id
stringlengths
1
260
contents
stringlengths
1
234k
22273
\section{Sum of Sequence of k x k!} Tags: Factorials, Sum of Sequence of k x k! \begin{theorem} Let $n \in \Z_{>0}$ be a (strictly) positive integer. Then: {{begin-eqn}} {{eqn | l = \sum_{j \mathop = 1}^n j \times j! | r = 1 \times 1! + 2 \times 2! + 3 \times 3! + \dotsb + n \times n! | c = }} {{eqn | r = \paren {n + 1}! - 1 | c = }} {{end-eqn}} \end{theorem} \begin{proof} The proof proceeds by induction. For all $n \in \Z_{\ge 1}$, let $\map P n$ be the proposition: :$\displaystyle \sum_{j \mathop = 1}^n j \times j! = \paren {n + 1}! - 1$ \end{proof}
22274
\section{Sum of Sequences of Fifth and Seventh Powers} Tags: Fifth Powers, Seventh Powers, Sums of Sequences \begin{theorem} :$\ds \sum_{i \mathop = 1}^n i^5 + \sum_{i \mathop = 1}^n i^7 = 2 \paren {\sum_{i \mathop = 1}^n i}^4$ \end{theorem} \begin{proof} Proof by induction: For all $n \in \N_{> 0}$, let $\map P n$ be the proposition: :$\ds \sum_{i \mathop = 1}^n i^5 + \sum_{i \mathop = 1}^n i^7 = 2 \paren {\sum_{i \mathop = 1}^n i}^4$ \end{proof}
22275
\section{Sum of Series of Product of Power and Cosine} Tags: Trigonometric Series, Cosine Function \begin{theorem} Let $r \in \R$ such that $\size r < 1$. Then: {{begin-eqn}} {{eqn | l = \sum_{k \mathop = 0}^n r^k \map \cos {k x} | r = 1 + r \cos x + r^2 \cos 2 x + r^3 \cos 3 x + \cdots + r^n \cos n x | c = }} {{eqn | r = \dfrac {r^{n + 2} \cos n x - r^{n + 1} \map \cos {n + 1} x - r \cos x + 1} {1 - 2 r \cos x + r^2} | c = }} {{end-eqn}} \end{theorem} \begin{proof} From Euler's Formula: :$e^{i \theta} = \cos \theta + i \sin \theta$ Hence: {{begin-eqn}} {{eqn | l = \sum_{k \mathop = 0}^n r^k \map \cos {k x} | r = \map \Re {\sum_{k \mathop = 0}^n r^k e^{i k x} } | c = }} {{eqn | r = \map \Re {\sum_{k \mathop = 0}^n \paren {r e^{i x} }^k} | c = }} {{eqn | r = \map \Re {\frac {1 - r^{n + 1} e^{i \paren {n + 1} x} } {1 - r e^{i x} } } | c = Sum of Infinite Geometric Sequence: valid because $\size r < 1$ }} {{eqn | r = \map \Re {\frac {\paren {1 - r^{n + 1} e^{i \paren {n + 1} x} } \paren {1 - r e^{-i x} } } {\paren {1 - r e^{-i x} } \paren {1 - r e^{i x} } } } | c = }} {{eqn | r = \map \Re {\frac {r^{n + 2} e^{i n x} - r^{n + 1} e^{i \paren {n + 1} x} - r e^{-i x} + 1} {1 - r \paren {e^{i x} + e^{- i x} } + r^2} } | c = }} {{eqn | r = \map \Re {\frac {r^{n + 2} \paren {\cos n x + i \sin n x} - r^{n + 1} \paren {\map \cos {n + 1} x + i \map \sin {n + 1} x} - r \paren {\cos x - i \sin x} + 1} {1 - 2 r \cos x + a^2} } | c = Euler's Formula and Corollary to Euler's Formula }} {{eqn | r = \dfrac {r^{n + 2} \cos n x - r^{n + 1} \map \cos {n + 1} x - r \cos x + 1} {1 - 2 r \cos x + r^2} | c = after simplification }} {{end-eqn}} {{qed}} \end{proof}
22276
\section{Sum of Series of Product of Power and Sine} Tags: Trigonometric Series, Sine Function \begin{theorem} Let $r \in \R$ such that $\size r < 1$. Then: {{begin-eqn}} {{eqn | l = \sum_{k \mathop = 1}^n r^k \map \sin {k x} | r = r \sin x + r^2 \sin 2 x + r^3 \sin 3 x + \cdots + r^n \sin n x | c = }} {{eqn | r = \dfrac {r \sin x - r^{n + 1} \map \sin {n + 1} x + r^{n + 2} \sin n x} {1 - 2 r \cos x + r^2} | c = }} {{end-eqn}} \end{theorem} \begin{proof} From Euler's Formula: :$e^{i \theta} = \cos \theta + i \sin \theta$ Hence: {{begin-eqn}} {{eqn | l = \sum_{k \mathop = 1}^n r^k \map \sin {k x} | r = \map \Im {\sum_{k \mathop = 1}^n r^k e^{i k x} } | c = }} {{eqn | r = \map \Im {\sum_{k \mathop = 0}^n \paren {r e^{i x} }^n} | c = as $\map \Im {e^{i \times 0 \times x} } = \map \Im 1 = 0$ }} {{eqn | r = \map \Im {\frac {1 - r^{n + 1} e^{i \paren {n + 1} x} } {1 - r e^{i x} } } | c = Sum of Infinite Geometric Sequence: valid because $\size r < 1$ }} {{eqn | r = \map \Im {\frac {\paren {1 - r^{n + 1} e^{i \paren {n + 1} x} } \paren {1 - r e^{-i x} } } {\paren {1 - r e^{-i x} } \paren {1 - r e^{i x} } } } | c = }} {{eqn | r = \map \Im {\frac {r^{n + 2} e^{i n x} - r^{n + 1} e^{i \paren {n + 1} x} - r e^{-i x} + 1} {1 - r \paren {e^{i x} + e^{- i x} } + r^2} } | c = }} {{eqn | r = \map \Im {\frac {r^{n + 2} \paren {\cos n x + i \sin n x} - r^{n + 1} \paren {\map \cos {n + 1} x + i \map \sin {n + 1} x} - r \paren {\cos x - i \sin x} + 1} {1 - 2 r \cos x + a^2} } | c = Euler's Formula and Corollary to Euler's Formula }} {{eqn | r = \dfrac {r \sin x - r^{n + 1} \map \sin {n + 1} x + r^{n + 2} \sin n x} {1 - 2 r \cos x + r^2} | c = after simplification }} {{end-eqn}} {{qed}} \end{proof}
22277
\section{Sum of Sines of Arithmetic Sequence of Angles} Tags: Sine Function \begin{theorem} Let $\alpha \in \R$ be a real number such that $\alpha \ne 2 \pi k$ for $k \in \Z$. Then: \end{theorem} \begin{proof} From Sum of Complex Exponentials of i times Arithmetic Sequence of Angles: :$\displaystyle \sum_{k \mathop = 0}^n e^{i \paren {\theta + k \alpha} } = \paren {\map \cos {\theta + \frac {n \alpha} 2} + i \map \sin {\theta + \frac {n \alpha} 2} } \frac {\map \sin {\alpha \paren {n + 1} / 2} } {\map \sin {\alpha / 2} }$ Equating imaginary parts: :$\displaystyle \sum_{k \mathop = 0}^n \map \sin {\theta + k \alpha} = \frac {\map \sin {\alpha \paren {n + 1} / 2} } {\map \sin {\alpha / 2} } \map \sin {\theta + \frac {n \alpha} 2}$ {{qed}} \end{proof}
22278
\section{Sum of Sines of Arithmetic Sequence of Angles/Formulation 1} Tags: Sine Function \begin{theorem} Let $\alpha \in \R$ be a real number such that $\alpha \ne 2 \pi k$ for $k \in \Z$. Then: {{begin-eqn}} {{eqn | l = \sum_{k \mathop = 0}^n \map \sin {\theta + k \alpha} | r = \sin \theta + \map \sin {\theta + \alpha} + \map \sin {\theta + 2 \alpha} + \map \sin {\theta + 3 \alpha} + \dotsb }} {{eqn | r = \frac {\map \sin {\alpha \paren {n + 1} / 2} } {\map \sin {\alpha / 2} } \map \sin {\theta + \frac {n \alpha} 2} }} {{end-eqn}} \end{theorem} \begin{proof} From Sum of Complex Exponentials of i times Arithmetic Sequence of Angles: Formulation 1: :$\ds \sum_{k \mathop = 0}^n e^{i \paren {\theta + k \alpha} } = \paren {\map \cos {\theta + \frac {n \alpha} 2} + i \map \sin {\theta + \frac {n \alpha} 2} } \frac {\map \sin {\alpha \paren {n + 1} / 2} } {\map \sin {\alpha / 2} }$ It is noted that, from Sine of Multiple of Pi, when $\alpha = 2 \pi k$ for $k \in \Z$, $\map \sin {\alpha / 2} = 0$ and the {{RHS}} is not defined. From Euler's Formula, this can be expressed as: :$\ds \sum_{k \mathop = 0}^n \paren {\map \cos {\theta + k \alpha} + i \map \sin {\theta + k \alpha} } = \frac {\map \sin {\alpha \paren {n + 1} / 2} } {\map \sin {\alpha / 2} } \paren {\map \cos {\theta + \frac {n \alpha} 2} + i \map \sin {\theta + \frac {n \alpha} 2} }$ Equating imaginary parts: :$\ds \sum_{k \mathop = 0}^n \map \sin {\theta + k \alpha} = \frac {\map \sin {\alpha \paren {n + 1} / 2} } {\map \sin {\alpha / 2} } \map \sin {\theta + \frac {n \alpha} 2}$ {{qed}} \end{proof}
22279
\section{Sum of Sines of Arithmetic Sequence of Angles/Formulation 2} Tags: Sine Function \begin{theorem} Let $\alpha \in \R$ be a real number such that $\alpha \ne 2 \pi k$ for $k \in \Z$. Then: {{begin-eqn}} {{eqn | l = \sum_{k \mathop = 1}^n \map \sin {\theta + k \alpha} | r = \map \sin {\theta + \alpha} + \map \sin {\theta + 2 \alpha} + \map \sin {\theta + 3 \alpha} + \dotsb }} {{eqn | r = \map \sin {\theta + \frac {n + 1} 2 \alpha}\frac {\map \sin {n \alpha / 2} } {\map \sin {\alpha / 2} } }} {{end-eqn}} \end{theorem} \begin{proof} From Sum of Complex Exponentials of i times Arithmetic Sequence of Angles: Formulation 2: :$\ds \sum_{k \mathop = 1}^n e^{i \paren {\theta + k \alpha} } = \paren {\map \cos {\theta + \frac {n + 1} 2 \alpha} + i \map \sin {\theta + \frac {n + 1} 2 \alpha} } \frac {\map \sin {n \alpha / 2} } {\map \sin {\alpha / 2} }$ It is noted that, from Sine of Multiple of Pi, when $\alpha = 2 \pi k$ for $k \in \Z$, $\map \sin {\alpha / 2} = 0$ and the {{RHS}} is not defined. From Euler's Formula, this can be expressed as: :$\ds \sum_{k \mathop = 1}^n \paren {\map \cos {\theta + k \alpha} + i \map \sin {\theta + k \alpha} } = \paren {\map \cos {\theta + \frac {n + 1} 2 \alpha} + i \map \sin {\theta + \frac {n + 1} 2 \alpha} } \frac {\map \sin {n \alpha / 2} } {\map \sin {\alpha / 2} }$ Equating imaginary parts: :$\ds \sum_{k \mathop = 1}^n \map \sin {\theta + k \alpha} = \map \sin {\theta + \frac {n + 1} 2 \alpha} \frac {\map \sin {n \alpha / 2} } {\map \sin {\alpha / 2} }$ {{qed}} \end{proof}
22280
\section{Sum of Sines of Fractions of Pi} Tags: Polynomial Equations, Sine Function \begin{theorem} Let $n \in \Z$ such that $n > 1$. Then: :$\ds \sum_{k \mathop = 1}^{n - 1} \sin \frac {2 k \pi} n = 0$ \end{theorem} \begin{proof} Consider the equation: :$z^n - 1 = 0$ whose solutions are the complex roots of unity: :$1, e^{2 \pi i / n}, e^{4 \pi i / n}, e^{6 \pi i / n}, \ldots, e^{2 \paren {n - 1} \pi i / n}$ By Sum of Roots of Polynomial: :$1 + e^{2 \pi i / n} + e^{4 \pi i / n} + e^{6 \pi i / n} + \cdots + e^{2 \paren {n - 1} \pi i / n} = 0$ From Euler's Formula: :$e^{i \theta} = \cos \theta + i \sin \theta$ from which comes: :$\paren {1 + \cos \dfrac {2 \pi} n + \cos \dfrac {4 \pi} n + \cdots + \cos \dfrac {2 \paren {n - 1} \pi} n} + i \paren {\sin \dfrac {2 \pi} n + \sin \dfrac {4 \pi} n + \cdots + \sin \dfrac {2 \paren {n - 1} \pi} n} = 0$ Equating imaginary parts: :$\sin \dfrac {2 \pi} n + \sin \dfrac {4 \pi} n + \cdots + \sin \dfrac {2 \paren {n - 1} \pi} n = 0$ {{qed}} \end{proof}
22281
\section{Sum of Sines of Multiples of Angle} Tags: Sum of Sines of Multiples of Angle, Telescoping Series, Sine Function \begin{theorem} {{begin-eqn}} {{eqn | l = \sum_{k \mathop = 1}^n \sin k x | r = \sin x + \sin 2 x + \sin 3 x + \cdots + \sin n x | c = }} {{eqn | r = \frac {\sin \frac {\paren {n + 1} x} 2 \sin \frac {n x} 2} {\sin \frac x 2} | c = }} {{end-eqn}} where $x$ is not an integer multiple of $2 \pi$. \end{theorem} \begin{proof} By Simpson's Formula for Sine by Sine: :$2 \sin \alpha \sin \beta = \cos \left({\alpha - \beta}\right) - \cos \left({\alpha + \beta}\right)$ Thus we establish the following sequence of identities: {{begin-eqn}} {{eqn | l = 2 \sin x \sin \frac x 2 | r = \cos \frac x 2 - \cos \frac {3 x} 2 | c = }} {{eqn | l = 2 \sin 2 x \sin \frac x 2 | r = \cos \frac {3 x} 2 - \cos \frac {5 x} 2 | c = }} {{eqn | o = \cdots | c = }} {{eqn | l = 2 \sin n x \sin \frac x 2 | r = \cos \frac {\left({2 n - 1}\right) x} 2 - \cos \frac {\left({2 n + 1}\right) x} 2 | c = }} {{end-eqn}} Summing the above: {{begin-eqn}} {{eqn | l = 2 \sin \frac x 2 \left({\sum_{k \mathop = 1}^n \sin k x}\right) | r = \cos \frac x 2 - \cos \frac {\left({2 n + 1}\right) x} 2 | c = Sums on {{RHS}} form Telescoping Series }} {{eqn | r = -2 \sin \left({\dfrac {\frac x 2 + \frac {\left({2 n + 1}\right) x} 2} 2}\right) \sin \left({\dfrac {\frac x 2 - \frac {\left({2 n + 1}\right) x} 2} 2}\right) | c = Prosthaphaeresis Formula for Cosine minus Cosine }} {{eqn | r = -2 \sin \dfrac {\left({n + 1}\right) x} 2 \sin \dfrac {-n x} 2 | c = }} {{eqn | r = 2 \sin \dfrac {\left({n + 1}\right) x} 2 \sin \dfrac {n x} 2 | c = Sine Function is Odd }} {{end-eqn}} The result follows by dividing both sides by $2 \sin \dfrac x 2$. It is noted that when $x$ is a multiple of $2 \pi$ then: :$\sin \dfrac x 2 = 0$ leaving the {{RHS}} undefined. {{qed}} \end{proof}
22282
\section{Sum of Square Roots as Square Root of Sum} Tags: Algebra \begin{theorem} :$\sqrt a + \sqrt b = \sqrt {a + b + \sqrt {4 a b} }$ \end{theorem} \begin{proof} {{begin-eqn}} {{eqn | l = \sqrt a + \sqrt b | r = \sqrt {\paren {\sqrt a + \sqrt b}^2} }} {{eqn | r = \sqrt {\sqrt a^2 + \sqrt b^2 + 2 \sqrt a \sqrt b} | c = Square of Sum }} {{eqn | r = \sqrt {a + b + \sqrt {4 a b} } | c = Power of Product }} {{end-eqn}} {{qed}} Category:Algebra \end{proof}
22283
\section{Sum of Squared Deviations from Mean} Tags: Sum of Squared Deviations from Mean, Descriptive Statistics, Arithmetic Mean \begin{theorem} Let $S = \set {x_1, x_2, \ldots, x_n}$ be a set of real numbers. Let $\overline x$ denote the arithmetic mean of $S$. Then: :$\ds \sum_{i \mathop = 1}^n \paren {x_i - \overline x}^2 = \sum_{i \mathop = 1}^n \paren {x_i^2 - \overline x^2}$ \end{theorem} \begin{proof} For brevity, let us write $\displaystyle \sum$ for $\displaystyle \sum_{i \mathop = 1}^n$. Then: {{begin-eqn}} {{eqn|l = \sum \left({x_i - \overline{x} }\right)^2 |r = \sum \left({x_i - \overline{x} }\right)\left({x_i - \overline{x} }\right) }} {{eqn|r = \sum x_i\left({x_i - \overline{x} }\right) - \overline{x}\sum \left({x_i - \overline{x} }\right) |c = Summation is Linear }} {{eqn|r = \sum x_i\left({x_i - \overline{x} }\right) - 0 |c = Sum of Deviations from Mean }} {{eqn|r = \sum x_i\left({x_i - \overline{x} }\right) + 0 }} {{eqn|r = \sum x_i\left({x_i - \overline{x} }\right) + \overline{x}\sum \left({x_i - \overline{x} }\right) |c = Sum of Deviations from Mean }} {{eqn|r = \sum \left({x_i + \overline{x} }\right)\left({x_i - \overline{x} }\right) |c = Summation is Linear }} {{eqn|r = \sum \left({x_i^2 - \overline{x}^2 }\right) }} {{end-eqn}} {{qed}} Category:Descriptive Statistics 110686 110653 2012-10-12T19:01:51Z Prime.mover 59 110686 wikitext text/x-wiki \end{proof}
22284
\section{Sum of Squares as Product of Factors with Square Roots} Tags: Sums of Squares, Algebra \begin{theorem} :$x^2 + y^2 = \paren {x + \sqrt {2 x y} + y} \paren {x - \sqrt {2 x y} + y}$ \end{theorem} \begin{proof} {{begin-eqn}} {{eqn | l = \paren {x + \sqrt {2 x y} + y} \paren {x - \sqrt {2 x y} + y} | r = x^2 - x \sqrt {2 x y} + x y + x \sqrt {2 x y} - \sqrt {2 x y} \sqrt {2 x y} + y \sqrt {2 x y} + x y - y \sqrt {2 x y} + y^2 | c = }} {{eqn | r = x^2 + \paren {x - x} \sqrt {2 x y} + 2 x y - 2 x y + \paren {y - y} \sqrt {2 x y} + y^2 | c = }} {{eqn | r = x^2 + y^2 | c = }} {{end-eqn}} {{qed}} Category:Algebra Category:Sums of Squares \end{proof}
22285
\section{Sum of Squares of Binomial Coefficients} Tags: Sum of Squares of Binomial Coefficients, Binomial Coefficients \begin{theorem} :$\ds \sum_{i \mathop = 0}^n \binom n i^2 = \binom {2 n} n$ where $\dbinom n i$ denotes a binomial coefficient. \end{theorem} \begin{proof} For all $n \in \N$, let $P \left({n}\right)$ be the proposition: :$\displaystyle \sum_{i=0}^n \binom n i^2 = \binom {2 n} n$ $P(0)$ is true, as this just says $\displaystyle \binom 0 0^2 = 1 = \binom {2 \times 0} 0$. This holds by definition. \end{proof}
22286
\section{Sum of Squares of Complex Moduli of Sum and Differences of Complex Numbers} Tags: Complex Modulus \begin{theorem} Let $\alpha, \beta \in \C$ be complex numbers. Then: :$\cmod {\alpha + \beta}^2 + \cmod {\alpha - \beta}^2 = 2 \cmod \alpha^2 + 2 \cmod \beta^2$ \end{theorem} \begin{proof} Let: :$\alpha = x_1 + i y_1$ :$\beta = x_2 + i y_2$ Then: {{begin-eqn}} {{eqn | o = | r = \cmod {\alpha + \beta}^2 + \cmod {\alpha - \beta}^2 | c = }} {{eqn | r = \cmod {\paren {x_1 + i y_1} + \paren {x_2 + i y_2} }^2 + \cmod {\paren {x_1 + i y_1} - \paren {x_2 + i y_2} }^2 | c = Definition of $\alpha$ and $\beta$ }} {{eqn | r = \cmod {\paren {x_1 + x_2} + i \paren {y_1 + y_2} }^2 + \cmod {\paren {x_1 - x_2} + i \paren {y_1 - y_2} }^2 | c = {{Defof|Complex Addition}}, {{Defof|Complex Subtraction}} }} {{eqn | r = \paren {x_1 + x_2}^2 + \paren {y_1 + y_2}^2 + \paren {x_1 - x_2}^2 + \paren {y_1 - y_2}^2 | c = {{Defof|Complex Modulus}} }} {{eqn | r = {x_1}^2 + 2 x_1 x_2 + {x_2}^2 + {y_1}^2 + 2 y_1 y_2 + {y_2}^2 + {x_1}^2 - 2 x_1 x_2 + {x_2}^2 + {y_1}^2 - 2 y_1 y_2 + {y_2}^2 | c = Square of Sum, Square of Difference }} {{eqn | r = 2 {x_1}^2 + 2 {x_2}^2 + 2 {y_1}^2 + 2 {y_2}^2 | c = simplifying }} {{eqn | r = 2 \paren { {x_1}^2 + {y_1}^2} + 2 \paren { {x_2}^2 + {y_2}^2} | c = simplifying }} {{eqn | r = 2 \cmod {x_1 + i y_1}^2 + 2 \cmod {x_2 + i y_2}^2 | c = {{Defof|Complex Modulus}} }} {{eqn | r = 2 \cmod \alpha^2 + 2 \cmod \beta^2 | c = Definition of $\alpha$ and $\beta$ }} {{end-eqn}} {{qed}} \end{proof}
22287
