hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
4a212cd846ad07e2bd4850b890c2752ed5981518
116,442
py
Python
python/ccxt/async_support/okex3.py
quadency/ccxt
12d45145825e48cff0dde577a8048afe96ede233
[ "MIT" ]
1
2020-09-29T05:46:16.000Z
2020-09-29T05:46:16.000Z
python/ccxt/async_support/okex3.py
quadency/ccxt
12d45145825e48cff0dde577a8048afe96ede233
[ "MIT" ]
null
null
null
python/ccxt/async_support/okex3.py
quadency/ccxt
12d45145825e48cff0dde577a8048afe96ede233
[ "MIT" ]
1
2020-06-09T04:29:45.000Z
2020-06-09T04:29:45.000Z
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.async_support.base.exchange import Exchange # ----------------------------------------------------------------------------- try: basestring # Python 3 except NameError: basestring = str # Python 2 import hashlib import math from ccxt.base.errors import ExchangeError from ccxt.base.errors import AuthenticationError from ccxt.base.errors import PermissionDenied from ccxt.base.errors import AccountSuspended from ccxt.base.errors import ArgumentsRequired from ccxt.base.errors import BadRequest from ccxt.base.errors import BadSymbol from ccxt.base.errors import InsufficientFunds from ccxt.base.errors import InvalidAddress from ccxt.base.errors import InvalidOrder from ccxt.base.errors import OrderNotFound from ccxt.base.errors import CancelPending from ccxt.base.errors import NotSupported from ccxt.base.errors import DDoSProtection from ccxt.base.errors import ExchangeNotAvailable from ccxt.base.errors import InvalidNonce from ccxt.base.errors import RequestTimeout class okex3(Exchange): def describe(self): return self.deep_extend(super(okex3, self).describe(), { 'id': 'okex3', 'name': 'OKEX', 'countries': ['CN', 'US'], 'version': 'v3', 'rateLimit': 1000, # up to 3000 requests per 5 minutes ≈ 600 requests per minute ≈ 10 requests per second ≈ 100 ms 'has': { 'CORS': False, 'fetchOHLCV': True, 'fetchOrder': True, 'fetchOrders': False, 'fetchOpenOrders': True, 'fetchClosedOrders': True, 'fetchCurrencies': False, # see below 'fetchDeposits': True, 'fetchWithdrawals': True, 'fetchTime': True, 'fetchTransactions': False, 'fetchMyTrades': False, # they don't have it 'fetchDepositAddress': True, 'fetchOrderTrades': True, 'fetchTickers': True, 'fetchLedger': True, 'withdraw': True, 'futures': True, }, 'timeframes': { '1m': '60', '3m': '180', '5m': '300', '15m': '900', '30m': '1800', '1h': '3600', '2h': '7200', '4h': '14400', '6h': '21600', '12h': '43200', '1d': '86400', '1w': '604800', }, 'urls': { 'logo': 'https://user-images.githubusercontent.com/1294454/32552768-0d6dd3c6-c4a6-11e7-90f8-c043b64756a7.jpg', 'api': 'https://www.okex.com', 'www': 'https://www.okex.com', 'doc': 'https://www.okex.com/docs/en/', 'fees': 'https://www.okex.com/pages/products/fees.html', }, 'api': { 'general': { 'get': [ 'time', ], }, 'account': { 'get': [ 'currencies', 'wallet', 'wallet/{currency}', 'withdrawal/fee', 'withdrawal/history', 'withdrawal/history/{currency}', 'ledger', 'deposit/address', 'deposit/history', 'deposit/history/{currency}', ], 'post': [ 'transfer', 'withdrawal', ], }, 'spot': { 'get': [ 'accounts', 'accounts/{currency}', 'accounts/{currency}/ledger', 'orders', 'orders_pending', 'orders/{order_id}', 'orders/{client_oid}', 'fills', 'algo', # public 'instruments', 'instruments/{instrument_id}/book', 'instruments/ticker', 'instruments/{instrument_id}/ticker', 'instruments/{instrument_id}/trades', 'instruments/{instrument_id}/candles', ], 'post': [ 'order_algo', 'orders', 'batch_orders', 'cancel_orders/{order_id}', 'cancel_orders/{client_oid}', 'cancel_batch_algos', 'cancel_batch_orders', ], }, 'margin': { 'get': [ 'accounts', 'accounts/{instrument_id}', 'accounts/{instrument_id}/ledger', 'accounts/availability', 'accounts/{instrument_id}/availability', 'accounts/borrowed', 'accounts/{instrument_id}/borrowed', 'orders', 'orders/{order_id}', 'orders/{client_oid}', 'orders_pending', 'fills', ], 'post': [ 'accounts/borrow', 'accounts/repayment', 'orders', 'batch_orders', 'cancel_orders', 'cancel_orders/{order_id}', 'cancel_orders/{client_oid}', 'cancel_batch_orders', ], }, 'futures': { 'get': [ 'position', '{instrument_id}/position', 'accounts', 'accounts/{currency}', 'accounts/{currency}/leverage', 'accounts/{currency}/ledger', 'order_algo/{instrument_id}', 'orders/{instrument_id}', 'orders/{instrument_id}/{order_id}', 'orders/{instrument_id}/{client_oid}', 'fills', # public 'instruments', 'instruments/{instrument_id}/book', 'instruments/ticker', 'instruments/{instrument_id}/ticker', 'instruments/{instrument_id}/trades', 'instruments/{instrument_id}/candles', 'accounts/{instrument_id}/holds', 'instruments/{instrument_id}/index', 'rate', 'instruments/{instrument_id}/estimated_price', 'instruments/{instrument_id}/open_interest', 'instruments/{instrument_id}/price_limit', 'instruments/{instrument_id}/liquidation', 'instruments/{instrument_id}/mark_price', ], 'post': [ 'accounts/{currency}/leverage', 'accounts/margin_mode', 'order', 'orders', 'order_algo', 'cancel_algos', 'cancel_order/{instrument_id}/{order_id}', 'cancel_order/{instrument_id}/{client_oid}', 'cancel_batch_orders/{instrument_id}', 'close_position', 'cancel_all', ], }, 'swap': { 'get': [ 'position', '{instrument_id}/position', 'accounts', '{instrument_id}/accounts', 'accounts/{instrument_id}/settings', 'accounts/{instrument_id}/ledger', 'accounts/{instrument_id}/holds', 'order_algo/{instrument_id}', 'orders/{instrument_id}', 'orders/{instrument_id}/{order_id}', 'orders/{instrument_id}/{client_oid}', 'fills', # public 'instruments', 'instruments/{instrument_id}/depth', 'instruments/ticker', 'instruments/{instrument_id}/ticker', 'instruments/{instrument_id}/trades', 'instruments/{instrument_id}/candles', 'instruments/{instrument_id}/index', 'rate', 'instruments/{instrument_id}/open_interest', 'instruments/{instrument_id}/price_limit', 'instruments/{instrument_id}/liquidation', 'instruments/{instrument_id}/funding_time', 'instruments/{instrument_id}/mark_price', 'instruments/{instrument_id}/historical_funding_rate', ], 'post': [ 'accounts/{instrument_id}/leverage', 'order', 'order_algo', 'orders', 'cancel_algos', 'cancel_order/{instrument_id}/{order_id}', 'cancel_order/{instrument_id}/{client_oid}', 'cancel_batch_orders/{instrument_id}', ], }, # they have removed self part from public 'ett': { 'get': [ 'accounts', 'accounts/{currency}', 'accounts/{currency}/ledger', 'orders', # fetchOrder, fetchOrders # public 'constituents/{ett}', 'define-price/{ett}', ], 'post': [ 'orders', 'orders/{order_id}', ], }, }, 'fees': { 'trading': { 'taker': 0.0015, 'maker': 0.0010, }, 'spot': { 'taker': 0.0015, 'maker': 0.0010, }, 'futures': { 'taker': 0.0005, 'maker': 0.0002, }, 'swap': { 'taker': 0.00075, 'maker': 0.00020, }, }, 'requiredCredentials': { 'apiKey': True, 'secret': True, 'password': True, }, 'exceptions': { # http error codes # 400 Bad Request — Invalid request format # 401 Unauthorized — Invalid API Key # 403 Forbidden — You do not have access to the requested resource # 404 Not Found # 500 Internal Server Error — We had a problem with our server 'exact': { '1': ExchangeError, # {"code": 1, "message": "System error"} # undocumented 'failure to get a peer from the ring-balancer': ExchangeNotAvailable, # {"message": "failure to get a peer from the ring-balancer"} '4010': PermissionDenied, # {"code": 4010, "message": "For the security of your funds, withdrawals are not permitted within 24 hours after changing fund password / mobile number / Google Authenticator settings "} # common '30001': AuthenticationError, # {"code": 30001, "message": 'request header "OK_ACCESS_KEY" cannot be blank'} '30002': AuthenticationError, # {"code": 30002, "message": 'request header "OK_ACCESS_SIGN" cannot be blank'} '30003': AuthenticationError, # {"code": 30003, "message": 'request header "OK_ACCESS_TIMESTAMP" cannot be blank'} '30004': AuthenticationError, # {"code": 30004, "message": 'request header "OK_ACCESS_PASSPHRASE" cannot be blank'} '30005': InvalidNonce, # {"code": 30005, "message": "invalid OK_ACCESS_TIMESTAMP"} '30006': AuthenticationError, # {"code": 30006, "message": "invalid OK_ACCESS_KEY"} '30007': BadRequest, # {"code": 30007, "message": 'invalid Content_Type, please use "application/json" format'} '30008': RequestTimeout, # {"code": 30008, "message": "timestamp request expired"} '30009': ExchangeError, # {"code": 30009, "message": "system error"} '30010': AuthenticationError, # {"code": 30010, "message": "API validation failed"} '30011': PermissionDenied, # {"code": 30011, "message": "invalid IP"} '30012': AuthenticationError, # {"code": 30012, "message": "invalid authorization"} '30013': AuthenticationError, # {"code": 30013, "message": "invalid sign"} '30014': DDoSProtection, # {"code": 30014, "message": "request too frequent"} '30015': AuthenticationError, # {"code": 30015, "message": 'request header "OK_ACCESS_PASSPHRASE" incorrect'} '30016': ExchangeError, # {"code": 30015, "message": "you are using v1 apiKey, please use v1 endpoint. If you would like to use v3 endpoint, please subscribe to v3 apiKey"} '30017': ExchangeError, # {"code": 30017, "message": "apikey's broker id does not match"} '30018': ExchangeError, # {"code": 30018, "message": "apikey's domain does not match"} '30019': ExchangeNotAvailable, # {"code": 30019, "message": "Api is offline or unavailable"} '30020': BadRequest, # {"code": 30020, "message": "body cannot be blank"} '30021': BadRequest, # {"code": 30021, "message": "Json data format error"}, {"code": 30021, "message": "json data format error"} '30022': PermissionDenied, # {"code": 30022, "message": "Api has been frozen"} '30023': BadRequest, # {"code": 30023, "message": "{0} parameter cannot be blank"} '30024': BadSymbol, # {"code":30024,"message":"\"instrument_id\" is an invalid parameter"} '30025': BadRequest, # {"code": 30025, "message": "{0} parameter category error"} '30026': DDoSProtection, # {"code": 30026, "message": "requested too frequent"} '30027': AuthenticationError, # {"code": 30027, "message": "login failure"} '30028': PermissionDenied, # {"code": 30028, "message": "unauthorized execution"} '30029': AccountSuspended, # {"code": 30029, "message": "account suspended"} '30030': ExchangeError, # {"code": 30030, "message": "endpoint request failed. Please try again"} '30031': BadRequest, # {"code": 30031, "message": "token does not exist"} '30032': BadSymbol, # {"code": 30032, "message": "pair does not exist"} '30033': BadRequest, # {"code": 30033, "message": "exchange domain does not exist"} '30034': ExchangeError, # {"code": 30034, "message": "exchange ID does not exist"} '30035': ExchangeError, # {"code": 30035, "message": "trading is not supported in self website"} '30036': ExchangeError, # {"code": 30036, "message": "no relevant data"} '30038': AuthenticationError, # {"code": 30038, "message": "user does not exist"} '30037': ExchangeNotAvailable, # {"code": 30037, "message": "endpoint is offline or unavailable"} # futures '32001': AccountSuspended, # {"code": 32001, "message": "futures account suspended"} '32002': PermissionDenied, # {"code": 32002, "message": "futures account does not exist"} '32003': CancelPending, # {"code": 32003, "message": "canceling, please wait"} '32004': ExchangeError, # {"code": 32004, "message": "you have no unfilled orders"} '32005': InvalidOrder, # {"code": 32005, "message": "max order quantity"} '32006': InvalidOrder, # {"code": 32006, "message": "the order price or trigger price exceeds USD 1 million"} '32007': InvalidOrder, # {"code": 32007, "message": "leverage level must be the same for orders on the same side of the contract"} '32008': InvalidOrder, # {"code": 32008, "message": "Max. positions to open(cross margin)"} '32009': InvalidOrder, # {"code": 32009, "message": "Max. positions to open(fixed margin)"} '32010': ExchangeError, # {"code": 32010, "message": "leverage cannot be changed with open positions"} '32011': ExchangeError, # {"code": 32011, "message": "futures status error"} '32012': ExchangeError, # {"code": 32012, "message": "futures order update error"} '32013': ExchangeError, # {"code": 32013, "message": "token type is blank"} '32014': ExchangeError, # {"code": 32014, "message": "your number of contracts closing is larger than the number of contracts available"} '32015': ExchangeError, # {"code": 32015, "message": "margin ratio is lower than 100% before opening positions"} '32016': ExchangeError, # {"code": 32016, "message": "margin ratio is lower than 100% after opening position"} '32017': ExchangeError, # {"code": 32017, "message": "no BBO"} '32018': ExchangeError, # {"code": 32018, "message": "the order quantity is less than 1, please try again"} '32019': ExchangeError, # {"code": 32019, "message": "the order price deviates from the price of the previous minute by more than 3%"} '32020': ExchangeError, # {"code": 32020, "message": "the price is not in the range of the price limit"} '32021': ExchangeError, # {"code": 32021, "message": "leverage error"} '32022': ExchangeError, # {"code": 32022, "message": "self function is not supported in your country or region according to the regulations"} '32023': ExchangeError, # {"code": 32023, "message": "self account has outstanding loan"} '32024': ExchangeError, # {"code": 32024, "message": "order cannot be placed during delivery"} '32025': ExchangeError, # {"code": 32025, "message": "order cannot be placed during settlement"} '32026': ExchangeError, # {"code": 32026, "message": "your account is restricted from opening positions"} '32029': ExchangeError, # {"code": 32029, "message": "order info does not exist"} '32028': ExchangeError, # {"code": 32028, "message": "account is suspended and liquidated"} '32027': ExchangeError, # {"code": 32027, "message": "cancelled over 20 orders"} '32044': ExchangeError, # {"code": 32044, "message": "The margin ratio after submitting self order is lower than the minimum requirement({0}) for your tier."} # token and margin trading '33001': PermissionDenied, # {"code": 33001, "message": "margin account for self pair is not enabled yet"} '33002': AccountSuspended, # {"code": 33002, "message": "margin account for self pair is suspended"} '33003': InsufficientFunds, # {"code": 33003, "message": "no loan balance"} '33004': ExchangeError, # {"code": 33004, "message": "loan amount cannot be smaller than the minimum limit"} '33005': ExchangeError, # {"code": 33005, "message": "repayment amount must exceed 0"} '33006': ExchangeError, # {"code": 33006, "message": "loan order not found"} '33007': ExchangeError, # {"code": 33007, "message": "status not found"} '33008': ExchangeError, # {"code": 33008, "message": "loan amount cannot exceed the maximum limit"} '33009': ExchangeError, # {"code": 33009, "message": "user ID is blank"} '33010': ExchangeError, # {"code": 33010, "message": "you cannot cancel an order during session 2 of call auction"} '33011': ExchangeError, # {"code": 33011, "message": "no new market data"} '33012': ExchangeError, # {"code": 33012, "message": "order cancellation failed"} '33013': InvalidOrder, # {"code": 33013, "message": "order placement failed"} '33014': OrderNotFound, # {"code": 33014, "message": "order does not exist"} '33015': InvalidOrder, # {"code": 33015, "message": "exceeded maximum limit"} '33016': ExchangeError, # {"code": 33016, "message": "margin trading is not open for self token"} '33017': InsufficientFunds, # {"code": 33017, "message": "insufficient balance"} '33018': ExchangeError, # {"code": 33018, "message": "self parameter must be smaller than 1"} '33020': ExchangeError, # {"code": 33020, "message": "request not supported"} '33021': BadRequest, # {"code": 33021, "message": "token and the pair do not match"} '33022': InvalidOrder, # {"code": 33022, "message": "pair and the order do not match"} '33023': ExchangeError, # {"code": 33023, "message": "you can only place market orders during call auction"} '33024': InvalidOrder, # {"code": 33024, "message": "trading amount too small"} '33025': InvalidOrder, # {"code": 33025, "message": "base token amount is blank"} '33026': ExchangeError, # {"code": 33026, "message": "transaction completed"} '33027': InvalidOrder, # {"code": 33027, "message": "cancelled order or order cancelling"} '33028': InvalidOrder, # {"code": 33028, "message": "the decimal places of the trading price exceeded the limit"} '33029': InvalidOrder, # {"code": 33029, "message": "the decimal places of the trading size exceeded the limit"} '33034': ExchangeError, # {"code": 33034, "message": "You can only place limit order after Call Auction has started"} '33059': BadRequest, # {"code": 33059, "message": "client_oid or order_id is required"} '33060': BadRequest, # {"code": 33060, "message": "Only fill in either parameter client_oid or order_id"} # account '34001': PermissionDenied, # {"code": 34001, "message": "withdrawal suspended"} '34002': InvalidAddress, # {"code": 34002, "message": "please add a withdrawal address"} '34003': ExchangeError, # {"code": 34003, "message": "sorry, self token cannot be withdrawn to xx at the moment"} '34004': ExchangeError, # {"code": 34004, "message": "withdrawal fee is smaller than minimum limit"} '34005': ExchangeError, # {"code": 34005, "message": "withdrawal fee exceeds the maximum limit"} '34006': ExchangeError, # {"code": 34006, "message": "withdrawal amount is lower than the minimum limit"} '34007': ExchangeError, # {"code": 34007, "message": "withdrawal amount exceeds the maximum limit"} '34008': InsufficientFunds, # {"code": 34008, "message": "insufficient balance"} '34009': ExchangeError, # {"code": 34009, "message": "your withdrawal amount exceeds the daily limit"} '34010': ExchangeError, # {"code": 34010, "message": "transfer amount must be larger than 0"} '34011': ExchangeError, # {"code": 34011, "message": "conditions not met"} '34012': ExchangeError, # {"code": 34012, "message": "the minimum withdrawal amount for NEO is 1, and the amount must be an integer"} '34013': ExchangeError, # {"code": 34013, "message": "please transfer"} '34014': ExchangeError, # {"code": 34014, "message": "transfer limited"} '34015': ExchangeError, # {"code": 34015, "message": "subaccount does not exist"} '34016': PermissionDenied, # {"code": 34016, "message": "transfer suspended"} '34017': AccountSuspended, # {"code": 34017, "message": "account suspended"} '34018': AuthenticationError, # {"code": 34018, "message": "incorrect trades password"} '34019': PermissionDenied, # {"code": 34019, "message": "please bind your email before withdrawal"} '34020': PermissionDenied, # {"code": 34020, "message": "please bind your funds password before withdrawal"} '34021': InvalidAddress, # {"code": 34021, "message": "Not verified address"} '34022': ExchangeError, # {"code": 34022, "message": "Withdrawals are not available for sub accounts"} '34023': PermissionDenied, # {"code": 34023, "message": "Please enable futures trading before transferring your funds"} # swap '35001': ExchangeError, # {"code": 35001, "message": "Contract does not exist"} '35002': ExchangeError, # {"code": 35002, "message": "Contract settling"} '35003': ExchangeError, # {"code": 35003, "message": "Contract paused"} '35004': ExchangeError, # {"code": 35004, "message": "Contract pending settlement"} '35005': AuthenticationError, # {"code": 35005, "message": "User does not exist"} '35008': InvalidOrder, # {"code": 35008, "message": "Risk ratio too high"} '35010': InvalidOrder, # {"code": 35010, "message": "Position closing too large"} '35012': InvalidOrder, # {"code": 35012, "message": "Incorrect order size"} '35014': InvalidOrder, # {"code": 35014, "message": "Order price is not within limit"} '35015': InvalidOrder, # {"code": 35015, "message": "Invalid leverage level"} '35017': ExchangeError, # {"code": 35017, "message": "Open orders exist"} '35019': InvalidOrder, # {"code": 35019, "message": "Order size too large"} '35020': InvalidOrder, # {"code": 35020, "message": "Order price too high"} '35021': InvalidOrder, # {"code": 35021, "message": "Order size exceeded current tier limit"} '35022': ExchangeError, # {"code": 35022, "message": "Contract status error"} '35024': ExchangeError, # {"code": 35024, "message": "Contract not initialized"} '35025': InsufficientFunds, # {"code": 35025, "message": "No account balance"} '35026': ExchangeError, # {"code": 35026, "message": "Contract settings not initialized"} '35029': OrderNotFound, # {"code": 35029, "message": "Order does not exist"} '35030': InvalidOrder, # {"code": 35030, "message": "Order size too large"} '35031': InvalidOrder, # {"code": 35031, "message": "Cancel order size too large"} '35032': ExchangeError, # {"code": 35032, "message": "Invalid user status"} '35039': ExchangeError, # {"code": 35039, "message": "Open order quantity exceeds limit"} '35040': InvalidOrder, # {"error_message":"Invalid order type","result":"true","error_code":"35040","order_id":"-1"} '35044': ExchangeError, # {"code": 35044, "message": "Invalid order status"} '35046': InsufficientFunds, # {"code": 35046, "message": "Negative account balance"} '35047': InsufficientFunds, # {"code": 35047, "message": "Insufficient account balance"} '35048': ExchangeError, # {"code": 35048, "message": "User contract is frozen and liquidating"} '35049': InvalidOrder, # {"code": 35049, "message": "Invalid order type"} '35050': InvalidOrder, # {"code": 35050, "message": "Position settings are blank"} '35052': InsufficientFunds, # {"code": 35052, "message": "Insufficient cross margin"} '35053': ExchangeError, # {"code": 35053, "message": "Account risk too high"} '35055': InsufficientFunds, # {"code": 35055, "message": "Insufficient account balance"} '35057': ExchangeError, # {"code": 35057, "message": "No last traded price"} '35058': ExchangeError, # {"code": 35058, "message": "No limit"} '35059': BadRequest, # {"code": 35059, "message": "client_oid or order_id is required"} '35060': BadRequest, # {"code": 35060, "message": "Only fill in either parameter client_oid or order_id"} '35061': BadRequest, # {"code": 35061, "message": "Invalid instrument_id"} '35062': InvalidOrder, # {"code": 35062, "message": "Invalid match_price"} '35063': InvalidOrder, # {"code": 35063, "message": "Invalid order_size"} '35064': InvalidOrder, # {"code": 35064, "message": "Invalid client_oid"} }, 'broad': { }, }, 'options': { 'createMarketBuyOrderRequiresPrice': True, 'fetchMarkets': ['spot', 'futures', 'swap'], 'defaultType': 'spot', # 'account', 'spot', 'margin', 'futures', 'swap' 'auth': { 'time': 'public', 'currencies': 'private', 'instruments': 'public', 'rate': 'public', 'constituents/{ett}': 'public', 'define-price/{ett}': 'public', }, }, 'commonCurrencies': { # OKEX refers to ERC20 version of Aeternity(AEToken) 'AE': 'AET', # https://github.com/ccxt/ccxt/issues/4981 'HOT': 'Hydro Protocol', 'HSR': 'HC', 'MAG': 'Maggie', 'YOYO': 'YOYOW', 'WIN': 'WinToken', # https://github.com/ccxt/ccxt/issues/5701 }, }) async def fetch_time(self, params={}): response = await self.generalGetTime(params) # # { # "iso": "2015-01-07T23:47:25.201Z", # "epoch": 1420674445.201 # } # return self.parse8601(self.safe_string(response, 'iso')) async def fetch_markets(self, params={}): types = self.safe_value(self.options, 'fetchMarkets') result = [] for i in range(0, len(types)): markets = await self.fetch_markets_by_type(types[i], params) result = self.array_concat(result, markets) return result def parse_markets(self, markets): result = [] for i in range(0, len(markets)): result.append(self.parse_market(markets[i])) return result def parse_market(self, market): # # spot markets # # [{ base_currency: "EOS", # instrument_id: "EOS-OKB", # min_size: "0.01", # product_id: "EOS-OKB", # quote_currency: "OKB", # size_increment: "0.000001", # tick_size: "0.0001" }, # # ..., # the spot endpoint also returns ETT instruments # # { base_currency: "OK06ETT", # base_increment: "0.00000001", # base_min_size: "0.01", # instrument_id: "OK06ETT-USDT", # min_size: "0.01", # product_id: "OK06ETT-USDT", # quote_currency: "USDT", # quote_increment: "0.0001", # size_increment: "0.00000001", # tick_size: "0.0001" }] # # futures markets # # [{ instrument_id: "BTG-USD-190329", # underlying_index: "BTG", # quote_currency: "USD", # tick_size: "0.01", # contract_val: "10", # listing: "2018-12-14", # delivery: "2019-03-29", # trade_increment: "1" } ] # # swap markets # # [{ instrument_id: "BTC-USD-SWAP", # underlying_index: "BTC", # quote_currency: "USD", # coin: "BTC", # contract_val: "100", # listing: "2018-10-23T20:11:00.443Z", # delivery: "2018-10-24T20:11:00.443Z", # size_increment: "4", # tick_size: "4" } ] # id = self.safe_string(market, 'instrument_id') marketType = 'spot' spot = True future = False swap = False baseId = self.safe_string(market, 'base_currency') contractVal = self.safe_float(market, 'contract_val') if contractVal is not None: marketType = 'swap' spot = False swap = True baseId = self.safe_string(market, 'coin') futuresAlias = self.safe_string(market, 'alias') if futuresAlias is not None: swap = False future = True marketType = 'futures' baseId = self.safe_string(market, 'underlying_index') quoteId = self.safe_string(market, 'quote_currency') base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) symbol = (base + '/' + quote) if spot else id amountPrecision = self.safe_string(market, 'size_increment') if amountPrecision is not None: amountPrecision = self.precision_from_string(amountPrecision) pricePrecision = self.safe_string(market, 'tick_size') if pricePrecision is not None: pricePrecision = self.precision_from_string(pricePrecision) precision = { 'amount': amountPrecision, 'price': pricePrecision, } minAmount = self.safe_float_2(market, 'min_size', 'base_min_size') minPrice = self.safe_float(market, 'tick_size') if precision['price'] is not None: minPrice = math.pow(10, -precision['price']) minCost = None if minAmount is not None and minPrice is not None: minCost = minAmount * minPrice active = True fees = self.safe_value_2(self.fees, marketType, 'trading', {}) return self.extend(fees, { 'id': id, 'symbol': symbol, 'base': base, 'quote': quote, 'baseId': baseId, 'quoteId': quoteId, 'info': market, 'type': marketType, 'spot': spot, 'futures': future, 'swap': swap, 'active': active, 'precision': precision, 'limits': { 'amount': { 'min': minAmount, 'max': None, }, 'price': { 'min': minPrice, 'max': None, }, 'cost': { 'min': minCost, 'max': None, }, }, }) async def fetch_markets_by_type(self, type, params={}): method = type + 'GetInstruments' response = await getattr(self, method)(params) # # spot markets # # [{ base_currency: "EOS", # base_increment: "0.000001", # base_min_size: "0.01", # instrument_id: "EOS-OKB", # min_size: "0.01", # product_id: "EOS-OKB", # quote_currency: "OKB", # quote_increment: "0.0001", # size_increment: "0.000001", # tick_size: "0.0001" } ] # # futures markets # # [{ instrument_id: "BTG-USD-190329", # underlying_index: "BTG", # quote_currency: "USD", # tick_size: "0.01", # contract_val: "10", # listing: "2018-12-14", # delivery: "2019-03-29", # trade_increment: "1" } ] # # swap markets # # [{ instrument_id: "BTC-USD-SWAP", # underlying_index: "BTC", # quote_currency: "USD", # coin: "BTC", # contract_val: "100", # listing: "2018-10-23T20:11:00.443Z", # delivery: "2018-10-24T20:11:00.443Z", # size_increment: "4", # tick_size: "4" } ] # return self.parse_markets(response) async def fetch_currencies(self, params={}): # has['fetchCurrencies'] is currently set to False # despite that their docs say these endpoints are public: # https://www.okex.com/api/account/v3/withdrawal/fee # https://www.okex.com/api/account/v3/currencies # it will still reply with {"code":30001, "message": "OK-ACCESS-KEY header is required"} # if you attempt to access it without authentication response = await self.accountGetCurrencies(params) # # [ # { # name: '', # currency: 'BTC', # can_withdraw: '1', # can_deposit: '1', # min_withdrawal: '0.0100000000000000' # }, # ] # result = {} for i in range(0, len(response)): currency = response[i] id = self.safe_string(currency, 'currency') code = self.safe_currency_code(id) precision = 8 # default precision, todo: fix "magic constants" name = self.safe_string(currency, 'name') canDeposit = self.safe_integer(currency, 'can_deposit') canWithdraw = self.safe_integer(currency, 'can_withdraw') active = canDeposit and canWithdraw result[code] = { 'id': id, 'code': code, 'info': currency, 'type': None, 'name': name, 'active': active, 'fee': None, # todo: redesign 'precision': precision, 'limits': { 'amount': {'min': None, 'max': None}, 'price': {'min': None, 'max': None}, 'cost': {'min': None, 'max': None}, 'withdraw': { 'min': self.safe_float(currency, 'min_withdrawal'), 'max': None, }, }, } return result async def fetch_order_book(self, symbol, limit=None, params={}): await self.load_markets() market = self.market(symbol) method = market['type'] + 'GetInstrumentsInstrumentId' method += 'Depth' if (market['type'] == 'swap') else 'Book' request = { 'instrument_id': market['id'], } if limit is not None: request['size'] = limit # max 200 response = await getattr(self, method)(self.extend(request, params)) # # { asks: [["0.02685268", "0.242571", "1"], # ["0.02685493", "0.164085", "1"], # ... # ["0.02779", "1.039", "1"], # ["0.027813", "0.0876", "1"] ], # bids: [["0.02684052", "10.371849", "1"], # ["0.02684051", "3.707", "4"], # ... # ["0.02634963", "0.132934", "1"], # ["0.02634962", "0.264838", "2"] ], # timestamp: "2018-12-17T20:24:16.159Z" } # timestamp = self.parse8601(self.safe_string(response, 'timestamp')) return self.parse_order_book(response, timestamp) def parse_ticker(self, ticker, market=None): # # { best_ask: "0.02665472", # best_bid: "0.02665221", # instrument_id: "ETH-BTC", # product_id: "ETH-BTC", # last: "0.02665472", # ask: "0.02665472", # missing in the docs # bid: "0.02665221", # not mentioned in the docs # open_24h: "0.02645482", # high_24h: "0.02714633", # low_24h: "0.02614109", # base_volume_24h: "572298.901923", # timestamp: "2018-12-17T21:20:07.856Z", # quote_volume_24h: "15094.86831261" } # timestamp = self.parse8601(self.safe_string(ticker, 'timestamp')) symbol = None marketId = self.safe_string(ticker, 'instrument_id') if marketId in self.markets_by_id: market = self.markets_by_id[marketId] elif marketId is not None: parts = marketId.split('-') numParts = len(parts) if numParts == 2: baseId, quoteId = parts base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) symbol = base + '/' + quote else: symbol = marketId if market is not None: symbol = market['symbol'] last = self.safe_float(ticker, 'last') open = self.safe_float(ticker, 'open_24h') return { 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': self.safe_float(ticker, 'high_24h'), 'low': self.safe_float(ticker, 'low_24h'), 'bid': self.safe_float(ticker, 'best_bid'), 'bidVolume': None, 'ask': self.safe_float(ticker, 'best_ask'), 'askVolume': None, 'vwap': None, 'open': open, 'close': last, 'last': last, 'previousClose': None, 'change': None, 'percentage': None, 'average': None, 'baseVolume': self.safe_float(ticker, 'base_volume_24h'), 'quoteVolume': self.safe_float(ticker, 'quote_volume_24h'), 'info': ticker, } async def fetch_ticker(self, symbol, params={}): await self.load_markets() market = self.market(symbol) method = market['type'] + 'GetInstrumentsInstrumentIdTicker' request = { 'instrument_id': market['id'], } response = await getattr(self, method)(self.extend(request, params)) # # { best_ask: "0.02665472", # best_bid: "0.02665221", # instrument_id: "ETH-BTC", # product_id: "ETH-BTC", # last: "0.02665472", # ask: "0.02665472", # bid: "0.02665221", # open_24h: "0.02645482", # high_24h: "0.02714633", # low_24h: "0.02614109", # base_volume_24h: "572298.901923", # timestamp: "2018-12-17T21:20:07.856Z", # quote_volume_24h: "15094.86831261" } # return self.parse_ticker(response) async def fetch_tickers_by_type(self, type, symbols=None, params={}): await self.load_markets() method = type + 'GetInstrumentsTicker' response = await getattr(self, method)(params) result = {} for i in range(0, len(response)): ticker = self.parse_ticker(response[i]) symbol = ticker['symbol'] result[symbol] = ticker return result async def fetch_tickers(self, symbols=None, params={}): defaultType = self.safe_string_2(self.options, 'fetchTickers', 'defaultType') type = self.safe_string(params, 'type', defaultType) return await self.fetch_tickers_by_type(type, symbols, self.omit(params, 'type')) def parse_trade(self, trade, market=None): # # fetchTrades(public) # # spot trades # # { # time: "2018-12-17T23:31:08.268Z", # timestamp: "2018-12-17T23:31:08.268Z", # trade_id: "409687906", # price: "0.02677805", # size: "0.923467", # side: "sell" # } # # futures trades, swap trades # # { # trade_id: "1989230840021013", # side: "buy", # price: "92.42", # qty: "184", # missing in swap markets # size: "5", # missing in futures markets # timestamp: "2018-12-17T23:26:04.613Z" # } # # fetchOrderTrades(private) # # spot trades, margin trades # # { # "created_at":"2019-03-15T02:52:56.000Z", # "exec_type":"T", # whether the order is taker or maker # "fee":"0.00000082", # "instrument_id":"BTC-USDT", # "ledger_id":"3963052721", # "liquidity":"T", # whether the order is taker or maker # "order_id":"2482659399697408", # "price":"3888.6", # "product_id":"BTC-USDT", # "side":"buy", # "size":"0.00055306", # "timestamp":"2019-03-15T02:52:56.000Z" # }, # # futures trades, swap trades # # { # "trade_id":"197429674631450625", # "instrument_id":"EOS-USD-SWAP", # "order_id":"6a-7-54d663a28-0", # "price":"3.633", # "order_qty":"1.0000", # "fee":"-0.000551", # "created_at":"2019-03-21T04:41:58.0Z", # missing in swap trades # "timestamp":"2019-03-25T05:56:31.287Z", # missing in futures trades # "exec_type":"M", # whether the order is taker or maker # "side":"short", # "buy" in futures trades # } # symbol = None if market is not None: symbol = market['symbol'] timestamp = self.parse8601(self.safe_string_2(trade, 'timestamp', 'created_at')) price = self.safe_float(trade, 'price') amount = self.safe_float_2(trade, 'size', 'qty') amount = self.safe_float(trade, 'order_qty', amount) takerOrMaker = self.safe_string_2(trade, 'exec_type', 'liquidity') if takerOrMaker == 'M': takerOrMaker = 'maker' elif takerOrMaker == 'T': takerOrMaker = 'taker' side = self.safe_string(trade, 'side') cost = None if amount is not None: if price is not None: cost = amount * price feeCost = self.safe_float(trade, 'fee') fee = None if feeCost is not None: feeCurrency = None if market is not None: feeCurrency = market['base'] if (side == 'buy') else market['quote'] fee = { # fee is either a positive number(invitation rebate) # or a negative number(transaction fee deduction) # therefore we need to invert the fee # more about it https://github.com/ccxt/ccxt/issues/5909 'cost': -feeCost, 'currency': feeCurrency, } orderId = self.safe_string(trade, 'order_id') return { 'info': trade, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': symbol, 'id': self.safe_string_2(trade, 'trade_id', 'ledger_id'), 'order': orderId, 'type': None, 'takerOrMaker': takerOrMaker, 'side': side, 'price': price, 'amount': amount, 'cost': cost, 'fee': fee, } async def fetch_trades(self, symbol, since=None, limit=None, params={}): await self.load_markets() market = self.market(symbol) method = market['type'] + 'GetInstrumentsInstrumentIdTrades' if (limit is None) or (limit > 100): limit = 100 # maximum = default = 100 request = { 'instrument_id': market['id'], 'limit': limit, # from: 'id', # to: 'id', } response = await getattr(self, method)(self.extend(request, params)) # # spot markets # # [ # { # time: "2018-12-17T23:31:08.268Z", # timestamp: "2018-12-17T23:31:08.268Z", # trade_id: "409687906", # price: "0.02677805", # size: "0.923467", # side: "sell" # } # ] # # futures markets, swap markets # # [ # { # trade_id: "1989230840021013", # side: "buy", # price: "92.42", # qty: "184", # missing in swap markets # size: "5", # missing in futures markets # timestamp: "2018-12-17T23:26:04.613Z" # } # ] # return self.parse_trades(response, market, since, limit) def parse_ohlcv(self, ohlcv, market=None, timeframe='1m', since=None, limit=None): # # spot markets # # { # close: "0.02684545", # high: "0.02685084", # low: "0.02683312", # open: "0.02683894", # time: "2018-12-17T20:28:00.000Z", # volume: "101.457222" # } # # futures markets # # [ # 1545072720000, # 0.3159, # 0.3161, # 0.3144, # 0.3149, # 22886, # 725179.26172331, # ] # if isinstance(ohlcv, list): numElements = len(ohlcv) volumeIndex = 6 if (numElements > 6) else 5 timestamp = ohlcv[0] if isinstance(timestamp, basestring): timestamp = self.parse8601(timestamp) return [ timestamp, # timestamp float(ohlcv[1]), # Open float(ohlcv[2]), # High float(ohlcv[3]), # Low float(ohlcv[4]), # Close # float(ohlcv[5]), # Quote Volume # float(ohlcv[6]), # Base Volume float(ohlcv[volumeIndex]), # Volume, okex will return base volume in the 7th element for future markets ] else: return [ self.parse8601(self.safe_string(ohlcv, 'time')), self.safe_float(ohlcv, 'open'), # Open self.safe_float(ohlcv, 'high'), # High self.safe_float(ohlcv, 'low'), # Low self.safe_float(ohlcv, 'close'), # Close self.safe_float(ohlcv, 'volume'), # Base Volume ] async def fetch_ohlcv(self, symbol, timeframe='1m', since=None, limit=None, params={}): await self.load_markets() market = self.market(symbol) method = market['type'] + 'GetInstrumentsInstrumentIdCandles' request = { 'instrument_id': market['id'], 'granularity': self.timeframes[timeframe], } if since is not None: request['start'] = self.iso8601(since) response = await getattr(self, method)(self.extend(request, params)) # # spot markets # # [{ close: "0.02683401", # high: "0.02683401", # low: "0.02683401", # open: "0.02683401", # time: "2018-12-17T23:47:00.000Z", # volume: "0" }, # ... # { close: "0.02684545", # high: "0.02685084", # low: "0.02683312", # open: "0.02683894", # time: "2018-12-17T20:28:00.000Z", # volume: "101.457222" } ] # # futures # # [[1545090660000, # 0.3171, # 0.3174, # 0.3171, # 0.3173, # 1648, # 51930.38579450868], # ... # [1545072720000, # 0.3159, # 0.3161, # 0.3144, # 0.3149, # 22886, # 725179.26172331] ] # return self.parse_ohlcvs(response, market, timeframe, since, limit) def parse_account_balance(self, response): # # account # # [ # { # balance: 0, # available: 0, # currency: "BTC", # hold: 0 # }, # { # balance: 0, # available: 0, # currency: "ETH", # hold: 0 # } # ] # # spot # # [ # { # frozen: "0", # hold: "0", # id: "2149632", # currency: "BTC", # balance: "0.0000000497717339", # available: "0.0000000497717339", # holds: "0" # }, # { # frozen: "0", # hold: "0", # id: "2149632", # currency: "ICN", # balance: "0.00000000925", # available: "0.00000000925", # holds: "0" # } # ] # result = {'info': response} for i in range(0, len(response)): balance = response[i] currencyId = self.safe_string(balance, 'currency') code = self.safe_currency_code(currencyId) account = self.account() account['total'] = self.safe_float(balance, 'balance') account['used'] = self.safe_float(balance, 'hold') account['free'] = self.safe_float(balance, 'available') result[code] = account return self.parse_balance(result) def parse_margin_balance(self, response): # # [ # { # "currency:BTC": { # "available":"0", # "balance":"0", # "borrowed":"0", # "can_withdraw":"0", # "frozen":"0", # "hold":"0", # "holds":"0", # "lending_fee":"0" # }, # "currency:USDT": { # "available":"100", # "balance":"100", # "borrowed":"0", # "can_withdraw":"100", # "frozen":"0", # "hold":"0", # "holds":"0", # "lending_fee":"0" # }, # "instrument_id":"BTC-USDT", # "liquidation_price":"0", # "product_id":"BTC-USDT", # "risk_rate":"" # }, # ] # result = {'info': response} for i in range(0, len(response)): balance = response[i] marketId = self.safe_string(balance, 'instrument_id') market = self.safe_value(self.markets_by_id, marketId) symbol = None if market is None: baseId, quoteId = marketId.split('-') base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) symbol = base + '/' + quote else: symbol = market['symbol'] omittedBalance = self.omit(balance, [ 'instrument_id', 'liquidation_price', 'product_id', 'risk_rate', 'margin_ratio', 'maint_margin_ratio', 'tiers', ]) keys = list(omittedBalance.keys()) accounts = {} for k in range(0, len(keys)): key = keys[k] marketBalance = balance[key] if key.find(':') >= 0: parts = key.split(':') currencyId = parts[1] code = self.safe_currency_code(currencyId) account = self.account() account['total'] = self.safe_float(marketBalance, 'balance') account['used'] = self.safe_float(marketBalance, 'hold') account['free'] = self.safe_float(marketBalance, 'available') accounts[code] = account else: raise NotSupported(self.id + ' margin balance response format has changed!') result[symbol] = self.parse_balance(accounts) return result def parse_futures_balance(self, response): # # { # "info":{ # "eos":{ # "auto_margin":"0", # "contracts": [ # { # "available_qty":"40.37069445", # "fixed_balance":"0", # "instrument_id":"EOS-USD-190329", # "margin_for_unfilled":"0", # "margin_frozen":"0", # "realized_pnl":"0", # "unrealized_pnl":"0" # }, # { # "available_qty":"40.37069445", # "fixed_balance":"14.54895721", # "instrument_id":"EOS-USD-190628", # "margin_for_unfilled":"0", # "margin_frozen":"10.64042157", # "realized_pnl":"-3.90853564", # "unrealized_pnl":"-0.259" # }, # ], # "equity":"50.75220665", # "margin_mode":"fixed", # "total_avail_balance":"40.37069445" # }, # } # } # # their root field name is "info", so our info will contain their info result = {'info': response} info = self.safe_value(response, 'info', {}) ids = list(info.keys()) for i in range(0, len(ids)): id = ids[i] code = self.safe_currency_code(id) balance = self.safe_value(info, id, {}) account = self.account() # it may be incorrect to use total, free and used for swap accounts account['total'] = self.safe_float(balance, 'equity') account['free'] = self.safe_float(balance, 'total_avail_balance') result[code] = account return self.parse_balance(result) def parse_swap_balance(self, response): # # { # "info": [ # { # "equity":"3.0139", # "fixed_balance":"0.0000", # "instrument_id":"EOS-USD-SWAP", # "margin":"0.5523", # "margin_frozen":"0.0000", # "margin_mode":"crossed", # "margin_ratio":"1.0913", # "realized_pnl":"-0.0006", # "timestamp":"2019-03-25T03:46:10.336Z", # "total_avail_balance":"3.0000", # "unrealized_pnl":"0.0145" # } # ] # } # # their root field name is "info", so our info will contain their info result = {'info': response} info = self.safe_value(response, 'info', []) for i in range(0, len(info)): balance = info[i] marketId = self.safe_string(balance, 'instrument_id') symbol = marketId if marketId in self.markets_by_id: symbol = self.markets_by_id[marketId]['symbol'] account = self.account() # it may be incorrect to use total, free and used for swap accounts account['total'] = self.safe_float(balance, 'equity') account['free'] = self.safe_float(balance, 'total_avail_balance') result[symbol] = account return self.parse_balance(result) async def fetch_balance(self, params={}): await self.load_markets() defaultType = self.safe_string_2(self.options, 'fetchBalance', 'defaultType') type = self.safe_string(params, 'type', defaultType) if type is None: raise ArgumentsRequired(self.id + " fetchBalance requires a type parameter(one of 'account', 'spot', 'margin', 'futures', 'swap')") suffix = 'Wallet' if (type == 'account') else 'Accounts' method = type + 'Get' + suffix query = self.omit(params, 'type') response = await getattr(self, method)(query) # # account # # [ # { # balance: 0, # available: 0, # currency: "BTC", # hold: 0 # }, # { # balance: 0, # available: 0, # currency: "ETH", # hold: 0 # } # ] # # spot # # [ # { # frozen: "0", # hold: "0", # id: "2149632", # currency: "BTC", # balance: "0.0000000497717339", # available: "0.0000000497717339", # holds: "0" # }, # { # frozen: "0", # hold: "0", # id: "2149632", # currency: "ICN", # balance: "0.00000000925", # available: "0.00000000925", # holds: "0" # } # ] # # margin # # [ # { # "currency:BTC": { # "available":"0", # "balance":"0", # "borrowed":"0", # "can_withdraw":"0", # "frozen":"0", # "hold":"0", # "holds":"0", # "lending_fee":"0" # }, # "currency:USDT": { # "available":"100", # "balance":"100", # "borrowed":"0", # "can_withdraw":"100", # "frozen":"0", # "hold":"0", # "holds":"0", # "lending_fee":"0" # }, # "instrument_id":"BTC-USDT", # "liquidation_price":"0", # "product_id":"BTC-USDT", # "risk_rate":"" # }, # ] # # futures # # { # "info":{ # "eos":{ # "auto_margin":"0", # "contracts": [ # { # "available_qty":"40.37069445", # "fixed_balance":"0", # "instrument_id":"EOS-USD-190329", # "margin_for_unfilled":"0", # "margin_frozen":"0", # "realized_pnl":"0", # "unrealized_pnl":"0" # }, # { # "available_qty":"40.37069445", # "fixed_balance":"14.54895721", # "instrument_id":"EOS-USD-190628", # "margin_for_unfilled":"0", # "margin_frozen":"10.64042157", # "realized_pnl":"-3.90853564", # "unrealized_pnl":"-0.259" # }, # ], # "equity":"50.75220665", # "margin_mode":"fixed", # "total_avail_balance":"40.37069445" # }, # } # } # # swap # # { # "info": [ # { # "equity":"3.0139", # "fixed_balance":"0.0000", # "instrument_id":"EOS-USD-SWAP", # "margin":"0.5523", # "margin_frozen":"0.0000", # "margin_mode":"crossed", # "margin_ratio":"1.0913", # "realized_pnl":"-0.0006", # "timestamp":"2019-03-25T03:46:10.336Z", # "total_avail_balance":"3.0000", # "unrealized_pnl":"0.0145" # } # ] # } # if (type == 'account') or (type == 'spot'): return self.parse_account_balance(response) elif type == 'margin': return self.parse_margin_balance(response) elif type == 'futures': return self.parse_futures_balance(response) elif type == 'swap': return self.parse_swap_balance(response) raise NotSupported(self.id + " fetchBalance does not support the '" + type + "' type(the type must be one of 'account', 'spot', 'margin', 'futures', 'swap')") async def create_order(self, symbol, type, side, amount, price=None, params={}): await self.load_markets() market = self.market(symbol) request = { 'instrument_id': market['id'], # 'client_oid': 'abcdef1234567890', # [a-z0-9]{1,32} # 'order_type': '0', # 0: Normal limit order(Unfilled and 0 represent normal limit order) 1: Post only 2: Fill Or Kill 3: Immediatel Or Cancel } method = None if market['futures'] or market['swap']: size = self.number_to_string(amount) if market['futures'] else self.amount_to_precision(symbol, amount) request = self.extend(request, { 'type': type, # 1:open long 2:open short 3:close long 4:close short for futures 'size': size, 'price': self.price_to_precision(symbol, price), # 'match_price': '0', # Order at best counter party price?(0:no 1:yes). The default is 0. If it is set as 1, the price parameter will be ignored. When posting orders at best bid price, order_type can only be 0(regular order). }) if market['futures']: request['leverage'] = '10' # or '20' method = market['type'] + 'PostOrder' else: marginTrading = self.safe_string(params, 'margin_trading', '1') # 1 = spot, 2 = margin request = self.extend(request, { 'side': side, 'type': type, # limit/market 'margin_trading': marginTrading, # 1 = spot, 2 = margin }) if type == 'limit': request['price'] = self.price_to_precision(symbol, price) request['size'] = self.amount_to_precision(symbol, amount) elif type == 'market': # for market buy it requires the amount of quote currency to spend if side == 'buy': notional = self.safe_float(params, 'notional') createMarketBuyOrderRequiresPrice = self.safe_value(self.options, 'createMarketBuyOrderRequiresPrice', True) if createMarketBuyOrderRequiresPrice: if price is not None: if notional is None: notional = amount * price elif notional is None: raise InvalidOrder(self.id + " createOrder() requires the price argument with market buy orders to calculate total order cost(amount to spend), where cost = amount * price. Supply a price argument to createOrder() call if you want the cost to be calculated for you from price and amount, or, alternatively, add .options['createMarketBuyOrderRequiresPrice'] = False and supply the total cost value in the 'notional' extra parameter(the exchange-specific behaviour)") request['notional'] = self.cost_to_precision(symbol, notional) else: request['size'] = self.amount_to_precision(symbol, amount) method = 'marginPostOrders' if (marginTrading == '2') else 'spotPostOrders' response = await getattr(self, method)(self.extend(request, params)) # # { # "client_oid":"oktspot79", # "error_code":"", # "error_message":"", # "order_id":"2510789768709120", # "result":true # } # timestamp = self.milliseconds() id = self.safe_string(response, 'order_id') return { 'info': response, 'id': id, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': None, 'status': None, 'symbol': symbol, 'type': type, 'side': side, 'price': price, 'amount': amount, 'filled': None, 'remaining': None, 'cost': None, 'trades': None, 'fee': None, } async def cancel_order(self, id, symbol=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ' cancelOrder() requires a symbol argument') await self.load_markets() market = self.market(symbol) type = market['type'] method = type + 'PostCancelOrder' request = { 'instrument_id': market['id'], } if market['futures'] or market['swap']: method += 'InstrumentId' else: method += 's' clientOid = self.safe_string(params, 'client_oid') if clientOid is not None: method += 'ClientOid' request['client_oid'] = clientOid else: method += 'OrderId' request['order_id'] = id query = self.omit(params, 'type') response = await getattr(self, method)(self.extend(request, query)) result = response if ('result' in response) else self.safe_value(response, market['id'], {}) # # spot, margin # # { # "btc-usdt": [ # { # "result":true, # "client_oid":"a123", # "order_id": "2510832677225473" # } # ] # } # # futures, swap # # { # "result": True, # "client_oid": "oktfuture10", # missing if requested by order_id # "order_id": "2517535534836736", # "instrument_id": "EOS-USD-190628" # } # return self.parse_order(result, market) def parse_order_status(self, status): statuses = { '-2': 'failed', '-1': 'canceled', '0': 'open', '1': 'open', '2': 'closed', '3': 'open', '4': 'canceled', } return self.safe_string(statuses, status, status) def parse_order_side(self, side): sides = { '1': 'buy', # open long '2': 'sell', # open short '3': 'sell', # close long '4': 'buy', # close short } return self.safe_string(sides, side, side) def parse_order(self, order, market=None): # # createOrder # # { # "client_oid":"oktspot79", # "error_code":"", # "error_message":"", # "order_id":"2510789768709120", # "result":true # } # # cancelOrder # # { # "result": True, # "client_oid": "oktfuture10", # missing if requested by order_id # "order_id": "2517535534836736", # # instrument_id is missing for spot/margin orders # # available in futures and swap orders only # "instrument_id": "EOS-USD-190628", # } # # fetchOrder, fetchOrdersByState, fetchOpenOrders, fetchClosedOrders # # # spot and margin orders # # { # "client_oid":"oktspot76", # "created_at":"2019-03-18T07:26:49.000Z", # "filled_notional":"3.9734", # "filled_size":"0.001", # filled_qty in futures and swap orders # "funds":"", # self is most likely the same as notional # "instrument_id":"BTC-USDT", # "notional":"", # "order_id":"2500723297813504", # "order_type":"0", # "price":"4013", # "product_id":"BTC-USDT", # missing in futures and swap orders # "side":"buy", # "size":"0.001", # "status":"filled", # "state": "2", # "timestamp":"2019-03-18T07:26:49.000Z", # "type":"limit" # } # # # futures and swap orders # # { # "instrument_id":"EOS-USD-190628", # "size":"10", # "timestamp":"2019-03-20T10:04:55.000Z", # "filled_qty":"10", # filled_size in spot and margin orders # "fee":"-0.00841043", # "order_id":"2512669605501952", # "price":"3.668", # "price_avg":"3.567", # missing in spot and margin orders # "status":"2", # "state": "2", # "type":"4", # "contract_val":"10", # "leverage":"10", # missing in swap, spot and margin orders # "client_oid":"", # "pnl":"1.09510794", # missing in swap, spo and margin orders # "order_type":"0" # } # id = self.safe_string(order, 'order_id') timestamp = self.parse8601(self.safe_string(order, 'timestamp')) side = self.safe_string(order, 'side') type = self.safe_string(order, 'type') if (side != 'buy') and (side != 'sell'): side = self.parse_order_side(type) if (type != 'limit') and (type != 'market'): if 'pnl' in order: type = 'futures' else: type = 'swap' symbol = None marketId = self.safe_string(order, 'instrument_id') if marketId in self.markets_by_id: market = self.markets_by_id[marketId] symbol = market['symbol'] else: symbol = marketId if market is not None: if symbol is None: symbol = market['symbol'] amount = self.safe_float(order, 'size') filled = self.safe_float_2(order, 'filled_size', 'filled_qty') remaining = None if amount is not None: if filled is not None: amount = max(amount, filled) remaining = max(0, amount - filled) if type == 'market': remaining = 0 cost = self.safe_float_2(order, 'filled_notional', 'funds') price = self.safe_float(order, 'price') average = self.safe_float(order, 'price_avg') if cost is None: if filled is not None and average is not None: cost = average * filled else: if (average is None) and (filled is not None) and (filled > 0): average = cost / filled status = self.parse_order_status(self.safe_string(order, 'state')) feeCost = self.safe_float(order, 'fee') fee = None if feeCost is not None: feeCurrency = None fee = { 'cost': feeCost, 'currency': feeCurrency, } return { 'info': order, 'id': id, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': None, 'symbol': symbol, 'type': type, 'side': side, 'price': price, 'average': average, 'cost': cost, 'amount': amount, 'filled': filled, 'remaining': remaining, 'status': status, 'fee': fee, } async def fetch_order(self, id, symbol=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ' fetchOrder requires a symbol argument') await self.load_markets() market = self.market(symbol) defaultType = self.safe_string_2(self.options, 'fetchOrder', 'defaultType', market['type']) type = self.safe_string(params, 'type', defaultType) if type is None: raise ArgumentsRequired(self.id + " fetchOrder requires a type parameter(one of 'spot', 'margin', 'futures', 'swap').") instrumentId = 'InstrumentId' if (market['futures'] or market['swap']) else '' method = type + 'GetOrders' + instrumentId request = { 'instrument_id': market['id'], # 'client_oid': 'abcdef12345', # optional, [a-z0-9]{1,32} # 'order_id': id, } clientOid = self.safe_string(params, 'client_oid') if clientOid is not None: method += 'ClientOid' request['client_oid'] = clientOid else: method += 'OrderId' request['order_id'] = id query = self.omit(params, 'type') response = await getattr(self, method)(self.extend(request, query)) # # spot, margin # # { # "client_oid":"oktspot70", # "created_at":"2019-03-15T02:52:56.000Z", # "filled_notional":"3.8886", # "filled_size":"0.001", # "funds":"", # "instrument_id":"BTC-USDT", # "notional":"", # "order_id":"2482659399697408", # "order_type":"0", # "price":"3927.3", # "product_id":"BTC-USDT", # "side":"buy", # "size":"0.001", # "status":"filled", # "state": "2", # "timestamp":"2019-03-15T02:52:56.000Z", # "type":"limit" # } # # futures, swap # # { # "instrument_id":"EOS-USD-190628", # "size":"10", # "timestamp":"2019-03-20T02:46:38.000Z", # "filled_qty":"10", # "fee":"-0.0080819", # "order_id":"2510946213248000", # "price":"3.712", # "price_avg":"3.712", # "status":"2", # "state": "2", # "type":"2", # "contract_val":"10", # "leverage":"10", # "client_oid":"", # missing in swap orders # "pnl":"0", # missing in swap orders # "order_type":"0" # } # return self.parse_order(response) async def fetch_orders_by_state(self, state, symbol=None, since=None, limit=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ' fetchOrdersByState requires a symbol argument') await self.load_markets() market = self.market(symbol) type = market['type'] request = { 'instrument_id': market['id'], # '-2': failed, # '-1': cancelled, # '0': open , # '1': partially filled, # '2': fully filled, # '3': submitting, # '4': cancelling, # '6': incomplete(open+partially filled), # '7': complete(cancelled+fully filled), 'state': state, } method = type + 'GetOrders' if market['futures'] or market['swap']: method += 'InstrumentId' query = self.omit(params, 'type') response = await getattr(self, method)(self.extend(request, query)) # # spot, margin # # [ # # in fact, self documented API response does not correspond # # to their actual API response for spot markets # # OKEX v3 API returns a plain array of orders(see below) # [ # { # "client_oid":"oktspot76", # "created_at":"2019-03-18T07:26:49.000Z", # "filled_notional":"3.9734", # "filled_size":"0.001", # "funds":"", # "instrument_id":"BTC-USDT", # "notional":"", # "order_id":"2500723297813504", # "order_type":"0", # "price":"4013", # "product_id":"BTC-USDT", # "side":"buy", # "size":"0.001", # "status":"filled", # "state": "2", # "timestamp":"2019-03-18T07:26:49.000Z", # "type":"limit" # }, # ], # { # "before":"2500723297813504", # "after":"2500650881647616" # } # ] # # futures, swap # # { # "result":true, # missing in swap orders # "order_info": [ # { # "instrument_id":"EOS-USD-190628", # "size":"10", # "timestamp":"2019-03-20T10:04:55.000Z", # "filled_qty":"10", # "fee":"-0.00841043", # "order_id":"2512669605501952", # "price":"3.668", # "price_avg":"3.567", # "status":"2", # "state": "2", # "type":"4", # "contract_val":"10", # "leverage":"10", # missing in swap orders # "client_oid":"", # "pnl":"1.09510794", # missing in swap orders # "order_type":"0" # }, # ] # } # orders = None if market['type'] == 'swap' or market['type'] == 'futures': orders = self.safe_value(response, 'order_info', []) else: orders = response responseLength = len(response) if responseLength < 1: return [] # in fact, self documented API response does not correspond # to their actual API response for spot markets # OKEX v3 API returns a plain array of orders if responseLength > 1: before = self.safe_value(response[1], 'before') if before is not None: orders = response[0] return self.parse_orders(orders, market, since, limit) async def fetch_open_orders(self, symbol=None, since=None, limit=None, params={}): # '-2': failed, # '-1': cancelled, # '0': open , # '1': partially filled, # '2': fully filled, # '3': submitting, # '4': cancelling, # '6': incomplete(open+partially filled), # '7': complete(cancelled+fully filled), return await self.fetch_orders_by_state('6', symbol, since, limit, params) async def fetch_closed_orders(self, symbol=None, since=None, limit=None, params={}): # '-2': failed, # '-1': cancelled, # '0': open , # '1': partially filled, # '2': fully filled, # '3': submitting, # '4': cancelling, # '6': incomplete(open+partially filled), # '7': complete(cancelled+fully filled), return await self.fetch_orders_by_state('7', symbol, since, limit, params) def parse_deposit_addresses(self, addresses): result = [] for i in range(0, len(addresses)): result.append(self.parse_deposit_address(addresses[i])) return result def parse_deposit_address(self, depositAddress, currency=None): # # { # address: '0x696abb81974a8793352cbd33aadcf78eda3cfdfa', # currency: 'eth' # tag: 'abcde12345', # will be missing if the token does not require a deposit tag # payment_id: 'abcde12345', # will not be returned if the token does not require a payment_id # # can_deposit: 1, # 0 or 1, documented but missing # # can_withdraw: 1, # 0 or 1, documented but missing # } # address = self.safe_string(depositAddress, 'address') tag = self.safe_string_2(depositAddress, 'tag', 'payment_id') tag = self.safe_string(depositAddress, 'memo', tag) currencyId = self.safe_string(depositAddress, 'currency') code = self.safe_currency_code(currencyId) self.check_address(address) return { 'currency': code, 'address': address, 'tag': tag, 'info': depositAddress, } async def fetch_deposit_address(self, code, params={}): await self.load_markets() currency = self.currency(code) request = { 'currency': currency['id'], } response = await self.accountGetDepositAddress(self.extend(request, params)) # # [ # { # address: '0x696abb81974a8793352cbd33aadcf78eda3cfdfa', # currency: 'eth' # } # ] # addresses = self.parse_deposit_addresses(response) numAddresses = len(addresses) if numAddresses < 1: raise InvalidAddress(self.id + ' fetchDepositAddress cannot return nonexistent addresses, you should create withdrawal addresses with the exchange website first') return addresses[0] async def withdraw(self, code, amount, address, tag=None, params={}): self.check_address(address) await self.load_markets() currency = self.currency(code) if tag: address = address + ':' + tag fee = self.safe_string(params, 'fee') if fee is None: raise ExchangeError(self.id + " withdraw() requires a `fee` string parameter, network transaction fee must be ≥ 0. Withdrawals to OKCoin or OKEx are fee-free, please set '0'. Withdrawing to external digital asset address requires network transaction fee.") request = { 'currency': currency['id'], 'to_address': address, 'destination': '4', # 2 = OKCoin International, 3 = OKEx 4 = others 'amount': self.number_to_string(amount), 'fee': fee, # String. Network transaction fee ≥ 0. Withdrawals to OKCoin or OKEx are fee-free, please set as 0. Withdrawal to external digital asset address requires network transaction fee. } if 'password' in params: request['trade_pwd'] = params['password'] elif 'trade_pwd' in params: request['trade_pwd'] = params['trade_pwd'] elif self.password: request['trade_pwd'] = self.password query = self.omit(params, ['fee', 'password', 'trade_pwd']) if not ('trade_pwd' in request): raise ExchangeError(self.id + ' withdraw() requires self.password set on the exchange instance or a password / trade_pwd parameter') response = await self.accountPostWithdrawal(self.extend(request, query)) # # { # "amount":"0.1", # "withdrawal_id":"67485", # "currency":"btc", # "result":true # } # return { 'info': response, 'id': self.safe_string(response, 'withdrawal_id'), } async def fetch_deposits(self, code=None, since=None, limit=None, params={}): await self.load_markets() request = {} method = 'accountGetDepositHistory' currency = None if code is not None: currency = self.currency(code) request['code'] = currency['code'] method += 'Currency' response = await getattr(self, method)(self.extend(request, params)) return self.parse_transactions(response, currency, since, limit, params) async def fetch_withdrawals(self, code=None, since=None, limit=None, params={}): await self.load_markets() request = {} method = 'accountGetWithdrawalHistory' currency = None if code is not None: currency = self.currency(code) request['code'] = currency['code'] method += 'Currency' response = await getattr(self, method)(self.extend(request, params)) return self.parse_transactions(response, currency, since, limit, params) def parse_transaction_status(self, status): # # deposit statuses # # { # '0': 'waiting for confirmation', # '1': 'confirmation account', # '2': 'recharge success' # } # # withdrawal statues # # { # '-3': 'pending cancel', # '-2': 'cancelled', # '-1': 'failed', # '0': 'pending', # '1': 'sending', # '2': 'sent', # '3': 'email confirmation', # '4': 'manual confirmation', # '5': 'awaiting identity confirmation' # } # statuses = { '-3': 'pending', '-2': 'pending', '-1': 'failed', '0': 'pending', '1': 'pending', '2': 'ok', '3': 'pending', '4': 'pending', '5': 'pending', } return self.safe_string(statuses, status, status) def parse_transaction(self, transaction, currency=None): # # withdraw # # { # "amount":"0.1", # "withdrawal_id":"67485", # "currency":"btc", # "result":true # } # # fetchWithdrawals # # { # amount: "4.72100000", # withdrawal_id: "1729116", # fee: "0.01000000eth", # txid: "0xf653125bbf090bcfe4b5e8e7b8f586a9d87aa7de94598702758c0802b…", # currency: "ETH", # from: "7147338839", # to: "0x26a3CB49578F07000575405a57888681249c35Fd", # timestamp: "2018-08-17T07:03:42.000Z", # status: "2" # } # # fetchDeposits # # { # amount: "0.47847546", # txid: "1723573_3_0_0_WALLET", # currency: "BTC", # to: "", # timestamp: "2018-08-16T03:41:10.000Z", # status: "2" # } # type = None id = None address = None withdrawalId = self.safe_string(transaction, 'withdrawal_id') addressFrom = self.safe_string(transaction, 'from') addressTo = self.safe_string(transaction, 'to') if withdrawalId is not None: type = 'withdrawal' id = withdrawalId address = addressTo else: # the payment_id will appear on new deposits but appears to be removed from the response after 2 months id = self.safe_string(transaction, 'payment_id') type = 'deposit' address = addressTo currencyId = self.safe_string(transaction, 'currency') code = self.safe_currency_code(currencyId) amount = self.safe_float(transaction, 'amount') status = self.parse_transaction_status(self.safe_string(transaction, 'status')) txid = self.safe_string(transaction, 'txid') timestamp = self.parse8601(self.safe_string(transaction, 'timestamp')) feeCost = None if type == 'deposit': feeCost = 0 else: if currencyId is not None: feeWithCurrencyId = self.safe_string(transaction, 'fee') if feeWithCurrencyId is not None: # https://github.com/ccxt/ccxt/pull/5748 lowercaseCurrencyId = currencyId.lower() feeWithoutCurrencyId = feeWithCurrencyId.replace(lowercaseCurrencyId, '') feeCost = float(feeWithoutCurrencyId) # todo parse tags return { 'info': transaction, 'id': id, 'currency': code, 'amount': amount, 'addressFrom': addressFrom, 'addressTo': addressTo, 'address': address, 'tagFrom': None, 'tagTo': None, 'tag': None, 'status': status, 'type': type, 'updated': None, 'txid': txid, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'fee': { 'currency': code, 'cost': feeCost, }, } async def fetch_order_trades(self, id, symbol=None, since=None, limit=None, params={}): # okex actually returns ledger entries instead of fills here, so each fill in the order # is represented by two trades with opposite buy/sell sides, not one :\ # self aspect renders the 'fills' endpoint unusable for fetchOrderTrades # until either OKEX fixes the API or we workaround self on our side somehow if symbol is None: raise ArgumentsRequired(self.id + ' fetchOrderTrades requires a symbol argument') await self.load_markets() market = self.market(symbol) if (limit is None) or (limit > 100): limit = 100 request = { 'instrument_id': market['id'], 'order_id': id, # from: '1', # return the page after the specified page number # to: '1', # return the page before the specified page number 'limit': limit, # optional, number of results per request, default = maximum = 100 } defaultType = self.safe_string_2(self.options, 'fetchMyTrades', 'defaultType') type = self.safe_string(params, 'type', defaultType) query = self.omit(params, 'type') method = type + 'GetFills' response = await getattr(self, method)(self.extend(request, query)) # # spot trades, margin trades # # [ # { # "created_at":"2019-09-20T07:15:24.000Z", # "exec_type":"T", # "fee":"0", # "instrument_id":"ETH-USDT", # "ledger_id":"7173486113", # "liquidity":"T", # "order_id":"3553868136523776", # "price":"217.59", # "product_id":"ETH-USDT", # "side":"sell", # "size":"0.04619899", # "timestamp":"2019-09-20T07:15:24.000Z" # } # ] # # futures trades, swap trades # # [ # { # "trade_id":"197429674631450625", # "instrument_id":"EOS-USD-SWAP", # "order_id":"6a-7-54d663a28-0", # "price":"3.633", # "order_qty":"1.0000", # "fee":"-0.000551", # "created_at":"2019-03-21T04:41:58.0Z", # missing in swap trades # "timestamp":"2019-03-25T05:56:31.287Z", # missing in futures trades # "exec_type":"M", # whether the order is taker or maker # "side":"short", # "buy" in futures trades # } # ] # return self.parse_trades(response, market, since, limit) async def fetch_ledger(self, code=None, since=None, limit=None, params={}): await self.load_markets() defaultType = self.safe_string_2(self.options, 'fetchLedger', 'defaultType') type = self.safe_string(params, 'type', defaultType) query = self.omit(params, 'type') suffix = '' if (type == 'account') else 'Accounts' argument = '' request = { # 'from': 'id', # 'to': 'id', } if limit is not None: request['limit'] = limit currency = None if (type == 'spot') or (type == 'futures'): if code is None: raise ArgumentsRequired(self.id + " fetchLedger requires a currency code argument for '" + type + "' markets") argument = 'Currency' currency = self.currency(code) request['currency'] = currency['id'] elif (type == 'margin') or (type == 'swap'): if code is None: raise ArgumentsRequired(self.id + " fetchLedger requires a code argument(a market symbol) for '" + type + "' markets") argument = 'InstrumentId' market = self.market(code) # we intentionally put a market inside here for the margin and swap ledgers currency = self.currency(market['base']) request['instrument_id'] = market['id'] # # if type == 'margin': # # # # 3. Borrow # # 4. Repayment # # 5. Interest # # 7. Buy # # 8. Sell # # 9. From capital account # # 10. From C2C # # 11. From Futures # # 12. From Spot # # 13. From ETT # # 14. To capital account # # 15. To C2C # # 16. To Spot # # 17. To Futures # # 18. To ETT # # 19. Mandatory Repayment # # 20. From Piggybank # # 21. To Piggybank # # 22. From Perpetual # # 23. To Perpetual # # 24. Liquidation Fee # # 54. Clawback # # 59. Airdrop Return. # # # request['type'] = 'number' # All types will be returned if self filed is left blank # } # elif type == 'account': if code is not None: currency = self.currency(code) request['currency'] = currency['id'] # # # # # 1. deposit # # 2. withdrawal # # 13. cancel withdrawal # # 18. into futures account # # 19. out of futures account # # 20. into sub account # # 21. out of sub account # # 28. claim # # 29. into ETT account # # 30. out of ETT account # # 31. into C2C account # # 32. out of C2C account # # 33. into margin account # # 34. out of margin account # # 37. into spot account # # 38. out of spot account # # # request['type'] = 'number' # else: raise NotSupported(self.id + " fetchLedger does not support the '" + type + "' type(the type must be one of 'account', 'spot', 'margin', 'futures', 'swap')") method = type + 'Get' + suffix + argument + 'Ledger' response = await getattr(self, method)(self.extend(request, query)) # # transfer funds transfer in/out # trade funds moved as a result of a trade, spot and margin accounts only # rebate fee rebate as per fee schedule, spot and margin accounts only # match open long/open short/close long/close short(futures) or a change in the amount because of trades(swap) # fee fee, futures only # settlement settlement/clawback/settle long/settle short # liquidation force close long/force close short/deliver close long/deliver close short # funding funding fee, swap only # margin a change in the amount after adjusting margin, swap only # # account # # [ # { # "amount":0.00051843, # "balance":0.00100941, # "currency":"BTC", # "fee":0, # "ledger_id":8987285, # "timestamp":"2018-10-12T11:01:14.000Z", # "typename":"Get from activity" # } # ] # # spot # # [ # { # "timestamp":"2019-03-18T07:08:25.000Z", # "ledger_id":"3995334780", # "created_at":"2019-03-18T07:08:25.000Z", # "currency":"BTC", # "amount":"0.0009985", # "balance":"0.0029955", # "type":"trade", # "details":{ # "instrument_id":"BTC-USDT", # "order_id":"2500650881647616", # "product_id":"BTC-USDT" # } # } # ] # # margin # # [ # [ # { # "created_at":"2019-03-20T03:45:05.000Z", # "ledger_id":"78918186", # "timestamp":"2019-03-20T03:45:05.000Z", # "currency":"EOS", # "amount":"0", # ? # "balance":"0.59957711", # "type":"transfer", # "details":{ # "instrument_id":"EOS-USDT", # "order_id":"787057", # "product_id":"EOS-USDT" # } # } # ], # { # "before":"78965766", # "after":"78918186" # } # ] # # futures # # [ # { # "ledger_id":"2508090544914461", # "timestamp":"2019-03-19T14:40:24.000Z", # "amount":"-0.00529521", # "balance":"0", # "currency":"EOS", # "type":"fee", # "details":{ # "order_id":"2506982456445952", # "instrument_id":"EOS-USD-190628" # } # } # ] # # swap # # [ # { # "amount":"0.004742", # "fee":"-0.000551", # "type":"match", # "instrument_id":"EOS-USD-SWAP", # "ledger_id":"197429674941902848", # "timestamp":"2019-03-25T05:56:31.286Z" # }, # ] # isArray = isinstance(response[0], list) isMargin = (type == 'margin') entries = response[0] if (isMargin and isArray) else response return self.parse_ledger(entries, currency, since, limit) def parse_ledger_entry_type(self, type): types = { 'transfer': 'transfer', # # funds transfer in/out 'trade': 'trade', # funds moved as a result of a trade, spot and margin accounts only 'rebate': 'rebate', # fee rebate as per fee schedule, spot and margin accounts only 'match': 'trade', # open long/open short/close long/close short(futures) or a change in the amount because of trades(swap) 'fee': 'fee', # fee, futures only 'settlement': 'trade', # settlement/clawback/settle long/settle short 'liquidation': 'trade', # force close long/force close short/deliver close long/deliver close short 'funding': 'fee', # funding fee, swap only 'margin': 'margin', # a change in the amount after adjusting margin, swap only } return self.safe_string(types, type, type) def parse_ledger_entry(self, item, currency=None): # # # account # # { # "amount":0.00051843, # "balance":0.00100941, # "currency":"BTC", # "fee":0, # "ledger_id":8987285, # "timestamp":"2018-10-12T11:01:14.000Z", # "typename":"Get from activity" # } # # spot # # { # "timestamp":"2019-03-18T07:08:25.000Z", # "ledger_id":"3995334780", # "created_at":"2019-03-18T07:08:25.000Z", # "currency":"BTC", # "amount":"0.0009985", # "balance":"0.0029955", # "type":"trade", # "details":{ # "instrument_id":"BTC-USDT", # "order_id":"2500650881647616", # "product_id":"BTC-USDT" # } # } # # margin # # { # "created_at":"2019-03-20T03:45:05.000Z", # "ledger_id":"78918186", # "timestamp":"2019-03-20T03:45:05.000Z", # "currency":"EOS", # "amount":"0", # ? # "balance":"0.59957711", # "type":"transfer", # "details":{ # "instrument_id":"EOS-USDT", # "order_id":"787057", # "product_id":"EOS-USDT" # } # } # # futures # # { # "ledger_id":"2508090544914461", # "timestamp":"2019-03-19T14:40:24.000Z", # "amount":"-0.00529521", # "balance":"0", # "currency":"EOS", # "type":"fee", # "details":{ # "order_id":"2506982456445952", # "instrument_id":"EOS-USD-190628" # } # } # # swap # # { # "amount":"0.004742", # "fee":"-0.000551", # "type":"match", # "instrument_id":"EOS-USD-SWAP", # "ledger_id":"197429674941902848", # "timestamp":"2019-03-25T05:56:31.286Z" # }, # id = self.safe_string(item, 'ledger_id') account = None details = self.safe_value(item, 'details', {}) referenceId = self.safe_string(details, 'order_id') referenceAccount = None type = self.parse_ledger_entry_type(self.safe_string(item, 'type')) code = self.safe_currency_code(self.safe_string(item, 'currency'), currency) amount = self.safe_float(item, 'amount') timestamp = self.parse8601(self.safe_string(item, 'timestamp')) fee = { 'cost': self.safe_float(item, 'fee'), 'currency': code, } before = None after = self.safe_float(item, 'balance') status = 'ok' return { 'info': item, 'id': id, 'account': account, 'referenceId': referenceId, 'referenceAccount': referenceAccount, 'type': type, 'currency': code, 'amount': amount, 'before': before, # balance before 'after': after, # balance after 'status': status, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'fee': fee, } def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): isArray = isinstance(params, list) request = '/api/' + api + '/' + self.version + '/' request += path if isArray else self.implode_params(path, params) query = params if isArray else self.omit(params, self.extract_params(path)) url = self.urls['api'] + request type = self.get_path_authentication_type(path) if type == 'public': if query: url += '?' + self.urlencode(query) elif type == 'private': self.check_required_credentials() timestamp = self.iso8601(self.milliseconds()) headers = { 'OK-ACCESS-KEY': self.apiKey, 'OK-ACCESS-PASSPHRASE': self.password, 'OK-ACCESS-TIMESTAMP': timestamp, # 'OK-FROM': '', # 'OK-TO': '', # 'OK-LIMIT': '', } auth = timestamp + method + request if method == 'GET': if query: urlencodedQuery = '?' + self.urlencode(query) url += urlencodedQuery auth += urlencodedQuery else: if isArray or query: body = self.json(query) auth += body headers['Content-Type'] = 'application/json' signature = self.hmac(self.encode(auth), self.encode(self.secret), hashlib.sha256, 'base64') headers['OK-ACCESS-SIGN'] = self.decode(signature) headers['client_oid'] = 'quad' + self.number_to_string(self.milliseconds()) # Quick and dirty way to pass custom header for order tracking return {'url': url, 'method': method, 'body': body, 'headers': headers} def get_path_authentication_type(self, path): auth = self.safe_value(self.options, 'auth', {}) key = self.find_broadly_matched_key(auth, path) return self.safe_string(auth, key, 'private') def handle_errors(self, code, reason, url, method, headers, body, response, requestHeaders, requestBody): feedback = self.id + ' ' + body if code == 503: raise ExchangeError(feedback) if not response: return # fallback to default error handler message = self.safe_string(response, 'message') errorCode = self.safe_string_2(response, 'code', 'error_code') if message is not None: self.throw_exactly_matched_exception(self.exceptions['exact'], message, feedback) self.throw_broadly_matched_exception(self.exceptions['broad'], message, feedback) self.throw_exactly_matched_exception(self.exceptions['exact'], errorCode, feedback) nonEmptyMessage = (message != '') nonZeroErrorCode = (errorCode is not None) and (errorCode != '0') if nonZeroErrorCode or nonEmptyMessage: raise ExchangeError(feedback) # unknown message
44.579632
493
0.459319
4a212d476b567312cd0b4718a3d5cf008f66524c
575
py
Python
selenium_test.py
cmput401-fall2018/web-app-ci-cd-with-travis-ci-Struckdown
a75d4282b6c4e3e05653edcef76fd1c9c1401c07
[ "MIT" ]
null
null
null
selenium_test.py
cmput401-fall2018/web-app-ci-cd-with-travis-ci-Struckdown
a75d4282b6c4e3e05653edcef76fd1c9c1401c07
[ "MIT" ]
1
2021-06-01T22:52:08.000Z
2021-06-01T22:52:08.000Z
selenium_test.py
cmput401-fall2018/web-app-ci-cd-with-travis-ci-Struckdown
a75d4282b6c4e3e05653edcef76fd1c9c1401c07
[ "MIT" ]
null
null
null
from selenium import webdriver from selenium.webdriver.common.keys import Keys def test_home(): driver = webdriver.Chrome() driver.get("http://127.0.0.1:8000") elem = driver.find_element_by_id("name") assert elem != None elem = driver.find_element_by_id("about") assert elem != None elem = driver.find_element_by_id("skills") assert elem != None elem = driver.find_element_by_id("education") assert elem != None elem = driver.find_element_by_id("workExperience") assert elem != None elem = driver.find_element_by_id("contactInformation") assert elem != None
27.380952
55
0.751304
4a212e395bde35e2318e6e9425076d0448d48050
2,297
py
Python
python_study/07linkedlist/linked_list.py
xuyang7952/algo
0c3cabcdc1aaa3dcb51edc51cf4dea3dce405959
[ "Apache-2.0" ]
null
null
null
python_study/07linkedlist/linked_list.py
xuyang7952/algo
0c3cabcdc1aaa3dcb51edc51cf4dea3dce405959
[ "Apache-2.0" ]
null
null
null
python_study/07linkedlist/linked_list.py
xuyang7952/algo
0c3cabcdc1aaa3dcb51edc51cf4dea3dce405959
[ "Apache-2.0" ]
null
null
null
""" 1) Reverse singly-linked list 2) Detect cycle in a list 3) Merge two sorted lists 4) Remove nth node from the end 5) Find middle node Author: Xuyang """ from typing import Optional class Node: def __init__(self, data: int, next=None): self.data = data self._next = next # Reverse singly-linked list # 单链表反转 # Note that the input is assumed to be a Node, not a linked list. def reverse(head: Node) -> Optional[Node]: reverse_head = None current = head while current: reverse_head, reverse_head._next, current = current, reverse_head, current._next return reverse_head # Detect cycle in a list # 检测环 def has_cycle(head: Node) -> bool: slow, fast = head, head while fast and fast._next: slow = slow._next fast = fast._next._next if slow == fast: return True return False # Merge two sorted linked list # 有序链表合并 def merge_sorted_list(l1: Node, l2: Node) -> Optional[Node]: if l1 and l2: p1, p2 = l1, l2 fake_head = Node(None) current = fake_head while p1 and p2: if p1.data <= p2.data: current._next = p1 p1 = p1._next else: current._next = p2 p2 = p2._next current = current._next # p1,p2 还有剩余 current._next = p1 if p1 else p2 return fake_head._next return l1 or l2 # Remove nth node from the end # 删除倒数第n个节点。假设n大于0 def remove_nth_from_end(head: Node, n: int) -> Optional[Node]: fast, slow = head, head cnt = 0 while fast and cnt < n: fast = fast._next cnt += 1 if not fast and cnt < n: return head if not fast and cnt == n: return head._next while fast._next: fast, slow = fast._next, slow._next # 执行删除 slow._next = slow._next._next def find_middle_node(head: Node) -> Optional[Node]: slow, fast = head, head fast = fast._next if fast else None while fast and fast._next: slow, fast = slow._next, fast._next._next return slow def print_all(head: Node) -> Optional[Node]: nums = [] cur = head while cur: nums.append(str(cur.data)) cur = cur._next print('->'.join(nums))
23.20202
88
0.591641
4a212ec0df02c48d8c7382a9be3dd1e7b4f66dd0
36,580
py
Python
saleor/core/utils/random_data.py
angeles-ricardo-89/saleor
5fab7a883d025bff83320fbdd557ed7afa2923a9
[ "BSD-3-Clause" ]
3
2019-01-24T11:41:58.000Z
2019-11-10T13:12:24.000Z
saleor/core/utils/random_data.py
angeles-ricardo-89/saleor
5fab7a883d025bff83320fbdd557ed7afa2923a9
[ "BSD-3-Clause" ]
11
2021-03-30T14:26:57.000Z
2022-03-12T00:51:07.000Z
saleor/core/utils/random_data.py
angeles-ricardo-89/saleor
5fab7a883d025bff83320fbdd557ed7afa2923a9
[ "BSD-3-Clause" ]
12
2019-03-21T03:24:58.000Z
2022-01-13T10:55:34.000Z
import itertools import json import os import random import unicodedata import uuid from collections import defaultdict from typing import Type, Union from unittest.mock import patch from django.conf import settings from django.contrib.auth.models import Group, Permission from django.contrib.sites.models import Site from django.core.files import File from django.db.models import F, Q from django.urls import reverse from django.utils import timezone from django.utils.text import slugify from faker import Factory from faker.providers import BaseProvider from measurement.measures import Weight from prices import Money, TaxedMoney from ...account.models import Address, User from ...account.utils import store_user_address from ...checkout import AddressType from ...core.permissions import ( AccountPermissions, CheckoutPermissions, GiftcardPermissions, OrderPermissions, get_permissions, ) from ...core.utils import build_absolute_uri from ...core.weight import zero_weight from ...discount import DiscountValueType, VoucherType from ...discount.models import Sale, Voucher from ...discount.utils import fetch_discounts from ...giftcard.models import GiftCard from ...menu.models import Menu from ...order.models import Fulfillment, Order, OrderLine from ...order.utils import update_order_status from ...page.models import Page from ...payment import gateway from ...payment.utils import create_payment from ...plugins.manager import get_plugins_manager from ...product.models import ( AssignedProductAttribute, AssignedVariantAttribute, Attribute, AttributeProduct, AttributeValue, AttributeVariant, Category, Collection, CollectionProduct, Product, ProductImage, ProductType, ProductVariant, ) from ...product.tasks import update_products_minimal_variant_prices_of_discount_task from ...product.thumbnails import ( create_category_background_image_thumbnails, create_collection_background_image_thumbnails, create_product_thumbnails, ) from ...shipping.models import ShippingMethod, ShippingMethodType, ShippingZone from ...warehouse.management import increase_stock from ...warehouse.models import Stock, Warehouse fake = Factory.create() PRODUCTS_LIST_DIR = "products-list/" IMAGES_MAPPING = { 61: ["saleordemoproduct_paints_01.png"], 62: ["saleordemoproduct_paints_02.png"], 63: ["saleordemoproduct_paints_03.png"], 64: ["saleordemoproduct_paints_04.png"], 65: ["saleordemoproduct_paints_05.png"], 71: ["saleordemoproduct_fd_juice_06.png"], 72: ["saleordemoproduct_fd_juice_06.png"], # FIXME inproper image 73: ["saleordemoproduct_fd_juice_05.png"], 74: ["saleordemoproduct_fd_juice_01.png"], 75: ["saleordemoproduct_fd_juice_03.png"], # FIXME inproper image 76: ["saleordemoproduct_fd_juice_02.png"], # FIXME inproper image 77: ["saleordemoproduct_fd_juice_03.png"], 78: ["saleordemoproduct_fd_juice_04.png"], 79: ["saleordemoproduct_fd_juice_02.png"], 81: ["saleordemoproduct_wine-red.png"], 82: ["saleordemoproduct_wine-white.png"], 83: ["saleordemoproduct_beer-02_1.png", "saleordemoproduct_beer-02_2.png"], 84: ["saleordemoproduct_beer-01_1.png", "saleordemoproduct_beer-01_2.png"], 85: ["saleordemoproduct_cuschion01.png"], 86: ["saleordemoproduct_cuschion02.png"], 87: [ "saleordemoproduct_sneakers_01_1.png", "saleordemoproduct_sneakers_01_2.png", "saleordemoproduct_sneakers_01_3.png", "saleordemoproduct_sneakers_01_4.png", ], 88: [ "saleordemoproduct_sneakers_02_1.png", "saleordemoproduct_sneakers_02_2.png", "saleordemoproduct_sneakers_02_3.png", "saleordemoproduct_sneakers_02_4.png", ], 89: ["saleordemoproduct_cl_boot07_1.png", "saleordemoproduct_cl_boot07_2.png"], 107: ["saleordemoproduct_cl_polo01.png"], 108: ["saleordemoproduct_cl_polo02.png"], 109: ["saleordemoproduct_cl_polo03-woman.png"], 110: ["saleordemoproduct_cl_polo04-woman.png"], 111: [ "saleordemoproduct_cl_boot01_1.png", "saleordemoproduct_cl_boot01_2.png", "saleordemoproduct_cl_boot01_3.png", ], 112: ["saleordemoproduct_cl_boot03_1.png", "saleordemoproduct_cl_boot03_2.png"], 113: ["saleordemoproduct_cl_boot06_1.png", "saleordemoproduct_cl_boot06_2.png"], 114: [ "saleordemoproduct_cl_boot06_1.png", "saleordemoproduct_cl_boot06_2.png", ], # FIXME incorrect image 115: ["saleordemoproduct_cl_bogo01_1.png"], 116: ["saleordemoproduct_cl_bogo02_1.png"], 117: ["saleordemoproduct_cl_bogo03_1.png"], 118: ["saleordemoproduct_cl_bogo04_1.png", "saleordemoproduct_cl_bogo04_2.png"], } CATEGORY_IMAGES = {7: "accessories.jpg", 8: "groceries.jpg", 9: "apparel.jpg"} COLLECTION_IMAGES = {1: "summer.jpg", 2: "clothing.jpg"} def get_weight(weight): if not weight: return zero_weight() value, unit = weight.split(":") return Weight(**{unit: value}) def create_product_types(product_type_data): for product_type in product_type_data: pk = product_type["pk"] defaults = product_type["fields"] defaults["weight"] = get_weight(defaults["weight"]) ProductType.objects.update_or_create(pk=pk, defaults=defaults) def create_categories(categories_data, placeholder_dir): placeholder_dir = get_product_list_images_dir(placeholder_dir) for category in categories_data: pk = category["pk"] defaults = category["fields"] parent = defaults["parent"] image_name = ( CATEGORY_IMAGES[pk] if pk in CATEGORY_IMAGES else CATEGORY_IMAGES[parent] ) background_image = get_image(placeholder_dir, image_name) defaults["background_image"] = background_image if parent: defaults["parent"] = Category.objects.get(pk=parent) Category.objects.update_or_create(pk=pk, defaults=defaults) create_category_background_image_thumbnails.delay(pk) def create_collections(data, placeholder_dir): placeholder_dir = get_product_list_images_dir(placeholder_dir) for collection in data: pk = collection["pk"] defaults = collection["fields"] image_name = COLLECTION_IMAGES[pk] background_image = get_image(placeholder_dir, image_name) defaults["background_image"] = background_image Collection.objects.update_or_create(pk=pk, defaults=defaults) create_collection_background_image_thumbnails.delay(pk) def assign_products_to_collections(associations: list): for value in associations: pk = value["pk"] defaults = value["fields"] defaults["collection_id"] = defaults.pop("collection") defaults["product_id"] = defaults.pop("product") CollectionProduct.objects.update_or_create(pk=pk, defaults=defaults) def create_attributes(attributes_data): for attribute in attributes_data: pk = attribute["pk"] defaults = attribute["fields"] attr, _ = Attribute.objects.update_or_create(pk=pk, defaults=defaults) def create_attributes_values(values_data): for value in values_data: pk = value["pk"] defaults = value["fields"] defaults["attribute_id"] = defaults.pop("attribute") AttributeValue.objects.update_or_create(pk=pk, defaults=defaults) def create_products(products_data, placeholder_dir, create_images): for product in products_data: pk = product["pk"] # We are skipping products without images if pk not in IMAGES_MAPPING: continue defaults = product["fields"] defaults["weight"] = get_weight(defaults["weight"]) defaults["category_id"] = defaults.pop("category") defaults["product_type_id"] = defaults.pop("product_type") product, _ = Product.objects.update_or_create(pk=pk, defaults=defaults) if create_images: images = IMAGES_MAPPING.get(pk, []) for image_name in images: create_product_image(product, placeholder_dir, image_name) def create_stocks(variant, warehouse_qs=None, **defaults): if warehouse_qs is None: warehouse_qs = Warehouse.objects.all() for warehouse in warehouse_qs: Stock.objects.update_or_create( warehouse=warehouse, product_variant=variant, defaults=defaults ) def create_product_variants(variants_data): for variant in variants_data: pk = variant["pk"] defaults = variant["fields"] defaults["weight"] = get_weight(defaults["weight"]) product_id = defaults.pop("product") # We have not created products without images if product_id not in IMAGES_MAPPING: continue defaults["product_id"] = product_id set_field_as_money(defaults, "price_override") set_field_as_money(defaults, "cost_price") quantity = defaults.pop("quantity") variant, _ = ProductVariant.objects.update_or_create(pk=pk, defaults=defaults) create_stocks(variant, quantity=quantity) def assign_attributes_to_product_types( association_model: Union[Type[AttributeProduct], Type[AttributeVariant]], attributes: list, ): for value in attributes: pk = value["pk"] defaults = value["fields"] defaults["attribute_id"] = defaults.pop("attribute") defaults["product_type_id"] = defaults.pop("product_type") association_model.objects.update_or_create(pk=pk, defaults=defaults) def assign_attributes_to_products(product_attributes): for value in product_attributes: pk = value["pk"] defaults = value["fields"] defaults["product_id"] = defaults.pop("product") defaults["assignment_id"] = defaults.pop("assignment") assigned_values = defaults.pop("values") assoc, created = AssignedProductAttribute.objects.update_or_create( pk=pk, defaults=defaults ) if created: assoc.values.set(AttributeValue.objects.filter(pk__in=assigned_values)) def assign_attributes_to_variants(variant_attributes): for value in variant_attributes: pk = value["pk"] defaults = value["fields"] defaults["variant_id"] = defaults.pop("variant") defaults["assignment_id"] = defaults.pop("assignment") assigned_values = defaults.pop("values") assoc, created = AssignedVariantAttribute.objects.update_or_create( pk=pk, defaults=defaults ) if created: assoc.values.set(AttributeValue.objects.filter(pk__in=assigned_values)) def set_field_as_money(defaults, field): amount_field = f"{field}_amount" if amount_field in defaults and defaults[amount_field] is not None: defaults[field] = Money(defaults[amount_field], settings.DEFAULT_CURRENCY) def create_products_by_schema(placeholder_dir, create_images): path = os.path.join( settings.PROJECT_ROOT, "saleor", "static", "populatedb_data.json" ) with open(path) as f: db_items = json.load(f) types = defaultdict(list) # Sort db objects by its model for item in db_items: model = item.pop("model") types[model].append(item) create_product_types(product_type_data=types["product.producttype"]) create_categories( categories_data=types["product.category"], placeholder_dir=placeholder_dir ) create_attributes(attributes_data=types["product.attribute"]) create_attributes_values(values_data=types["product.attributevalue"]) create_products( products_data=types["product.product"], placeholder_dir=placeholder_dir, create_images=create_images, ) create_product_variants(variants_data=types["product.productvariant"]) assign_attributes_to_product_types( AttributeProduct, attributes=types["product.attributeproduct"] ) assign_attributes_to_product_types( AttributeVariant, attributes=types["product.attributevariant"] ) assign_attributes_to_products( product_attributes=types["product.assignedproductattribute"] ) assign_attributes_to_variants( variant_attributes=types["product.assignedvariantattribute"] ) create_collections( data=types["product.collection"], placeholder_dir=placeholder_dir ) assign_products_to_collections(associations=types["product.collectionproduct"]) class SaleorProvider(BaseProvider): def money(self): return Money(fake.pydecimal(2, 2, positive=True), settings.DEFAULT_CURRENCY) def weight(self): return Weight(kg=fake.pydecimal(1, 2, positive=True)) fake.add_provider(SaleorProvider) def get_email(first_name, last_name): _first = unicodedata.normalize("NFD", first_name).encode("ascii", "ignore") _last = unicodedata.normalize("NFD", last_name).encode("ascii", "ignore") return "%s.%s@example.com" % ( _first.lower().decode("utf-8"), _last.lower().decode("utf-8"), ) def create_product_image(product, placeholder_dir, image_name): image = get_image(placeholder_dir, image_name) # We don't want to create duplicated product images if product.images.count() >= len(IMAGES_MAPPING.get(product.pk, [])): return None product_image = ProductImage(product=product, image=image) product_image.save() create_product_thumbnails.delay(product_image.pk) return product_image def create_address(save=True): address = Address( first_name=fake.first_name(), last_name=fake.last_name(), street_address_1=fake.street_address(), city=fake.city(), country=settings.DEFAULT_COUNTRY, ) if address.country == "US": state = fake.state_abbr() address.country_area = state address.postal_code = fake.postalcode_in_state(state) else: address.postal_code = fake.postalcode() if save: address.save() return address def create_fake_user(save=True): address = create_address(save=save) email = get_email(address.first_name, address.last_name) # Skip the email if it already exists try: return User.objects.get(email=email) except User.DoesNotExist: pass user = User( first_name=address.first_name, last_name=address.last_name, email=email, password="password", default_billing_address=address, default_shipping_address=address, is_active=True, note=fake.paragraph(), date_joined=fake.date_time(tzinfo=timezone.get_current_timezone()), ) if save: user.save() user.addresses.add(address) return user # We don't want to spam the console with payment confirmations sent to # fake customers. @patch("saleor.order.emails.send_payment_confirmation.delay") def create_fake_payment(mock_email_confirmation, order): payment = create_payment( gateway="mirumee.payments.dummy", customer_ip_address=fake.ipv4(), email=order.user_email, order=order, payment_token=str(uuid.uuid4()), total=order.total.gross.amount, currency=order.total.gross.currency, ) # Create authorization transaction gateway.authorize(payment, payment.token) # 20% chance to void the transaction at this stage if random.choice([0, 0, 0, 0, 1]): gateway.void(payment) return payment # 25% to end the payment at the authorization stage if not random.choice([1, 1, 1, 0]): return payment # Create capture transaction gateway.capture(payment) # 25% to refund the payment if random.choice([0, 0, 0, 1]): gateway.refund(payment) return payment def create_order_lines(order, discounts, how_many=10): variants = ( ProductVariant.objects.filter() .order_by("?") .prefetch_related("product__product_type")[:how_many] ) variants_iter = itertools.cycle(variants) lines = [] for dummy in range(how_many): variant = next(variants_iter) product = variant.product quantity = random.randrange(1, 5) unit_price = variant.get_price(discounts) unit_price = TaxedMoney(net=unit_price, gross=unit_price) lines.append( OrderLine( order=order, product_name=str(product), variant_name=str(variant), product_sku=variant.sku, is_shipping_required=variant.is_shipping_required(), quantity=quantity, variant=variant, unit_price=unit_price, tax_rate=0, ) ) lines = OrderLine.objects.bulk_create(lines) manager = get_plugins_manager() country = order.shipping_method.shipping_zone.countries[0] warehouses = Warehouse.objects.filter( shipping_zones__countries__contains=country ).order_by("?") warehouse_iter = itertools.cycle(warehouses) for line in lines: unit_price = manager.calculate_order_line_unit(line) line.unit_price = unit_price line.tax_rate = unit_price.tax / unit_price.net warehouse = next(warehouse_iter) increase_stock(line, warehouse, line.quantity, allocate=True) OrderLine.objects.bulk_update( lines, ["unit_price_net_amount", "unit_price_gross_amount", "currency", "tax_rate"], ) return lines def create_fulfillments(order): for line in order: if random.choice([False, True]): fulfillment, _ = Fulfillment.objects.get_or_create(order=order) quantity = random.randrange(0, line.quantity) + 1 allocation = line.allocations.get() fulfillment.lines.create( order_line=line, quantity=quantity, stock=allocation.stock ) line.quantity_fulfilled = quantity line.save(update_fields=["quantity_fulfilled"]) allocation.quantity_allocated = F("quantity_allocated") - quantity allocation.save(update_fields=["quantity_allocated"]) update_order_status(order) def create_fake_order(discounts, max_order_lines=5): customers = User.objects.filter(is_superuser=False).order_by("?") customer = random.choice([None, customers.first()]) if customer: address = customer.default_shipping_address order_data = { "user": customer, "billing_address": customer.default_billing_address, "shipping_address": address, } else: address = create_address() order_data = { "billing_address": address, "shipping_address": address, "user_email": get_email(address.first_name, address.last_name), } manager = get_plugins_manager() shipping_method = ShippingMethod.objects.order_by("?").first() shipping_price = shipping_method.price shipping_price = manager.apply_taxes_to_shipping(shipping_price, address) order_data.update( { "shipping_method": shipping_method, "shipping_method_name": shipping_method.name, "shipping_price": shipping_price, } ) order = Order.objects.create(**order_data) lines = create_order_lines(order, discounts, random.randrange(1, max_order_lines)) order.total = sum([line.get_total() for line in lines], shipping_price) weight = Weight(kg=0) for line in order: weight += line.variant.get_weight() order.weight = weight order.save() create_fake_payment(order=order) create_fulfillments(order) return order def create_fake_sale(): sale = Sale.objects.create( name="Happy %s day!" % fake.word(), type=DiscountValueType.PERCENTAGE, value=random.choice([10, 20, 30, 40, 50]), ) for product in Product.objects.all().order_by("?")[:4]: sale.products.add(product) return sale def create_users(how_many=10): for dummy in range(how_many): user = create_fake_user() yield "User: %s" % (user.email,) def create_permission_groups(): super_users = User.objects.filter(is_superuser=True) if not super_users: super_users = create_staff_users(1, True) group = create_group("Full Access", get_permissions(), super_users) yield f"Group: {group}" staff_users = create_staff_users() customer_support_codenames = [ perm.codename for enum in [CheckoutPermissions, OrderPermissions, GiftcardPermissions] for perm in enum ] customer_support_codenames.append(AccountPermissions.MANAGE_USERS.codename) customer_support_permissions = Permission.objects.filter( codename__in=customer_support_codenames ) group = create_group("Customer Support", customer_support_permissions, staff_users) yield f"Group: {group}" def create_group(name, permissions, users): group, _ = Group.objects.get_or_create(name=name) group.permissions.add(*permissions) group.user_set.add(*users) return group def create_staff_users(how_many=2, superuser=False): users = [] for _ in range(how_many): address = create_address() first_name = address.first_name last_name = address.last_name email = get_email(first_name, last_name) staff_user = User.objects.create_user( first_name=first_name, last_name=last_name, email=email, password="password", default_billing_address=address, default_shipping_address=address, is_staff=True, is_active=True, is_superuser=superuser, ) users.append(staff_user) return users def create_orders(how_many=10): discounts = fetch_discounts(timezone.now()) for _ in range(how_many): order = create_fake_order(discounts) yield "Order: %s" % (order,) def create_product_sales(how_many=5): for dummy in range(how_many): sale = create_fake_sale() update_products_minimal_variant_prices_of_discount_task.delay(sale.pk) yield "Sale: %s" % (sale,) def create_shipping_zone(shipping_methods_names, countries, shipping_zone_name): shipping_zone = ShippingZone.objects.get_or_create( name=shipping_zone_name, defaults={"countries": countries} )[0] ShippingMethod.objects.bulk_create( [ ShippingMethod( name=name, price=fake.money(), shipping_zone=shipping_zone, type=( ShippingMethodType.PRICE_BASED if random.randint(0, 1) else ShippingMethodType.WEIGHT_BASED ), minimum_order_price=Money(0, settings.DEFAULT_CURRENCY), maximum_order_price_amount=None, minimum_order_weight=0, maximum_order_weight=None, ) for name in shipping_methods_names ] ) return "Shipping Zone: %s" % shipping_zone def create_shipping_zones(): european_countries = [ "AX", "AL", "AD", "AT", "BY", "BE", "BA", "BG", "HR", "CZ", "DK", "EE", "FO", "FI", "FR", "DE", "GI", "GR", "GG", "VA", "HU", "IS", "IE", "IM", "IT", "JE", "LV", "LI", "LT", "LU", "MK", "MT", "MD", "MC", "ME", "NL", "NO", "PL", "PT", "RO", "RU", "SM", "RS", "SK", "SI", "ES", "SJ", "SE", "CH", "UA", "GB", ] yield create_shipping_zone( shipping_zone_name="Europe", countries=european_countries, shipping_methods_names=["DHL", "UPS", "Registered priority", "DB Schenker"], ) oceanian_countries = [ "AS", "AU", "CX", "CC", "CK", "FJ", "PF", "GU", "HM", "KI", "MH", "FM", "NR", "NC", "NZ", "NU", "NF", "MP", "PW", "PG", "PN", "WS", "SB", "TK", "TO", "TV", "UM", "VU", "WF", ] yield create_shipping_zone( shipping_zone_name="Oceania", countries=oceanian_countries, shipping_methods_names=["FBA", "FedEx Express", "Oceania Air Mail"], ) asian_countries = [ "AF", "AM", "AZ", "BH", "BD", "BT", "BN", "KH", "CN", "CY", "GE", "HK", "IN", "ID", "IR", "IQ", "IL", "JP", "JO", "KZ", "KP", "KR", "KW", "KG", "LA", "LB", "MO", "MY", "MV", "MN", "MM", "NP", "OM", "PK", "PS", "PH", "QA", "SA", "SG", "LK", "SY", "TW", "TJ", "TH", "TL", "TR", "TM", "AE", "UZ", "VN", "YE", ] yield create_shipping_zone( shipping_zone_name="Asia", countries=asian_countries, shipping_methods_names=["China Post", "TNT", "Aramex", "EMS"], ) american_countries = [ "AI", "AG", "AR", "AW", "BS", "BB", "BZ", "BM", "BO", "BQ", "BV", "BR", "CA", "KY", "CL", "CO", "CR", "CU", "CW", "DM", "DO", "EC", "SV", "FK", "GF", "GL", "GD", "GP", "GT", "GY", "HT", "HN", "JM", "MQ", "MX", "MS", "NI", "PA", "PY", "PE", "PR", "BL", "KN", "LC", "MF", "PM", "VC", "SX", "GS", "SR", "TT", "TC", "US", "UY", "VE", "VG", "VI", ] yield create_shipping_zone( shipping_zone_name="Americas", countries=american_countries, shipping_methods_names=["DHL", "UPS", "FedEx", "EMS"], ) african_countries = [ "DZ", "AO", "BJ", "BW", "IO", "BF", "BI", "CV", "CM", "CF", "TD", "KM", "CG", "CD", "CI", "DJ", "EG", "GQ", "ER", "SZ", "ET", "TF", "GA", "GM", "GH", "GN", "GW", "KE", "LS", "LR", "LY", "MG", "MW", "ML", "MR", "MU", "YT", "MA", "MZ", "NA", "NE", "NG", "RE", "RW", "SH", "ST", "SN", "SC", "SL", "SO", "ZA", "SS", "SD", "TZ", "TG", "TN", "UG", "EH", "ZM", "ZW", ] yield create_shipping_zone( shipping_zone_name="Africa", countries=african_countries, shipping_methods_names=[ "Royale International", "ACE", "fastway couriers", "Post Office", ], ) def create_warehouses(): for shipping_zone in ShippingZone.objects.all(): shipping_zone_name = shipping_zone.name warehouse, _ = Warehouse.objects.update_or_create( name=shipping_zone_name, slug=slugify(shipping_zone_name), defaults={"company_name": fake.company(), "address": create_address()}, ) warehouse.shipping_zones.add(shipping_zone) def create_vouchers(): voucher, created = Voucher.objects.get_or_create( code="FREESHIPPING", defaults={ "type": VoucherType.SHIPPING, "name": "Free shipping", "discount_value_type": DiscountValueType.PERCENTAGE, "discount_value": 100, }, ) if created: yield "Voucher #%d" % voucher.id else: yield "Shipping voucher already exists" voucher, created = Voucher.objects.get_or_create( code="DISCOUNT", defaults={ "type": VoucherType.ENTIRE_ORDER, "name": "Big order discount", "discount_value_type": DiscountValueType.FIXED, "discount_value": 25, "min_spent": Money(200, settings.DEFAULT_CURRENCY), }, ) if created: yield "Voucher #%d" % voucher.id else: yield "Value voucher already exists" voucher, created = Voucher.objects.get_or_create( code="VCO9KV98LC", defaults={ "type": VoucherType.ENTIRE_ORDER, "discount_value_type": DiscountValueType.PERCENTAGE, "discount_value": 5, }, ) if created: yield "Voucher #%d" % voucher.id else: yield "Value voucher already exists" def create_gift_card(): user = random.choice( [User.objects.filter(is_superuser=False).order_by("?").first()] ) gift_card, created = GiftCard.objects.get_or_create( code="Gift_card_10", defaults={ "user": user, "initial_balance": Money(10, settings.DEFAULT_CURRENCY), "current_balance": Money(10, settings.DEFAULT_CURRENCY), }, ) if created: yield "Gift card #%d" % gift_card.id else: yield "Gift card already exists" def set_homepage_collection(): homepage_collection = Collection.objects.order_by("?").first() site = Site.objects.get_current() site_settings = site.settings site_settings.homepage_collection = homepage_collection site_settings.save() yield "Homepage collection assigned" def add_address_to_admin(email): address = create_address() user = User.objects.get(email=email) store_user_address(user, address, AddressType.BILLING) store_user_address(user, address, AddressType.SHIPPING) def create_page(): content = """ <h2>E-commerce for the PWA era</h2> <h3>A modular, high performance e-commerce storefront built with GraphQL, Django, and ReactJS.</h3> <p>Saleor is a rapidly-growing open source e-commerce platform that has served high-volume companies from branches like publishing and apparel since 2012. Based on Python and Django, the latest major update introduces a modular front end with a GraphQL API and storefront and dashboard written in React to make Saleor a full-functionality open source e-commerce.</p> <p><a href="https://github.com/mirumee/saleor">Get Saleor today!</a></p> """ content_json = { "blocks": [ { "key": "", "data": {}, "text": "E-commerce for the PWA era", "type": "header-two", "depth": 0, "entityRanges": [], "inlineStyleRanges": [], }, { "key": "", "data": {}, "text": "A modular, high performance e-commerce storefront " "built with GraphQL, Django, and ReactJS.", "type": "unstyled", "depth": 0, "entityRanges": [], "inlineStyleRanges": [], }, { "key": "", "data": {}, "text": "", "type": "unstyled", "depth": 0, "entityRanges": [], "inlineStyleRanges": [], }, { "key": "", "data": {}, "text": "Saleor is a rapidly-growing open source e-commerce platform " "that has served high-volume companies from branches like " "publishing and apparel since 2012. Based on Python and " "Django, the latest major update introduces a modular " "front end with a GraphQL API and storefront and dashboard " "written in React to make Saleor a full-functionality " "open source e-commerce.", "type": "unstyled", "depth": 0, "entityRanges": [], "inlineStyleRanges": [], }, { "key": "", "data": {}, "text": "", "type": "unstyled", "depth": 0, "entityRanges": [], "inlineStyleRanges": [], }, { "key": "", "data": {}, "text": "Get Saleor today!", "type": "unstyled", "depth": 0, "entityRanges": [{"key": 0, "length": 17, "offset": 0}], "inlineStyleRanges": [], }, ], "entityMap": { "0": { "data": {"url": "https://github.com/mirumee/saleor"}, "type": "LINK", "mutability": "MUTABLE", } }, } page_data = { "content": content, "content_json": content_json, "title": "About", "is_published": True, } page, dummy = Page.objects.get_or_create(slug="about", defaults=page_data) yield "Page %s created" % page.slug def generate_menu_items(menu: Menu, category: Category, parent_menu_item): menu_item, created = menu.items.get_or_create( name=category.name, category=category, parent=parent_menu_item ) if created: yield "Created menu item for category %s" % category for child in category.get_children(): for msg in generate_menu_items(menu, child, menu_item): yield "\t%s" % msg def generate_menu_tree(menu): categories = ( Category.tree.get_queryset() .filter( Q(parent__isnull=True) & Q(products__isnull=False) | Q(children__products__isnull=False) ) .distinct() ) for category in categories: for msg in generate_menu_items(menu, category, None): yield msg def create_menus(): # Create navbar menu with category links top_menu, _ = Menu.objects.get_or_create( name=settings.DEFAULT_MENUS["top_menu_name"] ) top_menu.items.all().delete() yield "Created navbar menu" for msg in generate_menu_tree(top_menu): yield msg # Create footer menu with collections and pages bottom_menu, _ = Menu.objects.get_or_create( name=settings.DEFAULT_MENUS["bottom_menu_name"] ) bottom_menu.items.all().delete() collection = Collection.objects.filter(products__isnull=False).order_by("?")[0] item, _ = bottom_menu.items.get_or_create(name="Collections", collection=collection) for collection in Collection.objects.filter( products__isnull=False, background_image__isnull=False ): bottom_menu.items.get_or_create( name=collection.name, collection=collection, parent=item ) item_saleor = bottom_menu.items.get_or_create(name="Saleor", url="/")[0] page = Page.objects.order_by("?")[0] item_saleor.children.get_or_create(name=page.title, page=page, menu=bottom_menu) api_url = build_absolute_uri(reverse("api")) item_saleor.children.get_or_create( name="GraphQL API", url=api_url, menu=bottom_menu ) yield "Created footer menu" site = Site.objects.get_current() site_settings = site.settings site_settings.top_menu = top_menu site_settings.bottom_menu = bottom_menu site_settings.save() def get_product_list_images_dir(placeholder_dir): product_list_images_dir = os.path.join(placeholder_dir, PRODUCTS_LIST_DIR) return product_list_images_dir def get_image(image_dir, image_name): img_path = os.path.join(image_dir, image_name) return File(open(img_path, "rb"), name=image_name)
29.95905
88
0.606288
4a212ee66405528c538c7b2fb36f584f01c8d30b
1,946
py
Python
personal_finance/config/personal_finance.py
fderyckel/personal_finance
dd4f8f19ad1b6accd608b4999ddf85e20e1c85ec
[ "MIT" ]
4
2021-01-10T05:34:04.000Z
2021-11-15T19:35:54.000Z
personal_finance/config/personal_finance.py
adityaduggal/personal_finance
dd4f8f19ad1b6accd608b4999ddf85e20e1c85ec
[ "MIT" ]
null
null
null
personal_finance/config/personal_finance.py
adityaduggal/personal_finance
dd4f8f19ad1b6accd608b4999ddf85e20e1c85ec
[ "MIT" ]
7
2019-07-30T15:10:28.000Z
2021-11-15T19:35:56.000Z
from frappe import _ def get_data(): return [ { "label": _("Transaction Masters"), "items": [ { "type": "doctype", "name": "Income Expense Entry", }, { "type": "doctype", "name": "Investment Transaction", } ] }, { "label": _("Accounting Masters"), "items": [ { "type": "doctype", "name": "Portfolio", } ] }, { "label": _("Items and Pricing"), "items": [ { "type": "doctype", "name": "Search and Create Stocks", }, { "type": "doctype", "name": "Price Tracker", }, { "type": "doctype", "name": "Get Stock Price", } ] }, { "label": _("Settings"), "items": [ { "type": "doctype", "name": "Personal Finance Settings", } ] }, { "label": _("Key Reports"), "items": [ { "type": "report", "is_query_report": True, "name": "Portfolio Status", }, { "type": "report", "is_query_report": True, "name": "Portfolio Transactions", }, { "type": "report", "is_query_report": True, "name": "Price Analysis", } ] } ]
