modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755644479
hakimjustbao
2025-08-19T23:27:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T23:27:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/xlmr_immigration_combo7_1
AnonymousCS
2025-08-19T23:22:26Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T23:19:38Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo7_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo7_1 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1934 - Accuracy: 0.9383 - 1-f1: 0.9062 - 1-recall: 0.8958 - 1-precision: 0.9170 - Balanced Acc: 0.9276 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.276 | 1.0 | 25 | 0.1781 | 0.9486 | 0.9194 | 0.8803 | 0.9620 | 0.9315 | | 0.1168 | 2.0 | 50 | 0.1891 | 0.9447 | 0.9138 | 0.8803 | 0.95 | 0.9286 | | 0.156 | 3.0 | 75 | 0.1934 | 0.9383 | 0.9062 | 0.8958 | 0.9170 | 0.9276 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
unitova/blockassist-bc-zealous_sneaky_raven_1755643098
unitova
2025-08-19T23:09:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T23:09:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
torchao-testing/single-linear-Int4WeightOnlyConfig-preshuffled-v2-0.13-dev
torchao-testing
2025-08-19T23:08:04Z
0
0
null
[ "region:us" ]
null
2025-08-19T23:07:13Z
``` import torch import io model = torch.nn.Sequential(torch.nn.Linear(32, 256, dtype=torch.bfloat16, device="cuda")) from torchao.quantization import Int4WeightOnlyConfig, quantize_ quant_config = Int4WeightOnlyConfig(group_size=128, packing_format="preshuffled", version=2) quantize_(model, quant_config) example_inputs = (torch.randn(2, 32, dtype=torch.bfloat16, device="cuda"),) output = model(*example_inputs) # Push to hub USER_ID = "torchao-testing" MODEL_NAME = "single-linear" save_to = f"{USER_ID}/{MODEL_NAME}-Int4WeightOnlyConfig-preshuffled-v2-0.13.dev" from huggingface_hub import HfApi api = HfApi() buf = io.BytesIO() torch.save(model.state_dict(), buf) api.create_repo(save_to, repo_type="model", exist_ok=True) api.upload_file( path_or_fileobj=buf, path_in_repo="model.bin", repo_id=save_to, ) buf = io.BytesIO() torch.save(example_inputs, buf) api.upload_file( path_or_fileobj=buf, path_in_repo="model_inputs.pt", repo_id=save_to, ) buf = io.BytesIO() torch.save(output, buf) api.upload_file( path_or_fileobj=buf, path_in_repo="model_output.pt", repo_id=save_to, ) ```
seraphimzzzz/44280
seraphimzzzz
2025-08-19T23:05:37Z
0
0
null
[ "region:us" ]
null
2025-08-19T23:05:34Z
[View on Civ Archive](https://civarchive.com/models/58312?modelVersionId=62763)
ultratopaz/64761
ultratopaz
2025-08-19T23:04:48Z
0
0
null
[ "region:us" ]
null
2025-08-19T23:04:45Z
[View on Civ Archive](https://civarchive.com/models/88038?modelVersionId=93695)
ultratopaz/52803
ultratopaz
2025-08-19T23:04:18Z
0
0
null
[ "region:us" ]
null
2025-08-19T23:04:15Z
[View on Civ Archive](https://civarchive.com/models/71849?modelVersionId=76589)
ultratopaz/49808
ultratopaz
2025-08-19T23:04:09Z
0
0
null
[ "region:us" ]
null
2025-08-19T23:04:06Z
[View on Civ Archive](https://civarchive.com/models/66953?modelVersionId=71614)
crystalline7/46077
crystalline7
2025-08-19T23:03:04Z
0
0
null
[ "region:us" ]
null
2025-08-19T23:03:01Z
[View on Civ Archive](https://civarchive.com/models/61266?modelVersionId=65736)
crystalline7/16814
crystalline7
2025-08-19T22:56:00Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:55:55Z
[View on Civ Archive](https://civarchive.com/models/17067?modelVersionId=20153)
mang3dd/blockassist-bc-tangled_slithering_alligator_1755642520
mang3dd
2025-08-19T22:55:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T22:54:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755642454
vwzyrraz7l
2025-08-19T22:53:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T22:53:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
seraphimzzzz/77178
seraphimzzzz
2025-08-19T22:53:36Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:53:33Z
[View on Civ Archive](https://civarchive.com/models/23721?modelVersionId=109311)
thanobidex/blockassist-bc-colorful_shiny_hare_1755642359
thanobidex
2025-08-19T22:51:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T22:51:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
neko-llm/Qwen3-235B-test5
neko-llm
2025-08-19T22:51:04Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:Qwen/Qwen3-235B-A22B", "base_model:finetune:Qwen/Qwen3-235B-A22B", "endpoints_compatible", "region:us" ]
null
2025-08-19T12:49:08Z
--- base_model: Qwen/Qwen3-235B-A22B library_name: transformers model_name: Qwen3-235B-test5 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for Qwen3-235B-test5 This model is a fine-tuned version of [Qwen/Qwen3-235B-A22B](https://huggingface.co/Qwen/Qwen3-235B-A22B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="neko-llm/Qwen3-235B-test5", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/neko-llm/huggingface/runs/r6shuvcx) This model was trained with SFT. ### Framework versions - TRL: 0.19.0 - Transformers: 4.54.1 - Pytorch: 2.6.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
