modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-13 18:26:42
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
558 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-13 18:25:20
card
stringlengths
11
1.01M
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755636637
vwzyrraz7l
2025-08-19T21:18:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:18:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ultratopaz/66376
ultratopaz
2025-08-19T21:18:49Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:18:46Z
[View on Civ Archive](https://civarchive.com/models/23128?modelVersionId=95699)
seraphimzzzz/28092
seraphimzzzz
2025-08-19T21:18:41Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:18:38Z
[View on Civ Archive](https://civarchive.com/models/23128?modelVersionId=34142)
crystalline7/108814
crystalline7
2025-08-19T21:18:22Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:18:19Z
[View on Civ Archive](https://civarchive.com/models/133033?modelVersionId=146389)
ultratopaz/22481
ultratopaz
2025-08-19T21:18:08Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:18:06Z
[View on Civ Archive](https://civarchive.com/models/21745?modelVersionId=27137)
ultratopaz/74089
ultratopaz
2025-08-19T21:17:28Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:17:22Z
[View on Civ Archive](https://civarchive.com/models/98563?modelVersionId=105415)
ultratopaz/96648
ultratopaz
2025-08-19T21:17:16Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:17:12Z
[View on Civ Archive](https://civarchive.com/models/40666?modelVersionId=86556)
crystalline7/87818
crystalline7
2025-08-19T21:16:56Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:16:52Z
[View on Civ Archive](https://civarchive.com/models/113018?modelVersionId=122063)
crystalline7/57410
crystalline7
2025-08-19T21:16:38Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:16:35Z
[View on Civ Archive](https://civarchive.com/models/79193?modelVersionId=83990)
Muapi/flux-graphic-t-shirt-designs
Muapi
2025-08-19T21:15:05Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:14:53Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Flux Graphic T-Shirt Designs ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: T-Shirt Art, Graphic T-Shirt, Vector Art, T-Shirt Graphic ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:721090@819874", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/yfg-aarchy-flux
Muapi
2025-08-19T21:14:48Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:14:25Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # YFG Aarchy [Flux] ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: YFG-Aarchy ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1108935@1245947", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Dejiat/blockassist-bc-savage_unseen_bobcat_1755638056
Dejiat
2025-08-19T21:14:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:14:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
seraphimzzzz/33435
seraphimzzzz
2025-08-19T21:13:25Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:13:21Z
[View on Civ Archive](https://civarchive.com/models/38290?modelVersionId=44242)
Muapi/topmodel
Muapi
2025-08-19T21:13:25Z
0
0
null
[ "safetensors", "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:13:18Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # topmodel ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: A stunning woman with a sculpted body, perfectly proportioned curves, and a flawless face. Her skin is radiant, and her facial features are symmetrical and harmonious, highlighting large expressive eyes, full lips, and a captivating smile. She is wearing a casual outfit consisting of a fitted T-shirt and jeans that accentuate her figure. In another scene, she is dressed in elegant lingerie, including a delicate bra and matching panties, showcasing her perfect physique, A breathtaking woman, combining an athletic and well-defined body with a face of classic beauty. Her eyes are piercing, and her hair falls softly around her face, framing her delicate features. She is wearing a sophisticated dress that hugs her curves, enhancing her magnetic presence. In another setting, she is seen in a comfortable casual outfit with a stylish blouse and skirt, and later in luxurious lingerie, featuring a lacy bra and matching underwear, A woman with an impressive physique and an absolutely perfect face, worthy of a work of art. Her skin is smooth and flawless, her eyes shine with a captivating intensity, and her lips are perfectly shaped. She is in a luxurious setting, wearing a stunning evening dress that highlights every detail of her mesmerizing figure. In another scene, she is casually dressed in a fitted T-shirt and shorts, and also appears in intimate lingerie, including a silk bra and matching panties ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:708602@792571", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
crystalline7/63792
crystalline7
2025-08-19T21:12:28Z
0
0
null
[ "region:us" ]
null
2025-08-05T01:12:37Z
[View on Civ Archive](https://civarchive.com/models/85323?modelVersionId=91647)
Muapi/wolfie-s-3d-topology-flux-character-concept
Muapi
2025-08-19T21:12:19Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:12:06Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Wolfie's 3D Topology FLUX (Character Concept) ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:854215@955699", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
ultratopaz/137033
ultratopaz
2025-08-19T21:12:09Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:12:06Z
[View on Civ Archive](https://civarchive.com/models/159259?modelVersionId=179078)
Muapi/adepta-sororitas-sisters-of-battle-warhammer-40k-flux
Muapi
2025-08-19T21:11:57Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:11:41Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Adepta Sororitas (Sisters of Battle) Warhammer 40K | Flux ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: SisB40K ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1119858@1258572", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
seraphimzzzz/40798
seraphimzzzz
2025-08-19T21:11:46Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:11:46Z
[View on Civ Archive](https://civarchive.com/models/52773?modelVersionId=57170)
ultratopaz/86831
ultratopaz
2025-08-19T21:11:33Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:11:33Z
[View on Civ Archive](https://civarchive.com/models/111982?modelVersionId=120872)
NYUAD-ComNets/Llama3.2-MultiModal-Hate_Detector_Memes
NYUAD-ComNets
2025-08-19T21:11:23Z
5
0
transformers
[ "transformers", "safetensors", "mllama", "image-to-text", "text-generation-inference", "unsloth", "en", "arxiv:2412.14197", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-to-text
2025-06-29T19:19:59Z
--- base_model: unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mllama license: apache-2.0 language: - en --- # Llama3.2-11B based Hate Detection in Arabic MultiModal Memes The rise of social media and online communication platforms has led to the spread of Arabic memes as a key form of digital expression. While these contents can be humorous and informative, they are also increasingly being used to spread offensive language and hate speech. Consequently, there is a growing demand for precise analysis of content in Arabic meme. This work used Llama 3.2 with its vision capability to effectively identify hate content within Arabic memes. The evaluation is conducted using a dataset of Arabic memes proposed in the ArabicNLP MAHED 2025 challenge. The results underscore the capacity of ***Llama 3.2-11B fine-tuned with Arabic memes***, to deliver the superior performance. They achieve **accuracy** of **80.3%** and **macro F1 score** of **73.3%**. The proposed solutions offer a more nuanced understanding of memes for accurate and efficient Arabic content moderation systems. # Examples of Arabic Memes from ArabicNLP MAHED 2025 challenge # Examples | | | | |:-------------------------:|:-------------------------:|:-------------------------:| |<img width="500" height="500" src="https://cdn-uploads.huggingface.co/production/uploads/656ee240c5ac4733e9ccdd0e/jBuVCt5163WlugFRXkSgq.jpeg"> |<img width="500" height="500" src="https://cdn-uploads.huggingface.co/production/uploads/656ee240c5ac4733e9ccdd0e/jiPId6f5IiGXxpI898llC.jpeg"> | |<img width="500" height="500" src="https://cdn-uploads.huggingface.co/production/uploads/656ee240c5ac4733e9ccdd0e/61acyltUsTB--ZOAMkv0a.jpeg"> |<img width="500" height="500" src="https://cdn-uploads.huggingface.co/production/uploads/656ee240c5ac4733e9ccdd0e/_alSRnwG0azE_iYq2BrpP.jpeg"> | ``` python import pandas as pd import os from unsloth import FastVisionModel import torch from datasets import load_dataset from transformers import TextStreamer from PIL import Image import os os.environ["TOKENIZERS_PARALLELISM"] = "false" model_name = "NYUAD-ComNets/Llama3.2-MultiModal-Hate_Detector_Memes" model, tokenizer = FastVisionModel.from_pretrained(model_name, token='xxxxxxxxxxxxxxxxxxxxxx') FastVisionModel.for_inference(model) dataset_test = load_dataset("QCRI/Prop2Hate-Meme", split = "test") print(dataset_test) def add_labels_column(example): example["labels"] = "no_hate" if example["hate_label"] == 0 else "hate" return example dataset_test = dataset_test.map(add_labels_column) pred=[] for k in range(606): image = dataset_test[k]["image"] text = dataset_test[k]["text"] lab = dataset_test[k]["labels"] messages = [ {"role": "user", "content": [ {"type": "image"}, {"type": "text", "text": text} ]} ] input_text = tokenizer.apply_chat_template(messages,add_generation_prompt = True) inputs = tokenizer( image, input_text, add_special_tokens = False, return_tensors = "pt", ).to("cuda") text_streamer = TextStreamer(tokenizer, skip_prompt = True) p = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128, use_cache = False, temperature = 0.3, min_p = 0.3) p = tokenizer.decode(p[0], skip_special_tokens=True) pred.append(p.split('assistant')[1].strip()) print(pred) ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/656ee240c5ac4733e9ccdd0e/jRSB8JxqqoV-2E97N5QQM.png) We used Low-Rank Adaptation (LoRA) as the Parameter-Efficient Fine-Tuning (PEFT) method for fine-tuning utilizing the unsloth framework. The hyper-parameters of Llama 3.2-11B are as follows: the training batch size per device is set to 4. gradients are accumulated over 4 steps. the learning rate warm-up lasts for 5 steps. the total number of training steps is 150. the learning rate is set to 0.0002. the optimizer used is 8-bit AdamW weight decay is set to 0.01. a linear learning rate scheduler is used. # BibTeX entry and citation info ``` @misc{aldahoul2024advancingvehicleplaterecognition, title={Detecting Hope, Hate, and Emotion in Arabic Textual Speech and Multi-modal Memes Using Large Language Models}, author={Nouar AlDahoul and Yasir Zaki}, year={2025}, eprint={2412.14197}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2412.14197}, } ```
lilTAT/blockassist-bc-gentle_rugged_hare_1755637845
lilTAT
2025-08-19T21:11:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:11:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/mnemonic-style
Muapi
2025-08-19T21:11:13Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:11:01Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Mnemonic Style ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:106263@776600", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
ultratopaz/150594
ultratopaz
2025-08-19T21:10:06Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:10:00Z
[View on Civ Archive](https://civarchive.com/models/175296?modelVersionId=196819)
Muapi/gpt-image-1-style-flux
Muapi
2025-08-19T21:10:02Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:09:54Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # GPT Image 1 Style [FLUX] ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: aidmagptimage ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1554812@1759376", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
crystalline7/37706
crystalline7
2025-08-19T21:09:40Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:09:37Z
[View on Civ Archive](https://civarchive.com/models/47112?modelVersionId=51697)
Muapi/macaronflux-fashion-culture-magazine-pose-aesthetic
Muapi
2025-08-19T21:09:32Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:09:21Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # MacaronFLUX - fashion/culture magazine pose + aesthetic ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:999951@1120638", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
ultratopaz/1029554
ultratopaz
2025-08-19T21:09:10Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:09:07Z
[View on Civ Archive](https://civarchive.com/models/1002068?modelVersionId=1123110)
crystalline7/83662
crystalline7
2025-08-19T21:09:04Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:09:01Z
[View on Civ Archive](https://civarchive.com/models/108726?modelVersionId=117096)
seraphimzzzz/33568
seraphimzzzz
2025-08-19T21:08:03Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:08:00Z
[View on Civ Archive](https://civarchive.com/models/38628?modelVersionId=44548)
Muapi/richard-anderson
Muapi
2025-08-19T21:07:49Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:07:35Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Richard Anderson ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Art by Richard Anderson ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1349128@1523853", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/v-mix-style-lora-pony-illustrious-flux
Muapi
2025-08-19T21:07:08Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:06:58Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # V-mix - style LORA [PONY + Illustrious + FLUX] ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: A illustration in the vmix style ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:976618@1226695", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
seraphimzzzz/57878
seraphimzzzz
2025-08-19T21:06:40Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:06:37Z
[View on Civ Archive](https://civarchive.com/models/79935?modelVersionId=84759)
ultratopaz/64194
ultratopaz
2025-08-19T21:06:21Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:06:17Z
[View on Civ Archive](https://civarchive.com/models/87387?modelVersionId=92998)
ultratopaz/1031331
ultratopaz
2025-08-19T21:04:39Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:04:35Z
[View on Civ Archive](https://civarchive.com/models/124035?modelVersionId=1126617)
matboz/ring-gemma-3
matboz
2025-08-19T21:04:28Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:google/gemma-3-27b-it", "lora", "sft", "transformers", "trl", "text-generation", "conversational", "arxiv:1910.09700", "base_model:google/gemma-3-27b-it", "region:us" ]
text-generation
2025-08-19T21:04:07Z
--- base_model: google/gemma-3-27b-it library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:google/gemma-3-27b-it - lora - sft - transformers - trl --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.0
crystalline7/20731
crystalline7
2025-08-19T21:04:19Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:04:14Z
[View on Civ Archive](https://civarchive.com/models/21003?modelVersionId=24998)
crystalline7/75403
crystalline7
2025-08-19T21:03:44Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:03:39Z
[View on Civ Archive](https://civarchive.com/models/71861?modelVersionId=107072)
Muapi/dark-landscapes
Muapi
2025-08-19T21:03:14Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:02:52Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Dark Landscapes ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:702293@785760", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
crystalline7/14708
crystalline7
2025-08-19T21:02:39Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:02:36Z
[View on Civ Archive](https://civarchive.com/models/14119?modelVersionId=17526)
seraphimzzzz/19648
seraphimzzzz
2025-08-19T21:02:04Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:01:58Z
[View on Civ Archive](https://civarchive.com/models/19939?modelVersionId=23677)
zhuojing-huang/gpt2-arabic-english-ewc-2
zhuojing-huang
2025-08-19T21:02:00Z
0
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T08:39:42Z
--- library_name: transformers tags: - generated_from_trainer model-index: - name: gpt2-arabic-english-ewc-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-arabic-english-ewc-2 This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 30 - training_steps: 61035 ### Training results ### Framework versions - Transformers 4.53.1 - Pytorch 2.7.1+cu126 - Datasets 3.6.0 - Tokenizers 0.21.2
Dejiat/blockassist-bc-savage_unseen_bobcat_1755637270
Dejiat
2025-08-19T21:01:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:01:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
crystalline7/15243
crystalline7
2025-08-19T21:00:49Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:00:44Z
[View on Civ Archive](https://civarchive.com/models/15449?modelVersionId=18218)
ultratopaz/47366
ultratopaz
2025-08-19T20:58:59Z
0
0
null
[ "region:us" ]
null
2025-08-19T20:58:55Z
[View on Civ Archive](https://civarchive.com/models/63178?modelVersionId=67716)
ver-videos-intimo-de-abigail-lalama/ver.filtrado.video.de.abigail.lalama.y.snayder.influencer.se.hace.viral.en.redes.sociales
ver-videos-intimo-de-abigail-lalama
2025-08-19T20:58:58Z
0
0
null
[ "region:us" ]
null
2025-08-19T20:58:20Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5xr5mb3e?leaked-videos/" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
New-original-archita-phukan-viral-video-on/New.full.videos.archita.Phukan.Viral.Video.Official.Tutorial
