modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-13 00:37:47
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-13 00:35:18
card
stringlengths
11
1.01M
yonas/stt_rw_conformer_ctc_large
yonas
2022-12-10T17:16:27Z
12
0
nemo
[ "nemo", "automatic-speech-recognition", "speech", "Kinyarwanda", "audio", "CTC", "Conformer", "Transformer", "NeMo", "pytorch", "rw", "dataset:mozilla-foundation/common_voice_11_0", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-12-02T13:08:08Z
--- language: - rw license: cc-by-4.0 library_name: nemo datasets: - mozilla-foundation/common_voice_11_0 thumbnail: null tags: - automatic-speech-recognition - speech - Kinyarwanda - audio - CTC - Conformer - Transformer - NeMo - pytorch model-index: - name: stt_rw_conformer_ctc_large results: [] --- ## Model Overview <DESCRIBE IN ONE LINE THE MODEL AND ITS USE> ## NVIDIA NeMo: Training To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version. ``` pip install nemo_toolkit['all'] ``` ## How to Use this Model The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. ### Automatically instantiate the model ```python import nemo.collections.asr as nemo_asr asr_model = nemo_asr.models.ASRModel.from_pretrained("yonas/stt_rw_conformer_ctc_large") ``` ### Transcribing using Python First, let's get a sample ``` wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav ``` Then simply do: ``` asr_model.transcribe(['2086-149220-0033.wav']) ``` ### Transcribing many audio files ```shell python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py pretrained_name="yonas/stt_rw_conformer_ctc_large" audio_dir="<DIRECTORY CONTAINING AUDIO FILES>" ``` ### Input This model accepts 16000 KHz Mono-channel Audio (wav files) as input. ### Output This model provides transcribed speech as a string for a given audio sample. ## Model Architecture <ADD SOME INFORMATION ABOUT THE ARCHITECTURE> ## Training <ADD INFORMATION ABOUT HOW THE MODEL WAS TRAINED - HOW MANY EPOCHS, AMOUNT OF COMPUTE ETC> ### Datasets <LIST THE NAME AND SPLITS OF DATASETS USED TO TRAIN THIS MODEL (ALONG WITH LANGUAGE AND ANY ADDITIONAL INFORMATION)> ## Performance <LIST THE SCORES OF THE MODEL - OR USE THE Hugging Face Evaluate LiBRARY TO UPLOAD METRICS> ## Limitations <DECLARE ANY POTENTIAL LIMITATIONS OF THE MODEL> Eg: Since this model was trained on publically available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech. ## References <ADD ANY REFERENCES HERE AS NEEDED> [1] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
alx-ai/noggles-v21-5900
alx-ai
2022-12-10T16:53:09Z
2
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-10T16:50:14Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### noggles_v21_5900 Dreambooth model trained by alxdfy with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Or you can run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb) Sample pictures of this concept: ![0](https://huggingface.co/alxdfy/noggles-v21-5900/resolve/main/sample_images/00267-3860859300-portrait_of_vitalik_buterin_wearing_noggles.png)
marktrovinger/ppo-Huggy
marktrovinger
2022-12-10T16:26:03Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-10T16:25:56Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: marktrovinger/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Stxlla/ko-en-following
Stxlla
2022-12-10T15:20:05Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "m2m_100", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-10T10:20:17Z
--- license: mit tags: - generated_from_trainer model-index: - name: ko-en-following results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ko-en-following This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2770 - eval_bleu: 39.2282 - eval_gen_len: 11.2812 - eval_runtime: 2002.6187 - eval_samples_per_second: 16.527 - eval_steps_per_second: 1.033 - epoch: 2.0 - step: 33098 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
dor88/ppo-LunarLander-v2
dor88
2022-12-10T15:13:13Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-10T14:41:53Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 272.02 +/- 16.27 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ScrappyCoco666/ppo-LunarLander-v2-1
ScrappyCoco666
2022-12-10T15:01:15Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-10T12:47:10Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 292.51 +/- 14.48 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
hr16/any-ely-wd-noah-titan-4200
hr16
2022-12-10T14:36:13Z
0
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-10T14:32:44Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Model Dreambooth concept any-ely-wd-Noah_Titan-4200 được train bởi hr16 bằng [Shinja Zero SoTA DreamBooth_Stable_Diffusion](https://colab.research.google.com/drive/1G7qx6M_S1PDDlsWIMdbZXwdZik6sUlEh) notebook <br> Test concept bằng [Shinja Zero no Notebook](https://colab.research.google.com/drive/1Hp1ZIjPbsZKlCtomJVmt2oX7733W44b0) <br> Hoặc test bằng `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb) Ảnh mẫu của concept: WIP
hr16/any-ely-wd-noah-titan-3500
hr16
2022-12-10T14:31:40Z
0
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-10T14:28:01Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Model Dreambooth concept any-ely-wd-Noah_Titan-3500 được train bởi hr16 bằng [Shinja Zero SoTA DreamBooth_Stable_Diffusion](https://colab.research.google.com/drive/1G7qx6M_S1PDDlsWIMdbZXwdZik6sUlEh) notebook <br> Test concept bằng [Shinja Zero no Notebook](https://colab.research.google.com/drive/1Hp1ZIjPbsZKlCtomJVmt2oX7733W44b0) <br> Hoặc test bằng `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb) Ảnh mẫu của concept: WIP
lukechoi76/ppo-LunarLander-v2
lukechoi76
2022-12-10T14:22:27Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-10T14:21:59Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 267.41 +/- 12.72 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
lnros/ppo-Huggy
lnros
2022-12-10T14:17:05Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-10T14:16:59Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: lnros/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Moussmous/Unit1-ppo-LunarLander-v2
Moussmous
2022-12-10T14:16:46Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-10T14:16:24Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 244.56 +/- 25.49 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
spaablauw/CinemaHelper
spaablauw
2022-12-10T13:46:25Z
0
66
null
[ "license:wtfpl", "region:us" ]
null
2022-12-10T09:22:55Z
--- license: wtfpl --- Nice bokeh, grain, depth of field, soft lights, muted colors, and overall a great cinema vibe. Trained for 1000 steps on 5 steps gradient accumulation and a lr of 0.003 for the first half, then 0.001 for the second half. ![08887-702001782-portrait of elsa from frozen, cinemahelper, bokeh background, anamorphic, depth of field, sharp focus.png](https://s3.amazonaws.com/moonup/production/uploads/1670679174866-6312579fc7577b68d90a7646.png) ![08883-2679933588-batman, rainy street with puddles, cinemahelper, night city lights bokeh background, dramatic lighting, anamorphic, depth of fie.png](https://s3.amazonaws.com/moonup/production/uploads/1670679178174-6312579fc7577b68d90a7646.png) ![08893-3628799211-portrait of dumbledore, cinemahelper, forest bokeh background, dramatic lighting, anamorphic, depth of field, sharp focus, extre.png](https://s3.amazonaws.com/moonup/production/uploads/1670679154661-6312579fc7577b68d90a7646.png) ![08882-1057151122-ford mustang drifting,cinemahelper,, bokeh,sharp focus, depth of field, paris street background.png](https://s3.amazonaws.com/moonup/production/uploads/1670679168623-6312579fc7577b68d90a7646.png) ![08843-6684254-headshot portrait of agent 47,cinemahelper,black suit red tie, hitman, bokeh,sharp focus, depth of field, paris street backgroun.png](https://s3.amazonaws.com/moonup/production/uploads/1670679184728-6312579fc7577b68d90a7646.png) ![08807-4092503151-kitten, puddles in street, cinemahelper, anamorphic bokeh, night city lights background, depth of field, sharp focus.png](https://s3.amazonaws.com/moonup/production/uploads/1670679695890-6312579fc7577b68d90a7646.png)
bitsanlp/roberta-finetuned-DA-100k
bitsanlp
2022-12-10T13:34:25Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-10T13:11:17Z
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-finetuned-DA-100k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-finetuned-DA-100k This model is a fine-tuned version of [bitsanlp/roberta-retrained_100k](https://huggingface.co/bitsanlp/roberta-retrained_100k) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 28 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
ataunal/ppo-LunarLander-v2
ataunal
2022-12-10T13:15:23Z
8
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-24T10:41:36Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 241.31 +/- 16.13 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
danielsaggau/bregman_1.5
danielsaggau
2022-12-10T12:50:52Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "longformer", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-12-10T12:43:19Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 187841 with parameters: ``` {'batch_size': 2, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `__main__.BregmanRankingLoss` Parameters of the fit()-Method: ``` { "epochs": 4, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 3e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 5000, "warmup_steps": 75137, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 4096, 'do_lower_case': False}) with Transformer model: LongformerModel (1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
