hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
7949686514a6610ed1a7c04a8e2dcf9fe9e28b80
1,646
py
Python
samples/generated_samples/cloudprivatecatalog_generated_privatecatalog_v1beta1_private_catalog_search_versions_sync.py
renovate-bot/python-private-catalog
2f48fd9aa925f29d382265115aac8faa77786e54
[ "Apache-2.0" ]
7
2021-02-21T10:39:41.000Z
2021-12-07T07:31:28.000Z
samples/generated_samples/cloudprivatecatalog_generated_privatecatalog_v1beta1_private_catalog_search_versions_sync.py
renovate-bot/python-private-catalog
2f48fd9aa925f29d382265115aac8faa77786e54
[ "Apache-2.0" ]
43
2021-06-03T01:32:48.000Z
2022-03-07T17:02:04.000Z
google/cloud/privatecatalog/v1beta1/privatecatalog-v1beta1-py/samples/generated_samples/cloudprivatecatalog_generated_privatecatalog_v1beta1_private_catalog_search_versions_sync.py
googleapis/googleapis-gen
d84824c78563d59b0e58d5664bfaa430e9ad7e7a
[ "Apache-2.0" ]
4
2021-01-28T23:25:45.000Z
2021-08-30T01:55:16.000Z
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Generated code. DO NOT EDIT! # # Snippet for SearchVersions # NOTE: This snippet has been automatically generated for illustrative purposes only. # It may require modifications to work in your environment. # To install the latest published package dependency, execute the following: # python3 -m pip install google-cloud-private-catalog # [START cloudprivatecatalog_generated_privatecatalog_v1beta1_PrivateCatalog_SearchVersions_sync] from google.cloud import privatecatalog_v1beta1 def sample_search_versions(): """Snippet for search_versions""" # Create a client client = privatecatalog_v1beta1.PrivateCatalogClient() # Initialize request argument(s) request = privatecatalog_v1beta1.SearchVersionsRequest( resource="resource_value", query="query_value", ) # Make the request page_result = client.search_versions(request=request) for response in page_result: print(response) # [END cloudprivatecatalog_generated_privatecatalog_v1beta1_PrivateCatalog_SearchVersions_sync]
34.291667
97
0.769137
794968f1d36bfbab95f8a78c3d6487365c36a058
357
py
Python
pose_classification_kit/config.py
huangshunliang/pose-classification-kit
a51ae6aeeb4185c1b70f4a3fa83484b65b524623
[ "MIT" ]
12
2021-07-04T22:04:38.000Z
2022-03-25T05:25:26.000Z
pose_classification_kit/config.py
huangshunliang/pose-classification-kit
a51ae6aeeb4185c1b70f4a3fa83484b65b524623
[ "MIT" ]
1
2022-03-07T07:36:40.000Z
2022-03-08T06:58:00.000Z
pose_classification_kit/config.py
huangshunliang/pose-classification-kit
a51ae6aeeb4185c1b70f4a3fa83484b65b524623
[ "MIT" ]
null
null
null
import pathlib # Path to OpenPose installation folder on your system. OPENPOSE_PATH = pathlib.Path("C:/") / "Program files" / "OpenPose" # Path to model folder. MODELS_PATH = pathlib.Path(".").resolve() / "pose_classification_kit" / "models" # Path to datasets folder. DATASETS_PATH = pathlib.Path(".").resolve() / "pose_classification_kit" / "datasets"
32.454545
84
0.72549
794968ff990d094ea758a101ab34fa6c5171c33b
4,347
py
Python
cytopy/tests/test_geometry.py
JANHMS/CytoPy
8537d707fa25645b55b4ec1e25fff9f19847fb1b
[ "MIT" ]
41
2020-04-08T11:01:28.000Z
2022-03-11T17:17:18.000Z
cytopy/tests/test_geometry.py
JANHMS/CytoPy
8537d707fa25645b55b4ec1e25fff9f19847fb1b
[ "MIT" ]
27
2020-04-07T14:59:24.000Z
2022-03-01T20:43:34.000Z
cytopy/tests/test_geometry.py
JANHMS/CytoPy
8537d707fa25645b55b4ec1e25fff9f19847fb1b
[ "MIT" ]
8
2020-04-28T15:16:24.000Z
2022-03-02T19:02:14.000Z
from cytopy.data.geometry import PopulationGeometry, ThresholdGeom, PolygonGeom, create_polygon, \ polygon_overlap, create_convex_hull, probablistic_ellipse, inside_ellipse from shapely.geometry import Polygon from sklearn.datasets import make_blobs from sklearn.mixture import GaussianMixture import numpy as np import pytest def test_create_geom(): kwargs = dict(x="X", y="Y", transform_x="logicle", transform_y="logicle") test = PopulationGeometry(**kwargs) for k, v in kwargs.items(): assert test[k] == v def test_create_threshold(): kwargs = dict(x="X", y="Y", transform_x="logicle", transform_y="logicle", x_threshold=4.344, y_threshold=2.435) test = ThresholdGeom(**kwargs) for k, v in kwargs.items(): assert test[k] == v def test_create_polygongeom(): kwargs = dict(x="X", y="Y", transform_x="logicle", transform_y="logicle", x_values=list(np.random.normal(0, 0.5, 1000)), y_values=list(np.random.normal(0, 0.5, 1000))) test = PolygonGeom(**kwargs) for k, v in kwargs.items(): assert test[k] == v def test_create_polygon(): x = [2, 6, 9, 10, 2] y = [5, 19, 18, 10, 5] poly = create_polygon(x, y) assert isinstance(poly, Polygon) assert np.array_equal(poly.exterior.xy[0], np.array(x)) assert np.array_equal(poly.exterior.xy[1], np.array(y)) @pytest.mark.parametrize("poly1,poly2,expected", [(np.array([[0, 4.], [10, 4.], [10, 8.2], [10, 8.2], [0, 8.2], [0, 4.]]), np.array([[0, 4.], [5, 4.], [5, 8.2], [5, 8.2], [0, 8.2], [0, 4.]]), 0.5), (np.array([[0, 4.], [10, 4.], [10, 8.2], [10, 8.2], [0, 4.]]), np.array([[12, 4.], [15, 4.], [15, 8.2], [15, 8.2], [12, 4.]]), 0.0)]) def test_polygon_overlap(poly1, poly2, expected): poly1, poly2 = Polygon(poly1), Polygon(poly2) assert polygon_overlap(poly1, poly2) == expected assert polygon_overlap(poly1, poly2, threshold=0.6) == 0. def test_create_convex_hull(): test_data = make_blobs(n_samples=1000, n_features=2, centers=1, center_box=(0, 5), random_state=42)[0] x, y = test_data[:, 0], test_data[:, 1] hull = create_convex_hull(x, y) assert isinstance(hull[0], list) assert isinstance(hull[1], list) for idx, t in enumerate([x, y]): lower = np.quantile(t, 0.05) upper = np.quantile(t, 0.95) t_ = [i for i in t if lower < i < upper] for i in range(100): s = np.random.choice(t_, 1)[0] assert s >= np.min(hull[idx]) assert s <= np.max(hull[idx]) @pytest.mark.parametrize("conf", [0.95, 0.8, 0.5]) def test_probablistic_ellipse(conf): test_data = make_blobs(n_samples=1000, n_features=2, centers=1, center_box=(1, 5), random_state=42)[0] model = GaussianMixture(random_state=42, n_components=1) model.fit(test_data) center = model.means_[0] width, height, angle = probablistic_ellipse(model.covariances_[0], conf) mask = inside_ellipse(test_data, center=center, width=width, height=height, angle=angle) assert test_data[mask].shape[0] / test_data.shape[0] == pytest.approx(conf, 0.1) @pytest.mark.parametrize("test_data,expected_mask", [(np.array([[3, 4.5], [7.5, 9]]), [True, False]), (np.array([[3, 4.5], [0, 0]]), [True, False]), (np.array([[11, 5], [6.2, 4.3]]), [False, True])]) def test_inside_ellipse(test_data, expected_mask): center, width, height, angle = (5, 5), 10, 5, 15 mask = inside_ellipse(data=test_data, center=center, width=width, height=height, angle=angle) assert isinstance(mask, list) assert np.array_equal(mask, expected_mask)
37.8
98
0.529791
794969ae4aaa75d23653a7ccba86423bae0926a6
4,830
py
Python
hpOneView/resources/networking/fabrics.py
doziya/hpeOneView
ef9bee2a0e1529e93bd6e8d84eff07fb8533049d
[ "MIT" ]
107
2015-02-16T12:40:36.000Z
2022-03-09T05:27:58.000Z
hpOneView/resources/networking/fabrics.py
doziya/hpeOneView
ef9bee2a0e1529e93bd6e8d84eff07fb8533049d
[ "MIT" ]
148
2015-03-17T16:09:39.000Z
2020-02-09T16:28:06.000Z
hpOneView/resources/networking/fabrics.py
doziya/hpeOneView
ef9bee2a0e1529e93bd6e8d84eff07fb8533049d
[ "MIT" ]
80
2015-01-03T22:58:53.000Z
2021-04-16T11:37:03.000Z
# -*- coding: utf-8 -*- ### # (C) Copyright (2012-2017) Hewlett Packard Enterprise Development LP # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. ### from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from future import standard_library standard_library.install_aliases() from hpOneView.resources.resource import ResourceClient class Fabrics(object): """ Fabrics API client. """ URI = '/rest/fabrics' DEFAULT_VALUES = { '300': {'type': 'vlan-pool'}, '500': {'type': 'vlan-pool'} } def __init__(self, con): self._connection = con self._client = ResourceClient(con, self.URI) def get_all(self, start=0, count=-1, filter='', sort=''): """ Gets a paginated collection of all fabrics based on the specified parameters. Filters can be used in the URL to control the number of fabrics that are returned. With no filters specified, the API returns all supported fabrics. Args: start: The first item to return, using 0-based indexing. If not specified, the default is 0 - start with the first available item. count: The number of resources to return. A count of -1 requests all items. The actual number of items in the response might differ from the requested count if the sum of start and count exceeds the total number of items. filter (list or str): A general filter/query string to narrow the list of items returned. The default is no filter; all resources are returned. sort: The sort order of the returned data set. By default, the sort order is based on create time with the oldest entry first. Returns: list: A list of fabrics. """ return self._client.get_all(start, count, filter=filter, sort=sort) def get(self, id_or_uri): """ Gets the fabric with the specified ID. Args: id_or_uri: ID or URI of fabric. Returns: dict: The fabric. """ return self._client.get(id_or_uri) def get_by(self, field, value): """ Gets all fabrics that match the filter. The search is case-insensitive. Args: field: Field name to filter. value: Value to filter. Returns: list: A list of fabrics. """ return self._client.get_by(field, value) def get_reserved_vlan_range(self, id_or_uri): """ Gets the reserved vlan ID range for the fabric. Note: This method is only available on HPE Synergy. Args: id_or_uri: ID or URI of fabric. Returns: dict: vlan-pool """ uri = self._client.build_uri(id_or_uri) + "/reserved-vlan-range" return self._client.get(uri) def update_reserved_vlan_range(self, id_or_uri, vlan_pool, force=False): """ Updates the reserved vlan ID range for the fabric. Note: This method is only available on HPE Synergy. Args: id_or_uri: ID or URI of fabric. vlan_pool (dict): vlan-pool data to update. force: If set to true, the operation completes despite any problems with network connectivity or errors on the resource itself. The default is false. Returns: dict: The fabric """ uri = self._client.build_uri(id_or_uri) + "/reserved-vlan-range" return self._client.update(resource=vlan_pool, uri=uri, force=force, default_values=self.DEFAULT_VALUES)
34.255319
116
0.646584
79496a4e0cc9d5c6aeb343e9f2c5d32c0368939a
200
py
Python
Chapter10/07_leds.py
PacktPublishing/MicroPython-Cookbook
ffd6aa15c303459570a89ba31b5bc734f05cb387
[ "MIT" ]
16
2019-07-01T16:24:22.000Z
2022-03-03T06:54:57.000Z
Chapter10/07_leds.py
ccwu0918/MicroPython-Cookbook
ffd6aa15c303459570a89ba31b5bc734f05cb387
[ "MIT" ]
null
null
null
Chapter10/07_leds.py
ccwu0918/MicroPython-Cookbook
ffd6aa15c303459570a89ba31b5bc734f05cb387
[ "MIT" ]
19
2019-04-17T08:30:12.000Z
2022-01-14T03:05:37.000Z
from machine import Pin import time red = Pin(0, Pin.OUT) blue = Pin(2, Pin.OUT) while True: blue.value(0) red.value(1) time.sleep(1) blue.value(1) red.value(0) time.sleep(1)
15.384615
23
0.62
79496b3c98eb4a6cd7441368dd5306e5c4ab036c
2,537
py
Python
sys/sys-programbar.py
all3g/pieces
bc378fd22ddc700891fe7f34ab0d5b341141e434
[ "CNRI-Python" ]
34
2016-10-31T02:05:24.000Z
2018-11-08T14:33:13.000Z
sys/sys-programbar.py
join-us/python-programming
bc378fd22ddc700891fe7f34ab0d5b341141e434
[ "CNRI-Python" ]
2
2017-05-11T03:00:31.000Z
2017-11-01T23:37:37.000Z
sys/sys-programbar.py
join-us/python-programming
bc378fd22ddc700891fe7f34ab0d5b341141e434
[ "CNRI-Python" ]
21
2016-08-19T09:05:45.000Z
2018-11-08T14:33:16.000Z
import sys import time class ProgressBar(object): """ProgressBae class holds the option of the progress bar. The option are: start State from which start the progress. For example, if start is and the end is 10, the progress of this state is 50% end State in which the progress has terminated. width -- fill String to use for "filled" used to represent the progress blank String to use for "filled" used to represent remaining format Format """ def __init__(self, start=0, end=10, width=12, fill='=', blank='.', format='[%(fill)s>%(blank)s] %(progress)s%%', incremental=True): super(ProgressBar, self).__init__() self.start = start self.end = end self.width = width self.fill = fill self.blank = blank self.format = format self.incremental = incremental self.step = 100 / float(width) self.reset() def __add__(self, increment): increment = self._get_progress(increment) if 100 > self.progress + increment: self.progress += increment else: self.progress = 100 return self def __str__(self): progressed = int(self.progress / self.step) fill = progressed * self.fill blank = (self.width-progressed) * self.blank return self.format % {'fill': fill, 'blank': blank, 'progress': int(self.progress)} __repr__ = __str__ def _get_progress(self, increment): return float(increment * 100) / self.end def reset(self): """Resets the current progress to the start point. """ self.progress = self._get_progress(self.start) return self class AnimatedProgressBar(ProgressBar): def __init__(self, *args, **kwargs): super(AnimatedProgressBar, self).__init__(*args, **kwargs) self.stdout = kwargs.get('stdout', sys.stdout) def show_progress(self): if hasattr(self.stdout, 'isatty') and self.stdout.isatty(): self.stdout.write('\r') else: self.stdout.write('\n') self.stdout.write(str(self)) self.stdout.flush() if __name__ == "__main__": p = AnimatedProgressBar(end=100, width=80) while True: p + 5 p.show_progress() time.sleep(0.1) if p.progress == 100: break
30.939024
79
0.568782
79496c5400746bb5a00f761a2ebf840c3e33225f
619
py
Python
day-17/main.py
jmolinski/advent-of-code-2017
cc199d38540b15a0f6b78e609f64b0045174ea7c
[ "Unlicense" ]
null
null
null
day-17/main.py
jmolinski/advent-of-code-2017
cc199d38540b15a0f6b78e609f64b0045174ea7c
[ "Unlicense" ]
null
null
null
day-17/main.py
jmolinski/advent-of-code-2017
cc199d38540b15a0f6b78e609f64b0045174ea7c
[ "Unlicense" ]
null
null
null
step = int(open('data.txt', 'r').read()) def track(n, rounds=1): lst, pos = [0, 1], 1 for i in range(2, rounds): pos = (pos + step + 1) % (i) lst.insert(pos, i) return lst[(lst.index(n) + 1) % len(lst)] def track_after_zero(rounds=1): pos, zero_pos, after_zero = 1, 0, 0 for i in range(2, rounds): pos = (pos + step + 1) % (i) if pos == zero_pos + 1: after_zero = i zero_pos += (zero_pos >= pos) return after_zero answer_part_1 = track(2017, 2018) answer_part_2 = track_after_zero(50 * 1000 * 1000) print(answer_part_1, answer_part_2)
22.925926
50
0.568659
79496cc111128fc8ed6b80f9dacbdfb615ce658a
21,885
py
Python
allennlp/models/constituency_parser.py
justindujardin/allennlp
c4559f3751775aa8bc018db417edc119d29d8051
[ "Apache-2.0" ]
1
2020-09-19T07:09:27.000Z
2020-09-19T07:09:27.000Z
allennlp/models/constituency_parser.py
justindujardin/allennlp
c4559f3751775aa8bc018db417edc119d29d8051
[ "Apache-2.0" ]
null
null
null
allennlp/models/constituency_parser.py
justindujardin/allennlp
c4559f3751775aa8bc018db417edc119d29d8051
[ "Apache-2.0" ]
1
2021-02-04T08:42:23.000Z
2021-02-04T08:42:23.000Z
from typing import Dict, Tuple, List, NamedTuple, Any from overrides import overrides import torch from torch.nn.modules.linear import Linear from nltk import Tree from allennlp.common.checks import check_dimensions_match from allennlp.data import TextFieldTensors, Vocabulary from allennlp.modules import Seq2SeqEncoder, TimeDistributed, TextFieldEmbedder, FeedForward from allennlp.modules.token_embedders import Embedding from allennlp.modules.span_extractors.span_extractor import SpanExtractor from allennlp.models.model import Model from allennlp.nn import InitializerApplicator from allennlp.nn.util import get_text_field_mask, sequence_cross_entropy_with_logits from allennlp.nn.util import masked_softmax, get_lengths_from_binary_sequence_mask from allennlp.training.metrics import CategoricalAccuracy from allennlp.training.metrics import EvalbBracketingScorer, DEFAULT_EVALB_DIR from allennlp.common.checks import ConfigurationError class SpanInformation(NamedTuple): """ A helper namedtuple for handling decoding information. # Parameters start : `int` The start index of the span. end : `int` The exclusive end index of the span. no_label_prob : `float` The probability of this span being assigned the `NO-LABEL` label. label_prob : `float` The probability of the most likely label. """ start: int end: int label_prob: float no_label_prob: float label_index: int @Model.register("constituency_parser") class SpanConstituencyParser(Model): """ This `SpanConstituencyParser` simply encodes a sequence of text with a stacked `Seq2SeqEncoder`, extracts span representations using a `SpanExtractor`, and then predicts a label for each span in the sequence. These labels are non-terminal nodes in a constituency parse tree, which we then greedily reconstruct. # Parameters vocab : `Vocabulary`, required A Vocabulary, required in order to compute sizes for input/output projections. text_field_embedder : `TextFieldEmbedder`, required Used to embed the `tokens` `TextField` we get as input to the model. span_extractor : `SpanExtractor`, required. The method used to extract the spans from the encoded sequence. encoder : `Seq2SeqEncoder`, required. The encoder that we will use in between embedding tokens and generating span representations. feedforward : `FeedForward`, required. The FeedForward layer that we will use in between the encoder and the linear projection to a distribution over span labels. pos_tag_embedding : `Embedding`, optional. Used to embed the `pos_tags` `SequenceLabelField` we get as input to the model. initializer : `InitializerApplicator`, optional (default=`InitializerApplicator()`) Used to initialize the model parameters. evalb_directory_path : `str`, optional (default=`DEFAULT_EVALB_DIR`) The path to the directory containing the EVALB executable used to score bracketed parses. By default, will use the EVALB included with allennlp, which is located at allennlp/tools/EVALB . If `None`, EVALB scoring is not used. """ def __init__( self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, span_extractor: SpanExtractor, encoder: Seq2SeqEncoder, feedforward: FeedForward = None, pos_tag_embedding: Embedding = None, initializer: InitializerApplicator = InitializerApplicator(), evalb_directory_path: str = DEFAULT_EVALB_DIR, **kwargs, ) -> None: super().__init__(vocab, **kwargs) self.text_field_embedder = text_field_embedder self.span_extractor = span_extractor self.num_classes = self.vocab.get_vocab_size("labels") self.encoder = encoder self.feedforward_layer = TimeDistributed(feedforward) if feedforward else None self.pos_tag_embedding = pos_tag_embedding or None if feedforward is not None: output_dim = feedforward.get_output_dim() else: output_dim = span_extractor.get_output_dim() self.tag_projection_layer = TimeDistributed(Linear(output_dim, self.num_classes)) representation_dim = text_field_embedder.get_output_dim() if pos_tag_embedding is not None: representation_dim += pos_tag_embedding.get_output_dim() check_dimensions_match( representation_dim, encoder.get_input_dim(), "representation dim (tokens + optional POS tags)", "encoder input dim", ) check_dimensions_match( encoder.get_output_dim(), span_extractor.get_input_dim(), "encoder input dim", "span extractor input dim", ) if feedforward is not None: check_dimensions_match( span_extractor.get_output_dim(), feedforward.get_input_dim(), "span extractor output dim", "feedforward input dim", ) self.tag_accuracy = CategoricalAccuracy() if evalb_directory_path is not None: self._evalb_score = EvalbBracketingScorer(evalb_directory_path) else: self._evalb_score = None initializer(self) @overrides def forward( self, # type: ignore tokens: TextFieldTensors, spans: torch.LongTensor, metadata: List[Dict[str, Any]], pos_tags: TextFieldTensors = None, span_labels: torch.LongTensor = None, ) -> Dict[str, torch.Tensor]: """ # Parameters tokens : TextFieldTensors, required The output of `TextField.as_array()`, which should typically be passed directly to a `TextFieldEmbedder`. This output is a dictionary mapping keys to `TokenIndexer` tensors. At its most basic, using a `SingleIdTokenIndexer` this is : `{"tokens": Tensor(batch_size, num_tokens)}`. This dictionary will have the same keys as were used for the `TokenIndexers` when you created the `TextField` representing your sequence. The dictionary is designed to be passed directly to a `TextFieldEmbedder`, which knows how to combine different word representations into a single vector per token in your input. spans : `torch.LongTensor`, required. A tensor of shape `(batch_size, num_spans, 2)` representing the inclusive start and end indices of all possible spans in the sentence. metadata : List[Dict[str, Any]], required. A dictionary of metadata for each batch element which has keys: tokens : `List[str]`, required. The original string tokens in the sentence. gold_tree : `nltk.Tree`, optional (default = None) Gold NLTK trees for use in evaluation. pos_tags : `List[str]`, optional. The POS tags for the sentence. These can be used in the model as embedded features, but they are passed here in addition for use in constructing the tree. pos_tags : `torch.LongTensor`, optional (default = None) The output of a `SequenceLabelField` containing POS tags. span_labels : `torch.LongTensor`, optional (default = None) A torch tensor representing the integer gold class labels for all possible spans, of shape `(batch_size, num_spans)`. # Returns An output dictionary consisting of: class_probabilities : `torch.FloatTensor` A tensor of shape `(batch_size, num_spans, span_label_vocab_size)` representing a distribution over the label classes per span. spans : `torch.LongTensor` The original spans tensor. tokens : `List[List[str]]`, required. A list of tokens in the sentence for each element in the batch. pos_tags : `List[List[str]]`, required. A list of POS tags in the sentence for each element in the batch. num_spans : `torch.LongTensor`, required. A tensor of shape (batch_size), representing the lengths of non-padded spans in `enumerated_spans`. loss : `torch.FloatTensor`, optional A scalar loss to be optimised. """ embedded_text_input = self.text_field_embedder(tokens) if pos_tags is not None and self.pos_tag_embedding is not None: embedded_pos_tags = self.pos_tag_embedding(pos_tags) embedded_text_input = torch.cat([embedded_text_input, embedded_pos_tags], -1) elif self.pos_tag_embedding is not None: raise ConfigurationError("Model uses a POS embedding, but no POS tags were passed.") mask = get_text_field_mask(tokens) # Looking at the span start index is enough to know if # this is padding or not. Shape: (batch_size, num_spans) span_mask = (spans[:, :, 0] >= 0).squeeze(-1).long() if span_mask.dim() == 1: # This happens if you use batch_size 1 and encounter # a length 1 sentence in PTB, which do exist. -.