26.297297
56
0.270812
4a212f92c3c488c4cd383afb0a4a8007675ab7cf
5,788
py
Python
src/fedservice/rp/__init__.py
rohe/fedservice
1460d21217b804cac0f38fa26ffa24bee7cf6dad
[ "Apache-2.0" ]
3
2018-11-28T12:01:31.000Z
2020-12-16T21:43:29.000Z
src/fedservice/rp/__init__.py
rohe/fedservice
1460d21217b804cac0f38fa26ffa24bee7cf6dad
[ "Apache-2.0" ]
13
2020-02-10T15:33:37.000Z
2022-02-01T16:43:36.000Z
src/fedservice/rp/__init__.py
rohe/fedservice
1460d21217b804cac0f38fa26ffa24bee7cf6dad
[ "Apache-2.0" ]
4
2019-05-29T10:04:48.000Z
2020-10-14T09:52:53.000Z
import logging from typing import Optional from cryptojwt.key_jar import init_key_jar import oidcrp from oidcrp import rp_handler from oidcrp.oauth2 import Client from oidcrp.util import lower_or_upper from fedservice import create_federation_entity logger = logging.getLogger(__name__) class RPHandler(rp_handler.RPHandler): def __init__(self, base_url='', hash_seed="", keyjar=None, verify_ssl=True, services=None, service_factory=None, client_configs=None, client_authn_factory=None, client_cls=None, state_db=None, federation_entity_config=None, httpc_params=None, **kwargs): rp_handler.RPHandler.__init__(self, base_url=base_url, hash_seed=hash_seed, keyjar=keyjar, verify_ssl=verify_ssl, services=services, service_factory=service_factory, client_configs=client_configs, client_authn_factory=client_authn_factory, client_cls=client_cls, state_db=state_db, httpc_params=httpc_params, **kwargs) self.federation_entity_config = federation_entity_config def init_client(self, issuer): client = rp_handler.RPHandler.init_client(self, issuer) client.client_get("service_context").federation_entity = self.init_federation_entity(issuer) return client def init_federation_entity(self, issuer): args = {k: v for k, v in self.federation_entity_config.items()} _entity_id = '' _cnf = self.client_configs.get(issuer) if _cnf: _entity_id = _cnf.get('entity_id') if not _entity_id: _entity_id = self.federation_entity_config['entity_id'] if '{}' in _entity_id: _entity_id = _entity_id.format(issuer) args['entity_id'] = _entity_id logger.debug('Entity ID: %s', _entity_id) _federation_entity = create_federation_entity(httpc_params=self.httpc_params, issuer=issuer, **args) _federation_entity.keyjar.httpc_params = self.httpc_params _federation_entity.collector.web_cert_path = self.federation_entity_config.get( 'web_cert_path') return _federation_entity def client_setup(self, iss_id: Optional[str] = '', user: Optional[str] = '', behaviour_args: Optional[dict] = None) -> Client: """ First if no issuer ID is given then the identifier for the user is used by the webfinger service to try to find the issuer ID. Once the method has an issuer ID if no client is bound to this issuer one is created and initiated with the necessary information for the client to be able to communicate with the OP/AS that has the provided issuer ID. :param iss_id: The issuer ID :param user: A user identifier :return: A :py:class:`oidcrp.oidc.Client` instance """ logger.info('client_setup: iss_id={}, user={}'.format(iss_id, user)) if not iss_id: if not user: raise ValueError('Need issuer or user') logger.debug("Connecting to previously unknown OP") temporary_client = self.init_client('') temporary_client.do_request('webfinger', resource=user) else: temporary_client = None try: client = self.issuer2rp[iss_id] except KeyError: if temporary_client: client = temporary_client else: logger.debug("Creating new client: %s", iss_id) client = self.init_client(iss_id) else: return client logger.debug("Get provider info") issuer = self.do_provider_info(client, behaviour_args=behaviour_args) _sc = client.client_get("service_context") try: _fe = _sc.federation_entity except AttributeError: _fe = None registration_type = 'explicit' else: registration_type = _fe.registration_type if registration_type == 'automatic': _redirect_uris = _sc.config.get("redirect_uris") if _redirect_uris: _sc.set('redirect_uris', _redirect_uris) _sc.set('client_id', _fe.entity_id) # client.client_id = _fe.entity_id self.hash2issuer[iss_id] = issuer else: _callbacks = self.add_callbacks(_sc) _sc.set('client_id', oidcrp.util.add_path(_fe.entity_id, _callbacks['__hex'])) else: # explicit logger.debug("Do client registration") self.do_client_registration(client, iss_id, behaviour_args=behaviour_args) self.issuer2rp[issuer] = client return client def init_oidc_rp_handler(config, dir_path): rp_keys_conf = config.key_conf _fed_conf = config.federation _httpc_params = config.httpc_params _path = rp_keys_conf['uri_path'] if _path.startswith('./'): _path = _path[2:] elif _path.startswith('/'): _path = _path[1:] args = {k: v for k, v in rp_keys_conf.items() if k != "uri_path"} rp_keyjar = init_key_jar(**args) rp_keyjar.httpc_params = _httpc_params rph = RPHandler(base_url=config.base_url, hash_seed=config.hash_seed, jwks_path=_path, client_configs=config.clients, keyjar=rp_keyjar, services=config.services, httpc_params=_httpc_params, federation_entity_config=_fed_conf) return rph
38.845638
100
0.617484
4a2131471d7308e533a6f0a2797fa99568967904
1,738
py
Python
app/user/serializers.py
Busterflint/recipe-app-ap1
6d073c244ef5abde49de313019974293c5c5ee38
[ "MIT" ]
null
null
null
app/user/serializers.py
Busterflint/recipe-app-ap1
6d073c244ef5abde49de313019974293c5c5ee38
[ "MIT" ]
null
null
null
app/user/serializers.py
Busterflint/recipe-app-ap1
6d073c244ef5abde49de313019974293c5c5ee38
[ "MIT" ]
null
null
null
from django.contrib.auth import get_user_model, authenticate from django.utils.translation import ugettext_lazy as _ from rest_framework import serializers class UserSerializer(serializers.ModelSerializer): """Serializer for the users object.""" class Meta: model = get_user_model() fields = ('email', 'password', 'name') extra_kwargs = {'password': {'write_only': True, 'min_length': 5 }} def create(self, validated_data): """Create a new user with encrypted password and return it.""" return get_user_model().objects.create_user(**validated_data) def update(self, instance, validated_data): """Update a user, setting the password correctly and returning it.""" password = validated_data.pop('password', None) user = super().update(instance, validated_data) if password: user.set_password(password) user.save() return user class AuthTokenSerializer(serializers.Serializer): """Serializer for the user authentication object.""" email = serializers.CharField() password = serializers.CharField( style = {'input_type': 'password'}, trim_whitespace = False ) def validate(self, attrs): """Validate and authenticate the user.""" email = attrs.get('email') password = attrs.get('password') user = authenticate( request=self.context.get('request'), username=email, password=password ) if not user: msg = _('Unable to authenticate with provided credential.') raise serializers.ValidationError(msg, code='authentication') attrs['user'] = user return attrs
33.423077
77
0.643843
4a2131819f013f2edfb099e59fa60316b8d7fa51
20,254
py
Python
highcharts/highstock/options.py
Jbrunn/python-highcharts
a4c488ae5c2e125616efad5a722f3dfd8a9bc450
[ "MIT" ]
370
2015-10-07T20:13:10.000Z
2022-03-31T03:43:17.000Z
highcharts/highstock/options.py
Jbrunn/python-highcharts
a4c488ae5c2e125616efad5a722f3dfd8a9bc450
[ "MIT" ]
67
2016-03-14T12:18:44.000Z
2022-02-24T09:24:31.000Z
highcharts/highstock/options.py
Jbrunn/python-highcharts
a4c488ae5c2e125616efad5a722f3dfd8a9bc450
[ "MIT" ]
159
2016-02-25T15:07:52.000Z
2022-03-12T13:04:14.000Z
# -*- coding: UTF-8 -*- from past.builtins import basestring from .highstock_types import OptionTypeError, Series, SeriesOptions from .common import Formatter, Events, Position, ContextButton, Options3d, ResetZoomButton, \ Labels, PlotBands, PlotLines, Title, Items, Navigation, Handles, Background, Breaks, \ DateTimeLabelFormats, Zones, Levels, Buttons, \ JSfunction, ColorObject, CSSObject, SVGObject, CommonObject, ArrayObject import json, datetime # Base Option Class class BaseOptions(object): def __init__(self,**kwargs): self.update_dict(**kwargs) def __display_options__(self): print(json.dumps(self.__dict__, indent=4, sort_keys=True)) def __jsonable__(self): return self.__dict__ def __validate_options__(self, k, v, ov): if ov == NotImplemented: raise OptionTypeError("Option Type Currently Not Supported: %s" % k) if isinstance(v,dict) and isinstance(ov,dict): keys = v.keys() if len(keys) > 1: raise NotImplementedError return isinstance(v[keys[0]],ov[keys[0]]) return isinstance(v, ov) def update_dict(self, **kwargs): for k, v in kwargs.items(): if k in self.ALLOWED_OPTIONS: #if isinstance(self.ALLOWED_OPTIONS[k], tuple) and isinstance(self.ALLOWED_OPTIONS[k][0](), SeriesOptions): if k in PlotOptions.ALLOWED_OPTIONS.keys(): if self.__getattr__(k): self.__dict__[k].update(series_type=k, **v) else: v = SeriesOptions(series_type=k, **v) self.__dict__.update({k:v}) elif isinstance(self.ALLOWED_OPTIONS[k], tuple) and isinstance(self.ALLOWED_OPTIONS[k][0](), CommonObject): if isinstance(v, dict): if self.__getattr__(k): self.__dict__[k].update(v) #update dict else: # first self.__dict__.update({k:self.ALLOWED_OPTIONS[k][0](**v)}) else: OptionTypeError("Not An Accepted Input Type: %s, must be dictionary" % type(v)) elif isinstance(self.ALLOWED_OPTIONS[k], tuple) and isinstance(self.ALLOWED_OPTIONS[k][0](), ArrayObject): if self.__getattr__(k): #existing attr if isinstance(v, dict): self.__dict__[k].update(v) # update array elif isinstance(v, list): for item in v: self.__dict__[k].update(item) # update array else: OptionTypeError("Not An Accepted Input Type: %s, must be list or dictionary" % type(v)) else: #first if isinstance(v, dict): self.__dict__.update({k:self.ALLOWED_OPTIONS[k][0](**v)}) elif isinstance(v, list): if len(v) == 1: self.__dict__.update({k:self.ALLOWED_OPTIONS[k][0](**v[0])}) else: self.__dict__.update({k:self.ALLOWED_OPTIONS[k][0](**v[0])}) for item in v[1:]: self.__dict__[k].update(item) else: OptionTypeError("Not An Accepted Input Type: %s, must be list or dictionary" % type(v)) elif isinstance(self.ALLOWED_OPTIONS[k], tuple) and \ (isinstance(self.ALLOWED_OPTIONS[k][0](), CSSObject) or isinstance(self.ALLOWED_OPTIONS[k][0](), SVGObject)): if self.__getattr__(k): for key, value in v.items(): # check if v has object input self.__dict__[k].__options__().update({key:value}) v = self.__dict__[k].__options__() # upating object if isinstance(v, dict): self.__dict__.update({k:self.ALLOWED_OPTIONS[k][0](**v)}) else: self.__dict__.update({k:self.ALLOWED_OPTIONS[k][0](v)}) elif isinstance(self.ALLOWED_OPTIONS[k], tuple) and (isinstance(self.ALLOWED_OPTIONS[k][0](), JSfunction) or \ isinstance(self.ALLOWED_OPTIONS[k][0](), Formatter) or isinstance(self.ALLOWED_OPTIONS[k][0](), ColorObject)): if isinstance(v, dict): self.__dict__.update({k:self.ALLOWED_OPTIONS[k][0](**v)}) else: self.__dict__.update({k:self.ALLOWED_OPTIONS[k][0](v)}) else: self.__dict__.update({k:v}) else: print(self.ALLOWED_OPTIONS) print(k, v) raise OptionTypeError("Not An Accepted Option Type: %s" % k) def __getattr__(self, item): if not item in self.__dict__: return None # Attribute Not Set else: return True class ChartOptions(BaseOptions): ALLOWED_OPTIONS = { "alignTicks": bool, "animation": [bool, dict, basestring], "backgroundColor": (ColorObject, basestring, dict), "borderColor": (ColorObject, basestring, dict), "borderRadius": int, "borderWidth": int, "className": basestring, "defaultSeriesType": basestring, "events": (Events, dict), "height": [int,basestring], "ignoreHiddenSeries": bool, "inverted": bool, "margin": list, "marginBottom": int, "marginLeft": int, "marginRight": int, "marginTop": int, "options3d": (Options3d, dict), "plotBackgroundColor": (ColorObject, basestring, dict), "plotBackgroundImage": basestring, "plotBorderColor": (ColorObject, basestring, dict), "plotBorderWidth": int, "plotShadow": bool, "polar": bool, "reflow": bool, "renderTo": basestring, "resetZoomButton": (ResetZoomButton, dict), "selectionMarkerFill": basestring, "shadow": bool, "showAxes": bool, "spacingBottom": int, "spacingLeft": int, "spacingRight": int, "spacingTop": int, "style": (CSSObject, dict), "type": basestring, "width": [int,basestring], "zoomType": basestring, } class ColorsOptions(BaseOptions): """ Special Case, this is simply just an array of colours """ def __init__(self): self.colors = {} def set_colors(self, colors): if isinstance(colors, basestring): self.colors = ColorObject(colors) elif isinstance(colors, list) or isinstance(colors, dict): self.colors = colors else: OptionTypeError("Not An Accepted Input Type: %s" % type(colors)) def __jsonable__(self): return self.colors class CreditsOptions(BaseOptions): ALLOWED_OPTIONS = { "enabled": bool, "href": basestring, "position": (Position, dict), "style": (CSSObject, dict), "text": basestring, } class ExportingOptions(BaseOptions): ALLOWED_OPTIONS = { "buttons": (ContextButton, dict), "chartOptions": (ChartOptions, dict), "enabled": bool, "filename": basestring, "formAttributes": NotImplemented, "scale": int, "sourceHeight": int, "sourceWidth": int, "type": basestring, "url": basestring, "width": int, } class GlobalOptions(BaseOptions): ALLOWED_OPTIONS = { "Date": NotImplemented, "VMLRadialGradientURL": basestring, "canvasToolsURL": basestring, "getTimezoneOffset": (JSfunction, basestring), "timezoneOffset": int, "useUTC": bool, } class LabelsOptions(BaseOptions): ALLOWED_OPTIONS = { "items": (Items, dict), "style": (CSSObject, dict), } class LangOptions(BaseOptions): ALLOWED_OPTIONS = { "decimalPoint": basestring, "downloadJPEG": basestring, "downloadPDF": basestring, "downloadPNG": basestring, "donwloadSVG": basestring, "exportButtonTitle": basestring, "loading": basestring, "months": list, "noData": basestring, "numericSymbols": list, "printButtonTitle": basestring, "resetZoom": basestring, "resetZoomTitle": basestring, "shortMonths": list, "thousandsSep": basestring, "weekdays": list, } class LegendOptions(BaseOptions): ALLOWED_OPTIONS = { "align": basestring, "backgroundColor": (ColorObject, basestring, dict), "borderColor": (ColorObject, basestring, dict), "borderRadius": int, "borderWidth": int, "enabled": bool, "floating": bool, "itemDistance": int, "itemHiddenStyle": (CSSObject, dict), "itemHoverStyle": (CSSObject, dict), "itemMarginBottom": int, "itemMarginTop": int, "itemStyle": (CSSObject, dict), "itemWidth": int, "labelFormat": basestring, "labelFormatter": (Formatter, JSfunction), "layout": basestring, "lineHeight": int, "margin": int, "maxHeight": int, "navigation": (Navigation, dict), "padding": int, "reversed": bool, "rtl": bool, "shadow": bool, "style": (CSSObject, dict), "symbolHeight": int, "symbolPadding": int, "symbolRadius": int, "symbolWidth": int, "title": (Title, dict), "useHTML": bool, "verticalAlign": basestring, "width": int, "x": int, "y": int, } class LoadingOptions(BaseOptions): ALLOWED_OPTIONS = { "hideDuration": int, "labelStyle": (CSSObject, dict), "showDuration": int, "style": (CSSObject, dict), } class NavigationOptions(BaseOptions): ALLOWED_OPTIONS = { "buttonOptions": (ContextButton, dict), "menuItemHoverStyle": (CSSObject, dict), "menuItemStyle": (CSSObject, dict), "menuStyle": (CSSObject, dict), } class PlotOptions(BaseOptions): """ Another Special Case: Interface With all the different Highchart Plot Types Here """ ALLOWED_OPTIONS = { "area": (SeriesOptions, dict), "arearange": (SeriesOptions, dict), "areaspline": (SeriesOptions, dict), "areasplinerange": (SeriesOptions, dict), "candlestick": (SeriesOptions, dict), "column": (SeriesOptions, dict), "columnrange": (SeriesOptions, dict), "flags": (SeriesOptions, dict), "line": (SeriesOptions, dict), "ohlc": (SeriesOptions, dict), "polygon": (SeriesOptions, dict), "scatter": (SeriesOptions, dict), "series": (SeriesOptions, dict), "spline": (SeriesOptions, dict), } class RangeSelectorOptions(BaseOptions): ALLOWED_OPTIONS = { "allButtonsEnabled": bool, "buttonSpacing": [int, float], "buttonTheme": (SVGObject, dict), "buttons": (Buttons, list), "enabled": bool, "inputBoxBorderColor": (ColorObject, basestring, dict), "inputBoxHeight": [int, float], "inputBoxWidth": [int, float], "inputDateFormat": basestring, "inputDateParser": (JSfunction, basestring), "inputEditDateFormat": basestring, "inputEnabled": bool, "inputPosition": (Position, dict), "inputStyle": (CSSObject, dict), "labelStyle": (CSSObject, dict), "selected": [int, float], } class ScrollbarOptions(BaseOptions): ALLOWED_OPTIONS = { "barBackgroundColor": (ColorObject, basestring, dict), "barBorderColor": (ColorObject, basestring, dict), "barBorderRadius": [int, float], "barBorderWidth": [int, float], "buttonArrowColor": (ColorObject, basestring, dict), "buttonBackgroundColor": (ColorObject, basestring, dict), "buttonBorderColor": (ColorObject, basestring, dict), "buttonBorderRadius": [int, float], "buttonBorderWidth": [int, float], "enabled": bool, "height": [int, float], "liveRedraw": bool, "minWidth": [int, float], "rifleColor": (ColorObject, basestring, dict), "trackBackgroundColor": (ColorObject, basestring, dict), "trackBorderColor": (ColorObject, basestring, dict), "trackBorderRadius": [int, float], "trackBorderWidth": [int, float], } class SeriesData(BaseOptions): """ Another Special Case: Stores Data Series in an array for returning to the chart object """ def __init__(self): #self.__dict__.update([]) self = [] class SubtitleOptions(BaseOptions): ALLOWED_OPTIONS = { "align": basestring, "floating": bool, "style": (CSSObject, dict), "text": basestring, "useHTML": bool, "verticalAlign": basestring, "x": int, "y": int, } class TitleOptions(BaseOptions): ALLOWED_OPTIONS = { "align": basestring, "floating": bool, "margin": int, "style": (CSSObject, dict), "text": basestring, "useHTML": bool, "verticalAlign": basestring, "x": int, "y": int, } class TooltipOptions(BaseOptions): ALLOWED_OPTIONS = { "animation": bool, "backgroundColor": (ColorObject, basestring, dict), "borderColor": (ColorObject, basestring, dict), "borderRadius": int, "borderWidth": int, "crosshairs": [bool, list, dict], "dateTimeLabelFormats": (DateTimeLabelFormats, dict), "enabled": bool, "followPointer": bool, "followTouchMove": bool, "footerFormat": basestring, "formatter": (Formatter, JSfunction), "headerFormat": basestring, "pointFormat": basestring, "positioner": (JSfunction, basestring), "shadow": bool, "shared": bool, "snap": int, "style": (CSSObject, dict), "useHTML": bool, "valueDecimals": int, "valuePrefix": basestring, "valueSuffix": basestring, "xDateFormat": basestring, } class xAxisOptions(BaseOptions): ALLOWED_OPTIONS = { "allowDecimals": bool, "alternateGridColor": (ColorObject, basestring, dict), "breaks":(Breaks, list), "categories": list, 'crosshair': bool, "dateTimeLabelFormats": (DateTimeLabelFormats, dict), "endOnTick": bool, "events": (Events, dict), "gridLineColor": (ColorObject, basestring, dict), "gridLineDashStyle": basestring, "gridLineWidth": int, "id": basestring, "labels": (Labels, dict), "lineColor": (ColorObject, basestring, dict), "lineWidth": int, "linkedTo": int, "max": [float, int], "maxPadding": [float, int], "maxZoom": NotImplemented, "min": [float, int], "minPadding": [float, int], "minRange": int, "minTickInterval": int, "minorGridLineColor": (ColorObject, basestring, dict), "minorGridLineDashStyle": basestring, "minorGridLineWidth": int, "minorTickColor": (ColorObject, basestring, dict), "minorTickInterval": int, "minorTickLength": int, "minorTickPosition": basestring, "minorTickWidth": int, "offset": bool, "opposite": bool, "ordinal": bool, "plotBands": (PlotBands, list), "plotLines": (PlotLines, list), "reversed": bool, "showEmpty": bool, "showFirstLabel": bool, "showLastLabel": bool, "startOfWeek": int, "startOnTick": bool, "tickColor": (ColorObject, basestring, dict), "tickInterval": int, "tickLength": int, "tickPixelInterval": int, "tickPosition": basestring, "tickPositioner": (JSfunction, basestring), "tickPositions": list, "tickWidth": int, "tickmarkPlacement": basestring, "title": (Title, dict), "type": basestring, "units": list } class yAxisOptions(BaseOptions): ALLOWED_OPTIONS = { "allowDecimals": bool, "alternateGridColor": (ColorObject, basestring, dict), "breaks": (Breaks, list), "categories": list, "ceiling": (int, float), "dateTimeLabelFormats": (DateTimeLabelFormats, dict), "endOnTick": bool, "events": (Events, dict), "floor": (int, float), "gridLineColor": (ColorObject, basestring, dict), "gridLineDashStyle": basestring, "gridLineInterpolation": basestring, "gridLineWidth": int, "gridZIndex": int, "height": [int, float, basestring], "id": basestring, "labels": (Labels, dict), "lineColor": (ColorObject, basestring, dict), "lineWidth": int, "linkedTo": int, "max": [float, int], "maxColor": (ColorObject, basestring, dict), "maxPadding": [float, int], "maxZoom": NotImplemented, "min": [float, int], "minColor": (ColorObject, basestring, dict), "minPadding": [float, int], "minRange": int, "minTickInterval": int, "minorGridLineColor": (ColorObject, basestring, dict), "minorGridLineDashStyle": basestring, "minorGridLineWidth": int, "minorTickColor": (ColorObject, basestring, dict), "minorTickInterval": int, "minorTickLength": int, "minorTickPosition": basestring, "minorTickWidth": int, "offset": bool, "opposite": bool, "ordinal": bool, "plotBands": (PlotBands, list), "plotLines": (PlotLines, list), "reversed": bool, "reversedStacks": bool, "showEmpty": bool, "showFirstLabel": bool, "showLastLabel": bool, "stackLabels": (Labels, dict), "startOfWeek": int, "startOnTick": bool, "stops": list, "tickAmount": int, "tickColor": (ColorObject, basestring, dict), "tickInterval": int, "tickLength": int, "tickPixelInterval": int, "tickPosition": basestring, "tickPositioner": (JSfunction, basestring), "tickPositions": list, "tickWidth": int, "tickmarkPlacement": basestring, "title": (Title, dict), "top": [int, float, basestring], # DEM 2017/11/16: Note that the 'type' keyword for highstock is # undocumented yet appears to be supported, likely because of underlying # shared code. This permits logarithmic Y-Axis scale which is # frequently useful in stock charts. "type": basestring, "units": list } class NavigatorOptions(BaseOptions): ALLOWED_OPTIONS = { "adaptToUpdatedData": bool, "baseSeries": [int, basestring], "enabled": bool, "handles": (Handles, dict), # need handles object "height": [int, float], "margin": [int, float], "maskFill": (ColorObject, dict), "maskInside": bool, "outlineColor": (ColorObject, dict), "outlineWidth": [int, float], "series": dict, "xAxis": (xAxisOptions, dict), "yAxis": (yAxisOptions, dict), } class MultiAxis(object): def __init__(self, axis): AXIS_LIST = { "xAxis": xAxisOptions, "yAxis": yAxisOptions } self.axis = [] self.AxisObj = AXIS_LIST[axis] def update(self, **kwargs): self.axis.append(self.AxisObj(**kwargs)) def __jsonable__(self): return self.axis
34.445578
130
0.555841
4a2131b65e9de878ce757a14f7183edcbd491e79
499
py
Python
setup.py
amran-quantum/test
beb1f8e4d0ebe9862e199a70e06da42a9141b054
[ "MIT" ]
null
null
null
setup.py
amran-quantum/test
beb1f8e4d0ebe9862e199a70e06da42a9141b054
[ "MIT" ]
null
null
null
setup.py
amran-quantum/test
beb1f8e4d0ebe9862e199a70e06da42a9141b054
[ "MIT" ]
null
null
null
from setuptools import setup, find_packages with open("requirements.txt") as f: install_requires = f.read().strip().split("\n") # get version from __version__ variable in test_app/__init__.py from test_app import __version__ as version setup( name="test_app", version=version, description="test app", author="amran@quantumuniversal.com", author_email="amran@quantumuniversal.com", packages=find_packages(), zip_safe=False, include_package_data=True, install_requires=install_requires )
24.95
63
0.785571
4a2132893071b90b44af29d67a8f02142a4c3b2b
5,891
py
Python
test/completion/arrays.py
perrinjerome/jedi
00b220516de9a7d4e1ea313e0474840ca2e8d8c1
[ "MIT" ]
1
2020-12-18T21:45:22.000Z
2020-12-18T21:45:22.000Z
test/completion/arrays.py
perrinjerome/jedi
00b220516de9a7d4e1ea313e0474840ca2e8d8c1
[ "MIT" ]
null
null
null
test/completion/arrays.py
perrinjerome/jedi
00b220516de9a7d4e1ea313e0474840ca2e8d8c1
[ "MIT" ]
null
null
null
# ----------------- # basic array lookups # ----------------- #? int() [1,""][0] #? str() [1,""][1] #? int() str() [1,""][2] #? int() str() [1,""][20] #? int() str() [1,""][str(hello)] a = list() #? list() [a][0] #? list() [[a,a,a]][2][100] c = [[a,""]] #? str() c[0][1] b = [6,7] #? int() b[8-7] # Something unreasonable: #? int() b[''] # ----------------- # Slices # ----------------- #? list() b[8:] #? list() b[int():] #? list() b[:] #? int() b[:, 1] #? int() b[:1, 1] #? int() b[1:1, 1] #? int() b[1:1:, ...] #? int() b[1:1:5, ...] class _StrangeSlice(): def __getitem__(self, sliced): return sliced # Should not result in an error, just because the slice itself is returned. #? slice() _StrangeSlice()[1:2] # ----------------- # iterable multiplication # ----------------- a = ['']*2 #? list() a # ----------------- # tuple assignments # ----------------- a1, b1 = (1, "") #? int() a1 #? str() b1 (a2, b2) = (1, "") #? int() a2 #? str() b2 # list assignment [list1, list2] = (1, "") #? int() list1 #? str() list2 [list3, list4] = [1, ""] #? int() list3 #? str() list4 # ----------------- # subtuple assignment # ----------------- (a3, (b3, c3)) = (1, ("", list)) #? list c3 a4, (b4, c4) = (1, ("", list)) #? list c4 #? int() a4 #? str() b4 # ----------------- # multiple assignments # ----------------- a = b = 1 #? int() a #? int() b (a, b) = (c, (e, f)) = ('2', (3, 4)) #? str() a #? tuple() b #? str() c #? int() e #? int() f # ----------------- # unnessecary braces # ----------------- a = (1) #? int() a #? int() (1) #? int() ((1)) #? int() ((1)+1) u, v = 1, "" #? int() u ((u1, v1)) = 1, "" #? int() u1 #? int() (u1) (a), b = 1, '' #? int() a def a(): return '' #? str() (a)() #? str() (a)().title() #? int() (tuple).index() #? int() (tuple)().index() class C(): def __init__(self): self.a = (str()).upper() #? str() C().a # ----------------- # imbalanced sides # ----------------- (f, g) = (1,) #? int() f #? [] g. (f, g, h) = (1,'') #? int() f #? str() g #? [] h. (f1, g1) = 1 #? [] f1. #? [] g1. (f, g) = (1,'',1.0) #? int() f #? str() g # ----------------- # dicts # ----------------- dic2 = {'asdf': 3, 'b': 'str'} #? int() dic2['asdf'] #? None int() str() dic2.get('asdf') # string literal #? int() dic2[r'asdf'] #? int() dic2[r'asdf'] #? int() dic2[r'as' 'd' u'f'] #? int() str() dic2['just_something'] # unpacking a, b = dic2 #? str() a a, b = {1: 'x', 2.0: 1j} #? int() float() a #? int() float() b def f(): """ github #83 """ r = {} r['status'] = (200, 'ok') return r #? dict() f() # completion within dicts #? 9 ['str'] {str: str} # iteration problem (detected with sith) d = dict({'a':''}) def y(a): return a #? y(**d) #? str() d['a'] # problem with more complicated casts dic = {str(key): ''} #? str() dic[''] # Just skip Python 2 tests from here. EoL soon, I'm too lazy for it. # python > 2.7 for x in {1: 3.0, '': 1j}: #? int() str() x #? ['__iter__'] dict().values().__iter__ d = dict(a=3, b='') x, = d.values() #? int() str() x #? int() d['a'] #? int() str() None d.get('a') some_dct = dict({'a': 1, 'b': ''}, a=1.0) #? float() some_dct['a'] #? str() some_dct['b'] #? int() float() str() some_dct['c'] # ----------------- # with variable as index # ----------------- a = (1, "") index = 1 #? str() a[index] # these should just ouput the whole array index = int #? int() str() a[index] index = int() #? int() str() a[index] # dicts index = 'asdf' dic2 = {'asdf': 3, 'b': 'str'} #? int() dic2[index] # ----------------- # __getitem__ # ----------------- class GetItem(): def __getitem__(self, index): return 1.0 #? float() GetItem()[0] class GetItem(): def __init__(self, el): self.el = el def __getitem__(self, index): return self.el #? str() GetItem("")[1] class GetItemWithList(): def __getitem__(self, index): return [1, 1.0, 's'][index] #? float() GetItemWithList()[1] for i in 0, 2: #? int() str() GetItemWithList()[i] # With super class SuperYeah(list): def __getitem__(self, index): return super()[index] #? SuperYeah([1])[0] #? SuperYeah()[0] # ----------------- # conversions # ----------------- a = [1, ""] #? int() str() list(a)[1] #? int() str() list(a)[0] #? set(a)[0] #? int() str() list(set(a))[1] #? int() str() next(iter(set(a))) #? int() str() list(list(set(a)))[1] # does not yet work, because the recursion catching is not good enough (catches # to much) #? int() str() list(set(list(set(a))))[1] #? int() str() list(set(set(a)))[1] # frozenset #? int() str() list(frozenset(a))[1] #? int() str() list(set(frozenset(a)))[1] # iter #? int() str() list(iter(a))[1] #? int() str() list(iter(list(set(a))))[1] # tuple #? int() str() tuple(a)[1] #? int() str() tuple(list(set(a)))[1] #? int() tuple((1,))[0] # implementation detail for lists, should not be visible #? [] list().__iterable # With a list comprehension. for i in set(a for a in [1]): #? int() i # ----------------- # Merged Arrays # ----------------- for x in [1] + ['']: #? int() str() x # ----------------- # Potential Recursion Issues # ----------------- class X(): def y(self): self.a = [1] def x(self): self.a = list(self.a) #? int() self.a[0] # ----------------- # For loops with attribute assignment. # ----------------- def test_func(): x = 'asdf' for x.something in [6,7,8]: pass #? str() x for x.something, b in [[6, 6.0]]: pass #? str() x #? int() tuple({1})[0] # python >= 3.4 # ----------------- # PEP 3132 Extended Iterable Unpacking (star unpacking) # ----------------- a, *b, c = [1, 'b', list, dict] #? int() a #? b #? list c # Not valid syntax a, *b, *c = [1, 'd', list] #? int() a #? b #? c lc = [x for a, *x in [(1, '', 1.0)]] #? lc[0][0] #? lc[0][1]
12.022449
90
0.444576
4a21332de5e15983dd300e0ced515750bc34d905
2,435
py
Python
ytelapi/models/body_54.py
Ytel-Inc/YtelAPI-Python
139dc02d93e74c78b6c3d91e3002ae98e2270223
[ "MIT" ]
null
null
null
ytelapi/models/body_54.py
Ytel-Inc/YtelAPI-Python
139dc02d93e74c78b6c3d91e3002ae98e2270223
[ "MIT" ]
null
null
null
ytelapi/models/body_54.py
Ytel-Inc/YtelAPI-Python
139dc02d93e74c78b6c3d91e3002ae98e2270223
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ ytelapi This file was automatically generated by APIMATIC v2.0 ( https://apimatic.io ). """ class Body54(object): """Implementation of the 'body_54' model. TODO: type model description here. Attributes: page (int): The page count to retrieve from the total results in the collection. Page indexing starts at 1. page_size (int): The count of objects to return per page. mfrom (string): Filter SMS message objects from this valid 10-digit phone number (E.164 format). to (string): Filter SMS message objects to this valid 10-digit phone number (E.164 format). date_sent (string): Filter sms message objects by this date. """ # Create a mapping from Model property names to API property names _names = { "page":'Page', "page_size":'PageSize', "mfrom":'From', "to":'To', "date_sent":'DateSent' } def __init__(self, page=None, page_size=None, mfrom=None, to=None, date_sent=None): """Constructor for the Body54 class""" # Initialize members of the class self.page = page self.page_size = page_size self.mfrom = mfrom self.to = to self.date_sent = date_sent @classmethod def from_dictionary(cls, dictionary): """Creates an instance of this model from a dictionary Args: dictionary (dictionary): A dictionary representation of the object as obtained from the deserialization of the server's response. The keys MUST match property names in the API description. Returns: object: An instance of this structure class. """ if dictionary is None: return None # Extract variables from the dictionary page = dictionary.get('Page') page_size = dictionary.get('PageSize') mfrom = dictionary.get('From') to = dictionary.get('To') date_sent = dictionary.get('DateSent') # Return an object of this model return cls(page, page_size, mfrom, to, date_sent)
28.647059
84
0.545791
4a2133f1c96719b3f7b7bbf336d75b2727428833
11,347
py
Python
train_frcnn.py
vaishnavi-naik/keras-frcnn
d980e50a7da8097bc947be1bd8bed45f057c5289
[ "Apache-2.0" ]
null
null
null
train_frcnn.py
vaishnavi-naik/keras-frcnn
d980e50a7da8097bc947be1bd8bed45f057c5289
[ "Apache-2.0" ]
null
null
null
train_frcnn.py
vaishnavi-naik/keras-frcnn
d980e50a7da8097bc947be1bd8bed45f057c5289
[ "Apache-2.0" ]
null
null
null
from __future__ import division import random import pprint import sys import time import numpy as np from optparse import OptionParser import pickle import re import traceback import os from tensorflow.keras import backend as K from tensorflow.keras.optimizers import Adam, SGD, RMSprop from tensorflow.keras.layers import Input from tensorflow.keras.models import Model from keras_frcnn import config, data_generators from keras_frcnn import losses as losses import keras_frcnn.roi_helpers as roi_helpers from tensorflow.keras.utils import Progbar sys.setrecursionlimit(40000) parser = OptionParser() parser.add_option("-p", "--path", dest="train_path", help="Path to training data.") parser.add_option("-v", "--valpath", dest="val_path", help="Path to validation data.") parser.add_option("-o", "--parser", dest="parser", help="Parser to use. One of simple or pascal_voc", default="pascal_voc") parser.add_option("-n", "--num_rois", type="int", dest="num_rois", help="Number of RoIs to process at once.", default=32) parser.add_option("--network", dest="network", help="Base network to use. Supports vgg or resnet50.", default='resnet50') parser.add_option("--hf", dest="horizontal_flips", help="Augment with horizontal flips in training. (Default=false).", action="store_true", default=False) parser.add_option("--vf", dest="vertical_flips", help="Augment with vertical flips in training. (Default=false).", action="store_true", default=False) parser.add_option("--rot", "--rot_90", dest="rot_90", help="Augment with 90 degree rotations in training. (Default=false).", action="store_true", default=False) parser.add_option("--num_epochs", type="int", dest="num_epochs", help="Number of epochs.", default=2000) parser.add_option("--config_filename", dest="config_filename", help= "Location to store all the metadata related to the training (to be used when testing).", default="config.pickle") parser.add_option("--output_weight_path", dest="output_weight_path", help="Output path for weights.", default='./model_frcnn.hdf5') parser.add_option("--input_weight_path", dest="input_weight_path", help="Input path for weights. If not specified, will try to load default weights provided by keras.") (options, args) = parser.parse_args() if not options.train_path: # if filename is not given parser.error('Error: path to training data must be specified. Pass --path to command line') if options.parser == 'pascal_voc': from keras_frcnn.pascal_voc_parser import get_data elif options.parser == 'simple': from keras_frcnn.simple_parser import get_data else: raise ValueError("Command line option parser must be one of 'pascal_voc' or 'simple'") # pass the settings from the command line, and persist them in the config object C = config.Config() C.use_horizontal_flips = bool(options.horizontal_flips) C.use_vertical_flips = bool(options.vertical_flips) C.rot_90 = bool(options.rot_90) C.model_path = options.output_weight_path model_path_regex = re.match("^(.+)(\.hdf5)$", C.model_path) if model_path_regex.group(2) != '.hdf5': print('Output weights must have .hdf5 filetype') exit(1) C.num_rois = int(options.num_rois) if options.network == 'vgg': C.network = 'vgg' from keras_frcnn import vgg as nn elif options.network == 'resnet50': from keras_frcnn import resnet as nn C.network = 'resnet50' else: print('Not a valid model') raise ValueError # check if weight path was passed via command line if options.input_weight_path: C.base_net_weights = options.input_weight_path else: # set the path to weights based on backend and model C.base_net_weights = nn.get_weight_path() train_imgs, classes_count, class_mapping = get_data(options.train_path) val_imgs, _, _ = get_data(options.val_path) if 'bg' not in classes_count: classes_count['bg'] = 0 class_mapping['bg'] = len(class_mapping) C.class_mapping = class_mapping inv_map = {v: k for k, v in class_mapping.items()} print('Training images per class:') pprint.pprint(classes_count) print(f'Num classes (including bg) = {len(classes_count)}') config_output_filename = options.config_filename with open(config_output_filename, 'wb') as config_f: pickle.dump(C,config_f) print(f'Config has been written to {config_output_filename}, and can be loaded when testing to ensure correct results') random.shuffle(train_imgs) num_imgs = len(train_imgs) #train_imgs = [s for s in all_imgs if s['imageset'] == 'trainval'] #val_imgs = [s for s in all_imgs if s['imageset'] == 'test'] print(f'Num train samples {len(train_imgs)}') print(f'Num val samples {len(val_imgs)}') data_gen_train = data_generators.get_anchor_gt(train_imgs, classes_count, C, nn.get_img_output_length, K.image_data_format(), mode='train') data_gen_val = data_generators.get_anchor_gt(val_imgs, classes_count, C, nn.get_img_output_length,K.image_data_format(), mode='val') if K.image_data_format() == 'th': input_shape_img = (3, None, None) else: input_shape_img = (None, None, 3) print("Img input shp:", input_shape_img) img_input = Input(shape=input_shape_img) roi_input = Input(shape=(None, 4)) # define the base network (resnet here, can be VGG, Inception, etc) shared_layers = nn.nn_base(img_input, trainable=True) # define the RPN, built on the base layers num_anchors = len(C.anchor_box_scales) * len(C.anchor_box_ratios) rpn = nn.rpn(shared_layers, num_anchors) classifier = nn.classifier(shared_layers, roi_input, C.num_rois, nb_classes=len(classes_count), trainable=True) print("Rpn:", rpn, "output:", rpn[:2]) model_rpn = Model(img_input, rpn[:2]) model_classifier = Model([img_input, roi_input], classifier) # this is a model that holds both the RPN and the classifier, used to load/save weights for the models model_all = Model([img_input, roi_input], rpn[:2] + classifier) try: print('loading weights from {C.base_net_weights}', C.base_net_weights, os.getcwd()) model_rpn.load_weights(C.base_net_weights, by_name=True) model_classifier.load_weights(C.base_net_weights, by_name=True) except: print('Could not load pretrained model weights. Weights can be found in the keras application folder \ https://github.com/fchollet/keras/tree/master/keras/applications') optimizer = Adam(lr=1e-5) optimizer_classifier = Adam(lr=1e-5) model_rpn.compile(optimizer=optimizer, loss=[losses.rpn_loss_cls(num_anchors), losses.rpn_loss_regr(num_anchors)]) model_classifier.compile(optimizer=optimizer_classifier, loss=[losses.class_loss_cls, losses.class_loss_regr(len(classes_count)-1)], metrics={f'dense_class_{len(classes_count)}': 'accuracy'}) model_all.compile(optimizer='sgd', loss='mae') print(model_all.summary()) # epoch_length = 1000 epoch_length = 3 num_epochs = int(options.num_epochs) iter_num = 0 losses = np.zeros((epoch_length, 5)) rpn_accuracy_rpn_monitor = [] rpn_accuracy_for_epoch = [] start_time = time.time() best_loss = np.Inf class_mapping_inv = {v: k for k, v in class_mapping.items()} print('Starting training') vis = True for epoch_num in range(num_epochs): progbar = Progbar(epoch_length) print(f'Epoch {epoch_num + 1}/{num_epochs}') while True: try: if len(rpn_accuracy_rpn_monitor) == epoch_length and C.verbose: mean_overlapping_bboxes = float(sum(rpn_accuracy_rpn_monitor))/len(rpn_accuracy_rpn_monitor) rpn_accuracy_rpn_monitor = [] print(f'Average number of overlapping bounding boxes from RPN = {mean_overlapping_bboxes} for {epoch_length} previous iterations') if mean_overlapping_bboxes == 0: print('RPN is not producing bounding boxes that overlap the ground truth boxes. Check RPN settings or keep training.') X, Y, img_data = next(data_gen_train) print("Training batch", X[0].shape, Y[0].shape) loss_rpn = model_rpn.train_on_batch(X, Y) print("Train done") P_rpn = model_rpn.predict_on_batch(X) R = roi_helpers.rpn_to_roi(P_rpn[0], P_rpn[1], C, K.image_data_format(), use_regr=True, overlap_thresh=0.7, max_boxes=300) # note: calc_iou converts from (x1,y1,x2,y2) to (x,y,w,h) format X2, Y1, Y2, IouS = roi_helpers.calc_iou(R, img_data, C, class_mapping) if X2 is None: rpn_accuracy_rpn_monitor.append(0) rpn_accuracy_for_epoch.append(0) continue neg_samples = np.where(Y1[0, :, -1] == 1) pos_samples = np.where(Y1[0, :, -1] == 0) if len(neg_samples) > 0: neg_samples = neg_samples[0] else: neg_samples = [] if len(pos_samples) > 0: pos_samples = pos_samples[0] else: pos_samples = [] rpn_accuracy_rpn_monitor.append(len(pos_samples)) rpn_accuracy_for_epoch.append((len(pos_samples))) if C.num_rois > 1: if len(pos_samples) < C.num_rois//2: selected_pos_samples = pos_samples.tolist() else: selected_pos_samples = np.random.choice(pos_samples, C.num_rois//2, replace=False).tolist() try: selected_neg_samples = np.random.choice(neg_samples, C.num_rois - len(selected_pos_samples), replace=False).tolist() except: selected_neg_samples = np.random.choice(neg_samples, C.num_rois - len(selected_pos_samples), replace=True).tolist() sel_samples = selected_pos_samples + selected_neg_samples else: # in the extreme case where num_rois = 1, we pick a random pos or neg sample selected_pos_samples = pos_samples.tolist() selected_neg_samples = neg_samples.tolist() if np.random.randint(0, 2): sel_samples = random.choice(neg_samples) else: sel_samples = random.choice(pos_samples) loss_class = model_classifier.train_on_batch([X, X2[:, sel_samples, :]], [Y1[:, sel_samples, :], Y2[:, sel_samples, :]]) losses[iter_num, 0] = loss_rpn[1] losses[iter_num, 1] = loss_rpn[2] losses[iter_num, 2] = loss_class[1] losses[iter_num, 3] = loss_class[2] losses[iter_num, 4] = loss_class[3] progbar.update(iter_num+1, [('rpn_cls', losses[iter_num, 0]), ('rpn_regr', losses[iter_num, 1]), ('detector_cls', losses[iter_num, 2]), ('detector_regr', losses[iter_num, 3])]) iter_num += 1 if iter_num == epoch_length: loss_rpn_cls = np.mean(losses[:, 0]) loss_rpn_regr = np.mean(losses[:, 1]) loss_class_cls = np.mean(losses[:, 2]) loss_class_regr = np.mean(losses[:, 3]) class_acc = np.mean(losses[:, 4]) mean_overlapping_bboxes = float(sum(rpn_accuracy_for_epoch)) / len(rpn_accuracy_for_epoch) rpn_accuracy_for_epoch = [] if C.verbose: print(f'Mean number of bounding boxes from RPN overlapping ground truth boxes: {mean_overlapping_boxes}') print(f'Classifier accuracy for bounding boxes from RPN: {class_acc}') print(f'Loss RPN classifier: {loss_rpn_cls}') print(f'Loss RPN regression: {loss_rpn_regr}') print(f'Loss Detector classifier: {loss_class_cls}') print(f'Loss Detector regression: {loss_class_regr}') print(f'Elapsed time: {time.time() - start_time}') curr_loss = loss_rpn_cls + loss_rpn_regr + loss_class_cls + loss_class_regr iter_num = 0 start_time = time.time() if curr_loss < best_loss: if C.verbose: print(f'Total loss decreased from {best_loss} to {curr_loss}, saving weights') best_loss = curr_loss model_all.save_weights(model_path_regex.group(1) + "_" + '{:04d}'.format(epoch_num) + model_path_regex.group(2)) break except Exception as e: print(f'Exception: {e}') print(traceback.format_exc()) continue print('Training complete, exiting.')
38.205387
191
0.738081
4a2133fce1828764d1ba495c762ea09ddcc60a86
2,140
py
Python
pysm/tests/test_mpi_smoothing.py
xgarrido/pysm
a47162bddd0a9edefa8ea3fe57f38f3b78e27fd9
[ "MIT" ]
null
null
null
pysm/tests/test_mpi_smoothing.py
xgarrido/pysm
a47162bddd0a9edefa8ea3fe57f38f3b78e27fd9
[ "MIT" ]
null
null
null
pysm/tests/test_mpi_smoothing.py
xgarrido/pysm
a47162bddd0a9edefa8ea3fe57f38f3b78e27fd9
[ "MIT" ]
null
null
null
import pytest import numpy as np import healpy as hp import pysm import pysm.units as u try: from mpi4py import MPI except ImportError: pytest.skip("mpi4py failed to import, skip MPI tests", allow_module_level=True) try: import libsharp except ImportError: pytest.skip( "libsharp failed to import, skip MPI smoothing tests", allow_module_level=True ) @pytest.fixture def mpi_comm(): comm = MPI.COMM_WORLD return comm def test_mpi_assemble(mpi_comm): nside = 128 lmax = 2 * nside map_dist = pysm.MapDistribution(pixel_indices=None, mpi_comm=mpi_comm, nside=nside) model = pysm.Model(nside, map_dist=map_dist) distributed_map = model.read_map("pysm_2/dust_temp.fits") full_map_rank0 = pysm.mpi.assemble_map_on_rank0( mpi_comm, distributed_map, model.map_dist.pixel_indices, n_components=1, npix=hp.nside2npix(nside), )[0] if mpi_comm.rank == 0: np.testing.assert_allclose( full_map_rank0, pysm.read_map("pysm_2/dust_temp.fits", nside=nside).value, rtol=1e-5, ) def test_mpi_smoothing(mpi_comm): nside = 128 lmax = 2 * nside map_dist = pysm.MapDistribution( pixel_indices=None, mpi_comm=mpi_comm, smoothing_lmax=lmax, nside=nside ) model = pysm.Model(nside, map_dist=map_dist) distributed_map = model.read_map("pysm_2/dust_temp.fits") fwhm = 5 * u.deg smoothed_distributed_map = pysm.mpi_smoothing( distributed_map, fwhm, map_dist=map_dist ) full_map_rank0 = pysm.mpi.assemble_map_on_rank0( mpi_comm, smoothed_distributed_map, model.map_dist.pixel_indices, n_components=1, npix=hp.nside2npix(nside), )[0] if mpi_comm.rank == 0: np.testing.assert_allclose( full_map_rank0, hp.smoothing( pysm.read_map("pysm_2/dust_temp.fits", nside=nside).value, fwhm.to(u.rad).value, iter=0, lmax=lmax, use_pixel_weights=False, ), rtol=1e-5, )
27.435897
87
0.639252
4a2134137313b1b4e62c5828b0b7dcc85ce82751
411
py
Python
core/migrations/0006_task_completed.py
firminoneto11/bright-cities-todo
74a3ebdc82699c0ffa1fcd39fa6b82248495a1dc
[ "MIT" ]
null
null
null
core/migrations/0006_task_completed.py
firminoneto11/bright-cities-todo
74a3ebdc82699c0ffa1fcd39fa6b82248495a1dc
[ "MIT" ]
null
null
null
core/migrations/0006_task_completed.py
firminoneto11/bright-cities-todo
74a3ebdc82699c0ffa1fcd39fa6b82248495a1dc
[ "MIT" ]
null
null
null
# Generated by Django 3.2.4 on 2021-06-12 13:16 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0005_auto_20210612_0908'), ] operations = [ migrations.AddField( model_name='task', name='completed', field=models.BooleanField(default=False, verbose_name='Completed'), ), ]
21.631579
79
0.610706
4a21342f961cfdc129e9cfcfdb4ac52377b4b275
8,254
py
Python
models/base_model.py
mkecera/InstColorization
14b5d7084912014a668b81a704619529dc63ccb1
[ "MIT" ]
null
null
null
models/base_model.py
mkecera/InstColorization
14b5d7084912014a668b81a704619529dc63ccb1
[ "MIT" ]
null
null
null
models/base_model.py
mkecera/InstColorization
14b5d7084912014a668b81a704619529dc63ccb1
[ "MIT" ]
null
null
null
import os import torch from collections import OrderedDict from . import networks import skimage from util import util from skimage import io, img_as_ubyte, metrics import numpy as np class BaseModel(): # modify parser to add command line options, # and also change the default values if needed @staticmethod def modify_commandline_options(parser, is_train): return parser def name(self): return 'BaseModel' def initialize(self, opt): self.opt = opt self.gpu_ids = opt.gpu_ids self.isTrain = opt.isTrain self.device = torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu') self.save_dir = os.path.join(opt.checkpoints_dir, opt.name) if opt.resize_or_crop != 'scale_width': torch.backends.cudnn.benchmark = True # self.loss_names = [] self.model_names = [] self.visual_names = [] self.image_paths = [] self.loss_names = ['G', 'L1', 'CE'] self.avg_losses = OrderedDict() self.avg_loss_alpha = opt.avg_loss_alpha self.error_cnt = 0 self.criterionL1 = networks.HuberLoss(delta=1. / opt.ab_norm) for loss_name in self.loss_names: self.avg_losses[loss_name] = 0 def set_input(self, input): self.input = input def forward(self): pass # load and print networks; create schedulers def setup(self, opt, parser=None): if self.isTrain: self.schedulers = [networks.get_scheduler(optimizer, opt) for optimizer in self.optimizers] if not self.isTrain or opt.load_model: self.load_networks(opt.which_epoch) # make models eval mode during test time def eval(self): for name in self.model_names: if isinstance(name, str): net = getattr(self, 'net' + name) net.eval() # used in test time, wrapping `forward` in no_grad() so we don't save # intermediate steps for backprop def test(self, compute_losses=False): with torch.no_grad(): self.forward() if(compute_losses): self.compute_losses_G() # get image paths def get_image_paths(self): return self.image_paths def optimize_parameters(self): pass # update learning rate (called once every epoch) def update_learning_rate(self): for scheduler in self.schedulers: scheduler.step() lr = self.optimizers[0].param_groups[0]['lr'] # print('learning rate = %.7f' % lr) # return visualization images. train.py will display these images, and save the images to a html def get_current_visuals(self): visual_ret = OrderedDict() for name in self.visual_names: if isinstance(name, str): visual_ret[name] = getattr(self, name) return visual_ret # return traning losses/errors. train.py will print out these errors as debugging information def get_current_losses(self): self.loss_L1 = torch.mean(self.criterionL1(self.fake_B_reg.type(torch.cuda.FloatTensor), self.full_real_B.type(torch.cuda.FloatTensor))) self.loss_G = 10 * torch.mean(self.criterionL1(self.fake_B_reg.type(torch.cuda.FloatTensor), self.full_real_B.type(torch.cuda.FloatTensor))) self.error_cnt += 1 errors_ret = OrderedDict() for name in self.loss_names: if isinstance(name, str): # float(...) works for both scalar tensor and float number errors_ret[name] = float(getattr(self, 'loss_' + name)) return errors_ret def get_current_metric(self): self.out_img = torch.clamp(util.lab2rgb( torch.cat((self.full_real_A.type(torch.cuda.FloatTensor), self.fake_B_reg.type(torch.cuda.FloatTensor)), dim=1), self.opt), 0.0, 1.0) self.out_img = np.transpose(self.out_img.cpu().data.numpy()[0], (1, 2, 0)) # self.out_img = img_as_ubyte(self.out_img) self.true_img = torch.clamp(util.lab2rgb( torch.cat((self.full_real_A.type(torch.cuda.FloatTensor), self.full_real_B.type(torch.cuda.FloatTensor)), dim=1), self.opt), 0.0, 1.0) self.true_img = np.transpose(self.true_img.cpu().data.numpy()[0], (1, 2, 0)) # self.true_img = img_as_ubyte(self.true_img) self.psnr = skimage.metrics.peak_signal_noise_ratio(self.true_img, self.out_img) self.ssim = skimage.metrics.structural_similarity(self.true_img, self.out_img, multichannel=True) return (self.psnr, self.ssim) # save models to the disk def save_networks(self, which_epoch): for name in self.model_names: if isinstance(name, str): save_filename = '%s_net_%s.pth' % (which_epoch, name) save_path = os.path.join(self.save_dir, save_filename) net = getattr(self, 'net' + name) if len(self.gpu_ids) > 0 and torch.cuda.is_available(): torch.save(net.module.cpu().state_dict(), save_path) net.cuda(self.gpu_ids[0]) else: torch.save(net.cpu().state_dict(), save_path) def __patch_instance_norm_state_dict(self, state_dict, module, keys, i=0): key = keys[i] if i + 1 == len(keys): # at the end, pointing to a parameter/buffer if module.__class__.__name__.startswith('InstanceNorm') and \ (key == 'running_mean' or key == 'running_var'): if getattr(module, key) is None: state_dict.pop('.'.join(keys)) if module.__class__.__name__.startswith('InstanceNorm') and \ (key == 'num_batches_tracked'): state_dict.pop('.'.join(keys)) else: self.__patch_instance_norm_state_dict(state_dict, getattr(module, key), keys, i + 1) # load models from the disk def load_networks(self, which_epoch): for name in self.model_names: if isinstance(name, str): load_filename = '%s_net_%s.pth' % (which_epoch, name) load_path = os.path.join(self.save_dir, load_filename) if os.path.isfile(load_path) is False: continue net = getattr(self, 'net' + name) if isinstance(net, torch.nn.DataParallel): net = net.module print('loading the model from %s' % load_path) # if you are using PyTorch newer than 0.4 (e.g., built from # GitHub source), you can remove str() on self.device state_dict = torch.load(load_path, map_location=str(self.device)) if hasattr(state_dict, '_metadata'): del state_dict._metadata # patch InstanceNorm checkpoints prior to 0.4 # for key in list(state_dict.keys()): # need to copy keys here because we mutate in loop # self.__patch_instance_norm_state_dict(state_dict, net, key.split('.')) net.load_state_dict(state_dict, strict=False) # print network information def print_networks(self, verbose): print('---------- Networks initialized -------------') for name in self.model_names: if isinstance(name, str): net = getattr(self, 'net' + name) num_params = 0 for param in net.parameters(): num_params += param.numel() if verbose: print(net) print('[Network %s] Total number of parameters : %.3f M' % (name, num_params / 1e6)) print('-----------------------------------------------') # set requies_grad=Fasle to avoid computation def set_requires_grad(self, nets, requires_grad=False): if not isinstance(nets, list): nets = [nets] for net in nets: if net is not None: for param in net.parameters(): param.requires_grad = requires_grad
42.112245
117
0.591713
4a2134b8c04689ff39436baddfda427023663478
9,413
py
Python
appengine/flexible/tasks/snippets.py
HoleCat/echarlosperros
b67460de0467e05b42a763c4430b26ecfd97c2aa
[ "Apache-2.0" ]
null
null
null
appengine/flexible/tasks/snippets.py
HoleCat/echarlosperros
b67460de0467e05b42a763c4430b26ecfd97c2aa
[ "Apache-2.0" ]
null
null
null
appengine/flexible/tasks/snippets.py
HoleCat/echarlosperros
b67460de0467e05b42a763c4430b26ecfd97c2aa
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 Google LLC All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from google.cloud import tasks def create_queue(project, location, queue_blue_name, queue_red_name): # [START cloud_tasks_taskqueues_using_yaml] client = tasks.CloudTasksClient() # TODO(developer): Uncomment these lines and replace with your values. # project = 'my-project-id' # location = 'us- central1' # queue_blue_name = 'queue-blue' # queue_red_name = 'queue-red' parent = f"projects/{project}/locations/{location}" queue_blue = { 'name': client.queue_path(project, location, queue_blue_name), 'rate_limits': { 'max_dispatches_per_second': 5 }, 'app_engine_routing_override': { 'version': 'v2', 'service': 'task-module' } } queue_red = { 'name': client.queue_path(project, location, queue_red_name), 'rate_limits': { 'max_dispatches_per_second': 1 } } queues = [queue_blue, queue_red] for queue in queues: response = client.create_queue(parent=parent, queue=queue) print(response) # [END cloud_tasks_taskqueues_using_yaml] return response def update_queue(project, location, queue): # [START cloud_tasks_taskqueues_processing_rate] client = tasks.CloudTasksClient() # TODO(developer): Uncomment these lines and replace with your values. # project = 'my-project-id' # location = 'us- central1' # queue = 'queue-blue' # Get queue object queue_path = client.queue_path(project, location, queue) queue = client.get_queue(name=queue_path) # Update queue object queue.rate_limits.max_dispatches_per_second = 20 queue.rate_limits.max_concurrent_dispatches = 10 response = client.update_queue(queue=queue) print(response) # [END cloud_tasks_taskqueues_processing_rate] return response def create_task(project, location, queue): # [START cloud_tasks_taskqueues_new_task] client = tasks.CloudTasksClient() # TODO(developer): Uncomment these lines and replace with your values. # project = 'my-project-id' # location = 'us- central1' # queue = 'default' amount = 10 parent = client.queue_path(project, location, queue) task = { 'app_engine_http_request': { 'http_method': tasks.HttpMethod.POST, 'relative_uri': '/update_counter', 'app_engine_routing': { 'service': 'worker' }, 'body': str(amount).encode() } } response = client.create_task(parent=parent, task=task) eta = response.schedule_time.strftime("%m/%d/%Y, %H:%M:%S") print('Task {} enqueued, ETA {}.'.format(response.name, eta)) # [END cloud_tasks_taskqueues_new_task] return response def create_tasks_with_data(project, location, queue): # [START cloud_tasks_taskqueues_passing_data] import json client = tasks.CloudTasksClient() # TODO(developer): Uncomment these lines and replace with your values. # project = 'my-project-id' # location = 'us- central1' # queue = 'default' parent = client.queue_path(project, location, queue) task1 = { 'app_engine_http_request': { 'http_method': tasks.HttpMethod.POST, 'relative_uri': '/update_counter?key=blue', 'app_engine_routing': { 'service': 'worker' } } } task2 = { 'app_engine_http_request': { 'http_method': tasks.HttpMethod.POST, 'relative_uri': '/update_counter', 'app_engine_routing': { 'service': 'worker' }, 'headers': { 'Content-Type': 'application/json' }, 'body': json.dumps({'key': 'blue'}).encode() } } response = client.create_task(parent=parent, task=task1) print(response) response = client.create_task(parent=parent, task=task2) print(response) # [END cloud_tasks_taskqueues_passing_data] return response def create_task_with_name(project, location, queue, task_name): # [START cloud_tasks_taskqueues_naming_tasks] client = tasks.CloudTasksClient() # TODO(developer): Uncomment these lines and replace with your values. # project = 'my-project-id' # location = 'us- central1' # queue = 'default' # task_name = 'first-try' parent = client.queue_path(project, location, queue) task = { 'name': client.task_path(project, location, queue, task_name), 'app_engine_http_request': { 'http_method': tasks.HttpMethod.GET, 'relative_uri': '/url/path' } } response = client.create_task(parent=parent, task=task) print(response) # [END cloud_tasks_taskqueues_naming_tasks] return response def delete_task(project, location, queue): # [START cloud_tasks_taskqueues_deleting_tasks] client = tasks.CloudTasksClient() # TODO(developer): Uncomment these lines and replace with your values. # project = 'my-project-id' # location = 'us- central1' # queue = 'queue1' task_path = client.task_path(project, location, queue, 'foo') response = client.delete_task(name=task_path) # [END cloud_tasks_taskqueues_deleting_tasks] return response def purge_queue(project, location, queue): # [START cloud_tasks_taskqueues_purging_tasks] client = tasks.CloudTasksClient() # TODO(developer): Uncomment these lines and replace with your values. # project = 'my-project-id' # location = 'us- central1' # queue = 'queue1' queue_path = client.queue_path(project, location, queue) response = client.purge_queue(name=queue_path) # [END cloud_tasks_taskqueues_purging_tasks] return response def pause_queue(project, location, queue): # [START cloud_tasks_taskqueues_pause_queue] client = tasks.CloudTasksClient() # TODO(developer): Uncomment these lines and replace with your values. # project = 'my-project-id' # location = 'us- central1' # queue = 'queue1' queue_path = client.queue_path(project, location, queue) response = client.pause_queue(name=queue_path) # [END cloud_tasks_taskqueues_pause_queue] return response def delete_queue(project, location, queue): # [START cloud_tasks_taskqueues_deleting_queues] client = tasks.CloudTasksClient() # TODO(developer): Uncomment these lines and replace with your values. # project = 'my-project-id' # location = 'us- central1' # queue = 'queue1' queue_path = client.queue_path(project, location, queue) response = client.delete_queue(name=queue_path) # [END cloud_tasks_taskqueues_deleting_queues] return response def retry_task(project, location, fooqueue, barqueue, bazqueue): # [START cloud_tasks_taskqueues_retrying_tasks] from google.protobuf import duration_pb2 client = tasks.CloudTasksClient() # TODO(developer): Uncomment these lines and replace with your values. # project = 'my-project-id' # location = 'us- central1' # fooqueue = 'fooqueue' # barqueue = 'barqueue' # bazqueue = 'bazqueue' parent = f"projects/{project}/locations/{location}" max_retry = duration_pb2.Duration() max_retry.seconds = 2*60*60*24 foo = { 'name': client.queue_path(project, location, fooqueue), 'rate_limits': { 'max_dispatches_per_second': 1 }, 'retry_config': { 'max_attempts': 7, 'max_retry_duration': max_retry } } min = duration_pb2.Duration() min.seconds = 10 max = duration_pb2.Duration() max.seconds = 200 bar = { 'name': client.queue_path(project, location, barqueue), 'rate_limits': { 'max_dispatches_per_second': 1 }, 'retry_config': { 'min_backoff': min, 'max_backoff': max, 'max_doublings': 0 } } max.seconds = 300 baz = { 'name': client.queue_path(project, location, bazqueue), 'rate_limits': { 'max_dispatches_per_second': 1 }, 'retry_config': { 'min_backoff': min, 'max_backoff': max, 'max_doublings': 3 } } queues = [foo, bar, baz] for queue in queues: response = client.create_queue(parent=parent, queue=queue) print(response) # [END cloud_tasks_taskqueues_retrying_tasks] return response
30.963816
75
0.626793
4a2134e05d81734f48f43758e42e5254cbab2119
134,907
py
Python
astropy/io/fits/tests/test_table.py
bastianbeischer/astropy
6054cc78b22a6bcd4b37fdfdec02f5331b957355
[ "BSD-3-Clause" ]
1
2020-05-10T21:17:24.000Z
2020-05-10T21:17:24.000Z
astropy/io/fits/tests/test_table.py
bastianbeischer/astropy
6054cc78b22a6bcd4b37fdfdec02f5331b957355
[ "BSD-3-Clause" ]
null
null
null
astropy/io/fits/tests/test_table.py
bastianbeischer/astropy
6054cc78b22a6bcd4b37fdfdec02f5331b957355
[ "BSD-3-Clause" ]
null
null
null
# Licensed under a 3-clause BSD style license - see PYFITS.rst import contextlib import copy import gc import pickle import re import pytest import numpy as np from numpy import char as chararray try: import objgraph HAVE_OBJGRAPH = True except ImportError: HAVE_OBJGRAPH = False from astropy.io import fits from astropy.tests.helper import catch_warnings, ignore_warnings from astropy.utils.exceptions import AstropyDeprecationWarning from astropy.io.fits.column import Delayed, NUMPY2FITS from astropy.io.fits.util import decode_ascii from astropy.io.fits.verify import VerifyError from . import FitsTestCase def comparefloats(a, b): """ Compare two float scalars or arrays and see if they are consistent Consistency is determined ensuring the difference is less than the expected amount. Return True if consistent, False if any differences. """ aa = a bb = b # compute expected precision if aa.dtype.name == 'float32' or bb.dtype.name == 'float32': precision = 0.000001 else: precision = 0.0000000000000001 precision = 0.00001 # until precision problem is fixed in astropy.io.fits diff = np.absolute(aa - bb) mask0 = aa == 0 masknz = aa != 0. if np.any(mask0): if diff[mask0].max() != 0.: return False if np.any(masknz): if (diff[masknz] / np.absolute(aa[masknz])).max() > precision: return False return True def comparerecords(a, b): """ Compare two record arrays Does this field by field, using approximation testing for float columns (Complex not yet handled.) Column names not compared, but column types and sizes are. """ nfieldsa = len(a.dtype.names) nfieldsb = len(b.dtype.names) if nfieldsa != nfieldsb: print("number of fields don't match") return False for i in range(nfieldsa): fielda = a.field(i) fieldb = b.field(i) if fielda.dtype.char == 'S': fielda = decode_ascii(fielda) if fieldb.dtype.char == 'S': fieldb = decode_ascii(fieldb) if (not isinstance(fielda, type(fieldb)) and not isinstance(fieldb, type(fielda))): print("type(fielda): ", type(fielda), " fielda: ", fielda) print("type(fieldb): ", type(fieldb), " fieldb: ", fieldb) print(f'field {i} type differs') return False if len(fielda) and isinstance(fielda[0], np.floating): if not comparefloats(fielda, fieldb): print("fielda: ", fielda) print("fieldb: ", fieldb) print(f'field {i} differs') return False elif (isinstance(fielda, fits.column._VLF) or isinstance(fieldb, fits.column._VLF)): for row in range(len(fielda)): if np.any(fielda[row] != fieldb[row]): print('fielda[{}]: {}'.format(row, fielda[row])) print('fieldb[{}]: {}'.format(row, fieldb[row])) print(f'field {i} differs in row {row}') else: if np.any(fielda != fieldb): print("fielda: ", fielda) print("fieldb: ", fieldb) print(f'field {i} differs') return False return True class TestTableFunctions(FitsTestCase): def test_constructor_copies_header(self): """ Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/153 Ensure that a header from one HDU is copied when used to initialize new HDU. This is like the test of the same name in test_image, but tests this for tables as well. """ ifd = fits.HDUList([fits.PrimaryHDU(), fits.BinTableHDU()]) thdr = ifd[1].header thdr['FILENAME'] = 'labq01i3q_rawtag.fits' thdu = fits.BinTableHDU(header=thdr) ofd = fits.HDUList(thdu) ofd[0].header['FILENAME'] = 'labq01i3q_flt.fits' # Original header should be unchanged assert thdr['FILENAME'] == 'labq01i3q_rawtag.fits' def test_open(self): # open some existing FITS files: tt = fits.open(self.data('tb.fits')) fd = fits.open(self.data('test0.fits')) # create some local arrays a1 = chararray.array(['abc', 'def', 'xx']) r1 = np.array([11., 12., 13.], dtype=np.float32) # create a table from scratch, using a mixture of columns from existing # tables and locally created arrays: # first, create individual column definitions c1 = fits.Column(name='abc', format='3A', array=a1) c2 = fits.Column(name='def', format='E', array=r1) a3 = np.array([3, 4, 5], dtype='i2') c3 = fits.Column(name='xyz', format='I', array=a3) a4 = np.array([1, 2, 3], dtype='i2') c4 = fits.Column(name='t1', format='I', array=a4) a5 = np.array([3 + 3j, 4 + 4j, 5 + 5j], dtype='c8') c5 = fits.Column(name='t2', format='C', array=a5) # Note that X format must be two-D array a6 = np.array([[0], [1], [0]], dtype=np.uint8) c6 = fits.Column(name='t3', format='X', array=a6) a7 = np.array([101, 102, 103], dtype='i4') c7 = fits.Column(name='t4', format='J', array=a7) a8 = np.array([[1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1], [0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0], [1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1]], dtype=np.uint8) c8 = fits.Column(name='t5', format='11X', array=a8) # second, create a column-definitions object for all columns in a table x = fits.ColDefs([c1, c2, c3, c4, c5, c6, c7, c8]) tbhdu = fits.BinTableHDU.from_columns(x) # another way to create a table is by using existing table's # information: x2 = fits.ColDefs(tt[1]) t2 = fits.BinTableHDU.from_columns(x2, nrows=2) ra = np.rec.array([ (1, 'abc', 3.7000002861022949, 0), (2, 'xy ', 6.6999998092651367, 1)], names='c1, c2, c3, c4') assert comparerecords(t2.data, ra) # the table HDU's data is a subclass of a record array, so we can # access one row like this: assert tbhdu.data[1][0] == a1[1] assert tbhdu.data[1][1] == r1[1] assert tbhdu.data[1][2] == a3[1] assert tbhdu.data[1][3] == a4[1] assert tbhdu.data[1][4] == a5[1] assert (tbhdu.data[1][5] == a6[1].view('bool')).all() assert tbhdu.data[1][6] == a7[1] assert (tbhdu.data[1][7] == a8[1]).all() # and a column like this: assert str(tbhdu.data.field('abc')) == "['abc' 'def' 'xx']" # An alternative way to create a column-definitions object is from an # existing table. _ = fits.ColDefs(tt[1]) # now we write out the newly created table HDU to a FITS file: fout = fits.HDUList(fits.PrimaryHDU()) fout.append(tbhdu) fout.writeto(self.temp('tableout1.fits'), overwrite=True) with fits.open(self.temp('tableout1.fits')) as f2: temp = f2[1].data.field(7) assert (temp[0] == [True, True, False, True, False, True, True, True, False, False, True]).all() # An alternative way to create an output table FITS file: fout2 = fits.open(self.temp('tableout2.fits'), 'append') fout2.append(fd[0]) fout2.append(tbhdu) fout2.close() tt.close() fd.close() def test_binary_table(self): # binary table: t = fits.open(self.data('tb.fits')) assert t[1].header['tform1'] == '1J' info = {'name': ['c1', 'c2', 'c3', 'c4'], 'format': ['1J', '3A', '1E', '1L'], 'unit': ['', '', '', ''], 'null': [-2147483647, '', '', ''], 'bscale': ['', '', 3, ''], 'bzero': ['', '', 0.4, ''], 'disp': ['I11', 'A3', 'G15.7', 'L6'], 'start': ['', '', '', ''], 'dim': ['', '', '', ''], 'coord_inc': ['', '', '', ''], 'coord_type': ['', '', '', ''], 'coord_unit': ['', '', '', ''], 'coord_ref_point': ['', '', '', ''], 'coord_ref_value': ['', '', '', ''], 'time_ref_pos': ['', '', '', '']} assert t[1].columns.info(output=False) == info ra = np.rec.array([ (1, 'abc', 3.7000002861022949, 0), (2, 'xy ', 6.6999998092651367, 1)], names='c1, c2, c3, c4') assert comparerecords(t[1].data, ra[:2]) # Change scaled field and scale back to the original array t[1].data.field('c4')[0] = 1 t[1].data._scale_back() assert str(np.rec.recarray.field(t[1].data, 'c4')) == '[84 84]' # look at data column-wise assert (t[1].data.field(0) == np.array([1, 2])).all() # When there are scaled columns, the raw data are in data._parent t.close() def test_ascii_table(self): # ASCII table a = fits.open(self.data('ascii.fits')) ra1 = np.rec.array([ (10.123000144958496, 37), (5.1999998092651367, 23), (15.609999656677246, 17), (0.0, 0), (345.0, 345)], names='c1, c2') assert comparerecords(a[1].data, ra1) # Test slicing a2 = a[1].data[2:][2:] ra2 = np.rec.array([(345.0, 345)], names='c1, c2') assert comparerecords(a2, ra2) assert (a2.field(1) == np.array([345])).all() ra3 = np.rec.array([ (10.123000144958496, 37), (15.609999656677246, 17), (345.0, 345) ], names='c1, c2') assert comparerecords(a[1].data[::2], ra3) # Test Start Column a1 = chararray.array(['abcd', 'def']) r1 = np.array([11., 12.]) c1 = fits.Column(name='abc', format='A3', start=19, array=a1) c2 = fits.Column(name='def', format='E', start=3, array=r1) c3 = fits.Column(name='t1', format='I', array=[91, 92, 93]) hdu = fits.TableHDU.from_columns([c2, c1, c3]) assert (dict(hdu.data.dtype.fields) == {'abc': (np.dtype('|S3'), 18), 'def': (np.dtype('|S15'), 2), 't1': (np.dtype('|S10'), 21)}) hdu.writeto(self.temp('toto.fits'), overwrite=True) hdul = fits.open(self.temp('toto.fits')) assert comparerecords(hdu.data, hdul[1].data) hdul.close() # Test Scaling r1 = np.array([11., 12.]) c2 = fits.Column(name='def', format='D', array=r1, bscale=2.3, bzero=0.6) hdu = fits.TableHDU.from_columns([c2]) hdu.writeto(self.temp('toto.fits'), overwrite=True) with open(self.temp('toto.fits')) as f: assert '4.95652173913043548D+00' in f.read() with fits.open(self.temp('toto.fits')) as hdul: assert comparerecords(hdu.data, hdul[1].data) a.close() def test_endianness(self): x = np.ndarray((1,), dtype=object) channelsIn = np.array([3], dtype='uint8') x[0] = channelsIn col = fits.Column(name="Channels", format="PB()", array=x) cols = fits.ColDefs([col]) tbhdu = fits.BinTableHDU.from_columns(cols) tbhdu.name = "RFI" tbhdu.writeto(self.temp('testendian.fits'), overwrite=True) hduL = fits.open(self.temp('testendian.fits')) rfiHDU = hduL['RFI'] data = rfiHDU.data channelsOut = data.field('Channels')[0] assert (channelsIn == channelsOut).all() hduL.close() def test_column_endianness(self): """ Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/77 (Astropy doesn't preserve byte order of non-native order column arrays) """ a = [1., 2., 3., 4.] a1 = np.array(a, dtype='<f8') a2 = np.array(a, dtype='>f8') col1 = fits.Column(name='a', format='D', array=a1) col2 = fits.Column(name='b', format='D', array=a2) cols = fits.ColDefs([col1, col2]) tbhdu = fits.BinTableHDU.from_columns(cols) assert (tbhdu.data['a'] == a1).all() assert (tbhdu.data['b'] == a2).all() # Double check that the array is converted to the correct byte-order # for FITS (big-endian). tbhdu.writeto(self.temp('testendian.fits'), overwrite=True) with fits.open(self.temp('testendian.fits')) as hdul: assert (hdul[1].data['a'] == a2).all() assert (hdul[1].data['b'] == a2).all() def test_recarray_to_bintablehdu(self): bright = np.rec.array( [(1, 'Serius', -1.45, 'A1V'), (2, 'Canopys', -0.73, 'F0Ib'), (3, 'Rigil Kent', -0.1, 'G2V')], formats='int16,a20,float32,a10', names='order,name,mag,Sp') hdu = fits.BinTableHDU(bright) assert comparerecords(hdu.data, bright) hdu.writeto(self.temp('toto.fits'), overwrite=True) hdul = fits.open(self.temp('toto.fits')) assert comparerecords(hdu.data, hdul[1].data) assert comparerecords(bright, hdul[1].data) hdul.close() def test_numpy_ndarray_to_bintablehdu(self): desc = np.dtype({'names': ['order', 'name', 'mag', 'Sp'], 'formats': ['int', 'S20', 'float32', 'S10']}) a = np.array([(1, 'Serius', -1.45, 'A1V'), (2, 'Canopys', -0.73, 'F0Ib'), (3, 'Rigil Kent', -0.1, 'G2V')], dtype=desc) hdu = fits.BinTableHDU(a) assert comparerecords(hdu.data, a.view(fits.FITS_rec)) hdu.writeto(self.temp('toto.fits'), overwrite=True) hdul = fits.open(self.temp('toto.fits')) assert comparerecords(hdu.data, hdul[1].data) hdul.close() def test_numpy_ndarray_to_bintablehdu_with_unicode(self): desc = np.dtype({'names': ['order', 'name', 'mag', 'Sp'], 'formats': ['int', 'U20', 'float32', 'U10']}) a = np.array([(1, 'Serius', -1.45, 'A1V'), (2, 'Canopys', -0.73, 'F0Ib'), (3, 'Rigil Kent', -0.1, 'G2V')], dtype=desc) hdu = fits.BinTableHDU(a) assert comparerecords(hdu.data, a.view(fits.FITS_rec)) hdu.writeto(self.temp('toto.fits'), overwrite=True) hdul = fits.open(self.temp('toto.fits')) assert comparerecords(hdu.data, hdul[1].data) hdul.close() def test_new_table_from_recarray(self): bright = np.rec.array([(1, 'Serius', -1.45, 'A1V'), (2, 'Canopys', -0.73, 'F0Ib'), (3, 'Rigil Kent', -0.1, 'G2V')], formats='int16,a20,float64,a10', names='order,name,mag,Sp') hdu = fits.TableHDU.from_columns(bright, nrows=2) # Verify that all ndarray objects within the HDU reference the # same ndarray. assert (id(hdu.data._coldefs.columns[0].array) == id(hdu.data._coldefs._arrays[0])) assert (id(hdu.data._coldefs.columns[0].array) == id(hdu.columns.columns[0].array)) assert (id(hdu.data._coldefs.columns[0].array) == id(hdu.columns._arrays[0])) # Ensure I can change the value of one data element and it effects # all of the others. hdu.data[0][0] = 213 assert hdu.data[0][0] == 213 assert hdu.data._coldefs._arrays[0][0] == 213 assert hdu.data._coldefs.columns[0].array[0] == 213 assert hdu.columns._arrays[0][0] == 213 assert hdu.columns.columns[0].array[0] == 213 hdu.data._coldefs._arrays[0][0] = 100 assert hdu.data[0][0] == 100 assert hdu.data._coldefs._arrays[0][0] == 100 assert hdu.data._coldefs.columns[0].array[0] == 100 assert hdu.columns._arrays[0][0] == 100 assert hdu.columns.columns[0].array[0] == 100 hdu.data._coldefs.columns[0].array[0] = 500 assert hdu.data[0][0] == 500 assert hdu.data._coldefs._arrays[0][0] == 500 assert hdu.data._coldefs.columns[0].array[0] == 500 assert hdu.columns._arrays[0][0] == 500 assert hdu.columns.columns[0].array[0] == 500 hdu.columns._arrays[0][0] = 600 assert hdu.data[0][0] == 600 assert hdu.data._coldefs._arrays[0][0] == 600 assert hdu.data._coldefs.columns[0].array[0] == 600 assert hdu.columns._arrays[0][0] == 600 assert hdu.columns.columns[0].array[0] == 600 hdu.columns.columns[0].array[0] = 800 assert hdu.data[0][0] == 800 assert hdu.data._coldefs._arrays[0][0] == 800 assert hdu.data._coldefs.columns[0].array[0] == 800 assert hdu.columns._arrays[0][0] == 800 assert hdu.columns.columns[0].array[0] == 800 assert (hdu.data.field(0) == np.array([800, 2], dtype=np.int16)).all() assert hdu.data[0][1] == 'Serius' assert hdu.data[1][1] == 'Canopys' assert (hdu.data.field(2) == np.array([-1.45, -0.73], dtype=np.float64)).all() assert hdu.data[0][3] == 'A1V' assert hdu.data[1][3] == 'F0Ib' with ignore_warnings(): hdu.writeto(self.temp('toto.fits'), overwrite=True) with fits.open(self.temp('toto.fits')) as hdul: assert (hdul[1].data.field(0) == np.array([800, 2], dtype=np.int16)).all() assert hdul[1].data[0][1] == 'Serius' assert hdul[1].data[1][1] == 'Canopys' assert (hdul[1].data.field(2) == np.array([-1.45, -0.73], dtype=np.float64)).all() assert hdul[1].data[0][3] == 'A1V' assert hdul[1].data[1][3] == 'F0Ib' del hdul hdu = fits.BinTableHDU.from_columns(bright, nrows=2) tmp = np.rec.array([(1, 'Serius', -1.45, 'A1V'), (2, 'Canopys', -0.73, 'F0Ib')], formats='int16,a20,float64,a10', names='order,name,mag,Sp') assert comparerecords(hdu.data, tmp) with ignore_warnings(): hdu.writeto(self.temp('toto.fits'), overwrite=True) with fits.open(self.temp('toto.fits')) as hdul: assert comparerecords(hdu.data, hdul[1].data) def test_new_fitsrec(self): """ Tests creating a new FITS_rec object from a multi-field ndarray. """ with fits.open(self.data('tb.fits')) as h: data = h[1].data new_data = np.array([(3, 'qwe', 4.5, False)], dtype=data.dtype) appended = np.append(data, new_data).view(fits.FITS_rec) assert repr(appended).startswith('FITS_rec(') # This test used to check the entire string representation of FITS_rec, # but that has problems between different numpy versions. Instead just # check that the FITS_rec was created, and we'll let subsequent tests # worry about checking values and such def test_appending_a_column(self): counts = np.array([312, 334, 308, 317]) names = np.array(['NGC1', 'NGC2', 'NGC3', 'NCG4']) c1 = fits.Column(name='target', format='10A', array=names) c2 = fits.Column(name='counts', format='J', unit='DN', array=counts) c3 = fits.Column(name='notes', format='A10') c4 = fits.Column(name='spectrum', format='5E') c5 = fits.Column(name='flag', format='L', array=[1, 0, 1, 1]) coldefs = fits.ColDefs([c1, c2, c3, c4, c5]) tbhdu = fits.BinTableHDU.from_columns(coldefs) tbhdu.writeto(self.temp('table1.fits')) counts = np.array([412, 434, 408, 417]) names = np.array(['NGC5', 'NGC6', 'NGC7', 'NCG8']) c1 = fits.Column(name='target', format='10A', array=names) c2 = fits.Column(name='counts', format='J', unit='DN', array=counts) c3 = fits.Column(name='notes', format='A10') c4 = fits.Column(name='spectrum', format='5E') c5 = fits.Column(name='flag', format='L', array=[0, 1, 0, 0]) coldefs = fits.ColDefs([c1, c2, c3, c4, c5]) tbhdu = fits.BinTableHDU.from_columns(coldefs) tbhdu.writeto(self.temp('table2.fits')) # Append the rows of table 2 after the rows of table 1 # The column definitions are assumed to be the same # Open the two files we want to append t1 = fits.open(self.temp('table1.fits')) t2 = fits.open(self.temp('table2.fits')) # Get the number of rows in the table from the first file nrows1 = t1[1].data.shape[0] # Get the total number of rows in the resulting appended table nrows = t1[1].data.shape[0] + t2[1].data.shape[0] assert (t1[1].columns._arrays[1] is t1[1].columns.columns[1].array) # Create a new table that consists of the data from the first table # but has enough space in the ndarray to hold the data from both tables hdu = fits.BinTableHDU.from_columns(t1[1].columns, nrows=nrows) # For each column in the tables append the data from table 2 after the # data from table 1. for i in range(len(t1[1].columns)): hdu.data.field(i)[nrows1:] = t2[1].data.field(i) hdu.writeto(self.temp('newtable.fits')) info = [(0, 'PRIMARY', 1, 'PrimaryHDU', 4, (), '', ''), (1, '', 1, 'BinTableHDU', 19, '8R x 5C', '[10A, J, 10A, 5E, L]', '')] assert fits.info(self.temp('newtable.fits'), output=False) == info z = np.array([0., 0., 0., 0., 0.], dtype=np.float32) array = np.rec.array( [('NGC1', 312, '', z, True), ('NGC2', 334, '', z, False), ('NGC3', 308, '', z, True), ('NCG4', 317, '', z, True), ('NGC5', 412, '', z, False), ('NGC6', 434, '', z, True), ('NGC7', 408, '', z, False), ('NCG8', 417, '', z, False)], formats='a10,u4,a10,5f4,l') assert comparerecords(hdu.data, array) # Verify that all of the references to the data point to the same # numarray hdu.data[0][1] = 300 assert hdu.data._coldefs._arrays[1][0] == 300 assert hdu.data._coldefs.columns[1].array[0] == 300 assert hdu.columns._arrays[1][0] == 300 assert hdu.columns.columns[1].array[0] == 300 assert hdu.data[0][1] == 300 hdu.data._coldefs._arrays[1][0] = 200 assert hdu.data._coldefs._arrays[1][0] == 200 assert hdu.data._coldefs.columns[1].array[0] == 200 assert hdu.columns._arrays[1][0] == 200 assert hdu.columns.columns[1].array[0] == 200 assert hdu.data[0][1] == 200 hdu.data._coldefs.columns[1].array[0] = 100 assert hdu.data._coldefs._arrays[1][0] == 100 assert hdu.data._coldefs.columns[1].array[0] == 100 assert hdu.columns._arrays[1][0] == 100 assert hdu.columns.columns[1].array[0] == 100 assert hdu.data[0][1] == 100 hdu.columns._arrays[1][0] = 90 assert hdu.data._coldefs._arrays[1][0] == 90 assert hdu.data._coldefs.columns[1].array[0] == 90 assert hdu.columns._arrays[1][0] == 90 assert hdu.columns.columns[1].array[0] == 90 assert hdu.data[0][1] == 90 hdu.columns.columns[1].array[0] = 80 assert hdu.data._coldefs._arrays[1][0] == 80 assert hdu.data._coldefs.columns[1].array[0] == 80 assert hdu.columns._arrays[1][0] == 80 assert hdu.columns.columns[1].array[0] == 80 assert hdu.data[0][1] == 80 # Same verification from the file hdul = fits.open(self.temp('newtable.fits')) hdu = hdul[1] hdu.data[0][1] = 300 assert hdu.data._coldefs._arrays[1][0] == 300 assert hdu.data._coldefs.columns[1].array[0] == 300 assert hdu.columns._arrays[1][0] == 300 assert hdu.columns.columns[1].array[0] == 300 assert hdu.data[0][1] == 300 hdu.data._coldefs._arrays[1][0] = 200 assert hdu.data._coldefs._arrays[1][0] == 200 assert hdu.data._coldefs.columns[1].array[0] == 200 assert hdu.columns._arrays[1][0] == 200 assert hdu.columns.columns[1].array[0] == 200 assert hdu.data[0][1] == 200 hdu.data._coldefs.columns[1].array[0] = 100 assert hdu.data._coldefs._arrays[1][0] == 100 assert hdu.data._coldefs.columns[1].array[0] == 100 assert hdu.columns._arrays[1][0] == 100 assert hdu.columns.columns[1].array[0] == 100 assert hdu.data[0][1] == 100 hdu.columns._arrays[1][0] = 90 assert hdu.data._coldefs._arrays[1][0] == 90 assert hdu.data._coldefs.columns[1].array[0] == 90 assert hdu.columns._arrays[1][0] == 90 assert hdu.columns.columns[1].array[0] == 90 assert hdu.data[0][1] == 90 hdu.columns.columns[1].array[0] = 80 assert hdu.data._coldefs._arrays[1][0] == 80 assert hdu.data._coldefs.columns[1].array[0] == 80 assert hdu.columns._arrays[1][0] == 80 assert hdu.columns.columns[1].array[0] == 80 assert hdu.data[0][1] == 80 t1.close() t2.close() hdul.close() def test_adding_a_column(self): # Tests adding a column to a table. counts = np.array([312, 334, 308, 317]) names = np.array(['NGC1', 'NGC2', 'NGC3', 'NCG4']) c1 = fits.Column(name='target', format='10A', array=names) c2 = fits.Column(name='counts', format='J', unit='DN', array=counts) c3 = fits.Column(name='notes', format='A10') c4 = fits.Column(name='spectrum', format='5E') c5 = fits.Column(name='flag', format='L', array=[1, 0, 1, 1]) coldefs = fits.ColDefs([c1, c2, c3, c4]) tbhdu = fits.BinTableHDU.from_columns(coldefs) assert tbhdu.columns.names == ['target', 'counts', 'notes', 'spectrum'] coldefs1 = coldefs + c5 tbhdu1 = fits.BinTableHDU.from_columns(coldefs1) assert tbhdu1.columns.names == ['target', 'counts', 'notes', 'spectrum', 'flag'] z = np.array([0., 0., 0., 0., 0.], dtype=np.float32) array = np.rec.array( [('NGC1', 312, '', z, True), ('NGC2', 334, '', z, False), ('NGC3', 308, '', z, True), ('NCG4', 317, '', z, True)], formats='a10,u4,a10,5f4,l') assert comparerecords(tbhdu1.data, array) def test_merge_tables(self): counts = np.array([312, 334, 308, 317]) names = np.array(['NGC1', 'NGC2', 'NGC3', 'NCG4']) c1 = fits.Column(name='target', format='10A', array=names) c2 = fits.Column(name='counts', format='J', unit='DN', array=counts) c3 = fits.Column(name='notes', format='A10') c4 = fits.Column(name='spectrum', format='5E') c5 = fits.Column(name='flag', format='L', array=[1, 0, 1, 1]) coldefs = fits.ColDefs([c1, c2, c3, c4, c5]) tbhdu = fits.BinTableHDU.from_columns(coldefs) tbhdu.writeto(self.temp('table1.fits')) counts = np.array([412, 434, 408, 417]) names = np.array(['NGC5', 'NGC6', 'NGC7', 'NCG8']) c1 = fits.Column(name='target1', format='10A', array=names) c2 = fits.Column(name='counts1', format='J', unit='DN', array=counts) c3 = fits.Column(name='notes1', format='A10') c4 = fits.Column(name='spectrum1', format='5E') c5 = fits.Column(name='flag1', format='L', array=[0, 1, 0, 0]) coldefs = fits.ColDefs([c1, c2, c3, c4, c5]) tbhdu = fits.BinTableHDU.from_columns(coldefs) tbhdu.writeto(self.temp('table2.fits')) # Merge the columns of table 2 after the columns of table 1 # The column names are assumed to be different # Open the two files we want to append t1 = fits.open(self.temp('table1.fits')) t2 = fits.open(self.temp('table2.fits')) hdu = fits.BinTableHDU.from_columns(t1[1].columns + t2[1].columns) z = np.array([0., 0., 0., 0., 0.], dtype=np.float32) array = np.rec.array( [('NGC1', 312, '', z, True, 'NGC5', 412, '', z, False), ('NGC2', 334, '', z, False, 'NGC6', 434, '', z, True), ('NGC3', 308, '', z, True, 'NGC7', 408, '', z, False), ('NCG4', 317, '', z, True, 'NCG8', 417, '', z, False)], formats='a10,u4,a10,5f4,l,a10,u4,a10,5f4,l') assert comparerecords(hdu.data, array) hdu.writeto(self.temp('newtable.fits')) # Verify that all of the references to the data point to the same # numarray hdu.data[0][1] = 300 assert hdu.data._coldefs._arrays[1][0] == 300 assert hdu.data._coldefs.columns[1].array[0] == 300 assert hdu.columns._arrays[1][0] == 300 assert hdu.columns.columns[1].array[0] == 300 assert hdu.data[0][1] == 300 hdu.data._coldefs._arrays[1][0] = 200 assert hdu.data._coldefs._arrays[1][0] == 200 assert hdu.data._coldefs.columns[1].array[0] == 200 assert hdu.columns._arrays[1][0] == 200 assert hdu.columns.columns[1].array[0] == 200 assert hdu.data[0][1] == 200 hdu.data._coldefs.columns[1].array[0] = 100 assert hdu.data._coldefs._arrays[1][0] == 100 assert hdu.data._coldefs.columns[1].array[0] == 100 assert hdu.columns._arrays[1][0] == 100 assert hdu.columns.columns[1].array[0] == 100 assert hdu.data[0][1] == 100 hdu.columns._arrays[1][0] = 90 assert hdu.data._coldefs._arrays[1][0] == 90 assert hdu.data._coldefs.columns[1].array[0] == 90 assert hdu.columns._arrays[1][0] == 90 assert hdu.columns.columns[1].array[0] == 90 assert hdu.data[0][1] == 90 hdu.columns.columns[1].array[0] = 80 assert hdu.data._coldefs._arrays[1][0] == 80 assert hdu.data._coldefs.columns[1].array[0] == 80 assert hdu.columns._arrays[1][0] == 80 assert hdu.columns.columns[1].array[0] == 80 assert hdu.data[0][1] == 80 info = [(0, 'PRIMARY', 1, 'PrimaryHDU', 4, (), '', ''), (1, '', 1, 'BinTableHDU', 30, '4R x 10C', '[10A, J, 10A, 5E, L, 10A, J, 10A, 5E, L]', '')] assert fits.info(self.temp('newtable.fits'), output=False) == info hdul = fits.open(self.temp('newtable.fits')) hdu = hdul[1] assert (hdu.columns.names == ['target', 'counts', 'notes', 'spectrum', 'flag', 'target1', 'counts1', 'notes1', 'spectrum1', 'flag1']) z = np.array([0., 0., 0., 0., 0.], dtype=np.float32) array = np.rec.array( [('NGC1', 312, '', z, True, 'NGC5', 412, '', z, False), ('NGC2', 334, '', z, False, 'NGC6', 434, '', z, True), ('NGC3', 308, '', z, True, 'NGC7', 408, '', z, False), ('NCG4', 317, '', z, True, 'NCG8', 417, '', z, False)], formats='a10,u4,a10,5f4,l,a10,u4,a10,5f4,l') assert comparerecords(hdu.data, array) # Same verification from the file hdu.data[0][1] = 300 assert hdu.data._coldefs._arrays[1][0] == 300 assert hdu.data._coldefs.columns[1].array[0] == 300 assert hdu.columns._arrays[1][0] == 300 assert hdu.columns.columns[1].array[0] == 300 assert hdu.data[0][1] == 300 hdu.data._coldefs._arrays[1][0] = 200 assert hdu.data._coldefs._arrays[1][0] == 200 assert hdu.data._coldefs.columns[1].array[0] == 200 assert hdu.columns._arrays[1][0] == 200 assert hdu.columns.columns[1].array[0] == 200 assert hdu.data[0][1] == 200 hdu.data._coldefs.columns[1].array[0] = 100 assert hdu.data._coldefs._arrays[1][0] == 100 assert hdu.data._coldefs.columns[1].array[0] == 100 assert hdu.columns._arrays[1][0] == 100 assert hdu.columns.columns[1].array[0] == 100 assert hdu.data[0][1] == 100 hdu.columns._arrays[1][0] = 90 assert hdu.data._coldefs._arrays[1][0] == 90 assert hdu.data._coldefs.columns[1].array[0] == 90 assert hdu.columns._arrays[1][0] == 90 assert hdu.columns.columns[1].array[0] == 90 assert hdu.data[0][1] == 90 hdu.columns.columns[1].array[0] = 80 assert hdu.data._coldefs._arrays[1][0] == 80 assert hdu.data._coldefs.columns[1].array[0] == 80 assert hdu.columns._arrays[1][0] == 80 assert hdu.columns.columns[1].array[0] == 80 assert hdu.data[0][1] == 80 t1.close() t2.close() hdul.close() def test_modify_column_attributes(self): """Regression test for https://github.com/astropy/astropy/issues/996 This just tests one particular use case, but it should apply pretty well to other similar cases. """ NULLS = {'a': 2, 'b': 'b', 'c': 2.3} data = np.array(list(zip([1, 2, 3, 4], ['a', 'b', 'c', 'd'], [2.3, 4.5, 6.7, 8.9])), dtype=[('a', int), ('b', 'S1'), ('c', float)]) b = fits.BinTableHDU(data=data) for col in b.columns: col.null = NULLS[col.name] b.writeto(self.temp('test.fits'), overwrite=True) with fits.open(self.temp('test.fits')) as hdul: header = hdul[1].header assert header['TNULL1'] == 2 assert header['TNULL2'] == 'b' assert header['TNULL3'] == 2.3 def test_mask_array(self): t = fits.open(self.data('table.fits')) tbdata = t[1].data mask = tbdata.field('V_mag') > 12 newtbdata = tbdata[mask] hdu = fits.BinTableHDU(newtbdata) hdu.writeto(self.temp('newtable.fits')) hdul = fits.open(self.temp('newtable.fits')) # match to a regex rather than a specific string. expect = r"\[\('NGC1002',\s+12.3[0-9]*\) \(\'NGC1003\',\s+15.[0-9]+\)\]" assert re.match(expect, str(hdu.data)) assert re.match(expect, str(hdul[1].data)) t.close() hdul.close() def test_slice_a_row(self): counts = np.array([312, 334, 308, 317]) names = np.array(['NGC1', 'NGC2', 'NGC3', 'NCG4']) c1 = fits.Column(name='target', format='10A', array=names) c2 = fits.Column(name='counts', format='J', unit='DN', array=counts) c3 = fits.Column(name='notes', format='A10') c4 = fits.Column(name='spectrum', format='5E') c5 = fits.Column(name='flag', format='L', array=[1, 0, 1, 1]) coldefs = fits.ColDefs([c1, c2, c3, c4, c5]) tbhdu = fits.BinTableHDU.from_columns(coldefs) tbhdu.writeto(self.temp('table1.fits')) t1 = fits.open(self.temp('table1.fits')) row = t1[1].data[2] assert row['counts'] == 308 a, b, c = row[1:4] assert a == counts[2] assert b == '' assert (c == np.array([0., 0., 0., 0., 0.], dtype=np.float32)).all() row['counts'] = 310 assert row['counts'] == 310 row[1] = 315 assert row['counts'] == 315 assert row[1:4]['counts'] == 315 pytest.raises(KeyError, lambda r: r[1:4]['flag'], row) row[1:4]['counts'] = 300 assert row[1:4]['counts'] == 300 assert row['counts'] == 300 row[1:4][0] = 400 assert row[1:4]['counts'] == 400 row[1:4]['counts'] = 300 assert row[1:4]['counts'] == 300 # Test stepping for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/59 row[1:4][::-1][-1] = 500 assert row[1:4]['counts'] == 500 row[1:4:2][0] = 300 assert row[1:4]['counts'] == 300 pytest.raises(KeyError, lambda r: r[1:4]['flag'], row) assert row[1:4].field(0) == 300 assert row[1:4].field('counts') == 300 pytest.raises(KeyError, row[1:4].field, 'flag') row[1:4].setfield('counts', 500) assert row[1:4].field(0) == 500 pytest.raises(KeyError, row[1:4].setfield, 'flag', False) assert t1[1].data._coldefs._arrays[1][2] == 500 assert t1[1].data._coldefs.columns[1].array[2] == 500 assert t1[1].columns._arrays[1][2] == 500 assert t1[1].columns.columns[1].array[2] == 500 assert t1[1].data[2][1] == 500 t1.close() def test_fits_record_len(self): counts = np.array([312, 334, 308, 317]) names = np.array(['NGC1', 'NGC2', 'NGC3', 'NCG4']) c1 = fits.Column(name='target', format='10A', array=names) c2 = fits.Column(name='counts', format='J', unit='DN', array=counts) c3 = fits.Column(name='notes', format='A10') c4 = fits.Column(name='spectrum', format='5E') c5 = fits.Column(name='flag', format='L', array=[1, 0, 1, 1]) coldefs = fits.ColDefs([c1, c2, c3, c4, c5]) tbhdu = fits.BinTableHDU.from_columns(coldefs) tbhdu.writeto(self.temp('table1.fits')) t1 = fits.open(self.temp('table1.fits')) assert len(t1[1].data[0]) == 5 assert len(t1[1].data[0][0:4]) == 4 assert len(t1[1].data[0][0:5]) == 5 assert len(t1[1].data[0][0:6]) == 5 assert len(t1[1].data[0][0:7]) == 5 assert len(t1[1].data[0][1:4]) == 3 assert len(t1[1].data[0][1:5]) == 4 assert len(t1[1].data[0][1:6]) == 4 assert len(t1[1].data[0][1:7]) == 4 t1.close() def test_add_data_by_rows(self): counts = np.array([312, 334, 308, 317]) names = np.array(['NGC1', 'NGC2', 'NGC3', 'NCG4']) c1 = fits.Column(name='target', format='10A', array=names) c2 = fits.Column(name='counts', format='J', unit='DN', array=counts) c3 = fits.Column(name='notes', format='A10') c4 = fits.Column(name='spectrum', format='5E') c5 = fits.Column(name='flag', format='L', array=[1, 0, 1, 1]) coldefs = fits.ColDefs([c1, c2, c3, c4, c5]) tbhdu1 = fits.BinTableHDU.from_columns(coldefs) c1 = fits.Column(name='target', format='10A') c2 = fits.Column(name='counts', format='J', unit='DN') c3 = fits.Column(name='notes', format='A10') c4 = fits.Column(name='spectrum', format='5E') c5 = fits.Column(name='flag', format='L') coldefs = fits.ColDefs([c1, c2, c3, c4, c5]) tbhdu = fits.BinTableHDU.from_columns(coldefs, nrows=5) # Test assigning data to a tables row using a FITS_record tbhdu.data[0] = tbhdu1.data[0] tbhdu.data[4] = tbhdu1.data[3] # Test assigning data to a tables row using a tuple tbhdu.data[2] = ('NGC1', 312, 'A Note', np.array([1.1, 2.2, 3.3, 4.4, 5.5], dtype=np.float32), True) # Test assigning data to a tables row using a list tbhdu.data[3] = ['JIM1', '33', 'A Note', np.array([1., 2., 3., 4., 5.], dtype=np.float32), True] # Verify that all ndarray objects within the HDU reference the # same ndarray. assert (id(tbhdu.data._coldefs.columns[0].array) == id(tbhdu.data._coldefs._arrays[0])) assert (id(tbhdu.data._coldefs.columns[0].array) == id(tbhdu.columns.columns[0].array)) assert (id(tbhdu.data._coldefs.columns[0].array) == id(tbhdu.columns._arrays[0])) assert tbhdu.data[0][1] == 312 assert tbhdu.data._coldefs._arrays[1][0] == 312 assert tbhdu.data._coldefs.columns[1].array[0] == 312 assert tbhdu.columns._arrays[1][0] == 312 assert tbhdu.columns.columns[1].array[0] == 312 assert tbhdu.columns.columns[0].array[0] == 'NGC1' assert tbhdu.columns.columns[2].array[0] == '' assert (tbhdu.columns.columns[3].array[0] == np.array([0., 0., 0., 0., 0.], dtype=np.float32)).all() assert tbhdu.columns.columns[4].array[0] == True # nopep8 assert tbhdu.data[3][1] == 33 assert tbhdu.data._coldefs._arrays[1][3] == 33 assert tbhdu.data._coldefs.columns[1].array[3] == 33 assert tbhdu.columns._arrays[1][3] == 33 assert tbhdu.columns.columns[1].array[3] == 33 assert tbhdu.columns.columns[0].array[3] == 'JIM1' assert tbhdu.columns.columns[2].array[3] == 'A Note' assert (tbhdu.columns.columns[3].array[3] == np.array([1., 2., 3., 4., 5.], dtype=np.float32)).all() assert tbhdu.columns.columns[4].array[3] == True # nopep8 def test_assign_multiple_rows_to_table(self): counts = np.array([312, 334, 308, 317]) names = np.array(['NGC1', 'NGC2', 'NGC3', 'NCG4']) c1 = fits.Column(name='target', format='10A', array=names) c2 = fits.Column(name='counts', format='J', unit='DN', array=counts) c3 = fits.Column(name='notes', format='A10') c4 = fits.Column(name='spectrum', format='5E') c5 = fits.Column(name='flag', format='L', array=[1, 0, 1, 1]) coldefs = fits.ColDefs([c1, c2, c3, c4, c5]) tbhdu1 = fits.BinTableHDU.from_columns(coldefs) counts = np.array([112, 134, 108, 117]) names = np.array(['NGC5', 'NGC6', 'NGC7', 'NCG8']) c1 = fits.Column(name='target', format='10A', array=names) c2 = fits.Column(name='counts', format='J', unit='DN', array=counts) c3 = fits.Column(name='notes', format='A10') c4 = fits.Column(name='spectrum', format='5E') c5 = fits.Column(name='flag', format='L', array=[0, 1, 0, 0]) coldefs = fits.ColDefs([c1, c2, c3, c4, c5]) tbhdu = fits.BinTableHDU.from_columns(coldefs) tbhdu.data[0][3] = np.array([1., 2., 3., 4., 5.], dtype=np.float32) tbhdu2 = fits.BinTableHDU.from_columns(tbhdu1.data, nrows=9) # Assign the 4 rows from the second table to rows 5 thru 8 of the # new table. Note that the last row of the new table will still be # initialized to the default values. tbhdu2.data[4:] = tbhdu.data # Verify that all ndarray objects within the HDU reference the # same ndarray. assert (id(tbhdu2.data._coldefs.columns[0].array) == id(tbhdu2.data._coldefs._arrays[0])) assert (id(tbhdu2.data._coldefs.columns[0].array) == id(tbhdu2.columns.columns[0].array)) assert (id(tbhdu2.data._coldefs.columns[0].array) == id(tbhdu2.columns._arrays[0])) assert tbhdu2.data[0][1] == 312 assert tbhdu2.data._coldefs._arrays[1][0] == 312 assert tbhdu2.data._coldefs.columns[1].array[0] == 312 assert tbhdu2.columns._arrays[1][0] == 312 assert tbhdu2.columns.columns[1].array[0] == 312 assert tbhdu2.columns.columns[0].array[0] == 'NGC1' assert tbhdu2.columns.columns[2].array[0] == '' assert (tbhdu2.columns.columns[3].array[0] == np.array([0., 0., 0., 0., 0.], dtype=np.float32)).all() assert tbhdu2.columns.columns[4].array[0] == True # nopep8 assert tbhdu2.data[4][1] == 112 assert tbhdu2.data._coldefs._arrays[1][4] == 112 assert tbhdu2.data._coldefs.columns[1].array[4] == 112 assert tbhdu2.columns._arrays[1][4] == 112 assert tbhdu2.columns.columns[1].array[4] == 112 assert tbhdu2.columns.columns[0].array[4] == 'NGC5' assert tbhdu2.columns.columns[2].array[4] == '' assert (tbhdu2.columns.columns[3].array[4] == np.array([1., 2., 3., 4., 5.], dtype=np.float32)).all() assert tbhdu2.columns.columns[4].array[4] == False # nopep8 assert tbhdu2.columns.columns[1].array[8] == 0 assert tbhdu2.columns.columns[0].array[8] == '' assert tbhdu2.columns.columns[2].array[8] == '' assert (tbhdu2.columns.columns[3].array[8] == np.array([0., 0., 0., 0., 0.], dtype=np.float32)).all() assert tbhdu2.columns.columns[4].array[8] == False # nopep8 def test_verify_data_references(self): counts = np.array([312, 334, 308, 317]) names = np.array(['NGC1', 'NGC2', 'NGC3', 'NCG4']) c1 = fits.Column(name='target', format='10A', array=names) c2 = fits.Column(name='counts', format='J', unit='DN', array=counts) c3 = fits.Column(name='notes', format='A10') c4 = fits.Column(name='spectrum', format='5E') c5 = fits.Column(name='flag', format='L', array=[1, 0, 1, 1]) coldefs = fits.ColDefs([c1, c2, c3, c4, c5]) tbhdu = fits.BinTableHDU.from_columns(coldefs) # Verify that original ColDefs object has independent Column # objects. assert id(coldefs.columns[0]) != id(c1) # Verify that original ColDefs object has independent ndarray # objects. assert id(coldefs.columns[0].array) != id(names) # Verify that original ColDefs object references the same data # object as the original Column object. assert id(coldefs.columns[0].array) == id(c1.array) assert id(coldefs.columns[0].array) == id(coldefs._arrays[0]) # Verify new HDU has an independent ColDefs object. assert id(coldefs) != id(tbhdu.columns) # Verify new HDU has independent Column objects. assert id(coldefs.columns[0]) != id(tbhdu.columns.columns[0]) # Verify new HDU has independent ndarray objects. assert (id(coldefs.columns[0].array) != id(tbhdu.columns.columns[0].array)) # Verify that both ColDefs objects in the HDU reference the same # Coldefs object. assert id(tbhdu.columns) == id(tbhdu.data._coldefs) # Verify that all ndarray objects within the HDU reference the # same ndarray. assert (id(tbhdu.data._coldefs.columns[0].array) == id(tbhdu.data._coldefs._arrays[0])) assert (id(tbhdu.data._coldefs.columns[0].array) == id(tbhdu.columns.columns[0].array)) assert (id(tbhdu.data._coldefs.columns[0].array) == id(tbhdu.columns._arrays[0])) tbhdu.writeto(self.temp('table1.fits')) t1 = fits.open(self.temp('table1.fits')) t1[1].data[0][1] = 213 assert t1[1].data[0][1] == 213 assert t1[1].data._coldefs._arrays[1][0] == 213 assert t1[1].data._coldefs.columns[1].array[0] == 213 assert t1[1].columns._arrays[1][0] == 213 assert t1[1].columns.columns[1].array[0] == 213 t1[1].data._coldefs._arrays[1][0] = 100 assert t1[1].data[0][1] == 100 assert t1[1].data._coldefs._arrays[1][0] == 100 assert t1[1].data._coldefs.columns[1].array[0] == 100 assert t1[1].columns._arrays[1][0] == 100 assert t1[1].columns.columns[1].array[0] == 100 t1[1].data._coldefs.columns[1].array[0] = 500 assert t1[1].data[0][1] == 500 assert t1[1].data._coldefs._arrays[1][0] == 500 assert t1[1].data._coldefs.columns[1].array[0] == 500 assert t1[1].columns._arrays[1][0] == 500 assert t1[1].columns.columns[1].array[0] == 500 t1[1].columns._arrays[1][0] = 600 assert t1[1].data[0][1] == 600 assert t1[1].data._coldefs._arrays[1][0] == 600 assert t1[1].data._coldefs.columns[1].array[0] == 600 assert t1[1].columns._arrays[1][0] == 600 assert t1[1].columns.columns[1].array[0] == 600 t1[1].columns.columns[1].array[0] = 800 assert t1[1].data[0][1] == 800 assert t1[1].data._coldefs._arrays[1][0] == 800 assert t1[1].data._coldefs.columns[1].array[0] == 800 assert t1[1].columns._arrays[1][0] == 800 assert t1[1].columns.columns[1].array[0] == 800 t1.close() def test_new_table_with_ndarray(self): counts = np.array([312, 334, 308, 317]) names = np.array(['NGC1', 'NGC2', 'NGC3', 'NCG4']) c1 = fits.Column(name='target', format='10A', array=names) c2 = fits.Column(name='counts', format='J', unit='DN', array=counts) c3 = fits.Column(name='notes', format='A10') c4 = fits.Column(name='spectrum', format='5E') c5 = fits.Column(name='flag', format='L', array=[1, 0, 1, 1]) coldefs = fits.ColDefs([c1, c2, c3, c4, c5]) tbhdu = fits.BinTableHDU.from_columns(coldefs) tbhdu1 = fits.BinTableHDU.from_columns(tbhdu.data.view(np.ndarray)) # Verify that all ndarray objects within the HDU reference the # same ndarray. assert (id(tbhdu1.data._coldefs.columns[0].array) == id(tbhdu1.data._coldefs._arrays[0])) assert (id(tbhdu1.data._coldefs.columns[0].array) == id(tbhdu1.columns.columns[0].array)) assert (id(tbhdu1.data._coldefs.columns[0].array) == id(tbhdu1.columns._arrays[0])) # Ensure I can change the value of one data element and it effects # all of the others. tbhdu1.data[0][1] = 213 assert tbhdu1.data[0][1] == 213 assert tbhdu1.data._coldefs._arrays[1][0] == 213 assert tbhdu1.data._coldefs.columns[1].array[0] == 213 assert tbhdu1.columns._arrays[1][0] == 213 assert tbhdu1.columns.columns[1].array[0] == 213 tbhdu1.data._coldefs._arrays[1][0] = 100 assert tbhdu1.data[0][1] == 100 assert tbhdu1.data._coldefs._arrays[1][0] == 100 assert tbhdu1.data._coldefs.columns[1].array[0] == 100 assert tbhdu1.columns._arrays[1][0] == 100 assert tbhdu1.columns.columns[1].array[0] == 100 tbhdu1.data._coldefs.columns[1].array[0] = 500 assert tbhdu1.data[0][1] == 500 assert tbhdu1.data._coldefs._arrays[1][0] == 500 assert tbhdu1.data._coldefs.columns[1].array[0] == 500 assert tbhdu1.columns._arrays[1][0] == 500 assert tbhdu1.columns.columns[1].array[0] == 500 tbhdu1.columns._arrays[1][0] = 600 assert tbhdu1.data[0][1] == 600 assert tbhdu1.data._coldefs._arrays[1][0] == 600 assert tbhdu1.data._coldefs.columns[1].array[0] == 600 assert tbhdu1.columns._arrays[1][0] == 600 assert tbhdu1.columns.columns[1].array[0] == 600 tbhdu1.columns.columns[1].array[0] = 800 assert tbhdu1.data[0][1] == 800 assert tbhdu1.data._coldefs._arrays[1][0] == 800 assert tbhdu1.data._coldefs.columns[1].array[0] == 800 assert tbhdu1.columns._arrays[1][0] == 800 assert tbhdu1.columns.columns[1].array[0] == 800 tbhdu1.writeto(self.temp('table1.fits')) t1 = fits.open(self.temp('table1.fits')) t1[1].data[0][1] = 213 assert t1[1].data[0][1] == 213 assert t1[1].data._coldefs._arrays[1][0] == 213 assert t1[1].data._coldefs.columns[1].array[0] == 213 assert t1[1].columns._arrays[1][0] == 213 assert t1[1].columns.columns[1].array[0] == 213 t1[1].data._coldefs._arrays[1][0] = 100 assert t1[1].data[0][1] == 100 assert t1[1].data._coldefs._arrays[1][0] == 100 assert t1[1].data._coldefs.columns[1].array[0] == 100 assert t1[1].columns._arrays[1][0] == 100 assert t1[1].columns.columns[1].array[0] == 100 t1[1].data._coldefs.columns[1].array[0] = 500 assert t1[1].data[0][1] == 500 assert t1[1].data._coldefs._arrays[1][0] == 500 assert t1[1].data._coldefs.columns[1].array[0] == 500 assert t1[1].columns._arrays[1][0] == 500 assert t1[1].columns.columns[1].array[0] == 500 t1[1].columns._arrays[1][0] = 600 assert t1[1].data[0][1] == 600 assert t1[1].data._coldefs._arrays[1][0] == 600 assert t1[1].data._coldefs.columns[1].array[0] == 600 assert t1[1].columns._arrays[1][0] == 600 assert t1[1].columns.columns[1].array[0] == 600 t1[1].columns.columns[1].array[0] = 800 assert t1[1].data[0][1] == 800 assert t1[1].data._coldefs._arrays[1][0] == 800 assert t1[1].data._coldefs.columns[1].array[0] == 800 assert t1[1].columns._arrays[1][0] == 800 assert t1[1].columns.columns[1].array[0] == 800 t1.close() def test_new_table_with_fits_rec(self): counts = np.array([312, 334, 308, 317]) names = np.array(['NGC1', 'NGC2', 'NGC3', 'NCG4']) c1 = fits.Column(name='target', format='10A', array=names) c2 = fits.Column(name='counts', format='J', unit='DN', array=counts) c3 = fits.Column(name='notes', format='A10') c4 = fits.Column(name='spectrum', format='5E') c5 = fits.Column(name='flag', format='L', array=[1, 0, 1, 1]) coldefs = fits.ColDefs([c1, c2, c3, c4, c5]) tbhdu = fits.BinTableHDU.from_columns(coldefs) tbhdu.data[0][1] = 213 assert tbhdu.data[0][1] == 213 assert tbhdu.data._coldefs._arrays[1][0] == 213 assert tbhdu.data._coldefs.columns[1].array[0] == 213 assert tbhdu.columns._arrays[1][0] == 213 assert tbhdu.columns.columns[1].array[0] == 213 tbhdu.data._coldefs._arrays[1][0] = 100 assert tbhdu.data[0][1] == 100 assert tbhdu.data._coldefs._arrays[1][0] == 100 assert tbhdu.data._coldefs.columns[1].array[0] == 100 assert tbhdu.columns._arrays[1][0] == 100 assert tbhdu.columns.columns[1].array[0] == 100 tbhdu.data._coldefs.columns[1].array[0] = 500 assert tbhdu.data[0][1] == 500 assert tbhdu.data._coldefs._arrays[1][0] == 500 assert tbhdu.data._coldefs.columns[1].array[0] == 500 assert tbhdu.columns._arrays[1][0] == 500 assert tbhdu.columns.columns[1].array[0] == 500 tbhdu.columns._arrays[1][0] = 600 assert tbhdu.data[0][1] == 600 assert tbhdu.data._coldefs._arrays[1][0] == 600 assert tbhdu.data._coldefs.columns[1].array[0] == 600 assert tbhdu.columns._arrays[1][0] == 600 assert tbhdu.columns.columns[1].array[0] == 600 tbhdu.columns.columns[1].array[0] = 800 assert tbhdu.data[0][1] == 800 assert tbhdu.data._coldefs._arrays[1][0] == 800 assert tbhdu.data._coldefs.columns[1].array[0] == 800 assert tbhdu.columns._arrays[1][0] == 800 assert tbhdu.columns.columns[1].array[0] == 800 tbhdu.columns.columns[1].array[0] = 312 tbhdu.writeto(self.temp('table1.fits')) t1 = fits.open(self.temp('table1.fits')) t1[1].data[0][1] = 1 fr = t1[1].data assert t1[1].data[0][1] == 1 assert t1[1].data._coldefs._arrays[1][0] == 1 assert t1[1].data._coldefs.columns[1].array[0] == 1 assert t1[1].columns._arrays[1][0] == 1 assert t1[1].columns.columns[1].array[0] == 1 assert fr[0][1] == 1 assert fr._coldefs._arrays[1][0] == 1 assert fr._coldefs.columns[1].array[0] == 1 fr._coldefs.columns[1].array[0] = 312 tbhdu1 = fits.BinTableHDU.from_columns(fr) i = 0 for row in tbhdu1.data: for j in range(len(row)): if isinstance(row[j], np.ndarray): assert (row[j] == tbhdu.data[i][j]).all() else: assert row[j] == tbhdu.data[i][j] i = i + 1 tbhdu1.data[0][1] = 213 assert t1[1].data[0][1] == 312 assert t1[1].data._coldefs._arrays[1][0] == 312 assert t1[1].data._coldefs.columns[1].array[0] == 312 assert t1[1].columns._arrays[1][0] == 312 assert t1[1].columns.columns[1].array[0] == 312 assert fr[0][1] == 312 assert fr._coldefs._arrays[1][0] == 312 assert fr._coldefs.columns[1].array[0] == 312 assert tbhdu1.data[0][1] == 213 assert tbhdu1.data._coldefs._arrays[1][0] == 213 assert tbhdu1.data._coldefs.columns[1].array[0] == 213 assert tbhdu1.columns._arrays[1][0] == 213 assert tbhdu1.columns.columns[1].array[0] == 213 t1[1].data[0][1] = 10 assert t1[1].data[0][1] == 10 assert t1[1].data._coldefs._arrays[1][0] == 10 assert t1[1].data._coldefs.columns[1].array[0] == 10 assert t1[1].columns._arrays[1][0] == 10 assert t1[1].columns.columns[1].array[0] == 10 assert fr[0][1] == 10 assert fr._coldefs._arrays[1][0] == 10 assert fr._coldefs.columns[1].array[0] == 10 assert tbhdu1.data[0][1] == 213 assert tbhdu1.data._coldefs._arrays[1][0] == 213 assert tbhdu1.data._coldefs.columns[1].array[0] == 213 assert tbhdu1.columns._arrays[1][0] == 213 assert tbhdu1.columns.columns[1].array[0] == 213 tbhdu1.data._coldefs._arrays[1][0] = 666 assert t1[1].data[0][1] == 10 assert t1[1].data._coldefs._arrays[1][0] == 10 assert t1[1].data._coldefs.columns[1].array[0] == 10 assert t1[1].columns._arrays[1][0] == 10 assert t1[1].columns.columns[1].array[0] == 10 assert fr[0][1] == 10 assert fr._coldefs._arrays[1][0] == 10 assert fr._coldefs.columns[1].array[0] == 10 assert tbhdu1.data[0][1] == 666 assert tbhdu1.data._coldefs._arrays[1][0] == 666 assert tbhdu1.data._coldefs.columns[1].array[0] == 666 assert tbhdu1.columns._arrays[1][0] == 666 assert tbhdu1.columns.columns[1].array[0] == 666 t1.close() def test_bin_table_hdu_constructor(self): counts = np.array([312, 334, 308, 317]) names = np.array(['NGC1', 'NGC2', 'NGC3', 'NCG4']) c1 = fits.Column(name='target', format='10A', array=names) c2 = fits.Column(name='counts', format='J', unit='DN', array=counts) c3 = fits.Column(name='notes', format='A10') c4 = fits.Column(name='spectrum', format='5E') c5 = fits.Column(name='flag', format='L', array=[1, 0, 1, 1]) coldefs = fits.ColDefs([c1, c2, c3, c4, c5]) tbhdu1 = fits.BinTableHDU.from_columns(coldefs) hdu = fits.BinTableHDU(tbhdu1.data) # Verify that all ndarray objects within the HDU reference the # same ndarray. assert (id(hdu.data._coldefs.columns[0].array) == id(hdu.data._coldefs._arrays[0])) assert (id(hdu.data._coldefs.columns[0].array) == id(hdu.columns.columns[0].array)) assert (id(hdu.data._coldefs.columns[0].array) == id(hdu.columns._arrays[0])) # Verify that the references in the original HDU are the same as the # references in the new HDU. assert (id(tbhdu1.data._coldefs.columns[0].array) == id(hdu.data._coldefs._arrays[0])) # Verify that a change in the new HDU is reflected in both the new # and original HDU. hdu.data[0][1] = 213 assert hdu.data[0][1] == 213 assert hdu.data._coldefs._arrays[1][0] == 213 assert hdu.data._coldefs.columns[1].array[0] == 213 assert hdu.columns._arrays[1][0] == 213 assert hdu.columns.columns[1].array[0] == 213 assert tbhdu1.data[0][1] == 213 assert tbhdu1.data._coldefs._arrays[1][0] == 213 assert tbhdu1.data._coldefs.columns[1].array[0] == 213 assert tbhdu1.columns._arrays[1][0] == 213 assert tbhdu1.columns.columns[1].array[0] == 213 hdu.data._coldefs._arrays[1][0] = 100 assert hdu.data[0][1] == 100 assert hdu.data._coldefs._arrays[1][0] == 100 assert hdu.data._coldefs.columns[1].array[0] == 100 assert hdu.columns._arrays[1][0] == 100 assert hdu.columns.columns[1].array[0] == 100 assert tbhdu1.data[0][1] == 100 assert tbhdu1.data._coldefs._arrays[1][0] == 100 assert tbhdu1.data._coldefs.columns[1].array[0] == 100 assert tbhdu1.columns._arrays[1][0] == 100 assert tbhdu1.columns.columns[1].array[0] == 100 hdu.data._coldefs.columns[1].array[0] = 500 assert hdu.data[0][1] == 500 assert hdu.data._coldefs._arrays[1][0] == 500 assert hdu.data._coldefs.columns[1].array[0] == 500 assert hdu.columns._arrays[1][0] == 500 assert hdu.columns.columns[1].array[0] == 500 assert tbhdu1.data[0][1] == 500 assert tbhdu1.data._coldefs._arrays[1][0] == 500 assert tbhdu1.data._coldefs.columns[1].array[0] == 500 assert tbhdu1.columns._arrays[1][0] == 500 assert tbhdu1.columns.columns[1].array[0] == 500 hdu.columns._arrays[1][0] = 600 assert hdu.data[0][1] == 600 assert hdu.data._coldefs._arrays[1][0] == 600 assert hdu.data._coldefs.columns[1].array[0] == 600 assert hdu.columns._arrays[1][0] == 600 assert hdu.columns.columns[1].array[0] == 600 assert tbhdu1.data[0][1] == 600 assert tbhdu1.data._coldefs._arrays[1][0] == 600 assert tbhdu1.data._coldefs.columns[1].array[0] == 600 assert tbhdu1.columns._arrays[1][0] == 600 assert tbhdu1.columns.columns[1].array[0] == 600 hdu.columns.columns[1].array[0] = 800 assert hdu.data[0][1] == 800 assert hdu.data._coldefs._arrays[1][0] == 800 assert hdu.data._coldefs.columns[1].array[0] == 