modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-12 12:31:00
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-12 12:28:53
card
stringlengths
11
1.01M
SHENMU007/neunit_BASE_V12.5
SHENMU007
2023-07-12T23:39:19Z
75
0
transformers
[ "transformers", "pytorch", "tensorboard", "speecht5", "text-to-audio", "1.1.0", "generated_from_trainer", "zh", "dataset:facebook/voxpopuli", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2023-07-12T20:39:15Z
--- language: - zh license: mit base_model: microsoft/speecht5_tts tags: - 1.1.0 - generated_from_trainer datasets: - facebook/voxpopuli model-index: - name: SpeechT5 TTS Dutch neunit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SpeechT5 TTS Dutch neunit This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the VoxPopuli dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
ayanban011/vit-base_tobacco_bs_16_lr_1e-5_e_200_wr_0.05_wd_0.4_split
ayanban011
2023-07-12T23:33:16Z
165
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-12T18:58:44Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-base_tobacco_bs_16_lr_1e-5_e_200_wr_0.05_wd_0.4_split results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base_tobacco_bs_16_lr_1e-5_e_200_wr_0.05_wd_0.4_split This model is a fine-tuned version of [jordyvl/vit-base_tobacco](https://huggingface.co/jordyvl/vit-base_tobacco) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0411 - Accuracy: 0.8333 - Brier Loss: 0.3084 - Nll: 1.3568 - F1 Micro: 0.8333 - F1 Macro: 0.8183 - Ece: 0.1563 - Aurc: 0.0847 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc | |:-------------:|:------:|:----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:| | No log | 0.99 | 43 | 0.7544 | 0.7960 | 0.3088 | 1.3391 | 0.7960 | 0.7715 | 0.1991 | 0.0817 | | No log | 2.0 | 87 | 0.7158 | 0.8218 | 0.2920 | 1.1888 | 0.8218 | 0.7941 | 0.1863 | 0.0741 | | No log | 2.98 | 130 | 0.7144 | 0.7989 | 0.2932 | 1.2958 | 0.7989 | 0.7701 | 0.1628 | 0.0749 | | No log | 3.99 | 174 | 0.6762 | 0.8305 | 0.2749 | 1.1916 | 0.8305 | 0.8076 | 0.1844 | 0.0678 | | No log | 4.98 | 217 | 0.6710 | 0.8362 | 0.2745 | 1.0739 | 0.8362 | 0.8076 | 0.1696 | 0.0664 | | No log | 5.99 | 261 | 0.6532 | 0.8362 | 0.2675 | 1.0011 | 0.8362 | 0.8115 | 0.1750 | 0.0602 | | No log | 6.98 | 304 | 0.6404 | 0.8362 | 0.2635 | 1.0072 | 0.8362 | 0.8106 | 0.1714 | 0.0633 | | No log | 7.99 | 348 | 0.6635 | 0.8218 | 0.2707 | 1.0903 | 0.8218 | 0.8030 | 0.1513 | 0.0770 | | No log | 9.0 | 392 | 0.6167 | 0.8420 | 0.2534 | 1.0176 | 0.8420 | 0.8259 | 0.1613 | 0.0796 | | No log | 9.99 | 435 | 0.6496 | 0.8276 | 0.2703 | 0.9646 | 0.8276 | 0.8085 | 0.1643 | 0.0588 | | No log | 11.0 | 479 | 0.6091 | 0.8506 | 0.2467 | 1.1036 | 0.8506 | 0.8308 | 0.1483 | 0.0650 | | 0.4309 | 11.98 | 522 | 0.6075 | 0.8420 | 0.2483 | 0.9144 | 0.8420 | 0.8246 | 0.1391 | 0.0519 | | 0.4309 | 12.99 | 566 | 0.6164 | 0.8276 | 0.2576 | 0.9703 | 0.8276 | 0.8092 | 0.1467 | 0.0645 | | 0.4309 | 13.98 | 609 | 0.5893 | 0.8592 | 0.2347 | 1.1493 | 0.8592 | 0.8483 | 0.1347 | 0.0715 | | 0.4309 | 14.99 | 653 | 0.6123 | 0.8477 | 0.2485 | 1.1889 | 0.8477 | 0.8232 | 0.1587 | 0.0764 | | 0.4309 | 16.0 | 697 | 0.6352 | 0.8420 | 0.2615 | 1.1999 | 0.8420 | 0.8403 | 0.1368 | 0.0668 | | 0.4309 | 16.99 | 740 | 0.6329 | 0.8333 | 0.2625 | 1.1748 | 0.8333 | 0.8249 | 0.1267 | 0.0744 | | 0.4309 | 18.0 | 784 | 0.6350 | 0.8448 | 0.2590 | 1.2154 | 0.8448 | 0.8386 | 0.1423 | 0.0688 | | 0.4309 | 18.98 | 827 | 0.5892 | 0.8592 | 0.2383 | 1.1001 | 0.8592 | 0.8515 | 0.1293 | 0.0630 | | 0.4309 | 19.99 | 871 | 0.5981 | 0.8477 | 0.2476 | 1.0104 | 0.8477 | 0.8375 | 0.1345 | 0.0630 | | 0.4309 | 20.98 | 914 | 0.6484 | 0.8420 | 0.2642 | 1.3553 | 0.8420 | 0.8292 | 0.1490 | 0.0770 | | 0.4309 | 21.99 | 958 | 0.6298 | 0.8305 | 0.2657 | 1.1220 | 0.8305 | 0.8208 | 0.1292 | 0.0670 | | 0.1285 | 22.98 | 1001 | 0.6325 | 0.8391 | 0.2633 | 1.2549 | 0.8391 | 0.8362 | 0.1328 | 0.0708 | | 0.1285 | 23.99 | 1045 | 0.6032 | 0.8534 | 0.2486 | 1.1258 | 0.8534 | 0.8444 | 0.1229 | 0.0706 | | 0.1285 | 25.0 | 1089 | 0.6080 | 0.8534 | 0.2460 | 1.2033 | 0.8534 | 0.8414 | 0.1257 | 0.0755 | | 0.1285 | 25.99 | 1132 | 0.6321 | 0.8391 | 0.2667 | 1.2242 | 0.8391 | 0.8355 | 0.1349 | 0.0697 | | 0.1285 | 27.0 | 1176 | 0.6325 | 0.8592 | 0.2522 | 1.2029 | 0.8592 | 0.8493 | 0.1278 | 0.0778 | | 0.1285 | 27.98 | 1219 | 0.6585 | 0.8534 | 0.2546 | 1.3669 | 0.8534 | 0.8378 | 0.1368 | 0.0890 | | 0.1285 | 28.99 | 1263 | 0.6302 | 0.8563 | 0.2517 | 1.2419 | 0.8563 | 0.8508 | 0.1294 | 0.0751 | | 0.1285 | 29.98 | 1306 | 0.6663 | 0.8477 | 0.2637 | 1.4132 | 0.8477 | 0.8339 | 0.1399 | 0.0828 | | 0.1285 | 30.99 | 1350 | 0.7063 | 0.8362 | 0.2799 | 1.4323 | 0.8362 | 0.8330 | 0.1441 | 0.0863 | | 0.1285 | 32.0 | 1394 | 0.6564 | 0.8506 | 0.2570 | 1.1583 | 0.8506 | 0.8417 | 0.1358 | 0.0847 | | 0.1285 | 32.99 | 1437 | 0.6738 | 0.8477 | 0.2647 | 1.3855 | 0.8477 | 0.8398 | 0.1305 | 0.0775 | | 0.1285 | 34.0 | 1481 | 0.6528 | 0.8563 | 0.2559 | 1.2601 | 0.8563 | 0.8462 | 0.1310 | 0.0789 | | 0.0385 | 34.98 | 1524 | 0.6534 | 0.8563 | 0.2537 | 1.2931 | 0.8563 | 0.8461 | 0.1241 | 0.0773 | | 0.0385 | 35.99 | 1568 | 0.6541 | 0.8534 | 0.2525 | 1.2589 | 0.8534 | 0.8449 | 0.1315 | 0.0833 | | 0.0385 | 36.98 | 1611 | 0.6769 | 0.8592 | 0.2545 | 1.4351 | 0.8592 | 0.8492 | 0.1242 | 0.0792 | | 0.0385 | 37.99 | 1655 | 0.6824 | 0.8592 | 0.2576 | 1.2241 | 0.8592 | 0.8472 | 0.1327 | 0.0810 | | 0.0385 | 38.98 | 1698 | 0.6843 | 0.8563 | 0.2589 | 1.3394 | 0.8563 | 0.8450 | 0.1311 | 0.0802 | | 0.0385 | 39.99 | 1742 | 0.6964 | 0.8506 | 0.2630 | 1.2625 | 0.8506 | 0.8405 | 0.1310 | 0.0789 | | 0.0385 | 41.0 | 1786 | 0.7051 | 0.8534 | 0.2671 | 1.3296 | 0.8534 | 0.8434 | 0.1353 | 0.0794 | | 0.0385 | 41.99 | 1829 | 0.7006 | 0.8506 | 0.2645 | 1.2965 | 0.8506 | 0.8400 | 0.1373 | 0.0796 | | 0.0385 | 43.0 | 1873 | 0.7054 | 0.8563 | 0.2646 | 1.2973 | 0.8563 | 0.8450 | 0.1313 | 0.0790 | | 0.0385 | 43.98 | 1916 | 0.7143 | 0.8506 | 0.2673 | 1.2640 | 0.8506 | 0.8399 | 0.1359 | 0.0803 | | 0.0385 | 44.99 | 1960 | 0.7168 | 0.8534 | 0.2665 | 1.3058 | 0.8534 | 0.8429 | 0.1389 | 0.0820 | | 0.0206 | 45.98 | 2003 | 0.7204 | 0.8506 | 0.2669 | 1.3009 | 0.8506 | 0.8384 | 0.1336 | 0.0805 | | 0.0206 | 46.99 | 2047 | 0.7265 | 0.8534 | 0.2683 | 1.2633 | 0.8534 | 0.8415 | 0.1319 | 0.0806 | | 0.0206 | 48.0 | 2091 | 0.7311 | 0.8506 | 0.2695 | 1.2725 | 0.8506 | 0.8396 | 0.1372 | 0.0811 | | 0.0206 | 48.99 | 2134 | 0.7384 | 0.8477 | 0.2729 | 1.3385 | 0.8477 | 0.8364 | 0.1387 | 0.0807 | | 0.0206 | 50.0 | 2178 | 0.7383 | 0.8534 | 0.2695 | 1.1951 | 0.8534 | 0.8406 | 0.1344 | 0.0827 | | 0.0206 | 50.98 | 2221 | 0.7440 | 0.8506 | 0.2740 | 1.3360 | 0.8506 | 0.8394 | 0.1418 | 0.0812 | | 0.0206 | 51.99 | 2265 | 0.7455 | 0.8506 | 0.2727 | 1.2704 | 0.8506 | 0.8388 | 0.1351 | 0.0816 | | 0.0206 | 52.98 | 2308 | 0.7474 | 0.8506 | 0.2708 | 1.2622 | 0.8506 | 0.8384 | 0.1334 | 0.0823 | | 0.0206 | 53.99 | 2352 | 0.7581 | 0.8477 | 0.2750 | 1.3446 | 0.8477 | 0.8374 | 0.1406 | 0.0826 | | 0.0206 | 54.98 | 2395 | 0.7571 | 0.8477 | 0.2751 | 1.3703 | 0.8477 | 0.8363 | 0.1378 | 0.0814 | | 0.0206 | 55.99 | 2439 | 0.7618 | 0.8477 | 0.2752 | 1.3702 | 0.8477 | 0.8363 | 0.1363 | 0.0827 | | 0.0206 | 57.0 | 2483 | 0.7638 | 0.8477 | 0.2749 | 1.3774 | 0.8477 | 0.8363 | 0.1394 | 0.0819 | | 0.0135 | 57.99 | 2526 | 0.7693 | 0.8477 | 0.2760 | 1.3370 | 0.8477 | 0.8363 | 0.1378 | 0.0824 | | 0.0135 | 59.0 | 2570 | 0.7724 | 0.8448 | 0.2779 | 1.3710 | 0.8448 | 0.8344 | 0.1431 | 0.0823 | | 0.0135 | 59.98 | 2613 | 0.7780 | 0.8477 | 0.2784 | 1.3328 | 0.8477 | 0.8363 | 0.1463 | 0.0828 | | 0.0135 | 60.99 | 2657 | 0.7818 | 0.8477 | 0.2795 | 1.3289 | 0.8477 | 0.8363 | 0.1466 | 0.0828 | | 0.0135 | 61.98 | 2700 | 0.7847 | 0.8420 | 0.2805 | 1.3308 | 0.8420 | 0.8308 | 0.1418 | 0.0830 | | 0.0135 | 62.99 | 2744 | 0.7851 | 0.8448 | 0.2782 | 1.3650 | 0.8448 | 0.8344 | 0.1411 | 0.0834 | | 0.0135 | 64.0 | 2788 | 0.7925 | 0.8420 | 0.2829 | 1.4383 | 0.8420 | 0.8319 | 0.1425 | 0.0821 | | 0.0135 | 64.99 | 2831 | 0.7959 | 0.8448 | 0.2826 | 1.4130 | 0.8448 | 0.8353 | 0.1431 | 0.0826 | | 0.0135 | 66.0 | 2875 | 0.7989 | 0.8420 | 0.2821 | 1.4040 | 0.8420 | 0.8285 | 0.1446 | 0.0833 | | 0.0135 | 66.98 | 2918 | 0.7996 | 0.8477 | 0.2807 | 1.3296 | 0.8477 | 0.8363 | 0.1464 | 0.0837 | | 0.0135 | 67.99 | 2962 | 0.8042 | 0.8448 | 0.2824 | 1.3637 | 0.8448 | 0.8344 | 0.1434 | 0.0837 | | 0.0097 | 68.98 | 3005 | 0.8095 | 0.8391 | 0.2845 | 1.3635 | 0.8391 | 0.8275 | 0.1468 | 0.0835 | | 0.0097 | 69.99 | 3049 | 0.8073 | 0.8448 | 0.2824 | 1.3640 | 0.8448 | 0.8344 | 0.1413 | 0.0833 | | 0.0097 | 70.98 | 3092 | 0.8140 | 0.8477 | 0.2834 | 1.3617 | 0.8477 | 0.8363 | 0.1444 | 0.0837 | | 0.0097 | 71.99 | 3136 | 0.8152 | 0.8420 | 0.2842 | 1.4009 | 0.8420 | 0.8277 | 0.1439 | 0.0840 | | 0.0097 | 73.0 | 3180 | 0.8163 | 0.8391 | 0.2858 | 1.4029 | 0.8391 | 0.8246 | 0.1482 | 0.0836 | | 0.0097 | 73.99 | 3223 | 0.8192 | 0.8391 | 0.2844 | 1.3644 | 0.8391 | 0.8240 | 0.1475 | 0.0843 | | 0.0097 | 75.0 | 3267 | 0.8225 | 0.8448 | 0.2836 | 1.3593 | 0.8448 | 0.8344 | 0.1473 | 0.0847 | | 0.0097 | 75.98 | 3310 | 0.8267 | 0.8362 | 0.2859 | 1.3642 | 0.8362 | 0.8207 | 0.1473 | 0.0840 | | 0.0097 | 76.99 | 3354 | 0.8275 | 0.8391 | 0.2847 | 1.3618 | 0.8391 | 0.8240 | 0.1450 | 0.0849 | | 0.0097 | 77.98 | 3397 | 0.8325 | 0.8362 | 0.2879 | 1.3686 | 0.8362 | 0.8207 | 0.1491 | 0.0843 | | 0.0097 | 78.99 | 3441 | 0.8389 | 0.8448 | 0.2885 | 1.3629 | 0.8448 | 0.8329 | 0.1504 | 0.0833 | | 0.0097 | 80.0 | 3485 | 0.8420 | 0.8420 | 0.2887 | 1.3610 | 0.8420 | 0.8261 | 0.1458 | 0.0837 | | 0.0073 | 80.99 | 3528 | 0.8452 | 0.8362 | 0.2900 | 1.4064 | 0.8362 | 0.8221 | 0.1488 | 0.0833 | | 0.0073 | 82.0 | 3572 | 0.8492 | 0.8362 | 0.2898 | 1.4076 | 0.8362 | 0.8221 | 0.1500 | 0.0837 | | 0.0073 | 82.98 | 3615 | 0.8478 | 0.8362 | 0.2895 | 1.3609 | 0.8362 | 0.8207 | 0.1485 | 0.0847 | | 0.0073 | 83.99 | 3659 | 0.8483 | 0.8391 | 0.2880 | 1.3622 | 0.8391 | 0.8243 | 0.1480 | 0.0842 | | 0.0073 | 84.98 | 3702 | 0.8534 | 0.8420 | 0.2892 | 1.3609 | 0.8420 | 0.8261 | 0.1468 | 0.0843 | | 0.0073 | 85.99 | 3746 | 0.8547 | 0.8333 | 0.2898 | 1.4028 | 0.8333 | 0.8186 | 0.1513 | 0.0846 | | 0.0073 | 86.98 | 3789 | 0.8618 | 0.8391 | 0.2906 | 1.3597 | 0.8391 | 0.8243 | 0.1445 | 0.0846 | | 0.0073 | 87.99 | 3833 | 0.8594 | 0.8420 | 0.2885 | 1.3265 | 0.8420 | 0.8311 | 0.1462 | 0.0848 | | 0.0073 | 89.0 | 3877 | 0.8669 | 0.8391 | 0.2911 | 1.3592 | 0.8391 | 0.8243 | 0.1471 | 0.0843 | | 0.0073 | 89.99 | 3920 | 0.8664 | 0.8391 | 0.2901 | 1.3597 | 0.8391 | 0.8243 | 0.1468 | 0.0852 | | 0.0073 | 91.0 | 3964 | 0.8678 | 0.8420 | 0.2905 | 1.3253 | 0.8420 | 0.8296 | 0.1462 | 0.0854 | | 0.0057 | 91.98 | 4007 | 0.8719 | 0.8391 | 0.2909 | 1.3585 | 0.8391 | 0.8243 | 0.1475 | 0.0853 | | 0.0057 | 92.99 | 4051 | 0.8768 | 0.8391 | 0.2930 | 1.3595 | 0.8391 | 0.8243 | 0.1493 | 0.0852 | | 0.0057 | 93.98 | 4094 | 0.8785 | 0.8333 | 0.2928 | 1.4034 | 0.8333 | 0.8203 | 0.1529 | 0.0849 | | 0.0057 | 94.99 | 4138 | 0.8859 | 0.8333 | 0.2942 | 1.3684 | 0.8333 | 0.8183 | 0.1543 | 0.0844 | | 0.0057 | 96.0 | 4182 | 0.8839 | 0.8362 | 0.2937 | 1.3597 | 0.8362 | 0.8221 | 0.1497 | 0.0852 | | 0.0057 | 96.99 | 4225 | 0.8864 | 0.8333 | 0.2940 | 1.4012 | 0.8333 | 0.8203 | 0.1532 | 0.0850 | | 0.0057 | 98.0 | 4269 | 0.8879 | 0.8362 | 0.2941 | 1.3607 | 0.8362 | 0.8221 | 0.1504 | 0.0849 | | 0.0057 | 98.98 | 4312 | 0.8921 | 0.8333 | 0.2954 | 1.3609 | 0.8333 | 0.8183 | 0.1521 | 0.0851 | | 0.0057 | 99.99 | 4356 | 0.8949 | 0.8391 | 0.2945 | 1.3575 | 0.8391 | 0.8243 | 0.1491 | 0.0854 | | 0.0057 | 100.98 | 4399 | 0.8945 | 0.8362 | 0.2945 | 1.3591 | 0.8362 | 0.8221 | 0.1500 | 0.0856 | | 0.0057 | 101.99 | 4443 | 0.8985 | 0.8333 | 0.2944 | 1.3599 | 0.8333 | 0.8183 | 0.1530 | 0.0854 | | 0.0057 | 102.98 | 4486 | 0.8987 | 0.8391 | 0.2951 | 1.3586 | 0.8391 | 0.8246 | 0.1499 | 0.0850 | | 0.0045 | 103.99 | 4530 | 0.9025 | 0.8362 | 0.2957 | 1.3592 | 0.8362 | 0.8221 | 0.1510 | 0.0857 | | 0.0045 | 105.0 | 4574 | 0.9082 | 0.8305 | 0.2972 | 1.3625 | 0.8305 | 0.8165 | 0.1568 | 0.0852 | | 0.0045 | 105.99 | 4617 | 0.9087 | 0.8362 | 0.2958 | 1.3579 | 0.8362 | 0.8221 | 0.1505 | 0.0858 | | 0.0045 | 107.0 | 4661 | 0.9105 | 0.8305 | 0.2977 | 1.3619 | 0.8305 | 0.8165 | 0.1561 | 0.0844 | | 0.0045 | 107.98 | 4704 | 0.9136 | 0.8305 | 0.2978 | 1.3994 | 0.8305 | 0.8165 | 0.1559 | 0.0851 | | 0.0045 | 108.99 | 4748 | 0.9148 | 0.8391 | 0.2968 | 1.3573 | 0.8391 | 0.8243 | 0.1504 | 0.0856 | | 0.0045 | 109.98 | 4791 | 0.9188 | 0.8333 | 0.2974 | 1.3569 | 0.8333 | 0.8183 | 0.1532 | 0.0850 | | 0.0045 | 110.99 | 4835 | 0.9164 | 0.8362 | 0.2959 | 1.3595 | 0.8362 | 0.8221 | 0.1507 | 0.0857 | | 0.0045 | 112.0 | 4879 | 0.9221 | 0.8333 | 0.2977 | 1.3573 | 0.8333 | 0.8183 | 0.1550 | 0.0857 | | 0.0045 | 112.99 | 4922 | 0.9256 | 0.8305 | 0.2990 | 1.3599 | 0.8305 | 0.8165 | 0.1574 | 0.0852 | | 0.0045 | 114.0 | 4966 | 0.9284 | 0.8305 | 0.2994 | 1.3610 | 0.8305 | 0.8165 | 0.1572 | 0.0848 | | 0.0037 | 114.98 | 5009 | 0.9312 | 0.8333 | 0.2998 | 1.3565 | 0.8333 | 0.8183 | 0.1537 | 0.0857 | | 0.0037 | 115.99 | 5053 | 0.9322 | 0.8333 | 0.2995 | 1.3583 | 0.8333 | 0.8183 | 0.1543 | 0.0852 | | 0.0037 | 116.98 | 5096 | 0.9385 | 0.8305 | 0.3007 | 1.3593 | 0.8305 | 0.8165 | 0.1577 | 0.0852 | | 0.0037 | 117.99 | 5140 | 0.9386 | 0.8305 | 0.3009 | 1.4329 | 0.8305 | 0.8165 | 0.1582 | 0.0851 | | 0.0037 | 118.98 | 5183 | 0.9386 | 0.8333 | 0.2996 | 1.3570 | 0.8333 | 0.8183 | 0.1542 | 0.0855 | | 0.0037 | 119.99 | 5227 | 0.9406 | 0.8333 | 0.2995 | 1.3554 | 0.8333 | 0.8183 | 0.1540 | 0.0848 | | 0.0037 | 121.0 | 5271 | 0.9442 | 0.8305 | 0.3006 | 1.3589 | 0.8305 | 0.8165 | 0.1570 | 0.0849 | | 0.0037 | 121.99 | 5314 | 0.9435 | 0.8333 | 0.3000 | 1.3551 | 0.8333 | 0.8183 | 0.1546 | 0.0855 | | 0.0037 | 123.0 | 5358 | 0.9456 | 0.8333 | 0.2996 | 1.3550 | 0.8333 | 0.8183 | 0.1544 | 0.0848 | | 0.0037 | 123.98 | 5401 | 0.9490 | 0.8333 | 0.3008 | 1.3561 | 0.8333 | 0.8183 | 0.1547 | 0.0850 | | 0.0037 | 124.99 | 5445 | 0.9500 | 0.8333 | 0.3011 | 1.3592 | 0.8333 | 0.8183 | 0.1551 | 0.0846 | | 0.0037 | 125.98 | 5488 | 0.9513 | 0.8333 | 0.3003 | 1.3549 | 0.8333 | 0.8183 | 0.1544 | 0.0845 | | 0.0031 | 126.99 | 5532 | 0.9575 | 0.8305 | 0.3024 | 1.3580 | 0.8305 | 0.8165 | 0.1581 | 0.0849 | | 0.0031 | 128.0 | 5576 | 0.9593 | 0.8305 | 0.3025 | 1.4028 | 0.8305 | 0.8165 | 0.1591 | 0.0851 | | 0.0031 | 128.99 | 5619 | 0.9594 | 0.8305 | 0.3021 | 1.3619 | 0.8305 | 0.8165 | 0.1579 | 0.0849 | | 0.0031 | 130.0 | 5663 | 0.9628 | 0.8305 | 0.3025 | 1.3589 | 0.8305 | 0.8165 | 0.1587 | 0.0847 | | 0.0031 | 130.98 | 5706 | 0.9652 | 0.8305 | 0.3031 | 1.3599 | 0.8305 | 0.8165 | 0.1593 | 0.0844 | | 0.0031 | 131.99 | 5750 | 0.9646 | 0.8362 | 0.3005 | 1.3353 | 0.8362 | 0.8205 | 0.1520 | 0.0851 | | 0.0031 | 132.98 | 5793 | 0.9658 | 0.8333 | 0.3021 | 1.3562 | 0.8333 | 0.8183 | 0.1555 | 0.0849 | | 0.0031 | 133.99 | 5837 | 0.9698 | 0.8333 | 0.3023 | 1.3545 | 0.8333 | 0.8183 | 0.1554 | 0.0845 | | 0.0031 | 134.98 | 5880 | 0.9716 | 0.8333 | 0.3032 | 1.3559 | 0.8333 | 0.8183 | 0.1555 | 0.0852 | | 0.0031 | 135.99 | 5924 | 0.9736 | 0.8305 | 0.3037 | 1.3624 | 0.8305 | 0.8165 | 0.1584 | 0.0849 | | 0.0031 | 137.0 | 5968 | 0.9760 | 0.8333 | 0.3039 | 1.3575 | 0.8333 | 0.8183 | 0.1551 | 0.0845 | | 0.0026 | 137.99 | 6011 | 0.9789 | 0.8305 | 0.3041 | 1.3569 | 0.8305 | 0.8165 | 0.1592 | 0.0848 | | 0.0026 | 139.0 | 6055 | 0.9801 | 0.8305 | 0.3040 | 1.3574 | 0.8305 | 0.8165 | 0.1598 | 0.0854 | | 0.0026 | 139.98 | 6098 | 0.9806 | 0.8333 | 0.3035 | 1.3552 | 0.8333 | 0.8183 | 0.1557 | 0.0852 | | 0.0026 | 140.99 | 6142 | 0.9835 | 0.8333 | 0.3041 | 1.3574 | 0.8333 | 0.8183 | 0.1564 | 0.0846 | | 0.0026 | 141.98 | 6185 | 0.9838 | 0.8333 | 0.3037 | 1.3549 | 0.8333 | 0.8183 | 0.1557 | 0.0849 | | 0.0026 | 142.99 | 6229 | 0.9872 | 0.8333 | 0.3044 | 1.3544 | 0.8333 | 0.8183 | 0.1557 | 0.0851 | | 0.0026 | 144.0 | 6273 | 0.9900 | 0.8305 | 0.3056 | 1.3654 | 0.8305 | 0.8165 | 0.1597 | 0.0847 | | 0.0026 | 144.99 | 6316 | 0.9907 | 0.8333 | 0.3049 | 1.3551 | 0.8333 | 0.8183 | 0.1565 | 0.0854 | | 0.0026 | 146.0 | 6360 | 0.9896 | 0.8333 | 0.3044 | 1.3569 | 0.8333 | 0.8183 | 0.1563 | 0.0843 | | 0.0026 | 146.98 | 6403 | 0.9938 | 0.8333 | 0.3053 | 1.3550 | 0.8333 | 0.8183 | 0.1562 | 0.0844 | | 0.0026 | 147.99 | 6447 | 0.9962 | 0.8305 | 0.3056 | 1.3615 | 0.8305 | 0.8165 | 0.1594 | 0.0844 | | 0.0026 | 148.98 | 6490 | 0.9954 | 0.8305 | 0.3051 | 1.3601 | 0.8305 | 0.8165 | 0.1590 | 0.0847 | | 0.0022 | 149.99 | 6534 | 0.9961 | 0.8333 | 0.3043 | 1.3550 | 0.8333 | 0.8183 | 0.1554 | 0.0847 | | 0.0022 | 150.98 | 6577 | 1.0026 | 0.8333 | 0.3059 | 1.3555 | 0.8333 | 0.8183 | 0.1563 | 0.0853 | | 0.0022 | 151.99 | 6621 | 1.0004 | 0.8333 | 0.3049 | 1.3544 | 0.8333 | 0.8183 | 0.1566 | 0.0847 | | 0.0022 | 153.0 | 6665 | 1.0024 | 0.8305 | 0.3058 | 1.3606 | 0.8305 | 0.8165 | 0.1595 | 0.0846 | | 0.0022 | 153.99 | 6708 | 1.0054 | 0.8305 | 0.3064 | 1.3598 | 0.8305 | 0.8165 | 0.1591 | 0.0848 | | 0.0022 | 155.0 | 6752 | 1.0053 | 0.8333 | 0.3054 | 1.3548 | 0.8333 | 0.8183 | 0.1562 | 0.0845 | | 0.0022 | 155.98 | 6795 | 1.0068 | 0.8333 | 0.3053 | 1.3548 | 0.8333 | 0.8183 | 0.1562 | 0.0846 | | 0.0022 | 156.99 | 6839 | 1.0076 | 0.8333 | 0.3055 | 1.3551 | 0.8333 | 0.8183 | 0.1561 | 0.0844 | | 0.0022 | 157.98 | 6882 | 1.0105 | 0.8333 | 0.3059 | 1.3546 | 0.8333 | 0.8183 | 0.1563 | 0.0845 | | 0.0022 | 158.99 | 6926 | 1.0114 | 0.8333 | 0.3061 | 1.3555 | 0.8333 | 0.8183 | 0.1559 | 0.0851 | | 0.0022 | 160.0 | 6970 | 1.0108 | 0.8333 | 0.3061 | 1.3586 | 0.8333 | 0.8183 | 0.1561 | 0.0848 | | 0.002 | 160.99 | 7013 | 1.0129 | 0.8333 | 0.3064 | 1.3577 | 0.8333 | 0.8183 | 0.1560 | 0.0845 | | 0.002 | 162.0 | 7057 | 1.0141 | 0.8333 | 0.3060 | 1.3542 | 0.8333 | 0.8183 | 0.1562 | 0.0845 | | 0.002 | 162.98 | 7100 | 1.0150 | 0.8333 | 0.3063 | 1.3555 | 0.8333 | 0.8183 | 0.1563 | 0.0847 | | 0.002 | 163.99 | 7144 | 1.0181 | 0.8305 | 0.3071 | 1.3616 | 0.8305 | 0.8165 | 0.1587 | 0.0847 | | 0.002 | 164.98 | 7187 | 1.0197 | 0.8305 | 0.3073 | 1.3610 | 0.8305 | 0.8165 | 0.1585 | 0.0847 | | 0.002 | 165.99 | 7231 | 1.0203 | 0.8333 | 0.3071 | 1.3566 | 0.8333 | 0.8183 | 0.1565 | 0.0846 | | 0.002 | 166.98 | 7274 | 1.0214 | 0.8333 | 0.3070 | 1.3561 | 0.8333 | 0.8183 | 0.1564 | 0.0845 | | 0.002 | 167.99 | 7318 | 1.0211 | 0.8333 | 0.3067 | 1.3558 | 0.8333 | 0.8183 | 0.1562 | 0.0846 | | 0.002 | 169.0 | 7362 | 1.0255 | 0.8305 | 0.3077 | 1.3564 | 0.8305 | 0.8165 | 0.1592 | 0.0846 | | 0.002 | 169.99 | 7405 | 1.0238 | 0.8333 | 0.3066 | 1.3535 | 0.8333 | 0.8183 | 0.1567 | 0.0844 | | 0.002 | 171.0 | 7449 | 1.0258 | 0.8333 | 0.3075 | 1.3580 | 0.8333 | 0.8183 | 0.1562 | 0.0847 | | 0.002 | 171.98 | 7492 | 1.0260 | 0.8333 | 0.3073 | 1.3594 | 0.8333 | 0.8183 | 0.1559 | 0.0846 | | 0.0018 | 172.99 | 7536 | 1.0281 | 0.8305 | 0.3077 | 1.3584 | 0.8305 | 0.8165 | 0.1586 | 0.0847 | | 0.0018 | 173.98 | 7579 | 1.0274 | 0.8333 | 0.3073 | 1.3577 | 0.8333 | 0.8183 | 0.1560 | 0.0851 | | 0.0018 | 174.99 | 7623 | 1.0323 | 0.8305 | 0.3082 | 1.3577 | 0.8305 | 0.8165 | 0.1596 | 0.0848 | | 0.0018 | 176.0 | 7667 | 1.0303 | 0.8333 | 0.3076 | 1.3579 | 0.8333 | 0.8183 | 0.1561 | 0.0846 | | 0.0018 | 176.99 | 7710 | 1.0325 | 0.8333 | 0.3081 | 1.3567 | 0.8333 | 0.8183 | 0.1565 | 0.0845 | | 0.0018 | 178.0 | 7754 | 1.0319 | 0.8333 | 0.3077 | 1.3569 | 0.8333 | 0.8183 | 0.1560 | 0.0847 | | 0.0018 | 178.98 | 7797 | 1.0340 | 0.8333 | 0.3081 | 1.3568 | 0.8333 | 0.8183 | 0.1562 | 0.0847 | | 0.0018 | 179.99 | 7841 | 1.0331 | 0.8333 | 0.3072 | 1.3550 | 0.8333 | 0.8183 | 0.1564 | 0.0847 | | 0.0018 | 180.98 | 7884 | 1.0346 | 0.8333 | 0.3079 | 1.3563 | 0.8333 | 0.8183 | 0.1561 | 0.0847 | | 0.0018 | 181.99 | 7928 | 1.0344 | 0.8333 | 0.3079 | 1.3577 | 0.8333 | 0.8183 | 0.1565 | 0.0847 | | 0.0018 | 182.98 | 7971 | 1.0363 | 0.8333 | 0.3080 | 1.3556 | 0.8333 | 0.8183 | 0.1566 | 0.0850 | | 0.0016 | 183.99 | 8015 | 1.0368 | 0.8333 | 0.3080 | 1.3569 | 0.8333 | 0.8183 | 0.1561 | 0.0847 | | 0.0016 | 185.0 | 8059 | 1.0369 | 0.8333 | 0.3080 | 1.3563 | 0.8333 | 0.8183 | 0.1562 | 0.0847 | | 0.0016 | 185.99 | 8102 | 1.0373 | 0.8333 | 0.3080 | 1.3565 | 0.8333 | 0.8183 | 0.1561 | 0.0850 | | 0.0016 | 187.0 | 8146 | 1.0377 | 0.8333 | 0.3080 | 1.3568 | 0.8333 | 0.8183 | 0.1561 | 0.0846 | | 0.0016 | 187.98 | 8189 | 1.0392 | 0.8333 | 0.3084 | 1.3577 | 0.8333 | 0.8183 | 0.1565 | 0.0846 | | 0.0016 | 188.99 | 8233 | 1.0391 | 0.8333 | 0.3082 | 1.3564 | 0.8333 | 0.8183 | 0.1564 | 0.0848 | | 0.0016 | 189.98 | 8276 | 1.0393 | 0.8333 | 0.3081 | 1.3561 | 0.8333 | 0.8183 | 0.1562 | 0.0847 | | 0.0016 | 190.99 | 8320 | 1.0398 | 0.8333 | 0.3084 | 1.3582 | 0.8333 | 0.8183 | 0.1562 | 0.0846 | | 0.0016 | 192.0 | 8364 | 1.0405 | 0.8333 | 0.3083 | 1.3558 | 0.8333 | 0.8183 | 0.1564 | 0.0847 | | 0.0016 | 192.99 | 8407 | 1.0401 | 0.8333 | 0.3082 | 1.3558 | 0.8333 | 0.8183 | 0.1564 | 0.0847 | | 0.0016 | 194.0 | 8451 | 1.0407 | 0.8333 | 0.3083 | 1.3564 | 0.8333 | 0.8183 | 0.1564 | 0.0847 | | 0.0016 | 194.98 | 8494 | 1.0414 | 0.8333 | 0.3086 | 1.3573 | 0.8333 | 0.8183 | 0.1564 | 0.0847 | | 0.0015 | 195.99 | 8538 | 1.0410 | 0.8333 | 0.3084 | 1.3567 | 0.8333 | 0.8183 | 0.1564 | 0.0848 | | 0.0015 | 196.98 | 8581 | 1.0411 | 0.8333 | 0.3084 | 1.3568 | 0.8333 | 0.8183 | 0.1563 | 0.0846 | | 0.0015 | 197.42 | 8600 | 1.0411 | 0.8333 | 0.3084 | 1.3568 | 0.8333 | 0.8183 | 0.1563 | 0.0847 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.13.1 - Datasets 2.13.1 - Tokenizers 0.13.3
Isotonic/informal_to_formal
Isotonic
2023-07-12T22:55:28Z
111
0
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "style-transfer", "seq2seq", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-01T05:59:36Z
--- language: "en" tags: - style-transfer - text2text-generation - seq2seq inference: true --- ​ # Formality Style Transfer ## Model description​ T5 Model for Formality Style Transfer. Trained on the GYAFC dataset.​ ## How to use ​PyTorch model available​. ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM ​ tokenizer = AutoTokenizer.from_pretrained("Isotonic/informal_to_formal") model = AutoModelForSeq2SeqLM.from_pretrained("Isotonic/informal_to_formal") ​ sentence = "will you look into these two deals and let me know" text = "Make the following sentence Formal: " + sentence + " </s>" encoding = tokenizer.encode_plus(text,pad_to_max_length=True, return_tensors="pt") input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda") outputs = model.generate( input_ids=input_ids, attention_mask=attention_masks, max_length=256, do_sample=True, top_k=120, top_p=0.95, early_stopping=True, num_return_sequences=5 ) for output in outputs: line = tokenizer.decode(output, skip_special_tokens=True,clean_up_tokenization_spaces=True) print(line) ​Output: "Would you look into the two deals in question, then let me know?" ```
komo-dono/rammatra_jp
komo-dono
2023-07-12T22:52:40Z
0
0
null
[ "region:us" ]
null
2023-07-12T22:51:26Z
--- license: openrail language: - ja tags: - music rammatra jp 500 epoch
KingShmeeky/KingshmeekyRVC
KingShmeeky
2023-07-12T22:43:21Z
0
0
null
[ "music", "en", "license:openrail", "region:us" ]
null
2023-07-12T22:30:27Z
--- license: openrail language: - en tags: - music ---
nolanaatama/nglshdbhtcvbrnnknckrbckrgnshnmpctrvcv2150pchmklgn
nolanaatama
2023-07-12T22:40:26Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-12T22:08:55Z
--- license: creativeml-openrail-m ---
lovelyxs/Pyramids
lovelyxs
2023-07-12T22:37:03Z
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-07-12T22:36:58Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: lovelyxs/Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
komo-dono/collei_jp
komo-dono
2023-07-12T22:28:58Z
0
0
null
[ "region:us" ]
null
2023-07-12T22:27:51Z
--- license: openrail language: - ja tags: - music collei japanese 500 epoch
cworthingtonfujitsu/falcon-7b-instruct-jukebox
cworthingtonfujitsu
2023-07-12T21:58:59Z
1
0
peft
[ "peft", "region:us" ]
null
2023-07-12T21:58:36Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
lovelyxs/ppo-SnowballTarget
lovelyxs
2023-07-12T21:43:03Z
9
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-07-12T21:42:55Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: lovelyxs/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
whywynn/q-FrozenLake-v1-4x4-noSlippery
whywynn
2023-07-12T21:24:58Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-12T21:24:49Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="whywynn/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
yanex0/cn-v1-1
yanex0
2023-07-12T21:20:20Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-07-12T21:14:00Z
--- license: openrail --- This is the model files for [ControlNet 1.1](https://github.com/lllyasviel/ControlNet-v1-1-nightly). This model card will be filled in a more detailed way after 1.1 is officially merged into ControlNet.