- span_mask = span_mask.unsqueeze(-1) if span_labels is not None and span_labels.dim() == 1: span_labels = span_labels.unsqueeze(-1) num_spans = get_lengths_from_binary_sequence_mask(span_mask) encoded_text = self.encoder(embedded_text_input, mask) span_representations = self.span_extractor(encoded_text, spans, mask, span_mask) if self.feedforward_layer is not None: span_representations = self.feedforward_layer(span_representations) logits = self.tag_projection_layer(span_representations) class_probabilities = masked_softmax(logits, span_mask.unsqueeze(-1)) output_dict = { "class_probabilities": class_probabilities, "spans": spans, "tokens": [meta["tokens"] for meta in metadata], "pos_tags": [meta.get("pos_tags") for meta in metadata], "num_spans": num_spans, } if span_labels is not None: loss = sequence_cross_entropy_with_logits(logits, span_labels, span_mask) self.tag_accuracy(class_probabilities, span_labels, span_mask) output_dict["loss"] = loss # The evalb score is expensive to compute, so we only compute # it for the validation and test sets. batch_gold_trees = [meta.get("gold_tree") for meta in metadata] if all(batch_gold_trees) and self._evalb_score is not None and not self.training: gold_pos_tags: List[List[str]] = [ list(zip(*tree.pos()))[1] for tree in batch_gold_trees ] predicted_trees = self.construct_trees( class_probabilities.cpu().data, spans.cpu().data, num_spans.data, output_dict["tokens"], gold_pos_tags, ) self._evalb_score(predicted_trees, batch_gold_trees) return output_dict @overrides def decode(self, output_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: """ Constructs an NLTK `Tree` given the scored spans. We also switch to exclusive span ends when constructing the tree representation, because it makes indexing into lists cleaner for ranges of text, rather than individual indices. Finally, for batch prediction, we will have padded spans and class probabilities. In order to make this less confusing, we remove all the padded spans and distributions from `spans` and `class_probabilities` respectively. """ all_predictions = output_dict["class_probabilities"].cpu().data all_spans = output_dict["spans"].cpu().data all_sentences = output_dict["tokens"] all_pos_tags = output_dict["pos_tags"] if all(output_dict["pos_tags"]) else None num_spans = output_dict["num_spans"].data trees = self.construct_trees( all_predictions, all_spans, num_spans, all_sentences, all_pos_tags ) batch_size = all_predictions.size(0) output_dict["spans"] = [all_spans[i, : num_spans[i]] for i in range(batch_size)] output_dict["class_probabilities"] = [ all_predictions[i, : num_spans[i], :] for i in range(batch_size) ] output_dict["trees"] = trees return output_dict def construct_trees( self, predictions: torch.FloatTensor, all_spans: torch.LongTensor, num_spans: torch.LongTensor, sentences: List[List[str]], pos_tags: List[List[str]] = None, ) -> List[Tree]: """ Construct `nltk.Tree`'s for each batch element by greedily nesting spans. The trees use exclusive end indices, which contrasts with how spans are represented in the rest of the model. # Parameters predictions : `torch.FloatTensor`, required. A tensor of shape `(batch_size, num_spans, span_label_vocab_size)` representing a distribution over the label classes per span. all_spans : `torch.LongTensor`, required. A tensor of shape (batch_size, num_spans, 2), representing the span indices we scored. num_spans : `torch.LongTensor`, required. A tensor of shape (batch_size), representing the lengths of non-padded spans in `enumerated_spans`. sentences : `List[List[str]]`, required. A list of tokens in the sentence for each element in the batch. pos_tags : `List[List[str]]`, optional (default = None). A list of POS tags for each word in the sentence for each element in the batch. # Returns A `List[Tree]` containing the decoded trees for each element in the batch. """ # Switch to using exclusive end spans. exclusive_end_spans = all_spans.clone() exclusive_end_spans[:, :, -1] += 1 no_label_id = self.vocab.get_token_index("NO-LABEL", "labels") trees: List[Tree] = [] for batch_index, (scored_spans, spans, sentence) in enumerate( zip(predictions, exclusive_end_spans, sentences) ): selected_spans = [] for prediction, span in zip( scored_spans[: num_spans[batch_index]], spans[: num_spans[batch_index]] ): start, end = span no_label_prob = prediction[no_label_id] label_prob, label_index = torch.max(prediction, -1) # Does the span have a label != NO-LABEL or is it the root node? # If so, include it in the spans that we consider. if int(label_index) != no_label_id or (start == 0 and end == len(sentence)): selected_spans.append( SpanInformation( start=int(start), end=int(end), label_prob=float(label_prob), no_label_prob=float(no_label_prob), label_index=int(label_index), ) ) # The spans we've selected might overlap, which causes problems when we try # to construct the tree as they won't nest properly. consistent_spans = self.resolve_overlap_conflicts_greedily(selected_spans) spans_to_labels = { (span.start, span.end): self.vocab.get_token_from_index(span.label_index, "labels") for span in consistent_spans } sentence_pos = pos_tags[batch_index] if pos_tags is not None else None trees.append(self.construct_tree_from_spans(spans_to_labels, sentence, sentence_pos)) return trees @staticmethod def resolve_overlap_conflicts_greedily(spans: List[SpanInformation]) -> List[SpanInformation]: """ Given a set of spans, removes spans which overlap by evaluating the difference in probability between one being labeled and the other explicitly having no label and vice-versa. The worst case time complexity of this method is `O(k * n^4)` where `n` is the length of the sentence that the spans were enumerated from (and therefore `k * m^2` complexity with respect to the number of spans `m`) and `k` is the number of conflicts. However, in practice, there are very few conflicts. Hopefully. This function modifies `spans` to remove overlapping spans. # Parameters spans : `List[SpanInformation]`, required. A list of spans, where each span is a `namedtuple` containing the following attributes: start : `int` The start index of the span. end : `int` The exclusive end index of the span. no_label_prob : `float` The probability of this span being assigned the `NO-LABEL` label. label_prob : `float` The probability of the most likely label. # Returns A modified list of `spans`, with the conflicts resolved by considering local differences between pairs of spans and removing one of the two spans. """ conflicts_exist = True while conflicts_exist: conflicts_exist = False for span1_index, span1 in enumerate(spans): for span2_index, span2 in list(enumerate(spans))[span1_index + 1 :]: if ( span1.start < span2.start < span1.end < span2.end or span2.start < span1.start < span2.end < span1.end ): # The spans overlap. conflicts_exist = True # What's the more likely situation: that span2 was labeled # and span1 was unlabled, or that span1 was labeled and span2 # was unlabled? In the first case, we delete span2 from the # set of spans to form the tree - in the second case, we delete # span1. if ( span1.no_label_prob + span2.label_prob < span2.no_label_prob + span1.label_prob ): spans.pop(span2_index) else: spans.pop(span1_index) break return spans @staticmethod def construct_tree_from_spans( spans_to_labels: Dict[Tuple[int, int], str], sentence: List[str], pos_tags: List[str] = None ) -> Tree: """ # Parameters spans_to_labels : `Dict[Tuple[int, int], str]`, required. A mapping from spans to constituency labels. sentence : `List[str]`, required. A list of tokens forming the sentence to be parsed. pos_tags : `List[str]`, optional (default = None) A list of the pos tags for the words in the sentence, if they were either predicted or taken as input to the model. # Returns An `nltk.Tree` constructed from the labelled spans. """ def assemble_subtree(start: int, end: int): if (start, end) in spans_to_labels: # Some labels contain nested spans, e.g S-VP. # We actually want to create (S (VP ...)) nodes # for these labels, so we split them up here. labels: List[str] = spans_to_labels[(start, end)].split("-") else: labels = None # This node is a leaf. if end - start == 1: word = sentence[start] pos_tag = pos_tags[start] if pos_tags is not None else "XX" tree = Tree(pos_tag, [word]) if labels is not None and pos_tags is not None: # If POS tags were passed explicitly, # they are added as pre-terminal nodes. while labels: tree = Tree(labels.pop(), [tree]) elif labels is not None: # Otherwise, we didn't want POS tags # at all. tree = Tree(labels.pop(), [word]) while labels: tree = Tree(labels.pop(), [tree]) return [tree] argmax_split = start + 1 # Find the next largest subspan such that # the left hand side is a constituent. for split in range(end - 1, start, -1): if (start, split) in spans_to_labels: argmax_split = split break left_trees = assemble_subtree(start, argmax_split) right_trees = assemble_subtree(argmax_split, end) children = left_trees + right_trees if labels is not None: while labels: children = [Tree(labels.pop(), children)] return children tree = assemble_subtree(0, len(sentence)) return tree[0] @overrides def get_metrics(self, reset: bool = False) -> Dict[str, float]: all_metrics = {} all_metrics["tag_accuracy"] = self.tag_accuracy.get_metric(reset=reset) if self._evalb_score is not None: evalb_metrics = self._evalb_score.get_metric(reset=reset) all_metrics.update(evalb_metrics) return all_metrics
44.212121
100
0.620105
79496d0aeeb2135dd72012a161b5568fb44c7777
14,581
py
Python
desktop/core/ext-py/South-1.0.2/south/db/oracle.py
vinaymundada27/Hue
7bffb33bbe7cfa34d340241c4ba3b19476211b2a
[ "Apache-2.0" ]
11
2019-03-20T07:38:35.000Z
2021-06-18T09:42:46.000Z
filenv/lib/python2.7/site-packages/south/db/oracle.py
betoesquivel/fil2014
4c2e9188769096391bb206b76ed1ab8bd2ff66a1
[ "MIT" ]
null
null
null
filenv/lib/python2.7/site-packages/south/db/oracle.py
betoesquivel/fil2014
4c2e9188769096391bb206b76ed1ab8bd2ff66a1
[ "MIT" ]
5
2019-06-29T03:13:02.000Z
2020-04-23T04:47:11.000Z
from __future__ import print_function import os.path import sys import re import warnings import cx_Oracle from django.db import connection, models from django.db.backends.util import truncate_name from django.core.management.color import no_style from django.db.models.fields import NOT_PROVIDED from django.db.utils import DatabaseError # In revision r16016 function get_sequence_name has been transformed into # method of DatabaseOperations class. To make code backward-compatible we # need to handle both situations. try: from django.db.backends.oracle.base import get_sequence_name\ as original_get_sequence_name except ImportError: original_get_sequence_name = None from south.db import generic class DatabaseOperations(generic.DatabaseOperations): """ Oracle implementation of database operations. """ backend_name = 'oracle' alter_string_set_type = 'ALTER TABLE %(table_name)s MODIFY %(column)s %(type)s %(nullity)s;' alter_string_set_default = 'ALTER TABLE %(table_name)s MODIFY %(column)s DEFAULT %(default)s;' alter_string_update_nulls_to_default = \ 'UPDATE %(table_name)s SET %(column)s = %(default)s WHERE %(column)s IS NULL;' add_column_string = 'ALTER TABLE %s ADD %s;' delete_column_string = 'ALTER TABLE %s DROP COLUMN %s;' add_constraint_string = 'ALTER TABLE %(table_name)s ADD CONSTRAINT %(constraint)s %(clause)s' allows_combined_alters = False has_booleans = False constraints_dict = { 'P': 'PRIMARY KEY', 'U': 'UNIQUE', 'C': 'CHECK', 'R': 'FOREIGN KEY' } def get_sequence_name(self, table_name): if original_get_sequence_name is None: return self._get_connection().ops._get_sequence_name(table_name) else: return original_get_sequence_name(table_name) #TODO: This will cause very obscure bugs if anyone uses a column name or string value # that looks like a column definition (with 'CHECK', 'DEFAULT' and/or 'NULL' in it) # e.g. "CHECK MATE" varchar(10) DEFAULT 'NULL' def adj_column_sql(self, col): # Syntax fixes -- Oracle is picky about clause order col = re.sub('(?P<constr>CHECK \(.*\))(?P<any>.*)(?P<default>DEFAULT \d+)', lambda mo: '%s %s%s'%(mo.group('default'), mo.group('constr'), mo.group('any')), col) #syntax fix for boolean/integer field only col = re.sub('(?P<not_null>(NOT )?NULL) (?P<misc>(.* )?)(?P<default>DEFAULT.+)', lambda mo: '%s %s %s'%(mo.group('default'),mo.group('not_null'),mo.group('misc') or ''), col) #fix order of NULL/NOT NULL and DEFAULT return col def check_meta(self, table_name): return table_name in [ m._meta.db_table for m in models.get_models() ] #caching provided by Django def normalize_name(self, name): """ Get the properly shortened and uppercased identifier as returned by quote_name(), but without the actual quotes. """ nn = self.quote_name(name) if nn[0] == '"' and nn[-1] == '"': nn = nn[1:-1] return nn @generic.invalidate_table_constraints def create_table(self, table_name, fields): qn = self.quote_name(table_name) columns = [] autoinc_sql = '' for field_name, field in fields: field = self._field_sanity(field) # avoid default values in CREATE TABLE statements (#925) field._suppress_default = True col = self.column_sql(table_name, field_name, field) if not col: continue col = self.adj_column_sql(col) columns.append(col) if isinstance(field, models.AutoField): autoinc_sql = connection.ops.autoinc_sql(table_name, field_name) sql = 'CREATE TABLE %s (%s);' % (qn, ', '.join([col for col in columns])) self.execute(sql) if autoinc_sql: self.execute(autoinc_sql[0]) self.execute(autoinc_sql[1]) @generic.invalidate_table_constraints def delete_table(self, table_name, cascade=True): qn = self.quote_name(table_name) # Note: PURGE is not valid syntax for Oracle 9i (it was added in 10) if cascade: self.execute('DROP TABLE %s CASCADE CONSTRAINTS;' % qn) else: self.execute('DROP TABLE %s;' % qn) # If the table has an AutoField a sequence was created. sequence_sql = """ DECLARE i INTEGER; BEGIN SELECT COUNT(*) INTO i FROM USER_CATALOG WHERE TABLE_NAME = '%(sq_name)s' AND TABLE_TYPE = 'SEQUENCE'; IF i = 1 THEN EXECUTE IMMEDIATE 'DROP SEQUENCE "%(sq_name)s"'; END IF; END; /""" % {'sq_name': self.get_sequence_name(table_name)} self.execute(sequence_sql) @generic.invalidate_table_constraints def alter_column(self, table_name, name, field, explicit_name=True, ignore_constraints=False): if self.dry_run: if self.debug: print(' - no dry run output for alter_column() due to dynamic DDL, sorry') return qn = self.quote_name(table_name) # hook for the field to do any resolution prior to it's attributes being queried if hasattr(field, 'south_init'): field.south_init() field = self._field_sanity(field) # Add _id or whatever if we need to field.set_attributes_from_name(name) if not explicit_name: name = field.column qn_col = self.quote_name(name) # First, change the type # This will actually also add any CHECK constraints needed, # since e.g. 'type' for a BooleanField is 'NUMBER(1) CHECK (%(qn_column)s IN (0,1))' params = { 'table_name':qn, 'column': qn_col, 'type': self._db_type_for_alter_column(field), 'nullity': 'NOT NULL', 'default': 'NULL' } if field.null: params['nullity'] = 'NULL' sql_templates = [ (self.alter_string_set_type, params, []), (self.alter_string_set_default, params, []), ] if not field.null and field.has_default(): # Use default for rows that had nulls. To support the case where # the new default does not fit the old type, we need to first change # the column type to the new type, but null=True; then set the default; # then complete the type change. def change_params(**kw): "A little helper for non-destructively changing the params" p = params.copy() p.update(kw) return p sql_templates[:0] = [ (self.alter_string_set_type, change_params(nullity='NULL'),[]), (self.alter_string_update_nulls_to_default, change_params(default="%s"), [field.get_default()]), ] if not ignore_constraints: # drop CHECK constraints. Make sure this is executed before the ALTER TABLE statements # generated above, since those statements recreate the constraints we delete here. check_constraints = self._constraints_affecting_columns(table_name, [name], "CHECK") for constraint in check_constraints: self.execute(self.delete_check_sql % { 'table': self.quote_name(table_name), 'constraint': self.quote_name(constraint), }) # Drop foreign constraints try: self.delete_foreign_key(qn, qn_col) except ValueError: # There weren't any pass for sql_template, params, args in sql_templates: try: self.execute(sql_template % params, args, print_all_errors=False) except DatabaseError as exc: description = str(exc) # Oracle complains if a column is already NULL/NOT NULL if 'ORA-01442' in description or 'ORA-01451' in description: # so we just drop NULL/NOT NULL part from target sql and retry params['nullity'] = '' sql = sql_template % params self.execute(sql) # Oracle also has issues if we try to change a regular column # to a LOB or vice versa (also REF, object, VARRAY or nested # table, but these don't come up much in Django apps) elif 'ORA-22858' in description or 'ORA-22859' in description: self._alter_column_lob_workaround(table_name, name, field) else: self._print_sql_error(exc, sql_template % params) raise if not ignore_constraints: # Add back FK constraints if needed if field.rel: #and self.supports_foreign_keys: self.add_deferred_sql( self.foreign_key_sql( qn[1:-1], # foreign_key_sql uses this as part of constraint name qn_col[1:-1], # foreign_key_sql uses this as part of constraint name field.rel.to._meta.db_table, field.rel.to._meta.get_field(field.rel.field_name).column ) ) def _alter_column_lob_workaround(self, table_name, name, field): """ Oracle refuses to change a column type from/to LOB to/from a regular column. In Django, this shows up when the field is changed from/to a TextField. What we need to do instead is: - Rename the original column - Add the desired field as new - Update the table to transfer values from old to new - Drop old column """ renamed = self._generate_temp_name(name) self.rename_column(table_name, name, renamed) self.add_column(table_name, name, field, keep_default=False) self.execute("UPDATE %s set %s=%s" % ( self.quote_name(table_name), self.quote_name(name), self.quote_name(renamed), )) self.delete_column(table_name, renamed) def _generate_temp_name(self, for_name): suffix = hex(hash(for_name)).upper()[1:] return self.normalize_name(for_name + "_" + suffix) @generic.copy_column_constraints #TODO: Appears to be nulled by the delete decorator below... @generic.delete_column_constraints def rename_column(self, table_name, old, new): if old == new: # Short-circuit out return [] self.execute('ALTER TABLE %s RENAME COLUMN %s TO %s;' % ( self.quote_name(table_name), self.quote_name(old), self.quote_name(new), )) @generic.invalidate_table_constraints def add_column(self, table_name, name, field, keep_default=False): field = self._field_sanity(field) sql = self.column_sql(table_name, name, field) sql = self.adj_column_sql(sql) if sql: params = ( self.quote_name(table_name), sql ) sql = self.add_column_string % params self.execute(sql) # Now, drop the default if we need to if field.default is not None: field.default = NOT_PROVIDED self.alter_column(table_name, name, field, explicit_name=False, ignore_constraints=True) def delete_column(self, table_name, name): return super(DatabaseOperations, self).delete_column(self.quote_name(table_name), name) def lookup_constraint(self, db_name, table_name, column_name=None): if column_name: # Column names in the constraint cache come from the database, # make sure we use the properly shortened/uppercased version # for lookup. column_name = self.normalize_name(column_name) return super(DatabaseOperations, self).lookup_constraint(db_name, table_name, column_name) def _constraints_affecting_columns(self, table_name, columns, type="UNIQUE"): if columns: columns = [self.normalize_name(c) for c in columns] return super(DatabaseOperations, self)._constraints_affecting_columns(table_name, columns, type) def _field_sanity(self, field): """ This particular override stops us sending DEFAULTs for BooleanField. """ if isinstance(field, models.BooleanField) and field.has_default(): field.default = int(field.to_python(field.get_default())) # On Oracle, empty strings are null if isinstance(field, (models.CharField, models.TextField)): field.null = field.empty_strings_allowed return field def _default_value_workaround(self, value): from datetime import date,time,datetime if isinstance(value, (date,time,datetime)): return "'%s'" % value else: return super(DatabaseOperations, self)._default_value_workaround(value) def _fill_constraint_cache(self, db_name, table_name): self._constraint_cache.setdefault(db_name, {}) self._constraint_cache[db_name][table_name] = {} rows = self.execute(""" SELECT user_cons_columns.constraint_name, user_cons_columns.column_name, user_constraints.constraint_type FROM user_constraints JOIN user_cons_columns ON user_constraints.table_name = user_cons_columns.table_name AND user_constraints.constraint_name = user_cons_columns.constraint_name WHERE user_constraints.table_name = '%s' """ % self.normalize_name(table_name)) for constraint, column, kind in rows: self._constraint_cache[db_name][table_name].setdefault(column, set()) self._constraint_cache[db_name][table_name][column].add((self.constraints_dict[kind], constraint)) return
42.141618
155
0.59941
79496e081704d82c2c2efc0a25f1ba5ae96c499d
9,826
py
Python
docs/source/conf.py
smoe/cyvcf2
b8e25fce6289a384be424e1b158b29d2b91b65e1
[ "MIT" ]
null
null
null
docs/source/conf.py
smoe/cyvcf2
b8e25fce6289a384be424e1b158b29d2b91b65e1
[ "MIT" ]
null
null
null
docs/source/conf.py
smoe/cyvcf2
b8e25fce6289a384be424e1b158b29d2b91b65e1
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # cyvcf2 documentation build configuration file, created by # sphinx-quickstart on Mon Nov 14 08:40:54 2016. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os import re # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.imgmath', 'sphinx.ext.viewcode', 'sphinx.ext.githubpages', 'sphinx.ext.napoleon', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'cyvcf2' copyright = u'2016, Brent Pedersen' author = u'Brent Pedersen' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # init_file = os.path.abspath( os.path.join(os.path.dirname(__file__), "../../cyvcf2/__init__.py") ) with open(init_file, 'r') as f: version_file = f.read() version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", version_file, re.M) if version_match: pkg_version = version_match.group(1) # The short X.Y version. version = pkg_version # The full version, including alpha/beta/rc tags. release = pkg_version # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. # "<project> v<release> documentation" by default. #html_title = u'cyvcf2 v0.6.5' # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (relative to this directory) to use as a favicon of # the docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not None, a 'Last updated on:' timestamp is inserted at every page # bottom, using the given strftime format. # The empty string is equivalent to '%b %d, %Y'. #html_last_updated_fmt = None # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr', 'zh' #html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # 'ja' uses this config value. # 'zh' user can custom change `jieba` dictionary path. #html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. #html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'cyvcf2doc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', # Latex figure (float) alignment #'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'cyvcf2.tex', u'cyvcf2 Documentation', u'Brent Pedersen', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'cyvcf2', u'cyvcf2 Documentation', [author], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'cyvcf2', u'cyvcf2 Documentation', author, 'cyvcf2', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False
32.216393
80
0.712294
79496f7acfca0195efd21f98d30e355bdd3bc467
8,142
py
Python
mmdet/core/bbox/assigners/atss_assigner.py
sanghun3819/LQM
f00a4ccc5a35cf430a70ff262148a8183cc99864
[ "Apache-2.0" ]
4
2021-12-30T07:38:26.000Z
2022-02-08T11:30:55.000Z
mmdet/core/bbox/assigners/atss_assigner.py
POSTECH-IMLAB/LQM
a0f4d061c5f1486b43ddd884c37e651c6c8b16e7
[ "Apache-2.0" ]
null
null
null
mmdet/core/bbox/assigners/atss_assigner.py
POSTECH-IMLAB/LQM
a0f4d061c5f1486b43ddd884c37e651c6c8b16e7
[ "Apache-2.0" ]
null
null
null
import torch from ..builder import BBOX_ASSIGNERS from ..iou_calculators import build_iou_calculator from .assign_result import AssignResult from .base_assigner import BaseAssigner @BBOX_ASSIGNERS.register_module() class ATSSAssigner(BaseAssigner): """Assign a corresponding gt bbox or background to each bbox. Each proposals will be assigned with `0` or a positive integer indicating the ground truth index. - 0: negative sample, no assigned gt - positive integer: positive sample, index (1-based) of assigned gt Args: topk (float): number of bbox selected in each level """ def __init__(self, topk, iou_calculator=dict(type='BboxOverlaps2D'), ignore_iof_thr=-1, positive_iou_thr=-1): self.topk = topk self.iou_calculator = build_iou_calculator(iou_calculator) self.ignore_iof_thr = ignore_iof_thr self.positive_iou_thr = positive_iou_thr # https://github.com/sfzhang15/ATSS/blob/master/atss_core/modeling/rpn/atss/loss.py def assign(self, bboxes, num_level_bboxes, gt_bboxes, gt_bboxes_ignore=None, gt_labels=None): """Assign gt to bboxes. The assignment is done in following steps 1. compute iou between all bbox (bbox of all pyramid levels) and gt 2. compute center distance between all bbox and gt 3. on each pyramid level, for each gt, select k bbox whose center are closest to the gt center, so we total select k*l bbox as candidates for each gt 4. get corresponding iou for the these candidates, and compute the mean and std, set mean + std as the iou threshold 5. select these candidates whose iou are greater than or equal to the threshold as postive 6. limit the positive sample's center in gt Args: bboxes (Tensor): Bounding boxes to be assigned, shape(n, 4). num_level_bboxes (List): num of bboxes in each level gt_bboxes (Tensor): Groundtruth boxes, shape (k, 4). gt_bboxes_ignore (Tensor, optional): Ground truth bboxes that are labelled as `ignored`, e.g., crowd boxes in COCO. gt_labels (Tensor, optional): Label of gt_bboxes, shape (k, ). Returns: :obj:`AssignResult`: The assign result. """ INF = 100000000 bboxes = bboxes[:, :4] num_gt, num_bboxes = gt_bboxes.size(0), bboxes.size(0) iou_overlap_thr = bboxes.new_full((num_gt, ), self.positive_iou_thr, dtype=torch.float) # compute iou between all bbox and gt overlaps = self.iou_calculator(bboxes, gt_bboxes) # assign 0 by default assigned_gt_inds = overlaps.new_full((num_bboxes, ), 0, dtype=torch.long) if num_gt == 0 or num_bboxes == 0: # No ground truth or boxes, return empty assignment max_overlaps = overlaps.new_zeros((num_bboxes, )) if num_gt == 0: # No truth, assign everything to background assigned_gt_inds[:] = 0 if gt_labels is None: assigned_labels = None else: assigned_labels = overlaps.new_full((num_bboxes, ), -1, dtype=torch.long) return AssignResult( num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels) # compute center distance between all bbox and gt gt_cx = (gt_bboxes[:, 0] + gt_bboxes[:, 2]) / 2.0 gt_cy = (gt_bboxes[:, 1] + gt_bboxes[:, 3]) / 2.0 gt_points = torch.stack((gt_cx, gt_cy), dim=1) bboxes_cx = (bboxes[:, 0] + bboxes[:, 2]) / 2.0 bboxes_cy = (bboxes[:, 1] + bboxes[:, 3]) / 2.0 bboxes_points = torch.stack((bboxes_cx, bboxes_cy), dim=1) distances = (bboxes_points[:, None, :] - gt_points[None, :, :]).pow(2).sum(-1).sqrt() if (self.ignore_iof_thr > 0 and gt_bboxes_ignore is not None and gt_bboxes_ignore.numel() > 0 and bboxes.numel() > 0): ignore_overlaps = self.iou_calculator( bboxes, gt_bboxes_ignore, mode='iof') ignore_max_overlaps, _ = ignore_overlaps.max(dim=1) ignore_idxs = ignore_max_overlaps > self.ignore_iof_thr distances[ignore_idxs, :] = INF assigned_gt_inds[ignore_idxs] = -1 # Selecting candidates based on the center distance candidate_idxs = [] start_idx = 0 for level, bboxes_per_level in enumerate(num_level_bboxes): # on each pyramid level, for each gt, # select k bbox whose center are closest to the gt center end_idx = start_idx + bboxes_per_level distances_per_level = distances[start_idx:end_idx, :] selectable_k = min(self.topk, bboxes_per_level) _, topk_idxs_per_level = distances_per_level.topk( selectable_k, dim=0, largest=False) candidate_idxs.append(topk_idxs_per_level + start_idx) start_idx = end_idx candidate_idxs = torch.cat(candidate_idxs, dim=0) # get corresponding iou for the these candidates, and compute the # mean and std, set mean + std as the iou threshold candidate_overlaps = overlaps[candidate_idxs, torch.arange(num_gt)] overlaps_mean_per_gt = candidate_overlaps.mean(0) overlaps_std_per_gt = candidate_overlaps.std(0) overlaps_thr_per_gt = overlaps_mean_per_gt + overlaps_std_per_gt if(self.positive_iou_thr > 0) : is_pos = candidate_overlaps >= iou_overlap_thr[None, :] else: is_pos = candidate_overlaps >= overlaps_thr_per_gt[None, :] # limit the positive sample's center in gt for gt_idx in range(num_gt): candidate_idxs[:, gt_idx] += gt_idx * num_bboxes ep_bboxes_cx = bboxes_cx.view(1, -1).expand( num_gt, num_bboxes).contiguous().view(-1) ep_bboxes_cy = bboxes_cy.view(1, -1).expand( num_gt, num_bboxes).contiguous().view(-1) candidate_idxs = candidate_idxs.view(-1) # calculate the left, top, right, bottom distance between positive\ # bbox center and gt side l_ = ep_bboxes_cx[candidate_idxs].view(-1, num_gt) - gt_bboxes[:, 0] t_ = ep_bboxes_cy[candidate_idxs].view(-1, num_gt) - gt_bboxes[:, 1] r_ = gt_bboxes[:, 2] - ep_bboxes_cx[candidate_idxs].view(-1, num_gt) b_ = gt_bboxes[:, 3] - ep_bboxes_cy[candidate_idxs].view(-1, num_gt) is_in_gts = torch.stack([l_, t_, r_, b_], dim=1).min(dim=1)[0] > 0.01 is_pos = is_pos & is_in_gts # if an anchor box is assigned to multiple gts, # the one with the highest IoU will be selected. overlaps_inf = torch.full_like(overlaps, -INF).t().contiguous().view(-1) index = candidate_idxs.view(-1)[is_pos.view(-1)] overlaps_inf[index] = overlaps.t().contiguous().view(-1)[index] overlaps_inf = overlaps_inf.view(num_gt, -1).t() max_overlaps, argmax_overlaps = overlaps_inf.max(dim=1) assigned_gt_inds[ max_overlaps != -INF] = argmax_overlaps[max_overlaps != -INF] + 1 if gt_labels is not None: assigned_labels = assigned_gt_inds.new_full((num_bboxes, ), -1) pos_inds = torch.nonzero( assigned_gt_inds > 0, as_tuple=False).squeeze() if pos_inds.numel() > 0: assigned_labels[pos_inds] = gt_labels[ assigned_gt_inds[pos_inds] - 1] else: assigned_labels = None return AssignResult( num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels)