KishoreR10/this_is_my_model
KishoreR10
2022-12-10T12:50:45Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-09T07:13:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: this_is_my_model results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.8673816819884236 - name: Recall type: recall value: 0.9020892351274787 - name: F1 type: f1 value: 0.884395070300295 - name: Accuracy type: accuracy value: 0.9761756784752434 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # this_is_my_model This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.1143 - Precision: 0.8674 - Recall: 0.9021 - F1: 0.8844 - Accuracy: 0.9762 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2292 | 1.0 | 878 | 0.1048 | 0.8683 | 0.8973 | 0.8825 | 0.9763 | | 0.0493 | 2.0 | 1756 | 0.1143 | 0.8674 | 0.9021 | 0.8844 | 0.9762 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
anxiosorusrex/chromayama
anxiosorusrex
2022-12-10T11:20:10Z
0
0
null
[ "region:us" ]
null
2022-12-10T10:40:03Z
model trained on a hundred pictures by / or in the style of Hajime Sorayama https://i.postimg.cc/HpFBqBtG/00425-854878815-chromayama-art-iridescent-glitter-sharp-focus.png Trained with Dreambooth
udon3/xlm-roberta-base-finetuned-panx-all
udon3
2022-12-10T11:00:36Z
6
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-10T08:03:58Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1746 - F1: 0.8505 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3048 | 1.0 | 835 | 0.1952 | 0.8057 | | 0.1561 | 2.0 | 1670 | 0.1738 | 0.8460 | | 0.1017 | 3.0 | 2505 | 0.1746 | 0.8505 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.10.0 - Datasets 2.7.1 - Tokenizers 0.13.2
ignamonte/ppo-LunarLander-v2
ignamonte
2022-12-10T10:49:50Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-10T10:49:24Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -1164.05 +/- 712.88 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Gladiator/microsoft-deberta-v3-large_ner_wikiann
Gladiator
2022-12-10T10:47:34Z
17
0
transformers
[ "transformers", "pytorch", "tensorboard", "deberta-v2", "token-classification", "generated_from_trainer", "dataset:wikiann", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-10T09:49:47Z
--- license: mit tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: microsoft-deberta-v3-large_ner_wikiann results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann config: en split: train args: en metrics: - name: Precision type: precision value: 0.8557286258220838 - name: Recall type: recall value: 0.8738159196946134 - name: F1 type: f1 value: 0.8646776957783918 - name: Accuracy type: accuracy value: 0.9406352438660972 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # microsoft-deberta-v3-large_ner_wikiann This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.3108 - Precision: 0.8557 - Recall: 0.8738 - F1: 0.8647 - Accuracy: 0.9406 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3005 | 1.0 | 1250 | 0.2462 | 0.8205 | 0.8400 | 0.8301 | 0.9294 | | 0.1931 | 2.0 | 2500 | 0.2247 | 0.8448 | 0.8630 | 0.8538 | 0.9386 | | 0.1203 | 3.0 | 3750 | 0.2341 | 0.8468 | 0.8693 | 0.8579 | 0.9403 | | 0.0635 | 4.0 | 5000 | 0.2948 | 0.8596 | 0.8745 | 0.8670 | 0.9411 | | 0.0451 | 5.0 | 6250 | 0.3108 | 0.8557 | 0.8738 | 0.8647 | 0.9406 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
Litux/ppo-LunarLander-v2
Litux
2022-12-10T10:10:18Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-08T12:45:00Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 283.94 +/- 17.57 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft
microsoft
2022-12-10T10:09:19Z
1,387
4
transformers
[ "transformers", "pytorch", "swinv2", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2111.09883", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-16T05:23:35Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # Swin Transformer v2 (base-sized model) Swin Transformer v2 model pre-trained on ImageNet-21k and fine-tuned on ImageNet-1k at resolution 256x256. It was introduced in the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Liu et al. and first released in [this repository](https://github.com/microsoft/Swin-Transformer). Disclaimer: The team releasing Swin Transformer v2 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Swin Transformer is a type of Vision Transformer. It builds hierarchical feature maps by merging image patches (shown in gray) in deeper layers and has linear computation complexity to input image size due to computation of self-attention only within each local window (shown in red). It can thus serve as a general-purpose backbone for both image classification and dense recognition tasks. In contrast, previous vision Transformers produce feature maps of a single low resolution and have quadratic computation complexity to input image size due to computation of self-attention globally. Swin Transformer v2 adds 3 main improvements: 1) a residual-post-norm method combined with cosine attention to improve training stability; 2) a log-spaced continuous position bias method to effectively transfer models pre-trained using low-resolution images to downstream tasks with high-resolution inputs; 3) a self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/swin_transformer_architecture.png) [Source](https://paperswithcode.com/method/swin-transformer) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=swinv2) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoImageProcessor, AutoModelForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) processor = AutoImageProcessor.from_pretrained("microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft") model = AutoModelForImageClassification.from_pretrained("microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft") inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/swinv2.html#). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2111-09883, author = {Ze Liu and Han Hu and Yutong Lin and Zhuliang Yao and Zhenda Xie and Yixuan Wei and Jia Ning and Yue Cao and Zheng Zhang and Li Dong and Furu Wei and Baining Guo}, title = {Swin Transformer {V2:} Scaling Up Capacity and Resolution}, journal = {CoRR}, volume = {abs/2111.09883}, year = {2021}, url = {https://arxiv.org/abs/2111.09883}, eprinttype = {arXiv}, eprint = {2111.09883}, timestamp = {Thu, 02 Dec 2021 15:54:22 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2111-09883.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
microsoft/swinv2-small-patch4-window8-256
microsoft
2022-12-10T10:08:49Z
1,372
0
transformers
[ "transformers", "pytorch", "swinv2", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2111.09883", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-15T12:20:12Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # Swin Transformer v2 (small-sized model) Swin Transformer v2 model pre-trained on ImageNet-1k at resolution 256x256. It was introduced in the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Liu et al. and first released in [this repository](https://github.com/microsoft/Swin-Transformer). Disclaimer: The team releasing Swin Transformer v2 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Swin Transformer is a type of Vision Transformer. It builds hierarchical feature maps by merging image patches (shown in gray) in deeper layers and has linear computation complexity to input image size due to computation of self-attention only within each local window (shown in red). It can thus serve as a general-purpose backbone for both image classification and dense recognition tasks. In contrast, previous vision Transformers produce feature maps of a single low resolution and have quadratic computation complexity to input image size due to computation of self-attention globally. Swin Transformer v2 adds 3 main improvements: 1) a residual-post-norm method combined with cosine attention to improve training stability; 2) a log-spaced continuous position bias method to effectively transfer models pre-trained using low-resolution images to downstream tasks with high-resolution inputs; 3) a self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/swin_transformer_architecture.png) [Source](https://paperswithcode.com/method/swin-transformer) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=swinv2) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoImageProcessor, AutoModelForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) processor = AutoImageProcessor.from_pretrained("microsoft/swinv2-small-patch4-window8-256") model = AutoModelForImageClassification.from_pretrained("microsoft/swinv2-small-patch4-window8-256") inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/swinv2.html#). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2111-09883, author = {Ze Liu and Han Hu and Yutong Lin and Zhuliang Yao and Zhenda Xie and Yixuan Wei and Jia Ning and Yue Cao and Zheng Zhang and Li Dong and Furu Wei and Baining Guo}, title = {Swin Transformer {V2:} Scaling Up Capacity and Resolution}, journal = {CoRR}, volume = {abs/2111.09883}, year = {2021}, url = {https://arxiv.org/abs/2111.09883}, eprinttype = {arXiv}, eprint = {2111.09883}, timestamp = {Thu, 02 Dec 2021 15:54:22 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2111-09883.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