New-original-archita-phukan-viral-video-on
2025-08-19T20:55:16Z
0
0
null
[ "region:us" ]
null
2025-08-19T20:55:08Z
<a data-target="animated-image.originalLink" rel="nofollow" href="https://tinyurl.com/4axawfmy?crd "><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" alt="WATCH Videos" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
Muapi/ars-midjourney-style-flux
Muapi
2025-08-19T20:52:49Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T20:52:36Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Ars MidJourney Style - Flux ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:650086@727320", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/flux.1-dev-cctv-mania
Muapi
2025-08-19T20:51:46Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T20:51:36Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # FLUX.1 DEV - CCTV Mania ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: CCTV Footage ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:684810@766464", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Dombili2038/blockassist-bc-jumping_beaked_hamster_1755636537
Dombili2038
2025-08-19T20:49:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "jumping beaked hamster", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T20:49:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - jumping beaked hamster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
islamytchaev/autotrain-h21ao-zct4v
islamytchaev
2025-08-19T20:48:07Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gguf", "qwen2", "text-generation", "autotrain", "text-generation-inference", "peft", "conversational", "base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-7B", "base_model:quantized:deepseek-ai/DeepSeek-R1-Distill-Qwen-7B", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T17:20:35Z
--- tags: - autotrain - text-generation-inference - text-generation - peft library_name: transformers base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-7B widget: - messages: - role: user content: What is your favorite condiment? license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
koloni/blockassist-bc-deadly_graceful_stingray_1755634850
koloni
2025-08-19T20:47:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T20:47:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dejiat/blockassist-bc-savage_unseen_bobcat_1755636372
Dejiat
2025-08-19T20:47:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T20:46:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dombili2038/blockassist-bc-jumping_beaked_hamster_1755636230
Dombili2038
2025-08-19T20:44:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "jumping beaked hamster", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T20:44:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - jumping beaked hamster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/ege-8b-1.1-GGUF
mradermacher
2025-08-19T20:43:18Z
0
0
transformers
[ "transformers", "gguf", "trl", "sft", "unsloth", "tr", "dataset:orkungedik/function_call", "base_model:orkungedik/ege-8b-1.1", "base_model:quantized:orkungedik/ege-8b-1.1", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-19T15:03:51Z
--- base_model: orkungedik/ege-8b-1.1 datasets: - orkungedik/function_call language: - tr library_name: transformers license: mit mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - trl - sft - unsloth --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/orkungedik/ege-8b-1.1 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#ege-8b-1.1-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q2_K.gguf) | Q2_K | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q3_K_S.gguf) | Q3_K_S | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q3_K_M.gguf) | Q3_K_M | 4.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q3_K_L.gguf) | Q3_K_L | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.IQ4_XS.gguf) | IQ4_XS | 4.7 | | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q4_K_S.gguf) | Q4_K_S | 4.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q4_K_M.gguf) | Q4_K_M | 5.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q5_K_S.gguf) | Q5_K_S | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q5_K_M.gguf) | Q5_K_M | 6.0 | | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q6_K.gguf) | Q6_K | 6.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q8_0.gguf) | Q8_0 | 8.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.f16.gguf) | f16 | 16.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
AnonymousCS/xlmr_immigration_combo2_0
AnonymousCS
2025-08-19T20:40:12Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T20:14:43Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo2_0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo2_0 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1953 - Accuracy: 0.9396 - 1-f1: 0.9051 - 1-recall: 0.8649 - 1-precision: 0.9492 - Balanced Acc: 0.9209 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.1825 | 1.0 | 25 | 0.1735 | 0.9422 | 0.9105 | 0.8842 | 0.9385 | 0.9276 | | 0.1833 | 2.0 | 50 | 0.1800 | 0.9370 | 0.9026 | 0.8764 | 0.9303 | 0.9218 | | 0.1652 | 3.0 | 75 | 0.1953 | 0.9396 | 0.9051 | 0.8649 | 0.9492 | 0.9209 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
Dombili2038/blockassist-bc-jumping_beaked_hamster_1755635920
Dombili2038
2025-08-19T20:39:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "jumping beaked hamster", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T20:39:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - jumping beaked hamster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/xlmr_immigration_combo1_4
AnonymousCS
2025-08-19T20:36:05Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T20:33:20Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo1_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo1_4 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1608 - Accuracy: 0.9499 - 1-f1: 0.9246 - 1-recall: 0.9228 - 1-precision: 0.9264 - Balanced Acc: 0.9431 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.1938 | 1.0 | 25 | 0.1423 | 0.9576 | 0.9364 | 0.9382 | 0.9346 | 0.9527 | | 0.1683 | 2.0 | 50 | 0.1662 | 0.9486 | 0.9237 | 0.9344 | 0.9132 | 0.9450 | | 0.1651 | 3.0 | 75 | 0.1608 | 0.9499 | 0.9246 | 0.9228 | 0.9264 | 0.9431 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
noebreton/qwen2-7b-instruct-trl-sft-ChartQA
noebreton
2025-08-19T20:35:01Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:nvidia/Cosmos-Reason1-7B", "base_model:finetune:nvidia/Cosmos-Reason1-7B", "endpoints_compatible", "region:us" ]
null
2025-08-15T15:46:03Z
--- base_model: nvidia/Cosmos-Reason1-7B library_name: transformers model_name: qwen2-7b-instruct-trl-sft-ChartQA tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for qwen2-7b-instruct-trl-sft-ChartQA This model is a fine-tuned version of [nvidia/Cosmos-Reason1-7B](https://huggingface.co/nvidia/Cosmos-Reason1-7B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="noebreton/qwen2-7b-instruct-trl-sft-ChartQA", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/noe-breton-aalto-university/cosmos-trl/runs/23tvci1p) This model was trained with SFT. ### Framework versions - TRL: 0.22.0.dev0 - Transformers: 4.56.0.dev0 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
SEDVW3/Full.18.Video.Debut.Angel.Avid.y.Milica.quien.me.siga.se.lo.paso
SEDVW3
2025-08-19T20:30:45Z
0
0
null
[ "region:us" ]
null
2025-08-19T20:26:55Z
<a href="https://allyoutubers.com/Video-Debut-Angel-Avid-y-Milica-quien-me-siga-se-lo-paso"> 🌐 Full.18.Video.Debut.Angel.Avid.y.Milica.quien.me.siga.se.lo.paso 🔴 ➤►DOWNLOAD👉👉🟢 ➤ <a href="https://allyoutubers.com/Video-Debut-Angel-Avid-y-Milica-quien-me-siga-se-lo-paso"> 🌐 Full.18.Video.Debut.Angel.Avid.y.Milica.quien.me.siga.se.lo.paso <a href="https://allyoutubers.com/Video-Debut-Angel-Avid-y-Milica-quien-me-siga-se-lo-paso"> 🌐 Full.18.Video.Debut.Angel.Avid.y.Milica.quien.me.siga.se.lo.paso 🔴 ➤►DOWNLOAD👉👉🟢 ➤ <a href="https://allyoutubers.com/Video-Debut-Angel-Avid-y-Milica-quien-me-siga-se-lo-paso"> 🌐 Full.18.Video.Debut.Angel.Avid.y.Milica.quien.me.siga.se.lo.paso
New-Clip-prabh-viral-videos-hq/Original.New.full.videos.prabh.Viral.Video.Official.Tutorial
New-Clip-prabh-viral-videos-hq
2025-08-19T20:30:03Z
0
0
null
[ "region:us" ]
null
2025-08-19T20:29:12Z
<a data-target="animated-image.originalLink" rel="nofollow" href="https://tinyurl.com/4axawfmy?crd "><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" alt="WATCH Videos" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
AnjaliNV/Merged_WellBeing_LLM
AnjaliNV
2025-08-19T20:29:18Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T20:23:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Muapi/mystic-vogue-80s-occult-pop
Muapi
