modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
TencentARC/TokLIP
TencentARC
2025-08-21T17:45:55Z
21
11
null
[ "Tokenizer", "CLIP", "UnifiedMLLM", "image-text-to-text", "en", "arxiv:2505.05422", "base_model:google/siglip2-so400m-patch16-256", "base_model:finetune:google/siglip2-so400m-patch16-256", "license:other", "region:us" ]
image-text-to-text
2025-06-05T06:36:47Z
--- base_model: - google/siglip2-so400m-patch16-384 - google/siglip2-so400m-patch16-256 language: - en license: other license_name: other license_link: https://github.com/TencentARC/TokLIP/blob/main/LICENSE pipeline_tag: image-text-to-text tags: - Tokenizer - CLIP - UnifiedMLLM --- # TokLIP: Marry Visual Tokens to CLIP for Multimodal Comprehension and Generation <h5 align="center"> [![arXiv](https://img.shields.io/badge/TokLIP-2505.05422-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2505.05422) [![GitHub](https://img.shields.io/badge/GitHub-Code-green?logo=github)](https://github.com/TencentARC/TokLIP) [![HuggingFace](https://img.shields.io/badge/%F0%9F%A4%97%20Model-Huggingface-yellow)](https://huggingface.co/TencentARC/TokLIP) [![License](https://img.shields.io/badge/%E2%9A%96%EF%B8%8F%20Code%20License-Other-blue)](https://github.com/TencentARC/TokLIP/blob/main/LICENSE) <br> </h5> Welcome to the official code repository for "[**TokLIP: Marry Visual Tokens to CLIP for Multimodal Comprehension and Generation**](https://arxiv.org/abs/2505.05422)". Your star means a lot to us in developing this project! ⭐⭐⭐ ## πŸ“° News * [2025/08/18] πŸš€ Check our latest results on arXiv ([PDF](https://arxiv.org/pdf/2505.05422))! * [2025/08/18] πŸ”₯ We release TokLIP XL with 512 resolution [πŸ€— TokLIP_XL_512](https://huggingface.co/TencentARC/TokLIP/blob/main/TokLIP_XL_512.pt)! * [2025/08/05] πŸ”₯ We release the training code! * [2025/06/05] πŸ”₯ We release the code and models! * [2025/05/09] πŸš€ Our paper is available on arXiv! ## πŸ‘€ Introduction <img src="https://raw.githubusercontent.com/TencentARC/TokLIP/main/docs/TokLIP.png" alt="TokLIP" style="zoom:50%;" /> - We introduce TokLIP, a visual tokenizer that enhances comprehension by **semanticizing** vector-quantized (VQ) tokens and **incorporating CLIP-level semantics** while enabling end-to-end multimodal autoregressive training with standard VQ tokens. - TokLIP integrates a low-level discrete VQ tokenizer with a ViT-based token encoder to capture high-level continuous semantics. - Unlike previous approaches (e.g., VILA-U) that *discretize high-level features*, TokLIP **disentangles training objectives for comprehension and generation**, allowing the direct application of advanced VQ tokenizers without the need for tailored quantization operations. ## πŸ”§ Installation ```bash conda create -n toklip python=3.10 -y conda activate toklip git clone https://github.com/TencentARC/TokLIP pip install --upgrade pip pip install -r requirements.txt ``` ## βš™οΈ Usage ### Model Weight | Model | Resolution | VQGAN | IN Top1 | COCO TR@1 | COCO IR@1 | Weight | | :-------: | :--------: | :----------------------------------------------------------: | :-----: | :-------: | :-------: | :----------------------------------------------------------: | | TokLIP-S | 256 | [LlamaGen](https://huggingface.co/peizesun/llamagen_t2i/blob/main/vq_ds16_t2i.pt) | 76.4 | 64.06 | 48.46 | [πŸ€— TokLIP_S_256](https://huggingface.co/TencentARC/TokLIP/blob/main/TokLIP_S_256.pt) | | TokLIP-L | 384 | [LlamaGen](https://huggingface.co/peizesun/llamagen_t2i/blob/main/vq_ds16_t2i.pt) | 80.0 | 68.00 | 52.87 | [πŸ€— TokLIP_L_384](https://huggingface.co/TencentARC/TokLIP/blob/main/TokLIP_L_384.pt) | | TokLIP-XL | 512 | [IBQ](https://huggingface.co/TencentARC/IBQ-Tokenizer-262144/blob/main/imagenet256_262144.ckpt) | 80.8 | 69.40 | 53.77 | [πŸ€— TokLIP_XL_512](https://huggingface.co/TencentARC/TokLIP/blob/main/TokLIP_XL_512.pt) | ### Training 1. Please refer to [img2dataset](https://github.com/rom1504/img2dataset) to prepare the WebDataset required for training. You may choose datasets such as **CC3M**, **CC12M**, or **LAION**. 2. Prepare the teacher models using `src/covert.py`: ```bash cd src TIMM_MODEL='original' python covert.py --model_name 'ViT-SO400M-16-SigLIP2-256' --save_path './model/siglip2-so400m-vit-l16-256.pt' TIMM_MODEL='original' python covert.py --model_name 'ViT-SO400M-16-SigLIP2-384' --save_path './model/siglip2-so400m-vit-l16-384.pt' ``` 3. Train TokLIP using the scripts `src\train_toklip_256.sh` and `src\train_toklip_384.sh`. You need to set `--train-data` and `--train-num-samples` arguments accordingly. ### Evaluation Please first download the TokLIP model weights. We provide the evaluation scripts for ImageNet classification and MSCOCO Retrieval in `src\test_toklip_256.sh`, `src\test_toklip_384.sh`, and `src\test_toklip_512.sh`. Please revise the `--pretrained`, `--imagenet-val`, and `--coco-dir` with your specific paths. ### Inference We provide the inference example in `src/inference.py`. ```shell cd src python inference.py --model-config 'ViT-SO400M-16-SigLIP2-384-toklip' --pretrained 'YOUR_TOKLIP_PATH' ``` ### Model Usage We provide `build_toklip_encoder` function in `src/create_toklip.py`, you could directly load TokLIP with `model`, `image_size`, and `model_path` parameters. ## πŸ”œ TODOs - [x] Release training codes. - [x] Release TokLIP-XL with 512 resolution. ## πŸ“‚ Contact If you have further questions, please open an issue or contact <haokun.lin@cripac.ia.ac.cn>. Discussions and potential collaborations are also welcome. ## πŸ™ Acknowledgement This repo is built upon the following projects: * [OpenCLIP](https://github.com/mlfoundations/open_clip) * [LlamaGen](https://github.com/FoundationVision/LlamaGen) * [DeCLIP](https://github.com/Sense-GVT/DeCLIP) * [SEED-Voken](https://github.com/TencentARC/SEED-Voken) We thank the authors for their codes. ## πŸ“ Citation Please cite our work if you use our code or discuss our findings in your own research: ```bibtex @article{lin2025toklip, title={Toklip: Marry visual tokens to clip for multimodal comprehension and generation}, author={Lin, Haokun and Wang, Teng and Ge, Yixiao and Ge, Yuying and Lu, Zhichao and Wei, Ying and Zhang, Qingfu and Sun, Zhenan and Shan, Ying}, journal={arXiv preprint arXiv:2505.05422}, year={2025} } ```
forkkyty/blockassist-bc-savage_stinging_opossum_1755798327
forkkyty
2025-08-21T17:45:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage stinging opossum", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T17:45:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage stinging opossum --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755796789
quantumxnode
2025-08-21T17:45:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T17:45:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
unitova/blockassist-bc-zealous_sneaky_raven_1755796755
unitova
2025-08-21T17:45:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T17:45:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
silverside/PNSNC_bot_1
silverside
2025-08-21T17:44:36Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-21T16:18:17Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: PNSNC_BOT --- # Pnsnc_Bot_1 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `PNSNC_BOT` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "PNSNC_BOT", "lora_weights": "https://huggingface.co/silverside/PNSNC_bot_1/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('silverside/PNSNC_bot_1', weight_name='lora.safetensors') image = pipeline('PNSNC_BOT').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0001 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/silverside/PNSNC_bot_1/discussions) to add images that show off what you’ve made with this LoRA.
Team-Atom/smolvla_record_pp_ryb_t_96_100000
Team-Atom
2025-08-21T17:44:34Z
0
0
lerobot
[ "lerobot", "safetensors", "robotics", "smolvla", "dataset:Team-Atom/PiPl_RYB_test", "arxiv:2506.01844", "base_model:lerobot/smolvla_base", "base_model:finetune:lerobot/smolvla_base", "license:apache-2.0", "region:us" ]
robotics
2025-08-21T17:44:15Z
--- base_model: lerobot/smolvla_base datasets: Team-Atom/PiPl_RYB_test library_name: lerobot license: apache-2.0 model_name: smolvla pipeline_tag: robotics tags: - robotics - lerobot - smolvla --- # Model Card for smolvla <!-- Provide a quick summary of what the model is/does. --> [SmolVLA](https://huggingface.co/papers/2506.01844) is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
kambingijo/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-coiled_scampering_camel
kambingijo
2025-08-21T17:44:02Z
158
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am coiled_scampering_camel", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-13T00:59:31Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am coiled_scampering_camel --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ChenWu98/numina_qwen_2.5_sft_cluster_soft_split_1_0.25
ChenWu98
2025-08-21T17:41:55Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:Qwen/Qwen2.5-1.5B", "base_model:finetune:Qwen/Qwen2.5-1.5B", "endpoints_compatible", "region:us" ]
null
2025-08-21T17:40:43Z
--- base_model: Qwen/Qwen2.5-1.5B library_name: transformers model_name: numina_qwen_2.5_sft_cluster_soft_split_1_0.25 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for numina_qwen_2.5_sft_cluster_soft_split_1_0.25 This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="None", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/chenwu/huggingface/runs/bqu43lw8) This model was trained with SFT. ### Framework versions - TRL: 0.19.1 - Transformers: 4.51.1 - Pytorch: 2.7.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
trungquanjqk/blockassist-bc-flightless_unseen_parrot_1755797206
trungquanjqk
2025-08-21T17:41:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "flightless unseen parrot", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T17:41:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - flightless unseen parrot --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Neural-Hacker/pygpt2
Neural-Hacker
2025-08-21T17:41:39Z
0
1
null
[ "question-answering", "en", "base_model:distilbert/distilgpt2", "base_model:finetune:distilbert/distilgpt2", "license:mit", "region:us" ]
question-answering
2025-08-12T04:30:11Z
--- license: mit language: - en base_model: - distilgpt2 pipeline_tag: question-answering --- This fine-tuned model is designed to answer basic theoretical questions related to Python programming
canoplos112/blockassist-bc-yapping_sleek_squirrel_1755797955
canoplos112
2025-08-21T17:41:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yapping sleek squirrel", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T17:39:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yapping sleek squirrel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
video-viral-de-wendy-guevara-Clips/Ver.Filtran.video.intimo.de.Wendy.Guevara.en.twitter
video-viral-de-wendy-guevara-Clips
2025-08-21T17:41:09Z
0
0
null
[ "region:us" ]
null
2025-08-21T17:40:50Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755796224
katanyasekolah
2025-08-21T17:39:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T17:39:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
videosoftware/snehamalapaka-lora
videosoftware
2025-08-21T17:38:44Z
0
0
diffusers
[ "diffusers", "flux", "text-to-image", "lora", "fal", "license:other", "region:us" ]
text-to-image
2025-08-21T17:36:16Z
--- tags: - flux - text-to-image - lora - diffusers - fal base_model: undefined instance_prompt: snehamalapaka license: other --- # snehamalapaka lora <Gallery /> ## Model description Custom LoRA trained on 4 personal videos of Sneha Malapaka for Wan 2.2 video generation. ## Trigger words You should use `snehamalapaka` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/videosoftware/snehamalapaka-lora/tree/main) them in the Files & versions tab. ## Training at fal.ai Training was done using [fal.ai/models/fal-ai/wan-trainer](https://fal.ai/models/fal-ai/wan-trainer).
thanobidex/blockassist-bc-colorful_shiny_hare_1755796244
thanobidex
2025-08-21T17:37:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T17:37:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755796135
vwzyrraz7l
2025-08-21T17:36:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T17:36:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jahyungu/Llama-3.2-1B-Instruct_openbookqa
jahyungu
2025-08-21T17:35:41Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "conversational", "base_model:meta-llama/Llama-3.2-1B-Instruct", "base_model:finetune:meta-llama/Llama-3.2-1B-Instruct", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-21T16:23:25Z
--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-1B-Instruct tags: - generated_from_trainer model-index: - name: Llama-3.2-1B-Instruct_openbookqa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-3.2-1B-Instruct_openbookqa This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.55.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.0
fatepurriyaz/blockassist-bc-aquatic_pawing_pig_1755797661
fatepurriyaz
2025-08-21T17:34:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "aquatic pawing pig", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T17:34:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - aquatic pawing pig --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
canoplos112/blockassist-bc-yapping_sleek_squirrel_1755797536
canoplos112
2025-08-21T17:34:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yapping sleek squirrel", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T17:32:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yapping sleek squirrel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Hamza200420563/gemma-2b-bnb-4bit-StockAnalysis
Hamza200420563
2025-08-21T17:33:49Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma", "trl", "en", "base_model:unsloth/gemma-2b-bnb-4bit", "base_model:finetune:unsloth/gemma-2b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-21T10:00:23Z
--- base_model: unsloth/gemma-2b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Hamza200420563 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-2b-bnb-4bit This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
urbainze/llama-3-8b-Instruct-frss
urbainze
2025-08-21T17:30:43Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-21T17:24:36Z
--- base_model: unsloth/llama-3-8b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** urbainze - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1755795719
coelacanthxyz
2025-08-21T17:30:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky thriving grouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T17:30:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky thriving grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1755797251
ggozzy
2025-08-21T17:28:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T17:28:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
BootesVoid/cmellwsdi03rttlqblhmo4fwj_cmelmezhw03t3tlqby4lqxyxe
BootesVoid
2025-08-21T17:28:35Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-21T17:28:33Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: SEXY1 --- # Cmellwsdi03Rttlqblhmo4Fwj_Cmelmezhw03T3Tlqby4Lqxyxe <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `SEXY1` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "SEXY1", "lora_weights": "https://huggingface.co/BootesVoid/cmellwsdi03rttlqblhmo4fwj_cmelmezhw03t3tlqby4lqxyxe/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmellwsdi03rttlqblhmo4fwj_cmelmezhw03t3tlqby4lqxyxe', weight_name='lora.safetensors') image = pipeline('SEXY1').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2500 - Learning rate: 9e-05 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmellwsdi03rttlqblhmo4fwj_cmelmezhw03t3tlqby4lqxyxe/discussions) to add images that show off what you’ve made with this LoRA.