800 assert hdu.columns._arrays[1][0] == 800 assert hdu.columns.columns[1].array[0] == 800 assert tbhdu1.data[0][1] == 800 assert tbhdu1.data._coldefs._arrays[1][0] == 800 assert tbhdu1.data._coldefs.columns[1].array[0] == 800 assert tbhdu1.columns._arrays[1][0] == 800 assert tbhdu1.columns.columns[1].array[0] == 800 def test_constructor_name_arg(self): """testConstructorNameArg Passing name='...' to the BinTableHDU and TableHDU constructors should set the .name attribute and 'EXTNAME' header keyword, and override any name in an existing 'EXTNAME' value. """ for hducls in [fits.BinTableHDU, fits.TableHDU]: # First test some default assumptions hdu = hducls() assert hdu.name == '' assert 'EXTNAME' not in hdu.header hdu.name = 'FOO' assert hdu.name == 'FOO' assert hdu.header['EXTNAME'] == 'FOO' # Passing name to constructor hdu = hducls(name='FOO') assert hdu.name == 'FOO' assert hdu.header['EXTNAME'] == 'FOO' # And overriding a header with a different extname hdr = fits.Header() hdr['EXTNAME'] = 'EVENTS' hdu = hducls(header=hdr, name='FOO') assert hdu.name == 'FOO' assert hdu.header['EXTNAME'] == 'FOO' def test_constructor_ver_arg(self): for hducls in [fits.BinTableHDU, fits.TableHDU]: # First test some default assumptions hdu = hducls() assert hdu.ver == 1 assert 'EXTVER' not in hdu.header hdu.ver = 2 assert hdu.ver == 2 assert hdu.header['EXTVER'] == 2 # Passing name to constructor hdu = hducls(ver=3) assert hdu.ver == 3 assert hdu.header['EXTVER'] == 3 # And overriding a header with a different extver hdr = fits.Header() hdr['EXTVER'] = 4 hdu = hducls(header=hdr, ver=5) assert hdu.ver == 5 assert hdu.header['EXTVER'] == 5 def test_unicode_colname(self): """ Regression test for https://github.com/astropy/astropy/issues/5204 "Handle unicode FITS BinTable column names on Python 2" """ col = fits.Column(name='spam', format='E', array=[42.]) # This used to raise a TypeError, now it works fits.BinTableHDU.from_columns([col]) def test_bin_table_with_logical_array(self): c1 = fits.Column(name='flag', format='2L', array=[[True, False], [False, True]]) coldefs = fits.ColDefs([c1]) tbhdu1 = fits.BinTableHDU.from_columns(coldefs) assert (tbhdu1.data.field('flag')[0] == np.array([True, False], dtype=bool)).all() assert (tbhdu1.data.field('flag')[1] == np.array([False, True], dtype=bool)).all() tbhdu = fits.BinTableHDU.from_columns(tbhdu1.data) assert (tbhdu.data.field('flag')[0] == np.array([True, False], dtype=bool)).all() assert (tbhdu.data.field('flag')[1] == np.array([False, True], dtype=bool)).all() def test_fits_rec_column_access(self): tbdata = fits.getdata(self.data('table.fits')) assert (tbdata.V_mag == tbdata.field('V_mag')).all() assert (tbdata.V_mag == tbdata['V_mag']).all() # Table with scaling (c3) and tnull (c1) tbdata = fits.getdata(self.data('tb.fits')) for col in ('c1', 'c2', 'c3', 'c4'): data = getattr(tbdata, col) assert (data == tbdata.field(col)).all() assert (data == tbdata[col]).all() # ascii table tbdata = fits.getdata(self.data('ascii.fits')) for col in ('a', 'b'): data = getattr(tbdata, col) assert (data == tbdata.field(col)).all() assert (data == tbdata[col]).all() # with VLA column col1 = fits.Column(name='x', format='PI()', array=np.array([[45, 56], [11, 12, 13]], dtype=np.object_)) hdu = fits.BinTableHDU.from_columns([col1]) assert type(hdu.data['x']) == type(hdu.data.x) # noqa assert (hdu.data['x'][0] == hdu.data.x[0]).all() assert (hdu.data['x'][1] == hdu.data.x[1]).all() def test_table_with_zero_width_column(self): hdul = fits.open(self.data('zerowidth.fits')) tbhdu = hdul[2] # This HDU contains a zero-width column 'ORBPARM' assert 'ORBPARM' in tbhdu.columns.names # The ORBPARM column should not be in the data, though the data should # be readable assert 'ORBPARM' in tbhdu.data.names assert 'ORBPARM' in tbhdu.data.dtype.names # Verify that some of the data columns are still correctly accessible # by name assert tbhdu.data[0]['ANNAME'] == 'VLA:_W16' assert comparefloats( tbhdu.data[0]['STABXYZ'], np.array([499.85566663, -1317.99231554, -735.18866164], dtype=np.float64)) assert tbhdu.data[0]['NOSTA'] == 1 assert tbhdu.data[0]['MNTSTA'] == 0 assert tbhdu.data[-1]['ANNAME'] == 'VPT:_OUT' assert comparefloats( tbhdu.data[-1]['STABXYZ'], np.array([0.0, 0.0, 0.0], dtype=np.float64)) assert tbhdu.data[-1]['NOSTA'] == 29 assert tbhdu.data[-1]['MNTSTA'] == 0 hdul.writeto(self.temp('newtable.fits')) hdul.close() hdul = fits.open(self.temp('newtable.fits')) tbhdu = hdul[2] # Verify that the previous tests still hold after writing assert 'ORBPARM' in tbhdu.columns.names assert 'ORBPARM' in tbhdu.data.names assert 'ORBPARM' in tbhdu.data.dtype.names assert tbhdu.data[0]['ANNAME'] == 'VLA:_W16' assert comparefloats( tbhdu.data[0]['STABXYZ'], np.array([499.85566663, -1317.99231554, -735.18866164], dtype=np.float64)) assert tbhdu.data[0]['NOSTA'] == 1 assert tbhdu.data[0]['MNTSTA'] == 0 assert tbhdu.data[-1]['ANNAME'] == 'VPT:_OUT' assert comparefloats( tbhdu.data[-1]['STABXYZ'], np.array([0.0, 0.0, 0.0], dtype=np.float64)) assert tbhdu.data[-1]['NOSTA'] == 29 assert tbhdu.data[-1]['MNTSTA'] == 0 hdul.close() def test_string_column_padding(self): a = ['img1', 'img2', 'img3a', 'p'] s = 'img1\x00\x00\x00\x00\x00\x00' \ 'img2\x00\x00\x00\x00\x00\x00' \ 'img3a\x00\x00\x00\x00\x00' \ 'p\x00\x00\x00\x00\x00\x00\x00\x00\x00' acol = fits.Column(name='MEMNAME', format='A10', array=chararray.array(a)) ahdu = fits.BinTableHDU.from_columns([acol]) assert ahdu.data.tobytes().decode('raw-unicode-escape') == s ahdu.writeto(self.temp('newtable.fits')) with fits.open(self.temp('newtable.fits')) as hdul: assert hdul[1].data.tobytes().decode('raw-unicode-escape') == s assert (hdul[1].data['MEMNAME'] == a).all() del hdul ahdu = fits.TableHDU.from_columns([acol]) with ignore_warnings(): ahdu.writeto(self.temp('newtable.fits'), overwrite=True) with fits.open(self.temp('newtable.fits')) as hdul: assert (hdul[1].data.tobytes().decode('raw-unicode-escape') == s.replace('\x00', ' ')) assert (hdul[1].data['MEMNAME'] == a).all() ahdu = fits.BinTableHDU.from_columns(hdul[1].data.copy()) del hdul # Now serialize once more as a binary table; padding bytes should # revert to zeroes ahdu.writeto(self.temp('newtable.fits'), overwrite=True) with fits.open(self.temp('newtable.fits')) as hdul: assert hdul[1].data.tobytes().decode('raw-unicode-escape') == s assert (hdul[1].data['MEMNAME'] == a).all() def test_multi_dimensional_columns(self): """ Tests the multidimensional column implementation with both numeric arrays and string arrays. """ data = np.rec.array( [([0, 1, 2, 3, 4, 5], 'row1' * 2), ([6, 7, 8, 9, 0, 1], 'row2' * 2), ([2, 3, 4, 5, 6, 7], 'row3' * 2)], formats='6i4,a8') thdu = fits.BinTableHDU.from_columns(data) # Modify the TDIM fields to my own specification thdu.header['TDIM1'] = '(2,3)' thdu.header['TDIM2'] = '(4,2)' thdu.writeto(self.temp('newtable.fits')) with fits.open(self.temp('newtable.fits')) as hdul: thdu = hdul[1] c1 = thdu.data.field(0) c2 = thdu.data.field(1) assert c1.shape == (3, 3, 2) assert c2.shape == (3, 2) assert (c1 == np.array([[[0, 1], [2, 3], [4, 5]], [[6, 7], [8, 9], [0, 1]], [[2, 3], [4, 5], [6, 7]]])).all() assert (c2 == np.array([['row1', 'row1'], ['row2', 'row2'], ['row3', 'row3']])).all() del c1 del c2 del thdu del hdul # Test setting the TDIMn header based on the column data data = np.zeros(3, dtype=[('x', 'f4'), ('s', 'S5', 4)]) data['x'] = 1, 2, 3 data['s'] = 'ok' with ignore_warnings(): fits.writeto(self.temp('newtable.fits'), data, overwrite=True) t = fits.getdata(self.temp('newtable.fits')) assert t.field(1).dtype.str[-1] == '5' assert t.field(1).shape == (3, 4) # Like the previous test, but with an extra dimension (a bit more # complicated) data = np.zeros(3, dtype=[('x', 'f4'), ('s', 'S5', (4, 3))]) data['x'] = 1, 2, 3 data['s'] = 'ok' del t with ignore_warnings(): fits.writeto(self.temp('newtable.fits'), data, overwrite=True) t = fits.getdata(self.temp('newtable.fits')) assert t.field(1).dtype.str[-1] == '5' assert t.field(1).shape == (3, 4, 3) def test_bin_table_init_from_string_array_column(self): """ Tests two ways of creating a new `BinTableHDU` from a column of string arrays. This tests for a couple different regressions, and ensures that both BinTableHDU(data=arr) and BinTableHDU.from_columns(arr) work equivalently. Some of this is redundant with the following test, but checks some subtly different cases. """ data = [[b'abcd', b'efgh'], [b'ijkl', b'mnop'], [b'qrst', b'uvwx']] arr = np.array([(data,), (data,), (data,), (data,), (data,)], dtype=[('S', '(3, 2)S4')]) with catch_warnings() as w: tbhdu1 = fits.BinTableHDU(data=arr) assert len(w) == 0 def test_dims_and_roundtrip(tbhdu): assert tbhdu.data['S'].shape == (5, 3, 2) assert tbhdu.data['S'].dtype.str.endswith('U4') tbhdu.writeto(self.temp('test.fits'), overwrite=True) with fits.open(self.temp('test.fits')) as hdul: tbhdu2 = hdul[1] assert tbhdu2.header['TDIM1'] == '(4,2,3)' assert tbhdu2.data['S'].shape == (5, 3, 2) assert tbhdu.data['S'].dtype.str.endswith('U4') assert np.all(tbhdu2.data['S'] == tbhdu.data['S']) test_dims_and_roundtrip(tbhdu1) tbhdu2 = fits.BinTableHDU.from_columns(arr) test_dims_and_roundtrip(tbhdu2) def test_columns_with_truncating_tdim(self): """ According to the FITS standard (section 7.3.2): If the number of elements in the array implied by the TDIMn is less than the allocated size of the ar- ray in the FITS file, then the unused trailing elements should be interpreted as containing undefined fill values. *deep sigh* What this means is if a column has a repeat count larger than the number of elements indicated by its TDIM (ex: TDIM1 = '(2,2)', but TFORM1 = 6I), then instead of this being an outright error we are to take the first 4 elements as implied by the TDIM and ignore the additional two trailing elements. """ # It's hard to even successfully create a table like this. I think # it *should* be difficult, but once created it should at least be # possible to read. arr1 = [[b'ab', b'cd'], [b'ef', b'gh'], [b'ij', b'kl']] arr2 = [1, 2, 3, 4, 5] arr = np.array([(arr1, arr2), (arr1, arr2)], dtype=[('a', '(3, 2)S2'), ('b', '5i8')]) tbhdu = fits.BinTableHDU(data=arr) tbhdu.writeto(self.temp('test.fits')) with open(self.temp('test.fits'), 'rb') as f: raw_bytes = f.read() # Artificially truncate TDIM in the header; this seems to be the # easiest way to do this while getting around Astropy's insistence on the # data and header matching perfectly; again, we have no interest in # making it possible to write files in this format, only read them with open(self.temp('test.fits'), 'wb') as f: f.write(raw_bytes.replace(b'(2,2,3)', b'(2,2,2)')) with fits.open(self.temp('test.fits')) as hdul: tbhdu2 = hdul[1] assert tbhdu2.header['TDIM1'] == '(2,2,2)' assert tbhdu2.header['TFORM1'] == '12A' for row in tbhdu2.data: assert np.all(row['a'] == [['ab', 'cd'], ['ef', 'gh']]) assert np.all(row['b'] == [1, 2, 3, 4, 5]) def test_string_array_round_trip(self): """Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/201""" data = [['abc', 'def', 'ghi'], ['jkl', 'mno', 'pqr'], ['stu', 'vwx', 'yz ']] recarr = np.rec.array([(data,), (data,)], formats=['(3,3)S3']) t = fits.BinTableHDU(data=recarr) t.writeto(self.temp('test.fits')) with fits.open(self.temp('test.fits')) as h: assert 'TDIM1' in h[1].header assert h[1].header['TDIM1'] == '(3,3,3)' assert len(h[1].data) == 2 assert len(h[1].data[0]) == 1 assert (h[1].data.field(0)[0] == np.char.decode(recarr.field(0)[0], 'ascii')).all() with fits.open(self.temp('test.fits')) as h: # Access the data; I think this is necessary to exhibit the bug # reported in https://aeon.stsci.edu/ssb/trac/pyfits/ticket/201 h[1].data[:] h.writeto(self.temp('test2.fits')) with fits.open(self.temp('test2.fits')) as h: assert 'TDIM1' in h[1].header assert h[1].header['TDIM1'] == '(3,3,3)' assert len(h[1].data) == 2 assert len(h[1].data[0]) == 1 assert (h[1].data.field(0)[0] == np.char.decode(recarr.field(0)[0], 'ascii')).all() def test_new_table_with_nd_column(self): """Regression test for https://github.com/spacetelescope/PyFITS/issues/3 """ arra = np.array(['a', 'b'], dtype='|S1') arrb = np.array([['a', 'bc'], ['cd', 'e']], dtype='|S2') arrc = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) cols = [ fits.Column(name='str', format='1A', array=arra), fits.Column(name='strarray', format='4A', dim='(2,2)', array=arrb), fits.Column(name='intarray', format='4I', dim='(2, 2)', array=arrc) ] hdu = fits.BinTableHDU.from_columns(fits.ColDefs(cols)) hdu.writeto(self.temp('test.fits')) with fits.open(self.temp('test.fits')) as h: # Need to force string arrays to byte arrays in order to compare # correctly on Python 3 assert (h[1].data['str'].encode('ascii') == arra).all() assert (h[1].data['strarray'].encode('ascii') == arrb).all() assert (h[1].data['intarray'] == arrc).all() def test_mismatched_tform_and_tdim(self): """Normally the product of the dimensions listed in a TDIMn keyword must be less than or equal to the repeat count in the TFORMn keyword. This tests that this works if less than (treating the trailing bytes as unspecified fill values per the FITS standard) and fails if the dimensions specified by TDIMn are greater than the repeat count. """ arra = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) arrb = np.array([[[9, 10], [11, 12]], [[13, 14], [15, 16]]]) cols = [fits.Column(name='a', format='20I', dim='(2,2)', array=arra), fits.Column(name='b', format='4I', dim='(2,2)', array=arrb)] # The first column has the mismatched repeat count hdu = fits.BinTableHDU.from_columns(fits.ColDefs(cols)) hdu.writeto(self.temp('test.fits')) with fits.open(self.temp('test.fits')) as h: assert h[1].header['TFORM1'] == '20I' assert h[1].header['TFORM2'] == '4I' assert h[1].header['TDIM1'] == h[1].header['TDIM2'] == '(2,2)' assert (h[1].data['a'] == arra).all() assert (h[1].data['b'] == arrb).all() assert h[1].data.itemsize == 48 # 16-bits times 24 # If dims is more than the repeat count in the format specifier raise # an error pytest.raises(VerifyError, fits.Column, name='a', format='2I', dim='(2,2)', array=arra) def test_tdim_of_size_one(self): """Regression test for https://github.com/astropy/astropy/pull/3580""" with fits.open(self.data('tdim.fits')) as hdulist: assert hdulist[1].data['V_mag'].shape == (3, 1, 1) def test_slicing(self): """Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/52""" with fits.open(self.data('table.fits')) as f: data = f[1].data targets = data.field('target') s = data[:] assert (s.field('target') == targets).all() for n in range(len(targets) + 2): s = data[:n] assert (s.field('target') == targets[:n]).all() s = data[n:] assert (s.field('target') == targets[n:]).all() s = data[::2] assert (s.field('target') == targets[::2]).all() s = data[::-1] assert (s.field('target') == targets[::-1]).all() def test_array_slicing(self): """Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/55""" with fits.open(self.data('table.fits')) as f: data = f[1].data s1 = data[data['target'] == 'NGC1001'] s2 = data[np.where(data['target'] == 'NGC1001')] s3 = data[[0]] s4 = data[:1] for s in [s1, s2, s3, s4]: assert isinstance(s, fits.FITS_rec) assert comparerecords(s1, s2) assert comparerecords(s2, s3) assert comparerecords(s3, s4) def test_array_broadcasting(self): """ Regression test for https://github.com/spacetelescope/PyFITS/pull/48 """ with fits.open(self.data('table.fits')) as hdu: data = hdu[1].data data['V_mag'] = 0 assert np.all(data['V_mag'] == 0) data['V_mag'] = 1 assert np.all(data['V_mag'] == 1) for container in (list, tuple, np.array): data['V_mag'] = container([1, 2, 3]) assert np.array_equal(data['V_mag'], np.array([1, 2, 3])) def test_array_slicing_readonly(self): """ Like test_array_slicing but with the file opened in 'readonly' mode. Regression test for a crash when slicing readonly memmap'd tables. """ with fits.open(self.data('table.fits'), mode='readonly') as f: data = f[1].data s1 = data[data['target'] == 'NGC1001'] s2 = data[np.where(data['target'] == 'NGC1001')] s3 = data[[0]] s4 = data[:1] for s in [s1, s2, s3, s4]: assert isinstance(s, fits.FITS_rec) assert comparerecords(s1, s2) assert comparerecords(s2, s3) assert comparerecords(s3, s4) def test_dump_load_round_trip(self): """ A simple test of the dump/load methods; dump the data, column, and header files and try to reload the table from them. """ hdul = fits.open(self.data('table.fits')) tbhdu = hdul[1] datafile = self.temp('data.txt') cdfile = self.temp('coldefs.txt') hfile = self.temp('header.txt') tbhdu.dump(datafile, cdfile, hfile) new_tbhdu = fits.BinTableHDU.load(datafile, cdfile, hfile) assert comparerecords(tbhdu.data, new_tbhdu.data) # Double check that the headers are equivalent assert str(tbhdu.header) == str(new_tbhdu.header) hdul.close() def test_dump_load_array_colums(self): """ Regression test for https://github.com/spacetelescope/PyFITS/issues/22 Ensures that a table containing a multi-value array column can be dumped and loaded successfully. """ data = np.rec.array([('a', [1, 2, 3, 4], 0.1), ('b', [5, 6, 7, 8], 0.2)], formats='a1,4i4,f8') tbhdu = fits.BinTableHDU.from_columns(data) datafile = self.temp('data.txt') cdfile = self.temp('coldefs.txt') hfile = self.temp('header.txt') tbhdu.dump(datafile, cdfile, hfile) new_tbhdu = fits.BinTableHDU.load(datafile, cdfile, hfile) assert comparerecords(tbhdu.data, new_tbhdu.data) assert str(tbhdu.header) == str(new_tbhdu.header) def test_load_guess_format(self): """ Tests loading a table dump with no supplied coldefs or header, so that the table format has to be guessed at. There is of course no exact science to this; the table that's produced simply uses sensible guesses for that format. Ideally this should never have to be used. """ # Create a table containing a variety of data types. a0 = np.array([False, True, False], dtype=bool) c0 = fits.Column(name='c0', format='L', array=a0) # Format X currently not supported by the format # a1 = np.array([[0], [1], [0]], dtype=np.uint8) # c1 = fits.Column(name='c1', format='X', array=a1) a2 = np.array([1, 128, 255], dtype=np.uint8) c2 = fits.Column(name='c2', format='B', array=a2) a3 = np.array([-30000, 1, 256], dtype=np.int16) c3 = fits.Column(name='c3', format='I', array=a3) a4 = np.array([-123123123, 1234, 123123123], dtype=np.int32) c4 = fits.Column(name='c4', format='J', array=a4) a5 = np.array(['a', 'abc', 'ab']) c5 = fits.Column(name='c5', format='A3', array=a5) a6 = np.array([1.1, 2.2, 3.3], dtype=np.float64) c6 = fits.Column(name='c6', format='D', array=a6) a7 = np.array([1.1 + 2.2j, 3.3 + 4.4j, 5.5 + 6.6j], dtype=np.complex128) c7 = fits.Column(name='c7', format='M', array=a7) a8 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.int32) c8 = fits.Column(name='c8', format='PJ()', array=a8) tbhdu = fits.BinTableHDU.from_columns([c0, c2, c3, c4, c5, c6, c7, c8]) datafile = self.temp('data.txt') tbhdu.dump(datafile) new_tbhdu = fits.BinTableHDU.load(datafile) # In this particular case the record data at least should be equivalent assert comparerecords(tbhdu.data, new_tbhdu.data) def test_attribute_field_shadowing(self): """ Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/86 Numpy recarray objects have a poorly-considered feature of allowing field access by attribute lookup. However, if a field name conincides with an existing attribute/method of the array, the existing name takes precence (making the attribute-based field lookup completely unreliable in general cases). This ensures that any FITS_rec attributes still work correctly even when there is a field with the same name as that attribute. """ c1 = fits.Column(name='names', format='I', array=[1]) c2 = fits.Column(name='formats', format='I', array=[2]) c3 = fits.Column(name='other', format='I', array=[3]) t = fits.BinTableHDU.from_columns([c1, c2, c3]) assert t.data.names == ['names', 'formats', 'other'] assert t.data.formats == ['I'] * 3 assert (t.data['names'] == [1]).all() assert (t.data['formats'] == [2]).all() assert (t.data.other == [3]).all() def test_table_from_bool_fields(self): """ Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/113 Tests creating a table from a recarray containing numpy.bool columns. """ array = np.rec.array([(True, False), (False, True)], formats='|b1,|b1') thdu = fits.BinTableHDU.from_columns(array) assert thdu.columns.formats == ['L', 'L'] assert comparerecords(thdu.data, array) # Test round trip thdu.writeto(self.temp('table.fits')) data = fits.getdata(self.temp('table.fits'), ext=1) assert thdu.columns.formats == ['L', 'L'] assert comparerecords(data, array) def test_table_from_bool_fields2(self): """ Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/215 Tests the case where a multi-field ndarray (not a recarray) containing a bool field is used to initialize a `BinTableHDU`. """ arr = np.array([(False,), (True,), (False,)], dtype=[('a', '?')]) hdu = fits.BinTableHDU(data=arr) assert (hdu.data['a'] == arr['a']).all() def test_bool_column_update(self): """Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/139""" c1 = fits.Column('F1', 'L', array=[True, False]) c2 = fits.Column('F2', 'L', array=[False, True]) thdu = fits.BinTableHDU.from_columns(fits.ColDefs([c1, c2])) thdu.writeto(self.temp('table.fits')) with fits.open(self.temp('table.fits'), mode='update') as hdul: hdul[1].data['F1'][1] = True hdul[1].data['F2'][0] = True with fits.open(self.temp('table.fits')) as hdul: assert (hdul[1].data['F1'] == [True, True]).all() assert (hdul[1].data['F2'] == [True, True]).all() def test_missing_tnull(self): """Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/197""" c = fits.Column('F1', 'A3', null='---', array=np.array(['1.0', '2.0', '---', '3.0']), ascii=True) table = fits.TableHDU.from_columns([c]) table.writeto(self.temp('test.fits')) # Now let's delete the TNULL1 keyword, making this essentially # unreadable with fits.open(self.temp('test.fits'), mode='update') as h: h[1].header['TFORM1'] = 'E3' del h[1].header['TNULL1'] with fits.open(self.temp('test.fits')) as h: pytest.raises(ValueError, lambda: h[1].data['F1']) try: with fits.open(self.temp('test.fits')) as h: h[1].data['F1'] except ValueError as e: assert str(e).endswith( "the header may be missing the necessary TNULL1 " "keyword or the table contains invalid data") def test_blank_field_zero(self): """Regression test for https://github.com/astropy/astropy/issues/5134 Blank values in numerical columns of ASCII tables should be replaced with zeros, so they can be loaded into numpy arrays. When a TNULL value is set and there are blank fields not equal to that value, they should be replaced with zeros. """ # Test an integer column with blank string as null nullval1 = ' ' c1 = fits.Column('F1', format='I8', null=nullval1, array=np.array([0, 1, 2, 3, 4]), ascii=True) table = fits.TableHDU.from_columns([c1]) table.writeto(self.temp('ascii_null.fits')) # Replace the 1st col, 3rd row, with a null field. with open(self.temp('ascii_null.fits'), mode='r+') as h: nulled = h.read().replace('2 ', ' ') h.seek(0) h.write(nulled) with fits.open(self.temp('ascii_null.fits'), memmap=True) as f: assert f[1].data[2][0] == 0 # Test a float column with a null value set and blank fields. nullval2 = 'NaN' c2 = fits.Column('F1', format='F12.8', null=nullval2, array=np.array([1.0, 2.0, 3.0, 4.0]), ascii=True) table = fits.TableHDU.from_columns([c2]) table.writeto(self.temp('ascii_null2.fits')) # Replace the 1st col, 3rd row, with a null field. with open(self.temp('ascii_null2.fits'), mode='r+') as h: nulled = h.read().replace('3.00000000', ' ') h.seek(0) h.write(nulled) with fits.open(self.temp('ascii_null2.fits'), memmap=True) as f: # (Currently it should evaluate to 0.0, but if a TODO in fitsrec is # completed, then it should evaluate to NaN.) assert f[1].data[2][0] == 0.0 or np.isnan(f[1].data[2][0]) def test_column_array_type_mismatch(self): """Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/218""" arr = [-99] * 20 col = fits.Column('mag', format='E', array=arr) assert (arr == col.array).all() def test_table_none(self): """Regression test for https://github.com/spacetelescope/PyFITS/issues/27 """ with fits.open(self.data('tb.fits')) as h: h[1].data h[1].data = None assert isinstance(h[1].data, fits.FITS_rec) assert len(h[1].data) == 0 h[1].writeto(self.temp('test.fits')) with fits.open(self.temp('test.fits')) as h: assert h[1].header['NAXIS'] == 2 assert h[1].header['NAXIS1'] == 12 assert h[1].header['NAXIS2'] == 0 assert isinstance(h[1].data, fits.FITS_rec) assert len(h[1].data) == 0 def test_unncessary_table_load(self): """Test unnecessary parsing and processing of FITS tables when writing direclty from one FITS file to a new file without first reading the data for user manipulation. In other words, it should be possible to do a direct copy of the raw data without unecessary processing of the data. """ with fits.open(self.data('table.fits')) as h: h[1].writeto(self.temp('test.fits')) # Since this was a direct copy the h[1].data attribute should not have # even been accessed (since this means the data was read and parsed) assert 'data' not in h[1].__dict__ with fits.open(self.data('table.fits')) as h1: with fits.open(self.temp('test.fits')) as h2: assert str(h1[1].header) == str(h2[1].header) assert comparerecords(h1[1].data, h2[1].data) def test_table_from_columns_of_other_table(self): """Tests a rare corner case where the columns of an existing table are used to create a new table with the new_table function. In this specific case, however, the existing table's data has not been read yet, so new_table has to get at it through the Delayed proxy. Note: Although this previously tested new_table it now uses BinTableHDU.from_columns directly, around which new_table is a mere wrapper. """ hdul = fits.open(self.data('table.fits')) # Make sure the column array is in fact delayed... assert isinstance(hdul[1].columns._arrays[0], Delayed) # Create a new table... t = fits.BinTableHDU.from_columns(hdul[1].columns) # The original columns should no longer be delayed... assert not isinstance(hdul[1].columns._arrays[0], Delayed) t.writeto(self.temp('test.fits')) with fits.open(self.temp('test.fits')) as hdul2: assert comparerecords(hdul[1].data, hdul2[1].data) hdul.close() def test_bintable_to_asciitable(self): """Tests initializing a TableHDU with the data from a BinTableHDU.""" with fits.open(self.data('tb.fits')) as hdul: tbdata = hdul[1].data tbhdu = fits.TableHDU(data=tbdata) with ignore_warnings(): tbhdu.writeto(self.temp('test.fits'), overwrite=True) with fits.open(self.temp('test.fits')) as hdul2: tbdata2 = hdul2[1].data assert np.all(tbdata['c1'] == tbdata2['c1']) assert np.all(tbdata['c2'] == tbdata2['c2']) # c3 gets converted from float32 to float64 when writing # test.fits, so cast to float32 before testing that the correct # value is retrieved assert np.all(tbdata['c3'].astype(np.float32) == tbdata2['c3'].astype(np.float32)) # c4 is a boolean column in the original table; we want ASCII # columns to convert these to columns of 'T'/'F' strings assert np.all(np.where(tbdata['c4'], 'T', 'F') == tbdata2['c4']) def test_pickle(self): """ Regression test for https://github.com/astropy/astropy/issues/1597 Tests for pickling FITS_rec objects """ # open existing FITS tables (images pickle by default, no test needed): with fits.open(self.data('tb.fits')) as btb: # Test column array is delayed and can pickle assert isinstance(btb[1].columns._arrays[0], Delayed) btb_pd = pickle.dumps(btb[1].data) btb_pl = pickle.loads(btb_pd) # It should not be delayed any more assert not isinstance(btb[1].columns._arrays[0], Delayed) assert comparerecords(btb_pl, btb[1].data) with fits.open(self.data('ascii.fits')) as asc: asc_pd = pickle.dumps(asc[1].data) asc_pl = pickle.loads(asc_pd) assert comparerecords(asc_pl, asc[1].data) with fits.open(self.data('random_groups.fits')) as rgr: rgr_pd = pickle.dumps(rgr[0].data) rgr_pl = pickle.loads(rgr_pd) assert comparerecords(rgr_pl, rgr[0].data) with fits.open(self.data('zerowidth.fits')) as zwc: # Doesn't pickle zero-width (_phanotm) column 'ORBPARM' with ignore_warnings(): zwc_pd = pickle.dumps(zwc[2].data) zwc_pl = pickle.loads(zwc_pd) assert comparerecords(zwc_pl, zwc[2].data) def test_zero_length_table(self): array = np.array([], dtype=[ ('a', 'i8'), ('b', 'S64'), ('c', ('i4', (3, 2)))]) hdu = fits.BinTableHDU(array) assert hdu.header['NAXIS1'] == 96 assert hdu.header['NAXIS2'] == 0 assert hdu.header['TDIM3'] == '(2,3)' field = hdu.data.field(1) assert field.shape == (0,) def test_dim_column_byte_order_mismatch(self): """ When creating a table column with non-trivial TDIMn, and big-endian array data read from an existing FITS file, the data should not be unnecessarily byteswapped. Regression test for https://github.com/astropy/astropy/issues/3561 """ data = fits.getdata(self.data('random_groups.fits'))['DATA'] col = fits.Column(name='TEST', array=data, dim='(3,1,128,1,1)', format='1152E') thdu = fits.BinTableHDU.from_columns([col]) thdu.writeto(self.temp('test.fits')) with fits.open(self.temp('test.fits')) as hdul: assert np.all(hdul[1].data['TEST'] == data) def test_fits_rec_from_existing(self): """ Tests creating a `FITS_rec` object with `FITS_rec.from_columns` from an existing `FITS_rec` object read from a FITS file. This ensures that the per-column arrays are updated properly. Regression test for https://github.com/spacetelescope/PyFITS/issues/99 """ # The use case that revealed this problem was trying to create a new # table from an existing table, but with additional rows so that we can # append data from a second table (with the same column structure) data1 = fits.getdata(self.data('tb.fits')) data2 = fits.getdata(self.data('tb.fits')) nrows = len(data1) + len(data2) merged = fits.FITS_rec.from_columns(data1, nrows=nrows) merged[len(data1):] = data2 mask = merged['c1'] > 1 masked = merged[mask] # The test table only has two rows, only the second of which is > 1 for # the 'c1' column assert comparerecords(data1[1:], masked[:1]) assert comparerecords(data1[1:], masked[1:]) # Double check that the original data1 table hasn't been affected by # its use in creating the "merged" table assert comparerecords(data1, fits.getdata(self.data('tb.fits'))) def test_update_string_column_inplace(self): """ Regression test for https://github.com/astropy/astropy/issues/4452 Ensure that changes to values in a string column are saved when a file is opened in ``mode='update'``. """ data = np.array([('abc',)], dtype=[('a', 'S3')]) fits.writeto(self.temp('test.fits'), data) with fits.open(self.temp('test.fits'), mode='update') as hdul: hdul[1].data['a'][0] = 'XYZ' assert hdul[1].data['a'][0] == 'XYZ' with fits.open(self.temp('test.fits')) as hdul: assert hdul[1].data['a'][0] == 'XYZ' # Test update but with a non-trivial TDIMn data = np.array([([['abc', 'def', 'geh'], ['ijk', 'lmn', 'opq']],)], dtype=[('a', ('S3', (2, 3)))]) fits.writeto(self.temp('test2.fits'), data) expected = [['abc', 'def', 'geh'], ['ijk', 'XYZ', 'opq']] with fits.open(self.temp('test2.fits'), mode='update') as hdul: assert hdul[1].header['TDIM1'] == '(3,3,2)' # Note: Previously I wrote data['a'][0][1, 1] to address # the single row. However, this is broken for chararray because # data['a'][0] does *not* return a view of the original array--this # is a bug in chararray though and not a bug in any FITS-specific # code so we'll roll with it for now... # (by the way the bug in question is fixed in newer Numpy versions) hdul[1].data['a'][0, 1, 1] = 'XYZ' assert np.all(hdul[1].data['a'][0] == expected) with fits.open(self.temp('test2.fits')) as hdul: assert hdul[1].header['TDIM1'] == '(3,3,2)' assert np.all(hdul[1].data['a'][0] == expected) @pytest.mark.skipif('not HAVE_OBJGRAPH') def test_reference_leak(self): """Regression test for https://github.com/astropy/astropy/pull/520""" def readfile(filename): with fits.open(filename) as hdul: data = hdul[1].data.copy() for colname in data.dtype.names: data[colname] with _refcounting('FITS_rec'): readfile(self.data('memtest.fits')) @pytest.mark.skipif('not HAVE_OBJGRAPH') def test_reference_leak2(self, tmpdir): """ Regression test for https://github.com/astropy/astropy/pull/4539 This actually re-runs a small set of tests that I found, during careful testing, exhibited the reference leaks fixed by #4539, but now with reference counting around each test to ensure that the leaks are fixed. """ from .test_core import TestCore from .test_connect import TestMultipleHDU t1 = TestCore() t1.setup() try: with _refcounting('FITS_rec'): t1.test_add_del_columns2() finally: t1.teardown() del t1 t2 = self.__class__() for test_name in ['test_recarray_to_bintablehdu', 'test_numpy_ndarray_to_bintablehdu', 'test_new_table_from_recarray', 'test_new_fitsrec']: t2.setup() try: with _refcounting('FITS_rec'): getattr(t2, test_name)() finally: t2.teardown() del t2 t3 = TestMultipleHDU() t3.setup_class() try: with _refcounting('FITS_rec'): t3.test_read(tmpdir) finally: t3.teardown_class() del t3 def test_dump_clobber_vs_overwrite(self): with fits.open(self.data('table.fits')) as hdul: tbhdu = hdul[1] datafile = self.temp('data.txt') cdfile = self.temp('coldefs.txt') hfile = self.temp('header.txt') tbhdu.dump(datafile, cdfile, hfile) tbhdu.dump(datafile, cdfile, hfile, overwrite=True) with catch_warnings(AstropyDeprecationWarning) as warning_lines: tbhdu.dump(datafile, cdfile, hfile, clobber=True) assert warning_lines[0].category == AstropyDeprecationWarning assert (str(warning_lines[0].message) == '"clobber" was ' 'deprecated in version 2.0 and will be removed in a ' 'future version. Use argument "overwrite" instead.') def test_pseudo_unsigned_ints(self): """ Tests updating a table column containing pseudo-unsigned ints. """ data = np.array([1, 2, 3], dtype=np.uint32) col = fits.Column(name='A', format='1J', bzero=2**31, array=data) thdu = fits.BinTableHDU.from_columns([col]) thdu.writeto(self.temp('test.fits')) # Test that the file wrote out correctly with fits.open(self.temp('test.fits'), uint=True) as hdul: hdu = hdul[1] assert 'TZERO1' in hdu.header assert hdu.header['TZERO1'] == 2**31 assert hdu.data['A'].dtype == np.dtype('uint32') assert np.all(hdu.data['A'] == data) # Test updating the unsigned int data hdu.data['A'][0] = 99 hdu.writeto(self.temp('test2.fits')) with fits.open(self.temp('test2.fits'), uint=True) as hdul: hdu = hdul[1] assert 'TZERO1' in hdu.header assert hdu.header['TZERO1'] == 2**31 assert hdu.data['A'].dtype == np.dtype('uint32') assert np.all(hdu.data['A'] == [99, 2, 3]) def test_column_with_scaling(self): """Check that a scaled column if correctly saved once it is modified. Regression test for https://github.com/astropy/astropy/issues/6887 """ c1 = fits.Column(name='c1', array=np.array([1], dtype='>i2'), format='1I', bscale=1, bzero=32768) S = fits.HDUList([fits.PrimaryHDU(), fits.BinTableHDU.from_columns([c1])]) # Change value in memory S[1].data['c1'][0] = 2 S.writeto(self.temp("a.fits")) assert S[1].data['c1'] == 2 # Read and change value in memory with fits.open(self.temp("a.fits")) as X: X[1].data['c1'][0] = 10 assert X[1].data['c1'][0] == 10 # Write back to file X.writeto(self.temp("b.fits")) # Now check the file with fits.open(self.temp("b.fits")) as hdul: assert hdul[1].data['c1'][0] == 10 @contextlib.contextmanager def _refcounting(type_): """ Perform the body of a with statement with reference counting for the given type (given by class name)--raises an assertion error if there are more unfreed objects of the given type than when we entered the with statement. """ gc.collect() refcount = len(objgraph.by_type(type_)) yield refcount gc.collect() assert len(objgraph.by_type(type_)) <= refcount, \ "More {0!r} objects still in memory than before." class TestVLATables(FitsTestCase): """Tests specific to tables containing variable-length arrays.""" def test_variable_length_columns(self): def test(format_code): col = fits.Column(name='QUAL_SPE', format=format_code, array=[[0] * 1571] * 225) tb_hdu = fits.BinTableHDU.from_columns([col]) pri_hdu = fits.PrimaryHDU() hdu_list = fits.HDUList([pri_hdu, tb_hdu]) with ignore_warnings(): hdu_list.writeto(self.temp('toto.fits'), overwrite=True) with fits.open(self.temp('toto.fits')) as toto: q = toto[1].data.field('QUAL_SPE') assert (q[0][4:8] == np.array([0, 0, 0, 0], dtype=np.uint8)).all() assert toto[1].columns[0].format.endswith('J(1571)') for code in ('PJ()', 'QJ()'): test(code) def test_extend_variable_length_array(self): """Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/54""" def test(format_code): arr = [[1] * 10] * 10 col1 = fits.Column(name='TESTVLF', format=format_code, array=arr) col2 = fits.Column(name='TESTSCA', format='J', array=[1] * 10) tb_hdu = fits.BinTableHDU.from_columns([col1, col2], nrows=15) # This asserts that the normal 'scalar' column's length was extended assert len(tb_hdu.data['TESTSCA']) == 15 # And this asserts that the VLF column was extended in the same manner assert len(tb_hdu.data['TESTVLF']) == 15 # We can't compare the whole array since the _VLF is an array of # objects, but comparing just the edge case rows should suffice assert (tb_hdu.data['TESTVLF'][0] == arr[0]).all() assert (tb_hdu.data['TESTVLF'][9] == arr[9]).all() assert (tb_hdu.data['TESTVLF'][10] == ([0] * 10)).all() assert (tb_hdu.data['TESTVLF'][-1] == ([0] * 10)).all() for code in ('PJ()', 'QJ()'): test(code) def test_variable_length_table_format_pd_from_object_array(self): def test(format_code): a = np.array([np.array([7.2e-20, 7.3e-20]), np.array([0.0]), np.array([0.0])], 'O') acol = fits.Column(name='testa', format=format_code, array=a) tbhdu = fits.BinTableHDU.from_columns([acol]) with ignore_warnings(): tbhdu.writeto(self.temp('newtable.fits'), overwrite=True) with fits.open(self.temp('newtable.fits')) as tbhdu1: assert tbhdu1[1].columns[0].format.endswith('D(2)') for j in range(3): for i in range(len(a[j])): assert tbhdu1[1].data.field(0)[j][i] == a[j][i] for code in ('PD()', 'QD()'): test(code) def test_variable_length_table_format_pd_from_list(self): def test(format_code): a = [np.array([7.2e-20, 7.3e-20]), np.array([0.0]), np.array([0.0])] acol = fits.Column(name='testa', format=format_code, array=a) tbhdu = fits.BinTableHDU.from_columns([acol]) with ignore_warnings(): tbhdu.writeto(self.temp('newtable.fits'), overwrite=True) with fits.open(self.temp('newtable.fits')) as tbhdu1: assert tbhdu1[1].columns[0].format.endswith('D(2)') for j in range(3): for i in range(len(a[j])): assert tbhdu1[1].data.field(0)[j][i] == a[j][i] for code in ('PD()', 'QD()'): test(code) def test_variable_length_table_format_pa_from_object_array(self): def test(format_code): a = np.array([np.array(['a', 'b', 'c']), np.array(['d', 'e']), np.array(['f'])], 'O') acol = fits.Column(name='testa', format=format_code, array=a) tbhdu = fits.BinTableHDU.from_columns([acol]) with ignore_warnings(): tbhdu.writeto(self.temp('newtable.fits'), overwrite=True) with fits.open(self.temp('newtable.fits')) as hdul: assert hdul[1].columns[0].format.endswith('A(3)') for j in range(3): for i in range(len(a[j])): assert hdul[1].data.field(0)[j][i] == a[j][i] for code in ('PA()', 'QA()'): test(code) def test_variable_length_table_format_pa_from_list(self): def test(format_code): a = ['a', 'ab', 'abc'] acol = fits.Column(name='testa', format=format_code, array=a) tbhdu = fits.BinTableHDU.from_columns([acol]) with ignore_warnings(): tbhdu.writeto(self.temp('newtable.fits'), overwrite=True) with fits.open(self.temp('newtable.fits')) as hdul: assert hdul[1].columns[0].format.endswith('A(3)') for j in range(3): for i in range(len(a[j])): assert hdul[1].data.field(0)[j][i] == a[j][i] for code in ('PA()', 'QA()'): test(code) def test_getdata_vla(self): """Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/200""" def test(format_code): col = fits.Column(name='QUAL_SPE', format=format_code, array=[np.arange(1572)] * 225) tb_hdu = fits.BinTableHDU.from_columns([col]) pri_hdu = fits.PrimaryHDU() hdu_list = fits.HDUList([pri_hdu, tb_hdu]) with ignore_warnings(): hdu_list.writeto(self.temp('toto.fits'), overwrite=True) data = fits.getdata(self.temp('toto.fits')) # Need to compare to the original data row by row since the FITS_rec # returns an array of _VLA objects for row_a, row_b in zip(data['QUAL_SPE'], col.array): assert (row_a == row_b).all() for code in ('PJ()', 'QJ()'): test(code) def test_copy_vla(self): """ Regression test for https://github.com/spacetelescope/PyFITS/issues/47 """ # Make a file containing a couple of VLA tables arr1 = [np.arange(n + 1) for n in range(255)] arr2 = [np.arange(255, 256 + n) for n in range(255)] # A dummy non-VLA column needed to reproduce issue #47 c = fits.Column('test', format='J', array=np.arange(255)) c1 = fits.Column('A', format='PJ', array=arr1) c2 = fits.Column('B', format='PJ', array=arr2) t1 = fits.BinTableHDU.from_columns([c, c1]) t2 = fits.BinTableHDU.from_columns([c, c2]) hdul = fits.HDUList([fits.PrimaryHDU(), t1, t2]) hdul.writeto(self.temp('test.fits'), overwrite=True) # Just test that the test file wrote out correctly with fits.open(self.temp('test.fits')) as h: assert h[1].header['TFORM2'] == 'PJ(255)' assert h[2].header['TFORM2'] == 'PJ(255)' assert comparerecords(h[1].data, t1.data) assert comparerecords(h[2].data, t2.data) # Try copying the second VLA and writing to a new file with fits.open(self.temp('test.fits')) as h: new_hdu = fits.BinTableHDU(data=h[2].data, header=h[2].header) new_hdu.writeto(self.temp('test3.fits')) with fits.open(self.temp('test3.fits')) as h2: assert comparerecords(h2[1].data, t2.data) new_hdul = fits.HDUList([fits.PrimaryHDU()]) new_hdul.writeto(self.temp('test2.fits')) # Open several copies of the test file and append copies of the second # VLA table with fits.open(self.temp('test2.fits'), mode='append') as new_hdul: for _ in range(2): with fits.open(self.temp('test.fits')) as h: new_hdul.append(h[2]) new_hdul.flush() # Test that all the VLA copies wrote correctly with fits.open(self.temp('test2.fits')) as new_hdul: for idx in range(1, 3): assert comparerecords(new_hdul[idx].data, t2.data) # These are tests that solely test the Column and ColDefs interfaces and # related functionality without directly involving full tables; currently there # are few of these but I expect there to be more as I improve the test coverage class TestColumnFunctions(FitsTestCase): def test_column_format_interpretation(self): """ Test to ensure that when Numpy-style record formats are passed in to the Column constructor for the format argument, they are recognized so long as it's unambiguous (where "unambiguous" here is questionable since Numpy is case insensitive when parsing the format codes. But their "proper" case is lower-case, so we can accept that. Basically, actually, any key in the NUMPY2FITS dict should be accepted. """ for recformat, fitsformat in NUMPY2FITS.items(): c = fits.Column('TEST', np.dtype(recformat)) c.format == fitsformat c = fits.Column('TEST', recformat) c.format == fitsformat c = fits.Column('TEST', fitsformat) c.format == fitsformat # Test a few cases that are ambiguous in that they *are* valid binary # table formats though not ones that are likely to be used, but are # also valid common ASCII table formats c = fits.Column('TEST', 'I4') assert c.format == 'I4' assert c.format.format == 'I' assert c.format.width == 4 c = fits.Column('TEST', 'F15.8') assert c.format == 'F15.8' assert c.format.format == 'F' assert c.format.width == 15 assert c.format.precision == 8 c = fits.Column('TEST', 'E15.8') assert c.format.format == 'E' assert c.format.width == 15 assert c.format.precision == 8 c = fits.Column('TEST', 'D15.8') assert c.format.format == 'D' assert c.format.width == 15 assert c.format.precision == 8 # zero-precision should be allowed as well, for float types # https://github.com/astropy/astropy/issues/3422 c = fits.Column('TEST', 'F10.0') assert c.format.format == 'F' assert c.format.width == 10 assert c.format.precision == 0 c = fits.Column('TEST', 'E10.0') assert c.format.format == 'E' assert c.format.width == 10 assert c.format.precision == 0 c = fits.Column('TEST', 'D10.0') assert c.format.format == 'D' assert c.format.width == 10 assert c.format.precision == 0 # These are a couple cases where the format code is a valid binary # table format, and is not strictly a valid ASCII table format but # could be *interpreted* as one by appending a default width. This # will only happen either when creating an ASCII table or when # explicitly specifying ascii=True when the column is created c = fits.Column('TEST', 'I') assert c.format == 'I' assert c.format.recformat == 'i2' c = fits.Column('TEST', 'I', ascii=True) assert c.format == 'I10' c = fits.Column('TEST', 'E') assert c.format == 'E' assert c.format.recformat == 'f4' c = fits.Column('TEST', 'E', ascii=True) assert c.format == 'E15.7' # F is not a valid binary table format so it should be unambiguously # treated as an ASCII column c = fits.Column('TEST', 'F') assert c.format == 'F16.7' c = fits.Column('TEST', 'D') assert c.format == 'D' assert c.format.recformat == 'f8' c = fits.Column('TEST', 'D', ascii=True) assert c.format == 'D25.17' def test_zero_precision_float_column(self): """ Regression test for https://github.com/astropy/astropy/issues/3422 """ c = fits.Column('TEST', 'F5.0', array=[1.1, 2.2, 3.3]) # The decimal places will be clipped t = fits.TableHDU.from_columns([c]) t.writeto(self.temp('test.fits')) with fits.open(self.temp('test.fits')) as hdul: assert hdul[1].header['TFORM1'] == 'F5.0' assert hdul[1].data['TEST'].dtype == np.dtype('float64') assert np.all(hdul[1].data['TEST'] == [1.0, 2.0, 3.0]) # Check how the raw data looks raw = np.rec.recarray.field(hdul[1].data, 'TEST') assert raw.tobytes() == b' 1. 2. 3.' def test_column_array_type_mismatch(self): """Regression test for https://aeon.stsci.edu/ssb/trac/pyfits/ticket/218""" arr = [-99] * 20 col = fits.Column('mag', format='E', array=arr) assert (arr == col.array).all() def test_new_coldefs_with_invalid_seqence(self): """Test that a TypeError is raised when a ColDefs is instantiated with a sequence of non-Column objects. """ pytest.raises(TypeError, fits.ColDefs, [1, 2, 3]) def test_coldefs_init_from_array(self): """Test that ColDefs._init_from_array works with single element data- types as well as multi-element data-types """ nd_array = np.ndarray((1,), dtype=[('A', '<u4', (2,)), ('B', '>u2')]) col_defs = fits.column.ColDefs(nd_array) assert 2**31 == col_defs['A'].bzero assert 2**15 == col_defs['B'].bzero def test_pickle(self): """ Regression test for https://github.com/astropy/astropy/issues/1597 Tests for pickling FITS_rec objects """ # open existing FITS tables (images pickle by default, no test needed): with fits.open(self.data('tb.fits')) as btb: # Test column array is delayed and can pickle assert isinstance(btb[1].columns._arrays[0], Delayed) btb_pd = pickle.dumps(btb[1].data) btb_pl = pickle.loads(btb_pd) # It should not be delayed any more assert not isinstance(btb[1].columns._arrays[0], Delayed) assert comparerecords(btb_pl, btb[1].data) with fits.open(self.data('ascii.fits')) as asc: asc_pd = pickle.dumps(asc[1].data) asc_pl = pickle.loads(asc_pd) assert comparerecords(asc_pl, asc[1].data) with fits.open(self.data('random_groups.fits')) as rgr: rgr_pd = pickle.dumps(rgr[0].data) rgr_pl = pickle.loads(rgr_pd) assert comparerecords(rgr_pl, rgr[0].data) with fits.open(self.data('zerowidth.fits')) as zwc: # Doesn't pickle zero-width (_phanotm) column 'ORBPARM' zwc_pd = pickle.dumps(zwc[2].data) zwc_pl = pickle.loads(zwc_pd) with pytest.warns(UserWarning, match=r'Field 2 has a repeat count ' r'of 0 in its format code'): assert comparerecords(zwc_pl, zwc[2].data) def test_column_lookup_by_name(self): """Tests that a `ColDefs` can be indexed by column name.""" a = fits.Column(name='a', format='D') b = fits.Column(name='b', format='D') cols = fits.ColDefs([a, b]) assert cols['a'] == cols[0] assert cols['b'] == cols[1] def test_column_attribute_change_after_removal(self): """ This is a test of the column attribute change notification system. After a column has been removed from a table (but other references are kept to that same column) changes to that column's attributes should not trigger a notification on the table it was removed from. """ # One way we can check this is to ensure there are no further changes # to the header table = fits.BinTableHDU.from_columns([ fits.Column('a', format='D'), fits.Column('b', format='D')]) b = table.columns['b'] table.columns.del_col('b') assert table.data.dtype.names == ('a',) b.name = 'HELLO' assert b.name == 'HELLO' assert 'TTYPE2' not in table.header assert table.header['TTYPE1'] == 'a' assert table.columns.names == ['a'] with pytest.raises(KeyError): table.columns['b'] # Make sure updates to the remaining column still work table.columns.change_name('a', 'GOODBYE') with pytest.raises(KeyError): table.columns['a'] assert table.columns['GOODBYE'].name == 'GOODBYE' assert table.data.dtype.names == ('GOODBYE',) assert table.columns.names == ['GOODBYE'] assert table.data.columns.names == ['GOODBYE'] table.columns['GOODBYE'].name = 'foo' with pytest.raises(KeyError): table.columns['GOODBYE'] assert table.columns['foo'].name == 'foo' assert table.data.dtype.names == ('foo',) assert table.columns.names == ['foo'] assert table.data.columns.names == ['foo'] def test_x_column_deepcopy(self): """ Regression test for https://github.com/astropy/astropy/pull/4514 Tests that columns with the X (bit array) format can be deep-copied. """ c = fits.Column('xcol', format='5X', array=[1, 0, 0, 1, 0]) c2 = copy.deepcopy(c) assert c2.name == c.name assert c2.format == c.format assert np.all(c2.array == c.array) def test_p_column_deepcopy(self): """ Regression test for https://github.com/astropy/astropy/pull/4514 Tests that columns with the P/Q formats (variable length arrays) can be deep-copied. """ c = fits.Column('pcol', format='PJ', array=[[1, 2], [3, 4, 5]]) c2 = copy.deepcopy(c) assert c2.name == c.name assert c2.format == c.format assert np.all(c2.array[0] == c.array[0]) assert np.all(c2.array[1] == c.array[1]) c3 = fits.Column('qcol', format='QJ', array=[[1, 2], [3, 4, 5]]) c4 = copy.deepcopy(c3) assert c4.name == c3.name assert c4.format == c3.format assert np.all(c4.array[0] == c3.array[0]) assert np.all(c4.array[1] == c3.array[1]) def test_column_verify_keywords(self): """ Test that the keyword arguments used to initialize a Column, specifically those that typically read from a FITS header (so excluding array), are verified to have a valid value. """ with pytest.raises(AssertionError) as err: _ = fits.Column(1, format='I', array=[1, 2, 3, 4, 5]) assert 'Column name must be a string able to fit' in str(err.value) with pytest.raises(VerifyError) as err: _ = fits.Column('col', format=0, null='Nan', disp=1, coord_type=1, coord_unit=2, coord_inc='1', time_ref_pos=1, coord_ref_point='1', coord_ref_value='1') err_msgs = ['keyword arguments to Column were invalid', 'TFORM', 'TNULL', 'TDISP', 'TCTYP', 'TCUNI', 'TCRPX', 'TCRVL', 'TCDLT', 'TRPOS'] for msg in err_msgs: assert msg in str(err.value) def test_column_verify_start(self): """ Regression test for https://github.com/astropy/astropy/pull/6359 Test the validation of the column start position option (ASCII table only), corresponding to ``TBCOL`` keyword. Test whether the VerifyError message generated is the one with highest priority, i.e. the order of error messages to be displayed is maintained. """ with pytest.raises(VerifyError) as err: _ = fits.Column('a', format='B', start='a', array=[1, 2, 3]) assert "start option (TBCOLn) is not allowed for binary table columns" in str(err.value) with pytest.raises(VerifyError) as err: _ = fits.Column('a', format='I', start='a', array=[1, 2, 3]) assert "start option (TBCOLn) must be a positive integer (got 'a')." in str(err.value) with pytest.raises(VerifyError) as err: _ = fits.Column('a', format='I', start='-56', array=[1, 2, 3]) assert "start option (TBCOLn) must be a positive integer (got -56)." in str(err.value) @pytest.mark.parametrize('keys', [{'TFORM': 'Z', 'TDISP': 'E'}, {'TFORM': '2', 'TDISP': '2E'}, {'TFORM': 3, 'TDISP': 6.3}, {'TFORM': float, 'TDISP': np.float64}, {'TFORM': '', 'TDISP': 'E.5'}]) def test_column_verify_formats(self, keys): """ Additional tests for verification of 'TFORM' and 'TDISP' keyword arguments used to initialize a Column. """ with pytest.raises(VerifyError) as err: _ = fits.Column('col', format=keys['TFORM'], disp=keys['TDISP']) for key in keys.keys(): assert key in str(err.value) assert str(keys[key]) in str(err.value) def test_regression_5383(): # Regression test for an undefined variable x = np.array([1, 2, 3]) col = fits.Column(name='a', array=x, format='E') hdu = fits.BinTableHDU.from_columns([col]) del hdu._header['TTYPE1'] hdu.columns[0].name = 'b' def test_table_to_hdu(): from astropy.table import Table table = Table([[1, 2, 3], ['a', 'b', 'c'], [2.3, 4.5, 6.7]], names=['a', 'b', 'c'], dtype=['i', 'U1', 'f']) table['a'].unit = 'm/s' table['b'].unit = 'not-a-unit' table.meta['foo'] = 'bar' with catch_warnings() as w: hdu = fits.BinTableHDU(table, header=fits.Header({'TEST': 1})) assert len(w) == 1 assert str(w[0].message).startswith("'not-a-unit' did not parse as" " fits unit") for name in 'abc': assert np.array_equal(table[name], hdu.data[name]) # Check that TUNITn cards appear in the correct order # (https://github.com/astropy/astropy/pull/5720) assert hdu.header.index('TUNIT1') < hdu.header.index('TTYPE2') assert hdu.header['FOO'] == 'bar' assert hdu.header['TEST'] == 1 def test_regression_scalar_indexing(): # Indexing a FITS_rec with a tuple that returns a scalar record # should work x = np.array([(1.0, 2), (3.0, 4)], dtype=[('x', float), ('y', int)]).view(fits.FITS_rec) x1a = x[1] # this should succeed. x1b = x[(1,)] # FITS_record does not define __eq__; so test elements. assert all(a == b for a, b in zip(x1a, x1b)) def test_new_column_attributes_preserved(tmpdir): # Regression test for https://github.com/astropy/astropy/issues/7145 # This makes sure that for now we don't clear away keywords that have # newly been recognized (in Astropy 3.0) as special column attributes but # instead just warn that we might do so in future. The new keywords are: # TCTYP, TCUNI, TCRPX, TCRVL, TCDLT, TRPOS col = [] col.append(fits.Column(name="TIME", format="1E", unit="s")) col.append(fits.Column(name="RAWX", format="1I", unit="pixel")) col.append(fits.Column(name="RAWY", format="1I")) cd = fits.ColDefs(col) hdr = fits.Header() # Keywords that will get ignored in favor of these in the data hdr['TUNIT1'] = 'pixel' hdr['TUNIT2'] = 'm' hdr['TUNIT3'] = 'm' # Keywords that were added in Astropy 3.0 that should eventually be # ignored and set on the data instead hdr['TCTYP2'] = 'RA---TAN' hdr['TCTYP3'] = 'ANGLE' hdr['TCRVL2'] = -999.0 hdr['TCRVL3'] = -999.0 hdr['TCRPX2'] = 1.0 hdr['TCRPX3'] = 1.0 hdr['TALEN2'] = 16384 hdr['TALEN3'] = 1024 hdr['TCUNI2'] = 'angstrom' hdr['TCUNI3'] = 'deg' # Other non-relevant keywords hdr['RA'] = 1.5 hdr['DEC'] = 3.0 with pytest.warns(AstropyDeprecationWarning) as warning_list: hdu = fits.BinTableHDU.from_columns(cd, hdr) assert str(warning_list[0].message).startswith("The following keywords are now recognized as special") # First, check that special keywords such as TUNIT are ignored in the header # We may want to change that behavior in future, but this is the way it's # been for a while now. assert hdu.columns[0].unit == 's' assert hdu.columns[1].unit == 'pixel' assert hdu.columns[2].unit is None assert hdu.header['TUNIT1'] == 's' assert hdu.header['TUNIT2'] == 'pixel' assert 'TUNIT3' not in hdu.header # TUNIT3 was removed # Now, check that the new special keywords are actually still there # but weren't used to set the attributes on the data assert hdu.columns[0].coord_type is None assert hdu.columns[1].coord_type is None assert hdu.columns[2].coord_type is None assert 'TCTYP1' not in hdu.header assert hdu.header['TCTYP2'] == 'RA---TAN' assert hdu.header['TCTYP3'] == 'ANGLE' # Make sure that other keywords are still there assert hdu.header['RA'] == 1.5 assert hdu.header['DEC'] == 3.0 # Now we can write this HDU to a file and re-load. Re-loading *should* # cause the special column attribtues to be picked up (it's just that when a # header is manually specified, these values are ignored) filename = tmpdir.join('test.fits').strpath hdu.writeto(filename) # Make sure we don't emit a warning in this case with pytest.warns(None) as warning_list: with fits.open(filename) as hdul: hdu2 = hdul[1] assert len(warning_list) == 0 # Check that column attributes are now correctly set assert hdu2.columns[0].unit == 's' assert hdu2.columns[1].unit == 'pixel' assert hdu2.columns[2].unit is None assert hdu2.header['TUNIT1'] == 's' assert hdu2.header['TUNIT2'] == 'pixel' assert 'TUNIT3' not in hdu2.header # TUNIT3 was removed # Now, check that the new special keywords are actually still there # but weren't used to set the attributes on the data assert hdu2.columns[0].coord_type is None assert hdu2.columns[1].coord_type == 'RA---TAN' assert hdu2.columns[2].coord_type == 'ANGLE' assert 'TCTYP1' not in hdu2.header assert hdu2.header['TCTYP2'] == 'RA---TAN' assert hdu2.header['TCTYP3'] == 'ANGLE' # Make sure that other keywords are still there assert hdu2.header['RA'] == 1.5 assert hdu2.header['DEC'] == 3.0 def test_empty_table(tmpdir): ofile = str(tmpdir.join('emptytable.fits')) hdu = fits.BinTableHDU(header=None, data=None, name='TEST') hdu.writeto(ofile) with fits.open(ofile) as hdul: assert hdul['TEST'].data.size == 0 ofile = str(tmpdir.join('emptytable.fits.gz')) hdu = fits.BinTableHDU(header=None, data=None, name='TEST') hdu.writeto(ofile, overwrite=True) with fits.open(ofile) as hdul: assert hdul['TEST'].data.size == 0 def test_a3dtable(tmpdir): testfile = str(tmpdir.join('test.fits')) hdu = fits.BinTableHDU.from_columns([ fits.Column(name='FOO', format='J', array=np.arange(10)) ]) hdu.header['XTENSION'] = 'A3DTABLE' hdu.writeto(testfile, output_verify='ignore') with fits.open(testfile) as hdul: assert hdul[1].header['XTENSION'] == 'A3DTABLE' with catch_warnings() as w: hdul.verify('fix') assert str(w[0].message) == 'Verification reported errors:' assert str(w[2].message).endswith( 'Converted the XTENSION keyword to BINTABLE.') assert hdul[1].header['XTENSION'] == 'BINTABLE' def test_invalid_file(tmp_path): hdu = fits.BinTableHDU() # little trick to write an invalid card ... hdu.header['FOO'] = None hdu.header.cards['FOO']._value = np.nan testfile = tmp_path / 'test.fits' hdu.writeto(testfile, output_verify='ignore') with fits.open(testfile) as hdul: assert hdul[1].data is not None
40.162846
106
0.563714
4a2135a70f9b99a5d077588fea10553d7f201abc
557
py
Python
odin_securities/queries/gets/__init__.py
JamesBrofos/Odin-Securities
a07d3a21bcd3f78513ef394d4e8b620b7ca7fad8
[ "MIT" ]
13
2017-02-04T08:41:10.000Z
2020-06-09T12:43:09.000Z
odin_securities/queries/gets/__init__.py
JamesBrofos/Odin-Securities
a07d3a21bcd3f78513ef394d4e8b620b7ca7fad8
[ "MIT" ]
1
2020-11-15T05:32:18.000Z
2020-11-15T05:32:18.000Z
odin_securities/queries/gets/__init__.py
JamesBrofos/Odin-Securities
a07d3a21bcd3f78513ef394d4e8b620b7ca7fad8
[ "MIT" ]
9
2017-02-05T21:51:44.000Z
2020-03-23T10:55:11.000Z
from .symbols import symbols from .id_for_portfolio import id_for_portfolio from .id_for_symbol import id_for_symbol from .id_for_vendor import id_for_vendor from .id_for_fund import id_for_fund from .prices import prices from .actions import actions from .standard_sessions import standard_sessions from .symbols_for_vendor import symbols_for_vendor from .portfolio import portfolio from .fund import fund, fund_for_fund_id from .positions_for_portfolio_id import positions_for_portfolio_id from .updated_for_symbol_vendor import updated_for_symbol_vendor
39.785714
66
0.879713
4a2136d62beaaf726f187234c0e4ae0c2626a955
1,535
py
Python
tests/test_types_itp_quartairstratigrafie.py
rebot/pydov
1d5f0080440f4e0f983c8087aed9aec1624ba906
[ "MIT" ]
null
null
null
tests/test_types_itp_quartairstratigrafie.py
rebot/pydov
1d5f0080440f4e0f983c8087aed9aec1624ba906
[ "MIT" ]
null
null
null
tests/test_types_itp_quartairstratigrafie.py
rebot/pydov
1d5f0080440f4e0f983c8087aed9aec1624ba906
[ "MIT" ]
null
null
null
"""Module grouping tests for the pydov.types.interpretaties.QuartairStratigrafie class.""" from pydov.types.interpretaties import QuartairStratigrafie from pydov.util.dovutil import build_dov_url from tests.abstract import AbstractTestTypes location_wfs_getfeature = \ 'tests/data/types/interpretaties/quartaire_stratigrafie/wfsgetfeature.xml' location_wfs_feature = \ 'tests/data/types/interpretaties/quartaire_stratigrafie/feature.xml' location_dov_xml = \ 'tests/data/types/interpretaties/quartaire_stratigrafie/' \ 'quartaire_stratigrafie.xml' class TestQuartairStratigrafie(AbstractTestTypes): """Class grouping tests for the pydov.types.interpretaties.QuartairStratigrafie class.""" datatype_class = QuartairStratigrafie namespace = 'http://dov.vlaanderen.be/ocdov/interpretaties' pkey_base = build_dov_url('data/interpretatie/') field_names = [ 'pkey_interpretatie', 'pkey_boring', 'betrouwbaarheid_interpretatie', 'x', 'y', 'diepte_laag_van', 'diepte_laag_tot', 'lid1', 'relatie_lid1_lid2', 'lid2'] field_names_subtypes = [ 'diepte_laag_van', 'diepte_laag_tot', 'lid1', 'relatie_lid1_lid2', 'lid2'] field_names_nosubtypes = [ 'pkey_interpretatie', 'pkey_boring', 'betrouwbaarheid_interpretatie', 'x', 'y'] valid_returnfields = ('pkey_interpretatie', 'pkey_boring') valid_returnfields_subtype = ( 'pkey_interpretatie', 'diepte_laag_van', 'diepte_laag_tot') inexistent_field = 'onbestaand'
37.439024
78
0.740065
4a2137fc201710e1215cf4d83a8c9d809c6aa9de
628
py
Python
mne/decoding/__init__.py
fmamashli/mne-python
52f064415e7c9fa8fe243d22108dcdf3d86505b9
[ "BSD-3-Clause" ]
3
2021-01-04T08:45:56.000Z
2021-05-19T12:25:59.000Z
mne/decoding/__init__.py
fmamashli/mne-python
52f064415e7c9fa8fe243d22108dcdf3d86505b9
[ "BSD-3-Clause" ]
23
2017-09-12T11:08:26.000Z
2019-10-04T11:11:29.000Z
mne/decoding/__init__.py
fmamashli/mne-python
52f064415e7c9fa8fe243d22108dcdf3d86505b9
[ "BSD-3-Clause" ]
3
2019-01-28T13:48:00.000Z
2019-07-10T16:02:11.000Z
"""Decoding and encoding, including machine learning and receptive fields.""" from .transformer import (PSDEstimator, Vectorizer, UnsupervisedSpatialFilter, TemporalFilter, Scaler, FilterEstimator) from .mixin import TransformerMixin from .base import BaseEstimator, LinearModel, get_coef, cross_val_multiscore from .csp import CSP, SPoC from .ems import compute_ems, EMS from .time_frequency import TimeFrequency from .receptive_field import ReceptiveField from .time_delaying_ridge import TimeDelayingRidge from .search_light import SlidingEstimator, GeneralizingEstimator
44.857143
77
0.778662
4a21381177d211e0812ad4107ef9ae72772adbbb
2,414
py
Python
home/models.py
Dogruyer/hospital-automation
e5faffce93c0bda475cd0dbd0e7ef0f55b11564d
[ "Apache-2.0" ]
null
null
null
home/models.py
Dogruyer/hospital-automation
e5faffce93c0bda475cd0dbd0e7ef0f55b11564d
[ "Apache-2.0" ]
null
null
null
home/models.py
Dogruyer/hospital-automation
e5faffce93c0bda475cd0dbd0e7ef0f55b11564d
[ "Apache-2.0" ]
null
null
null
from django.db import models class Hasta(models.Model): adi = models.CharField(max_length=100) yas = models.IntegerField() cinsiyet = models.CharField(max_length=100) tc_kimlik_no = models.CharField(max_length=100) class Hastane(models.Model): adi = models.CharField(max_length=100) lokasyon = models.CharField(max_length=100) sahibi = models.CharField(max_length=100) class Doktor(models.Model): adi = models.CharField(max_length=100) yas = models.IntegerField() cinsiyet = models.CharField(max_length=100) tc_kimlik_no = models.CharField(max_length=100) brans = models.CharField(max_length=100) unvan = models.CharField(max_length=100) bolum = models.CharField(max_length=100) hastane = models.ForeignKey(Hastane) class IdariKadro(models.Model): adi = models.CharField(max_length=100) yas = models.IntegerField() cinsiyet = models.CharField(max_length=100) unvan = models.CharField(max_length=100) bolum = models.CharField(max_length=100) hastane = models.ForeignKey(Hastane) class Kullanici(models.Model): adi = models.CharField(max_length=100) yas = models.IntegerField() cinsiyet = models.CharField(max_length=100) mail = models.EmailField(max_length=100) tc_kimlik_no = models.CharField(max_length=100) aktif = models.BooleanField(default=True) yonetici = models.BooleanField(default=True) class Hastalik(models.Model): adi = models.CharField(max_length=100) bolum = models.CharField(max_length=100) class Teshis(models.Model): adi = models.CharField(max_length=100) hastalik = models.ForeignKey(Hastalik) class Ilac(models.Model): adi = models.CharField(max_length=100) class Recete(models.Model): numara = models.CharField(max_length=100) hasta = models.ForeignKey(Hasta) ilac = models.ForeignKey(Ilac) class Randevu(models.Model): doktor = models.ForeignKey(Doktor) hasta = models.ForeignKey(Hasta) hastane = models.ForeignKey(Hastane) class Klinik(models.Model): adi = models.CharField(max_length=100) lokasyon = models.CharField(max_length=100) class Yonetici(models.Model): adi = models.CharField(max_length=100) yas = models.IntegerField() cinsiyet = models.CharField(max_length=100) class Izinler(models.Model): adi = models.CharField(max_length=100) turu = models.CharField(max_length=100)
28.069767
51
0.73198
4a2139a5ccd5b1d9e30f9257efd2c07085656034
5,970
py
Python
api_extractor_config.py
SigmaAdvancedAnalytics/hydra
bf392dfb0e458d1156f52aa206629c1d1636d7a3
[ "MIT" ]
null
null
null
api_extractor_config.py
SigmaAdvancedAnalytics/hydra
bf392dfb0e458d1156f52aa206629c1d1636d7a3
[ "MIT" ]
null
null
null
api_extractor_config.py
SigmaAdvancedAnalytics/hydra
bf392dfb0e458d1156f52aa206629c1d1636d7a3
[ "MIT" ]
null
null
null
from sqlalchemy import * DEBUG = False # *************************************************************************** # > BE VERY CAREFUL ABOUT CREATE_TABLES. # > WHEN SET TO TRUE IT WILL DROP ALL THE EXISTING TABLES AND CREATES NEW ONES. # *************************************************************************** CREATE_TABLES = False DATETIME_FORMAT = "%Y-%m-%d %H:%M:%S" DATE_FORMAT = "%Y-%m-%d" HASHTAGS_BUFFER_DB = 'hashtags' DATA_FOLDER = 'persistent_data' SCHEMA_NAME = 'imports' #----------------------------------------------------------------------- # NOTE ON SCHEMAS: # The schemas are wrapped inside a function, so that every time the function # is called we get a new set of Column objects. # # This is needed for the 'retry a few times' feature, when we create the # tableclass multiple times. I am not exactlu sure why. #----------------------------------------------------------------------- #----------------------------------------------------------------------- # Twitter Table Schemas #----------------------------------------------------------------------- def twitter_account_schema(): twitter_account_schema = { 'Extract_Datetime': Column(String(length=30)), 'Account_ID': Column(String(length=30)), 'Display_Name': Column(String(length=100)), 'Handle': Column(String(length=30)), 'Statuses_Count': Column(Integer()), 'Followers_Count': Column(Integer()), 'Friends_Count': Column(Integer()), 'Favourites_Count': Column(Integer()), 'Listed_Count': Column(Integer()), 'Profile_URL': Column(String(length=300)), 'Profile_Image': Column(String(length=300)), 'Banner_Image': Column(String(length=300)), 'Location': Column(String(length=100)), 'Timezone': Column(String(length=50)), 'Description': Column(String(length=400)), 'Daily_Mentions_Count': Column(Integer()), 'Autogen_ID': Column(Integer(), primary_key=True), '__tablename__': 'twitter_account_stats', '__table_args__': {'schema' : SCHEMA_NAME} } return twitter_account_schema def twitter_status_schema(): twitter_status_schema = { 'Extract_Datetime': Column(String(length=30)), 'Tweet_ID': Column(String(length=30)), 'Created_Date': Column(String(length=30)), 'Handle': Column(String(length=30)), 'Tweet_Text': Column(String(length=700)), 'Favourite_Count': Column(Integer()), 'Retweet_Count': Column(Integer()), 'Hashtags': Column(String(length=100)), 'Media': Column(String(length=3000)), 'URLs': Column(String(length=500)), 'Place': Column(String(length=500)), 'User_Mentions': Column(String(length=5000)), 'Favorited': Column(String(length=20)), 'Retweeted': Column(String(length=20)), 'In_reply_to_screen_name': Column(String(length=30)), 'Autogen_ID': Column(Integer(), primary_key=True), '__tablename__': 'twitter_statuses', '__table_args__': {'schema' : SCHEMA_NAME} } return twitter_status_schema # For the mssql table def twitter_hashtags_schema(): twitter_hashtags_schema = { 'Extract_Datetime': Column(String(length=30)), 'TweetID': Column(String(length=30)), 'TweetText': Column(String(length=700)), 'AccountID': Column(String(length=30)), 'DisplayName': Column(String(length=100)), 'Handle': Column(String(length=30)), 'CreatedAt': Column(String(length=30)), 'Hashtags': Column(String(length=100)), 'Autogen_ID': Column(Integer(), primary_key=True), '__tablename__': 'twitter_hashtags', '__table_args__': {'schema' : SCHEMA_NAME} } return twitter_hashtags_schema # For the sqlite buffer table twitter_hashtags_sqlite_schema = [ ('TweetID', 'text'), ('TweetText', 'text'), ('AccountID', 'text'), ('DisplayName', 'text'), ('Handle', 'text'), ('CreatedAt', 'text'), ('Hashtags', 'text') ] #----------------------------------------------------------------------- # Youtube Table Schemas #----------------------------------------------------------------------- def channel_table_schema(): channel_table_schema = { 'Extract_Datetime': Column(String(length=30)), 'channel_name': Column(String(length=200)), 'channel_id': Column(String(length=30)), 'total_comments': Column(String(length=30)), 'subscribers': Column(Integer()), 'new_subscribers': Column(Integer()), 'total_views': Column(String(length=30)), 'videos': Column(Integer()), 'Autogen_ID': Column(Integer(), primary_key=True), # add a PK - SQLAlchemy demands this '__tablename__': 'youtube_channel_stats', #tablename assignment is done inside the dictionary '__table_args__': {'schema' : SCHEMA_NAME} } return channel_table_schema def videos_table_schema(): videos_table_schema = { 'Extract_Datetime': Column(String(length=30)), 'publishedAt': Column(String(length=30)), 'video': Column(String(length=50)), 'title': Column(String(length=200)), 'likes': Column(Integer()), 'dislikes': Column(Integer()), 'comments': Column(Integer()), 'shares': Column(Integer()), 'views': Column(Integer), 'averageViewDuration': Column(Integer), 'subscribersGained': Column(Integer), 'subscribersLost': Column(Integer), 'Autogen_ID': Column(Integer(), primary_key=True), # add a PK - SQLAlchemy demands this '__tablename__': 'youtube_videos_stats', #tablename assignment is done inside the dictionary '__table_args__': {'schema' : SCHEMA_NAME} } return videos_table_schema
39.8
102
0.562647
4a2139e2da72ffd9befb49e1f916c7bc5931c139
3,241
py
Python
LogAnalysis/PreProcess/eNodeB_CMAC_Log.py
WenPeiyu/LianjiaSpider
9d4fd31df0120c756fbbd625b66f2fee4fe17891
[ "MIT" ]
null
null
null
LogAnalysis/PreProcess/eNodeB_CMAC_Log.py
WenPeiyu/LianjiaSpider
9d4fd31df0120c756fbbd625b66f2fee4fe17891
[ "MIT" ]
null
null
null
LogAnalysis/PreProcess/eNodeB_CMAC_Log.py
WenPeiyu/LianjiaSpider
9d4fd31df0120c756fbbd625b66f2fee4fe17891
[ "MIT" ]
null
null
null
# 导入模块 import pandas as pd import re import time import sys import os # 路径地址 # FilePath = r"d:/data/" # OriginFile = FilePath + r"BPN_3_40_3_104201810241801_output.txt" # FixedCSV = FilePath + r"Fixed.csv" # ErrorFile = FilePath + r"Error.txt" # LogOutput = FilePath + r"LogOutput.xlsx" FilePath = os.path.split(os.path.split(sys.argv[0])[0])[0] + "/rawdata" OriginFile = FilePath + r"/enodeb.txt" FixedCSV = FilePath + r"/Fixed.csv" ErrorFile = FilePath + r"/Error.txt" LogOutput = FilePath + r"/LogOutput.csv" time1 = time.time() # 读取文本转换成不存在歧义的CSV with open(OriginFile, 'r') as f, open(FixedCSV, "w") as csv, open(ErrorFile, "w") as txt: a = True csv.write("") while a != [""]: a = f.readline() a = a.split(" ") try: a[8]="".join(a[8:]) csv.write(";;;;".join(a[0:9])) except: txt.write(";;;;".join(a)) time2 = time.time() #文本匹配符 re_I = re.compile(r"\[I\]") re_U = re.compile(r"\[U\]") re_D = re.compile(r"\[D\]") re_RA = re.compile(r"\[RA\]") re_TOOL = re.compile(r"\[TOOL\]") re_MSG = re.compile(r"MSG") time3 = time.time() # 读取CSV分割字段 df_log = pd.read_csv(FixedCSV, sep=";;;;", header=None) DateTime = df_log.loc[:, 0] Sequence = df_log.loc[:, 1] LogSpace = df_log.loc[:, 2] PriClass = df_log.loc[:, 3] interHSFN = [eval(i)[0] for i in list(df_log.loc[:, 4])] sysHSFN = [i[1:-1].split(".")[0] for i in list(df_log.loc[:, 5])] SysFraNum = [i[1:-1].split(".")[1] for i in list(df_log.loc[:, 5])] SysSubFN = [i[1:-1].split(".")[2] for i in list(df_log.loc[:, 5])] PhyCellIdentifier = [i[1:-1].split(":")[0] for i in list(df_log.loc[:, 6])] CELs = [i[1:-1].split(":")[2] for i in list(df_log.loc[:, 6])] UEIndex = [i[1:-1].split(":")[0] for i in list(df_log.loc[:, 7])] CRNTI = [i[1:-1].split(":")[1] for i in list(df_log.loc[:, 7])] GID = [i[1:-1].split(":")[2] for i in list(df_log.loc[:, 7])] Message = df_log.loc[:,8] time4 = time.time() # 分割日志信息体进行标注 I = [1 if re_I.match(i) else 0 for i in Message] U = [1 if re_U.match(i) else 0 for i in Message] D = [1 if re_D.match(i) else 0 for i in Message] TOOL = [1 if re_TOOL.match(i) else 0 for i in Message] RA = [1 if re_RA.search(i) else 0 for i in Message] MSG = [1 if re_MSG.search(i) else 0 for i in Message] df_log = pd.DataFrame({"DateTime": DateTime, "Sequence": Sequence, "LogSpace": LogSpace, "PriClass": PriClass, "interHSFN": interHSFN, "sysHSFN": sysHSFN, "SysFraNum": SysFraNum, "SysSubFN": SysSubFN, "PhyCellIdentifier": PhyCellIdentifier, "CELs": CELs, "UEIndex": UEIndex, "CRNTI": CRNTI, "GID": GID, "I": I, "U": U, "D": D, "TOOL": TOOL, "RA": RA, "MSG": MSG, "Message": Message }) time5 = time.time() df_log.to_csv(LogOutput,escapechar='"',index=False) time6 = time.time() RunTime = [time1, time2, time3, time4, time5, time6]
34.115789
89
0.531009
4a213a6864005a954d5b5f00e7e6c07d8eb38f52
444
py
Python
blog/models.py
BkrmDahal/newsapp
5b8a00072662db31a87f7975dcdf8e5bb6068235
[ "MIT" ]
1
2018-05-11T16:30:55.000Z
2018-05-11T16:30:55.000Z
blog/models.py
BkrmDahal/newsapp
5b8a00072662db31a87f7975dcdf8e5bb6068235
[ "MIT" ]
null
null
null
blog/models.py
BkrmDahal/newsapp
5b8a00072662db31a87f7975dcdf8e5bb6068235
[ "MIT" ]
null
null
null
from django.db import models # Create your models here. class Stories(models.Model): title = models.CharField(max_length=200) description = models.TextField() summary = models.TextField() tag = models.CharField(max_length = 200) image_url = models.URLField() url = models.URLField() source = models.CharField(max_length = 200) pub_date = models.DateTimeField() def __str__(self): return self.title
27.75
47
0.695946
4a213a7a146c86ba996872fb2f9a6e31494f23ce
59,595
py
Python
python/paddle/fluid/layers/sequence_lod.py
L-Net-1992/Paddle
4d0ca02ba56760b456f3d4b42a538555b9b6c307
[ "Apache-2.0" ]
11
2016-08-29T07:43:26.000Z
2016-08-29T07:51:24.000Z
python/paddle/fluid/layers/sequence_lod.py
L-Net-1992/Paddle
4d0ca02ba56760b456f3d4b42a538555b9b6c307
[ "Apache-2.0" ]
null
null
null
python/paddle/fluid/layers/sequence_lod.py
L-Net-1992/Paddle
4d0ca02ba56760b456f3d4b42a538555b9b6c307
[ "Apache-2.0" ]
1
2021-09-24T11:23:36.000Z
2021-09-24T11:23:36.000Z
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import paddle from .layer_function_generator import templatedoc from ..framework import core, Variable, _non_static_mode, in_dygraph_mode, _in_legacy_dygraph, convert_np_dtype_to_dtype_ from ..layer_helper import LayerHelper from ..data_feeder import check_variable_and_dtype, check_type, check_dtype from ..core import VarDesc from paddle import _C_ops __all__ = [ 'sequence_conv', 'sequence_softmax', 'sequence_pool', 'sequence_concat', 'sequence_first_step', 'sequence_last_step', 'sequence_slice', 'sequence_expand', 'sequence_expand_as', 'sequence_pad', 'sequence_unpad', 'sequence_reshape', 'sequence_scatter', 'sequence_enumerate', 'sequence_mask', 'sequence_reverse', ] @templatedoc() def sequence_conv(input, num_filters, filter_size=3, filter_stride=1, padding=True, padding_start=None, bias_attr=None, param_attr=None, act=None, name=None): r""" :api_attr: Static Graph **Notes: The Op only receives LoDTensor as input. If your input is Tensor, please use conv2d Op.(fluid.layers.** :ref:`api_fluid_layers_conv2d` ). This operator receives input sequences with variable length and other convolutional configuration parameters(num_filters, filter_size) to apply the convolution operation. It fills all-zero padding data on both sides of the sequence by default to ensure that the output is the same length as the input. You can customize the padding behavior by configuring the parameter :attr:`padding\_start` . **Warning:** the parameter :attr:`padding` take no effect and will be deprecated in the future. .. code-block:: text Here we will illustrate the details of the padding operation: For a mini-batch of 2 variable lengths sentences, containing 3, and 1 time-steps: Assumed input (X) is a [4, N] float LoDTensor, and for the sake of simplicity, we assume N=2. input.data = [[1, 1], [2, 2], [3, 3], [4, 4]] This is to say that input (X) has 4 words and the dimension of each word representation is 2. * Case1: If padding_start is -1 and filter_size is 3. The length of padding data is calculated as follows: up_pad_len = max(0, -padding_start) = 1 down_pad_len = max(0, filter_size + padding_start - 1) = 1 The output of the input sequence after padding is: data_aftet_padding = [[0, 0, 1, 1, 2, 2], [1, 1, 2, 2, 3, 3], [2, 2, 3, 3, 0, 0], [0, 0, 4, 4, 0, 0]] It will be multiplied by the filter weight to get the final output. Assume num_filters = 3 output.data = [[ 0.3234, -0.2334, 0.7433], [ 0.5646, 0.9464, -0.1223], [-0.1343, 0.5653, 0.4555], [ 0.9954, -0.1234, -0.1234]] output.shape = [4, 3] # 3 = num_filters output.lod = [[0, 3, 4]] # Remain the same Args: input (Variable): LoDTensor with shape :math:`(M, K)`, where M is the total time-step of mini-batch and K is hidden_size of input. Only lod_level of 1 is supported. The data type should be float32 or float64. num_filters (int): the number of filters. filter_size (int): the height of filter. Specified filter width is not supported, the width is hidden_size by default. Default: 3. filter_stride (int): stride of the filter. Currently only supports :attr:`stride` = 1. padding (bool): the parameter :attr:`padding` take no effect and will be discarded in the future. Currently, it will always pad input to make sure the length of the output is the same as input whether :attr:`padding` is set true or false. Because the length of input sequence may be shorter than :attr:`filter\_size`, which will cause the convolution result to not be computed correctly. These padding data will not be trainable or updated while training. Default: True. padding_start (int): It is used to indicate the start index for padding the input sequence, which can be negative. The negative number means to pad :attr:`|padding_start|` time-steps of all-zero data at the beginning of each instance. The positive number means to skip :attr:`padding_start` time-steps of each instance, and it will pad :math:`filter\_size + padding\_start - 1` time-steps of all-zero data at the end of the sequence to ensure that the output is the same length as the input. If set None, the same length :math:`\\frac{filter\_size}{2}` of data will be filled on both sides of the sequence. If set 0, the length of :math:`filter\_size - 1` data is padded at the end of each input sequence. Default: None. bias_attr (ParamAttr): To specify the bias parameter property. Default: None, which means the default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . param_attr (ParamAttr): To specify the weight parameter property. Default: None, which means the default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . act (str): Activation to be applied to the output of this layer, such as tanh, softmax, sigmoid, relu. For more information, please refer to :ref:`api_guide_activations_en` . Default: None. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Returns: Variable: LoDTensor with the same length as input. The data type is float32 or float64, which is same as input. Examples: .. code-block:: python import paddle paddle.enable_static() x = paddle.static.data(name='x', shape=[-1, 10], dtype='float32', lod_level=1) x_conved = paddle.static.nn.sequence_conv(input=x, num_filters=2, filter_size=3, padding_start=-1) """ assert not _non_static_mode(), ( "sequence layer is not supported in dygraph mode yet.") check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'sequence_conv') helper = LayerHelper('sequence_conv', **locals()) dtype = helper.input_dtype() filter_shape = [filter_size * input.shape[1], num_filters] filter_param = helper.create_parameter(attr=helper.param_attr, shape=filter_shape, dtype=dtype) pre_bias = helper.create_variable_for_type_inference(dtype) if padding_start is None: padding_start = -int(filter_size // 2) helper.append_op(type='sequence_conv', inputs={ 'X': [input], 'Filter': [filter_param], }, outputs={"Out": pre_bias}, attrs={ 'contextStride': filter_stride, 'contextStart': padding_start, 'contextLength': filter_size, }) pre_act = helper.append_bias_op(pre_bias) return helper.append_activation(pre_act) def sequence_softmax(input, use_cudnn=False, name=None): r""" :api_attr: Static Graph **Note**: **The input type of the OP must be LoDTensor. For Tensor, use:** :ref:`api_fluid_layers_softmax` A LoD-tensor can be regarded as several sequences, and this op apply softmax algo on each sequence. The shape of input Tensor can be :math:`[N, 1]` or :math:`[N]`, where :math:`N` is the sum of the length of all sequences. Recommended usage: :math:`[N]`. For i-th sequence in a mini-batch: .. math:: Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))} For example, for a LoD-Tensor with 6 sequences ([3, 2, 4, 1, 2, 3] - sequence length list in order), the lod in the runtime is [[0, 3, 5, 9, 10, 12, 15]], then softmax will be computed among :math:`X[0:3,:],X[3:5,:],X[5:9,:],X[9:10,:],X[10:12,:],X[12:15,:]`, and :math:`N` turns out to be 15. .. code-block:: text *Case 1: Given: input.data = [0.7, 1, 0.6, 1.5, 1.1, 1.2, 0.2, 0.6, 1.9, 3.1, 2.5, 0.8, 0.1, 2.4, 1.3] input.lod = [[0, 3, 5, 9, 10, 12, 15]] then: output.data = [0.30724832, 0.41474187, 0.2780098, 0.59868765, 0.40131235, 0.2544242, 0.09359743, 0.13963096, 0.5123474, 1., 0.84553474, 0.15446526, 0.06995796, 0.69777346, 0.23226859] output.lod = [[0, 3, 5, 9, 10, 12, 15]] Args: input (Variable):A LoDTensor with shape of :math:`[N, 1]` or :math:`[N]`, Recommended usage: :math:`[N]`. Supported data types: float32, float64. use_cudnn (bool, optional): Use cudnn kernel or not. Effective only when the cudnn version of the paddle library is installed and GPU is used for training or reasoning. Default: False. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: Variable: A LoD-Tensor which has the same shape and data type with input. Examples: .. code-block:: python import paddle paddle.enable_static() x = paddle.static.data(name='x', shape=[7, 1], dtype='float32', lod_level=1) x_sequence_softmax_1 = paddle.static.nn.sequence_softmax(input=x) y = paddle.static.data(name='y', shape=[7], dtype='float32', lod_level=1) x_sequence_softmax_2 = paddle.static.nn.sequence_softmax(input=y) """ assert not _non_static_mode(), ( "sequence layer is not supported in dygraph mode yet.") helper = LayerHelper('sequence_softmax', **locals()) check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'sequence_softmax') dtype = helper.input_dtype() softmax_out = helper.create_variable_for_type_inference(dtype) helper.append_op(type="sequence_softmax", inputs={"X": input}, outputs={"Out": softmax_out}, attrs={"use_cudnn": use_cudnn}) return softmax_out def sequence_pool(input, pool_type, is_test=False, pad_value=0.0): r""" :api_attr: Static Graph **Notes: The Op only receives LoDTensor as input. If your input is Tensor, please use pool2d Op.(fluid.layers.** :ref:`api_fluid_layers_pool2d` ). This operator only supports LoDTensor as input. It will apply specified pooling operation on the input LoDTensor. It pools features of all time-steps of each sequence at the last lod_level using :attr:`pool_type` mentioned in the parameters, such as sum, average, sqrt, etc. It supports six pool_type: - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}` - sum: :math:`Out[i] = \sum_jX_{ij}` - sqrt: :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}` - max: :math:`Out[i] = max(X_i)` - last: :math:`Out[i] = X_{N_i}` - first: :math:`Out[i]` = X_0 where :math:`N_i` is the length of i-th input sequence. .. code-block:: text Case 1: input is a 1-level LoDTensor and pad_value = 0.0: input.lod = [[0, 2, 5, 7, 7]] input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]] input.shape = [7, 1] output is LoDTensor: out.shape = [4, 1] with condition out.shape[0] == len(x.lod[-1]) == 4 for different pool_type: average: out.data = [[2.], [4.], [3.], [0.0]], where 2.=(1. + 3.)/2, 4.=(2. + 4. + 6.)/3, 3.=(5. + 1.)/2 sum : out.data = [[4.], [12.], [6.], [0.0]], where 4.=1. + 3., 12.=2. + 4. + 6., 6.=5. + 1. sqrt : out.data = [[2.82], [6.93], [4.24], [0.0]], where 2.82=(1. + 3.)/sqrt(2), 6.93=(2. + 4. + 6.)/sqrt(3), 4.24=(5. + 1.)/sqrt(2) max : out.data = [[3.], [6.], [5.], [0.0]], where 3.=max(1., 3.), 6.=max(2., 4., 6.), 5.=max(5., 1.) last : out.data = [[3.], [6.], [1.], [0.0]], where 3.=last(1., 3.), 6.=last(2., 4., 6.), 1.=last(5., 1.) first : out.data = [[1.], [2.], [5.], [0.0]], where 1.=first(1., 3.), 2.=first(2., 4., 6.), 5.=first(5., 1.) and all above [0.0] at last of out.data is padding data. Case 2: input is a 2-level LoDTensor containing 3 sequences with length info [2, 0, 3], where 0 means empty sequence. The first sequence contains 2 subsequence with length info [1, 2]; The last sequence contains 3 subsequence with length info [1, 0, 3]. input.lod = [[0, 2, 2, 5], [0, 1, 3, 4, 4, 7]] input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]] input.shape = [7, 1] If pool_typ = sum, it will apply pooling on last lod_level [0, 1, 3, 4, 4, 7]. pad_value = 0.0 output is LoDTensor: out.shape= [5, 1] out.lod = [[0, 2, 2, 5]] where out.shape[0] == len(x.lod[-1]) == 5 sum: out.data = [[1.], [5.], [4.], [0.0], [12.]] where 1.=1., 5.=3. + 2., 4.=4., 0.0=pad_value, 12.=6. + 5. + 1. Args: input (variable): LoDTensor with lod_level no more than 2. The data type should be float32 or float64. pool_type (str): The pooling type that supports average, sum, sqrt, max, last or first. is_test (bool): Only works when :attr:`pool_type` is max. If set False, a temporary Tenosr maxIndex is created to record the index information corresponding to the maximum value, which is used for backward gradient calculation in the training phase. Default: False. pad_value (float): Used to pad the pooling result for empty input sequence. Default: 0.0 Returns: Variable: LoDTensor after pooling with data type float32 or float64. Examples: .. code-block:: python import paddle paddle.enable_static() x = paddle.static.data(name='x', shape=[None, 10], dtype='float32', lod_level=1) avg_x = paddle.static.nn.sequence_pool(input=x, pool_type='average') sum_x = paddle.static.nn.sequence_pool(input=x, pool_type='sum') sqrt_x = paddle.static.nn.sequence_pool(input=x, pool_type='sqrt') max_x = paddle.static.nn.sequence_pool(input=x, pool_type='max') last_x = paddle.static.nn.sequence_pool(input=x, pool_type='last') first_x = paddle.static.nn.sequence_pool(input=x, pool_type='first') """ assert not _non_static_mode(), ( "sequence layer is not supported in dygraph mode yet.") check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'sequence_pool') helper = LayerHelper('sequence_pool', **locals()) dtype = helper.input_dtype() pool_out = helper.create_variable_for_type_inference(dtype) max_index = helper.create_variable_for_type_inference(dtype) helper.append_op(type="sequence_pool", inputs={"X": input}, outputs={ "Out": pool_out, "MaxIndex": max_index }, attrs={ "pooltype": pool_type.upper(), "is_test": is_test, "pad_value": pad_value }) # when pool_type is max, variable max_index is initialized, # so we stop the gradient explicitly here if pool_type == 'max': max_index.stop_gradient = True return pool_out @templatedoc() def sequence_concat(input, name=None): """ :api_attr: Static Graph **Notes: The Op only receives LoDTensor as input. If your input is Tensor, please use concat Op.(fluid.layers.** :ref:`api_fluid_layers_concat` ). This operator only supports LoDTensor as input. It concatenates the multiple LoDTensor from input by the LoD information, and outputs the concatenated LoDTensor. .. code-block:: text input is a list of LoDTensor: input = [x1, x2] where: x1.lod = [[0, 3, 5]] x1.data = [[1], [2], [3], [4], [5]] x1.shape = [5, 1] x2.lod = [[0, 2, 4]] x2.data = [[6], [7], [8], [9]] x2.shape = [4, 1] and should satisfy: len(x1.lod[0]) == len(x2.lod[0]) output is LoDTensor: out.lod = [[0, 3+2, 5+4]] out.data = [[1], [2], [3], [6], [7], [4], [5], [8], [9]] out.shape = [9, 1] Args: input(list of Variable): List of LoDTensor to be concatenated. The length of each LoDTensor should be same. The data type can be float32, float64 or int64. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Returns: Variable: Output the concatenated LoDTensor. The data type is same as input. Examples: .. code-block:: python import paddle paddle.enable_static() x = paddle.static.data(name='x', shape=[-1, 10], dtype='float32', lod_level=1) y = paddle.static.data(name='y', shape=[-1, 10], dtype='float32', lod_level=1) out = paddle.static.nn.sequence_concat(input=[x, y]) """ assert not _non_static_mode(), ( "sequence layer is not supported in dygraph mode yet.") helper = LayerHelper('sequence_concat', **locals()) check_type(input, 'input', list, 'fluid.layers.sequence_concat') for i, input_x in enumerate(input): check_variable_and_dtype(input_x, 'input[' + str(i) + ']', ['int64', 'float32', 'float64'], 'fluid.layers.sequence_concat') out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) helper.append_op(type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]}) return out def sequence_first_step(input): """ :api_attr: Static Graph This operator only supports LoDTensor as input. Given the input LoDTensor, it will select first time-step feature of each sequence as output. .. code-block:: text Case 1: input is 1-level LoDTensor: input.lod = [[0, 2, 5, 7]] input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]] input.shape = [7, 1] output is a LoDTensor: out.shape = [3, 1] out.shape[0] == len(x.lod[-1]) == 3 out.data = [[1.], [2.], [5.]], where 1.=first(1., 3.), 2.=first(2., 4., 6.), 5.=first(5., 1.) Case 2: input is a 2-level LoDTensor containing 3 sequences with length info [2, 0, 3], where 0 means empty sequence. The first sequence contains 2 subsequence with length info [1, 2]; The last sequence contains 3 subsequence with length info [1, 0, 3]. input.lod = [[0, 2, 2, 5], [0, 1, 3, 4, 4, 7]] input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]] input.shape = [7, 1] It will apply pooling on last lod_level [0, 1, 3, 4, 4, 7]. pad_value = 0.0 output is a LoDTensor: out.shape= [5, 1] out.lod = [[0, 2, 2, 5]] out.shape[0] == len(x.lod[-1]) == 5 out.data = [[1.], [3.], [4.], [0.0], [6.]] where 1.=first(1.), 3.=first(3., 2.), 4.=first(4.), 0.0 = pad_value, 6.=first(6., 5., 1.) Args: input(Variable): LoDTensor with lod_level no more than 2. The data type should be float32 or float64. Returns: Variable: LoDTensor consist of the sequence's first step vector. The data type is float32 or float64. Examples: .. code-block:: python import paddle paddle.enable_static() x = paddle.static.data(name='x', shape=[None, 10], dtype='float32', lod_level=1) x_first_step = paddle.static.nn.sequence_first_step(input=x) """ check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'sequence_first_step') return sequence_pool(input=input, pool_type="first") def sequence_last_step(input): """ :api_attr: Static Graph This operator only supports LoDTensor as input. Given the input LoDTensor, it will select last time-step feature of each sequence as output. .. code-block:: text Case 1: input is 1-level LoDTensor: input.lod = [[0, 2, 5, 7]] input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]] input.shape = [7, 1] output is a LoDTensor: out.shape = [3, 1] out.shape[0] == len(x.lod[-1]) == 3 out.data = [[3.], [6.], [1.]], where 3.=last(1., 3.), 6.=last(2., 4., 6.), 1.=last(5., 1.) Case 2: input is a 2-level LoDTensor containing 3 sequences with length info [2, 0, 3], where 0 means empty sequence. The first sequence contains 2 subsequence with length info [1, 2]; The last sequence contains 3 subsequence with length info [1, 0, 3]. input.lod = [[0, 2, 2, 5], [0, 1, 3, 4, 4, 7]] input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]] input.shape = [7, 1] It will apply pooling on last lod_level [0, 1, 3, 4, 4, 7]. pad_value = 0.0 output is a LoDTensor: out.shape= [5, 1] out.lod = [[0, 2, 2, 5]] out.shape[0] == len(x.lod[-1]) == 5 out.data = [[1.], [2.], [4.], [0.0], [1.]] where 1.=last(1.), 2.=last(3., 2.), 4.=last(4.), 0.0 = pad_value, 1=last(6., 5., 1.) Args: input(Variable): LoDTensor with lod_level no more than 2. The data type should be float32. Returns: Variable: LoDTensor consist of the sequence's last step vector. The data type is float32. Examples: .. code-block:: python import paddle paddle.enable_static() x = paddle.static.data(name='x', shape=[None, 10], dtype='float32', lod_level=1) x_last_step = paddle.static.nn.sequence_last_step(input=x) """ check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'sequence_last_step') return sequence_pool(input=input, pool_type="last") def sequence_slice(input, offset, length, name=None): """ :api_attr: Static Graph **Sequence Slice Layer** The layer crops a subsequence from given sequence with given start offset and subsequence length. It only supports sequence data (LoDTensor with lod_level equal to 1). .. code-block:: text - Case: Given the input Variable **input**: input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]], input.lod = [[3, 2]], input.dims = (5, 2), with offset.data = [[0], [1]] and length.data = [[2], [1]], the output Variable will be out.data = [[a1, a2], [b1, b2], [e1, e2]], out.lod = [[2, 1]], out.dims = (3, 2). Note: The first dimension size of **input**, **offset** and **length** should be equal. The **offset** should start from 0. Args: input(Variable): LoDTensor, The input Variable which consists of the complete sequences.The data type can be float32, float64, int32 or int64 offset(Variable): LoDTensor, The offset to slice each sequence. The data type is int32 or int64. length(Variable): LoDTensor, The length of each subsequence. The data type is int32 or int64. name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: Variable: The output subsequences. Examples: .. code-block:: python import paddle paddle.enable_static() import numpy as np seqs = paddle.static.data(name='x', shape=[10, 5], dtype='float32', lod_level=1) offset = paddle.assign(np.array([[0, 1]]).astype("int32")) length = paddle.assign(np.array([[2, 1]]).astype("int32")) subseqs = paddle.static.nn.sequence_slice(input=seqs, offset=offset, length=length) """ assert not _non_static_mode(), ( "sequence layer is not supported in dygraph mode yet.") helper = LayerHelper("sequence_slice", **locals()) check_variable_and_dtype(input, 'input', ['float32', 'float64', 'int32', 'int64'], 'sequence_slice') check_variable_and_dtype(offset, 'offset', ['int32', 'int64'], 'sequence_slice') check_variable_and_dtype(length, 'length', ['int32', 'int64'], 'sequence_slice') dtype = helper.input_dtype() out = helper.create_variable_for_type_inference(dtype) offset.stop_gradient = True length.stop_gradient = True helper.append_op(type="sequence_slice", inputs={ "X": input, "Offset": offset, "Length": length }, outputs={"Out": out}) return out def sequence_expand(x, y, ref_level=-1, name=None): r""" :api_attr: Static Graph Sequence Expand Layer. This layer will expand the input variable ``x`` \ according to specified level ``ref_level`` lod of ``y``. Please note that \ the lod level of ``x`` is at most 1. If the lod level of ``x`` is 1, than \ the size of lod of ``x`` must be equal to the length of ``ref_level`` lod \ of ``y``. If the lod level of ``x`` is 0, then the first dim of ``x`` should \ be equal to the size of ``ref_level`` of ``y``. The rank of **x** is at least 2. \ When rank of ``x`` is greater than 2, then it would be viewed as a 2-D tensor. Please note that the input ``x`` should be LodTensor or Tensor, \ and input ``y`` must be LodTensor. Following examples will explain how sequence_expand works: .. code-block:: text Case 1 Consider 2 sequences [a][b] and [c][d], now we want to expand them to [a][b], [a][b], [c][d] and [c][d]. Sequence [a][b] expand twice and [c][d] expands twice, so the lod which according to is [2, 2]. Input x is a 1-level LoDTensor: x.lod = [[2, 2]] #lod based on length may be easier to understand x.data = [[a], [b], [c], [d]] x.dims = [4, 1] input y is a LoDTensor: y.lod = [[2, 2], #the 0th level lod, according to this level [3, 3, 1, 1]] #the 1st level lod, it has nothing to do with this level ref_level: 0 then output is a 1-level LoDTensor out: out.lod = [[2, 2, 2, 2]] #lod based on offset out.data = [[a], [b], [a], [b], [c], [d], [c], [d]] out.dims = [8, 1] Case 2 Consider 3 sequences [a], [b], [c], now we want to expand them to [a][a], [c][c][c]. It's obvious that the lod info of expanded sequences is [2, 0, 3]. x is a Tensor: x.data = [[a], [b], [c]] x.dims = [3, 1] y is a LoDTensor: y.lod = [[2, 0, 3]] ref_level: -1 then output is a 1-level LodTensor: out.data = [[a], [a], [c], [c], [c]] out.dims = [5, 1] Args: x (Variable): The input variable which is a Tensor or LoDTensor, with the \ dims ``[M, K]``. The lod level is at most 1. The data type should be \ float32, float64, int32 or int64. y (Variable): The input variable which is a LoDTensor, the lod level is \ at least 1. ref_level (int): Lod level of ``y`` to be referred by ``x``. If set to -1, \ refer the last level of lod. name(str, optional): For detailed information, please refer \ to :ref:`api_guide_Name`. Usually name is no need to set and \ None by default. Returns: The expanded variable which is a LoDTensor, with dims ``[N, K]``. \ ``N`` depends on the lod info of ``x`` and ``y``. \ The data type is same as input. Return Type: Variable Examples: .. code-block:: python import paddle from paddle import fluid paddle.enable_static() import numpy as np x = paddle.static.data(name='x', shape=[4, 1], dtype='float32') y = paddle.static.data(name='y', shape=[8, 1], dtype='float32', lod_level=1) out = paddle.static.nn.sequence_expand(x=x, y=y, ref_level=0) exe = paddle.static.Executor(fluid.CPUPlace()) place = paddle.CPUPlace() np_data = np.array([[1], [2], [3], [4]]).astype('float32') x_lod_tensor = fluid.create_lod_tensor(np_data, [[2, 2]], place) print(x_lod_tensor) #lod: [[0, 2, 4]] # dim: 4, 1 # layout: NCHW # dtype: float # data: [1 2 3 4] np_data = np.array([[1], [2], [3], [4], [5], [6], [7], [8]]).astype('float32') y_lod_tensor = fluid.create_lod_tensor(np_data, [[2, 2], [3,3,1,1]], place) print(y_lod_tensor) #lod: [[0, 2, 4][0, 3, 6, 7, 8]] # dim: 8, 1 # layout: NCHW # dtype: int64_t # data: [0 0 1 1 1 1 1 0] out_main = exe.run(fluid.default_main_program(), feed={'x': x_lod_tensor, 'y': y_lod_tensor}, fetch_list=[out], return_numpy=False) print(out_main[0]) #lod: [[0, 2, 4, 6, 8]] # dim: 8, 1 # layout: NCHW # dtype: float # data: [1 2 1 2 3 4 3 4] """ assert not _non_static_mode(), ( "sequence layer is not supported in dygraph mode yet.") check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], 'sequence_expand') helper = LayerHelper('sequence_expand', **locals()) dtype = helper.input_dtype(input_param_name='x') tmp = helper.create_variable_for_type_inference(dtype) helper.append_op(type='sequence_expand', inputs={ 'X': x, 'Y': y }, outputs={'Out': tmp}, attrs={'ref_level': ref_level}) return tmp def sequence_expand_as(x, y, name=None): r""" :api_attr: Static Graph Sequence Expand As Layer. This OP will expand the input variable ``x`` \ according to the zeroth level lod of ``y``. Current implementation requires \ the level number of ``y``'s lod must be 1, and the first dimension of \ ``x`` should be equal to the size of ``y``'s zeroth level lod, thus \ the expanded LodTensor has the same lod info as ``y``. The expanded result \ has nothing to do with ``x``'s lod, so the lod of Input(X) is not considered. Please note that the input ``x`` should be LodTensor or Tensor, \ and input ``y`` must be LodTensor. Following examples will explain how sequence_expand_as works: .. code-block:: text Case 1: Consider 4 sequences [a], [b], [c], [d], now we want to expand them to [a][a][a], [b][b][b], [c] and [d]. It's obvious that the lod info of expanded sequences is [0, 3, 6, 7, 8]. Given a 1-level LodTensor ``x``: x.data = [[a], [b], [c], [d]] x.dims = [4, 1] and input ``y`` y.lod = [[3, 3, 1, 1]] #lod based on length may be easier to understand then we get 1-level LoDTensor out: Out.lod = [[0, 3, 6, 7, 8]] #based on offset Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]] Out.dims = [8, 1] Case 2: Given a common Tensor ``x``: x.data = [[a, b], [c, d], [e, f]] x.dims = [3, 2] and input ``y``: y.lod = [[0, 2, 3, 6]] then we get a 1-level LoDTensor: out.lod = [[0, 2, 3, 6]] out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]] out.dims = [6, 2] Args: x (Variable): The input variable which is a Tensor or LoDTensor, with the \ dims ``[M, K]``. The data type should be float32, float64, int32 \ or int64. y (Variable): The input variable which is a LoDTensor with 1-level lod. name (str, optional): For detailed information, please refer \ to :ref:`api_guide_Name`. Usually name is no need to set and \ None by default. Returns: The expanded variable which is a LoDTensor with the dims ``[N, K]``. \ ``N`` depends on the lod of ``y``, and the lod level must be 1. \ The data type is same as input. Return Type: Variable Examples: .. code-block:: python import paddle import paddle.fluid as fluid paddle.enable_static() import numpy as np x = paddle.static.data(name='x', shape=[4, 1], dtype='float32') y = paddle.static.data(name='y', shape=[8, 1], dtype='float32', lod_level=1) out = paddle.static.nn.sequence_expand_as(x=x, y=y) exe = fluid.Executor(fluid.CPUPlace()) place = fluid.CPUPlace() np_data = np.array([[1], [2], [3], [4]]).astype('float32') x_lod_tensor = fluid.create_lod_tensor(np_data, [[2, 2]], place) print(x_lod_tensor) #lod: [[0, 2, 4]] # dim: 4, 1 # layout: NCHW # dtype: float # data: [1 2 3 4] np_data = np.array([[1], [2], [3], [4], [5], [6], [7], [8]]).astype('float32') y_lod_tensor = fluid.create_lod_tensor(np_data, [[3,3,1,1]], place) print(y_lod_tensor) #lod: [[0, 3, 6, 7, 8]] # dim: 8, 1 # layout: NCHW # dtype: int64_t # data: [0 0 1 0 1 1 1 0] out_main = exe.run(fluid.default_main_program(), feed={'x': x_lod_tensor, 'y': y_lod_tensor}, fetch_list=[out], return_numpy=False) print(out_main[0]) #lod: [[0, 3, 6, 7, 8]] # dim: 8, 1 # layout: NCHW # dtype: float # data: [1 1 1 2 2 2 3 4] """ assert not _non_static_mode(), ( "sequence layer is not supported in dygraph mode yet.") check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], 'sequence_expand_as') check_type(y, 'y', Variable, 'sequence_expand_as') helper = LayerHelper('sequence_expand_as', **locals()) dtype = helper.input_dtype(input_param_name='x') tmp = helper.create_variable_for_type_inference(dtype) helper.append_op(type='sequence_expand_as', inputs={ 'X': x, 'Y': y }, outputs={'Out': tmp}) return tmp def sequence_pad(x, pad_value, maxlen=None, name=None): r""" :api_attr: Static Graph This layer padding the sequences in a same batch to a common length (according to ``maxlen``). The padding value is defined by ``pad_value``, and will be appended to the tail of sequences. The result is a Python tuple ``(Out, Length)``: the LodTensor ``Out`` is the padded sequences, and LodTensor ``Length`` is the length information of input sequences. For removing padding data (unpadding operation), See :ref:`api_fluid_layers_sequence_unpad`. Please note that the input ``x`` should be LodTensor. .. code-block:: text Case 1: Given input 1-level LoDTensor x: x.lod = [[0, 2, 5]] x.data = [[a],[b],[c],[d],[e]] pad_value: pad_value.data = [0] maxlen = 4 the output tuple (Out, Length): Out.data = [[[a],[b],[0],[0]],[[c],[d],[e],[0]]] Length.data = [2, 3] #Original sequences length Case 2: Given input 1-level LoDTensor x: x.lod = [[0, 2, 5]] x.data = [[a1,a2],[b1,b2],[c1,c2],[d1,d2],[e1,e2]] pad_value: pad_value.data = [0] default maxlen = None, (the virtual value is 3, according to the shape of x) the output tuple (Out, Length): Out.data = [[[a1,a2],[b1,b2],[0,0]],[[c1,c2],[d1,d2],[e1,e2]]] Length.data = [2, 3] Case 3: Given input 1-level LoDTensor x: x.lod = [[0, 2, 5]] x.data = [[a1,a2],[b1,b2],[c1,c2],[d1,d2],[e1,e2]] pad_value: pad_value.data = [p1,p2] default maxlen = None, (the virtual value is 3) get tuple (Out, Length): Out.data = [[[a1,a2],[b1,b2],[p1,p2]],[[c1,c2],[d1,d2],[e1,e2]]] Length.data = [2, 3] Args: x (Variable): Input 1-level LodTensor with dims ``[M, K]``. The batch \ size is described by lod infor (the number of sequences ). \ The data type should be float32, float64, int8, int32 or int64. pad_value (Variable): Padding value. It can be a scalar or a 1D tensor \ with length ``K``. If it's a scalar, it will be automatically broadcasted \ to a Tensor. The data type should be as same as ``x``. maxlen (int, optional): The length of padded sequences, None by default. \ When it is None, all sequences will be padded up to the length of the \ longest one among them; when it a certain positive value, it must be \ greater than the length of the longest original sequence. name (str, optional): For detailed information, please refer \ to :ref:`api_guide_Name`. Usually name is no need to set and \ None by default. Returns: A Python tuple (Out, Length): the 1st is a 0 level LodTensor \ ``Out``, with the shape ``[batch_size, maxlen, K]``; the second is the original \ sequences length infor ``Length``, which should be a 0-level 1D LodTensor. \ The size of ``Length`` is equal to batch size, and the data type is int64. Return Type: tuple Examples: .. code-block:: python import paddle paddle.enable_static() import paddle.fluid as fluid import numpy x = paddle.static.data(name='x', shape=[10, 5], dtype='float32', lod_level=1) pad_value = paddle.assign( numpy.array([0.0], dtype=numpy.float32)) out = paddle.static.nn.sequence_pad(x=x, pad_value=pad_value) """ assert not _non_static_mode(), ( "sequence layer is not supported in dygraph mode yet.") helper = LayerHelper('sequence_pad', **locals()) check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], 'fluid.layers.sequence_pad') check_variable_and_dtype(pad_value, 'pad_value', ['float32', 'float64', 'int32', 'int64'], 'fluid.layers.sequence_pad') dtype = helper.input_dtype(input_param_name='x') out = helper.create_variable_for_type_inference(dtype) length = helper.create_variable_for_type_inference(VarDesc.VarType.INT64) pad_value.stop_gradient = True length.stop_gradient = True if maxlen is None: maxlen = -1 helper.append_op(type='sequence_pad', inputs={ 'X': x, 'PadValue': pad_value }, outputs={ 'Out': out, 'Length': length }, attrs={'padded_length': maxlen}) return out, length def sequence_unpad(x, length, name=None): """ :api_attr: Static Graph **Note**: **The input of the OP is Tensor and the output is LoDTensor. For padding operation, See:** :ref:`api_fluid_layers_sequence_pad` The OP removes the padding data from the input based on the length information and returns a LoDTensor. .. code-block:: text Case 1: Given input Variable **x**: x.data = [[ 1.0, 2.0, 3.0, 4.0, 5.0], [ 6.0, 7.0, 8.0, 9.0, 10.0], [11.0, 12.0, 13.0, 14.0, 15.0]], in which there are 3 sequences padded to length 5, and the actual length specified by input Variable **length**: length.data = [2, 3, 4], after unpadding, the output Variable will be: out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]] out.lod = [[0, 2, 5, 9]] Args: x(Variable): A Tensor which contains padding data, and its shape size can not be less than 2. Supported data types: float32, float64, int32, int64. length(Variable): A 1D Tensor that stores the actual length of each sample, and the Tensor has the same shape with the 0th dimension of the X . Supported data types: int64. name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: Variable: A LoDTensor whose recursive sequence length is consistent with the information of the length parameter and it has the same data type with input. Examples: .. code-block:: python import paddle paddle.enable_static() import paddle.fluid as fluid import numpy # pad data x = paddle.static.data(name='x', shape=[10, 5], dtype='float32', lod_level=1) pad_value = paddle.assign(numpy.array([0.0], dtype=numpy.float32)) pad_data, len = paddle.static.nn.sequence_pad(x=x, pad_value=pad_value) # unpad data unpad_data = paddle.static.nn.sequence_unpad(x=pad_data, length=len) """ assert not _non_static_mode(), ( "sequence layer is not supported in dygraph mode yet.") helper = LayerHelper('sequence_unpad', **locals()) check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], 'fluid.layers.sequence_unpad') check_variable_and_dtype(length, 'length', ['int64'], 'fluid.layers.sequence_unpad') dtype = helper.input_dtype(input_param_name='x') out = helper.create_variable_for_type_inference(dtype) length.stop_gradient = True helper.append_op(type='sequence_unpad', inputs={ 'X': x, 'Length': length }, outputs={'Out': out}) return out def sequence_reshape(input, new_dim): """ :api_attr: Static Graph **Notes: The Op only receives LoDTensor as input. If your input is Tensor, please use reshape Op.(fluid.layers.** :ref:`api_fluid_layers_reshape` ). This operator only supports LoDTensor as input. Given :attr:`new_dim` , it will compute new shape according to original length of each sequence, original dimensions and :attr:`new_dim` . Then it will output a new LoDTensor containing :attr:`new_dim` . Currently it only supports 1-level LoDTensor. Please make sure that (original length * original dimensions) can be divided by the :attr:`new_dim` with no remainder for each sequence. .. code-block:: text input is a LoDTensor: input.lod = [[0, 2, 6]] input.data = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]] input.shape = [6, 2] set new_dim = 4 out is a LoDTensor: out.lod = [[0, 1, 3]] out.data = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] out.shape = [3, 4] Args: input (Variable): 1-level LoDTensor with shape :math:`[M, K]` . The data type should be int32, int64, float32 or float64. new_dim (int): New dimension that the input LoDTensor is reshaped to. Returns: Variable: Reshaped LoDTensor according to new dimension. The data type is same as input. Examples: .. code-block:: python import paddle paddle.enable_static() x = paddle.static.data(name='x', shape=[None, 16], dtype='float32', lod_level=1) x_reshaped = paddle.static.nn.sequence_reshape(input=x, new_dim=4) """ assert not _non_static_mode(), ( "sequence layer is not supported in dygraph mode yet.") helper = LayerHelper('sequence_reshape', **locals()) check_variable_and_dtype(input, 'input', ['float32', 'float64', 'int32', 'int64'], 'fluid.layers.sequence_reshape') out = helper.create_variable_for_type_inference(helper.input_dtype()) helper.append_op(type='sequence_reshape', inputs={'X': [input]}, outputs={'Out': [out]}, attrs={'new_dim': new_dim}) return out def sequence_scatter(input, index, updates, name=None): """ :api_attr: Static Graph **Note**: **The index and updates parameters of the OP must be LoDTensor.** Plus the updates data to the corresponding input according to the index. The updated algorithm is as follows: output[instance_index][index [pos]] = input[instance_index][index [pos]] + updates[pos], where instance_idx is the K sample corresponding to pos in batch. The value of output[i][j] depends on whether j can be found in the i+1th interval of the index. If found, out[i][j] = input[i][j] + update[m] [n], otherwise, out[i][j] = input[i][j]. For example, in the following example, the lod information for index is divided into three sequences. Among them, because the element 0 can be found in the first interval of the index, it is updated with the value of the corresponding position of the updates, out[0][0] = input[0][0]+updates[0][0] . Because element 1 cannot be found in the third interval of index, out[2][1] = input[2][1]. .. code-block:: text *Case 1: Given: input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]] input.dims = [3, 6] index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]] index.lod = [[0, 3, 8, 12]] updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]] updates.lod = [[ 0, 3, 8, 12]] Then: out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0], [1.0, 1.0, 1.4, 1.3, 1.2, 1.1], [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]] out.dims = X.dims = [3, 6] Args: input (Variable): A Tensor with shape of :math:`[N, k_1... k_n]`. Supported data types: float32, float64, int32, int64. index (Variable): A LoDTensor contains index information. Its LoD level must be 1 and its data type can be int32 or int64. updates (Variable): A LodTensor contains updates information. It has the same LoD level with the index and has the same data type with the input. Supported data types: float32, float64, int32, int64. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: Variable: A Tensor which has been updated. It has the same shape and data type with input. Examples: .. code-block:: python import paddle paddle.enable_static() input = paddle.static.data(name="x", shape=[None, 3, 6], dtype='float32' ) index = paddle.static.data(name='index', shape=[12, 1], dtype='int64', lod_level=1) updates = paddle.static.data(name='updates', shape=[12, 1], dtype='float32', lod_level=1) output = paddle.static.nn.sequence_scatter(input, index, updates) """ assert not _non_static_mode(), ( "sequence layer is not supported in dygraph mode yet.") helper = LayerHelper('sequence_scatter', **locals()) check_variable_and_dtype(input, 'input', ['float32', 'float64', 'int32', 'int64'], 'sequence_scatter') check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'sequence_scatter') check_variable_and_dtype(updates, 'updates', ['float32', 'float64', 'int32', 'int64'], 'sequence_scatter') dtype = helper.input_dtype() out = helper.create_variable_for_type_inference(dtype) helper.append_op(type="sequence_scatter", inputs={ "X": input, "Ids": index, "Updates": updates }, outputs={"Out": out}) return out def sequence_enumerate(input, win_size, pad_value=0, name=None): r""" :api_attr: Static Graph Generate a new sequence for the input index sequence with \ shape ``[d_1, win_size]``, which enumerates all the \ sub-sequences with length ``win_size`` of the input with \ shape ``[d_1, 1]``, and padded by ``pad_value`` if necessary in generation. Please note that the `input` must be LodTensor. .. code-block:: text Input x: x.lod = [[0, 3, 5]] x.data = [[1], [2], [3], [4], [5]] x.dims = [5, 1] Attrs: win_size = 2 pad_value = 0 Output: out.lod = [[0, 3, 5]] out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]] out.dims = [5, 2] Args: input (Variable): The input variable which is a index sequence, \ which should be a LodTensor with shape ``[d_1, 1]`` and 1-level lod info. \ The data type should be int32 or int64. win_size (int): The window size for enumerating all sub-sequences. pad_value (int, optional): The padding value, default 0. name(str, optional): For detailed information, please refer \ to :ref:`api_guide_Name`. Usually name is no need to set and \ None by default. Returns: The enumerate sequence variable which is a LoDTensor with \ shape ``[d_1, win_size]`` and 1-level lod info. \ The data type is same as ``input``. Return Type: Variable Examples: .. code-block:: python import paddle paddle.enable_static() x = paddle.static.data(name='x', shape=[-1, 1], dtype='int32', lod_level=1) out = paddle.static.nn.sequence_enumerate(input=x, win_size=3, pad_value=0) """ assert not _non_static_mode(), ( "sequence layer is not supported in dygraph mode yet.") check_variable_and_dtype(input, 'input', ['int32', 'int64'], 'sequence_enumerate') helper = LayerHelper('sequence_enumerate', **locals()) out = helper.create_variable_for_type_inference(helper.input_dtype(), stop_gradient=True) helper.append_op(type='sequence_enumerate', inputs={'X': input}, outputs={'Out': out}, attrs={ 'win_size': win_size, 'pad_value': pad_value }) return out def sequence_mask(x, maxlen=None, dtype='int64', name=None): r""" **SequenceMask Layer** This layer outputs a mask according to the input :code:`x` and :code:`maxlen` with data type of :code:`dtype`. Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where: .. math:: y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n)) .. code-block:: text Case: Consider input: x = [3, 1, 1, 0] max_len = 4 then we get out: mask = [[1, 1, 1, 0], [1, 0, 0, 0], [1, 0, 0, 0], [0, 0, 0, 0]] Args: x (Variable): Input tensor of sequence_mask layer, \ whose elements are integers less than :code:`maxlen`. \ Tensor or LodTensor with shape [d_1, d_2, ..., d_n]. maxlen (int, optional): Maximum length of the sequence. If :code:`maxlen` \ is None, it would be replace with :math:`max(x)`. dtype (np.dtype|paddle.dtype|str, optional): Data type of the output, \ ``int64`` by default. name(str, optional): For detailed information, please refer \ to :ref:`api_guide_Name`. Usually name is no need to set and \ None by default. Returns: The output sequence mask. Tensor with shape [d_1, d_2, ..., d_n, maxlen] \ and data type of :code:`dtype`. The data type should be bool, float32, float64, int8, \ int32 or int64. Return Type: Tensor Examples: .. code-block:: python import paddle lengths = paddle.to_tensor([10, 9, 8]) mask = paddle.nn.functional.sequence_mask(lengths) print(mask.numpy()) # [[1 1 1 1 1 1 1 1 1 1] # [1 1 1 1 1 1 1 1 1 0] # [1 1 1 1 1 1 1 1 0 0]] """ return paddle.nn.functional.sequence_mask(x, maxlen, dtype, name) @templatedoc() def sequence_reverse(x, name=None): """ **Notes: The Op only receives LoDTensor as input. If your input is Tensor, please use reverse Op.(fluid.layers.** :ref:`api_fluid_layers_reverse` ). This operator only supports LoDTensor as input. It will reverse each sequence for input LoDTensor. Currently it only supports 1-level LoDTensor. This operator is very useful when building a reverse :ref:`api_fluid_layers_DynamicRNN` network. .. code-block:: text input(x) is a LoDTensor: x.lod = [[0, 2, 5]] x.data = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13,14, 15, 16], [17,18, 19, 20]] x.shape = [5, 4] output LoDTensor with same shape and LoD info: out.lod = [[0, 2, 5]] out.data = [[5, 6, 7, 8], [1, 2, 3, 4], [17,18, 19, 20], [13,14, 15, 16], [9, 10, 11, 12]] out.shape = [5, 4] Args: x(Variable): LoDTensor with 1-level LoD info. Currently it only supports 1-level LoDTensor. The data type should be float32, float64, int8, int32 or int64. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Returns: Variable: LoDTensor reversed from input. The data type is same with input. Examples: .. code-block:: python import paddle paddle.enable_static() x = paddle.static.data(name='x', shape=[None, 10], dtype='float32', lod_level=1) x_reversed = paddle.static.nn.sequence_reverse(x) """ assert not _non_static_mode(), ( "sequence layer is not supported in dygraph mode yet.") helper = LayerHelper("sequence_reverse", **locals()) check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int8', 'int32', 'int64'], 'fluid.layers.sequence_reverse') out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type="sequence_reverse", inputs={"X": x}, outputs={"Y": out}, attrs=dict()) return out