Stxlla/ko-en-m2m
Stxlla
2022-12-10T10:06:46Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "m2m_100", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-09T17:19:27Z
--- license: mit tags: - generated_from_trainer metrics: - bleu model-index: - name: ko-en-m2m results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ko-en-m2m This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4282 - Bleu: 25.8137 - Gen Len: 10.9556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.5891 | 0.3 | 5000 | 0.7640 | 12.7212 | 10.465 | | 0.5653 | 0.6 | 10000 | 0.7211 | 13.4957 | 11.5844 | | 0.5464 | 0.91 | 15000 | 0.6875 | 13.5204 | 10.6604 | | 0.5254 | 1.21 | 20000 | 0.6690 | 14.5273 | 10.5754 | | 0.5308 | 1.51 | 25000 | 0.6757 | 14.1623 | 11.9493 | | 0.5192 | 1.81 | 30000 | 0.6458 | 15.1048 | 10.8811 | | 0.502 | 2.11 | 35000 | 0.6423 | 14.7989 | 11.047 | | 0.4971 | 2.42 | 40000 | 0.6259 | 15.6324 | 11.0428 | | 0.502 | 2.72 | 45000 | 0.6047 | 16.684 | 10.9814 | | 0.4544 | 3.02 | 50000 | 0.5834 | 16.9704 | 10.9722 | | 0.4541 | 3.32 | 55000 | 0.5722 | 17.6061 | 10.8485 | | 0.4362 | 3.63 | 60000 | 0.5523 | 19.1337 | 10.7972 | | 0.4285 | 3.93 | 65000 | 0.5325 | 19.4546 | 10.6665 | | 0.3851 | 4.23 | 70000 | 0.5159 | 20.4035 | 10.6171 | | 0.3891 | 4.53 | 75000 | 0.4926 | 21.8822 | 10.8857 | | 0.3602 | 4.83 | 80000 | 0.4740 | 22.737 | 11.0248 | | 0.336 | 5.14 | 85000 | 0.4570 | 23.7202 | 10.7115 | | 0.3355 | 5.44 | 90000 | 0.4415 | 24.9891 | 10.9077 | | 0.3244 | 5.74 | 95000 | 0.4282 | 25.8137 | 10.9556 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
microsoft/swinv2-large-patch4-window12to24-192to384-22kto1k-ft
microsoft
2022-12-10T10:05:51Z
1,618
2
transformers
[ "transformers", "pytorch", "swinv2", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2111.09883", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-16T06:09:46Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # Swin Transformer v2 (large-sized model) Swin Transformer v2 model pre-trained on ImageNet-21k and fine-tuned on ImageNet-1k at resolution 384x384. It was introduced in the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Liu et al. and first released in [this repository](https://github.com/microsoft/Swin-Transformer). Disclaimer: The team releasing Swin Transformer v2 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Swin Transformer is a type of Vision Transformer. It builds hierarchical feature maps by merging image patches (shown in gray) in deeper layers and has linear computation complexity to input image size due to computation of self-attention only within each local window (shown in red). It can thus serve as a general-purpose backbone for both image classification and dense recognition tasks. In contrast, previous vision Transformers produce feature maps of a single low resolution and have quadratic computation complexity to input image size due to computation of self-attention globally. Swin Transformer v2 adds 3 main improvements: 1) a residual-post-norm method combined with cosine attention to improve training stability; 2) a log-spaced continuous position bias method to effectively transfer models pre-trained using low-resolution images to downstream tasks with high-resolution inputs; 3) a self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/swin_transformer_architecture.png) [Source](https://paperswithcode.com/method/swin-transformer) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=swinv2) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoImageProcessor, AutoModelForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) processor = AutoImageProcessor.from_pretrained("microsoft/swinv2-large-patch4-window12to24-192to384-22kto1k-ft") model = AutoModelForImageClassification.from_pretrained("microsoft/swinv2-large-patch4-window12to24-192to384-22kto1k-ft") inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/swinv2.html#). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2111-09883, author = {Ze Liu and Han Hu and Yutong Lin and Zhuliang Yao and Zhenda Xie and Yixuan Wei and Jia Ning and Yue Cao and Zheng Zhang and Li Dong and Furu Wei and Baining Guo}, title = {Swin Transformer {V2:} Scaling Up Capacity and Resolution}, journal = {CoRR}, volume = {abs/2111.09883}, year = {2021}, url = {https://arxiv.org/abs/2111.09883}, eprinttype = {arXiv}, eprint = {2111.09883}, timestamp = {Thu, 02 Dec 2021 15:54:22 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2111-09883.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
microsoft/swinv2-base-patch4-window8-256
microsoft
2022-12-10T10:04:53Z
9,935
7
transformers
[ "transformers", "pytorch", "swinv2", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2111.09883", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-15T12:35:14Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # Swin Transformer v2 (base-sized model) Swin Transformer v2 model pre-trained on ImageNet-1k at resolution 256x256. It was introduced in the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Liu et al. and first released in [this repository](https://github.com/microsoft/Swin-Transformer). Disclaimer: The team releasing Swin Transformer v2 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Swin Transformer is a type of Vision Transformer. It builds hierarchical feature maps by merging image patches (shown in gray) in deeper layers and has linear computation complexity to input image size due to computation of self-attention only within each local window (shown in red). It can thus serve as a general-purpose backbone for both image classification and dense recognition tasks. In contrast, previous vision Transformers produce feature maps of a single low resolution and have quadratic computation complexity to input image size due to computation of self-attention globally. Swin Transformer v2 adds 3 main improvements: 1) a residual-post-norm method combined with cosine attention to improve training stability; 2) a log-spaced continuous position bias method to effectively transfer models pre-trained using low-resolution images to downstream tasks with high-resolution inputs; 3) a self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/swin_transformer_architecture.png) [Source](https://paperswithcode.com/method/swin-transformer) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=swinv2) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import AutoImageProcessor, AutoModelForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) processor = AutoImageProcessor.from_pretrained("microsoft/swinv2-base-patch4-window8-256") model = AutoModelForImageClassification.from_pretrained("microsoft/swinv2-base-patch4-window8-256") inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/swinv2.html#). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2111-09883, author = {Ze Liu and Han Hu and Yutong Lin and Zhuliang Yao and Zhenda Xie and Yixuan Wei and Jia Ning and Yue Cao and Zheng Zhang and Li Dong and Furu Wei and Baining Guo}, title = {Swin Transformer {V2:} Scaling Up Capacity and Resolution}, journal = {CoRR}, volume = {abs/2111.09883}, year = {2021}, url = {https://arxiv.org/abs/2111.09883}, eprinttype = {arXiv}, eprint = {2111.09883}, timestamp = {Thu, 02 Dec 2021 15:54:22 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2111-09883.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
microsoft/swinv2-large-patch4-window12-192-22k
microsoft
2022-12-10T10:02:59Z
6,073
8
transformers
[ "transformers", "pytorch", "swinv2", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2111.09883", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-15T12:47:41Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # Swin Transformer v2 (large-sized model) Swin Transformer v2 model pre-trained on ImageNet-21k at resolution 192x192. It was introduced in the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Liu et al. and first released in [this repository](https://github.com/microsoft/Swin-Transformer). Disclaimer: The team releasing Swin Transformer v2 did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Swin Transformer is a type of Vision Transformer. It builds hierarchical feature maps by merging image patches (shown in gray) in deeper layers and has linear computation complexity to input image size due to computation of self-attention only within each local window (shown in red). It can thus serve as a general-purpose backbone for both image classification and dense recognition tasks. In contrast, previous vision Transformers produce feature maps of a single low resolution and have quadratic computation complexity to input image size due to computation of self-attention globally. Swin Transformer v2 adds 3 main improvements: 1) a residual-post-norm method combined with cosine attention to improve training stability; 2) a log-spaced continuous position bias method to effectively transfer models pre-trained using low-resolution images to downstream tasks with high-resolution inputs; 3) a self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/swin_transformer_architecture.png) [Source](https://paperswithcode.com/method/swin-transformer) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=swinv2) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 21k ImageNet classes: ```python from transformers import AutoImageProcessor, AutoModelForImageClassification from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) processor = AutoImageProcessor.from_pretrained("microsoft/swinv2-large-patch4-window12-192-22k") model = AutoModelForImageClassification.from_pretrained("microsoft/swinv2-large-patch4-window12-192-22k") inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 21k ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/swinv2.html#). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2111-09883, author = {Ze Liu and Han Hu and Yutong Lin and Zhuliang Yao and Zhenda Xie and Yixuan Wei and Jia Ning and Yue Cao and Zheng Zhang and Li Dong and Furu Wei and Baining Guo}, title = {Swin Transformer {V2:} Scaling Up Capacity and Resolution}, journal = {CoRR}, volume = {abs/2111.09883}, year = {2021}, url = {https://arxiv.org/abs/2111.09883}, eprinttype = {arXiv}, eprint = {2111.09883}, timestamp = {Thu, 02 Dec 2021 15:54:22 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2111-09883.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