\section{Sum of Squares of Divisors of 24 and 26 are Equal} Tags: 24, Divisors, 26, Square Numbers \begin{theorem} The sum of the squares of the divisors of $24$ equals the sum of the squares of the divisors of $26$: :$\map {\sigma_2} {24} = \map {\sigma_2} {26}$ where $\sigma_\alpha$ denotes the divisor function. \end{theorem} \begin{proof} The divisors of $24$ are: :$1, 2, 3, 4, 6, 8, 12, 24$ The divisors of $26$ are: :$1, 2, 13, 26$ Then we have: {{begin-eqn}} {{eqn | r = 1^2 + 2^2 + 3^2 + 4^2 + 6^2 + 8^2 + 12^2 + 24^2 | o = | c = }} {{eqn | r = 1 + 4 + 9 + 16 + 36 + 64 + 144 + 576 | c = }} {{eqn | r = 850 | c = }} {{end-eqn}} {{begin-eqn}} {{eqn | r = 1^2 + 2^2 + 13^2 + 26^2 | o = | c = }} {{eqn | r = 1 + 4 + 169 + 676 | c = }} {{eqn | r = 850 | c = }} {{end-eqn}} {{qed}} \end{proof}
22288
\section{Sum of Squares of Secant and Cosecant} Tags: Trigonometric Identities \begin{theorem} :$\sec^2 x + \csc^2 x = \sec^2 x \csc^2 x$ \end{theorem} \begin{proof} {{begin-eqn}} {{eqn | l = \sec^2 x + \csc^2 x | r = \frac 1 {\cos^2 x} + \frac 1 {\sin^2 x} | c = {{Defof|Secant Function}} and {{Defof|Cosecant}} }} {{eqn | r = \frac {\sin^2 x + \cos^2 x} {\cos^2 x \sin^2 x} | c = }} {{eqn | r = \frac 1 {\cos^2 x \sin^2 x} | c = Sum of Squares of Sine and Cosine }} {{eqn | r = \sec^2 x \csc^2 x | c = {{Defof|Secant Function}} and {{Defof|Cosecant}} }} {{end-eqn}} {{qed}} Category:Trigonometric Identities \end{proof}
22289
\section{Sum of Squares of Sine and Cosine/Corollary 1} Tags: Cotangent Function, Trigonometric Identities, Tangent Function, Secant Function, Sum of Squares of Sine and Cosine \begin{theorem} :$\sec^2 x - \tan^2 x = 1 \quad \text{(when $\cos x \ne 0$)}$ where $\sec$, $\tan$ and $\cos$ are secant, tangent and cosine respectively. \end{theorem} \begin{proof} When $\cos x \ne 0$: {{begin-eqn}} {{eqn | l = \cos^2 x + \sin^2 x | r = 1 | c = Sum of Squares of Sine and Cosine }} {{eqn | ll= \leadsto | l = 1 + \frac {\sin^2 x} {\cos^2 x} | r = \frac 1 {\cos^2 x} | c = dividing both sides by $\cos^2 x$, as $\cos x \ne 0$ }} {{eqn | ll= \leadsto | l = 1 + \tan^2 x | r = \sec^2 x | c = {{Defof|Tangent Function}} and {{Defof|Secant Function}} }} {{eqn | ll= \leadsto | l = \sec^2 x - \tan^2 x | r = 1 | c = rearranging }} {{end-eqn}} {{qed}} \end{proof}
22290
\section{Sum of Squares of Standard Gaussian Random Variables has Chi-Squared Distribution} Tags: Chi-Squared Distribution \begin{theorem} Let $X_1, X_2, \ldots, X_n$ be independent random variables. Let $X_i \sim \Gaussian 0 1$ for $1 \le i \le n$ where $\Gaussian 0 1$ is the standard Gaussian Distribution. Then: :$\ds \sum_{i \mathop = 1}^n X^2_i \sim \chi^2_n$ where $\chi^2_n$ is the chi-squared distribution with $n$ degrees of freedom. \end{theorem} \begin{proof} By Square of Standard Gaussian Random Variable has Chi-Squared Distribution, we have: :$X^2_i \sim \chi^2_1$ for $1 \le i \le n$. So, by Sum of Chi-Squared Random Variables, we have: :$\ds \sum_{i \mathop = 1}^n X^2_i \sim \chi^2_{1 + 1 + 1 \ldots} = \chi^2_n$ {{qed}} Category:Chi-Squared Distribution \end{proof}
22291
\section{Sum of Squares on Pairs of Rows and Columns of Moessner's Order 4 Magic Square} Tags: Magic Squares \begin{theorem} The sums of the squares of the entries are equal on the following pairs of rows and columns of Moessner's order $4$ magic square: :Rows $1$ and $4$ :Rows $2$ and $3$ :Columns $1$ and $4$ :Columns $2$ and $3$. \end{theorem} \begin{proof} Recall Moessner's order $4$ magic square: {{:Definition:Moessner's Order 4 Magic Square}} \end{proof}
22292
\section{Sum of Successive Powers in 2 ways} Tags: Powers, 8191, 31, Sums of Sequences \begin{theorem} $31$ and $8191$ can be expressed as the sum of successive powers starting from $1$ in in $2$ different ways. \end{theorem} \begin{proof} {{begin-eqn}} {{eqn | l = 31 | r = 1 + 5 + 5^2 | c = }} {{eqn | r = 1 + 2 + 2^2 + 2^3 + 2^4 | c = }} {{end-eqn}} {{begin-eqn}} {{eqn | l = 8191 | r = 1 + 90 + 90^2 | c = }} {{eqn | r = 1 + 2 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + 2^9 + 2^{10}+ 2^{11}+ 2^{12} | c = }} {{end-eqn}} These are the only two examples known. {{qed}} \end{proof}
22293
\section{Sum of Summations equals Summation of Sum} Tags: Summations \begin{theorem} Let $R: \Z \to \set {\T, \F}$ be a propositional function on the set of integers. Let $\ds \sum_{\map R i} x_i$ denote a summation over $R$. Let the fiber of truth of $R$ be finite. Then: :$\ds \sum_{\map R i} \paren {b_i + c_i} = \sum_{\map R i} b_i + \sum_{\map R i} c_i$ \end{theorem} \begin{proof} Let $b_i =: a_{i 1}$ and $c_i =: a_{i 2}$. Then: {{begin-eqn}} {{eqn | l = \sum_{\map R i} \paren {b_i + c_i} | r = \sum_{\map R i} \paren {a_{i 1} + a_{i 2} } | c = Definition of $b_i$ and $c_i$ }} {{eqn | r = \sum_{\map R i} \paren {\sum_{j \mathop = 1}^2 a_{i j} } | c = {{Defof|Summation}} }} {{eqn | r = \sum_{j \mathop = 1}^2 \paren {\sum_{\map R i} a_{i j} } | c = Exchange of Order of Summation }} {{eqn | r = \sum_{\map R i} a_{i 1} + \sum_{\map R i} a_{i 2} | c = {{Defof|Summation}} }} {{eqn | r = \sum_{\map R i} b_i + \sum_{\map R i} c_i | c = Definition of $b_i$ and $c_i$ }} {{end-eqn}} {{qed}} \end{proof}
22294
\section{Sum of Summations equals Summation of Sum/Infinite Sequence} Tags: Summations \begin{theorem} Let $R: \Z \to \set {\T, \F}$ be a propositional function on the set of integers $\Z$. Let $\ds \sum_{\map R i} x_i$ denote a summation over $R$. Let the fiber of truth of $R$ be infinite. Let $\ds \sum_{\map R i} b_i$ and $\ds \sum_{\map R i} c_i$ be convergent. Then: :$\ds \sum_{\map R i} \paren {b_i + c_i} = \sum_{\map R i} b_i + \sum_{\map R i} c_i$ \end{theorem} \begin{proof} Let $b_i =: a_{i 1}$ and $c_i =: a_{i 2}$. Then: {{begin-eqn}} {{eqn | l = \sum_{R \left({i}\right)} \left({b_i + c_i}\right) | r = \sum_{R \left({i}\right)} \left({a_{i 1} + a_{i 2} }\right) | c = by definition }} {{eqn | r = \sum_{R \left({i}\right)} \left({\sum_{1 \mathop \le j \mathop \le 2} a_{i j} }\right) | c = Definition of Summation }} {{eqn | r = \sum_{1 \mathop \le j \mathop \le 2} \left({\sum_{R \left({i}\right)} a_{i j} }\right) | c = Exchange of Order of Summation: Finite and Infinite Series }} {{eqn | r = \sum_{R \left({i}\right)} a_{i 1} + \sum_{R \left({i}\right)} a_{i 2} | c = Definition of Summation }} {{eqn | r = \sum_{R \left({i}\right)} b_i + \sum_{R \left({i}\right)} c_i | c = by definition }} {{end-eqn}} {{qed}} \end{proof}
22295
\section{Sum of Summations over Overlapping Domains/Example} Tags: Sum of Summations over Overlapping Domains, Summations \begin{theorem} :$\displaystyle \sum_{1 \mathop \le j \mathop \le m} a_j + \sum_{m \mathop \le j \mathop \le n} a_j = \left({\sum_{1 \mathop \le j \mathop \le n} a_j}\right) + a_m$ \end{theorem} \begin{proof} Let $\map R j$ be the propositional function $1 \mathop \le j \mathop \le m$. Let $\map S j$ be the propositional function $m \mathop \le j \mathop \le n$. Then we have: {{begin-eqn}} {{eqn | l = \map R j \lor \map S j | r = \paren {1 \mathop \le j \mathop \le m} \lor \paren {m \mathop \le j \mathop \le n} | c = }} {{eqn | r = \paren {1 \mathop \le j \mathop \le n} | c = }} {{end-eqn}} and: {{begin-eqn}} {{eqn | l = \map R j \land \map S j | r = \paren {1 \mathop \le j \mathop \le m} \land \paren {m \mathop \le j \mathop \le n} | c = }} {{eqn | r = \paren {j = m} | c = }} {{end-eqn}} The result follows from Sum of Summations over Overlapping Domains. {{qed}} \end{proof}
22296
\section{Sum of Tangent and Cotangent} Tags: Trigonometric Identities \begin{theorem} :$\tan x + \cot x = \sec x \csc x$ \end{theorem} \begin{proof} {{begin-eqn}} {{eqn | l = \tan x + \cot x | r = \frac {\sin x} {\cos x} + \cot x | c = Tangent is Sine divided by Cosine }} {{eqn | r = \frac {\sin x} {\cos x} + \frac {\cos x} {\sin x} | c = Cotangent is Cosine divided by Sine }} {{eqn | r = \frac {\sin^2 x + \cos^2x} {\cos x \sin x} | c = }} {{eqn | r = \frac 1 {\cos x \sin x} | c = Sum of Squares of Sine and Cosine }} {{eqn | r = \sec x \frac 1 {\sin x} | c = Secant is Reciprocal of Cosine }} {{eqn | r = \sec x \csc x | c = Cosecant is Reciprocal of Sine }} {{end-eqn}} {{qed}} Category:Trigonometric Identities \end{proof}
22297
\section{Sum of Terms of Magic Cube} Tags: Magic Cubes \begin{theorem} The total of all the entries in a magic cube of order $n$ is given by: :$T_n = \dfrac {n^3 \paren {n^3 + 1} } 2$ \end{theorem} \begin{proof} Let $M_n$ denote a magic cube of order $n$. $M_n$ is by definition an arrangement of the first $n^3$ (strictly) positive integers into an $n \times n \times n$ cubic array containing the positive integers from $1$ upwards. Thus there are $n^3$ entries in $M_n$, going from $1$ to $n^3$. Thus: {{begin-eqn}} {{eqn | l = T_n | r = \sum_{k \mathop = 1}^{n^3} k | c = }} {{eqn | r = \frac {n^3 \paren {n^3 + 1} } 2 | c = Closed Form for Triangular Numbers }} {{end-eqn}} {{qed}} \end{proof}
22298
\section{Sum of Terms of Magic Square} Tags: Magic Squares \begin{theorem} The total of all the entries in a magic square of order $n$ is given by: :$T_n = \dfrac {n^2 \paren {n^2 + 1} } 2$ \end{theorem} \begin{proof} Let $M_n$ denote a magic square of order $n$. $M_n$ is by definition a square matrix of order $n$ containing the positive integers from $1$ upwards. Thus there are $n^2$ entries in $M_n$, going from $1$ to $n^2$. Thus: {{begin-eqn}} {{eqn | l = T_n | r = \sum_{k \mathop = 1}^{n^2} k | c = }} {{eqn | r = \frac {n^2 \paren {n^2 + 1} } 2 | c = Closed Form for Triangular Numbers }} {{end-eqn}} {{qed}} \end{proof}
22299
\section{Sum of Triangular Matrices} Tags: Matrix Entrywise Addition, Matrix Algebra, Triangular Matrices, Matrix Entrywise Sum \begin{theorem} Let $\mathbf A = \left[{a}\right]_{n}, \mathbf B = \left[{b}\right]_{n}$ be square matrices of order $n$. Let $\mathbf C = \mathbf A + \mathbf B$ be the matrix entrywise sum of $\mathbf A$ and $\mathbf B$. If $\mathbf A$ and $\mathbf B$ are upper triangular matrices, then so is $\mathbf C$. If $\mathbf A$ and $\mathbf B$ are lower triangular matrices, then so is $\mathbf C$. \end{theorem} \begin{proof} From the definition of matrix addition, we have: :$\forall i, j \in \left[{1 .. n}\right]: c_{ij} = a_{ij} + b_{ij}$ If $\mathbf A$ and $\mathbf B$ are upper triangular matrices, we have: :$\forall i > j: a_{ij} = b_{ij} = 0$ Hence: :$\forall i > j: c_{ij} = a_{ij} + b_{ij} = 0 + 0 = 0$ and so $\mathbf C$ is itself upper triangular. Similarly, if $\mathbf A$ and $\mathbf B$ are lower triangular matrices, we have: :$\forall i < j: a_{ij} = b_{ij} = 0$ Hence: :$\forall i < j: c_{ij} = a_{ij} + b_{ij} = 0 + 0 = 0$ and so $\mathbf C$ is itself lower triangular. {{Qed}} Category:Triangular Matrices Category:Matrix Entrywise Addition \end{proof}
22300
\section{Sum of Two Cubes in Complex Domain} Tags: Cube Roots of Unity, Algebra \begin{theorem} :$a^3 + b^3 = \paren {a + b} \paren {a \omega + b \omega^2} \paren {a \omega^2 + b \omega}$ where: : $\omega = -\dfrac 1 2 + \dfrac {\sqrt 3} 2$ \end{theorem} \begin{proof} From Sum of Cubes of Three Indeterminates Minus 3 Times their Product: :$x^3 + y^3 + z^3 - 3 x y z = \paren {x + y + z} \paren {x + \omega y + \omega^2 z} \paren {x + \omega^2 y + \omega z}$ Setting $x \gets 0, y \gets a, z \gets b$: :$0^3 + a^3 + b^3 - 3 \times 0 \times a b = \paren {0 + a + b} \paren {0 + \omega a + \omega^2 b} \paren {0 + \omega^2 a + \omega b}$ The result follows. {{qed}} \end{proof}
22301
\section{Sum of Two Fifth Powers} Tags: Fifth Powers, Examples of Use of Sum of Two Odd Powers \begin{theorem} :$x^5 + y^5 = \paren {x + y} \paren {x^4 - x^3 y + x^2 y^2 - x y^3 + y^4}$ \end{theorem} \begin{proof} From Sum of Two Odd Powers: :$a^{2 n + 1} + b^{2 n + 1} = \paren {a + b} \paren {a^{2 n} - a^{2 n - 1} b + a^{2 n - 2} b^2 - \dotsb + a b^{2 n - 1} + b^{2 n} }$ We have that $5 = 2 \times 2 + 1$. The result follows directly by setting $n = 2$. {{qed}} \end{proof}
22302
\section{Sum of Two Fourth Powers} Tags: Fourth Powers, Algebra \begin{theorem} :$x^4 + y^4 = \paren {x^2 + \sqrt 2 x y + y^2} \paren {x^2 - \sqrt 2 x y + y^2}$ \end{theorem} \begin{proof} {{begin-eqn}} {{eqn | r = \paren {x^2 + \sqrt 2 x y + y^2} \paren {x^2 - \sqrt 2 x y + y^2} | o = | c = }} {{eqn | r = x^2 \paren {x^2 - \sqrt 2 x y + y^2} + \sqrt 2 x y \paren {x^2 - \sqrt 2 x y + y^2} + y^2 \paren {x^2 - \sqrt 2 x y + y^2} | c = }} {{eqn | r = x^4 - \sqrt 2 x^3 y + x^2 y^2 + \sqrt 2 x^3 y - 2 x^2 y^2 + \sqrt 2 x y^3 + x^2 y^2 - \sqrt 2 x y^3 + y^4 | c = }} {{eqn | r = x^4 + y^4 | c = gathering terms }} {{end-eqn}} {{qed}} Category:Fourth Powers \end{proof}
22303
\section{Sum of Two Odd Powers/Examples/Sum of Two Cubes} Tags: Third Powers, Algebra, Examples of Use of Sum of Two Odd Powers, Cubes, Sum of Two Cubes \begin{theorem} :$x^3 + y^3 = \paren {x + y} \paren {x^2 - x y + y^2}$ \end{theorem} \begin{proof} From Difference of Two Powers: :$\displaystyle a^n - b^n = \paren {a - b} \sum_{j \mathop = 0}^{n-1} a^{n - j - 1} b^j$ Let $x = a$ and $y = -b$. Then: {{begin-eqn}} {{eqn | l = x^3 + y^3 | r = x^3 - \paren {-y^3} | c = }} {{eqn | r = x^3 - \paren {-y}^3 | c = }} {{eqn | r = \paren {x - \paren {-y} } \sum_{j \mathop = 0}^2 x^{n - j - 1} \paren {-y}^j | c = }} {{eqn | r = \paren {x + y} \paren {x^2 + x \paren {-y} + \paren {-y}^2} | c = }} {{eqn | r = \paren {x + y} \paren {x^2 - x y + y^2} | c = }} {{end-eqn}} {{qed}} \end{proof}
22304
\section{Sum of Two Rational 4th Powers but not Two Integer 4th Powers} Tags: Fourth Powers, 5906 \begin{theorem} $5906$ is the smallest integer which can be expressed as the sum of two rational $4$th powers, but not two integer $4$th powers. \end{theorem} \begin{proof} :$5906 = \paren {\dfrac {149} {17} }^4 + \paren {\dfrac {25} {17} }^4$ Suppose $5906$ is a sum of two integer $4$th powers. We have: :$9^4 = 6561 > 5906$ which shows that no $4$th power greater than $8^4$ is in the sum. :$7^4 + 7^4 = 4802 < 5906$ which shows that some $4$th power greater than $7^4$ is in the sum. So the sum must contain $8^4$. We have: :$5906 - 8^4 = 1810$ but $1810$ is not an integer $4$th power. Therefore $5906$ is not a sum of two integer $4$th powers. {{finish|It remains to show that it is the smallest such. It is, acccording to A NEW CHARACTERIZATION OF THE INTEGER 5906 by A. Bremner and P. Morton}} \end{proof}
22305
\section{Sum of Two Sides of Triangle Greater than Third Side} Tags: Triangles, Triangle Inequality, Euclid Book I \begin{theorem} Given a triangle $ABC$, the sum of the lengths of any two sides of the triangle is greater than the length of the third side. {{:Euclid:Proposition/I/20}} \end{theorem} \begin{proof} :350 px Let $ABC$ be a triangle We can extend $BA$ past $A$ into a straight line. There exists a point $D$ such that $DA = CA$. Therefore, from Isosceles Triangle has Two Equal Angles: :$\angle ADC = \angle ACD$ Thus by Euclid's fifth common notion: :$\angle BCD > \angle BDC$ Since $\triangle DCB$ is a triangle having $\angle BCD$ greater than $\angle BDC$, this means that $BD > BC$. But: :$BD = BA + AD$ and: :$AD = AC$ Thus: :$BA + AC > BC$ A similar argument shows that $AC + BC > BA$ and $BA + BC > AC$. {{qed}} {{Euclid Note|20|I|It is a geometric interpretation of the Triangle Inequality.}} \end{proof}
22306
\section{Sum of Two Squares not Congruent to 3 modulo 4} Tags: Sum of Squares, Sums of Squares \begin{theorem} Let $n \in \Z$ such that $n = a^2 + b^2$ where $a, b \in \Z$. Then $n$ is not congruent modulo $4$ to $3$. \end{theorem} \begin{proof} Let $n \equiv 3 \pmod 4$. {{AimForCont}} $n$ can be expressed as the sum of two squares: :$n = a^2 + b^2$. From Square Modulo 4, either $a^2 \equiv 0$ or $a^2 \equiv 1 \pmod 4$. Similarly for $b^2$. So $a^2 + b^2 \not \equiv 3 \pmod 4$ whatever $a$ and $b$ are. Thus $n$ cannot be the sum of two squares. The result follows by Proof by Contradiction. {{qed}} Category:Sums of Squares \end{proof}
22307