seraphimzzzz/75514
seraphimzzzz
2025-08-19T22:50:31Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:50:28Z
[View on Civ Archive](https://civarchive.com/models/53478?modelVersionId=107222)
ultratopaz/24129
ultratopaz
2025-08-19T22:49:12Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:49:07Z
[View on Civ Archive](https://civarchive.com/models/24156?modelVersionId=28870)
lilTAT/blockassist-bc-gentle_rugged_hare_1755643544
lilTAT
2025-08-19T22:46:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T22:46:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
crystalline7/66914
crystalline7
2025-08-19T22:46:11Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:46:09Z
[View on Civ Archive](https://civarchive.com/models/90494?modelVersionId=96401)
crystalline7/9861
crystalline7
2025-08-19T22:45:40Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:45:35Z
[View on Civ Archive](https://civarchive.com/models/8772?modelVersionId=10357)
crystalline7/185162
crystalline7
2025-08-19T22:45:15Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:45:12Z
[View on Civ Archive](https://civarchive.com/models/212601?modelVersionId=239496)
crystalline7/55277
crystalline7
2025-08-19T22:43:31Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:43:29Z
[View on Civ Archive](https://civarchive.com/models/75880?modelVersionId=80615)
crystalline7/96922
crystalline7
2025-08-19T22:42:22Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:42:14Z
[View on Civ Archive](https://civarchive.com/models/122190?modelVersionId=133017)
ultratopaz/126381
ultratopaz
2025-08-19T22:42:07Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:42:02Z
[View on Civ Archive](https://civarchive.com/models/60161?modelVersionId=166777)
seraphimzzzz/63725
seraphimzzzz
2025-08-19T22:41:30Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:41:25Z
[View on Civ Archive](https://civarchive.com/models/86857?modelVersionId=92402)
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755641399
ihsanridzi
2025-08-19T22:35:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T22:35:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
EpistemeAI/gpt-oss-20b-unsloth-finetune-puzzle-lora-V3
EpistemeAI
2025-08-19T22:32:27Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gpt_oss", "trl", "en", "base_model:unsloth/gpt-oss-20b-unsloth-bnb-4bit", "base_model:finetune:unsloth/gpt-oss-20b-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-19T22:00:22Z
--- base_model: unsloth/gpt-oss-20b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gpt_oss - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** EpistemeAI - **License:** apache-2.0 - **Finetuned from model :** unsloth/gpt-oss-20b-unsloth-bnb-4bit This gpt_oss model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755640573
vwzyrraz7l
2025-08-19T22:22:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T22:22:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
crystalline7/37221
crystalline7
2025-08-19T22:19:16Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:19:13Z
[View on Civ Archive](https://civarchive.com/models/12757?modelVersionId=50853)
crystalline7/22906
crystalline7
2025-08-19T22:19:08Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:19:03Z
[View on Civ Archive](https://civarchive.com/models/12757?modelVersionId=27712)
ultratopaz/37241
ultratopaz
2025-08-19T22:18:36Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:18:33Z
[View on Civ Archive](https://civarchive.com/models/46276?modelVersionId=50887)
seraphimzzzz/83539
seraphimzzzz
2025-08-19T22:17:31Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:17:25Z
[View on Civ Archive](https://civarchive.com/models/108640?modelVersionId=116962)
seraphimzzzz/50649
seraphimzzzz
2025-08-19T22:15:16Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:15:13Z
[View on Civ Archive](https://civarchive.com/models/68312?modelVersionId=73002)
crystalline7/45885
crystalline7
2025-08-19T22:14:54Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:14:51Z
[View on Civ Archive](https://civarchive.com/models/60936?modelVersionId=65415)
crystalline7/61249
crystalline7
2025-08-19T22:14:18Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:14:15Z
[View on Civ Archive](https://civarchive.com/models/83928?modelVersionId=89196)
crystalline7/52079
crystalline7
2025-08-19T22:11:06Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:11:04Z
[View on Civ Archive](https://civarchive.com/models/70744?modelVersionId=75429)
seraphimzzzz/481012
seraphimzzzz
2025-08-19T22:06:41Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:06:35Z
[View on Civ Archive](https://civarchive.com/models/498376?modelVersionId=554000)
AnonymousCS/xlmr_immigration_combo5_0
AnonymousCS