chavicoski/PPO-MlpPolicy-LunarLander-v2
chavicoski
2022-12-10T09:52:20Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-10T09:41:37Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 272.14 +/- 21.37 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
seongwan/ddpm-butterflies-128
seongwan
2022-12-10T09:46:20Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-12-10T07:56:58Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/seongwan/ddpm-butterflies-128/tensorboard?#scalars)
geninhu/whisper-large-v2-multiset-vi
geninhu
2022-12-10T09:21:39Z
13
1
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "vi", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-09T13:51:28Z
--- language: - vi license: apache-2.0 tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: openai/whisper-large-v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 vi type: mozilla-foundation/common_voice_11_0 config: vi split: test args: vi metrics: - name: Wer type: wer value: 15.7710 - name: Cer type: cer value: 7.6691 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openai/whisper-large-v2 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4041 - Wer: 15.7710 - Cer: 7.6691 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data Training data: * [mozilla-foundation/common_voice_11_0](https://huggingface.co/openai/whisper-large-v2) * [google/fleurs](https://huggingface.co/datasets/google/fleurs) Evaluation data: * [mozilla-foundation/common_voice_11_0](https://huggingface.co/openai/whisper-large-v2) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-07 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 0.3983 | 0.1 | 500 | 0.5338 | 19.5876 | 10.6391 | | 0.2277 | 1.08 | 1000 | 0.4134 | 16.5826 | 8.2668 | | 0.172 | 2.05 | 1500 | 0.3968 | 16.3084 | 7.9787 | | 0.1823 | 3.03 | 2000 | 0.3956 | 16.1768 | 7.8159 | | 0.1445 | 4.0 | 2500 | 0.3955 | 16.0342 | 7.7438 | | 0.147 | 4.1 | 3000 | 0.3965 | 15.8807 | 7.7145 | | 0.1292 | 5.08 | 3500 | 0.4000 | 15.8587 | 7.7065 | | 0.1187 | 6.05 | 4000 | 0.4029 | 15.7491 | 7.6398 | | 0.1368 | 7.03 | 4500 | 0.4041 | 15.7600 | 7.6558 | | 0.1231 | 8.0 | 5000 | 0.4041 | 15.7710 | 7.6691 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
geninhu/whisper-large-v2-vi
geninhu
2022-12-10T09:20:19Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "vi", "dataset:common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-08T15:19:30Z
--- language: - vi license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: openai/whisper-large-v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 vi type: mozilla-foundation/common_voice_11_0 config: vi split: test args: vi metrics: - name: Wer type: wer value: 17.26 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openai/whisper-medium This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4124 - Wer: 17.26 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0625 | 62.0 | 1000 | 0.4124 | 17.26 | | 0.0239 | 124.0 | 2000 | 0.6964 | 19.08 | | 0.0145 | 187.0 | 3000 | 0.7282 | 18.0 | | 0.0066 | 249.0 | 4000 | 0.7481 | 20.02 | | 0.0027 | 312.0 | 5000 | 0.7599 | 19.14 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
cgt/new-QA
cgt
2022-12-10T09:09:58Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "endpoints_compatible", "region:us" ]
question-answering
2022-12-10T07:42:22Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer model-index: - name: new-QA results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # new-QA This model is a fine-tuned version of [hfl/chinese-pert-large](https://huggingface.co/hfl/chinese-pert-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5158 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 12 | 4.9940 | | No log | 2.0 | 24 | 3.9417 | | No log | 3.0 | 36 | 3.1311 | | No log | 4.0 | 48 | 2.4780 | | No log | 5.0 | 60 | 2.2296 | | No log | 6.0 | 72 | 1.9246 | | No log | 7.0 | 84 | 1.6536 | | No log | 8.0 | 96 | 1.7087 | | No log | 9.0 | 108 | 1.6027 | | No log | 10.0 | 120 | 1.5158 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.10.0+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
CreativeEvolution/ppo-Huggy
CreativeEvolution
2022-12-10T08:49:14Z
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-10T08:49:06Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: CreativeEvolution/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
shripadbhat/whisper-tiny-hi-1000steps
shripadbhat
2022-12-10T08:47:20Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "hi", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-06T13:59:57Z
--- language: - hi license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper tiny Hindi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: hi split: test args: hi metrics: - name: Wer type: wer value: 41.54533990599564 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: FLEURS type: google/fleurs config: hi_in split: test args: hi metrics: - name: Wer type: wer value: 41.63 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper tiny Hindi This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5538 - Wer: 41.5453 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.7718 | 0.73 | 100 | 0.8130 | 55.6890 | | 0.5169 | 1.47 | 200 | 0.6515 | 48.2517 | | 0.3986 | 2.21 | 300 | 0.6001 | 44.9931 | | 0.3824 | 2.94 | 400 | 0.5720 | 43.5171 | | 0.3328 | 3.67 | 500 | 0.5632 | 42.5112 | | 0.2919 | 4.41 | 600 | 0.5594 | 42.7863 | | 0.2654 | 5.15 | 700 | 0.5552 | 41.6428 | | 0.2618 | 5.88 | 800 | 0.5530 | 41.8893 | | 0.2442 | 6.62 | 900 | 0.5539 | 41.5740 | | 0.238 | 7.35 | 1000 | 0.5538 | 41.5453 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
Stxlla/ko-en-retrial
Stxlla
2022-12-10T08:47:20Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "m2m_100", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-10T00:40:35Z
--- license: mit tags: - generated_from_trainer metrics: - bleu model-index: - name: ko-en-retrial results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ko-en-retrial This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4075 - Bleu: 27.1215 - Gen Len: 10.91 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.5334 | 1.0 | 16549 | 0.6745 | 14.5544 | 10.4919 | | 0.4841 | 2.0 | 33098 | 0.6063 | 16.5973 | 10.8128 | | 0.4308 | 3.0 | 49647 | 0.5447 | 19.1392 | 11.0557 | | 0.3674 | 4.0 | 66196 | 0.4576 | 23.6457 | 10.8632 | | 0.306 | 5.0 | 82745 | 0.4075 | 27.1215 | 10.91 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
udon3/xlm-roberta-base-finetuned-panx-en
udon3
2022-12-10T08:03:37Z
6
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-10T07:54:31Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.en split: train args: PAN-X.en metrics: - name: F1 type: f1 value: 0.6696329254727476 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.4018 - F1: 0.6696 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1763 | 1.0 | 50 | 0.6068 | 0.4800 | | 0.5301 | 2.0 | 100 | 0.4398 | 0.6334 | | 0.3784 | 3.0 | 150 | 0.4018 | 0.6696 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.10.0 - Datasets 2.7.1 - Tokenizers 0.13.2
udon3/xlm-roberta-base-finetuned-panx-it
udon3
2022-12-10T07:54:07Z
6
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-10T07:42:40Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.it split: train args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8201144726083401 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2405 - F1: 0.8201 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8304 | 1.0 | 70 | 0.3375 | 0.7392 | | 0.3057 | 2.0 | 140 | 0.2584 | 0.8103 | | 0.1934 | 3.0 | 210 | 0.2405 | 0.8201 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.10.0 - Datasets 2.7.1 - Tokenizers 0.13.2
udon3/xlm-roberta-base-finetuned-panx-fr
udon3
2022-12-10T07:41:55Z
6
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-10T07:16:15Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.fr split: train args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8457527333894029 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2716 - F1: 0.8458 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5974 | 1.0 | 191 | 0.3265 | 0.7932 | | 0.2582 | 2.0 | 382 | 0.2887 | 0.8356 | | 0.1715 | 3.0 | 573 | 0.2716 | 0.8458 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.10.0 - Datasets 2.7.1 - Tokenizers 0.13.2
Sanjay-Papaiahgari/ppo-LunarLander-v4
Sanjay-Papaiahgari
