `1694`, `1695`, `1697`, `1699`, `1701`, `1705`, `1708`, `1709`, `1710`, `1711`, `1714`, `1715`, `1718`, `1721`, `1723`, `1725`, `1727`, `1729`, `1731`, `1734`, `1736`, `1739`, `1741`, `1743`, `1745`, `1746`, `1748`, `1749`, `1752`, `1754`, `1756`, `1757`, `1758`, `1759`, `1760`, `1761`, `1766`, `1768`, `1769`, `1770`, `1771`, `1773`, `1775`, `1776`, `1777`, `1779`, `1781`, `1784`, `1785`, `1786`, `1788`, `1789`, `1790`, `1792`, `1794`, `1796`, `1798`, `1800`, `1802`, `1805`, `1807`, `1809`, `1810`, `1811`, `1813`, `1815`, `1816`, `1817`, `1818`, `1821`, `1823`, `1824`, `1825`, `1826`, `1828`, `1830`, `1832`, `1833`, `1834`, `1835`, `1837`, `1840`, `1842`, `1846`, `1848`, `1852`, `1853`, `1854`, `1856`, `1857`, `1858`, `1859`, `1860`, `1862`, `1863`, `1866`, `1868`, `1869`, `1871`, `1873`, `1304`, `1874`, `1875`, `1876`, `1878`, `1879`, `1880`, `1881`, `1883`, `1885`, `1886`, `1887`, `1890`, `1892`, `1893`, `1894`, `1897`, `1898`, `1900`, `1488`, `1903`, `1904`, `1905`, `1906`, `1907`, `1908`, `1910`, `1912`, `1913`, `1914`, `1915`, `1916`, `1918`, `1919`, `1920`, `1922`, `1925`, `1927`, `1929`, `1931`, `1933`, `1934`, `1936`, `1938`, `1939`, `1940`, `1943`, `1944`, `1945`, `1946`, `1947`, `1948`, `1950`, `1951`, `1953`, `1955`, `1956`, `1957`, `1960`, `1962`, `1963`, `1964`, `1965`, `1966`, `1969`, `1971`, `1973`, `1975`, `1976`, `1979`, `1980`, `1981`, `1982`, `1985`, `1986`, `1987`, `1988`, `1989`, `1991`, `1992`, `1993`, `1994`, `1995`, `1996`, `1999`, `2002`, `2003`, `2004`, `2006`, `2007`, `2008`, `2010`, `2011`, `2013`, `2015`, `2016`, `2017`, `2018`, `2020`, `2021`, `2023`, `2024`, `2028`, `2030`, `2031`, `2032`, `2033`, `2034`, `2037`, `2038`, `2040`, `2041`, `2043`, `2044`, `2047`, `2048`, `2049`, `2050`, `2051`, `2052`, `2053`, `2056`, `2058`, `2060`, `2062`, `2063`, `2065`, `2066`, `2067`, `2068`, `2069`, `2070`, `2071`, `2072`, `2075`, `2076`, `1806`, `2079`, `2081`, `2083`, `2086`, `2089`, `2090`, `2091`, `2092`, `2093`, `2095`, `2096`, `2097`, `2098`, `2099`, `2102`, `2103`, `2106`, `2107`, `2108`, `2110`, `2111`, `2112`, `2113`, `2114`, `2115`, `2116`, `2117`, `2118`, `2119`, `2120`, `2121`, `2122`, `2123`, `2124`, `2125`, `2127`, `2129`, `2132`, `2135`, `2136`, `2137`, `2138`, `2139`, `2141`, `2142`, `2143`, `2144`, `2147`, `2149`, `2151`, `2152`, `2153`, `2154`, `2157`, `2158`, `2159`, `2161`, `2162`, `2163`, `2166`, `2168`, `2169`, `2171`, `2174`, `2175`, `2176`, `2179`, `2181`, `2182`, `2184`, `2185`, `2186`, `2187`, `2189`, `2192`, `2193`, `2195`, `2196`, `2197`, `2199`, `2200`, `2202`, `2203`, `2206`, `2207`, `2208`, `2209`, `2212`, `2213`, `2216`, `2219`, `2220`, `2222`, `2225`, `2227`, `2228`, `2230`, `2231`, `2233`, `2235`, `2236`, `2237`, `2239`, `2241`, `2243`, `2245`, `2246`, `2248`, `2249`, `2250`, `2251`, `2252`, `2253`, `2254`, `2255`, `2256`, `2259`, `2264`, `2265`, `2269`, `2270`, `2272`, `2273`, `2274`, `2276`, `2277`, `2278`, `2279`, `2283`, `2285`, `2286`, `2288`, `2289`, `2290`, `2292`, `2293`, `2294`, `2295`, `2297`, `2299`, `2300`, `2303`, `2305`, `2306`, `2309`, `2310`, `2312`, `2314`, `2316`, `2318`, `2319`, `2320`, `2321`, `2322`, `2323`, `2325`, `2327`, `1961`, `2328`, `2329`, `2330`, `2332`, `2333`, `2334`, `2336`, `2338`, `2340`, `2342`, `2343`, `2345`, `2347`, `2349`, `2351`, `2353`, `2354`, `2357`, `2358`, `2359`, `2360`, `2362`, `2363`, `2364`, `2365`, `2366`, `2367`, `2368`, `2369`, `2372`, `2375`, `2376`, `2377`, `2379`, `2381`, `2382`, `2383`, `2384`, `2385`, `2386`, `2387`, `2388`, `2389`, `2390`, `2392`, `2393`, `2394`, `2396`, `2398`, `2399`, `2400`, `2404`, `2405`, `2406`, `2407`, `2408`, `2409`, `2410`, `2411`, `2412`, `2413`, `2414`, `2415`, `2416`, `2417`, `2418`, `2419`, `2420`, `2422`, `2423`, `2425`, `2426`, `2427`, `2428`, `2430`, `2431`, `2432`, `2435`, `2436`, `2438`, `2439`, `2441`, `2442`, `2443`, `2444`, `2446`, `2448`, `2449`, `2452`, `2454`, `2455`, `2456`, `2457`, `2458`, `2461`, `2463`, `2464`, `2467`, `2468`, `2470`, `2472`, `2475`, `2477`, `2478`, `2479`, `2481`, `2483`, `2485`, `2486`, `2488`, `2489`, `2490`, `2491`, `2492`, `2493`, `2494`, `2495`, `2496`, `2497`, `2498`, `2499`, `2500`, `2501`, `2503`, `2504`, `2505`, `2506`, `2507`, `2508`, `2510`, `2512`, `2513`, `2514`, `2515`, `2516`, `2517`, `2518`, `2519`, `2520`, `2521`, `2522`, `2523`, `2524`, `2526`, `2527`, `2528`, `2529`, `2530`, `2531`, `2534`, `2537`, `2540`, `2542`, `2543`, `2544`, `2546`, `2548`, `2549`, `2550`, `2551`, `2552`, `2553`, `2554`, `2555`, `2558`, `2560`, `2561`, `2562`, `2563`, `2565`, `2567`, `2570`, `2572`, `2573`, `2575`, `2576`, `2577`, `2578`, `2579`, `2581`, `2583`, `2584`, `2586`, `2588`, `2589`, `2592`, `2593`, `2595`, `2597`, `2598`, `2601`, `2603`, `2604`, `2605`, `2606`, `2607`, `2608`, `2610`, `2611`, `2612`, `2613`, `2614`, `2615`, `2617`, `2618`, `2619`, `2620`, `2623`, `2624`, `2626`, `2628`, `2629`, `2630`, `2631`, `2632`, `2633`, `2634`, `2636`, `2637`, `2639`, `2640`, `2642`, `2643`, `2644`, `2645`, `2646`, `2649`, `2650`, `2652`, `2653`, `2654`, `2655`, `2656`, `2657`, `2659`, `2660`, `2663`, `2664`, `2665`, `2666`, `2668`, `2669`, `2671`, `2672`, `2673`, `2675`, `2677`, `2678`, `2679`, `2680`, `2681`, `2682`, `2685`, `2686`, `2687`, `2688`, `2689`, `2690`, `2691`, `2693`, `2694`, `2695`, `2697`, `2699`, `2700`, `2701`, `2703`, `2704`, `2706`, `2707`, `2708`, `2709`, `2711`, `2712`, `2713`, `2716`, `2718`, `2720`, `2721`, `2722`, `2724`, `2725`, `2726`, `2728`, `2731`, `2732`, `2735`, `2736`, `2737`, `2740`, `2741`, `2742`, `2744`, `2746`, `2749`, `2750`, `2753`, `2756`, `2757`, `2760`, `2763`, `2764`, `2765`, `2766`, `2769`, `2771`, `2772`, `2773`, `2775`, `2778`, `2779`, `2780`, `2781`, `2437`, `2782`, `2784`, `2786`, `2787`, `2788`, `2789`, `2790`, `2792`, `2793`, `2795`, `2796`, `2797`, `2799`, `2800`, `2804`, `2805`, `2806`, `2807`, `2029`, `2808`, `2809`, `2812`, `2814`, `2816`, `2819`, `2820`, `2822`, `2823`, `2824`, `2825`, `2827`, `2829`, `2831`, `2832`, `2833`, `2835`, `2836`, `2838`, `2839`, `2395`, `2841`, `2843`, `2844`, `2846`, `2847`, `2848`, `2850`, `2852`, `2854`, `2855`, `2856`, `2859`, `2860`, `2862`, `2863`, `2864`, `2865`, `2867`, `2869`, `2870`, `2871`, `2873`, `2874`, `2875`, `2876`, `2877`, `2878`, `2880`, `2882`, `2883`, `2884`, `2885`, `2887`, `2889`, `2890`, `2891`, `2892`, `2894`, `2895`, `2896`, `2897`, `2898`, `2899`, `2900`, `2901`, `2902`, `2903`, `2904`, `490`, `2906`, `2907`, `2909`, `2910`, `2911`, `2913`, `2914`, `2915`, `2917`, `2919`, `2920`, `2921`, `2924`, `2925`, `2926`, `2928`, `2929`, `2930`, `2931`, `2933`, `2934`, `2937`, `2938`, `2939`, `2940`, `2941`, `2942`, `2943`, `2946`, `2947`, `2948`, `2949`, `2950`, `2951`, `2952`, `2954`, `2955`, `2956`, `2957`, `2958`, `2960`, `2962`, `2964`, `2965`, `2966`, `2967`, `2969`, `2970`, `1491`, `2971`, `2972`, `1599`, `2973`, `2974`, `2975`, `2977`, `2979`, `2980`, `2981`, `2982`, `2983`, `2985`, `2986`, `2987`, `2988`, `2989`, `2990`, `2991`, `2992`, `2994`, `2995`, `2998`, `3001`, `3002`, `3003`, `3004`, `3008`, `3010`, `3011`, `3012`, `3013`, `3014`, `3016`, `3018`, `3020`, `3021`, `3023`, `3024`, `3025`, `3026`, `3027`, `3029`, `3032`, `3033`, `3036`, `3037`, `3038`, `3040`, `3041`, `3042`, `3043`, `3044`, `3046`, `3047`, `3048`, `3050`, `3051`, `3054`, `3055`, `3056`, `3057`, `3058`, `3060`, `3061`, `3062`, `3063`, `3064`, `3065`, `3068`, `3071`, `3072`, `3073`, `3075`, `3077`, `3078`, `3080`, `3081`, `3082`, `3084`, `3085`, `3087`, `3088`, `3089`, `3090`, `3091`, `3092`, `3094`, `3096`, `3097`, `3098`, `3099`, `3102`, `3103`, `3105`, `3107`, `3108`, `3109`, `3111`, `3113`, `3114`, `3116`, `3117`, `3118`, `3120`, `3122`, `3124`, `3125`, `3126`, `3127`, `3128`, `3130`, `3131`, `3132`, `3133`, `3136`, `3137`, `3139`, `3140`, `3143`, `3144`, `3146`, `3147`, `3148`, `3151`, `3152`, `3154`, `3156`, `3158`, `3159`, `3161`, `3164`, `3165`, `3166`, `3168`, `3170`, `3171`, `3172`, `3173`, `3174`, `3176`, `3177`, `3178`, `3179`, `3180`, `3181`, `3183`, `3184`, `3187`, `3188`, `3189`, `3190`, `3192`, `3193`, `3197`, `3198`, `3200`, `3201`, `3202`, `3205`, `3206`, `3207`, `3209`, `3210`, `3211`, `3212`, `3214`, `3215`, `3216`, `3217`, `3218`, `3220`, `3221`, `3222`, `3223`, `3224`, `3226`, `3227`, `3228`, `3230`, `3232`, `3235`, `3237`, `3238`, `3239`, `3241`, `3243`, `3246`, `3248`, `3249`, `3250`, `3251`, `3252`, `3253`, `3254`, `3255`, `3256`, `3257`, `3258`, `3259`, `3260`, `3263`, `3264`, `3265`, `3269`, `3270`, `3272`, `3273`, `3275`, `3276`, `3278`, `3279`, `3280`, `3282`, `3283`, `3284`, `3285`, `3287`, `3288`, `3291`, `3292`, `3294`, `3295`, `3296`, `3297`, `3299`, `3301`, `3306`, `3308`, `3310`, `3311`, `3312`, `3313`, `3315`, `3317`, `3318`, `3319`, `3320`, `3321`, `3322`, `3325`, `3326`, `3327`, `3330`, `3331`, `3332`, `3333`, `3334`, `3335`, `3337`, `3338`, `3340`, `3342`, `3343`, `3344`, `3345`, `3346`, `3347`, `3348`, `3349`, `3350`, `3352`, `3353`, `3355`, `3356`, `3357`, `3359`, `3360`, `3361`, `3363`, `3364`, `3366`, `3368`, `3369`, `3370`, `3371`, `3372`, `3373`, `3375`, `3376`, `3377`, `3378`, `3380`, `3381`, `3382`, `3383`, `3384`, `3385`, `3386`, `3387`, `3388`, `3390`, `3391`, `3392`, `3393`, `3394`, `3395`, `3397`, `3399`, `3400`, `3401`, `3402`, `3406`, `3407`, `3408`, `3409`, `3411`, `3413`, `3414`, `3415`, `3416`, `3417`, `3418`, `3419`, `3421`, `3422`, `3424`, `3425`, `3428`, `3429`, `3431`, `3432`, `3433`, `3434`, `3436`, `3439`, `3441`, `3442`, `3444`, `3445`, `3446`, `3447`, `3448`, `3450`, `3451`, `3452`, `3453`, `3454`, `3455`, `3456`, `3457`, `3459`, `3460`, `3461`, `3462`, `3463`, `3464`, `3465`, `3468`, `3470`, `3473`, `3474`, `3475`, `3476`, `3477`, `3478`, `3480`, `3481`, `3483`, `3484`, `3485`, `3486`, `3487`, `3489`, `3490`, `3493`, `3495`, `3496`, `3498`, `3499`, `3500`, `3502`, `3503`, `3504`, `3505`, `3507`, `3508`, `3509`, `3510`, `3511`, `3512`, `3513`, `3515`, `3516`, `3517`, `3520`, `3521`, `3522`, `3524`, `3525`, `3526`, `3527`, `3529`, `3531`, `3534`, `3535`, `3536`, `3537`, `3538`, `3539`, `3542`, `3543`, `3544`, `3545`, `3546`, `3547`, `3548`, `3549`, `3550`, `3551`, `3553`, `3556`, `3557`, `3558`, `3559`, `3560`, `3561`, `3562`, `3563`, `3564`, `3565`, `3566`, `3568`, `3569`, `3570`, `3573`, `3574`, `3576`, `3577`, `3580`, `3581`, `3582`, `3585`, `3586`, `3587`, `3588`, `3589`, `3591`, `3592`, `3594`, `3596`, `3597`, `3598`, `3599`, `3600`, `3602`, `3603`, `3605`, `3606`, `3608`, `3609`, `3610`, `3611`, `3613`, `3614`, `3615`, `3616`, `3617`, `3618`, `3619`, `3620`, `3622`, `3623`, `3624`, `3625`, `3626`, `3627`, `3628`, `3630`, `3631`, `3632`, `3633`, `3634`, `3635`, `3637`, `3639`, `3640`, `3641`, `3643`, `3644`, `3645`, `3647`, `3648`, `3649`, `3650`, `3652`, `3654`, `3655`, `3657`, `3658`, `3659`, `3660`, `3661`, `3663`, `3666`, `3669`, `3670`, `3671`, `3672`, `3673`, `3675`, `3676`, `3677`, `3678`, `3679`, `3681`, `3682`, `3685`, `3686`, `3687`, `3689`, `3690`, `3692`, `3693`, `3695`, `3697`, `3698`, `3699`, `3700`, `3701`, `3703`, `3705`, `3708`, `3709`, `3710`, `3713`, `3714`, `3715`, `3716`, `3717`, `3718`, `3719`, `3720`, `3723`, `3725`, `3726`, `3728`, `3729`, `3730`, `3731`, `3732`, `3733`, `3734`, `3735`, `3736`, `3737`, `3738`, `3740`, `3742`, `3744`, `3746`, `3747`, `3748`, `3749`, `3751`, `3752`, `3753`, `3754`, `3755`, `3756`, `3757`, `3758`, `3760`, `3761`, `3762`, `3764`, `3765`, `3766`, `3767`, `3768`, `3769`, `3771`, `3773`, `3775`, `3777`, `3779`, `3780`, `3781`, `3782`, `3783`, `3784`, `3786`, `3787`, `3788`, `3789`, `3791`, `3792`, `3793`, `3795`, `3796`, `3797`, `3798`, `3799`, `3800`, `3801`, `3803`, `3805`, `3806`, `3808`, `3809`, `3812`, `3814`, `3817`, `3819`, `3822`, `3825`, `3827`, `3828`, `3829`, `3830`, `3831`, `3832`, `3833`, `3835`, `3836`, `3837`, `3838`, `3839`, `3840`, `3841`, `3842`, `3843`, `3844`, `3845`, `3847`, `3848`, `3849`, `3850`, `3851`, `3852`, `3853`, `3854`, `3855`, `3857`, `3858`, `3861`, `3863`, `3864`, `3865`, `3866`, `3867`, `3868`, `3869`, `3870`, `3872`, `3873`, `3874`, `3875`, `3876`, `3877`, `3879`, `3880`, `3881`, `3883`, `3884`, `3885`, `3886`, `3887`, `3888`, `3889`, `3891`, `3892`, `3893`, `3894`, `3895`, `3896`, `3898`, `3899`, `3900`, `3901`, `3902`, `3905`, `3906`, `3907`, `3908`, `3909`, `3910`, `3911`, `3912`, `3913`, `3914`, `3915`, `3916`, `3917`, `3918`, `3920`, `3923`, `3924`, `3925`, `3927`, `3928`, `3929`, `3930`, `3931`, `3932`, `3934`, `3935`, `3936`, `3938`, `3939`, `3940`, `3941`, `3942`, `3945`, `3946`, `3949`, `3950`, `3951`, `3952`, `3953`, `3955`, `3956`, `3958`, `3959`, `3960`, `3962`, `3963`, `3964`, `3965`, `3967`, `3969`, `3970`, `3973`, `3974`, `3976`, `3979`, `3980`, `3983`, `3984`, `3985`, `3986`, `3987`, `3989`, `3990`, `3991`, `3993`, `3994`, `3997`, `3998`, `3999`, `4001`, `4004`, `4005`, `4007`, `4010`, `4011`, `4013`, `4016`, `4019`, `4020`, `4023`, `4024`, `4025`, `4026`, `4027`, `4028`, `4029`, `4030`, `4031`, `4032`, `4034`, `4035`, `4037`, `4038`, `4040`, `4041`, `4043`, `4045`, `4046`, `4047`, `4049`, `4050`, `4052`, `4054`, `4056`, `4057`, `4058`, `4059`, `4060`, `4061`, `4062`, `4063`, `4065`, `4067`, `4068`, `4069`, `4070`, `4071`, `4072`, `4073`, `4074`, `4076`, `4079`, `4080`, `4081`, `4082`, `4083`, `4084`, `4086`, `4088`, `4089`, `4090`, `4091`, `4092`, `4093`, `4094`, `4095`, `4097`, `4098`, `4099`, `4102`, `4103`, `4104`, `4106`, `4107`, `4108`, `4110`, `4112`, `4113`, `4114`, `4115`, `4116`, `4117`, `4118`, `4120`, `4122`, `4125`, `4127`, `4129`, `4132`, `4134`, `4135`, `4136`, `4137`, `4138`, `4139`, `4140`, `4141`, `4142`, `4143`, `4144`, `4146`, `4147`, `4148`, `4149`, `4150`, `4151`, `4152`, `4153`, `4154`, `4155`, `4156`, `4158`, `4159`, `4160`, `4161`, `4162`, `4164`, `4165`, `4166`, `4168`, `4171`, `4172`, `4173`, `4174`, `4175`, `4176`, `4177`, `4179`, `4180`, `4181`, `4182`, `4184`, `4186`, `4187`, `4188`, `4189`, `4191`, `4195`, `4196`, `4197`, `4198`, `4199`, `4202`, `4203`, `4204`, `4205`, `4206`, `4209`, `4210`, `4212`, `4213`, `4216`, `4217`, `4218`, `4219`, `4221`, `4224`, `4225`, `4226`, `4227`, `4230`, `4232`, `4233`, `4234`, `4238`, `4239`, `4241`, `4242`, `4245`, `4247`, `4249`, `4252`, `4254`, `4257`, `4258`, `4261`, `4262`, `4263`, `4265`, `4266`, `4268`, `4269`, `4270`, `4271`, `4273`, `4275`, `4276`, `4278`, `4279`, `4280`, `4281`, `4282`, `4283`, `4284`, `4286`, `4287`, `4288`, `4289`, `4290`, `4291`, `4292`, `4294`, `4295`, `4296`, `4297`, `4298`, `4299`, `4300`, `4301`, `4302`, `4303`, `4306`, `4309`, `4310`, `4311`, `4312`, `4313`, `4314`, `4317`, `4318`, `4319`, `4320`, `4321`, `4322`, `4324`, `4325`, `4327`, `4329`, `4330`, `4331`, `4332`, `4333`, `4334`, `4336`, `4337`, `4339`, `4340`, `4341`, `4343`, `4344`, `4345`, `4346`, `4347`, `4348`, `4350`, `4351`, `4352`, `4353`, `4354`, `4355`, `4356`, `4358`, `4359`, `4360`, `4361`, `4363`, `4364`, `4365`, `4366`, `4368`, `4370`, `4373`, `4376`, `4377`, `4378`, `4379`, `4380`, `4381`, `4384`, `4385`, `4386`, `4387`, `4388`, `4389`, `4390`, `4391`, `4393`, `4394`, `4395`, `4396`, `4397`, `4398`, `4400`, `4401`, `3467`, `4402`, `4403`, `4405`, `4406`, `4407`, `4408`, `4409`, `4410`, `4411`, `4412`, `4413`, `4414`, `4416`, `4417`, `4418`, `4420`, `4421`, `4422`, `4424`, `4425`, `4426`, `4427`, `4430`, `4431`, `4432`, `4435`, `4436`, `4437`, `4438`, `4439`, `4440`, `4441`, `4443`, `4444`, `4446`, `4447`, `4449`, `4451`, `4452`, `4454`, `4455`, `4456`, `4457`, `4458`, `4459`, `4462`, `4463`, `4465`, `4466`, `4468`, `4469`, `4471`, `4472`, `4473`, `4474`, `4476`, `4477`, `4478`, `4479`, `4480`, `4482`, `4483`, `4484`, `4486`, `4488`, `4489`, `4490`, `4491`, `4494`, `4496`, `4497`, `4498`, `4499`, `4500`, `4501`, `4503`, `4505`, `4506`, `249`, `4507`, `4508`, `4509`, `4510`, `4513`, `4514`, `4515`, `4517`, `4518`, `4519`, `4520`, `4521`, `931`, `4523`, `4527`, `4528`, `4529`, `4530`, `4531`, `4532`, `4533`, `4535`, `4536`, `4537`, `4538`, `4540`, `4542`, `4545`, `4546`, `4547`, `4548`, `4549`, `4551`, `4552`, `4555`, `4556`, `4557`, `4559`, `4560`, `4562`, `4563`, `4564`, `4565`, `4566`, `4568`, `4570`, `4571`, `4572`, `4573`, `4574`, `4576`, `4577`, `4578`, `4579`, `4581`, `4583`, `4586`, `4587`, `4590`, `4591`, `4592`, `4594`, `4595`, `4598`, `4599`, `4600`, `4601`, `4602`, `4603`, `4605`, `4606`, `4607`, `4608`, `4609`, `4612`, `4613`, `4615`, `4616`, `4617`, `4618`, `4619`, `4620`, `4621`, `4623`, `4625`, `4626`, `4627`, `4629`, `4630`, `4631`, `4632`, `4633`, `4634`, `4635`, `4636`, `4637`, `4638`, `4639`, `4641`, `4643`, `4644`, `4645`, `4646`, `4647`, `4648`, `4649`, `4650`, `4651`, `4653`, `4655`, `4656`, `4658`, `4659`, `4660`, `4662`, `4663`, `4664`, `4665`, `4667`, `4668`, `4669`, `4670`, `4672`, `4673`, `4674`, `4676`, `4678`, `4679`, `4680`, `4682`, `4684`, `4685`, `4686`, `4688`, `4690`, `4691`, `4692`, `4693`, `4695`, `4696`, `4697`, `4698`, `4700`, `4701`, `4704`, `4705`, `4706`, `4708`, `4711`, `4712`, `4713`, `4714`, `4715`, `4716`, `4719`, `4722`, `4723`, `4724`, `4726`, `4727`, `4728`, `4730`, `4731`, `4733`, `4734`, `4735`, `4736`, `4738`, `4739`, `4740`, `4741`, `4742`, `4743`, `4744`, `4745`, `4746`, `4747`, `4748`, `4749`, `4750`, `70`, `84`, `4751`, `4752`, `4753`, `4754`, `4756`, `4758`, `4760`, `4761`, `4762`, `4764`, `4766`, `4769`, `4771`, `4772`, `4774`, `4775`, `4776`, `4778`, `4779`, `4781`, `4782` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_F` | 99.80 |
| `TOKEN_P` | 99.79 |
| `TOKEN_R` | 99.81 |
| `TOKEN_ACC` | 99.97 |
| `SENTS_F` | 97.77 |
| `SENTS_P` | 98.24 |
| `SENTS_R` | 97.30 |
| `TAG_ACC` | 91.59 |
| `POS_ACC` | 97.94 |
| `MORPH_ACC` | 95.69 |
| `DEP_UAS` | 91.30 |
| `DEP_LAS` | 87.75 |
| `LEMMA_ACC` | 95.39 |
|
patrickvonplaten/wav2vec2-xls-r-phoneme-300m-tr
|
patrickvonplaten
| 2021-12-10T18:10:43Z | 22 | 4 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"common_voice",
"generated_from_trainer",
"tr",
"dataset:common_voice",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
language:
- tr
tags:
- automatic-speech-recognition
- common_voice
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-xls-r-phoneme-300m-tr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Wav2vec2-xls-r-phoneme-300m-tr
This model is a fine-tuned version of [wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - TR dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6380
- PER: 0.1664
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | PER |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 13.6687 | 0.92 | 100 | 12.4567 | 1.0 |
| 3.4219 | 1.83 | 200 | 3.4704 | 1.0 |
| 3.1846 | 2.75 | 300 | 3.2281 | 0.9935 |
| 2.0076 | 3.67 | 400 | 1.7415 | 0.5222 |
| 1.0244 | 4.59 | 500 | 1.0290 | 0.3323 |
| 0.7095 | 5.5 | 600 | 0.8424 | 0.2859 |
| 0.619 | 6.42 | 700 | 0.7389 | 0.2232 |
| 0.3541 | 7.34 | 800 | 0.7049 | 0.2043 |
| 0.2946 | 8.26 | 900 | 0.7065 | 0.2153 |
| 0.2868 | 9.17 | 1000 | 0.6840 | 0.2115 |
| 0.2245 | 10.09 | 1100 | 0.6714 | 0.1952 |
| 0.1394 | 11.01 | 1200 | 0.6864 | 0.1954 |
| 0.1288 | 11.93 | 1300 | 0.6696 | 0.2017 |
| 0.1568 | 12.84 | 1400 | 0.6468 | 0.1843 |
| 0.1269 | 13.76 | 1500 | 0.6736 | 0.1965 |
| 0.1101 | 14.68 | 1600 | 0.6689 | 0.1915 |
| 0.1388 | 15.6 | 1700 | 0.6690 | 0.1782 |
| 0.0739 | 16.51 | 1800 | 0.6364 | 0.1734 |
| 0.0897 | 17.43 | 1900 | 0.6480 | 0.1748 |
| 0.0795 | 18.35 | 2000 | 0.6356 | 0.1695 |
| 0.0823 | 19.27 | 2100 | 0.6382 | 0.1685 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.8.1
- Datasets 1.16.2.dev0
- Tokenizers 0.10.3
|
aadelucia/GPT2_medium_narrative_finetuned_medium
|
aadelucia
| 2021-12-10T17:44:57Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
Please visit the repo for training details. https://github.com/AADeLucia/gpt2-narrative-decoding
|
marcolatella/prova_Classi2
|
marcolatella
| 2021-12-10T16:37:19Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: prova_Classi2
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: sentiment
metrics:
- name: F1
type: f1
value: 0.20192866271639365
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# prova_Classi2
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0183
- F1: 0.2019
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.002739353542073378
- train_batch_size: 32
- eval_batch_size: 16
- seed: 18
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.0171 | 1.0 | 1426 | 1.0183 | 0.2019 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
dragosnicolae555/ALR_BERT
|
dragosnicolae555
| 2021-12-10T16:27:49Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"albert",
"fill-mask",
"ro",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
---
language: ro
---
# ALBert
The ALR-Bert , **cased** model for Romanian, trained on a 15GB corpus!