2025-08-19T22:04:26Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T22:00:58Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo5_0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo5_0 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2285 - Accuracy: 0.9280 - 1-f1: 0.8833 - 1-recall: 0.8185 - 1-precision: 0.9593 - Balanced Acc: 0.9006 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.185 | 1.0 | 25 | 0.1934 | 0.9332 | 0.8956 | 0.8610 | 0.9331 | 0.9151 | | 0.1763 | 2.0 | 50 | 0.2193 | 0.9306 | 0.8875 | 0.8224 | 0.9638 | 0.9035 | | 0.1517 | 3.0 | 75 | 0.2285 | 0.9280 | 0.8833 | 0.8185 | 0.9593 | 0.9006 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
ultratopaz/20170
ultratopaz
2025-08-19T22:03:27Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:03:23Z
[View on Civ Archive](https://civarchive.com/models/20449?modelVersionId=24314)
Muapi/zavy-s-aerial-view-flux
Muapi
2025-08-19T22:03:12Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T22:03:00Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Zavy's Aerial View - Flux ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: zavy-rlvw ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:738003@825335", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
MattBou00/llama-3-2-1b-detox_v1b-checkpoint-epoch-60
MattBou00
2025-08-19T22:03:06Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "ppo", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2025-08-19T22:01:44Z
--- license: apache-2.0 library_name: transformers tags: - trl - ppo - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/huggingface/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="MattBou00//content/IRL-Bayesian/outputs/2025-08-19_20-30-04/checkpoints/checkpoint-epoch-60") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("MattBou00//content/IRL-Bayesian/outputs/2025-08-19_20-30-04/checkpoints/checkpoint-epoch-60") model = AutoModelForCausalLMWithValueHead.from_pretrained("MattBou00//content/IRL-Bayesian/outputs/2025-08-19_20-30-04/checkpoints/checkpoint-epoch-60") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
KoichiYasuoka/modernbert-base-ukrainian
KoichiYasuoka
2025-08-19T22:02:09Z
0
0
null
[ "pytorch", "modernbert", "ukrainian", "masked-lm", "fill-mask", "uk", "dataset:Goader/kobza", "license:apache-2.0", "region:us" ]
fill-mask
2025-08-19T22:00:55Z
--- language: - "uk" tags: - "ukrainian" - "masked-lm" datasets: - "Goader/kobza" license: "apache-2.0" pipeline_tag: "fill-mask" mask_token: "<mask>" --- # modernbert-base-ukrainian ## Model Description This is a ModernBERT model pre-trained on Ukrainian texts. NVIDIA A100-SXM4-40GB×8 took 222 hours 58 minutes for training. You can fine-tune `modernbert-base-ukrainian` for downstream tasks, such as POS-tagging, dependency-parsing, and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/modernbert-base-ukrainian") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/modernbert-base-ukrainian") ```
ultratopaz/36398
ultratopaz
2025-08-19T22:01:32Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:01:30Z
[View on Civ Archive](https://civarchive.com/models/44324?modelVersionId=48961)
crystalline7/88579
crystalline7
2025-08-19T22:00:28Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:00:25Z
[View on Civ Archive](https://civarchive.com/models/113817?modelVersionId=122997)
Patzark/wav2vec2-finetuned-portuguese
Patzark
2025-08-19T22:00:17Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:facebook/wav2vec2-large-xlsr-53", "base_model:finetune:facebook/wav2vec2-large-xlsr-53", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-08-19T05:35:58Z
--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-large-xlsr-53 tags: - generated_from_trainer model-index: - name: wav2vec2-finetuned-portuguese results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-finetuned-portuguese This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.55.2 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
seraphimzzzz/54677
seraphimzzzz
2025-08-19T21:59:23Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:59:20Z
[View on Civ Archive](https://civarchive.com/models/36902?modelVersionId=42935)
ultratopaz/39149
ultratopaz
2025-08-19T21:59:04Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:59:02Z
[View on Civ Archive](https://civarchive.com/models/49489?modelVersionId=54066)
ultratopaz/264895
ultratopaz
2025-08-19T21:56:15Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:56:10Z
[View on Civ Archive](https://civarchive.com/models/297339?modelVersionId=334055)
crystalline7/65162
crystalline7
2025-08-19T21:55:39Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:55:37Z
[View on Civ Archive](https://civarchive.com/models/88509?modelVersionId=94178)
ultratopaz/76136
ultratopaz
2025-08-19T21:55:26Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:55:24Z
[View on Civ Archive](https://civarchive.com/models/100949?modelVersionId=108063)
seraphimzzzz/77913
seraphimzzzz
2025-08-19T21:53:57Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:53:54Z