SrPrieto/ppo-LunarLander-v2
SrPrieto
2023-07-12T21:14:49Z
5
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-12T21:14:30Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 271.18 +/- 13.06 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
lovelyxs/Reinforce-Pixelcopter-PLE-v0
lovelyxs
2023-07-12T21:06:20Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-12T21:06:13Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 45.30 +/- 39.51 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
carbon225/byt5-abbreviations-pl
carbon225
2023-07-12T21:00:28Z
104
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "pl", "dataset:carbon225/poleval-abbreviation-disambiguation-wiki", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-09T21:40:24Z
--- datasets: - carbon225/poleval-abbreviation-disambiguation-wiki language: - pl widget: - text: "Kolejne 0,12 <mask>pkt. proc.</mask> wynika ze spadku popytu na polski eksport, a 0,08 z zaburzeń na rynku wewnętrznym" example_title: "Example 1" --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MarcoIPolo/distilbert-base-uncased-finetuned-emotion
MarcoIPolo
2023-07-12T20:50:49Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-12T16:05:46Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9245 - name: F1 type: f1 value: 0.9245630401134893 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2193 - Accuracy: 0.9245 - F1: 0.9246 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 250 | 0.3295 | 0.899 | 0.8946 | | No log | 2.0 | 500 | 0.2193 | 0.9245 | 0.9246 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
grace-pro/afriberta-small-finetuned-hausa-2e-4
grace-pro
2023-07-12T20:50:37Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-12T20:15:26Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: afriberta-small-finetuned-hausa-2e-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # afriberta-small-finetuned-hausa-2e-4 This model is a fine-tuned version of [castorini/afriberta_small](https://huggingface.co/castorini/afriberta_small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2081 - Precision: 0.6383 - Recall: 0.4793 - F1: 0.5475 - Accuracy: 0.9589 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1575 | 1.0 | 1312 | 0.1439 | 0.6452 | 0.3971 | 0.4917 | 0.9569 | | 0.1201 | 2.0 | 2624 | 0.1371 | 0.6344 | 0.4451 | 0.5231 | 0.9578 | | 0.0831 | 3.0 | 3936 | 0.1544 | 0.6444 | 0.4727 | 0.5454 | 0.9591 | | 0.0523 | 4.0 | 5248 | 0.1836 | 0.6500 | 0.4683 | 0.5444 | 0.9592 | | 0.0318 | 5.0 | 6560 | 0.2081 | 0.6383 | 0.4793 | 0.5475 | 0.9589 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
foreverip/q-FrozenLake-v1-4x4-noSlippery
foreverip
2023-07-12T20:49:59Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-12T20:49:56Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="foreverip/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
kimnguyenwork/Taxi-v3
kimnguyenwork
2023-07-12T20:45:36Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-12T20:45:29Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="kimnguyenwork/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
1aurent/diy-ppo-LunarLander-v2
1aurent
2023-07-12T20:42:54Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-07-12T20:03:20Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -41.63 +/- 67.80 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'repo_id': '1aurent/diy-ppo-LunarLander-v2' 'exp_name': 'hugggingface_colab' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 1000000 'learning_rate': 0.0003 'num_envs': 32 'num_steps': 64 'anneal_lr': True 'gae': True 'gamma': 0.999 'gae_lambda': 0.98 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'batch_size': 2048 'minibatch_size': 512} ```
kimnguyenwork/q-FrozenLake-v1
kimnguyenwork
2023-07-12T20:42:26Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-12T20:42:20Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="kimnguyenwork/q-FrozenLake-v1", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
NasimB/gpt2-concat-guten-rarity-no-cut
NasimB
2023-07-12T20:33:38Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-12T18:48:47Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-concat-guten-rarity-no-cut results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-concat-guten-rarity-no-cut This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.3296 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.6869 | 0.29 | 500 | 5.6385 | | 5.3235 | 0.59 | 1000 | 5.2015 | | 4.9865 | 0.88 | 1500 | 4.9498 | | 4.7068 | 1.18 | 2000 | 4.8080 | | 4.5674 | 1.47 | 2500 | 4.6941 | | 4.4601 | 1.76 | 3000 | 4.5872 | | 4.3293 | 2.06 | 3500 | 4.5155 | | 4.1497 | 2.35 | 4000 | 4.4676 | | 4.1182 | 2.64 | 4500 | 4.4072 | | 4.0826 | 2.94 | 5000 | 4.3514 | | 3.8664 | 3.23 | 5500 | 4.3488 | | 3.8272 | 3.53 | 6000 | 4.3168 | | 3.8034 | 3.82 | 6500 | 4.2843 | | 3.6795 | 4.11 | 7000 | 4.2836 | | 3.5333 | 4.41 | 7500 | 4.2764 | | 3.534 | 4.7 | 8000 | 4.2603 | | 3.5182 | 4.99 | 8500 | 4.2478 | | 3.3437 | 5.29 | 9000 | 4.2620 | | 3.3384 | 5.58 | 9500 | 4.2601 | | 3.3385 | 5.88 | 10000 | 4.2595 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
SHENMU007/neunit_BASE_V12.4
SHENMU007
2023-07-12T20:26:54Z
77
0
transformers
[ "transformers", "pytorch", "tensorboard", "speecht5", "text-to-audio", "1.1.0", "generated_from_trainer", "zh", "dataset:facebook/voxpopuli", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2023-07-12T17:42:58Z
--- language: - zh license: mit base_model: microsoft/speecht5_tts tags: - 1.1.0 - generated_from_trainer datasets: - facebook/voxpopuli model-index: - name: SpeechT5 TTS Dutch neunit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SpeechT5 TTS Dutch neunit This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the VoxPopuli dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
VK246/IC_ver5b_coco_swin_gpt2_01pc_1e
VK246
2023-07-12T20:14:54Z
46
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:coco", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-07-12T19:47:07Z
--- tags: - generated_from_trainer datasets: - coco metrics: - rouge - bleu model-index: - name: IC_ver5b_coco_swin_gpt2_01pc_1e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IC_ver5b_coco_swin_gpt2_01pc_1e This model is a fine-tuned version of [VK246/IC_ver5a_coco_swin_gpt2_05pc_1e](https://huggingface.co/VK246/IC_ver5a_coco_swin_gpt2_05pc_1e) on the coco dataset. It achieves the following results on the evaluation set: - Loss: 1.1266 - Rouge1: 27.4772 - Rouge2: 5.9305 - Rougel: 25.1138 - Rougelsum: 25.1235 - Bleu: 2.437 - Gen Len: 11.1124 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 96 - eval_batch_size: 96 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:------:|:-------:| | 1.2093 | 0.42 | 25 | 1.1552 | 22.8898 | 3.6353 | 20.6781 | 20.6737 | 1.1554 | 11.1124 | | 1.2149 | 0.85 | 50 | 1.1358 | 26.2857 | 5.2765 | 24.0266 | 24.0308 | 2.1954 | 11.1124 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
jd06/TwoSentenceHorrorModel
jd06
2023-07-12T20:14:37Z
211
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-11T20:51:49Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: TwoSentenceHorrorModel results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TwoSentenceHorrorModel This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.3563 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 1 | 4.7786 | | No log | 2.0 | 2 | 4.4930 | | No log | 3.0 | 3 | 4.3563 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
odunola/transcriber-t5-v8
odunola
2023-07-12T20:08:13Z
114
1
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-06T12:24:29Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: transcriber-t5-v8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # transcriber-t5-v8 This model is a fine-tuned version of [odunola/transcriber-t5-v7](https://huggingface.co/odunola/transcriber-t5-v7) on the [odunola/transcriberv3](https://huggingface.co/datasets/odunola/transcriberv3) dataset. It achieves the following results on the evaluation set: - Loss: 0.1924 ## Model description This model, a fine-tuned T5, is designed to pinpoint and extract specific Bible scriptures' chapter and verse from a string of text. It's a major component of a broader project but is also versatile enough for your other applications. The model's learning is driven by a unique dataset, painstakingly compiled from transcripts of sermons on YouTube and various online platforms. This handpicked, curated data equips the model with a specialized understanding of religious discourse and biblical references. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 20 - eval_batch_size: 20 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.2215 | 0.23 | 500 | 0.2216 | | 0.1814 | 0.47 | 1000 | 0.2197 | | 0.2011 | 0.7 | 1500 | 0.2059 | | 0.2595 | 0.94 | 2000 | 0.2009 | | 0.2412 | 1.17 | 2500 | 0.2019 | | 0.1785 | 1.41 | 3000 | 0.1970 | | 0.1962 | 1.64 | 3500 | 0.1983 | | 0.2009 | 1.88 | 4000 | 0.1963 | | 0.2013 | 2.11 | 4500 | 0.1923 | | 0.2715 | 2.35 | 5000 | 0.1929 | | 0.2488 | 2.58 | 5500 | 0.1936 | | 0.1185 | 2.81 | 6000 | 0.1924 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
newsrx/instructor-large
newsrx
2023-07-12T19:56:14Z
7
0
sentence-transformers
[ "sentence-transformers", "pytorch", "t5", "text-embedding", "embeddings", "information-retrieval", "beir", "text-classification", "language-model", "text-clustering", "text-semantic-similarity", "text-evaluation", "prompt-retrieval", "text-reranking", "feature-extraction", "sentence-similarity", "transformers", "English", "Sentence Similarity", "natural_questions", "ms_marco", "fever", "hotpot_qa", "mteb", "en", "arxiv:2212.09741", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "region:us" ]
sentence-similarity
2023-07-12T19:56:14Z
--- pipeline_tag: sentence-similarity tags: - text-embedding - embeddings - information-retrieval - beir - text-classification - language-model - text-clustering - text-semantic-similarity - text-evaluation - prompt-retrieval - text-reranking - sentence-transformers - feature-extraction - sentence-similarity - transformers - t5 - English - Sentence Similarity - natural_questions - ms_marco - fever - hotpot_qa - mteb language: en inference: false license: apache-2.0 model-index: - name: INSTRUCTOR results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 88.13432835820896 - type: ap value: 59.298209334395665 - type: f1 value: 83.31769058643586 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 91.526375 - type: ap value: 88.16327709705504 - type: f1 value: 91.51095801287843 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 47.856 - type: f1 value: 45.41490917650942 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 31.223 - type: map_at_10 value: 47.947 - type: map_at_100 value: 48.742000000000004 - type: map_at_1000 value: 48.745 - type: map_at_3 value: 43.137 - type: map_at_5 value: 45.992 - type: mrr_at_1 value: 32.432 - type: mrr_at_10 value: 48.4 - type: mrr_at_100 value: 49.202 - type: mrr_at_1000 value: 49.205 - type: mrr_at_3 value: 43.551 - type: mrr_at_5 value: 46.467999999999996 - type: ndcg_at_1 value: 31.223 - type: ndcg_at_10 value: 57.045 - type: ndcg_at_100 value: 60.175 - type: ndcg_at_1000 value: 60.233000000000004 - type: ndcg_at_3 value: 47.171 - type: ndcg_at_5 value: 52.322 - type: precision_at_1 value: 31.223 - type: precision_at_10 value: 8.599 - type: precision_at_100 value: 0.991 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 19.63 - type: precision_at_5 value: 14.282 - type: recall_at_1 value: 31.223 - type: recall_at_10 value: 85.989 - type: recall_at_100 value: 99.075 - type: recall_at_1000 value: 99.502 - type: recall_at_3 value: 58.89 - type: recall_at_5 value: 71.408 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 43.1621946393635 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 32.56417132407894 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 64.29539304390207 - type: mrr value: 76.44484017060196 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_spearman value: 84.38746499431112 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 78.51298701298701 - type: f1 value: 77.49041754069235 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 37.61848554098577 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 31.32623280148178 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 35.803000000000004 - type: map_at_10 value: 48.848 - type: map_at_100 value: 50.5 - type: map_at_1000 value: 50.602999999999994 - type: map_at_3 value: 45.111000000000004 - type: map_at_5 value: 47.202 - type: mrr_at_1 value: 44.635000000000005 - type: mrr_at_10 value: 55.593 - type: mrr_at_100 value: 56.169999999999995 - type: mrr_at_1000 value: 56.19499999999999 - type: mrr_at_3 value: 53.361999999999995 - type: mrr_at_5 value: 54.806999999999995 - type: ndcg_at_1 value: 44.635000000000005 - type: ndcg_at_10 value: 55.899 - type: ndcg_at_100 value: 60.958 - type: ndcg_at_1000 value: 62.302 - type: ndcg_at_3 value: 51.051 - type: ndcg_at_5 value: 53.351000000000006 - type: precision_at_1 value: 44.635000000000005 - type: precision_at_10 value: 10.786999999999999 - type: precision_at_100 value: 1.6580000000000001 - type: precision_at_1000 value: 0.213 - type: precision_at_3 value: 24.893 - type: precision_at_5 value: 17.740000000000002 - type: recall_at_1 value: 35.803000000000004 - type: recall_at_10 value: 68.657 - type: recall_at_100 value: 89.77199999999999 - type: recall_at_1000 value: 97.67 - type: recall_at_3 value: 54.066 - type: recall_at_5 value: 60.788 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 33.706 - type: map_at_10 value: 44.896 - type: map_at_100 value: 46.299 - type: map_at_1000 value: 46.44 - type: map_at_3 value: 41.721000000000004 - type: map_at_5 value: 43.486000000000004 - type: mrr_at_1 value: 41.592 - type: mrr_at_10 value: 50.529 - type: mrr_at_100 value: 51.22 - type: mrr_at_1000 value: 51.258 - type: mrr_at_3 value: 48.205999999999996 - type: mrr_at_5 value: 49.528 - type: ndcg_at_1 value: 41.592 - type: ndcg_at_10 value: 50.77199999999999 - type: ndcg_at_100 value: 55.383 - type: ndcg_at_1000 value: 57.288 - type: ndcg_at_3 value: 46.324 - type: ndcg_at_5 value: 48.346000000000004 - type: precision_at_1 value: 41.592 - type: precision_at_10 value: 9.516 - type: precision_at_100 value: 1.541 - type: precision_at_1000 value: 0.2 - type: precision_at_3 value: 22.399 - type: precision_at_5 value: 15.770999999999999 - type: recall_at_1 value: 33.706 - type: recall_at_10 value: 61.353 - type: recall_at_100 value: 80.182 - type: recall_at_1000 value: 91.896 - type: recall_at_3 value: 48.204 - type: recall_at_5 value: 53.89699999999999 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 44.424 - type: map_at_10 value: 57.169000000000004 - type: map_at_100 value: 58.202 - type: map_at_1000 value: 58.242000000000004 - type: map_at_3 value: 53.825 - type: map_at_5 value: 55.714 - type: mrr_at_1 value: 50.470000000000006 - type: mrr_at_10 value: 60.489000000000004 - type: mrr_at_100 value: 61.096 - type: mrr_at_1000 value: 61.112 - type: mrr_at_3 value: 58.192 - type: mrr_at_5 value: 59.611999999999995 - type: ndcg_at_1 value: 50.470000000000006 - type: ndcg_at_10 value: 63.071999999999996 - type: ndcg_at_100 value: 66.964 - type: ndcg_at_1000 value: 67.659 - type: ndcg_at_3 value: 57.74399999999999 - type: ndcg_at_5 value: 60.367000000000004 - type: precision_at_1 value: 50.470000000000006 - type: precision_at_10 value: 10.019 - type: precision_at_100 value: 1.29 - type: precision_at_1000 value: 0.13899999999999998 - type: precision_at_3 value: 25.558999999999997 - type: precision_at_5 value: 17.467 - type: recall_at_1 value: 44.424 - type: recall_at_10 value: 77.02 - type: recall_at_100 value: 93.738 - type: recall_at_1000 value: 98.451 - type: recall_at_3 value: 62.888 - type: recall_at_5 value: 69.138 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 26.294 - type: map_at_10 value: 34.503 - type: map_at_100 value: 35.641 - type: map_at_1000 value: 35.724000000000004 - type: map_at_3 value: 31.753999999999998 - type: map_at_5 value: 33.190999999999995 - type: mrr_at_1 value: 28.362 - type: mrr_at_10 value: 36.53 - type: mrr_at_100 value: 37.541000000000004 - type: mrr_at_1000 value: 37.602000000000004 - type: mrr_at_3 value: 33.917 - type: mrr_at_5 value: 35.358000000000004 - type: ndcg_at_1 value: 28.362 - type: ndcg_at_10 value: 39.513999999999996 - type: ndcg_at_100 value: 44.815 - type: ndcg_at_1000 value: 46.839 - type: ndcg_at_3 value: 34.02 - type: ndcg_at_5 value: 36.522 - type: precision_at_1 value: 28.362 - type: precision_at_10 value: 6.101999999999999 - type: precision_at_100 value: 0.9129999999999999 - type: precision_at_1000 value: 0.11399999999999999 - type: precision_at_3 value: 14.161999999999999 - type: precision_at_5 value: 9.966 - type: recall_at_1 value: 26.294 - type: recall_at_10 value: 53.098 - type: recall_at_100 value: 76.877 - type: recall_at_1000 value: 91.834 - type: recall_at_3 value: 38.266 - type: recall_at_5 value: 44.287 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 16.407 - type: map_at_10 value: 25.185999999999996 - type: map_at_100 value: 26.533 - type: map_at_1000 value: 26.657999999999998 - type: map_at_3 value: 22.201999999999998 - type: map_at_5 value: 23.923 - type: mrr_at_1 value: 20.522000000000002 - type: mrr_at_10 value: 29.522 - type: mrr_at_100 value: 30.644 - type: mrr_at_1000 value: 30.713 - type: mrr_at_3 value: 26.679000000000002 - type: mrr_at_5 value: 28.483000000000004 - type: ndcg_at_1 value: 20.522000000000002 - type: ndcg_at_10 value: 30.656 - type: ndcg_at_100 value: 36.864999999999995 - type: ndcg_at_1000 value: 39.675 - type: ndcg_at_3 value: 25.319000000000003 - type: ndcg_at_5 value: 27.992 - type: precision_at_1 value: 20.522000000000002 - type: precision_at_10 value: 5.795999999999999 - type: precision_at_100 value: 1.027 - type: precision_at_1000 value: 0.13999999999999999 - type: precision_at_3 value: 12.396 - type: precision_at_5 value: 9.328 - type: recall_at_1 value: 16.407 - type: recall_at_10 value: 43.164 - type: recall_at_100 value: 69.695 - type: recall_at_1000 value: 89.41900000000001 - type: recall_at_3 value: 28.634999999999998 - type: recall_at_5 value: 35.308 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 30.473 - type: map_at_10 value: 41.676 - type: map_at_100 value: 43.120999999999995 - type: map_at_1000 value: 43.230000000000004 - type: map_at_3 value: 38.306000000000004 - type: map_at_5 value: 40.355999999999995 - type: mrr_at_1 value: 37.536 - type: mrr_at_10 value: 47.643 - type: mrr_at_100 value: 48.508 - type: mrr_at_1000 value: 48.551 - type: mrr_at_3 value: 45.348 - type: mrr_at_5 value: 46.744 - type: ndcg_at_1 value: 37.536 - type: ndcg_at_10 value: 47.823 - type: ndcg_at_100 value: 53.395 - type: ndcg_at_1000 value: 55.271 - type: ndcg_at_3 value: 42.768 - type: ndcg_at_5 value: 45.373000000000005 - type: precision_at_1 value: 37.536 - type: precision_at_10 value: 8.681 - type: precision_at_100 value: 1.34 - type: precision_at_1000 value: 0.165 - type: precision_at_3 value: 20.468 - type: precision_at_5 value: 14.495 - type: recall_at_1 value: 30.473 - type: recall_at_10 value: 60.092999999999996 - type: recall_at_100 value: 82.733 - type: recall_at_1000 value: 94.875 - type: recall_at_3 value: 45.734 - type: recall_at_5 value: 52.691 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 29.976000000000003 - type: map_at_10 value: 41.097 - type: map_at_100 value: 42.547000000000004 - type: map_at_1000 value: 42.659000000000006 - type: map_at_3 value: 37.251 - type: map_at_5 value: 39.493 - type: mrr_at_1 value: 37.557 - type: mrr_at_10 value: 46.605000000000004 - type: mrr_at_100 value: 47.487 - type: mrr_at_1000 value: 47.54 - type: mrr_at_3 value: 43.721 - type: mrr_at_5 value: 45.411 - type: ndcg_at_1 value: 37.557 - type: ndcg_at_10 value: 47.449000000000005 - type: ndcg_at_100 value: 53.052 - type: ndcg_at_1000 value: 55.010999999999996 - type: ndcg_at_3 value: 41.439 - type: ndcg_at_5 value: 44.292 - type: precision_at_1 value: 37.557 - type: precision_at_10 value: 8.847 - type: precision_at_100 value: 1.357 - type: precision_at_1000 value: 0.16999999999999998 - type: precision_at_3 value: 20.091 - type: precision_at_5 value: 14.384 - type: recall_at_1 value: 29.976000000000003 - type: recall_at_10 value: 60.99099999999999 - type: recall_at_100 value: 84.245 - type: recall_at_1000 value: 96.97200000000001 - type: recall_at_3 value: 43.794 - type: recall_at_5 value: 51.778999999999996 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 28.099166666666665 - type: map_at_10 value: 38.1365 - type: map_at_100 value: 39.44491666666667 - type: map_at_1000 value: 39.55858333333334 - type: map_at_3 value: 35.03641666666666 - type: map_at_5 value: 36.79833333333334 - type: mrr_at_1 value: 33.39966666666667 - type: mrr_at_10 value: 42.42583333333333 - type: mrr_at_100 value: 43.28575 - type: mrr_at_1000 value: 43.33741666666667 - type: mrr_at_3 value: 39.94975 - type: mrr_at_5 value: 41.41633333333334 - type: ndcg_at_1 value: 33.39966666666667 - type: ndcg_at_10 value: 43.81741666666667 - type: ndcg_at_100 value: 49.08166666666667 - type: ndcg_at_1000 value: 51.121166666666674 - type: ndcg_at_3 value: 38.73575 - type: ndcg_at_5 value: 41.18158333333333 - type: precision_at_1 value: 33.39966666666667 - type: precision_at_10 value: 7.738916666666667 - type: precision_at_100 value: 1.2265833333333331 - type: precision_at_1000 value: 0.15983333333333336 - type: precision_at_3 value: 17.967416666666665 - type: precision_at_5 value: 12.78675 - type: recall_at_1 value: 28.099166666666665 - type: recall_at_10 value: 56.27049999999999 - type: recall_at_100 value: 78.93291666666667 - type: recall_at_1000 value: 92.81608333333334 - type: recall_at_3 value: 42.09775 - type: recall_at_5 value: 48.42533333333334 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.663 - type: map_at_10 value: 30.377 - type: map_at_100 value: 31.426 - type: map_at_1000 value: 31.519000000000002 - type: map_at_3 value: 28.069 - type: map_at_5 value: 29.256999999999998 - type: mrr_at_1 value: 26.687 - type: mrr_at_10 value: 33.107 - type: mrr_at_100 value: 34.055 - type: mrr_at_1000 value: 34.117999999999995 - type: mrr_at_3 value: 31.058000000000003 - type: mrr_at_5 value: 32.14 - type: ndcg_at_1 value: 26.687 - type: ndcg_at_10 value: 34.615 - type: ndcg_at_100 value: 39.776 - type: ndcg_at_1000 value: 42.05 - type: ndcg_at_3 value: 30.322 - type: ndcg_at_5 value: 32.157000000000004 - type: precision_at_1 value: 26.687 - type: precision_at_10 value: 5.491 - type: precision_at_100 value: 0.877 - type: precision_at_1000 value: 0.11499999999999999 - type: precision_at_3 value: 13.139000000000001 - type: precision_at_5 value: 9.049 - type: recall_at_1 value: 23.663 - type: recall_at_10 value: 45.035 - type: recall_at_100 value: 68.554 - type: recall_at_1000 value: 85.077 - type: recall_at_3 value: 32.982 - type: recall_at_5 value: 37.688 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 17.403 - type: map_at_10 value: 25.197000000000003 - type: map_at_100 value: 26.355 - type: map_at_1000 value: 26.487 - type: map_at_3 value: 22.733 - type: map_at_5 value: 24.114 - type: mrr_at_1 value: 21.37 - type: mrr_at_10 value: 29.091 - type: mrr_at_100 value: 30.018 - type: mrr_at_1000 value: 30.096 - type: mrr_at_3 value: 26.887 - type: mrr_at_5 value: 28.157 - type: ndcg_at_1 value: 21.37 - type: ndcg_at_10 value: 30.026000000000003 - type: ndcg_at_100 value: 35.416 - type: ndcg_at_1000 value: 38.45 - type: ndcg_at_3 value: 25.764 - type: ndcg_at_5 value: 27.742 - type: precision_at_1 value: 21.37 - type: precision_at_10 value: 5.609 - type: precision_at_100 value: 0.9860000000000001 - type: precision_at_1000 value: 0.14300000000000002 - type: precision_at_3 value: 12.423 - type: precision_at_5 value: 9.009 - type: recall_at_1 value: 17.403 - type: recall_at_10 value: 40.573 - type: recall_at_100 value: 64.818 - type: recall_at_1000 value: 86.53699999999999 - type: recall_at_3 value: 28.493000000000002 - type: recall_at_5 value: 33.660000000000004 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 28.639 - type: map_at_10 value: 38.951 - type: map_at_100 value: 40.238 - type: map_at_1000 value: 40.327 - type: map_at_3 value: 35.842 - type: map_at_5 value: 37.617 - type: mrr_at_1 value: 33.769 - type: mrr_at_10 value: 43.088 - type: mrr_at_100 value: 44.03 - type: mrr_at_1000 value: 44.072 - type: mrr_at_3 value: 40.656 - type: mrr_at_5 value: 42.138999999999996 - type: ndcg_at_1 value: 33.769 - type: ndcg_at_10 value: 44.676 - type: ndcg_at_100 value: 50.416000000000004 - type: ndcg_at_1000 value: 52.227999999999994 - type: ndcg_at_3 value: 39.494 - type: ndcg_at_5 value: 42.013 - type: precision_at_1 value: 33.769 - type: precision_at_10 value: 7.668 - type: precision_at_100 value: 1.18 - type: precision_at_1000 value: 0.145 - type: precision_at_3 value: 18.221 - type: precision_at_5 value: 12.966 - type: recall_at_1 value: 28.639 - type: recall_at_10 value: 57.687999999999995 - type: recall_at_100 value: 82.541 - type: recall_at_1000 value: 94.896 - type: recall_at_3 value: 43.651 - type: recall_at_5 value: 49.925999999999995 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 29.57 - type: map_at_10 value: 40.004 - type: map_at_100 value: 41.75 - type: map_at_1000 value: 41.97 - type: map_at_3 value: 36.788 - type: map_at_5 value: 38.671 - type: mrr_at_1 value: 35.375 - type: mrr_at_10 value: 45.121 - type: mrr_at_100 value: 45.994 - type: mrr_at_1000 value: 46.04 - type: mrr_at_3 value: 42.227 - type: mrr_at_5 value: 43.995 - type: ndcg_at_1 value: 35.375 - type: ndcg_at_10 value: 46.392 - type: ndcg_at_100 value: 52.196 - type: ndcg_at_1000 value: 54.274 - type: ndcg_at_3 value: 41.163 - type: ndcg_at_5 value: 43.813 - type: precision_at_1 value: 35.375 - type: precision_at_10 value: 8.676 - type: precision_at_100 value: 1.678 - type: precision_at_1000 value: 0.253 - type: precision_at_3 value: 19.104 - type: precision_at_5 value: 13.913 - type: recall_at_1 value: 29.57 - type: recall_at_10 value: 58.779 - type: recall_at_100 value: 83.337 - type: recall_at_1000 value: 95.979 - type: recall_at_3 value: 44.005 - type: recall_at_5 value: 50.975 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 20.832 - type: map_at_10 value: 29.733999999999998 - type: map_at_100 value: 30.727 - type: map_at_1000 value: 30.843999999999998 - type: map_at_3 value: 26.834999999999997 - type: map_at_5 value: 28.555999999999997 - type: mrr_at_1 value: 22.921 - type: mrr_at_10 value: 31.791999999999998 - type: mrr_at_100 value: 32.666000000000004 - type: mrr_at_1000 value: 32.751999999999995 - type: mrr_at_3 value: 29.144 - type: mrr_at_5 value: 30.622 - type: ndcg_at_1 value: 22.921 - type: ndcg_at_10 value: 34.915 - type: ndcg_at_100 value: 39.744 - type: ndcg_at_1000 value: 42.407000000000004 - type: ndcg_at_3 value: 29.421000000000003 - type: ndcg_at_5 value: 32.211 - type: precision_at_1 value: 22.921 - type: precision_at_10 value: 5.675 - type: precision_at_100 value: 0.872 - type: precision_at_1000 value: 0.121 - type: precision_at_3 value: 12.753999999999998 - type: precision_at_5 value: 9.353 - type: recall_at_1 value: 20.832 - type: recall_at_10 value: 48.795 - type: recall_at_100 value: 70.703 - type: recall_at_1000 value: 90.187 - type: recall_at_3 value: 34.455000000000005 - type: recall_at_5 value: 40.967 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 10.334 - type: map_at_10 value: 19.009999999999998 - type: map_at_100 value: 21.129 - type: map_at_1000 value: 21.328 - type: map_at_3 value: 15.152 - type: map_at_5 value: 17.084 - type: mrr_at_1 value: 23.453 - type: mrr_at_10 value: 36.099 - type: mrr_at_100 value: 37.069 - type: mrr_at_1000 value: 37.104 - type: mrr_at_3 value: 32.096000000000004 - type: mrr_at_5 value: 34.451 - type: ndcg_at_1 value: 23.453 - type: ndcg_at_10 value: 27.739000000000004 - type: ndcg_at_100 value: 35.836 - type: ndcg_at_1000 value: 39.242 - type: ndcg_at_3 value: 21.263 - type: ndcg_at_5 value: 23.677 - type: precision_at_1 value: 23.453 - type: precision_at_10 value: 9.199 - type: precision_at_100 value: 1.791 - type: precision_at_1000 value: 0.242 - type: precision_at_3 value: 16.2 - type: precision_at_5 value: 13.147 - type: recall_at_1 value: 10.334 - type: recall_at_10 value: 35.177 - type: recall_at_100 value: 63.009 - type: recall_at_1000 value: 81.938 - type: recall_at_3 value: 19.914 - type: recall_at_5 value: 26.077 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 8.212 - type: map_at_10 value: 17.386 - type: map_at_100 value: 24.234 - type: map_at_1000 value: 25.724999999999998 - type: map_at_3 value: 12.727 - type: map_at_5 value: 14.785 - type: mrr_at_1 value: 59.25 - type: mrr_at_10 value: 68.687 - type: mrr_at_100 value: 69.133 - type: mrr_at_1000 value: 69.14099999999999 - type: mrr_at_3 value: 66.917 - type: mrr_at_5 value: 67.742 - type: ndcg_at_1 value: 48.625 - type: ndcg_at_10 value: 36.675999999999995 - type: ndcg_at_100 value: 41.543 - type: ndcg_at_1000 value: 49.241 - type: ndcg_at_3 value: 41.373 - type: ndcg_at_5 value: 38.707 - type: precision_at_1 value: 59.25 - type: precision_at_10 value: 28.525 - type: precision_at_100 value: 9.027000000000001 - type: precision_at_1000 value: 1.8339999999999999 - type: precision_at_3 value: 44.833 - type: precision_at_5 value: 37.35 - type: recall_at_1 value: 8.212 - type: recall_at_10 value: 23.188 - type: recall_at_100 value: 48.613 - type: recall_at_1000 value: 73.093 - type: recall_at_3 value: 14.419 - type: recall_at_5 value: 17.798 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 52.725 - type: f1 value: 46.50743309855908 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 55.086 - type: map_at_10 value: 66.914 - type: map_at_100 value: 67.321 - type: map_at_1000 value: 67.341 - type: map_at_3 value: 64.75800000000001 - type: map_at_5 value: 66.189 - type: mrr_at_1 value: 59.28600000000001 - type: mrr_at_10 value: 71.005 - type: mrr_at_100 value: 71.304 - type: mrr_at_1000 value: 71.313 - type: mrr_at_3 value: 69.037 - type: mrr_at_5 value: 70.35 - type: ndcg_at_1 value: 59.28600000000001 - type: ndcg_at_10 value: 72.695 - type: ndcg_at_100 value: 74.432 - type: ndcg_at_1000 value: 74.868 - type: ndcg_at_3 value: 68.72200000000001 - type: ndcg_at_5 value: 71.081 - type: precision_at_1 value: 59.28600000000001 - type: precision_at_10 value: 9.499 - type: precision_at_100 value: 1.052 - type: precision_at_1000 value: 0.11100000000000002 - type: precision_at_3 value: 27.503 - type: precision_at_5 value: 17.854999999999997 - type: recall_at_1 value: 55.086 - type: recall_at_10 value: 86.453 - type: recall_at_100 value: 94.028 - type: recall_at_1000 value: 97.052 - type: recall_at_3 value: 75.821 - type: recall_at_5 value: 81.6 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 22.262999999999998 - type: map_at_10 value: 37.488 - type: map_at_100 value: 39.498 - type: map_at_1000 value: 39.687 - type: map_at_3 value: 32.529 - type: map_at_5 value: 35.455 - type: mrr_at_1 value: 44.907000000000004 - type: mrr_at_10 value: 53.239000000000004 - type: mrr_at_100 value: 54.086 - type: mrr_at_1000 value: 54.122 - type: mrr_at_3 value: 51.235 - type: mrr_at_5 value: 52.415 - type: ndcg_at_1 value: 44.907000000000004 - type: ndcg_at_10 value: 45.446 - type: ndcg_at_100 value: 52.429 - type: ndcg_at_1000 value: 55.169000000000004 - type: ndcg_at_3 value: 41.882000000000005 - type: ndcg_at_5 value: 43.178 - type: precision_at_1 value: 44.907000000000004 - type: precision_at_10 value: 12.931999999999999 - type: precision_at_100 value: 2.025 - type: precision_at_1000 value: 0.248 - type: precision_at_3 value: 28.652 - type: precision_at_5 value: 21.204 - type: recall_at_1 value: 22.262999999999998 - type: recall_at_10 value: 52.447 - type: recall_at_100 value: 78.045 - type: recall_at_1000 value: 94.419 - type: recall_at_3 value: 38.064 - type: recall_at_5 value: 44.769 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 32.519 - type: map_at_10 value: 45.831 - type: map_at_100 value: 46.815 - type: map_at_1000 value: 46.899 - type: map_at_3 value: 42.836 - type: map_at_5 value: 44.65 - type: mrr_at_1 value: 65.037 - type: mrr_at_10 value: 72.16 - type: mrr_at_100 value: 72.51100000000001 - type: mrr_at_1000 value: 72.53 - type: mrr_at_3 value: 70.682 - type: mrr_at_5 value: 71.54599999999999 - type: ndcg_at_1 value: 65.037 - type: ndcg_at_10 value: 55.17999999999999 - type: ndcg_at_100 value: 58.888 - type: ndcg_at_1000 value: 60.648 - type: ndcg_at_3 value: 50.501 - type: ndcg_at_5 value: 52.977 - type: precision_at_1 value: 65.037 - type: precision_at_10 value: 11.530999999999999 - type: precision_at_100 value: 1.4460000000000002 - type: precision_at_1000 value: 0.168 - type: precision_at_3 value: 31.483 - type: precision_at_5 value: 20.845 - type: recall_at_1 value: 32.519 - type: recall_at_10 value: 57.657000000000004 - type: recall_at_100 value: 72.30199999999999 - type: recall_at_1000 value: 84.024 - type: recall_at_3 value: 47.225 - type: recall_at_5 value: 52.113 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 88.3168 - type: ap value: 83.80165516037135 - type: f1 value: 88.29942471066407 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 20.724999999999998 - type: map_at_10 value: 32.736 - type: map_at_100 value: 33.938 - type: map_at_1000 value: 33.991 - type: map_at_3 value: 28.788000000000004 - type: map_at_5 value: 31.016 - type: mrr_at_1 value: 21.361 - type: mrr_at_10 value: 33.323 - type: mrr_at_100 value: 34.471000000000004 - type: mrr_at_1000 value: 34.518 - type: mrr_at_3 value: 29.453000000000003 - type: mrr_at_5 value: 31.629 - type: ndcg_at_1 value: 21.361 - type: ndcg_at_10 value: 39.649 - type: ndcg_at_100 value: 45.481 - type: ndcg_at_1000 value: 46.775 - type: ndcg_at_3 value: 31.594 - type: ndcg_at_5 value: 35.543 - type: precision_at_1 value: 21.361 - type: precision_at_10 value: 6.3740000000000006 - type: precision_at_100 value: 0.931 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 13.514999999999999 - type: precision_at_5 value: 10.100000000000001 - type: recall_at_1 value: 20.724999999999998 - type: recall_at_10 value: 61.034 - type: recall_at_100 value: 88.062 - type: recall_at_1000 value: 97.86399999999999 - type: recall_at_3 value: 39.072 - type: recall_at_5 value: 48.53 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 93.8919288645691 - type: f1 value: 93.57059586398059 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 67.97993616051072 - type: f1 value: 48.244319183606535 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 68.90047074646941 - type: f1 value: 66.48999056063725 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 73.34566240753195 - type: f1 value: 73.54164154290658 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 34.21866934757011 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 32.000936217235534 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 31.68189362520352 - type: mrr value: 32.69603637784303 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 6.078 - type: map_at_10 value: 12.671 - type: map_at_100 value: 16.291 - type: map_at_1000 value: 17.855999999999998 - type: map_at_3 value: 9.610000000000001 - type: map_at_5 value: 11.152 - type: mrr_at_1 value: 43.963 - type: mrr_at_10 value: 53.173 - type: mrr_at_100 value: 53.718999999999994 - type: mrr_at_1000 value: 53.756 - type: mrr_at_3 value: 50.980000000000004 - type: mrr_at_5 value: 52.42 - type: ndcg_at_1 value: 42.415000000000006 - type: ndcg_at_10 value: 34.086 - type: ndcg_at_100 value: 32.545 - type: ndcg_at_1000 value: 41.144999999999996 - type: ndcg_at_3 value: 39.434999999999995 - type: ndcg_at_5 value: 37.888 - type: precision_at_1 value: 43.653 - type: precision_at_10 value: 25.014999999999997 - type: precision_at_100 value: 8.594 - type: precision_at_1000 value: 2.169 - type: precision_at_3 value: 37.049 - type: precision_at_5 value: 33.065 - type: recall_at_1 value: 6.078 - type: recall_at_10 value: 16.17 - type: recall_at_100 value: 34.512 - type: recall_at_1000 value: 65.447 - type: recall_at_3 value: 10.706 - type: recall_at_5 value: 13.158 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 27.378000000000004 - type: map_at_10 value: 42.178 - type: map_at_100 value: 43.32 - type: map_at_1000 value: 43.358000000000004 - type: map_at_3 value: 37.474000000000004 - type: map_at_5 value: 40.333000000000006 - type: mrr_at_1 value: 30.823 - type: mrr_at_10 value: 44.626 - type: mrr_at_100 value: 45.494 - type: mrr_at_1000 value: 45.519 - type: mrr_at_3 value: 40.585 - type: mrr_at_5 value: 43.146 - type: ndcg_at_1 value: 30.794 - type: ndcg_at_10 value: 50.099000000000004 - type: ndcg_at_100 value: 54.900999999999996 - type: ndcg_at_1000 value: 55.69499999999999 - type: ndcg_at_3 value: 41.238 - type: ndcg_at_5 value: 46.081 - type: precision_at_1 value: 30.794 - type: precision_at_10 value: 8.549 - type: precision_at_100 value: 1.124 - type: precision_at_1000 value: 0.12 - type: precision_at_3 value: 18.926000000000002 - type: precision_at_5 value: 14.16 - type: recall_at_1 value: 27.378000000000004 - type: recall_at_10 value: 71.842 - type: recall_at_100 value: 92.565 - type: recall_at_1000 value: 98.402 - type: recall_at_3 value: 49.053999999999995 - type: recall_at_5 value: 60.207 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 70.557 - type: map_at_10 value: 84.729 - type: map_at_100 value: 85.369 - type: map_at_1000 value: 85.382 - type: map_at_3 value: 81.72 - type: map_at_5 value: 83.613 - type: mrr_at_1 value: 81.3 - type: mrr_at_10 value: 87.488 - type: mrr_at_100 value: 87.588 - type: mrr_at_1000 value: 87.589 - type: mrr_at_3 value: 86.53 - type: mrr_at_5 value: 87.18599999999999 - type: ndcg_at_1 value: 81.28999999999999 - type: ndcg_at_10 value: 88.442 - type: ndcg_at_100 value: 89.637 - type: ndcg_at_1000 value: 89.70700000000001 - type: ndcg_at_3 value: 85.55199999999999 - type: ndcg_at_5 value: 87.154 - type: precision_at_1 value: 81.28999999999999 - type: precision_at_10 value: 13.489999999999998 - type: precision_at_100 value: 1.54 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.553 - type: precision_at_5 value: 24.708 - type: recall_at_1 value: 70.557 - type: recall_at_10 value: 95.645 - type: recall_at_100 value: 99.693 - type: recall_at_1000 value: 99.995 - type: recall_at_3 value: 87.359 - type: recall_at_5 value: 91.89699999999999 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 63.65060114776209 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 64.63271250680617 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 4.263 - type: map_at_10 value: 10.801 - type: map_at_100 value: 12.888 - type: map_at_1000 value: 13.224 - type: map_at_3 value: 7.362 - type: map_at_5 value: 9.149000000000001 - type: mrr_at_1 value: 21 - type: mrr_at_10 value: 31.416 - type: mrr_at_100 value: 32.513 - type: mrr_at_1000 value: 32.58 - type: mrr_at_3 value: 28.116999999999997 - type: mrr_at_5 value: 29.976999999999997 - type: ndcg_at_1 value: 21 - type: ndcg_at_10 value: 18.551000000000002 - type: ndcg_at_100 value: 26.657999999999998 - type: ndcg_at_1000 value: 32.485 - type: ndcg_at_3 value: 16.834 - type: ndcg_at_5 value: 15.204999999999998 - type: precision_at_1 value: 21 - type: precision_at_10 value: 9.84 - type: precision_at_100 value: 2.16 - type: precision_at_1000 value: 0.35500000000000004 - type: precision_at_3 value: 15.667 - type: precision_at_5 value: 13.62 - type: recall_at_1 value: 4.263 - type: recall_at_10 value: 19.922 - type: recall_at_100 value: 43.808 - type: recall_at_1000 value: 72.14500000000001 - type: recall_at_3 value: 9.493 - type: recall_at_5 value: 13.767999999999999 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_spearman value: 81.27446313317233 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_spearman value: 76.27963301217527 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_spearman value: 88.18495048450949 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_spearman value: 81.91982338692046 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_spearman value: 89.00896818385291 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_spearman value: 85.48814644586132 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_spearman value: 90.30116926966582 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_spearman value: 67.74132963032342 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_spearman value: 86.87741355780479 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 82.0019012295875 - type: mrr value: 94.70267024188593 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 50.05 - type: map_at_10 value: 59.36 - type: map_at_100 value: 59.967999999999996 - type: map_at_1000 value: 60.023 - type: map_at_3 value: 56.515 - type: map_at_5 value: 58.272999999999996 - type: mrr_at_1 value: 53 - type: mrr_at_10 value: 61.102000000000004 - type: mrr_at_100 value: 61.476 - type: mrr_at_1000 value: 61.523 - type: mrr_at_3 value: 58.778 - type: mrr_at_5 value: 60.128 - type: ndcg_at_1 value: 53 - type: ndcg_at_10 value: 64.43100000000001 - type: ndcg_at_100 value: 66.73599999999999 - type: ndcg_at_1000 value: 68.027 - type: ndcg_at_3 value: 59.279 - type: ndcg_at_5 value: 61.888 - type: precision_at_1 value: 53 - type: precision_at_10 value: 8.767 - type: precision_at_100 value: 1.01 - type: precision_at_1000 value: 0.11100000000000002 - type: precision_at_3 value: 23.444000000000003 - type: precision_at_5 value: 15.667 - type: recall_at_1 value: 50.05 - type: recall_at_10 value: 78.511 - type: recall_at_100 value: 88.5 - type: recall_at_1000 value: 98.333 - type: recall_at_3 value: 64.117 - type: recall_at_5 value: 70.867 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.72178217821782 - type: cos_sim_ap value: 93.0728601593541 - type: cos_sim_f1 value: 85.6727976766699 - type: cos_sim_precision value: 83.02063789868667 - type: cos_sim_recall value: 88.5 - type: dot_accuracy value: 99.72178217821782 - type: dot_ap value: 93.07287396168348 - type: dot_f1 value: 85.6727976766699 - type: dot_precision value: 83.02063789868667 - type: dot_recall value: 88.5 - type: euclidean_accuracy value: 99.72178217821782 - type: euclidean_ap value: 93.07285657982895 - type: euclidean_f1 value: 85.6727976766699 - type: euclidean_precision value: 83.02063789868667 - type: euclidean_recall value: 88.5 - type: manhattan_accuracy value: 99.72475247524753 - type: manhattan_ap value: 93.02792973059809 - type: manhattan_f1 value: 85.7727737973388 - type: manhattan_precision value: 87.84067085953879 - type: manhattan_recall value: 83.8 - type: max_accuracy value: 99.72475247524753 - type: max_ap value: 93.07287396168348 - type: max_f1 value: 85.7727737973388 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 68.77583615550819 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 36.151636938606956 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 52.16607939471187 - type: mrr value: 52.95172046091163 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 31.314646669495666 - type: cos_sim_spearman value: 31.83562491439455 - type: dot_pearson value: 31.314590842874157 - type: dot_spearman value: 31.83363065810437 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.198 - type: map_at_10 value: 1.3010000000000002 - type: map_at_100 value: 7.2139999999999995 - type: map_at_1000 value: 20.179 - type: map_at_3 value: 0.528 - type: map_at_5 value: 0.8019999999999999 - type: mrr_at_1 value: 72 - type: mrr_at_10 value: 83.39999999999999 - type: mrr_at_100 value: 83.39999999999999 - type: mrr_at_1000 value: 83.39999999999999 - type: mrr_at_3 value: 81.667 - type: mrr_at_5 value: 83.06700000000001 - type: ndcg_at_1 value: 66 - type: ndcg_at_10 value: 58.059000000000005 - type: ndcg_at_100 value: 44.316 - type: ndcg_at_1000 value: 43.147000000000006 - type: ndcg_at_3 value: 63.815999999999995 - type: ndcg_at_5 value: 63.005 - type: precision_at_1 value: 72 - type: precision_at_10 value: 61.4 - type: precision_at_100 value: 45.62 - type: precision_at_1000 value: 19.866 - type: precision_at_3 value: 70 - type: precision_at_5 value: 68.8 - type: recall_at_1 value: 0.198 - type: recall_at_10 value: 1.517 - type: recall_at_100 value: 10.587 - type: recall_at_1000 value: 41.233 - type: recall_at_3 value: 0.573 - type: recall_at_5 value: 0.907 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 1.894 - type: map_at_10 value: 8.488999999999999 - type: map_at_100 value: 14.445 - type: map_at_1000 value: 16.078 - type: map_at_3 value: 4.589 - type: map_at_5 value: 6.019 - type: mrr_at_1 value: 22.448999999999998 - type: mrr_at_10 value: 39.82 - type: mrr_at_100 value: 40.752 - type: mrr_at_1000 value: 40.771 - type: mrr_at_3 value: 34.354 - type: mrr_at_5 value: 37.721 - type: ndcg_at_1 value: 19.387999999999998 - type: ndcg_at_10 value: 21.563 - type: ndcg_at_100 value: 33.857 - type: ndcg_at_1000 value: 46.199 - type: ndcg_at_3 value: 22.296 - type: ndcg_at_5 value: 21.770999999999997 - type: precision_at_1 value: 22.448999999999998 - type: precision_at_10 value: 19.796 - type: precision_at_100 value: 7.142999999999999 - type: precision_at_1000 value: 1.541 - type: precision_at_3 value: 24.490000000000002 - type: precision_at_5 value: 22.448999999999998 - type: recall_at_1 value: 1.894 - type: recall_at_10 value: 14.931 - type: recall_at_100 value: 45.524 - type: recall_at_1000 value: 83.243 - type: recall_at_3 value: 5.712 - type: recall_at_5 value: 8.386000000000001 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 71.049 - type: ap value: 13.85116971310922 - type: f1 value: 54.37504302487686 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 64.1312959818902 - type: f1 value: 64.11413877009383 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 54.13103431861502 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 87.327889372355 - type: cos_sim_ap value: 77.42059895975699 - type: cos_sim_f1 value: 71.02706903250873 - type: cos_sim_precision value: 69.75324344950394 - type: cos_sim_recall value: 72.34828496042216 - type: dot_accuracy value: 87.327889372355 - type: dot_ap value: 77.4209479346677 - type: dot_f1 value: 71.02706903250873 - type: dot_precision value: 69.75324344950394 - type: dot_recall value: 72.34828496042216 - type: euclidean_accuracy value: 87.327889372355 - type: euclidean_ap value: 77.42096495861037 - type: euclidean_f1 value: 71.02706903250873 - type: euclidean_precision value: 69.75324344950394 - type: euclidean_recall value: 72.34828496042216 - type: manhattan_accuracy value: 87.31000774870358 - type: manhattan_ap value: 77.38930750711619 - type: manhattan_f1 value: 71.07935314027831 - type: manhattan_precision value: 67.70957726295677 - type: manhattan_recall value: 74.80211081794195 - type: max_accuracy value: 87.327889372355 - type: max_ap value: 77.42096495861037 - type: max_f1 value: 71.07935314027831 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 89.58939729110878 - type: cos_sim_ap value: 87.17594155025475 - type: cos_sim_f1 value: 79.21146953405018 - type: cos_sim_precision value: 76.8918527109307 - type: cos_sim_recall value: 81.67539267015707 - type: dot_accuracy value: 89.58939729110878 - type: dot_ap value: 87.17593963273593 - type: dot_f1 value: 79.21146953405018 - type: dot_precision value: 76.8918527109307 - type: dot_recall value: 81.67539267015707 - type: euclidean_accuracy value: 89.58939729110878 - type: euclidean_ap value: 87.17592466925834 - type: euclidean_f1 value: 79.21146953405018 - type: euclidean_precision value: 76.8918527109307 - type: euclidean_recall value: 81.67539267015707 - type: manhattan_accuracy value: 89.62626615438352 - type: manhattan_ap value: 87.16589873161546 - type: manhattan_f1 value: 79.25143598295348 - type: manhattan_precision value: 76.39494177323712 - type: manhattan_recall value: 82.32984293193716 - type: max_accuracy value: 89.62626615438352 - type: max_ap value: 87.17594155025475 - type: max_f1 value: 79.25143598295348 duplicated_from: hkunlp/instructor-large --- # hkunlp/instructor-large We introduce **Instructor**👨‍🏫, an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g., classification, retrieval, clustering, text evaluation, etc.) and domains (e.g., science, finance, etc.) ***by simply providing the task instruction, without any finetuning***. Instructor👨‍ achieves sota on 70 diverse embedding tasks ([MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard))! The model is easy to use with **our customized** `sentence-transformer` library. For more details, check out [our paper](https://arxiv.org/abs/2212.09741) and [project page](https://instructor-embedding.github.io/)! **************************** **Updates** **************************** * 12/28: We released a new [checkpoint](https://huggingface.co/hkunlp/instructor-large) trained with hard negatives, which gives better performance. * 12/21: We released our [paper](https://arxiv.org/abs/2212.09741), [code](https://github.com/HKUNLP/instructor-embedding), [checkpoint](https://huggingface.co/hkunlp/instructor-large) and [project page](https://instructor-embedding.github.io/)! Check them out! ## Quick start <hr /> ## Installation ```bash pip install InstructorEmbedding ``` ## Compute your customized embeddings Then you can use the model like this to calculate domain-specific and task-aware embeddings: ```python from InstructorEmbedding import INSTRUCTOR model = INSTRUCTOR('hkunlp/instructor-large') sentence = "3D ActionSLAM: wearable person tracking in multi-floor environments" instruction = "Represent the Science title:" embeddings = model.encode([[instruction,sentence]]) print(embeddings) ``` ## Use cases <hr /> ## Calculate embeddings for your customized texts If you want to calculate customized embeddings for specific sentences, you may follow the unified template to write instructions: &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Represent the `domain` `text_type` for `task_objective`: * `domain` is optional, and it specifies the domain of the text, e.g., science, finance, medicine, etc. * `text_type` is required, and it specifies the encoding unit, e.g., sentence, document, paragraph, etc. * `task_objective` is optional, and it specifies the objective of embedding, e.g., retrieve a document, classify the sentence, etc. ## Calculate Sentence similarities You can further use the model to compute similarities between two groups of sentences, with **customized embeddings**. ```python from sklearn.metrics.pairwise import cosine_similarity sentences_a = [['Represent the Science sentence: ','Parton energy loss in QCD matter'], ['Represent the Financial statement: ','The Federal Reserve on Wednesday raised its benchmark interest rate.']] sentences_b = [['Represent the Science sentence: ','The Chiral Phase Transition in Dissipative Dynamics'], ['Represent the Financial statement: ','The funds rose less than 0.5 per cent on Friday']] embeddings_a = model.encode(sentences_a) embeddings_b = model.encode(sentences_b) similarities = cosine_similarity(embeddings_a,embeddings_b) print(similarities) ``` ## Information Retrieval You can also use **customized embeddings** for information retrieval. ```python import numpy as np from sklearn.metrics.pairwise import cosine_similarity query = [['Represent the Wikipedia question for retrieving supporting documents: ','where is the food stored in a yam plant']] corpus = [['Represent the Wikipedia document for retrieval: ','Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that the term "mixed economies" more precisely describes most contemporary economies, due to their containing both private-owned and state-owned enterprises. In capitalism, prices determine the demand-supply scale. For example, higher demand for certain goods and services lead to higher prices and lower demand for certain goods lead to lower prices.'], ['Represent the Wikipedia document for retrieval: ',"The disparate impact theory is especially controversial under the Fair Housing Act because the Act regulates many activities relating to housing, insurance, and mortgage loans—and some scholars have argued that the theory's use under the Fair Housing Act, combined with extensions of the Community Reinvestment Act, contributed to rise of sub-prime lending and the crash of the U.S. housing market and ensuing global economic recession"], ['Represent the Wikipedia document for retrieval: ','Disparate impact in United States labor law refers to practices in employment, housing, and other areas that adversely affect one group of people of a protected characteristic more than another, even though rules applied by employers or landlords are formally neutral. Although the protected classes vary by statute, most federal civil rights laws protect based on race, color, religion, national origin, and sex as protected traits, and some laws include disability status and other traits as well.']] query_embeddings = model.encode(query) corpus_embeddings = model.encode(corpus) similarities = cosine_similarity(query_embeddings,corpus_embeddings) retrieved_doc_id = np.argmax(similarities) print(retrieved_doc_id) ``` ## Clustering Use **customized embeddings** for clustering texts in groups. ```python import sklearn.cluster sentences = [['Represent the Medicine sentence for clustering: ','Dynamical Scalar Degree of Freedom in Horava-Lifshitz Gravity'], ['Represent the Medicine sentence for clustering: ','Comparison of Atmospheric Neutrino Flux Calculations at Low Energies'], ['Represent the Medicine sentence for clustering: ','Fermion Bags in the Massive Gross-Neveu Model'], ['Represent the Medicine sentence for clustering: ',"QCD corrections to Associated t-tbar-H production at the Tevatron"], ['Represent the Medicine sentence for clustering: ','A New Analysis of the R Measurements: Resonance Parameters of the Higher, Vector States of Charmonium']] embeddings = model.encode(sentences) clustering_model = sklearn.cluster.MiniBatchKMeans(n_clusters=2) clustering_model.fit(embeddings) cluster_assignment = clustering_model.labels_ print(cluster_assignment) ```
chh6/v0TaxiAttempt
chh6
2023-07-12T19:47:12Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-12T19:47:10Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: v0TaxiAttempt results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="chh6/v0TaxiAttempt", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
veluchs/dqn-SpaceInvadersNoFrameskip-v4-4
veluchs
2023-07-12T19:41:22Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-12T19:40:57Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 264.50 +/- 87.36 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga veluchs -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga veluchs -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga veluchs ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 10000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
ImanAndrea/BART-eng-to-ro
ImanAndrea
2023-07-12T19:33:27Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:wmt16-en-ro-pre-processed", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-12T06:56:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16-en-ro-pre-processed model-index: - name: BART-eng-to-ro results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BART-eng-to-ro This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the wmt16-en-ro-pre-processed dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.10.1 - Tokenizers 0.13.3
vuiseng9/baseline-ft-mrpc-IRoberta-b-8bit
vuiseng9
2023-07-12T19:21:04Z
6
0
transformers
[ "transformers", "pytorch", "ibert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-12T18:39:16Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: baseline-ft-mrpc-IRoberta-b-8bit results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8970588235294118 - name: F1 type: f1 value: 0.9257950530035336 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # baseline-ft-mrpc-IRoberta-b-8bit This model is a fine-tuned version of [vuiseng9/baseline-ft-mrpc-IRoberta-b-unquantized](https://huggingface.co/vuiseng9/baseline-ft-mrpc-IRoberta-b-unquantized) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.3871 - Accuracy: 0.8971 - F1: 0.9258 - Combined Score: 0.9114 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.0021 | 1.0 | 230 | 0.4017 | 0.8848 | 0.9147 | 0.8998 | | 0.0026 | 2.0 | 460 | 0.4105 | 0.8873 | 0.9173 | 0.9023 | | 0.0026 | 3.0 | 690 | 0.3707 | 0.8946 | 0.9236 | 0.9091 | | 0.0037 | 4.0 | 920 | 0.3893 | 0.8946 | 0.9228 | 0.9087 | | 1.324 | 5.0 | 1150 | 0.3871 | 0.8897 | 0.9204 | 0.9050 | | 0.0227 | 6.0 | 1380 | 0.3951 | 0.8897 | 0.9201 | 0.9049 | | 0.0081 | 7.0 | 1610 | 0.3818 | 0.8824 | 0.9155 | 0.8989 | | 0.0054 | 8.0 | 1840 | 0.3902 | 0.8873 | 0.9181 | 0.9027 | | 0.0383 | 9.0 | 2070 | 0.3659 | 0.8922 | 0.9225 | 0.9073 | | 0.3861 | 10.0 | 2300 | 0.4260 | 0.8652 | 0.9030 | 0.8841 | | 0.0028 | 11.0 | 2530 | 0.3619 | 0.8946 | 0.9234 | 0.9090 | | 0.0957 | 12.0 | 2760 | 0.3871 | 0.8971 | 0.9258 | 0.9114 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
4bit/WizardLM-13B-V1.1-GPTQ
4bit
2023-07-12T19:06:41Z
8
3
transformers
[ "transformers", "llama", "text-generation", "arxiv:2304.12244", "license:other", "autotrain_compatible", "region:us" ]
text-generation
2023-07-12T19:03:12Z
--- inference: false license: other --- <!-- header start --> <div style="width: 100%;"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <!-- header end --> # WizardLM's WizardLM 13B V1.1 GPTQ These files are GPTQ model files for [WizardLM's WizardLM 13B V1.1](https://huggingface.co/WizardLM/WizardLM-13B-V1.1). Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them. These models were quantised using hardware kindly provided by [Latitude.sh](https://www.latitude.sh/accelerate). ## Repositories available * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/WizardLM-13B-V1.1-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/WizardLM-13B-V1.1-GGML) * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/WizardLM/WizardLM-13B-V1.1) ## Prompt template: Vicuna ``` A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT: ``` ## Provided files Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements. Each separate quant is in a different branch. See below for instructions on fetching from different branches. | Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description | | ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- | | main | 4 | 128 | False | 7.45 GB | True | GPTQ-for-LLaMa | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. | | gptq-4bit-32g-actorder_True | 4 | 32 | True | 8.00 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. | | gptq-4bit-64g-actorder_True | 4 | 64 | True | 7.51 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 64g uses less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. | | gptq-4bit-128g-actorder_True | 4 | 128 | True | 7.26 GB | True | AutoGPTQ | 4-bit, with Act Order androup size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. | | gptq-8bit--1g-actorder_True | 8 | None | True | 13.36 GB | False | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. | | gptq-8bit-128g-actorder_False | 8 | 128 | False | 13.65 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. | ## How to download from branches - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/WizardLM-13B-V1.1-GPTQ:gptq-4bit-32g-actorder_True` - With Git, you can clone a branch with: ``` git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/WizardLM-13B-V1.1-GPTQ` ``` - In Python Transformers code, the branch is the `revision` parameter; see below. ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui). Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/WizardLM-13B-V1.1-GPTQ`. - To download from a specific branch, enter for example `TheBloke/WizardLM-13B-V1.1-GPTQ:gptq-4bit-32g-actorder_True` - see Provided Files above for the list of branches for each option. 3. Click **Download**. 4. The model will start downloading. Once it's finished it will say "Done" 5. In the top left, click the refresh icon next to **Model**. 6. In the **Model** dropdown, choose the model you just downloaded: `WizardLM-13B-V1.1-GPTQ` 7. The model will automatically load, and is now ready for use! 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`. 9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started! ## How to use this GPTQ model from Python code First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed: `GITHUB_ACTIONS=true pip install auto-gptq` Then try the following example code: ```python from transformers import AutoTokenizer, pipeline, logging from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig model_name_or_path = "TheBloke/WizardLM-13B-V1.1-GPTQ" model_basename = "wizardlm-13b-v1.1-GPTQ-4bit-128g.no-act.order" use_triton = False tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) model = AutoGPTQForCausalLM.from_quantized(model_name_or_path, model_basename=model_basename use_safetensors=True, trust_remote_code=True, device="cuda:0", use_triton=use_triton, quantize_config=None) """ To download from a specific branch, use the revision parameter, as in this example: model = AutoGPTQForCausalLM.from_quantized(model_name_or_path, revision="gptq-4bit-32g-actorder_True", model_basename=model_basename, use_safetensors=True, trust_remote_code=True, device="cuda:0", quantize_config=None) """ prompt = "Tell me about AI" prompt_template=f'''A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT: ''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline # Prevent printing spurious transformers error when using pipeline with AutoGPTQ logging.set_verbosity(logging.CRITICAL) print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.95, repetition_penalty=1.15 ) print(pipe(prompt_template)[0]['generated_text']) ``` ## Compatibility The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork. ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility. <!-- footer start --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Luke from CarbonQuill, Aemon Algiz. **Patreon special mentions**: Space Cruiser, Nikolai Manek, Sam, Chris McCloskey, Rishabh Srivastava, Kalila, Spiking Neurons AB, Khalefa Al-Ahmad, WelcomeToTheClub, Chadd, Lone Striker, Viktor Bowallius, Edmond Seymore, Ai Maven, Chris Smitley, Dave, Alexandros Triantafyllidis, Luke @flexchar, Elle, ya boyyy, Talal Aujan, Alex , Jonathan Leane, Deep Realms, Randy H, subjectnull, Preetika Verma, Joseph William Delisle, Michael Levine, chris gileta, K, Oscar Rangel, LangChain4j, Trenton Dambrowitz, Eugene Pentland, Johann-Peter Hartmann, Femi Adebogun, Illia Dulskyi, senxiiz, Daniel P. Andersen, Sean Connelly, Artur Olbinski, RoA, Mano Prime, Derek Yates, Raven Klaugh, David Flickinger, Willem Michiel, Pieter, Willian Hasse, vamX, Luke Pendergrass, webtim, Ghost , Rainer Wilmers, Nathan LeClaire, Will Dee, Cory Kujawski, John Detwiler, Fred von Graf, biorpg, Iucharbius , Imad Khwaja, Pierre Kircher, terasurfer , Asp the Wyvern, John Villwock, theTransient, zynix , Gabriel Tamborski, Fen Risland, Gabriel Puliatti, Matthew Berman, Pyrater, SuperWojo, Stephen Murray, Karl Bernard, Ajan Kanaga, Greatston Gnanesh, Junyu Yang. Thank you to all my generous patrons and donaters! <!-- footer end --> # Original model card: WizardLM's WizardLM 13B V1.1 This is the **Full-Weight** of WizardLM-13B V1.1 model. **Repository**: https://github.com/nlpxucan/WizardLM **Twitter**: https://twitter.com/WizardLM_AI/status/1677282955490918401 - 🔥🔥🔥 [7/7/2023] We released **WizardLM V1.1** models. The **WizardLM-13B-V1.1** is here ([Demo_13B-V1.1](https://e8a06366ccd1c4d1.gradio.app), [Demo_13B-V1.1_bak-1](https://59da107262a25764.gradio.app), [Demo_13B-V1.1_bak-2](https://dfc5113f66739c80.gradio.app), [Full Model Weight](https://huggingface.co/WizardLM/WizardLM-13B-V1.1)). **WizardLM-7B-V1.1**, **WizardLM-30B-V1.1**, and **WizardLM-65B-V1.1** are coming soon. Please checkout the [Full Model Weights](https://huggingface.co/WizardLM) and [paper](https://arxiv.org/abs/2304.12244). - 🔥🔥🔥 [7/7/2023] The **WizardLM-13B-V1.1** achieves **6.74** on [MT-Bench Leaderboard](https://chat.lmsys.org/?leaderboard), **86.32%** on [AlpacaEval Leaderboard](https://tatsu-lab.github.io/alpaca_eval/), and **99.3%** on [WizardLM Eval](https://github.com/nlpxucan/WizardLM/blob/main/WizardLM/data/WizardLM_testset.jsonl). (Note: MT-Bench and AlpacaEval are all self-test, will push update and request review. All tests are completed under their official settings.)