ALR-BERT is a multi-layer bidirectional Transformer encoder that shares ALBERT's factorized embedding parameterization and cross-layer sharing. ALR-BERT-base inherits ALBERT-base and features 12 parameter-sharing layers, a 128-dimension embedding size, 768 hidden units, 12 heads, and GELU non-linearities. Masked language modeling (MLM) and sentence order prediction (SOP) losses are the two objectives that ALBERT is pre-trained on. For ALR-BERT, we preserve both these objectives.
The model was trained using 40 batches per GPU (for 128 sequence length) and then 20 batches per GPU (for 512 sequence length). Layer-wise Adaptive Moments optimizer for Batch (LAMB) training was utilized, with a warm-up over the first 1\% of steps up to a learning rate of 1e4, then a decay. Eight NVIDIA Tesla V100 SXM3 with 32GB memory were used, and the pre-training process took around 2 weeks per model.
Training methodology follows closely work previous done in Romanian Bert (https://huggingface.co/dumitrescustefan/bert-base-romanian-cased-v1)
### How to use
```python
from transformers import AutoTokenizer, AutoModel
import torch
# load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("dragosnicolae555/ALR_BERT")
model = AutoModel.from_pretrained("dragosnicolae555/ALR_BERT")
#Here add your magic
```
Remember to always sanitize your text! Replace ``s`` and ``t`` cedilla-letters to comma-letters with :
```
text = text.replace("ţ", "ț").replace("ş", "ș").replace("Ţ", "Ț").replace("Ş", "Ș")
```
because the model was **NOT** trained on cedilla ``s`` and ``t``s. If you don't, you will have decreased performance due to <UNK>s and increased number of tokens per word.
### Evaluation
Here, we evaluate ALR-BERT on Simple Universal Dependencies task. One model for each task, evaluating labeling performance on the UPOS (Universal Part-of-Speech) and the XPOS (Extended Part-of-Speech) (eXtended Part-of-Speech). We compare our proposed ALR-BERT with Romanian BERT and multiligual BERT, using the cased version. To counteract the random seed effect, we repeat each experiment five times and simply provide the mean score.
| Model | UPOS | XPOS | MLAS | AllTags |
|--------------------------------|:-----:|:------:|:-----:|:-----:|
| M-BERT (cased) | 93.87 | 89.89 | 90.01 | 87.04|
| Romanian BERT (cased) | 95.56 | 95.35 | 92.78 | 93.22 |
| ALR-BERT (cased) | **87.38** | **84.05** | **79.82** | **78.82**|
### Corpus
The model is trained on the following corpora (stats in the table below are after cleaning):
| Corpus | Lines(M) | Words(M) | Chars(B) | Size(GB) |
|----------- |:--------: |:--------: |:--------: |:--------: |
| OPUS | 55.05 | 635.04 | 4.045 | 3.8 |
| OSCAR | 33.56 | 1725.82 | 11.411 | 11 |
| Wikipedia | 1.54 | 60.47 | 0.411 | 0.4 |
| **Total** | **90.15** | **2421.33** | **15.867** | **15.2** |
|
patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm
|
patrickvonplaten
| 2021-12-10T15:49:13Z | 1,650 | 8 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"es",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
language: es
datasets:
- common_voice
metrics:
- wer
- cer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
---
# Wav2Vec2-Large-XLSR-53-Spanish-With-LM
This is a model copy of [Wav2Vec2-Large-XLSR-53-Spanish](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-spanish)
that has language model support.
This model card can be seen as a demo for the [pyctcdecode](https://github.com/kensho-technologies/pyctcdecode) integration
with Transformers led by [this PR](https://github.com/huggingface/transformers/pull/14339). The PR explains in-detail how the
integration works.
In a nutshell: This PR adds a new Wav2Vec2WithLMProcessor class as drop-in replacement for Wav2Vec2Processor.
The only change from the existing ASR pipeline will be:
## Changes
```diff
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm"
sample = next(iter(load_dataset("common_voice", "es", split="test", streaming=True)))
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
-prediction_ids = torch.argmax(logits, dim=-1)
-transcription = processor.batch_decode(prediction_ids)
+transcription = processor.batch_decode(logits.numpy()).text
# => 'bien y qué regalo vas a abrir primero'
```
**Improvement**
This model has been compared on 512 speech samples from the Spanish Common Voice Test set and
gives a nice *20 %* performance boost:
The results can be reproduced by running *from this model repository*:
| Model | WER | CER |
| ------------- | ------------- | ------------- |
| patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm | **8.44%** | **2.93%** |
| jonatasgrosman/wav2vec2-large-xlsr-53-spanish | **10.20%** | **3.24%** |
```
bash run_ngram_wav2vec2.py 1 512
```
```
bash run_ngram_wav2vec2.py 0 512
```
with `run_ngram_wav2vec2.py` being
https://huggingface.co/patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm/blob/main/run_ngram_wav2vec2.py
|
explosion/en_udv25_englishewt_trf
|
explosion
| 2021-12-10T15:24:49Z | 7 | 1 |
spacy
|
[
"spacy",
"token-classification",
"en",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- en
license: cc-by-sa-4.0
model-index:
- name: en_udv25_englishewt_trf
results:
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9636175051
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9693826668
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9690635285
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9735945316
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9190022676
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8942035228
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.906218656
---
UD v2.5 benchmarking pipeline for UD_English-EWT
| Feature | Description |
| --- | --- |
| **Name** | `en_udv25_englishewt_trf` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.2.1,<3.3.0` |
| **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (1760 labels for 6 components)</summary>
| Component | Labels |
| --- | --- |
| **`experimental_char_ner_tokenizer`** | `TOKEN` |
| **`senter`** | `I`, `S` |
| **`tagger`** | `$`, `''`, `,`, `-LRB-`, `-RRB-`, `.`, `:`, `ADD`, `AFX`, `CC`, `CD`, `DT`, `EX`, `FW`, `GW`, `HYPH`, `IN`, `JJ`, `JJR`, `JJS`, `LS`, `MD`, `NFP`, `NN`, `NNP`, `NNPS`, `NNS`, `PDT`, `POS`, `PRP`, `PRP$`, `RB`, `RBR`, `RBS`, `RP`, `SYM`, `TO`, `UH`, `VB`, `VBD`, `VBG`, `VBN`, `VBP`, `VBZ`, `WDT`, `WP`, `WP$`, `WRB`, `XX`, ```` |
| **`morphologizer`** | `Number=Sing\|POS=PROPN`, `POS=PUNCT`, `Degree=Pos\|POS=ADJ`, `Number=Plur\|POS=NOUN`, `Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin`, `Definite=Def\|POS=DET\|PronType=Art`, `Number=Sing\|POS=NOUN`, `POS=ADP`, `Number=Sing\|POS=DET\|PronType=Dem`, `Definite=Ind\|POS=DET\|PronType=Art`, `POS=AUX\|VerbForm=Fin`, `POS=AUX\|VerbForm=Inf`, `POS=VERB\|VerbForm=Ger`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `POS=PART`, `POS=VERB\|VerbForm=Inf`, `POS=SCONJ`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|POS=AUX\|Tense=Past\|VerbForm=Fin`, `POS=VERB\|Tense=Past\|VerbForm=Part`, `NumType=Card\|POS=NUM`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `POS=AUX\|VerbForm=Ger`, `POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=ADV`, `Number=Sing\|POS=PRON\|PronType=Dem`, `Number=Plur\|POS=PROPN`, `Degree=Pos\|NumType=Ord\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=VERB\|Tense=Pres\|VerbForm=Part`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=CCONJ`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|POS=AUX\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `POS=PRON\|PronType=Rel`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=PRON`, `Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=AUX\|Tense=Past\|VerbForm=Part`, `POS=DET`, `Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Degree=Pos\|POS=ADV`, `Degree=Cmp\|POS=ADV`, `Number=Sing\|POS=PRON`, `Degree=Cmp\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=ADV\|PronType=Dem`, `POS=ADV\|PronType=Int`, `Number=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Plur\|POS=PRON\|PronType=Dem`, `Mood=Imp\|POS=VERB\|VerbForm=Fin`, `Degree=Sup\|POS=ADJ`, `POS=PRON\|PronType=Int`, `NumType=Mult\|POS=ADV`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `POS=DET\|PronType=Int`, `POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Number=Plur\|POS=DET\|PronType=Dem`, `POS=PRON\|Poss=Yes\|PronType=Int`, `Case=Acc\|POS=PRON\|Person=2\|PronType=Prs`, `POS=X`, `POS=PRON\|PronType=Dem`, `Number=Sing\|POS=PROPN\|Typo=Yes`, `POS=ADV\|PronType=Rel`, `Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Degree=Sup\|POS=ADV`, `POS=INTJ`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Foreign=Yes\|POS=X`, `POS=SYM`, `Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Mood=Imp\|POS=AUX\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Abbr=Yes\|POS=CCONJ`, `POS=SCONJ\|Typo=Yes`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=SYM`, `POS=DET\|Typo=Yes`, `Degree=Pos\|POS=PROPN`, `Abbr=Yes\|POS=ADP`, `POS=ADP\|Typo=Yes`, `Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs\|Typo=Yes`, `Abbr=Yes\|POS=VERB\|Tense=Pres\|VerbForm=Part`, `Abbr=Yes\|POS=PART`, `POS=AUX\|Typo=Yes\|VerbForm=Fin`, `Degree=Pos\|POS=ADJ\|Typo=Yes`, `POS=VERB\|Tense=Past\|Typo=Yes\|VerbForm=Part\|Voice=Pass`, `Number=Sing\|POS=NOUN\|Typo=Yes`, `Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Abbr=Yes\|Number=Sing\|POS=NOUN`, `Degree=Pos\|POS=NOUN`, `POS=CCONJ\|Typo=Yes`, `Number=Sing\|POS=X`, `Abbr=Yes\|POS=SCONJ`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|POS=AUX\|Tense=Pres\|Typo=Yes\|VerbForm=Fin`, `POS=ADV\|Typo=Yes`, `Mood=Ind\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Number=Sing\|POS=NUM`, `POS=PRON\|Poss=Yes\|PronType=Rel`, `Abbr=Yes\|Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Abbr=Yes\|POS=INTJ`, `Abbr=Yes\|POS=VERB\|VerbForm=Inf`, `Abbr=Yes\|Number=Sing\|POS=PRON`, `Abbr=Yes\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Abbr=Yes\|POS=PRON\|PronType=Int`, `Abbr=Yes\|POS=AUX\|VerbForm=Fin`, `Abbr=Yes\|POS=ADV`, `Abbr=Yes\|Number=Plur\|POS=NOUN`, `Abbr=Yes\|Mood=Ind\|POS=AUX\|Tense=Pres\|Typo=Yes\|VerbForm=Fin`, `POS=ADJ`, `Number=Plur\|POS=NOUN\|Typo=Yes`, `POS=DET\|PronType=Rel\|Typo=Yes`, `POS=PART\|Typo=Yes`, `Abbr=Yes\|POS=DET`, `POS=DET\|PronType=Dem`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Typo=Yes`, `Degree=Pos\|NumType=Ord\|POS=ADV`, `POS=NOUN`, `Number=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs\|Typo=Yes`, `POS=PRON\|Typo=Yes`, `Number=Plur\|POS=VERB`, `POS=VERB\|Typo=Yes\|VerbForm=Inf`, `Mood=Ind\|POS=VERB\|Tense=Past\|Typo=Yes\|VerbForm=Fin`, `Mood=Imp\|POS=AUX\|VerbForm=Inf`, `Abbr=Yes\|Mood=Imp\|POS=VERB\|VerbForm=Fin`, `Abbr=Yes\|Case=Nom\|POS=PRON\|Person=2\|PronType=Prs`, `POS=VERB\|Tense=Past\|Typo=Yes\|VerbForm=Part`, `Mood=Ind\|POS=AUX\|Tense=Past\|Typo=Yes\|VerbForm=Fin`, `Mood=Ind\|POS=VERB\|Tense=Pres\|Typo=Yes\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `POS=VERB\|Typo=Yes\|VerbForm=Ger`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|Typo=Yes\|VerbForm=Fin`, `Abbr=Yes\|POS=PRON`, `Abbr=Yes\|Number=Plur\|POS=NOUN\|Typo=Yes`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Typo=Yes`, `Abbr=Yes\|Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs` |
| **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `cc:preconj`, `ccomp`, `compound`, `compound:prt`, `conj`, `cop`, `csubj`, `dep`, `det`, `det:predet`, `discourse`, `expl`, `fixed`, `flat`, `flat:foreign`, `goeswith`, `iobj`, `list`, `mark`, `nmod`, `nmod:npmod`, `nmod:poss`, `nmod:tmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `obl:npmod`, `obl:tmod`, `orphan`, `parataxis`, `punct`, `reparandum`, `vocative`, `xcomp` |
| **`experimental_edit_tree_lemmatizer`** | `0`, `2`, `4`, `6`, `8`, `10`, `12`, `13`, `15`, `17`, `19`, `21`, `23`, `26`, `28`, `29`, `30`, `32`, `34`, `36`, `39`, `42`, `43`, `45`, `47`, `49`, `51`, `53`, `55`, `57`, `59`, `61`, `62`, `64`, `67`, `69`, `71`, `73`, `75`, `77`, `79`, `81`, `83`, `85`, `87`, `1`, `89`, `90`, `92`, `94`, `95`, `97`, `99`, `101`, `105`, `106`, `108`, `110`, `111`, `112`, `113`, `115`, `117`, `119`, `121`, `122`, `124`, `125`, `126`, `127`, `128`, `129`, `130`, `132`, `133`, `136`, `137`, `138`, `139`, `142`, `143`, `145`, `150`, `153`, `156`, `157`, `159`, `162`, `163`, `164`, `167`, `169`, `171`, `174`, `176`, `177`, `179`, `182`, `184`, `187`, `189`, `191`, `193`, `194`, `197`, `198`, `201`, `203`, `204`, `208`, `210`, `211`, `213`, `214`, `215`, `217`, `220`, `221`, `224`, `225`, `227`, `229`, `231`, `233`, `235`, `236`, `239`, `241`, `242`, `244`, `246`, `247`, `248`, `249`, `250`, `251`, `252`, `254`, `256`, `258`, `259`, `261`, `263`, `264`, `265`, `266`, `269`, `270`, `272`, `273`, `274`, `276`, `277`, `278`, `281`, `283`, `72`, `285`, `287`, `288`, `291`, `292`, `293`, `296`, `297`, `298`, `299`, `300`, `301`, `302`, `303`, `304`, `305`, `306`, `307`, `308`, `309`, `310`, `311`, `315`, `316`, `317`, `318`, `319`, `320`, `322`, `88`, `324`, `327`, `328`, `332`, `336`, `337`, `338`, `340`, `341`, `342`, `343`, `344`, `347`, `349`, `350`, `351`, `352`, `353`, `354`, `356`, `357`, `358`, `360`, `361`, `362`, `363`, `364`, `365`, `366`, `367`, `369`, `373`, `375`, `376`, `377`, `378`, `379`, `144`, `381`, `383`, `384`, `386`, `387`, `389`, `390`, `393`, `394`, `396`, `397`, `398`, `399`, `402`, `405`, `407`, `408`, `410`, `411`, `412`, `413`, `414`, `416`, `418`, `419`, `421`, `422`, `423`, `424`, `426`, `428`, `429`, `430`, `432`, `434`, `436`, `437`, `438`, `441`, `442`, `443`, `444`, `445`, `446`, `447`, `260`, `448`, `452`, `453`, `454`, `455`, `456`, `457`, `458`, `460`, `461`, `462`, `463`, `464`, `465`, `466`, `467`, `409`, `468`, `469`, `470`, `471`, `472`, `473`, `476`, `477`, `481`, `484`, `486`, `487`, `488`, `491`, `492`, `493`, `494`, `495`, `496`, `497`, `498`, `499`, `500`, `503`, `504`, `506`, `507`, `508`, `509`, `511`, `512`, `513`, `514`, `515`, `516`, `517`, `518`, `519`, `107`, `520`, `521`, `522`, `523`, `524`, `525`, `526`, `527`, `528`, `529`, `531`, `533`, `534`, `537`, `538`, `542`, `543`, `544`, `545`, `546`, `547`, `548`, `549`, `550`, `553`, `554`, `557`, `558`, `560`, `561`, `564`, `565`, `566`, `567`, `568`, `569`, `570`, `571`, `572`, `573`, `574`, `575`, `576`, `577`, `578`, `579`, `580`, `581`, `582`, `583`, `584`, `586`, `587`, `588`, `589`, `590`, `591`, `592`, `594`, `595`, `76`, `596`, `597`, `598`, `600`, `601`, `602`, `149`, `603`, `604`, `605`, `606`, `607`, `608`, `609`, `490`, `610`, `611`, `96`, `255`, `614`, `617`, `619`, `620`, `621`, `622`, `623`, `624`, `626`, `627`, `628`, `630`, `632`, `633`, `635`, `638`, `639`, `640`, `641`, `644`, `647`, `650`, `654`, `657`, `659`, `173`, `661`, `662`, `663`, `664`, `668`, `669`, `670`, `671`, `673`, `676`, `677`, `678`, `680`, `682`, `158`, `91`, `683`, `684`, `685`, `686`, `687`, `688`, `689`, `690`, `691`, `692`, `693`, `695`, `697`, `699`, `700`, `701`, `183`, `702`, `703`, `704`, `706`, `707`, `709`, `711`, `713`, `485`, `714`, `716`, `717`, `718`, `719`, `720`, `721`, `722`, `723`, `724`, `726`, `727`, `728`, `729`, `730`, `731`, `732`, `733`, `734`, `735`, `736`, `737`, `738`, `739`, `741`, `742`, `744`, `745`, `746`, `748`, `749`, `752`, `753`, `754`, `755`, `756`, `757`, `759`, `760`, `762`, `763`, `764`, `765`, `768`, `769`, `772`, `774`, `775`, `776`, `777`, `781`, `782`, `783`, `784`, `785`, `786`, `787`, `788`, `789`, `78`, `791`, `794`, `795`, `796`, `798`, `800`, `801`, `802`, `803`, `804`, `805`, `806`, `807`, `808`, `809`, `810`, `811`, `812`, `813`, `814`, `815`, `816`, `817`, `818`, `819`, `820`, `822`, `823`, `824`, `825`, `826`, `827`, `828`, `829`, `830`, `131`, `831`, `631`, `832`, `833`, `834`, `838`, `839`, `841`, `842`, `843`, `844`, `845`, `846`, `847`, `849`, `792`, `850`, `851`, `852`, `853`, `856`, `857`, `858`, `859`, `860`, `861`, `862`, `864`, `865`, `715`, `866`, `867`, `868`, `869`, `870`, `871`, `872`, `873`, `877`, `878`, `879`, `881`, `882`, `883`, `885`, `886`, `887`, `888`, `848`, `889`, `890`, `891`, `892`, `893`, `894`, `895`, `896`, `900`, `901`, `902`, `903`, `905`, `907`, `908`, `911`, `912`, `913`, `914`, `918`, `919`, `920`, `923`, `924`, `925`, `926`, `927`, `928`, `929`, `930`, `931`, `932`, `933`, `52`, `934`, `935`, `937`, `939`, `941`, `943`, `944`, `945`, `946`, `947`, `950`, `951`, `952`, `954`, `955`, `956`, `957`, `961`, `962`, `963`, `964`, `965`, `966`, `967`, `968`, `969`, `970`, `971`, `972`, `973`, `974`, `975`, `976`, `977`, `374`, `978`, `979`, `980`, `982`, `983`, `986`, `987`, `988`, `989`, `990`, `991`, `992`, `993`, `994`, `995`, `996`, `998`, `1000`, `1001`, `1002`, `1003`, `1004`, `1005`, `1006`, `1007`, `1008`, `1009`, `1012`, `1016`, `1020`, `1021`, `1023`, `1024`, `1025`, `1031`, `1032`, `1033`, `1034`, `1035`, `1036`, `1037`, `1038`, `1039`, `1041`, `1042`, `1043`, `1044`, `1045`, `1046`, `1047`, `1048`, `1049`, `1050`, `1051`, `1052`, `1053`, `1054`, `1055`, `1056`, `1057`, `1058`, `1059`, `1060`, `1061`, `1062`, `1063`, `1064`, `1065`, `642`, `1066`, `1067`, `1068`, `1069`, `1071`, `1072`, `1073`, `1074`, `1079`, `1080`, `1081`, `1082`, `1083`, `1085`, `1087`, `1088`, `1089`, `1090`, `559`, `1092`, `1093`, `1094`, `1096`, `1097`, `1098`, `1101`, `1102`, `1103`, `1104`, `1105`, `1106`, `1107`, `1109`, `1110`, `1112`, `1113`, `1114`, `1115`, `1116`, `1117`, `1118`, `1119`, `1122`, `1123`, `1124`, `1126`, `1127`, `1128`, `1129`, `1130`, `1132`, `1134`, `1137`, `1138`, `1140`, `1141`, `1142`, `1143`, `1144`, `1145`, `1146`, `1147`, `1150`, `1152`, `1161`, `1162`, `1163`, `1164`, `1165`, `1169`, `1170`, `1172`, `1173`, `1174`, `1175`, `1176`, `1177`, `1178`, `1181`, `1182`, `1183`, `1186`, `1187`, `1188`, `1190`, `1191`, `1192`, `1111`, `1193`, `1194`, `1195`, `1196`, `1198`, `1200`, `1201`, `1202`, `1203`, `1204`, `1208`, `1211`, `1213`, `1215`, `1216`, `1217`, `1218`, `1219`, `1221`, `1222`, `1223`, `1224`, `1225`, `1226`, `1227`, `1230`, `1231`, `1232`, `1234`, `1235`, `1249`, `1250`, `1252`, `1253`, `1254`, `1255`, `1257`, `1258`, `1260`, `1262`, `1263`, `1264`, `1265`, `1266`, `1267`, `1269`, `1272`, `7`, `1274`, `1276`, `1277`, `1278`, `1280`, `1282`, `1283`, `1284`, `1285`, `1286`, `1287`, `1289`, `1290`, `1291`, `1293`, `1295`, `1298`, `1302`, `1303`, `1311`, `1312`, `1313`, `