2022-12-10T07:14:26Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-10T07:13:49Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: MlpPolicy results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 281.80 +/- 19.89 name: mean_reward verified: false --- # **MlpPolicy** Agent playing **LunarLander-v2** This is a trained model of a **MlpPolicy** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
arpagon/whisper-tiny-es
arpagon
2022-12-10T06:51:27Z
27
1
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "es", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-09T16:53:11Z
--- language: - es license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper tiny Spanish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 es type: mozilla-foundation/common_voice_11_0 config: es split: test args: es metrics: - name: Wer type: wer value: 21.407411257211166 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper tiny Spanish This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the mozilla-foundation/common_voice_11_0 es dataset. It achieves the following results on the evaluation set: - Loss: 0.4412 - Wer: 21.4074 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.5354 | 2.01 | 1000 | 0.5196 | 25.5587 | | 0.3328 | 4.01 | 2000 | 0.4889 | 24.5940 | | 0.4702 | 6.02 | 3000 | 0.4589 | 22.8354 | | 0.2854 | 8.02 | 4000 | 0.4451 | 21.6198 | | 0.3537 | 10.03 | 5000 | 0.4412 | 21.4074 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
hr16/any-ely-wd-ira-olympus-3500
hr16
2022-12-10T06:41:05Z
1
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-10T06:37:33Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Model Dreambooth concept any-ely-wd-ira-olympus-3500 được train bởi hr16 bằng [Shinja Zero SoTA DreamBooth_Stable_Diffusion](https://colab.research.google.com/drive/1G7qx6M_S1PDDlsWIMdbZXwdZik6sUlEh) notebook <br> Test concept bằng [Shinja Zero no Notebook](https://colab.research.google.com/drive/1Hp1ZIjPbsZKlCtomJVmt2oX7733W44b0) <br> Hoặc test bằng `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb) Ảnh mẫu của concept: WIP
hr16/any-ely-wd-ira-olympus-3000
hr16
2022-12-10T06:35:18Z
1
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-10T06:30:18Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Model Dreambooth concept any_ely_wd-Ira_Olympus-3000 được train bởi hr16 bằng [Shinja Zero SoTA DreamBooth_Stable_Diffusion](https://colab.research.google.com/drive/1G7qx6M_S1PDDlsWIMdbZXwdZik6sUlEh) notebook <br> Test concept bằng [Shinja Zero no Notebook](https://colab.research.google.com/drive/1Hp1ZIjPbsZKlCtomJVmt2oX7733W44b0) <br> Hoặc test bằng `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb) Ảnh mẫu của concept: WIP
shripadbhat/whisper-small-hi
shripadbhat
2022-12-10T06:14:49Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "hi", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-05T08:58:09Z
--- language: - hi license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Hindi - Shripad Bhat results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: hi split: test args: hi metrics: - name: Wer type: wer value: 21.451908746990714 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: FLEURS type: google/fleurs config: hi_in split: test args: hi metrics: - name: Wer type: wer value: 22.11 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hindi - Shripad Bhat This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3909 - Wer: 21.4519 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.4337 | 0.73 | 100 | 0.4874 | 47.5868 | | 0.1894 | 1.47 | 200 | 0.3264 | 23.9482 | | 0.1007 | 2.21 | 300 | 0.3101 | 22.5267 | | 0.0984 | 2.94 | 400 | 0.3064 | 21.5723 | | 0.0555 | 3.67 | 500 | 0.3325 | 22.0251 | | 0.029 | 4.41 | 600 | 0.3439 | 21.4863 | | 0.0163 | 5.15 | 700 | 0.3668 | 21.6468 | | 0.0153 | 5.88 | 800 | 0.3756 | 21.4662 | | 0.0081 | 6.62 | 900 | 0.3888 | 21.5035 | | 0.0059 | 7.35 | 1000 | 0.3909 | 21.4519 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
huam/ppo-Huggy
huam
2022-12-10T05:54:49Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-10T05:54:37Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: huam/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
rhr99/LunarLanderTraining
rhr99
2022-12-10T05:26:18Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-10T05:25:53Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 243.23 +/- 24.88 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mlxen/electra-squad-contrasting-training_and_validation
mlxen
2022-12-10T05:13:13Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-12-10T04:28:08Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: electra-squad-contrasting-training_and_validation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-squad-contrasting-training_and_validation This model is a fine-tuned version of [mlxen/electra-squad-training](https://huggingface.co/mlxen/electra-squad-training) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
sppm/senti-4
sppm
2022-12-10T04:36:43Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-10T04:03:46Z
--- tags: - generated_from_trainer model-index: - name: senti-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # senti-4 This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5099 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 223 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
mlxen/electra-squad-contrasting-validation
mlxen
2022-12-10T04:04:13Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-12-10T03:18:37Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: electra-squad-contrasting-validation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-squad-contrasting-validation This model is a fine-tuned version of [mlxen/electra-squad-training](https://huggingface.co/mlxen/electra-squad-training) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
flamesbob/NixeuModel
flamesbob
2022-12-10T03:53:02Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-12-10T00:51:17Z
--- license: creativeml-openrail-m ---
flamesbob/WlopModel
flamesbob
2022-12-10T03:52:42Z
0
3
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-12-08T23:18:03Z
--- license: creativeml-openrail-m ---
dfm794/ppo-LunarLander-v2
dfm794
2022-12-10T03:00:59Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-06T06:02:43Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 285.86 +/- 10.96 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
eshwarZugz/bart_large-tldr-news
eshwarZugz
2022-12-10T01:50:04Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-10T00:55:51Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart_large-tldr-news results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart_large-tldr-news This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1949 - Rouge1: 20.747 - Rouge2: 8.4086 - Rougel: 17.4662 - Rougelsum: 18.1462 - Gen Len: 70.6259 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-------:|:---------:|:-------:| | 0.3034 | 1.0 | 893 | 2.1949 | 20.747 | 8.4086 | 17.4662 | 18.1462 | 70.6259 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
hkhdair/whisper-small-ar
hkhdair
2022-12-10T01:31:10Z
26
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "ar", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-07T15:38:52Z
--- language: - ar license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: whisper small ar - fine-tune Alpha results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: ar split: test args: ar metrics: - name: Wer type: wer value: 59.88133333333333 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper small ar - fine-tune Alpha This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4592 - Wer: 59.8813 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2057 | 1.66 | 1000 | 0.3395 | 61.9160 | | 0.0859 | 3.32 | 2000 | 0.3406 | 57.3707 | | 0.0513 | 4.98 | 3000 | 0.3730 | 62.0467 | | 0.0157 | 6.64 | 4000 | 0.4284 | 60.84 | | 0.0072 | 8.31 | 5000 | 0.4592 | 59.8813 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
steja/whisper-small-telugu-large-data
steja
2022-12-10T01:14:14Z
21
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "te", "dataset:openslr", "dataset:google/fleurs", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-08T23:23:16Z
--- language: - te license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - openslr - google/fleurs metrics: - wer model-index: - name: whisper-small-telugu-large-data results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: google/fleurs type: openslr config: te_in split: None metrics: - name: Wer type: wer value: 38.84604916991744 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-telugu-large-data This [model](steja/whisper-small-telugu-large-data) is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the google/fleurs and openslr dataset in telugu. It achieves the following results on the evaluation set (google/fleurs, test set): - Loss: 0.3310 - Wer: 38.8460 [openai/whisper-small](https://huggingface.co/openai/whisper-small) has the following zero shot performance on google/fleurs test set: - Wer: 117.91 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.128 | 2.27 | 500 | 0.2015 | 45.1692 | | 0.0462 | 4.55 | 1000 | 0.1877 | 41.1050 | | 0.0184 | 6.82 | 1500 | 0.2241 | 40.5153 | | 0.0045 | 9.09 | 2000 | 0.2590 | 39.7260 | | 0.0019 | 11.36 | 2500 | 0.2824 | 39.0819 | | 0.0006 | 13.64 | 3000 | 0.3002 | 38.9096 | | 0.0002 | 15.91 | 3500 | 0.3141 | 38.5920 | | 0.0001 | 18.18 | 4000 | 0.3232 | 38.7463 | | 0.0001 | 20.45 | 4500 | 0.3289 | 38.8370 | | 0.0001 | 22.73 | 5000 | 0.3310 | 38.8460 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