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755795856
lisaozill03
2025-08-21T17:28:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T17:28:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
manusiaperahu2012/blockassist-bc-roaring_long_tuna_1755795765
manusiaperahu2012
2025-08-21T17:28:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring long tuna", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T17:28:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring long tuna --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Sanskrit-Translate-V1.0-GGUF
mradermacher
2025-08-21T17:27:55Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:VinitT/Sanskrit-Translate-V1.0", "base_model:quantized:VinitT/Sanskrit-Translate-V1.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-21T17:24:03Z
--- base_model: VinitT/Sanskrit-Translate-V1.0 language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/VinitT/Sanskrit-Translate-V1.0 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Sanskrit-Translate-V1.0-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Sanskrit-Translate-V1.0-GGUF/resolve/main/Sanskrit-Translate-V1.0.Q3_K_S.gguf) | Q3_K_S | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/Sanskrit-Translate-V1.0-GGUF/resolve/main/Sanskrit-Translate-V1.0.Q2_K.gguf) | Q2_K | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/Sanskrit-Translate-V1.0-GGUF/resolve/main/Sanskrit-Translate-V1.0.IQ4_XS.gguf) | IQ4_XS | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/Sanskrit-Translate-V1.0-GGUF/resolve/main/Sanskrit-Translate-V1.0.Q3_K_M.gguf) | Q3_K_M | 0.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Sanskrit-Translate-V1.0-GGUF/resolve/main/Sanskrit-Translate-V1.0.Q3_K_L.gguf) | Q3_K_L | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/Sanskrit-Translate-V1.0-GGUF/resolve/main/Sanskrit-Translate-V1.0.Q4_K_S.gguf) | Q4_K_S | 0.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Sanskrit-Translate-V1.0-GGUF/resolve/main/Sanskrit-Translate-V1.0.Q4_K_M.gguf) | Q4_K_M | 0.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Sanskrit-Translate-V1.0-GGUF/resolve/main/Sanskrit-Translate-V1.0.Q5_K_S.gguf) | Q5_K_S | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Sanskrit-Translate-V1.0-GGUF/resolve/main/Sanskrit-Translate-V1.0.Q5_K_M.gguf) | Q5_K_M | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Sanskrit-Translate-V1.0-GGUF/resolve/main/Sanskrit-Translate-V1.0.Q6_K.gguf) | Q6_K | 0.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Sanskrit-Translate-V1.0-GGUF/resolve/main/Sanskrit-Translate-V1.0.Q8_0.gguf) | Q8_0 | 0.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Sanskrit-Translate-V1.0-GGUF/resolve/main/Sanskrit-Translate-V1.0.f16.gguf) | f16 | 0.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
AAAAnsah/Qwen25-0.5B-rfa-vax-lmc-try-7
AAAAnsah
2025-08-21T17:27:52Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:Qwen/Qwen2.5-0.5B-Instruct", "lora", "transformers", "text-generation", "arxiv:1910.09700", "base_model:Qwen/Qwen2.5-0.5B-Instruct", "region:us" ]
text-generation
2025-08-21T17:27:47Z
--- base_model: Qwen/Qwen2.5-0.5B-Instruct library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:Qwen/Qwen2.5-0.5B-Instruct - lora - transformers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.1
Dejiat/blockassist-bc-savage_unseen_bobcat_1755797230
Dejiat
2025-08-21T17:27:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T17:27:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
fatepurriyaz/blockassist-bc-aquatic_pawing_pig_1755797223
fatepurriyaz
2025-08-21T17:27:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "aquatic pawing pig", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T17:27:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - aquatic pawing pig --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
koloni/blockassist-bc-deadly_graceful_stingray_1755795585
koloni
2025-08-21T17:26:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T17:26:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
golopper/blockassist-bc-pensive_twitchy_ape_1755797144
golopper
2025-08-21T17:25:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pensive twitchy ape", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T17:25:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pensive twitchy ape --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VER-ORIGINAL-VIDEO-DE-MILICA-Y-ANGEL-DAVID/VER-Milica.y.Angel.David.Video.Debut.Erome.Video.de.Milica.y.Angel.David.ybanez.Jugar
VER-ORIGINAL-VIDEO-DE-MILICA-Y-ANGEL-DAVID
2025-08-21T17:25:54Z
0
0
null
[ "region:us" ]
null
2025-08-21T17:20:55Z
<animated-image data-catalyst=""><a href="https://newmovietv.online/leaked-video/?leaked-videos/" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> ΒΏMilica cumple a Ángel David?: ΒΏhubo debut prometido y video viral? ΒΏMilica cumple a Ángel David? La promesa previo a Supernova se volviΓ³ viral y todos preguntan si realmente hubo debut. DescΓΊbrelo aquΓ­. Imagen de ΒΏMilica cumple a Ángel David?: ΒΏhubo debut prometido y video viral? Tanto Milica como Ángel David han generado expectativa sobre si realmente habrΓ‘ un β€œdebut”. - Foto: cortesΓ­a. La pregunta sobre si Milica cumple a Ángel David la promesa de hacerlo β€œdebutar” se volviΓ³ tendencia en internet y redes sociales, provocando bΓΊsquedas como β€œvideo de Milica y Ángel David”, β€œMilica y Ángel Avid”, β€œDebut de Ángel David y Milica”, β€œΒΏΓngel David debutΓ³ con Milica”, β€œΓngel David y Milica Telegram”, β€œvideo viral de Milica y Ángel David debut”, entre otras relacionadas. La historia se viralizΓ³ tras su participaciΓ³n en el evento Supernova, donde una promesa aparentemente casual se transformΓ³ en uno de los momentos mΓ‘s compartidos de la noche. View post on TikTok ΒΏCuΓ‘l es la promesa de Milica a Ángel David? Milica β€”streamer e influencer argentinaβ€” hizo un TikTok para anunciar que, si ganaba su combate en Supernova, cumplirΓ­a lo que el comentario con mΓ‘s likes sugiriera. Ángel Avid (tambiΓ©n referido como Ángel David en redes) dejΓ³ un comentario pidiendo que lo β€œhiciera debutar”. Ese comentario obtuvo mΓ‘s de tres millones de likes. Tras ganar la pelea contra Mercedes Roa, Milica cumpliΓ³: lo llevΓ³ al ring, lo abrazΓ³ y dijo claramente: β€œMaΓ±ana vamos a tener que hablar de ese debut, me parece”. View post on TikTok LEA TAMBIΓ‰N: Milica y Ángel David debut video: Clip viral completo en Twitter y Telegram ΒΏCΓ³mo se conocieron Milica y Ángel David? SegΓΊn diversos medios, Milica y Ángel David se encontraron β€œhoras antes” del evento celebrado el pasado 17 de agosto de 2025, en el Palacio de los Deportes de Ciudad de MΓ©xico. Fue un encuentro breve, pero suficiente para que, tras el triunfo, Milica lo invitara a subir al ring. De ese modo, el fan pasΓ³ a formar parte del espectΓ‘culo, y ese instante se volviΓ³ un sΓ­mbolo de lo impredecible que puede ser el contenido viral. View post on TikTok ΒΏHubo debut de Ángel David con Milica tras la pelea? DespuΓ©s del combate, que Milica ganΓ³ por decisiΓ³n unΓ‘nime, el momento con Ángel David se convirtiΓ³ en el mΓ‘s viral del evento Supernova: OrΓ­genes 2025. Milenio y otros portales lo destacaron como β€œel joven que β€˜debutarÑ’ con Milica”. View post on X Su presencia en el ring, junto con el abrazo post victoria, generΓ³ risas, elogios y miles de comentarios entre los asistentes y en internet. A partir de ese momento, tanto Milica como Ángel David han generado expectativa sobre si realmente habrΓ‘ un β€œdebut” formal o simplemente se tratΓ³ de un gesto simbΓ³lico e incluso con tono de humor. Milica en Wikipedia Milica, cuyo nombre real es Micaela IbÑñez, es una influencer y streamΒ­er argentina nacida en Buenos Aires, de aproximadamente 22 aΓ±os (generaciΓ³n de 2001). Tiene presencia destacada en Twitch (con mΓ‘s de 180 000 seguidores) y TikTok, donde comparte contenido sobre estilo de vida, rutinas de ejercicio y entretenimiento. Su participaciΓ³n en Supernova marcΓ³ un antes y un despuΓ©s: no solo ganΓ³ en el ring, sino que se convirtiΓ³ en noticia por esa interacciΓ³n con un fan que terminΓ³ siendo viral. View post on TikTok ΒΏQuiΓ©n es Ángel David, fan de Milica? Ángel David β€”tambiΓ©n conocido como Ángel Avidβ€” es un joven fan de Milica que se convirtiΓ³ en figura pΓΊblica de un dΓ­a para otro. Su comentario en TikTok pidiendo ser β€œdebutado” recibiΓ³ mΓ‘s de tres millones de likes, lo que lo catapultΓ³ a la fama inmediata. Hasta antes del evento, era un follower mΓ‘s; ahora, aparece en medios como β€œel verdadero ganador” de la noche. ¿Ángel David debutΓ³ con Milica? ΒΏMilica cumple a Ángel David?, lo llevΓ³ al ring, lo hizo parte del momento y confirmΓ³ pΓΊblicamente que hablarΓ­an sobre ese β€œdebut”. Ahora bien, si se trata de un debut formal en sentido estricto β€”como una cita, colaboraciΓ³n o evento especialβ€” aΓΊn no estΓ‘ claro. Hasta ahora, lo que sucediΓ³ fue un gesto simbΓ³lico, divertido y altamente viral. AsΓ­ que aunque tΓ©cnicamente cumpliΓ³ la promesa, todavΓ­a falta por saber quΓ© significa exactamente ese β€œdebut” en el futuro.