1314`, `1316`, `1318`, `1317`, `1320`, `1322`, `1323`, `192`, `1324`, `1326`, `1327`, `234`, `1329`, `1330`, `1331`, `1332`, `747`, `1333`, `1334`, `1335`, `1336`, `1337`, `1339`, `1340`, `1341`, `1342`, `1344`, `1346`, `1350`, `1351`, `1352`, `1355`, `1357`, `1358`, `1360`, `1361`, `1362`, `1363`, `1364`, `1365`, `1367`, `1369`, `1370`, `1371`, `1372`, `1373`, `1374`, `1375`, `1376`, `1378`, `1380`, `1382`, `1384`, `1385`, `1386`, `1389`, `1390`, `1391`, `1392`, `1393`, `1394`, `1395`, `1396`, `1397`, `1399`, `1401`, `1402`, `1403`, `1404`, `1405`, `1406`, `1407`, `1408`, `1409`, `1410`, `1411`, `1412`, `1413`, `1414`, `1416`, `1418`, `1419`, `1420`, `1421`, `1422`, `188`, `1423`, `1424`, `1425`, `1426`, `1428`, `1429`, `1430`, `1431`, `1432`, `1433`, `1434`, `1435`, `148`, `1436`, `1439`, `1440`, `1441`, `1442`, `1443`, `1444`, `1445`, `1446`, `1447`, `1448`, `1449`, `1450`, `1451`, `1452`, `1453`, `1454`, `1455`, `1456`, `1457`, `1458`, `1459`, `1460`, `1461`, `1462`, `1463`, `1464`, `1466`, `1467`, `1468`, `1469`, `1470`, `1471`, `1472`, `1474`, `1475`, `1478`, `1481`, `1484`, `1486`, `1488`, `1489`, `1473`, `1490`, `1492`, `1493`, `1494`, `1495`, `1496`, `1497`, `1498`, `1499`, `1500`, `1501`, `1502`, `1503`, `1504`, `1505`, `44`, `1506`, `1511`, `1513`, `1515`, `1517`, `1518`, `1522`, `1523`, `1525`, `1528`, `1530`, `1531`, `1532`, `1534`, `1536`, `1537`, `1538`, `1539`, `1540`, `1541`, `1543`, `1546`, `1547`, `1548`, `1549`, `1551`, `1552`, `1555`, `1556`, `1557`, `1558`, `1559`, `1560`, `1561`, `1562`, `1563`, `1564`, `1565`, `1566`, `1567`, `1568`, `1569`, `1570`, `1571`, `1572`, `1573`, `1574`, `1575`, `1576`, `1577`, `1578`, `1579`, `1580`, `1581`, `1582`, `1583`, `1584`, `1585`, `1586`, `1588`, `1590`, `1591`, `1592`, `1594`, `1597`, `1598`, `1599`, `1601`, `168`, `1602`, `1603`, `1605`, `1607`, `1608`, `1611`, `1612`, `1613`, `1614`, `1615`, `1616`, `1617`, `1618`, `1619`, `1620`, `1621`, `1622`, `1623`, `1624`, `1625`, `1626`, `1627`, `1628`, `1629`, `1630`, `1632`, `1554`, `1633`, `1634`, `1635`, `1636`, `1637`, `1638`, `1639`, `1642`, `1647`, `1648`, `1649`, `1651`, `1653`, `1654`, `1655`, `1657`, `1658`, `1659`, `1660`, `1661`, `1662`, `1663`, `1664`, `1665`, `1666`, `1667`, `1668`, `1669`, `1670`, `1671`, `1672`, `1673`, `1674`, `1675`, `1676`, `1677`, `1678`, `1679`, `1680`, `1681`, `1682`, `1683`, `1684`, `1685`, `1686`, `1687`, `1688`, `1689`, `1690`, `1691`, `1692`, `1693`, `1694`, `1695`, `1696`, `1697`, `1698`, `1699`, `1700`, `1701`, `1702`, `1704`, `1705`, `1706`, `1707`, `1708`, `1709`, `1710`, `1711`, `1712`, `1713`, `1714`, `1715`, `1716`, `1717`, `1718`, `1719`, `1720`, `1721`, `1722`, `1723`, `1724`, `1725`, `1726`, `1727`, `1730`, `1732`, `1734`, `1735`, `1736`, `1737`, `1738`, `1740`, `1742`, `1743`, `1744`, `1745`, `1746`, `1747`, `1748`, `1749`, `1750`, `1751`, `1754`, `1755`, `1756`, `1758`, `1760`, `1761`, `1762`, `1763`, `1766`, `1767`, `1768`, `1769`, `1770`, `1772`, `1775`, `1778`, `1779`, `1784`, `1787`, `1788`, `1789`, `1790`, `1791`, `1793`, `1795`, `1796`, `1798`, `1800`, `1804`, `1805`, `1806`, `1807`, `1808`, `1809`, `1810`, `1811`, `1812`, `1813`, `1814`, `1815`, `1816`, `1818`, `1821`, `1822`, `1823`, `1824`, `1825`, `1826`, `1827`, `1828`, `1831`, `1832`, `1833`, `1834`, `1835`, `1836`, `1837`, `1838`, `1839`, `1840`, `1841`, `1842`, `1843`, `1844`, `1846`, `1847`, `1848`, `1849`, `1850`, `1851`, `1852`, `1853`, `1855`, `1857`, `1858`, `1859`, `1860`, `1861`, `1862`, `1863`, `1866`, `1867`, `1868`, `1869`, `1872`, `1873`, `1876`, `1877`, `1878`, `1879`, `1880`, `1881`, `1883`, `1884`, `1886`, `1887`, `1888`, `1893`, `1752`, `1896`, `1897`, `1899`, `1900`, `1901`, `1906`, `1907`, `1908`, `1910`, `1911`, `1912`, `1913`, `1916`, `1917`, `1918`, `1919`, `1920`, `1922`, `1923`, `1925`, `1926`, `1927`, `1928`, `1929`, `1930`, `1931`, `1932`, `1933`, `1120`, `1934`, `1935`, `1936`, `1937`, `1938`, `1939`, `1940`, `1941`, `1942`, `1943`, `1944`, `1945`, `1946`, `1947`, `1948`, `1949`, `1950`, `1951`, `1952`, `1953`, `1954`, `1955`, `1956`, `1957`, `1958`, `1959`, `1961`, `1962`, `1963`, `1964`, `1965`, `1966`, `1967`, `1968`, `1969`, `1970`, `1971`, `1972`, `1973`, `1974`, `1975`, `1976`, `1977`, `1978`, `1979`, `1982`, `1985`, `1987`, `1988`, `1989`, `1990`, `1992`, `1994`, `1995`, `1996`, `1997`, `1998`, `1999`, `2000`, `2003`, `2006`, `152`, `2007`, `2009`, `2010`, `2011`, `2012`, `2013`, `2014`, `2015`, `2016`, `2017`, `2019`, `2020`, `2021`, `2022`, `2023`, `2024`, `2025`, `2026`, `2029`, `2030`, `2031`, `2032`, `2033`, `2034`, `2035`, `2037`, `2038`, `2039`, `2040`, `2041`, `2042`, `2043`, `2044`, `2045`, `2047` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_F` | 99.15 |
| `TOKEN_P` | 99.18 |
| `TOKEN_R` | 99.11 |
| `TOKEN_ACC` | 99.83 |
| `SENTS_F` | 90.62 |
| `SENTS_P` | 90.99 |
| `SENTS_R` | 90.26 |
| `TAG_ACC` | 96.36 |
| `POS_ACC` | 96.94 |
| `MORPH_ACC` | 96.91 |
| `DEP_UAS` | 91.90 |
| `DEP_LAS` | 89.42 |
| `LEMMA_ACC` | 97.36 |
|
marshmellow77/roberta-base-cuad
|
marshmellow77
| 2021-12-10T15:22:42Z | 209 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"question-answering",
"en",
"dataset:cuad",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
---
language: en
datasets:
- cuad
---
# RoBERTa Base Model fine-tuned with CUAD dataset
This model is the fine-tuned version of "RoBERTa Base"
using CUAD dataset https://huggingface.co/datasets/cuad
Link for model checkpoint: https://github.com/TheAtticusProject/cuad
For the use of the model with CUAD: https://github.com/marshmellow77/cuad-demo
and https://huggingface.co/spaces/marshmellow77/contract-review
Related blog posts:
- https://towardsdatascience.com/how-to-set-up-a-machine-learning-model-for-legal-contract-review-fe3b48b05a0e
- https://towardsdatascience.com/how-to-set-up-a-machine-learning-model-for-legal-contract-review-part-2-6ecbbe680ba
|
explosion/nl_udv25_dutchalpino_trf
|
explosion
| 2021-12-10T13:52:44Z | 6 | 1 |
spacy
|
[
"spacy",
"token-classification",
"nl",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- nl
license: cc-by-sa-4.0
model-index:
- name: nl_udv25_dutchalpino_trf
results:
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9559890516
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9766694183
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9678932963
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.964639444
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9465618861
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.9227973676
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9084457062
---
UD v2.5 benchmarking pipeline for UD_Dutch-Alpino
| Feature | Description |
| --- | --- |
| **Name** | `nl_udv25_dutchalpino_trf` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.2.1,<3.3.0` |
| **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (1712 labels for 6 components)</summary>
| Component | Labels |
| --- | --- |
| **`experimental_char_ner_tokenizer`** | `TOKEN` |
| **`senter`** | `I`, `S` |
| **`tagger`** | `ADJ\|nom\|basis\|met-e\|mv-n`, `ADJ\|nom\|basis\|met-e\|zonder-n\|stan`, `ADJ\|nom\|basis\|zonder\|zonder-n`, `ADJ\|nom\|comp\|met-e\|mv-n`, `ADJ\|nom\|comp\|met-e\|zonder-n\|stan`, `ADJ\|nom\|sup\|met-e\|mv-n`, `ADJ\|nom\|sup\|met-e\|zonder-n\|stan`, `ADJ\|nom\|sup\|zonder\|zonder-n`, `ADJ\|postnom\|basis\|met-s`, `ADJ\|postnom\|basis\|zonder`, `ADJ\|postnom\|comp\|met-s`, `ADJ\|prenom\|basis\|met-e\|stan`, `ADJ\|prenom\|basis\|zonder`, `ADJ\|prenom\|comp\|met-e\|stan`, `ADJ\|prenom\|comp\|zonder`, `ADJ\|prenom\|sup\|met-e\|stan`, `ADJ\|vrij\|basis\|zonder`, `ADJ\|vrij\|comp\|zonder`, `ADJ\|vrij\|dim\|zonder`, `ADJ\|vrij\|sup\|zonder`, `BW`, `LET`, `LID\|bep\|dat\|evmo`, `LID\|bep\|gen\|evmo`, `LID\|bep\|gen\|rest3`, `LID\|bep\|stan\|evon`, `LID\|bep\|stan\|rest`, `LID\|onbep\|stan\|agr`, `N\|eigen\|ev\|basis\|gen`, `N\|eigen\|ev\|basis\|genus\|stan`, `N\|eigen\|ev\|basis\|onz\|stan`, `N\|eigen\|ev\|basis\|zijd\|stan`, `N\|eigen\|ev\|dim\|onz\|stan`, `N\|eigen\|mv\|basis`, `N\|soort\|ev\|basis\|dat`, `N\|soort\|ev\|basis\|gen`, `N\|soort\|ev\|basis\|genus\|stan`, `N\|soort\|ev\|basis\|onz\|stan`, `N\|soort\|ev\|basis\|zijd\|stan`, `N\|soort\|ev\|dim\|onz\|stan`, `N\|soort\|mv\|basis`, `N\|soort\|mv\|dim`, `SPEC\|afgebr`, `SPEC\|afk`, `SPEC\|deeleigen`, `SPEC\|enof`, `SPEC\|meta`, `SPEC\|symb`, `SPEC\|vreemd`, `TSW`, `TW\|hoofd\|nom\|mv-n\|basis`, `TW\|hoofd\|nom\|mv-n\|dim`, `TW\|hoofd\|nom\|zonder-n\|basis`, `TW\|hoofd\|nom\|zonder-n\|dim`, `TW\|hoofd\|prenom\|stan`, `TW\|hoofd\|vrij`, `TW\|rang\|nom\|mv-n`, `TW\|rang\|nom\|zonder-n`, `TW\|rang\|prenom\|stan`, `VG\|neven`, `VG\|onder`, `VNW\|aanw\|adv-pron\|obl\|vol\|3o\|getal`, `VNW\|aanw\|adv-pron\|stan\|red\|3\|getal`, `VNW\|aanw\|det\|dat\|nom\|met-e\|zonder-n`, `VNW\|aanw\|det\|dat\|prenom\|met-e\|evmo`, `VNW\|aanw\|det\|gen\|prenom\|met-e\|rest3`, `VNW\|aanw\|det\|stan\|nom\|met-e\|mv-n`, `VNW\|aanw\|det\|stan\|nom\|met-e\|zonder-n`, `VNW\|aanw\|det\|stan\|prenom\|met-e\|rest`, `VNW\|aanw\|det\|stan\|prenom\|zonder\|agr`, `VNW\|aanw\|det\|stan\|prenom\|zonder\|evon`, `VNW\|aanw\|det\|stan\|prenom\|zonder\|rest`, `VNW\|aanw\|det\|stan\|vrij\|zonder`, `VNW\|aanw\|pron\|gen\|vol\|3m\|ev`, `VNW\|aanw\|pron\|stan\|vol\|3o\|ev`, `VNW\|aanw\|pron\|stan\|vol\|3\|getal`, `VNW\|betr\|det\|stan\|nom\|met-e\|zonder-n`, `VNW\|betr\|det\|stan\|nom\|zonder\|zonder-n`, `VNW\|betr\|pron\|stan\|vol\|3\|ev`, `VNW\|betr\|pron\|stan\|vol\|persoon\|getal`, `VNW\|bez\|det\|gen\|vol\|3\|ev\|prenom\|met-e\|rest3`, `VNW\|bez\|det\|stan\|nadr\|2v\|mv\|prenom\|zonder\|agr`, `VNW\|bez\|det\|stan\|red\|1\|ev\|prenom\|zonder\|agr`, `VNW\|bez\|det\|stan\|red\|2v\|ev\|prenom\|zonder\|agr`, `VNW\|bez\|det\|stan\|red\|3\|ev\|prenom\|zonder\|agr`, `VNW\|bez\|det\|stan\|vol\|1\|ev\|prenom\|zonder\|agr`, `VNW\|bez\|det\|stan\|vol\|1\|mv\|prenom\|met-e\|rest`, `VNW\|bez\|det\|stan\|vol\|1\|mv\|prenom\|zonder\|evon`, `VNW\|bez\|det\|stan\|vol\|2v\|ev\|prenom\|zonder\|agr`, `VNW\|bez\|det\|stan\|vol\|2\|getal\|prenom\|zonder\|agr`, `VNW\|bez\|det\|stan\|vol\|3m\|ev\|nom\|met-e\|zonder-n`, `VNW\|bez\|det\|stan\|vol\|3v\|ev\|nom\|met-e\|zonder-n`, `VNW\|bez\|det\|stan\|vol\|3\|ev\|prenom\|zonder\|agr`, `VNW\|bez\|det\|stan\|vol\|3\|mv\|prenom\|zonder\|agr`, `VNW\|onbep\|adv-pron\|gen\|red\|3\|getal`, `VNW\|onbep\|adv-pron\|obl\|vol\|3o\|getal`, `VNW\|onbep\|det\|stan\|nom\|met-e\|mv-n`, `VNW\|onbep\|det\|stan\|nom\|met-e\|zonder-n`, `VNW\|onbep\|det\|stan\|prenom\|met-e\|agr`, `VNW\|onbep\|det\|stan\|prenom\|met-e\|evz`, `VNW\|onbep\|det\|stan\|prenom\|met-e\|mv`, `VNW\|onbep\|det\|stan\|prenom\|met-e\|rest`, `VNW\|onbep\|det\|stan\|prenom\|zonder\|agr`, `VNW\|onbep\|det\|stan\|prenom\|zonder\|evon`, `VNW\|onbep\|det\|stan\|vrij\|zonder`, `VNW\|onbep\|grad\|stan\|nom\|met-e\|mv-n\|basis`, `VNW\|onbep\|grad\|stan\|nom\|met-e\|mv-n\|sup`, `VNW\|onbep\|grad\|stan\|nom\|met-e\|zonder-n\|basis`, `VNW\|onbep\|grad\|stan\|nom\|met-e\|zonder-n\|sup`, `VNW\|onbep\|grad\|stan\|prenom\|met-e\|agr\|basis`, `VNW\|onbep\|grad\|stan\|prenom\|met-e\|agr\|comp`, `VNW\|onbep\|grad\|stan\|prenom\|met-e\|agr\|sup`, `VNW\|onbep\|grad\|stan\|prenom\|met-e\|mv\|basis`, `VNW\|onbep\|grad\|stan\|prenom\|zonder\|agr\|basis`, `VNW\|onbep\|grad\|stan\|prenom\|zonder\|agr\|comp`, `VNW\|onbep\|grad\|stan\|vrij\|zonder\|basis`, `VNW\|onbep\|grad\|stan\|vrij\|zonder\|comp`, `VNW\|onbep\|grad\|stan\|vrij\|zonder\|sup`, `VNW\|onbep\|pron\|gen\|vol\|3p\|ev`, `VNW\|onbep\|pron\|stan\|vol\|3o\|ev`, `VNW\|onbep\|pron\|stan\|vol\|3p\|ev`, `VNW\|pers\|pron\|gen\|vol\|2\|getal`, `VNW\|pers\|pron\|nomin\|nadr\|3m\|ev\|masc`, `VNW\|pers\|pron\|nomin\|red\|1\|mv`, `VNW\|pers\|pron\|nomin\|red\|2v\|ev`, `VNW\|pers\|pron\|nomin\|red\|2\|getal`, `VNW\|pers\|pron\|nomin\|red\|3p\|ev\|masc`, `VNW\|pers\|pron\|nomin\|red\|3\|ev\|masc`, `VNW\|pers\|pron\|nomin\|vol\|1\|ev`, `VNW\|pers\|pron\|nomin\|vol\|1\|mv`, `VNW\|pers\|pron\|nomin\|vol\|2b\|getal`, `VNW\|pers\|pron\|nomin\|vol\|2v\|ev`, `VNW\|pers\|pron\|nomin\|vol\|2\|getal`, `VNW\|pers\|pron\|nomin\|vol\|3p\|mv`, `VNW\|pers\|pron\|nomin\|vol\|3v\|ev\|fem`, `VNW\|pers\|pron\|nomin\|vol\|3\|ev\|masc`, `VNW\|pers\|pron\|obl\|nadr\|3m\|ev\|masc`, `VNW\|pers\|pron\|obl\|red\|3\|ev\|masc`, `VNW\|pers\|pron\|obl\|vol\|2v\|ev`, `VNW\|pers\|pron\|obl\|vol\|3p\|mv`, `VNW\|pers\|pron\|obl\|vol\|3\|ev\|masc`, `VNW\|pers\|pron\|obl\|vol\|3\|getal\|fem`, `VNW\|pers\|pron\|stan\|nadr\|2v\|mv`, `VNW\|pers\|pron\|stan\|red\|3\|ev\|fem`, `VNW\|pers\|pron\|stan\|red\|3\|ev\|onz`, `VNW\|pers\|pron\|stan\|red\|3\|mv`, `VNW\|pr\|pron\|obl\|nadr\|1\|ev`, `VNW\|pr\|pron\|obl\|nadr\|2v\|getal`, `VNW\|pr\|pron\|obl\|nadr\|2\|getal`, `VNW\|pr\|pron\|obl\|red\|1\|ev`, `VNW\|pr\|pron\|obl\|red\|2v\|getal`, `VNW\|pr\|pron\|obl\|vol\|1\|ev`, `VNW\|pr\|pron\|obl\|vol\|1\|mv`, `VNW\|pr\|pron\|obl\|vol\|2\|getal`, `VNW\|recip\|pron\|gen\|vol\|persoon\|mv`, `VNW\|recip\|pron\|obl\|vol\|persoon\|mv`, `VNW\|refl\|pron\|obl\|nadr\|3\|getal`, `VNW\|refl\|pron\|obl\|red\|3\|getal`, `VNW\|vb\|adv-pron\|obl\|vol\|3o\|getal`, `VNW\|vb\|det\|stan\|nom\|met-e\|zonder-n`, `VNW\|vb\|det\|stan\|prenom\|met-e\|rest`, `VNW\|vb\|det\|stan\|prenom\|zonder\|evon`, `VNW\|vb\|pron\|gen\|vol\|3m\|ev`, `VNW\|vb\|pron\|gen\|vol\|3p\|mv`, `VNW\|vb\|pron\|gen\|vol\|3v\|ev`, `VNW\|vb\|pron\|stan\|vol\|3o\|ev`, `VNW\|vb\|pron\|stan\|vol\|3p\|getal`, `VZ\|fin`, `VZ\|init`, `VZ\|versm`, `WW\|inf\|nom\|zonder\|zonder-n`, `WW\|inf\|prenom\|met-e`, `WW\|inf\|vrij\|zonder`, `WW\|od\|nom\|met-e\|mv-n`, `WW\|od\|nom\|met-e\|zonder-n`, `WW\|od\|prenom\|met-e`, `WW\|od\|prenom\|zonder`, `WW\|od\|vrij\|zonder`, `WW\|pv\|conj\|ev`, `WW\|pv\|tgw\|ev`, `WW\|pv\|tgw\|met-t`, `WW\|pv\|tgw\|mv`, `WW\|pv\|verl\|ev`, `WW\|pv\|verl\|mv`, `WW\|vd\|nom\|met-e\|mv-n`, `WW\|vd\|nom\|met-e\|zonder-n`, `WW\|vd\|prenom\|met-e`, `WW\|vd\|prenom\|zonder`, `WW\|vd\|vrij\|zonder` |
| **`morphologizer`** | `POS=PRON\|Person=3\|PronType=Dem`, `Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Fin`, `POS=ADV`, `POS=VERB\|VerbForm=Part`, `POS=PUNCT`, `Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Fin`, `POS=ADP`, `POS=NUM`, `Number=Plur\|POS=NOUN`, `POS=VERB\|VerbForm=Inf`, `POS=SCONJ`, `Definite=Def\|POS=DET`, `Gender=Com\|Number=Sing\|POS=NOUN`, `Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Degree=Pos\|POS=ADJ`, `Gender=Neut\|Number=Sing\|POS=PROPN`, `Gender=Com\|Number=Sing\|POS=PROPN`, `POS=AUX\|VerbForm=Inf`, `Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin`, `POS=DET`, `Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=PRON\|Person=3\|PronType=Prs`, `POS=CCONJ`, `Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `POS=PRON\|Person=3\|PronType=Ind`, `Degree=Cmp\|POS=ADJ`, `Case=Nom\|POS=PRON\|Person=1\|PronType=Prs`, `Definite=Ind\|POS=DET`, `Case=Nom\|POS=PRON\|Person=3\|PronType=Prs`, `POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Fin`, `POS=PRON\|PronType=Rel`, `Case=Acc\|POS=PRON\|Person=1\|PronType=Prs`, `Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin`, `Gender=Com,Neut\|Number=Sing\|POS=NOUN`, `Case=Acc\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|POS=PRON\|Person=3\|PronType=Prs`, `POS=PROPN`, `POS=PRON\|PronType=Ind`, `POS=PRON\|Person=3\|PronType=Int`, `Case=Acc\|POS=PRON\|PronType=Rcp`, `Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Fin`, `Number=Sing\|POS=NOUN`, `POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `POS=SYM`, `Abbr=Yes\|POS=X`, `Gender=Com,Neut\|Number=Sing\|POS=PROPN`, `Degree=Sup\|POS=ADJ`, `Foreign=Yes\|POS=X`, `POS=ADJ`, `Number=Sing\|POS=PROPN`, `POS=PRON\|PronType=Dem`, `POS=AUX\|VerbForm=Part`, `POS=PRON\|Person=3\|PronType=Rel`, `Number=Plur\|POS=PROPN`, `POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Dat\|POS=PRON\|PronType=Dem`, `Case=Nom\|POS=PRON\|Person=2\|PronType=Prs`, `POS=X`, `POS=INTJ`, `Case=Gen\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=PRON\|PronType=Int`, `Case=Acc\|POS=PRON\|Person=2\|PronType=Prs`, `POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|POS=PRON\|Person=2\|PronType=Prs` |
| **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound:prt`, `conj`, `cop`, `csubj`, `dep`, `det`, `expl`, `expl:pv`, `fixed`, `flat`, `iobj`, `mark`, `nmod`, `nmod:poss`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `obl:agent`, `orphan`, `parataxis`, `punct`, `xcomp` |