\section{Sum of Unitary Divisors is Multiplicative} Tags: Multiplicative Functions, Sum of Unitary Divisors \begin{theorem} Let $\map {\sigma^*} n$ denote the sum of unitary divisors of $n$. Then the function: :$\ds \sigma^*: \Z_{>0} \to \Z_{>0}: \map {\sigma^*} n = \sum_{\substack d \mathop \divides n \\ d \mathop \perp \frac n d} d$ is multiplicative. \end{theorem} \begin{proof} Let $a, b$ be coprime integers. Because $a$ and $b$ have no common divisor, the divisors of $a b$ are integers of the form $a_i b_j$, where $a_i$ is a divisor of $a$ and $b_j$ is a divisor of $b$. That is, any divisor $d$ of $a b$ is in the form: :$d = a_i b_j$ in a unique way, where $a_i \divides a$ and $b_j \divides b$. First we show that: :$d$ is an unitary divisor of $a b$ {{iff}} $a_i, b_j$ are unitary divisors of $a, b$ respectively In the forward implication we are given $d \perp \dfrac {a b} d$. By Divisor of One of Coprime Numbers is Coprime to Other: :$a_i, b_j \perp \dfrac {a b} d$ By Divisor of One of Coprime Numbers is Coprime to Other again: :$a_i \perp \dfrac a {a_i} \land b_j \perp \dfrac b {b_j}$ In the backward implication we are given $a_i \perp \dfrac a {a_i} \land b_j \perp \dfrac b {b_j}$. By Divisor of One of Coprime Numbers is Coprime to Other: :$a \perp b \implies \paren {a_i \perp b_j \land \dfrac a {a_i} \perp \dfrac b {b_j} }$ By Product of Coprime Pairs is Coprime: :$d = a_i b_j \perp \dfrac a {a_i} \dfrac b {b_j} = \dfrac {a b} d$ {{qed|lemma}} We can list the unitary divisors of $a$ and $b$ as :$1, a_1, a_2, \ldots, a$ and: :$1, b_1, b_2, \ldots, b$ and thus the sum of their unitary divisors are: :$\ds \map {\sigma^*} a = \sum_{i \mathop = 1}^r a_i$ :$\ds \map {\sigma^*} b = \sum_{j \mathop = 1}^s b_j$ Consider all unitary divisors of $a b$ with the same $a_i$. Their sum is: {{begin-eqn}} {{eqn | l = \sum_{j \mathop = 1}^s a_i b_j | r = a_i \sum_{j \mathop = 1}^s b_j | c = }} {{eqn | r = a_i \map {\sigma^*} b | c = }} {{end-eqn}} Summing over all $a_i$: {{begin-eqn}} {{eqn | l = \map {\sigma^*} {a b} | r = \sum_{i \mathop = 1}^r \paren {a_i \map {\sigma^*} b} | c = }} {{eqn | r = \paren {\sum_{i \mathop = 1}^r a_i} \map {\sigma^*} b | c = }} {{eqn | r = \map {\sigma^*} a \map {\sigma^*} b | c = }} {{end-eqn}} {{qed}} Category:Sum of Unitary Divisors Category:Multiplicative Functions \end{proof}
22308
\section{Sum of Unitary Divisors of Integer} Tags: Sum of Unitary Divisors \begin{theorem} Let $n$ be an integer such that $n \ge 2$. Let $\map {\sigma^*} n$ be the sum of all positive unitary divisors of $n$. Let the prime decomposition of $n$ be: :$\ds n = \prod_{1 \mathop \le i \mathop \le r} p_i^{k_i} = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$ Then: :$\ds \map {\sigma^*} n = \prod_{1 \mathop \le i \mathop \le r} \paren {1 + p_i^{k_i} }$ \end{theorem} \begin{proof} We have that the Sum of Unitary Divisors is Multiplicative. From Value of Multiplicative Function is Product of Values of Prime Power Factors, we have: :$\map {\sigma^*} n = \map {\sigma^*} {p_1^{k_1} } \map {\sigma^*} {p_2^{k_2} } \ldots \map {\sigma^*} {p_r^{k_r} }$ From Sum of Unitary Divisors of Power of Prime, we have: :$\ds \map {\sigma^*} {p_i^{k_i} } = \frac {p_i^{k_i + 1} - 1} {p_i - 1}$ Hence the result. {{qed}} Category:Sum of Unitary Divisors \end{proof}
22309
\section{Sum of Unitary Divisors of Power of Prime} Tags: Prime Numbers, Sum of Unitary Divisors \begin{theorem} Let $n = p^k$ be the power of a prime number $p$. Then the sum of all positive unitary divisors of $n$ is $1 + n$. \end{theorem} \begin{proof} Let $d \divides n$. By Divisors of Power of Prime, $d = p^a$ for some positive integer $a \le k$. We have $\dfrac n d = p^{k - a}$. Suppose $d$ is a unitary divisor of $n$. Then $d$ and $\dfrac n d$ are coprime. If both $a, k - a \ne 0$, $p^a$ and $p^{k - a}$ have a common divisor: $p$. Hence either $a = 0$ or $k - a = 0$. This leads to $d = 1$ or $p^k$. Hence the sum of all positive unitary divisors of $n$ is: :$1 + p^k = 1 + n$ {{qed}} Category:Prime Numbers Category:Sum of Unitary Divisors \end{proof}
22310
\section{Sum of Variances of Independent Trials} Tags: Expectation \begin{theorem} Let $\EE_1, \EE_2, \ldots, \EE_n$ be a sequence of experiments whose outcomes are independent of each other. Let $X_1, X_2, \ldots, X_n$ be discrete random variables on $\EE_1, \EE_2, \ldots, \EE_n$ respectively. Let $\var {X_j}$ be the variance of $X_j$ for $j \in \set {1, 2, \ldots, n}$. Then: :$\ds \var {\sum_{j \mathop = 1}^n X_j} = \sum_{j \mathop = 1}^n \var {X_j}$ That is, the sum of the variances equals the variance of the sum. \end{theorem} \begin{proof} {{begin-eqn}} {{eqn | l = \var {\sum_{j \mathop = 1}^n X_j} | r = \expect {\paren {\sum_{j \mathop = 1}^n X_j}^2} - \expect {\sum_{j \mathop = 1}^n X_j}^2 | c = Variance as Expectation of Square minus Square of Expectation/Discrete }} {{eqn | r = \expect {\sum_{0 \mathop < i \mathop < j \mathop \le n} 2 X_i X_j + \sum_{j \mathop = 1}^n X_j^2} - 2 \sum_{0 \mathop < i \mathop < j \mathop \le n} \expect {X_i} \expect {X_j} - \sum_{j \mathop = 1}^n \expect{X_j}^2 | c = }} {{eqn | r = \sum_{0 \mathop < i \mathop < j \mathop \le n} 2 \expect {X_i X_j} + \sum_{j \mathop = 1}^n \expect {X_j^2} - 2 \sum_{0 \mathop < i \mathop < j \mathop \le n} \expect {X_i} \expect {X_j} - \sum_{j \mathop = 1}^n \expect{X_j}^2 | c = Linearity of Expectation Function/Discrete }} {{eqn | r = 2 \sum_{0 \mathop < i \mathop < j \mathop \le n} \expect {X_i} \expect {X_j} + \sum_{j \mathop = 1}^n \expect {X_j^2} - 2 \sum_{0 \mathop < i \mathop < j \mathop \le n} \expect {X_i} \expect {X_j} - \sum_ {j \mathop = 1}^n \expect {X_j}^2 | c = Condition for Independence from Product of Expectations/Corollary }} {{eqn | r = \sum_{j \mathop = 1}^n \expect {X_j^2} - \sum_{j \mathop = 1}^n \expect {X_j}^2 | c = }} {{eqn | r = \sum_{j \mathop = 1}^n \expect {X_j^2} - \expect {X_j}^2 | c = }} {{eqn | r = \sum_{j \mathop = 1}^n \var {X_j} | c = Variance as Expectation of Square minus Square of Expectation/Discrete }} {{end-eqn}} {{qed}} Category:Expectation \end{proof}
22311
\section{Sum of Wholly Real Numbers is Wholly Real} Tags: Complex Addition \begin{theorem} Let $x = \tuple {a, 0}$ and $y = \tuple {b, 0}$ be wholly real complex numbers. Then $x + y$ is also wholly real. \end{theorem} \begin{proof} We have: {{begin-eqn}} {{eqn | l = x + y | r = \tuple {a, 0} + \tuple {b, 0} | c = }} {{eqn | r = \tuple {a + b, 0 + 0} | c = {{Defof|Complex Addition}} }} {{eqn | r = \tuple {a + b, 0} | c = }} {{end-eqn}} {{qed}} \end{proof}
22312
\section{Sum of r+k Choose k up to n} Tags: Binomial Coefficients \begin{theorem} Let $r \in \R$ be a real number. Then: :$\ds \forall n \in \Z: n \ge 0: \sum_{k \mathop = 0}^n \binom {r + k} k = \binom {r + n + 1} n$ where $\dbinom r k$ is a binomial coefficient. \end{theorem} \begin{proof} Proof by induction: For all $n \in \Z_{\ge 0}$, let $\map P n$ be the proposition :$\ds \sum_{k \mathop = 0}^n \binom {r + k} k = \binom {r + n + 1} n$ \end{proof}
22313
\section{Sum of r Powers is between Power of Maximum and r times Power of Maximum} Tags: Inequalities \begin{theorem} Let $a_1, a_2, \ldots, a_r$ be non-negative real numbers. Let $n \in \Z_{>0}$ be a (strictly) positive integer. Let $a = \max \set {a_1, a_2, \ldots, a_r}$. Then: :$a^n \le a_1^n + a_2^n + \cdots + a_r^n \le r a^n$ \end{theorem} \begin{proof} This proof is divided into $2$ parts: \end{proof}
22314
\section{Sum of r Powers is not Greater than r times Power of Maximum} Tags: Inequalities \begin{theorem} Let $a_1, a_2, \ldots, a_r$ be non-negative real numbers. Let $n \in \Z_{>0}$ be a (strictly) positive integer. Let $a = \max \set {a_1, a_2, \ldots, a_r}$. Then: :$a_1^n + a_2^n + \cdots + a_r^n \le r a^n$ \end{theorem} \begin{proof} By definition of the $\max$ operation: :$\exists k \in \set {1, 2, \ldots, r}: a_k = a$ Then: :$\forall i \in \set {1, 2, \ldots, r}: a_i \le a_k$ Hence: {{begin-eqn}} {{eqn | q = \forall i \in \set {1, 2, \ldots, r} | l = a_i | r = a_k | c = }} {{eqn | ll= \leadsto | l = \sum_{i \mathop = 1}^r a_i^n | o = \le | r = \sum_{i \mathop = 1}^r a_k^n | c = }} {{eqn | r = r a_k^n | c = }} {{eqn | r = r a^n | c = Definition of $a_k$ }} {{end-eqn}} Hence the result. {{qed}} \end{proof}
22315
\section{Sum of two Fourth Powers cannot be Fourth Power} Tags: Number Theory \begin{theorem} $\forall a, b, c \in \Z_{>0}$, the equation $a^4 + b^4 = c^4$ has no solutions. \end{theorem} \begin{proof} This is a direct consequence of Fermat's Right Triangle Theorem. {{qed}} \end{proof}
22316
\section{Sum over Complement of Finite Set} Tags: Summation, Summations \begin{theorem} Let $\mathbb A$ be one of the standard number systems $\N, \Z, \Q, \R, \C$. Let $S$ be a finite set. Let $f: S \to \mathbb A$ be a mapping. Let $T \subseteq S$ be a subset. Let $S \setminus T$ be its relative complement. Then we have the equality of summations over finite sets: :$\ds \sum_{s \mathop \in S \setminus T} \map f s = \sum_{s \mathop \in S} \map f s - \sum_{t \mathop \in T} \map f t$ \end{theorem} \begin{proof} Note that by Subset of Finite Set is Finite, $T$ is indeed finite. By Set is Disjoint Union of Subset and Relative Complement, $S$ is the disjoint union of $S \setminus T$ and $T$. The result now follows from Sum over Disjoint Union of Finite Sets. {{qed}} \end{proof}
22317
\section{Sum over Disjoint Union of Finite Sets} Tags: Summations \begin{theorem} Let $\mathbb A$ be one of the standard number systems $\N, \Z, \Q, \R, \C$. Let $S$ and $T$ be finite disjoint sets. Let $S \cup T$ be their union. Let $f: S \cup T \to \mathbb A$ be a mapping. Then we have the equality of summations over finite sets: :$\ds \sum_{u \mathop \in S \mathop \cup T} \map f u = \sum_{s \mathop \in S} \map f s + \sum_{t \mathop \in T} \map f t$ \end{theorem} \begin{proof} Note that by Union of Finite Sets is Finite, the union $S \cup T$ is finite. Let $m$ be the cardinality of $S$ and $n$ be the cardinality of $T$. Let $\N_{< m}$ denote an initial segment of the natural numbers. Let $\sigma: \N_{<m} \to S$ and $\tau: \N_{<n} \to T$ be bijections. Let $\alpha: \N_{< n} \to \closedint m {m + n - 1}$ be the mapping defined as: :$\map \alpha k = k + m$ By Translation of Integer Interval is Bijection, $\alpha$ is a bijection. By Composite of Bijections is Bijection and Disjoint Union of Bijections is Bijection, the union: :$\sigma \cup \paren {\tau \circ \alpha} : \N_{<m} \cup \closedint m {m + n - 1} \to S \cup T$ is a bijection. By Union of Integer Intervals, $\N_{<m} \cup \closedint m {m + n - 1} = \N_{< m + n}$. We have: {{begin-eqn}} {{eqn | l = \sum_{u \mathop \in S \mathop \cup T} \map f u | r = \sum_{i \mathop = 0}^{m + n - 1} \map {f \circ \paren {\sigma \cup \paren {\tau \circ \alpha} } } i | c = {{Defof|Summation}} }} {{eqn | r = \sum_{i \mathop = 0}^{m - 1} \map {f \circ \paren {\sigma \cup \paren {\tau \circ \alpha} } } i + \sum_{i \mathop = m}^{m + n - 1} \map {f \circ \paren {\sigma \cup \paren {\tau \circ \alpha} } } i | c = Indexed Summation over Adjacent Intervals }} {{eqn | r = \sum_{i \mathop = 0}^{m - 1} \map {\paren {f \circ \sigma} } i + \sum_{i \mathop = m}^{m + n - 1} \map {\paren {g \circ \tau \circ \alpha} } i | c = Restriction of Union of Mappings to Component of Domain }} {{eqn | r = \sum_{i \mathop = 0}^{m - 1} \map {\paren {f \circ \sigma} } i + \sum_{i \mathop = 0}^{n - 1} \map {\paren {g \circ \tau} } i | c = Definition of $\alpha$, Indexed Summation over Translated Interval }} {{eqn | r = \sum_{s \mathop \in S} \map f s + \sum_{t \mathop \in T} \map g t | c = {{Defof|Summation}} }} {{end-eqn}} {{qed}} \end{proof}
22318
\section{Sum over Integers of Cosine of n + alpha of theta over n + alpha} Tags: Cosine Function \begin{theorem} Let $\alpha \in \R$ be a real number which is specifically not an integer. For $0 \le \theta < 2 \pi$: :$\ds \dfrac 1 \alpha + \sum_{n \mathop \ge 1} \dfrac {2 \alpha} {\alpha^2 - n^2} = \sum_{n \mathop \in \Z} \dfrac {\cos \paren {n + \alpha} \theta} {n + \alpha}$ \end{theorem} \begin{proof} First we establish the following, as they will be needed later. {{begin-eqn}} {{eqn | o = | r = \cos \paren {\alpha + n} \theta + \cos \paren {\alpha - n} \theta | c = }} {{eqn | r = 2 \map \cos {\dfrac {\paren {\alpha + n} \theta + \paren {\alpha - n} \theta} 2} \map \cos {\dfrac {\paren {\alpha + n} \theta - \paren {\alpha - n} \theta} 2} | c = Prosthaphaeresis Formula for Cosine plus Cosine }} {{eqn | n = 1 | r = 2 \cos \alpha \theta \cos n \theta | c = simplification }} {{end-eqn}} {{begin-eqn}} {{eqn | o = | r = \cos \paren {\alpha + n} \theta - \cos \paren {\alpha - n} \theta | c = }} {{eqn | r = -2 \map \sin {\dfrac {\paren {\alpha + n} \theta + \paren {\alpha - n} \theta} 2} \map \sin {\dfrac {\paren {\alpha + n} \theta - \paren {\alpha - n} \theta} 2} | c = Prosthaphaeresis Formula for Cosine minus Cosine }} {{eqn | n = 2 | r = -2 \sin \alpha \theta \sin n \theta | c = simplification }} {{end-eqn}} We have: {{begin-eqn}} {{eqn | o = | r = \sum_{n \mathop = -\infty}^\infty \dfrac {\cos \paren {n + \alpha} \theta} {n + \alpha} | c = }} {{eqn | r = \dfrac {\cos \paren {0 + \alpha} \theta} {0 + \alpha} + \sum_{n \mathop = 1}^\infty \dfrac {\cos \paren {n + \alpha} \theta} {n + \alpha} + \sum_{n \mathop = -\infty}^{-1} \dfrac {\cos \paren {n + \alpha} \theta} {n + \alpha} | c = }} {{eqn | r = \dfrac {\cos \alpha \theta} \alpha + \sum_{n \mathop = 1}^\infty \dfrac {\cos \paren {n + \alpha} \theta} {n + \alpha} + \sum_{n \mathop = 1}^\infty \dfrac {\cos \paren {-n + \alpha} \theta} {-n + \alpha} | c = }} {{eqn | r = \dfrac {\cos \alpha \theta} \alpha + \sum_{n \mathop = 1}^\infty \paren {\dfrac {\cos \paren {\alpha + n} \theta} {\alpha + n} + \dfrac {\cos \paren {\alpha - n} \theta} {\alpha - n} } | c = }} {{eqn | r = \dfrac {\cos \alpha \theta} \alpha + \sum_{n \mathop = 1}^\infty \paren {\dfrac {\paren {\alpha - n} \paren {\cos \paren {\alpha + n} \theta} + \paren {\alpha + n} \paren {\cos \paren {\alpha - n} \theta} }{\alpha^2 - n^2} } | c = }} {{eqn | r = \dfrac {\cos \alpha \theta} \alpha + \sum_{n \mathop = 1}^\infty \paren {\dfrac {\alpha \cos \paren {\alpha + n} \theta - n \cos \paren {\alpha + n} \theta + \alpha \cos \paren {\alpha - n} \theta + n \cos \paren {\alpha - n} \theta} {\alpha^2 - n^2} } | c = }} {{eqn | r = \dfrac {\cos \alpha \theta} \alpha + \sum_{n \mathop = 1}^\infty \paren {\dfrac {\alpha \paren {\cos \paren {\alpha + n} \theta + \cos \paren {\alpha - n} \theta} - n \paren {\cos \paren {\alpha + n} \theta - \cos \paren {\alpha - n} \theta} } {\alpha^2 - n^2} } | c = }} {{eqn | r = \dfrac {\cos \alpha \theta} \alpha + \sum_{n \mathop = 1}^\infty \paren {\dfrac {2 \alpha \cos \alpha \theta \cos n \theta + 2 n \sin \alpha \theta \sin n \theta} {\alpha^2 - n^2} } | c = from $(1)$ and $(2)$ }} {{eqn | r = \dfrac {\cos \alpha \theta} \alpha + 2 \alpha \cos \alpha \theta \sum_{n \mathop = 1}^\infty \paren {\dfrac {\cos n \theta} {\alpha^2 - n^2} } + 2 \sin \alpha \theta \sum_{n \mathop = 1}^\infty \paren {\dfrac {n \sin n \theta} {\alpha^2 - n^2} } | c = Linear Combination of Indexed Summations }} {{end-eqn}} Setting $\theta = 0$: {{begin-eqn}} {{eqn | l = \sum_{n \mathop = -\infty}^\infty \dfrac {\map \cos {\paren {n + \alpha} 0} } {n + \alpha} | r = \dfrac {\cos \alpha 0} \alpha + 2 \alpha \cos \alpha 0 \sum_{n \mathop = 1}^\infty \paren {\dfrac {\cos n 0 } {\alpha^2 - n^2} } + 2 \sin \alpha 0 \sum_{n \mathop = 1}^\infty \paren {\dfrac {n \sin n 0} {\alpha^2 - n^2} } | c = }} {{eqn | r = \dfrac 1 \alpha + \sum_{n \mathop = 1}^\infty \dfrac {2 \alpha} {\alpha^2 - n^2} + 0 | c = Sine of Zero is Zero and Cosine of Zero is One }} {{eqn | r = \dfrac 1 \alpha + \sum_{n \mathop = 1}^\infty \dfrac {2 \alpha} {\alpha^2 - n^2} | c = }} {{end-eqn}} To establish this identity for all other values of $\theta$ on the interval $0 \le \theta < 2\pi$, we will demonstrate that the sum is a constant function. We will do this by showing that the derivative of the function is zero everywhere which by Zero Derivative implies Constant Function will complete the proof. We have: {{begin-eqn}} {{eqn | l = \map f \theta | r = \sum_{n \mathop \in \Z} \dfrac {\map \cos {n + \alpha} \theta} {n + \alpha} | c = }} {{eqn | l = \map {f'} \theta | r = \sum_{n \mathop \in \Z} -\map \sin {n + \alpha} \theta | c = Derivative of Cosine Function/Corollary }} {{end-eqn}} Then: {{begin-eqn}} {{eqn | l = \map {f'} \theta | r = -\sum_{n \mathop \in \Z} \paren {\map \sin {\alpha \theta} \map \cos {n \theta} + \map \cos {\alpha \theta } \map \sin {n \theta} } | c = Sine of Sum }} {{eqn | r = -\map \sin {\alpha \theta } \sum_{n \mathop \in \Z} \map \cos {n \theta} - \map \cos {\alpha \theta} \sum_{n \mathop \in \Z} \map \sin {n \theta} | c = Linear Combination of Indexed Summations }} {{end-eqn}} From Cosine Function is Even and Sine Function is Odd, we have: :$\map \cos {-n \theta} = \map \cos {n \theta}$ and: :$\map \sin {-n \theta} = -\map \sin {n \theta}$ Therefore: {{begin-eqn}} {{eqn | l = \map {f'} \theta | r = -\map \sin {\alpha \theta} \paren {1 + 2 \sum_{n \mathop = 1}^\infty \map \cos {n \theta} } - \map \cos {\alpha \theta} \times 0 | c = }} {{eqn | r = -\map \sin {\alpha \theta} \paren {1 + 2 \sum_{n \mathop = 1}^\infty \map \cos {n \theta} } | c = }} {{eqn | r = -\map \sin {\alpha \theta} \paren {1 + 2 \sum_{n \mathop = 1}^\infty \paren {\dfrac {e^{i n \theta } + e^{-i n \theta} } 2} } | c = Cosine Exponential Formulation/Real Domain }} {{eqn | r = -\map \sin {\alpha \theta} \paren {1 + \sum_{n \mathop = 1}^\infty e^{i n \theta} + \sum_{n \mathop = 1}^\infty e^{-i n \theta} } | c = Linear Combination of Indexed Summations }} {{eqn | r = -\map \sin {\alpha \theta} \paren {\sum_{n \mathop = 0}^\infty e^{i n \theta} + \sum_{n \mathop = 0}^\infty e^{-i n \theta} - 1} | c = re-indexing the sum }} {{eqn | r = -\map \sin {\alpha \theta} \paren {\dfrac 1 {1 - e^{i \theta} } + \dfrac 1 {1 - e^{-i \theta} } - 1} | c = Sum of Infinite Geometric Sequence }} {{eqn | r = -\map \sin {\alpha \theta} \paren {\dfrac {\paren {1 - e^{-i \theta} } + \paren {1 - e^{i \theta} } - \paren {1 - e^{-i \theta} } \paren {1 - e^{i \theta} } } {\paren {1 - e^{-i \theta} } \paren {1 - e^{i \theta} } } } | c = }} {{eqn | r = -\map \sin {\alpha \theta} \paren {\dfrac {\paren {1 - e^{-i \theta} } + \paren {1 - e^{i \theta} } - \paren {1 - e^{i \theta} - e^{-i \theta} + 1} } {\paren {1 - e^{-i \theta} } \paren {1 - e^{i \theta} } } } | c = }} {{eqn | r = 0 | c = }} {{end-eqn}} {{qed}} \end{proof}