ramymohamed/ppo-LunarLander-v2
ramymohamed
2023-07-12T19:05:33Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-12T19:05:12Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: ppo results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 264.71 +/- 24.27 name: mean_reward verified: false --- # **ppo** Agent playing **LunarLander-v2** This is a trained model of a **ppo** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
gmurillo/set-fit-goup-6-f
gmurillo
2023-07-12T19:00:20Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bart", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-07-12T18:59:06Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # gmurillo/set-fit-goup-6-f This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("gmurillo/set-fit-goup-6-f") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
gmurillo/set-fit-goup-4-f
gmurillo
2023-07-12T18:57:16Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bart", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-07-12T18:55:50Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # gmurillo/set-fit-goup-4-f This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("gmurillo/set-fit-goup-4-f") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
gmurillo/set-fit-goup-1-f
gmurillo
2023-07-12T18:51:50Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bart", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-07-12T18:50:32Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # gmurillo/set-fit-goup-1-f This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("gmurillo/set-fit-goup-1-f") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
komo-dono/dashiegames
komo-dono
2023-07-12T18:44:13Z
0
0
null
[ "region:us" ]
null
2023-07-12T18:42:38Z
--- license: openrail language: - en tags: - music dashiegames 500 epoch
tyavika/LR1E4-BS16-Distilbert-QA-Pytorch-FULL
tyavika
2023-07-12T18:39:38Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-07-07T04:59:00Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: LR1E4-BS16-Distilbert-QA-Pytorch-FULL results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # LR1E4-BS16-Distilbert-QA-Pytorch-FULL This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3888 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.4071 | 1.0 | 3290 | 1.2792 | | 1.0123 | 2.0 | 6580 | 1.2843 | | 0.6916 | 3.0 | 9870 | 1.3888 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
vuiseng9/baseline-ft-mrpc-IRoberta-b-unquantized
vuiseng9
2023-07-12T18:33:30Z
107
0
transformers
[ "transformers", "pytorch", "ibert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-12T18:24:52Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: baseline-ft-mrpc-IRoberta-b-unquantized results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8995098039215687 - name: F1 type: f1 value: 0.9266547406082289 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # baseline-ft-mrpc-IRoberta-b-unquantized This model is a fine-tuned version of [kssteven/ibert-roberta-base](https://huggingface.co/kssteven/ibert-roberta-base) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5354 - Accuracy: 0.8995 - F1: 0.9267 - Combined Score: 0.9131 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.1212 | 1.0 | 230 | 0.3401 | 0.8799 | 0.9136 | 0.8967 | | 0.0347 | 2.0 | 460 | 0.3085 | 0.8676 | 0.9059 | 0.8868 | | 0.0495 | 3.0 | 690 | 0.3552 | 0.8848 | 0.9174 | 0.9011 | | 0.0024 | 4.0 | 920 | 0.4960 | 0.8824 | 0.9158 | 0.8991 | | 0.0046 | 5.0 | 1150 | 0.5354 | 0.8995 | 0.9267 | 0.9131 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
Taki3d/CrackDetectionLowRes
Taki3d
2023-07-12T18:24:18Z
202
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-11T22:00:17Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: CrackDetectionLowRes results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9940476190476191 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CrackDetectionLowRes This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Accuracy: 0.9940 - Loss: 0.0183 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 0.0126 | 1.0 | 992 | 0.9879 | 0.0344 | | 0.0788 | 2.0 | 1904 | 0.9933 | 0.0220 | | 0.1336 | 3.0 | 2856 | 0.9933 | 0.0222 | | 0.0066 | 4.0 | 3808 | 0.9933 | 0.0190 | | 0.0528 | 5.0 | 4760 | 0.9940 | 0.0183 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cpu - Datasets 2.13.1 - Tokenizers 0.13.3
hsultanbey/autocomplete_trainer
hsultanbey
2023-07-12T18:23:42Z
143
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-12T18:22:39Z
--- license: mit tags: - generated_from_trainer model-index: - name: autocomplete_trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # autocomplete_trainer This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 2 ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
wenbowen/BundleSDF
wenbowen
2023-07-12T18:21:31Z
0
0
null
[ "arxiv:2303.14158", "region:us" ]
null
2023-07-12T18:19:41Z
Paper https://arxiv.org/abs/2303.14158 Project page https://bundlesdf.github.io/
asrimanth/person-thumbs-up-lora
asrimanth
2023-07-12T18:19:11Z
2
3
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-12T18:18:41Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - asrimanth/person-thumbs-up-lora These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the Custom dataset dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
Danish-summarisation/DanSumT5-pilot
Danish-summarisation
2023-07-12T18:12:28Z
122
2
transformers
[ "transformers", "pytorch", "safetensors", "mt5", "text2text-generation", "summarization", "da", "arxiv:1804.11283", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-07-05T10:06:53Z
--- language: - da tags: - summarization widget: - text: "De strejkende SAS-piloter melder sig nu klar til gøre en undtagelse fra strejken for at hente strandede chartergæster hjem fra flere ferieområder. Undtagelsen skal gælde nogle uger frem, men piloterne vil under ingen omstændigheder have nye gæster med sig ned til de samme destinationer. Det skriver SAS Pilot Group i en pressemeddelelse. - Vi forstår, at det er uundgåeligt, at vores passagerer bliver ramt af strejken. Men vi piloter er altid fokuseret på at opføre os ansvarligt med passagersikkerheden som højeste prioritet, siger Martin Lindgren, der er formand for SAS Pilot Group i Norden. Men for at hjælpe strandede gæster kræver de strejkende piloter samtidig, at SAS' trækker sin lockout af piloterne tilbage. Samtidig ser SAS Pilot Group det som en forudsætning, at SAS ikke får hjælp fra andre flyselskaber til at flyve nye passagerer til de samme destinationer, som piloterne tilbyder at flyve gæster hjem fra, skriver fagforeningen." example_title: "Example 1" - text: "Mere end 21.000 krigsforbrydelser. Så mange efterforsker de ukrainske myndigheder lige nu ifølge den ukrainske rigsadvokat, Iryna Venediktova. Hun oplyser til britiske BBC, at der bliver anmeldt mellem 200 og 300 nye sager om dagen. Forbrydelserne er ifølge Venediktova svære at efterforske, fordi det kan være vanskeligt at komme frem til de relevante områder og mennesker. Men hun understreger overfor BBC, at russiske soldater, der har dræbt, tortureret eller voldtaget civile, bør forstå, at det kun er et spørgsmål om tid, før de alle vil komme for retten. Rusland er blevet anklaget for en lang række krigsforbrydelser, siden landet invaderede Ukraine den 24. februar, men afviser alle anklager." example_title: "Example 2" - text: "Det nye studie Cognitive Science på Aarhus Universitet, som i år havde Østjyllands højeste adgangskrav på 11,7 i karaktergennemsnit, udklækker det første hold bachelorer til sommer. Men når de skal læse videre på kandidaten må de til udlandet, hvis ikke de vil skifte til et andet fag. Aarhus Universitet kan nemlig ikke nå at oprette en kandidat i Cognitive Science til næste sommer, hvor det første hold bachelorer er færdige. Det rammer blandt andre Julie Sohn, der startede på uddannelsen i sommeren 2015, og derfor kun mangler et år, før hun er bachelor. - Jeg synes, at det er ærgerligt, at vi som nye studerende på et populært studie ikke kan tage en kandidat i Danmark, siger hun. Bacheloruddannelsen i Cognitive Science blev oprettet af Aarhus Universitet i 2015, og uddannelsen kombinerer viden om menneskelig adfærd med avanceret statistik. Da der endnu ikke er oprettet en kandidatuddannelse indenfor dette område, har Julie Sohn i stedet mulighed for at læse en kandidatgrad i for eksempel informationsvidenskab. Hun vil dog hellere fortsætte på Cognitive Science, og derfor overvejer hun nu at læse videre i udlandet. - Det ser ud til, at det er den eneste mulighed, hvis man gerne vil læse videre på noget, der faktisk passer ind til vores studie, siger hun. Nye regler giver forsinkelse På Aarhus Universitet havde man håbet på at have kandidatuddannelsen klar, når det første hold bachelorer bliver færdige til sommer. Arbejdet er dog blevet forsinket, fordi der er kommet nye regler for, hvornår man må oprette en uddannelse, fortæller Niels Lehmann, prodekan på fakultetet Arts, som Cognitive Science hører under. Det er nogle meget dygtige studerende, der kommer ind på uddannelsen, og det er klart, at de i et vist omfang vil orientere sig mod udlandet, hvor man så kan forestille sig, at de bider sig fast. NIELS LEHMANN, PRODEKAN, AARHUS UNIVERSITET Tidligere skulle Danmarks Akkrediteringsinstitution se alle nye uddannelser efter i sømmene for at sikre, at kvaliteten var i orden. Nu skal uddannelsesinstitutionerne selv stå for det kvalitetstjek. Men det tjek har Aarhus Universitet endnu ikke fået grønt lys til selv at udføre, fortæller prodekanen. - Vi ville meget gerne have kunnet nå at få et udbud på kandidaten i gang i 2018, men så længe man er under institutionsakkreditering, så kan man ikke ansøge om nye uddannelser, siger han. Det er endnu usikkert, hvornår Aarhus Universitet kan oprette kandidaten i Cognitive Science. Hvis de får alle de nødvendige godkendelser, kan den tidligst være klar i 2019. Prodekan Niels Lehmann frygter, at Danmark kommer til at miste nogle af landets skarpeste studerende, hvis de er nødt til at rejse til udlandet for at gøre deres uddannelse færdig. - Det er nogle meget, meget dygtige studerende, der kommer ind på denne uddannelse, og det er klart, at de i et vist omfang vil orientere sig mod udlandet, hvor man så kan forestille sig, at de bider sig fast, siger han. Hos Danmarks Akkrediteringsinstitution forstår man godt, at universitets ansatte og studenrede ærgrer sig. - Jeg kan godt forstå, at Aarhus Universitet ærgrer sig over, at det trækker ud, og at der går noget tid, før man får mulighed for at oprette nye uddannelser, og at man ikke har fået den genvej til at oprette nye uddannelser, som ville være fuldt med, hvis man havde opnået en positiv institutionsakkreditering, siger kommunikationsansvarlig Daniel Sebastian Larsen. I år var Cognitive Science i Aarhus den uddannelse i Danmark, der havde det fjerde højeste karakterkrav - det højeste var 'AP Graduate in Marketing Management' på Erhvervsakademi Sjælland med et krav på 12,3." example_title: "Example 3" --- # mT5-base fine-tuned for News article Summarisation ✏️🧾 [Google's mT5](https://aclanthology.org/2021.naacl-main.41/) for **summarisation** downstream task. # Model summary This repository contains a model for Danish abstractive summarisation of news articles. The summariser is based on a language-specific mT5-base, where the vocabulary is condensed to include tokens used in Danish and English. The model is fine-tuned using an abstractive subset of the DaNewsroom dataset (Varab & Schluter, 2020), according to the binned density categories employed in Newsroom (Grusky et al., 2019). # References Grusky, M., Naaman, M., & Artzi, Y. (2018). Newsroom: A Dataset of 1.3 Million Summaries with Diverse Extractive Strategies. ArXiv:1804.11283 [Cs]. http://arxiv.org/abs/1804.11283 Varab, D., & Schluter, N. (2020). DaNewsroom: A Large-scale Danish Summarisation Dataset. Proceedings of the 12th Language Resources and Evaluation Conference, 6731–6739. https://aclanthology.org/2020.lrec-1.831
arstep/q-FrozenLake-v1-4x4-noSlippery
arstep
2023-07-12T18:12:13Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-12T18:12:10Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="arstep/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ayanban011/vit-base_tobacco_wr_0.01_wd_0.2
ayanban011
2023-07-12T18:09:56Z
165
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-12T15:22:40Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-base_tobacco_wr_0.01_wd_0.2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base_tobacco_wr_0.01_wd_0.2 This model is a fine-tuned version of [jordyvl/vit-base_tobacco](https://huggingface.co/jordyvl/vit-base_tobacco) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9831 - Accuracy: 0.755 - Brier Loss: 0.3936 - Nll: 1.4572 - F1 Micro: 0.755 - F1 Macro: 0.7245 - Ece: 0.2101 - Aurc: 0.1059 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc | |:-------------:|:------:|:----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:| | No log | 0.96 | 12 | 0.7384 | 0.815 | 0.3056 | 1.1863 | 0.815 | 0.8021 | 0.2211 | 0.0789 | | No log | 2.0 | 25 | 0.7504 | 0.795 | 0.3109 | 1.2594 | 0.795 | 0.7691 | 0.2235 | 0.0789 | | No log | 2.96 | 37 | 0.7415 | 0.765 | 0.3109 | 1.0445 | 0.765 | 0.7422 | 0.2323 | 0.0762 | | No log | 4.0 | 50 | 0.7222 | 0.805 | 0.2989 | 1.3200 | 0.805 | 0.7951 | 0.2028 | 0.0682 | | No log | 4.96 | 62 | 0.7160 | 0.815 | 0.2989 | 1.2307 | 0.815 | 0.8067 | 0.2381 | 0.0688 | | No log | 6.0 | 75 | 0.7149 | 0.825 | 0.2950 | 1.3097 | 0.825 | 0.8127 | 0.2110 | 0.0809 | | No log | 6.96 | 87 | 0.7157 | 0.815 | 0.2986 | 1.2310 | 0.815 | 0.8007 | 0.2195 | 0.0779 | | No log | 8.0 | 100 | 0.7245 | 0.81 | 0.3020 | 1.3030 | 0.81 | 0.7949 | 0.1997 | 0.0834 | | No log | 8.96 | 112 | 0.7111 | 0.815 | 0.2972 | 1.2310 | 0.815 | 0.8009 | 0.2090 | 0.0793 | | No log | 10.0 | 125 | 0.7344 | 0.81 | 0.3087 | 1.2974 | 0.81 | 0.7956 | 0.2240 | 0.0913 | | No log | 10.96 | 137 | 0.7264 | 0.81 | 0.3057 | 1.3216 | 0.81 | 0.7907 | 0.2074 | 0.0879 | | No log | 12.0 | 150 | 0.7301 | 0.805 | 0.3056 | 1.2448 | 0.805 | 0.7919 | 0.2112 | 0.0932 | | No log | 12.96 | 162 | 0.7224 | 0.805 | 0.3020 | 1.2950 | 0.805 | 0.7899 | 0.1930 | 0.0915 | | No log | 14.0 | 175 | 0.7235 | 0.81 | 0.3045 | 1.2965 | 0.81 | 0.7956 | 0.2025 | 0.0902 | | No log | 14.96 | 187 | 0.7239 | 0.81 | 0.3039 | 1.2970 | 0.81 | 0.7956 | 0.2156 | 0.0906 | | No log | 16.0 | 200 | 0.7293 | 0.81 | 0.3060 | 1.4336 | 0.81 | 0.7924 | 0.2029 | 0.0955 | | No log | 16.96 | 212 | 0.7253 | 0.805 | 0.3044 | 1.2984 | 0.805 | 0.7853 | 0.1946 | 0.0911 | | No log | 18.0 | 225 | 0.7293 | 0.805 | 0.3076 | 1.1852 | 0.805 | 0.7861 | 0.2015 | 0.0916 | | No log | 18.96 | 237 | 0.7328 | 0.8 | 0.3050 | 1.3844 | 0.8000 | 0.7836 | 0.1900 | 0.0986 | | No log | 20.0 | 250 | 0.7263 | 0.8 | 0.3058 | 1.2943 | 0.8000 | 0.7754 | 0.2003 | 0.0900 | | No log | 20.96 | 262 | 0.7370 | 0.805 | 0.3102 | 1.3612 | 0.805 | 0.7818 | 0.1998 | 0.0939 | | No log | 22.0 | 275 | 0.7412 | 0.795 | 0.3118 | 1.3673 | 0.795 | 0.7714 | 0.1952 | 0.0957 | | No log | 22.96 | 287 | 0.7326 | 0.795 | 0.3077 | 1.3572 | 0.795 | 0.7666 | 0.1935 | 0.0925 | | No log | 24.0 | 300 | 0.7308 | 0.805 | 0.3076 | 1.4265 | 0.805 | 0.7818 | 0.1968 | 0.0906 | | No log | 24.96 | 312 | 0.7424 | 0.8 | 0.3122 | 1.3666 | 0.8000 | 0.7774 | 0.1853 | 0.0960 | | No log | 26.0 | 325 | 0.7383 | 0.8 | 0.3097 | 1.3644 | 0.8000 | 0.7774 | 0.1911 | 0.0952 | | No log | 26.96 | 337 | 0.7468 | 0.805 | 0.3143 | 1.4295 | 0.805 | 0.7829 | 0.1952 | 0.0971 | | No log | 28.0 | 350 | 0.7484 | 0.795 | 0.3135 | 1.4327 | 0.795 | 0.7668 | 0.1906 | 0.0989 | | No log | 28.96 | 362 | 0.7459 | 0.8 | 0.3135 | 1.3624 | 0.8000 | 0.7704 | 0.1945 | 0.0944 | | No log | 30.0 | 375 | 0.7513 | 0.8 | 0.3160 | 1.4282 | 0.8000 | 0.7698 | 0.1991 | 0.0953 | | No log | 30.96 | 387 | 0.7535 | 0.795 | 0.3168 | 1.4336 | 0.795 | 0.7656 | 0.1799 | 0.0980 | | No log | 32.0 | 400 | 0.7540 | 0.8 | 0.3171 | 1.4469 | 0.8000 | 0.7774 | 0.1943 | 0.0959 | | No log | 32.96 | 412 | 0.7566 | 0.8 | 0.3180 | 1.3772 | 0.8000 | 0.7704 | 0.1809 | 0.0972 | | No log | 34.0 | 425 | 0.7641 | 0.795 | 0.3220 | 1.3878 | 0.795 | 0.7691 | 0.1937 | 0.1021 | | No log | 34.96 | 437 | 0.7602 | 0.795 | 0.3192 | 1.3748 | 0.795 | 0.7656 | 0.1908 | 0.0973 | | No log | 36.0 | 450 | 0.7577 | 0.8 | 0.3186 | 1.4397 | 0.8000 | 0.7704 | 0.1858 | 0.0951 | | No log | 36.96 | 462 | 0.7724 | 0.795 | 0.3233 | 1.3800 | 0.795 | 0.7656 | 0.1796 | 0.1002 | | No log | 38.0 | 475 | 0.7675 | 0.795 | 0.3223 | 1.3659 | 0.795 | 0.7654 | 0.1862 | 0.0976 | | No log | 38.96 | 487 | 0.7772 | 0.79 | 0.3261 | 1.4406 | 0.79 | 0.7633 | 0.1877 | 0.1062 | | 0.0949 | 40.0 | 500 | 0.7631 | 0.795 | 0.3211 | 1.4302 | 0.795 | 0.7654 | 0.1896 | 0.0953 | | 0.0949 | 40.96 | 512 | 0.7878 | 0.79 | 0.3304 | 1.5689 | 0.79 | 0.7631 | 0.1770 | 0.1014 | | 0.0949 | 42.0 | 525 | 0.7639 | 0.815 | 0.3198 | 1.5524 | 0.815 | 0.7879 | 0.1890 | 0.0938 | | 0.0949 | 42.96 | 537 | 0.7967 | 0.785 | 0.3350 | 1.4516 | 0.785 | 0.7606 | 0.1809 | 0.1040 | | 0.0949 | 44.0 | 550 | 0.7735 | 0.81 | 0.3237 | 1.4915 | 0.81 | 0.7784 | 0.2079 | 0.0963 | | 0.0949 | 44.96 | 562 | 0.7859 | 0.79 | 0.3300 | 1.5076 | 0.79 | 0.7594 | 0.1851 | 0.0991 | | 0.0949 | 46.0 | 575 | 0.7917 | 0.79 | 0.3323 | 1.5062 | 0.79 | 0.7631 | 0.1944 | 0.1015 | | 0.0949 | 46.96 | 587 | 0.7879 | 0.795 | 0.3310 | 1.4304 | 0.795 | 0.7656 | 0.1761 | 0.0987 | | 0.0949 | 48.0 | 600 | 0.7917 | 0.79 | 0.3320 | 1.4382 | 0.79 | 0.7629 | 0.1828 | 0.0994 | | 0.0949 | 48.96 | 612 | 0.7950 | 0.79 | 0.3333 | 1.4929 | 0.79 | 0.7549 | 0.1811 | 0.0995 | | 0.0949 | 50.0 | 625 | 0.8005 | 0.79 | 0.3363 | 1.4351 | 0.79 | 0.7631 | 0.1953 | 0.1009 | | 0.0949 | 50.96 | 637 | 0.8019 | 0.79 | 0.3363 | 1.4891 | 0.79 | 0.7631 | 0.1837 | 0.0998 | | 0.0949 | 52.0 | 650 | 0.8021 | 0.79 | 0.3354 | 1.4899 | 0.79 | 0.7586 | 0.1990 | 0.0994 | | 0.0949 | 52.96 | 662 | 0.8012 | 0.795 | 0.3346 | 1.4913 | 0.795 | 0.7648 | 0.1878 | 0.0984 | | 0.0949 | 54.0 | 675 | 0.8078 | 0.785 | 0.3388 | 1.4920 | 0.785 | 0.7559 | 0.1938 | 0.1000 | | 0.0949 | 54.96 | 687 | 0.8092 | 0.785 | 0.3391 | 1.5003 | 0.785 | 0.7561 | 0.1878 | 0.1004 | | 0.0949 | 56.0 | 700 | 0.8095 | 0.795 | 0.3378 | 1.4914 | 0.795 | 0.7634 | 0.1879 | 0.0994 | | 0.0949 | 56.96 | 712 | 0.8124 | 0.785 | 0.3396 | 1.4926 | 0.785 | 0.7555 | 0.1996 | 0.1005 | | 0.0949 | 58.0 | 725 | 0.8120 | 0.78 | 0.3391 | 1.4405 | 0.78 | 0.7469 | 0.1924 | 0.1005 | | 0.0949 | 58.96 | 737 | 0.8185 | 0.785 | 0.3406 | 1.5007 | 0.785 | 0.7523 | 0.1910 | 0.1013 | | 0.0949 | 60.0 | 750 | 0.8182 | 0.785 | 0.3421 | 1.4371 | 0.785 | 0.7555 | 0.1727 | 0.1010 | | 0.0949 | 60.96 | 762 | 0.8224 | 0.78 | 0.3443 | 1.4404 | 0.78 | 0.7475 | 0.1941 | 0.1019 | | 0.0949 | 62.0 | 775 | 0.8267 | 0.78 | 0.3463 | 1.4995 | 0.78 | 0.7535 | 0.1927 | 0.1016 | | 0.0949 | 62.96 | 787 | 0.8252 | 0.775 | 0.3447 | 1.4965 | 0.775 | 0.7465 | 0.1798 | 0.1016 | | 0.0949 | 64.0 | 800 | 0.8286 | 0.78 | 0.3446 | 1.4987 | 0.78 | 0.7475 | 0.1911 | 0.1014 | | 0.0949 | 64.96 | 812 | 0.8308 | 0.78 | 0.3467 | 1.4438 | 0.78 | 0.7469 | 0.1866 | 0.1019 | | 0.0949 | 66.0 | 825 | 0.8346 | 0.775 | 0.3476 | 1.4592 | 0.775 | 0.7444 | 0.1878 | 0.1034 | | 0.0949 | 66.96 | 837 | 0.8348 | 0.78 | 0.3484 | 1.4423 | 0.78 | 0.7515 | 0.1821 | 0.1021 | | 0.0949 | 68.0 | 850 | 0.8376 | 0.78 | 0.3481 | 1.4970 | 0.78 | 0.7469 | 0.1922 | 0.1015 | | 0.0949 | 68.96 | 862 | 0.8379 | 0.78 | 0.3497 | 1.4388 | 0.78 | 0.7515 | 0.1850 | 0.1018 | | 0.0949 | 70.0 | 875 | 0.8452 | 0.78 | 0.3512 | 1.4974 | 0.78 | 0.7525 | 0.1828 | 0.1036 | | 0.0949 | 70.96 | 887 | 0.8437 | 0.78 | 0.3511 | 1.4519 | 0.78 | 0.7469 | 0.2076 | 0.1032 | | 0.0949 | 72.0 | 900 | 0.8485 | 0.775 | 0.3535 | 1.5163 | 0.775 | 0.7444 | 0.1863 | 0.1033 | | 0.0949 | 72.96 | 912 | 0.8516 | 0.77 | 0.3555 | 1.5015 | 0.7700 | 0.7404 | 0.1868 | 0.1030 | | 0.0949 | 74.0 | 925 | 0.8507 | 0.77 | 0.3541 | 1.4407 | 0.7700 | 0.7404 | 0.1996 | 0.1026 | | 0.0949 | 74.96 | 937 | 0.8508 | 0.77 | 0.3540 | 1.4424 | 0.7700 | 0.7400 | 0.1996 | 0.1025 | | 0.0949 | 76.0 | 950 | 0.8559 | 0.77 | 0.3558 | 1.4487 | 0.7700 | 0.7400 | 0.2001 | 0.1031 | | 0.0949 | 76.96 | 962 | 0.8564 | 0.77 | 0.3568 | 1.4389 | 0.7700 | 0.7400 | 0.1804 | 0.1024 | | 0.0949 | 78.0 | 975 | 0.8611 | 0.775 | 0.3569 | 1.4966 | 0.775 | 0.7440 | 0.1831 | 0.1031 | | 0.0949 | 78.96 | 987 | 0.8573 | 0.77 | 0.3557 | 1.4946 | 0.7700 | 0.7400 | 0.1933 | 0.1013 | | 0.0366 | 80.0 | 1000 | 0.8640 | 0.775 | 0.3587 | 1.4998 | 0.775 | 0.7440 | 0.1871 | 0.1032 | | 0.0366 | 80.96 | 1012 | 0.8640 | 0.77 | 0.3585 | 1.4983 | 0.7700 | 0.7400 | 0.1921 | 0.1032 | | 0.0366 | 82.0 | 1025 | 0.8696 | 0.77 | 0.3608 | 1.5032 | 0.7700 | 0.7400 | 0.2033 | 0.1036 | | 0.0366 | 82.96 | 1037 | 0.8702 | 0.77 | 0.3613 | 1.4987 | 0.7700 | 0.7400 | 0.2022 | 0.1029 | | 0.0366 | 84.0 | 1050 | 0.8686 | 0.77 | 0.3597 | 1.4446 | 0.7700 | 0.7400 | 0.1887 | 0.1028 | | 0.0366 | 84.96 | 1062 | 0.8700 | 0.77 | 0.3607 | 1.4365 | 0.7700 | 0.7400 | 0.1900 | 0.1025 | | 0.0366 | 86.0 | 1075 | 0.8756 | 0.765 | 0.3621 | 1.5009 | 0.765 | 0.7308 | 0.1983 | 0.1040 | | 0.0366 | 86.96 | 1087 | 0.8768 | 0.76 | 0.3623 | 1.5035 | 0.76 | 0.7282 | 0.1956 | 0.1040 | | 0.0366 | 88.0 | 1100 | 0.8762 | 0.765 | 0.3618 | 1.4409 | 0.765 | 0.7308 | 0.1957 | 0.1033 | | 0.0366 | 88.96 | 1112 | 0.8777 | 0.765 | 0.3629 | 1.4427 | 0.765 | 0.7308 | 0.1974 | 0.1036 | | 0.0366 | 90.0 | 1125 | 0.8854 | 0.76 | 0.3661 | 1.4681 | 0.76 | 0.7282 | 0.2023 | 0.1049 | | 0.0366 | 90.96 | 1137 | 0.8867 | 0.76 | 0.3660 | 1.5057 | 0.76 | 0.7282 | 0.1995 | 0.1049 | | 0.0366 | 92.0 | 1150 | 0.8849 | 0.765 | 0.3648 | 1.5011 | 0.765 | 0.7308 | 0.1953 | 0.1039 | | 0.0366 | 92.96 | 1162 | 0.8898 | 0.76 | 0.3670 | 1.5077 | 0.76 | 0.7282 | 0.2083 | 0.1045 | | 0.0366 | 94.0 | 1175 | 0.8891 | 0.765 | 0.3662 | 1.4520 | 0.765 | 0.7308 | 0.2091 | 0.1040 | | 0.0366 | 94.96 | 1187 | 0.8910 | 0.755 | 0.3679 | 1.4460 | 0.755 | 0.7247 | 0.2039 | 0.1043 | | 0.0366 | 96.0 | 1200 | 0.8935 | 0.76 | 0.3684 | 1.4435 | 0.76 | 0.7273 | 0.1929 | 0.1041 | | 0.0366 | 96.96 | 1212 | 0.8964 | 0.755 | 0.3689 | 1.4526 | 0.755 | 0.7247 | 0.1980 | 0.1048 | | 0.0366 | 98.0 | 1225 | 0.8979 | 0.755 | 0.3701 | 1.4507 | 0.755 | 0.7247 | 0.2017 | 0.1045 | | 0.0366 | 98.96 | 1237 | 0.8965 | 0.755 | 0.3692 | 1.4474 | 0.755 | 0.7247 | 0.2057 | 0.1044 | | 0.0366 | 100.0 | 1250 | 0.9019 | 0.755 | 0.3716 | 1.4526 | 0.755 | 0.7247 | 0.2051 | 0.1047 | | 0.0366 | 100.96 | 1262 | 0.8994 | 0.755 | 0.3694 | 1.4485 | 0.755 | 0.7247 | 0.1979 | 0.1041 | | 0.0366 | 102.0 | 1275 | 0.9023 | 0.755 | 0.3715 | 1.4465 | 0.755 | 0.7247 | 0.2140 | 0.1044 | | 0.0366 | 102.96 | 1287 | 0.9048 | 0.755 | 0.3720 | 1.4472 | 0.755 | 0.7247 | 0.2066 | 0.1045 | | 0.0366 | 104.0 | 1300 | 0.9060 | 0.755 | 0.3719 | 1.4565 | 0.755 | 0.7247 | 0.2003 | 0.1044 | | 0.0366 | 104.96 | 1312 | 0.9105 | 0.755 | 0.3735 | 1.4625 | 0.755 | 0.7247 | 0.2094 | 0.1053 | | 0.0366 | 106.0 | 1325 | 0.9099 | 0.76 | 0.3738 | 1.4463 | 0.76 | 0.7273 | 0.2050 | 0.1044 | | 0.0366 | 106.96 | 1337 | 0.9111 | 0.755 | 0.3751 | 1.4486 | 0.755 | 0.7247 | 0.2173 | 0.1041 | | 0.0366 | 108.0 | 1350 | 0.9149 | 0.755 | 0.3745 | 1.5081 | 0.755 | 0.7247 | 0.2062 | 0.1052 | | 0.0366 | 108.96 | 1362 | 0.9146 | 0.755 | 0.3744 | 1.4513 | 0.755 | 0.7247 | 0.2073 | 0.1047 | | 0.0366 | 110.0 | 1375 | 0.9157 | 0.755 | 0.3764 | 1.4486 | 0.755 | 0.7247 | 0.2094 | 0.1046 | | 0.0366 | 110.96 | 1387 | 0.9201 | 0.755 | 0.3767 | 1.4529 | 0.755 | 0.7247 | 0.2093 | 0.1051 | | 0.0366 | 112.0 | 1400 | 0.9190 | 0.755 | 0.3759 | 1.4533 | 0.755 | 0.7247 | 0.2020 | 0.1049 | | 0.0366 | 112.96 | 1412 | 0.9230 | 0.755 | 0.3782 | 1.4529 | 0.755 | 0.7247 | 0.2054 | 0.1050 | | 0.0366 | 114.0 | 1425 | 0.9234 | 0.755 | 0.3778 | 1.4505 | 0.755 | 0.7247 | 0.2009 | 0.1049 | | 0.0366 | 114.96 | 1437 | 0.9238 | 0.755 | 0.3780 | 1.4469 | 0.755 | 0.7247 | 0.1974 | 0.1051 | | 0.0366 | 116.0 | 1450 | 0.9264 | 0.755 | 0.3786 | 1.4538 | 0.755 | 0.7247 | 0.2016 | 0.1051 | | 0.0366 | 116.96 | 1462 | 0.9275 | 0.755 | 0.3787 | 1.4553 | 0.755 | 0.7247 | 0.2012 | 0.1054 | | 0.0366 | 118.0 | 1475 | 0.9306 | 0.755 | 0.3798 | 1.4595 | 0.755 | 0.7247 | 0.2139 | 0.1057 | | 0.0366 | 118.96 | 1487 | 0.9291 | 0.76 | 0.3789 | 1.4529 | 0.76 | 0.7273 | 0.2014 | 0.1054 | | 0.0214 | 120.0 | 1500 | 0.9318 | 0.755 | 0.3804 | 1.4520 | 0.755 | 0.7247 | 0.2017 | 0.1050 | | 0.0214 | 120.96 | 1512 | 0.9325 | 0.755 | 0.3796 | 1.4535 | 0.755 | 0.7247 | 0.2087 | 0.1053 | | 0.0214 | 122.0 | 1525 | 0.9339 | 0.755 | 0.3804 | 1.4534 | 0.755 | 0.7247 | 0.2068 | 0.1056 | | 0.0214 | 122.96 | 1537 | 0.9342 | 0.755 | 0.3807 | 1.4519 | 0.755 | 0.7247 | 0.1986 | 0.1052 | | 0.0214 | 124.0 | 1550 | 0.9357 | 0.755 | 0.3808 | 1.4524 | 0.755 | 0.7247 | 0.2058 | 0.1054 | | 0.0214 | 124.96 | 1562 | 0.9360 | 0.755 | 0.3808 | 1.4514 | 0.755 | 0.7247 | 0.2061 | 0.1052 | | 0.0214 | 126.0 | 1575 | 0.9409 | 0.755 | 0.3828 | 1.4557 | 0.755 | 0.7247 | 0.2044 | 0.1058 | | 0.0214 | 126.96 | 1587 | 0.9390 | 0.755 | 0.3819 | 1.4523 | 0.755 | 