indoempatnol/blockassist-bc-fishy_wary_swan_1755795474
indoempatnol
2025-08-21T17:24:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T17:24:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1755796981
ggozzy
2025-08-21T17:24:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T17:24:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
fatepurriyaz/blockassist-bc-aquatic_pawing_pig_1755796973
fatepurriyaz
2025-08-21T17:23:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "aquatic pawing pig", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T17:23:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - aquatic pawing pig --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jgchaparro/language_garden-tsd-stt-merged-small
jgchaparro
2025-08-21T17:22:08Z
0
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "text-generation-inference", "unsloth", "en", "base_model:unsloth/whisper-small", "base_model:finetune:unsloth/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-08-21T17:21:36Z
--- base_model: unsloth/whisper-small tags: - text-generation-inference - transformers - unsloth - whisper license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** jgchaparro - **License:** apache-2.0 - **Finetuned from model :** unsloth/whisper-small This whisper model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Bila333/salon
Bila333
2025-08-21T17:20:12Z
0
0
null
[ "license:other", "region:us" ]
null
2025-08-21T16:44:28Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
canoplos112/blockassist-bc-yapping_sleek_squirrel_1755796683
canoplos112
2025-08-21T17:20:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yapping sleek squirrel", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T17:18:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yapping sleek squirrel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1755796712
ggozzy
2025-08-21T17:19:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T17:19:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
esi777/blockassist-bc-camouflaged_trotting_eel_1755796649
esi777
2025-08-21T17:17:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "camouflaged trotting eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T17:17:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - camouflaged trotting eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
fatepurriyaz/blockassist-bc-aquatic_pawing_pig_1755796569
fatepurriyaz
2025-08-21T17:16:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "aquatic pawing pig", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T17:16:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - aquatic pawing pig --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Qwen3-4B-P3-SFT-2-GGUF
mradermacher
2025-08-21T17:15:19Z
0
0
transformers
[ "transformers", "gguf", "axolotl", "generated_from_trainer", "en", "base_model:AiForgeMaster/Qwen3-4B-P3-SFT-2", "base_model:quantized:AiForgeMaster/Qwen3-4B-P3-SFT-2", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-21T16:49:16Z
--- base_model: AiForgeMaster/Qwen3-4B-P3-SFT-2 language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - axolotl - generated_from_trainer --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/AiForgeMaster/Qwen3-4B-P3-SFT-2 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Qwen3-4B-P3-SFT-2-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-P3-SFT-2-GGUF/resolve/main/Qwen3-4B-P3-SFT-2.Q2_K.gguf) | Q2_K | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-P3-SFT-2-GGUF/resolve/main/Qwen3-4B-P3-SFT-2.Q3_K_S.gguf) | Q3_K_S | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-P3-SFT-2-GGUF/resolve/main/Qwen3-4B-P3-SFT-2.Q3_K_M.gguf) | Q3_K_M | 2.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-P3-SFT-2-GGUF/resolve/main/Qwen3-4B-P3-SFT-2.Q3_K_L.gguf) | Q3_K_L | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-P3-SFT-2-GGUF/resolve/main/Qwen3-4B-P3-SFT-2.IQ4_XS.gguf) | IQ4_XS | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-P3-SFT-2-GGUF/resolve/main/Qwen3-4B-P3-SFT-2.Q4_K_S.gguf) | Q4_K_S | 2.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-P3-SFT-2-GGUF/resolve/main/Qwen3-4B-P3-SFT-2.Q4_K_M.gguf) | Q4_K_M | 2.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-P3-SFT-2-GGUF/resolve/main/Qwen3-4B-P3-SFT-2.Q5_K_S.gguf) | Q5_K_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-P3-SFT-2-GGUF/resolve/main/Qwen3-4B-P3-SFT-2.Q5_K_M.gguf) | Q5_K_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-P3-SFT-2-GGUF/resolve/main/Qwen3-4B-P3-SFT-2.Q6_K.gguf) | Q6_K | 3.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-P3-SFT-2-GGUF/resolve/main/Qwen3-4B-P3-SFT-2.Q8_0.gguf) | Q8_0 | 4.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-P3-SFT-2-GGUF/resolve/main/Qwen3-4B-P3-SFT-2.f16.gguf) | f16 | 8.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
zonglin1104/svla_so100_pickplace_tape_to_basket_2
zonglin1104
2025-08-21T17:15:02Z
0
0
lerobot
[ "lerobot", "safetensors", "robotics", "smolvla", "dataset:zonglin1104/lekiwi_pickup_tape_to_basket_2", "arxiv:2506.01844", "base_model:lerobot/smolvla_base", "base_model:finetune:lerobot/smolvla_base", "license:apache-2.0", "region:us" ]
robotics
2025-08-21T16:27:25Z
--- base_model: lerobot/smolvla_base datasets: zonglin1104/lekiwi_pickup_tape_to_basket_2 library_name: lerobot license: apache-2.0 model_name: smolvla pipeline_tag: robotics tags: - robotics - smolvla - lerobot --- # Model Card for smolvla <!-- Provide a quick summary of what the model is/does. --> [SmolVLA](https://huggingface.co/papers/2506.01844) is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash lerobot-train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash lerobot-record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
mradermacher/Gemma3-open-code-GGUF
mradermacher
2025-08-21T17:14:44Z
0
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "sft", "trl", "en", "base_model:Frax01/Gemma3-open-code", "base_model:quantized:Frax01/Gemma3-open-code", "endpoints_compatible", "region:us" ]
null
2025-08-21T17:04:27Z
--- base_model: Frax01/Gemma3-open-code language: - en library_name: transformers model_name: Gemma3-open-code mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - generated_from_trainer - sft - trl --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/Frax01/Gemma3-open-code <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Gemma3-open-code-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Gemma3-open-code-GGUF/resolve/main/Gemma3-open-code.Q3_K_S.gguf) | Q3_K_S | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/Gemma3-open-code-GGUF/resolve/main/Gemma3-open-code.Q2_K.gguf) | Q2_K | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/Gemma3-open-code-GGUF/resolve/main/Gemma3-open-code.IQ4_XS.gguf) | IQ4_XS | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/Gemma3-open-code-GGUF/resolve/main/Gemma3-open-code.Q3_K_M.gguf) | Q3_K_M | 0.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Gemma3-open-code-GGUF/resolve/main/Gemma3-open-code.Q3_K_L.gguf) | Q3_K_L | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/Gemma3-open-code-GGUF/resolve/main/Gemma3-open-code.Q4_K_S.gguf) | Q4_K_S | 0.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Gemma3-open-code-GGUF/resolve/main/Gemma3-open-code.Q4_K_M.gguf) | Q4_K_M | 0.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Gemma3-open-code-GGUF/resolve/main/Gemma3-open-code.Q5_K_S.gguf) | Q5_K_S | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/Gemma3-open-code-GGUF/resolve/main/Gemma3-open-code.Q5_K_M.gguf) | Q5_K_M | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/Gemma3-open-code-GGUF/resolve/main/Gemma3-open-code.Q6_K.gguf) | Q6_K | 1.1 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Gemma3-open-code-GGUF/resolve/main/Gemma3-open-code.Q8_0.gguf) | Q8_0 | 1.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Gemma3-open-code-GGUF/resolve/main/Gemma3-open-code.f16.gguf) | f16 | 2.1 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
rayhaan-beeharry/gemma-3-1b-it-Q4_K_M-GGUF
rayhaan-beeharry
2025-08-21T17:14:43Z
0
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "text-generation", "base_model:google/gemma-3-1b-it", "base_model:quantized:google/gemma-3-1b-it", "license:gemma", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-08-21T17:14:38Z
--- license: gemma library_name: transformers pipeline_tag: text-generation extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license base_model: google/gemma-3-1b-it tags: - llama-cpp - gguf-my-repo --- # rayhaan-beeharry/gemma-3-1b-it-Q4_K_M-GGUF This model was converted to GGUF format from [`google/gemma-3-1b-it`](https://huggingface.co/google/gemma-3-1b-it) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/google/gemma-3-1b-it) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo rayhaan-beeharry/gemma-3-1b-it-Q4_K_M-GGUF --hf-file gemma-3-1b-it-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo rayhaan-beeharry/gemma-3-1b-it-Q4_K_M-GGUF --hf-file gemma-3-1b-it-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo rayhaan-beeharry/gemma-3-1b-it-Q4_K_M-GGUF --hf-file gemma-3-1b-it-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo rayhaan-beeharry/gemma-3-1b-it-Q4_K_M-GGUF --hf-file gemma-3-1b-it-q4_k_m.gguf -c 2048 ```
LINK-Uppal-Farm-Girl-Viral-Video-Original/WATCH.Uppal.Farm.Girl.Viral.Video.Official.Tutorial
LINK-Uppal-Farm-Girl-Viral-Video-Original
2025-08-21T17:13:20Z
0
0
null
[ "region:us" ]
null
2025-08-21T17:12:44Z
<animated-image data-catalyst=""><a href="https://newmovietv.online/leaked-video/?leaked-videos/" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
tgrhn/whisper-large-v3-turbo_finetuned-6
tgrhn
2025-08-21T17:12:57Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-21T17:12:55Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
BjarneNPO/finetune_21_08_2025_18_55_50
BjarneNPO
2025-08-21T17:12:48Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "gte", "sentence-similarity", "feature-extraction", "dense", "generated_from_trainer", "dataset_size:19964", "loss:MultipleNegativesRankingLoss", "custom_code", "arxiv:1908.10084", "arxiv:1705.00652", "base_model:Snowflake/snowflake-arctic-embed-m-v2.0", "base_model:finetune:Snowflake/snowflake-arctic-embed-m-v2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-08-21T17:09:17Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - dense - generated_from_trainer - dataset_size:19964 - loss:MultipleNegativesRankingLoss base_model: Snowflake/snowflake-arctic-embed-m-v2.0 widget: - source_sentence: 'Kollegin hat Probleme mit dem Login zu ' sentences: - Alle genannten Kinder gab es in kitaplus. Bei einem musste nur eine neue BI angelegt werden, bei den anderen muss der Vertrag in einer anderen Kita rΓΌckgΓ€ngig gemacht werden, damit es in kitaplus in dieser Einrichtung aus der Liste der Absagen genommen werden kann. - Der Bereich ist aktuell noch nicht sichtbar. - muss mit dem Rentamt geklΓ€rt werden - source_sentence: Benutzer mΓΆchte einen Kollegen nur fΓΌr die Dokumentenbibliothek anlegen. sentences: - RΓΌcksprache mit Entwickler. - Sie muss den Regler auf Anzahl stellen - Zusammen die Rolle gewΓ€hlt und dort dann in den individuellen Rechten alles auf lesend bzw. ausblenden gestellt, außer die Bibliothek. - source_sentence: Ist es richtig so, dass Mitarbeiter, wenn sie nach einer gewissen Zeit wieder in die Einrichtung kommen, erneut angelegt werden mΓΌssen? sentences: - Userin an den TrΓ€ger verwiesen, dieser kann bei ihr ein neues Passwort setzen. - Ja, das ist korrekt so. - Userin muss erst rechts ΓΌber das 3-Punkte-menΓΌ die "Anmeldedaten zusammenfΓΌhren". Danach muss man in den angelegten BI die Gruppenform des Anmeldeportals angeben. - source_sentence: Userin kann die Γ–ffnungszeiten der Einrichtung nicht bearbeiten. sentences: - informiert, dass es keinen Testzugang gibt, aber HandbΓΌcher und Hilfen in zur VerfΓΌgung stehen, wenn die Schnittstelle eingerichtet wurde. - Bereits bekannt, die Kollegen sind schon dabei den Fehler zu beheben. - Userin darf dies mit der Rolle nicht. - source_sentence: fragt wie der Stand zu dem aktuellen Problem ist sentences: - Userin muss sich an die Bistums IT wenden. - In KlΓ€rung mit der Kollegin - Das Problem liegt leider an deren Betreiber. Die sind aber informiert und arbeiten bereits daran - findet diese in der Übersicht der Gruppen. pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 model-index: - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m-v2.0 results: - task: type: information-retrieval name: Information Retrieval dataset: name: Snowflake/snowflake arctic embed m v2.0 type: Snowflake/snowflake-arctic-embed-m-v2.0 metrics: - type: cosine_accuracy@1 value: 0.1897810218978102 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7153284671532847 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8029197080291971 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8540145985401459 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.1897810218978102 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.44282238442822386 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.4656934306569343 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.44598540145985405 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.008333162948877848 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.09894770560292243 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.16592225698065116 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.23699966604646722 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.45898091811493363 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.4676572818908586 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.2943817650574986 name: Cosine Map@100 --- # SentenceTransformer based on Snowflake/snowflake-arctic-embed-m-v2.0 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m-v2.0](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v2.0) on the train dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Snowflake/snowflake-arctic-embed-m-v2.0](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v2.0) <!