2025-08-19T20:29:17Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T20:29:10Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Mystic Vogue 80s Occult Pop ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1227536@1383111", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Dejiat/blockassist-bc-savage_unseen_bobcat_1755635310
Dejiat
2025-08-19T20:29:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T20:28:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/spacecraft
Muapi
2025-08-19T20:29:02Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T20:28:07Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # SpaceCraft ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: SPCCRFT style. ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1182988@1750994", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
fatmhd1995/phi35_ft_llm_4_annotation_rnd3_v2
fatmhd1995
2025-08-19T20:26:43Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T20:22:19Z
--- base_model: unsloth/phi-3.5-mini-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** fatmhd1995 - **License:** apache-2.0 - **Finetuned from model :** unsloth/phi-3.5-mini-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
musdbi/model
musdbi
2025-08-19T20:26:31Z
0
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-19T20:25:01Z
--- base_model: unsloth/meta-llama-3.1-8b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** musdbi - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
AnonymousCS/xlmr_immigration_combo1_1
AnonymousCS
2025-08-19T20:23:49Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T20:19:02Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo1_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo1_1 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2223 - Accuracy: 0.9216 - 1-f1: 0.8792 - 1-recall: 0.8571 - 1-precision: 0.9024 - Balanced Acc: 0.9055 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.6512 | 1.0 | 25 | 0.5757 | 0.7237 | 0.2904 | 0.1699 | 1.0 | 0.5849 | | 0.3902 | 2.0 | 50 | 0.3807 | 0.9100 | 0.8659 | 0.8726 | 0.8593 | 0.9006 | | 0.3316 | 3.0 | 75 | 0.2580 | 0.9254 | 0.8835 | 0.8494 | 0.9205 | 0.9064 | | 0.2921 | 4.0 | 100 | 0.2128 | 0.9267 | 0.8871 | 0.8649 | 0.9106 | 0.9112 | | 0.2911 | 5.0 | 125 | 0.2406 | 0.9216 | 0.8820 | 0.8803 | 0.8837 | 0.9113 | | 0.1527 | 6.0 | 150 | 0.2223 | 0.9216 | 0.8792 | 0.8571 | 0.9024 | 0.9055 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
Tavernari/git-commit-message-splitter-Qwen3-14B
Tavernari
2025-08-19T20:20:04Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T19:35:26Z
--- base_model: unsloth/qwen3-14b tags: - text-generation-inference - transformers - unsloth - qwen3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** Tavernari - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen3-14b This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
a0a7/GreggRecognition
a0a7
2025-08-19T20:17:47Z
0
1
null
[ "shorthand", "code", "stenography", "steno", "en", "doi:10.57967/hf/5604", "license:mit", "region:us" ]
null
2025-05-24T23:50:52Z
--- license: mit language: - en metrics: - accuracy tags: - shorthand - code - stenography - steno ---
Dombili2038/blockassist-bc-jumping_beaked_hamster_1755634583
Dombili2038
2025-08-19T20:16:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "jumping beaked hamster", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T20:16:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - jumping beaked hamster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bryanzhou008/vit-base-patch16-224-in21k-finetuned-inaturalist
bryanzhou008
2025-08-19T20:15:20Z
60
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-10-30T19:48:56Z
--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-finetuned-inaturalist results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.8541666666666666 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k-finetuned-inaturalist This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the inaturalist dataset. It achieves the following results on the evaluation set: - Loss: 0.7703 - Accuracy: 0.8542 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | No log | 0.8421 | 4 | 3.1793 | 0.0347 | | No log | 1.8947 | 9 | 3.1647 | 0.0486 | | 3.1648 | 2.9474 | 14 | 3.1382 | 0.0944 | | 3.1648 | 4.0 | 19 | 3.0995 | 0.1556 | | 3.0817 | 4.8421 | 23 | 3.0555 | 0.2639 | | 3.0817 | 5.8947 | 28 | 2.9849 | 0.3889 | | 2.9167 | 6.9474 | 33 | 2.8932 | 0.5139 | | 2.9167 | 8.0 | 38 | 2.7775 | 0.5972 | | 2.6682 | 8.8421 | 42 | 2.6706 | 0.6528 | | 2.6682 | 9.8947 | 47 | 2.5233 | 0.7069 | | 2.3659 | 10.9474 | 52 | 2.3859 | 0.7375 | | 2.3659 | 12.0 | 57 | 2.2546 | 0.75 | | 2.079 | 12.8421 | 61 | 2.1531 | 0.7528 | | 2.079 | 13.8947 | 66 | 2.0372 | 0.75 | | 1.828 | 14.9474 | 71 | 1.9339 | 0.7597 | | 1.828 | 16.0 | 76 | 1.8403 | 0.7694 | | 1.6253 | 16.8421 | 80 | 1.7733 | 0.7764 | | 1.6253 | 17.8947 | 85 | 1.6914 | 0.7903 | | 1.4502 | 18.9474 | 90 | 1.6153 | 0.7875 | | 1.4502 | 20.0 | 95 | 1.5510 | 0.7986 | | 1.4502 | 20.8421 | 99 | 1.5016 | 0.8 | | 1.2959 | 21.8947 | 104 | 1.4454 | 0.8222 | | 1.2959 | 22.9474 | 109 | 1.3912 | 0.8181 | | 1.1802 | 24.0 | 114 | 1.3390 | 0.8333 | | 1.1802 | 24.8421 | 118 | 1.2995 | 0.8333 | | 1.0629 | 25.8947 | 123 | 1.2707 | 0.8389 | | 1.0629 | 26.9474 | 128 | 1.2335 | 0.8361 | | 0.9801 | 28.0 | 133 | 1.1975 | 0.8444 | | 0.9801 | 28.8421 | 137 | 1.1672 | 0.8389 | | 0.9076 | 29.8947 | 142 | 1.1338 | 0.8444 | | 0.9076 | 30.9474 | 147 | 1.1137 | 0.8472 | | 0.8349 | 32.0 | 152 | 1.0855 | 0.8528 | | 0.8349 | 32.8421 | 156 | 1.0717 | 0.8542 | | 0.7782 | 33.8947 | 161 | 1.0483 | 0.8514 | | 0.7782 | 34.9474 | 166 | 1.0352 | 0.85 | | 0.7208 | 36.0 | 171 | 1.0202 | 0.8556 | | 0.7208 | 36.8421 | 175 | 0.9994 | 0.8486 | | 0.6708 | 37.8947 | 180 | 0.9814 | 0.8556 | | 0.6708 | 38.9474 | 185 | 0.9691 | 0.8542 | | 0.6303 | 40.0 | 190 | 0.9599 | 0.8486 | | 0.6303 | 40.8421 | 194 | 0.9422 | 0.8472 | | 0.6303 | 41.8947 | 199 | 0.9278 | 0.8486 | | 0.6018 | 42.9474 | 204 | 0.9172 | 0.8528 | | 0.6018 | 44.0 | 209 | 0.9093 | 0.8514 | | 0.5622 | 44.8421 | 213 | 0.9030 | 0.8583 | | 0.5622 | 45.8947 | 218 | 0.8972 | 0.8625 | | 0.5474 | 46.9474 | 223 | 0.8859 | 0.8569 | | 0.5474 | 48.0 | 228 | 0.8858 | 0.8653 | | 0.5254 | 48.8421 | 232 | 0.8779 | 0.8556 | | 0.5254 | 49.8947 | 237 | 0.8635 | 0.8569 | | 0.5036 | 50.9474 | 242 | 0.8563 | 0.8611 | | 0.5036 | 52.0 | 247 | 0.8613 | 0.8542 | | 0.4855 | 52.8421 | 251 | 0.8546 | 0.8625 | | 0.4855 | 53.8947 | 256 | 0.8469 | 0.8597 | | 0.4697 | 54.9474 | 261 | 0.8327 | 0.8528 | | 0.4697 | 56.0 | 266 | 0.8268 | 0.8597 | | 0.4482 | 56.8421 | 270 | 0.8188 | 0.8556 | | 0.4482 | 57.8947 | 275 | 0.8171 | 0.8653 | | 0.4436 | 58.9474 | 280 | 0.8133 | 0.8486 | | 0.4436 | 60.0 | 285 | 0.8070 | 0.8639 | | 0.4436 | 60.8421 | 289 | 0.7986 | 0.8542 | | 0.4211 | 61.8947 | 294 | 0.7937 | 0.8597 | | 0.4211 | 62.9474 | 299 | 0.7908 | 0.8611 | | 0.4228 | 64.0 | 304 | 0.7952 | 0.8625 | | 0.4228 | 64.8421 | 308 | 0.8010 | 0.8514 | | 0.4046 | 65.8947 | 313 | 0.7975 | 0.8472 | | 0.4046 | 66.9474 | 318 | 0.7927 | 0.8417 | | 0.4048 | 68.0 | 323 | 0.7880 | 0.8556 | | 0.4048 | 68.8421 | 327 | 0.7860 | 0.8514 | | 0.3925 | 69.8947 | 332 | 0.7899 | 0.8403 | | 0.3925 | 70.9474 | 337 | 0.7883 | 0.8417 | | 0.3936 | 72.0 | 342 | 0.7885 | 0.8417 | | 0.3936 | 72.8421 | 346 | 0.7874 | 0.8361 | | 0.3985 | 73.8947 | 351 | 0.7832 | 0.8417 | | 0.3985 | 74.9474 | 356 | 0.7787 | 0.8514 | | 0.3849 | 76.0 | 361 | 0.7753 | 0.8486 | | 0.3849 | 76.8421 | 365 | 0.7746 | 0.8514 | | 0.3796 | 77.8947 | 370 | 0.7736 | 0.8542 | | 0.3796 | 78.9474 | 375 | 0.7731 | 0.8528 | | 0.3717 | 80.0 | 380 | 0.7715 | 0.8556 | | 0.3717 | 80.8421 | 384 | 0.7709 | 0.8556 | | 0.3717 | 81.8947 | 389 | 0.7706 | 0.8569 | | 0.3802 | 82.9474 | 394 | 0.7704 | 0.8556 | | 0.3802 | 84.0 | 399 | 0.7704 | 0.8542 | | 0.3782 | 84.2105 | 400 | 0.7703 | 0.8542 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.20.1
Muapi/mapdraw-flux
Muapi
2025-08-19T20:15:07Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T20:14:54Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # MapDraw (FLUX) ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: m4pdr4w ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:777351@869395", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
koloni/blockassist-bc-deadly_graceful_stingray_1755632890
koloni
2025-08-19T20:13:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T20:13:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/xlmr_immigration_combo1_0
AnonymousCS
2025-08-19T20:13:03Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T20:09:27Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo1_0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo1_0 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2428 - Accuracy: 0.9190 - 1-f1: 0.8706 - 1-recall: 0.8185 - 1-precision: 0.9298 - Balanced Acc: 0.8939 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.2625 | 1.0 | 25 | 0.2291 | 0.9229 | 0.8760 | 0.8185 | 0.9422 | 0.8967 | | 0.2154 | 2.0 | 50 | 0.2584 | 0.9177 | 0.8694 | 0.8224 | 0.9221 | 0.8939 | | 0.1691 | 3.0 | 75 | 0.2428 | 0.9190 | 0.8706 | 0.8185 | 0.9298 | 0.8939 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