40.874486
162
0.545801
4a213abf2882edb3eab0db456d246f2f9011c0c2
685
py
Python
carpyncho2/webproject/migrations/0005_auto_20161025_2357.py
carpyncho/yeolde_carpyncho
fba72ebf9d4a3e4e4ea18160310058c6812a0457
[ "BSD-3-Clause" ]
null
null
null
carpyncho2/webproject/migrations/0005_auto_20161025_2357.py
carpyncho/yeolde_carpyncho
fba72ebf9d4a3e4e4ea18160310058c6812a0457
[ "BSD-3-Clause" ]
2
2020-06-05T19:37:26.000Z
2020-06-05T19:40:38.000Z
carpyncho2/webproject/migrations/0005_auto_20161025_2357.py
carpyncho/yeolde_carpyncho
fba72ebf9d4a3e4e4ea18160310058c6812a0457
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.9.1 on 2016-10-25 23:57 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('webproject', '0004_auto_20160228_2217'), ] operations = [ migrations.AlterField( model_name='profile', name='affiliation', field=models.CharField(help_text=b'', max_length=500), ), migrations.AlterField( model_name='profile', name='note', field=models.TextField(help_text=b'Why do you want a Capyncho user? (or any other commentary)'), ), ]
26.346154
108
0.608759
4a213b966f2b5fb377bb724c4bb3f4bd04bcb57c
23,503
py
Python
tests/test_modules/test_ADCore/test_hdfwriterpart.py
thomascobb/pymalcolm
801f8fe6217c0c028b5edc87fa0aef9d60b91d9d
[ "Apache-2.0" ]
null
null
null
tests/test_modules/test_ADCore/test_hdfwriterpart.py
thomascobb/pymalcolm
801f8fe6217c0c028b5edc87fa0aef9d60b91d9d
[ "Apache-2.0" ]
null
null
null
tests/test_modules/test_ADCore/test_hdfwriterpart.py
thomascobb/pymalcolm
801f8fe6217c0c028b5edc87fa0aef9d60b91d9d
[ "Apache-2.0" ]
null
null
null
import os import shutil from xml.etree import ElementTree import cothread from mock import MagicMock, call, patch from scanpointgenerator import CompoundGenerator, LineGenerator, SpiralGenerator from malcolm.core import Context, Future, Process, TimeoutError from malcolm.modules.ADCore.blocks import hdf_writer_block from malcolm.modules.ADCore.infos import ( CalculatedNDAttributeDatasetInfo, FilePathTranslatorInfo, NDArrayDatasetInfo, NDAttributeDatasetInfo, ) from malcolm.modules.ADCore.parts import HDFWriterPart from malcolm.modules.ADCore.parts.hdfwriterpart import greater_than_zero from malcolm.modules.ADCore.util import AttributeDatasetType from malcolm.modules.builtin.defines import tmp_dir from malcolm.modules.scanning.controllers import RunnableController from malcolm.modules.scanning.util import DatasetType from malcolm.testutil import ChildTestCase expected_xml = ( '<?xml version="1.0" ?>\n' "<hdf5_layout>\n" '<group name="entry">\n' '<attribute name="NX_class" source="constant" type="string" value="NXentry" />\n' '<group name="detector">\n' '<attribute name="signal" source="constant" type="string" value="detector" />\n' '<attribute name="axes" source="constant" type="string" ' 'value="energy_set,.,.,." />\n' '<attribute name="NX_class" source="constant" type="string" value="NXdata" />\n' '<attribute name="energy_set_indices" source="constant" type="string" ' 'value="0" />\n' '<dataset name="energy_set" source="constant" type="float" value="13,15.2">\n' '<attribute name="units" source="constant" type="string" value="kEv" />\n' "</dataset>\n" '<attribute name="x_set_indices" source="constant" type="string" value="1" />\n' '<dataset name="x_set" source="constant" type="float" ' 'value="0.473264298891,-1.28806365331,-1.11933765723,0.721339144968,2.26130106714,' "2.3717213098,1.08574712174,-0.863941392256,-2.59791589857,-3.46951769442," "-3.22399679412,-1.98374931946,-0.132541097885,1.83482458567,3.45008680308," '4.36998121172,4.42670524204,3.63379270355,2.15784413199,0.269311496406">\n' '<attribute name="units" source="constant" type="string" value="mm" />\n' "</dataset>\n" '<attribute name="y_set_indices" source="constant" type="string" value="1" />\n' '<dataset name="y_set" source="constant" type="float" value="-0.64237113553,' "-0.500750778455,1.38930992616,1.98393756064,0.784917470231,-1.17377831157," "-2.66405897615,-2.9669684623,-2.01825893141,-0.24129368636,1.72477821509," "3.27215424484,3.98722048131,3.71781556747,2.5610299588,0.799047653518," '-1.18858453138,-3.01284626565,-4.34725663835,-4.9755042398">\n' '<attribute name="units" source="constant" type="string" value="mm" />\n' "</dataset>\n" '<dataset det_default="true" name="detector" source="detector">\n' '<attribute name="NX_class" source="constant" type="string" value="SDS" />\n' "</dataset>\n" "</group>\n" '<group name="sum">\n' '<attribute name="signal" source="constant" type="string" value="sum" />\n' '<attribute name="axes" source="constant" type="string" ' 'value="energy_set,.,.,." />\n' '<attribute name="NX_class" source="constant" type="string" value="NXdata" />\n' '<attribute name="energy_set_indices" source="constant" type="string" ' 'value="0" />\n' '<hardlink name="energy_set" target="/entry/detector/energy_set" />\n' '<attribute name="x_set_indices" source="constant" type="string" value="1" />\n' '<hardlink name="x_set" target="/entry/detector/x_set" />\n' '<attribute name="y_set_indices" source="constant" type="string" value="1" />\n' '<hardlink name="y_set" target="/entry/detector/y_set" />\n' '<dataset name="sum" ndattribute="StatsTotal" source="ndattribute" />\n' "</group>\n" '<group name="I0.data">\n' '<attribute name="signal" source="constant" type="string" value="I0.data" />\n' '<attribute name="axes" source="constant" type="string" ' 'value="energy_set,.,.,." />\n' '<attribute name="NX_class" source="constant" type="string" value="NXdata" />\n' '<attribute name="energy_set_indices" source="constant" type="string" ' 'value="0" />\n' '<hardlink name="energy_set" target="/entry/detector/energy_set" />\n' '<attribute name="x_set_indices" source="constant" type="string" value="1" />\n' '<hardlink name="x_set" target="/entry/detector/x_set" />\n' '<attribute name="y_set_indices" source="constant" type="string" value="1" />\n' '<hardlink name="y_set" target="/entry/detector/y_set" />\n' '<dataset name="I0.data" ndattribute="COUNTER1.COUNTER" source="ndattribute" />\n' "</group>\n" '<group name="It.data">\n' '<attribute name="signal" source="constant" type="string" value="It.data" />\n' '<attribute name="axes" source="constant" type="string" ' 'value="energy_set,.,.,." />\n' '<attribute name="NX_class" source="constant" type="string" value="NXdata" />\n' '<attribute name="energy_set_indices" source="constant" type="string" ' 'value="0" />\n' '<hardlink name="energy_set" target="/entry/detector/energy_set" />\n' '<attribute name="x_set_indices" source="constant" type="string" value="1" />\n' '<hardlink name="x_set" target="/entry/detector/x_set" />\n' '<attribute name="y_set_indices" source="constant" type="string" value="1" />\n' '<hardlink name="y_set" target="/entry/detector/y_set" />\n' '<dataset name="It.data" ndattribute="COUNTER2.COUNTER" source="ndattribute" />\n' "</group>\n" '<group name="t1x.value">\n' '<attribute name="signal" source="constant" type="string" value="t1x.value" />\n' '<attribute name="axes" source="constant" type="string" ' 'value="energy_set,.,.,." />\n' '<attribute name="NX_class" source="constant" type="string" value="NXdata" />\n' '<attribute name="energy_set_indices" source="constant" type="string" ' 'value="0" />\n' '<hardlink name="energy_set" target="/entry/detector/energy_set" />\n' '<attribute name="x_set_indices" source="constant" type="string" value="1" />\n' '<hardlink name="x_set" target="/entry/detector/x_set" />\n' '<attribute name="y_set_indices" source="constant" type="string" value="1" />\n' '<hardlink name="y_set" target="/entry/detector/y_set" />\n' '<dataset name="t1x.value" ndattribute="INENC1.VAL" source="ndattribute" />\n' "</group>\n" '<group name="NDAttributes" ndattr_default="true">\n' '<attribute name="NX_class" source="constant" type="string" ' 'value="NXcollection" />\n' '<dataset name="NDArrayUniqueId" ndattribute="NDArrayUniqueId" ' 'source="ndattribute" />\n' '<dataset name="NDArrayTimeStamp" ndattribute="NDArrayTimeStamp" ' 'source="ndattribute" />\n' "</group>\n" "</group>\n" "</hdf5_layout>\n" ) expected_xml_limited_attr = expected_xml.replace( '<group name="NDAttributes" ndattr_default="true">', '<group name="NDAttributes" ndattr_default="false">', ) class TestHDFWriterPart(ChildTestCase): maxDiff = None def setUp(self): self.process = Process("Process") self.context = Context(self.process) self.child = self.create_child_block( hdf_writer_block, self.process, mri="BLOCK:HDF5", prefix="prefix" ) self.config_dir = tmp_dir("config_dir") self.process.start() def tearDown(self): self.process.stop(2) shutil.rmtree(self.config_dir.value) def test_init(self): self.o = HDFWriterPart(name="m", mri="BLOCK:HDF5") self.context.set_notify_dispatch_request(self.o.notify_dispatch_request) c = RunnableController("mri", self.config_dir.value) c.add_part(self.o) self.process.add_controller(c) b = c.block_view() assert list(b.configure.meta.takes.elements) == [ "generator", "fileDir", "axesToMove", "breakpoints", "formatName", "fileTemplate", ] @patch("malcolm.modules.ADCore.parts.hdfwriterpart.check_driver_version") def test_validate(self, check_mock): self.o = HDFWriterPart(name="m", mri="BLOCK:HDF5") # Version check should not be called with require_version None self.o.require_version = None self.set_attributes(self.child, driverVersion="1.1") self.o.on_validate(self.context) check_mock.assert_not_called() # Test version check called if required_version not None self.o.required_version = "1.0" self.o.on_validate(self.context) check_mock.assert_called_once_with("1.1", "1.0") def configure_and_check_output(self, on_windows=False): energy = LineGenerator("energy", "kEv", 13.0, 15.2, 2) spiral = SpiralGenerator(["x", "y"], ["mm", "mm"], [0.0, 0.0], 5.0, scale=2.0) generator = CompoundGenerator([energy, spiral], [], [], 0.1) generator.prepare() fileDir = "/tmp" formatName = "xspress3" fileTemplate = "thing-%s.h5" completed_steps = 0 steps_to_do = 38 part_info = { "DET": [NDArrayDatasetInfo(2)], "PANDA": [ NDAttributeDatasetInfo.from_attribute_type( "I0", AttributeDatasetType.DETECTOR, "COUNTER1.COUNTER" ), NDAttributeDatasetInfo.from_attribute_type( "It", AttributeDatasetType.MONITOR, "COUNTER2.COUNTER" ), NDAttributeDatasetInfo.from_attribute_type( "t1x", AttributeDatasetType.POSITION, "INENC1.VAL" ), ], "STAT": [CalculatedNDAttributeDatasetInfo("sum", "StatsTotal")], } if on_windows: part_info["WINPATH"] = [FilePathTranslatorInfo("Y", "/tmp", "")] infos = self.o.on_configure( self.context, completed_steps, steps_to_do, part_info, generator, fileDir, formatName, fileTemplate, ) assert len(infos) == 8 assert infos[0].name == "xspress3.data" assert infos[0].filename == "thing-xspress3.h5" assert infos[0].type == DatasetType.PRIMARY assert infos[0].rank == 4 assert infos[0].path == "/entry/detector/detector" assert infos[0].uniqueid == "/entry/NDAttributes/NDArrayUniqueId" assert infos[1].name == "xspress3.sum" assert infos[1].filename == "thing-xspress3.h5" assert infos[1].type == DatasetType.SECONDARY assert infos[1].rank == 2 assert infos[1].path == "/entry/sum/sum" assert infos[1].uniqueid == "/entry/NDAttributes/NDArrayUniqueId" assert infos[2].name == "I0.data" assert infos[2].filename == "thing-xspress3.h5" assert infos[2].type == DatasetType.PRIMARY assert infos[2].rank == 2 assert infos[2].path == "/entry/I0.data/I0.data" assert infos[2].uniqueid == "/entry/NDAttributes/NDArrayUniqueId" assert infos[3].name == "It.data" assert infos[3].filename == "thing-xspress3.h5" assert infos[3].type == DatasetType.MONITOR assert infos[3].rank == 2 assert infos[3].path == "/entry/It.data/It.data" assert infos[3].uniqueid == "/entry/NDAttributes/NDArrayUniqueId" assert infos[4].name == "t1x.value" assert infos[4].filename == "thing-xspress3.h5" assert infos[4].type == DatasetType.POSITION_VALUE assert infos[4].rank == 2 assert infos[4].path == "/entry/t1x.value/t1x.value" assert infos[4].uniqueid == "/entry/NDAttributes/NDArrayUniqueId" assert infos[5].name == "energy.value_set" assert infos[5].filename == "thing-xspress3.h5" assert infos[5].type == DatasetType.POSITION_SET assert infos[5].rank == 1 assert infos[5].path == "/entry/detector/energy_set" assert infos[5].uniqueid == "" assert infos[6].name == "x.value_set" assert infos[6].filename == "thing-xspress3.h5" assert infos[6].type == DatasetType.POSITION_SET assert infos[6].rank == 1 assert infos[6].path == "/entry/detector/x_set" assert infos[6].uniqueid == "" assert infos[7].name == "y.value_set" assert infos[7].filename == "thing-xspress3.h5" assert infos[7].type == DatasetType.POSITION_SET assert infos[7].rank == 1 assert infos[7].path == "/entry/detector/y_set" assert infos[7].uniqueid == "" expected_xml_filename_local = "/tmp/BLOCK_HDF5-layout.xml" if on_windows: expected_xml_filename_remote = "Y:\\BLOCK_HDF5-layout.xml" expected_filepath = "Y:" + os.sep else: expected_xml_filename_remote = expected_xml_filename_local expected_filepath = "/tmp" + os.sep # Wait for the start_future so the post gets through to our child # even on non-cothread systems self.o.start_future.result(timeout=1) assert self.child.handled_requests.mock_calls == [ call.put("positionMode", True), call.put("arrayCounter", 0), call.put("dimAttDatasets", True), call.put("enableCallbacks", True), call.put("fileName", "xspress3"), call.put("filePath", expected_filepath), call.put("fileTemplate", "%sthing-%s.h5"), call.put("fileWriteMode", "Stream"), call.put("lazyOpen", True), call.put("storeAttr", True), call.put("swmrMode", True), call.put("extraDimSize3", 1), call.put("extraDimSize4", 1), call.put("extraDimSize5", 1), call.put("extraDimSize6", 1), call.put("extraDimSize7", 1), call.put("extraDimSize8", 1), call.put("extraDimSize9", 1), call.put("extraDimSizeN", 20), call.put("extraDimSizeX", 2), call.put("extraDimSizeY", 1), call.put("numExtraDims", 1), call.put("posNameDim3", ""), call.put("posNameDim4", ""), call.put("posNameDim5", ""), call.put("posNameDim6", ""), call.put("posNameDim7", ""), call.put("posNameDim8", ""), call.put("posNameDim9", ""), call.put("posNameDimN", "d1"), call.put("posNameDimX", "d0"), call.put("posNameDimY", ""), call.put("flushAttrPerNFrames", 0), call.put("flushDataPerNFrames", 38), call.put("xmlLayout", expected_xml_filename_remote), call.put("numCapture", 0), call.post("start"), call.when_value_matches("arrayCounterReadback", greater_than_zero, None), ] with open(expected_xml_filename_local) as f: actual_xml = f.read().replace(">", ">\n") # Check the layout filename Malcolm uses for file creation assert self.o.layout_filename == expected_xml_filename_local return actual_xml @staticmethod def mock_xml_is_valid_check(part): mock_xml_layout_value = MagicMock(name="mock_xml_layout_value") mock_xml_layout_value.return_value = True part._check_xml_is_valid = mock_xml_layout_value def test_configure(self): self.mock_when_value_matches(self.child) self.o = HDFWriterPart(name="m", mri="BLOCK:HDF5") self.mock_xml_is_valid_check(self.o) self.context.set_notify_dispatch_request(self.o.notify_dispatch_request) actual_xml = self.configure_and_check_output() assert actual_xml == expected_xml actual_tree = ElementTree.XML(actual_xml) expected_tree = ElementTree.XML(expected_xml) assert ElementTree.dump(actual_tree) == ElementTree.dump(expected_tree) def test_honours_write_all_attributes_flag(self): self.mock_when_value_matches(self.child) self.o = HDFWriterPart( name="m", mri="BLOCK:HDF5", write_all_nd_attributes=False ) self.mock_xml_is_valid_check(self.o) self.context.set_notify_dispatch_request(self.o.notify_dispatch_request) actual_xml = self.configure_and_check_output() actual_tree = ElementTree.XML(actual_xml) expected_tree = ElementTree.XML(expected_xml) assert ElementTree.dump(actual_tree) == ElementTree.dump(expected_tree) def test_configure_windows(self): self.mock_when_value_matches(self.child) self.o = HDFWriterPart(name="m", mri="BLOCK:HDF5", runs_on_windows=True) self.mock_xml_is_valid_check(self.o) self.context.set_notify_dispatch_request(self.o.notify_dispatch_request) actual_xml = self.configure_and_check_output(on_windows=True) assert actual_xml == expected_xml actual_tree = ElementTree.XML(actual_xml) expected_tree = ElementTree.XML(expected_xml) assert ElementTree.dump(actual_tree) == ElementTree.dump(expected_tree) def test_run(self): self.o = HDFWriterPart(name="m", mri="BLOCK:HDF5") self.context.set_notify_dispatch_request(self.o.notify_dispatch_request) self.o.done_when_captured = 38 # Need a registrar object or we get AssertionError self.o.registrar = MagicMock() # Run waits for this value, so say we have finished immediately self.set_attributes(self.child, numCapturedReadback=self.o.done_when_captured) self.mock_when_value_matches(self.child) # Run self.o.on_run(self.context) # Check calls assert self.child.handled_requests.mock_calls == [ call.when_value_matches("numCapturedReadback", 38, None) ] assert self.o.registrar.report.called_once assert self.o.registrar.report.call_args_list[0][0][0].steps == 38 def test_run_and_flush(self): self.o = HDFWriterPart(name="m", mri="BLOCK:HDF5") def set_num_captured(): # Sleep for 2.5 seconds to ensure 2 flushes, and then set value to finish cothread.Sleep(2.5) self.set_attributes( self.child, numCapturedReadback=self.o.done_when_captured ) self.o.done_when_captured = 5 # Say that we're getting the first frame self.o.first_array_future = Future(None) self.o.first_array_future.set_result(None) self.o.start_future = Future(None) # Need a registrar object or we get AssertionError self.o.registrar = MagicMock() # Reduce frame timeout so we don't hang on this test for too long self.o.frame_timeout = 5 # Spawn process to finish it after a few seconds self.process.spawn(set_num_captured) # Run self.o.on_run(self.context) # Check calls assert self.child.handled_requests.mock_calls == [ call.post("flushNow"), call.post("flushNow"), ] assert self.o.registrar.report.called_once assert self.o.registrar.report.call_args_list[0][0][0].steps == 0 assert self.o.registrar.report.call_args_list[1][0][0].steps == 5 def test_run_raises_TimeoutError_for_stalled_writer(self): self.o = HDFWriterPart(name="m", mri="BLOCK:HDF5") self.context.set_notify_dispatch_request(self.o.notify_dispatch_request) self.o.done_when_captured = 10 # Need a registrar object or we get AssertionError self.o.registrar = MagicMock() self.o.start_future = MagicMock() # Mock the last update self.o.last_capture_update = MagicMock() self.o.last_capture_update.return_value = 0.0 # Set a short timeout for testing self.o.frame_timeout = 0.1 # Now check the error is raised self.assertRaises(TimeoutError, self.o.on_run, self.context) def test_seek(self): self.o = HDFWriterPart(name="m", mri="BLOCK:HDF5") self.context.set_notify_dispatch_request(self.o.notify_dispatch_request) # Num captured readback usually reads a bit higher than the completed steps # after a pause is requested completed_steps = 4 self.set_attributes(self.child, numCapturedReadback=6) # Call the seek steps_to_do = 3 self.o.on_seek(self.context, completed_steps, steps_to_do) # We expect done when captured to be the current captured readback + steps to do assert self.o.done_when_captured == 9 def test_post_run_ready(self): self.o = HDFWriterPart(name="m", mri="BLOCK:HDF5") self.context.set_notify_dispatch_request(self.o.notify_dispatch_request) # Say that we've returned from start self.o.start_future = Future(None) self.o.start_future.set_result(None) fname = "/tmp/test_filename" with open(fname, "w") as f: f.write("thing") assert os.path.isfile(fname) self.o.layout_filename = fname self.o.on_post_run_ready(self.context) assert self.child.handled_requests.mock_calls == [] assert os.path.isfile(fname) self.o.on_reset(self.context) assert not os.path.isfile(fname) def test_post_run_ready_not_done_flush(self): # Say that we've returned from start self.o = HDFWriterPart(name="m", mri="BLOCK:HDF5") self.o.start_future = Future(None) fname = "/tmp/test_filename" with open(fname, "w") as f: f.write("thing") assert os.path.isfile(fname) self.o.layout_filename = fname self.o.on_post_run_ready(self.context) assert self.child.handled_requests.mock_calls == [call.post("flushNow")] assert os.path.isfile(fname) self.o.on_reset(self.context) assert not os.path.isfile(fname) def test_check_xml_is_valid_method_succeeds_for_valid_value(self): self.o = HDFWriterPart(name="m", mri="BLOCK:HDF5") child = MagicMock(name="child_mock") child.xmlLayoutValid.value = True try: self.o._check_xml_is_valid(child) except AssertionError: self.fail("_check_xml_is_valid() threw unexpected AssertionError") def test_check_xml_is_valid_method_throws_AssertionError_for_bad_value(self): self.o = HDFWriterPart(name="m", mri="BLOCK:HDF5") child = MagicMock(name="child_mock") child.xmlLayoutValid.value = False child.xmlErrorMsg.value = "XML description file cannot be opened" self.assertRaises(AssertionError, self.o._check_xml_is_valid, child) @patch("malcolm.modules.ADCore.parts.hdfwriterpart.time.time") def test_has_file_writing_stalled(self, time_mock): self.o = HDFWriterPart(name="m", mri="BLOCK:HDF5") # First case - no last capture update so return False assert self.o._has_file_writing_stalled() is False # Set up the attributes and mock for the last two cases self.o.last_capture_update = 10.0 self.o.frame_timeout = 60.0 time_mock.side_effect = [30.0, 71.0] # Second case - last capture update is within frame timeout assert self.o._has_file_writing_stalled() is False # Final case - last capture update is outside frame timeout assert self.o._has_file_writing_stalled() is True
44.597723
88
0.643918
4a213b9f6526a9a193d0ca40c8a18de360095ba1
22,968
py
Python
python/ccxt/test/test_async.py
Dan-krm/ccxt
2ed8b7b8598e2934559822d81a8d14885b4d4ad3
[ "MIT" ]
1
2021-11-16T15:45:34.000Z
2021-11-16T15:45:34.000Z
python/ccxt/test/test_async.py
Dan-krm/ccxt
2ed8b7b8598e2934559822d81a8d14885b4d4ad3
[ "MIT" ]
null
null
null
python/ccxt/test/test_async.py
Dan-krm/ccxt
2ed8b7b8598e2934559822d81a8d14885b4d4ad3
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import argparse import asyncio import json # import logging import os import sys import time # noqa: F401 from os import _exit from traceback import format_tb # ------------------------------------------------------------------------------ # logging.basicConfig(level=logging.INFO) # ------------------------------------------------------------------------------ root = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) sys.path.append(root) # ------------------------------------------------------------------------------ import ccxt.async_support as ccxt # noqa: E402 from test_trade import test_trade # noqa: E402 from test_order import test_order # noqa: E402 from test_ohlcv import test_ohlcv # noqa: E402 from test_position import test_position # noqa: E402 from test_transaction import test_transaction # noqa: E402 # ------------------------------------------------------------------------------ class Argv(object): token_bucket = False verbose = False nonce = None exchange = None symbol = None pass argv = Argv() parser = argparse.ArgumentParser() parser.add_argument('--token_bucket', action='store_true', help='enable token bucket experimental test') parser.add_argument('--verbose', action='store_true', help='enable verbose output') parser.add_argument('--nonce', type=int, help='integer') parser.add_argument('exchange', type=str, help='exchange id in lowercase', nargs='?') parser.add_argument('symbol', type=str, help='symbol in uppercase', nargs='?') parser.parse_args(namespace=argv) exchanges = {} # ------------------------------------------------------------------------------ path = os.path.dirname(ccxt.__file__) if 'site-packages' in os.path.dirname(ccxt.__file__): raise Exception("You are running test_async.py/test.py against a globally-installed version of the library! It was previously installed into your site-packages folder by pip or pip3. To ensure testing against the local folder uninstall it first with pip uninstall ccxt or pip3 uninstall ccxt") # ------------------------------------------------------------------------------ # string coloring functions def style(s, style): return str(s) # style + str (s) + '\033[0m' def green(s): return style(s, '\033[92m') def blue(s): return style(s, '\033[94m') def yellow(s): return style(s, '\033[93m') def red(s): return style(s, '\033[91m') def pink(s): return style(s, '\033[95m') def bold(s): return style(s, '\033[1m') def underline(s): return style(s, '\033[4m') # print a colored string def dump(*args): print(' '.join([str(arg) for arg in args])) # print an error string def dump_error(*args): string = ' '.join([str(arg) for arg in args]) print(string) sys.stderr.write(string + "\n") sys.stderr.flush() # ------------------------------------------------------------------------------ def handle_all_unhandled_exceptions(type, value, traceback): dump_error(yellow(type), yellow(value), '\n\n' + yellow('\n'.join(format_tb(traceback)))) _exit(1) # unrecoverable crash sys.excepthook = handle_all_unhandled_exceptions # ------------------------------------------------------------------------------ async def test_order_book(exchange, symbol): method = 'fetchOrderBook' if exchange.has[method]: delay = int(exchange.rateLimit / 1000) await asyncio.sleep(delay) # dump(green(exchange.id), green(symbol), 'fetching order book...') orderbook = await getattr(exchange, method)(symbol) dump( green(exchange.id), green(symbol), 'order book', orderbook['datetime'], 'bid: ' + str(orderbook['bids'][0][0] if len(orderbook['bids']) else 'N/A'), 'bidVolume: ' + str(orderbook['bids'][0][1] if len(orderbook['bids']) else 'N/A'), 'ask: ' + str(orderbook['asks'][0][0] if len(orderbook['asks']) else 'N/A'), 'askVolume: ' + str(orderbook['asks'][0][1] if len(orderbook['asks']) else 'N/A')) else: dump(yellow(exchange.id), method + '() is not supported') # ------------------------------------------------------------------------------ async def test_ohlcvs(exchange, symbol): method = 'fetchOHLCV' ignored_exchanges = [ 'cex', # CEX can return historical candles for a certain date only 'okex', # okex fetchOHLCV counts "limit" candles from current time backwards 'okcoinusd', # okex base class ] if exchange.id in ignored_exchanges: return if exchange.has[method]: delay = int(exchange.rateLimit / 1000) await asyncio.sleep(delay) timeframes = exchange.timeframes if exchange.timeframes else {'1d': '1d'} timeframe = list(timeframes.keys())[0] limit = 10 duration = exchange.parse_timeframe(timeframe) since = exchange.milliseconds() - duration * limit * 1000 - 1000 ohlcvs = await getattr(exchange, method)(symbol, timeframe, since, limit) for ohlcv in ohlcvs: test_ohlcv(exchange, ohlcv, symbol, int(time.time() * 1000)) dump(green(exchange.id), 'fetched', green(len(ohlcvs)), 'OHLCVs') else: dump(yellow(exchange.id), method + '() is not supported') # ------------------------------------------------------------------------------ async def test_tickers(exchange, symbol): method = 'fetchTickers' ignored_exchanges = [ 'digifinex', # requires apiKey to call v2 tickers ] if exchange.id in ignored_exchanges: return if exchange.has[method]: delay = int(exchange.rateLimit / 1000) await asyncio.sleep(delay) tickers = None try: # dump(green(exchange.id), 'fetching all tickers at once...') tickers = await getattr(exchange, method)() dump(green(exchange.id), 'fetched all', green(len(list(tickers.keys()))), 'tickers') except Exception as e: dump(green(exchange.id), 'failed to fetch all tickers, fetching multiple tickers at once...') tickers = await exchange.fetch_tickers([symbol]) dump(green(exchange.id), 'fetched', green(len(list(tickers.keys()))), 'tickers') elif argv.token_bucket: await test_tickers_async(exchange) if argv.token_bucket: await test_l2_order_books_async(exchange) # ------------------------------------------------------------------------------ def get_active_symbols(exchange): return [symbol for symbol in exchange.symbols if is_active_symbol(exchange, symbol)] def is_active_symbol(exchange, symbol): return ('.' not in symbol) and (('active' not in exchange.markets[symbol]) or (exchange.markets[symbol]['active'])) async def test_tickers_async(exchange): print('Activated here') dump(green(exchange.id), 'fetching all tickers by simultaneous multiple concurrent requests') symbols_to_load = get_active_symbols(exchange) input_coroutines = [exchange.fetch_ticker(symbol) for symbol in symbols_to_load] tickers = await asyncio.gather(*input_coroutines, return_exceptions=True) for ticker, symbol in zip(tickers, symbols_to_load): if not isinstance(ticker, dict): dump_error(red('[Error with symbol loading ticker]'), ' Symbol failed to load: {0}, ERROR: {1}'.format(symbol, ticker)) dump(green(exchange.id), 'fetched', green(len(list(tickers))), 'tickers') async def test_l2_order_books_async(exchange): dump(green(exchange.id), 'fetching all order books by simultaneous multiple concurrent requests') symbols_to_load = get_active_symbols(exchange) input_coroutines = [exchange.fetch_l2_order_book(symbol) for symbol in symbols_to_load] orderbooks = await asyncio.gather(*input_coroutines, return_exceptions=True) for orderbook, symbol in zip(orderbooks, symbols_to_load): if not isinstance(orderbook, dict): dump_error(red('[Error with symbol loading l2 order book]'), ' Symbol failed to load: {0}, ERROR: {1}'.format(symbol, orderbook)) dump(green(exchange.id), 'fetched', green(len(list(orderbooks))), 'order books') # ------------------------------------------------------------------------------ async def test_ticker(exchange, symbol): method = 'fetchTicker' ignored_exchanges = [ 'digifinex', # requires apiKey to call v2 tickers ] if exchange.id in ignored_exchanges: return if exchange.has[method]: delay = int(exchange.rateLimit / 1000) await asyncio.sleep(delay) ticker = await getattr(exchange, method)(symbol) dump( green(exchange.id), green(symbol), 'ticker', ticker['datetime'], 'high: ' + str(ticker['high']), 'low: ' + str(ticker['low']), 'bid: ' + str(ticker['bid']), 'ask: ' + str(ticker['ask']), 'volume: ' + str(ticker['quoteVolume'])) else: dump(green(exchange.id), green(symbol), method + '() is not supported') # ------------------------------------------------------------------------------ async def test_trades(exchange, symbol): method = 'fetchTrades' if exchange.has[method]: delay = int(exchange.rateLimit / 1000) await asyncio.sleep(delay) # dump(green(exchange.id), green(symbol), 'fetching trades...') trades = await getattr(exchange, method)(symbol) if trades: test_trade(exchange, trades[0], symbol, int(time.time() * 1000)) dump(green(exchange.id), green(symbol), 'fetched', green(len(trades)), 'trades') else: dump(green(exchange.id), green(symbol), method + '() is not supported') # ------------------------------------------------------------------------------ async def test_orders(exchange, symbol): method = 'fetchOrders' if exchange.has[method]: skipped_exchanges = [ 'bitmart', 'rightbtc', ] if exchange.id in skipped_exchanges: dump(green(exchange.id), green(symbol), method + '() skipped') return delay = int(exchange.rateLimit / 1000) await asyncio.sleep(delay) # dump(green(exchange.id), green(symbol), 'fetching orders...') orders = await exchange.fetch_orders(symbol) for order in orders: test_order(exchange, order, symbol, int(time.time() * 1000)) dump(green(exchange.id), green(symbol), 'fetched', green(len(orders)), 'orders') else: dump(green(exchange.id), green(symbol), method + '() is not supported') # ------------------------------------------------------------------------------ async def test_positions(exchange, symbol): method = 'fetchPositions' if exchange.has[method]: skipped_exchanges = [ ] if exchange.id in skipped_exchanges: dump(green(exchange.id), green(symbol), method + '() skipped') return delay = int(exchange.rateLimit / 1000) await asyncio.sleep(delay) # without symbol dump(green(exchange.id), 'fetching positions...') positions = await getattr(exchange, method)() for position in positions: test_position(exchange, position, None, int(time.time() * 1000)) dump(green(exchange.id), 'fetched', green(len(positions)), 'positions') # with symbol dump(green(exchange.id), green(symbol), 'fetching positions...') positions = await getattr(exchange, method)([symbol]) for position in positions: test_position(exchange, position, symbol, int(time.time() * 1000)) dump(green(exchange.id), green(symbol), 'fetched', green(len(positions)), 'positions') else: dump(green(exchange.id), green(symbol), method + '() is not supported') # ------------------------------------------------------------------------------ async def test_closed_orders(exchange, symbol): method = 'fetchClosedOrders' if exchange.has[method]: delay = int(exchange.rateLimit / 1000) await asyncio.sleep(delay) # dump(green(exchange.id), green(symbol), 'fetching orders...') orders = await getattr(exchange, method)(symbol) for order in orders: test_order(exchange, order, symbol, int(time.time() * 1000)) assert order['status'] == 'closed' or order['status'] == 'canceled' dump(green(exchange.id), green(symbol), 'fetched', green(len(orders)), 'closed orders') else: dump(green(exchange.id), green(symbol), method + '() is not supported') # ------------------------------------------------------------------------------ async def test_open_orders(exchange, symbol): method = 'fetchOpenOrders' if exchange.has[method]: delay = int(exchange.rateLimit / 1000) await asyncio.sleep(delay) # dump(green(exchange.id), green(symbol), 'fetching orders...') orders = await getattr(exchange, method)(symbol) for order in orders: test_order(exchange, order, symbol, int(time.time() * 1000)) assert order['status'] == 'open' dump(green(exchange.id), green(symbol), 'fetched', green(len(orders)), 'open orders') else: dump(green(exchange.id), green(symbol), method + '() is not supported') # ------------------------------------------------------------------------------ async def test_transactions(exchange, code): method = 'fetchTransactions' if exchange.has[method]: delay = int(exchange.rateLimit / 1000) await asyncio.sleep(delay) transactions = await getattr(exchange, method)(code) for transaction in transactions: test_transaction(exchange, transaction, code, int(time.time() * 1000)) dump(green(exchange.id), green(code), 'fetched', green(len(transactions)), 'transactions') else: dump(green(exchange.id), green(code), method + '() is not supported') # ------------------------------------------------------------------------------ async def test_balance(exchange): method = 'fetchBalance' if exchange.has[method]: delay = int(exchange.rateLimit / 1000) await asyncio.sleep(delay) await getattr(exchange, method)() dump(green(exchange.id), 'fetched balance') else: dump(green(exchange.id), method + '() is not supported') # ------------------------------------------------------------------------------ async def test_symbol(exchange, symbol, code): dump(green('SYMBOL: ' + symbol)) dump(green('CODE: ' + code)) dump('Testing fetch_ticker:' + symbol) await test_ticker(exchange, symbol) dump('Testing fetch_tickers:' + symbol) await test_tickers(exchange, symbol) dump('Testing fetch_ohlcv:' + symbol) await test_ohlcvs(exchange, symbol) if exchange.id == 'coinmarketcap': response = await exchange.fetchGlobal() dump(green(response)) else: dump('Testing fetch_order_book:' + symbol) await test_order_book(exchange, symbol) dump('Testing fetch_trades:' + symbol) await test_trades(exchange, symbol) if (not hasattr(exchange, 'apiKey') or (len(exchange.apiKey) < 1)): return method = 'signIn' if exchange.has[method]: dump('Testing ' + method + '()') await getattr(exchange, method)() dump('Testing fetch_orders:' + symbol) await test_orders(exchange, symbol) dump('Testing fetch_open_orders:' + symbol) await test_open_orders(exchange, symbol) dump('Testing fetch_closed_orders:' + symbol) await test_closed_orders(exchange, symbol) dump('Testing fetch_transactions:' + code) await test_transactions(exchange, code) dump('Testing fetch_balance') await test_balance(exchange) dump('Testing fetch_positions:' + symbol) await test_positions(exchange, symbol) # ------------------------------------------------------------------------------ async def load_exchange(exchange): await exchange.load_markets() def get_test_symbol(exchange, symbols): symbol = None for s in symbols: market = exchange.safe_value(exchange.markets, s) if market is not None: active = exchange.safe_value(market, 'active') if active or (active is None): symbol = s break return symbol async def test_exchange(exchange, symbol=None): dump(green('EXCHANGE: ' + exchange.id)) # delay = 2 # .......................................................................... # public API codes = [ 'BTC', 'ETH', 'XRP', 'LTC', 'BCH', 'EOS', 'BNB', 'BSV', 'USDT', 'ATOM', 'BAT', 'BTG', 'DASH', 'DOGE', 'ETC', 'IOTA', 'LSK', 'MKR', 'NEO', 'PAX', 'QTUM', 'TRX', 'TUSD', 'USD', 'USDC', 'WAVES', 'XEM', 'XMR', 'ZEC', 'ZRX', ] code = codes[0] for i in range(0, len(codes)): if codes[i] in exchange.currencies: code = codes[i] if not symbol: symbol = get_test_symbol(exchange, [ 'BTC/USD', 'BTC/USDT', 'BTC/CNY', 'BTC/EUR', 'BTC/ETH', 'ETH/BTC', 'ETH/USDT', 'BTC/JPY', 'LTC/BTC', 'USD/SLL', 'EUR/USD', ]) if symbol is None: for code in codes: markets = list(exchange.markets.values()) activeMarkets = [market for market in markets if market['base'] == code] if len(activeMarkets): activeSymbols = [market['symbol'] for market in activeMarkets] symbol = get_test_symbol(exchange, activeSymbols) break if symbol is None: markets = list(exchange.markets.values()) activeMarkets = [market for market in markets if market['base'] in codes] activeSymbols = [market['symbol'] for market in activeMarkets] symbol = get_test_symbol(exchange, activeSymbols) if symbol is None: markets = list(exchange.markets.values()) activeMarkets = [market for market in markets if not exchange.safe_value(market, 'active', False)] activeSymbols = [market['symbol'] for market in activeMarkets] symbol = get_test_symbol(exchange, activeSymbols) if symbol is None: symbol = get_test_symbol(exchange, exchange.symbols) if symbol is None: symbol = exchange.symbols[0] if symbol.find('.d') < 0: await test_symbol(exchange, symbol, code) # .......................................................................... # private API # move to testnet/sandbox if possible before accessing the balance if possible # if 'test' in exchange.urls: # exchange.urls['api'] = exchange.urls['test'] # await asyncio.sleep(exchange.rateLimit / 1000) # time.sleep(delay) # amount = 1 # price = 0.0161 # marketBuy = exchange.create_market_buy_order(symbol, amount) # print(marketBuy) # time.sleep(delay) # marketSell = exchange.create_market_sell_order(symbol, amount) # print(marketSell) # time.sleep(delay) # limitBuy = exchange.create_limit_buy_order(symbol, amount, price) # print(limitBuy) # time.sleep(delay) # limitSell = exchange.create_limit_sell_order(symbol, amount, price) # print(limitSell) # time.sleep(delay) # ------------------------------------------------------------------------------ async def try_all_proxies(exchange, proxies=['']): current_proxy = 0 max_retries = len(proxies) if exchange.proxy in proxies: current_proxy = proxies.index(exchange.proxy) for num_retries in range(0, max_retries): try: exchange.proxy = proxies[current_proxy] dump(green(exchange.id), 'using proxy', '`' + exchange.proxy + '`') current_proxy = (current_proxy + 1) % len(proxies) await load_exchange(exchange) await test_exchange(exchange) except (ccxt.RequestTimeout, ccxt.AuthenticationError, ccxt.NotSupported, ccxt.DDoSProtection, ccxt.ExchangeNotAvailable, ccxt.ExchangeError) as e: print({'type': type(e).__name__, 'num_retries': num_retries, 'max_retries': max_retries}, str(e)[0:200]) if (num_retries + 1) == max_retries: dump_error(yellow('[' + type(e).__name__ + ']'), str(e)[0:200]) else: # no exception return True # exception return False # ------------------------------------------------------------------------------ proxies = [ '', 'https://cors-anywhere.herokuapp.com/', ] # prefer local testing keys to global keys keys_folder = os.path.dirname(root) keys_global = os.path.join(keys_folder, 'keys.json') keys_local = os.path.join(keys_folder, 'keys.local.json') keys_file = keys_local if os.path.exists(keys_local) else keys_global # load the api keys from config with open(keys_file, encoding='utf8') as file: config = json.load(file) # instantiate all exchanges for id in ccxt.exchanges: if id == 'theocean': continue exchange = getattr(ccxt, id) exchange_config = {'verbose': argv.verbose} if sys.version_info[0] < 3: exchange_config.update() if id in config: exchange_config = ccxt.Exchange.deep_extend(exchange_config, config[id]) exchanges[id] = exchange(exchange_config) # ------------------------------------------------------------------------------ async def main(): if argv.exchange: if argv.exchange != 'theocean': exchange = exchanges[argv.exchange] symbol = argv.symbol if hasattr(exchange, 'skip') and exchange.skip: dump(green(exchange.id), 'skipped') else: if symbol: await load_exchange(exchange) await test_symbol(exchange, symbol) else: await try_all_proxies(exchange, proxies) else: for exchange in sorted(exchanges.values(), key=lambda x: x.id): if hasattr(exchange, 'skip') and exchange.skip: dump(green(exchange.id), 'skipped') else: await try_all_proxies(exchange, proxies) # ------------------------------------------------------------------------------ if __name__ == '__main__': asyncio.run(main())
34.958904
297
0.563871
4a213c29113e5e23af2caf7fbcb807be3d0166d2
14,286
py
Python
python/paddle/fluid/tests/unittests/test_fused_elemwise_activation_op.py
jichangjichang/Paddle
4fa3cee5499c6df0ad6043b0cfa220d09f2034e8
[ "Apache-2.0" ]
9
2017-12-04T02:58:01.000Z
2020-12-03T14:46:30.000Z
python/paddle/fluid/tests/unittests/test_fused_elemwise_activation_op.py
jichangjichang/Paddle
4fa3cee5499c6df0ad6043b0cfa220d09f2034e8
[ "Apache-2.0" ]
7
2017-12-05T20:29:08.000Z
2018-10-15T08:57:40.000Z
python/paddle/fluid/tests/unittests/test_fused_elemwise_activation_op.py
jichangjichang/Paddle
4fa3cee5499c6df0ad6043b0cfa220d09f2034e8
[ "Apache-2.0" ]
6
2018-03-19T22:38:46.000Z
2019-11-01T22:28:27.000Z
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from functools import partial import paddle.fluid.core as core from op_test import OpTest # TestFusedElementwiseActivationOp # TestFusedElementwiseActivationOp_scalar # TestFusedElementwiseActivationOp_scalar2 # TestFusedElementwiseActivationOp_Vector # TestFusedElementwiseActivationOp_broadcast_0 # TestFusedElementwiseActivationOp_broadcast_1 # TestFusedElementwiseActivationOp_broadcast_2 # TestFusedElementwiseActivationOp_broadcast_3 # TestFusedElementwiseActivationOp_broadcast_4 # TestFusedElementwiseActivationOp_rowwise_add_0 # TestFusedElementwiseActivationOp_rowwise_add_1 # TestFusedElementwiseActivationOp_channelwise_add def create_test_class(test_case, callback, attrs): class TestFusedElementwiseActivationOp_base(OpTest): def setUp(self): self.op_type = "fused_elemwise_activation" self.dtype = np.float32 self.axis = -1 self.init_input() self.init_output() self.init_attr() self.inputs = { 'X': OpTest.np_dtype_to_fluid_dtype(self.x), 'Y': OpTest.np_dtype_to_fluid_dtype(self.y) } if self.attrs["keep_intermediate_value"]: self.outputs = { 'Out': self.out, "IntermediateOut": self.intermediate_out } else: self.outputs = {'Out': self.out} def init_input(self): self.x = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype) self.y = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype) self.axis = -1 def init_output(self): self.x, self.y, self.intermediate_out, self.out = \ callback(self.x, self.y, self.x, self.y) def init_attr(self): self.attrs = {'axis': self.axis, } for key in attrs.keys(): self.attrs[key] = attrs[key] def test_check_output(self): self.check_output() def test_check_grad_normal(self): if self.attrs["keep_intermediate_value"]: self.check_grad( ['X', 'Y'], ['Out', 'IntermediateOut'], max_relative_error=0.005, sum_outputs=['Out']) else: self.check_grad(['X', 'Y'], ['Out'], max_relative_error=0.005) def test_check_grad_ingore_x(self): if self.attrs["keep_intermediate_value"]: self.check_grad( ['Y'], ['Out', 'IntermediateOut'], max_relative_error=0.005, no_grad_set=set("X"), sum_outputs=['Out']) else: self.check_grad( ['Y'], ['Out'], max_relative_error=0.005, no_grad_set=set("X")) def test_check_grad_ingore_y(self): if self.attrs["keep_intermediate_value"]: self.check_grad( ['X'], ['Out', 'IntermediateOut'], max_relative_error=0.005, no_grad_set=set("Y"), sum_outputs=['Out']) else: self.check_grad( ['X'], ['Out'], max_relative_error=0.005, no_grad_set=set("Y")) class TestFusedElementwiseActivationOp_scalar( TestFusedElementwiseActivationOp_base): def init_input(self): self.x = np.random.rand(2, 3, 4).astype(self.dtype) self.y = np.random.rand(1).astype(self.dtype) class TestFusedElementwiseActivationOp_scalar2( TestFusedElementwiseActivationOp_base): def init_input(self): self.x = np.random.rand(2, 3, 4).astype(self.dtype) self.y = np.random.rand(1, 1).astype(self.dtype) class TestFusedElementwiseActivationOp_Vector( TestFusedElementwiseActivationOp_base): def init_input(self): self.x = np.random.random((32, )).astype(self.dtype) self.y = np.random.random((32, )).astype(self.dtype) class TestFusedElementwiseActivationOp_broadcast_0( TestFusedElementwiseActivationOp_base): def init_input(self): self.x = np.random.rand(2, 3, 4).astype(self.dtype) self.y = np.random.rand(2).astype(self.dtype) self.axis = 0 def init_output(self): self.x, self.y, self.intermediate_out, self.out = \ callback(self.x, self.y, self.x, self.y.reshape(2, 1, 1)) class TestFusedElementwiseActivationOp_broadcast_1( TestFusedElementwiseActivationOp_base): def init_input(self): self.x = np.random.rand(2, 3, 4).astype(self.dtype) self.y = np.random.rand(3).astype(self.dtype) self.axis = 1 def init_output(self): self.x, self.y, self.intermediate_out, self.out = \ callback(self.x, self.y, self.x, self.y.reshape(1, 3, 1)) class TestFusedElementwiseActivationOp_broadcast_2( TestFusedElementwiseActivationOp_base): def init_input(self): self.x = np.random.rand(2, 3, 4).astype(self.dtype) self.y = np.random.rand(4).astype(self.dtype) def init_output(self): self.x, self.y, self.intermediate_out, self.out = \ callback(self.x, self.y, self.x, self.y.reshape(1, 1, 4)) class TestFusedElementwiseActivationOp_broadcast_3( TestFusedElementwiseActivationOp_base): def init_input(self): self.x = np.random.rand(2, 3, 4, 5).astype(self.dtype) self.y = np.random.rand(3, 4).astype(self.dtype) self.axis = 1 def init_output(self): self.x, self.y, self.intermediate_out, self.out = \ callback(self.x, self.y, self.x, self.y.reshape(1, 3, 4, 1)) class TestFusedElementwiseActivationOp_broadcast_4( TestFusedElementwiseActivationOp_base): def init_input(self): self.x = np.random.rand(2, 3, 4, 5).astype(self.dtype) self.y = np.random.rand(2, 1).astype(self.dtype) self.axis = 0 def init_output(self): self.x, self.y, self.intermediate_out, self.out = \ callback(self.x, self.y, self.x, self.y.reshape(2, 1, 1, 1)) class TestFusedElementwiseActivationOp_rowwise_add_0( TestFusedElementwiseActivationOp_base): def init_input(self): self.x = np.random.rand(2, 3, 4).astype(self.dtype) self.y = np.random.rand(3, 4).astype(self.dtype) self.axis = 1 def init_output(self): self.x, self.y, self.intermediate_out, self.out = \ callback(self.x, self.y, self.x, self.y.reshape(1, 3, 4)) class TestFusedElementwiseActivationOp_rowwise_add_1( TestFusedElementwiseActivationOp_base): def init_input(self): self.x = np.random.rand(2, 1).astype(self.dtype) self.y = np.random.rand(1).astype(self.dtype) self.axis = 1 def init_output(self): self.x, self.y, self.intermediate_out, self.out = \ callback(self.x, self.y, self.x, self.y.reshape(1, 1)) class TestFusedElementwiseActivationOp_channelwise_add( TestFusedElementwiseActivationOp_base): def init_input(self): self.x = np.random.rand(3, 20, 20).astype(self.dtype) self.y = np.random.rand(3, 1, 1).astype(self.dtype) TestFusedElementwiseActivationOp_base.__name__ = test_case + "_base" TestFusedElementwiseActivationOp_scalar.__name__ = test_case + "_scalar" TestFusedElementwiseActivationOp_scalar2.__name__ = test_case + "_scalar2" TestFusedElementwiseActivationOp_Vector.__name__ = test_case + "_Vector" TestFusedElementwiseActivationOp_broadcast_0.__name__ = test_case + "_broadcast_0" TestFusedElementwiseActivationOp_broadcast_1.__name__ = test_case + "_broadcast_1" TestFusedElementwiseActivationOp_broadcast_2.__name__ = test_case + "_broadcast_2" TestFusedElementwiseActivationOp_broadcast_3.__name__ = test_case + "_broadcast_3" TestFusedElementwiseActivationOp_broadcast_4.__name__ = test_case + "_broadcast_4" TestFusedElementwiseActivationOp_rowwise_add_0.__name__ = test_case + "_rowwise_add_0" TestFusedElementwiseActivationOp_rowwise_add_1.__name__ = test_case + "_rowwise_add_1" TestFusedElementwiseActivationOp_channelwise_add.__name__ = test_case + "_channelwise_add" globals()[test_case + "_base"] = TestFusedElementwiseActivationOp_base globals()[test_case + "_scalar"] = TestFusedElementwiseActivationOp_scalar globals()[test_case + "_scalar2"] = TestFusedElementwiseActivationOp_scalar2 globals()[test_case + "_Vector"] = TestFusedElementwiseActivationOp_Vector globals()[test_case + "_broadcast_0"] = TestFusedElementwiseActivationOp_broadcast_0 globals()[test_case + "_broadcast_1"] = TestFusedElementwiseActivationOp_broadcast_1 globals()[test_case + "_broadcast_2"] = TestFusedElementwiseActivationOp_broadcast_2 globals()[test_case + "_broadcast_3"] = TestFusedElementwiseActivationOp_broadcast_3 globals()[test_case + "_broadcast_4"] = TestFusedElementwiseActivationOp_broadcast_4 globals()[test_case + "_rowwise_add_0"] = TestFusedElementwiseActivationOp_rowwise_add_0 globals()[test_case + "_rowwise_add_1"] = TestFusedElementwiseActivationOp_rowwise_add_1 globals( )[test_case + "_channelwise_add"] = TestFusedElementwiseActivationOp_channelwise_add def scale_add_func(x, y, x_bcast, y_bcast, scale, mode=0): if mode == 0: return x, y, (x_bcast + y_bcast), (x_bcast + y_bcast) * scale else: return y, x, (x_bcast + y_bcast), (x_bcast + y_bcast) * scale def add_scale_func(x, y, x_bcast, y_bcast, scale, mode=0): if mode == 0: return x, y, y * scale, x_bcast + y_bcast * scale else: return y, x, x * scale, y_bcast + x_bcast * scale def add_relu_func(x, y, x_bcast, y_bcast, mode=0): # Copy from test_activation_op.py # Because we set delta = 0.005 in calculating numeric gradient, # if x is too small, such as 0.002, x_neg will be -0.003 # x_pos will be 0.007, so the numeric gradient is inaccurate. # we should avoid this if mode == 0: y[np.abs(y) < 0.005] = 0.02 y_bcast[np.abs(y_bcast) < 0.005] = 0.02 return x, y, np.maximum(y, 0), x_bcast + np.maximum(y_bcast, 0) else: x[np.abs(x) < 0.005] = 0.02 x_bcast[np.abs(x_bcast) < 0.005] = 0.02 return y, x, np.maximum(x, 0), y_bcast + np.maximum(x_bcast, 0) def relu_add_func(x, y, x_bcast, y_bcast, mode=0): intermediate_out = x_bcast + y_bcast out = np.maximum(intermediate_out, 0) out[np.abs(out) < 0.005] = 0.02 if mode == 0: return x, y, intermediate_out, out else: return y, x, intermediate_out, out def mul_scale_func(x, y, x_bcast, y_bcast, scale, mode=0): if mode == 0: return x, y, y * scale, x_bcast * (y_bcast * scale) else: return y, x, x * scale, y_bcast * (x_bcast * scale) scale = 0.1 scale_add_func = partial(scale_add_func, scale=scale) add_scale_func = partial(add_scale_func, scale=scale) mul_scale_func = partial(mul_scale_func, scale=scale) for mode in {0, 1}: scale_add_func = partial(scale_add_func, mode=mode) add_scale_func = partial(add_scale_func, mode=mode) mul_scale_func = partial(mul_scale_func, mode=mode) relu_add_func = partial(relu_add_func, mode=mode) add_relu_func = partial(add_relu_func, mode=mode) for recomputation in {True, False}: for keep_intermediate_value in {True, False}: suffix = ("_keep_intermediate_value" if keep_intermediate_value else "") \ + ("_recomputation" if recomputation else "") \ + ("_mode_"+ str(mode)) create_test_class('scale_add' + suffix, scale_add_func, { 'scale': scale, 'functor_list': ["scale", "elementwise_add"], 'keep_intermediate_value': keep_intermediate_value, 'recomputation': recomputation }) create_test_class('add_scale' + suffix, add_scale_func, { 'scale': scale, 'functor_list': ["elementwise_add", "scale"], 'keep_intermediate_value': keep_intermediate_value, 'recomputation': recomputation }) create_test_class('add_relu' + suffix, add_relu_func, { 'functor_list': ["elementwise_add", "relu"], 'keep_intermediate_value': keep_intermediate_value, 'recomputation': recomputation }) create_test_class('relu_add' + suffix, relu_add_func, { 'functor_list': ["relu", "elementwise_add"], 'keep_intermediate_value': keep_intermediate_value, 'recomputation': recomputation }) create_test_class('mul_scale' + suffix, mul_scale_func, { 'scale': scale, 'functor_list': ["elementwise_mul", "scale"], 'keep_intermediate_value': keep_intermediate_value, 'recomputation': recomputation }) if __name__ == '__main__': unittest.main()
41.77193
94
0.628937
4a213d13ddf9d37a0d3d1ff753d588d277f2dd24
19,467
py
Python
tests/rest/media/v1/test_media_storage.py
lukaslihotzki/synapse
1dfdc87b9bb07cc3c958dde7f41f2af4322477e5
[ "Apache-2.0" ]
2
2021-07-07T10:21:41.000Z
2021-12-28T00:13:20.000Z
tests/rest/media/v1/test_media_storage.py
lukaslihotzki/synapse
1dfdc87b9bb07cc3c958dde7f41f2af4322477e5
[ "Apache-2.0" ]
2
2021-12-17T21:45:54.000Z
2021-12-29T20:12:09.000Z
tests/rest/media/v1/test_media_storage.py
lukaslihotzki/synapse
1dfdc87b9bb07cc3c958dde7f41f2af4322477e5
[ "Apache-2.0" ]
1
2021-06-16T23:25:48.000Z
2021-06-16T23:25:48.000Z
# Copyright 2018 New Vector Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import shutil import tempfile from binascii import unhexlify from io import BytesIO from typing import Optional from unittest.mock import Mock from urllib import parse import attr from parameterized import parameterized_class from PIL import Image as Image from twisted.internet import defer from twisted.internet.defer import Deferred from synapse.logging.context import make_deferred_yieldable from synapse.rest import admin from synapse.rest.client.v1 import login from synapse.rest.media.v1._base import FileInfo from synapse.rest.media.v1.filepath import MediaFilePaths from synapse.rest.media.v1.media_storage import MediaStorage from synapse.rest.media.v1.storage_provider import FileStorageProviderBackend from tests import unittest from tests.server import FakeSite, make_request from tests.utils import default_config class MediaStorageTests(unittest.HomeserverTestCase): needs_threadpool = True def prepare(self, reactor, clock, hs): self.test_dir = tempfile.mkdtemp(prefix="synapse-tests-") self.addCleanup(shutil.rmtree, self.test_dir) self.primary_base_path = os.path.join(self.test_dir, "primary") self.secondary_base_path = os.path.join(self.test_dir, "secondary") hs.config.media_store_path = self.primary_base_path storage_providers = [FileStorageProviderBackend(hs, self.secondary_base_path)] self.filepaths = MediaFilePaths(self.primary_base_path) self.media_storage = MediaStorage( hs, self.primary_base_path, self.filepaths, storage_providers ) def test_ensure_media_is_in_local_cache(self): media_id = "some_media_id" test_body = "Test\n" # First we create a file that is in a storage provider but not in the # local primary media store rel_path = self.filepaths.local_media_filepath_rel(media_id) secondary_path = os.path.join(self.secondary_base_path, rel_path) os.makedirs(os.path.dirname(secondary_path)) with open(secondary_path, "w") as f: f.write(test_body) # Now we run ensure_media_is_in_local_cache, which should copy the file # to the local cache. file_info = FileInfo(None, media_id) # This uses a real blocking threadpool so we have to wait for it to be # actually done :/ x = defer.ensureDeferred( self.media_storage.ensure_media_is_in_local_cache(file_info) ) # Hotloop until the threadpool does its job... self.wait_on_thread(x) local_path = self.get_success(x) self.assertTrue(os.path.exists(local_path)) # Asserts the file is under the expected local cache directory self.assertEquals( os.path.commonprefix([self.primary_base_path, local_path]), self.primary_base_path, ) with open(local_path) as f: body = f.read() self.assertEqual(test_body, body) @attr.s(slots=True, frozen=True) class _TestImage: """An image for testing thumbnailing with the expected results Attributes: data: The raw image to thumbnail content_type: The type of the image as a content type, e.g. "image/png" extension: The extension associated with the format, e.g. ".png" expected_cropped: The expected bytes from cropped thumbnailing, or None if test should just check for success. expected_scaled: The expected bytes from scaled thumbnailing, or None if test should just check for a valid image returned. expected_found: True if the file should exist on the server, or False if a 404 is expected. """ data = attr.ib(type=bytes) content_type = attr.ib(type=bytes) extension = attr.ib(type=bytes) expected_cropped = attr.ib(type=Optional[bytes], default=None) expected_scaled = attr.ib(type=Optional[bytes], default=None) expected_found = attr.ib(default=True, type=bool) @parameterized_class( ("test_image",), [ # smoll png ( _TestImage( unhexlify( b"89504e470d0a1a0a0000000d4948445200000001000000010806" b"0000001f15c4890000000a49444154789c63000100000500010d" b"0a2db40000000049454e44ae426082" ), b"image/png", b".png", unhexlify( b"89504e470d0a1a0a0000000d4948445200000020000000200806" b"000000737a7af40000001a49444154789cedc101010000008220" b"ffaf6e484001000000ef0610200001194334ee0000000049454e" b"44ae426082" ), unhexlify( b"89504e470d0a1a0a0000000d4948445200000001000000010806" b"0000001f15c4890000000d49444154789c636060606000000005" b"0001a5f645400000000049454e44ae426082" ), ), ), # small png with transparency. ( _TestImage( unhexlify( b"89504e470d0a1a0a0000000d49484452000000010000000101000" b"00000376ef9240000000274524e5300010194fdae0000000a4944" b"4154789c636800000082008177cd72b60000000049454e44ae426" b"082" ), b"image/png", b".png", # Note that we don't check the output since it varies across # different versions of Pillow. ), ), # small lossless webp ( _TestImage( unhexlify( b"524946461a000000574542505650384c0d0000002f0000001007" b"1011118888fe0700" ), b"image/webp", b".webp", ), ), # an empty file ( _TestImage( b"", b"image/gif", b".gif", expected_found=False, ), ), ], ) class MediaRepoTests(unittest.HomeserverTestCase): hijack_auth = True user_id = "@test:user" def make_homeserver(self, reactor, clock): self.fetches = [] def get_file(destination, path, output_stream, args=None, max_size=None): """ Returns tuple[int,dict,str,int] of file length, response headers, absolute URI, and response code. """ def write_to(r): data, response = r output_stream.write(data) return response d = Deferred() d.addCallback(write_to) self.fetches.append((d, destination, path, args)) return make_deferred_yieldable(d) client = Mock() client.get_file = get_file self.storage_path = self.mktemp() self.media_store_path = self.mktemp() os.mkdir(self.storage_path) os.mkdir(self.media_store_path) config = self.default_config() config["media_store_path"] = self.media_store_path config["max_image_pixels"] = 2000000 provider_config = { "module": "synapse.rest.media.v1.storage_provider.FileStorageProviderBackend", "store_local": True, "store_synchronous": False, "store_remote": True, "config": {"directory": self.storage_path}, } config["media_storage_providers"] = [provider_config] hs = self.setup_test_homeserver(config=config, federation_http_client=client) return hs def prepare(self, reactor, clock, hs): media_resource = hs.get_media_repository_resource() self.download_resource = media_resource.children[b"download"] self.thumbnail_resource = media_resource.children[b"thumbnail"] self.store = hs.get_datastore() self.media_repo = hs.get_media_repository() self.media_id = "example.com/12345" def _req(self, content_disposition): channel = make_request( self.reactor, FakeSite(self.download_resource), "GET", self.media_id, shorthand=False, await_result=False, ) self.pump() # We've made one fetch, to example.com, using the media URL, and asking # the other server not to do a remote fetch self.assertEqual(len(self.fetches), 1) self.assertEqual(self.fetches[0][1], "example.com") self.assertEqual( self.fetches[0][2], "/_matrix/media/r0/download/" + self.media_id ) self.assertEqual(self.fetches[0][3], {"allow_remote": "false"}) headers = { b"Content-Length": [b"%d" % (len(self.test_image.data))], b"Content-Type": [self.test_image.content_type], } if content_disposition: headers[b"Content-Disposition"] = [content_disposition] self.fetches[0][0].callback( (self.test_image.data, (len(self.test_image.data), headers)) ) self.pump() self.assertEqual(channel.code, 200) return channel def test_disposition_filename_ascii(self): """ If the filename is filename=<ascii> then Synapse will decode it as an ASCII string, and use filename= in the response. """ channel = self._req(b"inline; filename=out" + self.test_image.extension) headers = channel.headers self.assertEqual( headers.getRawHeaders(b"Content-Type"), [self.test_image.content_type] ) self.assertEqual( headers.getRawHeaders(b"Content-Disposition"), [b"inline; filename=out" + self.test_image.extension], ) def test_disposition_filenamestar_utf8escaped(self): """ If the filename is filename=*utf8''<utf8 escaped> then Synapse will correctly decode it as the UTF-8 string, and use filename* in the response. """ filename = parse.quote("\u2603".encode("utf8")).encode("ascii") channel = self._req( b"inline; filename*=utf-8''" + filename + self.test_image.extension ) headers = channel.headers self.assertEqual( headers.getRawHeaders(b"Content-Type"), [self.test_image.content_type] ) self.assertEqual( headers.getRawHeaders(b"Content-Disposition"), [b"inline; filename*=utf-8''" + filename + self.test_image.extension], ) def test_disposition_none(self): """ If there is no filename, one isn't passed on in the Content-Disposition of the request. """ channel = self._req(None) headers = channel.headers self.assertEqual( headers.getRawHeaders(b"Content-Type"), [self.test_image.content_type] ) self.assertEqual(headers.getRawHeaders(b"Content-Disposition"), None) def test_thumbnail_crop(self): """Test that a cropped remote thumbnail is available.""" self._test_thumbnail( "crop", self.test_image.expected_cropped, self.test_image.expected_found ) def test_thumbnail_scale(self): """Test that a scaled remote thumbnail is available.""" self._test_thumbnail( "scale", self.test_image.expected_scaled, self.test_image.expected_found ) def test_invalid_type(self): """An invalid thumbnail type is never available.""" self._test_thumbnail("invalid", None, False) @unittest.override_config( {"thumbnail_sizes": [{"width": 32, "height": 32, "method": "scale"}]} ) def test_no_thumbnail_crop(self): """ Override the config to generate only scaled thumbnails, but request a cropped one. """ self._test_thumbnail("crop", None, False) @unittest.override_config( {"thumbnail_sizes": [{"width": 32, "height": 32, "method": "crop"}]} ) def test_no_thumbnail_scale(self): """ Override the config to generate only cropped thumbnails, but request a scaled one. """ self._test_thumbnail("scale", None, False) def test_thumbnail_repeated_thumbnail(self): """Test that fetching the same thumbnail works, and deleting the on disk thumbnail regenerates it. """ self._test_thumbnail( "scale", self.test_image.expected_scaled, self.test_image.expected_found ) if not self.test_image.expected_found: return # Fetching again should work, without re-requesting the image from the # remote. params = "?width=32&height=32&method=scale" channel = make_request( self.reactor, FakeSite(self.thumbnail_resource), "GET", self.media_id + params, shorthand=False, await_result=False, ) self.pump() self.assertEqual(channel.code, 200) if self.test_image.expected_scaled: self.assertEqual( channel.result["body"], self.test_image.expected_scaled, channel.result["body"], ) # Deleting the thumbnail on disk then re-requesting it should work as # Synapse should regenerate missing thumbnails. origin, media_id = self.media_id.split("/") info = self.get_success(self.store.get_cached_remote_media(origin, media_id)) file_id = info["filesystem_id"] thumbnail_dir = self.media_repo.filepaths.remote_media_thumbnail_dir( origin, file_id ) shutil.rmtree(thumbnail_dir, ignore_errors=True) channel = make_request( self.reactor, FakeSite(self.thumbnail_resource), "GET", self.media_id + params, shorthand=False, await_result=False, ) self.pump() self.assertEqual(channel.code, 200) if self.test_image.expected_scaled: self.assertEqual( channel.result["body"], self.test_image.expected_scaled, channel.result["body"], ) def _test_thumbnail(self, method, expected_body, expected_found): params = "?width=32&height=32&method=" + method channel = make_request( self.reactor, FakeSite(self.thumbnail_resource), "GET", self.media_id + params, shorthand=False, await_result=False, ) self.pump() headers = { b"Content-Length": [b"%d" % (len(self.test_image.data))], b"Content-Type": [self.test_image.content_type], } self.fetches[0][0].callback( (self.test_image.data, (len(self.test_image.data), headers)) ) self.pump() if expected_found: self.assertEqual(channel.code, 200) if expected_body is not None: self.assertEqual( channel.result["body"], expected_body, channel.result["body"] ) else: # ensure that the result is at least some valid image Image.open(BytesIO(channel.result["body"])) else: # A 404 with a JSON body. self.assertEqual(channel.code, 404) self.assertEqual( channel.json_body, { "errcode": "M_NOT_FOUND", "error": "Not found [b'example.com', b'12345']", }, ) def test_x_robots_tag_header(self): """ Tests that the `X-Robots-Tag` header is present, which informs web crawlers to not index, archive, or follow links in media. """ channel = self._req(b"inline; filename=out" + self.test_image.extension) headers = channel.headers self.assertEqual( headers.getRawHeaders(b"X-Robots-Tag"), [b"noindex, nofollow, noarchive, noimageindex"], ) class TestSpamChecker: """A spam checker module that rejects all media that includes the bytes `evil`. """ def __init__(self, config, api): self.config = config self.api = api def parse_config(config): return config async def check_event_for_spam(self, foo): return False # allow all events async def user_may_invite(self, inviter_userid, invitee_userid, room_id): return True # allow all invites async def user_may_create_room(self, userid): return True # allow all room creations async def user_may_create_room_alias(self, userid, room_alias): return True # allow all room aliases async def user_may_publish_room(self, userid, room_id): return True # allow publishing of all rooms async def check_media_file_for_spam(self, file_wrapper, file_info) -> bool: buf = BytesIO() await file_wrapper.write_chunks_to(buf.write) return b"evil" in buf.getvalue() class SpamCheckerTestCase(unittest.HomeserverTestCase): servlets = [ login.register_servlets, admin.register_servlets, ] def prepare(self, reactor, clock, hs): self.user = self.register_user("user", "pass") self.tok = self.login("user", "pass") # Allow for uploading and downloading to/from the media repo self.media_repo = hs.get_media_repository_resource() self.download_resource = self.media_repo.children[b"download"] self.upload_resource = self.media_repo.children[b"upload"] def default_config(self): config = default_config("test") config.update( { "spam_checker": [ { "module": TestSpamChecker.__module__ + ".TestSpamChecker", "config": {}, } ] } ) return config def test_upload_innocent(self): """Attempt to upload some innocent data that should be allowed.""" image_data = unhexlify( b"89504e470d0a1a0a0000000d4948445200000001000000010806" b"0000001f15c4890000000a49444154789c63000100000500010d" b"0a2db40000000049454e44ae426082" ) self.helper.upload_media( self.upload_resource, image_data, tok=self.tok, expect_code=200 ) def test_upload_ban(self): """Attempt to upload some data that includes bytes "evil", which should get rejected by the spam checker. """ data = b"Some evil data" self.helper.upload_media( self.upload_resource, data, tok=self.tok, expect_code=400 )
33.738302
90
0.612216
4a213d85cc6b7a2b7712bd07675947f5d25a6f42
42,958
py
Python
tests/core/test_playback.py
queyenth/mopidy
c010d5d53a00bbc1d576e78433607a14211795e8
[ "Apache-2.0" ]
null
null
null
tests/core/test_playback.py
queyenth/mopidy
c010d5d53a00bbc1d576e78433607a14211795e8
[ "Apache-2.0" ]
null
null
null
tests/core/test_playback.py
queyenth/mopidy
c010d5d53a00bbc1d576e78433607a14211795e8
[ "Apache-2.0" ]
null
null
null
from __future__ import absolute_import, unicode_literals import unittest import mock import pykka from mopidy import backend, core from mopidy.internal import deprecation from mopidy.internal.models import PlaybackState from mopidy.models import Track from tests import dummy_audio class TestPlaybackProvider(backend.PlaybackProvider): def __init__(self, audio, backend): super(TestPlaybackProvider, self).__init__(audio, backend) self._call_limit = 10 self._call_count = 0 self._call_onetime = False def reset_call_limit(self): self._call_count = 0 self._call_onetime = False def is_call_limit_reached(self): return self._call_count > self._call_limit def _translate_uri_call_limit(self, uri): self._call_count += 1 if self._call_count > self._call_limit: # return any url (not 'None') to stop the endless loop return 'assert: call limit reached' if 'limit_never' in uri: # unplayable return None elif 'limit_one' in uri: # one time playable if self._call_onetime: return None self._call_onetime = True return uri def translate_uri(self, uri): if 'error' in uri: raise Exception(uri) elif 'unplayable' in uri: return None elif 'limit' in uri: return self._translate_uri_call_limit(uri) else: return uri # TODO: Replace this with dummy_backend now that it uses a real # playbackprovider Since we rely on our DummyAudio to actually emit events we # need a "real" backend and not a mock so the right calls make it through to # audio. class TestBackend(pykka.ThreadingActor, backend.Backend): uri_schemes = ['dummy'] def __init__(self, config, audio): super(TestBackend, self).__init__() self.playback = TestPlaybackProvider(audio=audio, backend=self) class BaseTest(unittest.TestCase): config = {'core': {'max_tracklist_length': 10000}} tracks = [Track(uri='dummy:a', length=1234, name='foo'), Track(uri='dummy:b', length=1234), Track(uri='dummy:c', length=1234)] def setUp(self): # noqa: N802 # TODO: use create_proxy helpers. self.audio = dummy_audio.DummyAudio.start().proxy() self.backend = TestBackend.start( audio=self.audio, config=self.config).proxy() self.core = core.Core( audio=self.audio, backends=[self.backend], config=self.config) self.playback = self.core.playback # We don't have a core actor running, so call about to finish directly. self.audio.set_about_to_finish_callback( self.playback._on_about_to_finish) with deprecation.ignore('core.tracklist.add:tracks_arg'): self.core.tracklist.add(self.tracks) self.events = [] self.patcher = mock.patch('mopidy.audio.listener.AudioListener.send') self.send_mock = self.patcher.start() def send(event, **kwargs): self.events.append((event, kwargs)) self.send_mock.side_effect = send def tearDown(self): # noqa: N802 pykka.ActorRegistry.stop_all() self.patcher.stop() def replay_events(self, until=None): while self.events: if self.events[0][0] == until: break event, kwargs = self.events.pop(0) self.core.on_event(event, **kwargs) def trigger_about_to_finish(self, replay_until=None): self.replay_events() callback = self.audio.get_about_to_finish_callback().get() callback() self.replay_events(until=replay_until) class TestPlayHandling(BaseTest): def test_get_current_tl_track_play(self): tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play(tl_tracks[0]) self.replay_events() self.assertEqual( self.core.playback.get_current_tl_track(), tl_tracks[0]) def test_get_current_track_play(self): tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play(tl_tracks[0]) self.replay_events() self.assertEqual( self.core.playback.get_current_track(), self.tracks[0]) def test_get_current_tlid_play(self): tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play(tl_tracks[0]) self.replay_events() self.assertEqual( self.core.playback.get_current_tlid(), tl_tracks[0].tlid) def test_play_skips_to_next_on_unplayable_track(self): """Checks that we handle backend.change_track failing.""" tl_tracks = self.core.tracklist.get_tl_tracks() self.audio.trigger_fake_playback_failure(tl_tracks[0].track.uri) self.core.playback.play(tl_tracks[0]) self.replay_events() current_tl_track = self.core.playback.get_current_tl_track() self.assertEqual(tl_tracks[1], current_tl_track) def test_resume_skips_to_next_on_unplayable_track(self): """Checks that we handle backend.change_track failing when resuming playback.""" tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play(tl_tracks[0]) self.core.playback.pause() self.audio.trigger_fake_playback_failure(tl_tracks[1].track.uri) self.core.playback.next() self.core.playback.resume() self.replay_events() current_tl_track = self.core.playback.get_current_tl_track() self.assertEqual(tl_tracks[2], current_tl_track) def test_play_tlid(self): tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play(tlid=tl_tracks[1].tlid) self.replay_events() current_tl_track = self.core.playback.get_current_tl_track() self.assertEqual(tl_tracks[1], current_tl_track) class TestNextHandling(BaseTest): def test_get_current_tl_track_next(self): self.core.playback.play() self.replay_events() self.core.playback.next() self.replay_events() tl_tracks = self.core.tracklist.get_tl_tracks() current_tl_track = self.core.playback.get_current_tl_track() self.assertEqual(current_tl_track, tl_tracks[1]) def test_get_pending_tl_track_next(self): self.core.playback.play() self.replay_events() self.core.playback.next() tl_tracks = self.core.tracklist.get_tl_tracks() self.assertEqual(self.core.playback._pending_tl_track, tl_tracks[1]) def test_get_current_track_next(self): self.core.playback.play() self.replay_events() self.core.playback.next() self.replay_events() current_track = self.core.playback.get_current_track() self.assertEqual(current_track, self.tracks[1]) def test_next_keeps_finished_track_in_tracklist(self): tl_track = self.core.tracklist.get_tl_tracks()[0] self.core.playback.play(tl_track) self.replay_events() self.core.playback.next() self.replay_events() self.assertIn(tl_track, self.core.tracklist.tl_tracks) def test_next_skips_over_unplayable_track(self): tl_tracks = self.core.tracklist.get_tl_tracks() self.audio.trigger_fake_playback_failure(tl_tracks[1].track.uri) self.core.playback.play(tl_tracks[0]) self.replay_events() self.core.playback.next() self.replay_events() assert self.core.playback.get_current_tl_track() == tl_tracks[2] def test_next_skips_over_change_track_error(self): # Trigger an exception in translate_uri. track = Track(uri='dummy:error', length=1234) self.core.tracklist.add(tracks=[track], at_position=1) tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play() self.replay_events() self.core.playback.next() self.replay_events() assert self.core.playback.get_current_tl_track() == tl_tracks[2] def test_next_skips_over_change_track_unplayable(self): # Make translate_uri return None. track = Track(uri='dummy:unplayable', length=1234) self.core.tracklist.add(tracks=[track], at_position=1) tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play() self.replay_events() self.core.playback.next() self.replay_events() assert self.core.playback.get_current_tl_track() == tl_tracks[2] class TestPreviousHandling(BaseTest): # TODO Test previous() more def test_get_current_tl_track_prev(self): tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play(tl_tracks[1]) self.core.playback.previous() self.replay_events() self.assertEqual( self.core.playback.get_current_tl_track(), tl_tracks[0]) def test_get_current_track_prev(self): tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play(tl_tracks[1]) self.core.playback.previous() self.replay_events() self.assertEqual( self.core.playback.get_current_track(), self.tracks[0]) def test_previous_keeps_finished_track_in_tracklist(self): tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play(tl_tracks[1]) self.core.playback.previous() self.replay_events() self.assertIn(tl_tracks[1], self.core.tracklist.tl_tracks) def test_previous_keeps_finished_track_even_in_consume_mode(self): tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play(tl_tracks[1]) self.core.tracklist.consume = True self.core.playback.previous() self.replay_events() self.assertIn(tl_tracks[1], self.core.tracklist.tl_tracks) def test_previous_skips_over_unplayable_track(self): tl_tracks = self.core.tracklist.get_tl_tracks() self.audio.trigger_fake_playback_failure(tl_tracks[1].track.uri) self.core.playback.play(tl_tracks[2]) self.replay_events() self.core.playback.previous() self.replay_events() assert self.core.playback.get_current_tl_track() == tl_tracks[0] def test_previous_skips_over_change_track_error(self): # Trigger an exception in translate_uri. track = Track(uri='dummy:error', length=1234) self.core.tracklist.add(tracks=[track], at_position=1) tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play(tl_tracks[2]) self.replay_events() self.core.playback.previous() self.replay_events() assert self.core.playback.get_current_tl_track() == tl_tracks[0] def test_previous_skips_over_change_track_unplayable(self): # Makes translate_uri return None. track = Track(uri='dummy:unplayable', length=1234) self.core.tracklist.add(tracks=[track], at_position=1) tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play(tl_tracks[2]) self.replay_events() self.core.playback.previous() self.replay_events() assert self.core.playback.get_current_tl_track() == tl_tracks[0] class TestOnAboutToFinish(BaseTest): def test_on_about_to_finish_keeps_finished_track_in_tracklist(self): tl_track = self.core.tracklist.get_tl_tracks()[0] self.core.playback.play(tl_track) self.trigger_about_to_finish() self.assertIn(tl_track, self.core.tracklist.tl_tracks) def test_on_about_to_finish_skips_over_change_track_error(self): # Trigger an exception in translate_uri. track = Track(uri='dummy:error', length=1234) self.core.tracklist.add(tracks=[track], at_position=1) tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play(tl_tracks[0]) self.replay_events() self.trigger_about_to_finish() assert self.core.playback.get_current_tl_track() == tl_tracks[2] def test_on_about_to_finish_skips_over_change_track_unplayable(self): # Makes translate_uri return None. track = Track(uri='dummy:unplayable', length=1234) self.core.tracklist.add(tracks=[track], at_position=1) tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play(tl_tracks[0]) self.replay_events() self.trigger_about_to_finish() assert self.core.playback.get_current_tl_track() == tl_tracks[2] class TestConsumeHandling(BaseTest): def test_next_in_consume_mode_removes_finished_track(self): tl_track = self.core.tracklist.get_tl_tracks()[0] self.core.playback.play(tl_track) self.core.tracklist.set_consume(True) self.replay_events() self.core.playback.next() self.replay_events() self.assertNotIn(tl_track, self.core.tracklist.get_tl_tracks()) def test_next_in_consume_mode_removes_unplayable_track(self): last_playable_tl_track = self.core.tracklist.get_tl_tracks()[-2] unplayable_tl_track = self.core.tracklist.get_tl_tracks()[-1] self.audio.trigger_fake_playback_failure(unplayable_tl_track.track.uri) self.core.playback.play(last_playable_tl_track) self.core.tracklist.set_consume(True) self.core.playback.next() self.replay_events() self.assertNotIn( unplayable_tl_track, self.core.tracklist.get_tl_tracks()) def test_on_about_to_finish_in_consume_mode_removes_finished_track(self): tl_track = self.core.tracklist.get_tl_tracks()[0] self.core.playback.play(tl_track) self.core.tracklist.consume = True self.trigger_about_to_finish() self.assertNotIn(tl_track, self.core.tracklist.get_tl_tracks()) def test_next_in_consume_and_repeat_mode_returns_none_on_last_track(self): self.core.playback.play() self.core.tracklist.set_consume(True) self.core.tracklist.set_repeat(True) self.replay_events() for track in self.core.tracklist.get_tl_tracks(): self.core.playback.next() self.replay_events() self.core.playback.next() self.replay_events() self.assertEqual(self.playback.get_state(), 'stopped') class TestCurrentAndPendingTlTrack(BaseTest): def test_get_current_tl_track_none(self): self.assertEqual( self.core.playback.get_current_tl_track(), None) def test_get_current_tlid_none(self): self.assertEqual(self.core.playback.get_current_tlid(), None) def test_pending_tl_track_is_none(self): self.core.playback.play() self.replay_events() self.assertEqual(self.playback._pending_tl_track, None) def test_pending_tl_track_after_about_to_finish(self): self.core.playback.play() self.replay_events() self.trigger_about_to_finish(replay_until='stream_changed') self.assertEqual(self.playback._pending_tl_track.track.uri, 'dummy:b') def test_pending_tl_track_after_stream_changed(self): self.trigger_about_to_finish() self.assertEqual(self.playback._pending_tl_track, None) def test_current_tl_track_after_about_to_finish(self): self.core.playback.play() self.replay_events() self.trigger_about_to_finish(replay_until='stream_changed') self.assertEqual(self.playback.current_tl_track.track.uri, 'dummy:a') def test_current_tl_track_after_stream_changed(self): self.core.playback.play() self.replay_events() self.trigger_about_to_finish() self.assertEqual(self.playback.current_tl_track.track.uri, 'dummy:b') def test_current_tl_track_after_end_of_stream(self): self.core.playback.play() self.replay_events() self.trigger_about_to_finish() self.trigger_about_to_finish() self.trigger_about_to_finish() # EOS self.assertEqual(self.playback.current_tl_track, None) @mock.patch( 'mopidy.core.playback.listener.CoreListener', spec=core.CoreListener) class EventEmissionTest(BaseTest): maxDiff = None # noqa: N815 def test_play_when_stopped_emits_events(self, listener_mock): tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play(tl_tracks[0]) self.replay_events() self.assertListEqual( [ mock.call( 'playback_state_changed', old_state='stopped', new_state='playing'), mock.call( 'track_playback_started', tl_track=tl_tracks[0]), ], listener_mock.send.mock_calls) def test_play_when_paused_emits_events(self, listener_mock): tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play(tl_tracks[0]) self.replay_events() self.core.playback.pause() self.replay_events() listener_mock.reset_mock() self.core.playback.play(tl_tracks[1]) self.replay_events() self.assertListEqual( [ mock.call( 'track_playback_ended', tl_track=tl_tracks[0], time_position=mock.ANY), mock.call( 'playback_state_changed', old_state='paused', new_state='playing'), mock.call( 'track_playback_started', tl_track=tl_tracks[1]), ], listener_mock.send.mock_calls) def test_play_when_playing_emits_events(self, listener_mock): tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play(tl_tracks[0]) self.replay_events() listener_mock.reset_mock() self.core.playback.play(tl_tracks[2]) self.replay_events() self.assertListEqual( [ mock.call( 'track_playback_ended', tl_track=tl_tracks[0], time_position=mock.ANY), mock.call( 'playback_state_changed', old_state='playing', new_state='playing'), mock.call( 'track_playback_started', tl_track=tl_tracks[2]), ], listener_mock.send.mock_calls) def test_pause_emits_events(self, listener_mock): tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play(tl_tracks[0]) self.replay_events() self.core.playback.seek(1000) listener_mock.reset_mock() self.core.playback.pause() self.assertListEqual( [ mock.call( 'playback_state_changed', old_state='playing', new_state='paused'), mock.call( 'track_playback_paused', tl_track=tl_tracks[0], time_position=1000), ], listener_mock.send.mock_calls) def test_resume_emits_events(self, listener_mock): tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play(tl_tracks[0]) self.replay_events() self.core.playback.pause() self.core.playback.seek(1000) listener_mock.reset_mock() self.core.playback.resume() self.assertListEqual( [ mock.call( 'playback_state_changed', old_state='paused', new_state='playing'), mock.call( 'track_playback_resumed', tl_track=tl_tracks[0], time_position=1000), ], listener_mock.send.mock_calls) def test_stop_emits_events(self, listener_mock): tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play(tl_tracks[0]) self.replay_events() self.core.playback.seek(1000) self.replay_events() listener_mock.reset_mock() self.core.playback.stop() self.replay_events() self.assertListEqual( [ mock.call( 'playback_state_changed', old_state='playing', new_state='stopped'), mock.call( 'track_playback_ended', tl_track=tl_tracks[0], time_position=1000), ], listener_mock.send.mock_calls) def test_next_emits_events(self, listener_mock): tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play(tl_tracks[0]) self.replay_events() self.core.playback.seek(1000) self.replay_events() listener_mock.reset_mock() self.core.playback.next() self.replay_events() self.assertListEqual( [ mock.call( 'track_playback_ended', tl_track=tl_tracks[0], time_position=mock.ANY), mock.call( 'playback_state_changed', old_state='playing', new_state='playing'), mock.call( 'track_playback_started', tl_track=tl_tracks[1]), ], listener_mock.send.mock_calls) def test_next_emits_events_when_consume_mode_is_enabled( self, listener_mock): tl_tracks = self.core.tracklist.get_tl_tracks() self.core.tracklist.set_consume(True) self.core.playback.play(tl_tracks[0]) self.replay_events() self.core.playback.seek(1000) self.replay_events() listener_mock.reset_mock() self.core.playback.next() self.replay_events() self.assertListEqual( [ mock.call( 'tracklist_changed'), mock.call( 'track_playback_ended', tl_track=tl_tracks[0], time_position=mock.ANY), mock.call( 'playback_state_changed', old_state='playing', new_state='playing'), mock.call( 'track_playback_started', tl_track=tl_tracks[1]), ], listener_mock.send.mock_calls) def test_gapless_track_change_emits_events(self, listener_mock): tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play(tl_tracks[0]) self.replay_events() listener_mock.reset_mock() self.trigger_about_to_finish() self.assertListEqual( [ mock.call( 'track_playback_ended', tl_track=tl_tracks[0], time_position=mock.ANY), mock.call( 'playback_state_changed', old_state='playing', new_state='playing'), mock.call( 'track_playback_started', tl_track=tl_tracks[1]), ], listener_mock.send.mock_calls) def test_seek_emits_seeked_event(self, listener_mock): tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play(tl_tracks[0]) self.replay_events() listener_mock.reset_mock() self.core.playback.seek(1000) self.replay_events() listener_mock.send.assert_called_once_with( 'seeked', time_position=1000) def test_seek_past_end_of_track_emits_events(self, listener_mock): tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play(tl_tracks[0]) self.replay_events() listener_mock.reset_mock() self.core.playback.seek(self.tracks[0].length * 5) self.replay_events() self.assertListEqual( [ mock.call( 'track_playback_ended', tl_track=tl_tracks[0], time_position=mock.ANY), mock.call( 'playback_state_changed', old_state='playing', new_state='playing'), mock.call( 'track_playback_started', tl_track=tl_tracks[1]), ], listener_mock.send.mock_calls) def test_seek_race_condition_emits_events(self, listener_mock): tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play(tl_tracks[0]) self.trigger_about_to_finish(replay_until='stream_changed') self.replay_events() listener_mock.reset_mock() self.core.playback.seek(1000) self.replay_events() # When we trigger seek after an about to finish the other code that # emits track stopped/started and playback state changed events gets # triggered as we have to switch back to the previous track. # The correct behavior would be to only emit seeked. self.assertListEqual( [mock.call('seeked', time_position=1000)], listener_mock.send.mock_calls) def test_previous_emits_events(self, listener_mock): tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play(tl_tracks[1]) self.replay_events() listener_mock.reset_mock() self.core.playback.previous() self.replay_events() self.assertListEqual( [ mock.call( 'track_playback_ended', tl_track=tl_tracks[1], time_position=mock.ANY), mock.call( 'playback_state_changed', old_state='playing', new_state='playing'), mock.call( 'track_playback_started', tl_track=tl_tracks[0]), ], listener_mock.send.mock_calls) class TestUnplayableURI(BaseTest): tracks = [ Track(uri='unplayable://'), Track(uri='dummy:b'), ] def setUp(self): # noqa: N802 super(TestUnplayableURI, self).setUp() tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback._set_current_tl_track(tl_tracks[0]) def test_play_skips_to_next_if_track_is_unplayable(self): self.core.playback.play() self.replay_events() current_track = self.core.playback.get_current_track() self.assertEqual(current_track, self.tracks[1]) def test_pause_changes_state_even_if_track_is_unplayable(self): self.core.playback.pause() self.assertEqual(self.core.playback.state, core.PlaybackState.PAUSED) def test_resume_does_nothing_if_track_is_unplayable(self): self.core.playback.state = core.PlaybackState.PAUSED self.core.playback.resume() self.assertEqual(self.core.playback.state, core.PlaybackState.PAUSED) def test_stop_changes_state_even_if_track_is_unplayable(self): self.core.playback.state = core.PlaybackState.PAUSED self.core.playback.stop() self.assertEqual(self.core.playback.state, core.PlaybackState.STOPPED) def test_time_position_returns_0_if_track_is_unplayable(self): result = self.core.playback.time_position self.assertEqual(result, 0) def test_seek_fails_for_unplayable_track(self): self.core.playback.state = core.PlaybackState.PLAYING success = self.core.playback.seek(1000) self.assertFalse(success) class SeekTest(BaseTest): def test_seek_normalizes_negative_positions_to_zero(self): tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play(tl_tracks[0]) self.replay_events() self.core.playback.seek(-100) # Dummy audio doesn't progress time. self.assertEqual(0, self.core.playback.get_time_position()) def test_seek_fails_for_track_without_duration(self): track = self.tracks[0].replace(length=None) self.core.tracklist.clear() self.core.tracklist.add([track]) self.core.playback.play() self.replay_events() self.assertFalse(self.core.playback.seek(1000)) self.assertEqual(0, self.core.playback.get_time_position()) def test_seek_play_stay_playing(self): tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play(tl_tracks[0]) self.replay_events() self.core.playback.seek(1000) self.assertEqual(self.core.playback.state, core.PlaybackState.PLAYING) def test_seek_paused_stay_paused(self): tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play(tl_tracks[0]) self.replay_events() self.core.playback.pause() self.replay_events() self.core.playback.seek(1000) self.assertEqual(self.core.playback.state, core.PlaybackState.PAUSED) def test_seek_race_condition_after_about_to_finish(self): tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play(tl_tracks[0]) self.replay_events() self.trigger_about_to_finish(replay_until='stream_changed') self.core.playback.seek(1000) self.replay_events() current_tl_track = self.core.playback.get_current_tl_track() self.assertEqual(current_tl_track, tl_tracks[0]) class TestStream(BaseTest): def test_get_stream_title_before_playback(self): self.assertEqual(self.playback.get_stream_title(), None) def test_get_stream_title_during_playback(self): self.core.playback.play() self.replay_events() self.assertEqual(self.playback.get_stream_title(), None) def test_get_stream_title_during_playback_with_tags_change(self): self.core.playback.play() self.audio.trigger_fake_tags_changed({'title': ['foobar']}).get() self.replay_events() self.assertEqual(self.playback.get_stream_title(), 'foobar') def test_get_stream_title_during_playback_with_tags_unchanged(self): self.core.playback.play() self.audio.trigger_fake_tags_changed({'title': ['foo']}).get() self.replay_events() assert self.playback.get_stream_title() is None def test_get_stream_title_after_next(self): self.core.playback.play() self.audio.trigger_fake_tags_changed({'title': ['foobar']}).get() self.replay_events() self.core.playback.next() self.replay_events() self.assertEqual(self.playback.get_stream_title(), None) def test_get_stream_title_after_next_with_tags_change(self): self.core.playback.play() self.audio.trigger_fake_tags_changed({'title': ['foo']}).get() self.replay_events() self.core.playback.next() self.audio.trigger_fake_tags_changed({'title': ['bar']}).get() self.replay_events() self.assertEqual(self.playback.get_stream_title(), 'bar') def test_get_stream_title_after_stop(self): self.core.playback.play() self.audio.trigger_fake_tags_changed({'title': ['foobar']}).get() self.replay_events() self.core.playback.stop() self.replay_events() self.assertEqual(self.playback.get_stream_title(), None) class TestBackendSelection(unittest.TestCase): def setUp(self): # noqa: N802 config = { 'core': { 'max_tracklist_length': 10000, } } self.backend1 = mock.Mock() self.backend1.uri_schemes.get.return_value = ['dummy1'] self.playback1 = mock.Mock(spec=backend.PlaybackProvider) self.backend1.playback = self.playback1 self.backend2 = mock.Mock() self.backend2.uri_schemes.get.return_value = ['dummy2'] self.playback2 = mock.Mock(spec=backend.PlaybackProvider) self.backend2.playback = self.playback2 self.tracks = [ Track(uri='dummy1:a', length=40000), Track(uri='dummy2:a', length=40000), ] self.core = core.Core(config, mixer=None, backends=[ self.backend1, self.backend2]) self.tl_tracks = self.core.tracklist.add(self.tracks) def trigger_stream_changed(self): pending = self.core.playback._pending_tl_track if pending: self.core.stream_changed(uri=pending.track.uri) else: self.core.stream_changed(uri=None) def test_play_selects_dummy1_backend(self): self.core.playback.play(self.tl_tracks[0]) self.trigger_stream_changed() self.playback1.prepare_change.assert_called_once_with() self.playback1.change_track.assert_called_once_with(self.tracks[0]) self.playback1.play.assert_called_once_with() self.assertFalse(self.playback2.play.called) def test_play_selects_dummy2_backend(self): self.core.playback.play(self.tl_tracks[1]) self.trigger_stream_changed() self.assertFalse(self.playback1.play.called) self.playback2.prepare_change.assert_called_once_with() self.playback2.change_track.assert_called_once_with(self.tracks[1]) self.playback2.play.assert_called_once_with() def test_pause_selects_dummy1_backend(self): self.core.playback.play(self.tl_tracks[0]) self.trigger_stream_changed() self.core.playback.pause() self.playback1.pause.assert_called_once_with() self.assertFalse(self.playback2.pause.called) def test_pause_selects_dummy2_backend(self): self.core.playback.play(self.tl_tracks[1]) self.trigger_stream_changed() self.core.playback.pause() self.assertFalse(self.playback1.pause.called) self.playback2.pause.assert_called_once_with() def test_resume_selects_dummy1_backend(self): self.core.playback.play(self.tl_tracks[0]) self.trigger_stream_changed() self.core.playback.pause() self.core.playback.resume() self.playback1.resume.assert_called_once_with() self.assertFalse(self.playback2.resume.called) def test_resume_selects_dummy2_backend(self): self.core.playback.play(self.tl_tracks[1]) self.trigger_stream_changed() self.core.playback.pause() self.core.playback.resume() self.assertFalse(self.playback1.resume.called) self.playback2.resume.assert_called_once_with() def test_stop_selects_dummy1_backend(self): self.core.playback.play(self.tl_tracks[0]) self.trigger_stream_changed() self.core.playback.stop() self.trigger_stream_changed() self.playback1.stop.assert_called_once_with() self.assertFalse(self.playback2.stop.called) def test_stop_selects_dummy2_backend(self): self.core.playback.play(self.tl_tracks[1]) self.trigger_stream_changed() self.core.playback.stop() self.trigger_stream_changed() self.assertFalse(self.playback1.stop.called) self.playback2.stop.assert_called_once_with() def test_seek_selects_dummy1_backend(self): self.core.playback.play(self.tl_tracks[0]) self.trigger_stream_changed() self.core.playback.seek(10000) self.playback1.seek.assert_called_once_with(10000) self.assertFalse(self.playback2.seek.called) def test_seek_selects_dummy2_backend(self): self.core.playback.play(self.tl_tracks[1]) self.trigger_stream_changed() self.core.playback.seek(10000) self.assertFalse(self.playback1.seek.called) self.playback2.seek.assert_called_once_with(10000) def test_time_position_selects_dummy1_backend(self): self.core.playback.play(self.tl_tracks[0]) self.trigger_stream_changed() self.core.playback.time_position self.playback1.get_time_position.assert_called_once_with() self.assertFalse(self.playback2.get_time_position.called) def test_time_position_selects_dummy2_backend(self): self.core.playback.play(self.tl_tracks[1]) self.trigger_stream_changed() self.core.playback.time_position self.assertFalse(self.playback1.get_time_position.called) self.playback2.get_time_position.assert_called_once_with() class TestCorePlaybackWithOldBackend(unittest.TestCase): def test_type_error_from_old_backend_does_not_crash_core(self): config = { 'core': { 'max_tracklist_length': 10000, } } b = mock.Mock() b.actor_ref.actor_class.__name__ = 'DummyBackend' b.uri_schemes.get.return_value = ['dummy1'] b.playback = mock.Mock(spec=backend.PlaybackProvider) b.playback.play.side_effect = TypeError b.library.lookup.return_value.get.return_value = [ Track(uri='dummy1:a', length=40000)] c = core.Core(config, mixer=None, backends=[b]) c.tracklist.add(uris=['dummy1:a']) c.playback.play() # No TypeError == test passed. b.playback.play.assert_called_once_with() class TestBug1177Regression(unittest.TestCase): def test(self): config = { 'core': { 'max_tracklist_length': 10000, } } b = mock.Mock() b.uri_schemes.get.return_value = ['dummy'] b.playback = mock.Mock(spec=backend.PlaybackProvider) b.playback.change_track.return_value.get.return_value = True b.playback.play.return_value.get.return_value = True track1 = Track(uri='dummy:a', length=40000) track2 = Track(uri='dummy:b', length=40000) c = core.Core(config, mixer=None, backends=[b]) c.tracklist.add([track1, track2]) c.playback.play() b.playback.change_track.assert_called_once_with(track1) b.playback.change_track.reset_mock() c.playback.pause() c.playback.next() b.playback.change_track.assert_called_once_with(track2) class TestCorePlaybackSaveLoadState(BaseTest): def test_save(self): tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play(tl_tracks[1]) self.replay_events() state = PlaybackState( time_position=0, state='playing', tlid=tl_tracks[1].tlid) value = self.core.playback._save_state() self.assertEqual(state, value) def test_load(self): tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.stop() self.replay_events() self.assertEqual('stopped', self.core.playback.get_state()) state = PlaybackState( time_position=0, state='playing', tlid=tl_tracks[2].tlid) coverage = ['play-last'] self.core.playback._load_state(state, coverage) self.replay_events() self.assertEqual('playing', self.core.playback.get_state()) self.assertEqual(tl_tracks[2], self.core.playback.get_current_tl_track()) def test_load_not_covered(self): tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.stop() self.replay_events() self.assertEqual('stopped', self.core.playback.get_state()) state = PlaybackState( time_position=0, state='playing', tlid=tl_tracks[2].tlid) coverage = ['other'] self.core.playback._load_state(state, coverage) self.replay_events() self.assertEqual('stopped', self.core.playback.get_state()) self.assertEqual(None, self.core.playback.get_current_tl_track()) def test_load_invalid_type(self): with self.assertRaises(TypeError): self.core.playback._load_state(11, None) def test_load_none(self): self.core.playback._load_state(None, None) class TestBug1352Regression(BaseTest): tracks = [ Track(uri='dummy:a', length=40000), Track(uri='dummy:b', length=40000), ] def test_next_when_paused_updates_history(self): self.core.history._add_track = mock.Mock() self.core.tracklist._mark_playing = mock.Mock() tl_tracks = self.core.tracklist.get_tl_tracks() self.playback.play() self.replay_events() self.core.history._add_track.assert_called_once_with(self.tracks[0]) self.core.tracklist._mark_playing.assert_called_once_with(tl_tracks[0]) self.core.history._add_track.reset_mock() self.core.tracklist._mark_playing.reset_mock() self.playback.pause() self.playback.next() self.replay_events() self.core.history._add_track.assert_called_once_with(self.tracks[1]) self.core.tracklist._mark_playing.assert_called_once_with(tl_tracks[1]) class TestEndlessLoop(BaseTest): tracks_play = [ Track(uri='dummy:limit_never:a'), Track(uri='dummy:limit_never:b') ] tracks_other = [ Track(uri='dummy:limit_never:a'), Track(uri='dummy:limit_one'), Track(uri='dummy:limit_never:b') ] def test_play(self): self.core.tracklist.clear() self.core.tracklist.add(self.tracks_play) self.backend.playback.reset_call_limit().get() self.core.tracklist.set_repeat(True) tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play(tl_tracks[0]) self.replay_events() self.assertFalse(self.backend.playback.is_call_limit_reached().get()) def test_next(self): self.core.tracklist.clear() self.core.tracklist.add(self.tracks_other) self.backend.playback.reset_call_limit().get() self.core.tracklist.set_repeat(True) tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play(tl_tracks[1]) self.replay_events() self.core.playback.next() self.replay_events() self.assertFalse(self.backend.playback.is_call_limit_reached().get()) def test_previous(self): self.core.tracklist.clear() self.core.tracklist.add(self.tracks_other) self.backend.playback.reset_call_limit().get() self.core.tracklist.set_repeat(True) tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play(tl_tracks[1]) self.replay_events() self.core.playback.previous() self.replay_events() self.assertFalse(self.backend.playback.is_call_limit_reached().get()) def test_on_about_to_finish(self): self.core.tracklist.clear() self.core.tracklist.add(self.tracks_other) self.backend.playback.reset_call_limit().get() self.core.tracklist.set_repeat(True) tl_tracks = self.core.tracklist.get_tl_tracks() self.core.playback.play(tl_tracks[1]) self.replay_events() self.trigger_about_to_finish() self.assertFalse(self.backend.playback.is_call_limit_reached().get())
32.842508
79
0.654127
4a213da75f8561f233d4f33fc4b9f7dfc94097a8
2,403
py
Python
openGaussBase/testcase/GUC/CONNECTIONAUTHENTICATION/Opengauss_Function_Guc_Connectionauthentication_Case0147.py
opengauss-mirror/Yat
aef107a8304b94e5d99b4f1f36eb46755eb8919e
[ "MulanPSL-1.0" ]
null
null
null
openGaussBase/testcase/GUC/CONNECTIONAUTHENTICATION/Opengauss_Function_Guc_Connectionauthentication_Case0147.py
opengauss-mirror/Yat
aef107a8304b94e5d99b4f1f36eb46755eb8919e
[ "MulanPSL-1.0" ]
null
null
null
openGaussBase/testcase/GUC/CONNECTIONAUTHENTICATION/Opengauss_Function_Guc_Connectionauthentication_Case0147.py
opengauss-mirror/Yat
aef107a8304b94e5d99b4f1f36eb46755eb8919e
[ "MulanPSL-1.0" ]
null
null
null