0.7247 | 0.2062 | 0.1052 | | 0.0214 | 128.0 | 1600 | 0.9425 | 0.755 | 0.3833 | 1.4559 | 0.755 | 0.7247 | 0.2049 | 0.1058 | | 0.0214 | 128.96 | 1612 | 0.9421 | 0.755 | 0.3824 | 1.4534 | 0.755 | 0.7247 | 0.1978 | 0.1055 | | 0.0214 | 130.0 | 1625 | 0.9433 | 0.755 | 0.3831 | 1.4530 | 0.755 | 0.7247 | 0.2069 | 0.1056 | | 0.0214 | 130.96 | 1637 | 0.9463 | 0.755 | 0.3842 | 1.4535 | 0.755 | 0.7247 | 0.2127 | 0.1058 | | 0.0214 | 132.0 | 1650 | 0.9462 | 0.755 | 0.3835 | 1.4546 | 0.755 | 0.7247 | 0.1975 | 0.1057 | | 0.0214 | 132.96 | 1662 | 0.9479 | 0.755 | 0.3842 | 1.4562 | 0.755 | 0.7247 | 0.2012 | 0.1059 | | 0.0214 | 134.0 | 1675 | 0.9493 | 0.755 | 0.3852 | 1.4547 | 0.755 | 0.7247 | 0.2161 | 0.1057 | | 0.0214 | 134.96 | 1687 | 0.9484 | 0.755 | 0.3842 | 1.4563 | 0.755 | 0.7247 | 0.2046 | 0.1055 | | 0.0214 | 136.0 | 1700 | 0.9500 | 0.755 | 0.3849 | 1.4528 | 0.755 | 0.7247 | 0.2081 | 0.1058 | | 0.0214 | 136.96 | 1712 | 0.9510 | 0.755 | 0.3854 | 1.4510 | 0.755 | 0.7247 | 0.1976 | 0.1053 | | 0.0214 | 138.0 | 1725 | 0.9519 | 0.755 | 0.3855 | 1.4516 | 0.755 | 0.7247 | 0.2090 | 0.1056 | | 0.0214 | 138.96 | 1737 | 0.9535 | 0.755 | 0.3857 | 1.4537 | 0.755 | 0.7247 | 0.2091 | 0.1057 | | 0.0214 | 140.0 | 1750 | 0.9546 | 0.755 | 0.3862 | 1.4557 | 0.755 | 0.7247 | 0.2020 | 0.1057 | | 0.0214 | 140.96 | 1762 | 0.9558 | 0.755 | 0.3867 | 1.4530 | 0.755 | 0.7247 | 0.2018 | 0.1059 | | 0.0214 | 142.0 | 1775 | 0.9567 | 0.755 | 0.3870 | 1.4522 | 0.755 | 0.7247 | 0.2059 | 0.1055 | | 0.0214 | 142.96 | 1787 | 0.9589 | 0.755 | 0.3876 | 1.4555 | 0.755 | 0.7247 | 0.2063 | 0.1060 | | 0.0214 | 144.0 | 1800 | 0.9584 | 0.755 | 0.3872 | 1.4568 | 0.755 | 0.7245 | 0.2162 | 0.1056 | | 0.0214 | 144.96 | 1812 | 0.9613 | 0.755 | 0.3881 | 1.4594 | 0.755 | 0.7247 | 0.2085 | 0.1063 | | 0.0214 | 146.0 | 1825 | 0.9604 | 0.755 | 0.3873 | 1.5132 | 0.755 | 0.7247 | 0.2047 | 0.1056 | | 0.0214 | 146.96 | 1837 | 0.9627 | 0.755 | 0.3887 | 1.4573 | 0.755 | 0.7247 | 0.2107 | 0.1059 | | 0.0214 | 148.0 | 1850 | 0.9643 | 0.755 | 0.3890 | 1.4570 | 0.755 | 0.7247 | 0.2041 | 0.1065 | | 0.0214 | 148.96 | 1862 | 0.9633 | 0.755 | 0.3886 | 1.4526 | 0.755 | 0.7247 | 0.2085 | 0.1055 | | 0.0214 | 150.0 | 1875 | 0.9637 | 0.755 | 0.3887 | 1.4551 | 0.755 | 0.7245 | 0.2096 | 0.1054 | | 0.0214 | 150.96 | 1887 | 0.9645 | 0.755 | 0.3886 | 1.4534 | 0.755 | 0.7247 | 0.2100 | 0.1058 | | 0.0214 | 152.0 | 1900 | 0.9661 | 0.755 | 0.3891 | 1.4550 | 0.755 | 0.7247 | 0.2072 | 0.1060 | | 0.0214 | 152.96 | 1912 | 0.9665 | 0.755 | 0.3894 | 1.4543 | 0.755 | 0.7247 | 0.2092 | 0.1057 | | 0.0214 | 154.0 | 1925 | 0.9667 | 0.755 | 0.3894 | 1.4570 | 0.755 | 0.7245 | 0.2019 | 0.1056 | | 0.0214 | 154.96 | 1937 | 0.9681 | 0.755 | 0.3900 | 1.4537 | 0.755 | 0.7245 | 0.2098 | 0.1059 | | 0.0214 | 156.0 | 1950 | 0.9689 | 0.755 | 0.3903 | 1.4533 | 0.755 | 0.7245 | 0.2022 | 0.1056 | | 0.0214 | 156.96 | 1962 | 0.9689 | 0.755 | 0.3898 | 1.4553 | 0.755 | 0.7247 | 0.2074 | 0.1058 | | 0.0214 | 158.0 | 1975 | 0.9705 | 0.755 | 0.3901 | 1.4566 | 0.755 | 0.7247 | 0.2072 | 0.1062 | | 0.0214 | 158.96 | 1987 | 0.9721 | 0.755 | 0.3911 | 1.4570 | 0.755 | 0.7245 | 0.2055 | 0.1062 | | 0.0155 | 160.0 | 2000 | 0.9712 | 0.755 | 0.3904 | 1.4551 | 0.755 | 0.7245 | 0.2070 | 0.1060 | | 0.0155 | 160.96 | 2012 | 0.9721 | 0.755 | 0.3906 | 1.4563 | 0.755 | 0.7245 | 0.2108 | 0.1059 | | 0.0155 | 162.0 | 2025 | 0.9734 | 0.755 | 0.3914 | 1.4550 | 0.755 | 0.7245 | 0.2071 | 0.1057 | | 0.0155 | 162.96 | 2037 | 0.9740 | 0.755 | 0.3913 | 1.4565 | 0.755 | 0.7245 | 0.2073 | 0.1062 | | 0.0155 | 164.0 | 2050 | 0.9744 | 0.755 | 0.3915 | 1.4563 | 0.755 | 0.7245 | 0.2101 | 0.1059 | | 0.0155 | 164.96 | 2062 | 0.9752 | 0.755 | 0.3917 | 1.4558 | 0.755 | 0.7245 | 0.2102 | 0.1059 | | 0.0155 | 166.0 | 2075 | 0.9755 | 0.755 | 0.3916 | 1.4566 | 0.755 | 0.7245 | 0.2102 | 0.1062 | | 0.0155 | 166.96 | 2087 | 0.9755 | 0.755 | 0.3917 | 1.4542 | 0.755 | 0.7245 | 0.2100 | 0.1057 | | 0.0155 | 168.0 | 2100 | 0.9768 | 0.755 | 0.3921 | 1.4578 | 0.755 | 0.7245 | 0.2103 | 0.1059 | | 0.0155 | 168.96 | 2112 | 0.9767 | 0.755 | 0.3919 | 1.4575 | 0.755 | 0.7245 | 0.2106 | 0.1057 | | 0.0155 | 170.0 | 2125 | 0.9776 | 0.755 | 0.3922 | 1.4567 | 0.755 | 0.7245 | 0.2101 | 0.1058 | | 0.0155 | 170.96 | 2137 | 0.9783 | 0.755 | 0.3925 | 1.4560 | 0.755 | 0.7245 | 0.2080 | 0.1062 | | 0.0155 | 172.0 | 2150 | 0.9793 | 0.755 | 0.3927 | 1.4578 | 0.755 | 0.7245 | 0.2102 | 0.1064 | | 0.0155 | 172.96 | 2162 | 0.9783 | 0.755 | 0.3923 | 1.4557 | 0.755 | 0.7245 | 0.2098 | 0.1058 | | 0.0155 | 174.0 | 2175 | 0.9790 | 0.755 | 0.3927 | 1.4550 | 0.755 | 0.7245 | 0.2087 | 0.1057 | | 0.0155 | 174.96 | 2187 | 0.9801 | 0.755 | 0.3929 | 1.4577 | 0.755 | 0.7245 | 0.2100 | 0.1059 | | 0.0155 | 176.0 | 2200 | 0.9800 | 0.755 | 0.3928 | 1.4566 | 0.755 | 0.7245 | 0.2081 | 0.1058 | | 0.0155 | 176.96 | 2212 | 0.9809 | 0.755 | 0.3932 | 1.4568 | 0.755 | 0.7245 | 0.2101 | 0.1058 | | 0.0155 | 178.0 | 2225 | 0.9808 | 0.755 | 0.3930 | 1.4571 | 0.755 | 0.7245 | 0.2101 | 0.1058 | | 0.0155 | 178.96 | 2237 | 0.9808 | 0.755 | 0.3930 | 1.4566 | 0.755 | 0.7245 | 0.2082 | 0.1057 | | 0.0155 | 180.0 | 2250 | 0.9813 | 0.755 | 0.3931 | 1.4567 | 0.755 | 0.7245 | 0.2082 | 0.1058 | | 0.0155 | 180.96 | 2262 | 0.9817 | 0.755 | 0.3933 | 1.4571 | 0.755 | 0.7245 | 0.2032 | 0.1059 | | 0.0155 | 182.0 | 2275 | 0.9819 | 0.755 | 0.3933 | 1.4570 | 0.755 | 0.7245 | 0.2103 | 0.1058 | | 0.0155 | 182.96 | 2287 | 0.9822 | 0.755 | 0.3934 | 1.4567 | 0.755 | 0.7245 | 0.2101 | 0.1058 | | 0.0155 | 184.0 | 2300 | 0.9824 | 0.755 | 0.3934 | 1.4572 | 0.755 | 0.7245 | 0.2101 | 0.1059 | | 0.0155 | 184.96 | 2312 | 0.9825 | 0.755 | 0.3935 | 1.4569 | 0.755 | 0.7245 | 0.2081 | 0.1060 | | 0.0155 | 186.0 | 2325 | 0.9825 | 0.755 | 0.3934 | 1.4574 | 0.755 | 0.7245 | 0.2101 | 0.1059 | | 0.0155 | 186.96 | 2337 | 0.9829 | 0.755 | 0.3935 | 1.4571 | 0.755 | 0.7245 | 0.2101 | 0.1059 | | 0.0155 | 188.0 | 2350 | 0.9830 | 0.755 | 0.3936 | 1.4569 | 0.755 | 0.7245 | 0.2081 | 0.1060 | | 0.0155 | 188.96 | 2362 | 0.9831 | 0.755 | 0.3936 | 1.4572 | 0.755 | 0.7245 | 0.2082 | 0.1059 | | 0.0155 | 190.0 | 2375 | 0.9830 | 0.755 | 0.3935 | 1.4575 | 0.755 | 0.7245 | 0.2101 | 0.1059 | | 0.0155 | 190.96 | 2387 | 0.9831 | 0.755 | 0.3936 | 1.4572 | 0.755 | 0.7245 | 0.2101 | 0.1059 | | 0.0155 | 192.0 | 2400 | 0.9831 | 0.755 | 0.3936 | 1.4572 | 0.755 | 0.7245 | 0.2101 | 0.1059 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.13.1 - Datasets 2.13.1 - Tokenizers 0.13.3
BlueAvenir/model_growth_restructuring_V_0_3
BlueAvenir
2023-07-12T18:03:50Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-07-12T18:03:20Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 153 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 153, "warmup_steps": 16, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
VK246/IC_ver5a_coco_swin_gpt2_05pc_1e
VK246
2023-07-12T18:03:19Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:coco", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-07-12T17:53:07Z
--- tags: - generated_from_trainer datasets: - coco metrics: - rouge - bleu model-index: - name: IC_ver5a_coco_swin_gpt2_05pc_1e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IC_ver5a_coco_swin_gpt2_05pc_1e This model is a fine-tuned version of [](https://huggingface.co/) on the coco dataset. It achieves the following results on the evaluation set: - Loss: 1.2245 - Rouge1: 22.0956 - Rouge2: 2.7707 - Rougel: 20.6806 - Rougelsum: 20.6915 - Bleu: 1.2101 - Gen Len: 11.1124 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 96 - eval_batch_size: 96 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:------:|:-------:| | 2.1625 | 0.42 | 25 | 1.2744 | 22.7707 | 2.4514 | 20.6431 | 20.6829 | 0.0 | 11.1124 | | 1.3438 | 0.85 | 50 | 1.2374 | 21.3271 | 2.4116 | 19.7122 | 19.7385 | 0.7474 | 11.1124 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
NasimB/gpt2-concat-mod-datasets1-iorder-rarity-all-5p5k
NasimB
2023-07-12T18:03:11Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-12T16:28:12Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-concat-mod-datasets1-iorder-rarity-all-5p5k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-concat-mod-datasets1-iorder-rarity-all-5p5k This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.3832 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.7791 | 0.32 | 500 | 5.6460 | | 5.4436 | 0.63 | 1000 | 5.2273 | | 5.0944 | 0.95 | 1500 | 4.9700 | | 4.809 | 1.26 | 2000 | 4.8294 | | 4.6757 | 1.58 | 2500 | 4.7121 | | 4.5526 | 1.9 | 3000 | 4.6044 | | 4.3523 | 2.21 | 3500 | 4.5477 | | 4.2579 | 2.53 | 4000 | 4.4848 | | 4.2187 | 2.84 | 4500 | 4.4262 | | 4.0519 | 3.16 | 5000 | 4.4090 | | 3.9359 | 3.47 | 5500 | 4.3808 | | 3.9128 | 3.79 | 6000 | 4.3460 | | 3.8052 | 4.11 | 6500 | 4.3424 | | 3.6404 | 4.42 | 7000 | 4.3367 | | 3.6307 | 4.74 | 7500 | 4.3246 | | 3.5885 | 5.05 | 8000 | 4.3236 | | 3.4332 | 5.37 | 8500 | 4.3296 | | 3.4351 | 5.69 | 9000 | 4.3281 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
tyavika/lr1e5-layer1-bs16-Distil-CNN128LSTM128NoBi
tyavika
2023-07-12T17:59:27Z
77
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-07-12T15:42:47Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: lr1e5-layer1-bs16-Distil-CNN128LSTM128NoBi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lr1e5-layer1-bs16-Distil-CNN128LSTM128NoBi This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3813 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.5317 | 1.0 | 3290 | 1.3385 | | 1.0853 | 2.0 | 6580 | 1.1885 | | 0.7993 | 3.0 | 9870 | 1.2330 | | 0.5808 | 4.0 | 13160 | 1.3813 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
rmcl7/sd-class-butterflies-32
rmcl7
2023-07-12T17:54:58Z
30
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-07-12T17:53:25Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('rmcl7/sd-class-butterflies-32') image = pipeline().images[0] image ```
DipanAI/falcon_law_7Bat
DipanAI
2023-07-12T17:53:31Z
1
0
peft
[ "peft", "tensorboard", "region:us" ]
null
2023-07-12T17:49:30Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0.dev0
ayanban011/vit-base_tobacco_lr5e-6_e_200
ayanban011
2023-07-12T17:42:48Z
167
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-12T15:04:59Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-base_tobacco_lr5e-6_e_200 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base_tobacco_lr5e-6_e_200 This model is a fine-tuned version of [jordyvl/vit-base_tobacco](https://huggingface.co/jordyvl/vit-base_tobacco) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7893 - Accuracy: 0.78 - Brier Loss: 0.3364 - Nll: 1.4430 - F1 Micro: 0.78 - F1 Macro: 0.7488 - Ece: 0.1922 - Aurc: 0.1018 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc | |:-------------:|:------:|:----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:| | No log | 0.96 | 12 | 0.7450 | 0.815 | 0.3079 | 1.1882 | 0.815 | 0.7942 | 0.2383 | 0.0734 | | No log | 2.0 | 25 | 0.7440 | 0.815 | 0.3074 | 1.1877 | 0.815 | 0.7922 | 0.2303 | 0.0734 | | No log | 2.96 | 37 | 0.7429 | 0.81 | 0.3071 | 1.1883 | 0.81 | 0.7914 | 0.2367 | 0.0714 | | No log | 4.0 | 50 | 0.7463 | 0.815 | 0.3083 | 1.1912 | 0.815 | 0.7942 | 0.2334 | 0.0768 | | No log | 4.96 | 62 | 0.7453 | 0.815 | 0.3080 | 1.1927 | 0.815 | 0.7922 | 0.2224 | 0.0751 | | No log | 6.0 | 75 | 0.7416 | 0.81 | 0.3067 | 1.1870 | 0.81 | 0.7914 | 0.2232 | 0.0716 | | No log | 6.96 | 87 | 0.7420 | 0.81 | 0.3070 | 1.1858 | 0.81 | 0.7914 | 0.2309 | 0.0730 | | No log | 8.0 | 100 | 0.7409 | 0.81 | 0.3062 | 1.1879 | 0.81 | 0.7871 | 0.2186 | 0.0749 | | No log | 8.96 | 112 | 0.7444 | 0.815 | 0.3079 | 1.1984 | 0.815 | 0.8059 | 0.2342 | 0.0766 | | No log | 10.0 | 125 | 0.7445 | 0.81 | 0.3079 | 1.1918 | 0.81 | 0.7894 | 0.2353 | 0.0775 | | No log | 10.96 | 137 | 0.7451 | 0.81 | 0.3085 | 1.1888 | 0.81 | 0.7871 | 0.2319 | 0.0784 | | No log | 12.0 | 150 | 0.7411 | 0.805 | 0.3060 | 1.1914 | 0.805 | 0.7829 | 0.2186 | 0.0779 | | No log | 12.96 | 162 | 0.7406 | 0.815 | 0.3075 | 1.1967 | 0.815 | 0.8057 | 0.2472 | 0.0746 | | No log | 14.0 | 175 | 0.7360 | 0.805 | 0.3048 | 1.2494 | 0.805 | 0.7841 | 0.2383 | 0.0770 | | No log | 14.96 | 187 | 0.7331 | 0.81 | 0.3037 | 1.1896 | 0.81 | 0.7912 | 0.2306 | 0.0721 | | No log | 16.0 | 200 | 0.7345 | 0.81 | 0.3042 | 1.2488 | 0.81 | 0.7956 | 0.2064 | 0.0794 | | No log | 16.96 | 212 | 0.7329 | 0.815 | 0.3018 | 1.2595 | 0.815 | 0.8043 | 0.2331 | 0.0797 | | No log | 18.0 | 225 | 0.7354 | 0.795 | 0.3055 | 1.1743 | 0.795 | 0.7765 | 0.2154 | 0.0742 | | No log | 18.96 | 237 | 0.7282 | 0.805 | 0.3001 | 1.1920 | 0.805 | 0.7844 | 0.2444 | 0.0748 | | No log | 20.0 | 250 | 0.7225 | 0.805 | 0.2981 | 1.1804 | 0.805 | 0.7874 | 0.2041 | 0.0744 | | No log | 20.96 | 262 | 0.7250 | 0.81 | 0.3000 | 1.2516 | 0.81 | 0.7900 | 0.2148 | 0.0761 | | No log | 22.0 | 275 | 0.7252 | 0.81 | 0.3009 | 1.3033 | 0.81 | 0.7954 | 0.2375 | 0.0782 | | No log | 22.96 | 287 | 0.7293 | 0.8 | 0.3016 | 1.2557 | 0.8000 | 0.7796 | 0.2243 | 0.0810 | | No log | 24.0 | 300 | 0.7344 | 0.805 | 0.3057 | 1.3122 | 0.805 | 0.7853 | 0.2096 | 0.0815 | | No log | 24.96 | 312 | 0.7314 | 0.81 | 0.3044 | 1.2501 | 0.81 | 0.7909 | 0.2068 | 0.0808 | | No log | 26.0 | 325 | 0.7293 | 0.81 | 0.3036 | 1.3066 | 0.81 | 0.7909 | 0.2015 | 0.0804 | | No log | 26.96 | 337 | 0.7323 | 0.805 | 0.3042 | 1.3147 | 0.805 | 0.7853 | 0.2242 | 0.0827 | | No log | 28.0 | 350 | 0.7288 | 0.805 | 0.3029 | 1.3109 | 0.805 | 0.7853 | 0.1976 | 0.0826 | | No log | 28.96 | 362 | 0.7343 | 0.805 | 0.3058 | 1.3108 | 0.805 | 0.7853 | 0.2128 | 0.0851 | | No log | 30.0 | 375 | 0.7351 | 0.8 | 0.3062 | 1.3129 | 0.8000 | 0.7733 | 0.2088 | 0.0845 | | No log | 30.96 | 387 | 0.7301 | 0.8 | 0.3044 | 1.2452 | 0.8000 | 0.7733 | 0.2272 | 0.0836 | | No log | 32.0 | 400 | 0.7340 | 0.8 | 0.3055 | 1.3769 | 0.8000 | 0.7806 | 0.2207 | 0.0855 | | No log | 32.96 | 412 | 0.7322 | 0.805 | 0.3052 | 1.3132 | 0.805 | 0.7784 | 0.2470 | 0.0865 | | No log | 34.0 | 425 | 0.7301 | 0.8 | 0.3045 | 1.2543 | 0.8000 | 0.7733 | 0.2021 | 0.0863 | | No log | 34.96 | 437 | 0.7297 | 0.8 | 0.3046 | 1.3056 | 0.8000 | 0.7731 | 0.1886 | 0.0836 | | No log | 36.0 | 450 | 0.7326 | 0.805 | 0.3056 | 1.3102 | 0.805 | 0.7784 | 0.2256 | 0.0892 | | No log | 36.96 | 462 | 0.7311 | 0.8 | 0.3046 | 1.3681 | 0.8000 | 0.7733 | 0.2065 | 0.0880 | | No log | 38.0 | 475 | 0.7356 | 0.8 | 0.3077 | 1.3666 | 0.8000 | 0.7733 | 0.2034 | 0.0895 | | No log | 38.96 | 487 | 0.7302 | 0.8 | 0.3042 | 1.3114 | 0.8000 | 0.7733 | 0.1996 | 0.0894 | | 0.1528 | 40.0 | 500 | 0.7289 | 0.805 | 0.3035 | 1.3669 | 0.805 | 0.7797 | 0.1951 | 0.0874 | | 0.1528 | 40.96 | 512 | 0.7292 | 0.8 | 0.3037 | 1.3685 | 0.8000 | 0.7737 | 0.2103 | 0.0878 | | 0.1528 | 42.0 | 525 | 0.7347 | 0.805 | 0.3077 | 1.3640 | 0.805 | 0.7784 | 0.2005 | 0.0894 | | 0.1528 | 42.96 | 537 | 0.7343 | 0.805 | 0.3063 | 1.3684 | 0.805 | 0.7784 | 0.2055 | 0.0899 | | 0.1528 | 44.0 | 550 | 0.7283 | 0.805 | 0.3038 | 1.3660 | 0.805 | 0.7797 | 0.2142 | 0.0881 | | 0.1528 | 44.96 | 562 | 0.7325 | 0.805 | 0.3061 | 1.3658 | 0.805 | 0.7784 | 0.1967 | 0.0896 | | 0.1528 | 46.0 | 575 | 0.7303 | 0.81 | 0.3049 | 1.3659 | 0.81 | 0.7844 | 0.1985 | 0.0883 | | 0.1528 | 46.96 | 587 | 0.7321 | 0.805 | 0.3054 | 1.3657 | 0.805 | 0.7797 | 0.1925 | 0.0888 | | 0.1528 | 48.0 | 600 | 0.7322 | 0.8 | 0.3054 | 1.3680 | 0.8000 | 0.7704 | 0.1837 | 0.0903 | | 0.1528 | 48.96 | 612 | 0.7368 | 0.8 | 0.3079 | 1.3234 | 0.8000 | 0.7704 | 0.2111 | 0.0905 | | 0.1528 | 50.0 | 625 | 0.7358 | 0.8 | 0.3074 | 1.3682 | 0.8000 | 0.7704 | 0.1971 | 0.0899 | | 0.1528 | 50.96 | 637 | 0.7318 | 0.8 | 0.3054 | 1.3661 | 0.8000 | 0.7704 | 0.2111 | 0.0889 | | 0.1528 | 52.0 | 650 | 0.7473 | 0.795 | 0.3133 | 1.3707 | 0.795 | 0.7660 | 0.2032 | 0.0954 | | 0.1528 | 52.96 | 662 | 0.7299 | 0.805 | 0.3050 | 1.3631 | 0.805 | 0.7797 | 0.1977 | 0.0891 | | 0.1528 | 54.0 | 675 | 0.7427 | 0.795 | 0.3116 | 1.3673 | 0.795 | 0.7644 | 0.2181 | 0.0923 | | 0.1528 | 54.96 | 687 | 0.7371 | 0.8 | 0.3087 | 1.3648 | 0.8000 | 0.7704 | 0.1984 | 0.0902 | | 0.1528 | 56.0 | 700 | 0.7399 | 0.8 | 0.3100 | 1.3671 | 0.8000 | 0.7704 | 0.2178 | 0.0920 | | 0.1528 | 56.96 | 712 | 0.7420 | 0.8 | 0.3114 | 1.3671 | 0.8000 | 0.7689 | 0.2035 | 0.0925 | | 0.1528 | 58.0 | 725 | 0.7380 | 0.8 | 0.3088 | 1.3646 | 0.8000 | 0.7704 | 0.2016 | 0.0916 | | 0.1528 | 58.96 | 737 | 0.7390 | 0.8 | 0.3091 | 1.3671 | 0.8000 | 0.7704 | 0.2005 | 0.0921 | | 0.1528 | 60.0 | 750 | 0.7370 | 0.8 | 0.3085 | 1.3651 | 0.8000 | 0.7704 | 0.1891 | 0.0908 | | 0.1528 | 60.96 | 762 | 0.7388 | 0.8 | 0.3097 | 1.3622 | 0.8000 | 0.7704 | 0.2010 | 0.0906 | | 0.1528 | 62.0 | 775 | 0.7403 | 0.795 | 0.3102 | 1.3691 | 0.795 | 0.7654 | 0.2142 | 0.0910 | | 0.1528 | 62.96 | 787 | 0.7390 | 0.8 | 0.3088 | 1.3950 | 0.8000 | 0.7684 | 0.2058 | 0.0910 | | 0.1528 | 64.0 | 800 | 0.7431 | 0.795 | 0.3110 | 1.3722 | 0.795 | 0.7656 | 0.1959 | 0.0914 | | 0.1528 | 64.96 | 812 | 0.7429 | 0.8 | 0.3117 | 1.3673 | 0.8000 | 0.7704 | 0.1933 | 0.0925 | | 0.1528 | 66.0 | 825 | 0.7419 | 0.8 | 0.3115 | 1.3663 | 0.8000 | 0.7704 | 0.1986 | 0.0913 | | 0.1528 | 66.96 | 837 | 0.7434 | 0.8 | 0.3120 | 1.3672 | 0.8000 | 0.7704 | 0.1929 | 0.0927 | | 0.1528 | 68.0 | 850 | 0.7414 | 0.8 | 0.3115 | 1.3649 | 0.8000 | 0.7704 | 0.1988 | 0.0923 | | 0.1528 | 68.96 | 862 | 0.7448 | 0.8 | 0.3129 | 1.3685 | 0.8000 | 0.7704 | 0.2251 | 0.0928 | | 0.1528 | 70.0 | 875 | 0.7450 | 0.8 | 0.3130 | 1.3657 | 0.8000 | 0.7704 | 0.1969 | 0.0934 | | 0.1528 | 70.96 | 887 | 0.7464 | 0.8 | 0.3132 | 1.3686 | 0.8000 | 0.7704 | 0.1988 | 0.0946 | | 0.1528 | 72.0 | 900 | 0.7465 | 0.8 | 0.3138 | 1.3682 | 0.8000 | 0.7707 | 0.2015 | 0.0935 | | 0.1528 | 72.96 | 912 | 0.7471 | 0.8 | 0.3142 | 1.3685 | 0.8000 | 0.7696 | 0.2093 | 0.0936 | | 0.1528 | 74.0 | 925 | 0.7476 | 0.8 | 0.3145 | 1.3685 | 0.8000 | 0.7704 | 0.2120 | 0.0942 | | 0.1528 | 74.96 | 937 | 0.7433 | 0.8 | 0.3126 | 1.3655 | 0.8000 | 0.7696 | 0.1907 | 0.0918 | | 0.1528 | 76.0 | 950 | 0.7519 | 0.8 | 0.3166 | 1.3683 | 0.8000 | 0.7704 | 0.2111 | 0.0949 | | 0.1528 | 76.96 | 962 | 0.7485 | 0.8 | 0.3152 | 1.3679 | 0.8000 | 0.7696 | 0.2035 | 0.0942 | | 0.1528 | 78.0 | 975 | 0.7496 | 0.8 | 0.3155 | 1.3716 | 0.8000 | 0.7704 | 0.1931 | 0.0940 | | 0.1528 | 78.96 | 987 | 0.7513 | 0.8 | 0.3163 | 1.3684 | 0.8000 | 0.7704 | 0.1888 | 0.0952 | | 0.1059 | 80.0 | 1000 | 0.7490 | 0.8 | 0.3157 | 1.3707 | 0.8000 | 0.7691 | 0.2118 | 0.0943 | | 0.1059 | 80.96 | 1012 | 0.7482 | 0.8 | 0.3151 | 1.3687 | 0.8000 | 0.7696 | 0.2060 | 0.0945 | | 0.1059 | 82.0 | 1025 | 0.7516 | 0.8 | 0.3163 | 1.3682 | 0.8000 | 0.7704 | 0.2248 | 0.0950 | | 0.1059 | 82.96 | 1037 | 0.7527 | 0.8 | 0.3174 | 1.3660 | 0.8000 | 0.7707 | 0.2204 | 0.0948 | | 0.1059 | 84.0 | 1050 | 0.7495 | 0.8 | 0.3156 | 1.3663 | 0.8000 | 0.7704 | 0.2067 | 0.0939 | | 0.1059 | 84.96 | 1062 | 0.7506 | 0.8 | 0.3161 | 1.3659 | 0.8000 | 0.7707 | 0.2086 | 0.0947 | | 0.1059 | 86.0 | 1075 | 0.7537 | 0.8 | 0.3179 | 1.3687 | 0.8000 | 0.7698 | 0.2001 | 0.0955 | | 0.1059 | 86.96 | 1087 | 0.7525 | 0.8 | 0.3172 | 1.3693 | 0.8000 | 0.7696 | 0.2096 | 0.0947 | | 0.1059 | 88.0 | 1100 | 0.7535 | 0.8 | 0.3175 | 1.3675 | 0.8000 | 0.7704 | 0.2091 | 0.0951 | | 0.1059 | 88.96 | 1112 | 0.7525 | 0.8 | 0.3172 | 1.3680 | 0.8000 | 0.7696 | 0.2009 | 0.0946 | | 0.1059 | 90.0 | 1125 | 0.7566 | 0.8 | 0.3190 | 1.3725 | 0.8000 | 0.7698 | 0.1881 | 0.0964 | | 0.1059 | 90.96 | 1137 | 0.7578 | 0.8 | 0.3195 | 1.3726 | 0.8000 | 0.7704 | 0.1880 | 0.0968 | | 0.1059 | 92.0 | 1150 | 0.7560 | 0.8 | 0.3186 | 1.3715 | 0.8000 | 0.7707 | 0.2095 | 0.0969 | | 0.1059 | 92.96 | 1162 | 0.7623 | 0.795 | 0.3219 | 1.3765 | 0.795 | 0.7681 | 0.1907 | 0.0979 | | 0.1059 | 94.0 | 1175 | 0.7567 | 0.8 | 0.3192 | 1.3709 | 0.8000 | 0.7698 | 0.2000 | 0.0953 | | 0.1059 | 94.96 | 1187 | 0.7538 | 0.8 | 0.3181 | 1.3708 | 0.8000 | 0.7691 | 0.1986 | 0.0958 | | 0.1059 | 96.0 | 1200 | 0.7530 | 0.8 | 0.3175 | 1.3725 | 0.8000 | 0.7693 | 0.2122 | 0.0958 | | 0.1059 | 96.96 | 1212 | 0.7607 | 0.8 | 0.3207 | 1.3730 | 0.8000 | 0.7709 | 0.1906 | 0.0972 | | 0.1059 | 98.0 | 1225 | 0.7647 | 0.79 | 0.3229 | 1.3411 | 0.79 | 0.7633 | 0.1889 | 0.0984 | | 0.1059 | 98.96 | 1237 | 0.7568 | 0.79 | 0.3191 | 1.4425 | 0.79 | 0.7644 | 0.1911 | 0.0976 | | 0.1059 | 100.0 | 1250 | 0.7586 | 0.8 | 0.3200 | 1.4486 | 0.8000 | 0.7696 | 0.2009 | 0.0952 | | 0.1059 | 100.96 | 1262 | 0.7552 | 0.8 | 0.3192 | 1.3728 | 0.8000 | 0.7696 | 0.1962 | 0.0953 | | 0.1059 | 102.0 | 1275 | 0.7601 | 0.8 | 0.3217 | 1.4309 | 0.8000 | 0.7691 | 0.2071 | 0.0969 | | 0.1059 | 102.96 | 1287 | 0.7608 | 0.795 | 0.3213 | 1.3702 | 0.795 | 0.7668 | 0.2068 | 0.0967 | | 0.1059 | 104.0 | 1300 | 0.7590 | 0.795 | 0.3202 | 1.3748 | 0.795 | 0.7668 | 0.1922 | 0.0967 | | 0.1059 | 104.96 | 1312 | 0.7626 | 0.795 | 0.3222 | 1.3775 | 0.795 | 0.7673 | 0.1917 | 0.0974 | | 0.1059 | 106.0 | 1325 | 0.7632 | 0.795 | 0.3228 | 1.3765 | 0.795 | 0.7664 | 0.2072 | 0.0977 | | 0.1059 | 106.96 | 1337 | 0.7612 | 0.795 | 0.3223 | 1.3764 | 0.795 | 0.7666 | 0.2011 | 0.0974 | | 0.1059 | 108.0 | 1350 | 0.7669 | 0.79 | 0.3246 | 1.3777 | 0.79 | 0.7639 | 0.2005 | 0.0981 | | 0.1059 | 108.96 | 1362 | 0.7658 | 0.795 | 0.3238 | 1.3782 | 0.795 | 0.7673 | 0.2099 | 0.0983 | | 0.1059 | 110.0 | 1375 | 0.7632 | 0.79 | 0.3232 | 1.3766 | 0.79 | 0.7639 | 0.2002 | 0.0978 | | 0.1059 | 110.96 | 1387 | 0.7651 | 0.79 | 0.3236 | 1.3758 | 0.79 | 0.7580 | 0.2134 | 0.0980 | | 0.1059 | 112.0 | 1400 | 0.7649 | 0.79 | 0.3235 | 1.3765 | 0.79 | 0.7583 | 0.1975 | 0.0982 | | 0.1059 | 112.96 | 1412 | 0.7683 | 0.79 | 0.3253 | 1.3759 | 0.79 | 0.7639 | 0.1913 | 0.0986 | | 0.1059 | 114.0 | 1425 | 0.7682 | 0.795 | 0.3253 | 1.3778 | 0.795 | 0.7668 | 0.1986 | 0.0984 | | 0.1059 | 114.96 | 1437 | 0.7666 | 0.79 | 0.3245 | 1.3771 | 0.79 | 0.7639 | 0.1838 | 0.0976 | | 0.1059 | 116.0 | 1450 | 0.7685 | 0.79 | 0.3255 | 1.3802 | 0.79 | 0.7639 | 0.1962 | 0.0988 | | 0.1059 | 116.96 | 1462 | 0.7676 | 0.785 | 0.3249 | 1.3783 | 0.785 | 0.7554 | 0.2011 | 0.0991 | | 0.1059 | 118.0 | 1475 | 0.7704 | 0.785 | 0.3262 | 1.3789 | 0.785 | 0.7516 | 0.2098 | 0.0995 | | 0.1059 | 118.96 | 1487 | 0.7701 | 0.785 | 0.3262 | 1.3806 | 0.785 | 0.7554 | 0.2167 | 0.0991 | | 0.0842 | 120.0 | 1500 | 0.7708 | 0.79 | 0.3267 | 1.3815 | 0.79 | 0.7639 | 0.1934 | 0.0990 | | 0.0842 | 120.96 | 1512 | 0.7710 | 0.785 | 0.3265 | 1.3790 | 0.785 | 0.7516 | 0.1928 | 0.0995 | | 0.0842 | 122.0 | 1525 | 0.7728 | 0.79 | 0.3274 | 1.3830 | 0.79 | 0.7639 | 0.1917 | 0.0996 | | 0.0842 | 122.96 | 1537 | 0.7708 | 0.785 | 0.3267 | 1.3826 | 0.785 | 0.7554 | 0.2057 | 0.0992 | | 0.0842 | 124.0 | 1550 | 0.7698 | 0.785 | 0.3262 | 1.3777 | 0.785 | 0.7554 | 0.2021 | 0.0996 | | 0.0842 | 124.96 | 1562 | 0.7706 | 0.785 | 0.3267 | 1.3825 | 0.785 | 0.7554 | 0.1949 | 0.0994 | | 0.0842 | 126.0 | 1575 | 0.7751 | 0.79 | 0.3290 | 1.3827 | 0.79 | 0.7639 | 0.1945 | 0.1002 | | 0.0842 | 126.96 | 1587 | 0.7734 | 0.79 | 0.3282 | 1.3855 | 0.79 | 0.7639 | 0.1882 | 0.0998 | | 0.0842 | 128.0 | 1600 | 0.7753 | 0.785 | 0.3290 | 1.3842 | 0.785 | 0.7554 | 0.1926 | 0.1006 | | 0.0842 | 128.96 | 1612 | 0.7731 | 0.78 | 0.3278 | 1.3808 | 0.78 | 0.7488 | 0.2115 | 0.0994 | | 0.0842 | 130.0 | 1625 | 0.7723 | 0.78 | 0.3276 | 1.3830 | 0.78 | 0.7486 | 0.2005 | 0.0994 | | 0.0842 | 130.96 | 1637 | 0.7746 | 0.78 | 0.3287 | 1.3810 | 0.78 | 0.7488 | 0.2103 | 0.0999 | | 0.0842 | 132.0 | 1650 | 0.7758 | 0.78 | 0.3291 | 1.3848 | 0.78 | 0.7488 | 0.2138 | 0.1004 | | 0.0842 | 132.96 | 1662 | 0.7771 | 0.78 | 0.3299 | 1.3833 | 0.78 | 0.7488 | 0.2080 | 0.1007 | | 0.0842 | 134.0 | 1675 | 0.7757 | 0.78 | 0.3295 | 1.3837 | 0.78 | 0.7488 | 0.2060 | 0.0999 | | 0.0842 | 134.96 | 1687 | 0.7754 | 0.78 | 0.3292 | 1.3836 | 0.78 | 0.7488 | 0.2070 | 0.1001 | | 0.0842 | 136.0 | 1700 | 0.7755 | 0.78 | 0.3294 | 1.3834 | 0.78 | 0.7488 | 0.2057 | 0.0999 | | 0.0842 | 136.96 | 1712 | 0.7755 | 0.78 | 0.3295 | 1.3874 | 0.78 | 0.7488 | 0.1999 | 0.0998 | | 0.0842 | 138.0 | 1725 | 0.7759 | 0.78 | 0.3296 | 1.4380 | 0.78 | 0.7488 | 0.2007 | 0.1002 | | 0.0842 | 138.96 | 1737 | 0.7776 | 0.78 | 0.3303 | 1.3868 | 0.78 | 0.7488 | 0.2091 | 0.1002 | | 0.0842 | 140.0 | 1750 | 0.7780 | 0.78 | 0.3304 | 1.3868 | 0.78 | 0.7488 | 0.2086 | 0.1005 | | 0.0842 | 140.96 | 1762 | 0.7780 | 0.78 | 0.3306 | 1.3855 | 0.78 | 0.7488 | 0.2065 | 0.1001 | | 0.0842 | 142.0 | 1775 | 0.7789 | 0.78 | 0.3311 | 1.3855 | 0.78 | 0.7488 | 0.2067 | 0.1003 | | 0.0842 | 142.96 | 1787 | 0.7798 | 0.78 | 0.3314 | 1.3856 | 0.78 | 0.7488 | 0.2083 | 0.1010 | | 0.0842 | 144.0 | 1800 | 0.7799 | 0.78 | 0.3315 | 1.3914 | 0.78 | 0.7488 | 0.2161 | 0.1004 | | 0.0842 | 144.96 | 1812 | 0.7806 | 0.78 | 0.3317 | 1.3857 | 0.78 | 0.7488 | 0.2024 | 0.1008 | | 0.0842 | 146.0 | 1825 | 0.7817 | 0.78 | 0.3322 | 1.3947 | 0.78 | 0.7488 | 0.2043 | 0.1009 | | 0.0842 | 146.96 | 1837 | 0.7815 | 0.78 | 0.3324 | 1.3898 | 0.78 | 0.7488 | 0.2118 | 0.1006 | | 0.0842 | 148.0 | 1850 | 0.7820 | 0.78 | 0.3326 | 1.3874 | 0.78 | 0.7488 | 0.2114 | 0.1008 | | 0.0842 | 148.96 | 1862 | 0.7821 | 0.78 | 0.3327 | 1.4391 | 0.78 | 0.7488 | 0.2087 | 0.1006 | | 0.0842 | 150.0 | 1875 | 0.7816 | 0.78 | 0.3324 | 1.4410 | 0.78 | 0.7488 | 0.2160 | 0.1006 | | 0.0842 | 150.96 | 1887 | 0.7826 | 0.78 | 0.3328 | 1.3927 | 0.78 | 0.7488 | 0.2011 | 0.1007 | | 0.0842 | 152.0 | 1900 | 0.7834 | 0.78 | 