maria-aguilera/ppo-LunarLander-v2
maria-aguilera
2022-12-10T00:47:14Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-10T00:46:47Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 241.36 +/- 43.08 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
314anist/q-Taxi-v3
314anist
2022-12-10T00:22:20Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-10T00:22:15Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.76 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="314anist/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Jasmaur/FrozenLake-v1
Jasmaur
2022-12-10T00:04:55Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-12-10T00:04:48Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: FrozenLake-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 metrics: - type: mean_reward value: 0.80 +/- 0.40 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Jasmaur/FrozenLake-v1", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
rkbulk/bart-base-finetuned-poems
rkbulk
2022-12-09T23:18:05Z
13
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "summarization", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-12-09T19:19:03Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer model-index: - name: bart-base-finetuned-poems results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-poems This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 3.1970 - eval_rouge1: 16.9107 - eval_rouge2: 8.1464 - eval_rougeL: 16.5554 - eval_rougeLsum: 16.7396 - eval_runtime: 487.5616 - eval_samples_per_second: 0.41 - eval_steps_per_second: 0.051 - epoch: 2.0 - step: 200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.7.1 - Tokenizers 0.13.2
sgoodfriend/ppo-Huggy
sgoodfriend
2022-12-09T22:59:25Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-09T22:59:17Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: sgoodfriend/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
EmileEsmaili/ddpm-sheetmusic-clean-l1loss-colabVM
EmileEsmaili
2022-12-09T22:54:52Z
1
1
diffusers
[ "diffusers", "tensorboard", "en", "dataset:EmileEsmaili/sheet_music_clean", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-12-09T17:42:38Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: EmileEsmaili/sheet_music_clean metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-sheetmusic-clean-l1loss-colabVM ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `EmileEsmaili/sheet_music_clean` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: no ### Training results 📈 [TensorBoard logs](https://huggingface.co/EmileEsmaili/ddpm-sheetmusic-clean-l1loss-colabVM/tensorboard?#scalars)
howlbz/whisper-small-hi
howlbz
2022-12-09T22:46:30Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "zh", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-06T10:54:35Z
--- language: - zh license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small zh - howl results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: zh-CN split: test args: 'config: zh, split: test' metrics: - name: Wer type: wer value: 75.2976752976753 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small zh - howl This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3644 - Wer: 75.2977 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2309 | 1.51 | 1000 | 0.3694 | 76.4411 | | 0.1069 | 3.02 | 2000 | 0.3644 | 75.2977 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
xJimCod/ppo-LunarLander-v2
xJimCod
2022-12-09T22:06:04Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T22:05:37Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 264.77 +/- 15.26 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
SergejSchweizer/ppo-Huggy
SergejSchweizer
2022-12-09T21:51:16Z
11
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-09T21:51:10Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: SergejSchweizer/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
alx-ai/noggles-v21-3900
alx-ai
2022-12-09T21:47:32Z
11
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-09T21:44:29Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### noggles_v21_3900 Dreambooth model trained by alxdfy with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Or you can run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb) Sample pictures of this concept: ![0](https://huggingface.co/alxdfy/noggles-v21-3900/resolve/main/sample_images/noggles_(7).jpg)
joelkoch/ppo-LunarLander-v2
joelkoch
2022-12-09T21:43:51Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T21:30:28Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -327.79 +/- 71.77 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dlicari/sentence-ita-eurlex-bert-base
dlicari
2022-12-09T21:27:16Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-12-09T20:25:15Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 25480 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.DenoisingAutoEncoderLoss.DenoisingAutoEncoderLoss` Parameters of the fit()-Method: ``` { "epochs": 4, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 3e-05 }, "scheduler": "constantlr", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
fxmarty/broken-onnx-as-strided
fxmarty
2022-12-09T21:27:10Z
0
0
null
[ "onnx", "region:us" ]
null
2022-12-09T21:26:15Z
An illustration for https://github.com/microsoft/onnxruntime/issues/13920
ZinebSN/whisper-small-swedish-Test-3000
ZinebSN
2022-12-09T21:13:13Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "sv", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-09T13:56:39Z
--- language: - sv license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Swedish -3000 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: sv-SE split: test args: 'config: sv, split: test' metrics: - name: Wer type: wer value: 19.604205318491033 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Swedish -3000 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2974 - Wer: 19.6042 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1448 | 1.29 | 1000 | 0.2953 | 21.4245 | | 0.0188 | 2.59 | 2000 | 0.2879 | 20.0882 | | 0.0233 | 3.88 | 3000 | 0.2974 | 19.6042 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
jennirocket/ppo-LunarLander-v2
jennirocket
2022-12-09T20:56:17Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T19:20:15Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 268.41 +/- 17.97 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
graydient/diffusers-spiteanon-gigachad-diffusion
graydient
2022-12-09T20:37:40Z
13
1
diffusers
[ "diffusers", "license:openrail", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-09T20:22:47Z
--- license: openrail --- # Diffusers version of SpiteAnon's Gigachad model - Please see [SpiteAnon's Gigachad model](https://huggingface.co/SpiteAnon/gigachad-diffusion) for more
SergejSchweizer/ppo-LunarLander-v2
SergejSchweizer
2022-12-09T20:37:16Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T20:36:53Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 246.49 +/- 46.47 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
shreyasharma/t5-small-ret-conceptnet2
shreyasharma
2022-12-09T20:26:54Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-28T08:04:37Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: t5-small-ret-conceptnet2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-ret-conceptnet2 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1709 - Acc: {'accuracy': 0.8700980392156863} - Precision: {'precision': 0.811340206185567} - Recall: {'recall': 0.9644607843137255} - F1: {'f1': 0.8812989921612542} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------------------------------:|:--------------------------------:|:------------------------------:|:--------------------------:| | 0.1989 | 1.0 | 721 | 0.1709 | {'accuracy': 0.8700980392156863} | {'precision': 0.811340206185567} | {'recall': 0.9644607843137255} | {'f1': 0.8812989921612542} | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
graydient/diffusers-mattthew-technicolor-50s-diffusion
graydient
2022-12-09T20:12:14Z
3
1
diffusers
[ "diffusers", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-09T19:31:04Z
--- license: cc-by-sa-4.0 --- # 🌈 Diffusers Adaptation: Technicolor-50s Diffusion ## Style Description - This is a port of [Mattthew's excellent Technicolor 50s Diffusion](https://huggingface.co/mattthew/technicolor-50s-diffusion/tree/main) model to Huggingface Diffusers. - Please see original highly-saturated postcard-like colors, flat high-key lighting, strong rim-lighting, 40s and 50s lifestyle
TUMxudashuai/a2c-AntBulletEnv-v0
TUMxudashuai
2022-12-09T20:07:57Z
2
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T19:19:14Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1481.60 +/- 117.72 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Cbdlt/unit1-LunarLander-1
Cbdlt
2022-12-09T20:00:29Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T19:59:01Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 275.72 +/- 20.44 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
rakeshjohny/PPO_LunarLanderV2
rakeshjohny
2022-12-09T19:51:29Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T19:50:59Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 230.53 +/- 18.37 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
nbonaker/ddpm-celeb-face-32
nbonaker
2022-12-09T19:26:57Z
1