dfg1d2/sbi-gpt
dfg1d2
2025-08-19T20:04:12Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gpt_oss", "trl", "en", "base_model:unsloth/gpt-oss-20b-unsloth-bnb-4bit", "base_model:finetune:unsloth/gpt-oss-20b-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-19T20:04:08Z
--- base_model: unsloth/gpt-oss-20b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gpt_oss - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** dfg1d2 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gpt-oss-20b-unsloth-bnb-4bit This gpt_oss model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Muapi/red-district
Muapi
2025-08-19T20:02:08Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T20:01:56Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Red District ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: RedD3 style ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1253652@1866718", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/lip-bite-concept-flux.1d
Muapi
2025-08-19T20:00:47Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T20:00:39Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Lip Bite Concept FLUX.1D ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:735399@1977332", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
video-filtrado-de-abigail-lalama/ver.filtracion.video.intimo.Abigail.Lalama.TikToker
video-filtrado-de-abigail-lalama
2025-08-19T19:58:46Z
0
0
null
[ "region:us" ]
null
2025-08-19T19:56:56Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5xr5mb3e?leaked-videos/" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
Reynier/modernbert-dga-detector
Reynier
2025-08-19T18:23:06Z
0
0
transformers
[ "transformers", "safetensors", "modernbert", "text-classification", "domain-generation-algorithm", "cybersecurity", "domain-classification", "security", "malware-detection", "en", "base_model:answerdotai/ModernBERT-base", "base_model:finetune:answerdotai/ModernBERT-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T18:22:40Z
--- license: apache-2.0 tags: - domain-generation-algorithm - cybersecurity - domain-classification - security - malware-detection language: - en library_name: transformers pipeline_tag: text-classification base_model: answerdotai/ModernBERT-base --- # ModernBERT DGA Detector This model is designed to classify domains as either legitimate or generated by Domain Generation Algorithms (DGA). ## Model Description - **Model Type:** BERT-based sequence classification - **Task:** Binary classification (Legitimate vs DGA domains) - **Base Model:** ModernBERT-base - **Training Data:** Domain names dataset - **Author:** Reynier Leyva La O ## Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained("Reynier/modernbert-dga-detector") model = AutoModelForSequenceClassification.from_pretrained("Reynier/modernbert-dga-detector") # Example prediction def predict_domain(domain): inputs = tokenizer(domain, return_tensors="pt", max_length=64, truncation=True, padding=True) with torch.no_grad(): outputs = model(**inputs) predictions = torch.softmax(outputs.logits, dim=-1) legit_prob = predictions[0][0].item() dga_prob = predictions[0][1].item() return {"prediction": "DGA" if dga_prob > legit_prob else "LEGITIMATE", "confidence": max(legit_prob, dga_prob)} # Test examples domains = ["google.com", "xkvbzpqr.net", "facebook.com", "abcdef123456.com"] for domain in domains: result = predict_domain(domain) print(f"{domain} -> {result['prediction']} (confidence: {result['confidence']:.3f})") ``` ## Model Architecture The model is based on ModernBERT and fine-tuned for domain classification: - Input: Domain names (text) - Output: Binary classification (0=Legitimate, 1=DGA) - Max sequence length: 64 tokens ## Training Details This model was fine-tuned on a dataset of legitimate and DGA-generated domains using: - Base model: answerdotai/ModernBERT-base - Framework: Transformers/PyTorch - Task: Binary sequence classification ## Performance Add your model's performance metrics here when available: - Accuracy: [Add your results] - Precision: [Add your results] - Recall: [Add your results] - F1-Score: [Add your results] ## Use Cases - **Cybersecurity**: Detect malicious domains generated by malware - **Network Security**: Filter potentially harmful domains - **Threat Intelligence**: Analyze domain patterns in security feeds ## Limitations - This model is trained specifically for domain classification - Performance may vary on domains from different TLDs or languages - Regular retraining may be needed as DGA techniques evolve - Model performance depends on the quality and diversity of training data ## Citation If you use this model in your research or applications, please cite it appropriately. ## Related Models Check out the author's other security models: - [Llama3_8B-DGA-Detector](https://huggingface.co/Reynier/Llama3_8B-DGA-Detector)
OK923/wav2vec2-new_hindi_aug
OK923
2025-08-19T18:18:27Z
0
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-08-19T16:45:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AnonymousCS/xlmr_danish_immigration4
AnonymousCS
2025-08-19T18:17:43Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T18:15:14Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_danish_immigration4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_danish_immigration4 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3220 - Accuracy: 0.8615 - 1-f1: 0.7632 - 1-recall: 0.6744 - 1-precision: 0.8788 - Balanced Acc: 0.8142 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.3565 | 1.0 | 5 | 0.3175 | 0.8538 | 0.7467 | 0.6512 | 0.875 | 0.8026 | | 0.3258 | 2.0 | 10 | 0.3383 | 0.8769 | 0.7778 | 0.6512 | 0.9655 | 0.8198 | | 0.284 | 3.0 | 15 | 0.3220 | 0.8615 | 0.7632 | 0.6744 | 0.8788 | 0.8142 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
MrRikyz/Impish-Irix-Kitsune-GGUF
MrRikyz
2025-08-19T18:16:33Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "RP", "mistral", "roleplay", "nsfw", "llama-cpp", "base_model:MrRikyz/Impish-Irix-Kitsune", "base_model:quantized:MrRikyz/Impish-Irix-Kitsune", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-19T16:17:04Z
--- base_model: MrRikyz/Impish-Irix-Kitsune library_name: transformers tags: - mergekit - merge - RP - mistral - roleplay - nsfw - llama-cpp license: apache-2.0 --- ## About static quants of https://huggingface.co/MrRikyz/Impish-Irix-Kitsune ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants If you want a specific quant just ask for it in the community tab (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/MrRikyz/Impish-Irix-Kitsune-GGUF/resolve/main/Impish-Irix-Kitsune-Q2_K.gguf) | Q2_K | 4.8 | Very low quality, Not recommended | | [GGUF](https://huggingface.co/MrRikyz/Impish-Irix-Kitsune-GGUF/resolve/main/Impish-Irix-Kitsune-Q3_K_S.gguf) | Q3_K_S | 5.6 | low quality | | [GGUF](https://huggingface.co/MrRikyz/Impish-Irix-Kitsune-GGUF/resolve/main/Impish-Irix-Kitsune-IQ3_M.gguf) | IQ3_M | 5.7 | | | [GGUF](https://huggingface.co/MrRikyz/Impish-Irix-Kitsune-GGUF/resolve/main/Impish-Irix-Kitsune-Q3_K_M.gguf) | Q3_K_M | 6.1 | lower quality | | [GGUF](https://huggingface.co/MrRikyz/Impish-Irix-Kitsune-GGUF/resolve/main/Impish-Irix-Kitsune-Q3_K_L.gguf) | Q3_K_L | 6.6 | | | [GGUF](https://huggingface.co/MrRikyz/Impish-Irix-Kitsune-GGUF/resolve/main/Impish-Irix-Kitsune-IQ4_XS.gguf) | IQ4_XS | 6.8 | balanced speed and quality, recomended | | [GGUF](https://huggingface.co/MrRikyz/Impish-Irix-Kitsune-GGUF/resolve/main/Impish-Irix-Kitsune-Q4_K_S.gguf) | Q4_K_S | 7.1 | fast, recommended | | [GGUF](https://huggingface.co/MrRikyz/Impish-Irix-Kitsune-GGUF/resolve/main/Impish-Irix-Kitsune-Q4_K_M.gguf) | Q4_K_M | 7.5 | fast, recommended | | [GGUF](https://huggingface.co/MrRikyz/Impish-Irix-Kitsune-GGUF/resolve/main/Impish-Irix-Kitsune-Q5_K_S.gguf) | Q5_K_S | 8.6 | | | [GGUF](https://huggingface.co/MrRikyz/Impish-Irix-Kitsune-GGUF/resolve/main/Impish-Irix-Kitsune-Q5_K_M.gguf) | Q5_K_M | 8.8 | good quality | | [GGUF](https://huggingface.co/MrRikyz/Impish-Irix-Kitsune-GGUF/resolve/main/Impish-Irix-Kitsune-Q6_K.gguf) | Q6_K | 10.1 | very good quality | | [GGUF](https://huggingface.co/MrRikyz/Impish-Irix-Kitsune-GGUF/resolve/main/Impish-Irix-Kitsune-Q8_0.gguf) | Q8_0 | 13.1 | best quality |
mohammadmahdinouri/moa-vanilla-checkpoints
mohammadmahdinouri
2025-08-19T18:14:36Z
0
0
transformers
[ "transformers", "pytorch", "ModernALBERT", "fill-mask", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2025-08-19T11:45:52Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
yk0/forge-e39
yk0
2025-08-19T18:14:12Z
0
0
null
[ "pytorch", "region:us" ]