0.3332 | 1.4411 | 0.78 | 0.7488 | 0.1994 | 0.1009 | | 0.0842 | 152.96 | 1912 | 0.7830 | 0.78 | 0.3331 | 1.4409 | 0.78 | 0.7488 | 0.1967 | 0.1008 | | 0.0842 | 154.0 | 1925 | 0.7825 | 0.78 | 0.3329 | 1.4412 | 0.78 | 0.7488 | 0.2070 | 0.1008 | | 0.0842 | 154.96 | 1937 | 0.7827 | 0.78 | 0.3332 | 1.4399 | 0.78 | 0.7488 | 0.2097 | 0.1007 | | 0.0842 | 156.0 | 1950 | 0.7822 | 0.78 | 0.3329 | 1.4391 | 0.78 | 0.7488 | 0.1986 | 0.1006 | | 0.0842 | 156.96 | 1962 | 0.7838 | 0.78 | 0.3335 | 1.4414 | 0.78 | 0.7488 | 0.1967 | 0.1007 | | 0.0842 | 158.0 | 1975 | 0.7845 | 0.78 | 0.3337 | 1.3899 | 0.78 | 0.7488 | 0.2087 | 0.1008 | | 0.0842 | 158.96 | 1987 | 0.7846 | 0.78 | 0.3340 | 1.4419 | 0.78 | 0.7488 | 0.2002 | 0.1007 | | 0.0731 | 160.0 | 2000 | 0.7853 | 0.78 | 0.3343 | 1.4419 | 0.78 | 0.7488 | 0.1967 | 0.1010 | | 0.0731 | 160.96 | 2012 | 0.7853 | 0.78 | 0.3343 | 1.4425 | 0.78 | 0.7488 | 0.1963 | 0.1012 | | 0.0731 | 162.0 | 2025 | 0.7846 | 0.78 | 0.3341 | 1.4411 | 0.78 | 0.7488 | 0.1998 | 0.1008 | | 0.0731 | 162.96 | 2037 | 0.7856 | 0.78 | 0.3345 | 1.4419 | 0.78 | 0.7488 | 0.2000 | 0.1011 | | 0.0731 | 164.0 | 2050 | 0.7863 | 0.78 | 0.3348 | 1.4425 | 0.78 | 0.7488 | 0.1991 | 0.1014 | | 0.0731 | 164.96 | 2062 | 0.7863 | 0.78 | 0.3349 | 1.4414 | 0.78 | 0.7488 | 0.1969 | 0.1013 | | 0.0731 | 166.0 | 2075 | 0.7865 | 0.78 | 0.3349 | 1.4425 | 0.78 | 0.7488 | 0.1994 | 0.1015 | | 0.0731 | 166.96 | 2087 | 0.7863 | 0.78 | 0.3349 | 1.4412 | 0.78 | 0.7488 | 0.1966 | 0.1015 | | 0.0731 | 168.0 | 2100 | 0.7870 | 0.78 | 0.3352 | 1.4431 | 0.78 | 0.7488 | 0.1944 | 0.1016 | | 0.0731 | 168.96 | 2112 | 0.7868 | 0.78 | 0.3351 | 1.4425 | 0.78 | 0.7488 | 0.1919 | 0.1017 | | 0.0731 | 170.0 | 2125 | 0.7873 | 0.78 | 0.3354 | 1.4424 | 0.78 | 0.7488 | 0.1965 | 0.1017 | | 0.0731 | 170.96 | 2137 | 0.7870 | 0.78 | 0.3352 | 1.4418 | 0.78 | 0.7488 | 0.2081 | 0.1014 | | 0.0731 | 172.0 | 2150 | 0.7879 | 0.78 | 0.3356 | 1.4431 | 0.78 | 0.7488 | 0.1922 | 0.1017 | | 0.0731 | 172.96 | 2162 | 0.7874 | 0.78 | 0.3355 | 1.4421 | 0.78 | 0.7488 | 0.1967 | 0.1015 | | 0.0731 | 174.0 | 2175 | 0.7872 | 0.78 | 0.3355 | 1.4418 | 0.78 | 0.7488 | 0.1965 | 0.1016 | | 0.0731 | 174.96 | 2187 | 0.7882 | 0.78 | 0.3358 | 1.4433 | 0.78 | 0.7488 | 0.1945 | 0.1017 | | 0.0731 | 176.0 | 2200 | 0.7882 | 0.78 | 0.3358 | 1.4423 | 0.78 | 0.7488 | 0.1969 | 0.1016 | | 0.0731 | 176.96 | 2212 | 0.7885 | 0.78 | 0.3361 | 1.4431 | 0.78 | 0.7488 | 0.1948 | 0.1017 | | 0.0731 | 178.0 | 2225 | 0.7883 | 0.78 | 0.3359 | 1.4428 | 0.78 | 0.7488 | 0.1946 | 0.1017 | | 0.0731 | 178.96 | 2237 | 0.7882 | 0.78 | 0.3359 | 1.4426 | 0.78 | 0.7488 | 0.1920 | 0.1017 | | 0.0731 | 180.0 | 2250 | 0.7884 | 0.78 | 0.3360 | 1.4425 | 0.78 | 0.7488 | 0.2000 | 0.1016 | | 0.0731 | 180.96 | 2262 | 0.7886 | 0.78 | 0.3361 | 1.4431 | 0.78 | 0.7488 | 0.1946 | 0.1017 | | 0.0731 | 182.0 | 2275 | 0.7888 | 0.78 | 0.3362 | 1.4428 | 0.78 | 0.7488 | 0.1977 | 0.1016 | | 0.0731 | 182.96 | 2287 | 0.7889 | 0.78 | 0.3362 | 1.4428 | 0.78 | 0.7488 | 0.1922 | 0.1017 | | 0.0731 | 184.0 | 2300 | 0.7889 | 0.78 | 0.3362 | 1.4431 | 0.78 | 0.7488 | 0.1946 | 0.1017 | | 0.0731 | 184.96 | 2312 | 0.7889 | 0.78 | 0.3362 | 1.4427 | 0.78 | 0.7488 | 0.1946 | 0.1017 | | 0.0731 | 186.0 | 2325 | 0.7889 | 0.78 | 0.3362 | 1.4431 | 0.78 | 0.7488 | 0.1922 | 0.1018 | | 0.0731 | 186.96 | 2337 | 0.7892 | 0.78 | 0.3364 | 1.4432 | 0.78 | 0.7488 | 0.1921 | 0.1017 | | 0.0731 | 188.0 | 2350 | 0.7890 | 0.78 | 0.3363 | 1.4427 | 0.78 | 0.7488 | 0.1921 | 0.1017 | | 0.0731 | 188.96 | 2362 | 0.7892 | 0.78 | 0.3364 | 1.4429 | 0.78 | 0.7488 | 0.1922 | 0.1017 | | 0.0731 | 190.0 | 2375 | 0.7893 | 0.78 | 0.3364 | 1.4433 | 0.78 | 0.7488 | 0.1945 | 0.1017 | | 0.0731 | 190.96 | 2387 | 0.7893 | 0.78 | 0.3364 | 1.4430 | 0.78 | 0.7488 | 0.1921 | 0.1017 | | 0.0731 | 192.0 | 2400 | 0.7893 | 0.78 | 0.3364 | 1.4430 | 0.78 | 0.7488 | 0.1922 | 0.1018 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.13.1 - Datasets 2.13.1 - Tokenizers 0.13.3
asrimanth/person-thumbs-up-lora-no-cap
asrimanth
2023-07-12T17:31:28Z
5
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-10T21:45:20Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - asrimanth/person-thumbs-up-lora-no-cap These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the Custom dataset dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
zblaaa/t5-base-finetuned-ner_docred_30
zblaaa
2023-07-12T17:30:08Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-12T11:00:35Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-base-finetuned-ner_docred_30 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-ner_docred_30 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1900 - Rouge1: 6.698 - Rouge2: 5.261 - Rougel: 6.6835 - Rougelsum: 6.6818 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 125 | 0.5156 | 6.5406 | 4.9855 | 6.4905 | 6.494 | 20.0 | | No log | 2.0 | 250 | 0.3949 | 6.5113 | 4.9122 | 6.4534 | 6.4453 | 20.0 | | No log | 3.0 | 375 | 0.3280 | 6.5165 | 4.9088 | 6.4537 | 6.451 | 20.0 | | 0.7311 | 4.0 | 500 | 0.2949 | 6.424 | 4.7298 | 6.3672 | 6.3627 | 20.0 | | 0.7311 | 5.0 | 625 | 0.2764 | 6.6189 | 5.1219 | 6.5651 | 6.5672 | 20.0 | | 0.7311 | 6.0 | 750 | 0.2633 | 6.628 | 5.1335 | 6.5664 | 6.5721 | 20.0 | | 0.7311 | 7.0 | 875 | 0.2547 | 6.5591 | 4.9979 | 6.5075 | 6.5057 | 20.0 | | 0.3331 | 8.0 | 1000 | 0.2482 | 6.6612 | 5.1918 | 6.5987 | 6.6068 | 20.0 | | 0.3331 | 9.0 | 1125 | 0.2413 | 6.6093 | 5.0954 | 6.5515 | 6.5553 | 20.0 | | 0.3331 | 10.0 | 1250 | 0.2357 | 6.6264 | 5.1201 | 6.5681 | 6.5723 | 20.0 | | 0.3331 | 11.0 | 1375 | 0.2300 | 6.6487 | 5.1525 | 6.6176 | 6.6177 | 20.0 | | 0.2788 | 12.0 | 1500 | 0.2226 | 6.6858 | 5.2325 | 6.6745 | 6.6762 | 20.0 | | 0.2788 | 13.0 | 1625 | 0.2166 | 6.6495 | 5.1531 | 6.6378 | 6.6377 | 20.0 | | 0.2788 | 14.0 | 1750 | 0.2108 | 6.6807 | 5.2212 | 6.6653 | 6.6664 | 20.0 | | 0.2788 | 15.0 | 1875 | 0.2068 | 6.6811 | 5.2248 | 6.6699 | 6.6697 | 20.0 | | 0.2435 | 16.0 | 2000 | 0.2030 | 6.6701 | 5.2077 | 6.652 | 6.6492 | 20.0 | | 0.2435 | 17.0 | 2125 | 0.1997 | 6.6845 | 5.2334 | 6.6647 | 6.6624 | 20.0 | | 0.2435 | 18.0 | 2250 | 0.1978 | 6.6762 | 5.2202 | 6.6571 | 6.6559 | 20.0 | | 0.2435 | 19.0 | 2375 | 0.1964 | 6.684 | 5.2358 | 6.6695 | 6.6683 | 20.0 | | 0.2188 | 20.0 | 2500 | 0.1957 | 6.6882 | 5.2426 | 6.675 | 6.6735 | 20.0 | | 0.2188 | 21.0 | 2625 | 0.1942 | 6.6882 | 5.2426 | 6.675 | 6.6735 | 20.0 | | 0.2188 | 22.0 | 2750 | 0.1932 | 6.6935 | 5.2513 | 6.6784 | 6.6762 | 20.0 | | 0.2188 | 23.0 | 2875 | 0.1924 | 6.6935 | 5.2513 | 6.6784 | 6.6762 | 20.0 | | 0.2052 | 24.0 | 3000 | 0.1918 | 6.6882 | 5.2426 | 6.675 | 6.6735 | 20.0 | | 0.2052 | 25.0 | 3125 | 0.1915 | 6.6935 | 5.2513 | 6.6784 | 6.6762 | 20.0 | | 0.2052 | 26.0 | 3250 | 0.1908 | 6.698 | 5.261 | 6.6835 | 6.6818 | 20.0 | | 0.2052 | 27.0 | 3375 | 0.1905 | 6.698 | 5.261 | 6.6835 | 6.6818 | 20.0 | | 0.1977 | 28.0 | 3500 | 0.1901 | 6.698 | 5.261 | 6.6835 | 6.6818 | 20.0 | | 0.1977 | 29.0 | 3625 | 0.1900 | 6.698 | 5.261 | 6.6835 | 6.6818 | 20.0 | | 0.1977 | 30.0 | 3750 | 0.1900 | 6.698 | 5.261 | 6.6835 | 6.6818 | 20.0 | ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.1.0.dev20230611+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
SHENMU007/neunit_BASE_V12.3
SHENMU007
2023-07-12T17:27:42Z
75
0
transformers
[ "transformers", "pytorch", "tensorboard", "speecht5", "text-to-audio", "1.1.0", "generated_from_trainer", "zh", "dataset:facebook/voxpopuli", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2023-07-12T14:29:43Z
--- language: - zh license: mit base_model: microsoft/speecht5_tts tags: - 1.1.0 - generated_from_trainer datasets: - facebook/voxpopuli model-index: - name: SpeechT5 TTS Dutch neunit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SpeechT5 TTS Dutch neunit This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the VoxPopuli dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
sl-alex/llama-7b-alpaca-stepwise-lora
sl-alex
2023-07-12T17:22:09Z
0
0
null
[ "en", "dataset:sl-alex/openai-prm800k-solutions-only", "license:apache-2.0", "region:us" ]
null
2023-07-12T15:00:40Z
--- license: apache-2.0 language: - en datasets: - sl-alex/openai-prm800k-solutions-only --- Finetunes Llama-7b+Alpaca to solve problems via stepwise reasoning (OpenAI [PRM800k dataset](https://github.com/openai/prm800k), or rather our postprocessed version, [`sl-alex/openai-prm800k-solutions-only`](https://huggingface.co/datasets/sl-alex/openai-prm800k-solutions-only)). ## Model description This is a fork of [`llama-7b`](https://huggingface.co/huggyllama/llama-7b) + [`tloen/alpaca-lora-7b`](https://huggingface.co/tloen/alpaca-lora-7b). That is: we loaded Llama-7b, we applied Alpaca LoRA, expanded vocabulary, then QLoRA 4-bit finetuned from there. Parts: - base model [`llama-7b`](https://huggingface.co/huggyllama/llama-7b) - LoRA 0 [`tloen/alpaca-lora-7b`](https://huggingface.co/tloen/alpaca-lora-7b) - LoRA 1 - `adapter_config.json` - `adapter_model.bin` - tokenizer (this is just [`llama-7b`](https://huggingface.co/huggyllama/llama-7b)'s tokenizer, plus a `[PAD]` token for which no embedding was learned. in practice you can inference a batch-of-1 using the original [`llama-7b`](https://huggingface.co/huggyllama/llama-7b) tokenizer instead) - `added_tokens.json` - `special_tokens_map.json` - `tokenizer.model` - `tokenizer_config.json` ## Training Trained using [`qlora.py`](https://github.com/scottlogic-alex/qlora/blob/stepwise/qlora.py) from our [`stepwise`](https://github.com/scottlogic-alex/qlora/tree/stepwise) branch of [qlora](https://github.com/artidoro/qlora). Known-good as of commit [`3a86919`](https://github.com/scottlogic-alex/qlora/blob/3a8691986b6718562bcd8e3522447b52842c1d9a/qlora.py). `python -m qlora --model_name_or_path huggyllama/llama-7b --lora_name_or_path tloen/alpaca-lora-7b --dataset prm800k-solutions --dataset_format prm800k-solutions --bf16 --max_memory_MB 24000 --use_bos_token_in_prompt --truncate_toward_center --source_max_len 184 --target_max_len 998 --gradient_accumulation_steps 4 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --learning_rate 0.0002 --run_name 13b_alpaca_special_tokens_long --report_to wandb --save_steps 64 --save_total_limit 3 --max_steps 1664 --evaluation_strategy steps --eval_steps 64 --generate_steps 16` ## Usage You can load using [`evaluate.py`](https://github.com/scottlogic-alex/qlora/blob/stepwise/evaluate.py#L209-L278) from our [`stepwise`](https://github.com/scottlogic-alex/qlora/tree/stepwise) branch of [qlora](https://github.com/artidoro/qlora). Known-good as of commit [`3a86919`](https://github.com/scottlogic-alex/qlora/blob/3a8691986b6718562bcd8e3522447b52842c1d9a/evaluate.py). ```bash git clone -b stepwise https://github.com/scottlogic-alex/qlora.git cd qlora python -m evaluate \ --model_name_or_path huggyllama/llama-7b \ --base_lora_model_name_or_path tloen/alpaca-lora-7b \ --tokenizer_model_name_or_path huggyllama/llama-7b \ --lora_model_name_or_path sl-alex/llama-7b-alpaca-stepwise-lora \ --use_bos_token_in_prompt \ --overrun_countermeasures False ``` ## Prompt style The model is finetuned for instruction-response. `prompt = '<s>Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\nHow do I feed a family of 5 without ingredients?\n\n### Response:\n<|step_start|>'` ## Example output: `$ How do I drink a matcha latte?` `I’ve never drunk a matcha latte before, but I’ve seen people do it online. It looks like they dump the entire contents of a little teabag into a frothed milk drink and then mix it well. I think I could do that.<|step_end|><|step_start|>I’ll have to buy a matcha latte kit first, because I don’t know what they have in the teabags. I’ll see if my favorite coffee shop sells them.<|step_end|><|step_start|>I’ll also need a whisk or a mixer. I’ll look online for the best one. Which one do you recommend?<|step_end|><|step_start|>I’ll need to heat up the milk first. Which will you use -- the microwave or the stovetop?<|step_end|><|step_start|>I’ll warm up 16 ounces of milk in the microwave. For the stovetop, I’ll just put it on the burner for two minutes. I don’t want it to boil.` `$ What is the third Fibonacci number?` `I need to find the third Fibonacci number, which is the number after the second, which is F(2).<|step_end|><|step_start|>There are two ways to get the third Fibonacci number. I could either wait one more day and get F(3) using the Fibonacci sequence, or I could do something more clever and faster by using a computer. <|step_end|><|step_start|>Computers are great for mathematics, so I'll see if I can get F(3) quicker with a computer.<|step_end|><|step_start|>First, though, I'll explain what Fibonacci means. It's named after a 13th-century Italian accountant named Leonardo Fibonacci who created a sequence of numbers where each following number is the sum of the two previous ones. <|step_end|><|step_start|>The Fibonacci sequence begins 0, 1, 1, 2, 3, 5, 8, 13, 21, and so on. <|step_end|><|` `$ How do I make a cup of tea?` `First, I find a teaspoonful of loose-leaf Assam tea in a teapot. Then, I fill the teapot with water that has been warming up over a stovetop burner.<|step_end|><|step_start|>Once the water has reached a rolling boil, I pour it over the tea, cover the pot, and steam it for at least two minutes. Uncover the pot, remove the lid, and serve. That's how to make a cup of tea.` `<|response_start|>I've always thought Assam tea was an Indian tea, but this web site says it comes from the north-center part of Bangladesh. I wonder if there's a difference between Assam and Bangladesh tea.<|Response_End|><|step_start|>BANGLADESH tea has all the qualities of Assam, but the difference in the final cup lies in the aroma and the lingering aftertaste.` `<|step_end|><|response_start|>The Assam tea comes in very large, flat pieces of processed leaves. They are cut from the tree and rolled` `$ How do I open a jar?` `I need to find a jar opener at my school. I can't just use my mouth because it's too dangerous to choke on the lid, and it would ruin my school uniform. I could bring a bottle opener from home, but it might not work. I also can't use a knife, because that could get me into trouble with the headmaster. The solution is to ask a friendly student to open the jar for me.</|step_end|><|step_start|>I find a student who is willing to help. We both hold the jar with our hands on the inside and outside of the rim, and she uses her nails to pry the lid off. She has been doing this for years, and it looks easy, but I should be careful not to scratch myself.</|step_end|><|step_start|>We set the jar down and all the pieces are there: the lid, the jar, and the plastic bag. I can never open another jar without feeling proud of myself. My classmates are impressed by my skills as a consumer.</|step_end|><|step_start|>I should keep the lid as a souvenir, but`
henda/bert-multilingual-ner
henda
2023-07-12T17:17:04Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-12T08:39:41Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-multilingual-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-multilingual-ner This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0678 - Precision: 0.7057 - Recall: 0.7305 - F1: 0.7179 - Accuracy: 0.9734 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0946 | 0.06 | 10000 | 0.0974 | 0.5971 | 0.6368 | 0.6163 | 0.9612 | | 0.0935 | 0.12 | 20000 | 0.0892 | 0.6258 | 0.6633 | 0.6440 | 0.9652 | | 0.0829 | 0.17 | 30000 | 0.0913 | 0.6393 | 0.6557 | 0.6474 | 0.9653 | | 0.086 | 0.23 | 40000 | 0.0829 | 0.6868 | 0.6131 | 0.6478 | 0.9679 | | 0.0836 | 0.29 | 50000 | 0.0806 | 0.6450 | 0.7019 | 0.6722 | 0.9673 | | 0.0813 | 0.35 | 60000 | 0.0784 | 0.6718 | 0.6823 | 0.6770 | 0.9694 | | 0.0756 | 0.41 | 70000 | 0.0771 | 0.6559 | 0.7217 | 0.6872 | 0.9696 | | 0.0753 | 0.47 | 80000 | 0.0733 | 0.6944 | 0.6660 | 0.6799 | 0.9706 | | 0.0716 | 0.52 | 90000 | 0.0781 | 0.6698 | 0.7151 | 0.6917 | 0.9704 | | 0.0785 | 0.58 | 100000 | 0.0723 | 0.6936 | 0.6960 | 0.6948 | 0.9714 | | 0.0707 | 0.64 | 110000 | 0.0729 | 0.6943 | 0.7098 | 0.7020 | 0.9718 | | 0.0699 | 0.7 | 120000 | 0.0714 | 0.6928 | 0.7200 | 0.7061 | 0.9717 | | 0.0729 | 0.76 | 130000 | 0.0715 | 0.6887 | 0.7305 | 0.7090 | 0.9722 | | 0.0696 | 0.82 | 140000 | 0.0703 | 0.6826 | 0.7479 | 0.7137 | 0.9722 | | 0.0654 | 0.87 | 150000 | 0.0697 | 0.6851 | 0.7500 | 0.7161 | 0.9727 | | 0.0636 | 0.93 | 160000 | 0.0684 | 0.6968 | 0.7410 | 0.7183 | 0.9731 | | 0.0641 | 0.99 | 170000 | 0.0679 | 0.7047 | 0.7315 | 0.7179 | 0.9734 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1 - Datasets 2.13.1 - Tokenizers 0.13.3
asrimanth/person-thumbs-up-plain-lora
asrimanth
2023-07-12T17:12:05Z
2
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-11T22:22:40Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - asrimanth/person-thumbs-up-plain-lora These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the Custom dataset dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
Winmodel/poca-SoccerTwos
Winmodel
2023-07-12T17:03:16Z
8
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-07-12T17:02:13Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Winmodel/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
jmarcolan/joao_funciona2
jmarcolan
2023-07-12T17:03:08Z
2
0
transformers
[ "transformers", "en", "endpoints_compatible", "region:us" ]
null
2023-07-12T16:50:45Z
--- language: en --- <p align="center"> <img src="https://doctr-static.mindee.com/models?id=v0.3.1/Logo_doctr.gif&src=0" width="60%"> </p> **Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch** ## Task: recognition https://github.com/mindee/doctr ### Example usage: ```python >>> from doctr.io import DocumentFile >>> from doctr.models import ocr_predictor, from_hub >>> img = DocumentFile.from_images(['<image_path>']) >>> # Load your model from the hub >>> model = from_hub('mindee/my-model') >>> # Pass it to the predictor >>> # If your model is a recognition model: >>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', >>> reco_arch=model, >>> pretrained=True) >>> # If your model is a detection model: >>> predictor = ocr_predictor(det_arch=model, >>> reco_arch='crnn_mobilenet_v3_small', >>> pretrained=True) >>> # Get your predictions >>> res = predictor(img) ```
veluchs/q-FrozenLake-v1-4x4-noSlippery
veluchs
2023-07-12T16:47:45Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-12T16:47:43Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="veluchs/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Rui31415/ppo-Huggy
Rui31415
2023-07-12T16:26:21Z
25
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-07-12T16:26:17Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Rui31415/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Hinata197/videomae-base-finetuned-ucf101-subset
Hinata197
2023-07-12T16:20:32Z
59
0
transformers
[ "transformers", "pytorch", "tensorboard", "videomae", "video-classification", "generated_from_trainer", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2023-07-12T16:02:00Z
--- license: cc-by-nc-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-ucf101-subset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-finetuned-ucf101-subset This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1006 - Accuracy: 0.9714 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 600 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.6882 | 0.25 | 150 | 1.3392 | 0.4714 | | 0.3556 | 1.25 | 300 | 0.5520 | 0.7857 | | 0.1375 | 2.25 | 450 | 0.2829 | 0.8857 | | 0.0361 | 3.25 | 600 | 0.1006 | 0.9714 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
0sunfire0/q-FrozenLake-v1-4x4-noSlippery
0sunfire0
2023-07-12T16:13:41Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-12T16:13:39Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="0sunfire0/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
YanJiangJerry/covid-augment-tweet-roberta-large-e4
YanJiangJerry
2023-07-12T16:11:00Z
116
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-12T14:31:14Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: covid-augment-tweet-roberta-large-e4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # covid-augment-tweet-roberta-large-e4 This model is a fine-tuned version of [Amalq/autotrain-smm4h_large_roberta_clean-874027878](https://huggingface.co/Amalq/autotrain-smm4h_large_roberta_clean-874027878) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5214 - Accuracy: 0.9510 - F1: 0.8707 - Precision: 0.8562 - Recall: 0.8858 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.1484 | 1.0 | 4089 | 0.4570 | 0.9265 | 0.8273 | 0.7358 | 0.9446 | | 0.0738 | 2.0 | 8178 | 0.4873 | 0.9368 | 0.8414 | 0.7903 | 0.8997 | | 0.0265 | 3.0 | 12267 | 0.4970 | 0.9484 | 0.8587 | 0.8773 | 0.8408 | | 0.0043 | 4.0 | 16356 | 0.5214 | 0.9510 | 0.8707 | 0.8562 | 0.8858 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
phoenix-glr/wav2vec2-base-finetuned-ks
phoenix-glr
2023-07-12T15:57:35Z
161
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "dataset:superb", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-12T13:54:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-ks results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.0855 - Accuracy: 0.9844 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6422 | 1.0 | 399 | 0.5417 | 0.9622 | | 0.2815 | 2.0 | 798 | 0.1712 | 0.9771 | | 0.2034 | 3.0 | 1197 | 0.1125 | 0.9815 | | 0.1486 | 4.0 | 1597 | 0.0961 | 0.9809 | | 0.1262 | 5.0 | 1995 | 0.0855 | 0.9844 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 1.16.1 - Tokenizers 0.13.3
LarryAIDraw/brj-saori-V1
LarryAIDraw
2023-07-12T15:55:54Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-12T15:27:13Z
--- license: creativeml-openrail-m --- https://civitai.com/models/81104/saori-blue-archive
LarryAIDraw/silverwolf-000002
LarryAIDraw
2023-07-12T15:55:23Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-12T15:26:29Z
--- license: creativeml-openrail-m --- https://civitai.com/models/106319/lora-honkai-star-rail-silverwolf
LarryAIDraw/rezerowitches-25
LarryAIDraw
2023-07-12T15:54:25Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-12T15:23:05Z
--- license: creativeml-openrail-m --- https://civitai.com/models/107626/rezero-witches-pack-7-in-1-echidna-satella-minerva-daphne-typhon-carmilla-sekhmet
Ruxun/yolov8-player
Ruxun
2023-07-12T15:35:10Z
0
0
null
[ "region:us" ]
null
2023-06-05T21:17:20Z
Finetuned Model based on yolov8 for harvard basketball team player detection
bofenghuang/vigogne-7b-chat
bofenghuang
2023-07-12T15:33:38Z
1,478
4
transformers
[ "transformers", "pytorch", "llama", "text-generation", "LLM", "fr", "license:openrail", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-05-15T14:07:53Z
--- license: openrail language: - fr pipeline_tag: text-generation library_name: transformers tags: - llama - LLM inference: false --- <p align="center" width="100%"> <img src="https://huggingface.co/bofenghuang/vigogne-7b-chat/resolve/main/vigogne_logo.png" alt="Vigogne" style="width: 40%; min-width: 300px; display: block; margin: auto;"> </p> # Vigogne-7B-Chat: A French Chat LLaMA Model Vigogne-7B-Chat is a LLaMA-7B model fine-tuned to conduct multi-turn dialogues in 🇫🇷 French between human user and AI assistant. For more information, please visit the Github repo: https://github.com/bofenghuang/vigogne **Usage and License Notices**: Same as [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca), Vigogne is intended and licensed for research use only. The dataset is CC BY NC 4.0 (allowing only non-commercial use) and models trained using the dataset should not be used outside of research purposes. ## Usage ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig from vigogne.preprocess import generate_inference_chat_prompt model_name_or_path = "bofenghuang/vigogne-7b-chat" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, padding_side="right", use_fast=False) model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float16, device_map="auto") user_query = "Expliquez la différence entre DoS et phishing." prompt = generate_inference_chat_prompt([[user_query, ""]], tokenizer=tokenizer) input_ids = tokenizer(prompt, return_tensors="pt")["input_ids"].to(model.device) input_length = input_ids.shape[1] generated_outputs = model.generate( input_ids=input_ids, generation_config=GenerationConfig( temperature=0.1, do_sample=True, repetition_penalty=1.0, max_new_tokens=512, ), return_dict_in_generate=True, ) generated_tokens = generated_outputs.sequences[0, input_length:] generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True) print(generated_text) ``` You can infer this model by using the following Google Colab Notebook. <a href="https://colab.research.google.com/github/bofenghuang/vigogne/blob/main/notebooks/infer_chat.ipynb" target="_blank"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> ## Limitations Vigogne is still under development, and there are many limitations that have to be addressed. Please note that it is possible that the model generates harmful or biased content, incorrect information or generally unhelpful answers.