| **`experimental_edit_tree_lemmatizer`** | `1`, `4`, `5`, `10`, `12`, `14`, `16`, `20`, `24`, `25`, `28`, `30`, `32`, `34`, `38`, `40`, `42`, `45`, `47`, `48`, `51`, `52`, `54`, `55`, `57`, `59`, `62`, `64`, `66`, `68`, `70`, `72`, `76`, `78`, `81`, `83`, `84`, `86`, `89`, `91`, `92`, `96`, `99`, `101`, `104`, `106`, `109`, `114`, `115`, `117`, `118`, `120`, `121`, `123`, `126`, `129`, `131`, `133`, `137`, `139`, `141`, `143`, `145`, `146`, `148`, `151`, `154`, `158`, `160`, `163`, `165`, `98`, `168`, `169`, `171`, `174`, `177`, `181`, `183`, `185`, `187`, `191`, `194`, `196`, `199`, `202`, `206`, `209`, `211`, `212`, `214`, `217`, `61`, `219`, `221`, `224`, `226`, `227`, `229`, `231`, `235`, `236`, `238`, `240`, `242`, `245`, `247`, `251`, `253`, `257`, `260`, `262`, `264`, `263`, `266`, `267`, `271`, `273`, `274`, `275`, `278`, `280`, `281`, `282`, `284`, `286`, `291`, `293`, `296`, `298`, `299`, `301`, `303`, `307`, `308`, `310`, `312`, `314`, `316`, `318`, `320`, `322`, `324`, `325`, `328`, `330`, `332`, `333`, `336`, `337`, `339`, `342`, `344`, `345`, `349`, `352`, `353`, `354`, `355`, `357`, `360`, `362`, `363`, `365`, `368`, `372`, `373`, `375`, `377`, `379`, `383`, `385`, `387`, `389`, `390`, `392`, `394`, `396`, `398`, `402`, `404`, `407`, `409`, `9`, `411`, `412`, `414`, `417`, `418`, `420`, `422`, `423`, `425`, `429`, `431`, `432`, `435`, `437`, `438`, `440`, `442`, `444`, `448`, `450`, `451`, `454`, `456`, `457`, `459`, `461`, `463`, `464`, `466`, `468`, `469`, `472`, `473`, `476`, `477`, `478`, `480`, `484`, `487`, `489`, `491`, `493`, `496`, `497`, `500`, `502`, `505`, `506`, `508`, `510`, `511`, `512`, `515`, `518`, `523`, `525`, `528`, `531`, `532`, `534`, `306`, `535`, `537`, `539`, `542`, `544`, `548`, `552`, `555`, `556`, `557`, `558`, `559`, `560`, `564`, `566`, `538`, `567`, `569`, `570`, `572`, `573`, `575`, `577`, `579`, `580`, `582`, `583`, `584`, `587`, `588`, `591`, `593`, `595`, `597`, `599`, `601`, `602`, `605`, `607`, `609`, `611`, `614`, `616`, `617`, `618`, `620`, `621`, `622`, `623`, `625`, `626`, `629`, `632`, `634`, `636`, `638`, `641`, `642`, `644`, `647`, `648`, `650`, `651`, `654`, `655`, `657`, `659`, `660`, `663`, `664`, `665`, `666`, `668`, `671`, `673`, `675`, `676`, `677`, `678`, `33`, `681`, `683`, `686`, `688`, `691`, `692`, `694`, `697`, `698`, `699`, `700`, `701`, `702`, `703`, `706`, `709`, `712`, `713`, `714`, `717`, `720`, `721`, `682`, `723`, `725`, `728`, `730`, `733`, `735`, `738`, `740`, `741`, `743`, `744`, `745`, `748`, `750`, `751`, `753`, `756`, `759`, `760`, `762`, `763`, `764`, `767`, `771`, `773`, `774`, `776`, `234`, `777`, `779`, `364`, `781`, `382`, `783`, `784`, `785`, `786`, `788`, `791`, `793`, `794`, `796`, `799`, `693`, `801`, `804`, `805`, `807`, `808`, `811`, `813`, `814`, `815`, `816`, `818`, `820`, `821`, `824`, `825`, `826`, `827`, `828`, `829`, `830`, `833`, `834`, `836`, `839`, `841`, `845`, `847`, `848`, `849`, `850`, `851`, `856`, `858`, `859`, `860`, `861`, `862`, `864`, `866`, `869`, `871`, `873`, `875`, `876`, `877`, `878`, `881`, `882`, `883`, `884`, `885`, `887`, `889`, `890`, `670`, `891`, `894`, `896`, `899`, `900`, `902`, `904`, `908`, `910`, `913`, `915`, `916`, `918`, `921`, `923`, `924`, `926`, `927`, `931`, `934`, `936`, `938`, `940`, `942`, `943`, `946`, `949`, `950`, `951`, `952`, `953`, `954`, `955`, `958`, `959`, `961`, `962`, `963`, `69`, `964`, `967`, `969`, `972`, `973`, `975`, `977`, `978`, `980`, `982`, `983`, `984`, `986`, `988`, `989`, `991`, `992`, `993`, `995`, `996`, `290`, `998`, `999`, `1000`, `1001`, `1003`, `1005`, `1007`, `1008`, `1009`, `1011`, `1014`, `1015`, `1016`, `1017`, `1018`, `1019`, `1021`, `1022`, `1023`, `1024`, `1025`, `1027`, `1030`, `1031`, `1032`, `1033`, `1036`, `1038`, `1041`, `1045`, `1046`, `1048`, `1052`, `1053`, `1055`, `1056`, `1057`, `1059`, `1060`, `1062`, `1064`, `1068`, `1069`, `1070`, `1073`, `1075`, `1076`, `1077`, `1080`, `1083`, `1086`, `1087`, `1088`, `1091`, `1092`, `1095`, `1098`, `1099`, `1100`, `1101`, `1104`, `1108`, `1109`, `1111`, `1113`, `1114`, `1115`, `1116`, `1118`, `1120`, `1121`, `1122`, `1125`, `1126`, `1129`, `1132`, `1133`, `1136`, `1137`, `1138`, `1140`, `1141`, `1142`, `1143`, `1144`, `1146`, `1147`, `1148`, `1149`, `1150`, `71`, `1151`, `1154`, `1155`, `1156`, `1158`, `1160`, `1161`, `1162`, `1163`, `1164`, `1165`, `1166`, `1168`, `1171`, `1172`, `1174`, `1175`, `1176`, `1177`, `1178`, `1180`, `1183`, `1185`, `1189`, `1192`, `1194`, `1195`, `1196`, `1198`, `1199`, `1200`, `1201`, `1202`, `981`, `1203`, `1204`, `1208`, `1209`, `1210`, `1211`, `1212`, `1213`, `1215`, `1216`, `1218`, `1219`, `1221`, `1223`, `1224`, `1225`, `1227`, `1228`, `1230`, `1231`, `1232`, `1234`, `1235`, `1236`, `1237`, `1239`, `1241`, `1243`, `1245`, `1247`, `1248`, `1249`, `1250`, `1252`, `1253`, `1254`, `1255`, `1256`, `1257`, `1258`, `1259`, `1261`, `1263`, `1265`, `1266`, `1267`, `1270`, `1271`, `1272`, `1273`, `1275`, `1276`, `1277`, `1280`, `53`, `1281`, `1285`, `1286`, `1287`, `1288`, `1291`, `1292`, `1294`, `1296`, `1298`, `1300`, `1301`, `1303`, `1305`, `1306`, `1308`, `1309`, `1311`, `1312`, `1315`, `1318`, `1321`, `1322`, `1323`, `1326`, `1328`, `1330`, `1332`, `1334`, `1335`, `1337`, `1338`, `1340`, `1342`, `1343`, `1344`, `1346`, `1347`, `1348`, `1349`, `1350`, `1351`, `1353`, `1355`, `1356`, `1357`, `1359`, `1361`, `1362`, `1364`, `1365`, `1368`, `1369`, `1370`, `1371`, `1372`, `1376`, `1377`, `1380`, `1381`, `1382`, `1385`, `1386`, `1387`, `1388`, `1389`, `1390`, `1391`, `1392`, `1393`, `1394`, `1396`, `1397`, `1399`, `1398`, `1403`, `1405`, `1407`, `1411`, `1413`, `1415`, `1416`, `1417`, `1418`, `1421`, `1422`, `1424`, `1425`, `1426`, `1427`, `1428`, `1429`, `1431`, `1432`, `1434`, `803`, `1435`, `1436`, `1437`, `1439`, `1441`, `1445`, `1448`, `1449`, `1450`, `1451`, `1453`, `1454`, `1456`, `1459`, `1460`, `1461`, `1464`, `1466`, `1467`, `1470`, `1473`, `1477`, `1479`, `1481`, `1482`, `1485`, `1487`, `1488`, `1490`, `1495`, `1496`, `1497`, `1499`, `1500`, `1501`, `1503`, `1504`, `1505`, `1506`, `1508`, `1509`, `1512`, `1514`, `1515`, `1516`, `1517`, `1269`, `1518`, `1520`, `1521`, `1523`, `1524`, `1526`, `1528`, `1529`, `1531`, `1532`, `1534`, `1536`, `1537`, `1538`, `1539`, `1540`, `1541`, `294`, `1542`, `1544`, `1546`, `1548`, `1549`, `1551`, `1554`, `1555`, `1556`, `1557`, `1559`, `1560`, `1563`, `1565`, `1566`, `1567`, `1568`, `1569`, `1570`, `1571`, `1572`, `1575`, `1576`, `1577`, `1578`, `1580`, `1582`, `1583`, `1586`, `1589`, `1592`, `1593`, `1594`, `1595`, `1596`, `1597`, `1598`, `1600`, `1601`, `1602`, `1604`, `1605`, `1606`, `1607`, `1608`, `1609`, `1610`, `1611`, `1612`, `1614`, `1615`, `1617`, `1619`, `1620`, `1621`, `1622`, `1623`, `1626`, `1628`, `1629`, `1630`, `1631`, `1632`, `1634`, `1636`, `1638`, `1639`, `1641`, `1643`, `1644`, `1646`, `1647`, `1648`, `1649`, `1222`, `1650`, `1652`, `1653`, `1655`, `1656`, `1657`, `1659`, `1661`, `1662`, `1664`, `1667`, `1668`, `1670`, `1671`, `1673`, `1676`, `1677`, `1679`, `1680`, `1682`, `1685`, `1687`, `1689`, `1691`, `1692`, `1695`, `1696`, `1699`, `1701`, `1703`, `1705`, `1707`, `1708`, `1709`, `1710`, `1712`, `1714`, `1715`, `1718`, `1720`, `1721`, `1722`, `1724`, `1725`, `1726`, `1728`, `1729`, `1731`, `1732`, `1733`, `1734`, `1736`, `1739`, `1742`, `1743`, `1746`, `1748`, `1749`, `1751`, `1752`, `1753`, `1754`, `1395`, `1756`, `1759`, `1760`, `1761`, `1762`, `1764`, `1766`, `1768`, `1770`, `1772`, `1773`, `1774`, `1775`, `1776`, `1777`, `1779`, `1233`, `1781`, `1782`, `1783`, `1785`, `1786`, `1787`, `1789`, `1790`, `1791`, `1543`, `1792`, `1794`, `1795`, `1796`, `1798`, `1800`, `1801`, `1802`, `1804`, `1806`, `1807`, `1809`, `1812`, `1814`, `1817`, `1818`, `1738`, `1819`, `1822`, `1824`, `1825`, `1827`, `1828`, `0`, `1829`, `1830`, `1831`, `1833`, `1834`, `1835`, `1837`, `1839`, `1841`, `1844`, `1845`, `1846`, `1847`, `1848`, `1581`, `1849`, `1850`, `1852`, `1854`, `1855`, `1856`, `1857`, `1858`, `1859`, `1860`, `1862`, `1864`, `1866`, `1867`, `1868`, `1869`, `1788`, `1871`, `77`, `1872`, `1873`, `1875`, `1877`, `1878`, `1879`, `1883`, `674`, `1884`, `1886`, `1887`, `1888`, `1889`, `1891`, `1892`, `1894`, `1895`, `1898`, `1899`, `1901`, `1902`, `1903`, `1905`, `1908`, `1911`, `1913`, `1915`, `1916`, `1917`, `1920`, `1921`, `1922`, `1923`, `1924`, `1925`, `1926`, `1927`, `1929`, `1930`, `1931`, `1932`, `1934`, `1935`, `1938`, `1940`, `1941`, `1942`, `1944`, `1945`, `1946`, `1948`, `1949`, `1950`, `1952`, `1953`, `1954`, `1955`, `1956`, `1957`, `1958`, `1959`, `1960`, `1962`, `1963`, `1964`, `1966`, `1968`, `1970`, `1971`, `1972`, `1973`, `1976`, `1978`, `1979`, `1980`, `1981`, `1982`, `1984`, `1985`, `1986`, `1987`, `1988`, `1990`, `237`, `1992`, `1993`, `1994`, `1995`, `1996`, `1997`, `1998`, `1999`, `2000`, `2002`, `2005`, `2007`, `2009`, `2010`, `2011`, `2012`, `2013`, `2014`, `2015`, `2016`, `2017`, `2019`, `2020`, `2021`, `2023`, `2025`, `2026`, `2028`, `2029`, `2032`, `1511`, `2034`, `2036`, `2038`, `2040`, `2042`, `2043`, `2045`, `2046`, `2047`, `2048`, `2049`, `2051`, `2052`, `2053`, `2054`, `2055`, `2056`, `2057`, `2058`, `2059`, `2060`, `2062`, `2064`, `2065`, `2066`, `2067`, `2068`, `2069`, `2071`, `2072`, `2073`, `2074`, `2075`, `2077`, `2078`, `182`, `2081`, `2082`, `2083`, `2084`, `2087`, `2088`, `2089`, `2091`, `2094`, `2096`, `2098`, `1533`, `2099`, `2100`, `2101`, `2103`, `2105`, `2106`, `2107`, `2108`, `2109`, `2110`, `2111`, `2112`, `2113`, `2114`, `2115`, `2116`, `2117`, `2118`, `2120`, `2123`, `2124`, `2126`, `2128`, `2130`, `2132`, `2133`, `2136`, `2139`, `2140`, `39`, `2141`, `130`, `2142`, `2144`, `2145`, `2146`, `2149`, `2150`, `2152`, `2153`, `2154`, `2155`, `2157`, `2158`, `2159`, `2161`, `2162`, `2163`, `2164`, `2166`, `2169`, `2171`, `2173`, `2174`, `2175`, `2176`, `2178`, `2179`, `2180`, `2181`, `2182`, `2183`, `2184`, `2185`, `2186`, `2187`, `2188`, `2190`, `2191`, `2192`, `2193`, `2194`, `2196`, `2198`, `2199`, `2201`, `2204`, `2205`, `2207`, `2209`, `2212`, `2214`, `2216`, `2217`, `2218`, `2219`, `2220`, `2221`, `1730`, `2222`, `2223`, `501`, `2224`, `2225`, `2227`, `2229`, `2230`, `2232`, `2233`, `2234`, `2235`, `2237`, `2239`, `2241`, `2243`, `2244`, `2246`, `2247`, `2248`, `2249`, `2250`, `2251`, `2253`, `2254`, `2257`, `2259`, `2261`, `2264`, `2265`, `2266`, `2269`, `2270`, `2271`, `2273`, `2276`, `2278`, `2280`, `2281`, `2283`, `2285`, `2287`, `2288`, `2289`, `2290`, `2291`, `2292`, `2294`, `2297`, `2298`, `2300`, `2301`, `2302`, `2303`, `2304`, `2305`, `2307`, `2309`, `2312`, `1933`, `2313`, `2314`, `1423`, `2315`, `2316`, `2319`, `2321`, `2322`, `2323`, `2326`, `2328`, `2330`, `2331`, `2332`, `2334`, `63`, `2335`, `2336`, `2338`, `2339`, `2341`, `2343`, `2272`, `2344`, `2346`, `2347`, `2349`, `2350`, `2351`, `2353`, `2354`, `2355`, `2356`, `2357`, `2358`, `195` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_F` | 98.65 |
| `TOKEN_P` | 98.49 |
| `TOKEN_R` | 98.82 |
| `TOKEN_ACC` | 99.87 |
| `SENTS_F` | 90.84 |
| `SENTS_P` | 92.62 |
| `SENTS_R` | 89.14 |
| `TAG_ACC` | 95.60 |
| `POS_ACC` | 97.67 |
| `MORPH_ACC` | 96.79 |
| `DEP_UAS` | 94.66 |
| `DEP_LAS` | 92.28 |
| `LEMMA_ACC` | 96.46 |
|
explosion/da_udv25_danishddt_trf
|
explosion
| 2021-12-10T13:06:28Z | 3 | 0 |
spacy
|
[
"spacy",
"token-classification",
"da",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- da
license: cc-by-sa-4.0
model-index:
- name: da_udv25_danishddt_trf
results:
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9848998161
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.98480302
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9819959346
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9755129694
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.8966826762
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8728917681
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9688888889
---
UD v2.5 benchmarking pipeline for UD_Danish-DDT
| Feature | Description |
| --- | --- |
| **Name** | `da_udv25_danishddt_trf` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.2.1,<3.3.0` |
| **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (1316 labels for 6 components)</summary>
| Component | Labels |
| --- | --- |
| **`experimental_char_ner_tokenizer`** | `TOKEN` |
| **`senter`** | `I`, `S` |
| **`tagger`** | `ADJ`, `ADP`, `ADV`, `AUX`, `CCONJ`, `DET`, `INTJ`, `NOUN`, `NUM`, `PART`, `PRON`, `PROPN`, `PUNCT`, `SCONJ`, `SYM`, `VERB`, `X` |
| **`morphologizer`** | `AdpType=Prep\|POS=ADP`, `Definite=Ind\|Gender=Com\|Number=Sing\|POS=NOUN`, `Mood=Ind\|POS=AUX\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=PROPN`, `Definite=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Definite=Def\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=SCONJ`, `Definite=Def\|Gender=Com\|Number=Sing\|POS=NOUN`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=ADV`, `Number=Plur\|POS=DET\|PronType=Dem`, `Degree=Pos\|Number=Plur\|POS=ADJ`, `Definite=Ind\|Gender=Com\|Number=Plur\|POS=NOUN`, `POS=PUNCT`, `POS=CCONJ`, `Definite=Ind\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Degree=Cmp\|POS=ADJ`, `POS=PRON\|PartType=Inf`, `Gender=Com\|Number=Sing\|POS=DET\|PronType=Ind`, `Definite=Ind\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Definite=Ind\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Definite=Def\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Degree=Pos\|POS=ADV`, `Definite=Def\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=PRON\|PronType=Dem`, `NumType=Card\|POS=NUM`, `Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Com\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Degree=Pos\|Gender=Com\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Com\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `NumType=Ord\|POS=ADJ`, `Gender=Com\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=VERB\|VerbForm=Inf\|Voice=Act`, `Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=NOUN`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `POS=ADP\|PartType=Inf`, `Degree=Pos\|POS=ADJ`, `Definite=Def\|Gender=Com\|Number=Plur\|POS=NOUN`, `Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Com\|Number=Sing\|POS=NOUN`, `POS=AUX\|VerbForm=Inf\|Voice=Act`, `Definite=Ind\|Degree=Pos\|Gender=Com\|Number=Sing\|POS=ADJ`, `Gender=Com\|Number=Sing\|POS=DET\|PronType=Dem`, `Number=Plur\|POS=DET\|PronType=Ind`, `Gender=Com\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Acc\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `POS=PART\|PartType=Inf`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Com\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Gender=Com\|POS=PRON\|PronType=Ind`, `Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Mood=Imp\|POS=VERB`, `Gender=Com\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Definite=Ind\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part`, `POS=X`, `Case=Nom\|Gender=Com\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Com\|Number=Plur\|POS=NOUN`, `POS=VERB\|Tense=Pres\|VerbForm=Part`, `Number=Plur\|POS=PRON\|PronType=Int,Rel`, `POS=VERB\|VerbForm=Inf\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Gender=Com\|Number=Sing\|POS=NOUN`, `Degree=Cmp\|POS=ADV`, `POS=ADV\|PartType=Inf`, `Degree=Sup\|POS=ADV`, `Number=Plur\|POS=PRON\|PronType=Dem`, `Number=Plur\|POS=PRON\|PronType=Ind`, `Definite=Def\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Com\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|POS=PROPN`, `POS=ADP`, `Degree=Cmp\|Number=Plur\|POS=ADJ`, `Definite=Def\|Degree=Sup\|POS=ADJ`, `Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Degree=Pos\|Number=Sing\|POS=ADJ`, `Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Gender=Com\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|Style=Form`, `Number=Plur\|POS=PRON\|PronType=Rcp`, `Case=Gen\|Degree=Cmp\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=INTJ`, `Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|Style=Form`, `Case=Acc\|Gender=Com\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Gender=Com\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Number=Sing\|POS=PRON\|PronType=Int,Rel`, `Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|Style=Form`, `Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int,Rel`, `Definite=Def\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Com\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Definite=Ind\|Number=Sing\|POS=NOUN`, `Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Number=Plur\|Number[psor]=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `POS=SYM`, `Case=Nom\|Gender=Com\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Degree=Sup\|POS=ADJ`, `Number=Plur\|POS=DET\|PronType=Ind\|Style=Arch`, `Case=Gen\|Gender=Com\|Number=Sing\|POS=DET\|PronType=Dem`, `Foreign=Yes\|POS=X`, `POS=DET\|Person=2\|Polite=Form\|Poss=Yes\|PronType=Prs`, `Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Acc\|Gender=Com\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|POS=PRON\|PronType=Int,Rel`, `Gender=Com\|Number=Sing\|POS=PRON\|PronType=Dem`, `Abbr=Yes\|POS=X`, `Case=Gen\|Definite=Ind\|Gender=Com\|Number=Plur\|POS=NOUN`, `Definite=Def\|Degree=Abs\|POS=ADJ`, `Definite=Ind\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Definite=Ind\|POS=NOUN`, `Gender=Com\|Number=Plur\|POS=NOUN`, `Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Com\|POS=PRON\|PronType=Int,Rel`, `Case=Nom\|Gender=Com\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Degree=Abs\|POS=ADV`, `POS=VERB\|VerbForm=Ger`, `POS=VERB\|Tense=Past\|VerbForm=Part`, `Definite=Def\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Number=Plur\|Number[psor]=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs\|Style=Form`, `Case=Gen\|Definite=Def\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Com\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Gender=Com\|Number=Sing\|POS=PRON\|PronType=Int,Rel`, `POS=VERB\|Tense=Pres`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Ind`, `Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `POS=PRON\|Person=2\|Polite=Form\|Poss=Yes\|PronType=Prs`, `Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `POS=AUX\|Tense=Pres\|VerbForm=Part`, `Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Gender=Com\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Com\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Definite=Ind\|Number=Plur\|POS=NOUN`, `Case=Gen\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Mood=Imp\|POS=AUX`, `Gender=Com\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Number[psor]=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Definite=Def\|Gender=Com\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Com\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Gen\|POS=NOUN`, `Number[psor]=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=DET\|PronType=Dem`, `Definite=Def\|Number=Plur\|POS=NOUN` |
| **`parser`** | `ROOT`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `case`, `cc`, `ccomp`, `compound:prt`, `conj`, `cop`, `dep`, `det`, `discourse`, `expl`, `fixed`, `flat`, `goeswith`, `iobj`, `list`, `mark`, `nmod`, `nmod:poss`, `nsubj`, `nummod`, `obj`, `obl`, `obl:loc`, `obl:tmod`, `punct`, `vocative`, `xcomp` |