43.774194
87
0.598993
7949709af15d21bfbb0b2fe9924c0632a4ccc6e2
912
py
Python
selfdrive/controls/lib/latcontrol.py
fallen8angel/forNEXO-YONG
5661ae0fb2fefc41fda9e474e094d4b5440ecb8e
[ "MIT" ]
null
null
null
selfdrive/controls/lib/latcontrol.py
fallen8angel/forNEXO-YONG
5661ae0fb2fefc41fda9e474e094d4b5440ecb8e
[ "MIT" ]
null
null
null
selfdrive/controls/lib/latcontrol.py
fallen8angel/forNEXO-YONG
5661ae0fb2fefc41fda9e474e094d4b5440ecb8e
[ "MIT" ]
2
2022-02-25T03:36:09.000Z
2022-03-13T12:24:37.000Z
from abc import abstractmethod, ABC from common.realtime import DT_CTRL from common.numpy_fast import clip MIN_STEER_SPEED = 0.3 class LatControl(ABC): def __init__(self, CP, CI): self.sat_count_rate = 1.0 * DT_CTRL self.sat_limit = CP.steerLimitTimer self.sat_count = 0. # we define the steer torque scale as [-1.0...1.0] self.steer_max = 1.0 @abstractmethod def update(self, active, CS, CP, VM, params, last_actuators, desired_curvature, desired_curvature_rate, llk): pass def reset(self): self.sat_count = 0. def _check_saturation(self, saturated, CS): if saturated and CS.vEgo > 10. and not CS.steeringRateLimited and not CS.steeringPressed: self.sat_count += self.sat_count_rate else: self.sat_count -= self.sat_count_rate self.sat_count = clip(self.sat_count, 0.0, self.sat_limit) return self.sat_count > (self.sat_limit - 1e-3)
29.419355
111
0.710526
794970ea38cf84e6d2f928600b557756d0f1b494
16,856
py
Python
qtools/exportclient.py
Awesomium40/qtools
9348ddb597cd0470cad61c720496797f9d6db677
[ "MIT" ]
null
null
null
qtools/exportclient.py
Awesomium40/qtools
9348ddb597cd0470cad61c720496797f9d6db677
[ "MIT" ]
null
null
null
qtools/exportclient.py
Awesomium40/qtools
9348ddb597cd0470cad61c720496797f9d6db677
[ "MIT" ]
null
null
null
from . import constants from . import utils from . import exceptions from . import qsf import datetime import getpass import io import logging import os import re import requests import time import zipfile _QDC = 'Q_DATA_CENTER' _QAT = 'Q_API_TOKEN' logging.getLogger('exportclient').addHandler(logging.NullHandler()) class ExportClient(object): date_time_format = '%Y-%m-%dT%H:%M:%SZ' date_time_re = re.compile(r'^(?P<year>[0-9]{4})-(?P<month>[0-1]((?<=1)[0-2]|(?<=0)[0-9]))-' + r'(?P<day>[0-3]((?<=3)[0-1]|(?<=[0-2])[0-9]))' + r'(?P<time>T[0-9]{2}:[0-9]{2}:[0-9]{2}Z)$') def __init__(self, data_center=None, token=None, **kwargs): """ Creates a new instance of ExportClient class :param data_center: string. Can specify either your qualtrics data center or the OS environment variable at which this data is stored. Optional. Omitting will cause a search for the OS environment variable 'Q_DATA_CENTER' :param token: string. Can specify either your qualtrics API key or the OS environment variable at which this data is stored. Optional Omittign will cause a search for the OS environment variable 'Q_API_KEY' :param kwargs: """ ERR_BASE = ("parameter '{0}' was not specified and variable '{1}' was " + "not found in environment variables. Please specify {0} or add {1} " + "to your OS environment variables.") if data_center is not None: dc = os.environ.get(data_center) dc = data_center else: dc = os.environ.get(_QDC) if dc is None: dc = getpass.getpass("Please enter your Qualtrics data center: ") if token is not None: tkn = os.environ.get(token) if tkn is None: tkn = token else: tkn = os.environ.get(_QAT) if tkn is None: tkn = getpass.getpass("Please enter your Qualtrics API token: ") if tkn is None: raise ValueError(ERR_BASE.format('token', _QAT)) if dc is None: raise ValueError(ERR_BASE.format('data_center', _QDC)) self._data_center = dc self._token = tkn self._headers = { "content-type": "application/json", } self._url_base = f'https://{self._data_center}' + \ f".qualtrics.com/API/v3/" @staticmethod def _await_export_(url, headers, survey_name=None, report_progress=True, update_every=0.5): """ ec._await_export_(url, headers, report_progress=True) -> str :param url: the qualtrics request check URL for the survey responses export :param headers: Headers for the request :param report_progress: Whether to display the progress of the export process. Default True :param update_every: How often (in seconds) to check status of the export. Default 0.5 :return: json object containing the request response """ status = None prefix = f"Exporting {survey_name}: " if survey_name is not None else 'Export Progress: ' # Periodically check the update of the export while status not in ('complete', 'failed'): response = requests.get(url, headers=headers) response_json = response.json() progress = response_json['result']['percentComplete'] if report_progress: utils._progress_bar_(progress, 100, prefix=prefix) status = response_json['result']['status'] time.sleep(update_every) if status == 'failed': raise exceptions.ExportException('Export Failed', response.reason) return response_json @staticmethod def _create_cre_body_(**kwargs): """ :param format: :param startDate: DateTime or ISO-8601 string in UTC time. Only export responses recorded after this date :param endDate: DateTime or ISO-8601 string. Only export responses recorded prior to this date :param limit: integer. Maximum number of responses to export :param useLabels: Boolean specifying whether to export recode value instead of text of answer choice :param seenUnansweredRecode: Int with which to recode seen, but unanswered questions :param multiselectSeenUnansweredRecode: int with which to recode seen but unanswered choices for MS questions :param includeDisplayOrder: Bool specifying whether to include display order information :param formatDecimalAsComma: Bool specifying whehter to use commas instead of period as decimal separator :param timeZone: constants.TimeZone specifying response date values. None for GMT :param newlineReplacement: string specifying newline delimiter for CSV/TSV formats :param questionIds: list[str]. Only export questions with IDs in the list :param embeddedDataIds: list[str] Export only specified embeddeddata :param surveyMetadataIds: Export only specified metadata columns :param compress: Boolean whether to export results in compressed format :param exportResponsesInProgress: Boolean whether to export the in-progress responses only :param breakoutSets: Boolean split multi-value fields into columns :param filterId: Export only responses that match a saved filter :param allowContinuation: Boolean. Set True in order to request a continuation token when export finished :param continuationToken: String continuation token used to get new responses recorded since last export :return: object """ def date_func(date_value: datetime.datetime): try: result = date_value.strftime(ExportClient.date_time_format) except AttributeError: match = ExportClient.date_time_re.search(date_value) result = date_value if match is not None else None return result bool_func = lambda x: str(bool(x)).lower() list_func = lambda items: list(items) keywords = {'startDate': date_func, 'endDate': date_func, 'limit': int, 'useLabels': bool_func, 'seenUnansweredRecode': int, 'multiselectSeenUnansweredRecode': int, 'includeDisplayOrder': bool, 'formatDecimalAsComma': bool_func, 'timeZone': lambda x: x, 'newlineReplacement': lambda x: x, 'questionIds': list_func, 'embeddedDataIds': list_func, 'surveyMetadataIds': list_func, 'compress': bool_func, 'exportResponsesInProgress': bool_func, 'breakoutSets': bool_func, ' filterId': lambda x: str(x), 'allowContinuation': bool_func, 'continuationToken': lambda x: str(x)} params = {key: keywords.get(key)(value) for key, value in kwargs.items() if key in keywords and keywords.get(key)(value) is not None} body = {key: value for key, value in params.items()} if len(params) > 0 else {} return body def _locate_survey_id_(self, locator=None): """ ec._locate_survey_id(locator) -> str returns either the survey ID located by the callable locator or by the default of ExportClient._prompt_for_survey_ if locator is not specified :param locator: callable which returns a valid qualtrics survey ID :return: """ locator = self._prompt_for_survey_ if locator is None or not callable(locator) else locator survey_id = locator() if survey_id is None: raise ValueError("Must specify valid value for either survey_id or locator") return survey_id def _prompt_for_survey_(self): try_again = True survey_id = None surveys = self.get_survey_list() survey_list = {i: survey_data for i, survey_data in enumerate(surveys.items(), 1)} prompt = ("Surveys:\n" + "\n".join(f'{key}: {value[1]}' for key, value in survey_list.items()) + '\nc: cancel') while try_again: print(prompt) selection = input("Please select a survey: ") if selection.lower() == 'c': try_again = False continue try: selection = int(selection) survey_id = survey_list.get(selection)[0] except ValueError as err: print("invalid selection") try_again = input("Select again (y/n)? ").lower() == 'y' survey_id = None except TypeError as err: print("invalid selection") try_again = input("Select again (y/n)? ").lower() == 'y' survey_id = None else: try_again = False return survey_id def get_survey_list(self): """ ec.list_surveys() -> dict[str: str] Queries the qualtrics List Surveys API for surveys owned by the current user and returns a dictonary whose keys are survey ID and whose values are survey names :return: dict """ url = f'{self._url_base}surveys' headers = {'x-api-token': self._token, "content-type": "multipart/form-data"} response = requests.get(url, headers=headers) if not response.ok: raise exceptions.ExportException("Unable to retrieve list of surveys", response.reason) data = response.json()['result']['elements'] return {itm.get('id'): itm.get('name') for itm in data} def export_codebook(self, survey_id=None, locator=None): """ ec.export_codebook(out_path, survey_id=None, **kwargs) Exports a codebook to :param survey_id: :param locator: keyword argument providing a callable which returns the ID of the survey to be exported. :return: openpyxl.Workbook """ survey_id = self._locate_survey_id_(locator=locator) if survey_id is None else survey_id data = self.export_survey_definition(survey_id=survey_id, locator=locator, format=constants.Format.TXT) survey = qsf.Survey(data) return survey.codebook() def export_responses(self, out_folder, survey_id=None, file_format=constants.Format.SPSS, report_progress=True, update_every=0.5, **kwargs): """ ec.export_responses(self, out_path, survey_id, file_format=constants.Format.SPSS, report_progress=True, update_every=0.5, **kwargs) -> None :param out_folder: path to the folder in which response data is to be saved :param survey_id: string specifying the qualtrics ID of the survey to be exported. If no survey id is specified, user will be prompted with a list of survey ids :param file_format: constants.Format specifying the file format for the result export :param report_progress: Whether to display the progress of the export. Default True :param update_every: How often to check progress of export (in seconds). Default 0.5 :param locator: kwarg Callable which returns the survey ID of the survey whose responses are to be exported (or None if no survey ID can be located) if survey_id is not specified. Optional. :param startDate: DateTime or ISO-8601 datetime string in UTC time. Only export responses recorded after this date. Optional. Omit to export all responses :param endDate: DateTime or ISO-8601 datetime string. Only export responses recorded prior to this date. Optional. Omit to export all responses :param limit: integer. Maximum number of responses to export. Optional. Omit to export all responses :param useLabels: Boolean specifying whether to export recode value instead of text of answer choice. Optional :param seenUnansweredRecode: Int with which to recode seen, but unanswered questions. Optional :param multiselectSeenUnansweredRecode: int with which to recode seen but unanswered choices for MS questions. Optional :param includeDisplayOrder: Bool specifying whether to include display order information. Optional :param formatDecimalAsComma: Bool specifying whehter to use commas instead of period as decimal separator. Optional :param timeZone: constants.TimeZone specifying response date values. None for GMT. Optional :param newlineReplacement: string specifying newline delimiter for CSV/TSV formats. Optional :param questionIds: list[str]. Only export questions with IDs in the list. Optional. Omit to export all. :param embeddedDataIds: list[str] Export only specified embeddeddata, Optiona. Omit to export all :param surveyMetadataIds: Export only specified metadata columns> Optional. Omit to export all :param compress: Boolean whether to export results in compressed format. Optional. Default True :param exportResponsesInProgress: Boolean whether to export the in-progress responses only. Optional. Default False :param breakoutSets: Boolean split multi-value fields into columns. Optional. Default True :param filterId: Export only responses that match a saved filter. Optional. Omit to export all :param allowContinuation: Boolean. Set True in order to request a continuation token when export finished :param continuationToken: String continuation token used to get new responses recorded since last export :return: None :raises exceptions.ExportException if the request for download does not return OK status """ # If no survey specified, either use the provided callable to retrieve survey ID # or present user with a prompt that allows to choose from available surveys to export locator = kwargs.get('locator', self._prompt_for_survey_) survey_id = self._locate_survey_id_(locator=locator) if survey_id is None else survey_id survey_name = self.get_survey_list().get(survey_id) if survey_id is None: logging.info("No survey ID specified. Aborting...") return body = {"format": f"{file_format}"} base_url = f'{self._url_base}surveys/{survey_id}/export-responses/' headers = self._headers headers['x-api-token'] = self._token body_args = self._create_cre_body_(**kwargs) body.update(body_args) # Create the export request response = requests.post(base_url, json=body, headers=headers) if not response.ok: raise exceptions.ExportException("Export Error. Check err.Reason for details", response.reason) dl_response = response.json() # Build the URL for checking progress of the export progress_id = dl_response['result']['progressId'] check_url = base_url + progress_id check_response = self._await_export_(check_url, headers=headers, report_progress=report_progress, update_every=update_every) # Download and unzip the completed file file_id = check_response['result']['fileId'] dl_url = base_url + file_id + r'/file' download = requests.get(dl_url, headers=headers, stream=True) zipfile.ZipFile(io.BytesIO(download.content)).extractall(out_folder) def export_survey_definition(self, survey_id=None, locator=None, format=constants.Format.JSON): """ ec.export_survey_definition(survey_id=None, locator=None, format=constants.Format.JSON) -> object Exports the survey definition (qsf) associated with the survey specified by survey_id or located by locator :param survey_id: The ID of the survey whose definition is to be exported :param locator: Callable which returns the ID of the survey to be exported when survey_id is None :param format: constants.Format that specifies output type. Format.JSON or Format.TXT :return: text or JSON data, as specified by format """ locator = self._prompt_for_survey_ if locator is None or not callable(locator) else locator survey_id = locator() if survey_id is None else survey_id url = f'{self._url_base}survey-definitions/{survey_id}?format=qsf' headers = {'x-api-token': self._token} response = requests.get(url, headers=headers) if not response.ok: raise exceptions.ExportException(f"Unable to export definition for survey {survey_id}. " + "Check result for details", response.reason) return response.json() if format == constants.Format.JSON else response.text
49
123
0.65757
794970fd5e1b4aecb202c7e233342dbedcb55db2
9,116
py
Python
lcm/lcm/nf/tests/test_change_ext_conn.py
onap/vfc-gvnfm-vnflcm
e3127fee0fdb5bf193fddc74a69312363a6d20eb
[ "Apache-2.0" ]
1
2019-04-02T03:15:20.000Z
2019-04-02T03:15:20.000Z
lcm/lcm/nf/tests/test_change_ext_conn.py
onap/vfc-gvnfm-vnflcm
e3127fee0fdb5bf193fddc74a69312363a6d20eb
[ "Apache-2.0" ]
null
null
null
lcm/lcm/nf/tests/test_change_ext_conn.py
onap/vfc-gvnfm-vnflcm
e3127fee0fdb5bf193fddc74a69312363a6d20eb
[ "Apache-2.0" ]
1
2021-10-15T15:26:47.000Z
2021-10-15T15:26:47.000Z
# Copyright (C) 2019 ZTE. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import mock from django.test import TestCase from rest_framework import status from rest_framework.test import APIClient from lcm.pub.database.models import NfInstModel, JobStatusModel, StorageInstModel, NetworkInstModel, \ SubNetworkInstModel, PortInstModel, FlavourInstModel, VmInstModel, VNFCInstModel from lcm.pub.exceptions import NFLCMException from lcm.pub.utils import restcall from lcm.pub.vimapi import api from lcm.pub.utils.jobutil import JobUtil from lcm.nf.biz.change_ext_conn import ChangeExtConn from . import const class TestChangeExtConn(TestCase): def setUp(self): self.client = APIClient() NfInstModel(nfinstid='12345', nf_name='VNF1', nf_desc="VNF DESC", vnfdid="1", netype="XGW", vendor="ZTE", vnfSoftwareVersion="V1", version="V1", package_id="2", status='NOT_INSTANTIATED').save() NfInstModel(nfinstid='123', nf_name='VNF1', nf_desc="VNF DESC", vnfdid="1", netype="XGW", vendor="ZTE", vnfSoftwareVersion="V1", version="V1", package_id="2", status='INSTANTIATED').save() self.req_data = { "extVirtualLinks": [{ "id": "string", "resourceId": "329efb86-5cbb-4fc0-bc7c-6ea28f9d7389", "resourceSubnetId": "429efb86-5cbb-4fc0-bc7c-6ea28f9d7389", "extCps": [{ "cpdId": "ext_cp", "cpConfig": [{ "cpInstanceId": "", "cpProtocolData": [{ "layerProtocol": "IP_OVER_ETHERNET", "ipOverEthernet": { "ipAddresses": [{ "type": "IPV4", "numDynamicAddresses": 0, "subnetId": "59e9ffa9-b67e-4c05-b191-ed179007536e" }] } }] }] }], "extLinkPorts": [] }], "vimConnectionInfo": [{ "id": "tecs_RegionOne", "vimType": "openstack", "vimId": "tecs_RegionOne", "accessInfo": { "tenant": "chinamobile" } }], "additionalParams": { "vmid": "552ea058-6441-4de5-b4c1-b0a52c7557e8" } } def tearDown(self): NfInstModel.objects.filter(nfinstid='12345').delete() NfInstModel.objects.filter(nfinstid='123').delete() def assert_job_result(self, job_id, job_progress, job_detail): jobs = JobStatusModel.objects.filter( jobid=job_id, progress=job_progress, descp=job_detail ) self.assertEqual(1, len(jobs)) def test_change_ext_conn_not_found(self): url = "/api/vnflcm/v1/vnf_instances/12/change_ext_conn" response = self.client.post(url, data=self.req_data, format='json') self.assertEqual(status.HTTP_404_NOT_FOUND, response.status_code) def test_change_ext_conn_conflict(self): url = "/api/vnflcm/v1/vnf_instances/12345/change_ext_conn" response = self.client.post(url, data=self.req_data, format='json') self.assertEqual(status.HTTP_409_CONFLICT, response.status_code) def test_change_ext_conn_badreq(self): url = "/api/vnflcm/v1/vnf_instances/123/change_ext_conn" response = self.client.post(url, data={}, format='json') self.assertEqual(status.HTTP_400_BAD_REQUEST, response.status_code) @mock.patch.object(JobUtil, 'create_job') def test_change_ext_conn_inner_error(self, mock_run): mock_run.return_value = NFLCMException('Boom!') url = "/api/vnflcm/v1/vnf_instances/123/change_ext_conn" response = self.client.post(url, data=self.req_data, format='json') self.assertEqual( status.HTTP_500_INTERNAL_SERVER_ERROR, response.status_code) @mock.patch.object(restcall, 'call_req') @mock.patch.object(api, 'call') def test_change_ext_conn_sucess(self, mock_call, mock_call_req): self.nf_inst_id = '12345' res_cache = {"volume": {}, "flavor": {}, "port": {}} res_cache["port"]["ext_cp"] = "port1" NfInstModel(nfinstid=self.nf_inst_id, nf_name='VNF1', nf_desc="VNF DESC", vnfdid="1", netype="XGW", vendor="ZTE", vnfSoftwareVersion="V1", version="V1", package_id="2", status='INSTANTIATED', vnfd_model=json.dumps(const.vnfd_for_scale), vimInfo=json.dumps({}), resInfo=json.dumps(res_cache)).save() StorageInstModel.objects.create( storageid="1", vimid="1", resourceid="11", insttype=0, instid=self.nf_inst_id, is_predefined=1 ) NetworkInstModel.objects.create( networkid='1', vimid='1', resourceid='1', name='pnet_network', is_predefined=1, tenant='admin', insttype=0, instid=self.nf_inst_id ) SubNetworkInstModel.objects.create( subnetworkid='1', vimid='1', resourceid='1', networkid='1', is_predefined=1, name='sub_pnet', tenant='admin', insttype=0, instid=self.nf_inst_id ) PortInstModel.objects.create( portid='1', networkid='1', subnetworkid='1', vimid='1', resourceid='1', is_predefined=1, name='ext_cp', tenant='admin', insttype=0, instid=self.nf_inst_id ) FlavourInstModel.objects.create( flavourid="1", vimid="1", resourceid="11", instid=self.nf_inst_id, is_predefined=1, name="Flavor_sunshine" ) VmInstModel.objects.create( vmid="1", vimid="1", resourceid="11", insttype=0, instid=self.nf_inst_id, vmname="test_01", is_predefined=1, operationalstate=1 ) VmInstModel.objects.create( vmid="2", vimid="1", resourceid="22", insttype=0, instid=self.nf_inst_id, vmname="test_02", is_predefined=1, operationalstate=1 ) VNFCInstModel.objects.create( vnfcinstanceid="1", instid=self.nf_inst_id, vmid="1" ) VNFCInstModel.objects.create( vnfcinstanceid="2", instid=self.nf_inst_id, vmid="2" ) r1_apply_grant_result = [ 0, json.JSONEncoder().encode(const.instantiate_grant_result), '200' ] mock_call_req.side_effect = [ r1_apply_grant_result, ] mock_call.side_effect = [ const.c1_data_get_tenant_id, const.c7_data_create_flavor, const.c6_data_create_port ] self.job_id = JobUtil.create_job('NF', 'VNF_CHANGE_EXT_CONN', self.nf_inst_id) JobUtil.add_job_status(self.job_id, 0, "VNF_'VNF_CHANGE_EXT_CONN'_READY") ChangeExtConn(self.req_data, self.nf_inst_id, self.job_id,).run() print([{job.progress: job.descp} for job in JobStatusModel.objects.filter(jobid=self.job_id)]) self.assert_job_result( self.job_id, 100, 'Change ext conn success.' )
35.609375
102
0.515796
7949720481c5aed43a85afc9b8d3572159562089
4,340
py
Python
tests/result_storages/test_file_storage.py
tony612/thumbor
2efec9fc1bc67c9d029904870fa624a81966f3a1
[ "MIT" ]
1
2021-02-25T18:41:01.000Z
2021-02-25T18:41:01.000Z
tests/result_storages/test_file_storage.py
tony612/thumbor
2efec9fc1bc67c9d029904870fa624a81966f3a1
[ "MIT" ]
null
null
null
tests/result_storages/test_file_storage.py
tony612/thumbor
2efec9fc1bc67c9d029904870fa624a81966f3a1