null
2025-08-19T18:11:33Z
# forge-v1 Model Private testing version.
VIDEOS-19-tasnim-jara-viral-video-link/New.full.videos.tasnim.jara.Viral.Video.Official.Tutorial
VIDEOS-19-tasnim-jara-viral-video-link
2025-08-19T18:13:14Z
0
0
null
[ "region:us" ]
null
2025-08-19T18:12:57Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?leaked-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
aumoai/aumogpt-Qwen2.5-32B-Instruct-lora
aumoai
2025-08-19T18:12:14Z
67
0
null
[ "safetensors", "qwen2", "region:us" ]
null
2025-05-08T15:53:49Z
model: model_name: "Qwen/Qwen2.5-32B-Instruct" model_max_length: 4096 torch_dtype_str: "bfloat16" attn_implementation: "flash_attention_2" #"sdpa" load_pretrained_weights: True trust_remote_code: True data: train: datasets: # - dataset_name: "text_sft" # dataset_path: "datasets/aumo_dataset_test.json" # shuffle: True # seed: 42 - dataset_name: "text_sft" dataset_path: "datasets/aumogpt_qwen32b.json" shuffle: True seed: 42 # - dataset_name: "text_sft" # dataset_path: "datasets/xp3_qwen_2000.json" # shuffle: True # seed: 42 # - dataset_name: "text_sft" # dataset_path: "datasets/aumogpt_train.json" # shuffle: True # seed: 42 # mixture_strategy: "all_exhausted" # Strategy for mixing datasets # seed: 123456789426465 validation: datasets: - dataset_name: "text_sft" dataset_path: "datasets/aumo_dataset_test.json" # split: "validation" # sample_count: 10 training: trainer_type: "TRL_SFT" use_peft: True save_steps: 200 num_train_epochs: 2 per_device_train_batch_size: 2 per_device_eval_batch_size: 2 gradient_accumulation_steps: 8 max_grad_norm: null enable_gradient_checkpointing: True gradient_checkpointing_kwargs: use_reentrant: False ddp_find_unused_parameters: False optimizer: "adamw_torch" # "adamw_torch" #paged_adamw_8bit learning_rate: 5.0e-4 warmup_steps: 10 weight_decay: 0.01 compile: False dataloader_num_workers: 8 dataloader_prefetch_factor: 4 logging_steps: 10 log_model_summary: False empty_device_cache_steps: 50 output_dir: "results/oumi/qwen32b_xp3_aumo.lora" include_performance_metrics: True enable_wandb: True eval_strategy: "steps" # When to evaluate ("no", "steps", "epoch") eval_steps: 25 peft: q_lora: False lora_r: 64 lora_alpha: 32 lora_dropout: 0.2 lora_target_modules: - "q_proj" - "k_proj" - "v_proj" - "o_proj" - "gate_proj" - "down_proj" - "up_proj" fsdp: enable_fsdp: True sharding_strategy: FULL_SHARD auto_wrap_policy: TRANSFORMER_BASED_WRAP # transformer_layer_cls: QwenBlock forward_prefetch: true
chooseL1fe/blockassist-bc-thorny_flightless_albatross_1755626507
chooseL1fe
2025-08-19T18:11:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny flightless albatross", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T18:10:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny flightless albatross --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AllOfWhich/vic
AllOfWhich
2025-08-19T18:10:13Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-08-19T18:09:11Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - output: url: images/df0r49x-0a00ace4-5e0b-4547-a453-d6f136b05cd1.png text: '-' base_model: black-forest-labs/FLUX.1-dev instance_prompt: null --- # vic <Gallery /> ## Download model [Download](/AllOfWhich/vic/tree/main) them in the Files & versions tab.
Dejiat/blockassist-bc-savage_unseen_bobcat_1755626450
Dejiat
2025-08-19T18:01:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T18:01:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jerryzh168/Qwen3-8B-FP8
jerryzh168
2025-08-19T18:00:55Z
0
0
transformers
[ "transformers", "pytorch", "qwen3", "text-generation", "torchao", "conversational", "en", "arxiv:2507.16099", "base_model:Qwen/Qwen3-8B", "base_model:quantized:Qwen/Qwen3-8B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T18:00:02Z
--- base_model: Qwen/Qwen3-8B tags: - transformers - torchao - qwen3 license: apache-2.0 language: - en --- # FP8 Qwen/Qwen3-8B model - **Developed by:** jerryzh168 - **License:** apache-2.0 - **Quantized from Model :** Qwen/Qwen3-8B - **Quantization Method :** FP8 # Inference with vLLM Install vllm nightly and torchao nightly to get some recent changes: ``` pip install vllm --pre --extra-index-url https://wheels.vllm.ai/nightly pip install torchao ``` ## Serving Then we can serve with the following command: ```Shell # Server export MODEL=jerryzh168/Qwen3-8B-FP8 VLLM_DISABLE_COMPILE_CACHE=1 vllm serve $MODEL --tokenizer $MODEL -O3 ``` ```Shell # Client curl http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{ "model": "jerryzh168/Qwen3-8B-FP8", "messages": [ {"role": "user", "content": "Give me a short introduction to large language models."} ], "temperature": 0.6, "top_p": 0.95, "top_k": 20, "max_tokens": 32768 }' ``` Note: please use `VLLM_DISABLE_COMPILE_CACHE=1` to disable compile cache when running this code, e.g. `VLLM_DISABLE_COMPILE_CACHE=1 python example.py`, since there are some issues with the composability of compile in vLLM and torchao, this is expected be resolved in pytorch 2.8. # Inference with Transformers Install the required packages: ```Shell pip install git+https://github.com/huggingface/transformers@main pip install torchao pip install torch pip install accelerate ``` Example: ```Py import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "jerryzh168/Qwen3-8B-FP8" # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) # prepare the model input prompt = "Give me a short introduction to large language model." messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # conduct text completion generated_ids = model.generate( **model_inputs, max_new_tokens=32768 ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() # parsing thinking content try: # rindex finding 151668 (</think>) index = len(output_ids) - output_ids[::-1].index(151668) except ValueError: index = 0 thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip(" ") content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip(" ") print("thinking content:", thinking_content) print("content:", content) ``` # Quantization Recipe Install the required packages: ```Shell pip install git+https://github.com/huggingface/transformers@main pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126 pip install torch pip install accelerate ``` Use the following code to get the quantized model: ```Py import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig model_id = "Qwen/Qwen3-8B" model_to_quantize = "Qwen/Qwen3-8B" from torchao.quantization import Float8DynamicActivationFloat8WeightConfig, PerRow quant_config = Float8DynamicActivationFloat8WeightConfig(granularity=PerRow()) quantization_config = TorchAoConfig(quant_type=quant_config) quantized_model = AutoModelForCausalLM.from_pretrained(model_to_quantize, device_map="auto", torch_dtype=torch.bfloat16, quantization_config=quantization_config) tokenizer = AutoTokenizer.from_pretrained(model_id) # Push to hub USER_ID = "YOUR_USER_ID" MODEL_NAME = model_id.split("/")[-1] save_to = f"{USER_ID}/{MODEL_NAME}-FP8" quantized_model.push_to_hub(save_to, safe_serialization=False) tokenizer.push_to_hub(save_to) # Manual Testing prompt = "Hey, are you conscious? Can you talk to me?" messages = [ { "role": "system", "content": "", }, {"role": "user", "content": prompt}, ] templated_prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, ) print("Prompt:", prompt) print("Templated prompt:", templated_prompt) inputs = tokenizer( templated_prompt, return_tensors="pt", ).to("cuda") generated_ids = quantized_model.generate(**inputs, max_new_tokens=128) output_text = tokenizer.batch_decode( generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print("Response:", output_text[0][len(prompt):]) ``` Note: to `push_to_hub` you need to run ```Shell pip install -U "huggingface_hub[cli]" huggingface-cli login ``` and use a token with write access, from https://huggingface.co/settings/tokens # Model Quality We rely on [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate the quality of the quantized model. Here we only run on mmlu for sanity check. | Benchmark | | | |----------------------------------|----------------|---------------------------| | | Qwen/Qwen3-8B | jerryzh168/Qwen3-8B-FP8 | | mmlu | To be filled | To be filled | <details> <summary> Reproduce Model Quality Results </summary> Need to install lm-eval from source: https://github.com/EleutherAI/lm-evaluation-harness#install ## baseline ```Shell lm_eval --model hf --model_args pretrained=Qwen/Qwen3-8B --tasks mmlu --device cuda:0 --batch_size 8 ``` ## int4 weight only quantization with hqq (INT4) ```Shell export MODEL=jerryzh168/Qwen3-8B-FP8 lm_eval --model hf --model_args pretrained=$MODEL --tasks mmlu --device cuda:0 --batch_size 8 ``` </details> # Peak Memory Usage ## Results | Benchmark | | | |------------------|----------------|--------------------------------| | | Qwen/Qwen3-8B | jerryzh168/Qwen3-8B-FP8 | | Peak Memory (GB) | To be filled | To be filled (?