[View on Civ Archive](https://civarchive.com/models/38389?modelVersionId=110283)
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755638962
sampingkaca72
2025-08-19T21:53:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:53:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
finalform/temp
finalform
2025-08-19T21:49:33Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "base_model:adapter:Qwen/Qwen2.5-Coder-7B-Instruct", "lora", "sft", "transformers", "trl", "text-generation", "conversational", "arxiv:1910.09700", "base_model:Qwen/Qwen2.5-Coder-7B-Instruct", "region:us" ]
text-generation
2025-08-19T21:48:26Z
--- base_model: Qwen/Qwen2.5-Coder-7B-Instruct library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:Qwen/Qwen2.5-Coder-7B-Instruct - lora - sft - transformers - trl --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.0
crystalline7/61277
crystalline7
2025-08-19T21:48:59Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:48:56Z
[View on Civ Archive](https://civarchive.com/models/83957?modelVersionId=89226)
seraphimzzzz/54317
seraphimzzzz
2025-08-19T21:48:45Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:48:42Z
[View on Civ Archive](https://civarchive.com/models/74360?modelVersionId=79074)
ultratopaz/96557
ultratopaz
2025-08-19T21:48:12Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:48:09Z
[View on Civ Archive](https://civarchive.com/models/121962?modelVersionId=132763)
seraphimzzzz/35923
seraphimzzzz
2025-08-19T21:48:05Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:48:02Z
[View on Civ Archive](https://civarchive.com/models/44026?modelVersionId=48662)
crystalline7/73397
crystalline7
2025-08-19T21:47:42Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:47:42Z
[View on Civ Archive](https://civarchive.com/models/97768?modelVersionId=104526)
Leoar/blockassist-bc-pudgy_toothy_cheetah_1755639865
Leoar
2025-08-19T21:46:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pudgy toothy cheetah", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:46:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pudgy toothy cheetah --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Clip-filtrado-de-Abigail-Lalama-y-Snayder/New-video-filtrado-de-Abigail-Lalama-y-Snayder.Viral.Video.Official.Tutorial
Clip-filtrado-de-Abigail-Lalama-y-Snayder
2025-08-19T21:45:54Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:45:19Z
<a data-target="animated-image.originalLink" rel="nofollow" href="https://tinyurl.com/4axawfmy?Abigail "><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" alt="WATCH Videos" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
ultratopaz/12175
ultratopaz
2025-08-19T21:45:11Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:45:07Z
[View on Civ Archive](https://civarchive.com/models/11722?modelVersionId=13849)
seraphimzzzz/70861
seraphimzzzz
2025-08-19T21:43:30Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:43:28Z
[View on Civ Archive](https://civarchive.com/models/94981?modelVersionId=101324)
crystalline7/46922
crystalline7
2025-08-19T21:43:13Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:43:10Z
[View on Civ Archive](https://civarchive.com/models/60932?modelVersionId=65410)
ultratopaz/116529
ultratopaz
2025-08-19T21:27:24Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:27:21Z
[View on Civ Archive](https://civarchive.com/models/140376?modelVersionId=155559)
ultratopaz/35127
ultratopaz
2025-08-19T21:24:11Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:24:08Z
[View on Civ Archive](https://civarchive.com/models/42534?modelVersionId=47223)
ultratopaz/645962
ultratopaz
2025-08-19T21:22:33Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:22:33Z
[View on Civ Archive](https://civarchive.com/models/653843?modelVersionId=731791)
erikaputri-Viral-Video-Clip-XX-Link/Orginal.full.Videos.erika.putri.8.menit.viral.video.Official.Tutorial.telegram
erikaputri-Viral-Video-Clip-XX-Link
2025-08-19T21:21:57Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:21:48Z
<a data-target="animated-image.originalLink" rel="nofollow" href="https://tinyurl.com/4axawfmy?crd "><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" alt="WATCH Videos" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
ultratopaz/45650
ultratopaz
2025-08-19T21:21:31Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:21:27Z
[View on Civ Archive](https://civarchive.com/models/60581?modelVersionId=65049)
18-Archita-Phukan-Viral-video-original/New.full.videos.archita.phukan.Viral.Video.Official.Tutorial
18-Archita-Phukan-Viral-video-original
2025-08-19T21:20:54Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:20:43Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?leaked-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
ultratopaz/39810
ultratopaz
2025-08-19T21:14:55Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:14:51Z
[View on Civ Archive](https://civarchive.com/models/50818?modelVersionId=55334)