[ "MIT" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- # thumbor imaging service # https://github.com/thumbor/thumbor/wiki # Licensed under the MIT license: # http://www.opensource.org/licenses/mit-license # Copyright (c) 2011 globo.com thumbor@googlegroups.com import tempfile from datetime import datetime from os.path import abspath, dirname, join import mock from preggy import expect from tornado.testing import gen_test from tests.base import TestCase from thumbor.config import Config from thumbor.context import Context, RequestParameters from thumbor.result_storages import ResultStorageResult from thumbor.result_storages.file_storage import Storage as FileStorage class BaseFileStorageTestCase(TestCase): def __init__(self, *args, **kw): self.storage_path = None self.context = None self.file_storage = None super(BaseFileStorageTestCase, self).__init__(*args, **kw) def get_config(self): self.storage_path = tempfile.TemporaryDirectory() return Config(RESULT_STORAGE_FILE_STORAGE_ROOT_PATH=self.storage_path.name) def tearDown(self): super(BaseFileStorageTestCase, self).tearDown() if self.storage_path is not None: self.storage_path.cleanup() @staticmethod def get_request(): return RequestParameters() @staticmethod def get_fixture_path(): return abspath(join(dirname(__file__), "../fixtures/result_storages")) def get_context(self): cfg = self.get_config() ctx = Context(None, cfg, None) ctx.request = self.get_request() self.context = ctx self.file_storage = FileStorage(self.context) return ctx @staticmethod def get_http_path(): return "http://example.com/path/to/a.jpg" class FileStorageTestCase(BaseFileStorageTestCase): @gen_test async def test_normalized_path(self): expect(self.file_storage).not_to_be_null() expect(self.file_storage.normalize_path(self.get_http_path())).to_equal( f"{self.storage_path.name}/default/b6/be/" "a3e916129541a9e7146f69a15eb4d7c77c98" ) class WebPFileStorageTestCase(BaseFileStorageTestCase): def get_config(self): self.storage_path = tempfile.TemporaryDirectory() return Config( AUTO_WEBP=True, RESULT_STORAGE_FILE_STORAGE_ROOT_PATH=self.storage_path.name, ) def tearDown(self): super(WebPFileStorageTestCase, self).tearDown() self.storage_path.cleanup() def get_request(self): return RequestParameters(accepts_webp=True) @gen_test async def test_normalized_path_with_auto_webp_path(self): expect(self.file_storage).not_to_be_null() expect(self.file_storage.normalize_path(self.get_http_path())).to_equal( f"{self.storage_path.name}/auto_webp/b6/be/" "a3e916129541a9e7146f69a15eb4d7c77c98" ) class ResultStorageResultTestCase(BaseFileStorageTestCase): def get_config(self): return Config(RESULT_STORAGE_FILE_STORAGE_ROOT_PATH=self.get_fixture_path()) def get_request(self): return RequestParameters(url="image.jpg") @gen_test async def test_can_get_image_from_storage(self): result = await self.file_storage.get() expect(result).to_be_instance_of(ResultStorageResult) expect(result.successful).to_equal(True) expect(len(result)).to_equal(5319) expect(len(result)).to_equal(result.metadata["ContentLength"]) expect(result.last_modified).to_be_instance_of(datetime) class ExpiredFileStorageTestCase(BaseFileStorageTestCase): def get_config(self): return Config( RESULT_STORAGE_FILE_STORAGE_ROOT_PATH=self.get_fixture_path(), RESULT_STORAGE_EXPIRATION_SECONDS=10, ) def get_request(self): return RequestParameters(url="image.jpg") @gen_test async def test_cannot_get_expired_1_day_old_image(self): current_timestamp = (datetime.utcnow() - datetime(1970, 1, 1)).total_seconds() new_mtime = current_timestamp - 60 * 60 * 24 with mock.patch( "thumbor.result_storages.file_storage.getmtime", return_value=new_mtime, ): result = await self.file_storage.get() expect(result).to_be_null()
32.38806
86
0.704839
794972bc0e7dd76c4d7b0adf20f1549e00e7648e
7,844
py
Python
views/network_panel.py
nv-hiep/NeuralNetworkSnake
979d547df716b1cdeb3e1d41fa4f813094e2306e
[ "MIT" ]
null
null
null
views/network_panel.py
nv-hiep/NeuralNetworkSnake
979d547df716b1cdeb3e1d41fa4f813094e2306e
[ "MIT" ]
null
null
null
views/network_panel.py
nv-hiep/NeuralNetworkSnake
979d547df716b1cdeb3e1d41fa4f813094e2306e
[ "MIT" ]
null
null
null
from PyQt5 import QtGui, QtCore, QtWidgets from PyQt5.QtCore import Qt from typing import List from network.neural_network import * from helper.snake import Snake from helper.config import config class NetworkPanel(QtWidgets.QWidget): def __init__(self, parent, snake: Snake): super().__init__(parent) self.snake = snake self.neuron_xy = {} font = QtGui.QFont('Times', 11, QtGui.QFont.Normal) font_bold = QtGui.QFont('Times', 11, QtGui.QFont.Bold) # creating a label widgets self.label_network = QtWidgets.QLabel('Network Structure', self) self.label_network.setFont(font_bold) self.label_network.move(200, 25) self.label_network.setFixedSize(400, 20) self.label_layers = QtWidgets.QLabel('Layer units: ' + '[{}, {}, 4]'.format(config['vision_type'] * 3 + 4 + 4, ', '.join([str(num_neurons) for num_neurons in config['hidden_layer_units'][config['vision_type']] ])), self) self.label_layers.setFont(font) self.label_layers.move(200, 50) self.label_layers.setFixedSize(400, 20) self.label_hidden = QtWidgets.QLabel('Hidden layer activation: ' + ' '.join([word.capitalize() for word in config['hidden_activation'].split('_')]), self) self.label_hidden.setFont(font) self.label_hidden.move(200, 75) self.label_hidden.setFixedSize(400, 20) self.label_ouput = QtWidgets.QLabel('Output layer activation: ' + ' '.join([word.capitalize() for word in config['output_activation'].split('_')]), self) self.label_ouput.setFont(font) self.label_ouput.move(200, 100) self.label_ouput.setFixedSize(400, 20) self.label_vision = QtWidgets.QLabel('Snake vision: ' + str(config['vision_type']) + ' directions', self) self.label_vision.setFont(font) self.label_vision.move(200, 125) self.label_vision.setFixedSize(400, 20) self.label_vision_type = QtWidgets.QLabel('Apple/Self Vision: ' + config['apple_and_self_vision'].lower(), self) self.label_vision_type.setFont(font) self.label_vision_type.move(200, 150) self.label_vision_type.setFixedSize(400, 20) # creating a label widgets self.label_generation = QtWidgets.QLabel('Snake Game', self) self.label_generation.setFont(font_bold) self.label_generation.move(200, 650) self.label_generation.setFixedSize(400, 30) self.label_generation = QtWidgets.QLabel('Generation: 1', self) self.label_generation.setFont(font) self.label_generation.move(200, 675) self.label_generation.setFixedSize(400, 30) self.label_curr_indiv = QtWidgets.QLabel('Individual: 1/100', self) self.label_curr_indiv.setFont(font) self.label_curr_indiv.move(200, 700) self.label_curr_indiv.setFixedSize(400, 30) self.label_best_score = QtWidgets.QLabel('Best score: 0', self) self.label_best_score.setFont(font) self.label_best_score.move(200, 725) self.label_best_score.setFixedSize(400, 30) self.label_best_fitness = QtWidgets.QLabel('Best fitness: 0', self) self.label_best_fitness.setFont(font) self.label_best_fitness.move(200, 750) self.label_best_fitness.setFixedSize(400, 30) self.label_snake_length = QtWidgets.QLabel('Snake length: 0', self) self.label_snake_length.setFont(font) self.label_snake_length.move(200, 775) self.label_snake_length.setFixedSize(400, 30) # self.label_snake_length.setStyleSheet('border: 1px solid black;') self.show() def paintEvent(self, event: QtGui.QPaintEvent) -> None: painter = QtGui.QPainter() painter.begin(self) self._display(painter) painter.end() def update(self) -> None: self.repaint() def _display(self, painter: QtGui.QPainter) -> None: ''' Plot the layers of network ''' # Height and Width of the window H = self.frameGeometry().height() # W = self.frameGeometry().width() # The input of the network inputs = self.snake.vision_as_array # [List of ] sizes of the layers layer_units = self.snake.network.layer_units # Output from a neural network pred_node = np.argmax( self.snake.network._forward_prop(inputs) ) # vertical space among units, and radius size of a unit input_units = inputs.shape[0] vertical_space, radius = (4, 6) if input_units > 32 else (5, 8) # Margins and offsets left_margin = 15 h_offset = left_margin # Draw layers and their units for layer, n_units in enumerate(layer_units): # Vertical offset - for plotting v_offset = (H - ((2*radius + vertical_space) * n_units) )/2 layer_output = None weights = None if layer > 0: # Output of each layer layer_output = self.snake.network.layers[layer].A # Weights matrix of each layer weights = self.snake.network.layers[layer].W prev_n_units = weights.shape[1] curr_n_units = weights.shape[0] for curr_unit in range(n_units): _x = h_offset _y = curr_unit * (radius*2 + vertical_space) + v_offset t = (layer, curr_unit) if t not in self.neuron_xy: self.neuron_xy[t] = (_x, _y + radius) # Input layer if layer == 0: # If the node is fed, it's green, else it's gray painter.setBrush(QtGui.QBrush(Qt.green if inputs[curr_unit, 0] > 0 else Qt.gray)) # Hidden layers if (layer > 0) and (layer < len(layer_units) - 1): painter.setBrush(QtGui.QBrush(Qt.cyan if layer_output[curr_unit, 0] > 0. else Qt.gray)) # Output layer if layer == len(layer_units) - 1: text = ('Up', 'Down', 'Left', 'Right')[curr_unit] painter.setPen(QtGui.QPen(Qt.red if curr_unit == pred_node else Qt.black)) painter.drawText(h_offset + 30, curr_unit * (radius*2 + vertical_space) + v_offset + 1.5*radius, text) painter.setBrush(QtGui.QBrush(Qt.green if curr_unit == pred_node else Qt.gray)) # draw the nodes as circles painter.drawEllipse(_x, _y, radius*2, radius*2) # draw lines connecting the nodes if layer > 0: for prev_unit in range(prev_n_units): line_color = Qt.blue if weights[curr_unit, prev_unit] > 0 else Qt.gray painter.setPen(QtGui.QPen(line_color)) # Locations of the nodes start = self.neuron_xy[(layer-1, prev_unit)] end = self.neuron_xy[(layer, curr_unit)] # Offset start[0] by diameter of circle so that the line starts on the right of the circle painter.drawLine(start[0] + radius*2, start[1], end[0], end[1]) # End - unit nodes # Add distance between layers h_offset += 100 # End - layer # End - def # End - class
37.89372
229
0.574579
794973c536de7b04033c7de1773de2084c3d0906
1,268
py
Python
app/api/migrations/0002_project.py
nabaz/projecttracker
c6b326592f7a6925b2fbc0924350dd0951beca0f
[ "MIT" ]
null
null
null
app/api/migrations/0002_project.py
nabaz/projecttracker
c6b326592f7a6925b2fbc0924350dd0951beca0f
[ "MIT" ]
null
null
null
app/api/migrations/0002_project.py
nabaz/projecttracker
c6b326592f7a6925b2fbc0924350dd0951beca0f
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11.10 on 2018-02-07 20:08 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('api', '0001_initial'), ] operations = [ migrations.CreateModel( name='Project', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(editable=False)), ('updated_at', models.DateTimeField()), ('name', models.CharField(max_length=100)), ('description', models.TextField()), ('start_date', models.DateField(default=None)), ('end_date', models.DateField(default=None)), ('customer', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='api.Customer')), ('user', models.ManyToManyField(to=settings.AUTH_USER_MODEL)), ], options={ 'abstract': False, }, ), ]
35.222222
114
0.593849
794974dff0b2faff6e6a8fa361bdaf77c7e3a81e
647
py
Python
utilities/embed.py
GryPr/Vireo
bcdd5eafcfa548b300ce334005e8517b01e322c0
[ "MIT" ]
null
null
null
utilities/embed.py
GryPr/Vireo
bcdd5eafcfa548b300ce334005e8517b01e322c0
[ "MIT" ]
8
2022-03-28T16:15:46.000Z
2022-03-31T01:31:29.000Z
utilities/embed.py
GryPr/Vireo
bcdd5eafcfa548b300ce334005e8517b01e322c0
[ "MIT" ]
null
null
null
import disnake from disnake import Embed def generic_embed(title: str, description: str, author: str) -> Embed: embed = disnake.Embed(color=0x09a2e3) embed.title = title embed.description = description embed.set_footer(text=f"Requested by {author}") return embed def wip_embed() -> Embed: embed = disnake.Embed(title="You're early!", description=f"Command has not been implemented yet!") return embed def error_embed(error: str, title: str = "Error has occurred") -> Embed: embed = disnake.Embed(color=0xff0000) embed.title = title embed.description = error return embed
26.958333
79
0.676971
7949757b5ab73ee99343f3324f0b5018d87547ed
2,127
py
Python
pub_data_visualization/load/plot/subplot/forecasting_error.py
cre-dev/pub-data-visualization
229bb7a543684be2cb06935299345ce3263da946
[ "MIT" ]
8
2021-04-29T11:46:18.000Z
2022-02-21T16:07:14.000Z
pub_data_visualization/load/plot/subplot/forecasting_error.py
cre-dev/pub-data-visualization
229bb7a543684be2cb06935299345ce3263da946
[ "MIT" ]
3
2021-03-15T14:26:43.000Z
2021-12-02T15:27:49.000Z
pub_data_visualization/load/plot/subplot/forecasting_error.py
cre-dev/pub-data-visualization
229bb7a543684be2cb06935299345ce3263da946
[ "MIT" ]
null
null
null
import matplotlib as mpl # from .... import global_var def forecasting_error(ax, df, load_unit = None, load_observation_nature = None, load_forecast_nature = None, **kwargs ): """ Draws in a subplot the forecasting error. :param ax: The ax to fill :param df: The load data :param load_observation_nature: The nature of the observation data to plot :param load_forecast_nature: The nature of the forecasts to plot :param kwargs: additional parameter for the plt.plot function :type ax: matplotlib.axes._subplots.AxesSubplot :type df: pd.DataFrame :type load_observation_nature: string :type load_forecast_nature: string :type kwargs: dict :return: None :rtype: None """ forecasting_error = ( df.loc[df[global_var.load_nature] == load_observation_nature][load_unit] - df.loc[df[global_var.load_nature] == load_forecast_nature][load_unit] ) forecasting_error = forecasting_error.squeeze().dropna() ax.plot(forecasting_error.index, forecasting_error, **kwargs, ) ax.fill_between( forecasting_error.index, forecasting_error, where = (forecasting_error) > 0, label = 'Positive errors', color = mpl.colors.cnames['deepskyblue'], ) ax.fill_between( forecasting_error.index, forecasting_error, where = (forecasting_error) < 0, label = 'Negative errors', color = mpl.colors.cnames['firebrick'], ) ax.plot( [forecasting_error.index.min(), forecasting_error.index.max(), ], [0,0], color = 'k', ls = ':', )
32.227273
99
0.504937
7949758aeafa913995611bc6e55343d78f875543
75,345
py
Python
test/fx_acc/test_acc_tracer.py
you74674/pytorch
06838ce8b16b2cc2f9e903f3ebdd46659a0e66bb
[ "Intel" ]
1
2022-01-20T03:49:23.000Z
2022-01-20T03:49:23.000Z
test/fx_acc/test_acc_tracer.py
you74674/pytorch
06838ce8b16b2cc2f9e903f3ebdd46659a0e66bb
[ "Intel" ]
14
2021-10-14T06:58:50.000Z
2021-12-17T11:51:07.000Z
test/fx_acc/test_acc_tracer.py
you74674/pytorch
06838ce8b16b2cc2f9e903f3ebdd46659a0e66bb
[ "Intel" ]
null
null
null
# Owner(s): ["oncall: fx"] import unittest from typing import Callable, List import numpy as np import torch import torch.fx.experimental.fx_acc.acc_normalizer as acc_normalizer import torch.fx.experimental.fx_acc.acc_ops as acc_ops import torch.fx.experimental.fx_acc.acc_tracer as acc_tracer import torch.fx.experimental.fx_acc.acc_utils as acc_utils import torch.nn as nn import torchvision from parameterized import parameterized, param torch.manual_seed(0) class AccTracerTest(unittest.TestCase): def _make_model_unit_test( self, model, *args, input_shape=None, enable_allclose=False, **kwargs, ): """ Test that the model can be traced correctly and is producing correct result. """ if input_shape is None: input_shape = [1, 3, 224, 224] input = torch.randn(input_shape) traced = acc_tracer.trace(model, [input]) if enable_allclose: torch.testing.assert_allclose(model(input), traced(input)) else: self.assertTrue(torch.equal(model(input), traced(input))) def _make_acc_op_function_test( self, acc_op: Callable, torch_op, *args, input_shape=(2, 3), validate_same_kwargs=True, enable_allclose=False, **kwargs, ): """ Test that acc_op is traced somewhat. """ class TestModule(torch.nn.Module): def __init__(self, torch_op, args, kwargs): super().__init__() self._torch_op = torch_op self._args = args self._kwargs = kwargs def forward(self, a: torch.Tensor) -> torch.Tensor: return self._torch_op(a, *self._args, **self._kwargs) m = TestModule(torch_op, args, kwargs) a = torch.randn(*input_shape) traced = acc_tracer.trace(m, [a]) ph_a = acc_op_node = None for node in traced.graph.nodes: if node.op == "placeholder": if str(node.target) == "a": ph_a = node elif node.op == "call_function": self.assertEqual(node.target, acc_op) self.assertEqual(node.kwargs["input"], ph_a) if validate_same_kwargs: for key, value in kwargs.items(): self.assertEqual(node.kwargs[key], value) acc_op_node = node elif node.op == "output": if acc_op is None: # If we expect no new acc_op after graph building # and found we have only output in traced graph continue self.assertEqual(acc_op_node, node.args[0]) else: self.fail(f"Unexpected node: {node.format_node()}") ref_outputs = m(a) outputs = traced(a) if isinstance(ref_outputs, torch.Tensor): ref_outputs = [ref_outputs] outputs = [outputs] for ref_output, output in zip(ref_outputs, outputs): if enable_allclose: torch.testing.assert_allclose( torch.nan_to_num(ref_output), torch.nan_to_num(output) ) else: self.assertTrue( torch.equal(torch.nan_to_num(ref_output), torch.nan_to_num(output)) ) def test_sum(self): self._make_acc_op_function_test(acc_ops.sum, torch.sum) self._make_acc_op_function_test(acc_ops.sum, torch.sum, dim=(1,), keepdim=True) def test_mean(self): self._make_acc_op_function_test(acc_ops.mean, torch.mean) self._make_acc_op_function_test(acc_ops.mean, torch.mean, dim=(1,), keepdim=True) def test_pad(self): self._make_acc_op_function_test(acc_ops.pad, torch.nn.functional.pad, pad=(2, 0)) def test_max(self): def torch_max(x, *args, **kwargs): return x.max(*args, **kwargs) self._make_acc_op_function_test(acc_ops.max_full_reduce, torch_max) self._make_acc_op_function_test( acc_ops.max_dim_reduce, torch_max, dim=1, keepdim=True ) self._make_acc_op_function_test( acc_ops.max_dim_reduce, torch_max, input_shape=(1, 4), dim=1, keepdim=True ) self._make_acc_op_function_test( acc_ops.max_dim_reduce, torch_max, input_shape=(3, 4, 3), dim=2 ) @parameterized.expand( [ param("max_maximum", orig_op=torch.max, expected_op=acc_ops.maximum), param( "maximum_maximum", orig_op=torch.maximum, expected_op=acc_ops.maximum ), param("min_minimum", orig_op=torch.min, expected_op=acc_ops.minimum), param( "minimum_minimum", orig_op=torch.minimum, expected_op=acc_ops.minimum ), ] ) def test_maximum_minimum(self, _: str, orig_op, expected_op): class TestModule(torch.nn.Module): def __init__(self, orig_op): super().__init__() self.orig_op = orig_op def forward(self, input: torch.Tensor, other: torch.Tensor) -> torch.Tensor: return self.orig_op(input, other) m = TestModule(orig_op) input, other = torch.randn(2, 2), torch.randn(2, 2) traced = acc_tracer.trace(m, [input, other]) ph_in = ph_oth = mxm = None for node in traced.graph.nodes: if node.op == "placeholder": if str(node.target) == "other": ph_oth = node else: self.assertTrue(str(node.target) == "input") ph_in = node elif node.op == "call_function": if node.target == expected_op: self.assertEqual(node.kwargs["input"], ph_in) self.assertEqual(node.kwargs["other"], ph_oth) mxm = node elif node.op == "output": self.assertEqual(mxm, node.args[0]) else: self.fail(f"Unexpected node: {node.format_node()}") self.assertTrue(torch.equal(m(input, other), traced(input, other))) def test_conv(self): """ Test that a conv is traced as expected. """ class TestModule(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(8, 7, 3, stride=2) def forward(self, a: torch.Tensor) -> torch.Tensor: return self.conv(a) m = TestModule() input = torch.randn(3, 8, 10, 10) traced = acc_tracer.trace(m, [input]) ph = weight_attr = bias_attr = conv = None for node in traced.graph.nodes: if node.op == "placeholder": self.assertEqual(str(node.target), "a") ph = node elif node.op == "get_attr" and node.target == "conv.weight": weight_attr = node elif node.op == "get_attr" and node.target == "conv.bias": bias_attr = node elif node.op == "call_function": self.assertEqual(node.target, acc_ops.conv2d) self.assertEqual(node.kwargs["input"], ph) self.assertEqual(node.kwargs["weight"], weight_attr) self.assertEqual(node.kwargs["bias"], bias_attr) self.assertEqual(node.kwargs["stride"], (2, 2)) self.assertEqual(node.kwargs["padding"], (0, 0)) self.assertEqual(node.kwargs["dilation"], (1, 1)) self.assertEqual(node.kwargs["groups"], 1) conv = node elif node.op == "output": self.assertEqual(conv, node.args[0]) else: self.fail(f"Unexpected node: {node.format_node()}") self.assertTrue(torch.equal(m(input), traced(input))) def test_quantized_conv2d(self): class TestModule(nn.Module): def __init__(self): super().__init__() self.conv = nn.quantized.Conv2d(3, 3, 1) def forward(self, a: torch.Tensor) -> torch.Tensor: return self.conv(a) m = TestModule() input = torch.quantize_per_tensor( torch.randn(1, 3, 1, 1), scale=0.01, zero_point=3, dtype=torch.quint8 ) traced = acc_tracer.trace(m, [input]) print(traced.graph) ph = weight_attr = bias_attr = conv = None for node in traced.graph.nodes: if node.op == "placeholder": self.assertEqual(str(node.target), "a") ph = node elif node.op == "get_attr" and node.target == "conv_weight": weight_attr = node elif node.op == "get_attr" and node.target == "conv_bias": bias_attr = node elif node.op == "call_function": self.assertEqual(node.target, acc_ops.quantized_conv2d) self.assertEqual(node.kwargs["input"], ph) self.assertEqual(node.kwargs["weight"], weight_attr) self.assertEqual(node.kwargs["bias"], bias_attr) conv = node elif node.op == "output": self.assertEqual(conv, node.args[0]) else: self.fail(f"Unexpected node: {node.format_node()}") self.assertTrue(torch.equal(m(input), traced(input))) def test_quantized_convrelu2d(self): class TestModule(nn.Module): def __init__(self): super().__init__() self.conv = nn.intrinsic.quantized.ConvReLU2d(3, 3, 1) def forward(self, a: torch.Tensor) -> torch.Tensor: return self.conv(a) m = TestModule() input = torch.quantize_per_tensor( torch.randn(1, 3, 1, 1), scale=0.01, zero_point=3, dtype=torch.quint8 ) traced = acc_tracer.trace(m, [input]) ph = weight_attr = bias_attr = conv = relu = None for node in traced.graph.nodes: if node.op == "placeholder": self.assertEqual(str(node.target), "a") ph = node elif node.op == "get_attr" and node.target == "conv_weight": weight_attr = node elif node.op == "get_attr" and node.target == "conv_bias": bias_attr = node elif node.op == "call_function" and node.target == acc_ops.quantized_conv2d: self.assertEqual(node.target, acc_ops.quantized_conv2d) self.assertEqual(node.kwargs["input"], ph) self.assertEqual(node.kwargs["weight"], weight_attr) self.assertEqual(node.kwargs["bias"], bias_attr) conv = node elif node.op == "call_function" and node.target == acc_ops.relu: self.assertEqual(node.target, acc_ops.relu) self.assertEqual(node.kwargs["input"], conv) relu = node elif node.op == "output": self.assertEqual(relu, node.args[0]) else: self.fail(f"Unexpected node: {node.format_node()}") self.assertTrue(torch.equal(m(input), traced(input))) def test_embedding_bag(self): """ Test that an embedding_bag is traced as expected. """ class TestModule(nn.Module): def __init__(self): super().__init__() self.eb = nn.EmbeddingBag(10, 3, mode="sum", include_last_offset=True) def forward(self, inp: torch.Tensor, offsets: torch.Tensor) -> torch.Tensor: return self.eb(inp, offsets) m = TestModule() inp = torch.LongTensor([1, 2, 4, 5, 4, 3, 2, 9]) offsets = torch.LongTensor([0, 4]) traced = acc_tracer.trace(m, [inp, offsets]) inp_node = offsets_node = weight_attr = eb_node = None for node in traced.graph.nodes: if node.op == "placeholder": if str(node.target) == "inp": inp_node = node elif str(node.target) == "offsets": offsets_node = node else: self.fail(f"Unexpected placeholder {node.target}.") continue elif node.op == "get_attr" and node.target == "eb.weight": weight_attr = node elif node.op == "call_function": self.assertEqual(node.target, acc_ops.embedding_bag) # Note: Normalization called from acc_tracer means we use all kwargs. self.assertEqual(node.kwargs["input"], inp_node) self.assertEqual(node.kwargs["offsets"], offsets_node) self.assertEqual(node.kwargs["weight"], weight_attr) self.assertEqual(node.kwargs["mode"], "sum") self.assertEqual(node.kwargs["include_last_offset"], True) # The rest of these were unspecified, so verify they fell back # to their respective default values thanks to normalization. self.assertEqual(node.kwargs["max_norm"], None) self.assertEqual(node.kwargs["norm_type"], 2.0) self.assertEqual(node.kwargs["scale_grad_by_freq"], False) self.assertEqual(node.kwargs["sparse"], False) self.assertEqual(node.kwargs["per_sample_weights"], None) eb_node = node elif node.op == "output": self.assertEqual(eb_node, node.args[0]) self.assertTrue(torch.equal(m(inp, offsets), traced(inp, offsets))) def test_embedding_bag_byte_and_4bit_rowwise_offsets(self): """ Test that 4 bit quantized embedding_bag is traced as expected. """ class TestModule(nn.Module): def __init__( self, op, q_weights, per_index_weights, ): super().__init__() self.emb = op self.q_weights = q_weights self.per_index_weights = per_index_weights def forward( self, indices, offsets, ): return self.emb( self.q_weights, indices, offsets, mode=0, per_sample_weights=self.per_index_weights, include_last_offset=True, ) def run_embedding_bag_test(is_4bit, use_weights): # generate random indices, offsets, and weights. num_embeddings = 16 embedding_dim = 32 num_lengths = 10 weights = torch.from_numpy( (np.random.random_sample((num_embeddings, embedding_dim)) + 1).astype( np.float32 ) ) q_weights = ( torch.ops.quantized.embedding_bag_4bit_prepack(weights) if is_4bit else torch.ops.quantized.embedding_bag_byte_prepack(weights) ) np_lengths = np.random.randint(0, num_lengths, size=10).astype(np.int32) num_lengths = np.sum(np_lengths) indices = torch.from_numpy( np.random.randint(low=0, high=num_embeddings, size=num_lengths) ).int() lengths = torch.from_numpy(np_lengths) offsets = torch.cat([torch.zeros([1]), torch.cumsum(lengths, 0)]).int() weights = torch.randint(low=0, high=4, size=indices.size()) per_sample_weights = weights.to(torch.float32) indices = indices.to(torch.int32) offsets = offsets.to(torch.int32) inputs = [ indices, offsets, ] op = ( torch.ops.quantized.embedding_bag_4bit_rowwise_offsets if is_4bit else torch.ops.quantized.embedding_bag_byte_rowwise_offsets ) m = TestModule( op, q_weights, per_sample_weights, ) traced = acc_tracer.trace(m, inputs) print(traced.graph) expected_target = ( acc_ops.embedding_bag_4bit_rowwise_offsets if is_4bit else acc_ops.embedding_bag_byte_rowwise_offsets ) for node in traced.graph.nodes: if node.op == "placeholder": if str(node.target) == "indices": inp_node = node elif str(node.target) == "offsets": offsets_node = node else: self.fail(f"Unexpected placeholder {node.target}.") continue elif node.op == "get_attr" and node.target == "q_weights": weight_attr = node elif node.op == "call_function": self.assertEqual(node.target, expected_target) # Note: Normalization called from acc_tracer means we use all kwargs. self.assertEqual(node.kwargs["indices"], inp_node) self.assertEqual(node.kwargs["offsets"], offsets_node) self.assertEqual(node.kwargs["weight"], weight_attr) self.assertEqual(node.kwargs["mode"], 0) self.assertEqual(node.kwargs["include_last_offset"], True) # The rest of these were unspecified, so verify they fell back # to their respective default values thanks to normalization. eb_node = node elif node.op == "output": self.assertEqual(eb_node, node.args[0]) self.assertTrue(torch.equal(m(indices, offsets), traced(indices, offsets))) # test 8-bit run_embedding_bag_test(is_4bit=False, use_weights=True) # test 4-bit run_embedding_bag_test(is_4bit=True, use_weights=True) def test_quantized_batch_norm2d(self): class TestModule(nn.Module): def __init__(self): super().