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:ddpm-celeb-face-32", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-12-09T16:24:53Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: ddpm-celeb-face-32 metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-celeb-face-32 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `ddpm-celeb-face-32` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 32 - eval_batch_size: 32 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 50 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/nbonaker/ddpm-celeb-face-32/tensorboard?#scalars)
Alexao/whisper-small-swe2
Alexao
2022-12-09T19:24:47Z
4
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "swe", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-09T19:11:59Z
--- language: - swe license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 model-index: - name: Whisper Small swe - Swedish results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small swe - Swedish This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
FCameCode/whisper-tiny-it-11
FCameCode
2022-12-09T19:21:33Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "it", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-08T11:36:34Z
--- language: - it license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Tiny it 11 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: it split: test[:10%] args: 'config: it, split: test' metrics: - name: Wer type: wer value: 42.276761 --- # Whisper Tiny it 11 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.670211 - Wer: 42.276761 ## Model description This model is the openai whisper small transformer adapted for Italian audio to text transcription. ## Intended uses & limitations The model is available through its [HuggingFace web app](https://huggingface.co/spaces/GIanlucaRub/whisper-it) ## Training and evaluation data Data used for training is the initial 25% of train and validation of [Italian Common Voice](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/viewer/it/train) 11.0 from Mozilla Foundation. The dataset used for evaluation is the initial 10% of test of Italian Common Voice. ## Training procedure After loading the pre trained model, it has been trained on the dataset. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.584600 | 0.95 | 1000 | 0.801204 |48.980865| | 0.496100 | 1.91 | 2000 | 0.713927 |46.283971| | 0.406000 | 2.86 | 3000 | 0.680141 |43.268164| | 0.402000 | 3.82 | 4000 | 0.670211 |42.276761| ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
HusseinHE/h_sks_hxica
HusseinHE
2022-12-09T18:59:37Z
0
0
null
[ "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2022-12-09T03:36:40Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: hsksk ---
DimiNim/ppo-LunarLander-v2
DimiNim
2022-12-09T18:32:09Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T18:31:41Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 258.91 +/- 21.16 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
romc57/PPO_LunarLanderV2
romc57
2022-12-09T18:28:42Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T18:28:22Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 270.65 +/- 16.76 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CreativeEvolution/ppo-LunarLander-v2
CreativeEvolution
2022-12-09T17:59:11Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T17:58:48Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 292.18 +/- 13.72 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Sanjay-Papaiahgari/ppo-LunarLander-v3
Sanjay-Papaiahgari
2022-12-09T17:53:43Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T17:53:12Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: MlpPolicy results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 287.67 +/- 22.92 name: mean_reward verified: false --- # **MlpPolicy** Agent playing **LunarLander-v2** This is a trained model of a **MlpPolicy** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
steffel/ppo-LunarLander-v2
steffel
2022-12-09T17:48:06Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T17:47:44Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 282.37 +/- 19.16 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
deepdml/whisper-small-eu
deepdml
2022-12-09T17:26:01Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "eu", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-08T21:19:49Z
--- license: apache-2.0 language: - eu tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: openai/whisper-small results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 eu type: mozilla-foundation/common_voice_11_0 config: eu split: test args: eu metrics: - name: Wer type: wer value: 19.766305675433596 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openai/whisper-small Basque-Euskera This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4485 - Wer: 19.7663 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.048 | 4.04 | 1000 | 0.3402 | 21.7816 | | 0.0047 | 9.03 | 2000 | 0.3862 | 20.1694 | | 0.0012 | 14.02 | 3000 | 0.4221 | 19.7419 | | 0.0008 | 19.02 | 4000 | 0.4411 | 19.7174 | | 0.0006 | 24.01 | 5000 | 0.4485 | 19.7663 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
dcavadia/nintendo-controllers-model-opt3
dcavadia
2022-12-09T17:02:24Z
29
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-12-09T16:51:39Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: nintendo-controllers-model-opt3 results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.5333333611488342 --- # nintendo-controllers-model-opt3 Modelo de clasificacion de imagenes con Python. Las predicciones que se obtienen se realizan a traves de un modelo de aprendizaje profundo llamado transformador de visión (ViT) el cual es capaz de discernir entre un control de Xbox y un control de Playstation. En un ViT, la imagen de entrada se "corta" en subimágenes de igual tamaño y cada una de esas subimágenes pasa por una insercion lineal lo que hace que cada subimagen sea sólo un vector unidimensional. Despues se le agrega una insercion posicional a cada uno de estos vectores lo cual permite a la red saber dónde se encuentra cada subimagen originalmente en la imagen. Estos vectores se transmiten, junto con un vector de clasificación especial, a los bloques codificadores transformadores, cada uno de los cuales se compone de : Una Normalización de Capas (LN), una Autoatención Multicabezal (MSA),una conexión residual, una segunda LN, un Perceptrón Multicapa (MLP) y otra conexión residual, los cuales se conectan uno detrás de otro. Por último, se utiliza un bloque MLP de clasificación para la clasificación final sólo en el vector de clasificación especial, que al final de todo el proceso, es el que tiene toda la informacion global de la imagen. La data que se usa de entrada al modelo es obtenida atraves de una API de buscador de imagenes que las descarga y almacena desde la web, de la cual se recolectan ~150 imagenes por clase. Una vez obtenida las imagenes, se dividen entre un 75% y 15% para usar como entrenamiento y validacion respectivamente. Para validar la data recolectada, se hace un pequeño muestreo al azar de las imagenes para confirma que las imagenes que consiguio la API, en su mayoria sean igual a lo que se introdujo como busqueda (microsoft xbox controller y sony playstation controller). Una vez etiquetada y mapeada la data, se preparan ejemplos en batches, los cuales seran alimentados de forma aleatorea a un modelo ViT ya preentrenado por usando el conjunto de datos ImageNet-21k. El modelo consta de metodos de entrenamiento, validacion y optimizacion usando PyTorch, en este caso se uso atom como optimizador. Una vez validadas las predicciones con las etiquetas de las imagenes, se obtuvo un modelo capaz de discernir entre una control de playstation y un control de xbox con una precision de >53%. ## Imagenes de ejemplo #### microsoft xbox controller ![microsoft xbox controller](images/microsoft_xbox_controller.jpg) #### sony playstation controller ![sony playstation controller](images/sony_playstation_controller.jpg)
EmileEsmaili/ddpm-sheetmusic-clean-l2loss-colabVM
EmileEsmaili
2022-12-09T17:01:45Z
3
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:EmileEsmaili/sheet_music_clean", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-12-09T07:16:34Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: EmileEsmaili/sheet_music_clean metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-sheetmusic-clean-l2loss-colabVM ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `EmileEsmaili/sheet_music_clean` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: no ### Training results 📈 [TensorBoard logs](https://huggingface.co/EmileEsmaili/ddpm-sheetmusic-clean-l2loss-colabVM/tensorboard?#scalars)
parinzee/whisper-small-th-newmm-old
parinzee
2022-12-09T16:10:33Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "th", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-08T15:14:14Z
--- language: - th license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 model-index: - name: Whisper Small Thai Newmm Tokenized - Parinthapat Pengpun results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Thai Newmm Tokenized - Parinthapat Pengpun This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2095 - eval_wer: 26.6533 - eval_cer: 8.0405 - eval_runtime: 5652.2819 - eval_samples_per_second: 1.934 - eval_steps_per_second: 0.061 - epoch: 5.06 - step: 2000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
ViktorDo/DistilBERT-WIKI_Lifecycle_Finetuned
ViktorDo