| **`experimental_edit_tree_lemmatizer`** | `1`, `2`, `4`, `7`, `9`, `11`, `13`, `15`, `17`, `19`, `21`, `23`, `27`, `31`, `33`, `35`, `37`, `39`, `42`, `44`, `45`, `5`, `47`, `49`, `51`, `53`, `55`, `57`, `59`, `63`, `67`, `69`, `73`, `75`, `77`, `79`, `81`, `83`, `85`, `87`, `89`, `91`, `93`, `95`, `97`, `101`, `103`, `104`, `106`, `109`, `113`, `115`, `116`, `117`, `118`, `119`, `122`, `124`, `127`, `130`, `133`, `134`, `135`, `138`, `140`, `141`, `144`, `146`, `148`, `149`, `151`, `153`, `154`, `156`, `157`, `158`, `159`, `160`, `164`, `166`, `169`, `172`, `175`, `177`, `179`, `181`, `183`, `185`, `188`, `6`, `190`, `192`, `195`, `197`, `199`, `201`, `203`, `205`, `207`, `209`, `212`, `214`, `216`, `217`, `220`, `221`, `222`, `224`, `227`, `228`, `229`, `230`, `232`, `234`, `236`, `238`, `239`, `241`, `243`, `244`, `247`, `248`, `249`, `250`, `252`, `253`, `254`, `255`, `257`, `258`, `262`, `264`, `270`, `274`, `277`, `278`, `280`, `282`, `284`, `286`, `289`, `290`, `292`, `293`, `294`, `295`, `296`, `297`, `298`, `301`, `302`, `304`, `305`, `306`, `308`, `310`, `312`, `314`, `315`, `317`, `319`, `323`, `324`, `326`, `328`, `330`, `332`, `334`, `336`, `339`, `341`, `342`, `344`, `345`, `346`, `348`, `350`, `353`, `356`, `357`, `359`, `362`, `363`, `365`, `366`, `368`, `369`, `370`, `372`, `374`, `375`, `376`, `378`, `380`, `381`, `385`, `387`, `388`, `392`, `394`, `398`, `401`, `402`, `403`, `405`, `406`, `407`, `408`, `409`, `410`, `411`, `414`, `415`, `416`, `419`, `422`, `423`, `426`, `430`, `431`, `432`, `433`, `436`, `437`, `438`, `439`, `440`, `441`, `442`, `443`, `445`, `446`, `448`, `449`, `450`, `451`, `452`, `453`, `456`, `457`, `460`, `462`, `468`, `469`, `471`, `472`, `473`, `474`, `476`, `478`, `480`, `481`, `484`, `485`, `486`, `488`, `489`, `491`, `492`, `493`, `494`, `495`, `496`, `498`, `500`, `502`, `505`, `507`, `508`, `510`, `511`, `512`, `514`, `515`, `517`, `519`, `521`, `522`, `524`, `525`, `528`, `530`, `532`, `533`, `535`, `536`, `537`, `539`, `542`, `543`, `546`, `547`, `550`, `551`, `553`, `554`, `556`, `557`, `558`, `561`, `562`, `563`, `564`, `567`, `569`, `570`, `573`, `575`, `576`, `577`, `578`, `579`, `580`, `582`, `583`, `584`, `585`, `587`, `588`, `590`, `591`, `593`, `597`, `598`, `600`, `601`, `602`, `603`, `605`, `606`, `607`, `608`, `609`, `610`, `612`, `614`, `617`, `618`, `621`, `623`, `625`, `626`, `627`, `628`, `629`, `630`, `631`, `633`, `634`, `635`, `636`, `638`, `639`, `640`, `641`, `642`, `643`, `645`, `646`, `647`, `649`, `650`, `651`, `653`, `656`, `657`, `659`, `660`, `661`, `662`, `664`, `665`, `667`, `670`, `671`, `672`, `674`, `675`, `676`, `677`, `678`, `679`, `680`, `681`, `683`, `685`, `686`, `688`, `689`, `690`, `691`, `692`, `693`, `694`, `696`, `697`, `698`, `699`, `701`, `702`, `703`, `704`, `705`, `706`, `707`, `709`, `711`, `714`, `715`, `717`, `720`, `721`, `722`, `723`, `725`, `728`, `730`, `731`, `732`, `734`, `736`, `738`, `740`, `742`, `746`, `747`, `748`, `750`, `752`, `753`, `754`, `758`, `759`, `763`, `764`, `766`, `768`, `769`, `773`, `775`, `776`, `778`, `779`, `780`, `781`, `782`, `785`, `788`, `789`, `790`, `791`, `795`, `796`, `797`, `798`, `800`, `801`, `803`, `805`, `806`, `807`, `808`, `810`, `812`, `813`, `815`, `816`, `818`, `821`, `822`, `823`, `825`, `827`, `830`, `832`, `836`, `837`, `838`, `840`, `841`, `844`, `846`, `848`, `850`, `851`, `852`, `854`, `856`, `858`, `860`, `861`, `863`, `864`, `865`, `866`, `867`, `868`, `870`, `872`, `873`, `874`, `875`, `880`, `882`, `884`, `885`, `886`, `887`, `889`, `891`, `892`, `893`, `894`, `895`, `896`, `898`, `902`, `903`, `905`, `907`, `908`, `909`, `911`, `912`, `913`, `914`, `915`, `917`, `918`, `919`, `920`, `922`, `923`, `924`, `926`, `927`, `928`, `929`, `931`, `934`, `935`, `936`, `938`, `939`, `940`, `941`, `942`, `944`, `945`, `947`, `949`, `951`, `952`, `954`, `955`, `956`, `958`, `960`, `961`, `962`, `969`, `970`, `974`, `975`, `977`, `978`, `979`, `980`, `981`, `983`, `984`, `987`, `988`, `989`, `993`, `995`, `998`, `1000`, `1001`, `1002`, `1004`, `1007`, `1011`, `1012`, `1014`, `1017`, `1018`, `1020`, `1021`, `1022`, `1023`, `1025`, `1026`, `1027`, `1029`, `1030`, `1031`, `1032`, `1033`, `1034`, `1036`, `1037`, `1038`, `1040`, `1042`, `1044`, `1045`, `1048`, `1050`, `1051`, `1053`, `1054`, `1056`, `1057`, `1058`, `1059`, `1060`, `1061`, `1062`, `1064`, `1066`, `1067`, `1069`, `1070`, `1072`, `1073`, `1076`, `1078`, `1080`, `1081`, `1085`, `1086`, `1087`, `1088`, `1089`, `1090`, `1092`, `1093`, `1094`, `1096`, `1097`, `1098`, `1100`, `1101`, `1102`, `1106`, `1109`, `1110`, `1111`, `1113`, `1114`, `1116`, `1117`, `1119`, `1120`, `1122`, `1123`, `1125`, `1127`, `1128`, `1131`, `1132`, `1133`, `1134`, `1135`, `1136`, `1137`, `1138`, `1141`, `831`, `1142`, `1143`, `1144`, `1146`, `1148`, `1150`, `1152`, `1153`, `1155`, `1157`, `1158`, `1160`, `1161`, `1162`, `1163`, `1168`, `1170`, `1171`, `1174`, `1175`, `1176`, `1178`, `1181`, `1182`, `1183`, `1185`, `1186`, `1189`, `1191`, `1192`, `1193`, `1194`, `1195`, `1196`, `1198`, `1199`, `1201`, `1203`, `1204`, `1205`, `1206`, `1207`, `1208`, `1209`, `1210`, `1211`, `1212`, `1213`, `1214`, `1215`, `1218`, `1219`, `1220`, `1222`, `1223`, `1224`, `1225`, `1226`, `1227`, `1229`, `1231`, `1232`, `1235`, `1236`, `1238`, `1239`, `1242`, `1244`, `1247`, `1248`, `1249`, `1250`, `1251`, `1253`, `1255`, `1257`, `1258`, `1259`, `1261`, `1263`, `1265`, `1266`, `1267`, `1269`, `1271`, `1272`, `1273`, `1274`, `1276`, `1277`, `1278`, `1280`, `1281`, `1282`, `1283`, `1285`, `1286`, `1287`, `1288`, `1289`, `1291`, `1293`, `1294`, `1295`, `1297`, `1298`, `1299`, `1300`, `1303`, `1305`, `1307`, `1309`, `1310`, `1311`, `1312`, `1315`, `1316`, `1318`, `1321`, `1322`, `1323`, `1324`, `1325`, `1326`, `1327`, `1329`, `1330`, `1331`, `1332`, `1333`, `1334`, `1335`, `1336`, `1337`, `1338`, `1339`, `1341`, `1342`, `1343`, `1344`, `1345`, `1346`, `1347`, `1348`, `1349`, `1351`, `1352`, `1353`, `1354`, `1355`, `1357`, `1358`, `1359`, `1360`, `1362`, `1364`, `1365`, `1367`, `1368`, `1369`, `1370`, `1371`, `1372`, `1374`, `1376`, `1377`, `1379`, `1380`, `1382`, `1383`, `1384`, `1386`, `1387`, `1389`, `1390`, `1391`, `1392`, `1394`, `1396`, `1398`, `1399`, `1400`, `1401`, `1403`, `1404`, `1405`, `1406`, `1407`, `1408`, `1409`, `1410`, `1147`, `1411`, `1413`, `1414`, `1415`, `1418`, `1420`, `1421`, `1422`, `1423`, `1426`, `1427`, `1428`, `1430`, `1431`, `1433`, `1438`, `1439`, `1440`, `1441`, `1442`, `1444`, `1446`, `1448`, `1449`, `1453`, `1454`, `1456`, `1457`, `1459`, `1463`, `1465`, `1466`, `1468`, `1469`, `1470`, `1472`, `1476`, `1478`, `1479`, `1480`, `1481`, `1482`, `1483`, `1485`, `1486`, `1487`, `1488`, `1490`, `1491`, `1493`, `1494`, `1496`, `1498`, `1500`, `1502`, `1503`, `1504`, `1505`, `1506`, `1508`, `1509`, `1511`, `1512`, `1513`, `1514`, `1516`, `1518`, `1519`, `1521`, `1522`, `1524`, `1525`, `1527`, `1533`, `1534`, `1535`, `1536`, `1538`, `1540`, `1541`, `1544`, `1545`, `1547`, `1548`, `1549`, `1550`, `1551`, `1552`, `1556`, `1557`, `1559`, `1560`, `1561`, `1562`, `1563`, `1564`, `1568`, `1569`, `1571`, `1572`, `1574`, `1577`, `1578`, `1579`, `1580`, `1581`, `1583`, `1585`, `1586`, `1587`, `1588`, `1589`, `1590`, `1591`, `1594`, `1595`, `1596`, `1597`, `1598`, `1599`, `1602`, `1603`, `1605`, `1606`, `1608`, `1610`, `1612`, `1613`, `1614`, `1616`, `1618`, `1619`, `1620`, `1621`, `1622`, `1623`, `1626`, `1627`, `1629`, `1630`, `1631`, `1632`, `1634`, `1636`, `1637`, `1638`, `1639`, `1640`, `1641`, `1642`, `1644`, `1645`, `1647`, `1649`, `1651`, `1653`, `1656`, `1657`, `1658`, `1659`, `1660`, `1661`, `1663`, `1665`, `1666`, `1667`, `1668`, `1670`, `1673`, `1674`, `1676`, `1677`, `1678`, `1679`, `1680`, `1681`, `1684`, `1685`, `1687`, `1688`, `1689`, `1690`, `1692`, `1693`, `1643`, `1694`, `1695`, `1696`, `1697`, `1699`, `1701`, `1702`, `1704`, `1706`, `1708`, `1710`, `1711`, `1712`, `1714`, `1715`, `1717`, `1719`, `1720`, `1721`, `1722`, `1723`, `1724`, `1725`, `1726`, `1727`, `1728`, `1729`, `1730`, `1732`, `1734`, `1735`, `1737`, `1739`, `1741`, `1742`, `1743`, `1745`, `1747`, `1749`, `1750`, `1751`, `1753`, `1754`, `1756`, `1758`, `1759`, `1760`, `1761`, `1762`, `1764`, `1766`, `1768`, `1769`, `1770`, `1771`, `1772`, `1773`, `1774` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_F` | 99.96 |
| `TOKEN_P` | 99.95 |
| `TOKEN_R` | 99.96 |
| `TOKEN_ACC` | 100.00 |
| `SENTS_F` | 96.89 |
| `SENTS_P` | 97.15 |
| `SENTS_R` | 96.63 |
| `TAG_ACC` | 98.49 |
| `POS_ACC` | 98.48 |
| `MORPH_ACC` | 98.20 |
| `DEP_UAS` | 89.67 |
| `DEP_LAS` | 87.29 |
| `LEMMA_ACC` | 97.55 |
|
dlb/electra-base-portuguese-uncased-brwac
|
dlb
| 2021-12-10T12:33:58Z | 352 | 6 |
transformers
|
[
"transformers",
"pytorch",
"electra",
"pretraining",
"pt",
"dataset:brwac",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z |
---
language: pt
tags:
- electra
- pretraining
- pytorch
datasets:
- brwac
---
|
explosion/af_udv25_afrikaansafribooms_trf
|
explosion
| 2021-12-10T11:34:54Z | 5 | 0 |
spacy
|
[
"spacy",
"token-classification",
"af",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- af
license: cc-by-sa-4.0
model-index:
- name: af_udv25_afrikaansafribooms_trf
results:
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9601278917
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9852374236
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9751739703
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9786593964
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9078427294
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8749739963
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 1.0
---
UD v2.5 benchmarking pipeline for UD_Afrikaans-AfriBooms
| Feature | Description |
| --- | --- |
| **Name** | `af_udv25_afrikaansafribooms_trf` |
| **Version** | `0.0.1` |
| **spaCy** | `>=3.2.1,<3.3.0` |
| **Default Pipeline** | `experimental_char_ner_tokenizer`, `transformer`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Components** | `experimental_char_ner_tokenizer`, `transformer`, `senter`, `tagger`, `morphologizer`, `parser`, `experimental_edit_tree_lemmatizer` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Universal Dependencies v2.5](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105) (Zeman, Daniel; et al.) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (455 labels for 6 components)</summary>
| Component | Labels |
| --- | --- |
| **`experimental_char_ner_tokenizer`** | `TOKEN` |
| **`senter`** | `I`, `S` |
| **`tagger`** | `AOA`, `AOP`, `ASA`, `ASP`, `AVA`, `AVP`, `BO`, `BS`, `BV`, `KN`, `KO`, `LB`, `LO`, `NA`, `NEE`, `NM`, `NME`, `NSE`, `NSED`, `NSM`, `PA`, `PB`, `PDHEB`, `PDHEDP`, `PDHENP`, `PDHEW`, `PDMB`, `PDMP`, `PDMW`, `PDOENP`, `PDOEW`, `PDVEB`, `PDVEDP`, `PDVENP`, `PDVEW`, `PEEB`, `PEEDP`, `PEENP`, `PEMB`, `PEMP`, `PEMW`, `PO`, `PTEB`, `PTEDP`, `PTENP`, `PTEW`, `PTMP`, `PV`, `PW`, `RA`, `RK`, `RL`, `RO`, `RS`, `RSF`, `RV`, `RWD`, `SVS`, `THAB`, `THAO`, `THBB`, `THBO`, `THNB`, `THPB`, `THPO`, `TRAB`, `TRAO`, `TRBB`, `UPB`, `UPD`, `UPI`, `UPO`, `UPS`, `UPV`, `UPW`, `UXD`, `VTHOG`, `VTHOK`, `VTHOO`, `VTHOV`, `VTHSG`, `VTHSO`, `VTUOA`, `VTUOM`, `VTUOP`, `VUOT`, `VVHOG`, `VVHOK`, `VVHOO`, `VVUOM`, `VVUOP`, `ZE`, `ZM`, `ZPL`, `ZPR` |
| **`morphologizer`** | `Definite=Def\|POS=DET\|PronType=Art`, `Number=Sing\|POS=NOUN`, `AdpType=Prep\|POS=ADP`, `AdjType=Attr\|Case=Nom\|Degree=Pos\|POS=ADJ`, `Number=Plur\|POS=NOUN`, `POS=AUX\|Tense=Pres\|VerbForm=Fin,Inf\|VerbType=Cop`, `Definite=Ind\|POS=DET\|PronType=Art`, `POS=NUM`, `POS=PART\|PartType=Inf`, `POS=VERB\|Subcat=Tran\|Tense=Pres\|VerbForm=Fin,Inf`, `POS=PRON\|PronType=Rel`, `POS=AUX\|Tense=Pres\|VerbForm=Fin,Inf\|VerbType=Pas`, `POS=PUNCT`, `POS=CCONJ`, `POS=SCONJ`, `POS=VERB\|Subcat=Intr\|Tense=Pres\|VerbForm=Fin,Inf`, `POS=VERB\|Subcat=Intr\|Tense=Past\|VerbForm=Part`, `POS=AUX\|Tense=Past\|VerbForm=Fin\|VerbType=Pas`, `Degree=Pos\|POS=ADV`, `POS=AUX\|Tense=Pres\|VerbForm=Fin,Inf\|VerbType=Mod`, `POS=DET\|PronType=Ind`, `POS=X`, `Number=Sing\|POS=PROPN`, `POS=PRON\|PronType=Ind`, `POS=PART\|PartType=Neg`, `POS=VERB\|Subcat=Tran\|Tense=Past\|VerbForm=Part`, `AdjType=Pred\|Case=Nom\|Degree=Pos\|POS=ADJ`, `POS=DET\|PronType=Dem`, `Degree=Cmp\|POS=ADV`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=SYM`, `Case=Acc,Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `POS=PART\|PartType=Gen`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Degree=Sup\|POS=ADV`, `Degree=Dim\|Number=Sing\|POS=NOUN`, `Number=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `POS=PRON\|PronType=Int`, `Number=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `AdjType=Attr\|Case=Nom\|Degree=Sup\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `AdjType=Pred\|Case=Nom\|Degree=Cmp\|POS=ADJ`, `POS=VERB\|Subcat=Prep\|Tense=Pres\|VerbForm=Fin,Inf`, `POS=AUX\|Tense=Pres\|VerbForm=Fin,Inf\|VerbType=Aux`, `Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=PRON\|PronType=Rcp`, `POS=AUX\|Tense=Past\|VerbForm=Fin\|VerbType=Mod`, `Case=Acc,Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `POS=AUX\|Tense=Past\|VerbForm=Fin\|VerbType=Cop`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc,Nom\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `AdjType=Attr\|Case=Nom\|Degree=Cmp\|POS=ADJ`, `Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `AdjType=Pred\|Case=Nom\|Degree=Sup\|POS=ADJ` |
| **`parser`** | `ROOT`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound:prt`, `conj`, `cop`, `dep`, `det`, `flat`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `punct`, `xcomp` |
| **`experimental_edit_tree_lemmatizer`** | `1`, `2`, `4`, `7`, `8`, `10`, `12`, `14`, `16`, `18`, `21`, `24`, `26`, `28`, `31`, `32`, `34`, `37`, `39`, `40`, `42`, `44`, `46`, `47`, `49`, `51`, `53`, `54`, `56`, `57`, `58`, `59`, `61`, `64`, `66`, `68`, `69`, `72`, `74`, `75`, `77`, `78`, `81`, `83`, `84`, `85`, `86`, `87`, `90`, `92`, `94`, `96`, `99`, `101`, `103`, `105`, `108`, `110`, `113`, `116`, `117`, `118`, `121`, `123`, `124`, `125`, `127`, `128`, `129`, `133`, `136`, `138`, `141`, `143`, `145`, `147`, `151`, `153`, `154`, `156`, `158`, `159`, `160`, `162`, `164`, `165`, `167`, `168`, `170`, `172`, `174`, `176`, `178`, `179`, `180`, `181`, `183`, `185`, `189`, `190`, `191`, `192`, `194`, `195`, `197`, `198`, `201`, `202`, `203`, `204`, `206`, `207`, `209`, `213`, `214`, `216`, `217`, `218`, `220`, `221`, `222`, `223`, `225`, `226`, `228`, `229`, `231`, `233`, `234`, `236`, `238`, `240`, `241`, `244`, `247`, `248`, `249`, `250`, `252`, `253`, `255`, `256`, `257`, `258`, `261`, `262`, `263`, `265`, `267`, `269`, `270`, `271`, `273`, `275`, `276`, `278`, `279`, `281`, `283`, `285`, `287`, `289`, `291`, `294`, `296`, `297`, `298`, `299`, `300`, `301`, `302`, `303`, `305`, `306`, `307`, `309`, `310`, `311`, `313`, `314`, `315`, `317`, `320`, `321`, `323`, `325`, `326`, `327`, `328`, `329`, `330`, `332`, `333`, `335`, `336`, `337`, `338`, `339`, `340`, `341`, `343`, `344`, `347`, `348`, `349`, `351`, `353`, `355`, `357`, `359`, `360`, `361`, `362`, `365`, `366`, `367`, `369`, `371`, `373`, `374`, `375`, `377`, `379`, `381`, `383`, `386`, `388`, `390`, `392`, `393`, `395`, `397`, `398`, `400`, `401`, `402`, `403`, `405`, `406`, `408`, `409`, `411`, `412`, `414`, `417`, `215`, `418`, `419`, `420`, `421`, `422`, `424`, `425`, `426`, `427`, `429`, `431`, `432`, `433`, `434`, `436`, `438`, `439`, `440`, `442`, `443`, `444`, `447`, `449`, `450`, `452` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_F` | 99.92 |
| `TOKEN_P` | 99.89 |
| `TOKEN_R` | 99.94 |
| `TOKEN_ACC` | 100.00 |
| `SENTS_F` | 100.00 |
| `SENTS_P` | 100.00 |
| `SENTS_R` | 100.00 |
| `TAG_ACC` | 96.01 |
| `POS_ACC` | 98.52 |
| `MORPH_ACC` | 97.52 |
| `DEP_UAS` | 90.78 |
| `DEP_LAS` | 87.50 |
| `LEMMA_ACC` | 97.87 |
|
Jeska/BertjeWDialDataALLQonly05
|
Jeska
| 2021-12-10T07:54:00Z | 10 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:04Z |
---
tags:
- generated_from_trainer
model-index:
- name: BertjeWDialDataALLQonly05
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BertjeWDialDataALLQonly05
This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3921
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.9349 | 1.0 | 871 | 2.9642 |
| 2.9261 | 2.0 | 1742 | 2.9243 |
| 2.8409 | 3.0 | 2613 | 2.8895 |
| 2.7308 | 4.0 | 3484 | 2.8394 |
| 2.6042 | 5.0 | 4355 | 2.7703 |
| 2.4671 | 6.0 | 5226 | 2.7522 |
| 2.3481 | 7.0 | 6097 | 2.6339 |
| 2.2493 | 8.0 | 6968 | 2.6224 |
| 2.1233 | 9.0 | 7839 | 2.5637 |
| 2.0194 | 10.0 | 8710 | 2.4896 |
| 1.9178 | 11.0 | 9581 | 2.4689 |
| 1.8588 | 12.0 | 10452 | 2.4663 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0
- Datasets 1.16.1
- Tokenizers 0.10.3
|
marcolatella/Hps_seed1
|
marcolatella
| 2021-12-10T00:59:04Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- f1
model-index:
- name: Hps_seed1
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
args: sentiment
metrics:
- name: F1
type: f1
value: 0.7176561823314135
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Hps_seed1
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9681
- F1: 0.7177
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.6525359309081455e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.6553 | 1.0 | 1426 | 0.6275 | 0.7095 |
| 0.4945 | 2.0 | 2852 | 0.6181 | 0.7251 |
| 0.366 | 3.0 | 4278 | 0.7115 | 0.7274 |
| 0.2374 | 4.0 | 5704 | 0.8368 | 0.7133 |
| 0.1658 | 5.0 | 7130 | 0.9681 | 0.7177 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
knlu1016/albert-base-v2-finetuned-squad
|
knlu1016
| 2021-12-10T00:08:26Z | 21 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"albert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: albert-base-v2-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# albert-base-v2-finetuned-squad
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1607
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.8695 | 1.0 | 5540 | 0.9092 |
| 0.6594 | 2.0 | 11080 | 0.9148 |
| 0.5053 | 3.0 | 16620 | 0.9641 |
| 0.3477 | 4.0 | 22160 | 1.1607 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
Katsiaryna/distilbert-base-uncased-finetuned_9th
|
Katsiaryna
| 2021-12-09T13:46:21Z | 9 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned_9th
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned_9th
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2826
- Accuracy: 0.4462
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.2357 | 1.0 | 569 | 0.2277 | 0.3474 |
| 0.2237 | 2.0 | 1138 | 0.2316 | 0.3474 |
| 0.1847 | 3.0 | 1707 | 0.2456 | 0.3712 |
| 0.1302 | 4.0 | 2276 | 0.2763 | 0.4602 |
| 0.0863 | 5.0 | 2845 | 0.2826 | 0.4462 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
microsoft/deberta-base-mnli
|
microsoft
| 2021-12-09T13:36:31Z | 87,137 | 6 |
transformers
|
[
"transformers",
"pytorch",
"rust",
"deberta",
"text-classification",
"deberta-v1",
"deberta-mnli",
"en",
"arxiv:2006.03654",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
language: en
tags:
- deberta-v1
- deberta-mnli
tasks: mnli
thumbnail: https://huggingface.co/front/thumbnails/microsoft.png
license: mit
widget:
- text: "[CLS] I love you. [SEP] I like you. [SEP]"
---
## DeBERTa: Decoding-enhanced BERT with Disentangled Attention
[DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data.
Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates.
This model is the base DeBERTa model fine-tuned with MNLI task
#### Fine-tuning on NLU tasks
We present the dev results on SQuAD 1.1/2.0 and MNLI tasks.
| Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m |
|-------------------|-----------|-----------|--------|
| RoBERTa-base | 91.5/84.6 | 83.7/80.5 | 87.6 |
| XLNet-Large | -/- | -/80.2 | 86.8 |
| **DeBERTa-base** | 93.1/87.2 | 86.2/83.1 | 88.8 |
### Citation
If you find DeBERTa useful for your work, please cite the following paper:
``` latex
@inproceedings{
he2021deberta,
title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION},
author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=XPZIaotutsD}
}
```
|
InfoCoV/Cro-CoV-cseBERT
|
InfoCoV
| 2021-12-09T12:39:35Z | 13 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:04Z |
## Usage:
```
from sentence_transformers import models
from sentence_transformers import SentenceTransformer
word_embedding_model = models.Transformer('Cro-CoV-cseBERT')
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(),
pooling_mode_mean_tokens=True,
pooling_mode_cls_token=False,
pooling_mode_max_tokens=False)
model = SentenceTransformer(modules=[word_embedding_model, pooling_model], device='') ## device = 'gpu' or 'cpu'
texts_emb = model.encode(texts)
```
## Datasets:
https://github.com/InfoCoV/InfoCoV
## Paper:
Please cite https://www.mdpi.com/2076-3417/11/21/10442
|
yongzx/gpt2-finetuned-oscar-ko
|
yongzx
| 2021-12-09T06:53:05Z | 98 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"feature-extraction",
"text-generation",
"ko",
"dataset:oscar",
"license:mit",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language:
- ko
tags:
- text-generation
license: mit
datasets:
- oscar
widget:
- text: "모든사람은교육을 "
---
# GPT-2 finetuned on Korean Dataset
### Tokenizer
We first trained a tokenizer on OSCAR's `unshuffled_original_ko` Korean data subset by following the training of GPT2 tokenizer (same vocab size of 50,257). Here's the [Python file](https://github.com/bigscience-workshop/multilingual-modeling/blob/gpt2-ko/experiments/exp-001/train_tokenizer_gpt2.py) for the training.
### Model
We finetuned the `wte` and `wpe` layers of GPT-2 (while freezing the parameters of all other layers) on OSCAR's `unshuffled_original_ko` Korean data subset. We used [Huggingface's code](https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_clm.py) for fine-tuning the causal language model GPT-2, but with the following parameters changed
```
- preprocessing_num_workers: 8
- per_device_train_batch_size: 2
- gradient_accumulation_steps: 4
- per_device_eval_batch_size: 2
- eval_accumulation_steps: 4
- eval_steps: 1000
- evaluation_strategy: "steps"
- max_eval_samples: 5000
```
**Training details**: total training steps: 688000, effective train batch size per step: 32, max tokens per batch: 1024)
|
yongzx/gpt2-finetuned-oscar-fr-ori-tok
|
yongzx
| 2021-12-09T06:37:06Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"fr",
"dataset:oscar",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language:
- fr
tags:
- text-generation
license: mit
datasets:
- oscar
widget:
- text: "Je suis ravi de vous "
---
# GPT-2 finetuned on French Dataset
### Tokenizer
We use GPT-2 tokenizer.
### Model
We finetuned the `wte` and `wpe` layers of GPT-2 (while freezing the parameters of all other layers) on OSCAR's `unshuffled_original_fr` French data subset. We used [Huggingface's code](https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_clm.py) for fine-tuning the causal language model GPT-2, but with the following parameters changed
```
- preprocessing_num_workers: 8
- per_device_train_batch_size: 2
- gradient_accumulation_steps: 4
- per_device_eval_batch_size: 2
- eval_accumulation_steps: 4
- eval_steps: 1000
- evaluation_strategy: "steps"
- max_eval_samples: 5000
```
**Final checkpoint**: checkpoint-76500
|
Jeska/BertjeWDialDataALLQonly02
|
Jeska
| 2021-12-08T21:40:27Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:04Z |
---
tags:
- generated_from_trainer
model-index:
- name: BertjeWDialDataALLQonly02
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BertjeWDialDataALLQonly02
This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9043
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.2438 | 1.0 | 871 | 2.1122 |
| 2.1235 | 2.0 | 1742 | 2.0784 |
| 2.0712 | 3.0 | 2613 | 2.0679 |
| 2.0034 | 4.0 | 3484 | 2.0546 |
| 1.9375 | 5.0 | 4355 | 2.0277 |
| 1.8911 | 6.0 | 5226 | 2.0364 |
| 1.8454 | 7.0 | 6097 | 1.9812 |
| 1.808 | 8.0 | 6968 | 2.0175 |
| 1.7716 | 9.0 | 7839 | 2.0286 |
| 1.7519 | 10.0 | 8710 | 1.9653 |
| 1.7358 | 11.0 | 9581 | 1.9817 |
| 1.7084 | 12.0 | 10452 | 1.9633 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0
- Datasets 1.16.1
- Tokenizers 0.10.3
|
fdominik98/ner-hu-model-2021
|
fdominik98
| 2021-12-08T21:34:31Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
Magyar nyelvű token classification feladatra felkészített BERT modell.
|
oo/distilbert-base-uncased-finetuned-squad
|
oo
| 2021-12-08T18:56:24Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: distilbert-base-uncased-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-squad
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
patrickvonplaten/wav2vec2-xlsr-53-es-kenlm
|
patrickvonplaten
| 2021-12-08T14:00:21Z | 35 | 1 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"es",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
language: es
datasets:
- common_voice
metrics:
- wer
- cer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
---
# Wav2Vec2-Large-XLSR-53-Spanish-With-LM
This is a model copy of [Wav2Vec2-Large-XLSR-53-Spanish](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-spanish)
that has language model support.
This model card can be seen as a demo for the [pyctcdecode](https://github.com/kensho-technologies/pyctcdecode) integration
with Transformers led by [this PR](https://github.com/huggingface/transformers/pull/14339). The PR explains in-detail how the
integration works.
In a nutshell: This PR adds a new Wav2Vec2WithLMProcessor class as drop-in replacement for Wav2Vec2Processor.
The only change from the existing ASR pipeline will be:
```diff
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "patrickvonplaten/wav2vec2-xlsr-53-es-kenlm"
sample = next(iter(load_dataset("common_voice", "es", split="test", streaming=True)))
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
-prediction_ids = torch.argmax(logits, dim=-1)
-transcription = processor.batch_decode(prediction_ids)
+transcription = processor.batch_decode(logits.numpy()).text
# => 'bien y qué regalo vas a abrir primero'
```
**Improvement**
This model has been compared on 512 speech samples from the Spanish Common Voice Test set and
gives a nice *20 %* performance boost:
The results can be reproduced by running *from this model repository*:
| Model | WER | CER |
| ------------- | ------------- | ------------- |
| patrickvonplaten/wav2vec2-xlsr-53-es-kenlm | **8.44%** | **2.93%** |
| jonatasgrosman/wav2vec2-large-xlsr-53-spanish | **10.20%** | **3.24%** |
```
bash run_ngram_wav2vec2.py 1 512
```
```
bash run_ngram_wav2vec2.py 0 512
```
with `run_ngram_wav2vec2.py` being
https://huggingface.co/patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm/blob/main/run_ngram_wav2vec2.py
|
NbAiLabArchive/test_NCC_small_flax_stream_100
|
NbAiLabArchive
| 2021-12-08T13:44:15Z | 5 | 0 |
transformers
|
[
"transformers",
"jax",
"tensorboard",
"roberta",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:04Z |
Just for performing some experiments. Do not use.
|
NbAiLabArchive/test_NCC_small_flax_stream
|
NbAiLabArchive
| 2021-12-08T11:52:49Z | 7 | 0 |
transformers
|
[
"transformers",
"jax",
"tensorboard",
"roberta",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:04Z |
Just for performing some experiments. Do not use.
|
mchochowski/test-model
|
mchochowski
| 2021-12-08T10:04:42Z | 78 | 0 |
transformers
|
[
"transformers",
"image-classification",
"resnet",
"dataset:imagenet",
"arxiv:1512.03385",
"arxiv:1502.01852",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- image-classification
- resnet
datasets:
- imagenet
widget:
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
example_title: Tiger
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
example_title: Teapot
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
example_title: Palace
---
### Model Description
The ***ResNet50 v1.5*** model is a modified version of the [original ResNet50 v1 model](https://arxiv.org/abs/1512.03385).
The difference between v1 and v1.5 is that, in the bottleneck blocks which requires
downsampling, v1 has stride = 2 in the first 1x1 convolution, whereas v1.5 has stride = 2 in the 3x3 convolution.
This difference makes ResNet50 v1.5 slightly more accurate (\~0.5% top1) than v1, but comes with a smallperformance drawback (\~5% imgs/sec).
The model is initialized as described in [Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification](https://arxiv.org/pdf/1502.01852.pdf)
This model is trained with mixed precision using Tensor Cores on Volta, Turing, and the NVIDIA Ampere GPU architectures. Therefore, researchers can get results over 2x faster than training without Tensor Cores, while experiencing the benefits of mixed precision training. This model is tested against each NGC monthly container release to ensure consistent accuracy and performance over time.
Note that the ResNet50 v1.5 model can be deployed for inference on the [NVIDIA Triton Inference Server](https://github.com/NVIDIA/trtis-inference-server) using TorchScript, ONNX Runtime or TensorRT as an execution backend. For details check [NGC](https://ngc.nvidia.com/catalog/resources/nvidia:resnet_for_triton_from_pytorch)
### Example
In the example below we will use the pretrained ***ResNet50 v1.5*** model to perform inference on ***image*** and present the result.
To run the example you need some extra python packages installed. These are needed for preprocessing images and visualization.
```python
!pip install validators matplotlib
```
```python
import torch
from PIL import Image
import torchvision.transforms as transforms
import numpy as np
import json
import requests
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
print(f'Using {device} for inference')
```
Load the model pretrained on IMAGENET dataset.
```python
resnet50 = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_resnet50', pretrained=True)
utils = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_convnets_processing_utils')
resnet50.eval().to(device)
```
Prepare sample input data.
```python
uris = [
'http://images.cocodataset.org/test-stuff2017/000000024309.jpg',
'http://images.cocodataset.org/test-stuff2017/000000028117.jpg',
'http://images.cocodataset.org/test-stuff2017/000000006149.jpg',
'http://images.cocodataset.org/test-stuff2017/000000004954.jpg',
]
batch = torch.cat(
[utils.prepare_input_from_uri(uri) for uri in uris]
).to(device)
```
Run inference. Use `pick_n_best(predictions=output, n=topN)` helepr function to pick N most probably hypothesis according to the model.
```python
with torch.no_grad():
output = torch.nn.functional.softmax(resnet50(batch), dim=1)
results = utils.pick_n_best(predictions=output, n=5)
```
Display the result.
```python
for uri, result in zip(uris, results):
img = Image.open(requests.get(uri, stream=True).raw)
img.thumbnail((256,256), Image.ANTIALIAS)
plt.imshow(img)
plt.show()
print(result)
```
### Details
For detailed information on model input and output, training recipies, inference and performance visit:
[github](https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Classification/ConvNets/resnet50v1.5)
and/or [NGC](https://ngc.nvidia.com/catalog/resources/nvidia:resnet_50_v1_5_for_pytorch)
### References
- [Original ResNet50 v1 paper](https://arxiv.org/abs/1512.03385)
- [Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification](https://arxiv.org/pdf/1502.01852.pdf)
- [model on github](https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Classification/ConvNets/resnet50v1.5)
- [model on NGC](https://ngc.nvidia.com/catalog/resources/nvidia:resnet_50_v1_5_for_pytorch)
- [pretrained model on NGC](https://ngc.nvidia.com/catalog/models/nvidia:resnet50_pyt_amp)
```python
```
|
rafiulrumy/wav2vec2-large-xlsr-hindi-demo-colab_2
|
rafiulrumy
| 2021-12-08T09:51:42Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xlsr-hindi-demo-colab_2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xlsr-hindi-demo-colab_2
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 3.8793
- Wer: 1.1357
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 22.381 | 1.11 | 20 | 22.1964 | 1.0 |
| 7.6212 | 2.22 | 40 | 4.0591 | 1.0 |
| 3.6951 | 3.32 | 60 | 3.6782 | 1.0 |
| 3.5574 | 4.43 | 80 | 3.6776 | 1.0 |
| 3.5374 | 5.54 | 100 | 3.5649 | 1.0 |
| 3.5512 | 6.65 | 120 | 3.5266 | 1.0 |
| 3.5075 | 7.76 | 140 | 3.6860 | 1.0 |
| 3.5097 | 8.86 | 160 | 3.4941 | 1.0 |
| 3.481 | 9.97 | 180 | 3.4659 | 1.0 |
| 3.5623 | 11.11 | 200 | 3.7254 | 1.0 |
| 3.4404 | 12.22 | 220 | 3.5225 | 1.0 |
| 3.432 | 13.32 | 240 | 3.5706 | 1.0 |
| 3.4177 | 14.43 | 260 | 3.3833 | 1.0 |
| 3.3735 | 15.54 | 280 | 3.4140 | 1.0 |
| 3.31 | 16.65 | 300 | 3.2702 | 1.0 |
| 3.2256 | 17.76 | 320 | 3.2405 | 1.0 |
| 3.0546 | 18.86 | 340 | 3.1644 | 1.0 |
| 2.7233 | 19.97 | 360 | 2.9753 | 1.0 |
| 2.2822 | 21.11 | 380 | 3.1119 | 1.1183 |
| 1.8027 | 22.22 | 400 | 3.0035 | 1.2378 |
| 1.5274 | 23.32 | 420 | 2.8536 | 1.2227 |
| 1.2313 | 24.43 | 440 | 2.9544 | 1.0951 |
| 1.0956 | 25.54 | 460 | 2.8814 | 1.0661 |
| 0.9456 | 26.65 | 480 | 3.1192 | 1.1589 |
| 0.7893 | 27.76 | 500 | 3.2919 | 1.1833 |
| 0.7256 | 28.86 | 520 | 3.0864 | 1.0951 |
| 0.6051 | 29.97 | 540 | 3.5888 | 1.1821 |
| 0.6087 | 31.11 | 560 | 3.4579 | 1.1392 |
| 0.5529 | 32.22 | 580 | 3.1998 | 1.0708 |
| 0.5211 | 33.32 | 600 | 3.4655 | 1.1311 |
| 0.4506 | 34.43 | 620 | 3.4338 | 1.1694 |
| 0.4101 | 35.54 | 640 | 3.5189 | 1.1450 |
| 0.4484 | 36.65 | 660 | 3.6585 | 1.1601 |
| 0.4038 | 37.76 | 680 | 3.6314 | 1.1497 |
| 0.3539 | 38.86 | 700 | 3.6955 | 1.1485 |
| 0.3898 | 39.97 | 720 | 3.5738 | 1.1148 |
| 0.35 | 41.11 | 740 | 3.6594 | 1.1195 |
| 0.3328 | 42.22 | 760 | 3.6894 | 1.1299 |
| 0.3264 | 43.32 | 780 | 3.7290 | 1.1021 |
| 0.3364 | 44.43 | 800 | 3.7256 | 1.1543 |
| 0.3071 | 45.54 | 820 | 3.8834 | 1.1415 |
| 0.3074 | 46.65 | 840 | 3.8077 | 1.1450 |
| 0.3064 | 47.76 | 860 | 3.8733 | 1.1346 |
| 0.3223 | 48.86 | 880 | 3.8780 | 1.1323 |
| 0.275 | 49.97 | 900 | 3.8793 | 1.1357 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
niclas/model_en
|
niclas
| 2021-12-08T09:45:05Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: model_en
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# model_en
This model is a fine-tuned version of [facebook/wav2vec2-large](https://huggingface.co/facebook/wav2vec2-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8610
- Wer: 0.2641
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:-----:|:---------------:|:------:|
| 6.3443 | 3.05 | 250 | 3.0966 | 1.0 |
| 2.9847 | 6.1 | 500 | 3.0603 | 1.0 |
| 2.9263 | 9.15 | 750 | 2.9131 | 1.0 |
| 2.2584 | 12.19 | 1000 | 1.4318 | 0.6575 |
| 1.2603 | 15.24 | 1250 | 1.1964 | 0.4994 |
| 0.9182 | 18.29 | 1500 | 1.1494 | 0.4485 |
| 0.7462 | 21.34 | 1750 | 1.2171 | 0.4357 |
| 0.6129 | 24.39 | 2000 | 1.0557 | 0.3468 |
| 0.5364 | 27.44 | 2250 | 1.1069 | 0.4222 |
| 0.4607 | 30.48 | 2500 | 1.3270 | 0.3370 |
| 0.4139 | 33.53 | 2750 | 1.1814 | 0.3658 |
| 0.3587 | 36.58 | 3000 | 1.2423 | 0.3419 |
| 0.321 | 39.63 | 3250 | 1.2931 | 0.3211 |
| 0.2961 | 42.68 | 3500 | 1.1409 | 0.3315 |
| 0.2635 | 45.73 | 3750 | 1.4537 | 0.3241 |
| 0.2498 | 48.78 | 4000 | 1.2643 | 0.3192 |
| 0.2352 | 51.82 | 4250 | 1.2789 | 0.3278 |
| 0.2193 | 54.87 | 4500 | 1.4220 | 0.3021 |
| 0.2068 | 57.92 | 4750 | 1.3567 | 0.3713 |
| 0.2055 | 60.97 | 5000 | 1.5375 | 0.3051 |
| 0.198 | 64.02 | 5250 | 1.2676 | 0.2782 |
| 0.1835 | 67.07 | 5500 | 1.3905 | 0.2825 |
| 0.1655 | 70.12 | 5750 | 1.7000 | 0.2978 |
| 0.1677 | 73.17 | 6000 | 1.4250 | 0.2812 |
| 0.1522 | 76.22 | 6250 | 1.4220 | 0.2941 |
| 0.1522 | 79.27 | 6500 | 1.5195 | 0.3021 |
| 0.1344 | 82.32 | 6750 | 1.3749 | 0.2996 |
| 0.1298 | 85.36 | 7000 | 1.6663 | 0.2849 |
| 0.1293 | 88.41 | 7250 | 1.4564 | 0.2892 |
| 0.1264 | 91.46 | 7500 | 1.4373 | 0.2935 |
| 0.1243 | 94.51 | 7750 | 1.6572 | 0.2972 |
| 0.1141 | 97.56 | 8000 | 1.4936 | 0.2892 |
| 0.1086 | 100.61 | 8250 | 1.5231 | 0.2868 |
| 0.1056 | 103.65 | 8500 | 1.3733 | 0.2763 |
| 0.098 | 106.7 | 8750 | 1.4887 | 0.2923 |
| 0.0984 | 109.75 | 9000 | 1.3779 | 0.2923 |
| 0.0916 | 112.8 | 9250 | 1.4868 | 0.2604 |
| 0.0881 | 115.85 | 9500 | 1.7991 | 0.2996 |
| 0.0846 | 118.9 | 9750 | 1.5845 | 0.2849 |
| 0.0861 | 121.95 | 10000 | 1.6684 | 0.2794 |
| 0.0806 | 124.99 | 10250 | 1.5774 | 0.3039 |
| 0.0822 | 128.05 | 10500 | 1.5928 | 0.2886 |
| 0.0788 | 131.1 | 10750 | 1.6158 | 0.2880 |
| 0.0704 | 134.15 | 11000 | 1.7679 | 0.2941 |
| 0.0721 | 137.19 | 11250 | 1.7055 | 0.2629 |
| 0.0723 | 140.24 | 11500 | 1.5473 | 0.2653 |
| 0.0676 | 143.29 | 11750 | 1.8963 | 0.2745 |
| 0.0665 | 146.34 | 12000 | 1.6367 | 0.2739 |
| 0.0618 | 149.39 | 12250 | 1.6757 | 0.2745 |
| 0.0595 | 152.44 | 12500 | 1.5900 | 0.2745 |
| 0.056 | 155.48 | 12750 | 1.5362 | 0.2794 |
| 0.0587 | 158.53 | 13000 | 1.4616 | 0.2684 |
| 0.0519 | 161.58 | 13250 | 1.6867 | 0.2549 |
| 0.0569 | 164.63 | 13500 | 1.8294 | 0.2574 |
| 0.0497 | 167.68 | 13750 | 1.7844 | 0.2868 |
| 0.0531 | 170.73 | 14000 | 1.7564 | 0.2770 |
| 0.0489 | 173.78 | 14250 | 1.5811 | 0.2629 |
| 0.0524 | 176.82 | 14500 | 1.6925 | 0.2684 |
| 0.0431 | 179.87 | 14750 | 1.7236 | 0.2653 |
| 0.0457 | 182.92 | 15000 | 1.7460 | 0.2512 |
| 0.045 | 185.97 | 15250 | 1.8096 | 0.2610 |
| 0.0402 | 189.02 | 15500 | 1.8795 | 0.2635 |
| 0.0529 | 192.07 | 15750 | 1.8310 | 0.2616 |
| 0.0396 | 195.12 | 16000 | 1.8380 | 0.2635 |
| 0.0432 | 198.17 | 16250 | 1.8610 | 0.2641 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0
- Datasets 1.13.3
- Tokenizers 0.10.3
|
NbAiLabArchive/test_w6
|
NbAiLabArchive
| 2021-12-08T08:05:56Z | 4 | 0 |
transformers
|
[
"transformers",
"jax",
"tensorboard",
"roberta",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:04Z |
Just for performing some experiments. Do not use.
|
emeraldgoose/bad-korean-tokenizer
|
emeraldgoose
| 2021-12-08T07:29:53Z | 4 | 0 |
transformers
|
[
"transformers",
"electra",
"pretraining",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z |
KcELECTRA([https://github.com/Beomi/KcELECTRA](https://github.com/Beomi/KcELECTRA))의 Tokenizer에서 [UNK]로 대체되는 토큰들을 추가했습니다.
|
huggingtweets/whatsylviaate
|
huggingtweets
| 2021-12-08T06:59:48Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/whatsylviaate/1638946783606/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1417983394235965444/fooJopVZ_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Sylvia Plath's Food Diary</div>
<div style="text-align: center; font-size: 14px;">@whatsylviaate</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Sylvia Plath's Food Diary.
| Data | Sylvia Plath's Food Diary |
| --- | --- |
| Tweets downloaded | 717 |
| Retweets | 18 |
| Short tweets | 2 |
| Tweets kept | 697 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/29xzctsj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @whatsylviaate's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2jwd8u1b) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2jwd8u1b/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/whatsylviaate')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/sadfaceone
|
huggingtweets
| 2021-12-08T03:05:38Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/sadfaceone/1638932633342/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1461421488330870790/uqHRnPLI_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">MelancholyAK</div>
<div style="text-align: center; font-size: 14px;">@sadfaceone</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from MelancholyAK.
| Data | MelancholyAK |
| --- | --- |
| Tweets downloaded | 3235 |
| Retweets | 202 |
| Short tweets | 466 |
| Tweets kept | 2567 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2aeiomu7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sadfaceone's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2loki1ml) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2loki1ml/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/sadfaceone')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
ashraq/tsdae-bert-base-dv-news-title
|
ashraq
| 2021-12-07T20:06:24Z | 11 | 1 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"bert",
"feature-extraction",
"sentence-similarity",
"transformers",
"dv",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-03-02T23:29:05Z |
---
language:
- dv
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# Dhivehi TSDAE News BERT
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('ashraq/tsdae-bert-base-dv-news-title')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
def cls_pooling(model_output, attention_mask):
return model_output[0][:,0]
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('ashraq/tsdae-bert-base-dv-news-title')
model = AutoModel.from_pretrained('ashraq/tsdae-bert-base-dv-news-title')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, cls pooling.
sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 7331 with parameters:
```
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.DenoisingAutoEncoderLoss.DenoisingAutoEncoderLoss`
Parameters of the fit()-Method:
```
{
"epochs": 3,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 0.00024
},
"scheduler": "constantlr",
"steps_per_epoch": null,
"warmup_steps": 10000,
"weight_decay": 0
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 514, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
mrm8488/deberta-v3-small-finetuned-mnli
|
mrm8488
| 2021-12-07T17:45:59Z | 9 | 3 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"deberta-v2",
"text-classification",
"generated_from_trainer",
"deberta-v3",
"en",
"dataset:glue",
"arxiv:2006.03654",
"arxiv:2111.09543",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
language:
- en
license: mit
tags:
- generated_from_trainer
- deberta-v3
datasets:
- glue
metrics:
- accuracy
model-index:
- name: ds_results
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE MNLI
type: glue
args: mnli
metrics:
- name: Accuracy
type: accuracy
value: 0.874593165174939
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# DeBERTa v3 (small) fine-tuned on MNLI
This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the GLUE MNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4985
- Accuracy: 0.8746
## Model description
[DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. With those two improvements, DeBERTa out perform RoBERTa on a majority of NLU tasks with 80GB training data.
Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates.
In [DeBERTa V3](https://arxiv.org/abs/2111.09543), we replaced the MLM objective with the RTD(Replaced Token Detection) objective introduced by ELECTRA for pre-training, as well as some innovations to be introduced in our upcoming paper. Compared to DeBERTa-V2, our V3 version significantly improves the model performance in downstream tasks. You can find a simple introduction about the model from the appendix A11 in our original [paper](https://arxiv.org/abs/2006.03654), but we will provide more details in a separate write-up.
The DeBERTa V3 small model comes with 6 layers and a hidden size of 768. Its total parameter number is 143M since we use a vocabulary containing 128K tokens which introduce 98M parameters in the Embedding layer. This model was trained using the 160GB data as DeBERTa V2.
## Intended uses & limitations
More information needed
## Training and evaluation data
The Multi-Genre Natural Language Inference Corpus is a crowdsourced collection of sentence pairs with textual entailment annotations. Given a premise sentence and a hypothesis sentence, the task is to predict whether the premise entails the hypothesis (entailment), contradicts the hypothesis (contradiction), or neither (neutral). The premise sentences are gathered from ten different sources, including transcribed speech, fiction, and government reports. The authors of the benchmark use the standard test set, for which they obtained private labels from the RTE authors, and evaluate on both the matched (in-domain) and mismatched (cross-domain) section. They also uses and recommend the SNLI corpus as 550k examples of auxiliary training data.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.7773 | 0.04 | 1000 | 0.5241 | 0.7984 |
| 0.546 | 0.08 | 2000 | 0.4629 | 0.8194 |
| 0.5032 | 0.12 | 3000 | 0.4704 | 0.8274 |
| 0.4711 | 0.16 | 4000 | 0.4383 | 0.8355 |
| 0.473 | 0.2 | 5000 | 0.4652 | 0.8305 |
| 0.4619 | 0.24 | 6000 | 0.4234 | 0.8386 |
| 0.4542 | 0.29 | 7000 | 0.4825 | 0.8349 |
| 0.4468 | 0.33 | 8000 | 0.3985 | 0.8513 |
| 0.4288 | 0.37 | 9000 | 0.4084 | 0.8493 |
| 0.4354 | 0.41 | 10000 | 0.3850 | 0.8533 |
| 0.423 | 0.45 | 11000 | 0.3855 | 0.8509 |
| 0.4167 | 0.49 | 12000 | 0.4122 | 0.8513 |
| 0.4129 | 0.53 | 13000 | 0.4009 | 0.8550 |
| 0.4135 | 0.57 | 14000 | 0.4136 | 0.8544 |
| 0.4074 | 0.61 | 15000 | 0.3869 | 0.8595 |
| 0.415 | 0.65 | 16000 | 0.3911 | 0.8517 |
| 0.4095 | 0.69 | 17000 | 0.3880 | 0.8593 |
| 0.4001 | 0.73 | 18000 | 0.3907 | 0.8587 |
| 0.4069 | 0.77 | 19000 | 0.3686 | 0.8630 |
| 0.3927 | 0.81 | 20000 | 0.4008 | 0.8593 |
| 0.3958 | 0.86 | 21000 | 0.3716 | 0.8639 |
| 0.4016 | 0.9 | 22000 | 0.3594 | 0.8679 |
| 0.3945 | 0.94 | 23000 | 0.3595 | 0.8679 |
| 0.3932 | 0.98 | 24000 | 0.3577 | 0.8645 |
| 0.345 | 1.02 | 25000 | 0.4080 | 0.8699 |
| 0.2885 | 1.06 | 26000 | 0.3919 | 0.8674 |
| 0.2858 | 1.1 | 27000 | 0.4346 | 0.8651 |
| 0.2872 | 1.14 | 28000 | 0.4105 | 0.8674 |
| 0.3002 | 1.18 | 29000 | 0.4133 | 0.8708 |
| 0.2954 | 1.22 | 30000 | 0.4062 | 0.8667 |
| 0.2912 | 1.26 | 31000 | 0.3972 | 0.8708 |
| 0.2958 | 1.3 | 32000 | 0.3713 | 0.8732 |
| 0.293 | 1.34 | 33000 | 0.3717 | 0.8715 |
| 0.3001 | 1.39 | 34000 | 0.3826 | 0.8716 |
| 0.2864 | 1.43 | 35000 | 0.4155 | 0.8694 |
| 0.2827 | 1.47 | 36000 | 0.4224 | 0.8666 |
| 0.2836 | 1.51 | 37000 | 0.3832 | 0.8744 |
| 0.2844 | 1.55 | 38000 | 0.4179 | 0.8699 |
| 0.2866 | 1.59 | 39000 | 0.3969 | 0.8681 |
| 0.2883 | 1.63 | 40000 | 0.4000 | 0.8683 |
| 0.2832 | 1.67 | 41000 | 0.3853 | 0.8688 |
| 0.2876 | 1.71 | 42000 | 0.3924 | 0.8677 |
| 0.2855 | 1.75 | 43000 | 0.4177 | 0.8719 |
| 0.2845 | 1.79 | 44000 | 0.3877 | 0.8724 |
| 0.2882 | 1.83 | 45000 | 0.3961 | 0.8713 |
| 0.2773 | 1.87 | 46000 | 0.3791 | 0.8740 |
| 0.2767 | 1.91 | 47000 | 0.3877 | 0.8779 |
| 0.2772 | 1.96 | 48000 | 0.4022 | 0.8690 |
| 0.2816 | 2.0 | 49000 | 0.3837 | 0.8732 |
| 0.2068 | 2.04 | 50000 | 0.4644 | 0.8720 |
| 0.1914 | 2.08 | 51000 | 0.4919 | 0.8744 |
| 0.2 | 2.12 | 52000 | 0.4870 | 0.8702 |
| 0.1904 | 2.16 | 53000 | 0.5038 | 0.8737 |
| 0.1915 | 2.2 | 54000 | 0.5232 | 0.8711 |
| 0.1956 | 2.24 | 55000 | 0.5192 | 0.8747 |
| 0.1911 | 2.28 | 56000 | 0.5215 | 0.8761 |
| 0.2053 | 2.32 | 57000 | 0.4604 | 0.8738 |
| 0.2008 | 2.36 | 58000 | 0.5162 | 0.8715 |
| 0.1971 | 2.4 | 59000 | 0.4886 | 0.8754 |
| 0.192 | 2.44 | 60000 | 0.4921 | 0.8725 |
| 0.1937 | 2.49 | 61000 | 0.4917 | 0.8763 |
| 0.1931 | 2.53 | 62000 | 0.4789 | 0.8778 |
| 0.1964 | 2.57 | 63000 | 0.4997 | 0.8721 |
| 0.2008 | 2.61 | 64000 | 0.4748 | 0.8756 |
| 0.1962 | 2.65 | 65000 | 0.4840 | 0.8764 |
| 0.2029 | 2.69 | 66000 | 0.4889 | 0.8767 |
| 0.1927 | 2.73 | 67000 | 0.4820 | 0.8758 |
| 0.1926 | 2.77 | 68000 | 0.4857 | 0.8762 |
| 0.1919 | 2.81 | 69000 | 0.4836 | 0.8749 |
| 0.1911 | 2.85 | 70000 | 0.4859 | 0.8742 |
| 0.1897 | 2.89 | 71000 | 0.4853 | 0.8766 |
| 0.186 | 2.93 | 72000 | 0.4946 | 0.8768 |
| 0.2011 | 2.97 | 73000 | 0.4851 | 0.8767 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3
|
Jeska/VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly
|
Jeska
| 2021-12-07T15:55:12Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly
This model is a fine-tuned version of [outputDAQonly/checkpoint-8710](https://huggingface.co/outputDAQonly/checkpoint-8710) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5008
- Accuracy: 0.9068
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
- lr_scheduler_type: linear
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 4.0751 | 1.0 | 1320 | 3.1674 | 0.4086 |
| 2.5619 | 2.0 | 2640 | 2.0335 | 0.6426 |
| 1.8549 | 3.0 | 3960 | 1.3537 | 0.7861 |
| 1.106 | 4.0 | 5280 | 0.9515 | 0.8519 |
| 0.6698 | 5.0 | 6600 | 0.7152 | 0.8757 |
| 0.4497 | 6.0 | 7920 | 0.5838 | 0.8921 |
| 0.2626 | 7.0 | 9240 | 0.5300 | 0.8940 |
| 0.1762 | 8.0 | 10560 | 0.4984 | 0.8958 |
| 0.119 | 9.0 | 11880 | 0.4906 | 0.9059 |
| 0.0919 | 10.0 | 13200 | 0.4896 | 0.8995 |
| 0.0722 | 11.0 | 14520 | 0.5012 | 0.9022 |
| 0.0517 | 12.0 | 15840 | 0.4951 | 0.9040 |
| 0.0353 | 13.0 | 17160 | 0.4988 | 0.9040 |
| 0.0334 | 14.0 | 18480 | 0.5035 | 0.9049 |
| 0.0304 | 15.0 | 19800 | 0.5008 | 0.9068 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0
- Datasets 1.16.1
- Tokenizers 0.10.3
|
flboehm/reddit-bert-text2
|
flboehm
| 2021-12-07T14:45:38Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: reddit-bert-text2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# reddit-bert-text2
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4969
- Perplexity: 12.14
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.8378 | 1.0 | 1007 | 2.6379 |
| 2.6493 | 2.0 | 2014 | 2.5655 |
| 2.5561 | 3.0 | 3021 | 2.5382 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu113
- Datasets 1.16.1
- Tokenizers 0.10.3
|
castorini/duot5-base-msmarco
|
castorini
| 2021-12-07T12:53:29Z | 265 | 0 |
transformers
|
[
"transformers",
"pytorch",
"jax",
"t5",
"text2text-generation",
"arxiv:2101.05667",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
This model is a T5-base pairwise reranker fine-tuned on MS MARCO passage dataset for 50k steps (or 5 epochs).
For more details on how to use it, check [pygaggle.ai](pygaggle.ai)
Paper describing the model: [The Expando-Mono-Duo Design Pattern for Text Ranking with Pretrained Sequence-to-Sequence Models](https://arxiv.org/pdf/2101.05667.pdf)
|
Jeska/VaccinChatSentenceClassifierDutch_fromBERTje
|
Jeska
| 2021-12-07T09:39:51Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: VaccinChatSentenceClassifierDutch_fromBERTje
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# VaccinChatSentenceClassifierDutch_fromBERTje
This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6223
- Accuracy: 0.9068
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 3.4666 | 1.0 | 1320 | 2.3355 | 0.5768 |
| 1.5293 | 2.0 | 2640 | 1.1118 | 0.8144 |
| 0.8031 | 3.0 | 3960 | 0.6362 | 0.8803 |
| 0.2985 | 4.0 | 5280 | 0.5119 | 0.8958 |
| 0.1284 | 5.0 | 6600 | 0.5023 | 0.8931 |
| 0.0842 | 6.0 | 7920 | 0.5246 | 0.9022 |
| 0.0414 | 7.0 | 9240 | 0.5581 | 0.9013 |
| 0.0372 | 8.0 | 10560 | 0.5721 | 0.9004 |
| 0.0292 | 9.0 | 11880 | 0.5469 | 0.9141 |
| 0.0257 | 10.0 | 13200 | 0.5871 | 0.9059 |
| 0.0189 | 11.0 | 14520 | 0.6181 | 0.9049 |
| 0.0104 | 12.0 | 15840 | 0.6184 | 0.9068 |
| 0.009 | 13.0 | 17160 | 0.6013 | 0.9049 |
| 0.0051 | 14.0 | 18480 | 0.6205 | 0.9059 |
| 0.0035 | 15.0 | 19800 | 0.6223 | 0.9068 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0
- Datasets 1.16.1
- Tokenizers 0.10.3
|
akahana/indonesia-sentiment-roberta
|
akahana
| 2021-12-07T04:26:11Z | 14 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"id",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
language: "id"
widget:
- text: "dia orang yang baik ya bunds."
---
## how to use
```python
from transformers import pipeline, set_seed
path = "akahana/indonesia-sentiment-roberta"
emotion = pipeline('text-classification',
model=path,device=0)
set_seed(42)
kalimat = "dia orang yang baik ya bunds."
preds = emotion(kalimat)
preds
```
|
NbAiLabArchive/test_NCC_OSCAR_style
|
NbAiLabArchive
| 2021-12-07T01:55:12Z | 3 | 0 |
transformers
|
[
"transformers",
"jax",
"tensorboard",
"roberta",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:04Z |
Just for performing some experiments. Do not use.
|
NbAiLabArchive/test_NCC_OSCAR_style_98w
|
NbAiLabArchive
| 2021-12-07T01:53:59Z | 4 | 0 |
transformers
|
[
"transformers",
"jax",
"tensorboard",
"roberta",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:04Z |
Just for performing some experiments. Do not use.
|
huggingtweets/eddiefisher24
|
huggingtweets
| 2021-12-06T23:41:47Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/eddiefisher24/1638834103068/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/913915780819013633/aE1adt7G_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Edward Fisher JR</div>
<div style="text-align: center; font-size: 14px;">@eddiefisher24</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Edward Fisher JR.
| Data | Edward Fisher JR |
| --- | --- |
| Tweets downloaded | 1339 |
| Retweets | 212 |
| Short tweets | 125 |
| Tweets kept | 1002 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/26fekxoi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @eddiefisher24's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/264vgsyc) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/264vgsyc/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/eddiefisher24')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
SaulLu/test-push-to-hub
|
SaulLu
| 2021-12-06T23:21:03Z | 0 | 0 | null |
[
"region:us"
] | null | 2022-03-02T23:29:04Z |
test readme
test 2
test 3
test 4
test 5
test 6
test 7
test 8
test 9
test 10
test 11
|
philschmid/MiniLMv2-L12-H384-emotion
|
philschmid
| 2021-12-06T18:00:12Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
model-index:
- name: MiniLMv2-L12-H384-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.925
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MiniLMv2-L12-H384-emotion
This model is a fine-tuned version of [nreimers/MiniLMv2-L12-H384-distilled-from-RoBERTa-Large](https://huggingface.co/nreimers/MiniLMv2-L12-H384-distilled-from-RoBERTa-Large) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2069
- Accuracy: 0.925
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 8
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.8745 | 1.0 | 1000 | 0.6673 | 0.81 |
| 0.3466 | 2.0 | 2000 | 0.2816 | 0.918 |
| 0.2201 | 3.0 | 3000 | 0.2367 | 0.9215 |
| 0.1761 | 4.0 | 4000 | 0.2069 | 0.925 |
| 0.1435 | 5.0 | 5000 | 0.2089 | 0.922 |
| 0.1454 | 6.0 | 6000 | 0.2168 | 0.923 |
| 0.1041 | 7.0 | 7000 | 0.2081 | 0.924 |
| 0.0953 | 8.0 | 8000 | 0.2133 | 0.9245 |
### Framework versions
- Transformers 4.12.3
- Pytorch 1.9.1
- Datasets 1.15.1
- Tokenizers 0.10.3
|
gokulkarthik/xlm-roberta-qa-chaii
|
gokulkarthik
| 2021-12-06T15:50:08Z | 16 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"question-answering",
"en",
"ta",
"hi",
"dataset:squad",
"dataset:chaii",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
---
language:
- en
- ta
- hi
datasets:
- squad
- chaii
widget:
- text: "அலுமினியத்தின் அணு எண் என்ன?"
context: "அலுமினியம் (ஆங்கிலம்: அலுமினியம்; வட அமெரிக்க ஆங்கிலம்: Aluminum) ஒரு வேதியியல் தனிமம் ஆகும். இதனுடைய அணு எண் 13 ஆகும். இது பூமியில் அதிகம் கிடைக்கும் உலோகங்களுள் ஒன்று. இது மின்சாரத்தையும் வெப்பத்தையும் கடத்த வல்லது. பாக்ஸைட் என்ற தாதுவில் இருந்து அலுமினியம் தயாரிக்கப்படுகிறது. இதன் வேதிக்குறியீடு Al ஆகும்."
- text: "ज्वाला गुट्टा की माँ का नाम क्या है?"
context: "ज्वाला गुट्टा (जन्म: 7 सितंबर 1983; वर्धा, महाराष्ट्र) एक भारतीय बैडमिंटन खिलाडी हैं। प्रारंभिक जीवन ज्वाला गुट्टा का जन्म 7 सितंबर 1983 को वर्धा, महाराष्ट्र में हुआ था। उनके पिता एम. क्रांति तेलुगु और मां येलन चीन से हैं। उनकी मां येलन गुट्टा पहली बार 1977 में अपने दादा जी के साथ भारत आई थीं। ज्वाला गुट्टा की प्रारंभिक पढ़ाई हैदराबाद से हुई और यहीं से उन्होंने बैडमिंटन खेलना भी शुरू किया। कॅरियर 10 साल की उम्र से ही ज्वाला गुट्टा ने एस.एम. आरिफ से ट्रेनिंग लेना शुरू कर दिया था। एस.एम. आरिफ भारत के जाने माने खेल प्रशिक्षक हैं जिन्हें द्रोणाचार्य अवार्ड से सम्मानित किया गया है। पहली बार 13 साल की उम्र में उन्होंने मिनी नेशनल बैडमिंटन चैंपियनशिप जीती थी। साल 2000 में ज्वाला गुट्टा ने 17 साल की उम्र में जूनियर नेशनल बैडमिंटन चैंपियनशिप जीती। इसी साल उन्होंने श्रुति कुरियन के साथ डबल्स में जोड़ी बनाते हुए महिलाओं के डबल्स जूनियर नेशनल बैडमिंटन चैंपियनशिप और सीनियर नेशनल बैडमिंटन चैंपियनशिप में जीत हासिल की। श्रुति कुरियन के साथ उनकी जोड़ी काफी लंबे समय तक चली। 2002 से 2008 तक लगातार सात बार ज्वाला गुट्टा ने महिलाओं के नेशनल युगल प्रतियोगिता में जीत हासिल की।"
- text: "How many bones do you have in your body?"
context: "A normal adult human skeleton consists of the following 206 (208 if the breast is thought to be three parts). This number can vary depending on the physiological differences. For example, in a very small number of humans, an extra rib (neck) or an extra lower spinal cord is found. There are 22 bones in the human skull (excluding the ear tendons), which are divided into eight cranium bones and 14 facial bones. (Thick numbers indicate the numbers seen in the nearby picture.) Bones (8) 1 frontal bone (2) 3 temporal bone (2) 4 occipital bone (4) Sphinoid bone (14) 7 mandible (6) maxilla (2) palatine bone (2) 5 zygotic bone (9) 9 nasal bone (2) The sacral vertebrae (4 or 5), in adults, form the sacral vertebrae (3 to 5), in adults they form the valve."