seraphimzzzz/343374
seraphimzzzz
2025-08-19T21:11:22Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:11:14Z
[View on Civ Archive](https://civarchive.com/models/377663?modelVersionId=421726)
Muapi/3d-chibi-toy-air-dry-clay-style-flux
Muapi
2025-08-19T21:08:19Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:08:08Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # 【3D chibi toy】Air dry clay style - FLUX ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Juaner_clay ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:689231@771373", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Abdullah6395/COT_LLM
Abdullah6395
2025-08-19T21:07:58Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "lora", "template:diffusion-lora", "base_model:LiquidAI/LFM2-350M", "base_model:adapter:LiquidAI/LFM2-350M", "license:other", "region:us" ]
text-to-image
2025-08-19T21:07:53Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - output: url: images/Screenshot from 2025-08-20 01-55-42.png text: None parameters: negative_prompt: None base_model: LiquidAI/LFM2-350M instance_prompt: null license: other license_name: none license_link: LICENSE --- # CAYOTES <Gallery /> ## Model description Model Description (Educational Purpose Only): This is a small-scale LLM developed for learning and experimentation. Initially, the model was distilled from a larger teacher model to reduce size and computation requirements. Subsequently, it was fine-tuned on a chain-of-thought (CoT) dataset. Due to limited resources, training is partial and the model&#39;s outputs remain largely random. This model is intended strictly for educational use, research practice, and demonstration purposes. It is not suitable for deployment, commercial applications, or production use. ## Download model [Download](/Abdullah6395/COT_LLM/tree/main) them in the Files & versions tab.
Muapi/richard-anderson
Muapi
2025-08-19T21:07:49Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:07:35Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Richard Anderson ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Art by Richard Anderson ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1349128@1523853", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
ultratopaz/64194
ultratopaz
2025-08-19T21:06:21Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:06:17Z
[View on Civ Archive](https://civarchive.com/models/87387?modelVersionId=92998)
roeker/blockassist-bc-quick_wiry_owl_1755637429
roeker
2025-08-19T21:05:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:04:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rayonlabs/tournament-tourn_e8b54a44823eb63b_20250819-f54191cf-9125-4bf8-bece-f68787965413-5FYeWKtZ
rayonlabs
2025-08-19T21:04:53Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "trl", "axolotl", "grpo", "unsloth", "conversational", "arxiv:2402.03300", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T21:04:47Z
--- library_name: transformers model_name: app/checkpoints/f54191cf-9125-4bf8-bece-f68787965413/tournament-tourn_e8b54a44823eb63b_20250819-f54191cf-9125-4bf8-bece-f68787965413-5FYeWKtZ tags: - generated_from_trainer - trl - axolotl - grpo - unsloth licence: license --- # Model Card for app/checkpoints/f54191cf-9125-4bf8-bece-f68787965413/tournament-tourn_e8b54a44823eb63b_20250819-f54191cf-9125-4bf8-bece-f68787965413-5FYeWKtZ This model is a fine-tuned version of [None](https://huggingface.co/None). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="None", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.20.0 - Transformers: 4.54.1 - Pytorch: 2.7.1+cu128 - Datasets: 4.0.0 - Tokenizers: 0.21.2 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
matboz/ring-gemma-3
matboz
2025-08-19T21:04:28Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:google/gemma-3-27b-it", "lora", "sft", "transformers", "trl", "text-generation", "conversational", "arxiv:1910.09700", "base_model:google/gemma-3-27b-it", "region:us" ]
text-generation
2025-08-19T21:04:07Z
--- base_model: google/gemma-3-27b-it library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:google/gemma-3-27b-it - lora - sft - transformers - trl --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.0
ultratopaz/34402
ultratopaz
2025-08-19T21:01:51Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:01:47Z
[View on Civ Archive](https://civarchive.com/models/40940?modelVersionId=46038)
Muapi/wizard-s-paper-model-universe
Muapi
2025-08-19T20:59:26Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T20:58:50Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Wizard's Paper Model Universe ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: A paper model ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:873875@978295", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
mradermacher/ege-8b-1.1-GGUF
mradermacher
2025-08-19T20:43:18Z
0
0
transformers