""" Copyright (c) 2022 Huawei Technologies Co.,Ltd. openGauss is licensed under Mulan PSL v2. You can use this software according to the terms and conditions of the Mulan PSL v2. You may obtain a copy of Mulan PSL v2 at: http://license.coscl.org.cn/MulanPSL2 THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. See the Mulan PSL v2 for more details. """ """ Case Type : GUC Case Name : auth_iteration_count参数使用gs_guc set设置为空值 Description : 1、查看auth_iteration_count默认值; source /opt/opengauss810/env gs_guc check -D {cluster/dn1} -c auth_iteration_count 2、使用设置gs_guc set设置auth_iteration_count为空值 gs_guc set -D {cluster/dn1} -c "auth_iteration_count=' '" gs_guc set -N all -D {cluster/dn1} -c "auth_iteration_count=' '" Expect : 1、显示默认值; 2、参数修改失败; History : """ import unittest from testcase.utils.Constant import Constant from testcase.utils.Logger import Logger from testcase.utils.CommonSH import CommonSH COMMONSH = CommonSH('PrimaryDbUser') class GucTest(unittest.TestCase): def setUp(self): self.log = Logger() self.constant = Constant() self.log.info('==Guc_Connectionauthentication_Case0147开始==') status = COMMONSH.get_db_cluster_status() self.assertTrue("Normal" in status or "Degraded" in status) def test_startdb(self): self.log.info("查询该参数默认值") result = COMMONSH.execute_gsguc( 'check', '10000', 'auth_iteration_count') self.assertTrue(result) self.log.info("设置auth_iteration_count为空值,重启使其生效") result = COMMONSH.execute_gsguc('set', self.constant.TPCC_ERROR, f'auth_iteration_count=\' \'') self.assertTrue(result) def tearDown(self): self.log.info("恢复默认值") result = COMMONSH.execute_gsguc('set', self.constant.GSGUC_SUCCESS_MSG, f'auth_iteration_count=10000') self.log.info(result) COMMONSH.restart_db_cluster() status = COMMONSH.get_db_cluster_status() self.assertTrue("Normal" in status or "Degraded" in status) self.log.info('==Guc_Connectionauthentication_Case0147完成==')
35.338235
84
0.667915
4a213ddc075250f7922f857fe5cfe4f8195b39d7
1,876
py
Python
docs/source/neo/example/sample4.py
BSathvik/neo-python
90eddde0128f8ba41207d88fd68041682e307315
[ "MIT" ]
387
2017-07-17T18:25:54.000Z
2021-11-18T06:19:47.000Z
docs/source/neo/example/sample4.py
BSathvik/neo-python
90eddde0128f8ba41207d88fd68041682e307315
[ "MIT" ]
967
2017-08-19T15:48:03.000Z
2021-06-01T21:42:39.000Z
docs/source/neo/example/sample4.py
BSathvik/neo-python
90eddde0128f8ba41207d88fd68041682e307315
[ "MIT" ]
286
2017-07-17T03:44:36.000Z
2021-11-18T06:19:32.000Z
from boa.interop.Neo.Runtime import GetTrigger,CheckWitness from boa.interop.Neo.Storage import Get,Put,Delete,GetContext from boa.interop.Neo.TriggerType import Application, Verification OWNER = b'\x03\x19\xe0)\xb9%\x85w\x90\xe4\x17\x85\xbe\x9c\xce\xc6\xca\xb1\x98\x96' def Main(operation, addr, value): print("Running Sample v4") trigger = GetTrigger() print(trigger) # This determines that the SC is runnning in Verification mode # This determines whether the TX will be relayed to the rest of the network # The `Verification` portion of SC is *read-only*, so calls to `Storage.Put` will fail. # You can, however, use `Storage.Get` if trigger == Verification(): print("Running Verification!") # This routine is: if the invoker ( or the Address that signed the contract ) is not OWNER, # Then we return False, and the TX will not be relayed to the network # Otherwise, we know the owner address signed the TX and return True is_owner = CheckWitness(OWNER) if is_owner: print("Is Owner!") return True print("Not Owner") return False elif trigger == Application(): print("Running Application!") if not is_valid_addr(addr): print("Not Valid Address") return False ctx = GetContext() if operation == 'add': balance = Get(ctx, addr) new_balance = balance + value Put(ctx, addr, new_balance) return new_balance elif operation == 'remove': balance = Get(ctx, addr) Put(ctx, addr, balance - value) return balance - value elif operation == 'balance': return Get(ctx, addr) return False def is_valid_addr(addr): if len(addr) == 20: return True return False
28
99
0.624733
4a213edb3ecbd1f0d886d4a2085a829c062eef39
6,135
py
Python
tests/test_parameters.py
pywr/pywr-next
b3f95da7b57a3ee62bb9320f6ceaa9bbadb0548c
[ "Apache-2.0" ]
null
null
null
tests/test_parameters.py
pywr/pywr-next
b3f95da7b57a3ee62bb9320f6ceaa9bbadb0548c
[ "Apache-2.0" ]
5
2021-07-29T21:51:17.000Z
2022-02-07T13:15:03.000Z
tests/test_parameters.py
pywr/pywr-next
b3f95da7b57a3ee62bb9320f6ceaa9bbadb0548c
[ "Apache-2.0" ]
1
2021-02-06T18:54:38.000Z
2021-02-06T18:54:38.000Z
import pytest import numpy as np from pywr.model import Model @pytest.fixture() def simple_data(): return { "timestepper": {"start": "2020-01-01", "end": "2020-12-31", "timestep": 1}, "nodes": [ {"name": "input1", "type": "input"}, {"name": "link1", "type": "link"}, { "name": "output1", "type": "output", "cost": -10.0, "max_flow": 10.0, }, ], "edges": [ {"from_node": "input1", "to_node": "link1"}, {"from_node": "link1", "to_node": "output1"}, ], "parameters": [], } @pytest.fixture() def simple_storage_data(): return { "timestepper": {"start": "2020-01-01", "end": "2020-01-31", "timestep": 1}, "nodes": [ {"name": "input1", "type": "input"}, { "name": "storage1", "type": "storage", "max_volume": 20, "initial_volume": 20, }, { "name": "output1", "type": "output", "cost": -10.0, "max_flow": 1.0, }, ], "edges": [ {"from_node": "input1", "to_node": "storage1"}, {"from_node": "storage1", "to_node": "output1"}, ], "parameters": [], } class TestAggregatedParameter: __test_funcs__ = { "sum": np.sum, "product": np.product, "mean": np.mean, "max": np.max, "min": np.min, } @pytest.mark.parametrize("agg_func", ["sum", "product", "mean", "max", "min"]) def test_two_parameters(self, simple_data, agg_func): """Test an aggregated node with two parameters.""" test_func = self.__test_funcs__[agg_func] simple_data["parameters"] = [ {"name": "p1", "type": "constant", "value": 10.0}, {"name": "p2", "type": "constant", "value": 10.0}, { "name": "agg", "type": "aggregated", "agg_func": agg_func, "parameters": ["p1", "p2"], }, ] model = Model(**simple_data) model.recorders.add( **{ "name": "assert", "type": "assertion", "component": "agg", "metric": "parameter", "values": [test_func([10.0, 10.0])] * 366, } ) assert len(model.parameters) == 3 model.run() def test_ordering(self, simple_data): """Test that a model loads if the aggregated parameter is defined before its dependencies.""" simple_data["parameters"] = [ { "name": "agg", "type": "aggregated", "agg_func": "sum", "parameters": ["p1", "p2"], }, {"name": "p1", "type": "constant", "value": 10.0}, {"name": "p2", "type": "constant", "value": 10.0}, ] model = Model(**simple_data) assert len(model.parameters) == 3 model.run() def test_cycle_error(self, simple_data): """Test that a cycle in parameter dependencies does not load.""" simple_data["parameters"] = [ { "name": "agg1", "type": "aggregated", "agg_func": "sum", "parameters": ["p1", "agg2"], }, {"name": "p1", "type": "constant", "value": 10.0}, { "name": "agg2", "type": "aggregated", "agg_func": "sum", "parameters": ["p1", "agg1"], }, ] model = Model(**simple_data) assert len(model.parameters) == 3 with pytest.raises(RuntimeError): model.run() class TestControlCurvePiecewiseInterpolatedParameter: def test_basic(self, simple_storage_data): """Basic functional test of `ControlCurvePiecewiseInterpolatedParameter`""" simple_storage_data["parameters"] = [ {"name": "cc1", "type": "constant", "value": 0.8}, {"name": "cc2", "type": "constant", "value": 0.5}, { "name": "cc_interp", "type": "ControlCurvePiecewiseInterpolated", "storage_node": "storage1", "control_curves": ["cc1", "cc2"], "values": [ [10.0, 1.0], [0.0, 0.0], [-1.0, -10.0], ], }, ] model = Model(**simple_storage_data) model.recorders.add( **{ "name": "assert", "type": "assertion", "component": "cc_interp", "metric": "parameter", "values": [ 10.0, # 20 Ml (full) 1.0 + 9.0 * 0.15 / 0.2, # 19 Ml (95%) 1.0 + 9.0 * 0.10 / 0.2, # 18 Ml (90%) 1.0 + 9.0 * 0.05 / 0.2, # 17 Ml (85%) 0.0, # 16 Ml (80%) 0.0, # 15 Ml (75%) 0.0, # 14 Ml (70%) 0.0, # 13 Ml (65%) 0.0, # 12 Ml (60%) 0.0, # 11 Ml (55%) -1.0, # 10 Ml (50%) -1.0 - 9.0 * 0.05 / 0.5, # 09 Ml (45%) -1.0 - 9.0 * 0.10 / 0.5, # 09 Ml (40%) -1.0 - 9.0 * 0.15 / 0.5, # 09 Ml (35%) -1.0 - 9.0 * 0.20 / 0.5, # 09 Ml (30%) -1.0 - 9.0 * 0.25 / 0.5, # 09 Ml (25%) -1.0 - 9.0 * 0.30 / 0.5, # 09 Ml (20%) -1.0 - 9.0 * 0.35 / 0.5, # 09 Ml (15%) -1.0 - 9.0 * 0.40 / 0.5, # 09 Ml (10%) -1.0 - 9.0 * 0.45 / 0.5, # 09 Ml (05%) -10.0, # 09 Ml (00%) ] + [-10.0] * 10, } ) assert len(model.parameters) == 3 model.run()
31.623711
101
0.392502
4a213fb447debf40c7d79b75d3d397c623221d32
6,159
py
Python
riiid/validation.py
fabien-vavrand/kaggle-riiid
3302955980e0d4bb2dbc72bcd369000b0724f1e7
[ "MIT" ]
null
null
null
riiid/validation.py
fabien-vavrand/kaggle-riiid
3302955980e0d4bb2dbc72bcd369000b0724f1e7
[ "MIT" ]
null
null
null
riiid/validation.py
fabien-vavrand/kaggle-riiid
3302955980e0d4bb2dbc72bcd369000b0724f1e7
[ "MIT" ]
null
null
null
import os import numpy as np import pandas as pd import itertools import logging class StartPicker: def __init__(self, N, n): self.N = N self.n = n self.length = N - n + 1 def get_prob(self, i): if i < self.n: return np.sqrt(self.n / (i + 1)) elif i > self.length - self.n - 1: return np.sqrt(self.n / (self.length - i)) else: return 1 def get_probs(self): p = [self.get_prob(i) for i in range(self.length)] psum = np.sum(p) p = [prob / psum for prob in p] return p def random_start(self): choices = list(range(self.length)) p = self.get_probs() return np.random.choice(choices, size=1, replace=False, p=p)[0] def generate_test(X, size, N=10000, seed=0): np.random.seed(seed) users = X.groupby('user_id')['timestamp'].max().reset_index() users.columns = ['user_id', 'duration'] users['duration'] = users['duration'] / (1000 * 60 * 60 * 24) # we pick a random initial timestamp for each user, so that their full period is within the riiid time period total_duration = np.ceil(users['duration'].max()) users['random_period'] = total_duration - users['duration'] users['random'] = np.random.random(len(users)) users['appearance'] = users['random'] * users['random_period'] users['appearance'] = users['appearance'] * (1000 * 60 * 60 * 24) users['initial_timestamp'] = np.round(users['appearance'], 0).astype(np.int64) # We then compute the global timestamp for each task X = pd.merge(X, users[['user_id', 'initial_timestamp']], on=['user_id']) X['global_timestamp'] = X['initial_timestamp'] + X['timestamp'] # We pick the last "size" rows sorted on this global timestamp test = X.groupby(['user_id', 'task_container_id', 'global_timestamp'], sort=False).size() test = test.reset_index() test.rename(columns={0: 'n'}, inplace=True) test = test.sort_values('global_timestamp', ascending=False) test['cumn'] = test['n'].rolling(len(test), min_periods=1).sum() test = test[test['cumn'] <= size] test = test.sort_values('global_timestamp') test = test.drop(columns=['n', 'cumn']) test = generate_batches(test, N) return test def generate_batches(test, N): # We build more or less equal size batches groups = test.groupby('user_id') batches = [[] for _ in range(N)] for user_id, user_test in groups: n = len(user_test) i = StartPicker(N, n).random_start() for j, row in enumerate(user_test.itertuples(index=False)): batches[i + j].append({ 'batch_id': i + j, 'user_id': row.user_id, 'task_container_id': row.task_container_id }) batches = itertools.chain.from_iterable(batches) return pd.DataFrame(batches) def build_test_batches(X): # Expected columns for tests: COLUMNS = ['row_id', 'timestamp', 'user_id', 'content_id', 'content_type_id', 'task_container_id', 'prior_question_elapsed_time', 'prior_question_had_explanation', 'prior_group_answers_correct', 'prior_group_responses', 'answered_correctly'] X = X[-pd.isnull(X['batch_id'])].copy().reset_index(drop=True) batches = X.groupby('batch_id') batches = [batch.copy() for _, batch in batches] for i, batch in enumerate(batches): if i == 0: prior_user_answer = [] prior_answered_correctly = [] else: prior_user_answer = list(batches[i - 1]['user_answer'].values) prior_answered_correctly = list(batches[i - 1]['answered_correctly'].values) batches[i - 1] = batches[i - 1][COLUMNS] batch['row_id'] = 0 batch.reset_index(drop=True, inplace=True) batch['prior_group_answers_correct'] = [str(prior_answered_correctly)] + [np.nan] * (len(batch) - 1) batch['prior_group_responses'] = [str(prior_user_answer)] + [np.nan] * (len(batch) - 1) if i == len(batches) - 1: batches[i] = batches[i][COLUMNS] return batches def build_train(X): X = X[pd.isnull(X['batch_id'])].copy().reset_index(drop=True) X = X.drop(columns=['batch_id']) return X def merge_test(train, test, validation_ratio=None, return_batches=True): X = pd.merge(train, test, on=['user_id', 'task_container_id'], how='left') if validation_ratio is not None: batches = sorted(test['batch_id'].unique()) n_validation_batches = int(len(batches) * validation_ratio) validation_batches = batches[-n_validation_batches:] validation = X[X['batch_id'].isin(validation_batches)] X = X[-X['batch_id'].isin(validation_batches)].copy() train = X[pd.isnull(X['batch_id'])] test = X[-pd.isnull(X['batch_id'])] train_size = len(train) test_size = len(test) test_ratio = test_size / (train_size + test_size) logging.info(f'Train size = {train_size}, test size = {test_size} [{test_ratio:.1%}]') if validation_ratio is not None: validation_size = len(validation) logging.info(f'Validation size = {validation_size}') users = set(X['user_id'].values) train_users = set(train['user_id'].values) test_users = set(test['user_id'].values) known_users = test_users.intersection(train_users) new_users = test_users.difference(train_users) logging.info(f'{len(users)} users, o/w {len(train_users)} in train and {len(test_users)} in test ({len(known_users)} existing, {len(new_users)} new)') if validation_ratio is not None: train_test_users = set(X['user_id'].values) validation_users = set(validation['user_id'].values) known_users = validation_users.intersection(train_test_users) new_users = validation_users.difference(train_test_users) logging.info(f'{len(validation_users)} users in validation ({len(known_users)} existing, {len(new_users)} new)') if validation_ratio is None: return X else: if return_batches: validation = build_test_batches(validation) return X, validation
37.554878
154
0.637279
4a21400c0b3a35af0d4545fa2ae1537a7d197a4e
1,023
py
Python
synd.py
easybe/synd
895a0958b5e50d6166ff28b32c7549bad7ebfff0
[ "MIT" ]
null
null
null
synd.py
easybe/synd
895a0958b5e50d6166ff28b32c7549bad7ebfff0
[ "MIT" ]
null
null
null
synd.py
easybe/synd
895a0958b5e50d6166ff28b32c7549bad7ebfff0
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # SPDX-License-Identifier: MIT """Tiny Synology DiskStation daemon The service will turn off the blinking LED at startup and shut the system down when the power button is pressed. """ import os import signal import sys from serial import Serial UART_PORT = "/dev/ttyS1" POWER_BUTTON_PRESSED = b'0' CMD_LED_POWER_BLINK = b'5' CMD_LED_POWER_OFF = b'6' CMD_RCPOWERON = b'q' def sigterm_handler(_signo, _stack_frame): sys.exit(0) def wait_for_button_press(uart): while True: in_byte = uart.read(1) if in_byte == POWER_BUTTON_PRESSED: print("Triggering system shutdown...") os.system('/usr/sbin/poweroff') if __name__ == '__main__': signal.signal(signal.SIGTERM, sigterm_handler) uart = Serial(UART_PORT, 9600, timeout=1) try: uart.write(CMD_LED_POWER_OFF) uart.write(CMD_RCPOWERON) wait_for_button_press(uart) finally: if uart: uart.write(CMD_LED_POWER_BLINK) uart.close()
22.23913
66
0.682307
4a21415032cb89e4ed3d24ff9cc7beb0cd14960c
58,874
py
Python
infoblox_netmri/api/broker/v3_7_0/auth_service_broker.py
NastyaArslanova/infoblox-netmri
399d904399ba7958262c6f107fa3b0efdd55019b
[ "Apache-2.0" ]
null
null
null
infoblox_netmri/api/broker/v3_7_0/auth_service_broker.py
NastyaArslanova/infoblox-netmri
399d904399ba7958262c6f107fa3b0efdd55019b
[ "Apache-2.0" ]
null
null
null
infoblox_netmri/api/broker/v3_7_0/auth_service_broker.py
NastyaArslanova/infoblox-netmri
399d904399ba7958262c6f107fa3b0efdd55019b
[ "Apache-2.0" ]
null
null
null
from ..broker import Broker class AuthServiceBroker(Broker): controller = "auth_services" def show(self, **kwargs): """Shows the details for the specified auth service. **Inputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` True | ``default:`` None :param id: The id of the authentication service. :type id: Integer **Outputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return auth_service: The auth service identified by the specified id. :rtype auth_service: AuthService """ return self.api_request(self._get_method_fullname("show"), kwargs) def index(self, **kwargs): """Lists the available auth services. Any of the inputs listed may be be used to narrow the list; other inputs will be ignored. Of the various ways to query lists, using this method is most efficient. **Inputs** | ``api version min:`` 3 | ``api version max:`` None | ``required:`` False | ``default:`` None :param id: The id of the authentication service. :type id: Array of Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 0 :param start: The record number to return in the selected page of data. It will always appear, although it may not be the first record. See the :limit for more information. :type start: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 1000 :param limit: The size of the page of data, that is, the maximum number of records returned. The limit size will be used to break the data up into pages and the first page with the start record will be returned. So if you have 100 records and use a :limit of 10 and a :start of 10, you will get records 10-19. The maximum limit is 10000. :type limit: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` id :param sort: The data field(s) to use for sorting the output. Default is id. Valid values are id, service_name, auth_method, description, priority, context_params_json, enabled_ind, enabled_authz_ind, timeout, created_at, updated_at. :type sort: Array of String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` asc :param dir: The direction(s) in which to sort the data. Default is 'asc'. Valid values are 'asc' and 'desc'. :type dir: Array of String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param select: The list of attributes to return for each AuthService. Valid values are id, service_name, auth_method, description, priority, context_params_json, enabled_ind, enabled_authz_ind, timeout, created_at, updated_at. If empty or omitted, all attributes will be returned. :type select: Array | ``api version min:`` 2.8 | ``api version max:`` None | ``required:`` False | ``default:`` None :param goto_field: The field name for NIOS GOTO that is used for locating a row position of records. :type goto_field: String | ``api version min:`` 2.8 | ``api version max:`` None | ``required:`` False | ``default:`` None :param goto_value: The value of goto_field for NIOS GOTO that is used for locating a row position of records. :type goto_value: String **Outputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return auth_services: An array of the AuthService objects that match the specified input criteria. :rtype auth_services: Array of AuthService """ return self.api_list_request(self._get_method_fullname("index"), kwargs) def search(self, **kwargs): """Lists the available auth services matching the input criteria. This method provides a more flexible search interface than the index method, but searching using this method is more demanding on the system and will not perform to the same level as the index method. The input fields listed below will be used as in the index method, to filter the result, along with the optional query string and XML filter described below. **Inputs** | ``api version min:`` 3 | ``api version max:`` None | ``required:`` False | ``default:`` None :param auth_method: The Authentication method of the service. One of (local, radius, tacacs, ldap, activedirectory). :type auth_method: Array of String | ``api version min:`` 3 | ``api version max:`` None | ``required:`` False | ``default:`` None :param context_params_json: Additional specific authentication method parameters are stored in this field using a json format. (such as 'base_dn' for LDAP method, Vendor Specific Attribute ID for Radius,...). :type context_params_json: Array of String | ``api version min:`` 3 | ``api version max:`` None | ``required:`` False | ``default:`` None :param created_at: The date and time the record was initially created in NetMRI. :type created_at: Array of DateTime | ``api version min:`` 3 | ``api version max:`` None | ``required:`` False | ``default:`` None :param description: Description/comment about this authentication service :type description: Array of String | ``api version min:`` 3 | ``api version max:`` None | ``required:`` False | ``default:`` None :param enabled_authz_ind: A flag indicating whether this service is used for computing privileges for the remote users. :type enabled_authz_ind: Array of Boolean | ``api version min:`` 3 | ``api version max:`` None | ``required:`` False | ``default:`` None :param enabled_ind: A flag indicating whether the authentication service settings is enabled or disabled. :type enabled_ind: Array of Boolean | ``api version min:`` 3 | ``api version max:`` None | ``required:`` False | ``default:`` None :param id: The id of the authentication service. :type id: Array of Integer | ``api version min:`` 3 | ``api version max:`` None | ``required:`` False | ``default:`` None :param priority: The priority assigned to this Authentication Service. :type priority: Array of Integer | ``api version min:`` 3 | ``api version max:`` None | ``required:`` False | ``default:`` None :param service_name: The name of the Authentication Service. :type service_name: Array of String | ``api version min:`` 3 | ``api version max:`` None | ``required:`` False | ``default:`` None :param timeout: The timeout interval of the service authentication servers. :type timeout: Array of Integer | ``api version min:`` 3 | ``api version max:`` None | ``required:`` False | ``default:`` None :param updated_at: The date and time the record was last modified in NetMRI. :type updated_at: Array of DateTime | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 0 :param start: The record number to return in the selected page of data. It will always appear, although it may not be the first record. See the :limit for more information. :type start: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 1000 :param limit: The size of the page of data, that is, the maximum number of records returned. The limit size will be used to break the data up into pages and the first page with the start record will be returned. So if you have 100 records and use a :limit of 10 and a :start of 10, you will get records 10-19. The maximum limit is 10000. :type limit: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` id :param sort: The data field(s) to use for sorting the output. Default is id. Valid values are id, service_name, auth_method, description, priority, context_params_json, enabled_ind, enabled_authz_ind, timeout, created_at, updated_at. :type sort: Array of String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` asc :param dir: The direction(s) in which to sort the data. Default is 'asc'. Valid values are 'asc' and 'desc'. :type dir: Array of String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param select: The list of attributes to return for each AuthService. Valid values are id, service_name, auth_method, description, priority, context_params_json, enabled_ind, enabled_authz_ind, timeout, created_at, updated_at. If empty or omitted, all attributes will be returned. :type select: Array | ``api version min:`` 2.8 | ``api version max:`` None | ``required:`` False | ``default:`` None :param goto_field: The field name for NIOS GOTO that is used for locating a row position of records. :type goto_field: String | ``api version min:`` 2.8 | ``api version max:`` None | ``required:`` False | ``default:`` None :param goto_value: The value of goto_field for NIOS GOTO that is used for locating a row position of records. :type goto_value: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param query: This value will be matched against auth services, looking to see if one or more of the listed attributes contain the passed value. You may also surround the value with '/' and '/' to perform a regular expression search rather than a containment operation. Any record that matches will be returned. The attributes searched are: auth_method, context_params_json, created_at, description, enabled_authz_ind, enabled_ind, id, priority, service_name, timeout, updated_at. :type query: String | ``api version min:`` 2.3 | ``api version max:`` None | ``required:`` False | ``default:`` None :param xml_filter: A SetFilter XML structure to further refine the search. The SetFilter will be applied AFTER any search query or field values, but before any limit options. The limit and pagination will be enforced after the filter. Remind that this kind of filter may be costly and inefficient if not associated with a database filtering. :type xml_filter: String **Outputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return auth_services: An array of the AuthService objects that match the specified input criteria. :rtype auth_services: Array of AuthService """ return self.api_list_request(self._get_method_fullname("search"), kwargs) def find(self, **kwargs): """Lists the available auth services matching the input specification. This provides the most flexible search specification of all the query mechanisms, enabling searching using comparison operations other than equality. However, it is more complex to use and will not perform as efficiently as the index or search methods. In the input descriptions below, 'field names' refers to the following fields: auth_method, context_params_json, created_at, description, enabled_authz_ind, enabled_ind, id, priority, service_name, timeout, updated_at. **Inputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_auth_method: The operator to apply to the field auth_method. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. auth_method: The Authentication method of the service. One of (local, radius, tacacs, ldap, activedirectory). For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_auth_method: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_auth_method: If op_auth_method is specified, the field named in this input will be compared to the value in auth_method using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_auth_method must be specified if op_auth_method is specified. :type val_f_auth_method: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_auth_method: If op_auth_method is specified, this value will be compared to the value in auth_method using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_auth_method must be specified if op_auth_method is specified. :type val_c_auth_method: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_context_params_json: The operator to apply to the field context_params_json. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. context_params_json: Additional specific authentication method parameters are stored in this field using a json format. (such as 'base_dn' for LDAP method, Vendor Specific Attribute ID for Radius,...). For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_context_params_json: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_context_params_json: If op_context_params_json is specified, the field named in this input will be compared to the value in context_params_json using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_context_params_json must be specified if op_context_params_json is specified. :type val_f_context_params_json: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_context_params_json: If op_context_params_json is specified, this value will be compared to the value in context_params_json using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_context_params_json must be specified if op_context_params_json is specified. :type val_c_context_params_json: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_created_at: The operator to apply to the field created_at. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. created_at: The date and time the record was initially created in NetMRI. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_created_at: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_created_at: If op_created_at is specified, the field named in this input will be compared to the value in created_at using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_created_at must be specified if op_created_at is specified. :type val_f_created_at: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_created_at: If op_created_at is specified, this value will be compared to the value in created_at using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_created_at must be specified if op_created_at is specified. :type val_c_created_at: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_description: The operator to apply to the field description. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. description: Description/comment about this authentication service For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_description: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_description: If op_description is specified, the field named in this input will be compared to the value in description using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_description must be specified if op_description is specified. :type val_f_description: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_description: If op_description is specified, this value will be compared to the value in description using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_description must be specified if op_description is specified. :type val_c_description: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_enabled_authz_ind: The operator to apply to the field enabled_authz_ind. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. enabled_authz_ind: A flag indicating whether this service is used for computing privileges for the remote users. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_enabled_authz_ind: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_enabled_authz_ind: If op_enabled_authz_ind is specified, the field named in this input will be compared to the value in enabled_authz_ind using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_enabled_authz_ind must be specified if op_enabled_authz_ind is specified. :type val_f_enabled_authz_ind: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_enabled_authz_ind: If op_enabled_authz_ind is specified, this value will be compared to the value in enabled_authz_ind using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_enabled_authz_ind must be specified if op_enabled_authz_ind is specified. :type val_c_enabled_authz_ind: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_enabled_ind: The operator to apply to the field enabled_ind. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. enabled_ind: A flag indicating whether the authentication service settings is enabled or disabled. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_enabled_ind: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_enabled_ind: If op_enabled_ind is specified, the field named in this input will be compared to the value in enabled_ind using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_enabled_ind must be specified if op_enabled_ind is specified. :type val_f_enabled_ind: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_enabled_ind: If op_enabled_ind is specified, this value will be compared to the value in enabled_ind using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_enabled_ind must be specified if op_enabled_ind is specified. :type val_c_enabled_ind: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_id: The operator to apply to the field id. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. id: The id of the authentication service. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_id: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_id: If op_id is specified, the field named in this input will be compared to the value in id using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_id must be specified if op_id is specified. :type val_f_id: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_id: If op_id is specified, this value will be compared to the value in id using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_id must be specified if op_id is specified. :type val_c_id: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_priority: The operator to apply to the field priority. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. priority: The priority assigned to this Authentication Service. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_priority: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_priority: If op_priority is specified, the field named in this input will be compared to the value in priority using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_priority must be specified if op_priority is specified. :type val_f_priority: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_priority: If op_priority is specified, this value will be compared to the value in priority using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_priority must be specified if op_priority is specified. :type val_c_priority: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_service_name: The operator to apply to the field service_name. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. service_name: The name of the Authentication Service. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_service_name: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_service_name: If op_service_name is specified, the field named in this input will be compared to the value in service_name using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_service_name must be specified if op_service_name is specified. :type val_f_service_name: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_service_name: If op_service_name is specified, this value will be compared to the value in service_name using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_service_name must be specified if op_service_name is specified. :type val_c_service_name: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_timeout: The operator to apply to the field timeout. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. timeout: The timeout interval of the service authentication servers. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_timeout: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_timeout: If op_timeout is specified, the field named in this input will be compared to the value in timeout using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_timeout must be specified if op_timeout is specified. :type val_f_timeout: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_timeout: If op_timeout is specified, this value will be compared to the value in timeout using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_timeout must be specified if op_timeout is specified. :type val_c_timeout: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param op_updated_at: The operator to apply to the field updated_at. Valid values are: =, <>, rlike, not rlike, >, >=, <, <=, like, not like, is null, is not null, between. updated_at: The date and time the record was last modified in NetMRI. For the between operator the value will be treated as an Array if comma delimited string is passed, and it must contain an even number of values. :type op_updated_at: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_f_updated_at: If op_updated_at is specified, the field named in this input will be compared to the value in updated_at using the specified operator. That is, the value in this input will be treated as another field name, rather than a constant value. Either this field or val_c_updated_at must be specified if op_updated_at is specified. :type val_f_updated_at: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param val_c_updated_at: If op_updated_at is specified, this value will be compared to the value in updated_at using the specified operator. The value in this input will be treated as an explicit constant value. Either this field or val_f_updated_at must be specified if op_updated_at is specified. :type val_c_updated_at: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 0 :param start: The record number to return in the selected page of data. It will always appear, although it may not be the first record. See the :limit for more information. :type start: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 1000 :param limit: The size of the page of data, that is, the maximum number of records returned. The limit size will be used to break the data up into pages and the first page with the start record will be returned. So if you have 100 records and use a :limit of 10 and a :start of 10, you will get records 10-19. The maximum limit is 10000. :type limit: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` id :param sort: The data field(s) to use for sorting the output. Default is id. Valid values are id, service_name, auth_method, description, priority, context_params_json, enabled_ind, enabled_authz_ind, timeout, created_at, updated_at. :type sort: Array of String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` asc :param dir: The direction(s) in which to sort the data. Default is 'asc'. Valid values are 'asc' and 'desc'. :type dir: Array of String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param select: The list of attributes to return for each AuthService. Valid values are id, service_name, auth_method, description, priority, context_params_json, enabled_ind, enabled_authz_ind, timeout, created_at, updated_at. If empty or omitted, all attributes will be returned. :type select: Array | ``api version min:`` 2.8 | ``api version max:`` None | ``required:`` False | ``default:`` None :param goto_field: The field name for NIOS GOTO that is used for locating a row position of records. :type goto_field: String | ``api version min:`` 2.8 | ``api version max:`` None | ``required:`` False | ``default:`` None :param goto_value: The value of goto_field for NIOS GOTO that is used for locating a row position of records. :type goto_value: String | ``api version min:`` 2.3 | ``api version max:`` None | ``required:`` False | ``default:`` None :param xml_filter: A SetFilter XML structure to further refine the search. The SetFilter will be applied AFTER any search query or field values, but before any limit options. The limit and pagination will be enforced after the filter. Remind that this kind of filter may be costly and inefficient if not associated with a database filtering. :type xml_filter: String **Outputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return auth_services: An array of the AuthService objects that match the specified input criteria. :rtype auth_services: Array of AuthService """ return self.api_list_request(self._get_method_fullname("find"), kwargs) def destroy(self, **kwargs): """Deletes the specified auth service from NetMRI. **Inputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` True | ``default:`` None :param id: The id of the authentication service. :type id: Integer **Outputs** """ return self.api_request(self._get_method_fullname("destroy"), kwargs) def create(self, **kwargs): """Create a new Authentication Service **Inputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` True | ``default:`` None :param service_name: The name of the authentication service, must be unique :type service_name: String | ``api version min:`` None | ``api version max:`` None | ``required:`` True | ``default:`` None :param auth_method: The authentication method of the service. One of (local, radius, tacacs, ldap, activedirectory). :type auth_method: String | ``api version min:`` None | ``api version max:`` None | ``required:`` True | ``default:`` None :param priority: The priority assigned to this authentication service :type priority: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param description: Description/comment about this authentication service :type description: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` True :param enabled_ind: A flag indicating whether the authentication service settings is enabled or disabled :type enabled_ind: Boolean | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` False :param enabled_authz_ind: A flag indicating whether this service is used for computing privileges for the remote users :type enabled_authz_ind: Boolean | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 5 :param timeout: The timeout interval of the service authentication servers :type timeout: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param auth_domain: Authentication Active Directory Domain name or LDAP BaseDN to use for search. (required for LDAP & Active Directory methods) :type auth_domain: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` cn :param user_attr: User attribute ID for LDAP authentication method (required for LDAP methods). :type user_attr: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` memberOf :param group_attr: Group membership attribute ID for LDAP authentication method. The LDAP server has to be configured to use memberOf Overlay. :type group_attr: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` False :param auth_type: A flag indicating whether the search request to the LDAP server is performed anonymously or needs authentication using a privileged bind User and Password. (values: 'true' for Authenticated, 'false' for anonymous') :type auth_type: Boolean | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param bind_user: The bind User complete 'dn' in case LDAP Authenticated connection is needed to request search to find user :type bind_user: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param bind_passwd: The bind User password in case LDAP Authenticated connection is needed to request search to find user :type bind_passwd: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` subtree :param search_scope: Specify the scope of the LDAP search.<br> - 'base': Search only the base object.<br> - 'one': Search the entries immediately below the base object.<br> - 'subtree': Search the whole tree below (and including) the base object. This is the default. :type search_scope: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` infoblox :param tacacs_service: The name of the defined custom service for Infoblox.<br> group = GR_1{<br> service = infoblox { na-group-info = MY_GROUP_1 }<br> } :type tacacs_service: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` na-group-info :param tacacs_group_attr: The name of the group attribute defined in the Tacacs+ server to retrieve the user's groups list.<br> group = GR_1{<br> service = infoblox { na-group-info = MY_GROUP_1 }<br> } :type tacacs_group_attr: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 7779 :param radius_vendor_id: The Infoblox Vendor ID defined in the radius dictionary.<br> VENDOR infoblox 7779 :type radius_vendor_id: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 10 :param radius_vsa_id: The Vendor Specific Attribute ID as defined in the radius server dictionary to retrieve the user's groups list.<br> ATTRIBUTE na-group-info 10 string infoblox :type radius_vsa_id: Integer **Outputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return service_id: The new authentication service id. :rtype service_id: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return service_name: The new authentication service name. :rtype service_name: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return service_description: The new authentication service description. :rtype service_description: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return saml_entity_id: SAML Entity ID :rtype saml_entity_id: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return saml_metadata: SAML Metadata URL :rtype saml_metadata: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return saml_cacert: SAML Certificate :rtype saml_cacert: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return saml_cacert_fn: SAML Certificate file name :rtype saml_cacert_fn: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return saml_cacert_key: SAML Key :rtype saml_cacert_key: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return saml_cacert_key_fn: SAML Key file name :rtype saml_cacert_key_fn: String """ return self.api_request(self._get_method_fullname("create"), kwargs) def update(self, **kwargs): """Update an existing Authentication Service **Inputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` True | ``default:`` None :param id: The id of the authentication service to modify :type id: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param service_name: The name of the authentication service, must be unique :type service_name: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param auth_method: The authentication method of the service. One of (local, radius, tacacs, ldap, activedirectory). :type auth_method: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param priority: The priority assigned to this authentication service :type priority: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param description: Description/comment of this authentication service :type description: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param enabled_ind: A flag indicating whether the authentication service settings is enabled or disabled :type enabled_ind: Boolean | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param enabled_authz_ind: A flag indicating whether this service is used for computing privileges for the remote users :type enabled_authz_ind: Boolean | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param timeout: The timeout interval of the service authentication servers :type timeout: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param auth_domain: Authentication Active Directory Domain name or LDAP BaseDN to use for search. (required for LDAP & Active Directory methods) :type auth_domain: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param user_attr: User attribute ID for LDAP authentication method (required for LDAP methods). :type user_attr: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param group_attr: Group membership attribute ID for LDAP authentication method. The LDAP server has to be configured to use memberOf Overlay. :type group_attr: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param auth_type: A flag indicating whether the search request to the LDAP server is performed anonymously or needs authentication using a privileged bind User and Password. (values: 'true' for Authenticated, 'false' for anonymous') :type auth_type: Boolean | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param bind_user: The bind User complete 'dn' in case LDAP Authenticated connection is needed to request search to find user :type bind_user: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param bind_passwd: The bind User password in case LDAP Authenticated connection is needed to request search to find user :type bind_passwd: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param search_scope: Specify the scope of the LDAP search.<br> - 'base': Search only the base object.<br> - 'one': Search the entries immediately below the base object.<br> - 'subtree': Search the whole tree below (and including) the base object. This is the default. :type search_scope: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param tacacs_service: The name of the defined custom service for Infoblox.<br> group = GR_1{<br> service = infoblox { na-group-info = MY_GROUP_1 }<br> } :type tacacs_service: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param tacacs_group_attr: The name of the group attribute defined in the Tacacs+ server to retrieve the user's groups list.<br> group = GR_1{<br> service = infoblox { na-group-info = MY_GROUP_1 }<br> } :type tacacs_group_attr: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param radius_vendor_id: The Infoblox Vendor ID defined in the radius dictionary.<br> VENDOR infoblox 7779 :type radius_vendor_id: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param radius_vsa_id: The Vendor Specific Attribute ID as defined in the radius server dictionary to retrieve the user's groups list.<br> ATTRIBUTE na-group-info 10 string infoblox :type radius_vsa_id: Integer **Outputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return service_id: The new authentication service id. :rtype service_id: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return service_name: The new authentication service name. :rtype service_name: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return service_description: The new authentication service description. :rtype service_description: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return saml_entity_id: SAML Entity ID :rtype saml_entity_id: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return saml_metadata: SAML Metadata URL :rtype saml_metadata: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return saml_cacert: SAML Certificate :rtype saml_cacert: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return saml_cacert_fn: SAML Certificate file name :rtype saml_cacert_fn: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return saml_cacert_key: SAML Key :rtype saml_cacert_key: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return saml_cacert_key_fn: SAML Key file name :rtype saml_cacert_key_fn: String """ return self.api_request(self._get_method_fullname("update"), kwargs) def duplicate(self, **kwargs): """Duplicate an authentication service. **Inputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` True | ``default:`` None :param id: The internal NetMRI identifier for the authentication service. :type id: Integer **Outputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return service_id: The new authentication service id. :rtype service_id: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return service_name: The new authentication service name. :rtype service_name: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return service_description: The new authentication service description. :rtype service_description: String """ return self.api_request(self._get_method_fullname("duplicate"), kwargs) def auth_servers(self, **kwargs): """List all servers defined for the requested Authentication Service **Inputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` True | ``default:`` None :param id: The id of the authentication service to list the servers for :type id: Integer **Outputs** """ return self.api_request(self._get_method_fullname("auth_servers"), kwargs) def auth_test_creds(self, **kwargs): """Test credentials for this service Authentication Servers that are stored in db. **Inputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param service_id: The id of the authentication service to test :type service_id: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param username: The login of the user to test :type username: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param password: The password of the user to test :type password: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param nohtml: Convert output to simple text :type nohtml: Boolean | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :param id: The id of the session output file to display. :type id: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` 0 :param read: Offset in bytes from the start of the file. :type read: Integer **Outputs** | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return id: The id of the session output file. :rtype id: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return read: Offset in bytes from the start of the file, to be used in the next auth_test_creds call, in order to retrieve the next lines of the output. :rtype read: Integer | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return output: Result of the credential test. :rtype output: String | ``api version min:`` None | ``api version max:`` None | ``required:`` False | ``default:`` None :return status: Status of the remaining output data to dump: <br><dd> 0: if the dump of the credential test output is completed. <br><dd> 1: if there is still output data to dump. :rtype status: Integer """ return self.api_request(self._get_method_fullname("auth_test_creds"), kwargs)
45.995313
551
0.579356
4a2141af21d8d1c6eba0ab39b2245625303abc85
15,143
py
Python
microbepy/correlation/mutation_cooccurrence.py
ScienceStacks/MicrobEPy
704435e66c58677bab24f27820458870092924e2
[ "MIT" ]
1
2019-05-04T00:31:05.000Z
2019-05-04T00:31:05.000Z
microbepy/correlation/mutation_cooccurrence.py
ScienceStacks/MicrobEPy
704435e66c58677bab24f27820458870092924e2
[ "MIT" ]
null
null
null
microbepy/correlation/mutation_cooccurrence.py
ScienceStacks/MicrobEPy
704435e66c58677bab24f27820458870092924e2
[ "MIT" ]
null
null
null
""" Analyzes the co-occurrence of mutations in isolates. Produces Combination Statistics - CoStatistic. A combination is a group of Isolates. Combination statistics are statistics about a combination that summarize - mutations common to the combination - the average value of dependent variable(s) - the range of values of dependent variable(s) The CoStatistic dataframes are organized by keys, each key is associated with a different dataframe: cn.MIN cn.ISOLATES - isolates in group cn.MUTATIONS - list of mutations in common cn.COUNT_MUTATIONS - number of mutations in common cn.COUNT_ISOLATES - number of isolates cn.MIN - minimum of the rate and yield cn.MAX - maximum of the rate and yield cn.RATE, cn.YIELD cn.ISOLATES - isolates in group cn.MUTATIONS - list of mutations in common cn.COUNT_MUTATIONS - number of mutations in common cn.COUNT_ISOLATES - number of isolates cn.AVG - average value in units of standard deviation cn.RNG - range in units of standard deviation The CoStatistic dataframes are constructed from Sample dataframes that are indexed by isolate pair and have the following columns: cn.GROUP, cn.RATE, cn.YIELD, mutations (with binary values) """ from microbepy.common import constants as cn from microbepy.data.model_data_provider \ import ModelDataDualProvider, ModelDataProvider from microbepy.common.study_context import nextStudyContext from microbepy.common.range_constraint import RangeConstraint from microbepy.common import util import collections import itertools from sklearn import linear_model import matplotlib.pyplot as plt import pandas as pd import numpy as np NUM_REPLICATIONS = int(1e4) XAXIS_VALUES = [cn.RATE, cn.YIELD, cn.MIN, cn.MAX] class CoStatistic(object): # Container for Cooccurrence Statistics SCHEMA = { cn.MIN: [cn.ISOLATES, cn.MUTATIONS, cn.COUNT_MUTATIONS, cn.MIN, cn.MAX], cn.RATE: [cn.ISOLATES, cn.MUTATIONS, cn.COUNT_MUTATIONS, cn.AVG, cn.RNG], cn.YIELD: [cn.ISOLATES, cn.MUTATIONS, cn.COUNT_MUTATIONS, cn.AVG, cn.RNG], } ATTRIBUTES = SCHEMA.keys() def __init__(self): self.dfs = {} for key in self.__class__.SCHEMA.keys(): self.dfs[key] = pd.DataFrame() def get(self, name): return self.dfs[name] def set(self, name, df): self.dfs[name] = df def values(self): return self.dfs.values() def concat(self, other): """ The current CoStatistic is concatenated with another CoStatistic. :param CoStatistic other: """ for key in self.__class__.SCHEMA.keys(): self.dfs[key] = pd.concat([self.dfs[key], other.dfs[key]], sort=True) RegressionResult = collections.namedtuple('RegressionResult', ['predictions', 'rsq', 'slope']) class MutationCooccurrence(object): def __init__(self, mutation_column=cn.GGENE_ID, provider=None, constraints=None, is_plot=True): """ :param ModelDataDualProvider provider: if specified, has invoked do() :param bool is_plot: plots if True """ self._mutation_column = mutation_column self._is_plot = is_plot if provider is None: provider = ModelDataDualProvider(self._mutation_column, constraints=constraints) provider.do( transform_type=cn.TRANSFORM_ONLY_LOW_FREQUENCY_ISOLATES) self.df_X = provider.df_X self.df_ys = provider.df_ys self.df_y_stds = provider.df_y_stds self.isolate_dict = ModelDataProvider.getIsolatesFromIndices( self.df_X.index) @staticmethod def _combineIsolates(isolate_dict): isolates = [] [isolates.extend(v) for v in isolate_dict.values()] return isolates def findWithRangeConstraints(self, rc_vector): """ Finds the set of mutations common to isolates satisfying constraints on rate and yield. :param RangeConstraintVector rc_vector: has keys cn.RATE, cn.YIELD :return dict, list-str: isolate_dict, mutations dictionary keyed by cn.KEY_ISOLATE_DVH, cn.KEY_ISOLATE_MMP """ cls = self.__class__ # # Select rows that abide by the RangeConstraints df = pd.DataFrame({ cn.RATE: self.df_ys[cn.RATE][cn.VALUE], cn.YIELD: self.df_ys[cn.YIELD][cn.VALUE], }) indices = rc_vector.findSatisfiedRows(df) isolate_dict = ModelDataProvider.getIsolatesFromIndices(indices) superset_isolates = cls._combineIsolates(isolate_dict) # isolates, mutations = self.find( superset_isolates=superset_isolates) return isolates, mutations def find(self, superset_isolates=None, superset_mutations=None): """ Finds co-occurring mutations for a collection of isolates :param list-str superset_isolates: set of isolates considered :param list-str superset_mutations: set of mutations considered :return list-str, list-str: isolates satisfying the constraints that are present in data list of mutations shared by isolates Notes: 1. Includes the mutations of paired isolates """ cls = self.__class__ # if superset_isolates is None: superset_isolates = self.isolate_dict[cn.KEY_ISOLATE_DVH] superset_isolates.extend(self.isolate_dict[cn.KEY_ISOLATE_MMP]) if superset_mutations is None: superset_mutations = self.df_X.columns.tolist() # Select the rows sel = [(i[0] in superset_isolates) or (i[1] in superset_isolates) for i in self.df_X.index] df_X = self.df_X[sel] isolate_dict = ModelDataProvider.getIsolatesFromIndices( df_X.index) isolates = cls._combineIsolates(isolate_dict) # Select the columns columns = [c for c in df_X.columns if c in superset_mutations] df_X_final = df_X[columns] # FInd the common mutations ser = df_X_final.product() mutations = [i for i, r in ser.items() if ser[i] == 1] # return isolates, mutations def _makeCoStatisticFromSampleDF(self, df_sample): """ Computes statistics for aggregations of isolate groups. :param pd.DataFrame df_sample: indexed by isolates cn.GROUP, Mutation Columns, cn.RATE, cn.YIELD :return CoStatistic: """ # df_group = df_sample.groupby(cn.GROUP) groups = df_group.groups # df_cooccur = df_group.prod() for col in [cn.RATE, cn.YIELD]: del df_cooccur[col] ser_cooccur = df_cooccur.sum(axis=1) # Indicates presence of mutation # Find the common mutations for each group mutation_stgs = [] for group in groups.keys(): df = df_cooccur[df_cooccur.index == group] mutations = [m for m in df_cooccur.columns if df.loc[group, m] == 1] mutations.sort() mutation_stgs.append(str(mutations)) # Calculate the isolate strings isolates = [] for key, values in groups.items(): size = len(groups[key]) isolate_stg = [str(v) for v in values] isolate_stg.sort isolates.append(str(isolate_stg)) # Compute common data df_min = df_sample.groupby(cn.GROUP).min() df_max = df_sample.groupby(cn.GROUP).max() df_avg = df_sample.groupby(cn.GROUP).mean() # Compute RATE, YIELD def makeDF(depvar): return pd.DataFrame({ cn.COUNT_MUTATIONS: ser_cooccur, cn.MUTATIONS: mutation_stgs, cn.ISOLATES: isolates, cn.AVG: df_avg[depvar], cn.RNG: df_max[depvar] - df_min[depvar], }) # df_result_rate = makeDF(cn.RATE) df_result_yield = makeDF(cn.YIELD) # Compute cn.MIN dataframe df_result_min = pd.DataFrame({ cn.COUNT_MUTATIONS: ser_cooccur, cn.MUTATIONS: mutation_stgs, cn.ISOLATES: isolates, }) df_result_min[cn.MAX] = pd.concat( [df_result_rate[cn.RNG], df_result_yield[cn.RNG]], axis=1, sort=True).max(axis=1) df_result_min[cn.MIN] = pd.concat( [df_result_rate[cn.RNG], df_result_yield[cn.RNG]], axis=1, sort=True).min(axis=1) result = CoStatistic() result.set(cn.RATE, df_result_rate) result.set(cn.YIELD, df_result_yield) result.set(cn.MIN, df_result_min) # Add the count of isolates for df in result.values(): df[cn.COUNT_ISOLATES] = df[cn.ISOLATES].apply( lambda v: len(eval(v))) # return result def makeCoStatistic(self, size, is_resample=False, **kwargs): """ Chooses sets of isolates of the specified size. Provides the distribution of the number of mutations in common in the randomly chosen sets. :param int size: set size :param dict **kwargs: arguments for resample :param bool is_resample: always use resampling :return CoStatistic: """ if is_resample or (len(self.df_X)**size > 1e6): df_sample = self._makeResampleSampleDF(size, **kwargs) else: df_sample = self._makeExplicitSampleDF(size) return self._makeCoStatisticFromSampleDF(df_sample) def _makeExplicitSampleDF(self, size): """ Constructs a dataframe of samples by explicitly constructing the possible sets of a desired size. :param int size: set size :return pd.DataFrame: Sample DataFrame """ df_X = self.df_X.copy() isolates = df_X.index.tolist() isolate_indices = range(len(isolates)) df_X[cn.INDEX] = isolate_indices df_X[cn.YIELD] = self.df_ys[cn.YIELD][cn.VALUE] df_X[cn.RATE] = self.df_ys[cn.RATE][cn.VALUE] df_X = df_X.reset_index() df_X[cn.INDEX] = isolate_indices combination_iterator = itertools.combinations(isolate_indices, size) indices = [] groups = [] group_num = 0 for combination in combination_iterator: indices.extend(list(combination)) groups.extend([group_num] * size) group_num += 1 df_index = pd.DataFrame({ cn.GROUP: groups, cn.INDEX: indices, }) df_result = df_index.merge(df_X, on=cn.INDEX, how='inner') df_result = df_result.sort_values(cn.GROUP) tuples = [(r[cn.KEY_ISOLATE_DVH], r[cn.KEY_ISOLATE_MMP]) for _,r in df_result.iterrows()] del df_result[cn.INDEX] df_result.index = tuples return df_result def _makeResampleSampleDF(self, size, num_replications=NUM_REPLICATIONS): """ Constructs a dataframe of samples by resampling. :param int size: set size :param int num_replications: number of replications :return pd.DataFrame: Sample DataFrame """ # Construct the replicated dataframe df_base = self.df_X.copy() length = len(df_base) df_base[cn.RATE] = self.df_ys[cn.RATE][cn.VALUE] df_base[cn.YIELD] = self.df_ys[cn.YIELD][cn.VALUE] df_sample = pd.concat([df_base] * num_replications, sort=True) groups = [] [groups.extend([n] * length) for n in range(num_replications)] df_sample[cn.GROUP] = groups # Add the sort number df_sample[cn.SORT] = np.random.uniform( 0, 1, length*num_replications) + df_sample[cn.GROUP] df_sample = df_sample.sort_values(cn.SORT) del df_sample[cn.SORT] # Take the first elements of each group sel_base = [[True] * size, [False] * (length - size)] sel_lists = sel_base * num_replications sel = [] [sel.extend(v) for v in sel_lists] return df_sample[sel] def plot(self, size, columns=[cn.RATE, cn.YIELD, cn.MIN, cn.MAX], title=""): """ Scatter plot that is overlayed with a regression line. :param int size: Set size to plot :param list-str columns: Columns in co-occurrence dataframe that are to be plotted. :param str title: plot title :return pd.DataFrame: cn.RSQ, cn.SLOPE, cn.VALUE (size), cn.XAXIS """ def regress(x, y): """ :return RegressionResult: """ X = pd.DataFrame({ 'ones': [1] * len(x), 'x': x }) lr = linear_model.LinearRegression() lr.fit(X, y) return RegressionResult( predictions=lr.predict(X), rsq=lr.score(X,y), slope=lr.coef_[1], ) # result = self.makeCoStatistic(size) title = "Set size: %d, %s" % (size, title) col_dict = { cn.RATE: cn.RNG, cn.YIELD: cn.RNG, cn.MIN: cn.MIN, cn.MAX: cn.MAX, } rsqs = [] slopes = [] for key, col in col_dict.items(): if key == cn.MAX: new_key = cn.MIN else: new_key = key df = result.get(new_key) df = df.sort_values(col) plt.scatter(df[col], df[cn.COUNT_MUTATIONS]) regression_result = regress(df[col], df[cn.COUNT_MUTATIONS]) rsqs.append(regression_result.rsq) slopes.append(regression_result.slope) plt.plot(df[col], regression_result.predictions, c='r') plt.xlabel(key) plt.ylabel("Count") new_title = "%s, RSQ=%1.3f, slope=%1.3f" % ( title, regression_result.rsq, regression_result.slope) plt.title(new_title) if self._is_plot: plt.show() df = pd.DataFrame({ cn.RSQ: rsqs, cn.SLOPE: slopes, cn.XAXIS: col_dict.keys(), }) df[cn.VALUE] = size return df @classmethod def makeSlopeDF(cls, lines=None, mutation_columns=None, set_sizes=None): """ Constructs dataframes with slopes for lines. :return pd.DataFrame: cn.LINE, cn.RSQ, cn.SLOPE, cn.VALUE (set size), cn.MUTATION_COLUMN, cn.XAXIS (cn.RATE, cn.YIELD, cn.MIN, cn.MAX) """ if lines is None: lines = [cn.LINE_HA2, cn.LINE_HR2, cn.LINE_UE3] if mutation_columns is None: mutation_columns = cn.MUTATION_COLUMNS if set_sizes is None: set_sizes = range(3, 9) specification = { cn.LINE: lines, cn.MUTATION_COLUMN: mutation_columns, cn.VALUE: set_sizes, } dfs = [] for context in nextStudyContext(specification): constraints = [lambda r: r[cn.LINE] == context.line] cooccur = cls(context.mutation_column, constraints=constraints, is_plot=False) df = cooccur.plot(context.value) df[cn.LINE] = context.line df[cn.MUTATION_COLUMN] = context.mutation_column dfs.append(df) return pd.concat(dfs, sort=True) @classmethod def makeLineCoStatistic(cls, study_context, rc_vector=None): """ Makes statistics for the line and the range constraint vector for the range of sizes of isolates present. :param StudyContext study_context: specifies line, mutation_column :param RangeConstraintVector rc_vector: :return CoStatistic: """ if study_context.line == cn.LINE_ALL: constraints = None else: constraints = [lambda r: r[cn.LINE] == study_context.line] provider = ModelDataDualProvider(study_context.mutation_column, constraints=constraints, rc_vector=rc_vector) provider.do() m_c = cls(mutation_column=study_context.mutation_column, provider=provider) # max_size = len(provider.df_X) # Number of isolates present result = CoStatistic() for size in range(2, max_size+1): result.concat(m_c.makeCoStatistic(size)) return result
33.651111
74
0.66506
4a2141cfe7cd995686735b6a729ed68a9af47ea5
455
py
Python
ams/ticket/migrations/0010_auto_20190117_1750.py
magnuspedro/ams
72ef810d14d9a4724e781489d081140be6674d60
[ "MIT" ]
null
null
null
ams/ticket/migrations/0010_auto_20190117_1750.py
magnuspedro/ams
72ef810d14d9a4724e781489d081140be6674d60
[ "MIT" ]
null
null
null
ams/ticket/migrations/0010_auto_20190117_1750.py
magnuspedro/ams
72ef810d14d9a4724e781489d081140be6674d60
[ "MIT" ]
null
null
null
# Generated by Django 2.1.4 on 2019-01-17 17:50 from django.db import migrations, models import uuid class Migration(migrations.Migration): dependencies = [ ('ticket', '0009_auto_20190117_1740'), ] operations = [ migrations.AlterField( model_name='ticket', name='code', field=models.CharField(default=uuid.UUID('e07b8b85-9e6e-4e85-b2e1-596a9beb39d9'), max_length=255), ), ]
22.75
110
0.628571
4a214243064041a51b686d022ed84586e5237b26
4,027
py
Python
test/functional/feature_notifications.py
Real-E-Coin/REC
148063bd6afe431c565f3ae3e75f010b11b3d4e8
[ "MIT" ]
1
2021-12-30T23:58:45.000Z
2021-12-30T23:58:45.000Z
test/functional/feature_notifications.py
Real-E-Coin/REC
148063bd6afe431c565f3ae3e75f010b11b3d4e8
[ "MIT" ]
null
null
null
test/functional/feature_notifications.py
Real-E-Coin/REC
148063bd6afe431c565f3ae3e75f010b11b3d4e8
[ "MIT" ]
1
2022-01-10T22:13:20.000Z
2022-01-10T22:13:20.000Z
#!/usr/bin/env python3 # Copyright (c) 2014-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the -alertnotify, -blocknotify and -walletnotify options.""" import os from test_framework.test_framework import Real_E_CoinTestFramework from test_framework.util import ( assert_equal, wait_until, connect_nodes, ) class NotificationsTest(Real_E_CoinTestFramework): def set_test_params(self): self.num_nodes = 2 self.setup_clean_chain = True def setup_network(self): self.alert_filename = os.path.join(self.options.tmpdir, "alert.txt") self.block_filename = os.path.join(self.options.tmpdir, "blocks.txt") self.tx_filename = os.path.join(self.options.tmpdir, "transactions.txt") # -alertnotify and -blocknotify on node0, walletnotify on node1 self.extra_args = [["-blockversion=4", "-alertnotify=echo %%s >> %s" % self.alert_filename, "-blocknotify=echo %%s >> %s" % self.block_filename], ["-blockversion=211", "-rescan", "-walletnotify=echo %%s >> %s" % self.tx_filename]] super().setup_network() def run_test(self): self.log.info("test -blocknotify") block_count = 10 blocks = self.nodes[1].generate(block_count) # wait at most 10 seconds for expected file size before reading the content wait_until(lambda: os.path.isfile(self.block_filename) and os.stat(self.block_filename).st_size >= (block_count * 65), timeout=10) # file content should equal the generated blocks hashes with open(self.block_filename, 'r') as f: assert_equal(sorted(blocks), sorted(f.read().splitlines())) self.log.info("test -walletnotify") # wait at most 10 seconds for expected file size before reading the content wait_until(lambda: os.path.isfile(self.tx_filename) and os.stat(self.tx_filename).st_size >= (block_count * 65), timeout=10) # file content should equal the generated transaction hashes txids_rpc = list(map(lambda t: t['txid'], self.nodes[1].listtransactions("*", block_count))) with open(self.tx_filename, 'r') as f: assert_equal(sorted(txids_rpc), sorted(f.read().splitlines())) os.remove(self.tx_filename) self.log.info("test -walletnotify after rescan") # restart node to rescan to force wallet notifications self.restart_node(1) connect_nodes(self.nodes[0], 1) wait_until(lambda: os.path.isfile(self.tx_filename) and os.stat(self.tx_filename).st_size >= (block_count * 65), timeout=10) # file content should equal the generated transaction hashes txids_rpc = list(map(lambda t: t['txid'], self.nodes[1].listtransactions("*", block_count))) with open(self.tx_filename, 'r') as f: assert_equal(sorted(txids_rpc), sorted(f.read().splitlines())) # Mine another 41 up-version blocks. -alertnotify should trigger on the 51st. self.log.info("test -alertnotify") self.nodes[1].generate(51) self.sync_all() # Give real_e_coind 10 seconds to write the alert notification wait_until(lambda: os.path.isfile(self.alert_filename) and os.path.getsize(self.alert_filename), timeout=10) with open(self.alert_filename, 'r', encoding='utf8') as f: alert_text = f.read() # Mine more up-version blocks, should not get more alerts: self.nodes[1].generate(2) self.sync_all() with open(self.alert_filename, 'r', encoding='utf8') as f: alert_text2 = f.read() self.log.info("-alertnotify should not continue notifying for more unknown version blocks") assert_equal(alert_text, alert_text2) if __name__ == '__main__': NotificationsTest().main()
44.252747
138
0.656072
4a21433e78f95509efeb11a344379828b876af20
1,826
py
Python
docs/conf.py
Bixoto/PyMagento
302ef79ab4bd00a22ad659751cebfba7e9173136
[ "MIT" ]
2
2021-12-21T16:43:05.000Z
2022-01-21T09:15:54.000Z
docs/conf.py
Bixoto/PyMagento
302ef79ab4bd00a22ad659751cebfba7e9173136
[ "MIT" ]
null
null
null
docs/conf.py
Bixoto/PyMagento
302ef79ab4bd00a22ad659751cebfba7e9173136
[ "MIT" ]
null
null
null
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- import sys import os from os.path import dirname here = dirname(__file__) sys.path.insert(0, here+'/..') import magento # -- Project information ----------------------------------------------------- project = 'PyMagento' copyright = '2022, Bixoto' author = 'Bixoto' # The full version, including alpha/beta/rc tags release = magento.__version__ # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.viewcode', 'sphinx_rtd_theme', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_rtd_theme" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static']
29.934426
78
0.656079
4a214342722be17806ea5256089044939cd45180
1,515
py
Python
main.py
gabrielcosi/patbot
4f397e8cf94b30cdc248adc872568a64d0715767
[ "MIT" ]
1
2020-08-14T22:31:04.000Z
2020-08-14T22:31:04.000Z
main.py
gabrielcosi/patbot
4f397e8cf94b30cdc248adc872568a64d0715767
[ "MIT" ]
null
null
null
main.py
gabrielcosi/patbot
4f397e8cf94b30cdc248adc872568a64d0715767
[ "MIT" ]
null
null
null
from selenium import webdriver from time import sleep class PatBot: def __init__(self): options = webdriver.ChromeOptions() options.add_argument("--start-maximized") self.driver = webdriver.Chrome( executable_path='C:\webdrivers\chromedriver.exe', options=options) user = input("Ingresa tu usuario: ") pw = input("Ingresa tu contraseña: ") self.driver.get("https://patmos.upeu.edu.pe/upeu") self.driver.find_element_by_xpath( "//input[@name=\"usuario\"]").send_keys(user) self.driver.find_element_by_xpath( "//input[@name=\"password\"]").send_keys(pw) self.driver.find_element_by_xpath("//button[@type=\"submit\"]").click() sleep(2) self.driver.find_element_by_xpath( "//li/following::a[@href=\"/report/dashboardStudent\"]").click() sleep(5) self.driver.find_element_by_xpath( "//label[@for=\"customSwitch5\"]").click() sleep(2) def checkItems(self): table = self.driver.find_element_by_css_selector( "table.table") for row in table.find_elements_by_tag_name("tr"): self.driver.execute_script( "window.scrollTo(0,"+str(row.location['y'] - 200)+")") row.find_element_by_tag_name("td").click() sleep(1) self.driver.find_element_by_xpath( "//button[contains(text(), 'Cerrar')]").click() my_bot = PatBot() my_bot.checkItems()
36.95122
79
0.605281
4a21437e98fd6246c02be63fe8d397039ecbe204
1,834
py
Python
tools/EditFileVersions.py
gbishop/TarHeelGameplay
4c14d8f1855fa560321e3e4d6cbfcf8320b9062b
[ "MIT" ]
null
null
null
tools/EditFileVersions.py
gbishop/TarHeelGameplay
4c14d8f1855fa560321e3e4d6cbfcf8320b9062b
[ "MIT" ]
35
2015-10-14T11:30:59.000Z
2022-03-15T22:27:56.000Z
tools/EditFileVersions.py
gbishop/TarHeelGameplay
4c14d8f1855fa560321e3e4d6cbfcf8320b9062b
[ "MIT" ]
2
2018-10-12T13:08:47.000Z
2019-02-08T22:59:32.000Z
"""Edit files in Theme-build so that references are versioned to enable caching in production""" import os.path as osp import pickle import hashlib import re import argparse parser = argparse.ArgumentParser(description="Edit urls to include version numbers") parser.add_argument("--staticHost", default="") parser.add_argument("--db", default="../gbVersion.pkl") parser.add_argument("--used") parser.add_argument("files", nargs="+") args = parser.parse_args() staticHost = args.staticHost target = re.compile(r"""(?<=['"(])/theme(V[0-9]+)?/([^'"\\)]*)""") db = pickle.load(open(args.db, "rb")) used = {} def insertVersion(m): name = m.group(2) fullname = name useStaticHost = True if fullname == "js/main": fullname = fullname + ".js" useStaticHost = False elif fullname.endswith(".json") or fullname.endswith(".swf"): useStaticHost = False if not osp.exists(fullname): # print 'missing', fname, name return m.group(0) newhash = hashlib.md5(open(fullname, "rb").read()).hexdigest() if fullname not in db: version = 1 db[fullname] = (version, newhash) else: version, oldhash = db[fullname] if oldhash != newhash: version += 1 db[fullname] = (version, newhash) if useStaticHost: prefix = "%s/themeV%d/" % (staticHost, version) else: prefix = "/themeV%d/" % version used[prefix + fullname] = True return prefix + name for fname in args.files: p, ext = osp.splitext(fname) obytes = open(fname, "r").read() nbytes = target.sub(insertVersion, obytes) if obytes != nbytes: print(fname) open(fname, "w").write(nbytes) pickle.dump(db, open(args.db, "wb")) if args.used: open(args.used, "w").write("\n".join(sorted(used.keys())))
26.970588
96
0.623773
4a21444e6dba5430dcf21da27b6a929537e87497
4,866
py
Python
cushead/generator/templates/templates.py
mrsantos321/customhead
bb70867afc34abe7a2ef76bb0f92c08d7ff38214
[ "MIT" ]
3
2019-10-08T06:02:23.000Z
2020-01-22T09:14:35.000Z
cushead/generator/templates/templates.py
mrsantos321/cushead
bb70867afc34abe7a2ef76bb0f92c08d7ff38214
[ "MIT" ]
297
2019-08-22T19:45:23.000Z
2022-03-26T02:30:25.000Z
cushead/generator/templates/templates.py
mrsantos321/cushead
bb70867afc34abe7a2ef76bb0f92c08d7ff38214
[ "MIT" ]
5
2019-09-25T02:35:04.000Z
2021-03-31T04:23:47.000Z
""" Handle templates generation. """ from __future__ import annotations import hashlib import pathlib import re from typing import Any from typing import List from typing import Union import jinja2 from cushead.generator import config as generator_config from cushead.generator import files from cushead.generator.templates.jinja import filters class TemplateLoader: """ Handle jinja templates. """ def __init__(self, **kwargs: Any) -> None: """ Initialize a jinja template loader. """ template_loader = jinja2.FileSystemLoader(searchpath=str(pathlib.Path(__file__).parent / "jinja" / "templates")) self.template_parser = jinja2.Environment( loader=template_loader, lstrip_blocks=True, autoescape=True, **kwargs, ) def render_template(self, *, path: str) -> bytes: """ Render a template. Args: path: the template path, relative to the templates_folder instance attribute. Returns: The template rendered in UTF-8 format. """ rendered_template = self.template_parser.get_template(path).render() cleaned_template = re.sub("((\n +)+\n)|(\n\n$)", "\n", rendered_template) return cleaned_template.encode() def get_template_hash(*, template: bytes) -> str: """ Get a hash of a template. Args: template: the template in UTF-8 format. Returns: The hash. """ return hashlib.sha256(template).hexdigest()[0:6] def generate_templates(*, config: generator_config.Config) -> List[files.File]: """ Get templates ready to create. Args: config: the config used in the templates context. Returns: The templates. """ template_loader = TemplateLoader(extensions=["cushead.generator.templates.jinja.extensions.OneLineExtension"]) template_loader.template_parser.globals["config"] = config template_loader.template_parser.filters["generate_sri"] = filters.generate_sri index_template = template_loader.render_template(path="index.jinja2") index_hash = get_template_hash(template=index_template) template_loader.template_parser.globals["index_hash"] = index_hash templates = [ files.File( path=config["output_folder_path"] / "index.html", data=index_template, ), files.File( path=config["output_folder_path"] / "manifest.json", data=template_loader.render_template(path="manifest.jinja2"), ), files.File( path=config["output_folder_path"] / "robots.txt", data=template_loader.render_template(path="robots.jinja2"), ), files.File( path=config["output_folder_path"] / "sw.js", data=template_loader.render_template(path="sw.jinja2"), ), files.File( path=config["output_folder_path"] / "static" / "early_script.js", data=template_loader.render_template(path="early_script.jinja2"), ), files.File( path=config["output_folder_path"] / "static" / "late_script.js", data=template_loader.render_template(path="late_script.jinja2"), ), files.File( path=config["output_folder_path"] / "static" / "styles.css", data=template_loader.render_template(path="styles.jinja2"), ), ] if config.get("domain"): templates.append( files.File( path=config["output_folder_path"] / "sitemap.xml", data=template_loader.render_template(path="sitemap.jinja2"), ), ) if config.get("title"): templates.append( files.File( path=config["output_folder_path"] / "static" / "opensearch.xml", data=template_loader.render_template(path="opensearch.jinja2"), ), ) if config.get("favicon_png") or config.get("main_color"): templates.append( files.File( path=config["output_folder_path"] / "static" / "browserconfig.xml", data=template_loader.render_template(path="browserconfig.jinja2"), ) ) if config.get("author_email"): templates.append( files.File( path=config["output_folder_path"] / ".well-known" / "security", data=template_loader.render_template(path="security.jinja2"), ) ) if config.get("author_name") or config.get("author_email"): templates.append( files.File( path=config["output_folder_path"] / "humans.txt", data=template_loader.render_template(path="humans.jinja2"), ) ) return templates
31.803922
120
0.609741
4a214511900da697506a7c9a9efda4e42b86be3e
402
py
Python
python/python_backup/PRAC_PYTHON/he.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
16
2018-11-26T08:39:42.000Z
2019-05-08T10:09:52.000Z
python/python_backup/PRAC_PYTHON/he.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
8
2020-05-04T06:29:26.000Z
2022-02-12T05:33:16.000Z
python/python_backup/PRAC_PYTHON/he.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
5
2020-02-11T16:02:21.000Z
2021-02-05T07:48:30.000Z
class palindrome: def __init__(self): self.a="" def input(self,k1): self.a=k1 def calculate(self): f=0 j=len(k1)-1 while i<len(k1)/2: if k1[i]!=k1[j]: f=1 break i=i+1 j=j-1 if f==0: print "self.a is palindrome" else: print "self.a is not a palindrome" x=palindrome() a=input("enter string:") x.input(a) x.calculate()
18.272727
38
0.534826
4a21454d3c018311d6dcc0caf4c806e4623d7d31
1,991
py
Python
setup.py
ScottBrian/scottbrian_algo1
57cd8fc5674507db51b1c887d5f9a68462b0ca9d
[ "MIT" ]
null
null
null
setup.py
ScottBrian/scottbrian_algo1
57cd8fc5674507db51b1c887d5f9a68462b0ca9d
[ "MIT" ]
null
null
null
setup.py
ScottBrian/scottbrian_algo1
57cd8fc5674507db51b1c887d5f9a68462b0ca9d
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jan 11 2020 @author: Scott Tuttle """ from pathlib import Path from setuptools import setup, find_packages with open('README.rst', 'r') as readme: long_description = readme.read() def get_version(rel_path): target_path = Path(__file__).resolve().parent.joinpath(rel_path) with open(target_path, 'r') as file: for line in file: if line.startswith('__version__'): delimiter = '"' if '"' in line else "'" return line.split(delimiter)[1] else: raise RuntimeError("Unable to find version string.") setup( name='scottbrian_algo1', version=get_version('src/scottbrian_algo1/__init__.py'), author='Scott Tuttle', description='Analyze and trade financial instruments', long_description=long_description, long_description_content_type='text/x-rst', url='https://github.com/ScottBrian/scottbrian_algo1.git', license='MIT', classifiers=[ 'License :: OSI Approved :: MIT License', 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: Financial and Insurance Industry', 'Topic :: Office/Business :: Financial :: Investment', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.8', 'Operating System :: POSIX :: Linux' ], project_urls={ 'Documentation': 'https://scottbrian-algo1.readthedocs.io/en' '/latest/', 'Source': 'https://github.com/ScottBrian/scottbrian_algo1.git'}, python_requires='>=3.8', packages=['ibapi', 'scottbrian_algo1'], package_dir={'ibapi': 'pythonclient/ibapi', '': 'src'}, install_requires=['pandas', 'scottbrian_utils'], package_data={"scottbrian_algo1": ["__init__.pyi", "py.typed"]}, zip_safe=False )
34.929825
74
0.61326
4a21456da41b03b146d782b08774145c827b4736
2,712
py
Python
setup.py
XENON1T/cax
06de9290851904695275fd34d7c74e2c9eb7fe59
[ "0BSD" ]
2
2016-05-19T05:51:15.000Z
2017-10-13T13:43:00.000Z
setup.py
XENON1T/cax
06de9290851904695275fd34d7c74e2c9eb7fe59
[ "0BSD" ]
93
2016-03-26T20:34:01.000Z
2021-03-25T21:41:57.000Z
setup.py
XENON1T/cax
06de9290851904695275fd34d7c74e2c9eb7fe59
[ "0BSD" ]
2
2017-05-19T03:47:09.000Z
2018-12-19T18:10:45.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- from setuptools import setup, find_packages PROJECT = 'cax' VERSION = '5.2.1' with open('README.rst') as readme_file: readme = readme_file.read() with open('HISTORY.rst') as history_file: history = history_file.read() requirements = [ 'checksumdir', 'scp', 'pagerduty-api', 'pymongo', 'paramiko', 'numpy', 'sympy', 'pytz', ] test_requirements = [ 'pytest', 'mongomock', ] setup( name='cax', version=VERSION, description="Copying Around XENON1T data", long_description=readme + '\n\n' + history, author="Christopher Tunnell", author_email='ctunnell@nikhef.nl', url='https://github.com/tunnell/cax', packages=find_packages(), include_package_data=True, install_requires=requirements, data_files=[ ('cax', ['cax/cax.json']), ('cax/host_config', ['cax/host_config/tegner_bash_p3.config', 'cax/host_config/tegner_bash_p2.config', 'cax/host_config/midway_bash_p3.config', 'cax/host_config/midway_bash_p2.config', 'cax/host_config/xe1tdatamanager_bash_p3.config', 'cax/host_config/xe1tdatamanager_bash_p2.config']) ], license="ISCL", zip_safe=False, keywords='cax', classifiers=[ 'Intended Audience :: System Administrators', 'Development Status :: 5 - Production/Stable' 'License :: OSI Approved :: ISC License (ISCL)', 'Natural Language :: English', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', ], test_suite='tests', tests_require=test_requirements, setup_requires=['pytest-runner'], entry_points={ 'console_scripts': [ 'cax = cax.main:main', 'massive-cax = cax.main:massive', 'caxer = cax.main:main', # For uniformity with paxer 'cax-process = cax.tasks.process:main', 'cax-mv = cax.main:move', 'cax-rm = cax.main:remove', 'cax-stray = cax.main:stray', 'cax-status = cax.main:status', 'massive-tsm = cax.main:massive_tsmclient', 'cax-tsm-remove = cax.main:remove_from_tsm', 'cax-tsm-watch = cax.main:cax_tape_log_file', 'ruciax = cax.main:ruciax', 'ruciax-rm = cax.main:remove_from_rucio', 'massive-ruciax = cax.main:massiveruciax', 'ruciax-check = cax.main:ruciax_status', 'ruciax-purge = cax.main:ruciax_purge', 'ruciax-download = cax.main:ruciax_download', 'ruciax-locator = cax.main:ruciax_locator', ], }, )
35.684211
302
0.613938
4a2145b06c10a85214d0ac16b32ea169da729813
138
py
Python
module2/__init__.py
axel-sirota/advanced-generator-and-coroutines
fbb4f869b030a05dc10b4a49e9a091068d11e194
[ "MIT" ]
5
2020-08-04T16:44:14.000Z
2021-08-21T02:23:03.000Z
module2/__init__.py
axel-sirota/advanced-generator-and-coroutines
fbb4f869b030a05dc10b4a49e9a091068d11e194
[ "MIT" ]
1
2021-03-21T16:33:58.000Z
2021-03-21T16:33:58.000Z
module2/__init__.py
axel-sirota/advanced-generator-and-coroutines
fbb4f869b030a05dc10b4a49e9a091068d11e194
[ "MIT" ]
4
2020-10-22T11:40:15.000Z
2022-01-30T19:42:07.000Z
from .mybomb import MyBomb from .mybombgenerator import mybomb from .mybomblazy import MyNotLazyBomb, mylazygenerator from .demo import *
27.6
54
0.833333
4a214616bd4366c468657f58380de515e761ad49
474
py
Python
symposion/utils/signup.py
azkarmoulana/pycon
931388e6f640c35b892bb4b2d12581ba7ec8cf4e
[ "BSD-3-Clause" ]
154
2015-01-17T02:29:24.000Z
2022-03-20T20:37:24.000Z
symposion/utils/signup.py
azkarmoulana/pycon
931388e6f640c35b892bb4b2d12581ba7ec8cf4e
[ "BSD-3-Clause" ]
316
2015-01-10T04:01:50.000Z
2020-09-30T20:18:08.000Z
symposion/utils/signup.py
azkarmoulana/pycon
931388e6f640c35b892bb4b2d12581ba7ec8cf4e
[ "BSD-3-Clause" ]
89
2015-01-10T05:25:21.000Z
2022-02-27T03:28:59.000Z
import hashlib import random from django.contrib.auth.models import User def generate_username(email): def random_username(): h = hashlib.sha1(email).hexdigest()[:25] # don't ask n = random.randint(1, (10 ** (5 - 1)) - 1) return "%s%d" % (h, n) while True: try: username = random_username() User.objects.get(username=username) except User.DoesNotExist: break return username
23.7
50
0.582278
4a21464cc305215f2b5ee383ef5911935ecc8d06
11,760
py
Python
stackinabox/stack.py
BenjamenMeyer/stackInABox
005a3e3f40ae7b7f14fae24d07768731e0ac948e
[ "Apache-2.0" ]
5
2015-02-02T22:02:55.000Z
2016-02-03T21:58:12.000Z
stackinabox/stack.py
TestInABox/stackInABox
15586e61a2013b6f4997c652e8412a1784f8fc93
[ "Apache-2.0" ]
43
2016-05-07T04:08:52.000Z
2022-03-16T23:43:36.000Z
stackinabox/stack.py
TestInABox/stackInABox
15586e61a2013b6f4997c652e8412a1784f8fc93
[ "Apache-2.0" ]
3
2016-05-05T18:05:36.000Z
2022-03-23T17:41:41.000Z
""" Stack-In-A-Box: Stack Management """ import logging import re import threading import uuid import six logger = logging.getLogger(__name__) class ServiceAlreadyRegisteredError(Exception): """StackInABoxService with the same name already registered.""" pass class StackInABox(object): """Stack-In-A-Box Testing Service. StackInABox provides a testing framework for RESTful APIs The framework provides a thread-local instance holding the StackInABoxService objects that are representing the RESTful APIs. The StackInABox object provides a means of accessing it from anywhere in a thread; however, it is not necessarily thread-safe at this time. If one is careful o setup StackInABox and write StackInABoxService's that are thread-safe themselves, then there is no reason it could not be used in a multi-threaded or multi-processed test. """ @classmethod def get_thread_instance(cls): """ Interface to the thread storage to ensure the instance properly exists """ create = False # if the `instance` property doesn't exist if not hasattr(local_store, 'instance'): local_store.instance = None create = True # if the instance doesn't exist at all elif local_store.instance is None: create = True # if it's something else entirely... elif not isinstance(local_store.instance, cls): local_store.instance = None create = True # if the above conditions are met, create it if create: logger.debug('Creating new StackInABox instance...') local_store.instance = cls() logger.debug( 'Created StackInABox({0})'.format(local_store.instance.__id) ) return local_store.instance @classmethod def reset_services(cls): """Reset the thread's StackInABox instance.""" logger.debug('Resetting services') return cls.get_thread_instance().reset() @classmethod def register_service(cls, service): """Add a service to the thread's StackInABox instance. :param service: StackInABoxService instance to add to the test For return value and errors see StackInABox.register() """ logger.debug('Registering service {0}'.format(service.name)) return cls.get_thread_instance().register(service) @classmethod def call_into(cls, method, request, uri, headers): """Make a call into the thread's StackInABox instance. :param method: HTTP Method (e.g GET, POST) :param request: a Request object containing the request data :param uri: the URI of the request submitted with the method :param headers: the return headers in a Case-Insensitive dict For return value and errors see StackInABox.call() """ logger.debug('Request: {0} - {1}'.format(method, uri)) return cls.get_thread_instance().call(method, request, uri, headers) @classmethod def hold_onto(cls, name, obj): """Add data into the a storage area provided by the framework. Note: The data is stored with the thread local instance. :param name: name of the data to be stored :param obj: data to be stored For return value and errors see StackInABox.into_hold() """ logger.debug('Holding on {0} of type {1} with id {2}' .format(name, type(obj), id(obj))) cls.get_thread_instance().into_hold(name, obj) @classmethod def hold_out(cls, name): """Get data from the storage area provided by the framework. Note: The data is retrieved from the thread local instance. :param name: name of the data to be retrieved :returns: The data associated with the specified name. For errors see StackInABox.from_hold() """ logger.debug('Retreiving {0} from hold' .format(name)) obj = cls.get_thread_instance().from_hold(name) logger.debug('Retrieved {0} of type {1} with id {2} from hold' .format(name, type(obj), id(obj))) return obj @classmethod def update_uri(cls, uri): """Set the URI of the StackInABox framework. :param uri: the base URI used to match the service. """ logger.debug('Request: Update URI to {0}'.format(uri)) cls.get_thread_instance().base_url = uri def __init__(self): """Initialize the StackInABox instance. Default Base URI is '/'. There are no services registered, and the storage hold is a basic dictionary object used as a key-value store. """ self.__id = uuid.uuid4() self.__base_url = '/' self.services = { } self.holds = { } @staticmethod def __get_service_url(base_url, service_name): """Get the URI for a given StackInABoxService. Note: this is an internal function :param base_url: base URL to use :param service_name: name of the service the URI is for """ return '{0}/{1}'.format(base_url, service_name) @staticmethod def get_services_url(url, base_url): """Get the URI from a given URL. :returns: URI within the URL """ length = len(base_url) checks = ['http://', 'https://'] for check in checks: if url.startswith(check): length = length + len(check) break result = url[length:] logger.debug('{0} from {1} equals {2}' .format(base_url, url, result)) return result @property def base_url(self): """Base URL property.""" return self.__base_url @base_url.setter def base_url(self, value): """Set the Base URL property, updating all associated services.""" logger.debug('StackInABox({0}): Updating URL from {1} to {2}' .format(self.__id, self.__base_url, value)) self.__base_url = value for k, v in six.iteritems(self.services): matcher, service = v service.base_url = StackInABox.__get_service_url(value, service.name) logger.debug('StackInABox({0}): Service {1} has url {2}' .format(self.__id, service.name, service.base_url)) def reset(self): """Reset StackInABox to a like-new state.""" logger.debug('StackInABox({0}): Resetting...' .format(self.__id)) for k, v in six.iteritems(self.services): matcher, service = v logger.debug('StackInABox({0}): Resetting Service {1}' .format(self.__id, service.name)) service.reset() self.services = {} self.holds = {} logger.debug('StackInABox({0}): Reset Complete' .format(self.__id)) def register(self, service): """Add a service to the thread's StackInABox instance. :param service: StackInABoxService instance to add to the test :returns: None :raises: ServiceAlreadyRegisteredError if the service already exists """ if service.name not in self.services.keys(): logger.debug('StackInABox({0}): Registering Service {1}' .format(self.__id, service.name)) regex = '^/{0}/'.format(service.name) self.services[service.name] = [ re.compile(regex), service ] service.base_url = StackInABox.__get_service_url(self.base_url, service.name) logger.debug('StackInABox({0}): Service {1} has url {2}' .format(self.__id, service.name, service.base_url)) else: raise ServiceAlreadyRegisteredError( 'Service {0} is already registered'.format(service.name)) def call(self, method, request, uri, headers): """Make a call into the thread's StackInABox instance. :param method: HTTP Method (e.g GET, POST) :param request: a Request object containing the request data :param uri: the URI of the request submitted with the method :param headers: the return headers in a Case-Insensitive dict :returns: A tuple containing - (i) the Status Code, (ii) the response headers, and (iii) the response body data This function should not emit any Exceptions """ logger.debug('StackInABox({0}): Received call to {1} - {2}' .format(self.__id, method, uri)) service_uri = StackInABox.get_services_url(uri, self.base_url) for k, v in six.iteritems(self.services): matcher, service = v logger.debug('StackInABox({0}): Checking if Service {1} handles...' .format(self.__id, service.name)) logger.debug('StackInABox({0}): ...using regex pattern {1} ' 'against {2}' .format(self.__id, matcher.pattern, service_uri)) if matcher.match(service_uri): logger.debug('StackInABox({0}): Trying Service {1} handler...' .format(self.__id, service.name)) try: service_caller_uri = service_uri[(len(service.name) + 1):] return service.request(method, request, service_caller_uri, headers) except Exception as ex: logger.exception('StackInABox({0}): Service {1} - ' 'Internal Failure' .format(self.__id, service.name)) return (596, headers, 'Service Handler had an error: {0}'.format(ex)) return (597, headers, 'Unknown service - {0}'.format(service_uri)) def into_hold(self, name, obj): """Add data into the a storage area provided by the framework. Note: The data is stored with the thread local instance. :param name: name of the data to be stored :param obj: data to be stored :returns: N/A :raises: N/A """ logger.debug('StackInABox({0}): Holding onto {1} of type {2} ' 'with id {3}' .format(self.__id, name, type(obj), id(obj))) self.holds[name] = obj def from_hold(self, name): """Get data from the storage area provided by the framework. Note: The data is retrieved from the thread local instance. :param name: name of the data to be retrieved :returns: The data associated with the specified name. :raises: Lookup/KeyError error if the name does not match a value in the storage """ logger.debug('StackInABox({0}): Retreiving {1} from the hold' .format(self.__id, name)) obj = self.holds[name] logger.debug('StackInABox({0}): Retrieved {1} of type {2} with id {3}' .format(self.__id, name, type(obj), id(obj))) return obj # Thread local instance of StackInABox local_store = threading.local()
34.486804
79
0.571854
4a2146ace877b7d3ce4b26f14beab8d093ea025c
4,193
py
Python
MDRSREID/Loss_Meter/Multi_Seg_loss.py
nickhuang1996/HJL-re-id
107b25f31c961f360f69560cfddd78dfc0da3291
[ "MIT" ]
43
2020-09-20T09:40:04.000Z
2022-03-29T11:25:22.000Z
MDRSREID/Loss_Meter/Multi_Seg_loss.py
nickhuang1996/HJL-re-id
107b25f31c961f360f69560cfddd78dfc0da3291
[ "MIT" ]
19
2020-10-05T05:35:38.000Z
2021-12-10T03:17:31.000Z
MDRSREID/Loss_Meter/Multi_Seg_loss.py
nickhuang1996/HJL-re-id
107b25f31c961f360f69560cfddd78dfc0da3291
[ "MIT" ]
18
2020-10-01T14:41:53.000Z
2021-09-02T06:57:57.000Z
from MDRSREID.Loss_Meter import Loss import torch.nn as nn import torch from MDRSREID.utils.meter import RecentAverageMeter as Meter class MultiSegLoss(Loss): def __init__(self, cfg, tb_writer=None): super(MultiSegLoss, self).__init__(cfg, tb_writer=tb_writer) self.criterion = torch.nn.CrossEntropyLoss(reduction='none' if cfg.normalize_size else 'mean') self.part_fmt = '#{}' def __call__(self, item, pred, step=0, **kwargs): multi_seg_pred_list = pred['multi_seg_pred_list'] ps_label = item['ps_label'] N, C, H, W = multi_seg_pred_list[0].size() assert ps_label.size() == (N, H, W) # shape [N, H, W] -> [NHW] ps_label = ps_label.view(N * H * W).detach() # shape [N, C, H, W] -> [N, H, W, C] -> [NHW, C] loss_list = [self.criterion(multi_seg_pred_list[i].permute(0, 2, 3, 1).contiguous().view(-1, C), ps_label) for i in range(len(multi_seg_pred_list))] # New version of pytorch allow stacking 0-dim tensors, but not concatenating. loss = torch.stack(loss_list).mean() # sum() # Calculate each class avg loss and then average across classes, to compensate for classes that have few pixels if self.cfg.normalize_size: num_loss = 0 for j in range(len(loss_list)): loss_ = 0 cur_batch_n_classes = 0 for i in range(self.cfg.num_classes): # select ingredients that satisfy the condition 'ps_label == i' # the number may be less than that of ps_label loss_i = loss_list[j][ps_label == i] # if the number of selected ingredients is more than 0, calculate the loss and class numbers add 1 if loss_i.numel() > 0: loss_ += loss_i.mean() cur_batch_n_classes += 1 loss_ /= (cur_batch_n_classes + 1e-8) loss_list[j] = loss_ num_loss += 1 sum_loss = 0.0 for i in range(len(loss_list)): sum_loss += loss_list[i] loss = 1. * sum_loss / num_loss # Meter: stores and computes the average of recent values self.store_calculate_loss(loss) # May calculate each branch loss separately self.may_calculate_each_branch_loss(loss_list) # May record losses. self.may_record_loss(step) # Scale by loss weight loss *= self.cfg.weight return {'loss': loss} def store_calculate_loss(self, loss): """ :param loss: torch.stack(loss_list).sum() :return: Meter: stores and computes the average of recent values. """ if self.cfg.name not in self.meter_dict: # Here use RecentAverageMeter as Meter self.meter_dict[self.cfg.name] = Meter(name=self.cfg.name) # Update the meter, store the current whole loss. self.meter_dict[self.cfg.name].update(loss.item()) def may_calculate_each_branch_loss(self, loss_list): """ :param loss_list: each part loss :return: Meter: stores and computes the average of recent values. For each part loss, calculate the loss separately. """ if len(loss_list) > 1: # stores and computes each part average of recent values for i in range(len(loss_list)): # if there is not the meter of the part, create a new one. if self.part_fmt.format(i + 1) not in self.meter_dict: self.meter_dict[self.part_fmt.format(i + 1)] = Meter(name=self.part_fmt.format(i + 1)) # Update the meter, store the current part loss self.meter_dict[self.part_fmt.format(i + 1)].update(loss_list[i].item()) def may_record_loss(self, step): """ :param loss_list: :param step: :return: Use TensorBoard to record the losses. """ if self.tb_writer is not None: self.tb_writer.add_scalars(self.cfg.name, {self.cfg.name: self.meter_dict[self.cfg.name].avg}, step)
39.186916
156
0.5917
4a2149b1775b602d06d564b36324658cae787149
33,507
py
Python
pyqtgraph/parametertree/Parameter.py
ltirrell/pyqtgraph
4a24598bcb631ecaf1140c44afba1e62be8ce1ab
[ "MIT" ]
1
2021-05-31T06:43:22.000Z
2021-05-31T06:43:22.000Z
pyqtgraph/parametertree/Parameter.py
ltirrell/pyqtgraph
4a24598bcb631ecaf1140c44afba1e62be8ce1ab
[ "MIT" ]
null
null
null
pyqtgraph/parametertree/Parameter.py
ltirrell/pyqtgraph
4a24598bcb631ecaf1140c44afba1e62be8ce1ab
[ "MIT" ]
1
2022-02-21T03:09:29.000Z
2022-02-21T03:09:29.000Z