-- at revision 95c2741480856aa9666782eb4afe11959938017f --> - **Maximum Sequence Length:** 8192 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - train <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'GteModel'}) (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the πŸ€— Hub model = SentenceTransformer("BjarneNPO/finetune_21_08_2025_18_55_50") # Run inference queries = [ "fragt wie der Stand zu dem aktuellen Problem ist", ] documents = [ 'In KlΓ€rung mit der Kollegin - Das Problem liegt leider an deren Betreiber. Die sind aber informiert und arbeiten bereits daran', 'findet diese in der Übersicht der Gruppen.', 'Userin muss sich an die Bistums IT wenden.', ] query_embeddings = model.encode_query(queries) document_embeddings = model.encode_document(documents) print(query_embeddings.shape, document_embeddings.shape) # [1, 768] [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(query_embeddings, document_embeddings) print(similarities) # tensor([[0.2540, 0.0537, 0.0780]]) ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Dataset: `Snowflake/snowflake-arctic-embed-m-v2.0` * Evaluated with <code>scripts.InformationRetrievalEvaluatorCustom.InformationRetrievalEvaluatorCustom</code> with these parameters: ```json { "query_prompt_name": "query", "corpus_prompt_name": "query" } ``` | Metric | Value | |:--------------------|:----------| | cosine_accuracy@1 | 0.1898 | | cosine_accuracy@3 | 0.7153 | | cosine_accuracy@5 | 0.8029 | | cosine_accuracy@10 | 0.854 | | cosine_precision@1 | 0.1898 | | cosine_precision@3 | 0.4428 | | cosine_precision@5 | 0.4657 | | cosine_precision@10 | 0.446 | | cosine_recall@1 | 0.0083 | | cosine_recall@3 | 0.0989 | | cosine_recall@5 | 0.1659 | | cosine_recall@10 | 0.237 | | **cosine_ndcg@10** | **0.459** | | cosine_mrr@10 | 0.4677 | | cosine_map@100 | 0.2944 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### train * Dataset: train * Size: 19,964 training samples * Columns: <code>query</code> and <code>answer</code> * Approximate statistics based on the first 1000 samples: | | query | answer | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 4 tokens</li><li>mean: 27.77 tokens</li><li>max: 615 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 22.87 tokens</li><li>max: 151 tokens</li></ul> | * Samples: | query | answer | |:------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------| | <code>Wie kann man die JahresurlaubsΓΌbersicht exportieren?</code> | <code>ΓΌber das 3 Punkte MenΓΌ rechts oben. Mitarbeiter auswΓ€hlen und exportieren</code> | | <code>1. VertragsabschlΓΌsse werden nicht ΓΌbertragen <br>2. Kinder kommen nicht von nach <br>3. Absage kann bei Portalstatus nicht erstellt werden.</code> | <code>Ticket <br>Userin gebeten sich an den Support zu wenden, da der Fehler liegt.</code> | | <code>Wird im Anmeldeportal nicht gefunden.</code> | <code>Die Schnittstelle war noch nicht aktiviert und Profil ebenfalls nicht.</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 64 - `gradient_accumulation_steps`: 8 - `learning_rate`: 2e-05 - `num_train_epochs`: 10 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `bf16`: True - `tf32`: True - `load_best_model_at_end`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 8 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 10 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: True - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `hub_revision`: None - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `liger_kernel_config`: None - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional - `router_mapping`: {} - `learning_rate_mapping`: {} </details> ### Training Logs | Epoch | Step | Training Loss | Snowflake/snowflake-arctic-embed-m-v2.0_cosine_ndcg@10 | |:-------:|:-------:|:-------------:|:------------------------------------------------------:| | 0.1282 | 10 | 2.8279 | - | | 0.2564 | 20 | 2.7011 | - | | 0.3846 | 30 | 2.6182 | - | | 0.5128 | 40 | 2.3893 | - | | 0.6410 | 50 | 2.2499 | - | | 0.7692 | 60 | 2.1048 | - | | 0.8974 | 70 | 1.987 | - | | 1.0 | 78 | - | 0.5043 | | 1.0256 | 80 | 1.7766 | - | | 1.1538 | 90 | 1.7516 | - | | 1.2821 | 100 | 1.6332 | - | | 1.4103 | 110 | 1.5975 | - | | 1.5385 | 120 | 1.5437 | - | | 1.6667 | 130 | 1.4739 | - | | 1.7949 | 140 | 1.3988 | - | | 1.9231 | 150 | 1.3845 | - | | **2.0** | **156** | **-** | **0.4853** | | 2.0513 | 160 | 1.2183 | - | | 2.1795 | 170 | 1.2841 | - | | 2.3077 | 180 | 1.2558 | - | | 2.4359 | 190 | 1.2305 | - | | 2.5641 | 200 | 1.2234 | - | | 2.6923 | 210 | 1.1089 | - | | 2.8205 | 220 | 1.1591 | - | | 2.9487 | 230 | 1.0641 | - | | 3.0 | 234 | - | 0.4735 | | 3.0769 | 240 | 1.0085 | - | | 3.2051 | 250 | 1.0507 | - | | 3.3333 | 260 | 1.0183 | - | | 3.4615 | 270 | 1.0208 | - | | 3.5897 | 280 | 0.9587 | - | | 3.7179 | 290 | 0.9273 | - | | 3.8462 | 300 | 0.9171 | - | | 3.9744 | 310 | 0.9076 | - | | 4.0 | 312 | - | 0.4704 | | 4.1026 | 320 | 0.8029 | - | | 4.2308 | 330 | 0.8903 | - | | 4.3590 | 340 | 0.8794 | - | | 4.4872 | 350 | 0.851 | - | | 4.6154 | 360 | 0.823 | - | | 4.7436 | 370 | 0.7819 | - | | 4.8718 | 380 | 0.7974 | - | | 5.0 | 390 | 0.7552 | 0.4693 | | 5.1282 | 400 | 0.7336 | - | | 5.2564 | 410 | 0.7652 | - | | 5.3846 | 420 | 0.7597 | - | | 5.5128 | 430 | 0.7481 | - | | 5.6410 | 440 | 0.6982 | - | | 5.7692 | 450 | 0.6817 | - | | 5.8974 | 460 | 0.7136 | - | | 6.0 | 468 | - | 0.4652 | | 6.0256 | 470 | 0.6233 | - | | 6.1538 | 480 | 0.6739 | - | | 6.2821 | 490 | 0.6646 | - | | 6.4103 | 500 | 0.6614 | - | | 6.5385 | 510 | 0.6699 | - | | 6.6667 | 520 | 0.6291 | - | | 6.7949 | 530 | 0.6344 | - | | 6.9231 | 540 | 0.6459 | - | | 7.0 | 546 | - | 0.4635 | | 7.0513 | 550 | 0.5652 | - | | 7.1795 | 560 | 0.6227 | - | | 7.3077 | 570 | 0.6308 | - | | 7.4359 | 580 | 0.6253 | - | | 7.5641 | 590 | 0.6315 | - | | 7.6923 | 600 | 0.5571 | - | | 7.8205 | 610 | 0.6234 | - | | 7.9487 | 620 | 0.5742 | - | | 8.0 | 624 | - | 0.4611 | | 8.0769 | 630 | 0.5583 | - | | 8.2051 | 640 | 0.5817 | - | | 8.3333 | 650 | 0.5913 | - | | 8.4615 | 660 | 0.6025 | - | | 8.5897 | 670 | 0.5726 | - | | 8.7179 | 680 | 0.5492 | - | | 8.8462 | 690 | 0.5907 | - | | 8.9744 | 700 | 0.5756 | - | | 9.0 | 702 | - | 0.4606 | | 9.1026 | 710 | 0.5134 | - | | 9.2308 | 720 | 0.5861 | - | | 9.3590 | 730 | 0.6 | - | | 9.4872 | 740 | 0.5839 | - | | 9.6154 | 750 | 0.5688 | - | | 9.7436 | 760 | 0.5443 | - | | 9.8718 | 770 | 0.5687 | - | | 10.0 | 780 | 0.5608 | 0.4590 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.11 - Sentence Transformers: 5.1.0 - Transformers: 4.55.2 - PyTorch: 2.8.0+cu129 - Accelerate: 1.10.0 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
ggozzy/blockassist-bc-stubby_yapping_mandrill_1755796174
ggozzy
2025-08-21T17:10:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T17:10:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/zara-270m-combined-GGUF
mradermacher
2025-08-21T17:08:47Z
0
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "sft", "trl", "en", "base_model:darkreapyre/zara-270m-combined", "base_model:quantized:darkreapyre/zara-270m-combined", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-21T17:03:24Z
--- base_model: darkreapyre/zara-270m-combined language: - en library_name: transformers model_name: gemma-3-270m-zara mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - generated_from_trainer - sft - trl --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/darkreapyre/zara-270m-combined <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#zara-270m-combined-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/zara-270m-combined-GGUF/resolve/main/zara-270m-combined.Q3_K_S.gguf) | Q3_K_S | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/zara-270m-combined-GGUF/resolve/main/zara-270m-combined.Q2_K.gguf) | Q2_K | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/zara-270m-combined-GGUF/resolve/main/zara-270m-combined.IQ4_XS.gguf) | IQ4_XS | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/zara-270m-combined-GGUF/resolve/main/zara-270m-combined.Q3_K_M.gguf) | Q3_K_M | 0.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/zara-270m-combined-GGUF/resolve/main/zara-270m-combined.Q3_K_L.gguf) | Q3_K_L | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/zara-270m-combined-GGUF/resolve/main/zara-270m-combined.Q4_K_S.gguf) | Q4_K_S | 0.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/zara-270m-combined-GGUF/resolve/main/zara-270m-combined.Q4_K_M.gguf) | Q4_K_M | 0.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/zara-270m-combined-GGUF/resolve/main/zara-270m-combined.Q5_K_S.gguf) | Q5_K_S | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/zara-270m-combined-GGUF/resolve/main/zara-270m-combined.Q5_K_M.gguf) | Q5_K_M | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/zara-270m-combined-GGUF/resolve/main/zara-270m-combined.Q6_K.gguf) | Q6_K | 0.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/zara-270m-combined-GGUF/resolve/main/zara-270m-combined.Q8_0.gguf) | Q8_0 | 0.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/zara-270m-combined-GGUF/resolve/main/zara-270m-combined.f16.gguf) | f16 | 0.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Dejiat/blockassist-bc-savage_unseen_bobcat_1755795976
Dejiat
2025-08-21T17:06:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T17:06:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hoanggnam197/blockassist-bc-flightless_unseen_parrot_1755795055
hoanggnam197
2025-08-21T17:06:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "flightless unseen parrot", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T17:06:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - flightless unseen parrot --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mk499/MyGemmaNPC
mk499
2025-08-21T17:06:11Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "sft", "trl", "conversational", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-21T16:49:17Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: MyGemmaNPC tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for MyGemmaNPC This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="mk499/MyGemmaNPC", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.3 - Pytorch: 2.6.0+cu124 - Datasets: 3.6.0 - Tokenizers: 0.21.2 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755794423
sampingkaca72
2025-08-21T17:05:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T17:05:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
orange67/gpt-oss-1
orange67
2025-08-21T17:04:58Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:unsloth/gpt-oss-120b-unsloth-bnb-4bit", "base_model:adapter:unsloth/gpt-oss-120b-unsloth-bnb-4bit", "region:us" ]
null
2025-08-21T17:04:10Z
--- base_model: unsloth/gpt-oss-120b-unsloth-bnb-4bit library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
forkkyty/blockassist-bc-tropical_barky_camel_1755795868
forkkyty
2025-08-21T17:04:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tropical barky camel", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T17:04:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tropical barky camel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755794108
kojeklollipop
2025-08-21T17:03:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T17:03:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
thanobidex/blockassist-bc-colorful_shiny_hare_1755794128
thanobidex
2025-08-21T17:03:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T17:03:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
drewskidang/federal_bert_2
drewskidang
2025-08-21T17:00:34Z
0
1
transformers
[ "transformers", "safetensors", "modernbert", "feature-extraction", "sentence-transformers", "mteb", "embedding", "transformers.js", "text-embeddings-inference", "sentence-similarity", "en", "base_model:answerdotai/ModernBERT-base", "base_model:finetune:answerdotai/ModernBERT-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-08-21T16:40:06Z
--- license: apache-2.0 language: - en base_model: - answerdotai/ModernBERT-base base_model_relation: finetune pipeline_tag: sentence-similarity library_name: transformers tags: - sentence-transformers - mteb - embedding - transformers.js - text-embeddings-inference ---
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755794016
lisaozill03
2025-08-21T16:58:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T16:58:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
LogicBombaklot/Llama-3_3-Nemotron-Super-49B-v1_5-mlx-8Bit
LogicBombaklot
2025-08-21T16:58:24Z
0
0
transformers
[ "transformers", "safetensors", "nemotron-nas", "text-generation", "nvidia", "llama-3", "pytorch", "mlx", "mlx-my-repo", "conversational", "custom_code", "en", "base_model:nvidia/Llama-3_3-Nemotron-Super-49B-v1_5", "base_model:quantized:nvidia/Llama-3_3-Nemotron-Super-49B-v1_5", "license:other", "autotrain_compatible", "8-bit", "region:us" ]
text-generation
2025-08-21T16:55:01Z
--- library_name: transformers license: other license_name: nvidia-open-model-license license_link: https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/ pipeline_tag: text-generation language: - en tags: - nvidia - llama-3 - pytorch - mlx - mlx-my-repo base_model: nvidia/Llama-3_3-Nemotron-Super-49B-v1_5 --- # LogicBombaklot/Llama-3_3-Nemotron-Super-49B-v1_5-mlx-8Bit The Model [LogicBombaklot/Llama-3_3-Nemotron-Super-49B-v1_5-mlx-8Bit](https://huggingface.co/LogicBombaklot/Llama-3_3-Nemotron-Super-49B-v1_5-mlx-8Bit) was converted to MLX format from [nvidia/Llama-3_3-Nemotron-Super-49B-v1_5](https://huggingface.co/nvidia/Llama-3_3-Nemotron-Super-49B-v1_5) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("LogicBombaklot/Llama-3_3-Nemotron-Super-49B-v1_5-mlx-8Bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755793843
ihsanridzi
2025-08-21T16:58:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T16:58:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dejiat/blockassist-bc-savage_unseen_bobcat_1755795382
Dejiat
2025-08-21T16:57:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T16:56:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755793714
hakimjustbao
2025-08-21T16:56:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T16:56:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AITECHINDIA/llama3.1-8b-football-instruct-lora
AITECHINDIA
2025-08-21T16:52:52Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-21T15:48:37Z
--- base_model: unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** AITECHINDIA - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
ggozzy/blockassist-bc-stubby_yapping_mandrill_1755795097
ggozzy
2025-08-21T16:52:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T16:52:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
indoempatnol/blockassist-bc-fishy_wary_swan_1755793492
indoempatnol
2025-08-21T16:52:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T16:52:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lqpl/blockassist-bc-hairy_insectivorous_antelope_1755794849
lqpl
2025-08-21T16:51:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hairy insectivorous antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T16:48:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hairy insectivorous antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1755794828
ggozzy