[ "transformers", "gguf", "trl", "sft", "unsloth", "tr", "dataset:orkungedik/function_call", "base_model:orkungedik/ege-8b-1.1", "base_model:quantized:orkungedik/ege-8b-1.1", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-19T15:03:51Z
--- base_model: orkungedik/ege-8b-1.1 datasets: - orkungedik/function_call language: - tr library_name: transformers license: mit mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - trl - sft - unsloth --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/orkungedik/ege-8b-1.1 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#ege-8b-1.1-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q2_K.gguf) | Q2_K | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q3_K_S.gguf) | Q3_K_S | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q3_K_M.gguf) | Q3_K_M | 4.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q3_K_L.gguf) | Q3_K_L | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.IQ4_XS.gguf) | IQ4_XS | 4.7 | | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q4_K_S.gguf) | Q4_K_S | 4.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q4_K_M.gguf) | Q4_K_M | 5.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q5_K_S.gguf) | Q5_K_S | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q5_K_M.gguf) | Q5_K_M | 6.0 | | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q6_K.gguf) | Q6_K | 6.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q8_0.gguf) | Q8_0 | 8.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.f16.gguf) | f16 | 16.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755632515
lisaozill03
2025-08-19T20:06:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T20:06:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
chainway9/blockassist-bc-untamed_quick_eel_1755632070
chainway9
2025-08-19T20:01:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T20:01:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
BootesVoid/cme1nlmc40afpgwtcpc42gvjm_cme7g43p30bf96aq1sh548pe8
BootesVoid
2025-08-19T18:26:14Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-19T18:26:12Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: OFMODEL --- # Cme1Nlmc40Afpgwtcpc42Gvjm_Cme7G43P30Bf96Aq1Sh548Pe8 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `OFMODEL` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "OFMODEL", "lora_weights": "https://huggingface.co/BootesVoid/cme1nlmc40afpgwtcpc42gvjm_cme7g43p30bf96aq1sh548pe8/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cme1nlmc40afpgwtcpc42gvjm_cme7g43p30bf96aq1sh548pe8', weight_name='lora.safetensors') image = pipeline('OFMODEL').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cme1nlmc40afpgwtcpc42gvjm_cme7g43p30bf96aq1sh548pe8/discussions) to add images that show off what you’ve made with this LoRA.
Vasya777/blockassist-bc-lumbering_enormous_sloth_1755627800
Vasya777
2025-08-19T18:23:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lumbering enormous sloth", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T18:23:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lumbering enormous sloth --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755626209
helmutsukocok
2025-08-19T18:22:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T18:22:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
MoLA-LLM/MoLA-v0.5-9x4b
MoLA-LLM
2025-08-19T18:12:06Z
0
1
transformers
[ "transformers", "safetensors", "mola_lm", "text-generation", "pytorch", "mixture-of-experts", "lora", "adapter", "causal-lm", "conversational", "custom_code", "en", "license:apache-2.0", "autotrain_compatible", "region:us" ]
text-generation
2025-08-18T07:17:37Z
--- license: apache-2.0 library_name: transformers tags: - pytorch - mixture-of-experts - lora - adapter - causal-lm - text-generation language: - en pipeline_tag: text-generation --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/630f3e4002ce39336c411048/fOzRytNW02FCHL2xamzWD.png) **Important Note**: *This model has issues with the lora applying part of the custom lm class and its router is a bit too small with little generalization. In v0.6 and future models, all of these issues are/will be resolved.* **TLDR:** *Dont use this model, use v0.6 and above.* # MoLA-LM: Mixture of LoRA Adapters LLM MoLA-LM combines multiple LoRA adapters with an intelligent router to automatically select the best adapter for each input prompt. This approach enables specialized performance across different tasks while maintaining efficiency. ## Model Details - **Model Type**: Mixture of LoRA Adapters Language Model - **Base Model**: Qwen/Qwen3-4B-Thinking-2507 - **Total Adapters**: 9 - **Architecture**: Custom MoLAForCausalLM with automatic adapter routing ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model (trust_remote_code=True is required for custom architecture) model = AutoModelForCausalLM.from_pretrained( "MoLA-LLM/MoLA-v0.5-9x4b", trust_remote_code=True, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("MoLA-LLM/MoLA-v0.5-9x4b", trust_remote_code=True) # Use like any other language model - adapter selection is automatic prompt = "Write a Python function to calculate fibonacci numbers" messages = [{"role": "user", "content": prompt}] inputs = tokenizer.apply_chat_template( messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt", ).to(model.device) outputs = model.generate(**inputs, max_new_tokens=8192, temperature=.6, do_sample=True) response = tokenizer.decode(outputs[0][inputs["input_ids"].shape[-1]:], skip_special_tokens=True) print(f"Selected LoRA: {model.get_current_lora()}") print(response) ``` *You can also use load_in_4bit and load_in_8bit directly when loading!