jordyvl/vit-tiny_rvl_cdip_100_examples_per_class_kd_CEKD_t2.5_a0.7
jordyvl
2023-07-12T15:32:48Z
163
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-12T14:55:18Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-tiny_rvl_cdip_100_examples_per_class_kd_CEKD_t2.5_a0.7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-tiny_rvl_cdip_100_examples_per_class_kd_CEKD_t2.5_a0.7 This model is a fine-tuned version of [WinKawaks/vit-tiny-patch16-224](https://huggingface.co/WinKawaks/vit-tiny-patch16-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7789 - Accuracy: 0.565 - Brier Loss: 0.5798 - Nll: 2.3548 - F1 Micro: 0.565 - F1 Macro: 0.5569 - Ece: 0.1677 - Aurc: 0.2032 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:| | No log | 1.0 | 7 | 4.7719 | 0.04 | 1.0712 | 7.3456 | 0.04 | 0.0315 | 0.2816 | 0.9543 | | No log | 2.0 | 14 | 3.7636 | 0.1 | 0.9486 | 5.7989 | 0.1000 | 0.0863 | 0.1625 | 0.8854 | | No log | 3.0 | 21 | 3.3871 | 0.235 | 0.8838 | 5.3315 | 0.235 | 0.1857 | 0.1589 | 0.6274 | | No log | 4.0 | 28 | 2.8780 | 0.2975 | 0.7900 | 3.5467 | 0.2975 | 0.2884 | 0.1672 | 0.4712 | | No log | 5.0 | 35 | 2.5223 | 0.3875 | 0.7164 | 3.0188 | 0.3875 | 0.3630 | 0.1596 | 0.3495 | | No log | 6.0 | 42 | 2.3634 | 0.43 | 0.6927 | 3.1378 | 0.4300 | 0.4031 | 0.1877 | 0.3055 | | No log | 7.0 | 49 | 2.3487 | 0.445 | 0.7009 | 3.0084 | 0.445 | 0.4123 | 0.2026 | 0.3003 | | No log | 8.0 | 56 | 2.2521 | 0.47 | 0.6857 | 2.8634 | 0.47 | 0.4607 | 0.1977 | 0.2918 | | No log | 9.0 | 63 | 2.3597 | 0.4775 | 0.6955 | 2.6768 | 0.4775 | 0.4642 | 0.2215 | 0.2787 | | No log | 10.0 | 70 | 2.3524 | 0.46 | 0.7130 | 2.7830 | 0.46 | 0.4441 | 0.2429 | 0.2941 | | No log | 11.0 | 77 | 2.4233 | 0.46 | 0.7108 | 3.0867 | 0.46 | 0.4418 | 0.2247 | 0.2828 | | No log | 12.0 | 84 | 2.2723 | 0.485 | 0.6901 | 2.7313 | 0.485 | 0.4742 | 0.2293 | 0.2774 | | No log | 13.0 | 91 | 2.2818 | 0.49 | 0.7007 | 2.5829 | 0.49 | 0.4859 | 0.2473 | 0.2791 | | No log | 14.0 | 98 | 2.1682 | 0.4975 | 0.6695 | 2.8292 | 0.4975 | 0.4815 | 0.2170 | 0.2653 | | No log | 15.0 | 105 | 2.0652 | 0.52 | 0.6520 | 2.4319 | 0.52 | 0.5120 | 0.2079 | 0.2617 | | No log | 16.0 | 112 | 2.0524 | 0.5225 | 0.6384 | 2.5273 | 0.5225 | 0.5128 | 0.1980 | 0.2391 | | No log | 17.0 | 119 | 2.1736 | 0.48 | 0.6765 | 2.4887 | 0.48 | 0.4809 | 0.2112 | 0.2834 | | No log | 18.0 | 126 | 2.0096 | 0.515 | 0.6496 | 2.4230 | 0.515 | 0.5215 | 0.1957 | 0.2513 | | No log | 19.0 | 133 | 2.0207 | 0.5175 | 0.6417 | 2.4591 | 0.5175 | 0.5104 | 0.2011 | 0.2526 | | No log | 20.0 | 140 | 1.9152 | 0.5425 | 0.6044 | 2.5069 | 0.5425 | 0.5405 | 0.1826 | 0.2147 | | No log | 21.0 | 147 | 1.9600 | 0.52 | 0.6332 | 2.5016 | 0.52 | 0.5204 | 0.1871 | 0.2427 | | No log | 22.0 | 154 | 1.9325 | 0.515 | 0.6226 | 2.4981 | 0.515 | 0.5078 | 0.1860 | 0.2323 | | No log | 23.0 | 161 | 1.9172 | 0.53 | 0.6144 | 2.4601 | 0.53 | 0.5221 | 0.1941 | 0.2311 | | No log | 24.0 | 168 | 1.8891 | 0.5425 | 0.6091 | 2.4653 | 0.5425 | 0.5399 | 0.1933 | 0.2260 | | No log | 25.0 | 175 | 1.9460 | 0.5175 | 0.6214 | 2.4785 | 0.5175 | 0.5168 | 0.1694 | 0.2335 | | No log | 26.0 | 182 | 1.9060 | 0.5525 | 0.5970 | 2.4789 | 0.5525 | 0.5430 | 0.1934 | 0.2137 | | No log | 27.0 | 189 | 1.9421 | 0.5375 | 0.6205 | 2.4814 | 0.5375 | 0.5313 | 0.2135 | 0.2402 | | No log | 28.0 | 196 | 2.0195 | 0.545 | 0.6187 | 2.5330 | 0.545 | 0.5256 | 0.1800 | 0.2360 | | No log | 29.0 | 203 | 1.9428 | 0.535 | 0.6167 | 2.4894 | 0.535 | 0.5111 | 0.1862 | 0.2322 | | No log | 30.0 | 210 | 1.8996 | 0.5225 | 0.6207 | 2.4810 | 0.5225 | 0.5137 | 0.1994 | 0.2330 | | No log | 31.0 | 217 | 1.8462 | 0.54 | 0.6119 | 2.4201 | 0.54 | 0.5341 | 0.1817 | 0.2190 | | No log | 32.0 | 224 | 1.8324 | 0.55 | 0.5988 | 2.4230 | 0.55 | 0.5427 | 0.1888 | 0.2171 | | No log | 33.0 | 231 | 1.8393 | 0.545 | 0.5977 | 2.3943 | 0.545 | 0.5339 | 0.1838 | 0.2172 | | No log | 34.0 | 238 | 1.8704 | 0.5475 | 0.6081 | 2.4488 | 0.5475 | 0.5427 | 0.1768 | 0.2200 | | No log | 35.0 | 245 | 1.8546 | 0.54 | 0.6022 | 2.3273 | 0.54 | 0.5316 | 0.1847 | 0.2226 | | No log | 36.0 | 252 | 1.8608 | 0.53 | 0.5972 | 2.5153 | 0.53 | 0.5139 | 0.1810 | 0.2202 | | No log | 37.0 | 259 | 1.8663 | 0.5325 | 0.6057 | 2.4642 | 0.5325 | 0.5243 | 0.1836 | 0.2205 | | No log | 38.0 | 266 | 1.8300 | 0.545 | 0.5954 | 2.5101 | 0.545 | 0.5418 | 0.1890 | 0.2141 | | No log | 39.0 | 273 | 1.8121 | 0.5625 | 0.5853 | 2.4397 | 0.5625 | 0.5550 | 0.1704 | 0.2110 | | No log | 40.0 | 280 | 1.7916 | 0.54 | 0.5884 | 2.3565 | 0.54 | 0.5361 | 0.1685 | 0.2135 | | No log | 41.0 | 287 | 1.8353 | 0.5575 | 0.5929 | 2.4252 | 0.5575 | 0.5451 | 0.1823 | 0.2116 | | No log | 42.0 | 294 | 1.7999 | 0.5675 | 0.5839 | 2.4820 | 0.5675 | 0.5631 | 0.1729 | 0.2045 | | No log | 43.0 | 301 | 1.8622 | 0.52 | 0.6106 | 2.4823 | 0.52 | 0.5028 | 0.1948 | 0.2270 | | No log | 44.0 | 308 | 1.7892 | 0.55 | 0.5892 | 2.3342 | 0.55 | 0.5450 | 0.1798 | 0.2126 | | No log | 45.0 | 315 | 1.7978 | 0.545 | 0.5868 | 2.4345 | 0.545 | 0.5439 | 0.1894 | 0.2094 | | No log | 46.0 | 322 | 1.7697 | 0.56 | 0.5772 | 2.4272 | 0.56 | 0.5585 | 0.1601 | 0.1997 | | No log | 47.0 | 329 | 1.7754 | 0.5475 | 0.5835 | 2.3977 | 0.5475 | 0.5438 | 0.1759 | 0.2059 | | No log | 48.0 | 336 | 1.7922 | 0.545 | 0.5929 | 2.4119 | 0.545 | 0.5390 | 0.1891 | 0.2131 | | No log | 49.0 | 343 | 1.8055 | 0.5625 | 0.5872 | 2.3654 | 0.5625 | 0.5497 | 0.1759 | 0.2073 | | No log | 50.0 | 350 | 1.7972 | 0.56 | 0.5894 | 2.3366 | 0.56 | 0.5487 | 0.1803 | 0.2083 | | No log | 51.0 | 357 | 1.7890 | 0.555 | 0.5815 | 2.3858 | 0.555 | 0.5501 | 0.1693 | 0.2067 | | No log | 52.0 | 364 | 1.7958 | 0.5475 | 0.5883 | 2.4244 | 0.5475 | 0.5355 | 0.1910 | 0.2105 | | No log | 53.0 | 371 | 1.7881 | 0.5675 | 0.5834 | 2.4135 | 0.5675 | 0.5603 | 0.1836 | 0.2028 | | No log | 54.0 | 378 | 1.7675 | 0.555 | 0.5766 | 2.4043 | 0.555 | 0.5563 | 0.1653 | 0.2047 | | No log | 55.0 | 385 | 1.7688 | 0.55 | 0.5843 | 2.3641 | 0.55 | 0.5505 | 0.1729 | 0.2092 | | No log | 56.0 | 392 | 1.7796 | 0.55 | 0.5861 | 2.3404 | 0.55 | 0.5458 | 0.1808 | 0.2114 | | No log | 57.0 | 399 | 1.7861 | 0.54 | 0.5885 | 2.3460 | 0.54 | 0.5323 | 0.1902 | 0.2073 | | No log | 58.0 | 406 | 1.7746 | 0.56 | 0.5818 | 2.3715 | 0.56 | 0.5557 | 0.1643 | 0.2034 | | No log | 59.0 | 413 | 1.7828 | 0.5575 | 0.5868 | 2.3086 | 0.5575 | 0.5526 | 0.1956 | 0.2088 | | No log | 60.0 | 420 | 1.7735 | 0.565 | 0.5825 | 2.3405 | 0.565 | 0.5619 | 0.1696 | 0.2058 | | No log | 61.0 | 427 | 1.7651 | 0.5675 | 0.5760 | 2.4771 | 0.5675 | 0.5636 | 0.1847 | 0.2027 | | No log | 62.0 | 434 | 1.7751 | 0.5575 | 0.5834 | 2.3727 | 0.5575 | 0.5524 | 0.1638 | 0.2052 | | No log | 63.0 | 441 | 1.7900 | 0.56 | 0.5834 | 2.3635 | 0.56 | 0.5502 | 0.1789 | 0.2061 | | No log | 64.0 | 448 | 1.7729 | 0.56 | 0.5821 | 2.3797 | 0.56 | 0.5554 | 0.1676 | 0.2046 | | No log | 65.0 | 455 | 1.7743 | 0.5625 | 0.5826 | 2.4174 | 0.5625 | 0.5581 | 0.1538 | 0.2052 | | No log | 66.0 | 462 | 1.7749 | 0.5625 | 0.5801 | 2.3799 | 0.5625 | 0.5592 | 0.1709 | 0.2036 | | No log | 67.0 | 469 | 1.7795 | 0.5625 | 0.5814 | 2.3169 | 0.5625 | 0.5533 | 0.1883 | 0.2037 | | No log | 68.0 | 476 | 1.7773 | 0.5675 | 0.5794 | 2.3588 | 0.5675 | 0.5622 | 0.1779 | 0.2013 | | No log | 69.0 | 483 | 1.7762 | 0.56 | 0.5793 | 2.3514 | 0.56 | 0.5566 | 0.1707 | 0.2039 | | No log | 70.0 | 490 | 1.7762 | 0.5625 | 0.5787 | 2.3620 | 0.5625 | 0.5529 | 0.1607 | 0.2017 | | No log | 71.0 | 497 | 1.7740 | 0.5675 | 0.5798 | 2.3235 | 0.5675 | 0.5612 | 0.1637 | 0.2046 | | 0.4215 | 72.0 | 504 | 1.7739 | 0.56 | 0.5790 | 2.3235 | 0.56 | 0.5542 | 0.1583 | 0.2023 | | 0.4215 | 73.0 | 511 | 1.7783 | 0.56 | 0.5806 | 2.4187 | 0.56 | 0.5545 | 0.1674 | 0.2040 | | 0.4215 | 74.0 | 518 | 1.7785 | 0.56 | 0.5805 | 2.3302 | 0.56 | 0.5544 | 0.1748 | 0.2033 | | 0.4215 | 75.0 | 525 | 1.7777 | 0.5625 | 0.5795 | 2.3321 | 0.5625 | 0.5548 | 0.1754 | 0.2029 | | 0.4215 | 76.0 | 532 | 1.7785 | 0.565 | 0.5799 | 2.3249 | 0.565 | 0.5586 | 0.1696 | 0.2023 | | 0.4215 | 77.0 | 539 | 1.7763 | 0.565 | 0.5790 | 2.3561 | 0.565 | 0.5573 | 0.1574 | 0.2022 | | 0.4215 | 78.0 | 546 | 1.7767 | 0.565 | 0.5790 | 2.3296 | 0.565 | 0.5572 | 0.1633 | 0.2024 | | 0.4215 | 79.0 | 553 | 1.7763 | 0.565 | 0.5790 | 2.3555 | 0.565 | 0.5580 | 0.1687 | 0.2016 | | 0.4215 | 80.0 | 560 | 1.7783 | 0.565 | 0.5800 | 2.3254 | 0.565 | 0.5576 | 0.1752 | 0.2032 | | 0.4215 | 81.0 | 567 | 1.7773 | 0.5675 | 0.5796 | 2.3530 | 0.5675 | 0.5605 | 0.1519 | 0.2023 | | 0.4215 | 82.0 | 574 | 1.7774 | 0.5625 | 0.5797 | 2.3253 | 0.5625 | 0.5549 | 0.1911 | 0.2028 | | 0.4215 | 83.0 | 581 | 1.7784 | 0.5625 | 0.5794 | 2.3554 | 0.5625 | 0.5544 | 0.1659 | 0.2030 | | 0.4215 | 84.0 | 588 | 1.7769 | 0.565 | 0.5793 | 2.3527 | 0.565 | 0.5585 | 0.1588 | 0.2024 | | 0.4215 | 85.0 | 595 | 1.7787 | 0.565 | 0.5799 | 2.3549 | 0.565 | 0.5576 | 0.1687 | 0.2032 | | 0.4215 | 86.0 | 602 | 1.7778 | 0.565 | 0.5795 | 2.3548 | 0.565 | 0.5574 | 0.1577 | 0.2029 | | 0.4215 | 87.0 | 609 | 1.7787 | 0.5625 | 0.5798 | 2.3545 | 0.5625 | 0.5549 | 0.1643 | 0.2032 | | 0.4215 | 88.0 | 616 | 1.7786 | 0.565 | 0.5796 | 2.3554 | 0.565 | 0.5574 | 0.1667 | 0.2031 | | 0.4215 | 89.0 | 623 | 1.7785 | 0.565 | 0.5799 | 2.3546 | 0.565 | 0.5574 | 0.1691 | 0.2032 | | 0.4215 | 90.0 | 630 | 1.7784 | 0.565 | 0.5797 | 2.3548 | 0.565 | 0.5574 | 0.1656 | 0.2031 | | 0.4215 | 91.0 | 637 | 1.7784 | 0.565 | 0.5797 | 2.3550 | 0.565 | 0.5569 | 0.1753 | 0.2032 | | 0.4215 | 92.0 | 644 | 1.7786 | 0.565 | 0.5797 | 2.3545 | 0.565 | 0.5574 | 0.1744 | 0.2030 | | 0.4215 | 93.0 | 651 | 1.7785 | 0.565 | 0.5797 | 2.3545 | 0.565 | 0.5574 | 0.1709 | 0.2031 | | 0.4215 | 94.0 | 658 | 1.7787 | 0.565 | 0.5797 | 2.3543 | 0.565 | 0.5574 | 0.1704 | 0.2032 | | 0.4215 | 95.0 | 665 | 1.7787 | 0.565 | 0.5798 | 2.3545 | 0.565 | 0.5574 | 0.1713 | 0.2032 | | 0.4215 | 96.0 | 672 | 1.7788 | 0.565 | 0.5798 | 2.3549 | 0.565 | 0.5569 | 0.1777 | 0.2031 | | 0.4215 | 97.0 | 679 | 1.7789 | 0.565 | 0.5798 | 2.3550 | 0.565 | 0.5569 | 0.1677 | 0.2032 | | 0.4215 | 98.0 | 686 | 1.7789 | 0.565 | 0.5798 | 2.3549 | 0.565 | 0.5569 | 0.1648 | 0.2032 | | 0.4215 | 99.0 | 693 | 1.7789 | 0.565 | 0.5798 | 2.3548 | 0.565 | 0.5569 | 0.1728 | 0.2032 | | 0.4215 | 100.0 | 700 | 1.7789 | 0.565 | 0.5798 | 2.3548 | 0.565 | 0.5569 | 0.1677 | 0.2032 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1.post200 - Datasets 2.9.0 - Tokenizers 0.13.2
banden/dqn-SpaceInvadersNoFrameskip-v1
banden
2023-07-12T15:31:37Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-12T15:30:56Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 517.00 +/- 204.56 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga banden -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga banden -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga banden ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
yashwantk/finetuning-sentiment-model-3000-samples
yashwantk
2023-07-12T15:26:18Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-30T05:27:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8633333333333333 - name: F1 type: f1 value: 0.8646864686468646 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3200 - Accuracy: 0.8633 - F1: 0.8647 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Phips/dqn-BeamRiderNoFrameskip-v4
Phips
2023-07-12T15:26:02Z
4
0
stable-baselines3
[ "stable-baselines3", "BeamRiderNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-12T15:23:51Z
--- library_name: stable-baselines3 tags: - BeamRiderNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: BeamRiderNoFrameskip-v4 type: BeamRiderNoFrameskip-v4 metrics: - type: mean_reward value: 4036.80 +/- 1681.31 name: mean_reward verified: false --- # **DQN** Agent playing **BeamRiderNoFrameskip-v4** This is a trained model of a **DQN** agent playing **BeamRiderNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env BeamRiderNoFrameskip-v4 -orga Phips -f logs/ python -m rl_zoo3.enjoy --algo dqn --env BeamRiderNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env BeamRiderNoFrameskip-v4 -orga Phips -f logs/ python -m rl_zoo3.enjoy --algo dqn --env BeamRiderNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env BeamRiderNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env BeamRiderNoFrameskip-v4 -f logs/ -orga Phips ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
ChaimaaBouafoud/arabicSent-ChamaBert
ChaimaaBouafoud
2023-07-12T15:24:41Z
106
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "ar", "fr", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-12T13:38:21Z
--- language: - ar - fr - en metrics: - accuracy - f1 - roc_auc pipeline_tag: text-classification --- # arabicSent-ChamaBert This model is a fine-tuned version of the <u> aubmindlab/bert-base-arabertv02-twitter </u> model on a webscraped dataset of Arabic comments. It has been trained specifically for sentiment classification tasks in Moroccan Arabic, covering both Standard Arabic and dialectal variations. The model's performance on the evaluation set is as follows: - Loss: 0.1626 - Accuracy: 0.9073 - F1: 0.9129 - Roc Auc: 0.9337 # Dataset The dataset used for training and evaluation consists of a collection of Moroccan Arabic comments specifically focused on sentiments towards the effects of vaccines. It contains a total of 81,971 comments, with sentiment labels of "Negative" and "Positive". The dataset provides ground truth annotations that enable the model to learn the association between the language used in comments and the corresponding sentiment expressed. The data collection process adhered to ethical considerations, respecting user privacy and complying with applicable data protection regulations. Measures were taken to ensure the anonymization of user identities and the removal of any personally identifiable information. # Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
jrosenzw/autotrain-diabetes-detection-74053139456
jrosenzw
2023-07-12T15:23:51Z
4
0
transformers
[ "transformers", "joblib", "xgboost", "autotrain", "tabular", "classification", "tabular-classification", "dataset:jrosenzw/autotrain-data-diabetes-detection", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
tabular-classification
2023-07-12T15:12:14Z
--- tags: - autotrain - tabular - classification - tabular-classification datasets: - jrosenzw/autotrain-data-diabetes-detection co2_eq_emissions: emissions: 0.8803900471704509 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 74053139456 - CO2 Emissions (in grams): 0.8804 ## Validation Metrics - Loss: 0.473 - Accuracy: 0.760 - Precision: 0.667 - Recall: 0.630 - AUC: 0.835 - F1: 0.648 ## Usage ```python import json import joblib import pandas as pd model = joblib.load('model.joblib') config = json.load(open('config.json')) features = config['features'] # data = pd.read_csv("data.csv") data = data[features] data.columns = ["feat_" + str(col) for col in data.columns] predictions = model.predict(data) # or model.predict_proba(data) ```
ynklab/XCodeBERT
ynklab
2023-07-12T15:17:51Z
105
1
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "arxiv:2306.15604", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-06-29T14:01:20Z
--- license: mit --- [Paper on arXiv](https://arxiv.org/abs/2306.15604) ### Code Java/PHP/Python/Go ### Query En/Fr/Ja/Zh ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained('ynklab/XCodeBERT') # Same as `xlm-roberta-base` model = AutoModel.from_pretrained('ynklab/XCodeBERT') ```
alujjdnd/10-Social-Dimensions
alujjdnd
2023-07-12T15:11:43Z
0
0
null
[ "license:cc-by-4.0", "region:us" ]
null
2023-06-12T11:19:49Z
--- license: cc-by-4.0 --- # 10 Social Dimensions A mirror of https://github.com/minjechoi/10dimensions/tree/master/weights - notably the Dropbox links ## Overview Contains pretrained weights for LSTM and BERT classifiers, for the 10 social dimensions. ### From Paper https://dl.acm.org/doi/10.1145/3366423.3380224 ### ACM Reference Format Minje Choi, Luca Maria Aiello, Krisztián Zsolt Varga, and Daniele Quercia. 2020. Ten Social Dimensions of Conversations and Relationships. In Proceedings of The Web Conference 2020 (WWW ’20), April 20–24, 2020, Taipei, Taiwan. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3366423.3380224
vineetsharma/q-Taxi-v3_million_steps
vineetsharma
2023-07-12T15:08:50Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-12T15:05:01Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3_million_steps results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="vineetsharma/q-Taxi-v3_million_steps", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
bofenghuang/vigogne-13b-chat
bofenghuang
2023-07-12T14:59:28Z
1,466
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "LLM", "fr", "license:openrail", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-07-12T13:59:04Z
--- license: openrail language: - fr pipeline_tag: text-generation library_name: transformers tags: - llama - LLM inference: false --- <p align="center" width="100%"> <img src="https://huggingface.co/bofenghuang/vigogne-13b-chat/resolve/main/vigogne_logo.png" alt="Vigogne" style="width: 40%; min-width: 300px; display: block; margin: auto;"> </p> # Vigogne-13B-Chat: A French Chat LLaMA Model Vigogne-13B-Chat is a LLaMA-13B model fine-tuned to conduct multi-turn dialogues in French between human user and AI assistant. For more information, please visit the Github repo: https://github.com/bofenghuang/vigogne **Usage and License Notices**: Same as [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca), Vigogne is intended and licensed for research use only. The dataset is CC BY NC 4.0 (allowing only non-commercial use) and models trained using the dataset should not be used outside of research purposes. ## Usage ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig from vigogne.preprocess import generate_inference_chat_prompt model_name_or_path = "bofenghuang/vigogne-13b-chat" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, padding_side="right", use_fast=False) model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float16, device_map="auto") user_query = "Expliquez la différence entre DoS et phishing." prompt = generate_inference_chat_prompt([[user_query, ""]], tokenizer=tokenizer) input_ids = tokenizer(prompt, return_tensors="pt")["input_ids"].to(model.device) input_length = input_ids.shape[1] generated_outputs = model.generate( input_ids=input_ids, generation_config=GenerationConfig( temperature=0.1, do_sample=True, repetition_penalty=1.0, max_new_tokens=512, ), return_dict_in_generate=True, ) generated_tokens = generated_outputs.sequences[0, input_length:] generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True) print(generated_text) ``` You can infer this model by using the following Google Colab Notebook. <a href="https://colab.research.google.com/github/bofenghuang/vigogne/blob/main/notebooks/infer_chat.ipynb" target="_blank"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> ## Limitations Vigogne is still under development, and there are many limitations that have to be addressed. Please note that it is possible that the model generates harmful or biased content, incorrect information or generally unhelpful answers.
bardsai/finance-sentiment-zh-base
bardsai
2023-07-12T14:54:22Z
200
18
transformers
[ "transformers", "pytorch", "bert", "text-classification", "financial-sentiment-analysis", "sentiment-analysis", "zh", "dataset:datasets/financial_phrasebank", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-12T14:41:06Z
--- language: zh tags: - text-classification - financial-sentiment-analysis - sentiment-analysis datasets: - datasets/financial_phrasebank metrics: - f1 - accuracy - precision - recall widget: - text: "净销售额增长30%,达到3600万欧元。" example_title: "Example 1" - text: "黑色星期五拉开帷幕。店内促销活动列表。" example_title: "Example 2" - text: "CDPROJEKT股价在WSE上市公司中跌幅最大。" example_title: "Example 3" --- # Finance Sentiment ZH (base) Finance Sentiment ZH (base) is a model based on [bert-base-chinese](https://huggingface.co/bert-base-chinese) for analyzing sentiment of Chinese financial news. It was trained on the translated version of [Financial PhraseBank](https://www.researchgate.net/publication/251231107_Good_Debt_or_Bad_Debt_Detecting_Semantic_Orientations_in_Economic_Texts) by Malo et al. (20014) for 10 epochs on single RTX3090 gpu. The model will give you a three labels: positive, negative and neutral. ## How to use You can use this model directly with a pipeline for sentiment-analysis: ```python from transformers import pipeline nlp = pipeline("sentiment-analysis", model="bardsai/finance-sentiment-zh-base") nlp("净销售额增长30%,达到3600万欧元。") ``` ```bash [{'label': 'negative', 'score': 0.9999314546585083}] ``` ## Performance | Metric | Value | | --- | ----------- | | f1 macro | 0.966 | | precision macro | 0.963 | | recall macro | 0.969 | | accuracy | 0.973 | | samples per second | 135.2 | (The performance was evaluated on RTX 3090 gpu) ## Changelog - 2023-07-12: Initial release ## About bards.ai At bards.ai, we focus on providing machine learning expertise and skills to our partners, particularly in the areas of nlp, machine vision and time series analysis. Our team is located in Wroclaw, Poland. Please visit our website for more information: [bards.ai](https://bards.ai/) Let us know if you use our model :). Also, if you need any help, feel free to contact us at info@bards.ai
DipanAI/Low_falcan_7b
DipanAI
2023-07-12T14:49:33Z
0
0
null
[ "pytorch", "tensorboard", "generated_from_trainer", "region:us" ]
null
2023-07-12T14:00:09Z
--- tags: - generated_from_trainer model-index: - name: Low_falcan_7b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Low_falcan_7b This model is a fine-tuned version of [ybelkada/falcon-7b-sharded-bf16](https://huggingface.co/ybelkada/falcon-7b-sharded-bf16) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - training_steps: 800 ### Training results ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
bardsai/finance-sentiment-zh-fast
bardsai
2023-07-12T14:48:43Z
533
7
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "financial-sentiment-analysis", "sentiment-analysis", "zh", "dataset:datasets/financial_phrasebank", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-12T14:21:24Z
--- language: zh tags: - text-classification - financial-sentiment-analysis - sentiment-analysis datasets: - datasets/financial_phrasebank metrics: - f1 - accuracy - precision - recall widget: - text: "净销售额增长30%,达到3600万欧元。" example_title: "Example 1" - text: "黑色星期五拉开帷幕。店内促销活动列表。" example_title: "Example 2" - text: "CDPROJEKT股价在WSE上市公司中跌幅最大。" example_title: "Example 3" --- # Finance Sentiment ZH (fast) Finance Sentiment ZH (fast) is a [distiluse](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v1)-based model for analyzing sentiment of Chinese financial news. It was trained on the translated version of [Financial PhraseBank](https://www.researchgate.net/publication/251231107_Good_Debt_or_Bad_Debt_Detecting_Semantic_Orientations_in_Economic_Texts) by Malo et al. (20014) for 10 epochs on single RTX3090 gpu. The model will give you a three labels: positive, negative and neutral. ## How to use You can use this model directly with a pipeline for sentiment-analysis: ```python from transformers import pipeline nlp = pipeline("sentiment-analysis", model="bardsai/finance-sentiment-zh-fast") nlp("净销售额增长30%,达到3600万欧元。") ``` ```bash [{'label': 'positive', 'score': 0.9996095299720764}] ``` ## Performance | Metric | Value | | --- | ----------- | | f1 macro | 0.953 | | precision macro | 0.959 | | recall macro | 0.949 | | accuracy | 0.961 | | samples per second | 264.6 | (The performance was evaluated on RTX 3090 gpu) ## Changelog - 2023-07-12: Initial release ## About bards.ai At bards.ai, we focus on providing machine learning expertise and skills to our partners, particularly in the areas of nlp, machine vision and time series analysis. Our team is located in Wroclaw, Poland. Please visit our website for more information: [bards.ai](https://bards.ai/) Let us know if you use our model :). Also, if you need any help, feel free to contact us at info@bards.ai
vineetsharma/q-Taxi-v3
vineetsharma
2023-07-12T14:35:12Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-12T14:35:11Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="vineetsharma/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
cenkersisman/chatbotgpt-turkish-latin
cenkersisman
2023-07-12T14:22:53Z
163
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "tr", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-02T04:19:39Z