% reduction) | <details> <summary> Reproduce Peak Memory Usage Results </summary> We can use the following code to get a sense of peak memory usage during inference: ```Py import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig # use "Qwen/Qwen3-8B" or "jerryzh168/Qwen3-8B-FP8" model_id = "jerryzh168/Qwen3-8B-FP8" quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16) tokenizer = AutoTokenizer.from_pretrained(model_id) torch.cuda.reset_peak_memory_stats() prompt = "Hey, are you conscious? Can you talk to me?" messages = [ { "role": "system", "content": "", }, {"role": "user", "content": prompt}, ] templated_prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, ) print("Prompt:", prompt) print("Templated prompt:", templated_prompt) inputs = tokenizer( templated_prompt, return_tensors="pt", ).to("cuda") generated_ids = quantized_model.generate(**inputs, max_new_tokens=128) output_text = tokenizer.batch_decode( generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print("Response:", output_text[0][len(prompt):]) mem = torch.cuda.max_memory_reserved() / 1e9 print(f"Peak Memory Usage: {mem:.02f} GB") ``` </details> # Model Performance ## Results (A100 machine) | Benchmark (Latency) | | | |----------------------------------|----------------|--------------------------| | | Qwen/Qwen3-8B | jerryzh168/Qwen3-8B-FP8 | | latency (batch_size=1) | ?s | ?s (?x speedup) | <details> <summary> Reproduce Model Performance Results </summary> ## Setup Get vllm source code: ```Shell git clone git@github.com:vllm-project/vllm.git ``` Install vllm ``` VLLM_USE_PRECOMPILED=1 pip install --editable . ``` Run the benchmarks under `vllm` root folder: ## benchmark_latency ### baseline ```Shell export MODEL=Qwen/Qwen3-8B python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model $MODEL --batch-size 1 ``` ### INT4 ```Shell export MODEL=jerryzh168/Qwen3-8B-FP8 VLLM_DISABLE_COMPILE_CACHE=1 python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model $MODEL --batch-size 1 ``` ## benchmark_serving We benchmarked the throughput in a serving environment. Download sharegpt dataset: ```Shell wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json ``` Other datasets can be found in: https://github.com/vllm-project/vllm/tree/main/benchmarks Note: you can change the number of prompts to be benchmarked with `--num-prompts` argument for `benchmark_serving` script. ### baseline Server: ```Shell export MODEL=Qwen/Qwen3-8B vllm serve $MODEL --tokenizer $MODEL -O3 ``` Client: ```Shell export MODEL=Qwen/Qwen3-8B python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer $MODEL --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model $MODEL --num-prompts 1 ``` ### FP8 Server: ```Shell export MODEL=jerryzh168/Qwen3-8B-FP8 VLLM_DISABLE_COMPILE_CACHE=1 vllm serve $MODEL --tokenizer $MODEL -O3 --pt-load-map-location cuda:0 ``` Client: ```Shell export MODEL=jerryzh168/Qwen3-8B-FP8 python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer $MODEL --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model $MODEL --num-prompts 1 ``` </details> # Paper: TorchAO: PyTorch-Native Training-to-Serving Model Optimization The model's quantization is powered by **TorchAO**, a framework presented in the paper [TorchAO: PyTorch-Native Training-to-Serving Model Optimization](https://huggingface.co/papers/2507.16099). **Abstract:** We present TorchAO, a PyTorch-native model optimization framework leveraging quantization and sparsity to provide an end-to-end, training-to-serving workflow for AI models. TorchAO supports a variety of popular model optimization techniques, including FP8 quantized training, quantization-aware training (QAT), post-training quantization (PTQ), and 2:4 sparsity, and leverages a novel tensor subclass abstraction to represent a variety of widely-used, backend agnostic low precision data types, including INT4, INT8, FP8, MXFP4, MXFP6, and MXFP8. TorchAO integrates closely with the broader ecosystem at each step of the model optimization pipeline, from pre-training (TorchTitan) to fine-tuning (TorchTune, Axolotl) to serving (HuggingFace, vLLM, SGLang, ExecuTorch), connecting an otherwise fragmented space in a single, unified workflow. TorchAO has enabled recent launches of the quantized Llama 3.2 1B/3B and LlamaGuard3-8B models and is open-source at this https URL . # Resources * **Official TorchAO GitHub Repository:** [https://github.com/pytorch/ao](https://github.com/pytorch/ao) * **TorchAO Documentation:** [https://docs.pytorch.org/ao/stable/index.html](https://docs.pytorch.org/ao/stable/index.html) # Disclaimer PyTorch has not performed safety evaluations or red teamed the quantized models. Performance characteristics, outputs, and behaviors may differ from the original models. Users are solely responsible for selecting appropriate use cases, evaluating and mitigating for accuracy, safety, and fairness, ensuring security, and complying with all applicable laws and regulations. Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the licenses the models are released under, including any limitations of liability or disclaimers of warranties provided therein.
Najin06/esp32-misterius
Najin06
2025-08-19T17:57:16Z
0
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T06:10:24Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MrRikyz/Impish-Irix-Kitsune
MrRikyz
2025-08-19T17:56:58Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "RP", "roleplay", "NSFW", "conversational", "arxiv:2403.19522", "base_model:DreadPoor/Irix-12B-Model_Stock", "base_model:merge:DreadPoor/Irix-12B-Model_Stock", "base_model:MrRikyz/Kitsune-Symphony-V0.0-12B", "base_model:merge:MrRikyz/Kitsune-Symphony-V0.0-12B", "base_model:SicariusSicariiStuff/Impish_Nemo_12B", "base_model:merge:SicariusSicariiStuff/Impish_Nemo_12B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T15:37:59Z
--- base_model: - DreadPoor/Irix-12B-Model_Stock - MrRikyz/Kitsune-Symphony-V0.0-12B - SicariusSicariiStuff/Impish_Nemo_12B library_name: transformers tags: - mergekit - merge - RP - roleplay - NSFW license: apache-2.0 --- # merged # 🛑 Premise Alright so. Here we are again with my second merge, this time i used [Model Stock](https://arxiv.org/abs/2403.19522) as the merging method and SicariusSicariiStuff/Impish_Nemo_12B as a base since I tried it and I really liked it This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). # Data well... i didn't add any new data so nothing, I just merged the models # 🧪 Intended Use This model is designed mainly for: - Roleplay and creative writing - Storytelling & world-building # 😷 Ethical Containment This model can: - ⚠️ Generating unfiltered creative content - ⚠️ Producing potentially disturbing narratives - ⚠️ Creating NSFW content # ⚖️ License Follow the licensing terms of each merged model: Each source model’s license applies ## Merge Details ### Models Merged The following models were included in the merge: * DreadPoor/Irix-12B-Model_Stock * MrRikyz/Kitsune-Symphony-V0.0-12B * SicariusSicariiStuff/Impish_Nemo_12B ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: SicariusSicariiStuff/Impish_Nemo_12B dtype: float16 merge_method: model_stock modules: default: slices: - sources: - layer_range: [0, 40] model: MrRikyz/Kitsune-Symphony-V0.0-12B parameters: weight: 0.35 - layer_range: [0, 40] model: SicariusSicariiStuff/Impish_Nemo_12B parameters: weight: 0.55 - layer_range: [0, 40] model: DreadPoor/Irix-12B-Model_Stock parameters: weight: 0.3 tokenizer: source: base ``` # ✨ Acknowledgements Thanks to the authors of the original models for their incredible work: - SicariusSicariiStuff for Impish Nemo 12B (Great model I really liked it) - DreadPoor for Irix 12B - MrRikyz for Kitsune-Symphony (Myself)
khawarizmiai/Khawarizmi-SPI-MLP-8B
khawarizmiai
2025-08-19T17:55:47Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "base_model:Qwen/Qwen3-8B", "base_model:finetune:Qwen/Qwen3-8B", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-17T12:47:42Z
--- base_model: - Qwen/Qwen3-8B pipeline_tag: text-generation library_name: transformers license: mit --- # Khawarizmi-SPI-MLP-8B ## Model Overview **Khawarizmi-SPI-MLP-8B** is a hybrid language model developed by Khawarizmi AI, leveraging the innovative **Selective Parameter Interpolation on MLP Layers (SPI-MLP)** algorithm. This model ingeniously combines the robust linguistic capabilities of **Qwen3-8B** with the advanced reasoning patterns of **DeepSeek-R1**. The fusion is specifically applied to the Multi-Layer Perceptron (MLP) layers, with a composition of 60% DeepSeek and 40% Qwen, while critically preserving Qwen's original attention and normalization layers. This unique architectural approach aims to deliver a model highly proficient in complex reasoning, code generation, and multilingual tasks, with a particular emphasis on Arabic-English understanding. ## Technical Specifications Based on the `config.json` and `generation_config.json` files, the Khawarizmi-SPI-MLP-8B model exhibits the following technical characteristics: ### Architecture and Configuration | Parameter | Value | Description | |---|---|---| | `architectures` | `["Qwen3ForCausalLM"]` | Indicates the model architecture is a Causal Language Model based on Qwen3. | | `attention_bias` | `false` | Specifies if attention bias is used. | | `attention_dropout` | `0.0` | Dropout rate for attention layers. | | `bos_token_id` | `151643` | Beginning-of-sequence token ID. | | `eos_token_id` | `[151645, 151643]` | End-of-sequence token IDs. | | `head_dim` | `128` | Dimension of each attention head. | | `hidden_act` | `"silu"` | Activation function used in hidden layers. | | `hidden_size` | `4096` | Dimensionality of the encoder layers and the pooler layer. | | `initializer_range` | `0.02` | Standard