__init__() self.bn = nn.quantized.BatchNorm2d(3) def forward(self, a: torch.Tensor) -> torch.Tensor: return self.bn(a) m = TestModule() m.eval() input = torch.quantize_per_tensor( torch.randn(1, 3, 1, 1), scale=0.01, zero_point=3, dtype=torch.quint8 ) traced = acc_tracer.trace(m, [input]) ph = weight_attr = bias_attr = bn_mean = bn_var = bn = None for node in traced.graph.nodes: if node.op == "placeholder": self.assertEqual(str(node.target), "a") ph = node elif node.op == "get_attr" and node.target == "bn.weight": weight_attr = node elif node.op == "get_attr" and node.target == "bn.bias": bias_attr = node elif node.op == "get_attr" and node.target == "bn.running_mean": bn_mean = node elif node.op == "get_attr" and node.target == "bn.running_var": bn_var = node elif node.op == "get_attr" and node.target == "bn.scale": bn_scale = node elif node.op == "get_attr" and node.target == "bn.zero_point": bn_zero_point = node elif node.op == "call_function": self.assertEqual(node.target, acc_ops.quantized_batch_norm2d) self.assertEqual(node.kwargs["input"], ph) self.assertEqual(node.kwargs["weight"], weight_attr) self.assertEqual(node.kwargs["bias"], bias_attr) self.assertEqual(node.kwargs["running_mean"], bn_mean) self.assertEqual(node.kwargs["running_var"], bn_var) self.assertEqual(node.kwargs["acc_out_ty"][6]["scale"], bn_scale) self.assertEqual(node.kwargs["acc_out_ty"][6]["zero_point"], bn_zero_point) bn = node elif node.op == "output": self.assertEqual(bn, node.args[0]) else: self.fail(f"Unexpected node: {node.format_node()}") self.assertTrue(torch.equal(m(input), traced(input))) def test_linear(self): """ Test that a linear is traced as expected, i.e. to the functional level and with kwarg normalization. Also verify that symbolic shape inference worked as part of the acc_tracer. """ class TestModule(nn.Module): def __init__(self): super().__init__() self.linear = nn.Linear(3, 5, bias=True) def forward(self, a: torch.Tensor) -> torch.Tensor: return self.linear(a) m = TestModule() test_input = torch.randn(1, 3) traced = acc_tracer.trace(m, test_input) ph = weight_attr = bias_attr = linear = None for node in traced.graph.nodes: if node.op == "placeholder": self.assertEqual(str(node.target), "a") ph = node elif node.op == "get_attr" and node.target == "linear.weight": weight_attr = node elif node.op == "get_attr" and node.target == "linear.bias": bias_attr = node elif node.op == "call_function": self.assertEqual(node.target, acc_ops.linear) self.assertEqual(node.kwargs["input"], ph) self.assertEqual(node.kwargs["weight"], weight_attr) self.assertEqual(node.kwargs["bias"], bias_attr) linear = node elif node.op == "output": self.assertEqual(linear, node.args[0]) else: self.fail(f"Unexpected node: {node.format_node()}") self.assertTrue(torch.equal(m(test_input), traced(test_input))) def test_quantized_linear(self): class TestModule(nn.Module): def __init__(self): super().__init__() self.linear = nn.quantized.Linear(3, 5) def forward(self, a: torch.Tensor) -> torch.Tensor: return self.linear(a) m = TestModule() input = torch.quantize_per_tensor( torch.randn(2, 3), scale=0.01, zero_point=3, dtype=torch.quint8 ) traced = acc_tracer.trace(m, [input]) ph = weight_attr = bias_attr = linear = None for node in traced.graph.nodes: if node.op == "placeholder": self.assertEqual(str(node.target), "a") ph = node elif node.op == "get_attr" and node.target == "linear_weight": weight_attr = node elif node.op == "get_attr" and node.target == "linear_bias": bias_attr = node elif node.op == "call_function": self.assertEqual(node.target, acc_ops.quantized_linear) self.assertEqual(node.kwargs["input"], ph) self.assertEqual(node.kwargs["weight"], weight_attr) self.assertEqual(node.kwargs["bias"], bias_attr) linear = node elif node.op == "output": self.assertEqual(linear, node.args[0]) else: self.fail(f"Unexpected node: {node.format_node()}") self.assertTrue(torch.equal(m(input), traced(input))) @parameterized.expand( [ param("remove_exceptions_false", remove_exceptions=False), param("remove_exceptions_true", remove_exceptions=True), ] ) def test_batch_norm(self, _, remove_exceptions): """ Test that a batch norm is traced as expected, i.e. to the functional level and with kwarg normalization. Note that we also expect to see a ConditionalExceptionWrapper in the graph that the AST rewriter converted from `if x: raise y`. """ class TestModule(nn.Module): def __init__(self): super().__init__() self.bn = torch.nn.BatchNorm2d(2) def forward(self, a: torch.Tensor) -> torch.Tensor: return self.bn(a) m = TestModule() input = torch.randn(2, 2, 1, 1) # Note: Explicitly not removing exceptions so that we can check they # were found and exist below. traced = acc_tracer.trace( m, [input], remove_exceptions=remove_exceptions, ) ph = exception_wrapper = weight = bias = mean = var = bn = None for node in traced.graph.nodes: if node.op == "placeholder": self.assertEqual(str(node.target), "a") ph = node elif node.op == "get_attr" and node.target == "bn.weight": weight = node elif node.op == "get_attr" and node.target == "bn.bias": bias = node elif node.op == "get_attr" and node.target == "bn.running_mean": mean = node elif node.op == "get_attr" and node.target == "bn.running_var": var = node elif node.op == "call_function" and node.target == acc_ops.batch_norm: # Note: Normalization called from acc_tracer means we use # all kwargs. self.assertEqual(node.kwargs["input"], ph) self.assertEqual(node.kwargs["weight"], weight) self.assertEqual(node.kwargs["bias"], bias) self.assertEqual(node.kwargs["running_mean"], mean) self.assertEqual(node.kwargs["running_var"], var) bn = node elif ( node.op == "call_module" and node.target == "bn._conditional_exception_wrapper_ValueError" ): exception_wrapper = node elif node.op == "output": self.assertEqual(bn, node.args[0]) self.assertTrue(remove_exceptions or exception_wrapper is not None) self.assertTrue(torch.equal(m(input), traced(input))) def test_remove_asserts(self): """ Test that a Module with asserts has the asserts automatically removed, as well as calls to a class method that should be dead. """ class TestModule(nn.Module): def __init__(self): super().__init__() def _test_method(self, a): return a def forward(self, a: torch.Tensor) -> torch.Tensor: assert torch.equal(self._test_method(a), a) return a m = TestModule() input = torch.randn(10) traced = acc_tracer.trace(m, [input], ast_rewriter_allow_list={TestModule}) # Check we have no call_functions. If remove asserts didn't work # correctly we would see a call to torch._assert, _test_method, and # torch.equal. for node in traced.graph.nodes: self.assertFalse(node.op == "call_function") self.assertTrue(torch.equal(m(input), traced(input))) def test_sequential(self): """ Test that the tracer works for torch.nn.Sequential. """ class TestModule(nn.Module): def __init__(self): super().__init__() self.model = nn.Sequential(nn.Sigmoid(), nn.ReLU()) def forward(self, a: torch.Tensor) -> torch.Tensor: return self.model(a) m = TestModule() input = torch.randn(10) traced = acc_tracer.trace(m, [input]) for node in traced.graph.nodes: if node.op == "call_function": is_sigmoid = node.target == acc_ops.sigmoid is_relu = node.target == acc_ops.relu self.assertTrue(is_sigmoid or is_relu) else: self.assertTrue(node.op == "placeholder" or node.op == "output") self.assertTrue(torch.equal(m(input), traced(input))) def test_unsqueeze(self): """ Test that torch.unsqueeze is traced correctly. """ self._make_acc_op_function_test( acc_ops.unsqueeze, torch.unsqueeze, validate_same_kwargs=False, dim=1, ) def test_stack(self): """ Test that torch.stack is traced correctly. """ class TestModule(torch.nn.Module): def forward(self, a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: return torch.stack((a, b), dim=1) a, b = torch.randn(4, 5, 6), torch.randn(4, 5, 6) mod = TestModule() traced = acc_tracer.trace(mod, [a, b]) self.assertTrue(torch.equal(mod(a, b), traced(a, b))) ph_a = ph_b = unsqueeze_a = unsqueeze_b = cat_node = None for node in traced.graph.nodes: if node.op == "placeholder": if str(node.target) == "a": ph_a = node else: self.assertTrue(str(node.target) == "b") ph_b = node elif node.op == "call_function": if node.target == acc_ops.unsqueeze: if node.kwargs["input"] is ph_a: unsqueeze_a = node else: self.assertEqual(node.kwargs["input"], ph_b) unsqueeze_b = node else: self.assertEqual(node.target, acc_ops.cat) self.assertEqual(node.kwargs["tensors"], [unsqueeze_a, unsqueeze_b]) cat_node = node elif node.op == "output": self.assertEqual(cat_node, node.args[0]) else: self.fail(f"Unexpected node: {node.format_node()}") def test_no_raise(self): """ self that we can trace `if x: raise y(msg)` when the raise isn't executed. """ class TestModule(nn.Module): def __init__(self): super().__init__() def forward(self, a, b): if torch.equal(a, b): raise AssertionError("a equaled b!") return a m = TestModule() in_a, in_b = torch.randn(5), torch.randn(5) traced = acc_tracer.trace( m, [in_a, in_b], remove_exceptions=False, use_acc_normalization=False, ast_rewriter_allow_list={TestModule}, ) # Verify the structure of the graph, including the existence of the # exception_wrapper. ph_a = exception_wrapper = None for node in traced.graph.nodes: if node.op == "placeholder": if str(node.target) == "a": ph_a = node else: self.assertTrue(str(node.target) == "b") elif node.op == "call_module": self.assertEqual( node.target, "_conditional_exception_wrapper_AssertionError" ) exception_wrapper = node elif node.op == "output": self.assertEqual(ph_a, node.args[0]) self.assertTrue(exception_wrapper is not None) self.assertTrue(torch.equal(m(in_a, in_b), traced(in_a, in_b))) def test_yes_raise(self): """ Test that we can trace `if x: raise y(msg)` when the raise is executed. """ err_str = "a equaled b!" class TestModule(nn.Module): def __init__(self): super().__init__() self.err_str = err_str def forward(self, a, b): if torch.equal(a, b): raise RuntimeError(self.err_str) return a m = TestModule() # Note: We must use different inputs here in order for shape_prop to work, as # otherwise the exception is thrown (as expected/checked below). in_a, in_b = torch.randn(5), torch.randn(5) traced = acc_tracer.trace( m, [in_a, in_b], remove_exceptions=False, ast_rewriter_allow_list={TestModule}, ) # Verify the structure of the graph, including the existence of the # exception_wrapper. ph_a = exception_wrapper = None for node in traced.graph.nodes: if node.op == "placeholder": if str(node.target) == "a": ph_a = node else: self.assertTrue(str(node.target) == "b") elif node.op == "call_module": self.assertEqual( node.target, "_conditional_exception_wrapper_RuntimeError" ) exception_wrapper = node elif node.op == "output": self.assertEqual(ph_a, node.args[0]) self.assertTrue(exception_wrapper is not None) def test(mod): try: # Note: Use the same input here to ensure the exception is thrown. mod(in_a, in_a) self.fail("Shouldn't get here because exception should be thrown.") except RuntimeError as e: self.assertEqual(err_str, str(e)) test(m) test(traced) def test_remove_raise(self): """ Test that we can trace `if x: raise y(msg)` and then remove the exception_wrapper. """ class TestModule(nn.Module): def __init__(self): super().__init__() def forward(self, a, b): if torch.equal(a, b): raise AssertionError("a equaled b!") return a m = TestModule() in_a, in_b = torch.randn(5), torch.randn(5) traced = acc_tracer.trace( m, [in_a, in_b], remove_exceptions=True, ast_rewriter_allow_list={TestModule}, ) # Verify the structure of the graph, including the existence of the # exception_wrapper. ph_a = None for node in traced.graph.nodes: if node.op == "placeholder": if str(node.target) == "a": ph_a = node else: self.assertTrue(str(node.target) == "b") elif node.op == "output": self.assertEqual(ph_a, node.args[0]) else: # Should not encounter any call_modules, e.g. to the # exception_wrapper. self.assertFalse(node.op == "call_module") # Note: Using input in_a twice for the tracer version, which would # trigger the raise if it was still there. self.assertTrue(torch.equal(m(in_a, in_b), traced(in_a, in_a))) def test_raise_no_message(self): """ Test that we can trace `if x: raise y` when `y` has no message. """ class TestModule(nn.Module): def __init__(self): super().__init__() def forward(self, a, b): if torch.equal(a, b): raise AssertionError return a m = TestModule() in_a, in_b = torch.randn(5), torch.randn(5) traced = acc_tracer.trace( m, [in_a, in_b], remove_exceptions=False, use_acc_normalization=False, ast_rewriter_allow_list={TestModule}, ) # Verify the structure of the graph, including the existence of the # exception_wrapper. ph_a = exception_wrapper = None for node in traced.graph.nodes: if node.op == "placeholder": if str(node.target) == "a": ph_a = node else: self.assertTrue(str(node.target) == "b") elif node.op == "call_module": self.assertEqual( node.target, "_conditional_exception_wrapper_AssertionError" ) exception_wrapper = node elif node.op == "output": self.assertEqual(ph_a, node.args[0]) self.assertTrue(exception_wrapper is not None) self.assertTrue(torch.equal(m(in_a, in_b), traced(in_a, in_b))) def test_quantized_add(self): """ Test that a quantized_add and acc_ops.quantize_per_tensor are traced as expected, verifying the acc_out_tys are set as expected. """ class TestModule(nn.Module): def __init__(self): super().__init__() self.q_input = torch.nn.quantized.Quantize( scale=1.0 / 128, zero_point=5, dtype=torch.quint8 ) self.q_other = torch.nn.quantized.Quantize( scale=1.0 / 128, zero_point=10, dtype=torch.quint8 ) def forward(self, input: torch.Tensor, other: torch.Tensor) -> torch.Tensor: return torch.ops.quantized.add( self.q_input(input), self.q_other(other), scale=0.05, zero_point=1, ) m = TestModule() input, other = torch.randn(2, 3, 4), torch.randn(2, 3, 4) traced = acc_tracer.trace(m, [input, other]) input_ph = other_ph = q_input = q_other = q_add = None for node in traced.graph.nodes: if node.op == "placeholder": if str(node.target) == "input": input_ph = node else: self.assertTrue(str(node.target) == "other") other_ph = node elif ( node.op == "call_function" and node.target == acc_ops.quantize_per_tensor ): qparams = { "scale": 1.0 / 128, "zero_point": 5, } expected_md = acc_utils.build_raw_tensor_meta( dtype=torch.quint8, qparams=qparams, ) if node.kwargs["input"] == input_ph: q_input = node else: self.assertTrue(node.kwargs["input"] == other_ph) q_other = node qparams_copy = qparams.copy() qparams_copy["zero_point"] = 10 expected_md = expected_md._replace(qparams=qparams_copy) self.assertEqual(node.kwargs["acc_out_ty"], expected_md) elif node.op == "call_function" and node.target == acc_ops.quantized_add: self.assertEqual(node.kwargs["input"], q_input) self.assertEqual(node.kwargs["other"], q_other) qparams = { "scale": 0.05, "zero_point": 1, } expected_md = acc_utils.build_raw_tensor_meta(qparams=qparams) self.assertEqual(node.kwargs["acc_out_ty"], expected_md) q_add = node elif node.op == "output": self.assertEqual(q_add, node.args[0]) else: self.fail(f"Unexpected node: {node.format_node()}") self.assertTrue(torch.equal(m(input, other), traced(input, other))) def test_quantized_mul(self): """ Test that a quantized_mul and acc_ops.quantize_per_tensor are traced as expected, verifying the acc_out_tys are set as expected. """ class TestModule(nn.Module): def __init__(self): super().__init__() self.q_input = torch.nn.quantized.Quantize( scale=1.0 / 128, zero_point=5, dtype=torch.quint8 ) self.q_other = torch.nn.quantized.Quantize( scale=1.0 / 128, zero_point=10, dtype=torch.quint8 ) def forward(self, input: torch.Tensor, other: torch.Tensor) -> torch.Tensor: return torch.ops.quantized.mul( self.q_input(input), self.q_other(other), scale=0.05, zero_point=1, ) m = TestModule() input, other = torch.randn(2, 3, 4), torch.randn(2, 3, 4) traced = acc_tracer.trace(m, [input, other]) input_ph = other_ph = q_input = q_other = q_add = None for node in traced.graph.nodes: if node.op == "placeholder": if str(node.target) == "input": input_ph = node else: self.assertTrue(str(node.target) == "other") other_ph = node elif ( node.op == "call_function" and node.target == acc_ops.quantize_per_tensor ): qparams = { "scale": 1.0 / 128, "zero_point": 5, } expected_md = acc_utils.build_raw_tensor_meta( dtype=torch.quint8, qparams=qparams, ) if node.kwargs["input"] == input_ph: q_input = node else: self.assertTrue(node.kwargs["input"] == other_ph) q_other = node qparams_copy = qparams.copy() qparams_copy["zero_point"] = 10 expected_md = expected_md._replace(qparams=qparams_copy) self.assertEqual(node.kwargs["acc_out_ty"], expected_md) elif node.op == "call_function" and node.target == acc_ops.quantized_mul: self.assertEqual(node.kwargs["input"], q_input) self.assertEqual(node.kwargs["other"], q_other) qparams = { "scale": 0.05, "zero_point": 1, } expected_md = acc_utils.build_raw_tensor_meta(qparams=qparams) self.assertEqual(node.kwargs["acc_out_ty"], expected_md) q_add = node elif node.op == "output": self.assertEqual(q_add, node.args[0]) else: self.fail(f"Unexpected node: {node.format_node()}") self.assertTrue(torch.equal(m(input, other), traced(input, other))) def test_cat(self): """ Test that torch.cat is traced correctly. """ class TestModule(torch.nn.Module): def __init__(self): super().__init__() def forward(self, a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: return torch.cat([a, a, b], 0) m = TestModule() a, b = torch.randn(2, 2), torch.randn(2, 2) traced = acc_tracer.trace(m, (a, b)) ph_a = ph_b = cat = None for node in traced.graph.nodes: if node.op == "placeholder": if str(node.target) == "a": ph_a = node else: self.assertTrue(str(node.target) == "b") ph_b = node elif node.op == "call_function": self.assertEqual(node.target, acc_ops.cat) self.assertEqual(node.kwargs["tensors"][0], ph_a) self.assertEqual(node.kwargs["tensors"][1], ph_a) self.assertEqual(node.kwargs["tensors"][2], ph_b) self.assertEqual(node.kwargs["dim"], 0) cat = node elif node.op == "output": self.assertEqual(cat, node.args[0]) else: self.fail(f"Unexpected node: {node.format_node()}") self.assertTrue(torch.equal(m(a, b), traced(a, b))) def test_square(self): """ Test that torch.square is traced correctly. """ self._make_acc_op_function_test(acc_ops.mul, torch.square) def test_reshape(self): """ Test that torch.reshape is traced correctly. """ self._make_acc_op_function_test(acc_ops.reshape, torch.reshape, (1, -1)) # arg = (1, -1) self._make_acc_op_function_test(acc_ops.reshape, lambda x: x.reshape(1, -1)) # arg = ((1, -1)) self._make_acc_op_function_test(acc_ops.reshape, lambda x: x.reshape((1, -1))) def test_transpose(self): """ Test that torch.transpose is traced correctly. """ self._make_acc_op_function_test( acc_ops.permute, lambda x: torch.transpose(x, 1, 0) ) def test_permute(self): """ Test that torch.permute is traced correctly. """ def torch_permute(a, *dim): return a.permute(*dim) self._make_acc_op_function_test(acc_ops.permute, torch_permute, 1, 0) def test_min_full_reduce(self): """ Test that test_min_full_reduce is traced correctly. """ self._make_acc_op_function_test(acc_ops.min_full_reduce, torch.min) def test_matmul(self): """ Test that torch.matmul is traced correctly. """ class TestModule(torch.nn.Module): def __init__(self): super().__init__() def forward(self, a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: return torch.matmul(a, b) m = TestModule() a, b = torch.randn(2, 2), torch.randn(2, 2) traced = acc_tracer.trace(m, [a, b]) ph_a = ph_b = matmul = None for node in traced.graph.nodes: if node.op == "placeholder": if str(node.target) == "a": ph_a = node else: self.assertTrue(str(node.target) == "b") ph_b = node elif node.op == "call_function": self.assertEqual(node.target, acc_ops.matmul) self.assertEqual(node.kwargs["input"], ph_a) self.assertEqual(node.kwargs["other"], ph_b) matmul = node elif node.op == "output": self.assertEqual(matmul, node.args[0]) else: self.fail(f"Unexpected node: {node.format_node()}") self.assertTrue(torch.equal(m(a, b), traced(a, b))) def test_bmm(self): self._make_acc_op_function_test( acc_ops.matmul, lambda x: torch.bmm(x, x), input_shape=(2, 4, 4) ) def test_tile(self): return self._make_acc_op_function_test( acc_ops.tile, lambda x: torch.tile(x, (2, 1, 2)), input_shape=(1, 2) ) def test_dropout(self): self._make_acc_op_function_test( None, lambda x: nn.functional.dropout(x, training=False), input_shape=(1, 2, 3), ) def test_hardsigmoid(self): self._make_acc_op_function_test( acc_ops.hardsigmoid, lambda x: nn.functional.hardsigmoid(x), input_shape=(3, 4, 5), ) def test_hardtanh(self): self._make_acc_op_function_test( acc_ops.hardtanh, lambda x: nn.functional.hardtanh(x), input_shape=(3, 4, 5), ) def test_hardswish(self): class TestModule(nn.Module): def forward(self, x: torch.Tensor) -> torch.Tensor: y = nn.functional.hardswish(x) return y m = TestModule() x = torch.randn(3, 4, 5) traced = acc_tracer.trace(m, x) ph_x = hardsigmoid_y = res_y = None for node in traced.graph.nodes: if node.op == "placeholder": ph_x = node elif node.op == "call_function" and node.target == acc_ops.hardsigmoid: hardsigmoid_y = node self.assertEqual(node.kwargs["input"], ph_x) elif node.op == "call_function" and node.target == acc_ops.mul: res_y = node self.assertEqual(node.kwargs["input"], hardsigmoid_y) self.assertEqual(node.kwargs["other"], ph_x) elif node.op == "output": self.assertEqual(node.args[0], res_y) else: self.fail(f"Unexpected node: {node.format_node()}") ref = m(x) res = traced(x) torch.testing.assert_allclose(ref, res) def test_add_with_alpha(self): """ Test that normalization works for torch add with alpha, which requires special normalization handling. """ class TestModule(nn.Module): def __init__(self): super().__init__() def forward(self, a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: a1 = torch.add(a, b) a2 = torch.add(a, b, alpha=1.0) a3 = torch.add(a, b, alpha=0.5) return a1, a2, a3 m = TestModule() input_a = torch.randn(2, 3) input_b = torch.randn(2, 3) traced = acc_tracer.trace(m, [input_a, input_b]) ph_a = ph_b = add_1 = add_2 = add_3 = mul = None for node in traced.graph.nodes: if node.op == "placeholder": if str(node.target) == "a": ph_a = node elif str(node.target) == "b": ph_b = node else: self.fail(f"Unexpected placeholder {node.target}.") elif node.op == "call_function" and node.target == acc_ops.mul: mul = node self.assertEqual(node.kwargs["input"], ph_b) self.assertEqual(node.kwargs["other"], 0.5) elif node.op == "call_function" and node.target == acc_ops.add: if add_1 is None: add_1 = node self.assertEqual(node.kwargs["input"], ph_a) self.assertEqual(node.kwargs["other"], ph_b) elif add_2 is None: add_2 = node self.assertEqual(node.kwargs["input"], ph_a) self.assertEqual(node.kwargs["other"], ph_b) elif add_3 is None: add_3 = node self.assertEqual(node.kwargs["input"], ph_a) self.assertEqual(node.kwargs["other"], mul) else: self.fail(f"Unexpected add: {node.format_node()}") elif node.op == "output": self.assertEqual(node.args[0][0], add_1) self.assertEqual(node.args[0][1], add_2) self.assertEqual(node.args[0][2], add_3) else: self.fail(f"Unexpected node: {node.format_node()}") ref = m(input_a, input_b) res = traced(input_a, input_b) self.assertTrue(torch.equal(ref[0], res[0])) self.assertTrue(torch.equal(ref[1], res[1])) self.assertTrue(torch.equal(ref[2], res[2])) def test_leaf_module_list(self): """ Test leaf_module_list is working properly. """ class LeafModule(nn.Module): def forward(self, x): return x class TestModule(nn.Module): def __init__(self): super().