22319
\section{Sum over Integers of Sine of n + alpha of theta over n + alpha} Tags: Sine Function \begin{theorem} Let $\alpha \in \R$ be a real number which is specifically not an integer. For $0 < \theta < 2\pi$: :$\ds \sum_{n \mathop \in \Z} \dfrac {\map \sin {n + \alpha} \theta} {n + \alpha} = \pi$ \end{theorem} \begin{proof} First we establish the following, as they will be needed later. {{begin-eqn}} {{eqn | o = | r = \map \sin {\alpha + n} \theta + \map \sin {\alpha - n} \theta | c = }} {{eqn | r = 2 \map \sin {\dfrac {\paren {\alpha + n} \theta + \paren {\alpha - n} \theta} 2} \map \cos {\dfrac {\paren {\alpha + n} \theta - \paren {\alpha - n} \theta} 2} | c = Prosthaphaeresis Formula for Sine plus Sine }} {{eqn | n = 1 | r = 2 \sin \alpha \theta \cos n \theta | c = simplification }} {{end-eqn}} {{begin-eqn}} {{eqn | o = | r = \map \sin {\alpha + n} \theta - \map \sin {\alpha - n} \theta | c = }} {{eqn | r = 2 \map \cos {\dfrac {\paren {\alpha + n} \theta + \paren {\alpha - n} \theta} 2} \map \sin {\dfrac {\paren {\alpha + n} \theta - \paren {\alpha - n} \theta} 2} | c = Prosthaphaeresis Formula for Sine minus Sine }} {{eqn | n = 2 | r = 2 \cos \alpha \theta \sin n \theta | c = simplification }} {{end-eqn}} {{begin-eqn}} {{eqn | o = | r = \sum_{n \mathop = -\infty}^\infty \dfrac {\map \sin {n + \alpha} \theta} {n + \alpha} | c = }} {{eqn | r = \dfrac {\map \sin {0 + \alpha} \theta} {0 + \alpha} + \sum_{n \mathop = 1}^\infty \dfrac {\map \sin {n + \alpha} \theta} {n + \alpha} + \sum_{n \mathop = -\infty}^{-1} \dfrac {\map \sin {n + \alpha} \theta} {n + \alpha} | c = }} {{eqn | r = \dfrac {\sin \alpha \theta} \alpha + \sum_{n \mathop = 1}^\infty \dfrac {\map \sin {n + \alpha} \theta} {n + \alpha} + \sum_{n \mathop = 1}^\infty \dfrac {\map \sin {-n + \alpha} \theta} {-n + \alpha} | c = }} {{eqn | r = \dfrac {\sin \alpha \theta} \alpha + \sum_{n \mathop = 1}^\infty \paren {\dfrac {\map \sin {\alpha + n} \theta} {\alpha + n} + \dfrac {\map \sin {\alpha - n} \theta} {\alpha - n} } | c = }} {{eqn | r = \dfrac {\sin \alpha \theta} \alpha + \sum_{n \mathop = 1}^\infty \paren {\dfrac {\paren {\alpha - n} \map \sin {\alpha + n} \theta + \paren {\alpha + n} \map \sin {\alpha - n} \theta} {\alpha^2 - n^2} } | c = }} {{eqn | r = \dfrac {\sin \alpha \theta} \alpha + \sum_{n \mathop = 1}^\infty \paren {\dfrac {\alpha \map \sin {\alpha + n} \theta - n \map \sin {\alpha + n} \theta + \alpha \map \sin {\alpha - n} \theta + n \map \sin {\alpha - n} \theta} {\alpha^2 - n^2} } | c = }} {{eqn | r = \dfrac {\sin \alpha \theta} \alpha + \sum_{n \mathop = 1}^\infty\paren {\dfrac {\alpha \paren {\map \sin {\alpha + n} \theta + \map \sin {\alpha - n} \theta} - n \paren {\map \sin {\alpha + n} \theta - \map \sin {\alpha - n} \theta} } {\alpha^2 - n^2} } | c = }} {{eqn | r = \dfrac {\sin \alpha \theta} \alpha + \sum_{n \mathop = 1}^\infty \paren {\dfrac {2 \alpha \sin \alpha \theta \cos n \theta - 2 n \cos \alpha \theta \sin n \theta} {\alpha^2 - n^2} } | c = from $(1)$ and $(2)$ }} {{eqn | r = \dfrac {\sin \alpha \theta} \alpha + 2 \sin \alpha \theta \sum_{n \mathop = 1}^\infty \dfrac {\alpha \cos n \theta } {\alpha^2 - n^2} - 2 \cos \alpha \theta \sum_{n \mathop = 1}^\infty \dfrac {n \sin n \theta} {\alpha^2 - n^2} | c = Linear Combination of Indexed Summations }} {{end-eqn}} Setting $\theta = \pi$: {{begin-eqn}} {{eqn | l = \sum_{n \mathop = -\infty}^\infty \dfrac {\map \sin {n + \alpha} \pi} {n + \alpha} | r = \dfrac {\sin \alpha \pi} \alpha + 2 \sin \alpha \pi \sum_{n \mathop = 1}^\infty \dfrac {\alpha \cos n \pi } {\alpha^2 - n^2} - 2 \cos \alpha \pi \sum_{n \mathop = 1}^\infty \dfrac {n \sin n \pi} {\alpha^2 - n^2} | c = }} {{eqn | r = \dfrac {\sin \alpha \pi} \alpha + 2 \sin \alpha \pi \sum_{n \mathop = 1}^\infty \dfrac {\alpha \cos n \pi } {\alpha^2 - n^2} - 0 | c = $\sin n \pi = 0$ }} {{eqn | n = 3 | r = \dfrac {\sin \pi \alpha} \alpha + 2 \sin \pi \alpha \sum_{n \mathop \ge 1} \paren {-1}^n \dfrac \alpha {\alpha^2 - n^2} | c = $\cos n \pi = \paren {-1}^n$ }} {{end-eqn}} Then: {{begin-eqn}} {{eqn | l = \pi \cosec \pi \alpha | r = \dfrac 1 \alpha + 2 \sum_{n \mathop \ge 1} \paren {-1}^n \dfrac {\alpha} {\alpha^2 - n^2} | c = Mittag-Leffler Expansion for the Cosecant Function }} {{eqn | ll= \leadsto | l = \pi | r = \sin \pi \alpha \paren{\dfrac 1 \alpha + 2 \sum_{n \mathop \ge 1} \paren {-1}^n \dfrac {\alpha} {\alpha^2 - n^2} } | c = multiplying both sides by $\sin \pi \alpha$ }} {{eqn | n = 4 | r = \dfrac {\sin \pi \alpha} \alpha + 2 \sin \pi \alpha \sum_{n \mathop \ge 1} \paren {-1}^n \dfrac {\alpha} {\alpha^2 - n^2} | c = }} {{eqn | ll= \leadsto | l = \pi | r = \sum_{n \mathop \in \Z} \dfrac {\map \sin {n + \alpha} \pi} {n + \alpha} | c = equating $(3)$ and $(4)$ }} {{end-eqn}} To establish this identity for all other values of $\theta$ on the interval $0 < \theta < 2 \pi$, we will demonstrate that the sum is a constant function. We will do this by showing that the derivative of the function is zero everywhere which by Zero Derivative implies Constant Function will complete the proof. We have: {{begin-eqn}} {{eqn | l = \map f \theta | r = \sum_{n \mathop \in \Z} \dfrac {\map \sin {n + \alpha} \theta} {n + \alpha} | c = }} {{eqn | l = \map {f'} \theta | r = \sum_{n \mathop \in \Z} \map \cos {n + \alpha} \theta | c = Derivative of Sine Function/Corollary }} {{eqn | ll= \leadsto | l = \map {f'} \theta | r = \sum_{n \mathop \in \Z} \paren {\map \cos {\alpha \theta } \map \cos {n \theta} - \map \sin {\alpha \theta } \map \sin {n \theta} } | c = Cosine of Sum }} {{eqn | r = \map \cos {\alpha \theta} \sum_{n \mathop \in \Z} \map \cos {n \theta} - \map \sin {\alpha \theta} \sum_{n \mathop \in \Z} \map \sin {n \theta} | c = Linear Combination of Indexed Summations }} {{end-eqn}} From Cosine Function is Even and Sine Function is Odd, we have: :$\map \cos {-n \theta} = \map \cos {n \theta}$ and: :$\map \sin {-n \theta} = -\map \sin {n \theta}$ Therefore: {{begin-eqn}} {{eqn | l = \map {f'} \theta | r = \map \cos {\alpha \theta} \paren {1 + 2 \sum_{n \mathop = 1}^\infty \map \cos {n \theta} } - \map \sin {\alpha \theta} \times 0 | c = }} {{eqn | r = \map \cos {\alpha \theta} \paren {1 + 2 \sum_{n \mathop = 1}^\infty \map \cos {n \theta} } | c = }} {{eqn | r = \map \cos {\alpha \theta} \paren {1 + 2 \sum_{n \mathop = 1}^\infty \paren {\dfrac {e^{i n \theta} + e^{-i n \theta} } 2} } | c = Cosine Exponential Formulation/Real Domain }} {{eqn | r = \map \cos {\alpha \theta} \paren {1 + \sum_{n \mathop = 1}^\infty e^{i n \theta} + \sum_{n \mathop = 1}^\infty e^{-i n \theta} } | c = Linear Combination of Indexed Summations }} {{eqn | r = \map \cos {\alpha \theta} \paren {\sum_{n \mathop = 0}^\infty e^{i n \theta} + \sum_{n \mathop = 0}^\infty e^{-i n \theta} - 1 } | c = Re-index the sum }} {{eqn | r = \map \cos {\alpha \theta} \paren {\dfrac 1 {1 - e^{i \theta} } + \dfrac 1 {1 - e^{-i \theta} } - 1} | c = Sum of Infinite Geometric Sequence }} {{eqn | r = \map \cos {\alpha \theta} \paren {\dfrac {\paren {1 - e^{-i \theta} } + \paren {1 - e^{i \theta} } - \paren {1 - e^{-i \theta} } \paren {1 - e^{i \theta} } } {\paren {1 - e^{-i \theta} } \paren {1 - e^{i \theta} } } } | c = }} {{eqn | r = \map \cos {\alpha \theta} \paren {\dfrac {\paren {1 - e^{-i \theta} } + \paren {1 - e^{i \theta} } - \paren {1 - e^{i \theta} - e^{-i \theta} + 1} } {\paren {1 - e^{-i \theta} } \paren {1 - e^{i \theta} } } } | c = }} {{eqn | r = 0 | c = }} {{end-eqn}} {{qed}} \end{proof}
22320
\section{Sum over Union of Finite Sets} Tags: Summations \begin{theorem} Let $\mathbb A$ be one of the standard number systems $\N, \Z, \Q, \R, \C$. Let $S$ and $T$ be finite sets. Let $f: S \cup T \to \mathbb A$ be a mapping. Then we have the equality of summations over finite sets: :$\ds \sum_{u \mathop \in S \mathop \cup T} \map f u = \sum_{s \mathop \in S} \map f s + \sum_{t \mathop \in T} \map f t - \sum_{v \mathop \in S \mathop \cap T} \map f v$ \end{theorem} \begin{proof} Follows from: :Mapping Defines Additive Function of Subalgebra of Power Set :Power Set is Algebra of Sets :Inclusion-Exclusion Principle {{qed}} \end{proof}
22321
\section{Sum over j of Function of Floor of mj over n} Tags: Summations, Floor Function \begin{theorem} Let $f$ be a real function. Then: :$\ds \sum_{0 \mathop \le j \mathop < n} \map f {\floor {\dfrac {m j} n} } = \sum_{0 \mathop \le r \mathop < m} \ceiling {\dfrac {r n} m} \paren {\map f {r - 1} - \map f r} + n \map f {m - 1}$ \end{theorem} \begin{proof} {{begin-eqn}} {{eqn | l = r | m = \floor {\dfrac {m j} n} | c = }} {{eqn | ll= \leadsto | l = r | o = \le | m = \dfrac {m j} n | mo= < | r = r + 1 | c = }} {{eqn | ll= \leadsto | l = \dfrac {r n} m | o = \le | m = j | mo= < | r = \dfrac {\paren {r + 1} n} m | c = }} {{eqn | ll= \leadsto | l = \ceiling {\dfrac {r n} m} | o = \le | m = j | mo= < | r = \ceiling {\dfrac {\paren {r + 1} n} m} | c = as $j$ is an integer }} {{end-eqn}} Hence: {{begin-eqn}} {{eqn | o = | r = \sum_{0 \mathop \le j \mathop < n} \map f {\floor {\dfrac {m j} n} } | c = }} {{eqn | r = \sum_{0 \mathop \le \ceiling {\frac {r n} m} \mathop < n} \map f r | c = }} {{eqn | r = \sum_{0 \mathop \le r \mathop < m} \map f r \paren {\ceiling {\dfrac {\paren {r + 1} n} m} - \ceiling {\dfrac {r n} m} } | c = }} {{eqn | r = \map f 0 \ceiling {\dfrac n m} + \map f 1 \paren {\ceiling {\dfrac {2 n} m} - \ceiling {\dfrac n m} } + \cdots + \map f {m - 1} \paren {\ceiling {\dfrac {m n} m} - \ceiling {\dfrac {\paren {m - 1} n} m} } | c = }} {{eqn | r = \ceiling {\dfrac n m} \paren {\map f 0 + \map f 1} + \ceiling {\dfrac {2 n} m} \paren {\map f 0 + \map f 1} + \cdots + \ceiling {\dfrac {\paren {m - 1} n} m} \paren {\map f {m - 2} + \map f {m - 1} } + n \map f {m - 1} | c = }} {{eqn | r = \sum_{0 \mathop \le r \mathop < m} \ceiling {\dfrac {r n} m} \paren {\map f {r - 1} + \map f r} + n \map f {m - 1} | c = }} {{end-eqn}} {{qed}} \end{proof}
22322
\section{Sum over k from 1 to n of n Choose k by Sine of n Theta} Tags: Sine Function, Binomial Coefficients \begin{theorem} :$\ds \sum_{k \mathop = 1}^n \dbinom n k \sin k \theta = \paren {2 \cos \dfrac \theta 2}^n \sin \dfrac {n \theta} 2$ \end{theorem} \begin{proof} {{begin-eqn}} {{eqn | l = \paren {1 + e^{i \theta} }^n | r = \sum_{k \mathop = 0}^n \dbinom n k e^{i k \theta} | c = Binomial Theorem }} {{eqn | r = \sum_{k \mathop = 0}^n \dbinom n k \paren {\cos k \theta + i \sin k \theta} | c = Euler's Formula }} {{eqn | ll= \leadsto | l = \map \Im {\paren {1 + e^{i \theta} }^n} | r = \map \Im {\sum_{k \mathop = 0}^n \dbinom n k \paren {\cos k \theta + i \sin k \theta} } | c = }} {{eqn | r = \sum_{k \mathop = 0}^n \dbinom n k \sin k \theta | c = taking imaginary parts }} {{eqn | r = \sum_{k \mathop = 1}^n \dbinom n k \sin k \theta | c = as the zeroth term vanishes: $\sin 0 = 0$ }} {{end-eqn}} At the same time: {{begin-eqn}} {{eqn | l = \map \Im {\paren {1 + e^{i \theta} }^n} | r = \map \Im {e^{i n \theta / 2} \paren {e^{i \theta / 2} + e^{-i \theta / 2} }^n} | c = }} {{eqn | r = \map \Im {e^{i n \theta / 2} \paren {2 \cos \dfrac \theta 2}^n} | c = Cosine Exponential Formulation }} {{eqn | r = \map \Im {\paren {\cos \dfrac {n \theta} 2 + i \sin \dfrac {n \theta} 2} \paren {2 \cos \dfrac \theta 2}^n} | c = Euler's Formula }} {{eqn | r = \sin \dfrac {n \theta} 2 \paren {2 \cos \dfrac \theta 2}^n | c = }} {{end-eqn}} {{qed}} \end{proof}
22323
\section{Sum over k of -1^k by n choose k by r-kt choose n by r over r-kt} Tags: Binomial Coefficients \begin{theorem} :$\ds \sum_k \paren {-1}^k \dbinom n k \dbinom {r - k t} n \dfrac r {r - k t} = \delta_{n 0}$ where $\delta_{n 0}$ is the Kronecker delta. \end{theorem} \begin{proof} The proof proceeds by induction. For all $n \in \Z_{\ge 0}$, let $zmsp P n$ be the proposition: :$\ds \sum_k \paren {-1}^k \dbinom n k \dbinom {r - k t} n \dfrac r {r - k t} = \delta_{n 0}$ \end{proof}
22324
\section{Sum over k of -2 Choose k} Tags: Binomial Coefficients \begin{theorem} :$\ds \sum_{k \mathop = 0}^n \binom {-2} k = \paren {-1}^n \ceiling {\dfrac {n + 1} 2}$ where: :$\dbinom {-2} k$ is a binomial coefficient :$\ceiling x$ denotes the ceiling of $x$. \end{theorem} \begin{proof} {{begin-eqn}} {{eqn | l = \sum_{k \mathop = 0}^n \binom {-2} k | r = \sum_{k \mathop = 0}^n \paren {-1} \binom {k - \paren {-2} - 1} k | c = Negated Upper Index of Binomial Coefficient }} {{eqn | r = \sum_{k \mathop = 0}^n \paren {-1} \binom {k + 1} k | c = }} {{eqn | r = \sum_{k \mathop = 0}^n \paren {-1} \paren {k + 1} | c = Binomial Coefficient with Self minus One }} {{eqn | r = 1 - 2 + 3 - 4 + \cdots \pm \paren {n + 1} | c = }} {{eqn | r = \paren {1 + 2 + 3 + 4 + \cdots + \paren {n + 1} } - 2 \times \paren {2 + 4 + 6 + 8 + \cdots + m} | c = where $m = n$ or $m = n + 1$ according to whether $n$ is odd or even }} {{end-eqn}} When $n$ is even, we have: {{begin-eqn}} {{eqn | r = \paren {1 + 2 + 3 + 4 + \cdots + \paren {n + 1} } - 2 \times \paren {2 + 4 + 6 + 8 + \cdots + n} | o = | c = }} {{eqn | r = \paren {1 + 2 + 3 + 4 + \cdots + \paren {n + 1} } - 4 \paren {1 + 2 + 3 + 4 + \cdots + \frac n 2} | c = }} {{eqn | r = \sum_{k \mathop = 2}^{n + 1} k - 4 \sum_{k \mathop = 1}^{\frac n 2} k | c = }} {{eqn | r = \frac {\paren {n + 1} \paren {n + 2} } 2 - 4 \frac {\frac n 2 \paren {\frac n 2 + 1} } 2 | c = Closed Form for Triangular Numbers }} {{eqn | r = \frac {\paren {n + 1} \paren {n + 2} } 2 - \frac {n \paren {n + 2} } 2 | c = simplifying }} {{eqn | r = \frac {\paren {n + 2} \paren {n + 1 - n} } 2 | c = simplifying }} {{eqn | r = \frac {n + 2} 2 | c = simplifying }} {{end-eqn}} As $n$ is even, $n + 1$ is odd, and so: :$\dfrac {n + 2} 2 = \paren {-1}^n \ceiling {\dfrac {n + 1} 2}$ {{qed|lemma}} When $n$ is odd, we have: {{begin-eqn}} {{eqn | r = \paren {1 + 2 + 3 + 4 + \cdots + \paren {n + 1} } - 2 \times \paren {2 + 4 + 6 + 8 + \cdots + n + 1} | o = | c = }} {{eqn | r = \paren {1 + 2 + 3 + 4 + \cdots + \paren {n + 1} } - 4 \paren {1 + 2 + 3 + 4 + \cdots + \frac {n + 1} 2} | c = }} {{eqn | r = \sum_{k \mathop = 2}^{n + 1} k - 4 \sum_{k \mathop = 1}^{\frac {n + 1} 2} k | c = }} {{eqn | r = \frac {\paren {n + 1} \paren {n + 2} } 2 - 4 \frac {\frac {n + 1} 2 \paren {\frac {n + 1} 2 + 1} } 2 | c = Closed Form for Triangular Numbers }} {{eqn | r = \frac {\paren {n + 1} \paren {n + 2} } 2 - \frac {\paren {n + 1} \paren {n + 3} } 2 | c = simplifying }} {{eqn | r = \frac {\paren {n + 1} \paren {\paren {n + 2} - \paren {n + 3} } } 2 | c = simplifying }} {{eqn | r = \paren {-1} \frac {n + 1} 2 | c = simplifying }} {{end-eqn}} As $n$ is odd, $n + 1$ is even, and so $\dfrac {n + 1} 2$ is an integer. Thus from Real Number is Integer iff equals Ceiling: :$\paren {-1} \dfrac {n + 1} 2 = \paren {-1}^n \ceiling {\dfrac {n + 1} 2}$ {{qed|lemma}} Thus: :$\ds \sum_{k \mathop = 0}^n \binom {-2} k = \paren {-1}^n \ceiling {\dfrac {n + 1} 2}$ whether $n$ is odd or even. Hence the result. {{qed}} \end{proof}