2025-08-21T16:48:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T16:48:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
BjarneNPO/finetune_21_08_2025_18_35_25
BjarneNPO
2025-08-21T16:44:28Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "gte", "sentence-similarity", "feature-extraction", "dense", "generated_from_trainer", "dataset_size:19964", "loss:MultipleNegativesRankingLoss", "custom_code", "arxiv:1908.10084", "arxiv:1705.00652", "base_model:Snowflake/snowflake-arctic-embed-m-v2.0", "base_model:finetune:Snowflake/snowflake-arctic-embed-m-v2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-08-21T16:40:56Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - dense - generated_from_trainer - dataset_size:19964 - loss:MultipleNegativesRankingLoss base_model: Snowflake/snowflake-arctic-embed-m-v2.0 widget: - source_sentence: 'Kollegin hat Probleme mit dem Login zu ' sentences: - Alle genannten Kinder gab es in kitaplus. Bei einem musste nur eine neue BI angelegt werden, bei den anderen muss der Vertrag in einer anderen Kita rΓΌckgΓ€ngig gemacht werden, damit es in kitaplus in dieser Einrichtung aus der Liste der Absagen genommen werden kann. - Der Bereich ist aktuell noch nicht sichtbar. - muss mit dem Rentamt geklΓ€rt werden - source_sentence: Benutzer mΓΆchte einen Kollegen nur fΓΌr die Dokumentenbibliothek anlegen. sentences: - RΓΌcksprache mit Entwickler. - Sie muss den Regler auf Anzahl stellen - Zusammen die Rolle gewΓ€hlt und dort dann in den individuellen Rechten alles auf lesend bzw. ausblenden gestellt, außer die Bibliothek. - source_sentence: Ist es richtig so, dass Mitarbeiter, wenn sie nach einer gewissen Zeit wieder in die Einrichtung kommen, erneut angelegt werden mΓΌssen? sentences: - Userin an den TrΓ€ger verwiesen, dieser kann bei ihr ein neues Passwort setzen. - Ja, das ist korrekt so. - Userin muss erst rechts ΓΌber das 3-Punkte-menΓΌ die "Anmeldedaten zusammenfΓΌhren". Danach muss man in den angelegten BI die Gruppenform des Anmeldeportals angeben. - source_sentence: Userin kann die Γ–ffnungszeiten der Einrichtung nicht bearbeiten. sentences: - informiert, dass es keinen Testzugang gibt, aber HandbΓΌcher und Hilfen in zur VerfΓΌgung stehen, wenn die Schnittstelle eingerichtet wurde. - Bereits bekannt, die Kollegen sind schon dabei den Fehler zu beheben. - Userin darf dies mit der Rolle nicht. - source_sentence: fragt wie der Stand zu dem aktuellen Problem ist sentences: - Userin muss sich an die Bistums IT wenden. - In KlΓ€rung mit der Kollegin - Das Problem liegt leider an deren Betreiber. Die sind aber informiert und arbeiten bereits daran - findet diese in der Übersicht der Gruppen. pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 model-index: - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m-v2.0 results: - task: type: information-retrieval name: Information Retrieval dataset: name: Snowflake/snowflake arctic embed m v2.0 type: Snowflake/snowflake-arctic-embed-m-v2.0 metrics: - type: cosine_accuracy@1 value: 0.19708029197080293 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7226277372262774 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8029197080291971 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8759124087591241 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.19708029197080293 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.44525547445255476 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.46277372262773725 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.43576642335766425 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.008762531776700945 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.09805489105617915 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.1603290464604333 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.23250747987759582 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.4532269034566889 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.47734040088054697 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.2936078777768552 name: Cosine Map@100 --- # SentenceTransformer based on Snowflake/snowflake-arctic-embed-m-v2.0 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m-v2.0](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v2.0) on the train dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Snowflake/snowflake-arctic-embed-m-v2.0](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v2.0) <!-- at revision 95c2741480856aa9666782eb4afe11959938017f --> - **Maximum Sequence Length:** 8192 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - train <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'GteModel'}) (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the πŸ€— Hub model = SentenceTransformer("BjarneNPO/finetune_21_08_2025_18_35_25") # Run inference queries = [ "fragt wie der Stand zu dem aktuellen Problem ist", ] documents = [ 'In KlΓ€rung mit der Kollegin - Das Problem liegt leider an deren Betreiber. Die sind aber informiert und arbeiten bereits daran', 'findet diese in der Übersicht der Gruppen.', 'Userin muss sich an die Bistums IT wenden.', ] query_embeddings = model.encode_query(queries) document_embeddings = model.encode_document(documents) print(query_embeddings.shape, document_embeddings.shape) # [1, 768] [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(query_embeddings, document_embeddings) print(similarities) # tensor([[0.2744, 0.0387, 0.0701]]) ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Dataset: `Snowflake/snowflake-arctic-embed-m-v2.0` * Evaluated with <code>scripts.InformationRetrievalEvaluatorCustom.InformationRetrievalEvaluatorCustom</code> with these parameters: ```json { "query_prompt_name": "query", "corpus_prompt_name": "query" } ``` | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1971 | | cosine_accuracy@3 | 0.7226 | | cosine_accuracy@5 | 0.8029 | | cosine_accuracy@10 | 0.8759 | | cosine_precision@1 | 0.1971 | | cosine_precision@3 | 0.4453 | | cosine_precision@5 | 0.4628 | | cosine_precision@10 | 0.4358 | | cosine_recall@1 | 0.0088 | | cosine_recall@3 | 0.0981 | | cosine_recall@5 | 0.1603 | | cosine_recall@10 | 0.2325 | | **cosine_ndcg@10** | **0.4532** | | cosine_mrr@10 | 0.4773 | | cosine_map@100 | 0.2936 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### train * Dataset: train * Size: 19,964 training samples * Columns: <code>query</code> and <code>answer</code> * Approximate statistics based on the first 1000 samples: | | query | answer | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 4 tokens</li><li>mean: 27.77 tokens</li><li>max: 615 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 22.87 tokens</li><li>max: 151 tokens</li></ul> | * Samples: | query | answer | |:------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------| | <code>Wie kann man die JahresurlaubsΓΌbersicht exportieren?</code> | <code>ΓΌber das 3 Punkte MenΓΌ rechts oben. Mitarbeiter auswΓ€hlen und exportieren</code> | | <code>1. VertragsabschlΓΌsse werden nicht ΓΌbertragen <br>2. Kinder kommen nicht von nach <br>3. Absage kann bei Portalstatus nicht erstellt werden.</code> | <code>Ticket <br>Userin gebeten sich an den Support zu wenden, da der Fehler liegt.</code> | | <code>Wird im Anmeldeportal nicht gefunden.</code> | <code>Die Schnittstelle war noch nicht aktiviert und Profil ebenfalls nicht.</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `gradient_accumulation_steps`: 4 - `learning_rate`: 2e-05 - `num_train_epochs`: 10 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `bf16`: True - `tf32`: True - `load_best_model_at_end`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 4 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 10 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: True - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `hub_revision`: None - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `liger_kernel_config`: None - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional - `router_mapping`: {} - `learning_rate_mapping`: {} </details> ### Training Logs | Epoch | Step | Training Loss | Snowflake/snowflake-arctic-embed-m-v2.0_cosine_ndcg@10 | |:-------:|:-------:|:-------------:|:------------------------------------------------------:| | 0.1282 | 10 | 3.4817 | - | | 0.2564 | 20 | 3.3293 | - | | 0.3846 | 30 | 3.2454 | - | | 0.5128 | 40 | 2.9853 | - | | 0.6410 | 50 | 2.8363 | - | | 0.7692 | 60 | 2.6833 | - | | 0.8974 | 70 | 2.5117 | - | | 1.0 | 78 | - | 0.5070 | | 1.0256 | 80 | 2.297 | - | | 1.1538 | 90 | 2.2586 | - | | 1.2821 | 100 | 2.1379 | - | | 1.4103 | 110 | 2.1199 | - | | 1.5385 | 120 | 2.0054 | - | | 1.6667 | 130 | 1.9546 | - | | 1.7949 | 140 | 1.8525 | - | | 1.9231 | 150 | 1.8471 | - | | 2.0 | 156 | - | 0.4817 | | 2.0513 | 160 | 1.6686 | - | | 2.1795 | 170 | 1.7224 | - | | 2.3077 | 180 | 1.7122 | - | | 2.4359 | 190 | 1.6487 | - | | 2.5641 | 200 | 1.631 | - | | 2.6923 | 210 | 1.5296 | - | | 2.8205 | 220 | 1.5704 | - | | 2.9487 | 230 | 1.4634 | - | | **3.0** | **234** | **-** | **0.4692** | | 3.0769 | 240 | 1.3748 | - | | 3.2051 | 250 | 1.4602 | - | | 3.3333 | 260 | 1.4275 | - | | 3.4615 | 270 | 1.4183 | - | | 3.5897 | 280 | 1.3431 | - | | 3.7179 | 290 | 1.3013 | - | | 3.8462 | 300 | 1.3206 | - | | 3.9744 | 310 | 1.2743 | - | | 4.0 | 312 | - | 0.4699 | | 4.1026 | 320 | 1.1575 | - | | 4.2308 | 330 | 1.2629 | - | | 4.3590 | 340 | 1.2729 | - | | 4.4872 | 350 | 1.1957 | - | | 4.6154 | 360 | 1.1674 | - | | 4.7436 | 370 | 1.1349 | - | | 4.8718 | 380 | 1.166 | - | | 5.0 | 390 | 1.0891 | 0.4707 | | 5.1282 | 400 | 1.0469 | - | | 5.2564 | 410 | 1.124 | - | | 5.3846 | 420 | 1.1325 | - | | 5.5128 | 430 | 1.0691 | - | | 5.6410 | 440 | 1.0255 | - | | 5.7692 | 450 | 1.0164 | - | | 5.8974 | 460 | 1.0451 | - | | 6.0 | 468 | - | 0.4578 | | 6.0256 | 470 | 0.9404 | - | | 6.1538 | 480 | 1.0043 | - | | 6.2821 | 490 | 0.9964 | - | | 6.4103 | 500 | 1.013 | - | | 6.5385 | 510 | 0.9772 | - | | 6.6667 | 520 | 0.9544 | - | | 6.7949 | 530 | 0.9659 | - | | 6.9231 | 540 | 0.9629 | - | | 7.0 | 546 | - | 0.4576 | | 7.0513 | 550 | 0.8522 | - | | 7.1795 | 560 | 0.9288 | - | | 7.3077 | 570 | 0.9705 | - | | 7.4359 | 580 | 0.9301 | - | | 7.5641 | 590 | 0.9388 | - | | 7.6923 | 600 | 0.8569 | - | | 7.8205 | 610 | 0.9414 | - | | 7.9487 | 620 | 0.8796 | - | | 8.0 | 624 | - | 0.4542 | | 8.0769 | 630 | 0.8504 | - | | 8.2051 | 640 | 0.9054 | - | | 8.3333 | 650 | 0.9035 | - | | 8.4615 | 660 | 0.9167 | - | | 8.5897 | 670 | 0.8546 | - | | 8.7179 | 680 | 0.8508 | - | | 8.8462 | 690 | 0.8945 | - | | 8.9744 | 700 | 0.8676 | - | | 9.0 | 702 | - | 0.4526 | | 9.1026 | 710 | 0.7934 | - | | 9.2308 | 720 | 0.889 | - | | 9.3590 | 730 | 0.9205 | - | | 9.4872 | 740 | 0.8947 | - | | 9.6154 | 750 | 0.8679 | - | | 9.7436 | 760 | 0.8545 | - | | 9.8718 | 770 | 0.8878 | - | | 10.0 | 780 | 0.8483 | 0.4532 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.11 - Sentence Transformers: 5.1.0 - Transformers: 4.55.2 - PyTorch: 2.8.0+cu129 - Accelerate: 1.10.0 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
Dejiat/blockassist-bc-savage_unseen_bobcat_1755794618
Dejiat
2025-08-21T16:44:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T16:44:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hartular/roLlama3-Instruct-Grammar-01FF
hartular
2025-08-21T16:43:51Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "unsloth", "trl", "base_model:OpenLLM-Ro/RoLlama3.1-8b-Instruct", "base_model:finetune:OpenLLM-Ro/RoLlama3.1-8b-Instruct", "endpoints_compatible", "region:us" ]
null
2025-08-21T16:43:32Z
--- base_model: OpenLLM-Ro/RoLlama3.1-8b-Instruct library_name: transformers model_name: roLlama3-Instruct-Grammar-01FF tags: - generated_from_trainer - sft - unsloth - trl licence: license --- # Model Card for roLlama3-Instruct-Grammar-01FF This model is a fine-tuned version of [OpenLLM-Ro/RoLlama3.1-8b-Instruct](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="None", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.7.1 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
lqpl/blockassist-bc-hairy_insectivorous_antelope_1755794419
lqpl
2025-08-21T16:43:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hairy insectivorous antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T16:41:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hairy insectivorous antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755793049
quantumxnode
2025-08-21T16:43:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T16:43:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Links-videos-Uppal-Farm-Girl-Viral-Clip/Orginal.full.Videos.uppal.farm.girl.viral.video.Official.Tutorial
Links-videos-Uppal-Farm-Girl-Viral-Clip
2025-08-21T16:42:58Z
0
0
null
[ "region:us" ]
null
2025-08-21T16:42:41Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
Avinash-panda/bert-sentiment-imdb
Avinash-panda
2025-08-21T16:41:26Z
0
0
null
[ "safetensors", "bert", "region:us" ]
null
2025-08-21T16:11:19Z
# BERT for Sentiment Classification (IMDB Dataset) This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the IMDB movie reviews dataset for **binary sentiment classification** (positive / negative). ## Model Details - **Base model:** `bert-base-uncased` - **Fine-tuning task:** Sentiment Analysis - **Dataset:** IMDB (binary labels: positive / negative) - **Language(s):** English - **Framework:** PyTorch + Hugging Face Transformers ## Training - **Batch size:** 16 - **Epochs:** 2 - **Optimizer:** AdamW - **Learning rate:** 5e-5 - **Max sequence length:** 256 - **Training time:** ~X minutes on Google Colab GPU ## Evaluation - **Test Accuracy:** 83.6% ## Usage ```python from transformers import pipeline classifier = pipeline("sentiment-analysis", model="Avinash-panda/bert-sentiment-imdb") print(classifier("The movie was absolutely fantastic!")) # [{'label': 'POSITIVE', 'score': 0.98}]
Columbidae/Ministral-8B-Instruct-2410
Columbidae
2025-08-21T16:41:24Z
0
0
vllm
[ "vllm", "safetensors", "mistral", "mistral-common", "en", "fr", "de", "es", "it", "pt", "zh", "ja", "ru", "ko", "license:other", "region:us" ]
null
2025-08-21T16:40:34Z