* ## Architecture The MoLA-LM architecture consists of: 1. **Base Model**: Qwen/Qwen3-4B-Thinking-2507 2. **Router Network**: Frozen encoder as Sentence transformer + decoder as one layer MLP for adapter selection 3. **LoRA Adapters**: 9 task-specific fine-tuned adapters 4. **Dynamic Switching**: Automatic adapter application based on input --- ## *Paper coming soon™*
janardhanb/qwen_2-5_coder_3b_text_to_cypher_2024v1
janardhanb
2025-08-19T18:10:43Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T18:06:53Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
koloni/blockassist-bc-deadly_graceful_stingray_1755625016
koloni
2025-08-19T18:03:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T18:03:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
MidnightRunner/MDNT_Illus_3D
MidnightRunner
2025-08-19T17:59:02Z
0
0
diffusers
[ "diffusers", "SDXL", "mdnt-illus", "3D-hybrid", "anaglyph", "photoreal", "cinematic", "text-to-image", "ComfyUI", "Automatic1111", "en", "base_model:MidnightRunner/MDNT_Illus", "base_model:finetune:MidnightRunner/MDNT_Illus", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2025-08-19T14:50:48Z
--- license: creativeml-openrail-m language: - en base_model: - OnomaAIResearch/Illustrious-XL-v2.0 - MidnightRunner/MDNT_Illus tags: - SDXL - mdnt-illus - 3D-hybrid - anaglyph - photoreal - cinematic - text-to-image - ComfyUI - Automatic1111 - diffusers pipeline_tag: text-to-image library_name: diffusers metrics: - FID - IS widget: - text: >- (masterpiece), extremely aesthetic, newest, very vibrant colors, (ultra-HD), (cinematic lighting), (photorealistic), high detail, depth of field, best quality, absurdres, parameters: negative_prompt: >- bad hands, extra digits, (multiple views:1.1), (bad:1.05), fewer, extra, missing, worst quality, jpeg artifacts, bad quality, watermark, unfinished, displeasing, sepia, sketch, flat color, signature, artistic error, username, scan, (blurry, lowres, worst quality, (low quality:1.1), ugly, (bad anatomy:1.05), artist name, (patreon username:1.2) output: url: mdnt_illus_3d_sample.jpeg --- # MDNT_Illus_3D Model type: diffusion-based text-to-image Base model: Illustrious XL v2.0 Merged with: MIDNIGHT Illustrious, MDNT_Illus, Hyphorias, Nova3D-CGXL, BetterDaysIllus License: CreativeML Open RAIL++-M ## Model description MDNT_Illus_3D is a precision finetune focused on a 3D-hybrid aesthetic, balancing photoreal fidelity with simulated depth and sculpted form. It emphasizes anaglyphic layering, volumetric lighting, cinematic depth of field, and richly detailed textures to produce imagery that feels tactile, immersive, and dramatically lit. ## Usage recommendations ### Sampling methods - Euler A (Euler ancestral) - DPM++ 2M Karras - DPM++ 2M SDE Karras - DPM++ 3M SDE Exponential ### Settings - Steps: 25–45 - CFG scale: 4 (range 3–4) - Clip skip: 1 ### Workflow Compatible with ComfyUI and Automatic1111. A tailored ComfyUI workflow may be added later to maximize spatial layering and volumetric light behavior. ## Prompt guidance Positive (example) ``` realistic, photorealistic, very aesthetic, best quality, absurdres, masterpiece, amazing quality, newest, scenery, depth of field, high-resolution, high definition, visually intense anaglyphic experience, volumetric lighting, cinematic, sculpted 3D form ``` Negative (example) ``` bad hands, extra digits, (multiple views:1.1), (bad:1.05), fewer, extra, missing, worst quality, jpeg artifacts, watermark, unfinished, sketch, flat color, signature, artist name, blurry, lowres, (bad anatomy:1.05), (patreon username:1.2) ``` ## Version changes / notes - v1.0 (initial release) - Introduces 3D-hybrid realism with anaglyphic depth and volumetric lighting - Blended with Hyphorias, Nova 3DCG XL, BetterDaysIllus for expanded range ## Acknowledgments Base: Illustrious XL v2.0 Merges: MIDNIGHT Illustrious, MDNT_Illus, Hyphorias, Nova 3DCG XL, BetterDaysIllus ## Additional Resources - **Creative Solutions and Services:** [Magnabos.co](https://magnabos.co/) ## License This model is licensed under the [CreativeML Open RAIL++-M License](https://github.com/CompVis/stable-diffusion/blob/main/LICENSE). By using this model, you agree to the terms and conditions outlined in the license.