22325
\section{Sum over k of Floor of Log base b of k} Tags: Logarithms, Summations, Floor Function \begin{theorem} Let $n \in \Z_{> 0}$ be a strictly positive integer. Let $b \in \Z$ such that $b \ge 2$. Then: :$\ds \sum_{k \mathop = 1}^n \floor {\log_b k} = \paren {n + 1} \floor {\log_b n} - \dfrac {b^{\floor {\log_b n} + 1} - b} {b - 1}$ \end{theorem} \begin{proof} From Sum of Sequence as Summation of Difference of Adjacent Terms: :$(1): \quad \ds \sum_{k \mathop = 1}^n \floor {\log_b k} = n \floor {\log_b n} - \sum_{k \mathop = 1}^{n - 1} k \paren {\floor {\map {\log_b} {k + 1} } - \floor {\log_b k} }$ Let $S$ be defined as: :$\ds S := \sum_{k \mathop = 1}^{n - 1} k \paren {\floor {\map {\log_b} {k + 1} } - \floor {\log_b k} }$ As $b \ge 2$, we have that: :$\map {\log_b} {k + 1} - \log_b k < 1$ As $b$ is an integer: :$\lfloor {\map {\log_b} {k + 1} } - \floor {\log_b k} = 1$ {{iff}} $k + 1$ is a power of $b$. So: {{begin-eqn}} {{eqn | l = S | r = \sum_{k \mathop = 1}^{n - 1} k \sqbrk {k + 1 \text{ is a power of } b} | c = where $\sqbrk {\, \cdot \,}$ is Iverson's convention }} {{eqn | r = \sum_{1 \mathop \le t \mathop \le \log_b n} \paren {b^t - 1} | c = }} {{eqn | r = \sum_{t \mathop = 1}^{\floor {\log_b n} } \paren {b^t - 1} | c = }} {{eqn | r = \sum_{t \mathop = 1}^{\floor {\log_b n} } b^t - \sum_{t \mathop = 1}^{\floor {\log_b n} } 1 | c = }} {{eqn | r = \sum_{t \mathop = 1}^{\floor {\log_b n} } b^t - \floor {\log_b n} | c = }} {{eqn | r = b \sum_{t \mathop = 0}^{\floor {\log_b n} - 1} b^t - \floor {\log_b n} | c = extracting $b$ as a factor }} {{eqn | r = b \frac {b^{\floor {\log_b n} } - 1} {b - 1} - \floor {\log_b n} | c = Sum of Geometric Progression }} {{eqn | r = \frac {b^{\floor {\log_b n} + 1} - b} {b - 1} - \floor {\log_b n} | c = }} {{end-eqn}} The result follows by substituting $S$ back into $(1)$ and factoring out $\floor {\log_b n}$. {{qed}} \end{proof}
22326
\section{Sum over k of Floor of Root k} Tags: Summations, Floor Function \begin{theorem} Let $n \in \Z_{> 0}$ be a strictly positive integer. Let $b \in \Z$ such that $b \ge 2$. Then: :$\ds \sum_{k \mathop = 1}^n \floor {\sqrt k} = \floor {\sqrt n} \paren {n - \dfrac {\paren {2 \floor {\sqrt n} + 5} \paren {\floor {\sqrt n} - 1} } 6}$ \end{theorem} \begin{proof} From Sum of Sequence as Summation of Difference of Adjacent Terms: :$\ds \sum_{k \mathop = 1}^n \floor {\sqrt k} = n \floor {\sqrt n} - \sum_{k \mathop = 1}^{n - 1} k \paren {\floor {\sqrt {k + 1} } - \floor {\sqrt k} }$ Let $S$ be defined as: :$\ds S := \sum_{k \mathop = 1}^{n - 1} k \paren {\floor {\sqrt {k + 1} } - \floor {\sqrt k} }$ We have that: :$\sqrt {k + 1} - \sqrt k < 1$ and so: :$\floor {\sqrt {k + 1} } - \floor {\sqrt k} = 1$ {{iff}} $k + 1$ is a square number. So: {{begin-eqn}} {{eqn | l = S | r = \sum_{k \mathop = 1}^{n - 1} k \sqbrk {\text {$k + 1$ is a square number} } | c = }} {{eqn | l = S | r = \sum_{k \mathop = 2}^n (k - 1) \sqbrk {\text {$k$ is a square number} } | c = }} {{eqn | r = \sum_{t \mathop = 2}^{\floor {\sqrt n} } \paren {t^2 - 1} | c = $1$ is not included in this summation }} {{eqn | r = \sum_{t \mathop = 1}^{\floor {\sqrt n} } t^2 - 1 - \sum_{t \mathop = 2}^{\floor {\sqrt n} } 1 | c = }} {{eqn | r = \sum_{t \mathop = 1}^{\floor {\sqrt n} } t^2 - \sum_{t \mathop = 1}^{\floor {\sqrt n} } 1 | c = }} {{eqn | r = \frac {\floor {\sqrt n} \paren {\floor {\sqrt n} + 1} \paren {2 \floor {\sqrt n} + 1} } 6 - \floor {\sqrt n} | c = Sum of Sequence of Squares }} {{eqn | r = \frac {\floor {\sqrt n} \paren {\floor {\sqrt n} + 1} \paren {2 \floor {\sqrt n} + 1} - 6 \floor {\sqrt n} } 6 | c = }} {{eqn | r = \floor {\sqrt n} \frac {\paren {\floor {\sqrt n} + 1} \paren {2 \floor {\sqrt n} + 1} - 6} 6 | c = }} {{eqn | r = \floor {\sqrt n} \frac {2 \floor {\sqrt n}^2 + 3 \floor {\sqrt n} - 5} 6 | c = }} {{eqn | ll= \leadsto | l = \sum_{k \mathop = 1}^n \floor {\sqrt k} | r = n \floor {\sqrt n} - \floor {\sqrt n} \frac {\paren {2 \floor {\sqrt n} + 5} \paren {\floor {\sqrt n} - 1} } 6 | c = }} {{eqn | r = \floor {\sqrt n} \paren {n - \dfrac {\paren {2 \floor {\sqrt n} + 5} \paren {\floor {\sqrt n} - 1} } 6} | c = }} {{end-eqn}} {{qed}} \end{proof}
22327
\section{Sum over k of Stirling Number of the Second Kind of n+1 with k+1 by Unsigned Stirling Number of the First Kind of k with m by -1^k-m} Tags: Stirling Numbers, Binomial Coefficients \begin{theorem} Let $m, n \in \Z_{\ge 0}$. :$\ds \sum_k {n + 1 \brace k + 1} {k \brack m} \paren {-1}^{k - m} = \binom n m$ where: :$\dbinom n m$ denotes a binomial coefficient :$\ds {k \brack m}$ denotes an unsigned Stirling number of the first kind :$\ds {n + 1 \brace k + 1}$ denotes a Stirling number of the second kind. \end{theorem} \begin{proof} The proof proceeds by induction on $n$. For all $n \in \Z_{\ge 0}$, let $\map P m$ be the proposition: :$\ds \forall m \in \Z_{\ge 0}: \sum_k {n + 1 \brace k + 1} {k \brack m} \paren {-1}^{k - m} = \binom n m$ \end{proof}
22328
\section{Sum over k of Stirling Numbers of the Second Kind of k+1 with m+1 by n choose k by -1^k-m} Tags: Stirling Numbers, Binomial Coefficients \begin{theorem} Let $m, n \in \Z_{\ge 0}$. :$\ds \sum_k {k + 1 \brace m + 1} \binom n k \paren {-1}^{n - k} = {n \brace m}$ where: :$\ds {k + 1 \brace m + 1}$ and so on denotes a Stirling number of the second kind :$\dbinom n k$ denotes a binomial coefficient. \end{theorem} \begin{proof} The proof proceeds by induction. For all $n \in \Z_{\ge 0}$, let $\map P n$ be the proposition: :$\ds \forall m \in \Z_{\ge 0}: \sum_k {k + 1 \brace m + 1} \binom n k \paren {-1}^{n - k} = {n \brace m}$ \end{proof}
22329
\section{Sum over k of Stirling Numbers of the Second Kind of k with m by n choose k} Tags: Stirling Numbers, Binomial Coefficients \begin{theorem} Let $m, n \in \Z_{\ge 0}$. :$\ds \sum_k {k \brace m} \binom n k = {n + 1 \brace m + 1}$ where: :$\ds {k \brace m}$ denotes a Stirling number of the second kind :$\dbinom n k$ denotes a binomial coefficient. \end{theorem} \begin{proof} The proof proceeds by induction. For all $n \in \Z_{\ge 0}$, let $\map P n$ be the proposition: :$\ds \forall m \in \Z_{\ge 0}: \sum_k {k \brace m} \binom n k = {n + 1 \brace m + 1}$ \end{proof}
22330
\section{Sum over k of Sum over j of Floor of n + jb^k over b^k+1} Tags: Summations, Floor Function \begin{theorem} Let $n, b \in \Z$ such that $n \ge 0$ and $b \ge 2$. Then: :$\ds \sum_{k \mathop \ge 0} \sum_{1 \mathop \le j \mathop < b} \floor {\dfrac {n + j b^k} {b^{k + 1} } } = n$ where $\floor {\, \cdot \,}$ denotes the floor function. \end{theorem} \begin{proof} We have that $\floor {\dfrac {n + j b^k} {b^{k + 1} } }$ is in the form $\floor {\dfrac {m k + x} n}$ so that: {{begin-eqn}} {{eqn | l = \sum_{1 \mathop \le j \mathop < b} \floor {\dfrac {n + j b^k} {b^{k + 1} } } | r = \sum_{1 \mathop \le j \mathop < b} \floor {\dfrac {j + \frac n {b^k} } b} | c = }} {{eqn | r = \sum_{0 \mathop \le j \mathop < b} \floor {\dfrac {j + \frac n {b^k} } b} - \floor {\dfrac n {b^{k + 1} } } | c = }} {{eqn | r = \dfrac {\paren {1 - 1} \paren {b - 1} } 2 + \dfrac {\paren {1 - 1} } 2 + 1 \floor {\dfrac n {b^k} } - \floor {\dfrac n {b^{k + 1} } } | c = Summation over k of Floor of mk+x over n }} {{eqn | r = \floor {\dfrac n {b^k} } - \floor {\dfrac n {b^{k + 1} } } | c = }} {{end-eqn}} Thus: {{begin-eqn}} {{eqn | l = \sum_{k \mathop \ge 0} \sum_{1 \mathop \le j \mathop < b} \floor {\dfrac {n + j b^k} {b^{k + 1} } } | r = \sum_{k \mathop \ge 0} \paren {\floor {\dfrac n {b^k} } - \floor {\dfrac n {b^{k + 1} } } } | c = }} {{eqn | r = \lim_{k \mathop \to \infty} \floor {\dfrac n 1} - \floor {\dfrac n {b^{k + 1} } } | c = {{Defof|Telescoping Series}} }} {{eqn | r = n | c = }} {{end-eqn}} Hence the result. {{qed}} \end{proof}
22331
\section{Sum over k of Unsigned Stirling Number of the First Kind of n+1 with k+1 by Stirling Number of the Second Kind of k with m by -1^k-m} Tags: Stirling Numbers, Binomial Coefficients \begin{theorem} Let $m, n \in \Z_{\ge 0}$. :$\ds \sum_k {n + 1 \brack k + 1} {k \brace m} \paren {-1}^{k - m} = \sqbrk {n \ge m} \dfrac {n!} {m!}$ where: :$\sqbrk {n \ge m}$ is Iverson's convention :$\ds {n + 1 \brack k + 1}$ denotes an unsigned Stirling number of the first kind :$\ds {k \brace m}$ denotes a Stirling number of the second kind. \end{theorem} \begin{proof} The proof proceeds by induction on $n$. For all $n \in \Z_{\ge 0}$, let $\map P n$ be the proposition: :$\ds \sum_k {n + 1 \brack k + 1} {k \brace m} \paren {-1}^{k - m} = \sqbrk {n \ge m} \dfrac {n!} {m!}$ \end{proof}
22332
\section{Sum over k of Unsigned Stirling Numbers of the First Kind of n+1 with k+1 by k choose m by -1^k-m} Tags: Stirling Numbers, Binomial Coefficients \begin{theorem} Let $m, n \in \Z_{\ge 0}$. :$\ds \sum_k {n + 1 \brack k + 1} \binom k m \paren {-1}^{k - m} = {n \brack m}$ where: :$\ds {n + 1 \brack k + 1}$ etc. denotes an unsigned Stirling number of the first kind :$\dbinom k m$ denotes a binomial coefficient. \end{theorem} \begin{proof} The proof proceeds by induction. For all $n \in \Z_{\ge 0}$, let $\map P n$ be the proposition: :$\ds \forall m \in \Z_{\ge 0}: \sum_k {n + 1 \brack k + 1} \binom k m \paren {-1}^{k - m} = {n \brack m}$ \end{proof}
22333
\section{Sum over k of Unsigned Stirling Numbers of the First Kind of n with k by k choose m} Tags: Stirling Numbers, Binomial Coefficients \begin{theorem} Let $m, n \in \Z_{\ge 0}$. :$\ds \sum_k {n \brack k} \binom k m = {n + 1 \brack m + 1}$ where: :$\ds {n \brack k}$ denotes an unsigned Stirling number of the first kind :$\dbinom k m$ denotes a binomial coefficient. \end{theorem} \begin{proof} The proof proceeds by induction. For all $n \in \Z_{\ge 0}$, let $\map P n$ be the proposition: :$\ds \forall m \in \Z_{\ge 0}: \sum_k {n \brack k} \binom k m = {n + 1 \brack m + 1}$ \end{proof}
22334
\section{Sum over k of m-n choose m+k by m+n choose n+k by Stirling Number of the Second Kind of m+k with k} Tags: Stirling Numbers, Binomial Coefficients \begin{theorem} Let $m, n \in \Z_{\ge 0}$. :$\ds \sum_k \binom {m - n} {m + k} \binom {m + n} {n + k} {m + k \brace k} = {n \brack n - m}$ where: :$\dbinom {m - n} {m + k}$ etc. denote binomial coefficients :$\ds {m + k \brace k}$ denotes a Stirling number of the second kind :$\ds {n \brack n - m}$ denotes an unsigned Stirling number of the first kind. \end{theorem} \begin{proof} The proof proceeds by induction on $m$. For all $m \in \Z_{\ge 0}$, let $\map P n$ be the proposition: :$\ds \forall n \in \Z_{\ge 0}: \sum_k \binom {m - n} {m + k} \binom {m + n} {n + k} {m + k \brace k} = {n \brack n - m}$ $\map P 0$ is the case: {{begin-eqn}} {{eqn | r = \sum_k \binom {0 - n} {0 + k} \binom {0 + n} {n + k} {0 + k \brace k} | o = | c = }} {{eqn | r = \sum_k \binom {- n} k \binom n {n + k} | c = Stirling Number of the Second Kind of Number with Self }} {{eqn | r = \sum_k \binom {- n} k \delta_{0 k} | c = as $\dbinom n {n + k} = 0$ for $k = 0$, and Binomial Coefficient with Self }} {{eqn | r = \binom {- n} 0 | c = All terms but where $k = 0$ vanish }} {{eqn | r = 1 | c = Binomial Coefficient with Zero }} {{eqn | r = {n \brack n - 0} | c = Unsigned Stirling Number of the First Kind of Number with Self }} {{end-eqn}} So $\map P 0$ is seen to hold. \end{proof}
22335
\section{Sum over k of m-n choose m+k by m+n choose n+k by Unsigned Stirling Number of the First Kind of m+k with k} Tags: Stirling Numbers, Binomial Coefficients \begin{theorem} Let $m, n \in \Z_{\ge 0}$. :$\ds \sum_k \binom {m - n} {m + k} \binom {m + n} {n + k} {m + k \brack k} = {n \brace n - m}$ where: :$\dbinom {m - n} {m + k}$ etc. denote binomial coefficients :$\ds {m + k \brack k}$ denotes an unsigned Stirling number of the first kind :$\ds {n \brace n - m}$ denotes a Stirling number of the second kind. \end{theorem} \begin{proof} The proof proceeds by induction on $m$. For all $m \in \Z_{\ge 0}$, let $\map P n$ be the proposition: :$\forall n \in \Z_{\ge 0}: \ds \sum_k \binom {m - n} {m + k} \binom {m + n} {n + k} {m + k \brack k} = {n \brace n - m}$ \end{proof}
22336
\section{Sum over k of m choose k by -1^m-k by k to the n} Tags: Stirling Numbers, Binomial Coefficients \begin{theorem} Let $m, n \in \Z_{\ge 0}$. :$\ds \sum_k \binom m k \paren {-1}^{m - k} k^n = m! {n \brace m}$ where: :$\dbinom m k$ denotes a binomial coefficient :$\ds {n \brace m}$ etc. denotes a Stirling number of the second kind :$m!$ denotes a factorial. \end{theorem} \begin{proof} The proof proceeds by induction on $m$. For all $m \in \Z_{\ge 0}$, let $\map P n$ be the proposition: :$\ds \forall n \in \Z_{\ge 0}: \sum_k \binom m k \paren {-1}^{m - k} k^n = m! {n \brace m}$ \end{proof}
22337
\section{Sum over k of n Choose k by Fibonacci Number with index m+k} Tags: Binomial Coefficients, Fibonacci Numbers \begin{theorem} :$\ds \sum_{k \mathop \ge 0} \binom n k F_{m + k} = F_{m + 2 n}$ where: :$\dbinom n k$ denotes a binomial coefficient :$F_n$ denotes the $n$th Fibonacci number. \end{theorem} \begin{proof} From Sum over k of n Choose k by Fibonacci t to the k by Fibonacci t-1 to the n-k by Fibonacci m+k: :$(1): \quad \ds \sum_{k \mathop \ge 0} \binom n k {F_t}^k {F_{t - 1} }^{n - k} F_{m + k} = F_{m + t n}$ Letting $t = 2$ in $(1)$: {{begin-eqn}} {{eqn | l = \sum_{k \mathop \ge 0} \binom n k {F_2}^k {F_{2 - 1} }^{n - k} F_{m + k} | r = \sum_{k \mathop \ge 0} \binom n k 1^k 1^{n - k} F_{m + k} | c = {{Defof|Fibonacci Number}}: $F_1 = 1, F_2 = 1$ }} {{eqn | r = \sum_{k \mathop \ge 0} \binom n k F_{m + k} | c = }} {{eqn | r = F_{m + 2 n} | c = from $(1)$ }} {{end-eqn}} {{qed}} \end{proof}
22338
\section{Sum over k of n Choose k by Fibonacci t to the k by Fibonacci t-1 to the n-k by Fibonacci m+k} Tags: Binomial Coefficients, Fibonacci Numbers \begin{theorem} :$\ds \sum_{k \mathop \ge 0} \binom n k {F_t}^k {F_{t - 1} }^{n - k} F_{m + k} = F_{m + t n}$ where: :$\dbinom n k$ denotes a binomial coefficient :$F_n$ denotes the $n$th Fibonacci number. \end{theorem} \begin{proof} The proof proceeds by induction on $n$. For all $n \in \Z_{\ge 0}$, let $\map P n$ be the proposition: :$\forall m, t \in \N: \ds \sum_{k \mathop \ge 0} \binom n k {F_t}^k {F_{t - 1} }^{n - k} F_{m + k} = F_{m + t n}$ $\map P 0$ is the case: :$\ds \binom 0 0 {F_t}^0 {F_{t - 1} }^0 F_{m + 0} = F_m$ Thus $\map P 0$ is seen to hold. \end{proof}
22339
\section{Sum over k of n Choose k by p^k by (1-p)^n-k by Absolute Value of k-np} Tags: Binomial Coefficients \begin{theorem} Let $n \in \Z_{\ge 0}$ be a non-negative integer. Then: :$\ds \sum_{k \mathop \in \Z} \dbinom n k p^k \paren {1 - p}^{n - k} \size {k - n p} = 2 \ceiling {n p} \dbinom n {\ceiling {n p} } p^{\ceiling {n p} } \paren {1 - p}^{n - 1 - \ceiling {n p} }$ \end{theorem} \begin{proof} Let $t_k = k \dbinom n k p^k \paren {1 - p}^{n + 1 - k}$. Then: :$t_k - t_{k + 1} = \dbinom n k p^k \paren {1 - p}^{n - k} \paren {k - n p}$ Thus the stated summation is: :$\ds \sum_{k \mathop < \ceiling {n p} } \paren {t_{k + 1} - t_k} + \sum_{k \mathop \ge \ceiling {n p} } \paren {t_k - t_{k + 1} } = 2 t_{\ceiling {n p} }$ {{qed}} \end{proof}
22340