--- library_name: vllm language: - en - fr - de - es - it - pt - zh - ja - ru - ko license: other license_name: mrl inference: false license_link: https://mistral.ai/licenses/MRL-0.1.md extra_gated_prompt: >- # Mistral AI Research License If You want to use a Mistral Model, a Derivative or an Output for any purpose that is not expressly authorized under this Agreement, You must request a license from Mistral AI, which Mistral AI may grant to You in Mistral AI's sole discretion. To discuss such a license, please contact Mistral AI via the website contact form: https://mistral.ai/contact/ ## 1. Scope and acceptance **1.1. Scope of the Agreement.** This Agreement applies to any use, modification, or Distribution of any Mistral Model by You, regardless of the source You obtained a copy of such Mistral Model. **1.2. Acceptance.** By accessing, using, modifying, Distributing a Mistral Model, or by creating, using or distributing a Derivative of the Mistral Model, You agree to be bound by this Agreement. **1.3. Acceptance on behalf of a third-party.** If You accept this Agreement on behalf of Your employer or another person or entity, You warrant and represent that You have the authority to act and accept this Agreement on their behalf. In such a case, the word "You" in this Agreement will refer to Your employer or such other person or entity. ## 2. License **2.1. Grant of rights**. Subject to Section 3 below, Mistral AI hereby grants You a non-exclusive, royalty-free, worldwide, non-sublicensable, non-transferable, limited license to use, copy, modify, and Distribute under the conditions provided in Section 2.2 below, the Mistral Model and any Derivatives made by or for Mistral AI and to create Derivatives of the Mistral Model. **2.2. Distribution of Mistral Model and Derivatives made by or for Mistral AI.** Subject to Section 3 below, You may Distribute copies of the Mistral Model and/or Derivatives made by or for Mistral AI, under the following conditions: You must make available a copy of this Agreement to third-party recipients of the Mistral Models and/or Derivatives made by or for Mistral AI you Distribute, it being specified that any rights to use the Mistral Models and/or Derivatives made by or for Mistral AI shall be directly granted by Mistral AI to said third-party recipients pursuant to the Mistral AI Research License agreement executed between these parties; You must retain in all copies of the Mistral Models the following attribution notice within a "Notice" text file distributed as part of such copies: "Licensed by Mistral AI under the Mistral AI Research License". **2.3. Distribution of Derivatives made by or for You.** Subject to Section 3 below, You may Distribute any Derivatives made by or for You under additional or different terms and conditions, provided that: In any event, the use and modification of Mistral Model and/or Derivatives made by or for Mistral AI shall remain governed by the terms and conditions of this Agreement; You include in any such Derivatives made by or for You prominent notices stating that You modified the concerned Mistral Model; and Any terms and conditions You impose on any third-party recipients relating to Derivatives made by or for You shall neither limit such third-party recipients' use of the Mistral Model or any Derivatives made by or for Mistral AI in accordance with the Mistral AI Research License nor conflict with any of its terms and conditions. ## 3. Limitations **3.1. Misrepresentation.** You must not misrepresent or imply, through any means, that the Derivatives made by or for You and/or any modified version of the Mistral Model You Distribute under your name and responsibility is an official product of Mistral AI or has been endorsed, approved or validated by Mistral AI, unless You are authorized by Us to do so in writing. **3.2. Usage Limitation.** You shall only use the Mistral Models, Derivatives (whether or not created by Mistral AI) and Outputs for Research Purposes. ## 4. Intellectual Property **4.1. Trademarks.** No trademark licenses are granted under this Agreement, and in connection with the Mistral Models, You may not use any name or mark owned by or associated with Mistral AI or any of its affiliates, except (i) as required for reasonable and customary use in describing and Distributing the Mistral Models and Derivatives made by or for Mistral AI and (ii) for attribution purposes as required by this Agreement. **4.2. Outputs.** We claim no ownership rights in and to the Outputs. You are solely responsible for the Outputs You generate and their subsequent uses in accordance with this Agreement. Any Outputs shall be subject to the restrictions set out in Section 3 of this Agreement. **4.3. Derivatives.** By entering into this Agreement, You accept that any Derivatives that You may create or that may be created for You shall be subject to the restrictions set out in Section 3 of this Agreement. ## 5. Liability **5.1. Limitation of liability.** In no event, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall Mistral AI be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this Agreement or out of the use or inability to use the Mistral Models and Derivatives (including but not limited to damages for loss of data, loss of goodwill, loss of expected profit or savings, work stoppage, computer failure or malfunction, or any damage caused by malware or security breaches), even if Mistral AI has been advised of the possibility of such damages. **5.2. Indemnification.** You agree to indemnify and hold harmless Mistral AI from and against any claims, damages, or losses arising out of or related to Your use or Distribution of the Mistral Models and Derivatives. ## 6. Warranty **6.1. Disclaimer.** Unless required by applicable law or prior agreed to by Mistral AI in writing, Mistral AI provides the Mistral Models and Derivatives on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. Mistral AI does not represent nor warrant that the Mistral Models and Derivatives will be error-free, meet Your or any third party's requirements, be secure or will allow You or any third party to achieve any kind of result or generate any kind of content. You are solely responsible for determining the appropriateness of using or Distributing the Mistral Models and Derivatives and assume any risks associated with Your exercise of rights under this Agreement. ## 7. Termination **7.1. Term.** This Agreement is effective as of the date of your acceptance of this Agreement or access to the concerned Mistral Models or Derivatives and will continue until terminated in accordance with the following terms. **7.2. Termination.** Mistral AI may terminate this Agreement at any time if You are in breach of this Agreement. Upon termination of this Agreement, You must cease to use all Mistral Models and Derivatives and shall permanently delete any copy thereof. The following provisions, in their relevant parts, will survive any termination or expiration of this Agreement, each for the duration necessary to achieve its own intended purpose (e.g. the liability provision will survive until the end of the applicable limitation period):Sections 5 (Liability), 6(Warranty), 7 (Termination) and 8 (General Provisions). **7.3. Litigation.** If You initiate any legal action or proceedings against Us or any other entity (including a cross-claim or counterclaim in a lawsuit), alleging that the Model or a Derivative, or any part thereof, infringe upon intellectual property or other rights owned or licensable by You, then any licenses granted to You under this Agreement will immediately terminate as of the date such legal action or claim is filed or initiated. ## 8. General provisions **8.1. Governing laws.** This Agreement will be governed by the laws of France, without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. **8.2. Competent jurisdiction.** The courts of Paris shall have exclusive jurisdiction of any dispute arising out of this Agreement. **8.3. Severability.** If any provision of this Agreement is held to be invalid, illegal or unenforceable, the remaining provisions shall be unaffected thereby and remain valid as if such provision had not been set forth herein. ## 9. Definitions "Agreement": means this Mistral AI Research License agreement governing the access, use, and Distribution of the Mistral Models, Derivatives and Outputs. "Derivative": means any (i) modified version of the Mistral Model (including but not limited to any customized or fine-tuned version thereof), (ii) work based on the Mistral Model, or (iii) any other derivative work thereof. "Distribution", "Distributing", "Distribute" or "Distributed": means supplying, providing or making available, by any means, a copy of the Mistral Models and/or the Derivatives as the case may be, subject to Section 3 of this Agreement. "Mistral AI", "We" or "Us": means Mistral AI, a French société par actions simplifiée registered in the Paris commercial registry under the number 952 418 325, and having its registered seat at 15, rue des Halles, 75001 Paris. "Mistral Model": means the foundational large language model(s), and its elements which include algorithms, software, instructed checkpoints, parameters, source code (inference code, evaluation code and, if applicable, fine-tuning code) and any other elements associated thereto made available by Mistral AI under this Agreement, including, if any, the technical documentation, manuals and instructions for the use and operation thereof. "Research Purposes": means any use of a Mistral Model, Derivative, or Output that is solely for (a) personal, scientific or academic research, and (b) for non-profit and non-commercial purposes, and not directly or indirectly connected to any commercial activities or business operations. For illustration purposes, Research Purposes does not include (1) any usage of the Mistral Model, Derivative or Output by individuals or contractors employed in or engaged by companies in the context of (a) their daily tasks, or (b) any activity (including but not limited to any testing or proof-of-concept) that is intended to generate revenue, nor (2) any Distribution by a commercial entity of the Mistral Model, Derivative or Output whether in return for payment or free of charge, in any medium or form, including but not limited to through a hosted or managed service (e.g. SaaS, cloud instances, etc.), or behind a software layer. "Outputs": means any content generated by the operation of the Mistral Models or the Derivatives from a prompt (i.e., text instructions) provided by users. For the avoidance of doubt, Outputs do not include any components of a Mistral Models, such as any fine-tuned versions of the Mistral Models, the weights, or parameters. "You": means the individual or entity entering into this Agreement with Mistral AI. *Mistral AI processes your personal data below to provide the model and enforce its license. If you are affiliated with a commercial entity, we may also send you communications about our models. For more information on your rights and data handling, please see our <a href="https://mistral.ai/terms/">privacy policy</a>.* extra_gated_fields: First Name: text Last Name: text Country: country Affiliation: text Job title: text I understand that I can only use the model, any derivative versions and their outputs for non-commercial research purposes: checkbox I understand that if I am a commercial entity, I am not permitted to use or distribute the model internally or externally, or expose it in my own offerings without a commercial license: checkbox I understand that if I upload the model, or any derivative version, on any platform, I must include the Mistral Research License: checkbox I understand that for commercial use of the model, I can contact Mistral or use the Mistral AI API on la Plateforme or any of our cloud provider partners: checkbox By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Mistral Privacy Policy: checkbox geo: ip_location extra_gated_description: >- Mistral AI processes your personal data below to provide the model and enforce its license. If you are affiliated with a commercial entity, we may also send you communications about our models. For more information on your rights and data handling, please see our <a href="https://mistral.ai/terms/">privacy policy</a>. extra_gated_button_content: Submit tags: - mistral-common --- # Model Card for Ministral-8B-Instruct-2410 We introduce two new state-of-the-art models for local intelligence, on-device computing, and at-the-edge use cases. We call them les Ministraux: Ministral 3B and Ministral 8B. The Ministral-8B-Instruct-2410 Language Model is an instruct fine-tuned model significantly outperforming existing models of similar size, released under the Mistral Research License. If you are interested in using Ministral-3B or Ministral-8B commercially, outperforming Mistral-7B, [reach out to us](https://mistral.ai/contact/). For more details about les Ministraux please refer to our release [blog post](https://mistral.ai/news/ministraux). ## Ministral 8B Key features - Released under the **Mistral Research License**, reach out to us for a commercial license - Trained with a **128k context window** with **interleaved sliding-window attention** - Trained on a large proportion of **multilingual and code data** - Supports **function calling** - Vocabulary size of **131k**, using the **V3-Tekken** tokenizer ### Basic Instruct Template (V3-Tekken) ``` <s>[INST]user message[/INST]assistant response</s>[INST]new user message[/INST] ``` *For more information about the tokenizer please refer to [mistral-common](https://github.com/mistralai/mistral-common)* ## Ministral 8B Architecture | Feature | Value | |:---------------------:|:--------------------:| | **Architecture** | Dense Transformer | | **Parameters** | 8,019,808,256 | | **Layers** | 36 | | **Heads** | 32 | | **Dim** | 4096 | | **KV Heads (GQA)** | 8 | | **Hidden Dim** | 12288 | | **Head Dim** | 128 | | **Vocab Size** | 131,072 | | **Context Length** | 128k | | **Attention Pattern** | Ragged (128k,32k,32k,32k) | ## Benchmarks #### Base Models <u>Knowledge & Commonsense</u> | Model | MMLU | AGIEval | Winogrande | Arc-c | TriviaQA | |:-------------:|:------:|:---------:|:------------:|:-------:|:----------:| | Mistral 7B Base | 62.5 | 42.5 | 74.2 | 67.9 | 62.5 | | Llama 3.1 8B Base | 64.7 | 44.4 | 74.6 | 46.0 | 60.2 | | ***Ministral 8B Base*** | ***<u>65.0</u>*** | ***<u>48.3</u>*** | ***<u>75.3</u>*** | ***<u>71.9</u>*** | ***<u>65.5</u>*** | | | | | | | | | Gemma 2 2B Base | 52.4 | 33.8 | 68.7 | 42.6 | 47.8 | | Llama 3.2 3B Base | 56.2 | 37.4 | 59.6 | 43.1 | 50.7 | | ***Ministral 3B Base*** | ***<u>60.9</u>*** | ***<u>42.1</u>*** | ***<u>72.7</u>*** | ***<u>64.2</u>*** | ***<u>56.7</u>*** | <u>Code & Math</u> | Model | HumanEval pass@1 |GSM8K maj@8 | |:-------------:|:-------------------:|:---------------:| | Mistral 7B Base | 26.8 | 32.0 | | Llama 3.1 8B Base | ***<u>37.8</u>*** | 42.2 | | ***Ministral 8B Base*** | 34.8 | ***<u>64.5</u>*** | | | | | | Gemma 2 2B | 20.1 | 35.5 | | Llama 3.2 3B | 14.6 | 33.5 | | ***Ministral 3B*** | ***<u>34.2</u>*** | ***<u>50.9</u>*** | <u>Multilingual</u> | Model | French MMLU | German MMLU | Spanish MMLU | |:-------------:|:-------------:|:-------------:|:-------------:| | Mistral 7B Base | 50.6 | 49.6 | 51.4 | | Llama 3.1 8B Base | 50.8 | 52.8 | 54.6 | | ***Ministral 8B Base*** | ***<u>57.5</u>*** | ***<u>57.4</u>*** | ***<u>59.6</u>*** | | | | | | | Gemma 2 2B Base | 41.0 | 40.1 | 41.7 | | Llama 3.2 3B Base | 42.3 | 42.2 | 43.1 | | ***Ministral 3B Base*** | ***<u>49.1</u>*** | ***<u>48.3</u>*** | ***<u>49.5</u>*** | ### Instruct Models <u>Chat/Arena (gpt-4o judge)</u> | Model | MTBench | Arena Hard | Wild bench | |:-------------:|:---------:|:------------:|:------------:| | Mistral 7B Instruct v0.3 | 6.7 | 44.3 | 33.1 | | Llama 3.1 8B Instruct | 7.5 | 62.4 | 37.0 | | Gemma 2 9B Instruct | 7.6 | 68.7 | ***<u>43.8</u>*** | | ***Ministral 8B Instruct*** | ***<u>8.3</u>*** | ***<u>70.9</u>*** | 41.3 | | | | | | | Gemma 2 2B Instruct | 7.5 | 51.7 | 32.5 | | Llama 3.2 3B Instruct | 7.2 | 46.0 | 27.2 | | ***Ministral 3B Instruct*** | ***<u>8.1</u>*** | ***<u>64.3</u>*** | ***<u>36.3</u>*** | <u>Code & Math</u> | Model | MBPP pass@1 | HumanEval pass@1 | Math maj@1 | |:-------------:|:-------------:|:------------------:|:-------------:| | Mistral 7B Instruct v0.3 | 50.2 | 38.4 | 13.2 | | Gemma 2 9B Instruct | 68.5 | 67.7 | 47.4 | Llama 3.1 8B Instruct | 69.7 | 67.1 | 49.3 | | ***Ministral 8B Instruct*** | ***<u>70.0</u>*** | ***<u>76.8</u>*** | ***<u>54.5</u>*** | | | | | | | Gemma 2 2B Instruct | 54.5 | 42.7 | 22.8 | | Llama 3.2 3B Instruct | 64.6 | 61.0 | 38.4 | | ***Ministral 3B* Instruct** | ***<u>67.7</u>*** | ***<u>77.4</u>*** | ***<u>51.7</u>*** | <u>Function calling</u> | Model | Internal bench | |:-------------:|:-----------------:| | Mistral 7B Instruct v0.3 | 6.9 | | Llama 3.1 8B Instruct | N/A | | Gemma 2 9B Instruct | N/A | | ***Ministral 8B Instruct*** | ***<u>31.6</u>*** | | | | | Gemma 2 2B Instruct | N/A | | Llama 3.2 3B Instruct | N/A | | ***Ministral 3B Instruct*** | ***<u>28.4</u>*** | ## Usage Examples ### vLLM (recommended) We recommend using this model with the [vLLM library](https://github.com/vllm-project/vllm) to implement production-ready inference pipelines. > [!IMPORTANT] > Currently vLLM is capped at 32k context size because interleaved attention kernels for paged attention are not yet implemented in vLLM. > Attention kernels for paged attention are being worked on and as soon as it is fully supported in vLLM, this model card will be updated. > To take advantage of the full 128k context size we recommend [Mistral Inference](https://huggingface.co/mistralai/Ministral-8B-Instruct-2410#mistral-inference) **_Installation_** Make sure you install `vLLM >= v0.6.4`: ``` pip install --upgrade vllm ``` Also make sure you have `mistral_common >= 1.4.4` installed: ``` pip install --upgrade mistral_common ``` You can also make use of a ready-to-go [docker image](https://github.com/vllm-project/vllm/blob/main/Dockerfile). **_Offline_** ```py from vllm import LLM from vllm.sampling_params import SamplingParams model_name = "mistralai/Ministral-8B-Instruct-2410" sampling_params = SamplingParams(max_tokens=8192) # note that running Ministral 8B on a single GPU requires 24 GB of GPU RAM # If you want to divide the GPU requirement over multiple devices, please add *e.g.* `tensor_parallel=2` llm = LLM(model=model_name, tokenizer_mode="mistral", config_format="mistral", load_format="mistral") prompt = "Do we need to think for 10 seconds to find the answer of 1 + 1?" messages = [ { "role": "user", "content": prompt }, ] outputs = llm.chat(messages, sampling_params=sampling_params) print(outputs[0].outputs[0].text) # You don't need to think for 10 seconds to find the answer to 1 + 1. The answer is 2, # and you can easily add these two numbers in your mind very quickly without any delay. ``` **_Server_** You can also use Ministral-8B in a server/client setting. 1. Spin up a server: ``` vllm serve mistralai/Ministral-8B-Instruct-2410 --tokenizer_mode mistral --config_format mistral --load_format mistral ``` **Note:** Running Ministral-8B on a single GPU requires 24 GB of GPU RAM. If you want to divide the GPU requirement over multiple devices, please add *e.g.* `--tensor_parallel=2` 2. And ping the client: ``` curl --location 'http://<your-node-url>:8000/v1/chat/completions' \ --header 'Content-Type: application/json' \ --header 'Authorization: Bearer token' \ --data '{ "model": "mistralai/Ministral-8B-Instruct-2410", "messages": [ { "role": "user", "content": "Do we need to think for 10 seconds to find the answer of 1 + 1?" } ] }' ``` ### Mistral-inference We recommend using [mistral-inference](https://github.com/mistralai/mistral-inference) to quickly try out / "vibe-check" the model. **_Install_** Make sure to have `mistral_inference >= 1.5.0` installed. ``` pip install mistral_inference --upgrade ``` **_Download_** ```py from huggingface_hub import snapshot_download from pathlib import Path mistral_models_path = Path.home().joinpath('mistral_models', '8B-Instruct') mistral_models_path.mkdir(parents=True, exist_ok=True) snapshot_download(repo_id="mistralai/Ministral-8B-Instruct-2410", allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], local_dir=mistral_models_path) ``` ### Chat After installing `mistral_inference`, a `mistral-chat` CLI command should be available in your environment. You can chat with the model using ``` mistral-chat $HOME/mistral_models/8B-Instruct --instruct --max_tokens 256 ``` ### Passkey detection > [!IMPORTANT] > In this example the passkey message has over >100k tokens and mistral-inference > does not have a chunked pre-fill mechanism. Therefore you will need a lot of > GPU memory in order to run the below example (80 GB). For a more memory-efficient > solution we recommend using vLLM. ```py from mistral_inference.transformer import Transformer from pathlib import Path import json from mistral_inference.generate import generate from huggingface_hub import hf_hub_download from mistral_common.tokens.tokenizers.mistral import MistralTokenizer from mistral_common.protocol.instruct.messages import UserMessage from mistral_common.protocol.instruct.request import ChatCompletionRequest def load_passkey_request() -> ChatCompletionRequest: passkey_file = hf_hub_download(repo_id="mistralai/Ministral-8B-Instruct-2410", filename="passkey_example.json") with open(passkey_file, "r") as f: data = json.load(f) message_content = data["messages"][0]["content"] return ChatCompletionRequest(messages=[UserMessage(content=message_content)]) tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json") model = Transformer.from_folder(mistral_models_path, softmax_fp32=False) completion_request = load_passkey_request() tokens = tokenizer.encode_chat_completion(completion_request).tokens out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id) result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0]) print(result) # The pass key is 13005. ``` ### Instruct following ```py from mistral_inference.transformer import Transformer from mistral_inference.generate import generate from mistral_common.tokens.tokenizers.mistral import MistralTokenizer from mistral_common.protocol.instruct.messages import UserMessage from mistral_common.protocol.instruct.request import ChatCompletionRequest tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json") model = Transformer.from_folder(mistral_models_path) completion_request = ChatCompletionRequest(messages=[UserMessage(content="How often does the letter r occur in Mistral?")]) tokens = tokenizer.encode_chat_completion(completion_request).tokens out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id) result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0]) print(result) ``` ### Function calling ```py from mistral_common.protocol.instruct.tool_calls import Function, Tool from mistral_inference.transformer import Transformer from mistral_inference.generate import generate from mistral_common.tokens.tokenizers.mistral import MistralTokenizer from mistral_common.protocol.instruct.messages import UserMessage from mistral_common.protocol.instruct.request import ChatCompletionRequest from mistral_common.tokens.tokenizers.tekken import SpecialTokenPolicy tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json") tekken = tokenizer.instruct_tokenizer.tokenizer tekken.special_token_policy = SpecialTokenPolicy.IGNORE model = Transformer.from_folder(mistral_models_path) completion_request = ChatCompletionRequest( tools=[ Tool( function=Function( name="get_current_weather", description="Get the current weather", parameters={ "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "format": { "type": "string", "enum": ["celsius", "fahrenheit"], "description": "The temperature unit to use. Infer this from the users location.", }, }, "required": ["location", "format"], }, ) ) ], messages=[ UserMessage(content="What's the weather like today in Paris?"), ], ) tokens = tokenizer.encode_chat_completion(completion_request).tokens out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id) result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0]) print(result) ``` ## The Mistral AI Team Albert Jiang, Alexandre Abou Chahine, Alexandre Sablayrolles, Alexis Tacnet, Alodie Boissonnet, Alok Kothari, Amélie Héliou, Andy Lo, Anna Peronnin, Antoine Meunier, Antoine Roux, Antonin Faure, Aritra Paul, Arthur Darcet, Arthur Mensch, Audrey Herblin-Stoop, Augustin Garreau, Austin Birky, Avinash Sooriyarachchi, Baptiste Rozière, Barry Conklin, Bastien Bouillon, Blanche Savary de Beauregard, Carole Rambaud, Caroline Feldman, Charles de Freminville, Charline Mauro, Chih-Kuan Yeh, Chris Bamford, Clement Auguy, Corentin Heintz, Cyriaque Dubois, Devendra Singh Chaplot, Diego Las Casas, Diogo Costa, Eléonore Arcelin, Emma Bou Hanna, Etienne Metzger, Fanny Olivier Autran, Francois Lesage, Garance Gourdel, Gaspard Blanchet, Gaspard Donada Vidal, Gianna Maria Lengyel, Guillaume Bour, Guillaume Lample, Gustave Denis, Harizo Rajaona, Himanshu Jaju, Ian Mack, Ian Mathew, Jean-Malo Delignon, Jeremy Facchetti, Jessica Chudnovsky, Joachim Studnia, Justus Murke, Kartik Khandelwal, Kenneth Chiu, Kevin Riera, Leonard Blier, Leonard Suslian, Leonardo Deschaseaux, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Sophia Yang, Margaret Jennings, Marie Pellat, Marie Torelli, Marjorie Janiewicz, Mathis Felardos, Maxime Darrin, Michael Hoff, Mickaël Seznec, Misha Jessel Kenyon, Nayef Derwiche, Nicolas Carmont Zaragoza, Nicolas Faurie, Nicolas Moreau, Nicolas Schuhl, Nikhil Raghuraman, Niklas Muhs, Olivier de Garrigues, Patricia Rozé, Patricia Wang, Patrick von Platen, Paul Jacob, Pauline Buche, Pavankumar Reddy Muddireddy, Perry Savas, Pierre Stock, Pravesh Agrawal, Renaud de Peretti, Romain Sauvestre, Romain Sinthe, Roman Soletskyi, Sagar Vaze, Sandeep Subramanian, Saurabh Garg, Soham Ghosh, Sylvain Regnier, Szymon Antoniak, Teven Le Scao, Theophile Gervet, Thibault Schueller, Thibaut Lavril, Thomas Wang, Timothée Lacroix, Valeriia Nemychnikova, Wendy Shang, William El Sayed, William Marshall
Trelis/Qwen3-4B_ds-arc-agi-1-perfect-50_test-c4
Trelis
2025-08-21T16:41:21Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:unsloth/Qwen3-4B", "base_model:finetune:unsloth/Qwen3-4B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-21T16:39:54Z
--- base_model: unsloth/Qwen3-4B tags: - text-generation-inference - transformers - unsloth - qwen3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Trelis - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen3-4B This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mang3dd/blockassist-bc-tangled_slithering_alligator_1755792747
mang3dd
2025-08-21T16:38:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T16:38:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
OpenVINO/Phi-3.5-vision-instruct-fp16-ov
OpenVINO
2025-08-21T16:38:38Z
128
0
null
[ "openvino", "phi3_v", "nlp", "code", "vision", "image-text-to-text", "conversational", "custom_code", "multilingual", "base_model:microsoft/Phi-3.5-vision-instruct", "base_model:finetune:microsoft/Phi-3.5-vision-instruct", "license:mit", "region:us" ]
image-text-to-text
2025-01-21T06:07:13Z
--- license: mit license_link: https://huggingface.co/microsoft/Phi-3.5-vision-instruct/resolve/main/LICENSE language: - multilingual pipeline_tag: image-text-to-text tags: - nlp - code - vision base_model: - microsoft/Phi-3.5-vision-instruct --- # Phi-3.5-vision-instruct-ov-fp16 * Model creator: [Microsoft](https://huggingface.co/microsoft) * Original model: [Phi-3.5-vision-instruct](https://huggingface.co/microsoft/Phi-3.5-vision-instruct) ## Description This is [microsoft/Phi-3.5-vision-instruct](https://huggingface.co/microsoft/Phi-3.5-vision-instruct) model converted to the [OpenVINOβ„’ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format. ## Compatibility The provided OpenVINOβ„’ IR model is compatible with: * OpenVINO version 2025.0.0 and higher * Optimum Intel 1.21.0 and higher ## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) 1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend: ``` pip install --pre -U --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/pre-release openvino_tokenizers openvino pip install git+https://github.com/huggingface/optimum-intel.git ``` 2. Run model inference ``` from PIL import Image import requests from optimum.intel.openvino import OVModelForVisualCausalLM from transformers import AutoProcessor, TextStreamer model_id = "OpenVINO/Phi-3.5-vision-instruct-fp16-ov" processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) ov_model = OVModelForVisualCausalLM.from_pretrained(model_id, trust_remote_code=True) prompt = "<|image_1|>\nWhat is unusual on this picture?" url = "https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/d5fbbd1a-d484-415c-88cb-9986625b7b11" image = Image.open(requests.get(url, stream=True).raw) inputs = ov_model.preprocess_inputs(text=prompt, image=image, processor=processor) generation_args = { "max_new_tokens": 50, "temperature": 0.0, "do_sample": False, "streamer": TextStreamer(processor.tokenizer, skip_prompt=True, skip_special_tokens=True) } generate_ids = ov_model.generate(**inputs, eos_token_id=processor.tokenizer.eos_token_id, **generation_args ) generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:] response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] ``` ## Limitations Check the original [model card](https://huggingface.co/microsoft/Phi-3.5-vision-instruct) for limitations. ## Legal information The original model is distributed under [MIT](https://huggingface.co/microsoft/Phi-3.5-vision-instruct/blob/main/LICENSE) license. More details can be found in [original model card](https://huggingface.co/microsoft/Phi-3.5-vision-instruct).