AppliedLucent/nemo-phase6
AppliedLucent
2025-08-19T17:49:04Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:AppliedLucent/nemo-phase5", "base_model:finetune:AppliedLucent/nemo-phase5", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T17:38:35Z
--- base_model: AppliedLucent/nemo-phase5 tags: - text-generation-inference - transformers - unsloth - mistral license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** AppliedLucent - **License:** apache-2.0 - **Finetuned from model :** AppliedLucent/nemo-phase5 This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
praveensonu/llama_unified_3b_instruct
praveensonu
2025-08-19T17:41:10Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-17T15:13:03Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755621443
kojeklollipop
2025-08-19T17:06:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T17:06:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
EZCon/Qwen2.5-VL-7B-Instruct-4bit-mlx
EZCon
2025-08-19T17:05:03Z
39
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-to-text", "multimodal", "unsloth", "mlx", "image-text-to-text", "conversational", "en", "base_model:Qwen/Qwen2.5-VL-7B-Instruct", "base_model:quantized:Qwen/Qwen2.5-VL-7B-Instruct", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "4-bit", "region:us" ]
image-text-to-text
2025-08-05T07:17:26Z
--- base_model: - Qwen/Qwen2.5-VL-7B-Instruct license: apache-2.0 language: - en pipeline_tag: image-text-to-text tags: - multimodal - unsloth - mlx library_name: transformers --- # EZCon/Qwen2.5-VL-7B-Instruct-4bit-mlx This model was converted to MLX format from [`unsloth/Qwen2.5-VL-7B-Instruct`]() using mlx-vlm version **0.3.2**. Refer to the [original model card](https://huggingface.co/unsloth/Qwen2.5-VL-7B-Instruct) for more details on the model. ## Use with mlx ```bash pip install -U mlx-vlm ``` ```bash python -m mlx_vlm.generate --model EZCon/Qwen2.5-VL-7B-Instruct-4bit-mlx --max-tokens 100 --temperature 0.0 --prompt "Describe this image." --image <path_to_image> ```
Vasya777/blockassist-bc-lumbering_enormous_sloth_1755622837
Vasya777
2025-08-19T17:01:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lumbering enormous sloth", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T17:01:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lumbering enormous sloth --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
New-Clip-prabh-viral-videos/New.full.videos.prabh.Viral.Video.Official.Tutorial
New-Clip-prabh-viral-videos
2025-08-19T16:52:15Z
0
0
null
[ "region:us" ]
null
2025-08-19T16:51:29Z
[![image/png](https://cdn-uploads.huggingface.co/production/uploads/68581766e7f344a47d69f8b6/QBh4e5O6LYsJw4y93XWzs.png)](https://tinyurl.com/bdk3zxvb)
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755620416
quantumxnode
2025-08-19T16:46:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T16:46:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755620279
sampingkaca72
2025-08-19T16:43:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T16:43:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VER-milica-y-angel-david-debut-video/video.filtrado.milica.y.angel.david.debut.clip.viral.completo.en.twitter.y.telegram
VER-milica-y-angel-david-debut-video
2025-08-19T16:40:14Z
0
0
null
[ "region:us" ]
null
2025-08-19T16:39:51Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
haji80mr-uoft/semi-wotype-Llama-tuned-Lora-merged-V0
haji80mr-uoft
2025-08-19T16:18:20Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T16:16:18Z
--- base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** haji80mr-uoft - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)