2022-12-09T16:04:07Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-21T17:47:42Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: DistilBERT-WIKI_Lifecycle_Finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DistilBERT-WIKI_Lifecycle_Finetuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0978 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0839 | 1.0 | 2082 | 0.1088 | | 0.0681 | 2.0 | 4164 | 0.0931 | | 0.0432 | 3.0 | 6246 | 0.0978 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
huggingtweets/thechosenberg
huggingtweets
2022-12-09T15:58:44Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-12-09T15:47:40Z
--- language: en thumbnail: http://www.huggingtweets.com/thechosenberg/1670601518761/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1600957831880097793/TxYmGY8n_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">rosey🌹</div> <div style="text-align: center; font-size: 14px;">@thechosenberg</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from rosey🌹. | Data | rosey🌹 | | --- | --- | | Tweets downloaded | 3239 | | Retweets | 3 | | Short tweets | 310 | | Tweets kept | 2926 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1a0vfvx2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @thechosenberg's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/387zccfj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/387zccfj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/thechosenberg') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
sd-dreambooth-library/Banksy_Romero_Britto
sd-dreambooth-library
2022-12-09T15:36:45Z
0
10
null
[ "stable-diffusion", "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2022-12-09T04:08:56Z
--- tags: - stable-diffusion - text-to-image license: creativeml-openrail-m --- This is a <b>Stable Diffusion V2-768px</b> fine tuned model on Midjourney images mixing the artists Banksy and Romero Britto, by [DavidLandore](https://www.youtube.com/naomorra) This model can be used just like any other Stable Diffusion model. Use in your prompts: '<b>babrimodelo</b>' <img src="https://s3.amazonaws.com/moonup/production/uploads/1670560141426-632111228c0da827c72c6331.png" width="512"/> <img src="https://s3.amazonaws.com/moonup/production/uploads/1670560141422-632111228c0da827c72c6331.png" width="512"/> <img src="https://s3.amazonaws.com/moonup/production/uploads/1670560141429-632111228c0da827c72c6331.png" width="512"/> <img src="https://s3.amazonaws.com/moonup/production/uploads/1670560141597-632111228c0da827c72c6331.png" width="768"/> <img src="https://s3.amazonaws.com/moonup/production/uploads/1670560141596-632111228c0da827c72c6331.png" width="768"/> <img src="https://s3.amazonaws.com/moonup/production/uploads/1670560141814-632111228c0da827c72c6331.png" width="768"/> <img src="https://s3.amazonaws.com/moonup/production/uploads/1670560141758-632111228c0da827c72c6331.png" width="768"/>
Yuyang2022/yue
Yuyang2022
2022-12-09T15:27:06Z
16
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "yue", "dataset:mozilla-foundation/common_voice_11", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-09T15:17:55Z
--- language: - yue license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11 metrics: - wer model-index: - name: Whisper Base Yue results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 yue type: mozilla-foundation/common_voice_11 config: unclear split: None args: 'config: yue, split: train' metrics: - name: Wer type: wer value: 69.58637469586375 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Base Yue This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Common Voice 11.0 yue dataset. It achieves the following results on the evaluation set: - Loss: 0.3671 - Wer: 69.5864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0998 | 2.78 | 500 | 0.3500 | 71.4517 | | 0.0085 | 5.56 | 1000 | 0.3671 | 69.5864 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
ThePianist/ppo-Huggy
ThePianist
2022-12-09T15:21:11Z
14
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-09T15:21:03Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: ThePianist/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
burakyldrm/wav2vec2-burak-new-300-v2-9-medium
burakyldrm
2022-12-09T15:06:55Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-08T23:29:40Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-burak-new-300-v2-9-medium results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-burak-new-300-v2-9-medium This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3098 - Wer: 0.1789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 271 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 3.2366 | 9.43 | 500 | 0.3980 | 0.4652 | | 0.5066 | 18.87 | 1000 | 0.2423 | 0.2719 | | 0.2559 | 28.3 | 1500 | 0.2482 | 0.2443 | | 0.1869 | 37.74 | 2000 | 0.2537 | 0.2395 | | 0.1498 | 47.17 | 2500 | 0.2877 | 0.2361 | | 0.1271 | 56.6 | 3000 | 0.2681 | 0.2237 | | 0.1145 | 66.04 | 3500 | 0.2788 | 0.2189 | | 0.1043 | 75.47 | 4000 | 0.2800 | 0.2264 | | 0.094 | 84.91 | 4500 | 0.2992 | 0.2244 | | 0.0844 | 94.34 | 5000 | 0.2864 | 0.2209 | | 0.0776 | 103.77 | 5500 | 0.2758 | 0.2175 | | 0.0714 | 113.21 | 6000 | 0.2792 | 0.2051 | | 0.0666 | 122.64 | 6500 | 0.2945 | 0.2175 | | 0.0601 | 132.08 | 7000 | 0.2865 | 0.2092 | | 0.0579 | 141.51 | 7500 | 0.3168 | 0.2175 | | 0.0532 | 150.94 | 8000 | 0.3110 | 0.2292 | | 0.0474 | 160.38 | 8500 | 0.3070 | 0.2175 | | 0.0446 | 169.81 | 9000 | 0.3206 | 0.2223 | | 0.0409 | 179.25 | 9500 | 0.3017 | 0.2106 | | 0.037 | 188.68 | 10000 | 0.3157 | 0.2092 | | 0.0344 | 198.11 | 10500 | 0.3222 | 0.2058 | | 0.0345 | 207.55 | 11000 | 0.3047 | 0.2017 | | 0.0309 | 216.98 | 11500 | 0.3023 | 0.1913 | | 0.03 | 226.42 | 12000 | 0.2963 | 0.1920 | | 0.0268 | 235.85 | 12500 | 0.3036 | 0.1872 | | 0.0249 | 245.28 | 13000 | 0.2926 | 0.1844 | | 0.0227 | 254.72 | 13500 | 0.3045 | 0.1865 | | 0.021 | 264.15 | 14000 | 0.3098 | 0.1789 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
benderv/ppo-LunarLander-v2
benderv
2022-12-09T14:37:50Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-12T12:20:58Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 274.79 +/- 13.79 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ViktorDo/DistilBERT-POWO_Lifecycle_Finetuned
ViktorDo
2022-12-09T14:31:05Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-20T11:22:36Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: DistilBERT-POWO_Lifecycle_Finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DistilBERT-POWO_Lifecycle_Finetuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0785 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0875 | 1.0 | 1704 | 0.0806 | | 0.079 | 2.0 | 3408 | 0.0784 | | 0.0663 | 3.0 | 5112 | 0.0785 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
ybutsik/ppo-LunarLander-v2-test
ybutsik
2022-12-09T14:28:18Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T14:27:41Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -93.15 +/- 20.45 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
zidatasciencelab/Pat2Vec
zidatasciencelab
2022-12-09T13:58:40Z
0
0
null
[ "license:cc-by-4.0", "region:us" ]
null
2022-12-09T13:52:49Z
--- license: cc-by-4.0 --- # Pat2Vec Fro a description of the framework and model, see our publication: <https://preprints.jmir.org/preprint/40755/> It is trained using the amazing gensim package version 4 and parameters were optimized with Bayesian optimization (using another amazing package, optuna). Unfortunately, this gensim model cannot be loaded directly. You have to clone the repository or download all the files and run the following to use it. ## quick start to use the model in Python: ``` from gensim.models.doc2vec import Doc2Vec pat2vec_model = Doc2Vec.load('pat2vec_dim10.model') pat2vec_model.infer_vector(["M54.1", "J06.9", "I10.90", "R51"]) ```
torileatherman/whisper_small_sv
torileatherman
2022-12-09T13:47:05Z
6
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "sv", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-05T23:03:29Z
--- language: - sv license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Sv results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: sv split: test[:10%] args: 'config: sv, split: test' metrics: - name: Wer type: wer value: 19.76284584980237 --- # Whisper Small Swedish This model is an adapted version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset in Swedish. It achieves the following results on the evaluation set: - Wer: 19.8166 ## Model description & uses This model is the openai whisper small transformer adapted for Swedish audio to text transcription. The model is available through its [HuggingFace web app](https://huggingface.co/spaces/torileatherman/whisper_small_sv) ## Training and evaluation data Data used for training is the initial 10% of train and validation of [Swedish Common Voice](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/viewer/sv/train) 11.0 from Mozilla Foundation. The dataset used for evaluation is the initial 10% of test of Swedish Common Voice. The training data has been augmented with random noise, random pitching and change of the speed of the voice. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - weight decay: 0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1379 | 0.95 | 1000 | 0.295811 | 21.467| | 0.0245 | 2.86 | 3000 | 0.300059 | 20.160 | | 0.0060 | 3.82 | 4000 | 0.320301 | 19.762 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2