\section{Sum over k of n Choose k by x to the k by kth Harmonic Number} Tags: Harmonic Numbers, Binomial Coefficients \begin{theorem} Let $x \in \R_{> 0}$ be a real number. Then: :$\ds \sum_{k \mathop \in \Z} \binom n k x^k H_k = \paren {x + 1}^n \paren {H_n - \map \ln {1 + \frac 1 x} } + \epsilon$ where: :$\dbinom n k$ denotes a binomial coefficient :$H_k$ denotes the $k$th harmonic number :$0 < \epsilon < \dfrac 1 {x \paren {n + 1} }$ \end{theorem} \begin{proof} Let $S_n := \ds \sum_{k \mathop \in \Z} \binom n k x^k H_k$. Then: {{begin-eqn}} {{eqn | l = S_{n + 1} | r = \sum_{k \mathop \in \Z} \binom {n + 1} k x^k H_k | c = }} {{eqn | r = \sum_{k \mathop \in \Z} \paren {\binom n k + \binom n {k - 1} } x^k H_k | c = Pascal's Rule }} {{eqn | r = \sum_{k \mathop \in \Z} \binom n k x^k H_k + \sum_{k \mathop \in \Z} \binom n {k - 1} x^k H_k | c = }} {{eqn | r = S_n + x \sum_{k \mathop \ge 1} \binom n {k - 1} x^{k - 1} \paren {H_{k - 1} + \frac 1 k} | c = Definition of $S_n$ }} {{eqn | r = S_n + x \sum_{k \mathop \ge 1} \binom n {k - 1} x^{k - 1} H_{k - 1} + x \sum_{k \mathop \ge 1} \binom n {k - 1} x^{k - 1} \frac 1 k | c = }} {{eqn | r = S_n + x \sum_{k \mathop \ge 0} \binom n k x^k H_k + \sum_{k \mathop \ge 1} \binom n {k - 1} x^k \frac 1 k | c = Translation of Index Variable of Summation }} {{eqn | r = S_n + x S_n + \sum_{k \mathop \ge 1} \frac k {n + 1} \binom {n + 1} k x^k \frac 1 k | c = Definition of $S_n$, Factors of Binomial Coefficient }} {{eqn | r = \paren {x + 1} S_n + \frac 1 {n + 1} \sum_{k \mathop \ge 1} \binom {n + 1} k x^k | c = simplifying }} {{eqn | r = \paren {x + 1} S_n + \frac 1 {n + 1} \paren {\sum_{k \mathop \ge 0} \binom {n + 1} k x^k - \binom {n + 1} 0 x^0} | c = forcing the summation to include the $k = 0$ term }} {{eqn | r = \paren {x + 1} S_n + \frac {\paren {x + 1}^{n + 1} - 1} {n + 1} | c = Binomial Theorem and Binomial Coefficient with $0$ }} {{eqn | ll= \leadsto | l = \frac {S_{n + 1} } {\paren {x + 1}^{n + 1} } | r = \frac {S_n} {\paren {x + 1}^n} + \frac 1 {n + 1} - \frac 1 {\paren {n + 1} \paren {x + 1}^{n + 1} } | c = dividing through by $\paren {x + 1}^{n + 1}$ }} {{end-eqn}} As $S_1 = x$, we have that: {{begin-eqn}} {{eqn | l = \dfrac {S_n} {\paren {x + 1}^n} | r = \frac {S_{n - 1} } {\paren {x + 1}^{n - 1} } + \frac 1 n - \frac 1 {n \paren {x + 1}^n} }} {{eqn | r = \frac {S_{n - 2} } {\paren {x + 1}^{n - 2} } + \frac 1 {n - 1} - \frac 1 {\paren {n - 1} \paren {x + 1}^{n - 1} } + \frac 1 n - \frac 1 {n \paren {x + 1}^n} }} {{eqn | r = \dots}} {{eqn | r = \frac {S_1} {\paren {x + 1}^1} + \frac 1 2 + \frac 1 3 + \dots + \frac 1 n - \frac 1 {2 \paren {x + 1}^2} - \frac 1 {3 \paren {x + 1}^3} - \dots - \frac 1 {n \paren {x + 1}^n} }} {{eqn | r = \frac x {x + 1} - 1 + \frac 1 {x + 1} + 1 + \frac 1 2 + \frac 1 3 + \dots + \frac 1 n - \frac 1 {x + 1} - \frac 1 {2 \paren {x + 1}^2} - \frac 1 {3 \paren {x + 1}^3} - \dots - \frac 1 {n \paren {x + 1}^n} }} {{eqn | r = 1 + \frac 1 2 + \frac 1 3 + \dots + \frac 1 n - \frac 1 {x + 1} - \frac 1 {2 \paren {x + 1}^2} - \frac 1 {3 \paren {x + 1}^3} - \dots - \frac 1 {n \paren {x + 1}^n} }} {{eqn | r = H_n - \ds \sum_{k \mathop = 1}^n \frac 1 {k \paren {x + 1}^k} | c = {{Defof|Harmonic Number}} }} {{end-eqn}} From Corollary to Power Series Expansion for $\map \ln {1 + x}$ we have: :$\ds \map \ln {1 - z} = -\sum_{k \mathop \ge 1} \frac {z^k} k$ Hence by Logarithm of Reciprocal we have: :$\ds \ln \frac 1 {1 - z} = -\map \ln {1 - z} = \sum_{k \mathop \ge 1} \frac {z^k} k$ Thus: {{begin-eqn}} {{eqn | l = \map \ln {1 + \frac 1 x} | r = \ln \dfrac 1 {1 - \dfrac 1 {x + 1} } | c = }} {{eqn | r = \sum_{k \mathop \ge 1} \frac 1 {k \paren {x + 1}^k} | c = }} {{end-eqn}} So as $n \to \infty$, $\ds \sum_{k \mathop \ge 1} \frac 1 {k \paren {x + 1}^k}$ converges, and so: {{begin-eqn}} {{eqn | l = \sum_{k \mathop = 1}^n \frac 1 {k \paren {x + 1}^k} | o = < | r = \frac 1 {\paren {n + 1} \paren {x + 1}^{n + 1} } \sum_{k \mathop \ge 0} \frac 1 {\paren {x + 1}^k} | c = }} {{eqn | r = \frac 1 {\paren {n + 1} \paren {x + 1}^n x} | c = }} {{end-eqn}} The result follows. {{qed}} \end{proof}
22341
\section{Sum over k of n Choose k by x to the k by kth Harmonic Number/x = -1} Tags: Harmonic Numbers, Binomial Coefficients \begin{theorem} While for $x \in \R_{>0}$ be a real number: :$\ds \sum_{k \mathop \in \Z} \binom n k x^k H_k = \paren {x + 1}^n \paren {H_n - \map \ln {1 + \frac 1 x} } + \epsilon$ when $x = -1$ we have: :$\ds \sum_{k \mathop \in \Z} \binom n k x^k H_k = \dfrac {-1} n$ where: :$\dbinom n k$ denotes a binomial coefficient :$H_k$ denotes the $k$th harmonic number. \end{theorem} \begin{proof} When $x = -1$ we have that $1 + \dfrac 1 x = 0$, so $\map \ln {1 + \dfrac 1 x}$ is undefined. Let $S_n = \ds \sum_{k \mathop \in \Z} \binom n k x^k H_k$ Then: {{begin-eqn}} {{eqn | l = S_{n + 1} | r = \sum_{k \mathop \in \Z} \binom {n + 1} k x^k H_k | c = }} {{eqn | r = \sum_{k \mathop \in \Z} \paren {\binom n k + \binom n {k - 1} } x^k H_k | c = Pascal's Rule }} {{eqn | r = S_n + x \sum_{k \mathop \ge 1} \paren {\binom n {k - 1} } x^{k - 1} \paren {H_{k - 1} + \frac 1 k} | c = }} {{eqn | r = S_n + x S_n + \sum_{k \mathop \ge 1} \binom n {k - 1} x^k \frac 1 k | c = }} {{eqn | r = \paren {1 + x} S_n + \frac 1 {n + 1} \sum_{k \mathop \ge 1} \binom {n + 1} k x^k | c = (look up result for this) }} {{end-eqn}} {{LinkWanted|for the above}} Setting $x = -1$: {{begin-eqn}} {{eqn | l = S_{n + 1} | r = \paren {1 + -1} S_n + \frac 1 {n + 1} \sum_{k \mathop \ge 1} \binom {n + 1} k \paren {-1}^k | c = }} {{eqn | r = \frac 1 {n + 1} \sum_{k \mathop \ge 1} \binom {n + 1} k \paren {-1}^k | c = }} {{eqn | ll= \leadsto | l = S_n | r = \frac 1 n \sum_{k \mathop \ge 1} \binom n k \paren {-1}^k | c = }} {{eqn | r = \frac 1 n \paren {\sum_{k \mathop \ge 0} \binom n k \paren {-1}^k - \binom n 0} | c = }} {{eqn | r = \frac 1 n \paren {0 - \binom n 0} | c = Alternating Sum and Difference of Binomial Coefficients for Given n }} {{eqn | r = \frac {-1} n | c = Binomial Coefficient with Zero }} {{end-eqn}} {{qed}} \end{proof}
22342
\section{Sum over k of r+tk choose k by s-tk choose n-k} Tags: Binomial Coefficients \begin{theorem} Let $n \in \Z_{\ge 0}$ be a non-negative integer. Then: :$\ds \sum_k \dbinom {r + t k} k \dbinom {s - t k} {n - k} = \sum_{k \mathop \ge 0} \dbinom {r + s - k} {n - k} t^k$ where $\dbinom {r + t k} k$ and so on denotes a binomial coefficient. \end{theorem} \begin{proof} Let $\map f {r, s, t, n}$ be the function defined as: :$\ds \map f {r, s, t, n} := \sum_k \dbinom {r + t k} k \dbinom {s - t k} {n - k}$ We have: {{begin-eqn}} {{eqn | o = | r = \sum_k \dbinom {r + t k} k \dbinom {s - t k} {n - k} | c = }} {{eqn | r = \sum_k \dbinom {r + t k} k \dbinom {s - t k} {n - k} \frac {r + t k} {r + t k} | c = }} {{eqn | r = \sum_k \dbinom {r + t k} k \dbinom {s - t k} {n - k} \frac r {r + t k} + \sum_k \dbinom {r + t k} k \dbinom {s - t k} {n - k} \frac {t k} {r + t k} | c = }} {{end-eqn}} {{proof wanted|in progress}} \end{proof}
22343
\section{Sum over k of r-kt Choose k by r over r-kt by s-(n-k)t Choose n-k by s over s-(n-k)t} Tags: Sum over k of r-kt Choose k by r over r-kt by s-(n-k)t Choose n-k by s over s-(n-k)t, Binomial Coefficients \begin{theorem} For $n \in \Z_{\ge 0}$: :$\ds \sum_k \map {A_k} {r, t} \map {A_{n - k} } {s, t} = \map {A_n} {r + s, t}$ where $\map {A_n} {x, t}$ is the polynomial of degree $n$ defined as: :$\map {A_n} {x, t} = \dbinom {x - n t} n \dfrac x {x - n t}$ where $x \ne n t$. \end{theorem} \begin{proof} Let: :$\displaystyle S = \sum_k A_k \left({r, t}\right) A_{n - k} \left({s, t}\right)$ Both sides of the statement of the theorem are polynomials in $r$, $s$ and $t$. Therefore it can be assumed that $r \ne k t \ne s$ for $0 \le k \le n$ or something will become undefined. By replacing the polynomials $A_n$ with their binomial coefficient definitions, the theorem can be expressed as: :$\displaystyle S = \sum_k \dbinom {r - k t} k \dbinom {s - \left({n - k}\right) t} {n - k} \dfrac r {r - k t} \dfrac s {s - \left({n - k}\right) t}$ Using the technique of partial fractions: :$\dfrac 1 {r - k t} \dfrac 1 {s - \left({n - k}\right) t} = \dfrac 1 {r + s - n t} \left({\dfrac 1 {r - k t} + \dfrac 1 {s - \left({n - k}\right) t} }\right)$ Thus: :$\displaystyle S = \frac s {r + s - n t} \sum_k \dbinom {r - k t} k \dbinom {s - \left({n - k}\right) t} {n - k} \dfrac r {r - k t} + \frac r {r + s - n t} \sum_k \dbinom {r - k t} k \dbinom {s - \left({n - k}\right) t} {n - k} \dfrac s {s - \left({n - k}\right) t}$ From Sum over $k$ of $\dbinom {r - t k} k \dbinom {s - t \left({n - k}\right)} {n - k} \dfrac r {r - t k}$: :$\displaystyle \sum_{k \mathop \ge 0} \binom {r - t k} k \binom {s - t \left({n - k}\right)} {n - k} \frac r {r - t k} = \binom {r + s - t n} n$ for $r, s, t \in \R, n \in \Z$. Thus we have: :$S = \dfrac s {r + s - n t} \dbinom {r + s - t n} n + \dfrac r {r + s - n t} \dbinom {s + r - t n} n$ after changing $k$ to $n - k$ in the second term. That is: :$S = \dbinom {r + s - n t} n \dfrac {r + s} {r + s - n t}$ which is $A_n \left({r + s, t}\right)$. {{qed}} \end{proof}
22344
\section{Sum over k of r-kt choose k by r over r-kt by z^k} Tags: Binomial Coefficients \begin{theorem} Let $n \in \Z_{\ge 0}$ be a positive integer. Let $\map {A_n} {x, t}$ be the polynomial of degree $n$ defined as: :$\map {A_n} {x, t} := \dbinom {x - n t} n \dfrac x {x - n t}$ for $x \ne n t$. Let $z = x^{t + 1} - x^t$. Then: :$\ds \sum_k \map {A_k} {r, t} z^k = x^r$ for sufficiently small $z$. \end{theorem} \begin{proof} From Sum over $k$ of $\paren {-1}^k$ by $\dbinom n k$ by $\dbinom {r - k t} n$ by $\dfrac r {r - k t}$ and renaming variables: :$\ds \sum_j \paren {-1}^j \dbinom k j \dbinom {r - j t} k \dfrac r {r - j t} = \delta_{k 0}$ where $\delta_{k 0}$ is the Kronecker delta. Thus: :$\ds \sum_{j, k} \paren {-1}^j \dbinom k j \dbinom {r - j t} k \dfrac r {r - j t} w^k = 1$ We have: {{begin-eqn}} {{eqn | o = | r = \sum_{j, k} \paren {-1}^j \dbinom k j \dbinom {r - j t} k \dfrac r {r - j t} w^k | c = }} {{eqn | r = \sum_j \paren {-1}^j \dfrac r {r - j t} \sum_k \dbinom k j \dbinom {r - j t} k w^k | c = }} {{eqn | r = \sum_j \paren {-1}^j \dfrac r {r - j t} \sum_k \dbinom {r - j t} j \dbinom {r - j t - j} {k - j} w^k | c = Product of $\dbinom r m$ with $\dbinom m k$ }} {{eqn | r = \sum_j \paren {-1}^j \dfrac r {r - j t} \dbinom {r - j t} j \sum_k \dbinom {r - j t - j} {k - j} w^k | c = }} {{eqn | r = \sum_j \paren {-1}^j \map {A_j} {r, t} \sum_k \dbinom {r - j t - j} {k - j} w^k | c = Definition of $\map {A_j} {r, t}$ }} {{eqn | r = \sum_j \paren {-1}^j \map {A_j} {r, t} \paren {1 + w}^{r - j t - j} w^j | c = Binomial Theorem }} {{end-eqn}} Now let: :$x = \dfrac 1 {1 + w}$ {{begin-eqn}} {{eqn | l = x | o = := | r = \dfrac 1 {1 + w} | c = }} {{eqn | ll= \leadsto | l = z | r = -\frac w {\paren {1 + w}^{1 + t} } | c = }} {{eqn | ll= \leadsto | l = \paren {1 + w}^{r - j k - j} w^j \paren {-1}^j | r = z^r z^j | c = }} {{end-eqn}} Thus: {{begin-eqn}} {{eqn | l = \sum_j \map {A_j} {r, t} z^j \paren {1 + w}^r | r = 1 | c = }} {{eqn | ll= \leadsto | l = \sum_j \map {A_j} {r, t} z^j | r = \paren {1 + w}^{- r} | c = }} {{eqn | r = x^r | c = }} {{end-eqn}} {{finish|Establish the fact that we have convergence by ratio test and estimates for large $k$. Or use complex variable theory to establish that the function is analytic around $x {{=}} 1$.}} {{qed}} \end{proof}
22345
\section{Sum over k of r-kt choose k by z^k} Tags: Sum over k of r-kt choose k by z^k, Binomial Coefficients \begin{theorem} Let $n \in \Z_{\ge 0}$ be a non-negative integer. Then: :$\ds \sum_k \dbinom {r - t k} k z^k = \frac {x^{r + 1} } {\paren {t + 1} x - t}$ where $\dbinom {r - t k} k$ denotes a binomial coefficient. \end{theorem} \begin{proof} From Sum over $k$ of $\dbinom {r - k t} k$ by $\dfrac r {r - k t}$ by $z^k$: :$\displaystyle (1): \quad \sum_k A_k \left({r, t}\right) z^k = x^r$ where: :$A_n \left({x, t}\right)$ is the polynomial of degree $n$ defined as: ::$A_n \left({x, t}\right) := \dbinom {x - n t} n \dfrac x {x - n t}$ :for $x \ne n t$ :$z = x^{t + 1} - x^t$. Differentiating $(1)$ {{WRT|Differentiation}} $z$: {{begin-eqn}} {{eqn | l = \sum_k A_k \left({r, t}\right) k z^{k - 1} | r = \frac {\mathrm d} {\mathrm d z} x^r | c = Power Rule for Derivatives }} {{eqn | ll= \leadsto | l = \sum_k A_k \left({r, t}\right) k z^k | r = z \frac {\mathrm d} {\mathrm d z} x^r | c = }} {{eqn | r = \left({x^{t + 1} - x^t}\right) r x^{r - 1} \frac {\mathrm d x} {\mathrm d z} | c = Chain Rule }} {{end-eqn}} We have: {{begin-eqn}} {{eqn | l = z | r = x^{t + 1} - x^t | c = }} {{eqn | ll= \leadsto | l = \frac {\mathrm d z} {\mathrm d x} | r = \left({t + 1}\right) x^t - t x^{t - 1} | c = Power Rule for Derivatives }} {{eqn | ll= \leadsto | l = \frac {\mathrm d x} {\mathrm d z} | r = \frac 1 {\left({t + 1}\right) x^t - t x^{t - 1} } | c = Derivative of Inverse Function }} {{end-eqn}} Hence: {{begin-eqn}} {{eqn | l = \sum_k k A_k \left({r, t}\right) z^k | r = \frac {\left({x^{t + 1} - x^t}\right) r x^{r - 1} } {\left({t + 1}\right) x^t - t x^{t - 1} } | c = }} {{eqn | r = \frac {\left({x - 1}\right) r x^r} {\left({t + 1}\right) x - t} | c = simplifying }} {{eqn | ll= \leadsto | l = \sum_k A_k \left({r, t}\right) z^k - \frac t r \sum_k k A_k \left({r, t}\right) z^k | r = x^r - \frac t r \frac {\left({x - 1}\right) r x^r} {\left({t + 1}\right) x - t} | c = }} {{eqn | ll= \leadsto | l = \sum_k \left({1 - \frac t r k}\right) A_k \left({r, t}\right) z^k | r = \frac {\left({\left({t + 1}\right) x - t}\right) x^r - t \left({x - 1}\right) x^r} {\left({t + 1}\right) x - t} | c = }} {{eqn | r = \frac {x^{r + 1} } {\left({t + 1}\right) x - t} | c = simplifying }} {{eqn | ll= \leadsto | l = \sum_k \frac {r - t k} r \dbinom {r - k t} k \dfrac r {r - k t} z^k | r = \frac {x^{r + 1} } {\left({t + 1}\right) x - t} | c = substituting for $A_k \left({r, t}\right)$ }} {{eqn | ll= \leadsto | l = \sum_k \dbinom {r - k t} k z^k | r = \frac {x^{r + 1} } {\left({t + 1}\right) x - t} | c = simplifying }} {{end-eqn}} {{qed}} \end{proof}
22346
\section{Sum over k of r-tk Choose k by s-t(n-k) Choose n-k by r over r-tk/Proof 1/Basis for the Induction} Tags: Sum over k of r-tk Choose k by s-t(n-k) Choose n-k by r over r-tk, Binomial Coefficients \begin{theorem} Let $r, s, t \in \R, n \in \Z$. Consider the equation: :$\ds (1): \quad \sum_{k \mathop \ge 0} \binom {r - t k} k \binom {s - t \paren {n - k} } {n - k} \frac r {r - t k} = \binom {r + s - t n} n$ where $\dbinom {r - t k} k$ etc. are binomial coefficients. Then equation $(1)$ holds for the special case where $s = n - 1 - r + n t$. \end{theorem} \begin{proof} Substituting $n - 1 - r + n t$ for $s$ in the {{RHS}}: {{begin-eqn}} {{eqn | l = \binom {r + s - t n} n | r = \binom {r + \paren {n - 1 - r + n t} - t n} n | c = }} {{eqn | r = \binom {r + n - 1 - r + n t - t n} n | c = }} {{eqn | r = \binom {n - 1} n | c = }} {{end-eqn}} Substituting $n - 1 - r + n t$ for $s$ in the {{LHS}}: {{begin-eqn}} {{eqn | o = | r = \sum_{k \mathop \ge 0} \binom {r - t k} k \binom {n - 1 - r + t k} {n - k} \frac r {r - t k} | c = }} {{eqn | r = \sum_{k \mathop \ge 0} \dfrac {\paren {r - t k}! \paren {n - 1 - r + t k}! \, r} {k! \paren {r - t k - k}! \paren {n - k}! \paren {k - 1 - r + t k}! \paren {r - t k} } | c = }} {{eqn | r = \sum_{k \mathop \ge 0} \frac r {n!} \binom n k \dfrac {\paren {r - t k - 1}! \paren {n - 1 - r + t k}!} {\paren {r - t k - k}! \paren {k - 1 - r + t k}!} | c = }} {{eqn | r = \sum_{k \mathop \ge 0} \frac r {n!} \binom n k \prod_{0 \mathop < j \mathop < k} \paren {r - t k - j} \prod_{0 \mathop < j \mathop < n \mathop - k} \paren {n - 1 - r + t k - j} | c = }} {{eqn | r = \sum_{k \mathop \ge 0} \frac r {n!} \binom n k \paren {-1}^{k - 1} \prod_{0 \mathop < j \mathop < k} \paren {-r + t k + j} \prod_{k \mathop \le j \mathop < n} \paren {- r + t k + j} | c = }} {{end-eqn}} The two products give a polynomial of degree $n - 1$ in $k$. Hence the sum for all $k$ is $0$. Thus we have: {{begin-eqn}} {{eqn | l = \sum_{k \mathop \ge 0} \binom {r - t k} k \binom {n - 1 - r + t k} {n - k} \frac r {r - t k} | r = 0 | c = }} {{eqn | r = \binom {n - 1} n | c = {{Defof|Binomial Coefficient}} }} {{end-eqn}} Thus the equation indeed holds for the special case where $s = n - 1 - r + n t$. {{qed}} \end{proof}
22347