# -*- coding: utf-8 -*- from ..Qt import QtGui, QtCore import os, weakref, re from ..pgcollections import OrderedDict from ..python2_3 import asUnicode, basestring from .ParameterItem import ParameterItem PARAM_TYPES = {} PARAM_NAMES = {} def registerParameterType(name, cls, override=False): global PARAM_TYPES if name in PARAM_TYPES and not override: raise Exception("Parameter type '%s' already exists (use override=True to replace)" % name) PARAM_TYPES[name] = cls PARAM_NAMES[cls] = name def __reload__(old): PARAM_TYPES.update(old.get('PARAM_TYPES', {})) PARAM_NAMES.update(old.get('PARAM_NAMES', {})) class Parameter(QtCore.QObject): """ A Parameter is the basic unit of data in a parameter tree. Each parameter has a name, a type, a value, and several other properties that modify the behavior of the Parameter. Parameters may have parent / child / sibling relationships to construct organized hierarchies. Parameters generally do not have any inherent GUI or visual interpretation; instead they manage ParameterItem instances which take care of display and user interaction. Note: It is fairly uncommon to use the Parameter class directly; mostly you will use subclasses which provide specialized type and data handling. The static pethod Parameter.create(...) is an easy way to generate instances of these subclasses. For more Parameter types, see ParameterTree.parameterTypes module. =================================== ========================================================= **Signals:** sigStateChanged(self, change, info) Emitted when anything changes about this parameter at all. The second argument is a string indicating what changed ('value', 'childAdded', etc..) The third argument can be any extra information about the change sigTreeStateChanged(self, changes) Emitted when any child in the tree changes state (but only if monitorChildren() is called) the format of *changes* is [(param, change, info), ...] sigValueChanged(self, value) Emitted when value is finished changing sigValueChanging(self, value) Emitted immediately for all value changes, including during editing. sigChildAdded(self, child, index) Emitted when a child is added sigChildRemoved(self, child) Emitted when a child is removed sigRemoved(self) Emitted when this parameter is removed sigParentChanged(self, parent) Emitted when this parameter's parent has changed sigLimitsChanged(self, limits) Emitted when this parameter's limits have changed sigDefaultChanged(self, default) Emitted when this parameter's default value has changed sigNameChanged(self, name) Emitted when this parameter's name has changed sigOptionsChanged(self, opts) Emitted when any of this parameter's options have changed sigContextMenu(self, name) Emitted when a context menu was clicked =================================== ========================================================= """ ## name, type, limits, etc. ## can also carry UI hints (slider vs spinbox, etc.) sigValueChanged = QtCore.Signal(object, object) ## self, value emitted when value is finished being edited sigValueChanging = QtCore.Signal(object, object) ## self, value emitted as value is being edited sigChildAdded = QtCore.Signal(object, object, object) ## self, child, index sigChildRemoved = QtCore.Signal(object, object) ## self, child sigRemoved = QtCore.Signal(object) ## self sigParentChanged = QtCore.Signal(object, object) ## self, parent sigLimitsChanged = QtCore.Signal(object, object) ## self, limits sigDefaultChanged = QtCore.Signal(object, object) ## self, default sigNameChanged = QtCore.Signal(object, object) ## self, name sigOptionsChanged = QtCore.Signal(object, object) ## self, {opt:val, ...} ## Emitted when anything changes about this parameter at all. ## The second argument is a string indicating what changed ('value', 'childAdded', etc..) ## The third argument can be any extra information about the change sigStateChanged = QtCore.Signal(object, object, object) ## self, change, info ## emitted when any child in the tree changes state ## (but only if monitorChildren() is called) sigTreeStateChanged = QtCore.Signal(object, object) # self, changes # changes = [(param, change, info), ...] sigContextMenu = QtCore.Signal(object, object) # self, name # bad planning. #def __new__(cls, *args, **opts): #try: #cls = PARAM_TYPES[opts['type']] #except KeyError: #pass #return QtCore.QObject.__new__(cls, *args, **opts) @staticmethod def create(**opts): """ Static method that creates a new Parameter (or subclass) instance using opts['type'] to select the appropriate class. All options are passed directly to the new Parameter's __init__ method. Use registerParameterType() to add new class types. """ typ = opts.get('type', None) if typ is None: cls = Parameter else: cls = PARAM_TYPES[opts['type']] return cls(**opts) def __init__(self, **opts): """ Initialize a Parameter object. Although it is rare to directly create a Parameter instance, the options available to this method are also allowed by most Parameter subclasses. ======================= ========================================================= **Keyword Arguments:** name The name to give this Parameter. This is the name that will appear in the left-most column of a ParameterTree for this Parameter. value The value to initially assign to this Parameter. default The default value for this Parameter (most Parameters provide an option to 'reset to default'). children A list of children for this Parameter. Children may be given either as a Parameter instance or as a dictionary to pass to Parameter.create(). In this way, it is possible to specify complex hierarchies of Parameters from a single nested data structure. readonly If True, the user will not be allowed to edit this Parameter. (default=False) enabled If False, any widget(s) for this parameter will appear disabled. (default=True) visible If False, the Parameter will not appear when displayed in a ParameterTree. (default=True) renamable If True, the user may rename this Parameter. (default=False) removable If True, the user may remove this Parameter. (default=False) expanded If True, the Parameter will initially be expanded in ParameterTrees: Its children will be visible. (default=True) syncExpanded If True, the `expanded` state of this Parameter is synchronized with all ParameterTrees it is displayed in. (default=False) title (str or None) If specified, then the parameter will be displayed to the user using this string as its name. However, the parameter will still be referred to internally using the *name* specified above. Note that this option is not compatible with renamable=True. (default=None; added in version 0.9.9) ======================= ========================================================= """ QtCore.QObject.__init__(self) self.opts = { 'type': None, 'readonly': False, 'visible': True, 'enabled': True, 'renamable': False, 'removable': False, 'strictNaming': False, # forces name to be usable as a python variable 'expanded': True, 'syncExpanded': False, 'title': None, #'limits': None, ## This is a bad plan--each parameter type may have a different data type for limits. } value = opts.get('value', None) name = opts.get('name', None) self.opts.update(opts) self.opts['value'] = None # will be set later. self.opts['name'] = None self.childs = [] self.names = {} ## map name:child self.items = weakref.WeakKeyDictionary() ## keeps track of tree items representing this parameter self._parent = None self.treeStateChanges = [] ## cache of tree state changes to be delivered on next emit self.blockTreeChangeEmit = 0 #self.monitoringChildren = False ## prevent calling monitorChildren more than once if not isinstance(name, basestring): raise Exception("Parameter must have a string name specified in opts.") self.setName(name) self.addChildren(self.opts.pop('children', [])) if value is not None: self.setValue(value) if 'default' not in self.opts: self.opts['default'] = None ## Connect all state changed signals to the general sigStateChanged self.sigValueChanged.connect(lambda param, data: self.emitStateChanged('value', data)) self.sigChildAdded.connect(lambda param, *data: self.emitStateChanged('childAdded', data)) self.sigChildRemoved.connect(lambda param, data: self.emitStateChanged('childRemoved', data)) self.sigParentChanged.connect(lambda param, data: self.emitStateChanged('parent', data)) self.sigLimitsChanged.connect(lambda param, data: self.emitStateChanged('limits', data)) self.sigDefaultChanged.connect(lambda param, data: self.emitStateChanged('default', data)) self.sigNameChanged.connect(lambda param, data: self.emitStateChanged('name', data)) self.sigOptionsChanged.connect(lambda param, data: self.emitStateChanged('options', data)) self.sigContextMenu.connect(lambda param, data: self.emitStateChanged('contextMenu', data)) #self.watchParam(self) ## emit treechange signals if our own state changes def name(self): """Return the name of this Parameter.""" return self.opts['name'] def title(self): """Return the title of this Parameter. By default, the title is the same as the name unless it has been explicitly specified otherwise.""" title = self.opts.get('title', None) if title is None: title = self.name() return title def contextMenu(self, name): """"A context menu entry was clicked""" self.sigContextMenu.emit(self, name) def setName(self, name): """Attempt to change the name of this parameter; return the actual name. (The parameter may reject the name change or automatically pick a different name)""" if self.opts['strictNaming']: if len(name) < 1 or re.search(r'\W', name) or re.match(r'\d', name[0]): raise Exception("Parameter name '%s' is invalid. (Must contain only alphanumeric and underscore characters and may not start with a number)" % name) parent = self.parent() if parent is not None: name = parent._renameChild(self, name) ## first ask parent if it's ok to rename if self.opts['name'] != name: self.opts['name'] = name self.sigNameChanged.emit(self, name) return name def type(self): """Return the type string for this Parameter.""" return self.opts['type'] def isType(self, typ): """ Return True if this parameter type matches the name *typ*. This can occur either of two ways: - If self.type() == *typ* - If this parameter's class is registered with the name *typ* """ if self.type() == typ: return True global PARAM_TYPES cls = PARAM_TYPES.get(typ, None) if cls is None: raise Exception("Type name '%s' is not registered." % str(typ)) return self.__class__ is cls def childPath(self, child): """ Return the path of parameter names from self to child. If child is not a (grand)child of self, return None. """ path = [] while child is not self: path.insert(0, child.name()) child = child.parent() if child is None: return None return path def setValue(self, value, blockSignal=None): """ Set the value of this Parameter; return the actual value that was set. (this may be different from the value that was requested) """ try: if blockSignal is not None: self.sigValueChanged.disconnect(blockSignal) value = self._interpretValue(value) if self.opts['value'] == value: return value self.opts['value'] = value self.sigValueChanged.emit(self, value) finally: if blockSignal is not None: self.sigValueChanged.connect(blockSignal) return value def _interpretValue(self, v): return v def value(self): """ Return the value of this Parameter. """ return self.opts['value'] def getValues(self): """Return a tree of all values that are children of this parameter""" vals = OrderedDict() for ch in self: vals[ch.name()] = (ch.value(), ch.getValues()) return vals def saveState(self, filter=None): """ Return a structure representing the entire state of the parameter tree. The tree state may be restored from this structure using restoreState(). If *filter* is set to 'user', then only user-settable data will be included in the returned state. """ if filter is None: state = self.opts.copy() if state['type'] is None: global PARAM_NAMES state['type'] = PARAM_NAMES.get(type(self), None) elif filter == 'user': state = {'value': self.value()} else: raise ValueError("Unrecognized filter argument: '%s'" % filter) ch = OrderedDict([(ch.name(), ch.saveState(filter=filter)) for ch in self]) if len(ch) > 0: state['children'] = ch return state def restoreState(self, state, recursive=True, addChildren=True, removeChildren=True, blockSignals=True): """ Restore the state of this parameter and its children from a structure generated using saveState() If recursive is True, then attempt to restore the state of child parameters as well. If addChildren is True, then any children which are referenced in the state object will be created if they do not already exist. If removeChildren is True, then any children which are not referenced in the state object will be removed. If blockSignals is True, no signals will be emitted until the tree has been completely restored. This prevents signal handlers from responding to a partially-rebuilt network. """ state = state.copy() childState = state.pop('children', []) ## list of children may be stored either as list or dict. if isinstance(childState, dict): cs = [] for k,v in childState.items(): cs.append(v.copy()) cs[-1].setdefault('name', k) childState = cs if blockSignals: self.blockTreeChangeSignal() try: self.setOpts(**state) if not recursive: return ptr = 0 ## pointer to first child that has not been restored yet foundChilds = set() #print "==============", self.name() for ch in childState: name = ch['name'] #typ = ch.get('type', None) #print('child: %s, %s' % (self.name()+'.'+name, typ)) ## First, see if there is already a child with this name gotChild = False for i, ch2 in enumerate(self.childs[ptr:]): #print " ", ch2.name(), ch2.type() if ch2.name() != name: # or not ch2.isType(typ): continue gotChild = True #print " found it" if i != 0: ## move parameter to next position #self.removeChild(ch2) self.insertChild(ptr, ch2) #print " moved to position", ptr ch2.restoreState(ch, recursive=recursive, addChildren=addChildren, removeChildren=removeChildren) foundChilds.add(ch2) break if not gotChild: if not addChildren: #print " ignored child" continue #print " created new" ch2 = Parameter.create(**ch) self.insertChild(ptr, ch2) foundChilds.add(ch2) ptr += 1 if removeChildren: for ch in self.childs[:]: if ch not in foundChilds: #print " remove:", ch self.removeChild(ch) finally: if blockSignals: self.unblockTreeChangeSignal() def defaultValue(self): """Return the default value for this parameter.""" return self.opts['default'] def setDefault(self, val): """Set the default value for this parameter.""" if self.opts['default'] == val: return self.opts['default'] = val self.sigDefaultChanged.emit(self, val) def setToDefault(self): """Set this parameter's value to the default.""" if self.hasDefault(): self.setValue(self.defaultValue()) def hasDefault(self): """Returns True if this parameter has a default value.""" return self.opts['default'] is not None def valueIsDefault(self): """Returns True if this parameter's value is equal to the default value.""" return self.value() == self.defaultValue() def setLimits(self, limits): """Set limits on the acceptable values for this parameter. The format of limits depends on the type of the parameter and some parameters do not make use of limits at all.""" if 'limits' in self.opts and self.opts['limits'] == limits: return self.opts['limits'] = limits self.sigLimitsChanged.emit(self, limits) return limits def writable(self): """ Returns True if this parameter's value can be changed by the user. Note that the value of the parameter can *always* be changed by calling setValue(). """ return not self.readonly() def setWritable(self, writable=True): """Set whether this Parameter should be editable by the user. (This is exactly the opposite of setReadonly).""" self.setOpts(readonly=not writable) def readonly(self): """ Return True if this parameter is read-only. (this is the opposite of writable()) """ return self.opts.get('readonly', False) def setReadonly(self, readonly=True): """Set whether this Parameter's value may be edited by the user (this is the opposite of setWritable()).""" self.setOpts(readonly=readonly) def setOpts(self, **opts): """ Set any arbitrary options on this parameter. The exact behavior of this function will depend on the parameter type, but most parameters will accept a common set of options: value, name, limits, default, readonly, removable, renamable, visible, enabled, expanded and syncExpanded. See :func:`Parameter.__init__ <pyqtgraph.parametertree.Parameter.__init__>` for more information on default options. """ changed = OrderedDict() for k in opts: if k == 'value': self.setValue(opts[k]) elif k == 'name': self.setName(opts[k]) elif k == 'limits': self.setLimits(opts[k]) elif k == 'default': self.setDefault(opts[k]) elif k not in self.opts or self.opts[k] != opts[k]: self.opts[k] = opts[k] changed[k] = opts[k] if len(changed) > 0: self.sigOptionsChanged.emit(self, changed) def emitStateChanged(self, changeDesc, data): ## Emits stateChanged signal and ## requests emission of new treeStateChanged signal self.sigStateChanged.emit(self, changeDesc, data) #self.treeStateChanged(self, changeDesc, data) self.treeStateChanges.append((self, changeDesc, data)) self.emitTreeChanges() def makeTreeItem(self, depth): """ Return a TreeWidgetItem suitable for displaying/controlling the content of this parameter. This is called automatically when a ParameterTree attempts to display this Parameter. Most subclasses will want to override this function. """ if hasattr(self, 'itemClass'): #print "Param:", self, "Make item from itemClass:", self.itemClass return self.itemClass(self, depth) else: return ParameterItem(self, depth=depth) def addChild(self, child, autoIncrementName=None): """ Add another parameter to the end of this parameter's child list. See insertChild() for a description of the *autoIncrementName* argument. """ return self.insertChild(len(self.childs), child, autoIncrementName=autoIncrementName) def addChildren(self, children): """ Add a list or dict of children to this parameter. This method calls addChild once for each value in *children*. """ ## If children was specified as dict, then assume keys are the names. if isinstance(children, dict): ch2 = [] for name, opts in children.items(): if isinstance(opts, dict) and 'name' not in opts: opts = opts.copy() opts['name'] = name ch2.append(opts) children = ch2 for chOpts in children: #print self, "Add child:", type(chOpts), id(chOpts) self.addChild(chOpts) def insertChild(self, pos, child, autoIncrementName=None): """ Insert a new child at pos. If pos is a Parameter, then insert at the position of that Parameter. If child is a dict, then a parameter is constructed using :func:`Parameter.create <pyqtgraph.parametertree.Parameter.create>`. By default, the child's 'autoIncrementName' option determines whether the name will be adjusted to avoid prior name collisions. This behavior may be overridden by specifying the *autoIncrementName* argument. This argument was added in version 0.9.9. """ if isinstance(child, dict): child = Parameter.create(**child) name = child.name() if name in self.names and child is not self.names[name]: if autoIncrementName is True or (autoIncrementName is None and child.opts.get('autoIncrementName', False)): name = self.incrementName(name) child.setName(name) else: raise Exception("Already have child named %s" % str(name)) if isinstance(pos, Parameter): pos = self.childs.index(pos) with self.treeChangeBlocker(): if child.parent() is not None: child.remove() self.names[name] = child self.childs.insert(pos, child) child.parentChanged(self) child.sigTreeStateChanged.connect(self.treeStateChanged) self.sigChildAdded.emit(self, child, pos) return child def removeChild(self, child): """Remove a child parameter.""" name = child.name() if name not in self.names or self.names[name] is not child: raise Exception("Parameter %s is not my child; can't remove." % str(child)) del self.names[name] self.childs.pop(self.childs.index(child)) child.parentChanged(None) try: child.sigTreeStateChanged.disconnect(self.treeStateChanged) except (TypeError, RuntimeError): ## already disconnected pass self.sigChildRemoved.emit(self, child) def clearChildren(self): """Remove all child parameters.""" for ch in self.childs[:]: self.removeChild(ch) def children(self): """Return a list of this parameter's children. Warning: this overrides QObject.children """ return self.childs[:] def hasChildren(self): """Return True if this Parameter has children.""" return len(self.childs) > 0 def parentChanged(self, parent): """This method is called when the parameter's parent has changed. It may be useful to extend this method in subclasses.""" self._parent = parent self.sigParentChanged.emit(self, parent) def parent(self): """Return the parent of this parameter.""" return self._parent def remove(self): """Remove this parameter from its parent's child list""" parent = self.parent() if parent is None: raise Exception("Cannot remove; no parent.") parent.removeChild(self) self.sigRemoved.emit(self) def incrementName(self, name): ## return an unused name by adding a number to the name given base, num = re.match(r'(.*)(\d*)', name).groups() numLen = len(num) if numLen == 0: num = 2 numLen = 1 else: num = int(num) while True: newName = base + ("%%0%dd"%numLen) % num if newName not in self.names: return newName num += 1 def __iter__(self): for ch in self.childs: yield ch def __getitem__(self, names): """Get the value of a child parameter. The name may also be a tuple giving the path to a sub-parameter:: value = param[('child', 'grandchild')] """ if not isinstance(names, tuple): names = (names,) return self.param(*names).value() def __setitem__(self, names, value): """Set the value of a child parameter. The name may also be a tuple giving the path to a sub-parameter:: param[('child', 'grandchild')] = value """ if isinstance(names, basestring): names = (names,) return self.param(*names).setValue(value) def child(self, *names): """Return a child parameter. Accepts the name of the child or a tuple (path, to, child) Added in version 0.9.9. Earlier versions used the 'param' method, which is still implemented for backward compatibility. """ try: param = self.names[names[0]] except KeyError: raise KeyError("Parameter %s has no child named %s" % (self.name(), names[0])) if len(names) > 1: return param.child(*names[1:]) else: return param def param(self, *names): # for backward compatibility. return self.child(*names) def __repr__(self): return asUnicode("<%s '%s' at 0x%x>") % (self.__class__.__name__, self.name(), id(self)) def __getattr__(self, attr): ## Leaving this undocumented because I might like to remove it in the future.. #print type(self), attr if 'names' not in self.__dict__: raise AttributeError(attr) if attr in self.names: import traceback traceback.print_stack() print("Warning: Use of Parameter.subParam is deprecated. Use Parameter.param(name) instead.") return self.param(attr) else: raise AttributeError(attr) def _renameChild(self, child, name): ## Only to be called from Parameter.rename if name in self.names: return child.name() self.names[name] = child del self.names[child.name()] return name def registerItem(self, item): self.items[item] = None def hide(self): """Hide this parameter. It and its children will no longer be visible in any ParameterTree widgets it is connected to.""" self.show(False) def show(self, s=True): """Show this parameter. """ self.opts['visible'] = s self.sigOptionsChanged.emit(self, {'visible': s}) def treeChangeBlocker(self): """ Return an object that can be used to temporarily block and accumulate sigTreeStateChanged signals. This is meant to be used when numerous changes are about to be made to the tree and only one change signal should be emitted at the end. Example:: with param.treeChangeBlocker(): param.addChild(...) param.removeChild(...) param.setValue(...) """ return SignalBlocker(self.blockTreeChangeSignal, self.unblockTreeChangeSignal) def blockTreeChangeSignal(self): """ Used to temporarily block and accumulate tree change signals. *You must remember to unblock*, so it is advisable to use treeChangeBlocker() instead. """ self.blockTreeChangeEmit += 1 def unblockTreeChangeSignal(self): """Unblocks enission of sigTreeStateChanged and flushes the changes out through a single signal.""" self.blockTreeChangeEmit -= 1 self.emitTreeChanges() def treeStateChanged(self, param, changes): """ Called when the state of any sub-parameter has changed. ============== ================================================================ **Arguments:** param The immediate child whose tree state has changed. note that the change may have originated from a grandchild. changes List of tuples describing all changes that have been made in this event: (param, changeDescr, data) ============== ================================================================ This function can be extended to react to tree state changes. """ self.treeStateChanges.extend(changes) self.emitTreeChanges() def emitTreeChanges(self): if self.blockTreeChangeEmit == 0: changes = self.treeStateChanges self.treeStateChanges = [] if len(changes) > 0: self.sigTreeStateChanged.emit(self, changes) class SignalBlocker(object): def __init__(self, enterFn, exitFn): self.enterFn = enterFn self.exitFn = exitFn def __enter__(self): self.enterFn() def __exit__(self, exc_type, exc_value, tb): self.exitFn()
41.88375
164
0.564449
4a214bcb08b890a74ae6bb21efe3f78829125023
663
py
Python
python_speech_features_cuda/_acc/__init__.py
vkola-lab/python_speech_features_cuda
51948be5b3acbe26a57e11aee9a1fbacba1b6b39
[ "MIT" ]
6
2020-08-05T04:03:12.000Z
2021-04-06T07:45:57.000Z
python_speech_features_cuda/_acc/__init__.py
vkola-lab/python_speech_features_cuda
51948be5b3acbe26a57e11aee9a1fbacba1b6b39
[ "MIT" ]
null
null
null
python_speech_features_cuda/_acc/__init__.py
vkola-lab/python_speech_features_cuda
51948be5b3acbe26a57e11aee9a1fbacba1b6b39
[ "MIT" ]
null
null
null
""" Created on Mon Aug 10 09:25:14 2020 @author: cxue2 """ from .. import env if env.is_numba_available: from ._jit import _jit_preemp_frmsig from ._jit import _jit_powdiv from ._jit import _jit_sum from ._jit import _jit_mul from ._jit import _jit_rplzro_log from ._jit import _jit_rplzro else: _jit_preemp_frmsig = None _jit_powdiv = None _jit_sum = None _jit_mul = None _jit_rplzro_log = None _jit_rplzro = None from ._fft import fft from ._opr import sum from ._opr import mul from ._opr import rplzro from ._opr import rplzro_log from ._wrp import preemp_frmsig_powspc
22.1
40
0.689291
4a214ca13dc21d98f0d35535dcd7ebe6890a226a
24,668
py
Python
Exp 4 4 with USRCAT/evolution_functions.py
Mattarian/GAD-USRCAT
306a21e8afbeff3d8b56ae4641ac1195a12f2036
[ "Apache-2.0" ]
null
null
null
Exp 4 4 with USRCAT/evolution_functions.py
Mattarian/GAD-USRCAT
306a21e8afbeff3d8b56ae4641ac1195a12f2036
[ "Apache-2.0" ]
null
null
null
Exp 4 4 with USRCAT/evolution_functions.py
Mattarian/GAD-USRCAT
306a21e8afbeff3d8b56ae4641ac1195a12f2036
[ "Apache-2.0" ]
null
null
null
from __future__ import print_function import os import rdkit import shutil import multiprocessing from rdkit import Chem from rdkit.Chem import Draw from rdkit.Chem import MolFromSmiles as smi2mol from rdkit.Chem import MolToSmiles as mol2smi from rdkit.Chem import Descriptors from rdkit.Chem import rdMolDescriptors from rdkit import DataStructs from selfies import decoder import numpy as np import inspect from collections import OrderedDict manager = multiprocessing.Manager() lock = multiprocessing.Lock() def get_logP(mol): '''Calculate logP of a molecule Parameters: mol (rdkit.Chem.rdchem.Mol) : RdKit mol object, for which logP is to calculates Returns: float : logP of molecule (mol) ''' return Descriptors.MolLogP(mol) def molecule_similarity(mol, target, radius=2, nBits=2048, useChirality=True): """ Reward for a target molecule similarity, based on tanimoto similarity between the ECFP fingerprints of the x molecule and target molecule :param mol: rdkit mol object :param target: rdkit mol object :return: float, [0.0, 1.0] """ x = rdMolDescriptors.GetMorganFingerprintAsBitVect(mol, radius=radius, nBits=nBits, useChirality=useChirality) target = rdMolDescriptors.GetMorganFingerprintAsBitVect(target, radius=radius, nBits=nBits, useChirality=useChirality) return DataStructs.TanimotoSimilarity(x, target) def make_clean_results_dir(): # Create the results folder root_folder = './results' if not os.path.exists(root_folder): os.makedirs(root_folder) else: shutil.rmtree(root_folder) os.makedirs(root_folder) return root_folder def make_clean_directories(beta, root_folder, iteration): '''Create or clean directories: 'images' & 'saved_models' Create directories from scratch, if they do not exist Clean (remove all content) if directories already exist Parameters: None Returns: None : Folders in current directory modified ''' image_dir= root_folder + '/images_generation_' + str(beta) + '_' + str(iteration) if not os.path.exists(image_dir): os.makedirs(image_dir) else: if len(os.listdir(image_dir)) > 0: os.system("rm -r %s/*"%(image_dir)) models_dir = root_folder + '/saved_models_' + str(beta) + '_' + str(iteration) if not os.path.exists(models_dir): os.makedirs(models_dir) else: if len(os.listdir(models_dir)) > 0: os.system("rm -r %s/*"%(models_dir)) data_dir = root_folder + '/results_' + str(beta) + '_' + str(iteration) if not os.path.exists(data_dir): os.makedirs(data_dir) else: if len(os.listdir(data_dir)) > 0: os.system("rm -r %s/*"%(data_dir)) return (image_dir, models_dir, data_dir) def sanitize_smiles(smi): '''Return a canonical smile representation of smi Parameters: smi (string) : smile string to be canonicalized Returns: mol (rdkit.Chem.rdchem.Mol) : RdKit mol object (None if invalid smile string smi) smi_canon (string) : Canonicalized smile representation of smi (None if invalid smile string smi) conversion_successful (bool): True/False to indicate if conversion was successful ''' try: mol = smi2mol(smi, sanitize=True) smi_canon = mol2smi(mol, isomericSmiles=False, canonical=True) return (mol, smi_canon, True) except: return (None, None, False) def sanitize_multiple_smiles(smi_ls): '''Calls function sanitize_smiles for each item in list smi_ls ''' sanitized_smiles = [] for smi in smi_ls: smi_converted = sanitize_smiles(smi) sanitized_smiles.append(smi_converted[1]) if smi_converted[2] == False or smi_converted[1] == '': raise Exception("Invalid SMILE ecncountered. Value =", smi) return sanitized_smiles def read_dataset(filename): '''Return a list of smiles contained in file filename Parameters: filename (string) : Name of file containg smiles seperated by '\n' Returns content (list) : list of smile string in file filename ''' with open(filename) as f: content = f.readlines() content = [x.strip() for x in content] return content def read_dataset_encoding(disc_enc_type): '''Return zinc-data set based on disc_enc_type choice of 'smiles' or 'selfies' Parameters: disc_enc_type (string): 'smiles' or 'selfies' ''' if disc_enc_type == 'smiles' or disc_enc_type == 'properties_rdkit': smiles_reference = read_dataset(filename='./datasets/zinc_dearom.txt') return smiles_reference elif disc_enc_type == 'selfies': selfies_reference = read_dataset(filename='./datasets/SELFIES_zinc.txt') return selfies_reference def create_100_mol_image(mol_list, file_name, fitness, logP, SAS, RingCount, USRSim): #!# '''Create a single picture of multiple molecules in a single Grid. ''' assert len(mol_list) == 100 if logP == None and SAS == None and RingCount == None: Draw.MolsToGridImage(mol_list, molsPerRow=10, subImgSize=(200,200)).save(file_name) return for i,m in enumerate(mol_list): m.SetProp('_Name','%s %s %s %s %s' % (round(fitness[i], 3), round(logP[i], 3), round(SAS[i], 3), round(RingCount[i], 3), round(USRSim[i], 3))) try: Draw.MolsToGridImage(mol_list, molsPerRow=10, subImgSize=(200,200), legends=[x.GetProp("_Name") for x in mol_list]).save(file_name) except: print('Failed to produce image!') return def get_selfie_chars(selfie): '''Obtain a list of all selfie characters in string selfie Parameters: selfie (string) : A selfie string - representing a molecule Example: >>> get_selfie_chars('[C][=C][C][=C][C][=C][Ring1][Branch1_1]') ['[C]', '[=C]', '[C]', '[=C]', '[C]', '[=C]', '[Ring1]', '[Branch1_1]'] Returns: chars_selfie: list of selfie characters present in molecule selfie ''' chars_selfie = [] # A list of all SELFIE sybols from string selfie while selfie != '': chars_selfie.append(selfie[selfie.find('['): selfie.find(']')+1]) selfie = selfie[selfie.find(']')+1:] return chars_selfie def smiles_alphabet(disc_enc_type): '''Return a list of characters present in the zinc dataset Parameters: disc_enc_type (string): Indicates whether to return SMILES/SELFiES characters Returns: alphabet: list of SELFIE/SMILE alphabets in Zinc ''' if disc_enc_type == 'smiles': alphabet = ['C', 'c', 'H','O','o', 'N','n', 'S','s', 'F', 'P', 'I', 'Cl','Br', '=','#','(',')','[',']','1','2','3','4','5', '6','7','8','9','+','-','X'] # SMILES Alphabets in zinc elif disc_enc_type == 'selfies': alphabet = ['[Ring1]', '[Branch1_1]', '[Branch1_2]','[Branch1_3]', '[Cl]', '[Ring2]', '[Branch2_1]', '[Branch2_2]','[Branch2_3]', '[NH3+]', '[N]', '[=N]', '[#N]', '[C]', '[=C]', '[#C]', '[S]', '[=S]', '[=O]', '[Br]', '[epsilon]', '[N+]', '[NH+]', '[NH2+]', '[=NH+]', '[=NH2+]', '[I]', '[O-]', '[P]', '[=P]', '[S-]', '[=N-]', '[NH-]', '[=O+]', '[CH-]', '[PH+]', '[=S+]', '[S+]', '[CH2-]', '[P+]', '[O+]', '[=N+]', '[N-]' , '[=SH+]', '[=OH+]', '[#N+]', '[=PH2]', 'X', '[F]', '[O]', ] # SELFIES Alphabets in zinc else: exit('Invalid choice. Only possible choices are: smiles/selfies.') return alphabet def _to_onehot(molecule_str, disc_enc_type, max_molecules_len): '''Convert given molecule string into a one-hot encoding, with characters obtained from function 'smiles_alphabet'. One-hot encoding of arbitrary molecules is converted to len 'max_molecules_len' by padding with character 'X' Parameters: molecule_str (string): SMILE/SELFIE string of molecule disc_enc_type (string): Indicating weather molecule string is either SMILE or SELFIE max_molecules_len (string): Length of the one-hot encoding Returns: one_hots (list of lists): One-Hot encoding of molecule string, padding till length max_molecules_len (dim: len(alphabet) * max_molecules_len) ''' one_hots=[] alphabet = smiles_alphabet(disc_enc_type) alphabet_length = len(alphabet) if disc_enc_type == 'smiles': alphabet.remove('Cl') # Replace 'Cl' & 'Br' with 'Y' & 'Z' for convenience alphabet.remove('Br') # (Searching for single characters is easier) alphabet.append('Y') alphabet.append('Z') for smi in molecule_str: # Relace 'Cl' and 'Br' with 'Y', 'Z' from smi (for conveninece) if disc_enc_type == 'smiles': smi = smi.replace('Cl', 'Y') smi = smi.replace('Br', 'Z') one_hot=[] if disc_enc_type == 'selfies': smi = get_selfie_chars(smi) if len(smi) > max_molecules_len: exit("Molecule is too large!") for char in smi: if char not in alphabet: print("smiles character %s not in alphabet MOLECULE: %s"%(char, smi)) zeros = np.zeros((alphabet_length)).astype(np.int32).tolist() zeros[alphabet.index(char)] = 1 one_hot+=zeros # Padding with 'X's for char in range(max_molecules_len-len(smi)): zeros = np.zeros((alphabet_length)).astype(np.int32).tolist() zeros[alphabet.index("X")] = 1 one_hot += zeros one_hots.append(one_hot) one_hots = np.array(one_hots) return (one_hots) def mutations_random_grin(selfie, max_molecules_len, write_fail_cases=False): '''Return a mutated selfie string Mutations are done until a valid molecule is obtained Rules of mutation: With a 50% propbabily, either: 1. Add a random SELFIE character in the string 2. Replace a random SELFIE character with another Parameters: selfie (string) : SELFIE string to be mutated max_molecules_len (int) : Mutations of SELFIE string are allowed up to this length write_fail_cases (bool) : If true, failed mutations are recorded in "selfie_failure_cases.txt" Returns: selfie_mutated (string) : Mutated SELFIE string smiles_canon (string) : canonical smile of mutated SELFIE string ''' valid=False fail_counter = 0 chars_selfie = get_selfie_chars(selfie) while not valid: fail_counter += 1 alphabet = ['[Branch1_1]', '[Branch1_2]','[Branch1_3]', '[epsilon]', '[Ring1]', '[Ring2]', '[Branch2_1]', '[Branch2_2]', '[Branch2_3]', '[F]', '[O]', '[=O]', '[N]', '[=N]', '[#N]', '[C]', '[=C]', '[#C]', '[S]', '[=S]', '[C][=C][C][=C][C][=C][Ring1][Branch1_1]'] # Insert a character in a Random Location if np.random.random() < 0.5: random_index = np.random.randint(len(chars_selfie)+1) random_character = np.random.choice(alphabet, size=1)[0] selfie_mutated_chars = chars_selfie[:random_index] + [random_character] + chars_selfie[random_index:] # Replace a random character else: random_index = np.random.randint(len(chars_selfie)) random_character = np.random.choice(alphabet, size=1)[0] if random_index==0: selfie_mutated_chars = [random_character] + chars_selfie[random_index+1:] else: selfie_mutated_chars = chars_selfie[:random_index] + [random_character] + chars_selfie[random_index+1:] selfie_mutated = "".join(x for x in selfie_mutated_chars) sf = "".join(x for x in chars_selfie) try: smiles = decoder(selfie_mutated) mol, smiles_canon, done = sanitize_smiles(smiles) if len(smiles_canon) > max_molecules_len or smiles_canon=="": done=False if done: valid=True else: valid=False except: valid=False if fail_counter > 1 and write_fail_cases == True: f = open("selfie_failure_cases.txt", "a+") f.write('Tried to mutate SELFIE: '+str(sf)+' To Obtain: '+str(selfie_mutated) + '\n') f.close() return (selfie_mutated, smiles_canon) def count_atoms(mol, atomic_num): '''Count the number of atoms in mol with atomic number atomic_num Parameters: mol (rdkit.Chem.rdchem.Mol) : Molecule in which search is conducted atomic_num (int) : Counting is done in mol for atoms with this atomic number Returns: (int) : final count of atom ''' pat = Chem.MolFromSmarts("[#{}]".format(atomic_num)) return len(mol.GetSubstructMatches(pat)) def get_num_bond_types(mol): '''Calculate the ratio of total number of (single, double, triple, aromatic) bonds to the total number of bonds. Parameters: mol (rdkit.Chem.rdchem.Mol) : Molecule for which ratios arre retuned Returns: (list): [num_single/num_bonds, num_double/num_bonds, num_triple/num_bonds, num_aromatic/num_bonds] ''' bonds = mol.GetBonds() num_bonds = 0 num_double = 0 num_triple = 0 num_single = 0 num_aromatic = 0 for b in bonds: num_bonds += 1 if b.GetBondType() == rdkit.Chem.rdchem.BondType.SINGLE: num_single += 1 if b.GetBondType() == rdkit.Chem.rdchem.BondType.DOUBLE: num_double += 1 if b.GetBondType() == rdkit.Chem.rdchem.BondType.TRIPLE: num_triple += 1 if b.GetBondType() == rdkit.Chem.rdchem.BondType.AROMATIC: num_aromatic += 1 if num_bonds == 0: return [0, 0, 0, 0] else: return [num_single/num_bonds, num_double/num_bonds, num_triple/num_bonds, num_aromatic/num_bonds] def count_conseq_double(mol): '''Return the number of consequtive double bonds in an entire molecule including rings Examples >>> count_conseq_double(Chem.MolFromSmiles('C1=CC=C=C=C1')) 2 >>> count_conseq_double(Chem.MolFromSmiles('C1=CC=CC=C1')) 0 >>> count_conseq_double(Chem.MolFromSmiles('C1=CC2=C(C=C1)C=C=C=C2')) 2 Parameters: mol (rdkit.Chem.rdchem.Mol) : Molecule for conseq. double bonds are to be counted Returns: (int): The integer number of coseq. double bonds ''' bonds = mol.GetBonds() previous_BType = None count_conseq_doub = 0 for b in bonds: curr_BType = b.GetBondType() if previous_BType == curr_BType and curr_BType == rdkit.Chem.rdchem.BondType.DOUBLE: count_conseq_doub += 1 previous_BType = curr_BType return count_conseq_doub def get_rot_bonds_posn(mol): '''Return atom indices with Rotatable bonds Examples: >>> get_rot_bonds_posn('CC1=CC=CC=C1') # Toluene (Rotatable Bonds At: CH3 & Benzene) ((0, 1),) >>> get_rot_bonds_posn('CCC1=CC=CC=C1') # (Rotatable Bonds At: CH3, CH3 & Benzene) ((0, 1), (1, 2)) ''' RotatableBond = Chem.MolFromSmarts('*-&!@*') rot = mol.GetSubstructMatches(RotatableBond) return rot def get_bond_indeces(mol, rot): '''Get all the bond indices with Rotatable bonds atoms (generated from 'get_rot_bonds_posn') ''' bonds_idx = [] for i in range(len(rot)): bond = mol.GetBondBetweenAtoms(rot[i][0],rot[i][1]) bonds_idx.append(bond.GetIdx()) return bonds_idx def obtain_rings(smi): '''Obtain a list of all rings present in SMILE string smi Examples: >>> obtain_rings('CCC1=CC=CC=C1') ['c1ccccc1'] >>> obtain_rings('C1=CC=C(C=C1)C1=CC=CC=C1') ['c1ccccc1', 'c1ccccc1'] >>> obtain_rings('C1=CC2=C(C=C1)C=CC=C2') (None, None) Parameters: smi (string) : SMILE string of a molecule Returns (list) : List if all rings in a SMILE string ''' mol = Chem.MolFromSmiles(smi) rot = get_rot_bonds_posn(mol) # Get rotatble bond positions if len(rot) == 0: return None, None bond_idx = get_bond_indeces(mol, rot) new_mol = Chem.FragmentOnBonds(mol, bond_idx, addDummies=False) new_smile = Chem.MolToSmiles(new_mol) smile_split_list = new_smile.split(".") rings = [] for item in smile_split_list: if '1' in item: rings.append(item) return rings def size_ring_counter(ring_ls): '''Get the number of rings of sizes 3 to 20 and the number of consequtive double bonds in a ring Parameters: ring_ls (list) : list of rings of a molecule Returns (list) : Of size 19 (1 for number of conseq. double bonds) (18 for number of rings between size 3 to 20) ''' ring_counter = [] if ring_ls == (None, None): # Presence of no rings, return 0s for the 19 feature return [0 for i in range(19)] mol_ring_ls = [Chem.MolFromSmiles(smi) for smi in ring_ls] # Cont number consequtive double bonds in ring conseq_dbl_bnd_in_ring = 0 for item in mol_ring_ls: conseq_dbl_bnd_in_ring += count_conseq_double(item) ring_counter.append(conseq_dbl_bnd_in_ring) # concatenate onto list ring_counter # Count the number of consequtive double bonds in rings for i in range(3, 21): count = 0 for mol_ring in mol_ring_ls: if mol_ring.GetNumAtoms() == i: count += 1 ring_counter.append(count) return ring_counter def get_mol_info(smi): ''' Calculate a set of 51 RdKit properties, collected from above helper functions. Parameters: smi (string) : SMILE string of molecule Returns: (list of float) : list of 51 calculated properties ''' mol = Chem.MolFromSmiles(smi) num_atoms = mol.GetNumAtoms() num_hydro = Chem.AddHs(mol).GetNumAtoms() - num_atoms num_carbon = count_atoms(mol, 6) num_nitro = count_atoms(mol, 7) num_sulphur = count_atoms(mol, 16) num_oxy = count_atoms(mol, 8) num_clorine = count_atoms(mol, 17) num_bromine = count_atoms(mol, 35) num_florine = count_atoms(mol, 9) if num_carbon == 0: # Avoid division by zero error, set num_carbon to a very small value num_carbon = 0.0001 basic_props = [num_atoms/num_carbon, num_hydro/num_carbon, num_nitro/num_carbon, num_sulphur/num_carbon, num_oxy/num_carbon, num_clorine/num_carbon, num_bromine/num_carbon, num_florine/num_carbon] to_caculate = ["RingCount", "HallKierAlpha", "BalabanJ", "NumAliphaticCarbocycles","NumAliphaticHeterocycles", "NumAliphaticRings","NumAromaticCarbocycles","NumAromaticHeterocycles", "NumAromaticRings","NumHAcceptors","NumHDonors","NumHeteroatoms", "NumRadicalElectrons","NumSaturatedCarbocycles","NumSaturatedHeterocycles", "NumSaturatedRings","NumValenceElectrons"] # Calculate all propoerties listed in 'to_calculate' calc_props = OrderedDict(inspect.getmembers(Descriptors, inspect.isfunction)) for key in list(calc_props.keys()): if key.startswith('_'): del calc_props[key] continue if len(to_caculate)!=0 and key not in to_caculate: del calc_props[key] features = [val(mol) for key,val in calc_props.items()] # List of properties # Ratio of total number of (single, double, triple, aromatic) bonds to the total number of bonds. simple_bond_info = get_num_bond_types(mol) # Obtain all rings in a molecule and calc. #of triple bonds in rings & #of rings in molecule ring_ls = obtain_rings(smi) num_triple = 0 # num triple bonds in ring if len(ring_ls) > 0 and ring_ls != (None, None): for item in ring_ls: num_triple += item.count('#') simple_bond_info.append(len(ring_ls)) # append number of Rings in molecule else: simple_bond_info.append(0) # no rotatable bonds simple_bond_info.append(num_triple) # number of triple bonds in rings # appended onto 'simple_bond_info' # Calculate the number of rings of size 3 to 20 & number of conseq. double bonds in rings simple_bond_info = simple_bond_info + size_ring_counter(ring_ls) # Calculate the number of consequitve double bonds in entire molecule simple_bond_info.append(count_conseq_double(mol)) return np.array(features + basic_props + simple_bond_info) def get_chunks(arr, num_processors, ratio): """ Get chunks based on a list """ chunks = [] # Collect arrays that will be sent to different processorr counter = int(ratio) for i in range(num_processors): if i == 0: chunks.append(arr[0:counter]) if i != 0 and i<num_processors-1: chunks.append(arr[counter-int(ratio): counter]) if i == num_processors-1: chunks.append(arr[counter-int(ratio): ]) counter += int(ratio) return chunks def get_mult_mol_info(smiles_list): ''' Collect results of 'get_mol_info' for multiple smiles (smiles_list) Parameters: smiles_list (list) : List of SMILE strings Returns: np.array : Concatenated array of results with shape (len(smiles_list), 51) 51 is the number of RdKit properties calculated in 'get_mol_info'. ''' concat_arr = [] for smi in smiles_list: concat_arr.append(get_mol_info(smi)) return np.array(concat_arr) def get_mult_mol_info_parr(smiles_list, dataset_x): ''' Record calculated rdkit property results for each smile in smiles_list, and add record result in dictionary dataset_x. ''' for smi in smiles_list: dataset_x['properties_rdkit'][smi] = get_mol_info(smi) def create_parr_process(chunks): '''This function initiates parallel execution (based on the number of cpu cores) to calculate all the properties mentioned in 'get_mol_info()' Parameters: chunks (list) : List of lists, contining smile strings. Each sub list is sent to a different process dataset_x (dict): Locked dictionary for recording results from different processes. Locking allows communication between different processes. Returns: None : All results are recorde in dictionary 'dataset_x' ''' # Assign data to each process process_collector = [] collect_dictionaries = [] for chunk in chunks: # process initialization dataset_x = manager.dict(lock=True) smiles_map_props = manager.dict(lock=True) dataset_x['properties_rdkit'] = smiles_map_props collect_dictionaries.append(dataset_x) process_collector.append(multiprocessing.Process(target=get_mult_mol_info_parr, args=(chunk, dataset_x, ))) for item in process_collector: # initite all process item.start() for item in process_collector: # wait for all processes to finish item.join() combined_dict = {} for i,item in enumerate(collect_dictionaries): combined_dict.update(item['properties_rdkit']) return combined_dict
36.383481
269
0.602927
4a214d874a85e32246d9e82fe1348dd3bbe0d8ad
7,002
py
Python
docs/zh_CN/conf.py
youqingxiaozhua/mmclassification
65bbabbb7e78544864b845e7fd09a90d4f897d5c
[ "Apache-2.0" ]
1
2022-03-17T02:39:08.000Z
2022-03-17T02:39:08.000Z
docs/zh_CN/conf.py
youqingxiaozhua/mmclassification
65bbabbb7e78544864b845e7fd09a90d4f897d5c
[ "Apache-2.0" ]
null
null
null
docs/zh_CN/conf.py
youqingxiaozhua/mmclassification
65bbabbb7e78544864b845e7fd09a90d4f897d5c
[ "Apache-2.0" ]
null
null
null
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import subprocess import sys import pytorch_sphinx_theme from sphinx.builders.html import StandaloneHTMLBuilder sys.path.insert(0, os.path.abspath('../..')) # -- Project information ----------------------------------------------------- project = 'MMClassification' copyright = '2020, OpenMMLab' author = 'MMClassification Authors' # The full version, including alpha/beta/rc tags version_file = '../../mmcls/version.py' def get_version(): with open(version_file, 'r') as f: exec(compile(f.read(), version_file, 'exec')) return locals()['__version__'] release = get_version() # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.intersphinx', 'sphinx.ext.napoleon', 'sphinx.ext.viewcode', 'sphinx_markdown_tables', 'myst_parser', 'sphinx_copybutton', ] autodoc_mock_imports = ['mmcv._ext', 'matplotlib'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = { '.rst': 'restructuredtext', '.md': 'markdown', } language = 'zh_CN' # The master toctree document. master_doc = 'index' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'pytorch_sphinx_theme' html_theme_path = [pytorch_sphinx_theme.get_html_theme_path()] # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = { 'logo_url': 'https://mmclassification.readthedocs.io/zh_CN/latest/', 'menu': [ { 'name': 'GitHub', 'url': 'https://github.com/open-mmlab/mmclassification' }, { 'name': 'Colab 教程', 'children': [ { 'name': '用命令行工具训练和推理', 'url': 'https://colab.research.google.com/github/' 'open-mmlab/mmclassification/blob/master/docs/zh_CN/' 'tutorials/MMClassification_tools_cn.ipynb', }, { 'name': '用 Python API 训练和推理', 'url': 'https://colab.research.google.com/github/' 'open-mmlab/mmclassification/blob/master/docs/zh_CN/' 'tutorials/MMClassification_python_cn.ipynb', }, ] }, ], # Specify the language of shared menu 'menu_lang': 'cn', } # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] html_css_files = ['css/readthedocs.css'] html_js_files = ['js/custom.js'] # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'mmclsdoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'mmcls.tex', 'MMClassification Documentation', author, 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [(master_doc, 'mmcls', 'MMClassification Documentation', [author], 1)] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'mmcls', 'MMClassification Documentation', author, 'mmcls', 'OpenMMLab image classification toolbox and benchmark.', 'Miscellaneous'), ] # -- Options for Epub output ------------------------------------------------- # Bibliographic Dublin Core info. epub_title = project # The unique identifier of the text. This can be a ISBN number # or the project homepage. # # epub_identifier = '' # A unique identification for the text. # # epub_uid = '' # A list of files that should not be packed into the epub file. epub_exclude_files = ['search.html'] # set priority when building html StandaloneHTMLBuilder.supported_image_types = [ 'image/svg+xml', 'image/gif', 'image/png', 'image/jpeg' ] # -- Extension configuration ------------------------------------------------- # Ignore >>> when copying code copybutton_prompt_text = r'>>> |\.\.\. ' copybutton_prompt_is_regexp = True # Auto-generated header anchors myst_heading_anchors = 3 # Configuration for intersphinx intersphinx_mapping = { 'python': ('https://docs.python.org/3', None), 'numpy': ('https://numpy.org/doc/stable', None), 'torch': ('https://pytorch.org/docs/stable/', None), 'mmcv': ('https://mmcv.readthedocs.io/en/master/', None), } def builder_inited_handler(app): subprocess.run(['./stat.py']) def setup(app): app.add_config_value('no_underscore_emphasis', False, 'env') app.connect('builder-inited', builder_inited_handler)
30.710526
79
0.618109
4a214dc6b51db5505d119767abc081d62621ab2f
4,953
py
Python
nipyapi/registry/apis/config_api.py
Zyrix/nipyapi
d00221ba50bd83e21133d6e4d4b56741ead6822a
[ "Apache-2.0" ]
null
null
null
nipyapi/registry/apis/config_api.py
Zyrix/nipyapi
d00221ba50bd83e21133d6e4d4b56741ead6822a
[ "Apache-2.0" ]
null
null
null
nipyapi/registry/apis/config_api.py
Zyrix/nipyapi
d00221ba50bd83e21133d6e4d4b56741ead6822a
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Apache NiFi Registry REST API The REST API provides an interface to a registry with operations for saving, versioning, reading NiFi flows and components. OpenAPI spec version: 0.7.0 Contact: dev@nifi.apache.org Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import sys import os import re # python 2 and python 3 compatibility library from six import iteritems from ..configuration import Configuration from ..api_client import ApiClient class ConfigApi(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. Ref: https://github.com/swagger-api/swagger-codegen """ def __init__(self, api_client=None): config = Configuration() if api_client: self.api_client = api_client else: if not config.api_client: config.api_client = ApiClient() self.api_client = config.api_client def get_configuration(self, **kwargs): """ Get configration Gets the NiFi Registry configurations. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_configuration(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :return: RegistryConfiguration If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.get_configuration_with_http_info(**kwargs) else: (data) = self.get_configuration_with_http_info(**kwargs) return data def get_configuration_with_http_info(self, **kwargs): """ Get configration Gets the NiFi Registry configurations. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_configuration_with_http_info(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :return: RegistryConfiguration If the method is called asynchronously, returns the request thread. """ all_params = [] all_params.append('callback') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_configuration" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['*/*']) # Authentication setting auth_settings = ['tokenAuth', 'basicAuth', 'Authorization'] return self.api_client.call_api('/config', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='RegistryConfiguration', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats)
35.378571
127
0.578841
4a214e794d2163c899280555b7597074b0a3e235
3,468
py
Python
examples/unsupervised_quality_estimation/meteor.py
fairseq-FT/fairseq
18725499144c1bba7c151b796ba774e59d36eaa9
[ "MIT" ]
35
2021-05-08T09:23:31.000Z
2022-03-25T06:19:48.000Z
examples/unsupervised_quality_estimation/meteor.py
fairseq-FT/fairseq
18725499144c1bba7c151b796ba774e59d36eaa9
[ "MIT" ]
10
2021-11-14T12:28:48.000Z
2022-02-28T14:13:40.000Z
examples/unsupervised_quality_estimation/meteor.py
fairseq-FT/fairseq
18725499144c1bba7c151b796ba774e59d36eaa9
[ "MIT" ]
14
2021-05-17T06:55:01.000Z
2022-03-28T12:07:42.000Z
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import math import os import subprocess import sys import tempfile from collections import defaultdict from itertools import combinations def read_translations(path, n_repeats): segment_counter = 0 segment_translations = [] translations = defaultdict(list) for line in open(path): segment_translations.append(" ".join(line.split())) if len(segment_translations) == n_repeats: translations[segment_counter] = segment_translations segment_translations = [] segment_counter += 1 return translations def generate_input(translations, n_repeats): _, ref_path = tempfile.mkstemp() _, mt_path = tempfile.mkstemp() ref_fh = open(ref_path, "w") mt_fh = open(mt_path, "w") for segid in sorted(translations.keys()): assert len(translations[segid]) == n_repeats indexes = combinations(range(n_repeats), 2) for idx1, idx2 in indexes: mt_fh.write(translations[segid][idx1].strip() + "\n") ref_fh.write(translations[segid][idx2].strip() + "\n") sys.stderr.write("\nSaved translations to %s and %s" % (ref_path, mt_path)) return ref_path, mt_path def run_meteor(ref_path, mt_path, metric_path, lang="en"): _, out_path = tempfile.mkstemp() subprocess.call( [ "java", "-Xmx2G", "-jar", metric_path, mt_path, ref_path, "-p", "0.5 0.2 0.6 0.75", # default parameters, only changed alpha to give equal weight to P and R "-norm", "-l", lang, ], stdout=open(out_path, "w"), ) os.remove(ref_path) os.remove(mt_path) sys.stderr.write("\nSaved Meteor output to %s" % out_path) return out_path def read_output(meteor_output_path, n_repeats): n_combinations = math.factorial(n_repeats) / ( math.factorial(2) * math.factorial(n_repeats - 2) ) raw_scores = [] average_scores = [] for line in open(meteor_output_path): if not line.startswith("Segment "): continue score = float(line.strip().split("\t")[1]) raw_scores.append(score) if len(raw_scores) == n_combinations: average_scores.append(sum(raw_scores) / n_combinations) raw_scores = [] os.remove(meteor_output_path) return average_scores def main(): parser = argparse.ArgumentParser() parser.add_argument("-i", "--input") parser.add_argument("-n", "--repeat_times", type=int) parser.add_argument("-m", "--meteor") parser.add_argument("-o", "--output") args = parser.parse_args() translations = read_translations(args.infile, args.repetitions) sys.stderr.write("\nGenerating input for Meteor...") ref_path, mt_path = generate_input(translations, args.repetitions) sys.stderr.write("\nRunning Meteor...") out_path = run_meteor(ref_path, mt_path, args.meteor) sys.stderr.write("\nReading output...") scores = read_output(out_path, args.repetitions) sys.stderr.write("\nWriting results...") with open(args.output, "w") as o: for scr in scores: o.write("{}\n".format(scr)) o.close() if __name__ == "__main__": main()
31.527273
105
0.633506
4a214f10698062861f6fe0935f75dcf9ce43683c
36,632
py
Python
docker-privnet/neo-python/unsafeprompt.py
rodoufu/neocompiler.io
fba364d66571bd7d5254087ec644d00bbcf31ec2
[ "MIT" ]
2
2019-06-30T00:09:24.000Z
2021-03-25T14:02:14.000Z
docker-privnet/neo-python/unsafeprompt.py
rodoufu/neocompiler.io
fba364d66571bd7d5254087ec644d00bbcf31ec2
[ "MIT" ]
null
null
null
docker-privnet/neo-python/unsafeprompt.py
rodoufu/neocompiler.io
fba364d66571bd7d5254087ec644d00bbcf31ec2
[ "MIT" ]
null
null
null
#!/usr/bin/env python import argparse import datetime import json import os import resource import traceback import logging import time import logzero from prompt_toolkit import prompt from prompt_toolkit.contrib.completers import WordCompleter from prompt_toolkit.history import FileHistory from prompt_toolkit.shortcuts import print_tokens from prompt_toolkit.styles import style_from_dict from prompt_toolkit.token import Token from twisted.internet import reactor, task from neo import __version__ from neo.Core.Blockchain import Blockchain from neocore.Fixed8 import Fixed8 from neo.IO.MemoryStream import StreamManager from neo.Implementations.Blockchains.LevelDB.LevelDBBlockchain import LevelDBBlockchain from neo.Implementations.Blockchains.LevelDB.DebugStorage import DebugStorage from neo.Implementations.Wallets.peewee.UserWallet import UserWallet from neo.Network.NodeLeader import NodeLeader from neo.Prompt.Commands.BuildNRun import BuildAndRun, LoadAndRun from neo.Prompt.Commands.Invoke import InvokeContract, TestInvokeContract, test_invoke from neo.Prompt.Commands.LoadSmartContract import LoadContract, GatherContractDetails, ImportContractAddr, \ ImportMultiSigContractAddr from neo.Prompt.Commands.Send import construct_and_send, parse_and_sign from neo.Prompt.Commands.Tokens import token_approve_allowance, token_get_allowance, token_send, token_send_from, token_mint, token_crowdsale_register from neo.Prompt.Commands.Wallet import DeleteAddress, ImportWatchAddr, ImportToken, ClaimGas, DeleteToken, AddAlias from neo.Prompt.Utils import get_arg from neo.Settings import settings, DIR_PROJECT_ROOT from neo.UserPreferences import preferences from neocore.KeyPair import KeyPair from neocore.UInt256 import UInt256 import codecs # Logfile settings & setup LOGFILE_FN = os.path.join(DIR_PROJECT_ROOT, 'prompt.log') LOGFILE_MAX_BYTES = 5e7 # 50 MB LOGFILE_BACKUP_COUNT = 3 # 3 logfiles history settings.set_logfile(LOGFILE_FN, LOGFILE_MAX_BYTES, LOGFILE_BACKUP_COUNT) # Prompt history filename FILENAME_PROMPT_HISTORY = os.path.join(DIR_PROJECT_ROOT, '.prompt.py.history') class PromptInterface(object): mycommands = [] go_on = True _walletdb_loop = None Wallet = None _known_things = [] commands = ['quit', 'help', 'block {index/hash} (tx)', 'header {index/hash}', 'tx {hash}', 'asset {assetId}', 'asset search {query}', 'contract {contract hash}', 'contract search {query}', 'mem', 'nodes', 'state', 'config debug {on/off}', 'config sc-events {on/off}', 'build {path/to/file.py} (test {params} {returntype} {needs_storage} {needs_dynamic_invoke} {test_params})', 'load_run {path/to/file.avm} (test {params} {returntype} {needs_storage} {needs_dynamic_invoke} {test_params})', 'import wif {wif}', 'import nep2 {nep2_encrypted_key}', 'import contract {path/to/file.avm} {params} {returntype} {needs_storage} {needs_dynamic_invoke}', 'import contract_addr {contract_hash} {pubkey}', 'import watch_addr {address}', 'import token {token_contract_hash}', 'export wif {address}', 'export nep2 {address}', 'open wallet {path}', 'create wallet {path}', 'wallet {verbose}', 'wallet claim', 'wallet migrate', 'wallet rebuild {start block}', 'wallet delete_addr {addr}', 'wallet alias {addr} {title}', 'wallet tkn_send {token symbol} {address_from} {address to} {amount} ', 'wallet tkn_send_from {token symbol} {address_from} {address to} {amount}', 'wallet tkn_approve {token symbol} {address_from} {address to} {amount}', 'wallet tkn_allowance {token symbol} {address_from} {address to}', 'wallet tkn_mint {token symbol} {mint_to_addr} {amount_attach_neo} {amount_attach_gas}', 'wallet close', 'send {assetId or name} {address} {amount} (--from-addr={addr})', 'sign {transaction in JSON format}', 'testinvoke {contract hash} {params} (--attach-neo={amount}, --attach-gas={amount)', 'debugstorage {on/off/reset}' ] history = FileHistory(FILENAME_PROMPT_HISTORY) token_style = None start_height = None start_dt = None def __init__(self): self.start_height = Blockchain.Default().Height self.start_dt = datetime.datetime.utcnow() self.token_style = style_from_dict({ Token.Command: preferences.token_style['Command'], Token.Neo: preferences.token_style['Neo'], Token.Default: preferences.token_style['Default'], Token.Number: preferences.token_style['Number'], }) def get_bottom_toolbar(self, cli=None): out = [] try: out = [(Token.Command, '[%s] Progress: ' % settings.net_name), (Token.Number, str(Blockchain.Default().Height)), (Token.Neo, '/'), (Token.Number, str(Blockchain.Default().HeaderHeight))] except Exception as e: pass return out def get_completer(self): standard_completions = ['block', 'tx', 'header', 'mem', 'neo', 'gas', 'help', 'state', 'nodes', 'exit', 'quit', 'config', 'import', 'export', 'open', 'wallet', 'contract', 'asset', 'wif', 'watch_addr', 'contract_addr', 'testinvoke', 'tkn_send', 'tkn_mint', 'tkn_send_from', 'tkn_approve', 'tkn_allowance', 'build', ] if self.Wallet: for addr in self.Wallet.Addresses: if addr not in self._known_things: self._known_things.append(addr) for alias in self.Wallet.NamedAddr: if alias.Title not in self._known_things: self._known_things.append(alias.Title) for tkn in self.Wallet.GetTokens().values(): if tkn.symbol not in self._known_things: self._known_things.append(tkn.symbol) all_completions = standard_completions + self._known_things completer = WordCompleter(all_completions) return completer def quit(self): print('Shutting down. This may take a bit...') self.go_on = False Blockchain.Default().Dispose() reactor.stop() NodeLeader.Instance().Shutdown() def help(self): tokens = [] for c in self.commands: tokens.append((Token.Command, "%s\n" % c)) print_tokens(tokens, self.token_style) def do_open(self, arguments): if self.Wallet: self.do_close_wallet() item = get_arg(arguments) if item and item == 'wallet': path = get_arg(arguments, 1) if path: if not os.path.exists(path): print("wallet file not found") return passwd = 'coz' #always use this password #passwd = prompt("[Password]> ", is_password=True) try: self.Wallet = UserWallet.Open(path, passwd) self._walletdb_loop = task.LoopingCall(self.Wallet.ProcessBlocks) self._walletdb_loop.start(1) print("Opened wallet at %s" % path) except Exception as e: print("could not open wallet: %s " % e) else: print("Please specify a path") else: print("please specify something to open") def do_create(self, arguments): item = get_arg(arguments) if item and item == 'wallet': path = get_arg(arguments, 1) if path: if os.path.exists(path): print("File already exists") return passwd1 = prompt("[Password 1]> ", is_password=True) passwd2 = prompt("[Password 2]> ", is_password=True) ### remove check to allow 'coz' password #if passwd1 != passwd2 or len(passwd1) < 10: # print("please provide matching passwords that are at least 10 characters long") # return try: self.Wallet = UserWallet.Create(path=path, password=passwd1) contract = self.Wallet.GetDefaultContract() key = self.Wallet.GetKey(contract.PublicKeyHash) print("Wallet %s " % json.dumps(self.Wallet.ToJson(), indent=4)) print("pubkey %s " % key.PublicKey.encode_point(True)) except Exception as e: print("Exception creating wallet: %s " % e) self.Wallet = None if os.path.isfile(path): try: os.remove(path) except Exception as e: print("Could not remove {}: {}".format(path, e)) return self._walletdb_loop = task.LoopingCall(self.Wallet.ProcessBlocks) self._walletdb_loop.start(1) else: print("Please specify a path") def do_close_wallet(self): if self.Wallet: path = self.Wallet._path self._walletdb_loop.stop() self._walletdb_loop = None self.Wallet = None print("closed wallet %s " % path) def do_import(self, arguments): item = get_arg(arguments) if not item: print("please specify something to import") return if item == 'wif': if not self.Wallet: print("Please open a wallet before importing WIF") return wif = get_arg(arguments, 1) if not wif: print("Please supply a valid WIF key") return try: prikey = KeyPair.PrivateKeyFromWIF(wif) key = self.Wallet.CreateKey(prikey) print("Imported key %s " % wif) print("Pubkey: %s \n" % key.PublicKey.encode_point(True).hex()) print("Wallet: %s " % json.dumps(self.Wallet.ToJson(), indent=4)) except ValueError as e: print(str(e)) except Exception as e: print(str(e)) return elif item == 'nep2': if not self.Wallet: print("Please open a wallet before importing a NEP2 key") return nep2_key = get_arg(arguments, 1) if not nep2_key: print("Please supply a valid nep2 encrypted private key") return nep2_passwd = prompt("[Key Password]> ", is_password=True) try: prikey = KeyPair.PrivateKeyFromNEP2(nep2_key, nep2_passwd) key = self.Wallet.CreateKey(prikey) print("Imported nep2 key: %s " % nep2_key) print("Pubkey: %s \n" % key.PublicKey.encode_point(True).hex()) print("Wallet: %s " % json.dumps(self.Wallet.ToJson(), indent=4)) except ValueError as e: print(str(e)) except Exception as e: print(str(e)) return elif item == 'contract': return self.load_smart_contract(arguments) elif item == 'contract_addr': return ImportContractAddr(self.Wallet, arguments[1:]) elif item == 'watch_addr': return ImportWatchAddr(self.Wallet, get_arg(arguments, 1)) elif item == 'multisig_addr': return ImportMultiSigContractAddr(self.Wallet, arguments[1:]) elif item == 'token': return ImportToken(self.Wallet, get_arg(arguments, 1)) else: print("Import of '%s' not implemented" % item) def do_build(self, arguments): BuildAndRun(arguments, self.Wallet) def do_load_n_run(self, arguments): LoadAndRun(arguments, self.Wallet) def do_export(self, arguments): item = get_arg(arguments) if item == 'wif': if not self.Wallet: return print("please open a wallet") address = get_arg(arguments, 1) if not address: return print("Please specify an address") passwd = prompt("[Wallet Password]> ", is_password=True) if not self.Wallet.ValidatePassword(passwd): return print("Incorrect password") keys = self.Wallet.GetKeys() for key in keys: if key.GetAddress() == address: export = key.Export() print("WIF key export: %s" % export) return elif item == 'nep2': if not self.Wallet: return print("please open a wallet") address = get_arg(arguments, 1) if not address: return print("Please specify an address") passwd = prompt("[Wallet Password]> ", is_password=True) if not self.Wallet.ValidatePassword(passwd): return print("Incorrect password") nep2_passwd1 = prompt("[Key Password 1]> ", is_password=True) if len(nep2_passwd1) < 10: return print("Please provide a password with at least 10 characters") nep2_passwd2 = prompt("[Key Password 2]> ", is_password=True) if nep2_passwd1 != nep2_passwd2: return print("Passwords don't match") keys = self.Wallet.GetKeys() for key in keys: export = key.ExportNEP2(nep2_passwd1) print("NEP2 key export: %s" % export) return print("Command export %s not found" % item) def show_wallet(self, arguments): if not self.Wallet: print("please open a wallet") return item = get_arg(arguments) if not item: print("Wallet %s " % json.dumps(self.Wallet.ToJson(), indent=4)) return if item in ['v', '--v', 'verbose']: print("Wallet %s " % json.dumps(self.Wallet.ToJson(verbose=True), indent=4)) return elif item == 'migrate' and self.Wallet is not None: self.Wallet.Migrate() print("migrated wallet") elif item == 'delete_addr': addr_to_delete = get_arg(arguments, 1) DeleteAddress(self, self.Wallet, addr_to_delete) elif item == 'delete_token': token_to_delete = get_arg(arguments, 1) DeleteToken(self.Wallet, token_to_delete) elif item == 'close': self.do_close_wallet() elif item == 'claim': ClaimGas(self.Wallet) elif item == 'rebuild': self.Wallet.Rebuild() # self._walletdb_loop = task.LoopingCall(self.Wallet.ProcessBlocks) # self._walletdb_loop.start(1) try: item2 = int(get_arg(arguments, 1)) if item2 and item2 > 0: print('restarting at %s ' % item2) self.Wallet._current_height = item2 except Exception as e: pass elif item == 'tkn_send': token_send(self.Wallet, arguments[1:]) elif item == 'tkn_send_from': token_send_from(self.Wallet, arguments[1:]) elif item == 'tkn_approve': token_approve_allowance(self.Wallet, arguments[1:]) elif item == 'tkn_allowance': token_get_allowance(self.Wallet, arguments[1:], verbose=True) elif item == 'tkn_mint': token_mint(self.Wallet, arguments[1:]) elif item == 'tkn_register': token_crowdsale_register(self.Wallet, arguments[1:]) elif item == 'alias': if len(arguments) == 3: AddAlias(self.Wallet, arguments[1], arguments[2]) else: print("Please supply an address and title") def do_send(self, arguments): return construct_and_send(self, self.Wallet, arguments,False) def do_sign(self, arguments): jsn = get_arg(arguments) parse_and_sign(self, self.Wallet, jsn) def show_state(self): height = Blockchain.Default().Height headers = Blockchain.Default().HeaderHeight diff = height - self.start_height now = datetime.datetime.utcnow() difftime = now - self.start_dt mins = difftime / datetime.timedelta(minutes=1) bpm = 0 if diff > 0 and mins > 0: bpm = diff / mins out = 'Progress: %s / %s\n' % (height, headers) out += 'Block Cache length %s\n' % Blockchain.Default().BlockCacheCount out += 'Blocks since program start %s\n' % diff out += 'Time elapsed %s mins\n' % mins out += 'blocks per min %s \n' % bpm tokens = [(Token.Number, out)] print_tokens(tokens, self.token_style) def show_nodes(self): if len(NodeLeader.Instance().Peers) > 0: out = '' for peer in NodeLeader.Instance().Peers: out += 'Peer %s - IO: %s\n' % (peer.Name(), peer.IOStats()) print_tokens([(Token.Number, out)], self.token_style) else: print('Not connected yet\n') def show_block(self, args): item = get_arg(args) txarg = get_arg(args, 1) if item is not None: block = Blockchain.Default().GetBlock(item) if block is not None: bjson = json.dumps(block.ToJson(), indent=4) tokens = [(Token.Number, bjson)] print_tokens(tokens, self.token_style) print('\n') if txarg and 'tx' in txarg: for tx in block.FullTransactions: print(json.dumps(tx.ToJson(), indent=4)) else: print("could not locate block %s" % item) else: print("please specify a block") def show_header(self, args): item = get_arg(args) if item is not None: header = Blockchain.Default().GetHeaderBy(item) if header is not None: print(json.dumps(header.ToJson(), indent=4)) else: print("could not locate Header %s \n" % item) else: print("please specify a header") def show_tx(self, args): item = get_arg(args) if item is not None: try: tx, height = Blockchain.Default().GetTransaction(item) if height > -1: bjson = json.dumps(tx.ToJson(), indent=4) tokens = [(Token.Command, bjson)] print_tokens(tokens, self.token_style) print('\n') except Exception as e: print("Could not find transaction with id %s " % item) print("Please specify a tx hash like 'db55b4d97cf99db6826967ef4318c2993852dff3e79ec446103f141c716227f6'") else: print("please specify a tx hash") def show_account_state(self, args): item = get_arg(args) if item is not None: account = Blockchain.Default().GetAccountState(item, print_all_accounts=True) if account is not None: bjson = json.dumps(account.ToJson(), indent=4) tokens = [(Token.Number, bjson)] print_tokens(tokens, self.token_style) print('\n') else: print("account %s not found" % item) else: print("please specify an account address") def show_asset_state(self, args): item = get_arg(args) if item is not None: if item == 'search': query = get_arg(args, 1) results = Blockchain.Default().SearchAssetState(query) print("Found %s results for %s " % (len(results), query)) for asset in results: bjson = json.dumps(asset.ToJson(), indent=4) tokens = [(Token.Number, bjson)] print_tokens(tokens, self.token_style) print('\n') return asset = Blockchain.Default().GetAssetState(item) if asset is not None: bjson = json.dumps(asset.ToJson(), indent=4) tokens = [(Token.Number, bjson)] print_tokens(tokens, self.token_style) print('\n') else: print("asset %s not found" % item) else: print("please specify an asset hash") def show_contract_state(self, args): item = get_arg(args) if item is not None: if item.lower() == 'all': contracts = Blockchain.Default().ShowAllContracts() print("contracts: %s " % contracts) elif item.lower() == 'search': query = get_arg(args, 1) if query: contracts = Blockchain.Default().SearchContracts(query=query) print("Found %s results for %s " % (len(contracts), query)) for contract in contracts: bjson = json.dumps(contract.ToJson(), indent=4) tokens = [(Token.Number, bjson)] print_tokens(tokens, self.token_style) print('\n') else: print("Please specify a search query") else: contract = Blockchain.Default().GetContract(item) if contract is not None: bjson = json.dumps(contract.ToJson(), indent=4) tokens = [(Token.Number, bjson)] print_tokens(tokens, self.token_style) print('\n') else: print("please specify a contract") def test_invoke_contract(self, args): if not self.Wallet: print("please open a wallet") return if args and len(args) > 0: tx, fee, results, num_ops = TestInvokeContract(self.Wallet, args) f = open(args[0]+".invoke", "w") if tx is not None and results is not None: print("\n-------------------------------------------------------------------------------------------------------------------------------------", file=f) print("Test invoke successful", file=f) print("Total operations: %s " % num_ops, file=f) print("Results %s " % [str(item) for item in results], file=f) print("Invoke TX gas cost: %s " % (tx.Gas.value / Fixed8.D), file=f) print("Invoke TX Fee: %s " % (fee.value / Fixed8.D), file=f) print("-------------------------------------------------------------------------------------------------------------------------------------\n", file=f) print("Enter your password to continue and invoke on the network\n") f.close(); passwd = 'coz' #passwd = prompt("[password]> ", is_password=True) if not self.Wallet.ValidatePassword(passwd): return print("Incorrect password") result = InvokeContract(self.Wallet, tx, fee) if result is False: return None return tx else: print("Error testing contract invoke") return None print("please specify a contract to invoke") def load_smart_contract(self, args): if not self.Wallet: print("please open wallet") return function_code = LoadContract(args[1:]) if function_code: #cname=None #if len(args) > 6: # cname = args[6:][0] #print("name="+args[6:][0]) #contract_script = GatherContractDetails(function_code, self, cname) contract_script = GatherContractDetails(function_code, self) if contract_script is not None: tx, fee, results, num_ops = test_invoke(contract_script, self.Wallet, []) if tx is not None and results is not None: print("\n-------------------------------------------------------------------------------------------------------------------------------------") print("Test deploy invoke successful") print("Total operations executed: %s " % num_ops) print("Results %s " % [str(item) for item in results]) print("Deploy Invoke TX gas cost: %s " % (tx.Gas.value / Fixed8.D)) print("Deploy Invoke TX Fee: %s " % (fee.value / Fixed8.D)) print("-------------------------------------------------------------------------------------------------------------------------------------\n") print("Enter your password to continue and deploy this contract") passwd = 'coz' #passwd = prompt("[password]> ", is_password=True) if not self.Wallet.ValidatePassword(passwd): return print("Incorrect password") result = InvokeContract(self.Wallet, tx, Fixed8.Zero()) if result is False: return None return tx else: print("test ivoke failed") print("tx is, results are %s %s " % (tx, results)) return None def show_mem(self): total = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss totalmb = total / 1000000 out = "Total: %s MB\n" % totalmb out += "total buffers %s\n" % StreamManager.TotalBuffers() print_tokens([(Token.Number, out)], self.token_style) def handle_debug_storage(self, args): what = get_arg(args) if what == 'on': settings.USE_DEBUG_STORAGE = True print("Debug Storage On") elif what == 'off': settings.USE_DEBUG_STORAGE = False print("Debug Storage Off") elif what == 'reset': DebugStorage.instance().reset() print("Reset Debug Storage") else: print("Please specify on/off/reset") def configure(self, args): what = get_arg(args) if what == 'debug': c1 = get_arg(args, 1).lower() if c1 is not None: if c1 == 'on' or c1 == '1': print("debug logging is now enabled") settings.set_loglevel(logging.DEBUG) if c1 == 'off' or c1 == '0': print("debug logging is now disabled") settings.set_loglevel(logging.INFO) else: print("cannot configure log. Please specify on or off") elif what == 'sc-events': c1 = get_arg(args, 1).lower() if c1 is not None: if c1 == 'on' or c1 == '1': print("smart contract event logging is now enabled") settings.set_log_smart_contract_events(True) if c1 == 'off' or c1 == '0': print("smart contract event logging is now disabled") settings.set_log_smart_contract_events(False) else: print("cannot configure log. Please specify on or off") else: print("cannot configure %s " % what) print("Try 'config log on/off'") def parse_result(self, result): if len(result): commandParts = [s for s in result.split()] return commandParts[0], commandParts[1:] return None, None def wait_for_tx(self, tx, max_seconds=300): """ Wait for tx to show up on blockchain """ foundtx = False sec_passed = 0 while not foundtx and sec_passed < max_seconds: _tx, height = Blockchain.Default().GetTransaction(tx.Hash.ToString()) if height > -1: foundtx = True print("Transaction found with success") continue if sec_passed < 4: print("Waiting for tx {} to show up on blockchain...".format(tx.Hash.ToString())) time.sleep(4) sec_passed += 4 if foundtx: return True else: print("Transaction was relayed but never accepted by consensus node") return False def run(self): dbloop = task.LoopingCall(Blockchain.Default().PersistBlocks) dbloop.start(.1) Blockchain.Default().PersistBlocks() while Blockchain.Default().Height < 2: print("Waiting for prompt to sync...") time.sleep(1) tokens = [(Token.Neo, 'NEO'), (Token.Default, ' cli. Type '), (Token.Command, "'help' "), (Token.Default, 'to get started')] print_tokens(tokens, self.token_style) print("\n") timebase = time.time() while self.go_on: try: if len(self.mycommands) > 0: timenow = time.time() if timenow - timebase > 3: #wait 3 seconds timebase = timenow result = self.mycommands.pop() else: time.sleep(0.5) # slow refresh continue #time.sleep(3) else: result = prompt("neo> ", completer=self.get_completer(), history=self.history, get_bottom_toolbar_tokens=self.get_bottom_toolbar, style=self.token_style, refresh_interval=3 ) # Control-D pressed: quit #print("result=",result) #print("mycommands ->", self.mycommands) except EOFError: return self.quit() except KeyboardInterrupt: # Control-C pressed: do nothing continue try: command, arguments = self.parse_result(result) if command is not None and len(command) > 0: command = command.lower() if command == 'quit' or command == 'exit': time.sleep(2) # consolidate chain self.quit() elif command == 'help': self.help() elif command == 'create': self.do_create(arguments) elif command == 'open': self.do_open(arguments) elif command == 'build': self.do_build(arguments) elif command == 'load_run': self.do_load_n_run(arguments) elif command == 'import': tx = self.do_import(arguments) # Wait until transaction is on blockchain if tx is not None: self.wait_for_tx(tx) elif command == 'export': self.do_export(arguments) elif command == 'wallet': self.show_wallet(arguments) elif command == 'send': tx = self.do_send(arguments) if tx is not None: if tx is not 0: self.wait_for_tx(tx) elif command == 'sign': self.do_sign(arguments) elif command == 'block': self.show_block(arguments) elif command == 'tx': self.show_tx(arguments) elif command == 'header': self.show_header(arguments) elif command == 'account': self.show_account_state(arguments) elif command == 'asset': self.show_asset_state(arguments) elif command == 'contract': tx = self.show_contract_state(arguments) elif command == 'testinvoke': tx = self.test_invoke_contract(arguments) # Wait until transaction is on blockchain if tx is not None: self.wait_for_tx(tx) elif command == 'mem': self.show_mem() elif command == 'nodes' or command == 'node': self.show_nodes() elif command == 'state': self.show_state() elif command == 'debugstorage': self.handle_debug_storage(arguments) elif command == 'config': self.configure(arguments) elif command is None: print('please specify a command') else: print("command %s not found" % command) except Exception as e: print("could not execute command: %s " % e) traceback.print_stack() traceback.print_exc() def main(): parser = argparse.ArgumentParser() parser.add_argument("-m", "--mainnet", action="store_true", default=False, help="Use MainNet instead of the default TestNet") parser.add_argument("-p", "--privnet", action="store_true", default=False, help="Use PrivNet instead of the default TestNet") parser.add_argument("-c", "--config", action="store", help="Use a specific config file") parser.add_argument("-t", "--set-default-theme", dest="theme", choices=["dark", "light"], help="Set the default theme to be loaded from the config file. Default: 'dark'") parser.add_argument('--version', action='version', version='neo-python v{version}'.format(version=__version__)) parser.add_argument("-e", "--exec_command", action="store", help="Use a specific commands") args = parser.parse_args() if args.config and (args.mainnet or args.privnet): print("Cannot use both --config and --mainnet/--privnet arguments, please use only one.") exit(1) if args.mainnet and args.privnet: print("Cannot use both --mainnet and --privnet arguments") exit(1) # Setup depending on command line arguments. By default, the testnet settings are already loaded. if args.config: settings.setup(args.config) elif args.mainnet: settings.setup_mainnet() elif args.privnet: settings.setup_privnet() mycoms = [] mycoms2 = [] if args.exec_command: mycoms = args.exec_command.split(',') #print("exec:"+args.exec_command) for k in mycoms: mycoms2.append( codecs.decode(k, "hex").decode() ) if args.theme: preferences.set_theme(args.theme) # Instantiate the blockchain and subscribe to notifications blockchain = LevelDBBlockchain(settings.LEVELDB_PATH) Blockchain.RegisterBlockchain(blockchain) # Start the prompt interface cli = PromptInterface() cli.mycommands = mycoms2 #['oi', 'oi2'] # Run reactor.suggestThreadPoolSize(15) reactor.callInThread(cli.run) NodeLeader.Instance().Start() reactor.run() if __name__ == "__main__": main()
38.03946
168
0.525224
4a214fc2e6d3262078dc514c158bbe08968eefe1
665
py
Python
mod/httpserver.py
rbxnk/fips
b1bd5f33f04d48f080e621d27214c254149924ca
[ "MIT" ]
null
null
null
mod/httpserver.py
rbxnk/fips
b1bd5f33f04d48f080e621d27214c254149924ca
[ "MIT" ]
null
null
null
mod/httpserver.py
rbxnk/fips
b1bd5f33f04d48f080e621d27214c254149924ca
[ "MIT" ]
null
null
null
"""wrap SimpleHTTPServer and prevent Ctrl-C stack trace output""" import sys if sys.version_info > (3, 0): import http.server as SimpleHTTPServer import socketserver as SocketServer else: import SimpleHTTPServer import SocketServer import log try : log.colored(log.GREEN, 'serving on http://localhost:8000 (Ctrl-C to quit)') SocketServer.TCPServer.allow_reuse_address = True httpd = SocketServer.TCPServer(('localhost', 8000), SimpleHTTPServer.SimpleHTTPRequestHandler) httpd.serve_forever() except KeyboardInterrupt: httpd.shutdown() httpd.server_close() log.colored(log.GREEN, '\nhttp server stopped') exit(0)
26.6
98
0.738346
4a214fcf44deca28ad3f9bd7188804edb3393aec
11,730
py
Python
easier68k/core/opcodes/subq.py
bpas247/Easier68k
30a39883f1e73cd2bd848cf7bd356c96b8664ff4
[ "MIT" ]
null
null
null
easier68k/core/opcodes/subq.py
bpas247/Easier68k
30a39883f1e73cd2bd848cf7bd356c96b8664ff4
[ "MIT" ]
null
null
null
easier68k/core/opcodes/subq.py
bpas247/Easier68k
30a39883f1e73cd2bd848cf7bd356c96b8664ff4
[ "MIT" ]
null
null
null
from ...core.enum.ea_mode import EAMode from ...core.enum.op_size import OpSize from ...core.enum import ea_mode_bin from ...core.enum.ea_mode_bin import parse_ea_from_binary from ...simulator.m68k import M68K from ...core.opcodes.opcode import Opcode from ...core.util.split_bits import split_bits from ...core.util import opcode_util from ..util.parsing import parse_assembly_parameter from ..models.assembly_parameter import AssemblyParameter from ..enum.condition_status_code import ConditionStatusCode from ..models.memory_value import MemoryValue class Subq(Opcode): # Forward declaration pass class Subq(Opcode): # Allowed sizes for this opcode valid_sizes = [OpSize.BYTE, OpSize.WORD, OpSize.LONG] def __init__(self, params: list, size: OpSize = OpSize.WORD): assert len(params) == 2 assert isinstance(params[0], AssemblyParameter) assert isinstance(params[1], AssemblyParameter) # check src param is valid assert params[0].mode == EAMode.IMM self.src = params[0] # check the dest param is valid. Can't be immediate data assert params[1].mode != EAMode.IMM self.dest = params[1] assert size in Subq.valid_sizes self.size = size def assemble(self) -> bytearray: """ Assembles this opcode into hex to be inserted into memory :return: The hex version of this opcode """ # 1101 Dn xxx D x S xx M xxx Xn xxx # ret_opcode is the binary value which represents the assembled instruction ret_opcode = 0b0101 << 12 ret_opcode |= self.src.data << 9 ret_opcode |= 0b1 << 8 if self.size == OpSize.BYTE: ret_opcode |= 0b00 << 6 elif self.size == OpSize.WORD: ret_opcode |= 0b01 << 6 elif self.size == OpSize.LONG: ret_opcode |= 0b10 << 6 ret_opcode |= ea_mode_bin.parse_from_ea_mode_modefirst(self.dest) << 0 ret_bytes = bytearray(ret_opcode.to_bytes(2, byteorder='big', signed=False)) if self.dest.mode == EAMode.AWA or self.dest.mode == EAMode.ALA: ret_bytes.extend(opcode_util.ea_to_binary_post_op(self.dest, self.size).get_value_bytearray()) return ret_bytes def execute(self, simulator: M68K): """ Executes this command in a simulator :param simulator: The simulator to execute the command on :return: Nothing """ # get the length val_length = self.size.get_number_of_bytes() # get the value of src from the simulator src_val = self.src.get_value(simulator, val_length) # get the value of dest from the simulator dest_val = self.dest.get_value(simulator, val_length) # increment the program counter by the length of the instruction (1 word) to_increment = OpSize.WORD.value # repeat for the dest if self.dest.mode in [EAMode.AbsoluteLongAddress]: to_increment += OpSize.LONG.value if self.dest.mode in [EAMode.AbsoluteWordAddress]: to_increment += OpSize.WORD.value # mask to apply to the source mask = 0xFF if self.size is OpSize.BYTE: mask = 0xFF if self.size is OpSize.WORD: mask = 0xFFFF if self.size is OpSize.LONG: mask = 0xFFFFFFFF # which bits of the total should not be modified inverted_mask = 0xFFFFFFFF ^ mask # preserve the upper bits of the operation if they aren't used preserve = dest_val.get_value_signed() & inverted_mask raw_total = dest_val.get_value_unsigned() - src_val.get_value_unsigned() total = (raw_total & mask) | preserve # If the subtraction of the masked destination and source value is # negative, then a borrow has been generated. borrow_bit = (mask & dest_val.get_value_unsigned()) - src_val.get_value_unsigned() < 0 negative_bit = 0 if self.size is OpSize.BYTE: negative_bit = 0x80 elif self.size is OpSize.WORD: negative_bit = 0x8000 elif self.size is OpSize.LONG: negative_bit = 0x80000000 negative = total & negative_bit > 0 # Overflow occurs when a sign change occurs where it shouldn't occur. # For example: positive - negative != negative. # This doesn't make sense, so an overflow occurs overflow = False if dest_val.get_value_unsigned() & 0x80000000 > 0: if total & negative_bit == 0: overflow = True # set the same as the 'C' bit simulator.set_condition_status_code(ConditionStatusCode.X, borrow_bit) # set if result is negative simulator.set_condition_status_code(ConditionStatusCode.N, negative) # set if result is zero simulator.set_condition_status_code(ConditionStatusCode.Z, total == 0) # set if an overflow is generated, cleared otherwise simulator.set_condition_status_code(ConditionStatusCode.V, overflow) # set if a borrow is generated, cleared otherwise simulator.set_condition_status_code(ConditionStatusCode.C, borrow_bit) # and set the value self.dest.set_value(simulator, MemoryValue(OpSize.LONG, unsigned_int=total)) # set the program counter value simulator.increment_program_counter(to_increment) def __str__(self): # Makes this a bit easier to read in doctest output return 'Subq command: Size {}, src {}, dest {}'.format(self.size, self.src, self.dest) @classmethod def command_matches(cls, command: str) -> bool: """ Checks whether a command string is an instance of this command type :param command: The command string to check (e.g. 'MOVE.B', 'LEA', etc.) :return: Whether the string is an instance of this command type """ return opcode_util.command_matches(command, 'SUB') @classmethod def get_word_length(cls, command: str, parameters: str) -> int: """ >>> Subq.get_word_length('SUBQ.B', '#5, D3') 1 >>> Subq.get_word_length('SUBQ.W', '#4, ($BBBB).W') 2 >>> Subq.get_word_length('SUBQ.L', '#7, ($BBBB).W') 2 >>> Subq.get_word_length('SUBQ.W', '#1, ($BBBB).L') 3 >>> Subq.get_word_length('SUBQ.W', '#8, ($BBBB).L') 3 >>> Subq.get_word_length('SUB.L', '#5, ($BBBB).L') 3 Gets what the end length of this command will be in memory :param command: The text of the command itself (e.g. "LEA", "MOVE.B", etc.) :param parameters: The parameters after the command :return: The length of the bytes in memory in words, as well as a list of warnings or errors encountered """ # Split the parameters into EA modes params = parameters.split(',') # src = parse_assembly_parameter(params[0].strip()) # Parse the source and make sure it parsed right dest = parse_assembly_parameter(params[1].strip()) length = 1 # Always 1 word not counting additions to end if dest.mode == EAMode.AWA: # Appends a word length += 1 if dest.mode == EAMode.ALA: # Appends a long, so 2 words length += 2 return length @classmethod def is_valid(cls, command: str, parameters: str) -> (bool, list): """ Tests whether the given command is valid >>> Subq.is_valid('SUBQ.B', '#2, D1')[0] True >>> Subq.is_valid('SUBQ.W', 'D0')[0] False >>> Subq.is_valid('SUBQ.G', '#5, D1')[0] False >>> Subq.is_valid('SUBQ.L', 'D0, A2')[0] False >>> Subq.is_valid('SU.L', '#2, D1')[0] False >>> Subq.is_valid('SUBQ.', '#5, D1')[0] False >>> Subq.is_valid('SUBQ.W', '#2, #6500')[0] False :param command: The command itself (e.g. 'MOVE.B', 'LEA', etc.) :param parameters: The parameters after the command (such as the source and destination of a move) :return: Whether the given command is valid and a list of issues/warnings encountered """ return opcode_util.n_param_is_valid(command, parameters, "SUBQ", 2, param_invalid_modes=[[EAMode.ARD], [EAMode.ARD, EAMode.IMM]])[:2] @classmethod def disassemble_instruction(cls, data: bytearray) -> Opcode: """ This has a non-subq opcode >>> Subq.disassemble_instruction(bytearray.fromhex('0280')) SUBQ.B #2,D7 >>> op = Subq.disassemble_instruction(bytearray.fromhex('5507')) >>> str(op.src) 'EA Mode: EAMode.IMM, Data: 2' >>> str(op.dest) 'EA Mode: EAMode.DRD, Data: 7' SUBQ.W #5,D1 >>> op = Subq.disassemble_instruction(bytearray.fromhex('5B41')) >>> str(op.src) 'EA Mode: EAMode.IMM, Data: 5' >>> str(op.dest) 'EA Mode: EAMode.DRD, Data: 1' SUBQ.L #7,(A0) >>> op = Subq.disassemble_instruction(bytearray.fromhex('5F90')) >>> str(op.src) 'EA Mode: EAMode.IMM, Data: 7' >>> str(op.dest) 'EA Mode: EAMode.ARI, Data: 0' SUBQ.L #3,$4000 >>> op = Subq.disassemble_instruction(bytearray.fromhex('57B84000')) >>> str(op.src) 'EA Mode: EAMode.IMM, Data: 3' >>> str(op.dest) 'EA Mode: EAMode.AWA, Data: 16384' Parses some raw data into an instance of the opcode class :param data: The data used to convert into an opcode instance :return: The constructed instance or none if there was an error and the amount of data in words that was used (e.g. extra for immediate data) or 0 for not a match """ assert len(data) >= 2, 'Opcode size is at least one word' first_word = int.from_bytes(data[0:2], 'big') [opcode_bin, data_bin, one_bin, size_bin, ea_mode_binary, ea_reg_bin] = split_bits(first_word, [4, 3, 1, 2, 3, 3]) if opcode_bin != 0b0101 or one_bin != 0b1: return None src = None dest = None size = None # populate source data src = AssemblyParameter(EAMode.IMM, data_bin) # Determine size if size_bin == 0b00: size = OpSize.BYTE elif size_bin == 0b01: size = OpSize.WORD elif size_bin == 0b10: size = OpSize.LONG else: return None # populate destination data dest = dest = parse_ea_from_binary(ea_mode_binary, ea_reg_bin, size, False, data[2:])[0] return cls([src, dest], size) @classmethod def from_str(cls, command: str, parameters: str): """ Parses a SUBQ command from text. >>> str(Subq.from_str('SUBQ.B', '#4, D1')) 'Subq command: Size OpSize.BYTE, src EA Mode: EAMode.IMM, Data: 4, dest EA Mode: EAMode.DRD, Data: 1' >>> str(Subq.from_str('SUBQ.L', '#1, (A0)')) 'Subq command: Size OpSize.LONG, src EA Mode: EAMode.IMM, Data: 1, dest EA Mode: EAMode.ARI, Data: 0' :param command: The command itself (e.g. 'MOVE.B', 'LEA', etc.) :param parameters: The parameters after the command (such as the source and destination of a move) :return: The parsed command """ return opcode_util.n_param_from_str(command, parameters, Subq, 2, OpSize.WORD)
34.198251
114
0.599744
4a21508fc1af87a19d37c02da2dc7d22ce43f4e2
3,181
py
Python
examples/references/segmentation/pascal_voc2012/configs/train/baseline_resnet101.py
ryanwongsa/ignite
948532834c2c60a6fae35d9754d5a8e74faceeb4
[ "BSD-3-Clause" ]
1
2020-09-18T18:28:30.000Z
2020-09-18T18:28:30.000Z
examples/references/segmentation/pascal_voc2012/configs/train/baseline_resnet101.py
alxlampe/ignite
b53c6aeef87754b3cd3638c91172b386dc73af12
[ "BSD-3-Clause" ]
null
null
null
examples/references/segmentation/pascal_voc2012/configs/train/baseline_resnet101.py
alxlampe/ignite
b53c6aeef87754b3cd3638c91172b386dc73af12
[ "BSD-3-Clause" ]
null
null
null
# Basic training configuration import os from functools import partial import cv2 import torch.nn as nn import torch.optim as optim import torch.optim.lr_scheduler as lrs from torchvision.models.segmentation import deeplabv3_resnet101 import albumentations as A from albumentations.pytorch import ToTensorV2 as ToTensor from dataflow.dataloaders import get_train_val_loaders from dataflow.transforms import ignore_mask_boundaries, prepare_batch_fp32, denormalize # ############################## # Global configs # ############################## seed = 19 device = "cuda" debug = False fp16_opt_level = "O2" num_classes = 21 batch_size = 18 # total batch size val_batch_size = 24 num_workers = 12 val_interval = 1 accumulation_steps = 4 val_img_size = 513 train_img_size = 480 # ############################## # Setup Dataflow # ############################## assert "DATASET_PATH" in os.environ data_path = os.environ["DATASET_PATH"] mean = (0.485, 0.456, 0.406) std = (0.229, 0.224, 0.225) train_transforms = A.Compose( [ A.RandomScale(scale_limit=(0.0, 1.5), interpolation=cv2.INTER_LINEAR, p=1.0), A.PadIfNeeded(val_img_size, val_img_size, border_mode=cv2.BORDER_CONSTANT), A.RandomCrop(train_img_size, train_img_size), A.HorizontalFlip(), A.Blur(blur_limit=3), A.Normalize(mean=mean, std=std), ignore_mask_boundaries, ToTensor(), ] ) val_transforms = A.Compose( [ A.PadIfNeeded(val_img_size, val_img_size, border_mode=cv2.BORDER_CONSTANT), A.Normalize(mean=mean, std=std), ignore_mask_boundaries, ToTensor(), ] ) train_loader, val_loader, train_eval_loader = get_train_val_loaders( root_path=data_path, train_transforms=train_transforms, val_transforms=val_transforms, batch_size=batch_size, num_workers=num_workers, val_batch_size=val_batch_size, limit_train_num_samples=100 if debug else None, limit_val_num_samples=100 if debug else None, ) prepare_batch = prepare_batch_fp32 # Image denormalization function to plot predictions with images img_denormalize = partial(denormalize, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) # ############################## # Setup models # ############################## num_classes = 21 model = deeplabv3_resnet101(num_classes=num_classes) def model_output_transform(output): return output["out"] # ############################## # Setup solver # ############################## num_epochs = 100 criterion = nn.CrossEntropyLoss() lr = 0.007 weight_decay = 5e-4 momentum = 0.9 nesterov = False optimizer = optim.SGD( [{"params": model.backbone.parameters()}, {"params": model.classifier.parameters()}], lr=1.0, momentum=momentum, weight_decay=weight_decay, nesterov=nesterov, ) le = len(train_loader) def lambda_lr_scheduler(iteration, lr0, n, a): return lr0 * pow((1.0 - 1.0 * iteration / n), a) lr_scheduler = lrs.LambdaLR( optimizer, lr_lambda=[ partial(lambda_lr_scheduler, lr0=lr, n=num_epochs * le, a=0.9), partial(lambda_lr_scheduler, lr0=lr * 10.0, n=num_epochs * le, a=0.9), ], )
22.721429
93
0.662999
4a2151ec23787c17b45fb3a9fb18393327df4eaa
1,873
py
Python
alipay/aop/api/domain/AntfortuneContentCommunityDataSendModel.py
snowxmas/alipay-sdk-python-all
96870ced60facd96c5bce18d19371720cbda3317
[ "Apache-2.0" ]
213
2018-08-27T16:49:32.000Z
2021-12-29T04:34:12.000Z
alipay/aop/api/domain/AntfortuneContentCommunityDataSendModel.py
snowxmas/alipay-sdk-python-all
96870ced60facd96c5bce18d19371720cbda3317
[ "Apache-2.0" ]
29
2018-09-29T06:43:00.000Z
2021-09-02T03:27:32.000Z
alipay/aop/api/domain/AntfortuneContentCommunityDataSendModel.py
snowxmas/alipay-sdk-python-all
96870ced60facd96c5bce18d19371720cbda3317
[ "Apache-2.0" ]
59
2018-08-27T16:59:26.000Z
2022-03-25T10:08:15.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class AntfortuneContentCommunityDataSendModel(object): def __init__(self): self._content = None self._source_id = None self._soure_type = None @property def content(self): return self._content @content.setter def content(self, value): self._content = value @property def source_id(self): return self._source_id @source_id.setter def source_id(self, value): self._source_id = value @property def soure_type(self): return self._soure_type @soure_type.setter def soure_type(self, value): self._soure_type = value def to_alipay_dict(self): params = dict() if self.content: if hasattr(self.content, 'to_alipay_dict'): params['content'] = self.content.to_alipay_dict() else: params['content'] = self.content if self.source_id: if hasattr(self.source_id, 'to_alipay_dict'): params['source_id'] = self.source_id.to_alipay_dict() else: params['source_id'] = self.source_id if self.soure_type: if hasattr(self.soure_type, 'to_alipay_dict'): params['soure_type'] = self.soure_type.to_alipay_dict() else: params['soure_type'] = self.soure_type return params @staticmethod def from_alipay_dict(d): if not d: return None o = AntfortuneContentCommunityDataSendModel() if 'content' in d: o.content = d['content'] if 'source_id' in d: o.source_id = d['source_id'] if 'soure_type' in d: o.soure_type = d['soure_type'] return o
26.380282
71
0.584624
4a215240e0b2f4b25ed7e6f96f476d92784d7906
2,584
py
Python
tests/strategies/test_custom_plugin.py
AJSVB/pytorch-lightning
00211c1de3c5901789417263f14a36c846cc42d1
[ "Apache-2.0" ]
2
2019-11-24T10:28:10.000Z
2020-06-20T12:57:35.000Z
tests/strategies/test_custom_plugin.py
AJSVB/pytorch-lightning
00211c1de3c5901789417263f14a36c846cc42d1
[ "Apache-2.0" ]
1
2021-03-30T12:12:49.000Z
2021-03-30T12:12:49.000Z
tests/strategies/test_custom_plugin.py
AJSVB/pytorch-lightning
00211c1de3c5901789417263f14a36c846cc42d1
[ "Apache-2.0" ]
2
2022-02-11T08:26:13.000Z
2022-03-21T03:48:34.000Z
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Any, Mapping import pytest import torch from pytorch_lightning import Trainer from pytorch_lightning.strategies import DDPStrategy, SingleDeviceStrategy from tests.helpers import BoringModel from tests.helpers.runif import RunIf class CustomParallelStrategy(DDPStrategy): def __init__(self, **kwargs): super().__init__(**kwargs) # Set to None so it will be overwritten by the accelerator connector. self.sync_batchnorm = None @RunIf(skip_windows=True) def test_sync_batchnorm_set(tmpdir): """Tests if sync_batchnorm is automatically set for custom plugin.""" model = BoringModel() strategy = CustomParallelStrategy() assert strategy.sync_batchnorm is None trainer = Trainer(max_epochs=1, strategy=strategy, default_root_dir=tmpdir, sync_batchnorm=True) trainer.fit(model) assert strategy.sync_batchnorm is True @pytest.mark.parametrize("restore_optimizer_and_schedulers", [True, False]) def test_strategy_lightning_restore_optimizer_and_schedulers(tmpdir, restore_optimizer_and_schedulers): class TestStrategy(SingleDeviceStrategy): load_optimizer_state_dict_called = False @property def lightning_restore_optimizer(self) -> bool: return restore_optimizer_and_schedulers def load_optimizer_state_dict(self, checkpoint: Mapping[str, Any]) -> None: self.load_optimizer_state_dict_called = True # create ckpt to resume from checkpoint_path = os.path.join(tmpdir, "model.ckpt") model = BoringModel() trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True) trainer.fit(model) trainer.save_checkpoint(checkpoint_path) model = BoringModel() strategy = TestStrategy(torch.device("cpu")) trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True, strategy=strategy) trainer.fit(model, ckpt_path=checkpoint_path) assert strategy.load_optimizer_state_dict_called == restore_optimizer_and_schedulers
38
103
0.765093
4a21528dc054baccbae222d427431546956ee748
159
py
Python
figuregen/__init__.py
Mira-13/figure-gen
fd1b8814423dd34973a3fafe68ff5c0f95c08590
[ "MIT" ]
75
2020-09-17T17:17:17.000Z
2022-01-21T14:28:14.000Z
figuregen/__init__.py
neshume/figure-gen
e4cb1d9ea1841980b4dc90953325e1a8c6dfb510
[ "MIT" ]
3
2020-09-29T11:51:35.000Z
2020-10-22T15:27:40.000Z
figuregen/__init__.py
neshume/figure-gen
e4cb1d9ea1841980b4dc90953325e1a8c6dfb510
[ "MIT" ]
2
2020-10-24T05:57:49.000Z
2022-03-14T17:06:02.000Z
# Import API functions from .figuregen import * from .element_data import * from .matplot_lineplot import MatplotLinePlot from .pgf_lineplot import PgfLinePlot
31.8
45
0.836478
4a2153097afb36335b448ff6adb4136be7775334
402
py
Python
map/migrations/0003_eventmodel_numberofattendees.py
zacharyyahn/CS3240_Project
8f8ce4f787d7fc33721543ce05f0f650220fb11d
[ "Apache-2.0", "Unlicense" ]
null
null
null
map/migrations/0003_eventmodel_numberofattendees.py
zacharyyahn/CS3240_Project
8f8ce4f787d7fc33721543ce05f0f650220fb11d
[ "Apache-2.0", "Unlicense" ]
null
null
null
map/migrations/0003_eventmodel_numberofattendees.py
zacharyyahn/CS3240_Project
8f8ce4f787d7fc33721543ce05f0f650220fb11d
[ "Apache-2.0", "Unlicense" ]
null
null
null
# Generated by Django 3.1.5 on 2021-04-14 03:57 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('map', '0002_auto_20210413_1835'), ] operations = [ migrations.AddField( model_name='eventmodel', name='numberOfAttendees', field=models.PositiveIntegerField(default=0), ), ]
21.157895
57
0.614428
4a21532bfa3c393f32956ec86830a27349a79c60
280
py
Python
setup.py
ThordurPall/fish_classifier
f28121fba92076e56fdfd047018176a92557ecff
[ "MIT" ]
1
2021-06-17T11:34:25.000Z
2021-06-17T11:34:25.000Z
setup.py
FrederikKromann/fish_classifier
f28121fba92076e56fdfd047018176a92557ecff
[ "MIT" ]
3
2021-06-10T10:14:14.000Z
2021-06-16T10:58:44.000Z
setup.py
FrederikKromann/fish_classifier
f28121fba92076e56fdfd047018176a92557ecff
[ "MIT" ]
5
2021-06-10T09:24:55.000Z
2021-06-24T09:35:19.000Z
from setuptools import find_packages, setup setup( name="src", packages=find_packages(), version="0.1.40", description="A neural network fish classifier using a large-scale dataset for fish segmentation and classification", author="DTU", license="MIT", )
25.454545
120
0.710714
4a21539dd182df4a418f2deffdcf94419f128146
1,531
py
Python
src/updater/type.py
JamzumSum/AssetsUpdater
05fc783fe116cab8d754c237356ee3b4fdd098f0
[ "MIT" ]
1
2021-09-28T11:51:02.000Z
2021-09-28T11:51:02.000Z
src/updater/type.py
JamzumSum/AssetsUpdater
05fc783fe116cab8d754c237356ee3b4fdd098f0
[ "MIT" ]
null
null
null
src/updater/type.py
JamzumSum/AssetsUpdater
05fc783fe116cab8d754c237356ee3b4fdd098f0
[ "MIT" ]
null
null
null
from abc import ABC, abstractmethod, abstractproperty from dataclasses import dataclass from typing import AsyncGenerator, Callable, List, Optional Pred = Callable[["Release"], bool] @dataclass(frozen=True) class Asset: from_tag: str name: str download_url: str def __repr__(self) -> str: return self.name class Release(ABC): @abstractproperty def tag(self) -> str: return "" @abstractproperty def title(self) -> str: return "" @abstractmethod def assets(self) -> List[Asset]: return [] @abstractproperty def pre(self) -> bool: return False def has_asset(self, name: str): for i in self.assets(): if i.name == name: return True return False def __repr__(self) -> str: tag = f"<{self.tag}> " if self.tag else "" return tag + self.title class Updater(ABC): @abstractmethod async def latest(self, pre: bool = False) -> Optional[Release]: return @abstractmethod def all_iter( self, num: Optional[int], pre: bool = False, start: int = 0, **kwds ) -> AsyncGenerator[Release, None]: pass async def all(self, num: Optional[int], pre: bool = False) -> List[Release]: return [i async for i in self.all_iter(num, pre)] async def filter(self, pred: Pred, pre: bool = False, start: int = 0, **kwds): async for i in self.all_iter(None, pre, start, **kwds): if pred(i): yield i
23.921875
82
0.595689
4a215441ee4c5debd75710a5a8decb50155a9f32
9,936
py
Python
docs/source/conf.py
wblong/PVGeo-Copy
a7f143a037c3abddcc5b8f70f84a0dee38874bfc
[ "BSD-3-Clause" ]
null
null
null
docs/source/conf.py
wblong/PVGeo-Copy
a7f143a037c3abddcc5b8f70f84a0dee38874bfc
[ "BSD-3-Clause" ]
null
null
null
docs/source/conf.py
wblong/PVGeo-Copy
a7f143a037c3abddcc5b8f70f84a0dee38874bfc
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys import shutil import faulthandler faulthandler.enable() # Add PVGeo to the path path = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) print(path) sys.path.insert(0, path) sys.path.insert(0, '/Users/bane/Documents/OpenGeoVis/Software/gendocs/') # Mock the paraview module to build pvmacros docs import mock MOCK_MODULES = ['paraview', 'paraview.simple', 'discretize', 'pyproj'] for mod_name in MOCK_MODULES: sys.modules[mod_name] = mock.Mock() autodoc_mock_imports = ['paraview'] # # Automattically generat source pages: # os.system('python ./make_files.py') import PVGeo, pvmacros # for documenting from gendocs import Generator append_material = """ .. toctree:: :maxdepth: 2 :caption: Examples :hidden: about-examples.rst examples/index """ extra = """ .. toctree:: :maxdepth: 2 :caption: Development Guide :hidden: dev-guide/contributing dev-guide/repo-structure dev-guide/templates dev-guide/snippets/index dev-guide/resources """ # Automatically generate documentaion pages Generator().DocumentPackages([PVGeo, pvmacros], index_base='../index_base.rst', showprivate=True, notify=False, intro_pages=['overview/why-pvgeo', 'overview/getting-started', 'overview/featured', 'overview/agu-2018', ], append_material=append_material, extra=extra, ) import pyvista import numpy as np # Manage errors pyvista.set_error_output_file('errors.txt') # Ensure that offscreen rendering is used for docs generation pyvista.OFF_SCREEN = True # Not necessary - simply an insurance policy # Preferred plotting style for documentation pyvista.set_plot_theme('document') # -- Project information ----------------------------------------------------- project = 'PVGeo' copyright = u'2018-2019, Bane Sullivan, http:://banesullivan.com' author = 'Bane Sullivan' html_show_copyright = False html_show_sphinx = False # The short X.Y version version = '' # The full version, including alpha/beta/rc tags release = '' # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.ifconfig', 'sphinx.ext.viewcode', 'sphinx.ext.githubpages', 'sphinx.ext.extlinks', 'sphinxcontrib.napoleon', 'sphinx_copybutton', 'sphinx_gallery.gen_gallery', 'notfound.extension', ] linkcheck_retries = 3 linkcheck_timeout = 500 # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path . exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'friendly' # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_rtd_theme" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = { 'canonical_url': 'http://docs.pvgeo.org/', 'analytics_id': 'UA-115959679-6', 'display_version': False, } html_context = { # Enable the "Edit in GitHub link within the header of each page. 'display_github': True, # Set the following variables to generate the resulting github URL for each page. # Format Template: https://{{ github_host|default("github.com") }}/{{ github_user }}/{{ github_repo }}/blob/{{ github_version }}{{ conf_py_path }}{{ pagename }}{{ suffix }} 'github_user': 'OpenGeoVis', 'github_repo': 'PVGeo', 'github_version': 'master/docs/', 'menu_links_name': 'Getting Connected', 'menu_links': [ ('<i class="fa fa-slack fa-fw"></i> Slack Community', 'http://slack.pyvista.org'), ('<i class="fa fa-comment fa-fw"></i> Support', 'https://github.com/pyvista/pyvista-support'), ('<i class="fa fa-github fa-fw"></i> Source Code', 'https://github.com/OpenGeoVis/PVGeo'), ('<i class="fa fa-gavel fa-fw"></i> Contributing', 'https://pvgeo.org/dev-guide/contributing.html'), ('<i class="fa fa-file-text fa-fw"></i> The Paper', 'https://doi.org/10.21105/joss.01451'), ], } # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'PVGeoDoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'PVGeo.tex', 'PVGeo Documentation', 'Bane Sullivan', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'pvgeo', 'PVGeo Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'PVGeo', 'PVGeo Documentation', author, 'PVGeo', 'One line description of project.', 'Miscellaneous'), ] # -- Extension configuration ------------------------------------------------- # -- Options for intersphinx extension --------------------------------------- # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'https://docs.python.org/': None} # -- Options for todo extension ---------------------------------------------- # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True # -- Custom 404 page notfound_context = { 'body': '<h1>Page not found.</h1>\n\nPerhaps try the <a href="https://pvgeo.org/about-examples.html">About Examples page</a>.', } notfound_no_urls_prefix = True # -- Sphinx Gallery Options from sphinx_gallery.sorting import FileNameSortKey # thumb_path = os.path.join(os.path.dirname(os.path.dirname(os.path.dirname(__file__))), 'PVGeo_icon_horiz.png') sphinx_gallery_conf = { # path to your examples scripts "examples_dirs": [ "../../examples/", ], # path where to save gallery generated examples "gallery_dirs": ["examples"], # Patter to search for example files "filename_pattern": r"\.py", # Remove the "Download all examples" button from the top level gallery "download_all_examples": False, # Sort gallery example by file name instead of number of lines (default) "within_subsection_order": FileNameSortKey, # directory where function granular galleries are stored "backreferences_dir": None, # Modules for which function level galleries are created. In "doc_module": "PVGeo", "image_scrapers": (pyvista.Scraper(), 'matplotlib'), "thumbnail_size": (350, 350), # 'default_thumb_file': thumb_path, } def setup(app): app.add_stylesheet("style.css") app.add_stylesheet("copybutton.css")
30.572308
176
0.657005
4a2155afc5c583d1d51e20dd47366a2b690d6d6c
159,748
py
Python
bqtools/tests/test_bqtools.py
kpr6/bqtools
cdafb108768ca60c77bcb9989108466b4d697a2d
[ "MIT" ]
null
null
null
bqtools/tests/test_bqtools.py
kpr6/bqtools
cdafb108768ca60c77bcb9989108466b4d697a2d
[ "MIT" ]
null
null
null
bqtools/tests/test_bqtools.py
kpr6/bqtools
cdafb108768ca60c77bcb9989108466b4d697a2d