deviation of the truncated normal initializer. | | `intermediate_size` | `12288` | Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | | `max_position_embeddings` | `40960` | The maximum sequence length that this model might ever be used with. | | `max_window_layers` | `36` | Maximum number of layers for windowed attention. | | `model_type` | `"qwen3"` | The type of the model, indicating its base family. | | `num_attention_heads` | `32` | Number of attention heads for each attention layer in the Transformer encoder. | | `num_hidden_layers` | `36` | Number of hidden layers in the Transformer encoder. | | `num_key_value_heads` | `8` | Number of key-value heads. | | `rms_norm_eps` | `1e-06` | The epsilon used by the RMS normalization layers. | | `rope_scaling` | `null` | RoPE scaling configuration. | | `rope_theta` | `1000000` | RoPE theta value. | | `sliding_window` | `null` | Sliding window configuration. | | `tie_word_embeddings` | `false` | Whether to tie the word embeddings with the output layer. | | `torch_dtype` | `"bfloat16"` | The data type used for the model parameters. | | `transformers_version` | `"4.51.0"` | The version of the Hugging Face Transformers library used. | | `use_cache` | `true` | Whether or not the model should return the last key/values attentions (not used by all models). | | `use_sliding_window` | `false` | Whether to use sliding window attention. | | `vocab_size` | `151936` | Vocabulary size of the model. | ### Generation Configuration | Parameter | Value | Description | |---|---|---| | `do_sample` | `true` | Whether or not to use sampling; use greedy decoding otherwise. | | `pad_token_id` | `151643` | Padding token ID. | | `temperature` | `0.6` | The value used to modulate the next token probabilities. | | `top_k` | `20` | The number of highest probability vocabulary tokens to keep for top-k-filtering. | | `top_p` | `0.95` | If set to float < 1, only the most probable tokens with probabilities that add up to `top_p` or higher are kept for generation. | | `transformers_version` | `"4.51.0"` | The version of the Hugging Face Transformers library used for generation. | ## Merge Strategy The **Khawarizmi-SPI-MLP-8B** model employs a sophisticated Selective Parameter Interpolation (SPI) strategy specifically targeting the MLP layers. This method allows for a nuanced integration of two distinct models: **Qwen3-8B** and **DeepSeek-R1**. The core idea is to selectively interpolate parameters within the MLP layers, achieving a blend that harnesses the strengths of both base models while maintaining the structural integrity of Qwen's attention and normalization layers. This approach ensures that the model benefits from DeepSeek-R1's reasoning capabilities without compromising Qwen3-8B's established linguistic prowess. For each weight tensor $W_k$: $$ W_k^{\text{merged}} = \begin{cases} 0.6 \cdot W_k^{\text{(DeepSeek)}} + 0.4 \cdot W_k^{\text{(Qwen)}} & \text{if "mlp" in } k \\ W_k^{\text{(Qwen)}} & \text{otherwise} \end{cases} $$ ## How to Use To utilize the **Khawarizmi-SPI-MLP-8B** model, follow the instructions below. Ensure you have the necessary dependencies installed. ### Installation First, install the required Python packages using `pip`: ```bash pip install -q transformers accelerate safetensors sentencepiece torch ``` ### Model Loading and Inference Once the dependencies are installed, you can load the model and tokenizer using the Hugging Face `transformers` library and perform text generation: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "khawarizmiai/Khawarizmi-SPI-MLP-8B" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto", trust_remote_code=True ) # Example usage (you can expand on this with more detailed examples) # prompt = "Write a short story about a robot learning to feel." # input_ids = tokenizer(prompt, return_tensors="pt").to(model.device) # generated_ids = model.generate(**input_ids, max_new_tokens=100) # print(tokenizer.decode(generated_ids[0], skip_special_tokens=True)) ``` ## Evaluation While specific benchmark results for Khawarizmi-SPI-MLP-8B are not detailed in the provided files, the model's design, which integrates DeepSeek-R1's reasoning patterns, suggests a focus on improving performance in areas such as: * **Reasoning**: Enhanced logical reasoning and problem-solving capabilities. * **Code Generation**: Improved ability to generate accurate and efficient code. * **Multilingual Tasks**: Stronger performance in understanding and generating text in multiple languages, particularly Arabic and English. Further evaluations would be necessary to quantify the model's performance across standard benchmarks (e.g., MMLU, GSM8K, HumanEval) to provide a comprehensive understanding of its capabilities. ## Limitations As with all large language models, Khawarizmi-SPI-MLP-8B may exhibit certain limitations inherent to current AI technology: * **Hallucination**: The model might generate factually incorrect or nonsensical information. * **Bias**: Potential biases present in the training data could be reflected in the model's outputs. * **Lack of Common Sense**: The model may occasionally lack human-like common sense reasoning, leading to unexpected or illogical responses. Users are advised to exercise caution and verify critical information generated by the model. ## License The licensing information for Khawarizmi-SPI-MLP-8B is available in the `LICENSE` file within the repository. Users should refer to this file for detailed terms and conditions regarding the use and distribution of the model. ## Citation If you find Khawarizmi-SPI-MLP-8B useful in your research or applications, please consider citing it. A formal citation will be provided upon publication of the research paper detailing the SPI-MLP algorithm and the model's development. ## Acknowledgements We extend our gratitude to the open-source community and the developers of Qwen3-8B and DeepSeek-R1, whose foundational work has been instrumental in the creation of Khawarizmi-SPI-MLP-8B. Their contributions continue to drive innovation in the field of artificial intelligence. ## Contact For inquiries, collaborations, or feedback regarding Khawarizmi-SPI-MLP-8B, please reach out to the Khawarizmi AI team through the Hugging Face platform or official channels as they become available. ## Disclaimer Khawarizmi-SPI-MLP-8B is provided for research and experimental purposes. While efforts have been made to ensure its quality and performance, Khawarizmi AI does not guarantee its suitability for any specific application. Users are responsible for assessing the model's outputs and ensuring compliance with all applicable laws and regulations. live
ver-intimo-video-de-abigail-lalama/video.de.abigail.lalama.y.snayder.influencer.se.hace.viral.en.redes
ver-intimo-video-de-abigail-lalama
2025-08-19T17:54:28Z
0
0
null
[ "region:us" ]
null
2025-08-19T17:54:01Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5xr5mb3e?leaked-videos/" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
fhalation/zephyr-7b-dpo-qlora
fhalation
2025-08-19T17:51:52Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "dpo", "trl", "arxiv:2305.18290", "endpoints_compatible", "region:us" ]
null
2025-08-19T07:27:22Z
--- library_name: transformers model_name: zephyr-7b-dpo-qlora tags: - generated_from_trainer - dpo - trl licence: license --- # Model Card for zephyr-7b-dpo-qlora This model is a fine-tuned version of [None](https://huggingface.co/None). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="fhalation/zephyr-7b-dpo-qlora", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.6.0+cu126 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
VIDEOS-19-afrin-apu-viral-link/New.full.videos.afrin.apu.Viral.Video.Official.Tutorial
VIDEOS-19-afrin-apu-viral-link
2025-08-19T17:51:52Z
0
0
null
[ "region:us" ]
null
2025-08-19T17:51:41Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?leaked-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
prerana17/testmodel
prerana17
2025-08-19T17:51:33Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T17:48:25Z
--- base_model: unsloth/qwen2.5-1.5b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** prerana17 - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-1.5b-instruct-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mang3dd/blockassist-bc-tangled_slithering_alligator_1755624343
mang3dd
2025-08-19T17:51:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T17:51:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
PetraBevandic/vlm-tutorial-finetuned-llm
PetraBevandic
2025-08-19T17:44:18Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:HuggingFaceTB/SmolVLM-256M-Base", "base_model:finetune:HuggingFaceTB/SmolVLM-256M-Base", "endpoints_compatible", "region:us" ]
null
2025-08-19T16:34:35Z
--- base_model: HuggingFaceTB/SmolVLM-256M-Base library_name: transformers model_name: vlm-tutorial-finetuned-llm tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for vlm-tutorial-finetuned-llm This model is a fine-tuned version of [HuggingFaceTB/SmolVLM-256M-Base](https://huggingface.co/HuggingFaceTB/SmolVLM-256M-Base). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="PetraBevandic/vlm-tutorial-finetuned-llm", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.6.0+cu124 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```