__init__() self.mod = LeafModule() def forward(self, x): return self.mod(x) x = torch.randn(1, 1) mod = TestModule() acc_mod = acc_tracer.trace( mod, [x], leaf_module_list={LeafModule}, ) ph = leaf_module = None for node in acc_mod.graph.nodes: if node.op == "placeholder": ph = node elif node.op == "call_module": leaf_module = node self.assertEqual(leaf_module.target, "mod") self.assertEqual(leaf_module.args[0], ph) elif node.op == "output": self.assertEqual(node.args[0], leaf_module) else: self.fail(f"Unexpected node: {node.format_node()}") self.assertTrue(torch.equal(mod(x), acc_mod(x))) def test_sign(self): self._make_acc_op_function_test(acc_ops.sign, torch.sign) def test_relu(self): self._make_acc_op_function_test(acc_ops.relu, torch.relu) def test_leaky_relu(self): self._make_acc_op_function_test(acc_ops.leaky_relu, torch.nn.functional.leaky_relu) def test_elu(self): self._make_acc_op_function_test(acc_ops.elu, torch.nn.functional.elu) def test_selu(self): self._make_acc_op_function_test(acc_ops.selu, torch.nn.functional.selu) def test_softsign(self): self._make_acc_op_function_test(acc_ops.softsign, torch.nn.functional.softsign) def test_sigmoid(self): self._make_acc_op_function_test(acc_ops.sigmoid, torch.sigmoid) def test_sin(self): self._make_acc_op_function_test(acc_ops.sin, torch.sin) def test_cos(self): self._make_acc_op_function_test(acc_ops.cos, torch.cos) def test_tan(self): self._make_acc_op_function_test(acc_ops.tan, torch.tan) def test_sinh(self): self._make_acc_op_function_test(acc_ops.sinh, torch.sinh) def test_cosh(self): self._make_acc_op_function_test(acc_ops.cosh, torch.cosh) def test_tanh(self): self._make_acc_op_function_test(acc_ops.tanh, torch.tanh) def test_asin(self): self._make_acc_op_function_test(acc_ops.asin, torch.asin) def test_acos(self): self._make_acc_op_function_test(acc_ops.acos, torch.acos) def test_atan(self): self._make_acc_op_function_test(acc_ops.atan, torch.atan) def test_exp(self): self._make_acc_op_function_test(acc_ops.exp, torch.exp) def test_log(self): self._make_acc_op_function_test(acc_ops.log, torch.log) def test_sqrt(self): self._make_acc_op_function_test(acc_ops.sqrt, torch.sqrt) def test_reciprocal(self): self._make_acc_op_function_test(acc_ops.reciprocal, torch.reciprocal) def test_abs(self): self._make_acc_op_function_test(acc_ops.abs, torch.abs) def test_neg(self): self._make_acc_op_function_test(acc_ops.neg, torch.neg) def test_floor(self): self._make_acc_op_function_test(acc_ops.floor, torch.floor) def test_ceil(self): self._make_acc_op_function_test(acc_ops.ceil, torch.ceil) def test_softmax(self): self._make_acc_op_function_test(acc_ops.softmax, torch.nn.functional.softmax) def test_tensor_squeeze(self): self._make_acc_op_function_test(acc_ops.squeeze, lambda x: x.squeeze()) def test_torch_squeeze(self): self._make_acc_op_function_test(acc_ops.squeeze, lambda x: torch.squeeze(x)) def test_operator_mul(self): self._make_acc_op_function_test(acc_ops.mul, lambda x: x * 7) def test_torch_mul(self): self._make_acc_op_function_test(acc_ops.mul, lambda x: torch.mul(x, 7)) def test_div(self): self._make_acc_op_function_test(acc_ops.div, lambda x: torch.div(x, 2)) self._make_acc_op_function_test(acc_ops.div, lambda x: x / 2) def test_floor_div(self): self._make_acc_op_function_test(acc_ops.floor_div, lambda x: torch.div(x, 2, rounding_mode="floor")) def test_trunc_div(self): self._make_acc_op_function_test(acc_ops.trunc_div, lambda x: torch.div(x, 2, rounding_mode="trunc")) self._make_acc_op_function_test(acc_ops.trunc_div, lambda x: torch.floor_divide(x, 2)) def test_view(self): """ Test that Tensor.view is traced correctly. """ self._make_acc_op_function_test(acc_ops.reshape, lambda x: x.view(1, -1)) def test_narrow(self): """ Test that torch.narrow is traced correctly. """ return self._make_acc_op_function_test( acc_ops.slice_tensor, torch.narrow, validate_same_kwargs=False, dim=1, start=1, length=2, ) def test_pow(self): self._make_acc_op_function_test(acc_ops.pow, torch.pow, exponent=2) def test_size(self): class TestModule(nn.Module): def __init__(self): super().__init__() def forward(self, a): idx = a.size(1) return a.shape[idx] m = TestModule() a = torch.randn(2, 1, 4) traced = acc_tracer.trace(m, [a]) ph_a = size_1 = size_2 = getitem_1 = getitem_2 = None for node in traced.graph.nodes: if node.op == "placeholder": self.assertTrue(node.target == "a") ph_a = node elif node.op == "call_function" and node.target == acc_ops.size: if size_1: size_2 = node self.assertTrue(size_2.kwargs["input"] is ph_a) else: size_1 = node self.assertTrue(size_1.kwargs["input"] is ph_a) elif node.op == "call_function" and node.target == acc_ops.getitem: if getitem_1: getitem_2 = node self.assertTrue(getitem_2.kwargs["idx"] == getitem_1) self.assertTrue(getitem_2.kwargs["input"] == size_2) else: getitem_1 = node self.assertTrue(getitem_1.kwargs["idx"] == 1) self.assertTrue(getitem_1.kwargs["input"] == size_1) elif node.op == "output": self.assertEqual(node.args[0], getitem_2) else: self.fail(f"Unexpected node: {node.format_node()}") ref = m(a) res = traced(a) self.assertEqual(ref, res) def test_flatten(self): """ Test that torch.flatten is traced correctly. """ self._make_acc_op_function_test( acc_ops.flatten, torch.flatten, start_dim=1, end_dim=1 ) self._make_acc_op_function_test(acc_ops.flatten, lambda x: x.flatten()) def test_topk_multi_output(self): """ Test that torch.topk multi outputs work. """ class TestModule(nn.Module): def __init__(self): super().__init__() def forward(self, a: torch.Tensor) -> torch.Tensor: return torch.topk(a, 3)[1] m = TestModule() input_a = torch.randn(10) traced = acc_tracer.trace(m, [input_a]) ph_a = topk = getitem = None for node in traced.graph.nodes: if node.op == "placeholder" and str(node.target) == "a": ph_a = node elif node.op == "call_function" and node.target == acc_ops.topk: topk = node self.assertEqual(node.kwargs["input"], ph_a) self.assertEqual(node.kwargs["k"], 3) elif node.op == "call_function" and node.target == acc_ops.getitem: getitem = node self.assertEqual(node.kwargs["input"], topk) self.assertEqual(node.kwargs["idx"], 1) elif node.op == "output": self.assertEqual(node.args[0], getitem) else: self.fail(f"Unexpected node: {node.format_node()}") self.assertTrue(torch.equal(m(input_a), traced(input_a))) def test_addmm_with_alpha_beta(self): class TestModule(torch.nn.Module): def __init__(self): super().__init__() def forward( self, input: torch.Tensor, a: torch.Tensor, b: torch.Tensor ) -> torch.Tensor: return torch.addmm(input, a, b, alpha=1.2, beta=1.1) m = TestModule() input, a, b = torch.randn(2, 2), torch.randn(2, 2), torch.randn(2, 2) traced = acc_tracer.trace(m, [input, a, b]) ph_in = ph_a = ph_b = mm = add = mm_mul = add_mul = None for node in traced.graph.nodes: if node.op == "placeholder": if str(node.target) == "a": ph_a = node elif str(node.target) == "b": ph_b = node else: self.assertTrue(str(node.target) == "input") ph_in = node elif node.op == "call_function": if node.target == acc_ops.matmul: self.assertEqual(node.kwargs["input"], ph_a) self.assertEqual(node.kwargs["other"], ph_b) mm = node elif node.target == acc_ops.add: self.assertEqual(node.kwargs["input"], mm_mul) self.assertEqual(node.kwargs["other"], add_mul) add = node elif mm_mul: self.assertEqual(node.kwargs["input"], ph_in) self.assertEqual(node.kwargs["other"], 1.1) add_mul = node else: self.assertEqual(node.kwargs["input"], mm) self.assertEqual(node.kwargs["other"], 1.2) mm_mul = node elif node.op == "output": self.assertEqual(add, node.args[0]) else: self.fail(f"Unexpected node: {node.format_node()}") torch.testing.assert_allclose(m(input, a, b), traced(input, a, b)) def test_log1p(self): class TestModule(torch.nn.Module): def forward(self, input: torch.Tensor) -> torch.Tensor: return torch.log1p(input) m = TestModule().eval() input = torch.tensor([[1.2, 0.3, -0.4]]) traced = acc_tracer.trace(m, [input]) ph_in = add = log = None for node in traced.graph.nodes: if node.op == "placeholder": self.assertTrue(str(node.target) == "input") ph_in = node elif node.op == "call_function": if node.target == acc_ops.add: self.assertEqual(node.kwargs["input"], ph_in) self.assertEqual(node.kwargs["other"], 1) add = node else: self.assertEqual(node.target, acc_ops.log) self.assertEqual(node.kwargs["input"], add) log = node elif node.op == "output": self.assertEqual(log, node.args[0]) else: self.fail(f"Unexpected node: {node.format_node()}") torch.testing.assert_allclose(m(input), traced(input)) def test_addmm(self): class TestModule(torch.nn.Module): def forward( self, input: torch.Tensor, a: torch.Tensor, b: torch.Tensor ) -> torch.Tensor: return torch.addmm(input, a, b) m = TestModule() input, a, b = torch.randn(2, 2), torch.randn(2, 2), torch.randn(2, 2) traced = acc_tracer.trace(m, [input, a, b]) ph_in = ph_a = ph_b = mm = add = None for node in traced.graph.nodes: if node.op == "placeholder": if str(node.target) == "a": ph_a = node elif str(node.target) == "b": ph_b = node else: self.assertTrue(str(node.target) == "input") ph_in = node elif node.op == "call_function": if node.target == acc_ops.matmul: self.assertEqual(node.kwargs["input"], ph_a) self.assertEqual(node.kwargs["other"], ph_b) mm = node else: self.assertEqual(node.target, acc_ops.add) self.assertEqual(node.kwargs["input"], mm) self.assertEqual(node.kwargs["other"], ph_in) add = node elif node.op == "output": self.assertEqual(add, node.args[0]) else: self.fail(f"Unexpected node: {node.format_node()}") self.assertTrue(torch.equal(m(input, a, b), traced(input, a, b))) def test_gelu(self): return self._make_acc_op_function_test(acc_ops.gelu, torch.nn.functional.gelu) @parameterized.expand( [ (1, True), (1, False), (None, False), ] ) def test_argmin(self, dim, keepdim): class TestModule(torch.nn.Module): def __init__(self, dim, keepdim): super().__init__() self.dim = dim self.keepdim = keepdim def forward(self, input: torch.Tensor) -> torch.Tensor: return torch.argmin(input, dim=self.dim, keepdim=self.keepdim) m = TestModule(dim, keepdim) input = torch.randn(2, 2) traced = acc_tracer.trace(m, [input]) ph_in = flatten = topk = getitem = squeeze = None for node in traced.graph.nodes: if node.op == "placeholder": self.assertTrue(str(node.target) == "input") ph_in = node elif node.op == "call_function": if node.target == acc_ops.flatten: self.assertEqual(node.kwargs["input"], ph_in) flatten = node elif node.target == acc_ops.topk: self.assertEqual( node.kwargs["input"], flatten if flatten else ph_in ) topk = node elif node.target == acc_ops.getitem: self.assertEqual(node.kwargs["input"], topk) getitem = node elif node.target == acc_ops.squeeze: self.assertEqual(node.kwargs["input"], getitem) squeeze = node elif node.op == "output": self.assertEqual(squeeze if squeeze else getitem, node.args[0]) else: self.fail(f"Unexpected node: {node.format_node()}") if dim is None: self.assertTrue(flatten is not None) if not keepdim: self.assertTrue(squeeze is not None) self.assertTrue(torch.equal(m(input), traced(input))) def test_t(self): """ Test Tensor.t() is traced correctly. """ self._make_acc_op_function_test(acc_ops.permute, lambda x: x.t()) self._make_acc_op_function_test( acc_ops.permute, lambda x: x.t(), input_shape=(3,) ) def test_split_size(self): self._make_acc_op_function_test( acc_ops.split, torch.split, validate_same_kwargs=False, split_size_or_sections=2, dim=1, ) def test_split_sections(self): class TestModule(torch.nn.Module): def forward(self, input: torch.Tensor) -> torch.Tensor: return torch.split(input, [2, 5, 3], 1) m = TestModule() input = torch.randn(1, 10) traced = acc_tracer.trace(m, [input]) ph_in = slice_node_0 = slice_node_1 = slice_node_2 = None tuple_construct_node = None for node in traced.graph.nodes: if node.op == "placeholder": self.assertTrue(str(node.target) == "input") ph_in = node elif node.op == "call_function": if node.target == acc_ops.slice_tensor: self.assertEqual(node.kwargs["input"], ph_in) if slice_node_0: if slice_node_1: slice_node_2 = node else: slice_node_1 = node else: slice_node_0 = node else: self.assertEqual(node.target, acc_ops.tuple_construct) self.assertEqual( node.kwargs["tensors"], (slice_node_0, slice_node_1, slice_node_2), ) tuple_construct_node = node elif node.op == "output": self.assertEqual(tuple_construct_node, node.args[0]) else: self.fail(f"Unexpected node: {node.format_node()}") ref_output = m(input) output = traced(input) for i, j in zip(ref_output, output): self.assertTrue(torch.equal(i, j)) def test_list_input(self): """ Test that list inputs are traced correctly. """ class TestModule(nn.Module): def __init__(self): super().__init__() def forward(self, a: List[torch.Tensor]) -> torch.Tensor: return a[0] + a[1] m = TestModule() input = [torch.randn(2, 3), torch.randn(2, 3)] traced = acc_tracer.trace(m, [input]) ph = getitem_0 = getitem_1 = add = None for node in traced.graph.nodes: if node.op == "placeholder": self.assertEqual(str(node.target), "a") ph = node elif node.op == "call_function" and node.target == acc_ops.getitem: self.assertTrue(node.kwargs["idx"] == 0 or node.kwargs["idx"] == 1) if node.kwargs["idx"] == 0: getitem_0 = node else: getitem_1 = node elif node.op == "call_function": self.assertEqual(node.target, acc_ops.add) self.assertEqual(node.kwargs["input"], getitem_0) self.assertEqual(node.kwargs["other"], getitem_1) add = node elif node.op == "output": self.assertEqual(add, node.args[0]) else: self.fail(f"Unexpected node: {node.format_node()}") # Check the tensor metadatas are correct given the input is a list. self.assertTrue(isinstance(ph.meta["tensor_meta"], list)) self.assertEqual(len(ph.meta["tensor_meta"]), 2) self.assertEqual(getitem_0.meta["tensor_meta"], ph.meta["tensor_meta"][0]) self.assertEqual(getitem_1.meta["tensor_meta"], ph.meta["tensor_meta"][1]) self.assertTrue(torch.equal(m(input), traced(input))) def test_mobilenet_v3(self): """ Test that we can trace mobilenet v3 small and run/compare against the untraced version. """ m = torchvision.models.mobilenet_v3_small(pretrained=True) self._make_model_unit_test(m, enable_allclose=True) def test_mobilenet_v2(self): """ Test that we can trace mobilenet v2 small and run/compare against the untraced version. """ m = torchvision.models.mobilenet_v2(pretrained=True) self._make_model_unit_test(m) def test_vgg16(self): """ Test that we can trace vgg16 and run/compare against the untraced version. """ m = torchvision.models.vgg16(pretrained=True) self._make_model_unit_test(m) def test_resnet18(self): """ Test that we can trace resnet18 and run/compare against the untraced version. """ m = torchvision.models.resnet18(pretrained=True) self._make_model_unit_test(m) def test_resnext50_32x4d(self): """ Test that we can trace resnext and run/compare against the untraced version. """ m = torchvision.models.resnext50_32x4d(pretrained=True) self._make_model_unit_test(m) def test_cumsum(self): self._make_acc_op_function_test(acc_ops.cumsum, torch.cumsum, dim=1) self._make_acc_op_function_test( acc_ops.cumsum, torch.cumsum, dim=1, dtype=torch.float ) def test_chunk(self): self._make_acc_op_function_test(acc_ops.chunk, torch.chunk, chunks=2, dim=0) def test_all_acc_ops_registered(self): self.assertEqual( acc_normalizer._acc_ops, { acc_ops.linear, acc_ops.max_pool2d, acc_ops.flatten, acc_ops.adaptive_avg_pool2d, acc_ops.avg_pool2d, acc_ops.add, acc_ops.min_full_reduce, acc_ops.min_dim_reduce, acc_ops.minimum, acc_ops.cat, acc_ops.softmax, acc_ops.sign, acc_ops.permute, acc_ops.matmul, acc_ops.quantize_per_tensor, acc_ops.quantize_per_channel, acc_ops.quantized_add, acc_ops.quantized_mul, acc_ops.dequantize, acc_ops.sub, acc_ops.mul, acc_ops.div, acc_ops.floor_div, acc_ops.trunc_div, acc_ops.pow, acc_ops.relu, acc_ops.leaky_relu, acc_ops.elu, acc_ops.selu, acc_ops.softsign, acc_ops.tuple_construct, acc_ops.unsqueeze, acc_ops.sigmoid, acc_ops.sum, acc_ops.max_full_reduce, acc_ops.max_dim_reduce, acc_ops.maximum, acc_ops.sinh, acc_ops.cosh, acc_ops.tanh, acc_ops.asin, acc_ops.acos, acc_ops.atan, acc_ops.exp, acc_ops.log, acc_ops.sqrt, acc_ops.reciprocal, acc_ops.abs, acc_ops.neg, acc_ops.floor, acc_ops.ceil, acc_ops.size, acc_ops.split, acc_ops.conv2d, acc_ops.batch_norm, acc_ops.embedding_bag, acc_ops.embedding_bag_byte_rowwise_offsets, acc_ops.embedding_bag_4bit_rowwise_offsets, acc_ops.contiguous, acc_ops.pad, acc_ops.sin, acc_ops.cos, acc_ops.tan, acc_ops.topk, acc_ops.getitem, acc_ops.squeeze, acc_ops.tile, acc_ops.reshape, acc_ops.quantized_linear, acc_ops.quantized_conv2d, acc_ops.quantized_batch_norm2d, acc_ops.to_dtype, acc_ops.clamp, acc_ops.layer_norm, acc_ops.linalg_norm, acc_ops.slice_tensor, acc_ops.hardsigmoid, acc_ops.mean, acc_ops.hardtanh, acc_ops.gelu, acc_ops.cumsum, acc_ops.chunk, acc_ops.rescale_quantize_per_tensor, acc_ops.rescale_quantize_per_channel, }, )
37.861809
108
0.534528
7949765f7f07f52e54996497b9e2297b439e784d
1,082
py
Python
body_temp_from_external/conv_core_temp.py
SoftwareDevEngResearch/body_temp_from_external
2f560ccc51e9f3c5bde25630b811586972fe884c
[ "MIT" ]
1
2020-02-15T05:30:07.000Z
2020-02-15T05:30:07.000Z
body_temp_from_external/conv_core_temp.py
SoftwareDevEngResearch/body_temp_from_external
2f560ccc51e9f3c5bde25630b811586972fe884c
[ "MIT" ]
null
null
null
body_temp_from_external/conv_core_temp.py
SoftwareDevEngResearch/body_temp_from_external
2f560ccc51e9f3c5bde25630b811586972fe884c
[ "MIT" ]
3
2018-04-18T23:39:00.000Z
2020-03-15T14:46:20.000Z
#!/usr/bin/env python # Author: Makenzie Brian # Date: April 23, 2018 # Class: ME 599 # File: conv_core_temp.py # Description: converts csv to estimated core temperature def conv_file(file): """converts csv to array for use in later functions args: filename as .csv""" with open(file, 'r') as f1: file_contents = [] for line in f1: file_contents.append(line.strip().split(",")) # strip \n and split into values to put in array return file_contents def conv_core_temperature(temp_array): """converts array of temperature values to an average value args: array of temperatures as floats or ints""" average_temp = float(sum(temp_array)) / float(max(temp_array)) est_core_temp = average_temp * 1.052 # bad est b/c need external tmp etc. # core_temp = skin_temp + (heat_flux * (d/lambda) but can't get d and lamba sooooo # upon further inspection may need to have it learn this based on known datasets.... if est_core_temp < 0: return "INVALID VALUE" else: return est_core_temp
31.823529
107
0.676525
7949772a970b146a5acf5d7c83a9b3f8ea54785c
49,865
py
Python
parser_email.py
splunk-soar-connectors/parser
6c7bf67590dd09a0b6a6182eb56312531f1fef09
[ "Apache-2.0" ]
null
null
null
parser_email.py
splunk-soar-connectors/parser
6c7bf67590dd09a0b6a6182eb56312531f1fef09
[ "Apache-2.0" ]
5
2022-01-07T23:27:42.000Z
2022-02-03T03:27:17.000Z
parser_email.py
splunk-soar-connectors/parser
6c7bf67590dd09a0b6a6182eb56312531f1fef09
[ "Apache-2.0" ]
1
2022-03-15T00:22:02.000Z
2022-03-15T00:22:02.000Z
# File: parser_email.py # # Copyright (c) 2017-2022 Splunk Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, # either express or implied. See the License for the specific language governing permissions # and limitations under the License. import email import hashlib import mimetypes import operator import os import re import shutil import socket import sys import tempfile from collections import OrderedDict from email.header import decode_header, make_header from html import unescape from urllib.parse import urlparse import magic import phantom.app as phantom import phantom.rules as ph_rules import phantom.utils as ph_utils import simplejson as json from bs4 import BeautifulSoup, UnicodeDammit from django.core.validators import URLValidator from phantom.vault import Vault from requests.structures import CaseInsensitiveDict # Any globals added here, should be initialized in the init() function _base_connector = None _config = dict() _email_id_contains = list() _container = dict() _artifacts = list() _attachments = list() _python_version = None _tmp_dirs = list() _container_common = { "run_automation": False # Don't run any playbooks, when this artifact is added } _artifact_common = { "run_automation": False # Don't run any playbooks, when this artifact is added } FILE_EXTENSIONS = { '.vmsn': ['os memory dump', 'vm snapshot file'], '.vmss': ['os memory dump', 'vm suspend file'], '.js': ['javascript'], '.doc': ['doc'], '.docx': ['doc'], '.xls': ['xls'], '.xlsx': ['xls'], } MAGIC_FORMATS = [ (re.compile('^PE.* Windows'), ['pe file', 'hash']), (re.compile('^MS-DOS executable'), ['pe file', 'hash']), (re.compile('^PDF '), ['pdf']), (re.compile('^MDMP crash'), ['process dump']), (re.compile('^Macromedia Flash'), ['flash']), ] PARSER_DEFAULT_ARTIFACT_COUNT = 100 PARSER_DEFAULT_CONTAINER_COUNT = 100 HASH_FIXED_PHANTOM_VERSION = "2.0.201" OFFICE365_APP_ID = "a73f6d32-c9d5-4fec-b024-43876700daa6" EXCHANGE_ONPREM_APP_ID = "badc5252-4a82-4a6d-bc53-d1e503857124" IMAP_APP_ID = "9f2e9f72-b0e5-45d6-92a7-09ef820476c1" PROC_EMAIL_JSON_FILES = "files" PROC_EMAIL_JSON_BODIES = "bodies" PROC_EMAIL_JSON_DATE = "date" PROC_EMAIL_JSON_FROM = "from" PROC_EMAIL_JSON_SUBJECT = "subject" PROC_EMAIL_JSON_TO = "to" PROC_EMAIL_JSON_START_TIME = "start_time" PROC_EMAIL_JSON_EXTRACT_ATTACHMENTS = "extract_attachments" PROC_EMAIL_JSON_EXTRACT_URLS = "extract_urls" PROC_EMAIL_JSON_EXTRACT_IPS = "extract_ips" PROC_EMAIL_JSON_EXTRACT_DOMAINS = "extract_domains" PROC_EMAIL_JSON_EXTRACT_HASHES = "extract_hashes" PROC_EMAIL_JSON_RUN_AUTOMATION = "run_automation" PROC_EMAIL_JSON_IPS = "ips" PROC_EMAIL_JSON_HASHES = "hashes" PROC_EMAIL_JSON_URLS = "urls" PROC_EMAIL_JSON_DOMAINS = "domains" PROC_EMAIL_JSON_MSG_ID = "message_id" PROC_EMAIL_JSON_EMAIL_HEADERS = "email_headers" PROC_EMAIL_CONTENT_TYPE_MESSAGE = "message/rfc822" URI_REGEX = r"h(?:tt|xx)p[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+#]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+" EMAIL_REGEX = r"\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\b" EMAIL_REGEX2 = r'".*"@[A-Z0-9.-]+\.[A-Z]{2,}\b' HASH_REGEX = r"\b[0-9a-fA-F]{32}\b|\b[0-9a-fA-F]{40}\b|\b[0-9a-fA-F]{64}\b" IP_REGEX = r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}' IPV6_REGEX = r'\s*((([0-9A-Fa-f]{1,4}:){7}([0-9A-Fa-f]{1,4}|:))|' IPV6_REGEX += r'(([0-9A-Fa-f]{1,4}:){6}(:[0-9A-Fa-f]{1,4}|((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)' IPV6_REGEX += r'(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3})|:))' IPV6_REGEX += r'|(([0-9A-Fa-f]{1,4}:){5}(((:[0-9A-Fa-f]{1,4}){1,2})' IPV6_REGEX += r'|:((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3})|:))|' IPV6_REGEX += r'(([0-9A-Fa-f]{1,4}:){4}(((:[0-9A-Fa-f]{1,4}){1,3})' IPV6_REGEX += r'|((:[0-9A-Fa-f]{1,4})?:((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3}))|:))|' IPV6_REGEX += r'(([0-9A-Fa-f]{1,4}:){3}(((:[0-9A-Fa-f]{1,4}){1,4})' IPV6_REGEX += r'|((:[0-9A-Fa-f]{1,4}){0,2}:((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)' IPV6_REGEX += r'(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3}))|:))|' IPV6_REGEX += r'(([0-9A-Fa-f]{1,4}:){2}(((:[0-9A-Fa-f]{1,4}){1,5})' IPV6_REGEX += r'|((:[0-9A-Fa-f]{1,4}){0,3}:((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)' IPV6_REGEX += r'(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3}))|:))|' IPV6_REGEX += r'(([0-9A-Fa-f]{1,4}:){1}(((:[0-9A-Fa-f]{1,4}){1,6})' IPV6_REGEX += r'|((:[0-9A-Fa-f]{1,4}){0,4}:((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)' IPV6_REGEX += r'(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3}))|:))|' IPV6_REGEX += r'(:(((:[0-9A-Fa-f]{1,4}){1,7})|((:[0-9A-Fa-f]{1,4}){0,5}:((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)' IPV6_REGEX += r'(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3}))|:)))(%.+)?\s*' DEFAULT_SINGLE_PART_EML_FILE_NAME = 'part_1.text' def _get_string(input_str, charset): global _python_version try: if input_str: if _python_version == 2: input_str = UnicodeDammit(input_str).unicode_markup.encode(charset) else: input_str = UnicodeDammit(input_str).unicode_markup.encode(charset).decode(charset) except Exception: try: input_str = str(make_header(decode_header(input_str))) except Exception: input_str = _decode_uni_string(input_str, input_str) _base_connector.debug_print( "Error occurred while converting to string with specific encoding {}".format(input_str)) return input_str def _get_error_message_from_exception(e): """ This method is used to get appropriate error message from the exception. :param e: Exception object :return: error message """ try: if e.args: if len(e.args) > 1: error_code = e.args[0] error_msg = e.args[1] elif len(e.args) == 1: error_code = "Error code unavailable" error_msg = e.args[0] else: error_code = "Error code unavailable" error_msg = "Error message unavailable. Please check the asset configuration and|or action parameters." except Exception: error_code = "Error code unavailable" error_msg = "Error message unavailable. Please check the asset configuration and|or action parameters." return error_code, error_msg def _is_ip(input_ip): if ph_utils.is_ip(input_ip): return True if is_ipv6(input_ip): return True return False def _refang_url(url): parsed = urlparse(url) scheme = parsed.scheme # Replace hxxp/hxxps with http/https if scheme == "hxxp": parsed = parsed._replace(scheme='http') elif scheme == "hxxps": parsed = parsed._replace(scheme='https') refang_url = parsed.geturl() return refang_url def _clean_url(url): url = url.strip('>),.]