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ This modules purpose is to test bqtools-json """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import copy import difflib import json import logging import pprint import unittest from deepdiff import DeepDiff from google.cloud import bigquery, storage, exceptions import bqtools class TestScannerMethods(unittest.TestCase): def load_data(self, file_name): with open(file_name) as json_file: return json.load(json_file) def setUp(self): logging.basicConfig() self.pp = pprint.PrettyPrinter(indent=4) # test 1 validate can create a schema from a dictionary self.schemaTest1 = self.load_data("bqtools/tests/schemaTest1.json") self.schemaTest2 = self.load_data("bqtools/tests/schemaTest2.json") # next schemas are for testing bare array handling # this is a starting schema self.schema2startnobare = self.load_data("bqtools/tests/schema2startnobare.json") # this adds 2 bare arrays self.schemaTest2bare = self.load_data("bqtools/tests/schemaTest2bare.json") # resultant schema and objects shoulld loook like this self.schemaTest2nonbare = self.load_data("bqtools/tests/schemaTest2nonbare.json") self.schemaTest4 = self.load_data("bqtools/tests/schemaTest4.json") self.schemaTest3 = self.load_data("bqtools/tests/schemaTest3.json") self.monsterSchema = self.load_data("bqtools/tests/monsterSchema.json") def test_toDict(self): schema2Dict = ( bigquery.SchemaField('string', 'STRING'), bigquery.SchemaField('integer', 'INTEGER'), bigquery.SchemaField('float', 'FLOAT'), bigquery.SchemaField('boolean', 'BOOLEAN'), bigquery.SchemaField('record', 'RECORD', fields=( bigquery.SchemaField('string2', 'STRING'), bigquery.SchemaField('float', 'FLOAT'), bigquery.SchemaField('integer2', 'INTEGER'), bigquery.SchemaField('boolean2', 'BOOLEAN') )), bigquery.SchemaField('array', 'RECORD', mode='REPEATED', fields=( bigquery.SchemaField('string3', 'STRING'), bigquery.SchemaField('integer3', 'INTEGER') )) ) expectedResult = [ { "name": 'string', "type": 'STRING', "description": None, "mode": 'NULLABLE', "fields": []}, { "name": 'integer', "type": 'INTEGER', "description": None, "mode": 'NULLABLE', "fields": []}, { "name": 'float', "type": 'FLOAT', "description": None, "mode": 'NULLABLE', "fields": []}, { "name": 'boolean', "type": 'BOOLEAN', "description": None, "mode": 'NULLABLE', "fields": []}, { "name": 'record', "type": 'RECORD', "description": None, "mode": 'NULLABLE', "fields": [ {"name": 'string2', "type": 'STRING', "description": None, "mode": 'NULLABLE', "fields": []}, { "name": 'float', "type": 'FLOAT', "description": None, "mode": 'NULLABLE', "fields": []}, { "name": 'integer2', "type": 'INTEGER', "description": None, "mode": 'NULLABLE', "fields": []}, { "name": 'boolean2', "type": 'BOOLEAN', "description": None, "mode": 'NULLABLE', "fields": []} ]}, { "name": 'array', "type": 'RECORD', "description": None, "mode": 'REPEATED', "fields": [ {"name": 'string3', "type": 'STRING', "description": None, "mode": 'NULLABLE', "fields": []}, { "name": 'integer3', "type": 'INTEGER', "description": None, "mode": 'NULLABLE', "fields": []} ]} ] sa = [] # print("showing each field") for bqi in schema2Dict: i = bqtools.to_dict(bqi) # self.pp.pprint(i) sa.append(i) diff = DeepDiff(expectedResult, sa, ignore_order=True) self.assertEqual(diff, {}, "Unexpected result in toDict expected nothing insteadest got {}".format( self.pp.pprint(diff))) def test_createschema(self): bqSchema = bqtools.create_schema(self.schemaTest1) expectedSchema = ( bigquery.SchemaField('string', 'STRING'), bigquery.SchemaField('integer', 'INTEGER'), bigquery.SchemaField('float', 'FLOAT'), bigquery.SchemaField('boolean', 'BOOLEAN'), bigquery.SchemaField('record', 'RECORD', fields=( bigquery.SchemaField('string2', 'STRING'), bigquery.SchemaField('float', 'FLOAT'), bigquery.SchemaField('integer2', 'INTEGER'), bigquery.SchemaField('boolean2', 'BOOLEAN') )), bigquery.SchemaField('array', 'RECORD', mode='REPEATED', fields=( bigquery.SchemaField('string3', 'STRING'), bigquery.SchemaField('integer3', 'INTEGER') )) ) # print("testing result") # self.pp.pprint(bqSchema) sa = [] # print("showing each field") for bqi in bqSchema: i = bqtools.to_dict(bqi) # self.pp.pprint(i) sa.append(i) # print("Schema as dict") # self.pp.pprint(sa) isa = sa # print("Expected result") # self.pp.pprint(expectedSchema) sa = [] # print("showing each expected field") for bqi in expectedSchema: i = bqtools.to_dict(bqi) # self.pp.pprint(i) sa.append(i) # print("expected Schema as dict") diff = DeepDiff(isa, sa, ignore_order=True) # self.pp.pprint(diff) a = "Schema test1 schema does not match target {}".format(len(diff)) self.assertEqual(diff, {}, a) def test_createschema2(self): # print("Creating a new schema") bqSchema2 = bqtools.create_schema(self.schemaTest2) sa2 = [] # print("showing each field schema2") for bqi in bqSchema2: i = bqtools.to_dict(bqi) # self.pp.pprint(i) sa2.append(i) # print("Schema2 as dict") # self.pp.pprint(sa2) expectedSchema2 = ( bigquery.SchemaField('string', 'STRING'), bigquery.SchemaField('integer', 'INTEGER'), bigquery.SchemaField('record', 'RECORD', fields=( bigquery.SchemaField('string2', 'STRING'), bigquery.SchemaField('float', 'FLOAT'), bigquery.SchemaField('boolean2', 'BOOLEAN'), bigquery.SchemaField('appended1', 'STRING') )), bigquery.SchemaField('array', 'RECORD', mode='REPEATED', fields=( bigquery.SchemaField('string3', 'STRING'), bigquery.SchemaField('integer3', 'INTEGER'), bigquery.SchemaField('foo', 'FLOAT') )), bigquery.SchemaField('anotherarray', 'RECORD', mode='REPEATED', fields=( bigquery.SchemaField('test1', 'INTEGER'), bigquery.SchemaField('test2', 'BOOLEAN') )) ) sa = [] for bqi in expectedSchema2: i = bqtools.to_dict(bqi) # self.pp.pprint(i) sa.append(i) diff = DeepDiff(sa, sa2, ignore_order=True) # self.pp.pprint(diff) a = "Schema test1 schema does not match target {}".format(diff) self.assertEqual(diff, {}, a) logger = logging.getLogger("testBQTools") evolved = bqtools.match_and_addtoschema({"string": "hello"}, expectedSchema2, logger=logger) self.assertEqual(evolved, False, "Expected no evolve but got evolve true evolve test 1") evolved = bqtools.match_and_addtoschema({"string": "hello", "integer": 52}, expectedSchema2, logger=logger) self.assertEqual(evolved, False, "Expected no evolve but got evolve true evolve test 2") evolved = bqtools.match_and_addtoschema({"string": "hello", "integer": 52, "record": {}}, expectedSchema2, logger=logger) self.assertEqual(evolved, False, "Expected no evolve but got evolve true evolve test 3") evolved = bqtools.match_and_addtoschema( {"string": "hello", "integer": 52, "record": {"string2": "hello2"}}, expectedSchema2, logger=logger) self.assertEqual(evolved, False, "Expected no evolve but got evolve true evolve test 4") evolved = bqtools.match_and_addtoschema({"string": "hello", "integer": 52, "record": {"string2": "hello2", "float": 1.3, "boolean2": False, "appended1": "another string"}}, expectedSchema2, logger=logger) self.assertEqual(evolved, False, "Expected no evolve but got evolve true evolve test 6") evolved = bqtools.match_and_addtoschema({"string": "hello", "integer": 52, "record": {"string2": "hello2", "float": 1.3, "boolean2": False, "appended1": "another string"}, "array": []}, expectedSchema2, logger=logger) self.assertEqual(evolved, False, "Expected no evolve but got evolve true evolve test 7") evolved = bqtools.match_and_addtoschema({"string": "hello", "integer": 52, "record": {"string2": "hello2", "float": 1.3, "boolean2": False, "appended1": "another string"}, "array": [{"string3": "hello"}]}, expectedSchema2, logger=logger) self.assertEqual(evolved, False, "Expected no evolve but got evolve true evolve test 8") evolved = bqtools.match_and_addtoschema({"string": "hello", "integer": 52, "record": {"string2": "hello2", "float": 1.3, "boolean2": False, "appended1": "another string"}, "array": [{"string3": "hello", "integer3": 42}]}, expectedSchema2, logger=logger) self.assertEqual(evolved, False, "Expected no evolve but got evolve true evolve test 9") evolved = bqtools.match_and_addtoschema({"string": "hello", "integer": 52, "record": {"string2": "hello2", "float": 1.3, "boolean2": False, "appended1": "another string"}, "array": [{"string3": "hello", "integer3": 42, "foo": 3.141}]}, expectedSchema2, logger=logger) self.assertEqual(evolved, False, "Expected no evolve but got evolve true evolve test 10") evolved = bqtools.match_and_addtoschema({"string": "hello", "integer": 52, "record": {"string2": "hello2", "float": 1.3, "boolean2": False, "appended1": "another string"}, "array": [{"string3": "hello", "integer3": 42, "foo": 3.141}, {"integer3": 42, "foo": 3.141}]}, expectedSchema2, logger=logger) self.assertEqual(evolved, False, "Expected no evolve but got evolve true evolve test 11") evolved = bqtools.match_and_addtoschema({"string": "hello", "integer": 52, "record": {"string2": "hello2", "float": 1.3, "boolean2": False, "appended1": "another string"}, "array": [{"string3": "hello", "integer3": 42, "foo": 3.141}, {"integer3": 42, "foo": 3.141}], "anotherarray": [{"test1": 52, "test2": False}, {"test1": 52, "test2": True}]}, expectedSchema2, logger=logger) self.assertEqual(evolved, False, "Expected no evolve but got evolve true evolve test 12") # evolve tests bbelow prepare baseline copyoforigschema = list(expectedSchema2) savedSchema = copy.deepcopy(copyoforigschema) sa = [] for bqi in copyoforigschema: i = bqtools.to_dict(bqi) # self.pp.pprint(i) sa.append(i) # Evolutio test 1 # add some stuff 2 layers down in an array evolved = bqtools.match_and_addtoschema({"string": "hello", "integer": 52, "record": {"string2": "hello2", "float": 1.3, "boolean2": False, "appended1": "another string"}, "array": [{"string3": "hello", "integer3": 42, "foo": 3.141}, {"integer3": 42, "foo": 3.141}], "anotherarray": [{"test1": 52, "test2": False}, {"test1": 52, "test2": True, "fred": "I am an evolved string", "iamanotherevolve": 32}]}, copyoforigschema, logger=logger) self.assertEqual(evolved, True, "Expected evolve but got no evolve False for evolve test 13") sa2 = [] for bqi in copyoforigschema: i = bqtools.to_dict(bqi) # self.pp.pprint(i) sa2.append(i) diff = DeepDiff(sa, sa2, ignore_order=True) diff = dict(diff) print( "============================================ evolve test 1 diff start " "====================================") print("Patched schema diff {} change{}".format(self.pp.pformat(diff), evolved)) print( "============================================ evolve test 1 diff end " "====================================") self.assertEqual({'iterable_item_added': {'root[4]': {'description': None, 'fields': [{'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test1', 'type': 'INTEGER'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test2', 'type': 'BOOLEAN'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'iamanotherevolve', 'type': 'INTEGER'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'fred', 'type': 'STRING'}], 'mode': 'REPEATED', 'name': 'anotherarray', 'type': 'RECORD'}}, 'iterable_item_removed': {'root[4]': {'description': None, 'fields': [{'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test1', 'type': 'INTEGER'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test2', 'type': 'BOOLEAN'}], 'mode': 'REPEATED', 'name': 'anotherarray', 'type': 'RECORD'}}}, diff, "Schema evolution not as expected {}".format(self.pp.pformat(diff))) # Evolution test 2 # this just adds a fiedl at top level copyoforigschema = copy.deepcopy(savedSchema) evolved = bqtools.match_and_addtoschema({"string": "hello", "integer": 52, "hellomike": 3.1415926, "record": {"string2": "hello2", "float": 1.3, "boolean2": False, "appended1": "another string"}, "array": [{"string3": "hello", "integer3": 42, "foo": 3.141}, {"integer3": 42, "foo": 3.141}], "anotherarray": [{"test1": 52, "test2": False}, {"test1": 52, "test2": True}]}, copyoforigschema, logger=logger) self.assertEqual(evolved, True, "Expected evolve but got no evolve False for evolve test 14") sa2 = [] for bqi in copyoforigschema: i = bqtools.to_dict(bqi) # self.pp.pprint(i) sa2.append(i) diff = DeepDiff(sa, sa2, ignore_order=True) print( "============================================ evolve test 2 diff start " "====================================") print("Patched schema diff {} change{}".format(self.pp.pformat(diff), evolved)) print( "============================================ evolve test 2 diff end " "====================================") self.assertEqual({'iterable_item_added': {'root[5]': {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'hellomike', 'type': 'FLOAT'}}}, diff, "Schema evolution not as expected {}".format(self.pp.pformat(diff))) # Evolution test 3 # this is an object with root schema evolution # Plus child objects with 2 different changes in them # plus another with both copyoforigschema = copy.deepcopy(savedSchema) evolved = bqtools.match_and_addtoschema({"string": "hello", "integer": 52, "hellomike": 3.1415926, "record": {"string2": "hello2", "float": 1.3, "boolean2": False, "appended1": "another string"}, "array": [{"string3": "hello", "integer3": 42, "foo": 3.141}, {"integer3": 42, "foo": 3.141}], "anotherarray": [{"test1": 52, "test2": False, "fred": "I am an evolution"}, {"test1": 52, "test2": True, "iamanotherevolution": 1.3}, {"test1": 52, "test2": True, "iamanotherevolution": 1.3, "fred": "I am same previous " "evolution"}]}, copyoforigschema, logger=logger) self.assertEqual(evolved, True, "Expected evolve but got no evolve False for evolve test 14") sa2 = [] for bqi in copyoforigschema: i = bqtools.to_dict(bqi) # self.pp.pprint(i) sa2.append(i) diff = DeepDiff(sa, sa2, ignore_order=True) print( "============================================ evolve test 3 diff start " "====================================") print("Patched schema diff {} change{}".format(self.pp.pformat(diff), evolved)) print( "============================================ evolve test 3 diff end " "====================================") self.assertEqual({'iterable_item_added': {'root[4]': {'description': None, 'fields': [{'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test1', 'type': 'INTEGER'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test2', 'type': 'BOOLEAN'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'fred', 'type': 'STRING'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'iamanotherevolution', 'type': 'FLOAT'}], 'mode': 'REPEATED', 'name': 'anotherarray', 'type': 'RECORD'}, 'root[5]': {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'hellomike', 'type': 'FLOAT'}}, 'iterable_item_removed': {'root[4]': {'description': None, 'fields': [{'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test1', 'type': 'INTEGER'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test2', 'type': 'BOOLEAN'}], 'mode': 'REPEATED', 'name': 'anotherarray', 'type': 'RECORD'}}}, diff, "Schema evolution not as expected {}".format(self.pp.pformat(diff))) # Evolution test 4 # this is an object with root schema evolution # Plus child objects with 2 different changes in them copyoforigschema = copy.deepcopy(savedSchema) evolved = bqtools.match_and_addtoschema({"string": "hello", "integer": 52, "hellomike": 3.1415926, "record": {"string2": "hello2", "float": 1.3, "boolean2": False, "appended1": "another string"}, "array": [{"string3": "hello", "integer3": 42, "foo": 3.141}, {"integer3": 42, "foo": 3.141}], "anotherarray": [ {"test1": 52, "test2": False, "fred": "I am an evolution"}, {"test1": 52, "test2": True, "iamanotherevolution": 1.3}]}, copyoforigschema, logger=logger) self.assertEqual(evolved, True, "Expected evolve but got no evolve False for evolve test 14") sa2 = [] for bqi in copyoforigschema: i = bqtools.to_dict(bqi) # self.pp.pprint(i) sa2.append(i) diff = DeepDiff(sa, sa2, ignore_order=True) print( "============================================ evolve test 4 diff start " "====================================") print("Patched schema diff {} change{}".format(self.pp.pformat(diff), evolved)) print( "============================================ evolve test 4 diff end " "====================================") self.assertEqual({'iterable_item_added': {'root[4]': {'description': None, 'fields': [{'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test1', 'type': 'INTEGER'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test2', 'type': 'BOOLEAN'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'fred', 'type': 'STRING'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'iamanotherevolution', 'type': 'FLOAT'}], 'mode': 'REPEATED', 'name': 'anotherarray', 'type': 'RECORD'}, 'root[5]': {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'hellomike', 'type': 'FLOAT'}}, 'iterable_item_removed': {'root[4]': {'description': None, 'fields': [{'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test1', 'type': 'INTEGER'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test2', 'type': 'BOOLEAN'}], 'mode': 'REPEATED', 'name': 'anotherarray', 'type': 'RECORD'}}}, diff, "Schema evolution not as expected") # Evolution test 5 # add an array with strings an dno key this should fail copyoforigschema = copy.deepcopy(savedSchema) evolved = bqtools.match_and_addtoschema({"string": "hello", "integer": 52, "hellomike": 3.1415926, "record": {"string2": "hello2", "float": 1.3, "boolean2": False, "appended1": "another string"}, "array": [{"string3": "hello", "integer3": 42, "foo": 3.141}, {"integer3": 42, "foo": 3.141}], "anotherarray": [ {"test1": 52, "test2": False, "fred": "I am an evolution"}, {"test1": 52, "test2": True, "iamanotherevolution": 1.3}, {"test1": 52, "test2": True, "iamanotherevolution": 1.3, "bill": ["hello", "fred", "break this"]}]}, copyoforigschema, logger=logger) self.assertEqual(evolved, True, "Expected evolve but got no evolve False for evolve test 14") sa2 = [] for bqi in copyoforigschema: i = bqtools.to_dict(bqi) # self.pp.pprint(i) sa2.append(i) diff = DeepDiff(sa, sa2, ignore_order=True) print( "============================================ evolve test 5 diff start " "====================================") print("Patched schema diff {} change{}".format(self.pp.pformat(diff), evolved)) print( "============================================ evolve test 5 diff end " "====================================") self.assertEqual({'iterable_item_added': {'root[4]': {'description': None, 'fields': [{'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test1', 'type': 'INTEGER'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test2', 'type': 'BOOLEAN'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'fred', 'type': 'STRING'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'iamanotherevolution', 'type': 'FLOAT'}, {'description': None, 'fields': [ {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'value', 'type': 'STRING'}], 'mode': 'REPEATED', 'name': 'bill', 'type': 'RECORD'}], 'mode': 'REPEATED', 'name': 'anotherarray', 'type': 'RECORD'}, 'root[5]': {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'hellomike', 'type': 'FLOAT'}}, 'iterable_item_removed': {'root[4]': {'description': None, 'fields': [{'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test1', 'type': 'INTEGER'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test2', 'type': 'BOOLEAN'}], 'mode': 'REPEATED', 'name': 'anotherarray', 'type': 'RECORD'}}}, diff, "Schema evolution not as expected") # Evolution test 6 # add an array with strings an dno key this should fail copyoforigschema = copy.deepcopy(savedSchema) evolved = bqtools.match_and_addtoschema({"string": "hello", "integer": 52, "hellomike": 3.1415926, "record": {"string2": "hello2", "float": 1.3, "boolean2": False, "appended1": "another string"}, "array": [{"string3": "hello", "integer3": 42, "foo": 3.141}, {"integer3": 42, "foo": 3.141}], "anotherarray": [ {"test1": 52, "test2": False, "fred": "I am an evolution"}, {"test1": 52, "test2": True, "iamanotherevolution": 1.3}, {"test1": 52, "test2": True, "iamanotherevolution": 1.3, "bill": {}}]}, copyoforigschema, logger=logger) self.assertEqual(evolved, True, "Expected evolve but got no evolve False for evolve test 14") sa2 = [] for bqi in copyoforigschema: i = bqtools.to_dict(bqi) # self.pp.pprint(i) sa2.append(i) diff = DeepDiff(sa, sa2, ignore_order=True) print( "============================================ evolve test 6 diff start " "====================================") print("Patched schema diff {} change{}".format(self.pp.pformat(diff), evolved)) print( "============================================ evolve test 6 diff end " "====================================") self.assertEqual({'iterable_item_added': {'root[4]': {'description': None, 'fields': [{'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test1', 'type': 'INTEGER'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test2', 'type': 'BOOLEAN'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'fred', 'type': 'STRING'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'iamanotherevolution', 'type': 'FLOAT'}, {'description': None, 'fields': [ {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'xxxDummySchemaAsNoneDefinedxxx', 'type': 'STRING'}], 'mode': 'NULLABLE', 'name': 'bill', 'type': 'RECORD'}], 'mode': 'REPEATED', 'name': 'anotherarray', 'type': 'RECORD'}, 'root[5]': {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'hellomike', 'type': 'FLOAT'}}, 'iterable_item_removed': {'root[4]': {'description': None, 'fields': [{'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test1', 'type': 'INTEGER'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test2', 'type': 'BOOLEAN'}], 'mode': 'REPEATED', 'name': 'anotherarray', 'type': 'RECORD'}}}, diff, "Schema evolution not as expected") def test_patchbare(self): startschema = bqtools.create_schema(self.schema2startnobare) resultschema = bqtools.create_schema(self.schemaTest2nonbare) origobject = copy.deepcopy(self.schemaTest2bare) evolved = bqtools.match_and_addtoschema(self.schemaTest2bare, startschema) self.assertEqual(evolved, True, "Bare llist and multi dict evolution has not happened as expected") diff = DeepDiff(resultschema, startschema, ignore_order=True) print( "============================================ mixed arrays added diff start " "====================================") print("Patched schema diff {} change{}".format(self.pp.pformat(diff), evolved)) print( "============================================ mixed arrays added diff end " "====================================") def test_patch(self): bqSchema2 = bqtools.create_schema(self.schemaTest2) bqSchema = bqtools.create_schema(self.schemaTest1) sa = [] for bqi in bqSchema: i = bqtools.to_dict(bqi) sa.append(i) osa = copy.deepcopy(sa) change, pschema = bqtools.recurse_and_add_to_schema(bqSchema2, sa) diff = DeepDiff(pschema, osa, ignore_order=True) # patching never removes fields so expect additions # so after list of root[] should be one longer expectedDiff = {'iterable_item_added': {'root[2]': {'description': None, 'fields': [{'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'integer2', 'type': 'INTEGER'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'float', 'type': 'FLOAT'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'string2', 'type': 'STRING'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'boolean2', 'type': 'BOOLEAN'}], 'mode': 'NULLABLE', 'name': 'record', 'type': 'RECORD'}, 'root[5]': {'description': None, 'fields': [{'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'integer3', 'type': 'INTEGER'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'string3', 'type': 'STRING'}], 'mode': 'REPEATED', 'name': 'array', 'type': 'RECORD'}}, 'iterable_item_removed': {'root[2]': {'description': None, 'fields': [{'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'integer2', 'type': 'INTEGER'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'float', 'type': 'FLOAT'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'string2', 'type': 'STRING'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'boolean2', 'type': 'BOOLEAN'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'appended1', 'type': 'STRING'}], 'mode': 'NULLABLE', 'name': 'record', 'type': 'RECORD'}, 'root[5]': {'description': None, 'fields': [{'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'integer3', 'type': 'INTEGER'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'string3', 'type': 'STRING'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'foo', 'type': 'FLOAT'}], 'mode': 'REPEATED', 'name': 'array', 'type': 'RECORD'}, 'root[6]': {'description': None, 'fields': [{'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test1', 'type': 'INTEGER'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test2', 'type': 'BOOLEAN'}], 'mode': 'REPEATED', 'name': 'anotherarray', 'type': 'RECORD'}}} self.assertEqual(diff, expectedDiff, "Patch diff is not what is expected {}".format(self.pp.pformat(diff))) self.assertEqual(change, True, "Patch diff change result {} is not what is expected {}".format(change, self.pp.pformat( diff))) bqSchema3 = bqtools.create_schema(self.schemaTest3) bqSchema4 = bqtools.create_schema(self.schemaTest4) sa2 = [] for bqi in bqSchema3: i = bqtools.to_dict(bqi) sa2.append(i) osa = copy.deepcopy(sa2) change, pschema = bqtools.recurse_and_add_to_schema(bqSchema4, sa2) diff = DeepDiff(pschema, osa, ignore_order=True) print("Patched schema diff {} change{}".format(self.pp.pformat(diff), change)) # print("old {}".format(self.pp.pformat(osa))) # print("new {}".format(self.pp.pformat(pschema))) def test_patch2(self): bqSchema2 = bqtools.create_schema(self.schemaTest2) bqSchema = bqtools.create_schema(self.schemaTest2) sa = [] for bqi in bqSchema: i = bqtools.to_dict(bqi) sa.append(i) osa = copy.deepcopy(sa) change, pschema = bqtools.recurse_and_add_to_schema(bqSchema2, sa) diff = DeepDiff(pschema, osa, ignore_order=True) # patching never removes fields so expect additions # so after list of root[] should be one longer expectedDiff = {} self.assertEqual(diff, expectedDiff, "Patch diff is not what is expected {}".format(self.pp.pformat(diff))) self.assertEqual(change, False, "Patch diff change result {} is not what is expected {}".format(change, self.pp.pformat( diff))) # print("Patched schema diff {}".format(self.pp.pformat(diff))) # print("old {}".format(self.pp.pformat(osa))) # print("new {}".format(self.pp.pformat(pschema))) # resultant schema and objects shoulld loook like this self.schemaTest2nonbare = self.load_data("bqtools/tests/schemaTest2nonbare.json") self.schemaTest4 = self.load_data("bqtools/tests/schemaTest4.json") self.schemaTest3 = self.load_data("bqtools/tests/schemaTest3.json") self.monsterSchema = self.load_data("bqtools/tests/monsterSchema.json") def test_toDict(self): schema2Dict = ( bigquery.SchemaField('string', 'STRING'), bigquery.SchemaField('integer', 'INTEGER'), bigquery.SchemaField('float', 'FLOAT'), bigquery.SchemaField('boolean', 'BOOLEAN'), bigquery.SchemaField('record', 'RECORD', fields=( bigquery.SchemaField('string2', 'STRING'), bigquery.SchemaField('float', 'FLOAT'), bigquery.SchemaField('integer2', 'INTEGER'), bigquery.SchemaField('boolean2', 'BOOLEAN') )), bigquery.SchemaField('array', 'RECORD', mode='REPEATED', fields=( bigquery.SchemaField('string3', 'STRING'), bigquery.SchemaField('integer3', 'INTEGER') )) ) expectedResult = [ { "name": 'string', "type": 'STRING', "description": None, "mode": 'NULLABLE', "fields": []}, { "name": 'integer', "type": 'INTEGER', "description": None, "mode": 'NULLABLE', "fields": []}, { "name": 'float', "type": 'FLOAT', "description": None, "mode": 'NULLABLE', "fields": []}, { "name": 'boolean', "type": 'BOOLEAN', "description": None, "mode": 'NULLABLE', "fields": []}, { "name": 'record', "type": 'RECORD', "description": None, "mode": 'NULLABLE', "fields": [ {"name": 'string2', "type": 'STRING', "description": None, "mode": 'NULLABLE', "fields": []}, { "name": 'float', "type": 'FLOAT', "description": None, "mode": 'NULLABLE', "fields": []}, { "name": 'integer2', "type": 'INTEGER', "description": None, "mode": 'NULLABLE', "fields": []}, { "name": 'boolean2', "type": 'BOOLEAN', "description": None, "mode": 'NULLABLE', "fields": []} ]}, { "name": 'array', "type": 'RECORD', "description": None, "mode": 'REPEATED', "fields": [ {"name": 'string3', "type": 'STRING', "description": None, "mode": 'NULLABLE', "fields": []}, { "name": 'integer3', "type": 'INTEGER', "description": None, "mode": 'NULLABLE', "fields": []} ]} ] sa = [] # print("showing each field") for bqi in schema2Dict: i = bqtools.to_dict(bqi) # self.pp.pprint(i) sa.append(i) diff = DeepDiff(expectedResult, sa, ignore_order=True) self.assertEqual(diff, {}, "Unexpected result in toDict expected nothing insteadest got {}".format( self.pp.pprint(diff))) def test_createschema(self): bqSchema = bqtools.create_schema(self.schemaTest1) expectedSchema = ( bigquery.SchemaField('string', 'STRING'), bigquery.SchemaField('integer', 'INTEGER'), bigquery.SchemaField('float', 'FLOAT'), bigquery.SchemaField('boolean', 'BOOLEAN'), bigquery.SchemaField('record', 'RECORD', fields=( bigquery.SchemaField('string2', 'STRING'), bigquery.SchemaField('float', 'FLOAT'), bigquery.SchemaField('integer2', 'INTEGER'), bigquery.SchemaField('boolean2', 'BOOLEAN') )), bigquery.SchemaField('array', 'RECORD', mode='REPEATED', fields=( bigquery.SchemaField('string3', 'STRING'), bigquery.SchemaField('integer3', 'INTEGER') )) ) # print("testing result") # self.pp.pprint(bqSchema) sa = [] # print("showing each field") for bqi in bqSchema: i = bqtools.to_dict(bqi) # self.pp.pprint(i) sa.append(i) # print("Schema as dict") # self.pp.pprint(sa) isa = sa # print("Expected result") # self.pp.pprint(expectedSchema) sa = [] # print("showing each expected field") for bqi in expectedSchema: i = bqtools.to_dict(bqi) # self.pp.pprint(i) sa.append(i) # print("expected Schema as dict") diff = DeepDiff(isa, sa, ignore_order=True) # self.pp.pprint(diff) a = "Schema test1 schema does not match target {}".format(len(diff)) self.assertEqual(diff, {}, a) def test_createschema2(self): # print("Creating a new schema") bqSchema2 = bqtools.create_schema(self.schemaTest2) sa2 = [] # print("showing each field schema2") for bqi in bqSchema2: i = bqtools.to_dict(bqi) # self.pp.pprint(i) sa2.append(i) # print("Schema2 as dict") # self.pp.pprint(sa2) expectedSchema2 = ( bigquery.SchemaField('string', 'STRING'), bigquery.SchemaField('integer', 'INTEGER'), bigquery.SchemaField('record', 'RECORD', fields=( bigquery.SchemaField('string2', 'STRING'), bigquery.SchemaField('float', 'FLOAT'), bigquery.SchemaField('boolean2', 'BOOLEAN'), bigquery.SchemaField('appended1', 'STRING') )), bigquery.SchemaField('array', 'RECORD', mode='REPEATED', fields=( bigquery.SchemaField('string3', 'STRING'), bigquery.SchemaField('integer3', 'INTEGER'), bigquery.SchemaField('foo', 'FLOAT') )), bigquery.SchemaField('anotherarray', 'RECORD', mode='REPEATED', fields=( bigquery.SchemaField('test1', 'INTEGER'), bigquery.SchemaField('test2', 'BOOLEAN') )) ) sa = [] for bqi in expectedSchema2: i = bqtools.to_dict(bqi) # self.pp.pprint(i) sa.append(i) diff = DeepDiff(sa, sa2, ignore_order=True) # self.pp.pprint(diff) a = "Schema test1 schema does not match target {}".format(diff) self.assertEqual(diff, {}, a) logger = logging.getLogger("testBQTools") evolved = bqtools.match_and_addtoschema({"string": "hello"}, expectedSchema2, logger=logger) self.assertEqual(evolved, False, "Expected no evolve but got evolve true evolve test 1") evolved = bqtools.match_and_addtoschema({"string": "hello", "integer": 52}, expectedSchema2, logger=logger) self.assertEqual(evolved, False, "Expected no evolve but got evolve true evolve test 2") evolved = bqtools.match_and_addtoschema({"string": "hello", "integer": 52, "record": {}}, expectedSchema2, logger=logger) self.assertEqual(evolved, False, "Expected no evolve but got evolve true evolve test 3") evolved = bqtools.match_and_addtoschema( {"string": "hello", "integer": 52, "record": {"string2": "hello2"}}, expectedSchema2, logger=logger) self.assertEqual(evolved, False, "Expected no evolve but got evolve true evolve test 4") evolved = bqtools.match_and_addtoschema({"string": "hello", "integer": 52, "record": {"string2": "hello2", "float": 1.3, "boolean2": False, "appended1": "another string"}}, expectedSchema2, logger=logger) self.assertEqual(evolved, False, "Expected no evolve but got evolve true evolve test 6") evolved = bqtools.match_and_addtoschema({"string": "hello", "integer": 52, "record": {"string2": "hello2", "float": 1.3, "boolean2": False, "appended1": "another string"}, "array": []}, expectedSchema2, logger=logger) self.assertEqual(evolved, False, "Expected no evolve but got evolve true evolve test 7") evolved = bqtools.match_and_addtoschema({"string": "hello", "integer": 52, "record": {"string2": "hello2", "float": 1.3, "boolean2": False, "appended1": "another string"}, "array": [{"string3": "hello"}]}, expectedSchema2, logger=logger) self.assertEqual(evolved, False, "Expected no evolve but got evolve true evolve test 8") evolved = bqtools.match_and_addtoschema({"string": "hello", "integer": 52, "record": {"string2": "hello2", "float": 1.3, "boolean2": False, "appended1": "another string"}, "array": [{"string3": "hello", "integer3": 42}]}, expectedSchema2, logger=logger) self.assertEqual(evolved, False, "Expected no evolve but got evolve true evolve test 9") evolved = bqtools.match_and_addtoschema({"string": "hello", "integer": 52, "record": {"string2": "hello2", "float": 1.3, "boolean2": False, "appended1": "another string"}, "array": [{"string3": "hello", "integer3": 42, "foo": 3.141}]}, expectedSchema2, logger=logger) self.assertEqual(evolved, False, "Expected no evolve but got evolve true evolve test 10") evolved = bqtools.match_and_addtoschema({"string": "hello", "integer": 52, "record": {"string2": "hello2", "float": 1.3, "boolean2": False, "appended1": "another string"}, "array": [{"string3": "hello", "integer3": 42, "foo": 3.141}, {"integer3": 42, "foo": 3.141}]}, expectedSchema2, logger=logger) self.assertEqual(evolved, False, "Expected no evolve but got evolve true evolve test 11") evolved = bqtools.match_and_addtoschema({"string": "hello", "integer": 52, "record": {"string2": "hello2", "float": 1.3, "boolean2": False, "appended1": "another string"}, "array": [{"string3": "hello", "integer3": 42, "foo": 3.141}, {"integer3": 42, "foo": 3.141}], "anotherarray": [{"test1": 52, "test2": False}, {"test1": 52, "test2": True}]}, expectedSchema2, logger=logger) self.assertEqual(evolved, False, "Expected no evolve but got evolve true evolve test 12") # evolve tests bbelow prepare baseline copyoforigschema = list(expectedSchema2) savedSchema = copy.deepcopy(copyoforigschema) sa = [] for bqi in copyoforigschema: i = bqtools.to_dict(bqi) # self.pp.pprint(i) sa.append(i) # Evolutio test 1 # add some stuff 2 layers down in an array evolved = bqtools.match_and_addtoschema({"string": "hello", "integer": 52, "record": {"string2": "hello2", "float": 1.3, "boolean2": False, "appended1": "another string"}, "array": [{"string3": "hello", "integer3": 42, "foo": 3.141}, {"integer3": 42, "foo": 3.141}], "anotherarray": [{"test1": 52, "test2": False}, {"test1": 52, "test2": True, "fred": "I am an evolved string", "iamanotherevolve": 32}]}, copyoforigschema, logger=logger) self.assertEqual(evolved, True, "Expected evolve but got no evolve False for evolve test 13") sa2 = [] for bqi in copyoforigschema: i = bqtools.to_dict(bqi) # self.pp.pprint(i) sa2.append(i) diff = DeepDiff(sa, sa2, ignore_order=True) diff = dict(diff) print( "============================================ evolve test 1 diff start " "====================================") print("Patched schema diff {} change{}".format(self.pp.pformat(diff), evolved)) print( "============================================ evolve test 1 diff end " "====================================") self.assertEqual({'iterable_item_added': {'root[4]': {'description': None, 'fields': [{'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test1', 'type': 'INTEGER'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test2', 'type': 'BOOLEAN'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'iamanotherevolve', 'type': 'INTEGER'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'fred', 'type': 'STRING'}], 'mode': 'REPEATED', 'name': 'anotherarray', 'type': 'RECORD'}}, 'iterable_item_removed': {'root[4]': {'description': None, 'fields': [{'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test1', 'type': 'INTEGER'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test2', 'type': 'BOOLEAN'}], 'mode': 'REPEATED', 'name': 'anotherarray', 'type': 'RECORD'}}}, diff, "Schema evolution not as expected {}".format(self.pp.pformat(diff))) # Evolution test 2 # this just adds a fiedl at top level copyoforigschema = copy.deepcopy(savedSchema) evolved = bqtools.match_and_addtoschema({"string": "hello", "integer": 52, "hellomike": 3.1415926, "record": {"string2": "hello2", "float": 1.3, "boolean2": False, "appended1": "another string"}, "array": [{"string3": "hello", "integer3": 42, "foo": 3.141}, {"integer3": 42, "foo": 3.141}], "anotherarray": [{"test1": 52, "test2": False}, {"test1": 52, "test2": True}]}, copyoforigschema, logger=logger) self.assertEqual(evolved, True, "Expected evolve but got no evolve False for evolve test 14") sa2 = [] for bqi in copyoforigschema: i = bqtools.to_dict(bqi) # self.pp.pprint(i) sa2.append(i) diff = DeepDiff(sa, sa2, ignore_order=True) print( "============================================ evolve test 2 diff start " "====================================") print("Patched schema diff {} change{}".format(self.pp.pformat(diff), evolved)) print( "============================================ evolve test 2 diff end " "====================================") self.assertEqual({'iterable_item_added': {'root[5]': {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'hellomike', 'type': 'FLOAT'}}}, diff, "Schema evolution not as expected {}".format(self.pp.pformat(diff))) # Evolution test 3 # this is an object with root schema evolution # Plus child objects with 2 different changes in them # plus another with both copyoforigschema = copy.deepcopy(savedSchema) evolved = bqtools.match_and_addtoschema({"string": "hello", "integer": 52, "hellomike": 3.1415926, "record": {"string2": "hello2", "float": 1.3, "boolean2": False, "appended1": "another string"}, "array": [{"string3": "hello", "integer3": 42, "foo": 3.141}, {"integer3": 42, "foo": 3.141}], "anotherarray": [{"test1": 52, "test2": False, "fred": "I am an evolution"}, {"test1": 52, "test2": True, "iamanotherevolution": 1.3}, {"test1": 52, "test2": True, "iamanotherevolution": 1.3, "fred": "I am same previous " "evolution"}]}, copyoforigschema, logger=logger) self.assertEqual(evolved, True, "Expected evolve but got no evolve False for evolve test 14") sa2 = [] for bqi in copyoforigschema: i = bqtools.to_dict(bqi) # self.pp.pprint(i) sa2.append(i) diff = DeepDiff(sa, sa2, ignore_order=True) print( "============================================ evolve test 3 diff start " "====================================") print("Patched schema diff {} change{}".format(self.pp.pformat(diff), evolved)) print( "============================================ evolve test 3 diff end " "====================================") self.assertEqual({'iterable_item_added': {'root[4]': {'description': None, 'fields': [{'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test1', 'type': 'INTEGER'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test2', 'type': 'BOOLEAN'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'fred', 'type': 'STRING'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'iamanotherevolution', 'type': 'FLOAT'}], 'mode': 'REPEATED', 'name': 'anotherarray', 'type': 'RECORD'}, 'root[5]': {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'hellomike', 'type': 'FLOAT'}}, 'iterable_item_removed': {'root[4]': {'description': None, 'fields': [{'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test1', 'type': 'INTEGER'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test2', 'type': 'BOOLEAN'}], 'mode': 'REPEATED', 'name': 'anotherarray', 'type': 'RECORD'}}}, diff, "Schema evolution not as expected {}".format(self.pp.pformat(diff))) # Evolution test 4 # this is an object with root schema evolution # Plus child objects with 2 different changes in them copyoforigschema = copy.deepcopy(savedSchema) evolved = bqtools.match_and_addtoschema({"string": "hello", "integer": 52, "hellomike": 3.1415926, "record": {"string2": "hello2", "float": 1.3, "boolean2": False, "appended1": "another string"}, "array": [{"string3": "hello", "integer3": 42, "foo": 3.141}, {"integer3": 42, "foo": 3.141}], "anotherarray": [ {"test1": 52, "test2": False, "fred": "I am an evolution"}, {"test1": 52, "test2": True, "iamanotherevolution": 1.3}]}, copyoforigschema, logger=logger) self.assertEqual(evolved, True, "Expected evolve but got no evolve False for evolve test 14") sa2 = [] for bqi in copyoforigschema: i = bqtools.to_dict(bqi) # self.pp.pprint(i) sa2.append(i) diff = DeepDiff(sa, sa2, ignore_order=True) print( "============================================ evolve test 4 diff start " "====================================") print("Patched schema diff {} change{}".format(self.pp.pformat(diff), evolved)) print( "============================================ evolve test 4 diff end " "====================================") self.assertEqual({'iterable_item_added': {'root[4]': {'description': None, 'fields': [{'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test1', 'type': 'INTEGER'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test2', 'type': 'BOOLEAN'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'fred', 'type': 'STRING'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'iamanotherevolution', 'type': 'FLOAT'}], 'mode': 'REPEATED', 'name': 'anotherarray', 'type': 'RECORD'}, 'root[5]': {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'hellomike', 'type': 'FLOAT'}}, 'iterable_item_removed': {'root[4]': {'description': None, 'fields': [{'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test1', 'type': 'INTEGER'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test2', 'type': 'BOOLEAN'}], 'mode': 'REPEATED', 'name': 'anotherarray', 'type': 'RECORD'}}}, diff, "Schema evolution not as expected") # Evolution test 5 # add an array with strings an dno key this should fail copyoforigschema = copy.deepcopy(savedSchema) evolved = bqtools.match_and_addtoschema({"string": "hello", "integer": 52, "hellomike": 3.1415926, "record": {"string2": "hello2", "float": 1.3, "boolean2": False, "appended1": "another string"}, "array": [{"string3": "hello", "integer3": 42, "foo": 3.141}, {"integer3": 42, "foo": 3.141}], "anotherarray": [ {"test1": 52, "test2": False, "fred": "I am an evolution"}, {"test1": 52, "test2": True, "iamanotherevolution": 1.3}, {"test1": 52, "test2": True, "iamanotherevolution": 1.3, "bill": ["hello", "fred", "break this"]}]}, copyoforigschema, logger=logger) self.assertEqual(evolved, True, "Expected evolve but got no evolve False for evolve test 14") sa2 = [] for bqi in copyoforigschema: i = bqtools.to_dict(bqi) # self.pp.pprint(i) sa2.append(i) diff = DeepDiff(sa, sa2, ignore_order=True) print( "============================================ evolve test 5 diff start " "====================================") print("Patched schema diff {} change{}".format(self.pp.pformat(diff), evolved)) print( "============================================ evolve test 5 diff end " "====================================") self.assertEqual({'iterable_item_added': {'root[4]': {'description': None, 'fields': [{'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test1', 'type': 'INTEGER'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test2', 'type': 'BOOLEAN'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'fred', 'type': 'STRING'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'iamanotherevolution', 'type': 'FLOAT'}, {'description': None, 'fields': [ {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'value', 'type': 'STRING'}], 'mode': 'REPEATED', 'name': 'bill', 'type': 'RECORD'}], 'mode': 'REPEATED', 'name': 'anotherarray', 'type': 'RECORD'}, 'root[5]': {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'hellomike', 'type': 'FLOAT'}}, 'iterable_item_removed': {'root[4]': {'description': None, 'fields': [{'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test1', 'type': 'INTEGER'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test2', 'type': 'BOOLEAN'}], 'mode': 'REPEATED', 'name': 'anotherarray', 'type': 'RECORD'}}}, diff, "Schema evolution not as expected") # Evolution test 6 # add an array with strings an dno key this should fail copyoforigschema = copy.deepcopy(savedSchema) evolved = bqtools.match_and_addtoschema({"string": "hello", "integer": 52, "hellomike": 3.1415926, "record": {"string2": "hello2", "float": 1.3, "boolean2": False, "appended1": "another string"}, "array": [{"string3": "hello", "integer3": 42, "foo": 3.141}, {"integer3": 42, "foo": 3.141}], "anotherarray": [ {"test1": 52, "test2": False, "fred": "I am an evolution"}, {"test1": 52, "test2": True, "iamanotherevolution": 1.3}, {"test1": 52, "test2": True, "iamanotherevolution": 1.3, "bill": {}}]}, copyoforigschema, logger=logger) self.assertEqual(evolved, True, "Expected evolve but got no evolve False for evolve test 14") sa2 = [] for bqi in copyoforigschema: i = bqtools.to_dict(bqi) # self.pp.pprint(i) sa2.append(i) diff = DeepDiff(sa, sa2, ignore_order=True) print( "============================================ evolve test 6 diff start " "====================================") print("Patched schema diff {} change{}".format(self.pp.pformat(diff), evolved)) print( "============================================ evolve test 6 diff end " "====================================") self.assertEqual({'iterable_item_added': {'root[4]': {'description': None, 'fields': [{'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test1', 'type': 'INTEGER'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test2', 'type': 'BOOLEAN'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'fred', 'type': 'STRING'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'iamanotherevolution', 'type': 'FLOAT'}, {'description': None, 'fields': [ {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'xxxDummySchemaAsNoneDefinedxxx', 'type': 'STRING'}], 'mode': 'NULLABLE', 'name': 'bill', 'type': 'RECORD'}], 'mode': 'REPEATED', 'name': 'anotherarray', 'type': 'RECORD'}, 'root[5]': {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'hellomike', 'type': 'FLOAT'}}, 'iterable_item_removed': {'root[4]': {'description': None, 'fields': [{'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test1', 'type': 'INTEGER'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test2', 'type': 'BOOLEAN'}], 'mode': 'REPEATED', 'name': 'anotherarray', 'type': 'RECORD'}}}, diff, "Schema evolution not as expected") def test_patchbare(self): startschema = bqtools.create_schema(self.schema2startnobare) resultschema = bqtools.create_schema(self.schemaTest2nonbare) origobject = copy.deepcopy(self.schemaTest2bare) evolved = bqtools.match_and_addtoschema(self.schemaTest2bare, startschema) self.assertEqual(evolved, True, "Bare llist and multi dict evolution has not happened as expected") diff = DeepDiff(resultschema, startschema, ignore_order=True) print( "============================================ mixed arrays added diff start " "====================================") print("Patched schema diff {} change{}".format(self.pp.pformat(diff), evolved)) print( "============================================ mixed arrays added diff end " "====================================") def test_patch(self): bqSchema2 = bqtools.create_schema(self.schemaTest2) bqSchema = bqtools.create_schema(self.schemaTest1) sa = [] for bqi in bqSchema: i = bqtools.to_dict(bqi) sa.append(i) osa = copy.deepcopy(sa) change, pschema = bqtools.recurse_and_add_to_schema(bqSchema2, sa) diff = DeepDiff(pschema, osa, ignore_order=True) # patching never removes fields so expect additions # so after list of root[] should be one longer expectedDiff = {'iterable_item_added': {'root[2]': {'description': None, 'fields': [{'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'integer2', 'type': 'INTEGER'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'float', 'type': 'FLOAT'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'string2', 'type': 'STRING'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'boolean2', 'type': 'BOOLEAN'}], 'mode': 'NULLABLE', 'name': 'record', 'type': 'RECORD'}, 'root[5]': {'description': None, 'fields': [{'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'integer3', 'type': 'INTEGER'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'string3', 'type': 'STRING'}], 'mode': 'REPEATED', 'name': 'array', 'type': 'RECORD'}}, 'iterable_item_removed': {'root[2]': {'description': None, 'fields': [{'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'integer2', 'type': 'INTEGER'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'float', 'type': 'FLOAT'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'string2', 'type': 'STRING'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'boolean2', 'type': 'BOOLEAN'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'appended1', 'type': 'STRING'}], 'mode': 'NULLABLE', 'name': 'record', 'type': 'RECORD'}, 'root[5]': {'description': None, 'fields': [{'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'integer3', 'type': 'INTEGER'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'string3', 'type': 'STRING'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'foo', 'type': 'FLOAT'}], 'mode': 'REPEATED', 'name': 'array', 'type': 'RECORD'}, 'root[6]': {'description': None, 'fields': [{'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test1', 'type': 'INTEGER'}, {'description': None, 'fields': [], 'mode': 'NULLABLE', 'name': 'test2', 'type': 'BOOLEAN'}], 'mode': 'REPEATED', 'name': 'anotherarray', 'type': 'RECORD'}}} self.assertEqual(diff, expectedDiff, "Patch diff is not what is expected {}".format(self.pp.pformat(diff))) self.assertEqual(change, True, "Patch diff change result {} is not what is expected {}".format(change, self.pp.pformat( diff))) bqSchema3 = bqtools.create_schema(self.schemaTest3) bqSchema4 = bqtools.create_schema(self.schemaTest4) sa2 = [] for bqi in bqSchema3: i = bqtools.to_dict(bqi) sa2.append(i) osa = copy.deepcopy(sa2) change, pschema = bqtools.recurse_and_add_to_schema(bqSchema4, sa2) diff = DeepDiff(pschema, osa, ignore_order=True) print("Patched schema diff {} change{}".format(self.pp.pformat(diff), change)) # print("old {}".format(self.pp.pformat(osa))) # print("new {}".format(self.pp.pformat(pschema))) def test_patch2(self): bqSchema2 = bqtools.create_schema(self.schemaTest2) bqSchema = bqtools.create_schema(self.schemaTest2) sa = [] for bqi in bqSchema: i = bqtools.to_dict(bqi) sa.append(i) osa = copy.deepcopy(sa) change, pschema = bqtools.recurse_and_add_to_schema(bqSchema2, sa) diff = DeepDiff(pschema, osa, ignore_order=True) # patching never removes fields so expect additions # so after list of root[] should be one longer expectedDiff = {} self.assertEqual(diff, expectedDiff, "Patch diff is not what is expected {}".format(self.pp.pformat(diff))) self.assertEqual(change, False, "Patch diff change result {} is not what is expected {}".format(change, self.pp.pformat( diff))) # print("Patched schema diff {}".format(self.pp.pformat(diff))) # print("old {}".format(self.pp.pformat(osa))) # print("new {}".format(self.pp.pformat(pschema))) def test_sync(self): logging.basicConfig(level=logging.INFO) # get target datasets ready uses app default credentials bqclient = bigquery.Client() stclient = storage.Client() # will use default project and public datsets for testing destination_project = bqclient.project # going to copy data from various datasets in bigquery-public-data project # each destination will be of the form bqsynctest_<region>_<orignaldatasetname> # in region - will be replaced with _ to make valid dataset nae # as all public data is in us we will need for cross region a us bucket # and a target region bucket # tests are in region i.e. us to us # us to eu # us to europe-west2 # bucket names will be created if they do not exist of # bqsynctest_<projectid>_<region> # eac bucket will have a 1 day lifecycle added # source will be picked with various source attribute types, partitioning and clustering strategy # success is tables are copied no errors in extract, load or copy # not tale numbers may vary # at end the test datasets will be deleted the buckets will remain # this as bucket names remain reserved for sometime after deletion test_buckets = [] usbucket = "bqsynctest_{}_us".format(destination_project) test_buckets.append({"name":usbucket,"region":"us"}) eubucket = "bqsynctest_{}_eu".format(destination_project) test_buckets.append({"name":eubucket,"region":"eu"}) eu2bucket = "bqsynctest_{}_europe-west-2".format(destination_project) test_buckets.append({"name":eu2bucket,"region":"europe-west2"}) logging.info("Checking buckets for bqsync tests exist in right regions and with lifecycle rules...") # loop through test bucket if they do not exist create in the right region and add # #lifecycle rule # if they do exist check they are in right region and have the expected lifecycle rule for bucket_dict in test_buckets: bucket = None try: bucket = stclient.get_bucket(bucket_dict["name"]) except exceptions.NotFound: bucket_ref = storage.Bucket(stclient,name=bucket_dict["name"]) bucket_ref.location = bucket_dict["region"] storage.Bucket.create(bucket_ref,stclient) bucket = stclient.get_bucket(bucket_dict["name"]) rules = bucket.lifecycle_rules nrules = [] found1daydeletrule = False for rule in rules: if isinstance(rule, dict): if "condition" in rule and "age" in rule["condition"] and rule["condition"][ "age"] == 1 and "isLive" in rule["condition"] and rule["condition"][ "isLive"]: found1daydeletrule = True nrules.append(rule) if not found1daydeletrule: nrules.append( {"action": {"type": "Delete"}, "condition": {"age": 1, "isLive": True}}) bucket.lifecycle_rules = nrules bucket.update(stclient) # starting datsets to test with form project bigquery-public-data # along with each entry is list of tables and length of maximum days for day partition test_source_configs = [] # small dataset good to start tests basic types test_source_configs.append({ "description":"small dataset good to start tests basic types", "dataset_name":"fcc_political_ads", "table_filter_regexp":['broadcast_tv_radio_station', 'content_info', 'file_history', 'file_record'], "max_last_days":365 }) # small dataset good to start tests basic types test_source_configs.append({ "description": "date partitioned 1 date type field", "dataset_name": "wikipedia", "table_filter_regexp": ['wikidata'], "max_last_days": None }) # a table with geography data type test_source_configs.append({ "description":"a table with geography data type", "dataset_name": "faa", "table_filter_regexp": ['us_airports'], "max_last_days": 365 }) # a dataset with a day partitioned table with clustering # not using a specific partition column name so just ingest time test_source_configs.append({ "description":"a dataset with a day partitioned table with clustering not using a specific partition column name so just ingest time", "dataset_name": "new_york_subway", "table_filter_regexp": ['geo_nyc_borough_boundaries'], "max_last_days": 365 }) # a dataset with view referencing it self to demo simple view copying test_source_configs.append({ "description":"a dataset with view referencing it self to demo simple view copying", "dataset_name": "noaa_goes16", "table_filter_regexp": ['.*'], "max_last_days": 365 }) # a dataset with functions only test_source_configs.append({ "description":"a dataset with functions only", "dataset_name": "persistent_udfs", "table_filter_regexp": ['.*'], "max_last_days": 365 }) # a dataset with nested table example and a model # models will fail test_source_configs.append({ "description":"a dataset with nested table example and a model", "dataset_name": "samples", "table_filter_regexp": ['github_nested','model'], "max_last_days": 365 }) # a dataset with day partioned no clustering using natural load time test_source_configs.append({ "description":"a dataset with day partioned no clustering using natural load time", "dataset_name": "sec_quarterly_financials", "table_filter_regexp": ['.*'], "max_last_days": 365 * 3 }) # a dataset with a day partitioned table with clustering # using a specific partition column name so not just ingest time # has repetade basic types # note this shows the issue of bq nit correctly supporting avro logical types # https://issuetracker.google.com/issues/35905894 will fail until resolved test_source_configs.append({ "description":"a dataset with a day partitioned table with clustering using a specific partition column name so not just ingest time", "dataset_name": "human_genome_variants", "table_filter_regexp": ['platinum_genomes_deepvariant_variants_20180823'], "max_last_days": None }) test_destination_datasets_list = [] for src_destination in test_source_configs: tests = [] # set up local us test destdatset = "bqsynctest_{}_{}".format("US",src_destination["dataset_name"]).replace("-","_") tests.append({ "subtest":"us intra region", "destdataset": destdatset, "destregion":"US" }) test_destination_datasets_list.append(destdatset) # set up us to eu test destdatset = "bqsynctest_{}_{}".format("EU", src_destination["dataset_name"]).replace( "-", "_") tests.append({ "subtest": "us to eu cross region", "destdataset": destdatset, "destregion": "EU", "dstbucket":eubucket }) test_destination_datasets_list.append(destdatset) # set up us to europe-west2 test # set up us to eu test destdatset = "bqsynctest_{}_{}".format("europe-west2", src_destination["dataset_name"]).replace( "-", "_") tests.append({ "subtest": "us to eu cross region", "destdataset": destdatset, "destregion": "europe-west2", "dstbucket":eu2bucket }) test_destination_datasets_list.append(destdatset) src_destination["tests"] = tests logging.info( "Checking daatsets for bqsync tests exist in right regions and if exist empty them i.e. delete and recreate them...") for datasetname in test_destination_datasets_list: dataset_ref = bqclient.dataset(datasetname) if bqtools.dataset_exists(bqclient,dataset_ref): bqclient.delete_dataset(bqclient.get_dataset(dataset_ref),delete_contents=True) # for each source run sub tests logging.info("Staring tests...") for test_config in test_source_configs: # run sub test basically an initial copy followed by # 2nd copy if no data latter should do nothing for dstconfig in test_config["tests"]: # create an empty dataset dataset_ref = bqclient.dataset(dstconfig["destdataset"]) dataset = bigquery.Dataset(dataset_ref) dataset.location = dstconfig["destregion"] dataset = bqclient.create_dataset(dataset) # create initial sync # as source is all in US if not us must need buckets synctest = None if dstconfig["destregion"] == "US": synctest = bqtools.MultiBQSyncCoordinator(["bigquery-public-data.{}".format(test_config["dataset_name"])], ["{}.{}".format(destination_project,dstconfig["destdataset"])], remove_deleted_tables=True, copy_data=True, copy_types=["TABLE","VIEW","ROUTINE","MODEL"], check_depth=0, table_view_filter=test_config["table_filter_regexp"], table_or_views_to_exclude=[], latest_date=None, days_before_latest_day=test_config["max_last_days"], day_partition_deep_check=False, analysis_project=destination_project) else: synctest = bqtools.MultiBQSyncCoordinator( ["bigquery-public-data.{}".format(test_config["dataset_name"])], ["{}.{}".format(destination_project, dstconfig["destdataset"])], srcbucket=usbucket, dstbucket=dstconfig["dstbucket"], remove_deleted_tables=True, copy_data=True, copy_types=["TABLE","VIEW","ROUTINE","MODEL"], check_depth=0, table_view_filter=test_config["table_filter_regexp"], table_or_views_to_exclude=[], latest_date=None, days_before_latest_day=test_config["max_last_days"], day_partition_deep_check=False, analysis_project=destination_project) synctest.sync() self.assertEqual(True, True, "Initial Sync {} {} from bigquery-public-data..{} with {}.{} completed".format( test_config["description"], dstconfig["subtest"], test_config["dataset_name"], destination_project, dstconfig["destdataset"] )) synctest.reset_stats() synctest.sync() self.assertEqual(synctest.tables_avoided, synctest.tables_synced, "Second Sync {} {} from bigquery-public-data..{} with {}.{} " "completed".format( test_config["description"], dstconfig["subtest"], test_config["dataset_name"], destination_project, dstconfig["destdataset"] )) eutest = bqtools.MultiBQSyncCoordinator( ["{}.{}".format(destination_project,test_config["tests"][1]["destdataset"])], ["{}.{}".format(destination_project,test_config["tests"][2]["destdataset"])], srcbucket=eubucket, dstbucket=eu2bucket, remove_deleted_tables=True, copy_data=True, copy_types=["TABLE", "VIEW", "ROUTINE", "MODEL"], check_depth=0, table_view_filter=[".*"], table_or_views_to_exclude=[], latest_date=None, days_before_latest_day=None, day_partition_deep_check=False, analysis_project=destination_project) eutest.sync() self.assertEqual(eutest.tables_avoided + eutest.view_avoided + eutest.routines_avoided, eutest.tables_synced + eutest.views_synced + eutest.routines_synced, "Inter europe Sync {} {} from {}.{} with {}.{}" "completed".format( test_config["description"], "EU to europe-west2", destination_project, test_config["tests"][1]["destdataset"], destination_project, test_config["tests"][2]["destdataset"] )) def test_gendiff(self): bqSchema2 = bqtools.create_schema(self.schemaTest2) views = bqtools.gen_diff_views('foo', 'ar', 'bob', bqSchema2, description="A test schema") vexpected = {'bobdb': { "query": """#standardSQL SELECT _PARTITIONTIME AS scantime, ifnull(tabob.integer,0) as integer, ifnull(A1.integer3,0) as arrayinteger3, ifnull(A1.foo,0.0) as arrayfoo, ifnull(A1.string3,"None") as arraystring3, ifnull(A2.test1,0) as anotherarraytest1, ifnull(A2.test2,False) as anotherarraytest2, ifnull(tabob.string,"None") as string, ifnull(tabob.record.appended1,"None") as recordappended1, ifnull(tabob.record.float,0.0) as recordfloat, ifnull(tabob.record.string2,"None") as recordstring2, ifnull(tabob.record.boolean2,False) as recordboolean2 from `foo.ar.bob` as tabob LEFT JOIN UNNEST(tabob.array) as A1 LEFT JOIN UNNEST(tabob.anotherarray) as A2""", "description": "View used as basis for diffview:A test schema"}, 'bobdiffday': { "query": """#standardSQL SELECT o.scantime as origscantime, l.scantime as laterscantime, CASE WHEN o.integer IS NULL THEN 'Added' WHEN l.integer IS NULL THEN 'Deleted' WHEN o.integer = l.integer AND o.arrayinteger3 = l.arrayinteger3 AND o.arrayfoo = l.arrayfoo AND o.arraystring3 = l.arraystring3 AND o.anotherarraytest1 = l.anotherarraytest1 AND o.anotherarraytest2 = l.anotherarraytest2 AND o.string = l.string AND o.recordappended1 = l.recordappended1 AND o.recordfloat = l.recordfloat AND o.recordstring2 = l.recordstring2 AND o.recordboolean2 = l.recordboolean2 THEN 'Same' ELSE 'Updated' END AS action, o.integer as originteger, l.integer as laterinteger, case when o.integer = l.integer then 0 else 1 end as diffinteger, o.arrayinteger3 as origarrayinteger3, l.arrayinteger3 as laterarrayinteger3, case when o.arrayinteger3 = l.arrayinteger3 then 0 else 1 end as diffarrayinteger3, o.arrayfoo as origarrayfoo, l.arrayfoo as laterarrayfoo, case when o.arrayfoo = l.arrayfoo then 0 else 1 end as diffarrayfoo, o.arraystring3 as origarraystring3, l.arraystring3 as laterarraystring3, case when o.arraystring3 = l.arraystring3 then 0 else 1 end as diffarraystring3, o.anotherarraytest1 as origanotherarraytest1, l.anotherarraytest1 as lateranotherarraytest1, case when o.anotherarraytest1 = l.anotherarraytest1 then 0 else 1 end as diffanotherarraytest1, o.anotherarraytest2 as origanotherarraytest2, l.anotherarraytest2 as lateranotherarraytest2, case when o.anotherarraytest2 = l.anotherarraytest2 then 0 else 1 end as diffanotherarraytest2, o.string as origstring, l.string as laterstring, case when o.string = l.string then 0 else 1 end as diffstring, o.recordappended1 as origrecordappended1, l.recordappended1 as laterrecordappended1, case when o.recordappended1 = l.recordappended1 then 0 else 1 end as diffrecordappended1, o.recordfloat as origrecordfloat, l.recordfloat as laterrecordfloat, case when o.recordfloat = l.recordfloat then 0 else 1 end as diffrecordfloat, o.recordstring2 as origrecordstring2, l.recordstring2 as laterrecordstring2, case when o.recordstring2 = l.recordstring2 then 0 else 1 end as diffrecordstring2, o.recordboolean2 as origrecordboolean2, l.recordboolean2 as laterrecordboolean2, case when o.recordboolean2 = l.recordboolean2 then 0 else 1 end as diffrecordboolean2 FROM (SELECT * FROM `foo.ar.bobdb` WHERE scantime = ( SELECT MAX(_PARTITIONTIME) FROM `foo.ar.bob` WHERE _PARTITIONTIME < ( SELECT MAX(_PARTITIONTIME) FROM `foo.ar.bob`) AND _PARTITIONTIME < TIMESTAMP_SUB(CURRENT_TIMESTAMP(),INTERVAL 1 DAY) ) ) o FULL OUTER JOIN ( SELECT * FROM `foo.ar.bobdb` WHERE scantime =( SELECT MAX(_PARTITIONTIME) FROM `foo.ar.bob` )) l ON l.integer = o.integer AND l.arrayinteger3=o.arrayinteger3 AND l.arrayfoo=o.arrayfoo AND l.arraystring3=o.arraystring3 AND l.anotherarraytest1=o.anotherarraytest1 AND l.anotherarraytest2=o.anotherarraytest2 AND l.string=o.string AND l.recordappended1=o.recordappended1 AND l.recordfloat=o.recordfloat AND l.recordstring2=o.recordstring2 AND l.recordboolean2=o.recordboolean2""", "description": "Diff of day of underlying table bob description: A test schema"}, 'bobdiffweek': {'query': """#standardSQL SELECT o.scantime as origscantime, l.scantime as laterscantime, CASE WHEN o.integer IS NULL THEN 'Added' WHEN l.integer IS NULL THEN 'Deleted' WHEN o.integer = l.integer AND o.arrayinteger3 = l.arrayinteger3 AND o.arrayfoo = l.arrayfoo AND o.arraystring3 = l.arraystring3 AND o.anotherarraytest1 = l.anotherarraytest1 AND o.anotherarraytest2 = l.anotherarraytest2 AND o.string = l.string AND o.recordappended1 = l.recordappended1 AND o.recordfloat = l.recordfloat AND o.recordstring2 = l.recordstring2 AND o.recordboolean2 = l.recordboolean2 THEN 'Same' ELSE 'Updated' END AS action, o.integer as originteger, l.integer as laterinteger, case when o.integer = l.integer then 0 else 1 end as diffinteger, o.arrayinteger3 as origarrayinteger3, l.arrayinteger3 as laterarrayinteger3, case when o.arrayinteger3 = l.arrayinteger3 then 0 else 1 end as diffarrayinteger3, o.arrayfoo as origarrayfoo, l.arrayfoo as laterarrayfoo, case when o.arrayfoo = l.arrayfoo then 0 else 1 end as diffarrayfoo, o.arraystring3 as origarraystring3, l.arraystring3 as laterarraystring3, case when o.arraystring3 = l.arraystring3 then 0 else 1 end as diffarraystring3, o.anotherarraytest1 as origanotherarraytest1, l.anotherarraytest1 as lateranotherarraytest1, case when o.anotherarraytest1 = l.anotherarraytest1 then 0 else 1 end as diffanotherarraytest1, o.anotherarraytest2 as origanotherarraytest2, l.anotherarraytest2 as lateranotherarraytest2, case when o.anotherarraytest2 = l.anotherarraytest2 then 0 else 1 end as diffanotherarraytest2, o.string as origstring, l.string as laterstring, case when o.string = l.string then 0 else 1 end as diffstring, o.recordappended1 as origrecordappended1, l.recordappended1 as laterrecordappended1, case when o.recordappended1 = l.recordappended1 then 0 else 1 end as diffrecordappended1, o.recordfloat as origrecordfloat, l.recordfloat as laterrecordfloat, case when o.recordfloat = l.recordfloat then 0 else 1 end as diffrecordfloat, o.recordstring2 as origrecordstring2, l.recordstring2 as laterrecordstring2, case when o.recordstring2 = l.recordstring2 then 0 else 1 end as diffrecordstring2, o.recordboolean2 as origrecordboolean2, l.recordboolean2 as laterrecordboolean2, case when o.recordboolean2 = l.recordboolean2 then 0 else 1 end as diffrecordboolean2 FROM (SELECT * FROM `foo.ar.bobdb` WHERE scantime = ( SELECT MAX(_PARTITIONTIME) FROM `foo.ar.bob` WHERE _PARTITIONTIME < ( SELECT MAX(_PARTITIONTIME) FROM `foo.ar.bob`) AND _PARTITIONTIME < TIMESTAMP_SUB(CURRENT_TIMESTAMP(),INTERVAL 7 DAY) ) ) o FULL OUTER JOIN ( SELECT * FROM `foo.ar.bobdb` WHERE scantime =( SELECT MAX(_PARTITIONTIME) FROM `foo.ar.bob` )) l ON l.integer = o.integer AND l.arrayinteger3=o.arrayinteger3 AND l.arrayfoo=o.arrayfoo AND l.arraystring3=o.arraystring3 AND l.anotherarraytest1=o.anotherarraytest1 AND l.anotherarraytest2=o.anotherarraytest2 AND l.string=o.string AND l.recordappended1=o.recordappended1 AND l.recordfloat=o.recordfloat AND l.recordstring2=o.recordstring2 AND l.recordboolean2=o.recordboolean2""", 'description': 'Diff of week of underlying table bob description: A ' 'test schema'}, 'bobdiffmonth': {'query': """#standardSQL SELECT o.scantime as origscantime, l.scantime as laterscantime, CASE WHEN o.integer IS NULL THEN 'Added' WHEN l.integer IS NULL THEN 'Deleted' WHEN o.integer = l.integer AND o.arrayinteger3 = l.arrayinteger3 AND o.arrayfoo = l.arrayfoo AND o.arraystring3 = l.arraystring3 AND o.anotherarraytest1 = l.anotherarraytest1 AND o.anotherarraytest2 = l.anotherarraytest2 AND o.string = l.string AND o.recordappended1 = l.recordappended1 AND o.recordfloat = l.recordfloat AND o.recordstring2 = l.recordstring2 AND o.recordboolean2 = l.recordboolean2 THEN 'Same' ELSE 'Updated' END AS action, o.integer as originteger, l.integer as laterinteger, case when o.integer = l.integer then 0 else 1 end as diffinteger, o.arrayinteger3 as origarrayinteger3, l.arrayinteger3 as laterarrayinteger3, case when o.arrayinteger3 = l.arrayinteger3 then 0 else 1 end as diffarrayinteger3, o.arrayfoo as origarrayfoo, l.arrayfoo as laterarrayfoo, case when o.arrayfoo = l.arrayfoo then 0 else 1 end as diffarrayfoo, o.arraystring3 as origarraystring3, l.arraystring3 as laterarraystring3, case when o.arraystring3 = l.arraystring3 then 0 else 1 end as diffarraystring3, o.anotherarraytest1 as origanotherarraytest1, l.anotherarraytest1 as lateranotherarraytest1, case when o.anotherarraytest1 = l.anotherarraytest1 then 0 else 1 end as diffanotherarraytest1, o.anotherarraytest2 as origanotherarraytest2, l.anotherarraytest2 as lateranotherarraytest2, case when o.anotherarraytest2 = l.anotherarraytest2 then 0 else 1 end as diffanotherarraytest2, o.string as origstring, l.string as laterstring, case when o.string = l.string then 0 else 1 end as diffstring, o.recordappended1 as origrecordappended1, l.recordappended1 as laterrecordappended1, case when o.recordappended1 = l.recordappended1 then 0 else 1 end as diffrecordappended1, o.recordfloat as origrecordfloat, l.recordfloat as laterrecordfloat, case when o.recordfloat = l.recordfloat then 0 else 1 end as diffrecordfloat, o.recordstring2 as origrecordstring2, l.recordstring2 as laterrecordstring2, case when o.recordstring2 = l.recordstring2 then 0 else 1 end as diffrecordstring2, o.recordboolean2 as origrecordboolean2, l.recordboolean2 as laterrecordboolean2, case when o.recordboolean2 = l.recordboolean2 then 0 else 1 end as diffrecordboolean2 FROM (SELECT * FROM `foo.ar.bobdb` WHERE scantime = ( SELECT MAX(_PARTITIONTIME) FROM `foo.ar.bob` WHERE _PARTITIONTIME < ( SELECT MAX(_PARTITIONTIME) FROM `foo.ar.bob`) AND _PARTITIONTIME < TIMESTAMP_SUB(CURRENT_TIMESTAMP(),INTERVAL 30 DAY) ) ) o FULL OUTER JOIN ( SELECT * FROM `foo.ar.bobdb` WHERE scantime =( SELECT MAX(_PARTITIONTIME) FROM `foo.ar.bob` )) l ON l.integer = o.integer AND l.arrayinteger3=o.arrayinteger3 AND l.arrayfoo=o.arrayfoo AND l.arraystring3=o.arraystring3 AND l.anotherarraytest1=o.anotherarraytest1 AND l.anotherarraytest2=o.anotherarraytest2 AND l.string=o.string AND l.recordappended1=o.recordappended1 AND l.recordfloat=o.recordfloat AND l.recordstring2=o.recordstring2 AND l.recordboolean2=o.recordboolean2""", 'description': 'Diff of month of underlying table bob description: A ' 'test schema'}, 'bobdifffortnight': {'query': """#standardSQL SELECT o.scantime as origscantime, l.scantime as laterscantime, CASE WHEN o.integer IS NULL THEN 'Added' WHEN l.integer IS NULL THEN 'Deleted' WHEN o.integer = l.integer AND o.arrayinteger3 = l.arrayinteger3 AND o.arrayfoo = l.arrayfoo AND o.arraystring3 = l.arraystring3 AND o.anotherarraytest1 = l.anotherarraytest1 AND o.anotherarraytest2 = l.anotherarraytest2 AND o.string = l.string AND o.recordappended1 = l.recordappended1 AND o.recordfloat = l.recordfloat AND o.recordstring2 = l.recordstring2 AND o.recordboolean2 = l.recordboolean2 THEN 'Same' ELSE 'Updated' END AS action, o.integer as originteger, l.integer as laterinteger, case when o.integer = l.integer then 0 else 1 end as diffinteger, o.arrayinteger3 as origarrayinteger3, l.arrayinteger3 as laterarrayinteger3, case when o.arrayinteger3 = l.arrayinteger3 then 0 else 1 end as diffarrayinteger3, o.arrayfoo as origarrayfoo, l.arrayfoo as laterarrayfoo, case when o.arrayfoo = l.arrayfoo then 0 else 1 end as diffarrayfoo, o.arraystring3 as origarraystring3, l.arraystring3 as laterarraystring3, case when o.arraystring3 = l.arraystring3 then 0 else 1 end as diffarraystring3, o.anotherarraytest1 as origanotherarraytest1, l.anotherarraytest1 as lateranotherarraytest1, case when o.anotherarraytest1 = l.anotherarraytest1 then 0 else 1 end as diffanotherarraytest1, o.anotherarraytest2 as origanotherarraytest2, l.anotherarraytest2 as lateranotherarraytest2, case when o.anotherarraytest2 = l.anotherarraytest2 then 0 else 1 end as diffanotherarraytest2, o.string as origstring, l.string as laterstring, case when o.string = l.string then 0 else 1 end as diffstring, o.recordappended1 as origrecordappended1, l.recordappended1 as laterrecordappended1, case when o.recordappended1 = l.recordappended1 then 0 else 1 end as diffrecordappended1, o.recordfloat as origrecordfloat, l.recordfloat as laterrecordfloat, case when o.recordfloat = l.recordfloat then 0 else 1 end as diffrecordfloat, o.recordstring2 as origrecordstring2, l.recordstring2 as laterrecordstring2, case when o.recordstring2 = l.recordstring2 then 0 else 1 end as diffrecordstring2, o.recordboolean2 as origrecordboolean2, l.recordboolean2 as laterrecordboolean2, case when o.recordboolean2 = l.recordboolean2 then 0 else 1 end as diffrecordboolean2 FROM (SELECT * FROM `foo.ar.bobdb` WHERE scantime = ( SELECT MAX(_PARTITIONTIME) FROM `foo.ar.bob` WHERE _PARTITIONTIME < ( SELECT MAX(_PARTITIONTIME) FROM `foo.ar.bob`) AND _PARTITIONTIME < TIMESTAMP_SUB(CURRENT_TIMESTAMP(),INTERVAL 14 DAY) ) ) o FULL OUTER JOIN ( SELECT * FROM `foo.ar.bobdb` WHERE scantime =( SELECT MAX(_PARTITIONTIME) FROM `foo.ar.bob` )) l ON l.integer = o.integer AND l.arrayinteger3=o.arrayinteger3 AND l.arrayfoo=o.arrayfoo AND l.arraystring3=o.arraystring3 AND l.anotherarraytest1=o.anotherarraytest1 AND l.anotherarraytest2=o.anotherarraytest2 AND l.string=o.string AND l.recordappended1=o.recordappended1 AND l.recordfloat=o.recordfloat AND l.recordstring2=o.recordstring2 AND l.recordboolean2=o.recordboolean2""", 'description': 'Diff of fortnight of underlying table bob ' 'description: A test schema'}} for vi in views: expected = vexpected[vi['name']]['query'].splitlines(1) actual = vi['query'].splitlines(1) diff = difflib.unified_diff(expected, actual) print(''.join(diff)) self.assertEqual(len(vi['query']), len(vexpected[vi['name']]['query']), "Query len for view {} is not equal to what is expected\n:{}:\n:{" "}:".format( vi['name'], vi['query'], vexpected[ vi['name']][ 'query'])) self.assertEqual(vi['query'], vexpected[vi['name']]['query'], "Query for view {} is not equal to what is expected\n:{}:\n:{" "}:".format( vi['name'], vi['query'], vexpected[vi['name']]['query'])) self.assertEqual(vi['description'], vexpected[vi['name']]['description'], "Description for view {} is not equal to what is expected\n:{}:\n:{" "}:".format( vi['name'], vi['description'], vexpected[vi['name']]['description'])) def test_calc_field_depth(self): toTest = [{"name": 'string', "type": 'STRING', "description": None, "mode": 'NULLABLE'}, {"name": 'integer', "type": 'INTEGER', "description": None, "mode": 'NULLABLE'}, {"name": 'float', "type": 'FLOAT', "description": None, "mode": 'NULLABLE'}, {"name": 'boolean', "type": 'BOOLEAN', "description": None, "mode": 'NULLABLE'}, {"name": 'record', "type": 'RECORD', "description": None, "mode": 'NULLABLE', "fields": [{"name": 'string2', "type": 'STRING', "description": None, "mode": 'NULLABLE'}, {"name": 'float', "type": 'FLOAT', "description": None, "mode": 'NULLABLE'}, {"name": 'integer2', "type": 'INTEGER', "description": None, "mode": 'NULLABLE'}, {"name": 'boolean2', "type": 'BOOLEAN', "description": None, "mode": 'NULLABLE'}, {"name": 'record', "type": 'RECORD', "description": None, "mode": 'NULLABLE', "fields": [{"name": 'string2', "type": 'STRING', "description": None, "mode": 'NULLABLE'}, {"name": 'record', "type": 'RECORD', "description": None, "mode": 'NULLABLE', "fields": [{"name": 'string2', "type": 'STRING', "description": None, "mode": 'NULLABLE' }] } ] }] }, {"name": 'array', "type": 'RECORD', "description": None, "mode": 'REPEATED', "fields": [ {"name": 'string3', "type": 'STRING', "description": None, "mode": 'NULLABLE'}, {"name": 'integer3', "type": 'INTEGER', "description": None, "mode": 'NULLABLE'} ]} ] depth = bqtools.calc_field_depth(toTest) self.assertEqual(depth, 3, "measured field depth should be 3") bqtools.trunc_field_depth(toTest, 2) depth = bqtools.calc_field_depth(toTest) self.assertEqual(depth, 2, "measured field depth should be 2 is {}".format(depth)) depth = bqtools.calc_field_depth(self.monsterSchema['schema']['fields']) self.assertEqual(depth, 13, "measured field depth should be 13 is {}".format(depth)) newMonster = copy.deepcopy(self.monsterSchema) yamonster = bqtools.trunc_field_depth(newMonster['schema']['fields'], 10) depth = bqtools.calc_field_depth(newMonster['schema']['fields']) self.assertEqual(depth, 10, "measured field depth should be 10 is {}".format(depth)) depth = bqtools.calc_field_depth(yamonster) self.assertEqual(depth, 10, "measured field depth should be 10 is {}".format(depth)) def main(argv): unittest.main() if __name__ == '__main__': main(sys.argv)
58.90413
414
0.345344
4a2156303981e21d5bacccd853fa7f2336077da9
461
py
Python
Classes Programs/classEx.py
jarvis-1805/PYTHON-FILES
c12dc74f83dadb08acdf5d6260222c3ce8a91797
[ "MIT" ]
1
2020-05-23T12:37:11.000Z
2020-05-23T12:37:11.000Z
Classes Programs/classEx.py
jarvis-1805/PYTHON-FILES
c12dc74f83dadb08acdf5d6260222c3ce8a91797
[ "MIT" ]
null
null
null
Classes Programs/classEx.py
jarvis-1805/PYTHON-FILES
c12dc74f83dadb08acdf5d6260222c3ce8a91797
[ "MIT" ]
null
null
null
class Person: def __init__(self, fname, lname): self.firstname = fname self.lastname = lname def printname(self): print(self.firstname, self.lastname) class Student(Person): def __init__(self, fname, lname, year): super().__init__(fname, lname) self.graduationyear = year def welcome(self): print("Welcome", self.firstname, self.lastname, "to the class of", self.graduationyear) x = Student("Mike", "Olsen", 2019) x.welcome()
25.611111
91
0.691974
4a215730e96f347a78ad088205eaeb58c7b5a933
1,931
py
Python
src/generate_xml.py
AlvaroCavalcante/video2tfrecord
a77b6e999bbf0edbc254c0fa42549d9ab5f9013c
[ "MIT" ]
1
2022-03-12T20:43:26.000Z
2022-03-12T20:43:26.000Z
src/generate_xml.py
AlvaroCavalcante/video2tfrecord
a77b6e999bbf0edbc254c0fa42549d9ab5f9013c
[ "MIT" ]
null
null
null
src/generate_xml.py
AlvaroCavalcante/video2tfrecord
a77b6e999bbf0edbc254c0fa42549d9ab5f9013c
[ "MIT" ]
null
null
null
import xml.etree.cElementTree as ET class AnnotationGenerator(object): def __init__(self, xml_path): self.xml_path = xml_path def generate_xml_annotation(self, output_bbox, im_width, im_height, file_name): try: annotation = ET.Element('annotation') ET.SubElement(annotation, 'filename').text = file_name size = ET.SubElement(annotation, 'size') ET.SubElement(size, 'width').text = str(im_width) ET.SubElement(size, 'height').text = str(im_height) ET.SubElement(size, 'depth').text = '3' count = 0 for class_name in output_bbox: box = output_bbox.get(class_name) if class_name == 'hand_1' or class_name == 'hand_2': class_name = 'hand' objectBox = ET.SubElement(annotation, 'object') ET.SubElement(objectBox, 'name').text = class_name ET.SubElement(objectBox, 'pose').text = 'Unspecified' ET.SubElement(objectBox, 'truncated').text = '0' ET.SubElement(objectBox, 'difficult').text = '0' bndBox = ET.SubElement(objectBox, 'bndbox') ET.SubElement(bndBox, 'xmin').text = str(box['xmin']) ET.SubElement(bndBox, 'ymin').text = str(box['ymin']) ET.SubElement(bndBox, 'xmax').text = str(box['xmax']) ET.SubElement(bndBox, 'ymax').text = str(box['ymax']) count += 1 if 'jpg' in file_name.split('.') or 'png' in file_name.split('.') or 'jpeg' in file_name.split('.'): file_name = file_name.split('.')[0] arquivo = ET.ElementTree(annotation) arquivo.write(self.xml_path + file_name + '.xml') except Exception as e: print('Error to generate the XML for image {}'.format(file_name)) print(e)
43.886364
112
0.559296
4a215732f86119f063de4bb0c02b22c06dfaba60
935
py
Python
hdata/HighDenseTrainPatchMaker.py
beratkurar/page-segmentation-using-fcn
1462fc66c019eb06d9b7bd2b2561d09d63476385
[ "MIT" ]
null
null
null
hdata/HighDenseTrainPatchMaker.py
beratkurar/page-segmentation-using-fcn
1462fc66c019eb06d9b7bd2b2561d09d63476385
[ "MIT" ]
null
null
null
hdata/HighDenseTrainPatchMaker.py
beratkurar/page-segmentation-using-fcn
1462fc66c019eb06d9b7bd2b2561d09d63476385
[ "MIT" ]
1
2018-12-26T13:10:26.000Z
2018-12-26T13:10:26.000Z
# -*- coding: utf-8 -*- """ Created on Thu Nov 30 07:43:28 2017 @author: B """ import random import cv2 import os patchSize=320 patchNumber=0 folder='train/' lfolder='ltrain/' i=0 while (i <1000): pages=os.listdir(folder) page_number=random.randint(0,19) page_name=pages[page_number] page=cv2.imread(folder+page_name,3) lpage=cv2.imread(lfolder+page_name[:-3]+'bmp',0) rows,cols,ch=page.shape x=random.randint(0,rows-patchSize) y=random.randint(0,cols-patchSize) lpatch=lpage[x:x+patchSize,y:y+patchSize] bg=list(lpatch.flatten()).count(255) print(bg) if bg<85000: print(i) cv2.imwrite("p"+lfolder+page_name[:-4]+"_patch"+str(i)+".png",lpatch) patch=page[x:x+patchSize,y:y+patchSize] cv2.imwrite("p"+folder+page_name[:-4]+"_patch"+str(i)+".png",patch) i=i+1 else: print('pass')
23.375
78
0.604278
4a21590b8069da489bba84b2d9710172c74f6c83
2,013
py
Python
DailyProgrammer/DP20180129A.py
DayGitH/Python-Challenges
bc32f1332a92fcc2dfa6f5ea4d95f8a8d64c3edf
[ "MIT" ]
2
2020-12-23T18:59:22.000Z
2021-04-14T13:16:09.000Z
DailyProgrammer/DP20180129A.py
DayGitH/Python-Challenges
bc32f1332a92fcc2dfa6f5ea4d95f8a8d64c3edf
[ "MIT" ]
null
null
null
DailyProgrammer/DP20180129A.py
DayGitH/Python-Challenges
bc32f1332a92fcc2dfa6f5ea4d95f8a8d64c3edf
[ "MIT" ]
null
null
null
""" [2018-01-29] Challenge #349 [Easy] Change Calculator https://www.reddit.com/r/dailyprogrammer/comments/7ttiq5/20180129_challenge_349_easy_change_calculator/ # Description You own a nice tiny mini-market that sells candies to children. You need to know if you'll be able to give the change back to those little cute creatures and it happens you don't know basic math because when you were a child you were always eating candies and did not study very well. So you need some help from a little tool that tell you if you can. # Input Description On the line beginning "Input:" be given a single number that tells you how much change to produce, and then a list of coins you own. The next line, beginning with "Output:", tells you the number of coins to give back to achieve the change you need to give back (bounded by the number of coins you have). Here's one that says "give the customer 3 or fewer coins". Example: Input: 10 5 5 2 2 1 Output: n <= 3 # Output Description Your progam should emit the coins you would give back to yield the correct value of change, if possible. Multiple solutions may be possible. If no solution is possible, state that. Example: 5 5 # Challenge Input Input: 150 100 50 50 50 50 Output: n < 5 Input: 130 100 20 18 12 5 5 Output: n < 6 Input: 200 50 50 20 20 10 Output: n >= 5 # Bonus Output the minimum number of coins needed: Input: 150 100 50 50 50 50 Output: 2 Input: 130 100 20 18 12 5 5 Output: 3 # Challenge Input: 150 1 1 ... 1 (1 repeated 10000 times) Output: 150 # Note This is the subset sum problem with a twist, a classic computational complexity problem which poses fun questions about efficient calculation and lower bounds of complexity. # Credit This challenge was suggested by use /u/Scara95, many thanks. If you have a challenge idea, please share it on /r/dailyprogrammer_ideas and there's a good chance we'll use it. """ def main(): pass if __name__ == "__main__": main()
37.981132
119
0.73075
4a2159cf211357e466196cf58da00274fd20a30b
44
py
Python
students/intro_set.py
jonleopard/hacktoberfest-1
00b5dabd33aaac1dbde273af6e882769b564df3b
[ "MIT" ]
35
2018-10-06T07:32:31.000Z
2021-10-08T06:27:40.000Z
students/intro_set.py
jonleopard/hacktoberfest-1
00b5dabd33aaac1dbde273af6e882769b564df3b
[ "MIT" ]
26
2018-10-03T09:32:56.000Z
2020-05-25T20:27:16.000Z
students/intro_set.py
jonleopard/hacktoberfest-1
00b5dabd33aaac1dbde273af6e882769b564df3b
[ "MIT" ]
239
2018-10-03T09:09:57.000Z
2021-10-20T16:43:56.000Z
list_new=[1,2,2,4,4,4] print(set(list_new))
14.666667
22
0.681818
4a215a02ecdce9ac13c3dd8873a39e4cfc859ad6
29,316
py
Python
repos/insightface/src/data.py
batermj/DeepVideoAnalytics
daad116b87370fce1799b7948af73b92f617cf41
[ "BSD-3-Clause", "Apache-2.0", "MIT" ]
1
2021-03-23T12:31:59.000Z
2021-03-23T12:31:59.000Z
repos/insightface/src/data.py
batermj/DeepVideoAnalytics
daad116b87370fce1799b7948af73b92f617cf41
[ "BSD-3-Clause", "Apache-2.0", "MIT" ]
null
null
null
repos/insightface/src/data.py
batermj/DeepVideoAnalytics
daad116b87370fce1799b7948af73b92f617cf41
[ "BSD-3-Clause", "Apache-2.0", "MIT" ]
null
null
null
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import random import logging import sys import sklearn import datetime import numpy as np import cv2 import mxnet as mx from mxnet import ndarray as nd #from . import _ndarray_internal as _internal #from mxnet._ndarray_internal import _cvimresize as imresize #from ._ndarray_internal import _cvcopyMakeBorder as copyMakeBorder from mxnet import io from mxnet import recordio sys.path.append(os.path.join(os.path.dirname(__file__), 'common')) import face_preprocess import multiprocessing logger = logging.getLogger() def pick_triplets_impl(q_in, q_out): more = True while more: deq = q_in.get() if deq is None: more = False else: embeddings, emb_start_idx, nrof_images, alpha = deq print('running', emb_start_idx, nrof_images, os.getpid()) for j in xrange(1,nrof_images): a_idx = emb_start_idx + j - 1 neg_dists_sqr = np.sum(np.square(embeddings[a_idx] - embeddings), 1) for pair in xrange(j, nrof_images): # For every possible positive pair. p_idx = emb_start_idx + pair pos_dist_sqr = np.sum(np.square(embeddings[a_idx]-embeddings[p_idx])) neg_dists_sqr[emb_start_idx:emb_start_idx+nrof_images] = np.NaN all_neg = np.where(np.logical_and(neg_dists_sqr-pos_dist_sqr<alpha, pos_dist_sqr<neg_dists_sqr))[0] # FaceNet selection #all_neg = np.where(neg_dists_sqr-pos_dist_sqr<alpha)[0] # VGG Face selecction nrof_random_negs = all_neg.shape[0] if nrof_random_negs>0: rnd_idx = np.random.randint(nrof_random_negs) n_idx = all_neg[rnd_idx] #triplets.append( (a_idx, p_idx, n_idx) ) q_out.put( (a_idx, p_idx, n_idx) ) #emb_start_idx += nrof_images print('exit',os.getpid()) class FaceImageIter(io.DataIter): def __init__(self, batch_size, data_shape, path_imgrec = None, shuffle=False, aug_list=None, mean = None, rand_mirror = False, ctx_num = 0, images_per_identity = 0, data_extra = None, hard_mining = False, triplet_params = None, coco_mode = False, mx_model = None, data_name='data', label_name='softmax_label', **kwargs): super(FaceImageIter, self).__init__() assert path_imgrec if path_imgrec: logging.info('loading recordio %s...', path_imgrec) path_imgidx = path_imgrec[0:-4]+".idx" self.imgrec = recordio.MXIndexedRecordIO(path_imgidx, path_imgrec, 'r') # pylint: disable=redefined-variable-type s = self.imgrec.read_idx(0) header, _ = recordio.unpack(s) if header.flag>0: print('header0 label', header.label) self.header0 = (int(header.label[0]), int(header.label[1])) #assert(header.flag==1) self.imgidx = range(1, int(header.label[0])) self.id2range = {} self.seq_identity = range(int(header.label[0]), int(header.label[1])) for identity in self.seq_identity: s = self.imgrec.read_idx(identity) header, _ = recordio.unpack(s) #print('flag', header.flag) #print(header.label) #assert(header.flag==2) self.id2range[identity] = (int(header.label[0]), int(header.label[1])) print('id2range', len(self.id2range)) else: self.imgidx = list(self.imgrec.keys) if shuffle: self.seq = self.imgidx self.oseq = self.imgidx else: self.seq = None self.mean = mean self.nd_mean = None if self.mean: self.mean = np.array(self.mean, dtype=np.float32).reshape(1,1,3) self.nd_mean = mx.nd.array(self.mean).reshape((1,1,3)) self.check_data_shape(data_shape) self.provide_data = [(data_name, (batch_size,) + data_shape)] self.batch_size = batch_size self.data_shape = data_shape self.shuffle = shuffle self.image_size = '%d,%d'%(data_shape[1],data_shape[2]) self.rand_mirror = rand_mirror print('rand_mirror', rand_mirror) #self.cast_aug = mx.image.CastAug() #self.color_aug = mx.image.ColorJitterAug(0.4, 0.4, 0.4) self.ctx_num = ctx_num self.per_batch_size = int(self.batch_size/self.ctx_num) self.images_per_identity = images_per_identity if self.images_per_identity>0: self.identities = int(self.per_batch_size/self.images_per_identity) self.per_identities = self.identities self.repeat = 3000000.0/(self.images_per_identity*len(self.id2range)) self.repeat = int(self.repeat) print(self.images_per_identity, self.identities, self.repeat) self.data_extra = None if data_extra is not None: self.data_extra = nd.array(data_extra) self.provide_data = [(data_name, (batch_size,) + data_shape), ('extra', data_extra.shape)] self.hard_mining = hard_mining self.mx_model = mx_model if self.hard_mining: assert self.images_per_identity>0 assert self.mx_model is not None self.triplet_params = triplet_params self.triplet_mode = False self.coco_mode = coco_mode if len(label_name)>0: self.provide_label = [(label_name, (batch_size,))] else: self.provide_label = [] if self.coco_mode: assert self.triplet_params is None assert self.images_per_identity>0 if self.triplet_params is not None: assert self.images_per_identity>0 assert self.mx_model is not None self.triplet_bag_size = self.triplet_params[0] self.triplet_alpha = self.triplet_params[1] self.triplet_max_ap = self.triplet_params[2] assert self.triplet_bag_size>0 assert self.triplet_alpha>=0.0 assert self.triplet_alpha<=1.0 self.triplet_mode = True self.triplet_oseq_cur = 0 self.triplet_oseq_reset() self.seq_min_size = self.batch_size*2 self.cur = 0 self.is_init = False self.times = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] #self.reset() def ____pick_triplets(self, embeddings, nrof_images_per_class): emb_start_idx = 0 people_per_batch = len(nrof_images_per_class) nrof_threads = 8 q_in = multiprocessing.Queue() q_out = multiprocessing.Queue() processes = [multiprocessing.Process(target=pick_triplets_impl, args=(q_in, q_out)) \ for i in range(nrof_threads)] for p in processes: p.start() # VGG Face: Choosing good triplets is crucial and should strike a balance between # selecting informative (i.e. challenging) examples and swamping training with examples that # are too hard. This is achieve by extending each pair (a, p) to a triplet (a, p, n) by sampling # the image n at random, but only between the ones that violate the triplet loss margin. The # latter is a form of hard-negative mining, but it is not as aggressive (and much cheaper) than # choosing the maximally violating example, as often done in structured output learning. for i in xrange(people_per_batch): nrof_images = int(nrof_images_per_class[i]) job = (embeddings, emb_start_idx, nrof_images, self.triplet_alpha) emb_start_idx+=nrof_images q_in.put(job) for i in xrange(nrof_threads): q_in.put(None) print('joining') for p in processes: p.join() print('joined') q_out.put(None) triplets = [] more = True while more: triplet = q_out.get() if triplet is None: more = False else: triplets.append(triplets) np.random.shuffle(triplets) return triplets #cal pairwise dists on single gpu def _pairwise_dists(self, embeddings): nd_embedding = mx.nd.array(embeddings, mx.gpu(0)) pdists = [] for idx in xrange(embeddings.shape[0]): a_embedding = nd_embedding[idx] body = mx.nd.broadcast_sub(a_embedding, nd_embedding) body = body*body body = mx.nd.sum_axis(body, axis=1) ret = body.asnumpy() #print(ret.shape) pdists.append(ret) return pdists def pairwise_dists(self, embeddings): nd_embedding_list = [] for i in xrange(self.ctx_num): nd_embedding = mx.nd.array(embeddings, mx.gpu(i)) nd_embedding_list.append(nd_embedding) nd_pdists = [] pdists = [] for idx in xrange(embeddings.shape[0]): emb_idx = idx%self.ctx_num nd_embedding = nd_embedding_list[emb_idx] a_embedding = nd_embedding[idx] body = mx.nd.broadcast_sub(a_embedding, nd_embedding) body = body*body body = mx.nd.sum_axis(body, axis=1) nd_pdists.append(body) if len(nd_pdists)==self.ctx_num or idx==embeddings.shape[0]-1: for x in nd_pdists: pdists.append(x.asnumpy()) nd_pdists = [] return pdists def pick_triplets(self, embeddings, nrof_images_per_class): emb_start_idx = 0 triplets = [] people_per_batch = len(nrof_images_per_class) #self.time_reset() pdists = self.pairwise_dists(embeddings) #self.times[3] += self.time_elapsed() for i in xrange(people_per_batch): nrof_images = int(nrof_images_per_class[i]) for j in xrange(1,nrof_images): #self.time_reset() a_idx = emb_start_idx + j - 1 #neg_dists_sqr = np.sum(np.square(embeddings[a_idx] - embeddings), 1) neg_dists_sqr = pdists[a_idx] #self.times[3] += self.time_elapsed() for pair in xrange(j, nrof_images): # For every possible positive pair. p_idx = emb_start_idx + pair #self.time_reset() pos_dist_sqr = np.sum(np.square(embeddings[a_idx]-embeddings[p_idx])) #self.times[4] += self.time_elapsed() #self.time_reset() neg_dists_sqr[emb_start_idx:emb_start_idx+nrof_images] = np.NaN if self.triplet_max_ap>0.0: if pos_dist_sqr>self.triplet_max_ap: continue all_neg = np.where(np.logical_and(neg_dists_sqr-pos_dist_sqr<self.triplet_alpha, pos_dist_sqr<neg_dists_sqr))[0] # FaceNet selection #self.times[5] += self.time_elapsed() #self.time_reset() #all_neg = np.where(neg_dists_sqr-pos_dist_sqr<alpha)[0] # VGG Face selecction nrof_random_negs = all_neg.shape[0] if nrof_random_negs>0: rnd_idx = np.random.randint(nrof_random_negs) n_idx = all_neg[rnd_idx] triplets.append( (a_idx, p_idx, n_idx) ) emb_start_idx += nrof_images np.random.shuffle(triplets) return triplets def __pick_triplets(self, embeddings, nrof_images_per_class): emb_start_idx = 0 triplets = [] people_per_batch = len(nrof_images_per_class) for i in xrange(people_per_batch): nrof_images = int(nrof_images_per_class[i]) if nrof_images<2: continue for j in xrange(1,nrof_images): a_idx = emb_start_idx + j - 1 pcount = nrof_images-1 dists_a2all = np.sum(np.square(embeddings[a_idx] - embeddings), 1) #(N,) #print(a_idx, dists_a2all.shape) ba = emb_start_idx bb = emb_start_idx+nrof_images sorted_idx = np.argsort(dists_a2all) #print('assert', sorted_idx[0], a_idx) #assert sorted_idx[0]==a_idx #for idx in sorted_idx: # print(idx, dists_a2all[idx]) p2n_map = {} pfound = 0 for idx in sorted_idx: if idx==a_idx: #is anchor continue if idx<bb and idx>=ba: #is pos p2n_map[idx] = [dists_a2all[idx], []] #ap, [neg_list] pfound+=1 else: # is neg an = dists_a2all[idx] if pfound==pcount and len(p2n_map)==0: break to_del = [] for p_idx in p2n_map: v = p2n_map[p_idx] an_ap = an - v[0] if an_ap<self.triplet_alpha: v[1].append(idx) else: #output if len(v[1])>0: n_idx = random.choice(v[1]) triplets.append( (a_idx, p_idx, n_idx) ) to_del.append(p_idx) for _del in to_del: del p2n_map[_del] for p_idx,v in p2n_map.iteritems(): if len(v[1])>0: n_idx = random.choice(v[1]) triplets.append( (a_idx, p_idx, n_idx) ) emb_start_idx += nrof_images np.random.shuffle(triplets) return triplets def triplet_oseq_reset(self): #reset self.oseq by identities seq self.triplet_oseq_cur = 0 ids = [] for k in self.id2range: ids.append(k) random.shuffle(ids) self.oseq = [] for _id in ids: v = self.id2range[_id] _list = range(*v) random.shuffle(_list) if len(_list)>self.images_per_identity: _list = _list[0:self.images_per_identity] self.oseq += _list print('oseq', len(self.oseq)) def time_reset(self): self.time_now = datetime.datetime.now() def time_elapsed(self): time_now = datetime.datetime.now() diff = time_now - self.time_now return diff.total_seconds() def select_triplets(self): self.seq = [] while len(self.seq)<self.seq_min_size: self.time_reset() embeddings = None bag_size = self.triplet_bag_size batch_size = self.batch_size #data = np.zeros( (bag_size,)+self.data_shape ) #label = np.zeros( (bag_size,) ) tag = [] #idx = np.zeros( (bag_size,) ) print('eval %d images..'%bag_size, self.triplet_oseq_cur) print('triplet time stat', self.times) if self.triplet_oseq_cur+bag_size>len(self.oseq): self.triplet_oseq_reset() print('eval %d images..'%bag_size, self.triplet_oseq_cur) self.times[0] += self.time_elapsed() self.time_reset() #print(data.shape) data = nd.zeros( self.provide_data[0][1] ) label = nd.zeros( self.provide_label[0][1] ) ba = 0 while True: bb = min(ba+batch_size, bag_size) if ba>=bb: break #_batch = self.data_iter.next() #_data = _batch.data[0].asnumpy() #print(_data.shape) #_label = _batch.label[0].asnumpy() #data[ba:bb,:,:,:] = _data #label[ba:bb] = _label for i in xrange(ba, bb): _idx = self.oseq[i+self.triplet_oseq_cur] s = self.imgrec.read_idx(_idx) header, img = recordio.unpack(s) img = self.imdecode(img) data[i-ba][:] = self.postprocess_data(img) label[i-ba][:] = header.label tag.append( ( int(header.label), _idx) ) #idx[i] = _idx db = mx.io.DataBatch(data=(data,), label=(label,)) self.mx_model.forward(db, is_train=False) net_out = self.mx_model.get_outputs() #print('eval for selecting triplets',ba,bb) #print(net_out) #print(len(net_out)) #print(net_out[0].asnumpy()) net_out = net_out[0].asnumpy() #print(net_out) #print('net_out', net_out.shape) if embeddings is None: embeddings = np.zeros( (bag_size, net_out.shape[1])) embeddings[ba:bb,:] = net_out ba = bb assert len(tag)==bag_size self.triplet_oseq_cur+=bag_size embeddings = sklearn.preprocessing.normalize(embeddings) self.times[1] += self.time_elapsed() self.time_reset() nrof_images_per_class = [1] for i in xrange(1, bag_size): if tag[i][0]==tag[i-1][0]: nrof_images_per_class[-1]+=1 else: nrof_images_per_class.append(1) triplets = self.pick_triplets(embeddings, nrof_images_per_class) # shape=(T,3) print('found triplets', len(triplets)) ba = 0 while True: bb = ba+self.per_batch_size//3 if bb>len(triplets): break _triplets = triplets[ba:bb] for i in xrange(3): for triplet in _triplets: _pos = triplet[i] _idx = tag[_pos][1] self.seq.append(_idx) ba = bb self.times[2] += self.time_elapsed() def triplet_reset(self): self.select_triplets() def hard_mining_reset(self): #import faiss from annoy import AnnoyIndex data = nd.zeros( self.provide_data[0][1] ) label = nd.zeros( self.provide_label[0][1] ) #label = np.zeros( self.provide_label[0][1] ) X = None ba = 0 batch_num = 0 while ba<len(self.oseq): batch_num+=1 if batch_num%10==0: print('loading batch',batch_num, ba) bb = min(ba+self.batch_size, len(self.oseq)) _count = bb-ba for i in xrange(_count): idx = self.oseq[i+ba] s = self.imgrec.read_idx(idx) header, img = recordio.unpack(s) img = self.imdecode(img) data[i][:] = self.postprocess_data(img) label[i][:] = header.label db = mx.io.DataBatch(data=(data,self.data_extra), label=(label,)) self.mx_model.forward(db, is_train=False) net_out = self.mx_model.get_outputs() embedding = net_out[0].asnumpy() nembedding = sklearn.preprocessing.normalize(embedding) if _count<self.batch_size: nembedding = nembedding[0:_count,:] if X is None: X = np.zeros( (len(self.id2range), nembedding.shape[1]), dtype=np.float32 ) nplabel = label.asnumpy() for i in xrange(_count): ilabel = int(nplabel[i]) #print(ilabel, ilabel.__class__) X[ilabel] += nembedding[i] ba = bb X = sklearn.preprocessing.normalize(X) d = X.shape[1] t = AnnoyIndex(d, metric='euclidean') for i in xrange(X.shape[0]): t.add_item(i, X[i]) print('start to build index') t.build(20) print(X.shape) k = self.per_identities self.seq = [] for i in xrange(X.shape[0]): nnlist = t.get_nns_by_item(i, k) assert nnlist[0]==i for _label in nnlist: assert _label<len(self.id2range) _id = self.header0[0]+_label v = self.id2range[_id] _list = range(*v) if len(_list)<self.images_per_identity: random.shuffle(_list) else: _list = np.random.choice(_list, self.images_per_identity, replace=False) for i in xrange(self.images_per_identity): _idx = _list[i%len(_list)] self.seq.append(_idx) #faiss_params = [20,5] #quantizer = faiss.IndexFlatL2(d) # the other index #index = faiss.IndexIVFFlat(quantizer, d, faiss_params[0], faiss.METRIC_L2) #assert not index.is_trained #index.train(X) #index.add(X) #assert index.is_trained #print('trained') #index.nprobe = faiss_params[1] #D, I = index.search(X, k) # actual search #print(I.shape) #self.seq = [] #for i in xrange(I.shape[0]): # #assert I[i][0]==i # for j in xrange(k): # _label = I[i][j] # assert _label<len(self.id2range) # _id = self.header0[0]+_label # v = self.id2range[_id] # _list = range(*v) # if len(_list)<self.images_per_identity: # random.shuffle(_list) # else: # _list = np.random.choice(_list, self.images_per_identity, replace=False) # for i in xrange(self.images_per_identity): # _idx = _list[i%len(_list)] # self.seq.append(_idx) def reset(self): """Resets the iterator to the beginning of the data.""" print('call reset()') self.cur = 0 if self.images_per_identity>0: if self.triplet_mode: self.triplet_reset() elif not self.hard_mining: self.seq = [] idlist = [] for _id,v in self.id2range.iteritems(): idlist.append((_id,range(*v))) for r in xrange(self.repeat): if r%10==0: print('repeat', r) if self.shuffle: random.shuffle(idlist) for item in idlist: _id = item[0] _list = item[1] #random.shuffle(_list) if len(_list)<self.images_per_identity: random.shuffle(_list) else: _list = np.random.choice(_list, self.images_per_identity, replace=False) for i in xrange(self.images_per_identity): _idx = _list[i%len(_list)] self.seq.append(_idx) else: self.hard_mining_reset() print('seq len', len(self.seq)) else: if self.shuffle: random.shuffle(self.seq) if self.seq is None and self.imgrec is not None: self.imgrec.reset() def num_samples(self): return len(self.seq) def next_sample(self): """Helper function for reading in next sample.""" #set total batch size, for example, 1800, and maximum size for each people, for example 45 if self.seq is not None: if self.cur >= len(self.seq): raise StopIteration idx = self.seq[self.cur] self.cur += 1 if self.imgrec is not None: s = self.imgrec.read_idx(idx) header, img = recordio.unpack(s) return header.label, img, None, None else: label, fname, bbox, landmark = self.imglist[idx] return label, self.read_image(fname), bbox, landmark else: s = self.imgrec.read() if s is None: raise StopIteration header, img = recordio.unpack(s) return header.label, img, None, None def brightness_aug(self, src, x): alpha = 1.0 + random.uniform(-x, x) src *= alpha return src def contrast_aug(self, src, x): alpha = 1.0 + random.uniform(-x, x) coef = np.array([[[0.299, 0.587, 0.114]]]) gray = src * coef gray = (3.0 * (1.0 - alpha) / gray.size) * np.sum(gray) src *= alpha src += gray return src def saturation_aug(self, src, x): alpha = 1.0 + random.uniform(-x, x) coef = np.array([[[0.299, 0.587, 0.114]]]) gray = src * coef gray = np.sum(gray, axis=2, keepdims=True) gray *= (1.0 - alpha) src *= alpha src += gray return src def color_aug(self, img, x): augs = [self.brightness_aug, self.contrast_aug, self.saturation_aug] random.shuffle(augs) for aug in augs: #print(img.shape) img = aug(img, x) #print(img.shape) return img def mirror_aug(self, img): _rd = random.randint(0,1) if _rd==1: for c in xrange(img.shape[2]): img[:,:,c] = np.fliplr(img[:,:,c]) return img def next(self): if not self.is_init: self.reset() self.is_init = True """Returns the next batch of data.""" #print('in next', self.cur, self.labelcur) batch_size = self.batch_size c, h, w = self.data_shape batch_data = nd.empty((batch_size, c, h, w)) if self.provide_label is not None: batch_label = nd.empty(self.provide_label[0][1]) i = 0 try: while i < batch_size: label, s, bbox, landmark = self.next_sample() _data = self.imdecode(s) if self.rand_mirror: _rd = random.randint(0,1) if _rd==1: _data = mx.ndarray.flip(data=_data, axis=1) if self.nd_mean is not None: _data = _data.astype('float32') _data -= self.nd_mean _data *= 0.0078125 #_npdata = _data.asnumpy() #if landmark is not None: # _npdata = face_preprocess.preprocess(_npdata, bbox = bbox, landmark=landmark, image_size=self.image_size) #if self.rand_mirror: # _npdata = self.mirror_aug(_npdata) #if self.mean is not None: # _npdata = _npdata.astype(np.float32) # _npdata -= self.mean # _npdata *= 0.0078125 #nimg = np.zeros(_npdata.shape, dtype=np.float32) #nimg[self.patch[1]:self.patch[3],self.patch[0]:self.patch[2],:] = _npdata[self.patch[1]:self.patch[3], self.patch[0]:self.patch[2], :] #_data = mx.nd.array(nimg) data = [_data] try: self.check_valid_image(data) except RuntimeError as e: logging.debug('Invalid image, skipping: %s', str(e)) continue #print('aa',data[0].shape) #data = self.augmentation_transform(data) #print('bb',data[0].shape) for datum in data: assert i < batch_size, 'Batch size must be multiples of augmenter output length' #print(datum.shape) batch_data[i][:] = self.postprocess_data(datum) if self.provide_label is not None: if not self.coco_mode: batch_label[i][:] = label else: batch_label[i][:] = (i%self.per_batch_size)//self.images_per_identity i += 1 except StopIteration: if i<batch_size: raise StopIteration #print('next end', batch_size, i) _label = None if self.provide_label is not None: _label = [batch_label] if self.data_extra is not None: return io.DataBatch([batch_data, self.data_extra], _label, batch_size - i) else: return io.DataBatch([batch_data], _label, batch_size - i) def check_data_shape(self, data_shape): """Checks if the input data shape is valid""" if not len(data_shape) == 3: raise ValueError('data_shape should have length 3, with dimensions CxHxW') if not data_shape[0] == 3: raise ValueError('This iterator expects inputs to have 3 channels.') def check_valid_image(self, data): """Checks if the input data is valid""" if len(data[0].shape) == 0: raise RuntimeError('Data shape is wrong') def imdecode(self, s): """Decodes a string or byte string to an NDArray. See mx.img.imdecode for more details.""" img = mx.image.imdecode(s) #mx.ndarray return img def read_image(self, fname): """Reads an input image `fname` and returns the decoded raw bytes. Example usage: ---------- >>> dataIter.read_image('Face.jpg') # returns decoded raw bytes. """ with open(os.path.join(self.path_root, fname), 'rb') as fin: img = fin.read() return img def augmentation_transform(self, data): """Transforms input data with specified augmentation.""" for aug in self.auglist: data = [ret for src in data for ret in aug(src)] return data def postprocess_data(self, datum): """Final postprocessing step before image is loaded into the batch.""" return nd.transpose(datum, axes=(2, 0, 1)) class FaceImageIterList(io.DataIter): def __init__(self, iter_list): assert len(iter_list)>0 self.provide_data = iter_list[0].provide_data self.provide_label = iter_list[0].provide_label self.iter_list = iter_list self.cur_iter = None def reset(self): self.cur_iter.reset() def next(self): self.cur_iter = random.choice(self.iter_list) while True: try: ret = self.cur_iter.next() except StopIteration: self.cur_iter.reset() continue return ret
38.27154
151
0.566517
4a215a5db8f927e389e10120934e5b5c717711e4
1,275
py
Python
backend/users/models.py
Dragonfly-Co/django-shop-sample
154cc3510767c468b76fbf98b501aab044c07e71
[ "MIT" ]
null
null
null
backend/users/models.py
Dragonfly-Co/django-shop-sample
154cc3510767c468b76fbf98b501aab044c07e71
[ "MIT" ]
null
null
null
backend/users/models.py
Dragonfly-Co/django-shop-sample
154cc3510767c468b76fbf98b501aab044c07e71
[ "MIT" ]
null
null
null
from django.contrib.auth.models import AbstractUser from django.db import models def _get_image_directory_path(self, instance) -> str: # file will be uploaded to MEDIA_ROOT / user_<id>_<username> return f'user_{instance.user.id}_{instance.user.username}' class GenderChoices(models.TextChoices): MALE = 'Male' FEMALE = 'female' class User(AbstractUser): middle_initial = models.CharField(null=True, max_length=250) birthday = models.DateField(null=True, blank=False) phone = models.CharField(null=True, max_length=50) gender = models.CharField(choices=GenderChoices.choices, max_length=50, null=True, blank=False) country = models.CharField(null=False, blank=False, max_length=100, default='Russia') # TODO: create choices region = models.CharField(null=True, max_length=250) city = models.CharField(null=True, max_length=250) address_line = models.TextField(null=True) image = models.URLField(null=True) # TODO: create like in other project # image = ImageField(upload_to=_get_image_directory_path) @property def get_user_full_name(self) -> str: if self.middle_initial is None: return self.get_full_name() return f'{self.last_name} {self.first_name} {self.middle_initial}'
39.84375
113
0.73098
4a215a7c9bd152778c8e63f11e79876093746094
13,766
py
Python
alfworld/agents/graph_map/slam_map.py
roy402/VSGM
15844232b8eebb5ec7301a9a48a3210925114da9
[ "MIT" ]
6
2021-05-22T15:33:42.000Z
2022-01-12T03:34:39.000Z
alfworld/agents/graph_map/slam_map.py
roy402/VSGM
15844232b8eebb5ec7301a9a48a3210925114da9
[ "MIT" ]
1
2021-06-19T10:04:13.000Z
2021-06-20T03:37:23.000Z
alfworld/agents/graph_map/slam_map.py
roy402/VSGM
15844232b8eebb5ec7301a9a48a3210925114da9
[ "MIT" ]
null
null
null
import torch from sys import platform if platform != "win32": from torch_geometric.data import Data else: import open3d as o3d import sys import os import numpy as np import matplotlib.pyplot as plt import quaternion from scipy.spatial.transform import Rotation sys.path.insert(0, os.path.join(os.environ['ALFWORLD_ROOT'])) from agents.graph_map.utils_graph_map import *#intrinsic_from_fov, load_extrinsic, load_intrinsic, pixel_coord_np, grid, get_cam_coords from agents.graph_map.graph_map import BasicMap, test_load_img, test_load_meta_data ''' Neural-SLAM ''' sys.path.insert(0, os.path.join(os.environ['ALFWORLD_ROOT'])) from agents.graph_map.Neural_SLAM.env.habitat.utils import visualizations as vu from agents.graph_map.Neural_SLAM.env.habitat.utils import pose as pu # 10x10xcfg.GRAPH_MAP.GRAPH_MAP_SIZE_S # self.map.activate_nodes = set() class SlamMAP(BasicMap): def __init__(self, cfg, device="cuda"): super().__init__() self.cfg = cfg self.device = device self.GPU = cfg.SCENE_GRAPH.GPU self.map_size_cm = self.cfg.SLAM_MAP.map_size_cm self.EMBED_FEATURE_SIZE = cfg.SCENE_GRAPH.EMBED_FEATURE_SIZE self.count_episode = 0 self.timestep = 0 self.mapper = self.build_mapper() self.reset_map() self.figure, self.ax = plt.subplots( 3, 1, figsize=(4, 6*16/9), facecolor="whitesmoke", num="Thread 0") self.net_map_embedding = self._create_map_embedding_model() self.net_map_embedding.to(device) def build_mapper(self): from agents.graph_map.Neural_SLAM.env.utils.map_builder import MapBuilder params = {} params['frame_width'] = self.cfg.SLAM_MAP.env_frame_width params['frame_height'] = self.cfg.SLAM_MAP.env_frame_height params['fov'] = self.cfg.SLAM_MAP.hfov params['resolution'] = self.cfg.SLAM_MAP.map_resolution params['map_size_cm'] = self.cfg.SLAM_MAP.map_size_cm params['agent_min_z'] = 25 params['agent_max_z'] = 150 params['agent_height'] = self.cfg.SLAM_MAP.camera_height * 100 params['agent_view_angle'] = 0 params['du_scale'] = self.cfg.SLAM_MAP.du_scale params['vision_range'] = self.cfg.SLAM_MAP.vision_range params['visualize'] = False params['obs_threshold'] = self.cfg.SLAM_MAP.obs_threshold mapper = MapBuilder(params) return mapper def _create_map_embedding_model(self): from agents.graph_map.Neural_SLAM.model import Global_Policy self.global_downscaling = self.cfg.SLAM_MAP.global_downscaling map_size = self.cfg.SLAM_MAP.map_size_cm // self.cfg.SLAM_MAP.map_resolution full_w, full_h = map_size, map_size local_w, local_h = int(full_w / self.cfg.SLAM_MAP.global_downscaling),\ int(full_h / self.cfg.SLAM_MAP.global_downscaling) return Global_Policy((1, local_w, local_h), out_shape=self.EMBED_FEATURE_SIZE) def reset_map(self): self.curr_loc = [self.map_size_cm/100.0/2.0, self.map_size_cm/100.0/2.0, 0.] self.curr_loc_gt = self.curr_loc self.last_loc_gt = self.curr_loc_gt self.mapper.reset_map(self.map_size_cm) self.map = self.mapper.map self.collison_map = np.zeros(self.map.shape[:2]) self.visited_gt = np.zeros(self.map.shape[:2]) full_map_size = self.cfg.SLAM_MAP.map_size_cm//self.cfg.SLAM_MAP.map_resolution self.explorable_map = np.zeros((full_map_size, full_map_size)) self.count_episode += 1 self.timestep = 0 self.last_sim_location = None # # Convert pose to cm and degrees for mapper # mapper_gt_pose = (self.curr_loc_gt[0]*100.0, # self.curr_loc_gt[1]*100.0, # np.deg2rad(self.curr_loc_gt[2])) # # Update ground_truth map and explored area # fp_proj, self.map, fp_explored, self.explored_map = \ # self.mapper.update_map(depth, mapper_gt_pose) def update_map(self, depth_image, agent_meta, sgg_result): self.timestep += 1 # Get base sensor and ground-truth pose dx_gt, dy_gt, do_gt = self.get_gt_pose_change(agent_meta) self.curr_loc_gt = pu.get_new_pose(self.curr_loc_gt, (dx_gt, dy_gt, do_gt)) self.last_loc_gt = np.copy(self.curr_loc_gt) # Convert pose to cm and degrees for mapper mapper_gt_pose = (self.curr_loc_gt[0]*100.0, self.curr_loc_gt[1]*100.0, np.deg2rad(self.curr_loc_gt[2])) # Update ground_truth map and explored area agent_view_degrees = agent_meta["cameraHorizon"] self.mapper.agent_view_angle = agent_view_degrees ''' depth process ''' depth_image = depth_image[:, :, 0] fp_proj, self.map, fp_explored, self.explored_map = \ self.mapper.update_map(depth_image, mapper_gt_pose) # torch.Size([1, 1, 480, 480]) map_tensor = torch.tensor([[self.map]], dtype=torch.float).to(device=self.device) self.map_feature = self.net_map_embedding(map_tensor) ''' visualize ''' # self.visualize_graph_map(depth_image) return self.map_feature def get_sim_location(self, agent_meta): x, z, y = \ agent_meta['position']['x'], agent_meta['position']['y'], agent_meta['position']['z'] rotation_x, rotation_y, rotation_z = \ agent_meta["rotation"]["x"], agent_meta["rotation"]["z"], agent_meta["rotation"]["y"] # rotation = np.quaternion(0.999916136264801, 0, 0.0132847428321838, 0) quat = Rotation.from_euler('xyz', [rotation_x, rotation_y, rotation_z], degrees=True) # import pdb ;pdb.set_trace() rotation = np.quaternion(*quat.as_quat()) axis = quaternion.as_euler_angles(rotation)[0] if (axis % (2*np.pi)) < 0.1 or (axis % (2*np.pi)) > 2*np.pi - 0.1: o = quaternion.as_euler_angles(rotation)[1] else: o = 2*np.pi - quaternion.as_euler_angles(rotation)[1] if o > np.pi: o -= 2 * np.pi return x, y, o def get_gt_pose_change(self, agent_meta): curr_sim_pose = self.get_sim_location(agent_meta) if self.last_sim_location is None: self.last_sim_location = curr_sim_pose dx, dy, do = pu.get_rel_pose_change(curr_sim_pose, self.last_sim_location) self.last_sim_location = curr_sim_pose return dx, dy, do def _get_short_term_goal(self): # # Update collision map # if action == 1: # x1, y1, t1 = self.last_loc # x2, y2, t2 = self.curr_loc # if abs(x1 - x2)< 0.05 and abs(y1 - y2) < 0.05: # self.col_width += 2 # self.col_width = min(self.col_width, 9) # else: # self.col_width = 1 # dist = pu.get_l2_distance(x1, x2, y1, y2) # if dist < args.collision_threshold: #Collision # length = 2 # width = self.col_width # buf = 3 # for i in range(length): # for j in range(width): # wx = x1 + 0.05*((i+buf) * np.cos(np.deg2rad(t1)) + \ # (j-width//2) * np.sin(np.deg2rad(t1))) # wy = y1 + 0.05*((i+buf) * np.sin(np.deg2rad(t1)) - \ # (j-width//2) * np.cos(np.deg2rad(t1))) # r, c = wy, wx # r, c = int(r*100/args.map_resolution), int(c*100/args.map_resolution) # [r, c] = pu.threshold_poses([r, c], self.collison_map.shape) # self.collison_map[r,c] = 1 # Get last loc ground truth pose last_start_x, last_start_y = self.last_loc_gt[0], self.last_loc_gt[1] r, c = last_start_y, last_start_x last_start = [int(r * 100.0/self.cfg.SLAM_MAP.map_resolution), int(c * 100.0/self.cfg.SLAM_MAP.map_resolution)] last_start = pu.threshold_poses(last_start, self.visited_gt.shape) # Get ground truth pose start_x_gt, start_y_gt, start_o_gt = self.curr_loc_gt r, c = start_y_gt, start_x_gt start_gt = [int(r * 100.0/self.cfg.SLAM_MAP.map_resolution), int(c * 100.0/self.cfg.SLAM_MAP.map_resolution)] start_gt = pu.threshold_poses(start_gt, self.visited_gt.shape) steps = 25 for i in range(steps): x = int(last_start[0] + (start_gt[0] - last_start[0]) * (i+1) / steps) y = int(last_start[1] + (start_gt[1] - last_start[1]) * (i+1) / steps) self.visited_gt[x, y] = 1 def visualize_graph_map(self, rgb_img, depth_image): self._get_short_term_goal() dump_dir = "./slam_dump/" ep_dir = '{}/{}/'.format( dump_dir, self.count_episode) if not os.path.exists(ep_dir): os.makedirs(ep_dir) # Get ground truth pose start_x_gt, start_y_gt, start_o_gt = self.curr_loc_gt goal_coor_didnt_use = (0, 0) vis_grid = vu.get_colored_map( self.map, self.collison_map, self.visited_gt, self.visited_gt, goal_coor_didnt_use, self.explored_map, self.explorable_map, self.map*self.explored_map) vis_grid = np.flipud(vis_grid) vu.visualize( self.figure, self.ax, rgb_img, depth_image, vis_grid[:, :, ::-1], (start_x_gt, start_y_gt, start_o_gt), (start_x_gt, start_y_gt, start_o_gt), dump_dir, self.count_episode, self.timestep, visualize=True, print_images=True, vis_style=0) def main(): import yaml import glob import json sys.path.insert(0, os.environ['ALFWORLD_ROOT']) sys.path.insert(0, os.path.join(os.environ['ALFWORLD_ROOT'], 'agents')) from agents.sgg import alfred_data_format from config import cfg as _C if sys.platform == "win32": root = r"D:\cvml_project\projections\inverse_projection\data\d2\trial_T20190909_075955_678702\\" root = r"D:\cvml_project\projections\inverse_projection\data\d2\trial_T20190909_100908_040512\\" semantic_config_file = r"D:\alfred\alfred\models\config\sgg_without_oracle.yaml" else: root = r"/home/alfred/data/full_2.1.0/train/pick_and_place_simple-RemoteControl-None-Ottoman-208/trial_T20190909_100908_040512/" semantic_config_file = "/home/alfred/models/config/graph_map.yaml" def win(): nonlocal _C config = _C config.SLAM_MAP.map_resolution = 5 config.SLAM_MAP.map_size_cm = 2400 config.SLAM_MAP.map_size_cm = 800 config.SLAM_MAP.agent_max_z = 200 config.SLAM_MAP.vision_range = 64 # config.SLAM_MAP.vision_range = 128 alfred_dataset = alfred_data_format.AlfredDataset(config) grap_map = SlamMAP( config, ) traj_data_path = root + "traj_data.json" with open(traj_data_path, 'r') as f: traj_data = json.load(f) frames_depth = test_load_img(os.path.join(root, 'depth_images'), traj_data["images"], None).view(-1, 300, 300, 3) frames_rgb = test_load_img(os.path.join(root, 'raw_images'), traj_data["images"], None, type_image=".jpg").view(-1, 300, 300, 3) agent_meta_data = test_load_meta_data(root, traj_data["images"]) for i in range(len(frames_depth)): depth_image = frames_depth[i] rgb_img = frames_rgb[i] agent_meta = agent_meta_data['agent_sgg_meta_data'][i] # import pdb; pdb.set_trace() target = None feature = grap_map.update_map( np.array(depth_image), agent_meta, target) grap_map.visualize_graph_map(rgb_img, depth_image) grap_map.reset_map() def linux(): import time start = time.time() nonlocal _C config = _C config.merge_from_file(semantic_config_file) # sgg model sys.path.insert(0, os.environ['GRAPH_RCNN_ROOT']) from lib.config import cfg cfg.merge_from_file("/home/graph-rcnn.pytorch/configs/attribute.yaml") config['sgg_cfg'] = cfg alfred_dataset = alfred_data_format.AlfredDataset(config) grap_map = SlamMAP( config, ) traj_data_path = root + "traj_data.json" with open(traj_data_path, 'r') as f: traj_data = json.load(f) frames_depth = test_load_img(os.path.join(root, 'depth_images'), traj_data["images"], None).view(-1, 3, 300, 300) frames_rgb = test_load_img(os.path.join(root, 'instance_masks'), traj_data["images"], alfred_dataset.trans_meta_data.transforms).view(-1, 3, 300, 300) agent_meta_data = test_load_meta_data(root, traj_data["images"]) for i in range(len(frames_depth)): depth_image = frames_depth[i] rgb_image = frames_rgb[i] agent_meta = agent_meta_data['agent_sgg_meta_data'][i] # import pdb; pdb.set_trace() feature = grap_map.update_map( np.array(depth_image.view(300, 300, 3)), agent_meta, ) grap_map.visualize_graph_map(depth_image) grap_map.reset_map() # time end = time.time() print(end - start) if sys.platform == "win32": win() else: linux() if __name__ == '__main__': main()