---
# XLM-RoBERTa for question answering in Indian languages
pre-trained XLM-Roberta with intermediate pre-training on SQUAD dataset (English) and fine tuning on Chaii dataset (Tamil, Hindi)
# How to use from the 🤗/transformers library
```
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
tokenizer = AutoTokenizer.from_pretrained("gokulkarthik/xlm-roberta-qa-chaii")
model = AutoModelForQuestionAnswering.from_pretrained("gokulkarthik/xlm-roberta-qa-chaii")
```
|
Theivaprakasham/sentence-transformers-msmarco-distilbert-base-tas-b-twitter_sentiment
|
Theivaprakasham
| 2021-12-06T12:50:26Z | 10 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: sentence-transformers-msmarco-distilbert-base-tas-b-twitter_sentiment
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sentence-transformers-msmarco-distilbert-base-tas-b-twitter_sentiment
This model is a fine-tuned version of [sentence-transformers/msmarco-distilbert-base-tas-b](https://huggingface.co/sentence-transformers/msmarco-distilbert-base-tas-b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6954
- Accuracy: 0.7146
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.8892 | 1.0 | 1387 | 0.8472 | 0.6180 |
| 0.7965 | 2.0 | 2774 | 0.7797 | 0.6609 |
| 0.7459 | 3.0 | 4161 | 0.7326 | 0.6872 |
| 0.7096 | 4.0 | 5548 | 0.7133 | 0.6995 |
| 0.6853 | 5.0 | 6935 | 0.6998 | 0.7002 |
| 0.6561 | 6.0 | 8322 | 0.6949 | 0.7059 |
| 0.663 | 7.0 | 9709 | 0.6956 | 0.7077 |
| 0.6352 | 8.0 | 11096 | 0.6890 | 0.7164 |
| 0.6205 | 9.0 | 12483 | 0.6888 | 0.7117 |
| 0.6203 | 10.0 | 13870 | 0.6871 | 0.7121 |
| 0.6005 | 11.0 | 15257 | 0.6879 | 0.7171 |
| 0.5985 | 12.0 | 16644 | 0.6870 | 0.7139 |
| 0.5839 | 13.0 | 18031 | 0.6882 | 0.7164 |
| 0.5861 | 14.0 | 19418 | 0.6910 | 0.7124 |
| 0.5732 | 15.0 | 20805 | 0.6916 | 0.7153 |
| 0.5797 | 16.0 | 22192 | 0.6947 | 0.7110 |
| 0.5565 | 17.0 | 23579 | 0.6930 | 0.7175 |
| 0.5636 | 18.0 | 24966 | 0.6959 | 0.7106 |
| 0.5642 | 19.0 | 26353 | 0.6952 | 0.7132 |
| 0.5717 | 20.0 | 27740 | 0.6954 | 0.7146 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
emfa/l-lectra-danish-finetuned-hatespeech
|
emfa
| 2021-12-06T11:14:45Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"electra",
"text-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: l-lectra-danish-finetuned-hatespeech
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# l-lectra-danish-finetuned-hatespeech
This model is for a university project and is uploaded for sharing between students. It is training on a danish hate speech labeled training set. Feel free to use it, but as of now, we don't promise any good results ;-)
This model is a fine-tuned version of [Maltehb/-l-ctra-danish-electra-small-uncased](https://huggingface.co/Maltehb/-l-ctra-danish-electra-small-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2608
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 315 | 0.2561 |
| 0.291 | 2.0 | 630 | 0.2491 |
| 0.291 | 3.0 | 945 | 0.2434 |
| 0.2089 | 4.0 | 1260 | 0.2608 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
emfa/danish-bert-botxo-danish-finetuned-hatespeech
|
emfa
| 2021-12-06T11:14:31Z | 12 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"license:cc-by-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: cc-by-4.0
tags:
- generated_from_trainer
model-index:
- name: danish-bert-botxo-danish-finetuned-hatespeech
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# danish-bert-botxo-danish-finetuned-hatespeech
This model is for a university project and is uploaded for sharing between students. It is training on a danish hate speech labeled training set. Feel free to use it, but as of now, we don't promise any good results ;-)
This model is a fine-tuned version of [Maltehb/danish-bert-botxo](https://huggingface.co/Maltehb/danish-bert-botxo) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3584
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 315 | 0.3285 |
| 0.2879 | 2.0 | 630 | 0.3288 |
| 0.2879 | 3.0 | 945 | 0.3178 |
| 0.1371 | 4.0 | 1260 | 0.3584 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
emfa/danish-roberta-botxo-danish-finetuned-hatespeech
|
emfa
| 2021-12-06T11:14:17Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"generated_from_trainer",
"license:cc-by-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: cc-by-4.0
tags:
- generated_from_trainer
model-index:
- name: danish-roberta-botxo-danish-finetuned-hatespeech
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# danish-roberta-botxo-danish-finetuned-hatespeech
This model is for a university project and is uploaded for sharing between students. It is training on a danish hate speech labeled training set. Feel free to use it, but as of now, we don't promise any good results ;-)
This model is a fine-tuned version of [flax-community/roberta-base-danish](https://huggingface.co/flax-community/roberta-base-danish) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2849
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 315 | 0.3074 |
| 0.3016 | 2.0 | 630 | 0.3152 |
| 0.3016 | 3.0 | 945 | 0.2849 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
Theivaprakasham/bert-base-cased-twitter_sentiment
|
Theivaprakasham
| 2021-12-06T09:52:55Z | 9 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: bert-base-cased-twitter_sentiment
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-cased-twitter_sentiment
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6907
- Accuracy: 0.7132
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.8901 | 1.0 | 1387 | 0.8592 | 0.6249 |
| 0.8085 | 2.0 | 2774 | 0.7600 | 0.6822 |
| 0.7336 | 3.0 | 4161 | 0.7170 | 0.6915 |
| 0.6938 | 4.0 | 5548 | 0.7018 | 0.7016 |
| 0.6738 | 5.0 | 6935 | 0.6926 | 0.7067 |
| 0.6496 | 6.0 | 8322 | 0.6910 | 0.7088 |
| 0.6599 | 7.0 | 9709 | 0.6902 | 0.7088 |
| 0.631 | 8.0 | 11096 | 0.6910 | 0.7095 |
| 0.6327 | 9.0 | 12483 | 0.6925 | 0.7146 |
| 0.6305 | 10.0 | 13870 | 0.6907 | 0.7132 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
ncduy/marian-finetuned-kde4-en-to-fr
|
ncduy
| 2021-12-06T08:46:30Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"translation",
"generated_from_trainer",
"dataset:kde4",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- translation
- generated_from_trainer
datasets:
- kde4
metrics:
- bleu
model-index:
- name: marian-finetuned-kde4-en-to-fr
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: kde4
type: kde4
args: en-fr
metrics:
- name: Bleu
type: bleu
value: 52.8691179414982
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# marian-finetuned-kde4-en-to-fr
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8558
- Bleu: 52.8691
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0a0+0aef44c
- Datasets 1.16.1
- Tokenizers 0.10.3
|
zhaoyang/BertFinetuning
|
zhaoyang
| 2021-12-06T08:23:02Z | 1 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"generated_from_trainer",
"en",
"dataset:glue",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: bert_finetunning
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE MRPC
type: glue
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.8259803921568627
- name: F1
type: f1
value: 0.8786324786324787
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert_finetunning
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE MRPC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4018
- Accuracy: 0.8260
- F1: 0.8786
- Combined Score: 0.8523
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.0
### Training results
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.9.0
- Datasets 1.16.1
- Tokenizers 0.10.3
|
prithivida/bertscrnn-probwordnoise
|
prithivida
| 2021-12-06T05:57:30Z | 0 | 0 | null |
[
"pytorch",
"BERT",
"RNN",
"en",
"region:us"
] | null | 2022-03-02T23:29:05Z |
---
language:
- en
tags:
- BERT
- RNN
license: "MIT"
---
# NeuSpell: A Neural Spelling Correction Toolkit
This model checkpoint belongs to the Original Neuspell python library and is ported to HuggingFace Hub to be used as a part of NeuSpell-Demo spaces.
- [Refer to the Fork of the library (with HF hub support) in GitHub:](https://github.com/PrithivirajDamodaran/neuspell)
- [Refer to the original library in GitHub:](https://github.com/neuspell/neuspell)
|
AlexMaclean/sentence-compression-roberta
|
AlexMaclean
| 2021-12-06T04:22:17Z | 31 | 1 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"token-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-02T23:29:04Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: sentence-compression-roberta
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sentence-compression-roberta
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3465
- Accuracy: 0.8473
- F1: 0.6835
- Precision: 0.6835
- Recall: 0.6835
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.5312 | 1.0 | 50 | 0.5251 | 0.7591 | 0.0040 | 0.75 | 0.0020 |
| 0.4 | 2.0 | 100 | 0.4003 | 0.8200 | 0.5341 | 0.7113 | 0.4275 |
| 0.3355 | 3.0 | 150 | 0.3465 | 0.8473 | 0.6835 | 0.6835 | 0.6835 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu113
- Datasets 1.16.1
- Tokenizers 0.10.3
|
diegor2/t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.005-finetu-truncated-41f800
|
diegor2
| 2021-12-06T00:23:37Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:wmt16_en_ro_pre_processed",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
tags:
- generated_from_trainer
datasets:
- wmt16_en_ro_pre_processed
metrics:
- bleu
model-index:
- name: t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.005-finetuned-en-to-ro-TRAIN_EPOCHS-1
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: wmt16_en_ro_pre_processed
type: wmt16_en_ro_pre_processed
args: enro
metrics:
- name: Bleu
type: bleu
value: 0.0002
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-tiny-random-length-96-learning_rate-2e-05-weight_decay-0.005-finetuned-en-to-ro-TRAIN_EPOCHS-1
This model is a fine-tuned version of [patrickvonplaten/t5-tiny-random](https://huggingface.co/patrickvonplaten/t5-tiny-random) on the wmt16_en_ro_pre_processed dataset.
It achieves the following results on the evaluation set:
- Loss: 6.4897
- Bleu: 0.0002
- Gen Len: 9.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|
| 6.2585 | 1.0 | 76290 | 6.4897 | 0.0002 | 9.0 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
diegor2/t5-tiny-random-length-128-learning_rate-2e-05-weight_decay-0.01-finetu-truncated-d22eed
|
diegor2
| 2021-12-05T23:13:14Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:wmt16_en_ro_pre_processed",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
tags:
- generated_from_trainer
datasets:
- wmt16_en_ro_pre_processed
model-index:
- name: t5-tiny-random-length-128-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro-TRAIN_EPOCHS-1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-tiny-random-length-128-learning_rate-2e-05-weight_decay-0.01-finetuned-en-to-ro-TRAIN_EPOCHS-1
This model is a fine-tuned version of [patrickvonplaten/t5-tiny-random](https://huggingface.co/patrickvonplaten/t5-tiny-random) on the wmt16_en_ro_pre_processed dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
usc-isi/sbert-roberta-large-anli-mnli-snli
|
usc-isi
| 2021-12-05T21:04:27Z | 8 | 1 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"roberta",
"feature-extraction",
"sentence-similarity",
"transformers",
"en",
"dataset:anli",
"dataset:multi_nli",
"dataset:snli",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-03-02T23:29:05Z |
---
language:
- en
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
datasets:
- anli
- multi_nli
- snli
---
# sbert-roberta-large-anli-mnli-snli
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
The model is weight initialized by RoBERTa-large and trained on ANLI (Nie et al., 2020), MNLI (Williams et al., 2018), and SNLI (Bowman et al., 2015) using the [`training_nli.py`](https://github.com/UKPLab/sentence-transformers/blob/v0.3.5/examples/training/nli/training_nli.py) example script.
Training Details:
- Learning rate: 2e-5
- Batch size: 8
- Pooling: Mean
- Training time: ~20 hours on one [NVIDIA GeForce RTX 2080 Ti](https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-2080-ti/)
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```bash
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer("usc-isi/sbert-roberta-large-anli-mnli-snli")
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (Hugging Face Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: first, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
import torch
from transformers import AutoModel, AutoTokenizer
# Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ["This is an example sentence", "Each sentence is converted"]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained("usc-isi/sbert-roberta-large-anli-mnli-snli")
model = AutoModel.from_pretrained("usc-isi/sbert-roberta-large-anli-mnli-snli")
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt")
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, max pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input["attention_mask"])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
See section 4.1 of our paper for evaluation results.
## Full Model Architecture
```text
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
For more information about the project, see our paper:
> Ciosici, Manuel, et al. "Machine-Assisted Script Curation." _Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Demonstrations_, Association for Computational Linguistics, 2021, pp. 8–17. _ACLWeb_, <https://www.aclweb.org/anthology/2021.naacl-demos.2>.
## References
- Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015. [A large annotated corpus for learning natural language inference](https://doi.org/10.18653/v1/D15-1075). In _Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing_, pages 632–642, Lisbon, Portugal. Association for Computational Linguistics.
- Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela. 2020. [AdversarialNLI: A new benchmark for natural language understanding](https://doi.org/10.18653/v1/2020.acl-main.441). In _Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics_, pages 4885–4901, Online. Association for Computational Linguistics.
- Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. [A broad-coverage challenge corpus for sentence understanding through inference](https://doi.org/10.18653/v1/N18-1101). In _Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)_, pages 1112–1122, New Orleans, Louisiana. Association for Computational Linguistics.
|
chandank/bart-base-finetuned-kaggglenews-fact-corrector-II
|
chandank
| 2021-12-05T20:22:09Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bart",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: bart-base-finetuned-kaggglenews-fact-corrector-II
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-base-finetuned-kaggglenews-fact-corrector-II
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log | 1.0 | 305 | 1.5749 | 27.9313 | 15.1004 | 23.3282 | 25.2336 | 20.0 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu102
- Datasets 1.16.1
- Tokenizers 0.10.3
|
tyoyo/t5-base-TEDxJP-1body-1context
|
tyoyo
| 2021-12-05T20:01:50Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:te_dx_jp",
"license:cc-by-sa-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
license: cc-by-sa-4.0
tags:
- generated_from_trainer
datasets:
- te_dx_jp
model-index:
- name: t5-base-TEDxJP-1body-1context
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-base-TEDxJP-1body-1context
This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5061
- Wer: 0.1990
- Mer: 0.1913
- Wil: 0.2823
- Wip: 0.7177
- Hits: 55830
- Substitutions: 6943
- Deletions: 3598
- Insertions: 2664
- Cer: 0.1763
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:|
| 0.7277 | 1.0 | 746 | 0.5799 | 0.2384 | 0.2256 | 0.3188 | 0.6812 | 54323 | 7170 | 4878 | 3777 | 0.2371 |
| 0.6278 | 2.0 | 1492 | 0.5254 | 0.2070 | 0.1997 | 0.2905 | 0.7095 | 55045 | 6885 | 4441 | 2412 | 0.1962 |
| 0.5411 | 3.0 | 2238 | 0.5076 | 0.2022 | 0.1950 | 0.2858 | 0.7142 | 55413 | 6902 | 4056 | 2463 | 0.1805 |
| 0.53 | 4.0 | 2984 | 0.5020 | 0.1979 | 0.1911 | 0.2814 | 0.7186 | 55599 | 6849 | 3923 | 2362 | 0.1761 |
| 0.5094 | 5.0 | 3730 | 0.4999 | 0.1987 | 0.1915 | 0.2828 | 0.7172 | 55651 | 6944 | 3776 | 2465 | 0.1742 |
| 0.4783 | 6.0 | 4476 | 0.5016 | 0.1985 | 0.1914 | 0.2826 | 0.7174 | 55684 | 6947 | 3740 | 2490 | 0.1753 |
| 0.4479 | 7.0 | 5222 | 0.5035 | 0.1976 | 0.1905 | 0.2819 | 0.7181 | 55726 | 6961 | 3684 | 2468 | 0.1733 |
| 0.4539 | 8.0 | 5968 | 0.5022 | 0.1967 | 0.1896 | 0.2807 | 0.7193 | 55795 | 6938 | 3638 | 2477 | 0.1729 |
| 0.4632 | 9.0 | 6714 | 0.5034 | 0.1991 | 0.1913 | 0.2824 | 0.7176 | 55844 | 6942 | 3585 | 2687 | 0.1758 |
| 0.4201 | 10.0 | 7460 | 0.5061 | 0.1990 | 0.1913 | 0.2823 | 0.7177 | 55830 | 6943 | 3598 | 2664 | 0.1763 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu102
- Datasets 1.15.1
- Tokenizers 0.10.3
|
Eyvaz/wav2vec2-base-russian-big-kaggle
|
Eyvaz
| 2021-12-05T17:15:34Z | 5 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:04Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base-russian-big-kaggle
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-russian-big-kaggle
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 12
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.1
- Datasets 1.13.3
- Tokenizers 0.10.3
|
sultan/ArabicTransformer-large
|
sultan
| 2021-12-05T17:06:51Z | 4 | 1 |
transformers
|
[
"transformers",
"pytorch",
"funnel",
"feature-extraction",
"arxiv:2006.03236",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-03-02T23:29:05Z |
ArabicTransformer Large model (B8-8-8 with decoder)
<b>Paper</b> : ArabicTransformer: Efficient Large Arabic Language Model with Funnel Transformer and ELECTRA Objective (EMNLP21)
<b>Abstract</b>
Pre-training Transformer-based models such as BERT and ELECTRA on a collection of Arabic corpora, demonstrated by both AraBERT and AraELECTRA, shows an impressive result on downstream tasks. However, pre-training Transformer-based language models is computationally expensive, especially for large-scale models. Recently, Funnel Transformer has addressed the sequential redundancy inside Transformer architecture by compressing the sequence of hidden states, leading to a significant reduction in the pretraining cost. This paper empirically studies the performance and efficiency of building an Arabic language model with Funnel Transformer and ELECTRA objective. We find that our model achieves state-of-the-art results on several Arabic downstream tasks despite using less computational resources compared to other BERT-based models.
<b>Description</b>
This model was pre-trained on 44GB of Arabic corpora using [Funnel Transformer with ELECTRA objective](https://arxiv.org/abs/2006.03236). We will update you with more details about the model and our accepted paper later at EMNLP21. Check our GitHub page for the latest updates and examples: https://github.com/salrowili/ArabicTransformer
```bibtex
@inproceedings{alrowili-shanker-2021-arabictransformer-efficient,
title = "{A}rabic{T}ransformer: Efficient Large {A}rabic Language Model with Funnel Transformer and {ELECTRA} Objective",
author = "Alrowili, Sultan and
Shanker, Vijay",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-emnlp.108",
pages = "1255--1261",
abstract = "Pre-training Transformer-based models such as BERT and ELECTRA on a collection of Arabic corpora, demonstrated by both AraBERT and AraELECTRA, shows an impressive result on downstream tasks. However, pre-training Transformer-based language models is computationally expensive, especially for large-scale models. Recently, Funnel Transformer has addressed the sequential redundancy inside Transformer architecture by compressing the sequence of hidden states, leading to a significant reduction in the pre-training cost. This paper empirically studies the performance and efficiency of building an Arabic language model with Funnel Transformer and ELECTRA objective. We find that our model achieves state-of-the-art results on several Arabic downstream tasks despite using less computational resources compared to other BERT-based models.",
}
```
|
danielbispov/t5-small-finetuned-fi-to-en
|
danielbispov
| 2021-12-05T16:40:52Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:wmt19",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- wmt19
metrics:
- bleu
model-index:
- name: t5-small-finetuned-fi-to-en
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: wmt19
type: wmt19
args: fi-en
metrics:
- name: Bleu
type: bleu
value: 1.129
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-fi-to-en
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt19 dataset.
It achieves the following results on the evaluation set:
- Loss: 3.5235
- Bleu: 1.129
- Gen Len: 17.088
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-----:|:-------:|
| 3.414 | 1.0 | 6250 | 3.5235 | 1.129 | 17.088 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.9.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
Kithogue/T5_Question_Generation
|
Kithogue
| 2021-12-05T15:05:13Z | 13 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:04Z |
T5-base fine-tuned on SQuAD and CoQA datasets for question generation
language:
- en-us
tags:
- question-generation
license:
- MIT
datasets:
- SQuAD 2.0
- CoQA
|
ying-tina/wav2vec2-base-timit-demo-colab-test
|
ying-tina
| 2021-12-05T14:55:36Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base-timit-demo-colab-test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-timit-demo-colab-test
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4283
- Wer: 0.3356
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.7386 | 4.0 | 500 | 2.2419 | 1.0 |
| 0.9366 | 8.0 | 1000 | 0.4789 | 0.4807 |
| 0.3118 | 12.0 | 1500 | 0.4197 | 0.3973 |
| 0.1784 | 16.0 | 2000 | 0.4216 | 0.3614 |
| 0.1297 | 20.0 | 2500 | 0.4298 | 0.3507 |
| 0.1091 | 24.0 | 3000 | 0.4365 | 0.3437 |
| 0.0819 | 28.0 | 3500 | 0.4283 | 0.3356 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
megagonlabs/transformers-ud-japanese-electra-base-ginza-510
|
megagonlabs
| 2021-12-05T12:12:12Z | 15,942 | 2 |
transformers
|
[
"transformers",
"pytorch",
"electra",
"feature-extraction",
"PyTorch",
"Transformers",
"spaCy",
"ELECTRA",
"GiNZA",
"mC4",
"UD_Japanese-BCCWJ",
"GSK2014-A",
"ja",
"MIT",
"arxiv:1910.10683",
"license:mit",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-03-02T23:29:05Z |
---
language:
- ja
thumbnail: "https://raw.githubusercontent.com/megagonlabs/ginza/static/docs/images/GiNZA_logo_4c_s.png"
tags:
- PyTorch
- Transformers
- spaCy
- ELECTRA
- GiNZA
- mC4
- UD_Japanese-BCCWJ
- GSK2014-A
- ja
- MIT
license: "mit"
datasets:
- mC4
- UD_Japanese_BCCWJ r2.8
- GSK2014-A(2019)
metrics:
- UAS
- LAS
- UPOS
---
# transformers-ud-japanese-electra-ginza-510 (sudachitra-wordpiece, mC4 Japanese)
This is an [ELECTRA](https://github.com/google-research/electra) model pretrained on approximately 200M Japanese sentences extracted from the [mC4](https://huggingface.co/datasets/mc4) and finetuned by [spaCy v3](https://spacy.io/usage/v3) on [UD\_Japanese\_BCCWJ r2.8](https://universaldependencies.org/treebanks/ja_bccwj/index.html).
The base pretrain model is [megagonlabs/transformers-ud-japanese-electra-base-discrimininator](https://huggingface.co/megagonlabs/transformers-ud-japanese-electra-base-discriminator).
The entire spaCy v3 model is distributed as a python package named [`ja_ginza_electra`](https://pypi.org/project/ja-ginza-electra/) from PyPI along with [`GiNZA v5`](https://github.com/megagonlabs/ginza) which provides some custom pipeline components to recognize the Japanese bunsetu-phrase structures.
Try running it as below:
```console
$ pip install ginza ja_ginza_electra
$ ginza
```
## Licenses
The models are distributed under the terms of the [MIT License](https://opensource.org/licenses/mit-license.php).
## Acknowledgments
This model is permitted to be published under the `MIT License` under a joint research agreement between NINJAL (National Institute for Japanese Language and Linguistics) and Megagon Labs Tokyo.
## Citations
- [mC4](https://huggingface.co/datasets/mc4)
Contains information from `mC4` which is made available under the [ODC Attribution License](https://opendatacommons.org/licenses/by/1-0/).
```
@article{2019t5,
author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu},
title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer},
journal = {arXiv e-prints},
year = {2019},
archivePrefix = {arXiv},
eprint = {1910.10683},
}
```
- [UD\_Japanese\_BCCWJ r2.8](https://universaldependencies.org/treebanks/ja_bccwj/index.html)
```
Asahara, M., Kanayama, H., Tanaka, T., Miyao, Y., Uematsu, S., Mori, S.,
Matsumoto, Y., Omura, M., & Murawaki, Y. (2018).
Universal Dependencies Version 2 for Japanese.
In LREC-2018.
```
- [GSK2014-A(2019)](https://www.gsk.or.jp/catalog/gsk2014-a/)
|
NbAiLabArchive/test_NCC_OSCAR_16w_noada
|
NbAiLabArchive
| 2021-12-04T22:33:03Z | 4 | 0 |
transformers
|
[
"transformers",
"roberta",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:04Z |
Just for performing some experiments. Do not use.
|
BigSalmon/MrLincoln12
|
BigSalmon
| 2021-12-04T21:32:35Z | 11 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:04Z |
Informal to Formal:
```
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("gpt2")
model = AutoModelWithLMHead.from_pretrained("BigSalmon/MrLincoln12")
```
```
https://huggingface.co/spaces/BigSalmon/InformalToFormal
```
```
How To Make Prompt:
informal english: i am very ready to do that just that.
Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end.
Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task.
informal english: space is huge and needs to be explored.
Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless.
Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration.
informal english: meteors are much harder to see, because they are only there for a fraction of a second.
Translated into the Style of Abraham Lincoln: meteors are not ( easily / readily ) detectable, lasting for mere fractions of a second.
informal english:
````
|
dee4hf/autonlp-shajBERT-38639804
|
dee4hf
| 2021-12-04T18:53:26Z | 6 | 1 |
transformers
|
[
"transformers",
"pytorch",
"albert",
"text-classification",
"autonlp",
"unk",
"dataset:dee4hf/autonlp-data-shajBERT",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
tags: autonlp
language: unk
widget:
- text: "I love AutoNLP 🤗"
datasets:
- dee4hf/autonlp-data-shajBERT
co2_eq_emissions: 11.98841452241473
---
# Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 38639804
- CO2 Emissions (in grams): 11.98841452241473
## Validation Metrics
- Loss: 0.421400249004364
- Accuracy: 0.86783988957902
- Macro F1: 0.8669477050676501
- Micro F1: 0.86783988957902
- Weighted F1: 0.86694770506765
- Macro Precision: 0.867606300132228
- Micro Precision: 0.86783988957902
- Weighted Precision: 0.8676063001322278
- Macro Recall: 0.86783988957902
- Micro Recall: 0.86783988957902
- Weighted Recall: 0.86783988957902
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/dee4hf/autonlp-shajBERT-38639804
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("dee4hf/autonlp-shajBERT-38639804", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("dee4hf/autonlp-shajBERT-38639804", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
```
|
felipetanios/opus-mt-de-en-finetuned-de-to-en-second
|
felipetanios
| 2021-12-04T18:48:17Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"generated_from_trainer",
"dataset:wmt16",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- wmt16
metrics:
- bleu
model-index:
- name: opus-mt-de-en-finetuned-de-to-en-second
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: wmt16
type: wmt16
args: de-en
metrics:
- name: Bleu
type: bleu
value: 37.9762
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opus-mt-de-en-finetuned-de-to-en-second
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-de-en](https://huggingface.co/Helsinki-NLP/opus-mt-de-en) on the wmt16 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2282
- Bleu: 37.9762
- Gen Len: 25.3696
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| No log | 1.0 | 157 | 1.1837 | 38.8278 | 25.22 |
| No log | 2.0 | 314 | 1.2057 | 38.3047 | 25.2908 |
| No log | 3.0 | 471 | 1.2167 | 38.231 | 25.316 |
| 1.4808 | 4.0 | 628 | 1.2256 | 37.9871 | 25.3556 |
| 1.4808 | 5.0 | 785 | 1.2282 | 37.9762 | 25.3696 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
dee4hf/deeBERT
|
dee4hf
| 2021-12-04T18:44:11Z | 0 | 0 | null |
[
"region:us"
] | null | 2022-03-02T23:29:05Z |
trying to create my first BERT model
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.