\r\n') # Check before splicing, find returns -1 if not found # _and_ you will end up splicing on -1 (incorrectly) if '<' in url: url = url[:url.find('<')] if '>' in url: url = url[:url.find('>')] url = _refang_url(url) return url def is_ipv6(input_ip): try: socket.inet_pton(socket.AF_INET6, input_ip) except Exception: # not a valid v6 address return False return True uri_regexc = re.compile(URI_REGEX) email_regexc = re.compile(EMAIL_REGEX, re.IGNORECASE) email_regexc2 = re.compile(EMAIL_REGEX2, re.IGNORECASE) hash_regexc = re.compile(HASH_REGEX) ip_regexc = re.compile(IP_REGEX) ipv6_regexc = re.compile(IPV6_REGEX) def _get_file_contains(file_path): contains = [] ext = os.path.splitext(file_path)[1] contains.extend(FILE_EXTENSIONS.get(ext, [])) magic_str = magic.from_file(file_path) for regex, cur_contains in MAGIC_FORMATS: if regex.match(magic_str): contains.extend(cur_contains) return contains def _debug_print(*args): if _base_connector and hasattr(_base_connector, 'debug_print'): _base_connector.debug_print(*args) return def _extract_urls_domains(file_data, urls, domains): if (not _config[PROC_EMAIL_JSON_EXTRACT_DOMAINS]) and (not _config[PROC_EMAIL_JSON_EXTRACT_URLS]): return # try to load the email try: soup = BeautifulSoup(file_data, "html.parser") except Exception as e: error_code, error_msg = _get_error_message_from_exception(e) err = "Error Code: {0}. Error Message: {1}".format(error_code, error_msg) _debug_print("Handled exception", err) return uris = [] # get all tags that have hrefs and srcs links = soup.find_all(href=True) srcs = soup.find_all(src=True) if links or srcs: uri_text = [] if links: for x in links: # work on the text part of the link, they might be http links different from the href # and were either missed by the uri_regexc while parsing text or there was no text counterpart # in the email uri_text.append(_clean_url(x.get_text())) # it's html, so get all the urls if not x['href'].startswith('mailto:'): uris.append(x['href']) if srcs: for x in srcs: uri_text.append(_clean_url(x.get_text())) # it's html, so get all the urls uris.append(x['src']) if uri_text: uri_text = [x for x in uri_text if x.startswith('http')] if uri_text: uris.extend(uri_text) else: # To unescape html escaped body file_data = unescape(file_data) # Parse it as a text file uris = re.findall(uri_regexc, file_data) if uris: uris = [_clean_url(x) for x in uris] validate_url = URLValidator(schemes=['http', 'https']) validated_urls = list() for url in uris: try: validate_url(url) validated_urls.append(url) except Exception: pass if _config[PROC_EMAIL_JSON_EXTRACT_URLS]: # add the uris to the urls urls |= set(validated_urls) if _config[PROC_EMAIL_JSON_EXTRACT_DOMAINS]: for uri in validated_urls: domain = phantom.get_host_from_url(uri) if domain and not _is_ip(domain): domains.add(domain) # work on any mailto urls if present if links: mailtos = [x['href'] for x in links if x['href'].startswith('mailto:')] for curr_email in mailtos: domain = curr_email[curr_email.find('@') + 1:] if domain and not _is_ip(domain): domains.add(domain) return def _get_ips(file_data, ips): # First extract what looks like an IP from the file, this is a faster operation ips_in_mail = re.findall(ip_regexc, file_data) ip6_in_mail = re.findall(ipv6_regexc, file_data) if ip6_in_mail: for ip6_tuple in ip6_in_mail: ip6s = [x for x in ip6_tuple if x] ips_in_mail.extend(ip6s) # Now validate them if ips_in_mail: ips_in_mail = set(ips_in_mail) # match it with a slower and difficult regex. # TODO: Fix this with a one step approach. ips_in_mail = [x for x in ips_in_mail if _is_ip(x)] if ips_in_mail: ips |= set(ips_in_mail) def _handle_body(body, parsed_mail, body_index, email_id): local_file_path = body['file_path'] charset = body.get('charset') ips = parsed_mail[PROC_EMAIL_JSON_IPS] hashes = parsed_mail[PROC_EMAIL_JSON_HASHES] urls = parsed_mail[PROC_EMAIL_JSON_URLS] domains = parsed_mail[PROC_EMAIL_JSON_DOMAINS] file_data = None try: with open(local_file_path, 'r') as f: file_data = f.read() except Exception: with open(local_file_path, 'rb') as f: file_data = f.read() _debug_print("Reading file data using binary mode") if (file_data is None) or (len(file_data) == 0): return phantom.APP_ERROR file_data = UnicodeDammit(file_data).unicode_markup.encode('utf-8').decode('utf-8') _parse_email_headers_as_inline(file_data, parsed_mail, charset, email_id) if _config[PROC_EMAIL_JSON_EXTRACT_DOMAINS]: emails = [] emails.extend(re.findall(email_regexc, file_data)) emails.extend(re.findall(email_regexc2, file_data)) for curr_email in emails: domain = curr_email[curr_email.rfind('@') + 1:] if domain and not ph_utils.is_ip(domain): domains.add(domain) _extract_urls_domains(file_data, urls, domains) if _config[PROC_EMAIL_JSON_EXTRACT_IPS]: _get_ips(file_data, ips) if _config[PROC_EMAIL_JSON_EXTRACT_HASHES]: hashs_in_mail = re.findall(hash_regexc, file_data) if hashs_in_mail: hashes |= set(hashs_in_mail) return phantom.APP_SUCCESS def _add_artifacts(cef_key, input_set, artifact_name, start_index, artifacts): added_artifacts = 0 for entry in input_set: # ignore empty entries if not entry: continue artifact = {} artifact.update(_artifact_common) artifact['source_data_identifier'] = start_index + added_artifacts artifact['cef'] = {cef_key: entry} artifact['name'] = artifact_name _debug_print('Artifact:', artifact) artifacts.append(artifact) added_artifacts += 1 return added_artifacts def _parse_email_headers_as_inline(file_data, parsed_mail, charset, email_id): # remove the 'Forwarded Message' from the email text and parse it p = re.compile(r'(?<=\r\n).*Forwarded Message.*\r\n', re.IGNORECASE) email_text = p.sub('', file_data.strip()) mail = email.message_from_string(email_text) # Get the array # email_headers = parsed_mail[PROC_EMAIL_JSON_EMAIL_HEADERS] _parse_email_headers(parsed_mail, mail, charset, add_email_id=email_id) # email_headers.append(mail.items()) return phantom.APP_SUCCESS def _add_email_header_artifacts(email_header_artifacts, start_index, artifacts): added_artifacts = 0 for artifact in email_header_artifacts: artifact['source_data_identifier'] = start_index + added_artifacts artifacts.append(artifact) added_artifacts += 1 return added_artifacts def _create_artifacts(parsed_mail): # get all the artifact data in their own list objects ips = parsed_mail[PROC_EMAIL_JSON_IPS] hashes = parsed_mail[PROC_EMAIL_JSON_HASHES] urls = parsed_mail[PROC_EMAIL_JSON_URLS] domains = parsed_mail[PROC_EMAIL_JSON_DOMAINS] email_headers = parsed_mail[PROC_EMAIL_JSON_EMAIL_HEADERS] # set the default artifact dict artifact_id = 0 # add artifacts added_artifacts = _add_artifacts('sourceAddress', ips, 'IP Artifact', artifact_id, _artifacts) artifact_id += added_artifacts added_artifacts = _add_artifacts('fileHash', hashes, 'Hash Artifact', artifact_id, _artifacts) artifact_id += added_artifacts added_artifacts = _add_artifacts('requestURL', urls, 'URL Artifact', artifact_id, _artifacts) artifact_id += added_artifacts # domains = [x.decode('idna') for x in domains] added_artifacts = _add_artifacts('destinationDnsDomain', domains, 'Domain Artifact', artifact_id, _artifacts) artifact_id += added_artifacts added_artifacts = _add_email_header_artifacts(email_headers, artifact_id, _artifacts) artifact_id += added_artifacts return phantom.APP_SUCCESS def _decode_uni_string(input_str, def_name): # try to find all the decoded strings, we could have multiple decoded strings # or a single decoded string between two normal strings separated by \r\n # YEAH...it could get that messy encoded_strings = re.findall(r'=\?.*?\?=', input_str, re.I) # return input_str as is, no need to do any conversion if not encoded_strings: return input_str # get the decoded strings try: decoded_strings = [decode_header(x)[0] for x in encoded_strings] decoded_strings = [{'value': x[0], 'encoding': x[1]} for x in decoded_strings] except Exception as e: error_code, error_msg = _get_error_message_from_exception(e) _debug_print("Decoding: {0}. Error code: {1}. Error message: {2}".format(encoded_strings, error_code, error_msg)) return def_name # convert to dict for safe access, if it's an empty list, the dict will be empty decoded_strings = dict(enumerate(decoded_strings)) new_str = '' new_str_create_count = 0 for i, encoded_string in enumerate(encoded_strings): decoded_string = decoded_strings.get(i) if not decoded_string: # nothing to replace with continue value = decoded_string.get('value') encoding = decoded_string.get('encoding') if not encoding or not value: # nothing to replace with continue try: if encoding != 'utf-8': value = str(value, encoding) except Exception: pass try: # commenting the existing approach due to a new approach being deployed below # substitute the encoded string with the decoded one # input_str = input_str.replace(encoded_string, value) # make new string insted of replacing in the input string because issue find in PAPP-9531 if value: new_str += UnicodeDammit(value).unicode_markup new_str_create_count += 1 except Exception: pass # replace input string with new string because issue find in PAPP-9531 if new_str and new_str_create_count == len(encoded_strings): _debug_print("Creating a new string entirely from the encoded_strings and assiging into input_str") input_str = new_str return input_str def _get_container_name(parsed_mail, email_id): # Create the default name def_cont_name = "Email ID: {0}".format(email_id) # get the subject from the parsed mail subject = parsed_mail.get(PROC_EMAIL_JSON_SUBJECT) # if no subject then return the default if not subject: return def_cont_name try: return str(make_header(decode_header(subject))) except Exception: return _decode_uni_string(subject, def_cont_name) def _handle_if_body(content_disp, content_id, content_type, part, bodies, file_path, parsed_mail, file_name): process_as_body = False # if content disposition is None then assume that it is if content_disp is None: process_as_body = True # if content disposition is inline elif content_disp.lower().strip() == 'inline': if ('text/html' in content_type) or ('text/plain' in content_type): process_as_body = True if not process_as_body: return phantom.APP_SUCCESS, True part_payload = part.get_payload(decode=True) if not part_payload: return phantom.APP_SUCCESS, False charset = part.get_content_charset() with open(file_path, 'wb') as f: f.write(part_payload) bodies.append({'file_path': file_path, 'charset': charset, 'content-type': content_type}) _add_body_in_email_headers(parsed_mail, file_path, charset, content_type, file_name) return phantom.APP_SUCCESS, False def _handle_part(part, part_index, tmp_dir, extract_attach, parsed_mail): bodies = parsed_mail[PROC_EMAIL_JSON_BODIES] # get the file_name file_name = part.get_filename() content_disp = part.get('Content-Disposition') content_type = part.get('Content-Type') content_id = part.get('Content-ID') if file_name is None: # init name and extension to default values name = "part_{0}".format(part_index) extension = ".{0}".format(part_index) # Try to create an extension from the content type if possible if content_type is not None: extension = mimetypes.guess_extension(re.sub(';.*', '', content_type)) # Try to create a name from the content id if possible if content_id is not None: name = content_id file_name = "{0}{1}".format(name, extension) else: try: file_name = str(make_header(decode_header(file_name))) except Exception: file_name = _decode_uni_string(file_name, file_name) # Remove any chars that we don't want in the name try: file_path = "{0}/{1}_{2}".format(tmp_dir, part_index, file_name.translate(None, ''.join(['<', '>', ' ']))) except TypeError: # py3 file_path = "{0}/{1}_{2}".format(tmp_dir, part_index, file_name.translate( file_name.maketrans('', '', ''.join(['<', '>', ' '])))) _debug_print("file_path: {0}".format(file_path)) # is the part representing the body of the email status, process_further = _handle_if_body( content_disp, content_id, content_type, part, bodies, file_path, parsed_mail, file_name) if not process_further: return phantom.APP_SUCCESS # is this another email as an attachment if (content_type is not None) and (content_type.find(PROC_EMAIL_CONTENT_TYPE_MESSAGE) != -1): return phantom.APP_SUCCESS # # This is an attachment, first check if it is another email or not if extract_attach: _handle_attachment(part, file_name, file_path, parsed_mail) return phantom.APP_SUCCESS def _handle_attachment(part, file_name, file_path, parsed_mail): files = parsed_mail[PROC_EMAIL_JSON_FILES] if not _config[PROC_EMAIL_JSON_EXTRACT_ATTACHMENTS]: return phantom.APP_SUCCESS part_base64_encoded = part.get_payload() headers = _get_email_headers_from_part(part) attach_meta_info = dict() if headers: attach_meta_info = {'headers': dict(headers)} for curr_attach in _attachments: if curr_attach.get('should_ignore', False): continue try: attach_content = curr_attach['content'] except Exception: continue if attach_content.strip().replace('\r\n', '') == part_base64_encoded.strip().replace('\r\n', ''): attach_meta_info.update(dict(curr_attach)) del attach_meta_info['content'] curr_attach['should_ignore'] = True part_payload = part.get_payload(decode=True) if not part_payload: return phantom.APP_SUCCESS try: with open(file_path, 'wb') as f: f.write(part_payload) except IOError as e: error_code, error_msg = _get_error_message_from_exception(e) try: if "File name too long" in error_msg: new_file_name = "ph_long_file_name_temp" file_path = "{}{}".format(remove_child_info(file_path).rstrip( file_name.replace('<', '').replace('>', '').replace(' ', '')), new_file_name) _debug_print("Original filename: {}".format(file_name)) _base_connector.debug_print( "Modified filename: {}".format(new_file_name)) with open(file_path, 'wb') as long_file: long_file.write(part_payload) else: _debug_print( "Error occurred while adding file to Vault. Error Details: {}".format(error_msg)) return except Exception as e: error_code, error_msg = _get_error_message_from_exception(e) _debug_print( "Error occurred while adding file to Vault. Error Details: {}".format(error_msg)) return except Exception as e: error_code, error_msg = _get_error_message_from_exception(e) _debug_print( "Error occurred while adding file to Vault. Error Details: {}".format(error_msg)) return file_hash = hashlib.sha1(part_payload).hexdigest() files.append({'file_name': file_name, 'file_path': file_path, 'file_hash': file_hash, 'meta_info': attach_meta_info}) def remove_child_info(file_path): if file_path.endswith('_True'): return file_path.rstrip('_True') else: return file_path.rstrip('_False') def _get_email_headers_from_part(part, charset=None): email_headers = list(part.items()) # TODO: the next 2 ifs can be condensed to use 'or' if charset is None: charset = part.get_content_charset() if charset is None: charset = 'utf8' if not email_headers: return {} # Convert the header tuple into a dictionary headers = CaseInsensitiveDict() try: [headers.update({x[0]: _get_string(x[1], charset)}) for x in email_headers] except Exception as e: error_code, error_msg = _get_error_message_from_exception(e) err = "Error occurred while converting the header tuple into a dictionary" _debug_print("{}. {}. {}".format(err, error_code, error_msg)) # Handle received seperately try: received_headers = [_get_string(x[1], charset) for x in email_headers if x[0].lower() == 'received'] except Exception as e: error_code, error_msg = _get_error_message_from_exception(e) err = "Error occurred while handling the received header tuple separately" _debug_print("{}. {}. {}".format(err, error_code, error_msg)) if received_headers: headers['Received'] = received_headers # handle the subject string, if required add a new key subject = headers.get('Subject') if subject: try: headers['decodedSubject'] = str(make_header(decode_header(subject))) except Exception: headers['decodedSubject'] = _decode_uni_string(subject, subject) return dict(headers) def _parse_email_headers(parsed_mail, part, charset=None, add_email_id=None): global _email_id_contains email_header_artifacts = parsed_mail[PROC_EMAIL_JSON_EMAIL_HEADERS] headers = _get_email_headers_from_part(part, charset) if not headers: return 0 # Parse email keys first cef_artifact = {} cef_types = {} if headers.get('From'): emails = headers['From'] if emails: cef_artifact.update({'fromEmail': emails}) if headers.get('To'): emails = headers['To'] if emails: cef_artifact.update({'toEmail': emails}) message_id = headers.get('Message-ID') # if the header did not contain any email addresses and message ID then ignore this artifact if not cef_artifact and not message_id: return 0 cef_types.update({'fromEmail': ['email'], 'toEmail': ['email']}) if headers: cef_artifact['emailHeaders'] = headers # Adding the email id as a cef artifact crashes the UI when trying to show the action dialog box # so not adding this right now. All the other code to process the emailId is there, but the refraining # from adding the emailId # add_email_id = False if add_email_id: cef_artifact['emailId'] = add_email_id if _email_id_contains: cef_types.update({'emailId': _email_id_contains}) artifact = {} artifact.update(_artifact_common) artifact['name'] = 'Email Artifact' artifact['cef'] = cef_artifact artifact['cef_types'] = cef_types email_header_artifacts.append(artifact) return len(email_header_artifacts) def _add_body_in_email_headers(parsed_mail, file_path, charset, content_type, file_name): if not content_type: _debug_print('Unable to update email headers with the invalid content_type {}'.format(content_type)) return # Add email_bodies to email_headers email_headers = parsed_mail[PROC_EMAIL_JSON_EMAIL_HEADERS] try: with open(file_path, 'r') as f: body_content = f.read() except Exception: with open(file_path, 'rb') as f: body_content = f.read() _debug_print("Reading file data using binary mode") # Add body to the last added Email artifact body_content = UnicodeDammit(body_content).unicode_markup.encode('utf-8').decode('utf-8').replace('\u0000', '') _debug_print('Processing email part with content_type: {}'.format(content_type)) IMAGE_CONTENT_TYPES = ['image/jpeg', 'image/png'] if any(t for t in IMAGE_CONTENT_TYPES if t in content_type): _debug_print('Saving image {} to files'.format(file_name)) try: file_hash = hashlib.sha1(body_content.encode()).hexdigest() files = parsed_mail[PROC_EMAIL_JSON_FILES] files.append({'file_name': file_name, 'file_path': file_path, 'file_hash': file_hash}) except Exception as e: _debug_print("Error occurred while adding file {} to files. Error Details: {}".format(file_name, e)) return if 'text/plain' in content_type: try: email_headers[-1]['cef']['bodyText'] = _get_string( body_content, charset) except Exception as e: try: email_headers[-1]['cef']['bodyText'] = str(make_header(decode_header(body_content))) except Exception: email_headers[-1]['cef']['bodyText'] = _decode_uni_string(body_content, body_content) error_code, error_msg = _get_error_message_from_exception(e) err = "Error occurred while parsing text/plain body content for creating artifacts" _debug_print("{}. {}. {}".format(err, error_code, error_msg)) elif 'text/html' in content_type: try: email_headers[-1]['cef']['bodyHtml'] = _get_string( body_content, charset) except Exception as e: try: email_headers[-1]['cef']['bodyHtml'] = str(make_header(decode_header(body_content))) except Exception: email_headers[-1]['cef']['bodyHtml'] = _decode_uni_string(body_content, body_content) error_code, error_msg = _get_error_message_from_exception(e) err = "Error occurred while parsing text/html body content for creating artifacts" _debug_print("{}. {}. {}".format(err, error_code, error_msg)) else: if not email_headers[-1]['cef'].get('bodyOther'): email_headers[-1]['cef']['bodyOther'] = {} try: email_headers[-1]['cef']['bodyOther'][content_type] = _get_string( body_content, charset) except Exception as e: try: email_headers[-1]['cef']['bodyOther'][content_type] = str(make_header(decode_header(body_content))) except Exception: email_headers[-1]['cef']['bodyOther'][content_type] = _decode_uni_string(body_content, body_content) error_code, error_msg = _get_error_message_from_exception(e) err = "Error occurred while parsing bodyOther content for creating artifacts" _debug_print("{}. {}. {}".format(err, error_code, error_msg)) def _handle_mail_object(mail, email_id, rfc822_email, tmp_dir, start_time_epoch): parsed_mail = OrderedDict() # Create a tmp directory for this email, will extract all files here tmp_dir = tmp_dir if not os.path.exists(tmp_dir): os.makedirs(tmp_dir) extract_attach = _config[PROC_EMAIL_JSON_EXTRACT_ATTACHMENTS] charset = mail.get_content_charset() _debug_print('mail file_name: {}'.format(mail.get_filename())) _debug_print('mail charset: {}'.format(charset)) _debug_print('mail subject: {}'.format(mail.get('Subject', ''))) if charset is None: charset = 'utf8' # Extract fields and place it in a dictionary parsed_mail[PROC_EMAIL_JSON_SUBJECT] = mail.get('Subject', '') parsed_mail[PROC_EMAIL_JSON_FROM] = mail.get('From', '') parsed_mail[PROC_EMAIL_JSON_TO] = mail.get('To', '') parsed_mail[PROC_EMAIL_JSON_DATE] = mail.get('Date', '') parsed_mail[PROC_EMAIL_JSON_MSG_ID] = mail.get('Message-ID', '') parsed_mail[PROC_EMAIL_JSON_FILES] = files = [] parsed_mail[PROC_EMAIL_JSON_BODIES] = bodies = [] parsed_mail[PROC_EMAIL_JSON_START_TIME] = start_time_epoch parsed_mail[PROC_EMAIL_JSON_EMAIL_HEADERS] = [] # parse the parts of the email if mail.is_multipart(): for i, part in enumerate(mail.walk()): add_email_id = None if i == 0: add_email_id = email_id _parse_email_headers(parsed_mail, part, add_email_id=add_email_id) # parsed_mail[PROC_EMAIL_JSON_EMAIL_HEADERS].append(part.items()) if part.is_multipart(): continue try: ret_val = _handle_part(part, i, tmp_dir, extract_attach, parsed_mail) except Exception as e: error_code, error_msg = _get_error_message_from_exception(e) err = "Error Code: {0}. Error Message: {1}".format(error_code, error_msg) _debug_print("ErrorExp in _handle_part # {0}".format(i), err) continue if phantom.is_fail(ret_val): continue else: _parse_email_headers(parsed_mail, mail, add_email_id=email_id) # parsed_mail[PROC_EMAIL_JSON_EMAIL_HEADERS].append(mail.items()) file_path = "{0}/{1}".format(tmp_dir, DEFAULT_SINGLE_PART_EML_FILE_NAME) file_name = mail.get_filename() or mail.get('Subject', DEFAULT_SINGLE_PART_EML_FILE_NAME) with open(file_path, 'wb') as f: f.write(mail.get_payload(decode=True)) bodies.append({'file_path': file_path, 'charset': mail.get_content_charset(), 'content-type': 'text/plain'}) _add_body_in_email_headers(parsed_mail, file_path, mail.get_content_charset(), 'text/plain', file_name) # get the container name container_name = _get_container_name(parsed_mail, email_id) if container_name is None: return phantom.APP_ERROR # Add the container # first save the container, to do that copy things from parsed_mail to a new object container = {} container_data = dict(parsed_mail) # delete the header info, we don't make it a part of the container json del(container_data[PROC_EMAIL_JSON_EMAIL_HEADERS]) container.update(_container_common) _container['source_data_identifier'] = email_id _container['name'] = container_name _container['data'] = {'raw_email': rfc822_email} # Create the sets before handling the bodies If both the bodies add the same ip # only one artifact should be created parsed_mail[PROC_EMAIL_JSON_IPS] = set() parsed_mail[PROC_EMAIL_JSON_HASHES] = set() parsed_mail[PROC_EMAIL_JSON_URLS] = set() parsed_mail[PROC_EMAIL_JSON_DOMAINS] = set() # For bodies for i, body in enumerate(bodies): if not body: continue try: _handle_body(body, parsed_mail, i, email_id) except Exception as e: error_code, error_msg = _get_error_message_from_exception(e) err = "Error Code: {0}. Error Message: {1}".format(error_code, error_msg) _debug_print("ErrorExp in _handle_body # {0}: {1}".format(i, err)) continue # Files _attachments.extend(files) _create_artifacts(parsed_mail) return phantom.APP_SUCCESS def _init(): global _base_connector global _config global _container global _artifacts global _attachments global _email_id_contains global _python_version _base_connector = None _email_id_contains = list() _config = None _container = dict() _artifacts = list() _attachments = list() try: _python_version = int(sys.version_info[0]) except Exception: raise Exception("Error occurred while getting the Phantom server's Python major version.") def _set_email_id_contains(email_id): global _base_connector global _email_id_contains if not _base_connector: return try: email_id = _get_string(email_id, 'utf-8') except Exception: email_id = str(email_id) _base_connector.debug_print(email_id) if _base_connector.get_app_id() == EXCHANGE_ONPREM_APP_ID and email_id.endswith('='): _email_id_contains = ["exchange email id"] elif _base_connector.get_app_id() == OFFICE365_APP_ID and email_id.endswith('='): _email_id_contains = ["office 365 email id"] elif _base_connector.get_app_id() == IMAP_APP_ID and email_id.isdigit(): _email_id_contains = ["imap email id"] elif ph_utils.is_sha1(email_id): _email_id_contains = ["vault id"] _base_connector.debug_print(_email_id_contains) return def _del_tmp_dirs(): """Remove any tmp_dirs that were created.""" global _tmp_dirs for tmp_dir in _tmp_dirs: shutil.rmtree(tmp_dir, ignore_errors=True) def _int_process_email(rfc822_email, email_id, start_time_epoch): global _base_connector global _config global _tmp_dirs mail = email.message_from_string(rfc822_email) ret_val = phantom.APP_SUCCESS phantom_home_dir = _base_connector.get_phantom_home() if os.path.isdir(phantom_home_dir) and phantom_home_dir == "/home/phanru/phantomcyber": tmp_dir = tempfile.mkdtemp(prefix='ph_email_phparser', dir=Vault.get_vault_tmp_dir()) else: tmp_dir = tempfile.mkdtemp(prefix='ph_email_phparser') _tmp_dirs.append(tmp_dir) try: ret_val = _handle_mail_object(mail, email_id, rfc822_email, tmp_dir, start_time_epoch) except Exception as e: error_code, error_msg = _get_error_message_from_exception(e) err = "Error Code: {0}. Error Message: {1}".format(error_code, error_msg) message = "ErrorExp in _handle_mail_object: {0}".format(err) _debug_print(message) return phantom.APP_ERROR, message, [] results = [{'container': _container, 'artifacts': _artifacts, 'files': _attachments, 'temp_directory': tmp_dir}] return ret_val, "Email Parsed", results def process_email(base_connector, rfc822_email, email_id, config, label, container_id, epoch): try: _init() except Exception as e: return phantom.APP_ERROR, {'message': str(e), 'content_id': None} global _base_connector global _config _base_connector = base_connector _config = config try: _set_email_id_contains(email_id) except Exception as e: error_code, error_msg = _get_error_message_from_exception(e) err = "Error Code: {0}. Error Message: {1}".format(error_code, error_msg) _base_connector.debug_print("Handled