\section{Sum over k of r-tk Choose k by s-t(n-k) Choose n-k by r over r-tk/Proof 1/Lemma} Tags: Sum over k of r-tk Choose k by s-t(n-k) Choose n-k by r over r-tk, Binomial Coefficients \begin{theorem} Let this hold for $\tuple {r, s, t, n}$: :$\ds \sum_{k \mathop \ge 0} \binom {r - t k} k \binom {s - t \paren {n - k} } {n - k} \frac r {r - t k} = \binom {r + s - t n} n$ and also for $\tuple {r, s - t, t, n - 1}$. Then it also holds for $\tuple {r, s + 1, t, n}$. \end{theorem} \begin{proof} Evaluating the equation for $\tuple {r, s - t, t, n - 1}$: {{begin-eqn}} {{eqn | l = \sum_{k \mathop \ge 0} \binom {r - t k} k \binom {\paren {s - t} - t \paren {\paren {n - 1} - k} } {\paren {n - 1} - k} \frac r {r - t k} | r = \binom {r + \paren {s - t} - t \paren {n - 1} } {n - 1} | c = }} {{eqn | ll= \leadsto | l = \sum_{k \mathop \ge 0} \binom {r - t k} k \binom {s - t - t n + t + t k} {n - k - 1} \frac r {r - t k} | r = \binom {r + s - t - t n + 1} {n - 1} | c = }} {{eqn | ll= \leadsto | l = \sum_{k \mathop \ge 0} \binom {r - t k} k \binom {s - t \paren {n - k} } {n - k - 1} \frac r {r - t k} | r = \binom {r + s - t n} {n - 1} | c = }} {{end-eqn}} Adding the equation in $\tuple {r, s, t, n}$: {{begin-eqn}} {{eqn | l = \sum_{k \mathop \ge 0} \binom {r - t k} k \paren {\binom {s - t \paren {n - k} } {n - k - 1} + \binom {s - t \paren {n - k} } {n - k} } \frac r {r - t k} | r = \binom {r + s - t n} {n - 1} + \binom {r + s - t n} n | c = }} {{eqn | l = \sum_{k \mathop \ge 0} \binom {r - t k} k \binom {s + 1 - t \paren {n - k} } {n - k } \frac r {r - t k} | r = \binom {r + s + 1 - t n} n | c = Pascal's Rule }} {{end-eqn}} Hence the equation holds for $\tuple {r, s + 1, t, n}$ {{qed}} \end{proof}
22348
\section{Sum over k of r Choose k by -1^r-k by Polynomial} Tags: Factorials, Sum over k of r Choose k by -1^r-k by Polynomial, Binomial Coefficients \begin{theorem} Let $r \in \Z_{\ge 0}$. Then: :$\ds \sum_k \binom r k \paren {-1}^{r - k} \map {P_r} k = r! \, b_r$ where: :$\map {P_r} k = b_0 + b_1 k + \cdots + b_r k^r$ is a polynomial in $k$ of degree $r$. \end{theorem} \begin{proof} From the corollary to Sum over $k$ of $\dbinom r k \dbinom {s + k} n \left({-1}\right)^{r - k}$: :$\displaystyle \sum_k \binom r k \binom k n \left({-1}\right)^{r - k} = \delta_{n r}$ where $\delta_{n r}$ denotes the Kronecker delta. Thus when $n \ne r$: :$\displaystyle \sum_k \binom r k \binom k n \left({-1}\right)^{r - k} = 0$ and so: :$\displaystyle \sum_k \binom r k \left({-1}\right)^{r - k} \left({c_0 \binom k 0 + c_1 \binom k 1 + \cdots + c_m \binom k m}\right) = c_r$ as the only term left standing is the $r$th one. Choosing the coefficients $c_i$ as appropriate, a polynomial in $k$ can be expressed as a summation of binomial coefficients in the form: :$c_0 \dbinom k 0 + c_1 \dbinom k 1 + \cdots + c_m \dbinom k m$ Thus we can rewrite such a polynomial in $k$ as: :$b_0 + b_1 k + \cdots + b_r k^r$ {{explain|Why is the parameter of $b_r$ multiplied by $r!$?} Hence the result. {{qed}} \end{proof}
22349
\section{Sum over k of r Choose k by Minus r Choose m Minus 2k} Tags: Binomial Coefficients \begin{theorem} Let $r \in \R$, $m \in \Z$. :$\ds \sum_{k \mathop \in \Z} \binom r k \binom {-r} {m - 2 k} \paren {-1}^{m + k} = \binom r m$ \end{theorem} \begin{proof} We have: {{begin-eqn}} {{eqn | l = \paren {1 - x^2} | r = \paren {1 - x} \paren {1 + x} | c = Difference of Two Squares }} {{eqn | ll= \leadsto | l = \paren {1 - x}^r | r = \dfrac {\paren {1 - x^2}^r} {\paren {1 + x}^r} | c = }} {{eqn | r = \paren {1 - x^2}^r \paren {1 + x}^{-r} | c = }} {{end-eqn}} Thus we have: {{begin-eqn}} {{eqn | l = \sum_{m \mathop \in \mathop \Z} \binom r m x^m | r = \paren {1 - x}^r | c = Binomial Theorem }} {{eqn | r = \paren {1 - x^2}^r \paren {1 + x}^{-r} | c = }} {{eqn | r = \sum_{k \mathop \in \mathop \Z} \binom r k \paren {-x^2}^k \sum_{j \mathop \in \mathop \Z} \binom {-r} j x^j | c = }} {{end-eqn}} Comparing the coefficients of $x^m$ on both sides yields the result. {{qed}} \end{proof}
22350
\section{Sum over k of r Choose k by s-kt Choose r by -1^k} Tags: Binomial Coefficients \begin{theorem} Let $r \in \Z_{\ge 0}$. Then: :$\ds \sum_k \binom r k \binom {s - k t} r \paren {-1}^k = t^r$ where $\dbinom r k$ etc. are binomial coefficients. \end{theorem} \begin{proof} From Sum over $k$ of $\dbinom r k \paren {-1}^k$ by Polynomial: :$\ds \sum_k \binom r k \paren {-1}^{r - k} \map {P_r} k = r! \, b_r$ where: :$\map {P_r} k = b_0 + b_1 k + \cdots + b_r k^r$ is a polynomial in $k$ of degree $r$. {{proof wanted}} \end{proof}
22351
\section{Sum over k to n of Stirling Number of the Second Kind of k with m by m+1^n-k} Tags: Stirling Numbers, Factorials \begin{theorem} Let $m, n \in \Z_{\ge 0}$. :$\ds \sum_{k \mathop \le n} {k \brace m} \paren {m + 1}^{n - k} = {n + 1 \brace m + 1}$ where $\ds {k \brace m}$ etc. denotes a Stirling number of the second kind. \end{theorem} \begin{proof} The proof proceeds by induction on $n$. For all $n \in \Z_{\ge 0}$, let $\map P n$ be the proposition: :$\ds \forall n \in \Z_{\ge 0}: \sum_{k \mathop \le n} {k \brace m} \paren {m + 1}^{n - k} = {n + 1 \brace m + 1}$ \end{proof}
22352
\section{Sum over k to n of Unsigned Stirling Number of the First Kind of k with m by n factorial over k factorial} Tags: Stirling Numbers, Factorials \begin{theorem} Let $m, n \in \Z_{\ge 0}$. :$\ds \sum_{k \mathop \le n} {k \brack m} \frac {n!} {k!} = {n + 1 \brack m + 1}$ where: :$\ds {k \brack m}$ denotes an unsigned Stirling number of the first kind :$ n!$ denotes a factorial. \end{theorem} \begin{proof} The proof proceeds by induction on $n$. For all $n \in \Z_{\ge 0}$, let $\map P n$ be the proposition: :$\ds \forall n \in \Z_{\ge 0}: \sum_{k \mathop \le n} {k \brack m} \frac {n!} {k!} = {n + 1 \brack m + 1}$ \end{proof}
22353
\section{Sum over k to n of k Choose m by kth Harmonic Number} Tags: Harmonic Numbers, Binomial Coefficients \begin{theorem} :$\ds \sum_{k \mathop = 1}^n \binom k m H_k = \binom {n + 1} {m + 1} \paren {H_{n + 1} - \frac 1 {m + 1} }$ where: :$\dbinom k m$ denotes a binomial coefficient :$H_k$ denotes the $k$th harmonic number. \end{theorem} \begin{proof} First we note that by Pascal's Rule: :$\dbinom k m = \dbinom {k + 1} {m + 1} - \dbinom k {m + 1}$ Thus: {{begin-eqn}} {{eqn | l = \dbinom k m H_k | r = \dbinom k {m + 1} \paren {H_{k + 1} - \dfrac 1 {k + 1} } - \dfrac k {m + 1} H_k | c = }} {{eqn | ll= \leadsto | l = \sum_{k \mathop = 1}^n \binom k m H_k | r = \paren {\binom 2 {m + 1} H_2 - \binom 1 {m + 1} H_1} | c = }} {{eqn | o = | ro= + | r = \cdots | c = }} {{eqn | o = | ro= + | r = \paren {\binom {n + 1} {m + 1} H_{n + 1} - \binom n {m + 1} H_1} | c = }} {{eqn | o = | ro= - | r = \sum_{k \mathop = 1}^n \binom {k + 1} {m + 1} \frac 1 {k + 1} | c = }} {{eqn | r = \binom {n + 1} {m + 1} H_{n + 1} - \binom n {m + 1} H_1 - \frac 1 {m + 1} \sum_{k \mathop = 0}^n \binom k n + \frac 1 {k + 1} \binom 0 m | c = }} {{eqn | ll= \leadsto | l = \sum_{k \mathop = 1}^n \binom k m H_k | r = \binom {n + 1} {m + 1} \paren {H_{n + 1} - \frac 1 {m + 1} } | c = Sum of Binomial Coefficients over Upper Index }} {{end-eqn}} {{qed}} \end{proof}
22354
\section{Sum over k to p over 2 of Floor of 2kq over p} Tags: Prime Numbers \begin{theorem} Let $p \in \Z$ be an odd prime. Let $q \in \Z$ be an odd integer and $p \nmid q$. Then: :$\ds \sum_{0 \mathop \le k \mathop < p / 2} \floor {\dfrac {2 k q} p} \equiv \sum_{0 \mathop \le k \mathop < p / 2} \floor {\dfrac {k q} p} \pmod 2$ \end{theorem} \begin{proof} When $k < \dfrac p 4$ we have: {{begin-eqn}} {{eqn | l = \floor {\dfrac {\paren {p - 1 - 2 k} q} p} | r = \floor {q - \dfrac {\paren {2 k + 1} q} p} }} {{eqn | r = q + \floor {-\dfrac {\paren {2 k + 1} q} p} | c = Floor of Number plus Integer }} {{eqn | r = q - \ceiling {\dfrac {\paren {2 k + 1} q} p} | c = Floor of Negative equals Negative of Ceiling }} {{eqn | r = q - 1 - \floor {\dfrac {\paren {2 k + 1} q} p} | c = Floor equals Ceiling iff Integer }} {{eqn | o = \equiv | r = \floor {\dfrac {\paren {2 k + 1} q} p} | rr= \pmod 2 | c = }} {{end-eqn}} Here it is noted that $\dfrac {\paren {2 k + 1} q} p$ is not an integer, since we have: :$p \nmid q$ :$p > \dfrac p 2 + 1 > 2 k + 1$ Thus it is possible to replace the last terms: :$\floor {\dfrac {\paren {p - 1} q} p}, \floor {\dfrac {\paren {p - 3} q} p}, \ldots$ by: :$\floor {\dfrac q p}, \floor {\dfrac {3 q} p}, \ldots$ The result follows. {{qed}} \end{proof}
22355
\section{Sum to Infinity of 2x^2n over n by 2n Choose n} Tags: Central Binomial Coefficients \begin{theorem} For $\cmod x < 1$: :$\ds \frac {2 x \arcsin x} {\sqrt {1 - x^2} } = \sum_{n \mathop = 1}^\infty \frac {\paren {2 x}^{2 n} } {n \dbinom {2 n} n}$ \end{theorem} \begin{proof} By Gregory Series: :$\ds \arctan t = \sum_{m \mathop = 0}^\infty \frac {\paren {-1}^m t^{2 m + 1} } {2 m + 1}$ Let $t = \dfrac x {\sqrt {1 - x^2} }$. Let $y = \arcsin x$. Then: {{begin-eqn}} {{eqn | l = t | r = \frac {\sin y} {\sqrt {1 - \sin^2 y} } }} {{eqn | r = \frac {\sin y} {\cos y} | c = Sum of Squares of Sine and Cosine }} {{eqn | r = \tan y }} {{end-eqn}} Hence $\arctan t = \arcsin x$. We have: {{begin-eqn}} {{eqn | l = \frac {2 x \arcsin x} {\sqrt {1 - x^2} } | r = 2 t \arctan t }} {{eqn | r = 2 t \sum_{m \mathop = 0}^\infty \frac {\paren {-1}^m t^{2 m + 1} } {2 m + 1} | c = Gregory Series }} {{eqn | r = 2 t \sum_{m \mathop = 1}^\infty \frac {\paren {-1}^{m - 1} t^{2 m - 1} } {2 m - 1} | c = Translation of Index Variable of Summation }} {{eqn | r = 2 \sum_{m \mathop = 1}^\infty \frac {\paren {-1}^{m - 1} t^{2 m} } {2 m - 1} }} {{eqn | r = 2 \sum_{m \mathop = 1}^\infty \frac {\paren {-1}^{m - 1} x^{2 m} } {\paren {2 m - 1} \paren {1 - x^2}^m} }} {{eqn | r = 2 \sum_{m \mathop = 1}^\infty \frac {\paren {-1}^{m - 1} x^{2 m} } {2 m - 1} \sum_{k \mathop = 0}^\infty \dbinom {m + k - 1} {m - 1} x^{2 k} | c = Binomial Theorem for Negative Index and Negative Parameter }} {{end-eqn}} It remains to show the the coefficient of $x^{2 n}$ on the {{RHS}} is equal to $\dfrac {2^{2 n} } {n \dbinom {2 n} n}$, that is: :$\ds 2 \sum_{r \mathop = 1}^n \frac {\paren {-1}^{r - 1} } {2 r - 1} \dbinom {r + n - r - 1} {r - 1} = \frac {2^{2 n} } {n \dbinom {2 n} n}$ The {{LHS}} above is generated by picking, for each $m > 0$, the corresponding $k = n - m$ from the right sum $\ds \sum_{k \mathop = 0}^\infty \dbinom {m + k - 1} {m - 1} x^{2 k}$. We have: {{begin-eqn}} {{eqn | r = 2 n \dbinom {2 n} n \sum_{r \mathop = 1}^n \frac {\paren {-1}^{r - 1} } {2 r - 1} \dbinom {n - 1} {r - 1} | o = }} {{eqn | r = 2 n \dbinom {2 n} n \sum_{r \mathop = 0}^{n - 1} \frac {\paren {-1}^r} {2 r + 1} \dbinom {n - 1} r | c = Translation of Index Variable of Summation }} {{eqn | r = 2 n \dbinom {2 n} n \int_0^1 \sum_{r \mathop = 0}^{n - 1} \paren {-1}^r \dbinom {n - 1} r y^{2 r} \d y }} {{eqn | r = 2 n \dbinom {2 n} n \int_0^1 \paren {1 - y^2}^{n - 1} \d y | c = Binomial Theorem }} {{eqn | r = 2 n \dbinom {2 n} n \int_{\frac \pi 2}^0 \sin^{2 n - 2} \theta \, \frac {\d y} {\d \theta} \d \theta | c = by substitution of $y = \cos \theta$ }} {{eqn | r = 2 n \dbinom {2 n} n \int_0^{\frac \pi 2} \sin^{2 n - 1} \theta \, \d \theta }} {{eqn | r = 2 n \dbinom {2 n} n \frac {\paren {2^{n - 1} \paren {n - 1}!}^2} {\paren {2 n - 1}!} | c = Definite Integral from 0 to Half Pi of Odd Power of Sine x }} {{eqn | r = 2 n \paren {\frac {\paren {2 n}!} {n! \, n!} } \paren {\frac {\paren {2^{n - 1} \paren {n - 1}!}^2} {\paren {2 n - 1}!} } | c = {{Defof|Binomial Coefficient}} }} {{eqn | r = 2 n \paren {\frac {2 n} {n^2} } \paren {2^{2 n - 2} } }} {{eqn | r = 2^{2 n} }} {{end-eqn}} Hence the result. {{qed}} \end{proof}
22356
\section{Sum with Maximum is Maximum of Sum} Tags: Max and Min Operations, Max Operation \begin{theorem} Let $a, b, c \in \R$ be real numbers. Then: :$a + \max \set {b, c} = \max \set {a + b, a + c}$ \end{theorem} \begin{proof} {{WLOG}}, there are two cases to consider: :$(1): \quad b \ge c$ :$(2): \quad b < c$ First let $b \ge c$. We have: {{begin-eqn}} {{eqn | l = b | o = \ge | r = c | c = }} {{eqn | ll= \leadsto | l = a + b | o = \ge | r = a + c | c = Addition of Real Numbers is Compatible with Usual Ordering }} {{eqn | ll= \leadsto | l = \max \set {a + b, a + c} | r = a + b | c = {{Defof|Maximum Element}} }} {{end-eqn}} Then: {{begin-eqn}} {{eqn | l = a + \max \set {b, c} | r = a + b | c = {{Defof|Maximum Element}} }} {{eqn | r = \max \set {a + b, a + c} | c = }} {{end-eqn}} {{qed|lemma}} Now let $b < c$. We have: {{begin-eqn}} {{eqn | l = b | o = < | r = c | c = }} {{eqn | ll= \leadsto | l = a + b | o = < | r = a + c | c = Addition of Real Numbers is Compatible with Usual Ordering }} {{eqn | ll= \leadsto | l = \max \set {a + b, a + c} | r = a + c | c = {{Defof|Maximum Element}} }} {{end-eqn}} Then: {{begin-eqn}} {{eqn | l = a + \max \set {b, c} | r = a + c | c = {{Defof|Maximum Element}} }} {{eqn | r = \max \set {a + b, a + c} | c = }} {{end-eqn}} {{qed|lemma}} Thus the result holds in both cases. Hence the result, by Proof by Cases. {{qed}} \end{proof}
22357
\section{Sum with One is Immediate Successor in Naturally Ordered Semigroup} Tags: Naturally Ordered Semigroup \begin{theorem} Let $\struct {S, \circ, \preceq}$ be a naturally ordered semigroup. Let $1$ be the one of $S$. Let $n \in S$. Then $n \circ 1$ is the immediate successor of $n$. That is, for all $m \in S$: :$n \prec m \iff n \circ 1 \preceq m$ \end{theorem} \begin{proof} By Zero Strictly Precedes One, $0 \prec 1$, where $0$ is the zero of $S$. Hence from Strict Ordering of Naturally Ordered Semigroup is Strongly Compatible: :$n \circ 0 \prec n \circ 1$ and by Zero is Identity in Naturally Ordered Semigroup, $n \circ 0 = n$. Now suppose that $n \prec m$. Then by {{NOSAxiom|3}}, there exists $p \in S$ such that: :$n \circ p = m$ Moreover, since $n \ne m$, it follows that $p \ne 0$. Hence $0 \prec p$ by definition of zero. Therefore, by definition of one: :$1 \preceq p$ Now by compatibility of $\preceq$ with $\circ$: :$n \circ 1 \preceq n \circ p = m$ as desired. Conversely, if $n \circ 1 \preceq m$, it is immediate from: :$n \prec n \circ 1$ that $n \prec m$. {{qed}} \end{proof}
22358
\section{Summary of Topology on P-adic Numbers} Tags: P-adic Number Theory, Topology of P-adic Numbers \begin{theorem} Let $p$ be a prime number. Let $\struct {\Q_p, \norm {\,\cdot\,}_p}$ be the $p$-adic numbers. Let $\tau_p$ be the topology induced by the non-Archimedean norm $\norm {\,\cdot\,}_p$. Then $\struct{\Q_p, \tau_p}$ is: :$(1): \quad$ Hausdorff :$(2): \quad$ second-countable :$(3): \quad$ totally disconnected :$(4): \quad$ locally compact \end{theorem} \begin{proof} Follows from: :P-adic Numbers is Hausdorff Topological Space :P-adic Numbers is Second Countable Topological Space :P-adic Numbers is Totally Disconnected Topological Space :P-adic Numbers is Locally Compact Topological Space {{qed}} \end{proof}
22359
\section{Summation Formula (Complex Analysis)} Tags: Complex Analysis \begin{theorem} Let $N \in \N$ be an arbitrary natural number. Let $C_N$ be the square embedded in the complex plane $\C$ with vertices $\paren {N + \dfrac 1 2} \paren {\pm 1 \pm i}$. Let $f$ be a meromorphic function on $\C$ with finitely many poles. Suppose that: :$\ds \int_{C_N} \paren {\pi \cot \pi z} \map f z \rd z \to 0$ as $N \to \infty$. Let $X$ be the set of poles of $f$. Then: :$\ds \sum_{n \mathop \in \Z \mathop \setminus X} \map f n = - \sum_{z_0 \mathop \in X} \Res {\pi \map \cot {\pi z} \map f z} {z_0}$ If $X \cap \Z = \O$, this becomes: :$\ds \sum_{n \mathop = -\infty}^\infty \map f n = -\sum_{z_0 \mathop \in X} \Res {\pi \map \cot {\pi z} \map f z} {z_0}$ \end{theorem} \begin{proof} By Summation Formula: Lemma, there exists a constant $A$ such that: :$\cmod {\map \cot {\pi z} } < A$ for all $z$ on $C_N$. Since $f$ has only finitely many poles, we can take $N$ large enough so that no poles of $f$ lie on $C_N$. Let $X_N$ be the set of poles of $f$ contained in the region bounded by $C_N$. From Poles of Cotangent Function, $\map \cot {\pi z}$ has poles at $z \in \Z$. Let $A_N = \set {n \in \Z : -N \le n \le N}$ We then have: {{begin-eqn}} {{eqn | l = \oint_{C_N} \pi \map \cot {\pi z} \map f z \rd z | r = 2 \pi i \sum_{z_0 \mathop \in X_N \mathop \cap A_N} \Res {\pi \map \cot {\pi z} \map f z} {z_0} | c = Residue Theorem }} {{eqn | r = 2 \pi i \paren {\sum_{n \mathop \in A_N \mathop \setminus X_N} \Res {\pi \map \cot {\pi z} \map f z} n + \sum_{z_0 \mathop \in X_N} \Res {\pi \map \cot {\pi z} \map f z} {z_0} } }} {{end-eqn}} We then have, for each integer $n$: {{begin-eqn}} {{eqn | l = \Res {\pi \map \cot {\pi z} \map f z} n | r = \lim_{z \mathop \to n} \paren {\paren {z - n} \pi \map \cot {\pi z} \map f z} | c = Residue at Simple Pole }} {{eqn | r = \map f n \lim_{z \mathop \to n} \paren {\frac {z - n} z + 2 \sum_{k \mathop = 1}^\infty \frac {z \paren {z - n} } {z^2 - k^2} } | c = Mittag-Leffler Expansion for Cotangent Function }} {{eqn | r = \map f n \cdot 2 \lim_{z \mathop \to n} \paren {\frac z {z + n} } }} {{eqn | r = \map f n \frac {2 n} {2 n} }} {{eqn | r = \map f n }} {{end-eqn}} Note that by hypothesis: :$\ds \int_{C_N} \paren {\pi \cot \pi z} \map f z \rd z \to 0$ So, taking $N \to \infty$: :$\ds 0 = 2 \pi i \paren {\sum_{n \mathop \in \Z \mathop \setminus X} \map f n + \sum_{z_0 \mathop \in X} \Res {\pi \map \cot {\pi z} \map f z} {z_0} }$ which gives: :$\ds \sum_{n \mathop \in \Z \mathop \setminus X} \map f n = -\sum_{z_0 \mathop \in X} \Res {\pi \map \cot {\pi z} \map f z} {z_0}$ {{qed}} \end{proof}