Dejiat/blockassist-bc-savage_unseen_bobcat_1755794260
Dejiat
2025-08-21T16:38:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T16:38:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/SFT-GRPO-Qwen-1.7B-2CoT-GGUF
mradermacher
2025-08-21T16:37:09Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "qwen3", "trl", "en", "base_model:Samreth/SFT-GRPO-Qwen-1.7B-2CoT", "base_model:quantized:Samreth/SFT-GRPO-Qwen-1.7B-2CoT", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-21T16:23:30Z
--- base_model: Samreth/SFT-GRPO-Qwen-1.7B-2CoT language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - qwen3 - trl --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/Samreth/SFT-GRPO-Qwen-1.7B-2CoT <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#SFT-GRPO-Qwen-1.7B-2CoT-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/SFT-GRPO-Qwen-1.7B-2CoT-GGUF/resolve/main/SFT-GRPO-Qwen-1.7B-2CoT.Q2_K.gguf) | Q2_K | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/SFT-GRPO-Qwen-1.7B-2CoT-GGUF/resolve/main/SFT-GRPO-Qwen-1.7B-2CoT.Q3_K_S.gguf) | Q3_K_S | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/SFT-GRPO-Qwen-1.7B-2CoT-GGUF/resolve/main/SFT-GRPO-Qwen-1.7B-2CoT.Q3_K_M.gguf) | Q3_K_M | 1.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/SFT-GRPO-Qwen-1.7B-2CoT-GGUF/resolve/main/SFT-GRPO-Qwen-1.7B-2CoT.Q3_K_L.gguf) | Q3_K_L | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/SFT-GRPO-Qwen-1.7B-2CoT-GGUF/resolve/main/SFT-GRPO-Qwen-1.7B-2CoT.IQ4_XS.gguf) | IQ4_XS | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/SFT-GRPO-Qwen-1.7B-2CoT-GGUF/resolve/main/SFT-GRPO-Qwen-1.7B-2CoT.Q4_K_S.gguf) | Q4_K_S | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/SFT-GRPO-Qwen-1.7B-2CoT-GGUF/resolve/main/SFT-GRPO-Qwen-1.7B-2CoT.Q4_K_M.gguf) | Q4_K_M | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/SFT-GRPO-Qwen-1.7B-2CoT-GGUF/resolve/main/SFT-GRPO-Qwen-1.7B-2CoT.Q5_K_S.gguf) | Q5_K_S | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/SFT-GRPO-Qwen-1.7B-2CoT-GGUF/resolve/main/SFT-GRPO-Qwen-1.7B-2CoT.Q5_K_M.gguf) | Q5_K_M | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/SFT-GRPO-Qwen-1.7B-2CoT-GGUF/resolve/main/SFT-GRPO-Qwen-1.7B-2CoT.Q6_K.gguf) | Q6_K | 1.5 | very good quality | | [GGUF](https://huggingface.co/mradermacher/SFT-GRPO-Qwen-1.7B-2CoT-GGUF/resolve/main/SFT-GRPO-Qwen-1.7B-2CoT.Q8_0.gguf) | Q8_0 | 1.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/SFT-GRPO-Qwen-1.7B-2CoT-GGUF/resolve/main/SFT-GRPO-Qwen-1.7B-2CoT.f16.gguf) | f16 | 3.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
lqpl/blockassist-bc-hairy_insectivorous_antelope_1755793943
lqpl
2025-08-21T16:36:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hairy insectivorous antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T16:33:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hairy insectivorous antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
unitova/blockassist-bc-zealous_sneaky_raven_1755792576
unitova
2025-08-21T16:35:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T16:35:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
UKPLab/Qwen2.5-3b-spare-prm-math
UKPLab
2025-08-21T16:35:29Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "PRM", "SPARE-PRM", "MATH", "Reward Model", "Process Reward Model", "Reasoning", "Mathematical Reasoning", "Verifier", "Process Supervision", "Process Verifier", "conversational", "arxiv:2506.15498", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-21T16:13:00Z
--- library_name: transformers tags: - PRM - SPARE-PRM - MATH - Reward Model - Process Reward Model - Reasoning - Mathematical Reasoning - Verifier - Process Supervision - Process Verifier --- # Model Card for SPARE-PRM Process Reward Model (Qwen2.5-3b) used in our [SPARE](https://arxiv.org/abs/2506.15498) paper. This model was trained only on the generations from the MATH dataset. ## Model Details `Input`: instruction + question + step-by-step solutions with a special step tag `ΠΊΠΈ`. `Output`: the logits. Post-process it to achieve the score of each step. ## Usage ```python from transformers import AutoTokenizer from transformers import AutoModelForCausalLM import torch incorrect_token = "-" correct_token = "+" step_tag = " ΠΊΠΈ" # space in the beginning required for correct tag tokenization tokenizer = AutoTokenizer.from_pretrained("UKPLab/Qwen2.5-3b-spare-prm-math") step_target_ids = tokenizer.convert_tokens_to_ids([incorrect_token, correct_token]) step_tag_id = tokenizer.encode(step_tag)[-1] device = "cuda:0" model = AutoModelForCausalLM.from_pretrained("UKPLab/Qwen2.5-3b-spare-prm-math").to(device).eval() # include this instruction as it was left as it is during the PRM training. instruction = "You are an expert at solving challenging math problems spanning across various categories and difficulties such as Algebra, Number Theory, Geometry, Counting and Probability, Precalculus etc. For a given math problem, your task is to generate a step-by-step reasoning-based solution providing an answer to the question. Identify the correct concepts, formulas and heuristics that needs to be applied and then derive the contents of the reasoning steps from the given contexts and accurate calculations from the previous reasoning steps." question = "Yann and Camille go to a restaurant. </S>\nIf there are 10 items on the menu, and each orders one dish, how many different combinations of meals can Yann and Camille order if they refuse to order the same dish? (It does matter who orders what---Yann ordering chicken and Camille ordering fish is different from Yann ordering fish and Camille ordering chicken.)" correct_generation = "Let's think step by step.\nYann can order 1 of the 10 dishes. ΠΊΠΈ\nWhen he picks a dish, there are 9 left for Camille to choose from. ΠΊΠΈ\nThus, there are $10\\cdot 9=\\boxed{90}$ possible combinations.\nHence, the answer is 90. ΠΊΠΈ\n" incorrect_generation = "Let's think step by step.\nWithout any restrictions, Yann and Camille could both order the same dish out of the 10 options, for a total of $10 \\cdot 9$ dishes. ΠΊΠΈ\nHowever, since Yann orders one of the 9 dishes that Camille didn't order (and vice versa), the number of possible combinations becomes $10 \\cdot 9 - 8 = \\boxed{72}$.\nHence, the answer is 72. ΠΊΠΈ\n" for generation in (correct_generation, incorrect_generation): message = [ dict(role="system", content=instruction), dict(role="user", content=question), dict(role="assistant", content=generation), ] input_ids = tokenizer.apply_chat_template(message, tokenize=True, return_tensors="pt").to(device) with torch.no_grad(): logits = model(input_ids).logits[:,:,step_target_ids] scores = logits.softmax(dim=-1)[:,:,1] # correct_token at index 1 in the step_target_ids step_scores = scores[input_ids == step_tag_id] print(step_scores) # tensor([0.8710, 0.9163, 0.9786]) - correct_generation # tensor([0.3292, 0.5288]) - incorrect_generation ``` <!-- ### Model Description --> <!-- Provide a longer summary of what this model is. --> <!-- This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. --> <!-- - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] --> <!-- ### Model Sources [optional] --> <!-- Provide the basic links for the model. --> <!-- - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] --> <!-- ## Uses --> <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> <!-- ### Direct Use --> <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> <!-- [More Information Needed] --> <!-- ### Downstream Use [optional] --> <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> <!-- [More Information Needed] --> <!-- ### Out-of-Scope Use --> <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> <!-- [More Information Needed] --> <!-- ## Bias, Risks, and Limitations --> <!-- This section is meant to convey both technical and sociotechnical limitations. --> <!-- [More Information Needed] --> <!-- ### Recommendations --> <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> <!-- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. --> <!-- ## How to Get Started with the Model --> <!-- Use the code below to get started with the model. --> <!-- [More Information Needed] --> <!-- ## Training Details --> <!-- ### Training Data --> <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> <!-- [More Information Needed] --> <!-- ### Training Procedure --> <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> <!-- #### Preprocessing [optional] --> <!-- [More Information Needed] --> <!-- #### Training Hyperparameters --> <!-- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> <!-- #### Speeds, Sizes, Times [optional] --> <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> <!-- [More Information Needed] --> <!-- ## Evaluation --> <!-- This section describes the evaluation protocols and provides the results. --> <!-- ### Testing Data, Factors & Metrics --> <!-- #### Testing Data --> <!-- This should link to a Dataset Card if possible. --> <!-- [More Information Needed] --> <!-- #### Factors --> <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> <!-- [More Information Needed] --> <!-- #### Metrics --> <!-- These are the evaluation metrics being used, ideally with a description of why. --> <!-- [More Information Needed] --> <!-- ### Results --> <!-- [More Information Needed] --> <!-- #### Summary --> <!-- ## Model Examination [optional] --> <!-- Relevant interpretability work for the model goes here --> <!-- [More Information Needed] --> <!-- ## Environmental Impact --> <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> <!-- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). --> <!-- - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] --> <!-- ## Technical Specifications [optional] --> <!-- ### Model Architecture and Objective --> <!-- [More Information Needed] --> <!-- ### Compute Infrastructure --> <!-- [More Information Needed] --> <!-- #### Hardware --> <!-- [More Information Needed] --> <!-- #### Software --> <!-- [More Information Needed] --> ## Citation <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> <!-- **BibTeX:** --> Please cite this data using: ``` @misc{rizvi2025sparesinglepassannotationreferenceguided, title={SPARE: Single-Pass Annotation with Reference-Guided Evaluation for Automatic Process Supervision and Reward Modelling}, author={Md Imbesat Hassan Rizvi and Xiaodan Zhu and Iryna Gurevych}, year={2025}, eprint={2506.15498}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2506.15498}, } ``` <!-- **APA:** --> <!-- [More Information Needed] --> <!-- ## Glossary [optional] --> <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> <!-- [More Information Needed] --> <!-- ## More Information [optional] --> <!-- [More Information Needed] --> <!-- ## Model Card Authors [optional] --> <!-- [More Information Needed] --> <!-- ## Model Card Contact --> <!-- [More Information Needed] -->
zhilyaev/gpt2
zhilyaev
2025-08-21T16:34:31Z
0
0
null
[ "pytorch", "tf", "jax", "tflite", "rust", "onnx", "safetensors", "gpt2", "exbert", "en", "license:mit", "region:us" ]
null
2025-08-21T16:32:37Z
--- language: en tags: - exbert license: mit --- # GPT-2 Test the whole generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). Disclaimer: The team releasing GPT-2 also wrote a [model card](https://github.com/openai/gpt-2/blob/master/model_card.md) for their model. Content from this model card has been written by the Hugging Face team to complete the information they provided and give specific examples of bias. ## Model description GPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. This is the **smallest** version of GPT-2, with 124M parameters. **Related Models:** [GPT-Large](https://huggingface.co/gpt2-large), [GPT-Medium](https://huggingface.co/gpt2-medium) and [GPT-XL](https://huggingface.co/gpt2-xl) ## Intended uses & limitations You can use the raw model for text generation or fine-tune it to a downstream task. See the [model hub](https://huggingface.co/models?filter=gpt2) to look for fine-tuned versions on a task that interests you. ### How to use You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='gpt2') >>> set_seed(42) >>> generator("Hello, I'm a language model,", max_length=30, num_return_sequences=5) [{'generated_text': "Hello, I'm a language model, a language for thinking, a language for expressing thoughts."}, {'generated_text': "Hello, I'm a language model, a compiler, a compiler library, I just want to know how I build this kind of stuff. I don"}, {'generated_text': "Hello, I'm a language model, and also have more than a few of your own, but I understand that they're going to need some help"}, {'generated_text': "Hello, I'm a language model, a system model. I want to know my language so that it might be more interesting, more user-friendly"}, {'generated_text': 'Hello, I\'m a language model, not a language model"\n\nThe concept of "no-tricks" comes in handy later with new'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import GPT2Tokenizer, GPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = GPT2Model.from_pretrained('gpt2') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import GPT2Tokenizer, TFGPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = TFGPT2Model.from_pretrained('gpt2') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias The training data used for this model has not been released as a dataset one can browse. We know it contains a lot of unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their [model card](https://github.com/openai/gpt-2/blob/master/model_card.md#out-of-scope-use-cases): > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases > that require the generated text to be true. > > Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do > not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a > study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, > and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar > levels of caution around use cases that are sensitive to biases around human attributes. Here's an example of how the model can have biased predictions: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='gpt2') >>> set_seed(42) >>> generator("The White man worked as a", max_length=10, num_return_sequences=5) [{'generated_text': 'The White man worked as a mannequin for'}, {'generated_text': 'The White man worked as a maniser of the'}, {'generated_text': 'The White man worked as a bus conductor by day'}, {'generated_text': 'The White man worked as a plumber at the'}, {'generated_text': 'The White man worked as a journalist. He had'}] >>> set_seed(42) >>> generator("The Black man worked as a", max_length=10, num_return_sequences=5) [{'generated_text': 'The Black man worked as a man at a restaurant'}, {'generated_text': 'The Black man worked as a car salesman in a'}, {'generated_text': 'The Black man worked as a police sergeant at the'}, {'generated_text': 'The Black man worked as a man-eating monster'}, {'generated_text': 'The Black man worked as a slave, and was'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web pages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from this dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights 40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText [here](https://github.com/openai/gpt-2/blob/master/domains.txt). ## Training procedure ### Preprocessing The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a vocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens. The larger model was trained on 256 cloud TPU v3 cores. The training duration was not disclosed, nor were the exact details of training. ## Evaluation results The model achieves the following results without any fine-tuning (zero-shot): | Dataset | LAMBADA | LAMBADA | CBT-CN | CBT-NE | WikiText2 | PTB | enwiki8 | text8 | WikiText103 | 1BW | |:--------:|:-------:|:-------:|:------:|:------:|:---------:|:------:|:-------:|:------:|:-----------:|:-----:| | (metric) | (PPL) | (ACC) | (ACC) | (ACC) | (PPL) | (PPL) | (BPB) | (BPC) | (PPL) | (PPL) | | | 35.13 | 45.99 | 87.65 | 83.4 | 29.41 | 65.85 | 1.16 | 1,17 | 37.50 | 75.20 | ### BibTeX entry and citation info ```bibtex @article{radford2019language, title={Language Models are Unsupervised Multitask Learners}, author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya}, year={2019} } ``` <a href="https://huggingface.co/exbert/?model=gpt2"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
yaelahnal/blockassist-bc-mute_clawed_crab_1755793854
yaelahnal
2025-08-21T16:32:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute clawed crab", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T16:31:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute clawed crab --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ggozzy/blockassist-bc-stubby_yapping_mandrill_1755793752
ggozzy
2025-08-21T16:30:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby yapping mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T16:30:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby yapping mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AITUNED/gpt2-finetuned-test
AITUNED
2025-08-21T16:29:03Z
0
0
transformers
[ "transformers", "onnx", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-21T16:24:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755792078
kojeklollipop
2025-08-21T16:28:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T16:28:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
thanobidex/blockassist-bc-colorful_shiny_hare_1755792130
thanobidex
2025-08-21T16:28:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T16:28:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
viraja1/banking-gguf
viraja1
2025-08-21T16:26:55Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "gemma3_text", "en", "base_model:unsloth/gemma-3-270m-it", "base_model:quantized:unsloth/gemma-3-270m-it", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-21T16:16:33Z
--- base_model: unsloth/gemma-3-270m-it tags: - text-generation-inference - transformers - unsloth - gemma3_text license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** viraja1 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-270m-it This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Dejiat/blockassist-bc-savage_unseen_bobcat_1755793551
Dejiat
2025-08-21T16:26:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T16:26:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vjkhambe/dqn-SpaceInvadersNoFrameskip-v4
vjkhambe
2025-08-21T16:25:16Z
32
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-08-18T21:15:46Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 640.00 +/- 89.39 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib SBX (SB3 + Jax): https://github.com/araffin/sbx Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga vjkhambe -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga vjkhambe -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga vjkhambe ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
Trelis/Qwen3-4B_ds-arc-agi-2-perfect-50_test-c4
Trelis
2025-08-21T16:24:45Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:unsloth/Qwen3-4B", "base_model:finetune:unsloth/Qwen3-4B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-21T16:23:16Z
--- base_model: unsloth/Qwen3-4B tags: - text-generation-inference - transformers - unsloth - qwen3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Trelis - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen3-4B This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
pietro0hz/blockassist-bc-ferocious_toothy_tortoise_1755793302
pietro0hz
2025-08-21T16:23:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "ferocious toothy tortoise", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T16:23:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - ferocious toothy tortoise --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vinukatashidu/gemma3_lora_merged
vinukatashidu
2025-08-21T16:22:38Z
0
0
null
[ "safetensors", "gemma3_text", "license:apache-2.0", "region:us" ]
null
2025-08-21T16:11:39Z
--- license: apache-2.0 ---
jahyungu/Qwen2.5-Coder-1.5B-Instruct_openbookqa
jahyungu
2025-08-21T16:22:21Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen2.5-Coder-1.5B-Instruct", "base_model:finetune:Qwen/Qwen2.5-Coder-1.5B-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-21T14:45:53Z
--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-Coder-1.5B-Instruct tags: - generated_from_trainer model-index: - name: Qwen2.5-Coder-1.5B-Instruct_openbookqa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Qwen2.5-Coder-1.5B-Instruct_openbookqa This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B-Instruct) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.55.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.0
Dejiat/blockassist-bc-savage_unseen_bobcat_1755793273
Dejiat
2025-08-21T16:21:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-21T16:21:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).