--- widget: - text: '[Q] cengiz han kac yilinda dogmustur' example_title: Örnek 1 - text: '[Q] etimesgut havaalani nerede bulunmaktadir' example_title: Örnek 2 - text: '[Q] spartakus nereli bir gladyatordur' example_title: Örnek 3 - text: '[Q] ajda pekkan hangi sarkisiyla iyi cikis yakalamistir' example_title: Örnek 4 - text: '[Q] kobalt camlari kim tarafindan kesfedilmistir' example_title: Örnek 5 - text: '[Q] john turk ne zaman dogmustur' example_title: Örnek 6 - text: '[Q] tayvan ne zaman kurulmustur' example_title: Örnek 7 - text: '[Q] dunyanin her bolgesinden kutuphaneler hangi imkani verir' example_title: Örnek 8 - text: '[Q] gozun en distaki birinci tabakaya ne denir' example_title: Örnek 9 language: - tr --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> Bu model test amaçlı hazırlanmıştır ve fikir vermesi açısından geliştirilmiştir. Model için Vikipedi üzerinden üretilen 40 bin soru cevap GPT ile eğitilmiştir. Daha büyük veri setlerinde daha iyi sonuçlar alınabilir. ## Önemli Notlar * Inference için soruların başında [Q] kullanılmalıdır. * Sorular latin karakterlerden oluşmalıdır. ç ğ I ö ş ü gibi harfler içermemelidir. * Sorular küçük harflerden oluşmalıdır. Büyük harf veya sembol kullanımı farklı ve istenmeyen cevaplar üretecektir. ## Model Details ## Başlıklara göre en fazla soru cevap içeren konular aşağıdadır: * Cengiz Han: 665 adet * Futbol rekabetleri listesi: 409 adet * Lüleburgaz Muharebesi: 336 adet * I. Baybars: 263 adet * Sovyetler Birliği'nin askerî tarihi: 258 adet * Zümrüdüanka Yoldaşlığı: 245 adet * Gilles Deleuze: 208 adet * Ermenistan Sovyet Sosyalist Cumhuriyeti: 195 adet * Nâzım Hikmet: 173 adet * Hermann Göring: 169 adet * V. Leon: 163 adet * Gökhan Türkmen: 156 adet * Dumbledore'un Ordusu: 153 adet * Ajda Pekkan: 152 adet * Kırkpınar Yağlı Güreşleri: 152 adet * Mehdi Savaşı: 150 adet * İmamiye (Şiilik öğretisi): 149 adet * Rumyantsev Harekâtı: 145 adet * II. Dünya Savaşı tankları: 144 adet * Emîn: 142 adet * Boshin Savaşı: 137 adet * Wolfgang Amadeus Mozart: 136 adet * Faşizm: 134 adet * Kâzım Koyuncu: 133 adet * Suvorov Harekâtı: 128 adet * Mao Zedong: 127 adet * Mehdî (Abbâsî halifesi): 127 adet * Madagaskar: 124 adet * Oscar Niemeyer: 123 adet * Adolf Eichmann: 123 adet * Joachim von Ribbentrop: 121 adet * Crystal Palace FC: 119 adet * IV. Mihail: 111 adet * VI. Leon: 107 adet * Han Hanedanı: 105 adet * Portekiz coğrafi keşifleri: 104 adet * II. Nikiforos: 102 adet * III. Mihail: 98 adet * Fidel Castro: 96 adet * Tsushima Muharebesi: 94 adet * I. Basileios: 93 adet * VI. Konstantinos: 92 adet * Bijan Muharebesi: 91 adet * Otto Skorzeny: 90 adet * Antimon: 89 adet * Dijitalleştirme: 88 adet * Theofilos: 79 adet * Sovyet Hava Kuvvetleri: 78 adet * IV. Henry, Bölüm 1: 77 adet ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** Cenker Sisman - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model :** redrussianarmy/gpt2-turkish-cased ![Loss değerleri](https://huggingface.co/cenkersisman/chatbotgpt-turkish-cased/resolve/main/v.png) ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Sınırlamalar ve Önyargılar chatbotgpt-turkish, bir özyineli dil modeli olarak eğitildi. Bu, temel işlevinin bir metin dizisi alıp bir sonraki belirteci tahmin etmek olduğu anlamına gelir. Dil modelleri bunun dışında birçok görev için yaygın olarak kullanılsa da, bu çalışmayla ilgili birçok bilinmeyen bulunmaktadır. chatbotgpt-turkish, küfür, açık saçıklık ve aksi davranışlara yol açan metinleri içerdiği bilinen bir veri kümesi olan Pile üzerinde eğitildi. Kullanım durumunuza bağlı olarak, chatbotgpt-turkish toplumsal olarak kabul edilemez metinler üretebilir. Pile makalesinin 5. ve 6. bölümlerinde Pile'daki önyargıların daha ayrıntılı bir analizini bulabilirsiniz. Tüm dil modellerinde olduğu gibi, chatbotgpt-turkish'in belirli bir girişe nasıl yanıt vereceğini önceden tahmin etmek zordur ve uyarı olmaksızın saldırgan içerik ortaya çıkabilir. Sonuçları yayınlamadan önce insanların çıktıları denetlemesini veya filtrelemesini öneririz, hem istenmeyen içeriği sansürlemek hem de sonuçların kalitesini iyileştirmek için. ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model ```python """Inference""" from transformers import PreTrainedTokenizerFast, GPT2LMHeadModel, GPT2TokenizerFast, GPT2Tokenizer def load_model(model_path): model = GPT2LMHeadModel.from_pretrained(model_path) return model def load_tokenizer(tokenizer_path): tokenizer = GPT2Tokenizer.from_pretrained(tokenizer_path) return tokenizer def generate_text(model_path, sequence, max_length): model = load_model(model_path) tokenizer = load_tokenizer(model_path) ids = tokenizer.encode(sequence, return_tensors='pt') outputs = model.generate( ids, do_sample=True, max_length=max_length, pad_token_id=model.config.eos_token_id, top_k=1, top_p=0.99, ) converted = tokenizer.convert_ids_to_tokens(outputs[0]) valid_tokens = [token if token is not None else '.' for token in converted] generated_text = tokenizer.convert_tokens_to_string(valid_tokens) print(generated_text) model2_path = "cenkersisman/chatbotgpt-turkish" sequence2 = "[Q] cengiz han kimdir" max_len = 120 generate_text(model2_path, sequence2, max_len) ``` ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
SHENMU007/neunit_BASE_V12.2
SHENMU007
2023-07-12T14:17:28Z
75
0
transformers
[ "transformers", "pytorch", "tensorboard", "speecht5", "text-to-audio", "1.1.0", "generated_from_trainer", "zh", "dataset:facebook/voxpopuli", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2023-07-12T11:35:11Z
--- language: - zh license: mit base_model: microsoft/speecht5_tts tags: - 1.1.0 - generated_from_trainer datasets: - facebook/voxpopuli model-index: - name: SpeechT5 TTS Dutch neunit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SpeechT5 TTS Dutch neunit This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the VoxPopuli dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
jordyvl/vit-tiny_rvl_cdip_100_examples_per_class_kd_CEKD_t1.5_a0.9
jordyvl
2023-07-12T14:10:56Z
163
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-12T13:24:48Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-tiny_rvl_cdip_100_examples_per_class_kd_CEKD_t1.5_a0.9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-tiny_rvl_cdip_100_examples_per_class_kd_CEKD_t1.5_a0.9 This model is a fine-tuned version of [WinKawaks/vit-tiny-patch16-224](https://huggingface.co/WinKawaks/vit-tiny-patch16-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5908 - Accuracy: 0.54 - Brier Loss: 0.6121 - Nll: 2.4999 - F1 Micro: 0.54 - F1 Macro: 0.5334 - Ece: 0.1895 - Aurc: 0.2228 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:| | No log | 1.0 | 7 | 3.9334 | 0.0425 | 1.0719 | 7.3494 | 0.0425 | 0.0341 | 0.2781 | 0.9557 | | No log | 2.0 | 14 | 3.0206 | 0.09 | 0.9526 | 5.9271 | 0.09 | 0.0682 | 0.1659 | 0.8896 | | No log | 3.0 | 21 | 2.6955 | 0.2275 | 0.8867 | 5.4041 | 0.2275 | 0.1804 | 0.1637 | 0.6351 | | No log | 4.0 | 28 | 2.3029 | 0.29 | 0.8005 | 3.5699 | 0.29 | 0.2727 | 0.1512 | 0.4877 | | No log | 5.0 | 35 | 2.0293 | 0.37 | 0.7219 | 2.9856 | 0.37 | 0.3519 | 0.1495 | 0.3632 | | No log | 6.0 | 42 | 1.9194 | 0.44 | 0.6926 | 2.9746 | 0.44 | 0.4240 | 0.1778 | 0.3091 | | No log | 7.0 | 49 | 1.9640 | 0.4675 | 0.7000 | 3.0857 | 0.4675 | 0.4390 | 0.2009 | 0.3004 | | No log | 8.0 | 56 | 1.9049 | 0.4625 | 0.7003 | 2.8472 | 0.4625 | 0.4602 | 0.2053 | 0.3051 | | No log | 9.0 | 63 | 2.0561 | 0.4675 | 0.7168 | 2.8229 | 0.4675 | 0.4501 | 0.2288 | 0.2994 | | No log | 10.0 | 70 | 2.1002 | 0.45 | 0.7433 | 2.7915 | 0.45 | 0.4234 | 0.2691 | 0.3022 | | No log | 11.0 | 77 | 2.2528 | 0.4525 | 0.7686 | 3.0103 | 0.4525 | 0.4320 | 0.2921 | 0.3183 | | No log | 12.0 | 84 | 2.1190 | 0.475 | 0.7427 | 2.6715 | 0.4750 | 0.4660 | 0.2832 | 0.3077 | | No log | 13.0 | 91 | 2.3102 | 0.445 | 0.7825 | 2.9698 | 0.445 | 0.4252 | 0.3093 | 0.3100 | | No log | 14.0 | 98 | 2.3501 | 0.42 | 0.8145 | 2.7585 | 0.4200 | 0.4248 | 0.3206 | 0.3662 | | No log | 15.0 | 105 | 2.2402 | 0.495 | 0.7423 | 3.0313 | 0.495 | 0.4702 | 0.2692 | 0.2818 | | No log | 16.0 | 112 | 2.2266 | 0.49 | 0.7349 | 2.8824 | 0.49 | 0.4714 | 0.2763 | 0.2895 | | No log | 17.0 | 119 | 2.2989 | 0.4725 | 0.7509 | 3.0951 | 0.4725 | 0.4499 | 0.2863 | 0.2855 | | No log | 18.0 | 126 | 2.1355 | 0.47 | 0.7322 | 2.9349 | 0.47 | 0.4616 | 0.2725 | 0.2845 | | No log | 19.0 | 133 | 2.0965 | 0.505 | 0.7067 | 2.8254 | 0.505 | 0.4956 | 0.2523 | 0.2757 | | No log | 20.0 | 140 | 2.1961 | 0.485 | 0.7358 | 3.1604 | 0.485 | 0.4567 | 0.2825 | 0.2841 | | No log | 21.0 | 147 | 2.1287 | 0.5025 | 0.7247 | 2.5998 | 0.5025 | 0.5074 | 0.2703 | 0.3064 | | No log | 22.0 | 154 | 2.2280 | 0.4675 | 0.7760 | 2.8571 | 0.4675 | 0.4636 | 0.2911 | 0.3232 | | No log | 23.0 | 161 | 1.9649 | 0.5025 | 0.6828 | 2.8224 | 0.5025 | 0.4970 | 0.2410 | 0.2633 | | No log | 24.0 | 168 | 1.9361 | 0.5125 | 0.6780 | 2.7309 | 0.5125 | 0.5035 | 0.2326 | 0.2553 | | No log | 25.0 | 175 | 2.0161 | 0.5 | 0.6980 | 2.9958 | 0.5 | 0.4912 | 0.2580 | 0.2556 | | No log | 26.0 | 182 | 1.8763 | 0.5025 | 0.6624 | 2.8291 | 0.5025 | 0.4952 | 0.2305 | 0.2431 | | No log | 27.0 | 189 | 1.9057 | 0.525 | 0.6793 | 2.5627 | 0.525 | 0.5174 | 0.2161 | 0.2634 | | No log | 28.0 | 196 | 1.8529 | 0.52 | 0.6683 | 2.7191 | 0.52 | 0.5132 | 0.2375 | 0.2535 | | No log | 29.0 | 203 | 1.9603 | 0.5125 | 0.6831 | 2.7822 | 0.5125 | 0.5076 | 0.2395 | 0.2657 | | No log | 30.0 | 210 | 1.8247 | 0.52 | 0.6533 | 2.8547 | 0.52 | 0.5058 | 0.2080 | 0.2426 | | No log | 31.0 | 217 | 1.8275 | 0.5125 | 0.6547 | 2.6194 | 0.5125 | 0.5032 | 0.2208 | 0.2488 | | No log | 32.0 | 224 | 1.8003 | 0.52 | 0.6455 | 2.6138 | 0.52 | 0.5124 | 0.2302 | 0.2370 | | No log | 33.0 | 231 | 1.8714 | 0.505 | 0.6694 | 2.6643 | 0.505 | 0.4970 | 0.2195 | 0.2553 | | No log | 34.0 | 238 | 1.8018 | 0.5075 | 0.6659 | 2.5423 | 0.5075 | 0.4978 | 0.2241 | 0.2515 | | No log | 35.0 | 245 | 1.7844 | 0.5225 | 0.6503 | 2.6100 | 0.5225 | 0.5181 | 0.2181 | 0.2435 | | No log | 36.0 | 252 | 1.8321 | 0.5225 | 0.6674 | 2.7821 | 0.5225 | 0.5020 | 0.2285 | 0.2462 | | No log | 37.0 | 259 | 1.7859 | 0.4975 | 0.6725 | 2.6066 | 0.4975 | 0.4974 | 0.2351 | 0.2627 | | No log | 38.0 | 266 | 1.7790 | 0.5125 | 0.6595 | 2.6983 | 0.5125 | 0.5023 | 0.2172 | 0.2497 | | No log | 39.0 | 273 | 1.6989 | 0.5225 | 0.6401 | 2.6743 | 0.5225 | 0.5151 | 0.2100 | 0.2407 | | No log | 40.0 | 280 | 1.7568 | 0.52 | 0.6488 | 2.5294 | 0.52 | 0.5132 | 0.2208 | 0.2442 | | No log | 41.0 | 287 | 1.6896 | 0.5275 | 0.6362 | 2.5489 | 0.5275 | 0.5141 | 0.2045 | 0.2323 | | No log | 42.0 | 294 | 1.7193 | 0.5275 | 0.6517 | 2.5525 | 0.5275 | 0.5232 | 0.1986 | 0.2467 | | No log | 43.0 | 301 | 1.7199 | 0.535 | 0.6403 | 2.5974 | 0.535 | 0.5279 | 0.2104 | 0.2432 | | No log | 44.0 | 308 | 1.6594 | 0.5375 | 0.6330 | 2.4854 | 0.5375 | 0.5316 | 0.2015 | 0.2321 | | No log | 45.0 | 315 | 1.6543 | 0.5275 | 0.6239 | 2.4955 | 0.5275 | 0.5223 | 0.2144 | 0.2308 | | No log | 46.0 | 322 | 1.6490 | 0.5425 | 0.6262 | 2.5215 | 0.5425 | 0.5358 | 0.2104 | 0.2273 | | No log | 47.0 | 329 | 1.6570 | 0.54 | 0.6233 | 2.5454 | 0.54 | 0.5380 | 0.2047 | 0.2301 | | No log | 48.0 | 336 | 1.6359 | 0.5375 | 0.6218 | 2.5546 | 0.5375 | 0.5320 | 0.2171 | 0.2257 | | No log | 49.0 | 343 | 1.6320 | 0.55 | 0.6214 | 2.4958 | 0.55 | 0.5452 | 0.2014 | 0.2267 | | No log | 50.0 | 350 | 1.6230 | 0.53 | 0.6208 | 2.4979 | 0.53 | 0.5243 | 0.2017 | 0.2315 | | No log | 51.0 | 357 | 1.6374 | 0.535 | 0.6257 | 2.4644 | 0.535 | 0.5293 | 0.2038 | 0.2286 | | No log | 52.0 | 364 | 1.6190 | 0.5375 | 0.6199 | 2.5279 | 0.5375 | 0.5310 | 0.1855 | 0.2290 | | No log | 53.0 | 371 | 1.6155 | 0.5475 | 0.6158 | 2.4738 | 0.5475 | 0.5435 | 0.1913 | 0.2239 | | No log | 54.0 | 378 | 1.6131 | 0.5425 | 0.6184 | 2.4982 | 0.5425 | 0.5377 | 0.1969 | 0.2248 | | No log | 55.0 | 385 | 1.6035 | 0.545 | 0.6138 | 2.4690 | 0.545 | 0.5406 | 0.2164 | 0.2223 | | No log | 56.0 | 392 | 1.5990 | 0.54 | 0.6153 | 2.4701 | 0.54 | 0.5356 | 0.2019 | 0.2249 | | No log | 57.0 | 399 | 1.6024 | 0.5425 | 0.6153 | 2.4626 | 0.5425 | 0.5375 | 0.1826 | 0.2237 | | No log | 58.0 | 406 | 1.5935 | 0.545 | 0.6141 | 2.4390 | 0.545 | 0.5415 | 0.1933 | 0.2238 | | No log | 59.0 | 413 | 1.6016 | 0.545 | 0.6137 | 2.4640 | 0.545 | 0.5401 | 0.2021 | 0.2230 | | No log | 60.0 | 420 | 1.5976 | 0.54 | 0.6146 | 2.4618 | 0.54 | 0.5355 | 0.1912 | 0.2245 | | No log | 61.0 | 427 | 1.5984 | 0.545 | 0.6133 | 2.4683 | 0.545 | 0.5408 | 0.1971 | 0.2228 | | No log | 62.0 | 434 | 1.5941 | 0.54 | 0.6131 | 2.4639 | 0.54 | 0.5358 | 0.1898 | 0.2236 | | No log | 63.0 | 441 | 1.5936 | 0.545 | 0.6123 | 2.4689 | 0.545 | 0.5404 | 0.1953 | 0.2222 | | No log | 64.0 | 448 | 1.5970 | 0.5425 | 0.6138 | 2.4647 | 0.5425 | 0.5384 | 0.2015 | 0.2238 | | No log | 65.0 | 455 | 1.5943 | 0.545 | 0.6130 | 2.4963 | 0.545 | 0.5400 | 0.1979 | 0.2229 | | No log | 66.0 | 462 | 1.5936 | 0.545 | 0.6127 | 2.4977 | 0.545 | 0.5400 | 0.1933 | 0.2229 | | No log | 67.0 | 469 | 1.5928 | 0.5425 | 0.6127 | 2.4965 | 0.5425 | 0.5381 | 0.1976 | 0.2233 | | No log | 68.0 | 476 | 1.5946 | 0.5425 | 0.6128 | 2.4768 | 0.5425 | 0.5383 | 0.2149 | 0.2233 | | No log | 69.0 | 483 | 1.5924 | 0.54 | 0.6126 | 2.4946 | 0.54 | 0.5356 | 0.2094 | 0.2233 | | No log | 70.0 | 490 | 1.5921 | 0.54 | 0.6120 | 2.4964 | 0.54 | 0.5356 | 0.1801 | 0.2230 | | No log | 71.0 | 497 | 1.5926 | 0.54 | 0.6126 | 2.4955 | 0.54 | 0.5356 | 0.2039 | 0.2235 | | 0.3138 | 72.0 | 504 | 1.5916 | 0.5425 | 0.6121 | 2.4964 | 0.5425 | 0.5366 | 0.1898 | 0.2229 | | 0.3138 | 73.0 | 511 | 1.5917 | 0.54 | 0.6119 | 2.4966 | 0.54 | 0.5356 | 0.2039 | 0.2231 | | 0.3138 | 74.0 | 518 | 1.5918 | 0.54 | 0.6123 | 2.4964 | 0.54 | 0.5351 | 0.2035 | 0.2229 | | 0.3138 | 75.0 | 525 | 1.5912 | 0.54 | 0.6118 | 2.4975 | 0.54 | 0.5351 | 0.2059 | 0.2228 | | 0.3138 | 76.0 | 532 | 1.5918 | 0.54 | 0.6124 | 2.4965 | 0.54 | 0.5351 | 0.1971 | 0.2231 | | 0.3138 | 77.0 | 539 | 1.5919 | 0.5425 | 0.6120 | 2.4974 | 0.5425 | 0.5358 | 0.2087 | 0.2227 | | 0.3138 | 78.0 | 546 | 1.5903 | 0.54 | 0.6118 | 2.4978 | 0.54 | 0.5341 | 0.2169 | 0.2228 | | 0.3138 | 79.0 | 553 | 1.5922 | 0.54 | 0.6124 | 2.4976 | 0.54 | 0.5351 | 0.2109 | 0.2234 | | 0.3138 | 80.0 | 560 | 1.5914 | 0.54 | 0.6122 | 2.4983 | 0.54 | 0.5345 | 0.2041 | 0.2228 | | 0.3138 | 81.0 | 567 | 1.5907 | 0.54 | 0.6119 | 2.4981 | 0.54 | 0.5345 | 0.2128 | 0.2226 | | 0.3138 | 82.0 | 574 | 1.5921 | 0.5425 | 0.6124 | 2.4986 | 0.5425 | 0.5362 | 0.2084 | 0.2227 | | 0.3138 | 83.0 | 581 | 1.5918 | 0.5425 | 0.6125 | 2.4987 | 0.5425 | 0.5362 | 0.2038 | 0.2230 | | 0.3138 | 84.0 | 588 | 1.5902 | 0.54 | 0.6120 | 2.4989 | 0.54 | 0.5345 | 0.2043 | 0.2226 | | 0.3138 | 85.0 | 595 | 1.5919 | 0.5425 | 0.6124 | 2.4988 | 0.5425 | 0.5360 | 0.1998 | 0.2228 | | 0.3138 | 86.0 | 602 | 1.5916 | 0.5425 | 0.6124 | 2.4990 | 0.5425 | 0.5362 | 0.2079 | 0.2227 | | 0.3138 | 87.0 | 609 | 1.5906 | 0.54 | 0.6120 | 2.4990 | 0.54 | 0.5345 | 0.2037 | 0.2227 | | 0.3138 | 88.0 | 616 | 1.5908 | 0.54 | 0.6120 | 2.4989 | 0.54 | 0.5345 | 0.2091 | 0.2230 | | 0.3138 | 89.0 | 623 | 1.5909 | 0.54 | 0.6120 | 2.4995 | 0.54 | 0.5344 | 0.2113 | 0.2228 | | 0.3138 | 90.0 | 630 | 1.5906 | 0.54 | 0.6119 | 2.4996 | 0.54 | 0.5345 | 0.1969 | 0.2228 | | 0.3138 | 91.0 | 637 | 1.5911 | 0.5425 | 0.6121 | 2.4999 | 0.5425 | 0.5360 | 0.1954 | 0.2226 | | 0.3138 | 92.0 | 644 | 1.5909 | 0.54 | 0.6121 | 2.4994 | 0.54 | 0.5344 | 0.1928 | 0.2228 | | 0.3138 | 93.0 | 651 | 1.5907 | 0.5425 | 0.6121 | 2.4999 | 0.5425 | 0.5360 | 0.2034 | 0.2225 | | 0.3138 | 94.0 | 658 | 1.5910 | 0.5425 | 0.6122 | 2.4996 | 0.5425 | 0.5360 | 0.1974 | 0.2227 | | 0.3138 | 95.0 | 665 | 1.5909 | 0.5375 | 0.6121 | 2.4995 | 0.5375 | 0.5319 | 0.1990 | 0.2230 | | 0.3138 | 96.0 | 672 | 1.5907 | 0.5375 | 0.6120 | 2.4997 | 0.5375 | 0.5318 | 0.1980 | 0.2229 | | 0.3138 | 97.0 | 679 | 1.5907 | 0.54 | 0.6120 | 2.4998 | 0.54 | 0.5344 | 0.1900 | 0.2228 | | 0.3138 | 98.0 | 686 | 1.5907 | 0.5425 | 0.6120 | 2.4999 | 0.5425 | 0.5362 | 0.1899 | 0.2226 | | 0.3138 | 99.0 | 693 | 1.5908 | 0.54 | 0.6121 | 2.4999 | 0.54 | 0.5334 | 0.1936 | 0.2228 | | 0.3138 | 100.0 | 700 | 1.5908 | 0.54 | 0.6121 | 2.4999 | 0.54 | 0.5334 | 0.1895 | 0.2228 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1.post200 - Datasets 2.9.0 - Tokenizers 0.13.2
YojitShinde/Reinforce-CartPole-v1
YojitShinde
2023-07-12T14:06:04Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-12T14:05:54Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
fireday/ppo-LunarLander-v2
fireday
2023-07-12T14:05:26Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-12T14:05:07Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 291.16 +/- 20.30 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
malditoguisante/ppo-LunarLander-v2
malditoguisante
2023-07-12T14:04:14Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-12T14:03:55Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 272.05 +/- 16.08 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
aalloott/ppo-LunarLander-v2
aalloott
2023-07-12T14:01:04Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-12T14:00:45Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 250.52 +/- 23.91 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
alexbrandsen/bert-base-german-cased-archaeo-NER
alexbrandsen
2023-07-12T13:59:45Z
121
0
transformers
[ "transformers", "pytorch", "safetensors", "bert", "token-classification", "Archaeology", "Named Entity Recognition", "NER", "de", "license:cc0-1.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-12T13:22:47Z
--- license: cc0-1.0 language: - de tags: - Archaeology - Named Entity Recognition - NER metrics: - f1 --- # bert-base-german-cased-archaeo-NER A German BERT model for Named Entity Recognition in the Archaeology domain This is the bert-base-german-cased-archaeo model finetuned for NER, targeting the following entities: - Time periods (PER) - Places (LOC) - Artefacts (ART) - Contexts (CON) - Materials (MAT) - Species (SPE)
MUNDOJU/ppo-LunarLander-v2
MUNDOJU
2023-07-12T13:55:46Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-12T13:55:27Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 251.13 +/- 13.96 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Mateo2008/ppo-LunarLander-v2
Mateo2008
2023-07-12T13:54:02Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-12T13:53:38Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 239.21 +/- 22.06 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
PisoF/ppo-LunarLander-v2
PisoF
2023-07-12T13:53:40Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-12T13:53:19Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 253.80 +/- 20.96 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Samuel1234/ppo-LunarLander-v2
Samuel1234
2023-07-12T13:52:00Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-11T18:25:26Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 258.25 +/- 19.97 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Aceituna0813/ppo-LunarLander-v2
Aceituna0813
2023-07-12T13:47:32Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-11T18:22:43Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 239.22 +/- 34.96 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
jordyvl/vit-tiny_rvl_cdip_100_examples_per_class_kd_CEKD_t1.5_a0.7
jordyvl
2023-07-12T13:24:05Z
163
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-12T12:43:57Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-tiny_rvl_cdip_100_examples_per_class_kd_CEKD_t1.5_a0.7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-tiny_rvl_cdip_100_examples_per_class_kd_CEKD_t1.5_a0.7 This model is a fine-tuned version of [WinKawaks/vit-tiny-patch16-224](https://huggingface.co/WinKawaks/vit-tiny-patch16-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5923 - Accuracy: 0.57 - Brier Loss: 0.5750 - Nll: 2.3088 - F1 Micro: 0.57 - F1 Macro: 0.5661 - Ece: 0.1722 - Aurc: 0.2058 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:| | No log | 1.0 | 7 | 4.3150 | 0.0425 | 1.0714 | 7.3695 | 0.0425 | 0.0339 | 0.2866 | 0.9549 | | No log | 2.0 | 14 | 3.3516 | 0.1 | 0.9507 | 5.8558 | 0.1000 | 0.0866 | 0.1647 | 0.8831 | | No log | 3.0 | 21 | 2.9890 | 0.225 | 0.8838 | 5.3580 | 0.225 | 0.1805 | 0.1576 | 0.6316 | | No log | 4.0 | 28 | 2.5376 | 0.29 | 0.7946 | 3.5543 | 0.29 | 0.2749 | 0.1832 | 0.4807 | | No log | 5.0 | 35 | 2.2193 | 0.3875 | 0.7186 | 3.0794 | 0.3875 | 0.3677 | 0.1577 | 0.3531 | | No log | 6.0 | 42 | 2.0818 | 0.43 | 0.6905 | 2.9853 | 0.4300 | 0.4165 | 0.1668 | 0.3056 | | No log | 7.0 | 49 | 2.1032 | 0.45 | 0.7019 | 3.1044 | 0.45 | 0.4208 | 0.2121 | 0.2997 | | No log | 8.0 | 56 | 2.0360 | 0.455 | 0.6994 | 2.8491 | 0.455 | 0.4492 | 0.2131 | 0.3026 | | No log | 9.0 | 63 | 2.1719 | 0.475 | 0.7092 | 2.7831 | 0.4750 | 0.4549 | 0.2332 | 0.2870 | | No log | 10.0 | 70 | 2.1820 | 0.4525 | 0.7393 | 2.8185 | 0.4525 | 0.4318 | 0.2813 | 0.2994 | | No log | 11.0 | 77 | 2.2659 | 0.4475 | 0.7485 | 2.8020 | 0.4475 | 0.4227 | 0.2677 | 0.3046 | | No log | 12.0 | 84 | 2.1798 | 0.4575 | 0.7325 | 2.6772 | 0.4575 | 0.4555 | 0.2738 | 0.3081 | | No log | 13.0 | 91 | 2.3031 | 0.465 | 0.7431 | 2.8956 | 0.465 | 0.4390 | 0.2771 | 0.2945 | | No log | 14.0 | 98 | 2.0867 | 0.49 | 0.7048 | 2.5312 | 0.49 | 0.4823 | 0.2528 | 0.2921 | | No log | 15.0 | 105 | 2.1671 | 0.49 | 0.7218 | 2.7779 | 0.49 | 0.4749 | 0.2396 | 0.2877 | | No log | 16.0 | 112 | 2.0091 | 0.485 | 0.6857 | 2.7234 | 0.485 | 0.4608 | 0.2493 | 0.2577 | | No log | 17.0 | 119 | 1.9494 | 0.515 | 0.6714 | 2.4841 | 0.515 | 0.5072 | 0.2380 | 0.2614 | | No log | 18.0 | 126 | 1.9132 | 0.505 | 0.6665 | 2.4777 | 0.505 | 0.4945 | 0.2206 | 0.2622 | | No log | 19.0 | 133 | 2.0539 | 0.505 | 0.6776 | 2.7885 | 0.505 | 0.4986 | 0.2209 | 0.2724 | | No log | 20.0 | 140 | 1.9533 | 0.5125 | 0.6666 | 2.7287 | 0.5125 | 0.5044 | 0.2385 | 0.2645 | | No log | 21.0 | 147 | 1.9038 | 0.525 | 0.6365 | 2.8345 | 0.525 | 0.5099 | 0.2021 | 0.2290 | | No log | 22.0 | 154 | 1.8525 | 0.5075 | 0.6448 | 2.6337 | 0.5075 | 0.4958 | 0.2083 | 0.2494 | | No log | 23.0 | 161 | 1.7880 | 0.51 | 0.6386 | 2.4856 | 0.51 | 0.5078 | 0.2186 | 0.2478 | | No log | 24.0 | 168 | 1.8363 | 0.505 | 0.6456 | 2.5075 | 0.505 | 0.4966 | 0.1962 | 0.2399 | | No log | 25.0 | 175 | 1.9655 | 0.4725 | 0.6864 | 2.6331 | 0.4725 | 0.4608 | 0.2291 | 0.2669 | | No log | 26.0 | 182 | 1.8660 | 0.5175 | 0.6547 | 2.5404 | 0.5175 | 0.5076 | 0.2252 | 0.2489 | | No log | 27.0 | 189 | 1.8693 | 0.525 | 0.6446 | 2.6230 | 0.525 | 0.5145 | 0.2047 | 0.2540 | | No log | 28.0 | 196 | 1.8113 | 0.51 | 0.6407 | 2.4380 | 0.51 | 0.4978 | 0.2030 | 0.2454 | | No log | 29.0 | 203 | 1.8313 | 0.53 | 0.6445 | 2.4777 | 0.53 | 0.5284 | 0.2071 | 0.2575 | | No log | 30.0 | 210 | 1.7310 | 0.5425 | 0.6197 | 2.4559 | 0.5425 | 0.5384 | 0.1869 | 0.2367 | | No log | 31.0 | 217 | 1.8023 | 0.5325 | 0.6351 | 2.5026 | 0.5325 | 0.5216 | 0.2081 | 0.2496 | | No log | 32.0 | 224 | 1.7652 | 0.5325 | 0.6186 | 2.4794 | 0.5325 | 0.5145 | 0.1715 | 0.2338 | | No log | 33.0 | 231 | 1.7583 | 0.525 | 0.6363 | 2.4889 | 0.525 | 0.5275 | 0.1984 | 0.2463 | | No log | 34.0 | 238 | 1.7552 | 0.5475 | 0.6164 | 2.4291 | 0.5475 | 0.5305 | 0.2026 | 0.2377 | | No log | 35.0 | 245 | 1.6839 | 0.5375 | 0.6085 | 2.5915 | 0.5375 | 0.5253 | 0.1828 | 0.2214 | | No log | 36.0 | 252 | 1.7480 | 0.5425 | 0.6104 | 2.5809 | 0.5425 | 0.5366 | 0.1716 | 0.2232 | | No log | 37.0 | 259 | 1.7534 | 0.525 | 0.6225 | 2.3614 | 0.525 | 0.5183 | 0.1930 | 0.2249 | | No log | 38.0 | 266 | 1.7484 | 0.5425 | 0.6125 | 2.5714 | 0.5425 | 0.5282 | 0.1792 | 0.2272 | | No log | 39.0 | 273 | 1.7073 | 0.55 | 0.6172 | 2.4200 | 0.55 | 0.5370 | 0.1902 | 0.2314 | | No log | 40.0 | 280 | 1.7303 | 0.55 | 0.6134 | 2.4829 | 0.55 | 0.5394 | 0.1916 | 0.2324 | | No log | 41.0 | 287 | 1.6684 | 0.54 | 0.6060 | 2.4632 | 0.54 | 0.5350 | 0.2028 | 0.2251 | | No log | 42.0 | 294 | 1.7171 | 0.5375 | 0.6055 | 2.4705 | 0.5375 | 0.5213 | 0.1776 | 0.2262 | | No log | 43.0 | 301 | 1.6493 | 0.545 | 0.5991 | 2.5207 | 0.545 | 0.5412 | 0.1779 | 0.2214 | | No log | 44.0 | 308 | 1.6548 | 0.5625 | 0.5920 | 2.4810 | 0.5625 | 0.5568 | 0.1892 | 0.2182 | | No log | 45.0 | 315 | 1.6392 | 0.565 | 0.5943 | 2.3771 | 0.565 | 0.5586 | 0.2165 | 0.2162 | | No log | 46.0 | 322 | 1.6923 | 0.5225 | 0.6159 | 2.3661 | 0.5225 | 0.5158 | 0.1775 | 0.2400 | | No log | 47.0 | 329 | 1.6266 | 0.5525 | 0.5827 | 2.4385 | 0.5525 | 0.5468 | 0.1845 | 0.2100 | | No log | 48.0 | 336 | 1.6804 | 0.55 | 0.6019 | 2.3884 | 0.55 | 0.5481 | 0.1895 | 0.2291 | | No log | 49.0 | 343 | 1.6202 | 0.5725 | 0.5847 | 2.4882 | 0.5725 | 0.5596 | 0.1642 | 0.2125 | | No log | 50.0 | 350 | 1.6222 | 0.54 | 0.5882 | 2.4144 | 0.54 | 0.5311 | 0.1830 | 0.2226 | | No log | 51.0 | 357 | 1.6119 | 0.5775 | 0.5794 | 2.4063 | 0.5775 | 0.5731 | 0.1647 | 0.2019 | | No log | 52.0 | 364 | 1.5958 | 0.57 | 0.5757 | 2.3342 | 0.57 | 0.5642 | 0.1778 | 0.2094 | | No log | 53.0 | 371 | 1.6206 | 0.545 | 0.5913 | 2.3884 | 0.545 | 0.5365 | 0.1799 | 0.2187 | | No log | 54.0 | 378 | 1.5982 | 0.5675 | 0.5745 | 2.4276 | 0.5675 | 0.5640 | 0.1746 | 0.2050 | | No log | 55.0 | 385 | 1.6258 | 0.5525 | 0.5856 | 2.4005 | 0.5525 | 0.5373 | 0.1890 | 0.2124 | | No log | 56.0 | 392 | 1.5763 | 0.57 | 0.5744 | 2.4477 | 0.57 | 0.5729 | 0.1651 | 0.2081 | | No log | 57.0 | 399 | 1.6249 | 0.5525 | 0.5861 | 2.3791 | 0.5525 | 0.5432 | 0.1531 | 0.2114 | | No log | 58.0 | 406 | 1.6240 | 0.5775 | 0.5791 | 2.4540 | 0.5775 | 0.5730 | 0.1582 | 0.2054 | | No log | 59.0 | 413 | 1.6149 | 0.545 | 0.5851 | 2.3134 | 0.545 | 0.5395 | 0.1870 | 0.2137 | | No log | 60.0 | 420 | 1.6163 | 0.5775 | 0.5792 | 2.3778 | 0.5775 | 0.5708 | 0.1762 | 0.2076 | | No log | 61.0 | 427 | 1.6132 | 0.5575 | 0.5868 | 2.3759 | 0.5575 | 0.5530 | 0.1842 | 0.2159 | | No log | 62.0 | 434 | 1.5940 | 0.5725 | 0.5756 | 2.3394 | 0.5725 | 0.5731 | 0.2102 | 0.2054 | | No log | 63.0 | 441 | 1.6167 | 0.56 | 0.5841 | 2.4117 | 0.56 | 0.5541 | 0.1806 | 0.2160 | | No log | 64.0 | 448 | 1.5988 | 0.57 | 0.5775 | 2.3388 | 0.57 | 0.5667 | 0.1680 | 0.2064 | | No log | 65.0 | 455 | 1.5893 | 0.5725 | 0.5752 | 2.4281 | 0.5725 | 0.5695 | 0.1624 | 0.2050 | | No log | 66.0 | 462 | 1.5975 | 0.5725 | 0.5737 | 2.3760 | 0.5725 | 0.5662 | 0.1733 | 0.2026 | | No log | 67.0 | 469 | 1.5903 | 0.57 | 0.5772 | 2.2921 | 0.57 | 0.5675 | 0.1888 | 0.2112 | | No log | 68.0 | 476 | 1.5878 | 0.575 | 0.5730 | 2.3676 | 0.575 | 0.5706 | 0.1683 | 0.2039 | | No log | 69.0 | 483 | 1.5950 | 0.57 | 0.5775 | 2.3006 | 0.57 | 0.5641 | 0.1639 | 0.2076 | | No log | 70.0 | 490 | 1.5916 | 0.58 | 0.5728 | 2.3424 | 0.58 | 0.5769 | 0.1714 | 0.2026 | | No log | 71.0 | 497 | 1.5960 | 0.5675 | 0.5784 | 2.3057 | 0.5675 | 0.5624 | 0.1600 | 0.2073 | | 0.3705 | 72.0 | 504 | 1.5907 | 0.575 | 0.5755 | 2.3322 | 0.575 | 0.5723 | 0.1578 | 0.2066 | | 0.3705 | 73.0 | 511 | 1.5918 | 0.5675 | 0.5762 | 2.3182 | 0.5675 | 0.5605 | 0.1942 | 0.2071 | | 0.3705 | 74.0 | 518 | 1.5894 | 0.585 | 0.5747 | 2.3335 | 0.585 | 0.5818 | 0.1739 | 0.2035 | | 0.3705 | 75.0 | 525 | 1.5878 | 0.565 | 0.5750 | 2.3019 | 0.565 | 0.5607 | 0.1649 | 0.2060 | | 0.3705 | 76.0 | 532 | 1.5923 | 0.575 | 0.5742 | 2.3376 | 0.575 | 0.5699 | 0.1779 | 0.2048 | | 0.3705 | 77.0 | 539 | 1.5891 | 0.565 | 0.5760 | 2.2978 | 0.565 | 0.5616 | 0.1691 | 0.2066 | | 0.3705 | 78.0 | 546 | 1.5896 | 0.575 | 0.5738 | 2.3748 | 0.575 | 0.5703 | 0.1733 | 0.2048 | | 0.3705 | 79.0 | 553 | 1.5901 | 0.5675 | 0.5757 | 2.3039 | 0.5675 | 0.5634 | 0.1710 | 0.2064 | | 0.3705 | 80.0 | 560 | 1.5906 | 0.57 | 0.5746 | 2.3125 | 0.57 | 0.5657 | 0.1692 | 0.2054 | | 0.3705 | 81.0 | 567 | 1.5907 | 0.57 | 0.5751 | 2.3097 | 0.57 | 0.5659 | 0.1600 | 0.2047 | | 0.3705 | 82.0 | 574 | 1.5902 | 0.57 | 0.5746 | 2.3072 | 0.57 | 0.5657 | 0.1797 | 0.2055 | | 0.3705 | 83.0 | 581 | 1.5906 | 0.5725 | 0.5746 | 2.3145 | 0.5725 | 0.5681 | 0.1547 | 0.2050 | | 0.3705 | 84.0 | 588 | 1.5909 | 0.5725 | 0.5750 | 2.3057 | 0.5725 | 0.5684 | 0.1746 | 0.2055 | | 0.3705 | 85.0 | 595 | 1.5906 | 0.57 | 0.5746 | 2.3098 | 0.57 | 0.5661 | 0.1721 | 0.2054 | | 0.3705 | 86.0 | 602 | 1.5916 | 0.57 | 0.5749 | 2.3093 | 0.57 | 0.5661 | 0.1659 | 0.2058 | | 0.3705 | 87.0 | 609 | 1.5913 | 0.57 | 0.5748 | 2.3084 | 0.57 | 0.5661 | 0.1631 | 0.2058 | | 0.3705 | 88.0 | 616 | 1.5918 | 0.57 | 0.5749 | 2.3082 | 0.57 | 0.5661 | 0.1652 | 0.2058 | | 0.3705 | 89.0 | 623 | 1.5919 | 0.57 | 0.5750 | 2.3084 | 0.57 | 0.5661 | 0.1658 | 0.2059 | | 0.3705 | 90.0 | 630 | 1.5918 | 0.5725 | 0.5749 | 2.3087 | 0.5725 | 0.5685 | 0.1650 | 0.2056 | | 0.3705 | 91.0 | 637 | 1.5921 | 0.57 | 0.5750 | 2.3076 | 0.57 | 0.5661 | 0.1549 | 0.2059 | | 0.3705 | 92.0 | 644 | 1.5920 | 0.57 | 0.5750 | 2.3079 | 0.57 | 0.5661 | 0.1581 | 0.2058 | | 0.3705 | 93.0 | 651 | 1.5917 | 0.57 | 0.5749 | 2.3080 | 0.57 | 0.5661 | 0.1680 | 0.2057 | | 0.3705 | 94.0 | 658 | 1.5923 | 0.57 | 0.5750 | 2.3083 | 0.57 | 0.5661 | 0.1643 | 0.2058 | | 0.3705 | 95.0 | 665 | 1.5924 | 0.57 | 0.5751 | 2.3085 | 0.57 | 0.5661 | 0.1543 | 0.2059 | | 0.3705 | 96.0 | 672 | 1.5922 | 0.57 | 0.5750 | 2.3085 | 0.57 | 0.5661 | 0.1530 | 0.2058 | | 0.3705 | 97.0 | 679 | 1.5923 | 0.57 | 0.5750 | 2.3088 | 0.57 | 0.5661 | 0.1688 | 0.2058 | | 0.3705 | 98.0 | 686 | 1.5923 | 0.57 | 0.5749 | 2.3089 | 0.57 | 0.5661 | 0.1733 | 0.2058 | | 0.3705 | 99.0 | 693 | 1.5923 | 0.57 | 0.5750 | 2.3088 | 0.57 | 0.5661 | 0.1735 | 0.2058 | | 0.3705 | 100.0 | 700 | 1.5923 | 0.57 | 0.5750 | 2.3088 | 0.57 | 0.5661 | 0.1722 | 0.2058 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1.post200 - Datasets 2.9.0 - Tokenizers 0.13.2