22360
\section{Summation Formula (Complex Analysis)/Lemma} Tags: Complex Analysis \begin{theorem} Let $N \in \N$ be an arbitrary natural number. Let $C_N$ be the square embedded in the complex plane with vertices $\paren {N + \dfrac 1 2} \paren {\pm 1 \pm i}$. Then there exists a constant real number $A$ independent of $N$ such that: :$\cmod {\map \cot {\pi z} } < A$ for all $z \in C_N$. \end{theorem} \begin{proof} Let $z = x + iy$ for real $x, y$. \end{proof}
22361
\section{Summation Formula for Polygonal Numbers} Tags: Proofs by Induction, Polygonal Numbers \begin{theorem} Let $\map P {k, n}$ be the $n$th $k$-gonal number. Then: :$\ds \map P {k, n} = \sum_{j \mathop = 1}^n \paren {\paren {k - 2} \paren {j - 1} + 1}$ \end{theorem} \begin{proof} We have that: $\map P {k, n} = \begin{cases} 0 & : n = 0 \\ \map P {k, n - 1} + \paren {k - 2} \paren {n - 1} + 1 & : n > 0 \end{cases}$ Proof by induction: For all $n \in \N_{>0}$, let $\map \Pi n$ be the proposition: :$\ds \map P {k, n} = \sum_{j \mathop = 1}^n \paren {\paren {k - 2} \paren {j - 1} + 1}$ \end{proof}
22362
\section{Summation by k of Product by r of x plus k minus r over Product by r less k of k minus r/Example} Tags: Summation by k of Product by r of x plus k minus r over Product by r less k of k minus r, Summations, Products \begin{theorem} :$\dfrac {x \paren {x - 2} \paren {x - 3} } {\paren {-1} \paren {-2} \paren {-3} } + \dfrac {\paren {x + 1} \paren {x - 1} \paren {x - 2} } {\paren 1 \paren {-1} \paren {-2} } + \dfrac {\paren {x + 2} x \paren {x - 1} } {\paren 2 \paren 1 \paren {-1} } + \dfrac {\paren {x + 3} \paren {x + 1} x} {\paren 3 \paren 2 \paren 1 } = 1$ \end{theorem} \begin{proof} This is an example of Summation by k of Product by r of x plus k minus r over Product by r less k of k minus r: :$\ds \sum_{k \mathop = 1}^n \paren {\dfrac {\ds \prod_{\substack {1 \mathop \le r \mathop \le n \\ r \mathop \ne m} } \paren {x + k - r} } {\ds \prod_{\substack {1 \mathop \le r \mathop \le n \\ r \mathop \ne k} } \paren {k - r} } } = 1$ where $n = 4$ and $m = 2$. {{qed}} \end{proof}
22363
\section{Summation from k to m of 2k-1 Choose k by 2n-2k Choose n-k by -1 over 2k-1} Tags: Binomial Coefficients \begin{theorem} :$\ds \sum_{k \mathop = 0}^m \binom {2 k - 1} k \binom {2 n - 2 k} {n - k} \dfrac {-1} {2 k - 1} = \dfrac {n - m} {2 n} \dbinom {2 m} m \dbinom {2 n - 2 m} {n - m} + \dfrac 1 2 \dbinom {2 n} n$ \end{theorem} \begin{proof} From Summation from k to m of r Choose k by s Choose n-k by nr-(r+s)k: :$\ds \sum_{k \mathop = 0}^m \dbinom r k \dbinom s {n - k} \paren {n r - \paren {r + s} k} = \paren {m + 1} \paren {n - m} \dbinom r {m + 1} \dbinom s {n - m}$ Set $r - \dfrac 1 2$ and $s = -\dfrac 1 2$. :$\ds \sum_{k \mathop = 0}^m \dbinom {1/2} k \dbinom {-1/2} {n - k} \paren {\frac n 2 - \paren {\frac 1 2 - \frac 1 2} k} = \paren {m + 1} \paren {n - m} \dbinom {1/2} {m + 1} \dbinom {-1/2} {n - m}$ Take the {{LHS}}: {{begin-eqn}} {{eqn | o = | r = \sum_{k \mathop = 0}^m \dbinom {1/2} k \dbinom {-1/2} {n - k} \paren {\frac n 2 - \paren {\frac 1 2 - \frac 1 2} k} | c = }} {{eqn | r = \dfrac n 2 \sum_{k \mathop = 0}^m \dbinom {1/2} k \dbinom {-1/2} {n - k} | c = immediate simplification }} {{eqn | r = \dfrac n 2 \sum_{k \mathop = 0}^m \dbinom {1/2} k \dfrac {\paren {-1}^{n - k} } {4^{n - k} } \dbinom {2 n - 2 k} {n - k} | c = Binomial Coefficient of Minus Half }} {{eqn | r = \dfrac n 2 \sum_{k \mathop = 0}^m \paren {\dfrac {\paren {-1}^{k - 1} } {2^{2 k - 1} \paren {2 k - 1} } \dbinom {2 k - 1} k - \delta_{k 0} } \dfrac {\paren {-1}^{n - k} } {2^{2 n - 2 k} } \dbinom {2 n - 2 k} {n - k} | c = Binomial Coefficient of Half: Corollary }} {{eqn | r = \dfrac n 2 \sum_{k \mathop = 0}^m \dfrac {\paren {-1}^{n - 1} } {2^{2 n - 1} \paren {2 k - 1} } \dbinom {2 k - 1} k \dbinom {2 n - 2 k} {n - k} - \dfrac n 2 \dfrac {\paren {-1}^n} {2^{2 n} } \dbinom {2 n} n | c = separating out the $\delta_{k 0}$ }} {{eqn | r = \dfrac {\paren {-1}^n n} {2^{2 n} } \paren {\sum_{k \mathop = 0}^m \dbinom {2 k - 1} k \dbinom {2 n - 2 k} {n - k} \dfrac {-1} {\paren {2 k - 1} } - \dfrac 1 2 \dbinom {2 n} n} | c = simplifying }} {{end-eqn}} Now the {{RHS}}: {{begin-eqn}} {{eqn | o = | r = \paren {m + 1} \paren {n - m} \dbinom {1/2} {m + 1} \dbinom {-1/2} {n - m} | c = }} {{eqn | r = \paren {m + 1} \paren {n - m} \dbinom {1/2} {m + 1} \dfrac {\paren {-1}^{n - m} } {2^{2 n - 2 m} } \dbinom {2 n - 2 m} {n - m} | c = Binomial Coefficient of Minus Half }} {{eqn | r = \paren {m + 1} \paren {n - m} \dfrac {\paren {-1}^m} {\paren {2 m + 1} 2^{2 m + 2} } \dbinom {2 m + 2} {m + 1} \dfrac {\paren {-1}^{n - m} } {2^{2 n - 2 m} } \dbinom {2 n - 2 m} {n - m} | c = Binomial Coefficient of Half }} {{eqn | r = \dfrac 1 {2^{2 n + 2} } \paren {m + 1} \paren {n - m} \dfrac {\paren {-1}^n} {2 m + 1} \dbinom {2 m + 2} {m + 1} \dbinom {2 n - 2 m} {n - m} | c = simplification }} {{eqn | r = \dfrac 1 {2^{2 n + 2} } \paren {m + 1} \paren {n - m} \dfrac {\paren {-1}^n} {2 m + 1} \dfrac {2 m + 2} {m + 1} \dbinom {2 m + 1} m \dbinom {2 n - 2 m} {n - m} | c = Factors of Binomial Coefficient }} {{eqn | r = \dfrac {\paren {-1}^n} {2^{2 n + 1} } \paren {n - m} \dfrac {m + 1} {2 m + 1} \dbinom {2 m + 1} m \dbinom {2 n - 2 m} {n - m} | c = simplification }} {{eqn | r = \dfrac {\paren {-1}^n} {2^{2 n + 1} } \paren {n - m} \dfrac {m + 1} {2 m + 1} \dfrac {2 m + 1} {2 m + 1 - m} \dbinom {2 m} m \dbinom {2 n - 2 m} {n - m} | c = Factors of Binomial Coefficient: Corollary 1 }} {{eqn | r = \dfrac {\paren {-1}^n} {2^{2 n + 1} } \paren {n - m} \dbinom {2 m} m \dbinom {2 n - 2 m} {n - m} | c = simplification }} {{end-eqn}} Thus we have: {{begin-eqn}} {{eqn | l = \dfrac {\paren {-1}^n n} {2^{2 n} } \paren {\sum_{k \mathop = 0}^m \dbinom {2 k - 1} k \dbinom {2 n - 2 k} {n - k} \dfrac {-1} {\paren {2 k - 1} } - \dfrac 1 2 \dbinom {2 n} n} | r = \dfrac {\paren {-1}^n} {2^{2 n + 1} } \paren {n - m} \dbinom {2 m} m \dbinom {2 n - 2 m} {n - m} | c = as the {{RHS}} equals the {{LHS}} }} {{eqn | ll= \leadsto | l = \sum_{k \mathop = 0}^m \dbinom {2 k - 1} k \dbinom {2 n - 2 k} {n - k} \dfrac {-1} {\paren {2 k - 1} } - \dfrac 1 2 \dbinom {2 n} n | r = \dfrac {n - m} {2 n} \dbinom {2 m} m \dbinom {2 n - 2 m} {n - m} | c = dividing both sides by $\dfrac {\paren {-1}^n n} {2^{2 n} }$ }} {{eqn | ll= \leadsto | l = \sum_{k \mathop = 0}^m \dbinom {2 k - 1} k \dbinom {2 n - 2 k} {n - k} \dfrac {-1} {\paren {2 k - 1} } | r = \dfrac {n - m} {2 n} \dbinom {2 m} m \dbinom {2 n - 2 m} {n - m} + \dfrac 1 2 \dbinom {2 n} n | c = }} {{end-eqn}} {{qed}} \end{proof}
22364
\section{Summation from k to m of r Choose k by s Choose n-k by nr-(r+s)k} Tags: Binomial Coefficients \begin{theorem} :$\ds \sum_{k \mathop = 0}^m \dbinom r k \dbinom s {n - k} \paren {n r - \paren {r + s} k} = \paren {m + 1} \paren {n - m} \dbinom r {m + 1} \dbinom s {n - m}$ \end{theorem} \begin{proof} The proof proceeds by induction over $m$. For all $m \in \Z_{\ge 0}$, let $P \left({n}\right)$ be the proposition: :$\ds \sum_{k \mathop = 0}^m \dbinom r k \dbinom s {n - k} \paren {n r - \paren {r + s} k} = \paren {m + 1} \paren {n - m} \dbinom r {m + 1} \dbinom s {n - m}$ \end{proof}
22365
\section{Summation is Linear} Tags: Numbers, Sums \begin{theorem} Let $\tuple {x_1, \ldots, x_n}$ and $\tuple {y_1, \ldots, y_n}$ be finite sequences of numbers of equal length. Let $\lambda$ be a number. Then: \end{theorem} \begin{proof} {{handwaving|Dots are not to be used in the formal part of a proof on this site. Induction is the way to go.}} {{begin-eqn}} {{eqn|o=|r=\sum_{i=1}^n x_i+\sum_{i=1}^n y_i}} {{eqn|r=(x_1+x_2+...+x_n)+(y_1+y_2+...+y_n)|c=by definition of summation}} {{eqn|r=(x_1+y_1)+(x_2+y_2)+...+(x_n+y_n)|c=because addition is commutative}} {{eqn|r=\sum_{i=1}^n (x_i+y_i)|c=by definition of summation}} {{eqn|o=}} {{eqn|o=|r=\lambda\cdot\sum_{i=1}^n x_i}} {{eqn|r=\lambda(x_1+x_2+...+x_n)|c=by definition of summation}} {{eqn|r=\lambda x_1+\lambda x_2+...+\lambda x_n|c=by the distributive property of multiplication}} {{eqn|r=\sum_{i=1}^n \lambda\cdot x_i|c=by definition of summation}} {{end-eqn}} {{MissingLinks|Scalar Product with Sum ought to save time}} Category:Numbers 150374 150363 2013-07-03T13:26:49Z Kc kennylau 2331 150374 wikitext text/x-wiki \end{proof}
22366
\section{Summation is Linear/Scaling of Summations} Tags: Numbers, Proofs by Induction \begin{theorem} Let $\tuple {x_1, \ldots, x_n}$ and $\tuple {y_1, \ldots, y_n}$ be finite sequences of numbers of equal length. Let $\lambda$ be a number. Then: :$\ds \lambda \sum_{i \mathop = 1}^n x_i = \sum_{i \mathop = 1}^n \lambda x_i$ \end{theorem} \begin{proof} For all $n \in \N_{>0}$, let $\map P n$ be the proposition: :$\ds \lambda \sum_{i \mathop = 1}^n x_i = \sum_{i \mathop = 1}^n \lambda x_i$ \end{proof}
22367
\section{Summation is Linear/Sum of Summations} Tags: Numbers, Proofs by Induction \begin{theorem} Let $\tuple {x_1, \ldots, x_n}$ and $\tuple {y_1, \ldots, y_n}$ be finite sequences of numbers of equal length. Let $\lambda$ be a number. Then: :$\ds \sum_{i \mathop = 1}^n x_i + \sum_{i \mathop = 1}^n y_i = \sum_{i \mathop = 1}^n \paren {x_i + y_i}$ \end{theorem} \begin{proof} The proof proceeds by mathematical induction. For all $n \in \N_{> 0}$, let $\map P n$ be the proposition: :$\ds \sum_{i \mathop = 1}^n x_i + \sum_{i \mathop = 1}^n y_i = \sum_{i \mathop = 1}^n \paren {x_i + y_i}$ \end{proof}
22368
\section{Summation of General Logarithms} Tags: Logarithms, Summations, Products \begin{theorem} Let $R: \Z \to \set {\T, \F}$ be a propositional function on the set of integers. Let $\ds \prod_{\map R i} a_i$ denote a product over $R$. Let the fiber of truth of $R$ be finite. Then: :$\ds \map {\log_b} {\prod_{\map R i} a_i} = \sum_{\map R i} \log_b a_i$ \end{theorem} \begin{proof} The proof proceeds by induction. First let: :$S := \set {a_i: \map R i}$ We have that $S$ is finite. Hence the contents of $S$ can be well-ordered, by Finite Totally Ordered Set is Well-Ordered. Let $S$ have $m$ elements, identified as: :$S = \set {s_1, s_2, \ldots, s_m}$ For all $n \in \Z_{\ge 0}$ such that $n \le m$, let $\map P n$ be the proposition: :$\ds \map {\log_b} {\prod_{i \mathop = 1}^n s_i} = \sum_{i \mathop = 1}^n \log_b s_i$ $\map P 0$ is the case: {{begin-eqn}} {{eqn | l = \map {\log_b} {\prod_{i \mathop = 1}^0 s_i} | r = \log_b 1 | c = {{Defof|Vacuous Product}} }} {{eqn | r = 0 | c = Logarithm of 1 is 0 }} {{eqn | r = \sum_{i \mathop = 1}^n \log_b s_i | c = {{Defof|Vacuous Summation}} }} {{end-eqn}} \end{proof}
22369
\section{Summation of Multiple of Mapping on Finite Set} Tags: Summations \begin{theorem} Let $\mathbb A$ be one of the standard number systems $\N, \Z, \Q, \R, \C$. Let $S$ be a finite set. Let $f: S \to \mathbb A$ be a mapping. Let $\lambda \in \mathbb A$. Let $g = \lambda \cdot f$ be the product of $f$ with $\lambda$. Then we have the equality of summations on finite sets: :$\ds \sum_{s \mathop \in S} \map g s = \lambda \cdot \sum_{s \mathop \in S} \map f s$ \end{theorem} \begin{proof} Let $n$ be the cardinality of $S$. Let $\sigma: \N_{< n} \to S$ be a bijection, where $\N_{< n}$ is an initial segment of the natural numbers. By definition of summation, we have to prove the following equality of indexed summations: :$\ds \sum_{i \mathop = 0}^{n - 1} \map g {\map \sigma i} = \lambda \cdot \sum_{i \mathop = 0}^{n - 1} \map f {\map \sigma i}$ By Multiple of Mapping Composed with Mapping, $g \circ \sigma = \lambda \cdot \paren {f \circ \sigma}$. The above equality now follows from Indexed Summation of Multiple of Mapping. {{qed}} \end{proof}
22370
\section{Summation of Powers over Product of Differences} Tags: Summations, Summation of Powers over Product of Differences, Products \begin{theorem} :$\ds \sum_{j \mathop = 1}^n \begin{pmatrix} {\dfrac { {x_j}^r} {\ds \prod_{\substack {1 \mathop \le k \mathop \le n \\ k \mathop \ne j} } \paren {x_j - x_k} } } \end{pmatrix} = \begin{cases} 0 & : 0 \le r < n - 1 \\ 1 & : r = n - 1 \\ \ds \sum_{j \mathop = 1}^n x_j & : r = n \end{cases}$ \end{theorem} \begin{proof} The proof proceeds by induction. For all $n \in \Z_{\ge 0}$, let $P \left({n}\right)$ be the proposition: :$\displaystyle S_n := \sum_{j \mathop = 1}^n \left({\dfrac { {x_j}^r} {\displaystyle \prod_{\substack {1 \mathop \le k \mathop \le n \\ k \mathop \ne j} } \left({x_j - x_k}\right)} }\right) = \begin{cases} 0 & : 0 \le r < n - 1 \\ 1 & : r = n - 1 \\ \displaystyle \sum_{j \mathop = 1}^n x_j & : r = n \end{cases}$ \end{proof}
22371
\section{Summation of Product of Differences} Tags: Summations \begin{theorem} :$\ds \sum_{1 \mathop \le i \mathop < j \mathop \le n} \paren {u_j - u_k} \paren {v_j - v_k} = n \sum_{j \mathop = 1}^n u_j v_j - \sum_{j \mathop = 1}^n u_j \sum_{j \mathop = 1}^n v_j$ \end{theorem} \begin{proof} Take the Binet-Cauchy Identity: :$\ds \paren {\sum_{i \mathop = 1}^n a_i c_i} \paren {\sum_{j \mathop = 1}^n b_j d_j} = \paren {\sum_{i \mathop = 1}^n a_i d_i} \paren {\sum_{j \mathop = 1}^n b_j c_j} + \sum_{1 \mathop \le i \mathop < j \mathop \le n} \paren {a_i b_j - a_j b_i} \paren {c_i d_j - c_j d_i}$ Make the following assignments: {{begin-eqn}} {{eqn | q = 1 \le i \le n | l = a_i | o = := | r = u_i }} {{eqn | q = 1 \le i \le n | l = c_i | o = := | r = v_i }} {{eqn | q = 1 \le j \le n | l = b_j | o = := | r = 1 }} {{eqn | q = 1 \le j \le n | l = d_j | o = := | r = 1 }} {{end-eqn}} Then we have: :$\ds \paren {\sum_{i \mathop = 1}^n u_i v_i} \paren {\sum_{j \mathop = 1}^n 1 \times 1} = \paren {\sum_{i \mathop = 1}^n u_i \times 1} \paren {\sum_{j \mathop = 1}^n 1 \times v_j} + \sum_{1 \mathop \le i \mathop < j \mathop \le n} \paren {u_i \times 1 - u_j \times 1} \paren {v_i \times 1 - v_j \times 1}$ and the result follows. {{qed}} \end{proof}
22372
\section{Summation of Products of n Numbers taken m at a time with Repetitions/Examples/Order 2} Tags: Summation to n of Summation to Index, Summation of Products of n Numbers taken m at a time with Repetitions, Summations \begin{theorem} Let $a, b \in \Z$ be integers such that $b \ge a$. Let $U$ be a set of $n = b - a + 1$ numbers $\set {x_a, x_{a + 1}, \dotsc, x_b}$. Then: :$\ds \sum_{i \mathop = a}^b \sum_{j \mathop = a}^i x_i x_j = \dfrac 1 2 \paren {\paren {\sum_{i \mathop = a}^b x_i}^2 + \paren {\sum_{i \mathop = a}^b {x_i}^2} }$ \end{theorem} \begin{proof} Let: {{begin-eqn}} {{eqn | l = S_1 | o = := | r = \sum_{i \mathop = m}^n \sum_{j \mathop = m}^i a_i a_j | c = }} {{eqn | r = \sum_{j \mathop = m}^n \sum_{i \mathop = j}^n a_i a_j | c = Summation of i from 1 to n of Summation of j from 1 to i }} {{eqn | r = \sum_{i \mathop = m}^n \sum_{j \mathop = i}^n a_i a_j | c = Change of Index Variable of Summation }} {{eqn | o = =: | r = S_2 | c = }} {{end-eqn}} Then: {{begin-eqn}} {{eqn | l = 2 S_1 | r = S_1 + S_2 | c = }} {{eqn | r = \sum_{i \mathop = m}^n \left({\sum_{j \mathop = m}^i a_i a_j + \sum_{j \mathop = i}^n a_i a_j}\right) | c = }} {{eqn | r = \sum_{i \mathop = m}^n \left({\left({\sum_{j \mathop = m}^n a_i a_j}\right) + a_i a_i}\right) | c = Sum of Summations over Overlapping Domains: Example }} {{eqn | r = \sum_{i \mathop = m}^n \sum_{j \mathop = m}^n a_i a_j + \sum_{i \mathop = m}^n a_i a_i | c = Sum of Summations equals Summation of Sum }} {{eqn | r = \left({\sum_{i \mathop = m}^n a_i}\right) \left({\sum_{j \mathop = m}^n a_j}\right) + \left({\sum_{i \mathop = m}^n {a_i}^2}\right) | c = Change of Index Variable of Summation }} {{end-eqn}} Hence the result on multiplying by $\dfrac 1 2$. {{qed}} \end{proof}