42.619195
158
0.613613
4a215a9a2320467e5391d25656bae0b63d06b194
701
py
Python
app/bond/__init__.py
BoostryJP/ibet-Issuer
efc599f8784be06588cf3ad8f239d36f24fdf3fa
[ "Apache-2.0" ]
1
2021-06-16T03:38:07.000Z
2021-06-16T03:38:07.000Z
app/bond/__init__.py
BoostryJP/ibet-Issuer
efc599f8784be06588cf3ad8f239d36f24fdf3fa
[ "Apache-2.0" ]
17
2021-04-26T03:28:40.000Z
2021-11-24T07:15:55.000Z
app/bond/__init__.py
BoostryJP/ibet-Issuer
efc599f8784be06588cf3ad8f239d36f24fdf3fa
[ "Apache-2.0" ]
1
2021-05-30T14:09:11.000Z
2021-05-30T14:09:11.000Z
""" Copyright BOOSTRY Co., Ltd. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. SPDX-License-Identifier: Apache-2.0 """ from flask import Blueprint bond = Blueprint('bond', __name__, url_prefix='/bond') from . import views
28.04
74
0.776034
4a215abd2e764a76be30195e943ba6a7744aa4ad
47,618
py
Python
tensorflow/python/framework/importer_test.py
JanX2/tensorflow
dd788dbbfa544c1ea4768940ac4300c22bb7e88e
[ "Apache-2.0" ]
3
2017-12-04T07:45:22.000Z
2018-04-20T06:53:17.000Z
tensorflow/python/framework/importer_test.py
JanX2/tensorflow
dd788dbbfa544c1ea4768940ac4300c22bb7e88e
[ "Apache-2.0" ]
null
null
null
tensorflow/python/framework/importer_test.py
JanX2/tensorflow
dd788dbbfa544c1ea4768940ac4300c22bb7e88e
[ "Apache-2.0" ]
1
2020-05-14T06:13:24.000Z
2020-05-14T06:13:24.000Z
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.python.framework.importer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from google.protobuf import text_format from tensorflow.core.framework import graph_pb2 from tensorflow.core.framework import op_def_pb2 from tensorflow.python.framework import constant_op from tensorflow.python.framework import device from tensorflow.python.framework import dtypes from tensorflow.python.framework import function from tensorflow.python.framework import importer from tensorflow.python.framework import ops from tensorflow.python.framework import test_ops # pylint: disable=unused-import from tensorflow.python.framework import test_util from tensorflow.python.framework import versions from tensorflow.python.ops import array_ops from tensorflow.python.ops import gradients_impl from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import variables import tensorflow.python.ops.nn_grad # pylint: disable=unused-import from tensorflow.python.platform import test @test_util.with_c_api class ImportGraphDefTest(test.TestCase): def _MakeGraphDef(self, text, producer=versions.GRAPH_DEF_VERSION, min_consumer=versions.GRAPH_DEF_VERSION_MIN_CONSUMER): text = "versions: { producer: %d min_consumer: %d };\n%s" % (producer, min_consumer, text) ret = graph_pb2.GraphDef() text_format.Merge(text, ret) return ret def testBasic(self): with ops.Graph().as_default(): a, b, c, d = importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'IntOutputFloatOutput' } node { name: 'B' op: 'ListOutput' attr { key: 'T' value { list { type: DT_INT32 type: DT_FLOAT } } } } node { name: 'C' op: 'ListInput' attr { key: 'N' value { i: 2 } } attr { key: 'T' value { type: DT_INT32 } } input: 'A:0' input: 'B:0' } node { name: 'D' op: 'ListInput' attr { key: 'N' value { i: 2 } } attr { key: 'T' value { type: DT_FLOAT } } input: 'A:1' input: 'B:1' } """), return_elements=["A", "B", "C", "D"], name="import") # Assert that the import process creates distinct tensors. self.assertNotEqual(a.outputs[0].name, a.outputs[1].name) self.assertNotEqual(b.outputs[0].name, b.outputs[1].name) self.assertNotEqual(a.outputs[0].name, b.outputs[0].name) self.assertNotEqual(a.outputs[0].name, b.outputs[1].name) self.assertNotEqual(a.outputs[1].name, b.outputs[0].name) self.assertNotEqual(a.outputs[1].name, b.outputs[1].name) # Assert that the ops are connected according to the GraphDef topology. self.assertEqual(c.inputs[0], a.outputs[0]) self.assertEqual(c.inputs[1], b.outputs[0]) self.assertEqual(d.inputs[0], a.outputs[1]) self.assertEqual(d.inputs[1], b.outputs[1]) # Check the types of the returned ops and tensors. self.assertEqual(a.type, "IntOutputFloatOutput") self.assertEqual(b.type, "ListOutput") self.assertEqual(c.type, "ListInput") self.assertEqual(d.type, "ListInput") self.assertEqual(a.outputs[0].dtype, dtypes.int32) self.assertEqual(a.outputs[1].dtype, dtypes.float32) self.assertEqual(b.outputs[0].dtype, dtypes.int32) self.assertEqual(b.outputs[1].dtype, dtypes.float32) # Check the names of the returned ops. self.assertEqual(a.name, "import/A") self.assertEqual(b.name, "import/B") self.assertEqual(c.name, "import/C") self.assertEqual(d.name, "import/D") # Check that the op_def is still available. self.assertNotEqual(None, a.op_def) def testMultipleImport(self): if ops._USE_C_API: return # TODO(skyewm): set uniquify_names graph_def = self._MakeGraphDef(""" node { name: 'A' op: 'IntOutput' } node { name: 'B' op: 'IntInput' input: 'A:0' } """) with ops.Graph().as_default(): # Initial import a, b = importer.import_graph_def( graph_def, return_elements=["A", "B"], name="") self.assertEqual(a.name, "A") self.assertEqual(b.name, "B") self.assertEqual(list(b.inputs), [a.outputs[0]]) # Repeat the same import a1, b1 = importer.import_graph_def( graph_def, return_elements=["A", "B"], name="") self.assertEqual(a1.name, "A_1") self.assertEqual(b1.name, "B_1") self.assertEqual(list(b1.inputs), [a1.outputs[0]]) # Repeat the same import again a2, b2 = importer.import_graph_def( graph_def, return_elements=["A", "B"], name="") self.assertEqual(a2.name, "A_2") self.assertEqual(b2.name, "B_2") self.assertEqual(list(b2.inputs), [a2.outputs[0]]) # Import with an already-used name a3, b3 = importer.import_graph_def( graph_def, return_elements=["A", "B"], name="A") self.assertEqual(a3.name, "A_3/A") self.assertEqual(b3.name, "A_3/B") self.assertEqual(list(b3.inputs), [a3.outputs[0]]) # Import with existing de-duped node names a4, b4 = importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A_1' op: 'IntOutput' } node { name: 'B_1' op: 'IntInput' input: 'A_1:0' } """), return_elements=["A_1", "B_1"], name="") self.assertEqual(a4.name, "A_1_1") self.assertEqual(b4.name, "B_1_1") self.assertEqual(list(b4.inputs), [a4.outputs[0]]) # Create a name scope and then import node with same name with ops.name_scope("foo"): constant_op.constant(1) foo, = importer.import_graph_def( self._MakeGraphDef("node { name: 'foo' op: 'IntOutput' }"), return_elements=["foo"], name="") self.assertEqual(foo.name, "foo_1") # Imported node name can't conflict with intermediate name scope (but can # conflict with outer scope and full name scope) with ops.name_scope("outer"): with ops.name_scope("inner"): c = constant_op.constant(1, name="c") self.assertEqual(c.op.name, "outer/inner/c") outer, inner, new_c, outer_inner, outer_inner_c = ( importer.import_graph_def( self._MakeGraphDef( "node { name: 'outer' op: 'IntOutput' }" "node { name: 'inner' op: 'IntOutput' }" "node { name: 'c' op: 'IntOutput' }" "node { name: 'outer/inner' op: 'IntOutput' }" "node { name: 'outer/inner/c' op: 'IntOutput' }"), return_elements=["outer", "inner", "c", "outer/inner", "outer/inner/c"], name="")) self.assertEqual(outer.name, "outer_1") self.assertEqual(inner.name, "inner") self.assertEqual(new_c.name, "c") self.assertEqual(outer_inner.name, "outer/inner_1") self.assertEqual(outer_inner_c.name, "outer/inner/c_1") def testInputMap(self): with ops.Graph().as_default(): feed_a_0 = constant_op.constant(0, dtype=dtypes.int32) feed_b_1 = constant_op.constant(1, dtype=dtypes.int32) a, b, c, d = importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'TwoIntOutputs' } node { name: 'B' op: 'TwoIntOutputs' } node { name: 'C' op: 'ListInput' attr { key: 'N' value { i: 2 } } attr { key: 'T' value { type: DT_INT32 } } input: 'A:0' input: 'B:0' } node { name: 'D' op: 'ListInput' attr { key: 'N' value { i: 2 } } attr { key: 'T' value { type: DT_INT32 } } input: 'A:1' input: 'B:1' } """), input_map={"A:0": feed_a_0, "B:1": feed_b_1}, return_elements=["A", "B", "C", "D"]) self.assertEqual(c.inputs[0], feed_a_0) self.assertEqual(c.inputs[1], b.outputs[0]) self.assertEqual(d.inputs[0], a.outputs[1]) self.assertEqual(d.inputs[1], feed_b_1) def testInputMapBytes(self): with ops.Graph().as_default(): feed_a_0 = constant_op.constant(0, dtype=dtypes.int32) feed_b_1 = constant_op.constant(1, dtype=dtypes.int32) a, b, c, d = importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'TwoIntOutputs' } node { name: 'B' op: 'TwoIntOutputs' } node { name: 'C' op: 'ListInput' attr { key: 'N' value { i: 2 } } attr { key: 'T' value { type: DT_INT32 } } input: 'A:0' input: 'B:0' } node { name: 'D' op: 'ListInput' attr { key: 'N' value { i: 2 } } attr { key: 'T' value { type: DT_INT32 } } input: 'A:1' input: 'B:1' } """), input_map={b"A:0": feed_a_0, b"B:1": feed_b_1}, return_elements=[b"A", b"B", b"C", b"D"]) self.assertEqual(c.inputs[0], feed_a_0) self.assertEqual(c.inputs[1], b.outputs[0]) self.assertEqual(d.inputs[0], a.outputs[1]) self.assertEqual(d.inputs[1], feed_b_1) def testInputMapUnicode(self): with ops.Graph().as_default(): feed_a_0 = constant_op.constant(0, dtype=dtypes.int32) feed_b_1 = constant_op.constant(1, dtype=dtypes.int32) a, b, c, d = importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'TwoIntOutputs' } node { name: 'B' op: 'TwoIntOutputs' } node { name: 'C' op: 'ListInput' attr { key: 'N' value { i: 2 } } attr { key: 'T' value { type: DT_INT32 } } input: 'A:0' input: 'B:0' } node { name: 'D' op: 'ListInput' attr { key: 'N' value { i: 2 } } attr { key: 'T' value { type: DT_INT32 } } input: 'A:1' input: 'B:1' } """), input_map={u"A:0": feed_a_0, u"B:1": feed_b_1}, return_elements=[u"A", u"B", u"C", u"D"]) self.assertEqual(c.inputs[0], feed_a_0) self.assertEqual(c.inputs[1], b.outputs[0]) self.assertEqual(d.inputs[0], a.outputs[1]) self.assertEqual(d.inputs[1], feed_b_1) def testImplicitZerothOutput(self): with ops.Graph().as_default(): a, b = importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'TwoIntOutputs' } node { name: 'B' op: 'IntInput' input: 'A' } """), return_elements=["A", "B"]) self.assertEqual(b.inputs[0], a.outputs[0]) def testInputMapImplicitZerothOutput(self): with ops.Graph().as_default(): feed_a_0 = constant_op.constant(0, dtype=dtypes.int32) b, = importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'TwoIntOutputs' } node { name: 'B' op: 'IntInput' input: 'A:0' } """), input_map={"A": feed_a_0}, return_elements=["B"]) self.assertEqual(b.inputs[0], feed_a_0) def testWithControlDependency(self): with ops.Graph().as_default(): a, b = importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'None' } node { name: 'B' op: 'None' input: '^A' } """), return_elements=["A", "B"]) self.assertEqual(b.control_inputs, [a]) def testWithRefs(self): with ops.Graph().as_default(): a, b, c, d = importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'RefOutput' } node { name: 'B' op: 'IntOutput' } node { name: 'C' op: 'TwoIntInputs' input: 'A:0' input: 'B:0' } node { name: 'D' op: 'RefInputIntInput' input: 'A:0' input: 'B:0' } """), return_elements=["A", "B", "C", "D"]) self.assertEqual(c.inputs[0], a.outputs[0]) self.assertEqual(c.inputs[1], b.outputs[0]) self.assertEqual(d.inputs[0], a.outputs[0]) self.assertEqual(d.inputs[1], b.outputs[0]) self.assertEqual(a.outputs[0].dtype, dtypes.int32_ref) self.assertEqual(c._input_dtypes, [dtypes.int32, dtypes.int32]) self.assertEqual(c.outputs, []) self.assertEqual(d._input_dtypes, [dtypes.int32_ref, dtypes.int32]) self.assertEqual(d.outputs, []) def testCyclic(self): # Importing cycles not supported with C API enabled (this test will # eventually be deleted). # TODO(skyewm): write while loop test if ops._USE_C_API: return with ops.Graph().as_default(): a, b = importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'Unary' attr { key: 'T' value { type: DT_INT32 } } input: 'B:0' } node { name: 'B' op: 'Unary' attr { key: 'T' value { type: DT_INT32 } } input: 'A:0' } """), return_elements=["A", "B"]) self.assertEqual(a.inputs[0], b.outputs[0]) self.assertEqual(b.inputs[0], a.outputs[0]) def testTypeMismatchInGraphDef(self): if ops._USE_C_API: return # TODO(skyewm): make this work with C API with ops.Graph().as_default(): with self.assertRaises(ValueError) as e: importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'IntOutput' } node { name: 'B' op: 'FloatInput' input: 'A:0' } """)) self.assertTrue( "Cannot convert a tensor of type int32 to an input of type float" in str(e.exception)) def testShapeWhitelist(self): if ops._USE_C_API: return # TODO(skyewm): make this work with C API # Barrier's shape is an output vector of 2, but the # graph says it's a scalar. This is currently whitelisted. with ops.Graph().as_default(): _ = importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'Barrier' attr { key: '_output_shapes' value { list { shape { } } } } } """), return_elements=["A"], name="import") def testShapeWhitelistViolation(self): if ops._USE_C_API: return # TODO(skyewm): make this work with C API # L2 loss produces a scalar shape, but the graph # has the wrong shape, so raise an error. with ops.Graph().as_default(): with self.assertRaises(ValueError) as e: _ = importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'FloatOutput' } node { name: 'B' op: 'L2Loss' input: 'A:0' attr { key: 'T' value { type: DT_FLOAT } } attr { key: '_output_shapes' value { list { shape { dim { size: 43 } } } } } } """), return_elements=["B"], name="import") self.assertTrue( "Shapes () and (43,) are not compatible" in str(e.exception)) def testInvalidSignatureTooManyInputsInGraphDef(self): if ops._USE_C_API: return # TODO(skyewm): make this work with C API with ops.Graph().as_default(): with self.assertRaises(ValueError) as e: importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'IntOutput' } node { name: 'B' op: 'None' input: 'A:0' } """)) self.assertTrue("More inputs specified ('A:0') than the op expects" in str(e.exception)) def testInvalidSignatureNotEnoughInputsInGraphDef(self): if ops._USE_C_API: return # TODO(skyewm): make this work with C API with ops.Graph().as_default(): with self.assertRaises(ValueError) as e: importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'IntOutput' } node { name: 'B' op: 'IntInputFloatInput' input: 'A:0' } """)) self.assertTrue("Input types mismatch (expected 'int32, float32' but " "got 'int32')" in str(e.exception)) def testMissingInputOpInGraphDef(self): if ops._USE_C_API: return # TODO(skyewm): make this work with C API with ops.Graph().as_default(): with self.assertRaises(ValueError) as e: importer.import_graph_def( self._MakeGraphDef(""" node { name: 'B' op: 'FloatInput' input: 'A:0' } """)) self.assertTrue("Input tensor 'A:0' not found" in str(e.exception)) def testMissingInputOpInGraphDefButAppearsInInputMap(self): with ops.Graph().as_default(): feed_a_0 = constant_op.constant(5.0) b, = importer.import_graph_def( self._MakeGraphDef(""" node { name: 'B' op: 'FloatInput' input: 'A:0' } """), input_map={"A:0": feed_a_0}, return_elements=["B"]) self.assertEqual(b.inputs[0], feed_a_0) def testMissingInputTensorInGraphDef(self): if ops._USE_C_API: return # TODO(skyewm): make this work with C API with ops.Graph().as_default(): with self.assertRaises(ValueError) as e: importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'FloatOutput' } node { name: 'B' op: 'FloatInput' input: 'A:1' } """)) self.assertTrue("Input tensor 'A:1' not found" in str(e.exception)) def testMissingControlInputInGraphDef(self): if ops._USE_C_API: return # TODO(skyewm): make this work with C API with ops.Graph().as_default(): with self.assertRaises(ValueError) as e: importer.import_graph_def( self._MakeGraphDef(""" node { name: 'B' op: 'None' input: '^A' } """)) self.assertTrue("Control input '^A' not found" in str(e.exception)) def testInvalidTensorNameOutputIndexInGraphDef(self): if ops._USE_C_API: return # TODO(skyewm): make this work with C API with ops.Graph().as_default(): with self.assertRaises(ValueError) as e: importer.import_graph_def( self._MakeGraphDef(""" node { name: 'B' op: 'None' input: 'A:B' } """)) self.assertEqual("Cannot convert 'A:B' to a tensor name.", str(e.exception)) def testInvalidTensorNameInGraphDef(self): if ops._USE_C_API: return # TODO(skyewm): make this work with C API with ops.Graph().as_default(): with self.assertRaises(ValueError) as e: importer.import_graph_def( self._MakeGraphDef(""" node { name: 'B' op: 'None' input: 'A:B:0' } """)) self.assertEqual("Cannot convert 'A:B:0' to a tensor name.", str(e.exception)) def testMissingReturnOperation(self): if ops._USE_C_API: return # TODO(skyewm): make this work with C API with ops.Graph().as_default(): with self.assertRaises(ValueError) as e: importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'None' } """), return_elements=["B"]) self.assertTrue( "return_element 'B' not found in graph_def." in str(e.exception)) def testMissingReturnTensor(self): if ops._USE_C_API: return # TODO(skyewm): make this work with C API with ops.Graph().as_default(): with self.assertRaises(ValueError) as e: importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'IntOutput' } """), return_elements=["A:1"]) self.assertTrue( "return_element 'A:1' not found in graph_def." in str(e.exception)) with self.assertRaises(ValueError) as e: importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'IntOutput' } """), return_elements=["B:0"]) self.assertTrue( "return_element 'B:0' not found in graph_def." in str(e.exception)) with self.assertRaises(ValueError) as e: importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'IntOutput' } """), return_elements=["A:B:0"]) self.assertTrue( "return_element 'A:B:0' not found in graph_def." in str(e.exception)) def testMissingInputMap(self): if ops._USE_C_API: return # TODO(skyewm): make this work with C API with ops.Graph().as_default(): with self.assertRaises(ValueError) as e: importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'None' } """), input_map={"B:0": constant_op.constant(5.0)}) self.assertTrue("not found in graph_def: [B:0]" in str(e.exception)) def testInputMapUnusedAsInput(self): if ops._USE_C_API: return # TODO(skyewm): make this work with C API with ops.Graph().as_default(): # Mapping an unused node output should succeed. importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'IntOutput' } """), input_map={"A:0": constant_op.constant(5.0)}) # Mapping a non-existent output of an existing node should fail. with self.assertRaises(ValueError) as e: importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'IntOutput' } """), input_map={"A:2": constant_op.constant(5.0)}) self.assertTrue("not found in graph_def: [A:2]" in str(e.exception)) def testInputMapTypeMismatch(self): if ops._USE_C_API: error_msg = ("Input 0 of node import/B was passed float from Const:0 " "incompatible with expected int32.") else: error_msg = ("Cannot convert a tensor of type float32 to an input of " "type int32.") with ops.Graph().as_default(): with self.assertRaisesRegexp(ValueError, error_msg): importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'IntOutput' } node { name: 'B' op: 'IntInput' input: 'A:0' } """), input_map={"A:0": constant_op.constant(5.0)}) def testNoReturns(self): with ops.Graph().as_default() as g: ret = importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'None' } """)) self.assertEqual(ret, None) a = g.get_operation_by_name("import/A") self.assertEqual(a.type, "None") def testOverrideNamePrefix(self): with ops.Graph().as_default(): a, = importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'None' } """), return_elements=["A"], name="imported_graph") self.assertEqual(a.name, "imported_graph/A") def testDefaultNamePrefix(self): with ops.Graph().as_default(): a, = importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'None' } """), return_elements=["A"], name=None) self.assertEqual(a.name, "import/A") def testNamePrefixColocationAttrs(self): original_graph_def = self._MakeGraphDef(""" node { name: 'A' op: 'None' } node { name: 'B' op: 'None' attr { key: '_class' value { list { s: 'loc:@A' } } } }""") with ops.Graph().as_default(): b, = importer.import_graph_def( original_graph_def, return_elements=["B"], name="imported_graph") self.assertTrue("_class" in b.node_def.attr) self.assertProtoEquals( "list { s: 'loc:@imported_graph/A' }", b.node_def.attr["_class"]) def testColocationWithDeviceFn(self): original_graph_def = self._MakeGraphDef(""" node { name: 'A' op: 'None' attr { key: '_class' value { list { s: 'loc:@A' } } } } node { name: 'B' op: 'None' attr { key: '_class' value { list { s: 'loc:@A' } } } }""") # A device function that places "A" on one device and "B" on # another device. Because B is colocated with A, we test that B's # device function is overridden by A. def CustomDeviceFn(op): if "A" in op.name: return "/device:A:0" else: return "/device:B:0" with ops.Graph().as_default(): with ops.device(CustomDeviceFn): a, b = importer.import_graph_def(original_graph_def, return_elements=["A", "B"], name="imported_graph") self.assertEqual(a.device, "/device:A:0") self.assertEqual(b.device, "/device:A:0") self.assertEqual(a.colocation_groups(), [b"loc:@imported_graph/A"]) self.assertEqual(b.colocation_groups(), [b"loc:@imported_graph/A"]) # Test a scenario where 'A' doesn't get a device; 'A' should not have a # device, but during runtime will get colocated with 'B' because of the # colocation attribute. B's device function is still overridden by A. def BDeviceFn(op): if "B" in op.name: return "/device:B:0" return "" with ops.Graph().as_default(): with ops.device(BDeviceFn): a, b = importer.import_graph_def(original_graph_def, return_elements=["A", "B"], name="imported_graph") self.assertEqual(a.device, "") self.assertEqual(b.device, "") self.assertEqual(a.colocation_groups(), [b"loc:@imported_graph/A"]) self.assertEqual(b.colocation_groups(), [b"loc:@imported_graph/A"]) # Only A gets a device, so B inherits it implicitly. def ADeviceFn(op): if "A" in op.name: return "/device:A:0" return "" with ops.Graph().as_default(): with ops.device(ADeviceFn): a, b = importer.import_graph_def(original_graph_def, return_elements=["A", "B"], name="imported_graph") self.assertEqual(a.device, "/device:A:0") self.assertEqual(b.device, "/device:A:0") self.assertEqual(a.colocation_groups(), [b"loc:@imported_graph/A"]) self.assertEqual(b.colocation_groups(), [b"loc:@imported_graph/A"]) def testMultipleColocationWithDeviceFn(self): original_graph_def = self._MakeGraphDef(""" node { name: 'A' op: 'None'} node { name: 'B' op: 'None'} node { name: 'C' op: 'None' attr { key: '_class' value { list { s: 'loc:@A' s: 'loc:@B' } } } }""") # A device function that places "B" on a device, and "A" is empty. # # B and C should contain "/device:B". A will not right now. But # because of the colocation property, at runtime it would be # placed with B and C. def CustomDeviceFn(op): if "B" in op.name: return "/device:B:0" return "" with ops.Graph().as_default(): with ops.device(CustomDeviceFn): a, b, c = importer.import_graph_def(original_graph_def, return_elements=["A", "B", "C"], name="imported_graph") self.assertEqual(a.device, "") self.assertEqual(b.device, "/device:B:0") self.assertEqual(c.device, "/device:B:0") self.assertEqual(a.colocation_groups(), [b"loc:@imported_graph/A"]) self.assertEqual(b.colocation_groups(), [b"loc:@imported_graph/B"]) self.assertEqual(c.colocation_groups(), [b"loc:@imported_graph/A", b"loc:@imported_graph/B"]) def testNamePrefixColocationAttrsMultipleImport(self): if ops._USE_C_API: return # TODO(skyewm): set uniquify_names original_graph_def = self._MakeGraphDef(""" node { name: 'A' op: 'None' } node { name: 'B' op: 'None' attr { key: '_class' value { list { s: 'loc:@A' } } } }""") with ops.Graph().as_default(): b, = importer.import_graph_def( original_graph_def, return_elements=["B"], name="") _, = importer.import_graph_def( original_graph_def, return_elements=["B"], name="") self.assertProtoEqualsVersion(""" node { name: 'A' op: 'None' } node { name: 'B' op: 'None' attr { key: '_class' value { list { s: 'loc:@A' } } } } node { name: 'A_1' op: 'None' } node { name: 'B_1' op: 'None' attr { key: '_class' value { list { s: 'loc:@A_1' } } } }""", b.graph.as_graph_def()) def testNamePrefixColocationAttrsNotFound(self): original_graph_def = self._MakeGraphDef(""" node { name: 'B' op: 'None' attr { key: '_class' value { list { s: 'loc:@A' } } } }""") if ops._USE_C_API: error_msg = "Node 'B' expects to be colocated with unknown node 'A'" else: error_msg = "does not exist during import" with ops.Graph().as_default(): with self.assertRaisesRegexp(ValueError, error_msg): importer.import_graph_def( original_graph_def, return_elements=["B"], name="imported_graph") def testEmptyGraph(self): with ops.Graph().as_default() as g: init_version = g.version importer.import_graph_def(self._MakeGraphDef("")) self.assertEqual(init_version, g.version) def testInvalidInputForGraphDef(self): with ops.Graph().as_default(): with self.assertRaises(TypeError) as e: importer.import_graph_def("") self.assertEqual("graph_def must be a GraphDef proto.", str(e.exception)) def testInvalidInputForInputMap(self): with ops.Graph().as_default(): with self.assertRaises(TypeError) as e: importer.import_graph_def( self._MakeGraphDef(""), input_map=[constant_op.constant(5.0)]) self.assertEqual("input_map must be a dictionary mapping strings to " "Tensor objects.", str(e.exception)) graph_def = self._MakeGraphDef(""" node { name: 'a' op: 'Placeholder' attr { key: 'dtype' value { type: DT_FLOAT } }} node { name: 'id' op: 'Identity' input: 'a:0' attr { key: 'T' value { type: DT_FLOAT } }}""") with ops.Graph().as_default(): with self.assertRaises(ValueError) as e: importer.import_graph_def( graph_def, input_map={"a:0": variables.Variable(5.0)}, name="") self.assertStartsWith(str(e.exception), "tf.import_graph_def() requires a non-empty `name` " "if `input_map` contains non-Tensor values.") with ops.Graph().as_default(): t, = importer.import_graph_def( graph_def, input_map={"a:0": constant_op.constant(5.0)}, name="", return_elements=["id:0"]) with self.test_session(): self.assertEqual(5.0, t.eval()) def testInvalidInputForReturnOperations(self): with ops.Graph().as_default(): with self.assertRaises(TypeError) as e: importer.import_graph_def(self._MakeGraphDef(""), return_elements=[7]) self.assertEqual("return_elements must be a list of strings.", str(e.exception)) if ops._USE_C_API: error_msg = "Cannot convert 'a:b:c' to a tensor name." else: error_msg = "Requested return_element 'a:b:c' not found in graph_def." with self.assertRaisesRegexp(ValueError, error_msg): importer.import_graph_def(self._MakeGraphDef(""), return_elements=["a:b:c"]) def testDuplicateOperationNames(self): if ops._USE_C_API: return # TODO(skyewm): make this work with C API with ops.Graph().as_default(): with self.assertRaises(ValueError) as e: importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'IntOutput' } node { name: 'B' op: 'IntOutput' } node { name: 'A' op: 'IntOutput' } """)) self.assertEqual("Duplicate name 'A' in GraphDef.", str(e.exception)) def testWithExtensionAndAttr(self): with ops.Graph().as_default() as g: c = constant_op.constant(5.0, dtype=dtypes.float32, name="c") array_ops.stack([c, c], name="pack") gdef = g.as_graph_def() with self.test_session(): pack, = importer.import_graph_def(gdef, return_elements=["pack"]) self.assertAllEqual(pack.outputs[0].eval(), [5.0, 5.0]) def testWithDevice(self): if ops._USE_C_API: return # TODO(skyewm): make this work with C API with ops.Graph().as_default() as g: # No device. a = constant_op.constant(3.0, name="a") with ops.device("/cpu:0"): b = constant_op.constant(4.0, name="b") with ops.device("/job:worker"): c = constant_op.constant(5.0, name="c") gdef = g.as_graph_def() with ops.Graph().as_default(): a2, b2, c2 = importer.import_graph_def( gdef, return_elements=["a", "b", "c"]) self.assertEqual(a.device, a2.device) self.assertEqual(b.device, b2.device) self.assertEqual(c.device, c2.device) with ops.Graph().as_default(): with ops.device(device.merge_device("/task:0")): a3, b3, c3 = importer.import_graph_def( gdef, return_elements=["a", "b", "c"]) self.assertEqual("/task:0", a3.device) self.assertEqual("/task:0/device:CPU:0", b3.device) # canonicalized. self.assertEqual(c.device + "/task:0", c3.device) with ops.Graph().as_default(): with ops.device(device.merge_device("/job:ps")): a4, b4, c4 = importer.import_graph_def( gdef, return_elements=["a", "b", "c"]) self.assertEqual("/job:ps", a4.device) self.assertEqual("/job:ps/device:CPU:0", b4.device) # canonicalized. self.assertEqual(c.device, c4.device) # worker overrides ps. with ops.Graph().as_default(): with ops.device(device.merge_device("/device:GPU:0")): a5, b5, c5 = importer.import_graph_def( gdef, return_elements=["a", "b", "c"]) self.assertEqual("/device:GPU:0", a5.device) self.assertEqual("/device:CPU:0", b5.device) # cpu overrides gpu. self.assertEqual(c.device + "/device:GPU:0", c5.device) def testWithDeviceFunctionDependingOnInputs(self): if ops._USE_C_API: return # TODO(skyewm): make this work with C API with ops.Graph().as_default() as g: with ops.device("/job:ps"): v1 = constant_op.constant(1.0) v2 = constant_op.constant(1.0) _ = v1 + v2 _ = v1 - v2 _ = array_ops.identity(v1) gdef = g.as_graph_def() # We'll use the following device function to observe ops with two inputs. ops_with_two_inputs = [] def InputCounter(op): if len(op.inputs) == 2: ops_with_two_inputs.append(op) return "" with ops.Graph().as_default() as g: with ops.device(InputCounter): importer.import_graph_def(gdef) # We expect to see the add and subtract, but not identity. self.assertEqual(2, len(ops_with_two_inputs)) def testGradient(self): if ops._USE_C_API: return # TODO(skyewm): get_shape() doesn't work with ops.Graph().as_default() as g: inputs = array_ops.placeholder( dtypes.float32, shape=[None, 100], name="input") weights = array_ops.placeholder( dtypes.float32, shape=[100, 10], name="weights") biases = array_ops.placeholder(dtypes.float32, shape=[10], name="biases") activations = nn_ops.relu( math_ops.matmul(inputs, weights) + biases, name="activations") loss = math_ops.reduce_mean(activations, name="loss") gdef = g.as_graph_def() with ops.Graph().as_default() as g: input_placeholder = array_ops.placeholder(dtypes.float32, shape=[32, 100]) weights_var = variables.Variable( random_ops.truncated_normal([100, 10]), name="weights") biases_var = variables.Variable(array_ops.zeros([10]), name="biases") activations, loss = importer.import_graph_def( gdef, input_map={ "input:0": input_placeholder, "weights:0": weights_var, "biases:0": biases_var }, return_elements=["activations:0", "loss:0"]) self.assertEqual([32, 10], activations.get_shape()) self.assertEqual([], loss.get_shape()) weights_grad, biases_grad = gradients_impl.gradients( loss, [weights_var, biases_var]) self.assertEqual([100, 10], weights_grad.get_shape()) self.assertEqual([10], biases_grad.get_shape()) def testLargeGraph(self): with self.test_session(): # The default message byte limit is 64M. Ours is 2G with a warning at 512. # Adding a 130M entries float32 tensor should exceed the warning, but not # the hard limit. input_shape = [130, 1000, 1000] tensor_input = np.ones(input_shape, dtype=np.float32) t = constant_op.constant(tensor_input, shape=input_shape) g = array_ops.identity(t) g.eval() def testVersion(self): v0 = versions.GRAPH_DEF_VERSION_MIN_CONSUMER v2 = versions.GRAPH_DEF_VERSION v1 = (v0 + v2) // 2 for producer in v0, v1, v2: for min_consumer in v0, v1, v2: with ops.Graph().as_default(): a, = importer.import_graph_def( self._MakeGraphDef( "node { name: 'A' op: 'TwoIntOutputs' }", producer=producer, min_consumer=min_consumer), return_elements=["A"]) self.assertEqual(a.graph.graph_def_versions.producer, producer) self.assertEqual(a.graph.graph_def_versions.min_consumer, min_consumer) def testVersionLow(self): with ops.Graph().as_default() as g: pat = (r"GraphDef producer version -1 below min producer %d supported " r"by TensorFlow \S+\. Please regenerate your graph.$" % versions.GRAPH_DEF_VERSION_MIN_PRODUCER) # C API throws error during import, Python-only throws error during run if ops._USE_C_API: with self.assertRaisesRegexp(Exception, pat): importer.import_graph_def(self._MakeGraphDef("", producer=-1)) else: importer.import_graph_def(self._MakeGraphDef("", producer=-1)) x = constant_op.constant( 7) # Need at least one op to get a C++ graph generated with self.test_session(graph=g) as sess: with self.assertRaisesRegexp(Exception, pat): sess.run(x) def testVersionHigh(self): if ops._USE_C_API: return # TODO(skyewm): make this work with C API with ops.Graph().as_default() as g: pat = (r"GraphDef min consumer version %d above current version %d " r"for TensorFlow \S+\. Please upgrade TensorFlow\.$" % (1 << 30, versions.GRAPH_DEF_VERSION)) importer.import_graph_def(self._MakeGraphDef("", min_consumer=1 << 30)) x = constant_op.constant( 7) # Need at least one op to get a C++ graph generated with self.test_session(graph=g) as sess: with self.assertRaisesRegexp(Exception, pat): sess.run(x) def testVersionAppliesToOpConstruction(self): """These tests rely on shape fns in test_ops.cc.""" if ops._USE_C_API: return # TODO(skyewm): make this work with C API with ops.Graph().as_default(): importer.import_graph_def( self._MakeGraphDef( "node { name: 'A' op: 'RequiresOlderGraphVersion' }", producer=versions.GRAPH_DEF_VERSION - 1), return_elements=["A"]) with ops.Graph().as_default(): with self.assertRaisesWithPredicateMatch(ValueError, "Wrong graph version.*"): importer.import_graph_def( self._MakeGraphDef( "node { name: 'A' op: 'RequiresOlderGraphVersion' }", producer=versions.GRAPH_DEF_VERSION), return_elements=["A"]) def testDefaultAttrsAdded(self): with ops.Graph().as_default(): a = importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'OpWithDefaultAttr' } """), return_elements=["A"]) self.assertEqual(123.0, a[0].get_attr("default_float")) def testDefaultAttrsRemoved(self): if ops._USE_C_API: return # TODO(skyewm): make this work with C API producer_op_list = op_def_pb2.OpList() text_format.Merge(""" op { name: 'OpWithFutureDefaultAttr' attr { name: 'default_int' type: 'int' default_value { i: 456 } } } """, producer_op_list) # Attr only in producer_op_list with default value gets removed. with ops.Graph().as_default(): a = importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'OpWithFutureDefaultAttr' attr { key: 'default_int' value { i: 456 } } } """), return_elements=["A"], producer_op_list=producer_op_list) with self.assertRaisesRegexp(ValueError, "No attr named 'default_int'"): a[0].get_attr("default_int") # Attr only in producer_op_list with non-default value is preserved. with ops.Graph().as_default(): a = importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'OpWithFutureDefaultAttr' attr { key: 'default_int' value { i: 987 } } } """), return_elements=["A"], producer_op_list=producer_op_list) self.assertEqual(987, a[0].get_attr("default_int")) def testFunctions(self): if ops._USE_C_API: return # TODO(skyewm): make this work with C API dtype = dtypes.float32 @function.Defun(dtype, dtype, dtype, dtype) def Grad(x, y, dout1, dout2): # pylint: disable=unused-argument # Return the inputs for simplicity of testing. The correct return value # would be (dout1 + dout2, dout1 - dout2) return x, y @function.Defun(dtype, dtype, grad_func=Grad) def FuncWithGrad(x, y): return x + y, x - y @function.Defun(dtypes.int32) def ExternalTensorFunc(x): # c must be defined in the containing graph return x + c @function.Defun(dtypes.int32, dtypes.int32) def OuterFunc(x, y): @function.Defun(dtypes.int32) def InnerFunc(x): return x + x return InnerFunc(x) + y # Create graph with function calls and export to GraphDef with ops.Graph().as_default() as g1: p1 = array_ops.placeholder(dtype, name="p1") p2 = array_ops.placeholder(dtype, name="p2") # pylint: disable=unexpected-keyword-arg a, b = FuncWithGrad(p1, p2, name="f") c = constant_op.constant(10, dtype=dtypes.int32) ExternalTensorFunc(1, name="external") OuterFunc(10, 1, name="outer") # pylint: enable=unexpected-keyword-arg gdef = g1.as_graph_def() # Import GraphDef into new graph, add imported gradients, and test that # imported functions can be run with ops.Graph().as_default() as g2: p1, p2, a, b = importer.import_graph_def( gdef, return_elements=["p1:0", "p2:0", "f:0", "f:1"], name="") grad = gradients_impl.gradients([a], [p1, p2]) with self.test_session(graph=g2) as sess: feed_dict = {p1: 1, p2: 2} a_val, b_val, grad_val = sess.run([a, b, grad], feed_dict=feed_dict) self.assertEqual(a_val, 3.0) self.assertEqual(b_val, -1.0) # Grad function returns inputs values for testing self.assertEqual(grad_val, [1.0, 2.0]) self.assertEqual(sess.run("external:0"), 11) self.assertEqual(sess.run("outer:0"), 21) # Export the new graph and reimport to test that imported functions can be # successfully exported/imported again gdef = g2.as_graph_def() with ops.Graph().as_default() as g3: p1, p2, a, b = importer.import_graph_def( gdef, return_elements=["p1:0", "p2:0", "f:0", "f:1"], name="") # Create new gradient functions (in additional to the imported gradient # functions created in g2). grad = gradients_impl.gradients([a], [p1, p2]) with self.test_session(graph=g3) as sess: feed_dict = {p1: 1, p2: 2} a_val, b_val, grad_val = sess.run([a, b, grad], feed_dict=feed_dict) self.assertEqual(a_val, 3.0) self.assertEqual(b_val, -1.0) self.assertEqual(grad_val, [1.0, 2.0]) self.assertEqual(sess.run("external:0"), 11) self.assertEqual(sess.run("outer:0"), 21) def testImportInsideDefun(self): if ops._USE_C_API: return # TODO(skyewm): make this work with C API g = ops.Graph() with g.as_default(): @function.Defun() def Add2(x, y): return math_ops.add(x, y) x = constant_op.constant(3.0, dtype=dtypes.float32) y = constant_op.constant(-5.0, dtype=dtypes.float32) z = Add2(x, y, name="z") # pylint: disable=unexpected-keyword-arg gdef = g.as_graph_def() @function.Defun() def TestFunc(): return importer.import_graph_def(gdef, return_elements=["z:0"])[0] z = TestFunc() with self.test_session(): z_val = z.eval() self.assertEqual(z_val, -2.0) def testImportGraphWithFunctionTwice(self): g = ops.Graph() with g.as_default(): @function.Defun() def Add2(x, y): return math_ops.add(x, y) x = array_ops.placeholder(dtype=dtypes.float32, name="x") y = array_ops.placeholder(dtype=dtypes.float32, name="y") _ = Add2(x, y, name="z") # pylint: disable=unexpected-keyword-arg gdef = g.as_graph_def() x = random_ops.random_uniform(dtype=dtypes.float32, shape=()) y = random_ops.random_uniform(dtype=dtypes.float32, shape=()) input_map = {"x:0": x, "y:0": y} with ops.name_scope("first"): z1 = importer.import_graph_def(gdef, return_elements=["z:0"], input_map=input_map)[0] with ops.name_scope("second"): z2 = importer.import_graph_def(gdef, return_elements=["z:0"], input_map=input_map)[0] with self.test_session() as sess: z1_val, z2_val = sess.run((z1, z2)) self.assertAllEqual(z1_val, z2_val) if __name__ == "__main__": test.main()
38.808476
81
0.590869
4a215b55906797eb6376b9d1b3ea38e866f4a220
9,747
py
Python
sdk/rdbms/azure-mgmt-rdbms/azure/mgmt/rdbms/mysql/operations/_recommended_actions_operations.py
JianpingChen/azure-sdk-for-python
3072fc8c0366287fbaea1b02493a50259c3248a2
[ "MIT" ]
3
2020-06-23T02:25:27.000Z
2021-09-07T18:48:11.000Z
sdk/rdbms/azure-mgmt-rdbms/azure/mgmt/rdbms/mysql/operations/_recommended_actions_operations.py
JianpingChen/azure-sdk-for-python
3072fc8c0366287fbaea1b02493a50259c3248a2
[ "MIT" ]
510
2019-07-17T16:11:19.000Z
2021-08-02T08:38:32.000Z
sdk/rdbms/azure-mgmt-rdbms/azure/mgmt/rdbms/mysql/operations/_recommended_actions_operations.py
JianpingChen/azure-sdk-for-python
3072fc8c0366287fbaea1b02493a50259c3248a2
[ "MIT" ]
5
2019-09-04T12:51:37.000Z
2020-09-16T07:28:40.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models as _models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class RecommendedActionsOperations(object): """RecommendedActionsOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.rdbms.mysql.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def get( self, resource_group_name, # type: str server_name, # type: str advisor_name, # type: str recommended_action_name, # type: str **kwargs # type: Any ): # type: (...) -> "_models.RecommendationAction" """Retrieve recommended actions from the advisor. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param server_name: The name of the server. :type server_name: str :param advisor_name: The advisor name for recommendation action. :type advisor_name: str :param recommended_action_name: The recommended action name. :type recommended_action_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: RecommendationAction, or the result of cls(response) :rtype: ~azure.mgmt.rdbms.mysql.models.RecommendationAction :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.RecommendationAction"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-06-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'serverName': self._serialize.url("server_name", server_name, 'str'), 'advisorName': self._serialize.url("advisor_name", advisor_name, 'str'), 'recommendedActionName': self._serialize.url("recommended_action_name", recommended_action_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('RecommendationAction', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DBforMySQL/servers/{serverName}/advisors/{advisorName}/recommendedActions/{recommendedActionName}'} # type: ignore def list_by_server( self, resource_group_name, # type: str server_name, # type: str advisor_name, # type: str session_id=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> Iterable["_models.RecommendationActionsResultList"] """Retrieve recommended actions from the advisor. :param resource_group_name: The name of the resource group. The name is case insensitive. :type resource_group_name: str :param server_name: The name of the server. :type server_name: str :param advisor_name: The advisor name for recommendation action. :type advisor_name: str :param session_id: The recommendation action session identifier. :type session_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either RecommendationActionsResultList or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.rdbms.mysql.models.RecommendationActionsResultList] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.RecommendationActionsResultList"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-06-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_server.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str', min_length=1), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'serverName': self._serialize.url("server_name", server_name, 'str'), 'advisorName': self._serialize.url("advisor_name", advisor_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') if session_id is not None: query_parameters['sessionId'] = self._serialize.query("session_id", session_id, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('RecommendationActionsResultList', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list_by_server.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DBforMySQL/servers/{serverName}/advisors/{advisorName}/recommendedActions'} # type: ignore
49.227273
230
0.663691
4a215bfe41fdf71a11d8d9170b9b0fe2fd5d4ab5
1,309
py
Python
tests/test_pipeadiabaticsteam.py
marcelosalles/pyidf
c2f744211572b5e14e29522aac1421ba88addb0e
[ "Apache-2.0" ]
19
2015-12-08T23:33:51.000Z
2022-01-31T04:41:10.000Z
tests/test_pipeadiabaticsteam.py
marcelosalles/pyidf
c2f744211572b5e14e29522aac1421ba88addb0e
[ "Apache-2.0" ]
2
2019-10-04T10:57:00.000Z
2021-10-01T06:46:17.000Z
tests/test_pipeadiabaticsteam.py
marcelosalles/pyidf
c2f744211572b5e14e29522aac1421ba88addb0e
[ "Apache-2.0" ]
7
2015-11-04T02:25:01.000Z
2021-12-08T03:14:28.000Z
import os import tempfile import unittest import logging from pyidf import ValidationLevel import pyidf from pyidf.idf import IDF from pyidf.node import PipeAdiabaticSteam log = logging.getLogger(__name__) class TestPipeAdiabaticSteam(unittest.TestCase): def setUp(self): self.fd, self.path = tempfile.mkstemp() def tearDown(self): os.remove(self.path) def test_create_pipeadiabaticsteam(self): pyidf.validation_level = ValidationLevel.error obj = PipeAdiabaticSteam() # alpha var_name = "Name" obj.name = var_name # node var_inlet_node_name = "node|Inlet Node Name" obj.inlet_node_name = var_inlet_node_name # node var_outlet_node_name = "node|Outlet Node Name" obj.outlet_node_name = var_outlet_node_name idf = IDF() idf.add(obj) idf.save(self.path, check=False) with open(self.path, mode='r') as f: for line in f: log.debug(line.strip()) idf2 = IDF(self.path) self.assertEqual(idf2.pipeadiabaticsteams[0].name, var_name) self.assertEqual(idf2.pipeadiabaticsteams[0].inlet_node_name, var_inlet_node_name) self.assertEqual(idf2.pipeadiabaticsteams[0].outlet_node_name, var_outlet_node_name)
28.456522
92
0.675325
4a215d88ab5cca64c293b6d6ed367a3195e8186b
1,416
py
Python
river/metrics/multioutput/macro.py
online-ml/creme
60872844e6052b5ef20e4075aea30f9031377136
[ "BSD-3-Clause" ]
1,105
2019-01-24T15:15:30.000Z
2020-11-10T18:27:00.000Z
river/metrics/multioutput/macro.py
online-ml/creme
60872844e6052b5ef20e4075aea30f9031377136
[ "BSD-3-Clause" ]
328
2019-01-25T13:48:43.000Z
2020-11-11T11:41:44.000Z
river/metrics/multioutput/macro.py
online-ml/creme
60872844e6052b5ef20e4075aea30f9031377136
[ "BSD-3-Clause" ]
150
2019-01-29T19:05:21.000Z
2020-11-11T11:50:14.000Z
import statistics from collections import defaultdict from copy import deepcopy from functools import partial from river import metrics, utils from river.metrics.multioutput.base import MultiOutputMetric __all__ = ["MacroAverage"] class MacroAverage(MultiOutputMetric, metrics.base.WrapperMetric): """Macro-average wrapper. A copy of the provided metric is made for each output. The arithmetic average of all the metrics is returned. Parameters ---------- metric A classification or a regression metric. """ def __init__(self, metric): self._metric = metric self.metrics = defaultdict(partial(deepcopy, self._metric)) @property def metric(self): return self._metric def works_with(self, model) -> bool: if isinstance(self.metric, metrics.base.ClassificationMetric): return utils.inspect.ismoclassifier(model) return utils.inspect.ismoregressor(model) def update(self, y_true, y_pred, sample_weight=1.0): for i in y_pred: self.metrics[i].update(y_true[i], y_pred[i], sample_weight) return self def revert(self, y_true, y_pred, sample_weight=1.0): for i in y_pred: self.metrics[i].revert(y_true[i], y_pred[i], sample_weight) return self def get(self): return statistics.mean(metric.get() for metric in self.metrics.values())
28.32
92
0.683616
4a215db0348a33b42ac0add8888d44cddbdac6ca
259
py
Python
styling_tool/styling_tool/doctype/desk_icons/desk_icons.py
omaralhoori/frappe_styling_tool
d3b9fcdaff1a519ec9d950036957bbcf225b25a5
[ "MIT" ]
null
null
null
styling_tool/styling_tool/doctype/desk_icons/desk_icons.py
omaralhoori/frappe_styling_tool
d3b9fcdaff1a519ec9d950036957bbcf225b25a5
[ "MIT" ]
null
null
null
styling_tool/styling_tool/doctype/desk_icons/desk_icons.py
omaralhoori/frappe_styling_tool
d3b9fcdaff1a519ec9d950036957bbcf225b25a5
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2021, Omar Alhori and contributors # For license information, please see license.txt from __future__ import unicode_literals # import frappe from frappe.model.document import Document class DeskIcons(Document): pass
23.545455
50
0.772201
4a215db8ff07ba04a03ab00fa4d202481a32d0d9
8,642
py
Python
qiskit/circuit/controlflow/for_loop.py
t-imamichi/qiskit-core
8d2eeeac44f97af1e10514cdae4157e5923ff2e5
[ "Apache-2.0" ]
1,456
2017-08-05T16:33:05.000Z
2018-06-05T04:15:35.000Z
qiskit/circuit/controlflow/for_loop.py
t-imamichi/qiskit-core
8d2eeeac44f97af1e10514cdae4157e5923ff2e5
[ "Apache-2.0" ]
365
2017-08-04T06:09:16.000Z
2018-06-05T08:33:37.000Z
qiskit/circuit/controlflow/for_loop.py
declanmillar/qiskit-terra
43e4a72c9c1537dd3d220a52f7e56423dfdd926c
[ "Apache-2.0" ]
463
2017-08-05T04:10:01.000Z
2018-06-05T06:43:21.000Z
# This code is part of Qiskit. # # (C) Copyright IBM 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. "Circuit operation representing a ``for`` loop." import warnings from typing import Iterable, Optional, Union from qiskit.circuit.parameter import Parameter from qiskit.circuit.exceptions import CircuitError from qiskit.circuit.quantumcircuit import QuantumCircuit from .control_flow import ControlFlowOp class ForLoopOp(ControlFlowOp): """A circuit operation which repeatedly executes a subcircuit (``body``) parameterized by a parameter ``loop_parameter`` through the set of integer values provided in ``indexset``. Parameters: indexset: A collection of integers to loop over. loop_parameter: The placeholder parameterizing ``body`` to which the values from ``indexset`` will be assigned. body: The loop body to be repeatedly executed. label: An optional label for identifying the instruction. **Circuit symbol:** .. parsed-literal:: ┌───────────┐ q_0: ┤0 ├ │ │ q_1: ┤1 ├ │ for_loop │ q_2: ┤2 ├ │ │ c_0: ╡0 ╞ └───────────┘ """ def __init__( self, indexset: Iterable[int], loop_parameter: Union[Parameter, None], body: QuantumCircuit, label: Optional[str] = None, ): num_qubits = body.num_qubits num_clbits = body.num_clbits super().__init__( "for_loop", num_qubits, num_clbits, [indexset, loop_parameter, body], label=label ) @property def params(self): return self._params @params.setter def params(self, parameters): indexset, loop_parameter, body = parameters if not isinstance(loop_parameter, (Parameter, type(None))): raise CircuitError( "ForLoopOp expects a loop_parameter parameter to " "be either of type Parameter or None, but received " f"{type(loop_parameter)}." ) if not isinstance(body, QuantumCircuit): raise CircuitError( "ForLoopOp expects a body parameter to be of type " f"QuantumCircuit, but received {type(body)}." ) if body.num_qubits != self.num_qubits or body.num_clbits != self.num_clbits: raise CircuitError( "Attempted to assign a body parameter with a num_qubits or " "num_clbits different than that of the ForLoopOp. " f"ForLoopOp num_qubits/clbits: {self.num_qubits}/{self.num_clbits} " f"Supplied body num_qubits/clbits: {body.num_qubits}/{body.num_clbits}." ) if ( loop_parameter is not None and loop_parameter not in body.parameters and loop_parameter.name in (p.name for p in body.parameters) ): warnings.warn( "The Parameter provided as a loop_parameter was not found " "on the loop body and so no binding of the indexset to loop " "parameter will occur. A different Parameter of the same name " f"({loop_parameter.name}) was found. If you intended to loop " "over that Parameter, please use that Parameter instance as " "the loop_parameter.", stacklevel=2, ) # Consume indexset into a tuple unless it was provided as a range. # Preserve ranges so that they can be exported as OpenQASM3 ranges. indexset = indexset if isinstance(indexset, range) else tuple(indexset) self._params = [indexset, loop_parameter, body] @property def blocks(self): return (self._params[2],) def replace_blocks(self, blocks): (body,) = blocks return ForLoopOp(self.params[0], self.params[1], body, label=self.label) class ForLoopContext: """A context manager for building up ``for`` loops onto circuits in a natural order, without having to construct the loop body first. Within the block, a lot of the bookkeeping is done for you; you do not need to keep track of which qubits and clbits you are using, for example, and a loop parameter will be allocated for you, if you do not supply one yourself. All normal methods of accessing the qubits on the underlying :obj:`~QuantumCircuit` will work correctly, and resolve into correct accesses within the interior block. You generally should never need to instantiate this object directly. Instead, use :obj:`.QuantumCircuit.for_loop` in its context-manager form, i.e. by not supplying a ``body`` or sets of qubits and clbits. Example usage:: import math from qiskit import QuantumCircuit qc = QuantumCircuit(2, 1) with qc.for_loop(None, range(5)) as i: qc.rx(i * math.pi/4, 0) qc.cx(0, 1) qc.measure(0, 0) qc.break_loop().c_if(0, True) This context should almost invariably be created by a :meth:`.QuantumCircuit.for_loop` call, and the resulting instance is a "friend" of the calling circuit. The context will manipulate the circuit's defined scopes when it is entered (by pushing a new scope onto the stack) and exited (by popping its scope, building it, and appending the resulting :obj:`.ForLoopOp`). .. warning:: This is an internal interface and no part of it should be relied upon outside of Qiskit Terra. """ # Class-level variable keep track of the number of auto-generated loop variables, so we don't # get naming clashes. _generated_loop_parameters = 0 __slots__ = ( "_circuit", "_generate_loop_parameter", "_loop_parameter", "_indexset", "_label", "_used", ) def __init__( self, circuit: QuantumCircuit, indexset: Iterable[int], loop_parameter: Optional[Parameter] = None, *, label: Optional[str] = None, ): self._circuit = circuit self._generate_loop_parameter = loop_parameter is None self._loop_parameter = loop_parameter # We can pass through `range` instances because OpenQASM 3 has native support for this type # of iterator set. self._indexset = indexset if isinstance(indexset, range) else tuple(indexset) self._label = label self._used = False def __enter__(self): if self._used: raise CircuitError("A for-loop context manager cannot be re-entered.") self._used = True self._circuit._push_scope() if self._generate_loop_parameter: self._loop_parameter = Parameter(f"_loop_i_{self._generated_loop_parameters}") type(self)._generated_loop_parameters += 1 return self._loop_parameter def __exit__(self, exc_type, exc_val, exc_tb): if exc_type is not None: # If we're leaving the context manager because an exception was raised, there's nothing # to do except restore the circuit state. self._circuit._pop_scope() return False scope = self._circuit._pop_scope() # Loops do not need to pass any further resources in, because this scope itself defines the # extent of ``break`` and ``continue`` statements. body = scope.build(scope.qubits, scope.clbits) # We always bind the loop parameter if the user gave it to us, even if it isn't actually # used, because they requested we do that by giving us a parameter. However, if they asked # us to auto-generate a parameter, then we only add it if they actually used it, to avoid # using unnecessary resources. if self._generate_loop_parameter and self._loop_parameter not in body.parameters: loop_parameter = None else: loop_parameter = self._loop_parameter self._circuit.append( ForLoopOp(self._indexset, loop_parameter, body, label=self._label), tuple(body.qubits), tuple(body.clbits), ) return False
38.238938
100
0.634922
4a215e57c1f4e299e48764c4fb0d2cb8ee0a9f57
686
py
Python
IWS/plugins/twilio/reqhandler.py
FlyingDiver/Indigo-Twilio
b912e83c8a62f62329d01881d719de5ae097037d
[ "MIT" ]
1
2016-12-10T20:57:49.000Z
2016-12-10T20:57:49.000Z
IWS/plugins/twilio/reqhandler.py
FlyingDiver/Indigo-Twilio
b912e83c8a62f62329d01881d719de5ae097037d
[ "MIT" ]
9
2018-05-07T21:59:44.000Z
2022-01-29T22:49:29.000Z
IWS/plugins/twilio/reqhandler.py
FlyingDiver/Indigo-Twilio
b912e83c8a62f62329d01881d719de5ae097037d
[ "MIT" ]
null
null
null
#################### import cherrypy from indigopy.basereqhandler import BaseRequestHandler #################### def PluginName(): return u"Twilio Ping" def PluginDescription(): return u"This is the Twilio-Indigo Ping Plugin." def ShowOnControlPageList(): return False # if True, then above name/description is shown on the Control Page list index #################### class TwilioRequestHandler(BaseRequestHandler): def __init__(self, logFunc, debugLogFunc): BaseRequestHandler.__init__(self, logFunc, debugLogFunc) def ping(self, **params): cherrypy.server.indigoDb.VariableSetValue(cherrypy.server.indigoConn, "twilio_ping", "true") return ping.exposed = True
26.384615
94
0.714286
4a215ed8332f244789aa52b2cfae4804b77159a4
411
py
Python
runremotely/template.py
OdysseeT/ec2-jupyter-notebook
a64e1ea47a50db3de877a7b0cd8e63ead658ef21
[ "Apache-2.0" ]
null
null
null
runremotely/template.py
OdysseeT/ec2-jupyter-notebook
a64e1ea47a50db3de877a7b0cd8e63ead658ef21
[ "Apache-2.0" ]
null
null
null
runremotely/template.py
OdysseeT/ec2-jupyter-notebook
a64e1ea47a50db3de877a7b0cd8e63ead658ef21
[ "Apache-2.0" ]
null
null
null
import pickle import glob print("Starting") picklefiles = glob.glob("/home/ec2-user/*.tp") print("[remote] Loading function {}".format(picklefiles[0])) # Load on remote server with open(picklefiles[0], 'rb') as f: exec_model = pickle.load(f) print("[remote] Model Loaded") response = exec_model()#*args, **kwargs) print("[remote] Dumping the result") pickle.dump(response, open("result.pickle", "wb"))
22.833333
60
0.70073
4a215feb69df564b24ef1c7e3d0637241b264a67
397
py
Python
backend/test_29221/wsgi.py
crowdbotics-apps/test-29221
238f1083416c60366294c473ebc57006b40f307c
[ "FTL", "AML", "RSA-MD" ]
null
null
null
backend/test_29221/wsgi.py
crowdbotics-apps/test-29221
238f1083416c60366294c473ebc57006b40f307c
[ "FTL", "AML", "RSA-MD" ]
null
null
null
backend/test_29221/wsgi.py
crowdbotics-apps/test-29221
238f1083416c60366294c473ebc57006b40f307c
[ "FTL", "AML", "RSA-MD" ]
null
null
null
""" WSGI config for test_29221 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'test_29221.settings') application = get_wsgi_application()
23.352941
78
0.788413
4a21600a57a26026265f28924cc22ecdc704f935
29,439
py
Python
sdk/keyvault/azure-keyvault-keys/tests/test_crypto_client_async.py
jochen-ott-by/azure-sdk-for-python
56193e95eac71933cbaebea56d63c48c4a01d333
[ "MIT" ]
null
null
null
sdk/keyvault/azure-keyvault-keys/tests/test_crypto_client_async.py
jochen-ott-by/azure-sdk-for-python
56193e95eac71933cbaebea56d63c48c4a01d333
[ "MIT" ]
null
null
null
sdk/keyvault/azure-keyvault-keys/tests/test_crypto_client_async.py
jochen-ott-by/azure-sdk-for-python
56193e95eac71933cbaebea56d63c48c4a01d333
[ "MIT" ]
null
null
null
# ------------------------------------ # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # ------------------------------------ import codecs from datetime import datetime import functools import hashlib import os from unittest import mock from azure.core.exceptions import HttpResponseError from azure.keyvault.keys import JsonWebKey, KeyCurveName, KeyVaultKey from azure.keyvault.keys.aio import KeyClient from azure.keyvault.keys.crypto._key_validity import _UTC from azure.keyvault.keys.crypto.aio import CryptographyClient, EncryptionAlgorithm, KeyWrapAlgorithm, SignatureAlgorithm from azure.keyvault.keys._shared import HttpChallengeCache from azure.mgmt.keyvault.models import KeyPermissions, Permissions from devtools_testutils import PowerShellPreparer import pytest from _shared.helpers_async import get_completed_future from _shared.json_attribute_matcher import json_attribute_matcher from _shared.test_case_async import KeyVaultTestCase KeyVaultPreparer = functools.partial( PowerShellPreparer, "keyvault", azure_keyvault_url="https://vaultname.vault.azure.net" ) # without keys/get, a CryptographyClient created with a key ID performs all ops remotely NO_GET = Permissions(keys=[p.value for p in KeyPermissions if p.value != "get"]) class CryptoClientTests(KeyVaultTestCase): def __init__(self, *args, **kwargs): super().__init__(*args, match_body=False, custom_request_matchers=[json_attribute_matcher], **kwargs) def tearDown(self): HttpChallengeCache.clear() assert len(HttpChallengeCache._cache) == 0 super(CryptoClientTests, self).tearDown() plaintext = b"5063e6aaa845f150200547944fd199679c98ed6f99da0a0b2dafeaf1f4684496fd532c1c229968cb9dee44957fcef7ccef59ceda0b362e56bcd78fd3faee5781c623c0bb22b35beabde0664fd30e0e824aba3dd1b0afffc4a3d955ede20cf6a854d52cfd" iv = codecs.decode("89b8adbfb07345e3598932a09c517441", "hex_codec") aad = b"test" def create_key_client(self, vault_uri, **kwargs): credential = self.get_credential(KeyClient, is_async=True) return self.create_client_from_credential(KeyClient, credential=credential, vault_url=vault_uri, **kwargs) def create_crypto_client(self, key, **kwargs): credential = self.get_credential(CryptographyClient, is_async=True) return self.create_client_from_credential(CryptographyClient, credential=credential, key=key, **kwargs) def _validate_rsa_key_bundle(self, key_attributes, vault, key_name, kty, key_ops): prefix = "/".join(s.strip("/") for s in [vault, "keys", key_name]) key = key_attributes.key kid = key_attributes.id self.assertTrue(kid.index(prefix) == 0, "Key Id should start with '{}', but value is '{}'".format(prefix, kid)) self.assertEqual(key.kty, kty, "kty should by '{}', but is '{}'".format(key, key.kty)) self.assertTrue(key.n and key.e, "Bad RSA public material.") self.assertEqual(key_ops, key.key_ops, "keyOps should be '{}', but is '{}'".format(key_ops, key.key_ops)) self.assertTrue( key_attributes.properties.created_on and key_attributes.properties.updated_on, "Missing required date attributes.", ) async def _import_test_key(self, client, name): def _to_bytes(hex): if len(hex) % 2: hex = "0{}".format(hex) return codecs.decode(hex, "hex_codec") key = JsonWebKey( kty="RSA", key_ops=["encrypt", "decrypt", "sign", "verify", "wrapKey", "unwrapKey"], n=_to_bytes( "00a0914d00234ac683b21b4c15d5bed887bdc959c2e57af54ae734e8f00720d775d275e455207e3784ceeb60a50a4655dd72a7a94d271e8ee8f7959a669ca6e775bf0e23badae991b4529d978528b4bd90521d32dd2656796ba82b6bbfc7668c8f5eeb5053747fd199319d29a8440d08f4412d527ff9311eda71825920b47b1c46b11ab3e91d7316407e89c7f340f7b85a34042ce51743b27d4718403d34c7b438af6181be05e4d11eb985d38253d7fe9bf53fc2f1b002d22d2d793fa79a504b6ab42d0492804d7071d727a06cf3a8893aa542b1503f832b296371b6707d4dc6e372f8fe67d8ded1c908fde45ce03bc086a71487fa75e43aa0e0679aa0d20efe35" ), e=_to_bytes("10001"), d=_to_bytes( "627c7d24668148fe2252c7fa649ea8a5a9ed44d75c766cda42b29b660e99404f0e862d4561a6c95af6a83d213e0a2244b03cd28576473215073785fb067f015da19084ade9f475e08b040a9a2c7ba00253bb8125508c9df140b75161d266be347a5e0f6900fe1d8bbf78ccc25eeb37e0c9d188d6e1fc15169ba4fe12276193d77790d2326928bd60d0d01d6ead8d6ac4861abadceec95358fd6689c50a1671a4a936d2376440a41445501da4e74bfb98f823bd19c45b94eb01d98fc0d2f284507f018ebd929b8180dbe6381fdd434bffb7800aaabdd973d55f9eaf9bb88a6ea7b28c2a80231e72de1ad244826d665582c2362761019de2e9f10cb8bcc2625649" ), p=_to_bytes( "00d1deac8d68ddd2c1fd52d5999655b2cf1565260de5269e43fd2a85f39280e1708ffff0682166cb6106ee5ea5e9ffd9f98d0becc9ff2cda2febc97259215ad84b9051e563e14a051dce438bc6541a24ac4f014cf9732d36ebfc1e61a00d82cbe412090f7793cfbd4b7605be133dfc3991f7e1bed5786f337de5036fc1e2df4cf3" ), q=_to_bytes( "00c3dc66b641a9b73cd833bc439cd34fc6574465ab5b7e8a92d32595a224d56d911e74624225b48c15a670282a51c40d1dad4bc2e9a3c8dab0c76f10052dfb053bc6ed42c65288a8e8bace7a8881184323f94d7db17ea6dfba651218f931a93b8f738f3d8fd3f6ba218d35b96861a0f584b0ab88ddcf446b9815f4d287d83a3237" ), dp=_to_bytes( "00c9a159be7265cbbabc9afcc4967eb74fe58a4c4945431902d1142da599b760e03838f8cbd26b64324fea6bdc9338503f459793636e59b5361d1e6951e08ddb089e1b507be952a81fbeaf7e76890ea4f536e25505c3f648b1e88377dfc19b4c304e738dfca07211b792286a392a704d0f444c0a802539110b7f1f121c00cff0a9" ), dq=_to_bytes( "00a0bd4c0a3d9f64436a082374b5caf2488bac1568696153a6a5e4cd85d186db31e2f58f024c617d29f37b4e6b54c97a1e25efec59c4d1fd3061ac33509ce8cae5c11f4cd2e83f41a8264f785e78dc0996076ee23dfdfc43d67c463afaa0180c4a718357f9a6f270d542479a0f213870e661fb950abca4a14ca290570ba7983347" ), qi=_to_bytes( "009fe7ae42e92bc04fcd5780464bd21d0c8ac0c599f9af020fde6ab0a7e7d1d39902f5d8fb6c614184c4c1b103fb46e94cd10a6c8a40f9991a1f28269f326435b6c50276fda6493353c650a833f724d80c7d522ba16c79f0eb61f672736b68fb8be3243d10943c4ab7028d09e76cfb5892222e38bc4d35585bf35a88cd68c73b07" ), ) imported_key = await client.import_key(name, key) self._validate_rsa_key_bundle(imported_key, client.vault_url, name, key.kty, key.key_ops) return imported_key async def _import_symmetric_test_key(self, client, name): key = JsonWebKey( kty="oct-HSM", key_ops=["encrypt", "decrypt", "wrapKey", "unwrapKey"], k=codecs.decode("e27ed0c84512bbd55b6af434d237c11feba311870f80f2c2e3364260f31c82c8", "hex_codec"), ) imported_key = await client.import_key(name, key) return imported_key @KeyVaultPreparer() async def test_ec_key_id(self, azure_keyvault_url, **kwargs): """When initialized with a key ID, the client should retrieve the key and perform public operations locally""" key_client = self.create_key_client(azure_keyvault_url) key = await key_client.create_ec_key(self.get_resource_name("eckey")) crypto_client = self.create_crypto_client(key.id) await crypto_client._initialize() assert crypto_client.key_id == key.id # ensure all remote crypto operations will fail crypto_client._client = None await crypto_client.verify(SignatureAlgorithm.es256, hashlib.sha256(self.plaintext).digest(), self.plaintext) @KeyVaultPreparer() async def test_rsa_key_id(self, azure_keyvault_url, **kwargs): """When initialized with a key ID, the client should retrieve the key and perform public operations locally""" key_client = self.create_key_client(azure_keyvault_url) key = await key_client.create_rsa_key(self.get_resource_name("rsakey")) crypto_client = self.create_crypto_client(key.id) await crypto_client._initialize() assert crypto_client.key_id == key.id # ensure all remote crypto operations will fail crypto_client._client = None await crypto_client.encrypt(EncryptionAlgorithm.rsa_oaep, self.plaintext) await crypto_client.verify(SignatureAlgorithm.rs256, hashlib.sha256(self.plaintext).digest(), self.plaintext) await crypto_client.wrap_key(KeyWrapAlgorithm.rsa_oaep, self.plaintext) @KeyVaultPreparer() async def test_encrypt_and_decrypt(self, azure_keyvault_url, **kwargs): key_client = self.create_key_client(azure_keyvault_url, permissions=NO_GET) key_name = self.get_resource_name("keycrypt") imported_key = await self._import_test_key(key_client, key_name) crypto_client = self.create_crypto_client(imported_key.id) result = await crypto_client.encrypt(EncryptionAlgorithm.rsa_oaep, self.plaintext) self.assertEqual(result.key_id, imported_key.id) result = await crypto_client.decrypt(result.algorithm, result.ciphertext) self.assertEqual(result.key_id, imported_key.id) self.assertEqual(EncryptionAlgorithm.rsa_oaep, result.algorithm) self.assertEqual(self.plaintext, result.plaintext) @KeyVaultPreparer() async def test_sign_and_verify(self, azure_keyvault_url, **kwargs): key_client = self.create_key_client(azure_keyvault_url, permissions=NO_GET) key_name = self.get_resource_name("keysign") md = hashlib.sha256() md.update(self.plaintext) digest = md.digest() imported_key = await self._import_test_key(key_client, key_name) crypto_client = self.create_crypto_client(imported_key.id) result = await crypto_client.sign(SignatureAlgorithm.rs256, digest) self.assertEqual(result.key_id, imported_key.id) verified = await crypto_client.verify(result.algorithm, digest, result.signature) self.assertEqual(result.key_id, imported_key.id) self.assertEqual(result.algorithm, SignatureAlgorithm.rs256) self.assertTrue(verified.is_valid) @KeyVaultPreparer() async def test_wrap_and_unwrap(self, azure_keyvault_url, **kwargs): key_client = self.create_key_client(azure_keyvault_url, permissions=NO_GET) key_name = self.get_resource_name("keywrap") created_key = await key_client.create_key(key_name, "RSA") self.assertIsNotNone(created_key) crypto_client = self.create_crypto_client(created_key.id) # Wrap a key with the created key, then unwrap it. The wrapped key's bytes should round-trip. key_bytes = self.plaintext result = await crypto_client.wrap_key(KeyWrapAlgorithm.rsa_oaep, key_bytes) self.assertEqual(result.key_id, created_key.id) result = await crypto_client.unwrap_key(result.algorithm, result.encrypted_key) self.assertEqual(key_bytes, result.key) @KeyVaultPreparer() async def test_symmetric_encrypt_and_decrypt(self, azure_keyvault_url, **kwargs): if self.is_live: pytest.skip("MHSM-only algorithms can't be tested in CI yet") key_client = self.create_key_client(azure_keyvault_url) key_name = self.get_resource_name("symmetric-encrypt") imported_key = await self._import_symmetric_test_key(key_client, key_name) assert imported_key is not None crypto_client = self.create_crypto_client(imported_key.id) # Use 256-bit AES algorithms for the 256-bit key symmetric_algorithms = [algo for algo in EncryptionAlgorithm if algo.startswith("A256")] for algorithm in symmetric_algorithms: if algorithm.endswith("GCM"): result = await crypto_client.encrypt(algorithm, self.plaintext, additional_authenticated_data=self.aad) assert result.key_id == imported_key.id result = await crypto_client.decrypt( result.algorithm, result.ciphertext, iv=result.iv, authentication_tag=result.tag, additional_authenticated_data=self.aad ) else: result = await crypto_client.encrypt( algorithm, self.plaintext, iv=self.iv, additional_authenticated_data=self.aad ) self.assertEqual(result.key_id, imported_key.id) result = await crypto_client.decrypt( result.algorithm, result.ciphertext, iv=self.iv, additional_authenticated_data=self.aad ) assert result.key_id == imported_key.id assert result.algorithm == algorithm if algorithm.endswith("CBC"): assert result.plaintext.startswith(self.plaintext) # AES-CBC returns a zero-padded plaintext else: assert result.plaintext == self.plaintext @KeyVaultPreparer() async def test_symmetric_wrap_and_unwrap(self, azure_keyvault_url, **kwargs): if self.is_live: pytest.skip("MHSM-only algorithms can't be tested in CI yet") key_client = self.create_key_client(azure_keyvault_url) key_name = self.get_resource_name("symmetric-kw") imported_key = await self._import_symmetric_test_key(key_client, key_name) assert imported_key is not None crypto_client = self.create_crypto_client(imported_key.id) result = await crypto_client.wrap_key(KeyWrapAlgorithm.aes_256, self.plaintext) assert result.key_id == imported_key.id result = await crypto_client.unwrap_key(result.algorithm, result.encrypted_key) assert result.key == self.plaintext @KeyVaultPreparer() async def test_encrypt_local(self, azure_keyvault_url, **kwargs): """Encrypt locally, decrypt with Key Vault""" key_client = self.create_key_client(azure_keyvault_url) key_name = self.get_resource_name("encrypt-local") key = await key_client.create_rsa_key(key_name, size=4096) crypto_client = self.create_crypto_client(key) rsa_encrypt_algorithms = [algo for algo in EncryptionAlgorithm if algo.startswith("RSA")] for encrypt_algorithm in rsa_encrypt_algorithms: result = await crypto_client.encrypt(encrypt_algorithm, self.plaintext) self.assertEqual(result.key_id, key.id) result = await crypto_client.decrypt(result.algorithm, result.ciphertext) self.assertEqual(result.plaintext, self.plaintext) @KeyVaultPreparer() async def test_wrap_local(self, azure_keyvault_url, **kwargs): """Wrap locally, unwrap with Key Vault""" key_client = self.create_key_client(azure_keyvault_url) key_name = self.get_resource_name("wrap-local") key = await key_client.create_rsa_key(key_name, size=4096) crypto_client = self.create_crypto_client(key) for wrap_algorithm in (algo for algo in KeyWrapAlgorithm if algo.startswith("RSA")): result = await crypto_client.wrap_key(wrap_algorithm, self.plaintext) self.assertEqual(result.key_id, key.id) result = await crypto_client.unwrap_key(result.algorithm, result.encrypted_key) self.assertEqual(result.key, self.plaintext) @KeyVaultPreparer() async def test_rsa_verify_local(self, azure_keyvault_url, **kwargs): """Sign with Key Vault, verify locally""" key_client = self.create_key_client(azure_keyvault_url) for size in (2048, 3072, 4096): key_name = self.get_resource_name("rsa-verify-{}".format(size)) key = await key_client.create_rsa_key(key_name, size=size) crypto_client = self.create_crypto_client(key) for signature_algorithm, hash_function in ( (SignatureAlgorithm.ps256, hashlib.sha256), (SignatureAlgorithm.ps384, hashlib.sha384), (SignatureAlgorithm.ps512, hashlib.sha512), (SignatureAlgorithm.rs256, hashlib.sha256), (SignatureAlgorithm.rs384, hashlib.sha384), (SignatureAlgorithm.rs512, hashlib.sha512), ): digest = hash_function(self.plaintext).digest() result = await crypto_client.sign(signature_algorithm, digest) self.assertEqual(result.key_id, key.id) result = await crypto_client.verify(result.algorithm, digest, result.signature) self.assertTrue(result.is_valid) @KeyVaultPreparer() async def test_ec_verify_local(self, azure_keyvault_url, **kwargs): """Sign with Key Vault, verify locally""" key_client = self.create_key_client(azure_keyvault_url) matrix = { KeyCurveName.p_256: (SignatureAlgorithm.es256, hashlib.sha256), KeyCurveName.p_256_k: (SignatureAlgorithm.es256_k, hashlib.sha256), KeyCurveName.p_384: (SignatureAlgorithm.es384, hashlib.sha384), KeyCurveName.p_521: (SignatureAlgorithm.es512, hashlib.sha512), } for curve, (signature_algorithm, hash_function) in sorted(matrix.items()): key_name = self.get_resource_name("ec-verify-{}".format(curve.value)) key = await key_client.create_ec_key(key_name, curve=curve) crypto_client = self.create_crypto_client(key) digest = hash_function(self.plaintext).digest() result = await crypto_client.sign(signature_algorithm, digest) self.assertEqual(result.key_id, key.id) result = await crypto_client.verify(result.algorithm, digest, result.signature) self.assertTrue(result.is_valid) @KeyVaultPreparer() async def test_local_validity_period_enforcement(self, azure_keyvault_url, **kwargs): """Local crypto operations should respect a key's nbf and exp properties""" key_client = self.create_key_client(azure_keyvault_url, permissions=NO_GET) async def test_operations(key, expected_error_substrings, encrypt_algorithms, wrap_algorithms): crypto_client = self.create_crypto_client(key) for algorithm in encrypt_algorithms: with pytest.raises(ValueError) as ex: await crypto_client.encrypt(algorithm, self.plaintext) for substring in expected_error_substrings: assert substring in str(ex.value) for algorithm in wrap_algorithms: with pytest.raises(ValueError) as ex: await crypto_client.wrap_key(algorithm, self.plaintext) for substring in expected_error_substrings: assert substring in str(ex.value) # operations should not succeed with a key whose nbf is in the future the_year_3000 = datetime(3000, 1, 1, tzinfo=_UTC) rsa_wrap_algorithms = [algo for algo in KeyWrapAlgorithm if algo.startswith("RSA")] rsa_encryption_algorithms = [algo for algo in EncryptionAlgorithm if algo.startswith("RSA")] key_name = self.get_resource_name("rsa-not-yet-valid") not_yet_valid_key = await key_client.create_rsa_key(key_name, not_before=the_year_3000) await test_operations(not_yet_valid_key, [str(the_year_3000)], rsa_encryption_algorithms, rsa_wrap_algorithms) # nor should they succeed with a key whose exp has passed the_year_2000 = datetime(2000, 1, 1, tzinfo=_UTC) key_name = self.get_resource_name("rsa-expired") expired_key = await key_client.create_rsa_key(key_name, expires_on=the_year_2000) await test_operations(expired_key, [str(the_year_2000)], rsa_encryption_algorithms, rsa_wrap_algorithms) # when exp and nbf are set, error messages should contain both the_year_3001 = datetime(3001, 1, 1, tzinfo=_UTC) key_name = self.get_resource_name("rsa-valid") valid_key = await key_client.create_rsa_key(key_name, not_before=the_year_3000, expires_on=the_year_3001) await test_operations( valid_key, (str(the_year_3000), str(the_year_3001)), rsa_encryption_algorithms, rsa_wrap_algorithms ) def test_custom_hook_policy(): class CustomHookPolicy(object): pass client = CryptographyClient("https://localhost/fake/key/version", object(), custom_hook_policy=CustomHookPolicy()) assert isinstance(client._client._config.custom_hook_policy, CustomHookPolicy) @pytest.mark.asyncio async def test_symmetric_wrap_and_unwrap_local(): key = KeyVaultKey( key_id="http://localhost/keys/key/version", k=os.urandom(32), kty="oct", key_ops=["unwrapKey", "wrapKey"], ) crypto_client = CryptographyClient(key, credential=lambda *_: None) # Wrap a key with the created key, then unwrap it. The wrapped key's bytes should round-trip. key_bytes = os.urandom(32) wrap_result = await crypto_client.wrap_key(KeyWrapAlgorithm.aes_256, key_bytes) unwrap_result = await crypto_client.unwrap_key(wrap_result.algorithm, wrap_result.encrypted_key) assert unwrap_result.key == key_bytes @pytest.mark.asyncio async def test_initialization_given_key(): """If the client is given key material, it should not attempt to get this from the vault""" mock_client = mock.Mock() key = mock.Mock(spec=KeyVaultKey, id="https://localhost/fake/key/version") client = CryptographyClient(key, mock.Mock()) client._client = mock_client mock_client.get_key.return_value = get_completed_future() with mock.patch(CryptographyClient.__module__ + ".get_local_cryptography_provider") as get_provider: await client.verify(SignatureAlgorithm.rs256, b"...", b"...") get_provider.assert_called_once_with(key) assert mock_client.get_key.call_count == 0 @pytest.mark.asyncio async def test_initialization_get_key_successful(): """If the client is able to get key material, it shouldn't do so again""" key_id = "https://localhost/fake/key/version" mock_key = mock.Mock() mock_key.key.kid = key_id mock_client = mock.Mock() mock_client.get_key.return_value = get_completed_future(mock_key) client = CryptographyClient(key_id, mock.Mock()) client._client = mock_client assert mock_client.get_key.call_count == 0 with mock.patch(CryptographyClient.__module__ + ".get_local_cryptography_provider") as get_provider: await client.verify(SignatureAlgorithm.rs256, b"...", b"...") args, _ = get_provider.call_args assert len(args) == 1 and isinstance(args[0], KeyVaultKey) and args[0].id == key_id for _ in range(3): assert mock_client.get_key.call_count == 1 assert get_provider.call_count == 1 await client.verify(SignatureAlgorithm.rs256, b"...", b"...") @pytest.mark.asyncio async def test_initialization_forbidden_to_get_key(): """If the client is forbidden to get key material, it should try to do so exactly once""" mock_client = mock.Mock() mock_client.get_key.side_effect = HttpResponseError(response=mock.Mock(status_code=403)) mock_client.verify.return_value = get_completed_future(mock.Mock()) client = CryptographyClient("https://localhost/fake/key/version", mock.Mock()) client._client = mock_client assert mock_client.get_key.call_count == 0 for _ in range(3): await client.verify(SignatureAlgorithm.rs256, b"...", b"...") assert mock_client.get_key.call_count == 1 @pytest.mark.asyncio async def test_initialization_transient_failure_getting_key(): """If the client is not forbidden to get key material, it should retry after failing to do so""" mock_client = mock.Mock() mock_client.get_key.side_effect = HttpResponseError(response=mock.Mock(status_code=500)) mock_client.verify.return_value = get_completed_future(mock.Mock()) client = CryptographyClient("https://localhost/fake/key/version", mock.Mock()) client._client = mock_client for i in range(3): assert mock_client.get_key.call_count == i await client.verify(SignatureAlgorithm.rs256, b"...", b"...") @pytest.mark.asyncio async def test_calls_service_for_operations_unsupported_locally(): """When an operation can't be performed locally, the client should request Key Vault perform it""" class _AsyncMock(mock.Mock): async def __call__(self, *args, **kwargs): return super().__call__(*args, **kwargs) mock_client = _AsyncMock() key = mock.Mock(spec=KeyVaultKey, id="https://localhost/fake/key/version") client = CryptographyClient(key, mock.Mock()) client._client = mock_client supports_nothing = mock.Mock(supports=mock.Mock(return_value=False)) with mock.patch(CryptographyClient.__module__ + ".get_local_cryptography_provider", lambda *_: supports_nothing): await client.decrypt(EncryptionAlgorithm.rsa_oaep, b"...") assert mock_client.decrypt.call_count == 1 assert supports_nothing.decrypt.call_count == 0 await client.encrypt(EncryptionAlgorithm.rsa_oaep, b"...") assert mock_client.encrypt.call_count == 1 assert supports_nothing.encrypt.call_count == 0 await client.sign(SignatureAlgorithm.rs256, b"...") assert mock_client.sign.call_count == 1 assert supports_nothing.sign.call_count == 0 await client.verify(SignatureAlgorithm.rs256, b"...", b"...") assert mock_client.verify.call_count == 1 assert supports_nothing.verify.call_count == 0 await client.unwrap_key(KeyWrapAlgorithm.rsa_oaep, b"...") assert mock_client.unwrap_key.call_count == 1 assert supports_nothing.unwrap_key.call_count == 0 await client.wrap_key(KeyWrapAlgorithm.rsa_oaep, b"...") assert mock_client.wrap_key.call_count == 1 assert supports_nothing.wrap_key.call_count == 0 @pytest.mark.asyncio async def test_prefers_local_provider(): """The client should complete operations locally whenever possible""" mock_client = mock.Mock() key = mock.Mock( spec=KeyVaultKey, id="https://localhost/fake/key/version", properties=mock.Mock( not_before=datetime(2000, 1, 1, tzinfo=_UTC), expires_on=datetime(3000, 1, 1, tzinfo=_UTC) ), ) client = CryptographyClient(key, mock.Mock()) client._client = mock_client supports_everything = mock.Mock(supports=mock.Mock(return_value=True)) with mock.patch(CryptographyClient.__module__ + ".get_local_cryptography_provider", lambda *_: supports_everything): await client.decrypt(EncryptionAlgorithm.rsa_oaep, b"...") assert mock_client.decrypt.call_count == 0 assert supports_everything.decrypt.call_count == 1 await client.encrypt(EncryptionAlgorithm.rsa_oaep, b"...") assert mock_client.encrypt.call_count == 0 assert supports_everything.encrypt.call_count == 1 await client.sign(SignatureAlgorithm.rs256, b"...") assert mock_client.sign.call_count == 0 assert supports_everything.sign.call_count == 1 await client.verify(SignatureAlgorithm.rs256, b"...", b"...") assert mock_client.verify.call_count == 0 assert supports_everything.verify.call_count == 1 await client.unwrap_key(KeyWrapAlgorithm.rsa_oaep, b"...") assert mock_client.unwrap_key.call_count == 0 assert supports_everything.unwrap_key.call_count == 1 await client.wrap_key(KeyWrapAlgorithm.rsa_oaep, b"...") assert mock_client.wrap_key.call_count == 0 assert supports_everything.wrap_key.call_count == 1 @pytest.mark.asyncio async def test_encrypt_argument_validation(): """The client should raise an error when arguments don't work with the specified algorithm""" mock_client = mock.Mock() key = mock.Mock( spec=KeyVaultKey, id="https://localhost/fake/key/version", properties=mock.Mock( not_before=datetime(2000, 1, 1, tzinfo=_UTC), expires_on=datetime(3000, 1, 1, tzinfo=_UTC) ), ) client = CryptographyClient(key, mock.Mock()) client._client = mock_client with pytest.raises(ValueError) as ex: await client.encrypt(EncryptionAlgorithm.rsa_oaep, b"...", iv=b"...") assert "iv" in str(ex.value) with pytest.raises(ValueError) as ex: await client.encrypt(EncryptionAlgorithm.rsa_oaep, b"...", additional_authenticated_data=b"...") assert "additional_authenticated_data" in str(ex.value) @pytest.mark.asyncio async def test_decrypt_argument_validation(): mock_client = mock.Mock() key = mock.Mock( spec=KeyVaultKey, id="https://localhost/fake/key/version", properties=mock.Mock( not_before=datetime(2000, 1, 1, tzinfo=_UTC), expires_on=datetime(3000, 1, 1, tzinfo=_UTC) ), ) client = CryptographyClient(key, mock.Mock()) client._client = mock_client with pytest.raises(ValueError) as ex: await client.decrypt(EncryptionAlgorithm.rsa_oaep, b"...", iv=b"...") assert "iv" in str(ex.value) with pytest.raises(ValueError) as ex: await client.decrypt(EncryptionAlgorithm.rsa_oaep, b"...", additional_authenticated_data=b"...") assert "additional_authenticated_data" in str(ex.value) with pytest.raises(ValueError) as ex: await client.decrypt(EncryptionAlgorithm.rsa_oaep, b"...", authentication_tag=b"...") assert "authentication_tag" in str(ex.value)
48.820896
532
0.719556
4a216025c51b67ee54d2e5c59fbb17ffa0e38a71
5,193
py
Python
pysnmp/ENTERASYS-AAA-POLICY-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
11
2021-02-02T16:27:16.000Z
2021-08-31T06:22:49.000Z
pysnmp/ENTERASYS-AAA-POLICY-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
75
2021-02-24T17:30:31.000Z
2021-12-08T00:01:18.000Z
pysnmp/ENTERASYS-AAA-POLICY-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
10
2019-04-30T05:51:36.000Z
2022-02-16T03:33:41.000Z
# # PySNMP MIB module ENTERASYS-AAA-POLICY-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/ENTERASYS-AAA-POLICY-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 18:48:43 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, ObjectIdentifier, Integer = mibBuilder.importSymbols("ASN1", "OctetString", "ObjectIdentifier", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueRangeConstraint, ConstraintsUnion, ConstraintsIntersection, SingleValueConstraint, ValueSizeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueRangeConstraint", "ConstraintsUnion", "ConstraintsIntersection", "SingleValueConstraint", "ValueSizeConstraint") etsysModules, = mibBuilder.importSymbols("ENTERASYS-MIB-NAMES", "etsysModules") ModuleCompliance, ObjectGroup, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "ObjectGroup", "NotificationGroup") Integer32, TimeTicks, ObjectIdentity, NotificationType, MibIdentifier, ModuleIdentity, Counter64, MibScalar, MibTable, MibTableRow, MibTableColumn, Counter32, Unsigned32, IpAddress, iso, Bits, Gauge32 = mibBuilder.importSymbols("SNMPv2-SMI", "Integer32", "TimeTicks", "ObjectIdentity", "NotificationType", "MibIdentifier", "ModuleIdentity", "Counter64", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Counter32", "Unsigned32", "IpAddress", "iso", "Bits", "Gauge32") DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention") etsysAAAPolicyMIB = ModuleIdentity((1, 3, 6, 1, 4, 1, 5624, 1, 2, 51)) etsysAAAPolicyMIB.setRevisions(('2004-07-29 19:06',)) if mibBuilder.loadTexts: etsysAAAPolicyMIB.setLastUpdated('200407291906Z') if mibBuilder.loadTexts: etsysAAAPolicyMIB.setOrganization('Enterasys Networks, Inc') class AAAProtocol(TextualConvention, Integer32): status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4)) namedValues = NamedValues(("any", 1), ("none", 2), ("radius", 3), ("tacacs", 4)) etsysAAAPolicyObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 5624, 1, 2, 51, 1)) etsysAAAPolicyMgmtAccess = MibIdentifier((1, 3, 6, 1, 4, 1, 5624, 1, 2, 51, 1, 1)) etsysAAAMgmtAccessTable = MibTable((1, 3, 6, 1, 4, 1, 5624, 1, 2, 51, 1, 1, 1), ) if mibBuilder.loadTexts: etsysAAAMgmtAccessTable.setStatus('current') etsysAAAMgmtAccessEntry = MibTableRow((1, 3, 6, 1, 4, 1, 5624, 1, 2, 51, 1, 1, 1, 1), ).setIndexNames((0, "ENTERASYS-AAA-POLICY-MIB", "etsysAAAMgmtAccessProtocol")) if mibBuilder.loadTexts: etsysAAAMgmtAccessEntry.setStatus('current') etsysAAAMgmtAccessProtocol = MibTableColumn((1, 3, 6, 1, 4, 1, 5624, 1, 2, 51, 1, 1, 1, 1, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1))).clone(namedValues=NamedValues(("allProtocols", 1)))) if mibBuilder.loadTexts: etsysAAAMgmtAccessProtocol.setStatus('current') etsysAAAMgmtRemoteAuthProtocol = MibTableColumn((1, 3, 6, 1, 4, 1, 5624, 1, 2, 51, 1, 1, 1, 1, 2), AAAProtocol().clone('any')).setMaxAccess("readwrite") if mibBuilder.loadTexts: etsysAAAMgmtRemoteAuthProtocol.setStatus('current') etsysAAAMgmtRemoteAcctProtocol = MibTableColumn((1, 3, 6, 1, 4, 1, 5624, 1, 2, 51, 1, 1, 1, 1, 3), AAAProtocol().clone('any')).setMaxAccess("readwrite") if mibBuilder.loadTexts: etsysAAAMgmtRemoteAcctProtocol.setStatus('current') etsysAAAPolicyMIBConformance = MibIdentifier((1, 3, 6, 1, 4, 1, 5624, 1, 2, 51, 2)) etsysAAAPolicyMIBCompliances = MibIdentifier((1, 3, 6, 1, 4, 1, 5624, 1, 2, 51, 2, 1)) etsysAAAPolicyMIBGroups = MibIdentifier((1, 3, 6, 1, 4, 1, 5624, 1, 2, 51, 2, 2)) etsysAAAPolicyMgmtGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 5624, 1, 2, 51, 2, 2, 1)).setObjects(("ENTERASYS-AAA-POLICY-MIB", "etsysAAAMgmtRemoteAuthProtocol"), ("ENTERASYS-AAA-POLICY-MIB", "etsysAAAMgmtRemoteAcctProtocol")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): etsysAAAPolicyMgmtGroup = etsysAAAPolicyMgmtGroup.setStatus('current') etsysAAAPolicyMIBCompliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 5624, 1, 2, 51, 2, 1, 1)).setObjects(("ENTERASYS-AAA-POLICY-MIB", "etsysAAAPolicyMgmtGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): etsysAAAPolicyMIBCompliance = etsysAAAPolicyMIBCompliance.setStatus('current') mibBuilder.exportSymbols("ENTERASYS-AAA-POLICY-MIB", etsysAAAPolicyMIBGroups=etsysAAAPolicyMIBGroups, etsysAAAPolicyObjects=etsysAAAPolicyObjects, etsysAAAPolicyMIB=etsysAAAPolicyMIB, etsysAAAMgmtAccessProtocol=etsysAAAMgmtAccessProtocol, etsysAAAPolicyMgmtGroup=etsysAAAPolicyMgmtGroup, etsysAAAMgmtAccessTable=etsysAAAMgmtAccessTable, etsysAAAPolicyMIBCompliances=etsysAAAPolicyMIBCompliances, etsysAAAPolicyMgmtAccess=etsysAAAPolicyMgmtAccess, etsysAAAMgmtRemoteAuthProtocol=etsysAAAMgmtRemoteAuthProtocol, etsysAAAPolicyMIBConformance=etsysAAAPolicyMIBConformance, etsysAAAPolicyMIBCompliance=etsysAAAPolicyMIBCompliance, etsysAAAMgmtRemoteAcctProtocol=etsysAAAMgmtRemoteAcctProtocol, etsysAAAMgmtAccessEntry=etsysAAAMgmtAccessEntry, PYSNMP_MODULE_ID=etsysAAAPolicyMIB, AAAProtocol=AAAProtocol)
110.489362
798
0.77566
4a2160bc19d2ba87ba4fa9a43fed07b78b3a1f98
52
py
Python
apps/lightrfp/__init__.py
ExpoAshique/ProveBanking__s
f0b45fffea74d00d14014be27aa50fe5f42f6903
[ "MIT" ]
null
null
null
apps/lightrfp/__init__.py
ExpoAshique/ProveBanking__s
f0b45fffea74d00d14014be27aa50fe5f42f6903
[ "MIT" ]
null
null
null
apps/lightrfp/__init__.py
ExpoAshique/ProveBanking__s
f0b45fffea74d00d14014be27aa50fe5f42f6903
[ "MIT" ]
null
null
null
default_app_config = 'lightrfp.apps.LightRFPConfig'
26
51
0.846154
4a2160c338c9048088586d2765ac90ba696710d5
1,107
py
Python
preisach.py
cosmo-jana/numerics-physics-stuff
f5fb35c00c84ca713877e20c1d8186e76883cd28
[ "MIT" ]
1
2020-10-16T16:35:35.000Z
2020-10-16T16:35:35.000Z
preisach.py
cosmo-jana/numerics-physics-stuff
f5fb35c00c84ca713877e20c1d8186e76883cd28
[ "MIT" ]
null
null
null
preisach.py
cosmo-jana/numerics-physics-stuff
f5fb35c00c84ca713877e20c1d8186e76883cd28
[ "MIT" ]
null
null
null
#encoding: utf-8 # Preisach simulation to model hysteresis curves # * [1] F. Preisach, Über die magnetische Nachwirkung. Zeitschrift fuer Physik, 94:277-302, 1935 # Implemented after: June 2015, Markus Osterhoff import numpy as np import matplotlib.pyplot as plt N = 32768 # number of hysterons M = 2000 # number of steps L = 2 # number of loops r = 0.8 # abs max external field # initialize the simulation width = np.random.rand(N) position = np.random.rand(N) - 0.5 alpha = position - width/2. beta = position + width/2. state = np.random.choice([-1., 1.], N) xs = []; ys = [] def step(i): x = r*i/M global state, xs, ys state = np.where(x >= beta, 1.0, np.where(x <= alpha, -1.0, state)) y = np.mean(state) xs.append(x) ys.append(y) # print "%+6.3f, %+6.3f" % (x, y) # make L loops throu the ramping for j in range(L): # ramp up for i in range(0, M + 1): step(i) # ramp down for i in range(M, -M - 1, -1): step(i) # ramp to 0 for i in range(-M, 1, 1): step(i) plt.plot(xs, ys) plt.xlabel("Externes Feld") plt.ylabel("Internes Feld") plt.show()
24.065217
96
0.628726
4a21617ef98e97080e889a510b9ecff55a0fcd95
976
py
Python
portfolio/2013_OrSys/settings.py
0--key/lib
ba7a85dda2b208adc290508ca617bdc55a5ded22
[ "Apache-2.0" ]
null
null
null
portfolio/2013_OrSys/settings.py
0--key/lib
ba7a85dda2b208adc290508ca617bdc55a5ded22
[ "Apache-2.0" ]
null
null
null
portfolio/2013_OrSys/settings.py
0--key/lib
ba7a85dda2b208adc290508ca617bdc55a5ded22
[ "Apache-2.0" ]
5
2016-03-22T07:40:46.000Z
2021-05-30T16:12:21.000Z
# this is MySQL credentials: db_password = '7#iA!g!e^@Vk' db_name = "orsys" # # this is users auth dictionary: users = { 'Tony': { 'password': 'st0len', 'img': 'astronaut', 'role': 'superuser', 'email': 'a.s.kosinov@gmail.com', 'phoneNo': '+380667275551' }, 'Jake': { 'password': 'FastFresh', 'img': 'cat-eye', 'role': 'superuser', 'email': ' jake.taylor@fastfresh.com.au', 'phoneNo': '02133425566' } } # # Twillio credentials: ACCOUNT_SID = 'AC189d1534b1dc120d37610d3efacd94aa' AUTH_TOKEN = '6722206ba3a216e1ff29e53759ce15ba' # SID_PN = 'd8a6d9ac05b770ee02fa23933ae18242' # Phone Number (inbound/outbound sms only) TEST_PhN = '+61437881387' # # Fax sending properties: TEST_EMAIL = '0282128065@fax.utbox.net' TEST_EMAIL_FROM = 'orders@fastfresh.com.au' # Magento MySQL DB credentials: MdbUser = 'fastfres_ordsys' MdbPassword = 'snW599gDP86GUp84VpK' Mdb = 'fastfres_magento' MdbIP = '103.1.217.37'
27.885714
70
0.66291
4a2161c1b531473cc8d0a4488383b38a74b22242
5,348
py
Python
sample_scripts/Gen10_Server_Update.py
LaudateCorpus1/iLOAmpPack-Redfish-API-Docs
69e14512059c763d3ff39e45d0ba08de8a5a15a9
[ "Apache-2.0" ]
8
2018-09-26T04:08:58.000Z
2022-01-15T22:24:26.000Z
sample_scripts/Gen10_Server_Update.py
LaudateCorpus1/iLOAmpPack-Redfish-API-Docs
69e14512059c763d3ff39e45d0ba08de8a5a15a9
[ "Apache-2.0" ]
8
2019-12-19T09:42:24.000Z
2022-02-26T04:15:34.000Z
sample_scripts/Gen10_Server_Update.py
LaudateCorpus1/iLOAmpPack-Redfish-API-Docs
69e14512059c763d3ff39e45d0ba08de8a5a15a9
[ "Apache-2.0" ]
6
2019-01-09T16:23:57.000Z
2021-07-23T17:03:06.000Z
#(C) Copyright [2021] Hewlett Packard Enterprise Development LP #Licensed under the Apache License, Version 2.0 (the "License"); you may #not use this file except in compliance with the License. You may obtain #a copy of the License at #http://www.apache.org/licenses/LICENSE-2.0 #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, WITHOUT #WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the #License for the specific language governing permissions and limitations #under the License. # Gen9 server update import sys import redfish import time import json import argparse # Check for the multiple occurance of same argument, if so raise exception class Once(argparse.Action): def __call__(self, parser, namespace, values, option_string=None): if hasattr(self, 'seen'): raise argparse.ArgumentError(self, 'Only once please') setattr(self, 'seen', True) setattr(namespace, self.dest, values) my_parser = argparse.ArgumentParser() boolValue = ["True", "False"] operationType = ["iLORepositoryOnline", "iLORepositoryOffline"] operationStrategy = ["StageAndDeploy", "DeployOnly", "StageOnly"] my_parser.add_argument('--iLOAmpAddress', action=Once, required=True, type=str) my_parser.add_argument('--Username', action=Once, required=True, type=str) my_parser.add_argument('--Password', action=Once, required=True, type=str) my_parser.add_argument('--BaselineId', action=Once, required=True, type=int) my_parser.add_argument('--OperationStrategy', action=Once, choices=operationStrategy, required=True, type=str) my_parser.add_argument('--OperationType', action=Once, choices=operationType, required=True, type=str) my_parser.add_argument('--ResetFlag', action=Once, choices=boolValue, type=str, default="False") my_parser.add_argument('--DowngradeFlag', action=Once, choices=boolValue, type=str, default="False") my_parser.add_argument('--CleanUpRepository', action=Once, choices=boolValue, type=str, default="False") my_parser.add_argument('--BatchSize', action=Once, type=int, default=20) my_parser.add_argument('--OutputFileName', action=Once, type=str) my_parser.add_argument('--ServerAddress', action=Once, required=True, type=str, nargs='*') args = my_parser.parse_args() # Redirect standard output into a file(optional) if args.OutputFileName != None: if (args.OutputFileName.find('.txt') == -1): args.OutputFileName += ".txt" sys.stdout = open(args.OutputFileName, "w") # Connect using iLO Amplifier Pack address, username and password login_host = "https://" + args.iLOAmpAddress login_account = args.Username login_password = args.Password ## Create a REDFISH object try: REDFISH_OBJ = redfish.redfish_client(base_url=login_host, \ username=login_account, \ password=login_password, timeout=10, max_retry=3) except: print("Wrong iLO Amplifier Pack address/credential or iLO Amplifier Pack is not reachable\n") exit() # Login into iLO Amplifier Pack and create a session try: REDFISH_OBJ.login(auth="session") except: print("Invalid iLO Amplifier Pack credential\n") exit() updateServerList = list( dict.fromkeys(args.ServerAddress)) body = dict() body["BaselineId"] = args.BaselineId body["BatchSize"] = args.BatchSize body["OperationStrategy"] = args.OperationStrategy body["OperationType"] = args.OperationType body["DowngradeFlag"] = True if args.DowngradeFlag == "True" else False if args.OperationType == "iLORepositoryOffline": body["ResetFlag"] = False else: body["ResetFlag"] = True if args.ResetFlag == "True" else False body["CleanUpRepository"] = True if args.CleanUpRepository == "True" else False body["SelectedSystemsManagerAddress"] = updateServerList ManagerCredentials = dict() ManagerCredentials["UserName"] = "" ManagerCredentials["Password"]: "" body["ManagerCredentials"] = ManagerCredentials try: response = REDFISH_OBJ.post("/redfish/v1/JobService/Actions/Oem/Hpe/HpeWfmJobServiceExt.ServerUpdateJobs", body=body) except: print("POST request to /redfish/v1/JobService/Actions/Oem/Hpe/HpeWfmJobServiceExt.ServerUpdateJobs\n") REDFISH_OBJ.logout() exit() errMessage = "" if response.status != 202: sys.stdout.write("Unable to update gen 10 server\n") sys.stdout.write("status code %s\n" % response.status) try: sys.stdout.write( "ErrorType: %s\n" % response.dict["error"]["@Message.ExtendedInfo"][0]["MessageId"].split(".")[-1]) for errStr in response.dict["error"]["@Message.ExtendedInfo"][0]["MessageArgs"]: errMessage += errStr + ", " sys.stdout.write("errMessage: %s\n" % errMessage) except: pass REDFISH_OBJ.logout() exit() jobCreatedLink = response.getheader("Location") if jobCreatedLink == None: jobCreatedLink = response.getheader("Link") if jobCreatedLink == None: jobCreatedLink = response.dict['error']['@Message.ExtendedInfo'][0]['MessageArgs'][0] jobId = jobCreatedLink.split("/")[-1] sys.stdout.write("Gen10 server update job has been created successfully\n") sys.stdout.write("check job status using jobId %s\n" % jobId) if args.OutputFileName != None: sys.stdout.close() # Logout of the current session REDFISH_OBJ.logout()
40.210526
121
0.731301
4a2162dfc0c809aae4a8de9454565d0973b98879
738
py
Python
egta/envs/tragedy/tests/test_continuous.py
instadeepai/EGTA-NMARL
544b2e0e4b5518edefc6819975f9de4573ff434c
[ "MIT" ]
6
2020-12-09T06:50:50.000Z
2022-01-29T19:15:06.000Z
egta/envs/tragedy/tests/test_continuous.py
instadeepai/EGTA-NMARL
544b2e0e4b5518edefc6819975f9de4573ff434c
[ "MIT" ]
null
null
null
egta/envs/tragedy/tests/test_continuous.py
instadeepai/EGTA-NMARL
544b2e0e4b5518edefc6819975f9de4573ff434c
[ "MIT" ]
2
2020-10-21T17:17:29.000Z
2021-02-14T11:20:07.000Z
import torch from ..env import Continuous def test_sampling(): test_low_high = [(0, 1), (-2, 1), (-23, 61), (200, 200.1)] test_shapes = [(1,), (2,), (2,10), (100, 100)] for shape in test_shapes: for low, high in test_low_high: temp_space = Continuous(low, high) sample = temp_space.sample(shape) # test that the sample shape is correct assert tuple(sample.shape) == shape # test that the sample values are within the correct range assert torch.all(sample <= high) # according to the pytorch docs, this should be exclusive, however, I don't care about that here assert torch.all(low <= sample) # def test_device # def test_dtype
32.086957
141
0.615176
4a216363174886bf8d55c1e6f952a72131f6b762
808
py
Python
banksystem/manage.py
somacode1/Building.RESTfulAPIs.with.Django.1.11
70d1144b675e0e34191164e8ff4d0d6ab638be27
[ "MIT" ]
8
2019-02-01T14:10:45.000Z
2022-03-17T12:05:09.000Z
banksystem/manage.py
somacode1/Building.RESTfulAPIs.with.Django.1.11
70d1144b675e0e34191164e8ff4d0d6ab638be27
[ "MIT" ]
null
null
null
banksystem/manage.py
somacode1/Building.RESTfulAPIs.with.Django.1.11
70d1144b675e0e34191164e8ff4d0d6ab638be27
[ "MIT" ]
7
2019-02-01T14:12:17.000Z
2022-03-06T20:57:43.000Z
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "banksystem.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
35.130435
77
0.643564
4a21645cd9d9b48890921ca06194e136d9b7a7ff
3,105
py
Python
visualiser/generators/okitResourceManagerGenerator.py
bnasslahsen/oci-designer-toolkit
63343e8ecb17a0fe6ebb3c5b18e7c5607dd5c4bf
[ "UPL-1.0", "Apache-2.0" ]
null
null
null
visualiser/generators/okitResourceManagerGenerator.py
bnasslahsen/oci-designer-toolkit
63343e8ecb17a0fe6ebb3c5b18e7c5607dd5c4bf
[ "UPL-1.0", "Apache-2.0" ]
null
null
null
visualiser/generators/okitResourceManagerGenerator.py
bnasslahsen/oci-designer-toolkit
63343e8ecb17a0fe6ebb3c5b18e7c5607dd5c4bf
[ "UPL-1.0", "Apache-2.0" ]
null
null
null
# Copyright (c) 2020, Oracle and/or its affiliates. # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl. """Provide Module Description """ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# __author__ = ["Andrew Hopkinson (Oracle Cloud Solutions A-Team)"] __version__ = "1.0.0" __module__ = "ociTerraform11Generator" # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# import os from common.okitCommon import writeTerraformFile from common.okitLogging import getLogger from generators.okitTerraformGenerator import OCITerraformGenerator # Configure logging logger = getLogger() class OCIResourceManagerGenerator(OCITerraformGenerator): def __init__(self, template_root, output_root, visualiser_json, use_vars=False, tenancy_ocid=None, region=None, compartment_ocid=None): DIRECTORY_SUFFIX = 'resource-manager' super(OCIResourceManagerGenerator, self).__init__(template_root, output_root, visualiser_json, use_vars) self.output_dir = os.path.join(output_root, DIRECTORY_SUFFIX) logger.info('OCIResourceManagerGenerator : Template Directory {0!s:s}'.format(template_root)) logger.info('OCIResourceManagerGenerator : Output Directory {0!s:s}'.format(output_root)) # Check output directory self.getCheckOutputDirectory() self.resource_manager_keys = {} self.resource_manager_keys['tenancy_ocid'] = tenancy_ocid self.resource_manager_keys['region'] = region self.resource_manager_keys['compartment_ocid'] = compartment_ocid logger.info('Resource Manager Keys : {0!s:s}'.format(self.resource_manager_keys)) def initialiseJinja2Variables(self): super(OCIResourceManagerGenerator, self).initialiseJinja2Variables() self.jinja2_variables["resource_manager"] = True def writeFiles(self): main_rendered = self.getRenderedMain() # Write Main tf processing file # Remove Provider entry because this is not required for Resource Manager writeTerraformFile(os.path.join(self.output_dir, self.MAIN_FILE_NAME), main_rendered[1:]) # Write Variable files variable_definitions = [] # Delete Provider Variables del self.run_variables['user_ocid'] del self.run_variables['private_key_path'] del self.run_variables['fingerprint'] # Specify Values for Resource Manager Connection self.run_variables['tenancy_ocid'] = self.resource_manager_keys['tenancy_ocid'] self.run_variables['region'] = self.resource_manager_keys['region'] self.run_variables['compartment_ocid'] = self.resource_manager_keys['compartment_ocid'] for key, value in self.getVariables().items(): # Convert to string self.run_variables[key] = str(value) variable_definitions.append('variable "{0!s:s}" {{}}'.format(key)) writeTerraformFile(os.path.join(self.output_dir, self.VARIABLES_FILE_NAME), variable_definitions) return
47.045455
139
0.687923
4a216553a94601f2bdd46a09246772c627fc9caf
2,478
py
Python
octavia/tests/unit/controller/worker/v2/flows/test_l7policy_flows.py
zhangi/octavia
e68c851fecf55e1b5ffe7d5b849f729626af28a3
[ "Apache-2.0" ]
129
2015-06-23T08:06:23.000Z
2022-03-31T12:38:20.000Z
octavia/tests/unit/controller/worker/v2/flows/test_l7policy_flows.py
zhangi/octavia
e68c851fecf55e1b5ffe7d5b849f729626af28a3
[ "Apache-2.0" ]
6
2016-05-20T11:05:27.000Z
2021-03-23T06:05:52.000Z
octavia/tests/unit/controller/worker/v2/flows/test_l7policy_flows.py
zhangi/octavia
e68c851fecf55e1b5ffe7d5b849f729626af28a3
[ "Apache-2.0" ]
166
2015-07-15T16:24:05.000Z
2022-03-02T20:54:36.000Z
# Copyright 2016 Blue Box, an IBM Company # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # from taskflow.patterns import linear_flow as flow from octavia.common import constants from octavia.controller.worker.v2.flows import l7policy_flows import octavia.tests.unit.base as base class TestL7PolicyFlows(base.TestCase): def setUp(self): self.L7PolicyFlow = l7policy_flows.L7PolicyFlows() super().setUp() def test_get_create_l7policy_flow(self): l7policy_flow = self.L7PolicyFlow.get_create_l7policy_flow() self.assertIsInstance(l7policy_flow, flow.Flow) self.assertIn(constants.LISTENERS, l7policy_flow.requires) self.assertIn(constants.L7POLICY, l7policy_flow.requires) self.assertIn(constants.LOADBALANCER_ID, l7policy_flow.requires) self.assertEqual(3, len(l7policy_flow.requires)) self.assertEqual(0, len(l7policy_flow.provides)) def test_get_delete_l7policy_flow(self): l7policy_flow = self.L7PolicyFlow.get_delete_l7policy_flow() self.assertIsInstance(l7policy_flow, flow.Flow) self.assertIn(constants.LISTENERS, l7policy_flow.requires) self.assertIn(constants.LOADBALANCER_ID, l7policy_flow.requires) self.assertIn(constants.L7POLICY, l7policy_flow.requires) self.assertEqual(3, len(l7policy_flow.requires)) self.assertEqual(0, len(l7policy_flow.provides)) def test_get_update_l7policy_flow(self): l7policy_flow = self.L7PolicyFlow.get_update_l7policy_flow() self.assertIsInstance(l7policy_flow, flow.Flow) self.assertIn(constants.L7POLICY, l7policy_flow.requires) self.assertIn(constants.LISTENERS, l7policy_flow.requires) self.assertIn(constants.LOADBALANCER_ID, l7policy_flow.requires) self.assertIn(constants.UPDATE_DICT, l7policy_flow.requires) self.assertEqual(4, len(l7policy_flow.requires)) self.assertEqual(0, len(l7policy_flow.provides))
35.913043
75
0.752623
4a21655643a41c6228fffbdac99c678c1969e4cf
3,679
py
Python
jonathan_steward_automation/jonathan_steward_automation/JuniperConfig.py
gjonathansteward/FYP-network-automation
f8c43bd5f4e142e655248e26e497be2d383459db
[ "MIT" ]
1
2018-05-11T12:54:16.000Z
2018-05-11T12:54:16.000Z
jonathan_steward_automation/jonathan_steward_automation/JuniperConfig.py
gjonathansteward/FYP-network-automation
f8c43bd5f4e142e655248e26e497be2d383459db
[ "MIT" ]
null
null
null
jonathan_steward_automation/jonathan_steward_automation/JuniperConfig.py
gjonathansteward/FYP-network-automation
f8c43bd5f4e142e655248e26e497be2d383459db
[ "MIT" ]
null
null
null
from jnpr.junos import Device from jnpr.junos.utils.config import Config from jnpr.junos.exception import ConnectError from jnpr.junos.exception import ConfigLoadError from jnpr.junos.exception import CommitError from lxml.etree import XMLSyntaxError import time from common_tasks import print_error def Juniper_connect(device_object): """ Author - Jonathan Steward Function - Create a connnection to a juniper device Inputs - device_object - Device object returns - device connection object """ print "{}: connecting".format(time.strftime('%Y-%m-%d %H:%M:%S')) try: device_con = Device( host=device_object.ip, user=device_object.username, passwd=device_object.password).open() except ConnectError as error: print_error("{}: there was an issue connecting: {}".format(time.strftime('%Y-%m-%d %H:%M:%S'), error)) return return device_con def Juniper_config(configuration, device_object, config_format='xml'): """ Author - Jonathan Steward Function - use device connection object and connect to load configuration Inputs - configuration - string of what configuration you want to apply device_object - device object containing all the device config_format - the format of the configuration, default is xml but can also be set commands returns - bool - state of if the config operation worked or not. """ device_con = Juniper_connect(device_object) if not device_con: return False try: with Config(device_con, mode='private') as connection: print "{}: connected, loading".format(time.strftime('%Y-%m-%d %H:%M:%S')) try: connection.load(configuration, format=config_format, overwrite=True) except ConfigLoadError as error: print_error("there was an issue loading configuration:\n{}".format(error)) return False except XMLSyntaxError as error: print_error("there was a syntax error:\n{}".format(error)) return False except: print_error("Something went wrong".format(error)) return False print "{}: loaded, commiting the following change:".format(time.strftime('%Y-%m-%d %H:%M:%S')) diff = connection.pdiff() print diff try: connection.commit(comment='Adding description via api with xml file') except CommitError as error: print_error("There was an issue with the commit!{}".format(error)) return False print "{}: commit complete".format(time.strftime('%Y-%m-%d %H:%M:%S')) device_con.close() except: print_error("Something went wrong applying config") return True """ Commented out as used within phase 1 def main(): device_details = Device_object('192.168.0.2', 'admin', 'cisco12345', '', 'juniper') configuration = """ """ extra comment block <configuration> <interfaces> <interface> <name>ge-0/0/4</name> <description>DESCRIPTION SET VIA XML FILE AND SCRIPT at {}</description> </interface> </interfaces> </configuration> """ """.format(time.strftime('%Y-%m-%d %H:%M:%S')) # configuration = "This shouldn't work" state = Juniper_config(configuration, device_details) if not state: print_error("Issue with Configuring quitting") sys.exit() print "checking Descriptions VIA SNMP" GrabIntToDesc(device_details.ip) if __name__ == "__main__": main() """
36.425743
110
0.633052
4a216579c028a5325d227c81b723172b4be81da4
277
py
Python
settings_files/create_jobs/gamess_dft.py
tommason14/monash2018
8fc2de97172130ed5d532deb6f5bcca39ef3a6e3
[ "MIT" ]
7
2020-06-05T01:55:09.000Z
2021-12-20T19:32:36.000Z
settings_files/create_jobs/gamess_dft.py
tommason14/monash2018
8fc2de97172130ed5d532deb6f5bcca39ef3a6e3
[ "MIT" ]
null
null
null
settings_files/create_jobs/gamess_dft.py
tommason14/monash2018
8fc2de97172130ed5d532deb6f5bcca39ef3a6e3
[ "MIT" ]
8
2020-06-06T10:03:17.000Z
2022-03-18T14:47:33.000Z
from autochem import Settings, GamessJob import glob xyz=glob.glob('*xyz')[0] sett=Settings() sett.input.mp2=None sett.input.contrl.mplevl=None sett.input.contrl.dfttyp='m062x' sett.input.dft.method='grid' GamessJob(using=xyz, fmo=True, frags_in_subdir=True, settings=sett)
21.307692
67
0.779783
4a2165f141335972539daba6c4714d2481c4c7b6
1,030
py
Python
python27/win32/Lib/site-packages/oss2/__init__.py
aliyun/oss-ftp
1670b67b6ce726314ca0081841567934435128d4
[ "MIT" ]
69
2015-12-28T07:02:51.000Z
2022-03-31T13:36:42.000Z
python36/unix/lib/oss2/__init__.py
aliyun/oss-ftp
1670b67b6ce726314ca0081841567934435128d4
[ "MIT" ]
23
2016-03-04T10:43:24.000Z
2021-03-17T09:58:19.000Z
python27/win32/Lib/site-packages/oss2/__init__.py
aliyun/oss-ftp
1670b67b6ce726314ca0081841567934435128d4
[ "MIT" ]
24
2016-02-29T11:45:47.000Z
2021-12-24T08:41:37.000Z
__version__ = '2.1.1' from . import models, exceptions from .api import Service, Bucket from .auth import Auth, AnonymousAuth, StsAuth from .http import Session, CaseInsensitiveDict from .iterators import (BucketIterator, ObjectIterator, MultipartUploadIterator, ObjectUploadIterator, PartIterator) from .resumable import resumable_upload, resumable_download, ResumableStore, ResumableDownloadStore, determine_part_size from .resumable import make_upload_store, make_download_store from .compat import to_bytes, to_string, to_unicode, urlparse, urlquote, urlunquote from .utils import SizedFileAdapter, make_progress_adapter from .utils import content_type_by_name, is_valid_bucket_name from .utils import http_date, http_to_unixtime, iso8601_to_unixtime, date_to_iso8601, iso8601_to_date from .models import BUCKET_ACL_PRIVATE, BUCKET_ACL_PUBLIC_READ, BUCKET_ACL_PUBLIC_READ_WRITE from .models import OBJECT_ACL_DEFAULT, OBJECT_ACL_PRIVATE, OBJECT_ACL_PUBLIC_READ, OBJECT_ACL_PUBLIC_READ_WRITE
38.148148
120
0.834951