Exception while setting contains for email ID", err) pass ret_val, message, results = _int_process_email(rfc822_email, email_id, epoch) if not ret_val: _del_tmp_dirs() return phantom.APP_ERROR, {'message': message, 'content_id': None} try: cid, artifacts, successful_artifacts = _parse_results( results, label, container_id, _config[PROC_EMAIL_JSON_RUN_AUTOMATION]) except Exception: _del_tmp_dirs() raise return ( phantom.APP_SUCCESS, { 'message': 'Email Processed', 'container_id': cid, 'artifacts': artifacts, 'successful_artifacts': successful_artifacts, }) def _parse_results(results, label, update_container_id, run_automation=True): global _base_connector param = _base_connector.get_current_param() container_count = PARSER_DEFAULT_CONTAINER_COUNT artifact_count = PARSER_DEFAULT_ARTIFACT_COUNT if param: container_count = param.get(phantom.APP_JSON_CONTAINER_COUNT, PARSER_DEFAULT_CONTAINER_COUNT) artifact_count = param.get(phantom.APP_JSON_ARTIFACT_COUNT, PARSER_DEFAULT_ARTIFACT_COUNT) results = results[:container_count] for result in results: if not update_container_id: container = result.get('container') if not container: continue container.update(_container_common) container['label'] = label try: (ret_val, message, container_id) = _base_connector.save_container(container) except Exception as e: error_code, error_msg = _get_error_message_from_exception(e) err = "Error Code: {0}. Error Message: {1}".format(error_code, error_msg) _base_connector.debug_print("Handled Exception while saving container", err) continue _base_connector.debug_print("save_container returns, value: {0}, reason: {1}, id: {2}".format(ret_val, message, container_id)) if phantom.is_fail(ret_val): message = "Failed to add Container for id: {0}, error msg: {1}".format(container['source_data_identifier'], message) _base_connector.debug_print(message) continue if not container_id: message = "save_container did not return a container_id" _base_connector.debug_print(message) continue else: container_id = update_container_id files = result.get('files') _debug_print('# of files to process: {}'.format(len(files))) successful_artifacts = [] failed_artifacts = [] vault_artifacts = [] vault_ids = list() # Generate and save Vault artifacts from files vault_artifacts_added = 0 for curr_file in files: # Generate a new Vault artifact for the file and save it to a container ret_val, added_to_vault, vault_artifact = _handle_file( curr_file, vault_ids, container_id, vault_artifacts_added) vault_artifacts.append(vault_artifact) if added_to_vault: vault_artifacts_added += 1 successful_artifacts.append(vault_artifact) else: failed_artifacts.append(vault_artifact) artifacts = result.get('artifacts') if not artifacts: continue if not _base_connector.is_poll_now(): artifacts = artifacts[:artifact_count] len_artifacts = len(artifacts) _base_connector.debug_print(len_artifacts) for j, artifact in enumerate(artifacts): if not artifact: continue # add the container id to the artifact artifact['container_id'] = container_id _base_connector.debug_print(artifact['container_id']) _set_sdi((j + vault_artifacts_added), artifact) if run_automation: # if it is the last artifact of the last container if (j + 1) == len_artifacts: # mark it such that active playbooks get executed artifact['run_automation'] = True ret_val, status_string, artifact_id = _base_connector.save_artifact(artifact) _base_connector.debug_print( "save_artifact returns, value: {0}, reason: {1}, id: {2}".format(ret_val, status_string, artifact_id)) if phantom.is_fail(ret_val): failed_artifacts.append(artifact) else: successful_artifacts.append(artifact) # artifacts should represent all found artifacts from the email artifacts.extend(vault_artifacts) _debug_print('total # of artifacts to process: {}'.format(len(artifacts))) _debug_print('# of successful processed artifacts: {}'.format(len(successful_artifacts))) _debug_print('failed artifacts: {}'.format(failed_artifacts)) # delete any temp directories that were created by the email parsing function [shutil.rmtree(x['temp_directory'], ignore_errors=True) for x in results if x.get('temp_directory')] return container_id, artifacts, successful_artifacts def _add_vault_hashes_to_dictionary(cef_artifact, vault_id): _, _, vault_info = ph_rules.vault_info(vault_id=vault_id) vault_info = list(vault_info) if not vault_info: return phantom.APP_ERROR, "Vault ID not found" # The return value is a list, each item represents an item in the vault # matching the vault id, the info that we are looking for (the hashes) # will be the same for every entry, so just access the first one try: metadata = vault_info[0].get('metadata') except Exception: return phantom.APP_ERROR, "Failed to get vault item metadata" try: cef_artifact['fileHashSha256'] = metadata['sha256'] except Exception: pass try: cef_artifact['fileHashMd5'] = metadata['md5'] except Exception: pass try: cef_artifact['fileHashSha1'] = metadata['sha1'] except Exception: pass return phantom.APP_SUCCESS, "Mapped hash values" def _handle_file(curr_file, vault_ids, container_id, artifact_id): file_name = curr_file.get('file_name') local_file_path = curr_file['file_path'] contains = _get_file_contains(local_file_path) # lets move the data into the vault vault_attach_dict = {} if not file_name: file_name = os.path.basename(local_file_path) _base_connector.debug_print("Vault file name: {0}".format(file_name)) _base_connector.debug_print("Vault file path: {0}".format(local_file_path)) vault_attach_dict[phantom.APP_JSON_ACTION_NAME] = _base_connector.get_action_name() vault_attach_dict[phantom.APP_JSON_APP_RUN_ID] = _base_connector.get_app_run_id() file_name = _decode_uni_string(file_name, file_name) try: success, message, vault_id = ph_rules.vault_add(file_location=local_file_path, container=container_id, file_name=file_name, metadata=vault_attach_dict) except Exception as e: error_code, error_msg = _get_error_message_from_exception(e) err = "Error Code: {0}. Error Message: {1}".format(error_code, error_msg) _base_connector.debug_print(phantom.APP_ERR_FILE_ADD_TO_VAULT.format(err)) return phantom.APP_ERROR, phantom.APP_ERROR if not success: _base_connector.debug_print("Failed to add file to Vault: {0}".format(json.dumps(message))) return phantom.APP_ERROR, phantom.APP_ERROR # add the vault id artifact to the container cef_artifact = {} if file_name: cef_artifact.update({'fileName': file_name}) if vault_id: cef_artifact.update({'vaultId': vault_id, 'cs6': vault_id, 'cs6Label': 'Vault ID'}) # now get the rest of the hashes and add them to the cef artifact _add_vault_hashes_to_dictionary(cef_artifact, vault_id) if not cef_artifact: return phantom.APP_SUCCESS, phantom.APP_ERROR artifact = {} artifact.update(_artifact_common) artifact['container_id'] = container_id artifact['name'] = 'Vault Artifact' artifact['cef'] = cef_artifact if contains: artifact['cef_types'] = {'vaultId': contains, 'cs6': contains} _set_sdi(artifact_id, artifact) ret_val, status_string, artifact_id = _base_connector.save_artifact(artifact) _base_connector.debug_print( "save_artifact returns, value: {0}, reason: {1}, id: {2}".format(ret_val, status_string, artifact_id)) return phantom.APP_SUCCESS, ret_val, artifact def _set_sdi(default_id, input_dict): if 'source_data_identifier' in input_dict: del input_dict['source_data_identifier'] dict_hash = None # first get the phantom version phantom_version = _base_connector.get_product_version() if not phantom_version: dict_hash = _create_dict_hash(input_dict) else: ver_cmp = operator.eq(phantom_version, HASH_FIXED_PHANTOM_VERSION) if ver_cmp is False: dict_hash = _create_dict_hash(input_dict) if dict_hash: input_dict['source_data_identifier'] = dict_hash else: # Remove this code once the backend has fixed PS-4216 _and_ it has been # merged into next so that 2.0 and 2.1 has the code input_dict['source_data_identifier'] = _create_dict_hash(input_dict) return phantom.APP_SUCCESS def _get_fips_enabled(): try: from phantom_common.install_info import is_fips_enabled except ImportError: return False fips_enabled = is_fips_enabled() if fips_enabled: _debug_print('FIPS is enabled') else: _debug_print('FIPS is not enabled') return fips_enabled def _create_dict_hash(input_dict): input_dict_str = None if not input_dict: return None try: input_dict_str = json.dumps(input_dict, sort_keys=True) except Exception as e: error_code, error_msg = _get_error_message_from_exception(e) err = "Error Code: {0}. Error Message: {1}".format(error_code, error_msg) _base_connector.debug_print('Handled exception in _create_dict_hash', err) return None fips_enabled = _get_fips_enabled() # if fips is not enabled, we should continue with our existing md5 usage for generating hashes # to not impact existing customers dict_hash = UnicodeDammit(input_dict_str).unicode_markup.encode() if not fips_enabled: dict_hash = hashlib.md5(dict_hash) else: dict_hash = hashlib.sha256(dict_hash) return dict_hash.hexdigest()
34.895031
138
0.657616
794979a2b775d77bfb824d6a65b037ac2bfa8d00
12,174
py
Python
read_ohara.py
jfblanchard/optical-tools
25ce0f2238e1c22b6694d00d359e4243a33db30b
[ "Apache-2.0" ]
null
null
null
read_ohara.py
jfblanchard/optical-tools
25ce0f2238e1c22b6694d00d359e4243a33db30b
[ "Apache-2.0" ]
null
null
null
read_ohara.py
jfblanchard/optical-tools
25ce0f2238e1c22b6694d00d359e4243a33db30b
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Parse the ohara downloaded catalog (csv format), and create a new cleaned up data frame with glass type and sellmeier coeffs for all glass types. Output in json format. Ohara download version 20171130 Credits: Hover text snippet found here: https://stackoverflow.com/questions/7908636/ possible-to-make-labels-appear-when-hovering-over-a-point-in-matplotlib """ import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns #ohara has 140 glasses in 20171130 version df = pd.read_csv('OHARA_20171130_6.csv', header=[0, 1]) #glass names are in column 1 glass = df[df.columns[1]].values for i in range(len(glass)): glass[i] = glass[i].replace(" ","") #make consitent with no spaces #Index at sodium d-line (Nd) is in column 16 nd = df[df.columns[16]].values columns = ['Nd', 'A1', 'A2', 'A3', 'B1', 'B2', 'B3'] # Create a new data frame with just the glass type, Nd, and sellmeiers. # Todo: maybe add other properties. # best format - pickled df, json, hdf5, yml? df_sell = pd.DataFrame(index=glass,columns=columns) df_sell = df_sell.fillna(0) abbe = df[df.columns[26]].values A1 = df[df.columns[60]].values A2 = df[df.columns[61]].values A3 = df[df.columns[62]].values B1 = df[df.columns[63]].values B2 = df[df.columns[64]].values B3 = df[df.columns[65]].values df_sell['Glass'] = glass df_sell['Abbe'] = abbe df_sell['Nd'] = nd df_sell['A1'] = A1 df_sell['A2'] = A2 df_sell['A3'] = A3 df_sell['B1'] = B1 df_sell['B2'] = B2 df_sell['B3'] = B3 #plot sns.set_style(style='whitegrid') fig,ax = plt.subplots() plt.title('Index vs. Abbe Number for Ohara Glass') plt.ylabel('Refractive Index (Nd)') plt.xlabel('Abbe Number') plt.gca().invert_xaxis() sc = plt.scatter(abbe, nd) #annotations annot = ax.annotate("", xy=(0,0), xytext=(10,10),textcoords="offset points", bbox=dict(boxstyle="round", fc="w"), arrowprops=dict(arrowstyle="->")) annot.set_visible(False) def update_annot(ind): pos = sc.get_offsets()[ind["ind"][0]] annot.xy = pos text = "{}, {}".format(" ".join([glass[n] for n in ind["ind"]]), " ".join(str([nd[n] for n in ind["ind"]]))) annot.set_text(text) #annot.get_bbox_patch().set_facecolor(cmap(norm(c[ind["ind"][0]]))) annot.get_bbox_patch().set_alpha(0.4) def hover(event): vis = annot.get_visible() if event.inaxes == ax: cont, ind = sc.contains(event) if cont: update_annot(ind) annot.set_visible(True) fig.canvas.draw_idle() else: if vis: annot.set_visible(False) fig.canvas.draw_idle() #connect the hover function and show the plot fig.canvas.mpl_connect("motion_notify_event", hover) plt.show() #save the data frame as json and pickle path = os.getcwd() df_sell.to_json(path + '/ohara_glasses.json') pd.to_pickle(df_sell, path + '/ohara_glasses.pkl') #later add schott glasses too #schottdf = pd.read_csv('schott-optical-glass-06032017.csv') #utf-8 error # Reference: index, glass types #0 S-FPL51 #1 S-FPL53 #2 S-FPL55 #3 S-FPM2 #4 S-FPM3 #5 S-FSL5 #6 S-BSL7 #7 S-BSM2 #8 S-BSM4 #9 S-BSM10 #10 S-BSM14 #11 S-BSM15 #12 S-BSM16 #13 S-BSM18 #14 S-BSM22 #15 S-BSM25 #16 S-BSM28 #17 S-BSM71 #18 S-BSM81 #19 S-NSL3 #20 S-NSL5 #21 S-NSL36 #22 S-BAL2 #23 S-BAL3 #24 S-BAL12 #25 S-BAL14 #26 S-BAL35 #27 S-BAL41 #28 S-BAL42 #29 S-BAM4 #30 S-BAM12 #31 S-BAH10 #32 S-BAH11 #33 S-BAH27 #34 S-BAH28 #35 S-BAH32 #36 S-PHM52 #37 S-PHM53 #38 S-TIL1 #39 S-TIL2 #40 S-TIL6 #41 S-TIL25 #42 S-TIL26 #43 S-TIL27 #44 S-TIM1 #45 S-TIM2 #46 S-TIM5 #47 S-TIM8 #48 S-TIM22 #49 S-TIM25 #50 S-TIM27 #51 S-TIM28 #52 S-TIM35 #53 S-TIM39 #54 S-TIH1 #55 S-TIH3 #56 S-TIH4 #57 S-TIH6 #58 S-TIH10 #59 S-TIH11 #60 S-TIH13 #61 S-TIH14 #62 S-TIH18 #63 S-TIH23 #64 S-TIH53 #65 S-TIH53W #66 S-TIH57 #67 S-LAL7 #68 S-LAL8 #69 S-LAL9 #70 S-LAL10 #71 S-LAL12 #72 S-LAL13 #73 S-LAL14 #74 S-LAL18 #75 S-LAL19 #76 S-LAL20 #77 S-LAL54 #78 S-LAL54Q #79 S-LAL58 #80 S-LAL59 #81 S-LAL61 #82 S-LAM2 #83 S-LAM3 #84 S-LAM7 #85 S-LAM52 #86 S-LAM54 #87 S-LAM55 #88 S-LAM58 #89 S-LAM59 #90 S-LAM60 #91 S-LAM61 #92 S-LAM66 #93 S-LAM73 #94 S-LAH51 #95 S-LAH52 #96 S-LAH52Q #97 S-LAH53 #98 S-LAH53V #99 S-LAH55V #100 S-LAH55VS #101 S-LAH58 #102 S-LAH59 #103 S-LAH60 #104 S-LAH60V #105 S-LAH63 #106 S-LAH63Q #107 S-LAH64 #108 S-LAH65V #109 S-LAH65VS #110 S-LAH66 #111 S-LAH71 #112 S-LAH79 #113 S-LAH88 #114 S-LAH89 #115 S-LAH92 #116 S-LAH93 #117 S-LAH95 #118 S-LAH96 #119 S-LAH97 #120 S-YGH51 #121 S-FTM16 #122 S-NBM51 #123 S-NBH5 #124 S-NBH8 #125 S-NBH51 #126 S-NBH52 #127 S-NBH52V #128 S-NBH53 #129 S-NBH53V #130 S-NBH55 #131 S-NBH56 #132 S-NBH57 #133 S-NPH1 #134 S-NPH1W #135 S-NPH2 #136 S-NPH3 #137 S-NPH4 #138 S-NPH5 #139 S-NPH53 # Parsed raw columns from csv ------------------------------------------ #0 ('Unnamed: 0_level_0', 'Unnamed: 0_level_1') #1 ('Unnamed: 1_level_0', 'Glass ') #2 ('Unnamed: 2_level_0', 'Code(d)') #3 ('Unnamed: 3_level_0', 'Code(e)') #4 ('REFRACTIVE INDICES', 'n2325') #5 ('Unnamed: 5_level_0', 'n1970') #6 ('Unnamed: 6_level_0', 'n1530') #7 ('Unnamed: 7_level_0', 'n1129') #8 ('REFRACTIVE INDICES', 'nt') #9 ('Unnamed: 9_level_0', 'ns') #10 ('Unnamed: 10_level_0', "nA'") #11 ('Unnamed: 11_level_0', 'nr') #12 ('REFRACTIVE INDICES', 'nC') #13 ('Unnamed: 13_level_0', "nC'") #14 ('Unnamed: 14_level_0', 'nHe-Ne') #15 ('Unnamed: 15_level_0', 'nD') #16 ('REFRACTIVE INDICES', 'nd') #17 ('Unnamed: 17_level_0', 'ne') #18 ('Unnamed: 18_level_0', 'nF') #19 ('Unnamed: 19_level_0', "nF'") #20 ('REFRACTIVE INDICES', 'nHe-Cd') #21 ('Unnamed: 21_level_0', 'ng') #22 ('Unnamed: 22_level_0', 'nh') #23 ('Unnamed: 23_level_0', 'ni') #24 ('ABBE', '?d') #25 ('Unnamed: 25_level_0', '?e') #26 ('ABBE', '?d').1 #27 ('Unnamed: 27_level_0', '?e') #28 ('DISPERSIONS', 'nF-nC') #29 ('Unnamed: 29_level_0', 'nF-nC') #30 ('Unnamed: 30_level_0', "nF'-nC'") #31 ('PARTIAL DISPERSIONS', 'nC-nt') #32 ('Unnamed: 32_level_0', "nC-nA'") #33 ('Unnamed: 33_level_0', 'nd-nC') #34 ('Unnamed: 34_level_0', 'ne-nC') #35 ('Unnamed: 35_level_0', 'ng-nd') #36 ('Unnamed: 36_level_0', 'ng-nF') #37 ('PARTIAL DISPERSIONS', 'nh-ng') #38 ('Unnamed: 38_level_0', 'ni-ng') #39 ('Unnamed: 39_level_0', "nC'-nt") #40 ('Unnamed: 40_level_0', "ne-nC'") #41 ('Unnamed: 41_level_0', "nF'-ne") #42 ('Unnamed: 42_level_0', "ni-nF'") #43 ('RELATIVE PARTIAL DISPERSIONS', '?C,t') #44 ('Unnamed: 44_level_0', "?C,A'") #45 ('Unnamed: 45_level_0', '?d,C') #46 ('Unnamed: 46_level_0', '?e,C') #47 ('Unnamed: 47_level_0', '?g,d') #48 ('Unnamed: 48_level_0', '?g,F') #49 ('RELATIVE PARTIAL DISPERSIONS', '?h,g') #50 ('Unnamed: 50_level_0', '?i,g') #51 ('Unnamed: 51_level_0', "?'C',t") #52 ('Unnamed: 52_level_0', "?'e,C'") #53 ('Unnamed: 53_level_0', "?'F',e") #54 ('Unnamed: 54_level_0', "?'i,F'") #55 ('Deviation of Relative Partial Dispesions', '??C,t') #56 ('Unnamed: 56_level_0', "??C,A'") #57 ('Unnamed: 57_level_0', '??g,d') #58 ('Unnamed: 58_level_0', '??g,F') #59 ('Unnamed: 59_level_0', '??i,g') #60 ('CONSTANTS OF DISPERSION FORMULA (Sellmeier)', 'A1') #61 ('Unnamed: 61_level_0', 'A2') #62 ('Unnamed: 62_level_0', 'A3') #63 ('Unnamed: 63_level_0', 'B1') #64 ('Unnamed: 64_level_0', 'B2') #65 ('Unnamed: 65_level_0', 'B3') #66 ('CONSTANTS OF DISPERSION FORMULA (Cauchy)', 'A0') #67 ('Unnamed: 67_level_0', 'A1') #68 ('Unnamed: 68_level_0', 'A2') #69 ('Unnamed: 69_level_0', 'A3') #70 ('Unnamed: 70_level_0', 'A4') #71 ('Unnamed: 71_level_0', 'A5') #72 ('COLORING', '?80') #73 ('Unnamed: 73_level_0', '(?70)') #74 ('Unnamed: 74_level_0', '?5') #75 ('INTERNAL TRANSMISSION COLORING', '?0.80') #76 ('Unnamed: 76_level_0', '?0.05') #77 ('CCI', 'B') #78 ('Unnamed: 78_level_0', 'G') #79 ('Unnamed: 79_level_0', 'R') #80 ('INTERNAL TRANSMISSION (?/10mm Thick) ', '280') #81 ('Unnamed: 81_level_0', '290') #82 ('Unnamed: 82_level_0', '300') #83 ('Unnamed: 83_level_0', '310') #84 ('Unnamed: 84_level_0', '320') #85 ('Unnamed: 85_level_0', '330') #86 ('Unnamed: 86_level_0', '340') #87 ('Unnamed: 87_level_0', '350') #88 ('Unnamed: 88_level_0', '360') #89 ('INTERNAL TRANSMISSION (?/10mm Thick) ', '370') #90 ('Unnamed: 90_level_0', '380') #91 ('Unnamed: 91_level_0', '390') #92 ('Unnamed: 92_level_0', '400') #93 ('Unnamed: 93_level_0', '420') #94 ('Unnamed: 94_level_0', '440') #95 ('Unnamed: 95_level_0', '460') #96 ('Unnamed: 96_level_0', '480') #97 ('INTERNAL TRANSMISSION (?/10mm Thick) ', '500') #98 ('Unnamed: 98_level_0', '550') #99 ('Unnamed: 99_level_0', '600') #100 ('Unnamed: 100_level_0', '650') #101 ('Unnamed: 101_level_0', '700') #102 ('Unnamed: 102_level_0', '800') #103 ('Unnamed: 103_level_0', '900') #104 ('Unnamed: 104_level_0', '1000') #105 ('INTERNAL TRANSMISSION (?/10mm Thick) ', '1200') #106 ('Unnamed: 106_level_0', '1400') #107 ('Unnamed: 107_level_0', '1600') #108 ('Unnamed: 108_level_0', '1800') #109 ('Unnamed: 109_level_0', '2000') #110 ('Unnamed: 110_level_0', '2200') #111 ('Unnamed: 111_level_0', '2400') #112 ('dn/dT relative (10-6 / ?)', 't(-40~-20)') #113 ('Unnamed: 113_level_0', 't(-20~0)') #114 ('Unnamed: 114_level_0', 't(0~20)') #115 ('Unnamed: 115_level_0', 't(20~40)') #116 ('Unnamed: 116_level_0', 't(40~60)') #117 ('Unnamed: 117_level_0', 't(60~80)') #118 ('dn/dT relative (10-6 / ?)', "C'(-40~-20)") #119 ('Unnamed: 119_level_0', "C'(-20~0)") #120 ('Unnamed: 120_level_0', "C'(0~20)") #121 ('Unnamed: 121_level_0', "C'(20~40)") #122 ('Unnamed: 122_level_0', "C'(40~60)") #123 ('Unnamed: 123_level_0', "C'(60~80)") #124 ('dn/dT relative (10-6 / ?)', 'He-Ne(-40~-20)') #125 ('Unnamed: 125_level_0', 'He-Ne(20~0)') #126 ('Unnamed: 126_level_0', 'He-Ne(0~20)') #127 ('Unnamed: 127_level_0', 'He-Ne(20~40)') #128 ('Unnamed: 128_level_0', 'He-Ne(40~60)') #129 ('Unnamed: 129_level_0', 'He-Ne(60~80)') #130 ('dn/dT relative (10-6 / ?)', 'D(-40~-20)') #131 ('Unnamed: 131_level_0', 'D(-20~0)') #132 ('Unnamed: 132_level_0', 'D(0~20)') #133 ('Unnamed: 133_level_0', 'D(20~40)') #134 ('Unnamed: 134_level_0', 'D(40~60)') #135 ('Unnamed: 135_level_0', 'D(60~80)') #136 ('dn/dT relative (10-6 / ?)', 'e(-40~-20)') #137 ('Unnamed: 137_level_0', 'e(-20~0)') #138 ('Unnamed: 138_level_0', 'e(0~20)') #139 ('Unnamed: 139_level_0', 'e(20~40)') #140 ('Unnamed: 140_level_0', 'e(40~60)') #141 ('Unnamed: 141_level_0', 'e(60~80)') #142 ('dn/dT relative (10-6 / ?)', "F'(-40~-20)") #143 ('Unnamed: 143_level_0', "F'(-20~0)") #144 ('Unnamed: 144_level_0', "F'(0~20)") #145 ('Unnamed: 145_level_0', "F'(20~40)") #146 ('Unnamed: 146_level_0', "F'(40~60)") #147 ('Unnamed: 147_level_0', "F'(60~80)") #148 ('dn/dT relative (10-6 / ?)', 'g(-40~-20)') #149 ('Unnamed: 149_level_0', 'g(-20~0)') #150 ('Unnamed: 150_level_0', 'g(0~20)') #151 ('Unnamed: 151_level_0', 'g(20~40)') #152 ('Unnamed: 152_level_0', 'g(40~60)') #153 ('Unnamed: 153_level_0', 'g(60~80)') #154 ('Constants of dn/dT', ' D0') #155 ('Unnamed: 155_level_0', ' D1') #156 ('Unnamed: 156_level_0', ' D2') #157 ('Unnamed: 157_level_0', ' E0') #158 ('Unnamed: 158_level_0', ' E1') #159 ('Unnamed: 159_level_0', '?TK') #160 ('Thermal Properties', 'StP(?)') #161 ('Unnamed: 161_level_0', 'AP(?)') #162 ('Unnamed: 162_level_0', 'Tg(?)') #163 ('Unnamed: 163_level_0', 'At(?)') #164 ('Unnamed: 164_level_0', 'SP(?)') #165 ('CTE?(10-7/?)', '(-30~+70)') #166 ('Unnamed: 166_level_0', '(100~300)') #167 ('Conductivity', 'k(W/m?K)') #168 ('Mechanical Properties', "Young's (E) ") #169 ('Unnamed: 169_level_0', 'Rigidity (G)') #170 ('Unnamed: 170_level_0', "Poisson's(?)") #171 ('Unnamed: 171_level_0', 'Knoop (Hk)') #172 ('Unnamed: 172_level_0', 'Group') #173 ('Unnamed: 173_level_0', 'Abrasion(Aa)') #174 ('Unnamed: 174_level_0', '?') #175 ('Chemical Properties', 'RW(P)') #176 ('Unnamed: 176_level_0', 'RA(P)') #177 ('Unnamed: 177_level_0', 'W(S)max') #178 ('Unnamed: 178_level_0', 'W(S)min') #179 ('Unnamed: 179_level_0', 'SR') #180 ('Unnamed: 180_level_0', 'PR') #181 ('Bubble Grp', 'B') #182 ('Spec. Gravity', 'd')
27.295964
95
0.616231
794979b3c196de0436899f1d7dca55c2f1d4f582
471
py
Python
python/soma_workflow/check_requirement/__main__.py
denisri/soma-workflow
bc6f2f50d34437e86e850cb0d05ff26b041d560d
[ "CECILL-B" ]
null
null
null
python/soma_workflow/check_requirement/__main__.py
denisri/soma-workflow
bc6f2f50d34437e86e850cb0d05ff26b041d560d
[ "CECILL-B" ]
44
2018-10-30T16:57:10.000Z
2022-03-15T10:54:57.000Z
python/soma_workflow/check_requirement/__main__.py
populse/soma-workflow
e6d3e3c33ad41107ee3c959adc4832e6edd047f4
[ "CECILL-B" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import absolute_import if __name__ == '__main__': from soma_workflow import configuration import sys if len(sys.argv) >= 2: resource_id = sys.argv[1] else: resource_id = None config = configuration.Configuration.load_from_file(resource_id) if config is not None and config.get_scheduler_type() == 'drmaa': # import drmaa test from . import drmaa drmaa.test_drmaa()
27.705882
69
0.658174
79497bb599ff35a8f443bf1bb7a0bf25eca6121d
511
py
Python
Stream-3/Full-Stack-Development/9.Django-Blog-Part-Five/2.Create-A-Blog-Post-Form/Blog_prj/Blog_app/urls.py
GunnerJnr/_CodeInstitute
efba0984a3dc71558eef97724c85e274a712798c
[ "MIT" ]
4
2017-10-10T14:00:40.000Z
2021-01-27T14:08:26.000Z
Stream-3/Full-Stack-Development/9.Django-Blog-Part-Five/2.Create-A-Blog-Post-Form/Blog_prj/Blog_app/urls.py
GunnerJnr/_CodeInstitute
efba0984a3dc71558eef97724c85e274a712798c
[ "MIT" ]
115
2019-10-24T11:18:33.000Z
2022-03-11T23:15:42.000Z
Stream-3/Full-Stack-Development/9.Django-Blog-Part-Five/2.Create-A-Blog-Post-Form/Blog_prj/Blog_app/urls.py
GunnerJnr/_CodeInstitute
efba0984a3dc71558eef97724c85e274a712798c
[ "MIT" ]
5
2017-09-22T21:42:39.000Z
2020-02-07T02:18:11.000Z
# coding=utf-8 from django.conf.urls import url import views from .views import redirect_root urlpatterns = [ url(r'^$', redirect_root, name='home'), url(r'^blog/$', views.post_list, name='post-list'), url(r'^blog/(?P<slug>[-\w]+)$', views.post_detail, name='post-detail'), url(r'^blog/top-five/$', views.display_top_five_posts, name='top-five'), url(r'^blog/post/new/$', views.new_post, name='new_post'), url(r'^blog/(?P<slug>[-\w]+)/edit-post$', views.edit_post, name='edit-post'), ]
36.5
81
0.64775
79497cda7d49ab24a0e02c9aa9c6304b74668d54
7,433
py
Python
carsteer.py
kneave/RedBoard
642f4a00d983c98bdb71c6a4bed96e66b522b9a0
[ "MIT" ]
21
2019-10-07T22:55:36.000Z
2020-12-09T20:07:03.000Z
carsteer.py
kneave/RedBoard
642f4a00d983c98bdb71c6a4bed96e66b522b9a0
[ "MIT" ]
5
2019-09-05T14:15:36.000Z
2020-03-17T20:21:42.000Z
carsteer.py
kneave/RedBoard
642f4a00d983c98bdb71c6a4bed96e66b522b9a0
[ "MIT" ]
5
2018-05-02T16:38:28.000Z
2020-01-02T15:06:02.000Z
# Control a robot with a Rock Candy or PiHut PS3 controller. # The left stick controls the speed and direction of both motors - push up to go forwards and down for backwards. # The right stick is for steering - push the stick left or right to steer. # Author: Neil Lambeth. neil@redrobotics.co.uk @NeilRedRobotics from __future__ import print_function # Make print work with python 2 & 3 from evdev import InputDevice, ecodes import redboard dev = InputDevice('/dev/input/event0') #print(dev) device = str(dev).find('Rock Candy') # Look for a Rock Candy or PiHut controller if device != -1: print ('Controller: Rock Candy PS3 Gamepad') controller = 1 else: print ('Controller: PiHut PS3 Gamepad') controller = 2 # Button mapping for different controllers if controller == 1: # Rock Candy triangle, x, square, circle = 307, 305, 304, 306 R1, R2, R3 = 309, 311, 315 L1, L2, L3 = 308, 310, 314 select, start, home = 312, 313, 316 if controller == 2: # PiHut triangle, x, square, circle = 308, 304, 307, 305 R1, R2, R3 = 311, 313, 318 L1, L2, L3 = 310, 312, 317 select, start, home = 314, 315, 316 # Set up variables RX = 0 LX = 0 RY = 0 RY = 0 LeftY = 0 RightX = 0 RightX_R = 0 RightX_L = 0 Leftmotor = 0 Rightmotor = 0 LM_OLD = 0 RM_OLD = 0 turbo = False invertX = False # Read gamepad buttons for event in dev.read_loop(): #print(event) # Uncomment to show all button data if event.type == ecodes.EV_KEY: #print(event.code) # Uncomment to show each keycode if event.value == 1: # Button pressed if event.code == triangle: print ('triangle') elif event.code == x: print ('X') elif event.code == square: print ('Square') elif event.code == circle: print ('Circle') elif event.code == R1: print ('R1 - Turbo On') turbo = True elif event.code == R2: print ('R2') elif event.code == R3: print ('R3') elif event.code == L1: print ('L1') elif event.code == L2: print ('L2') elif event.code == L3: print ('L3') elif event.code == select and invertX == False: print ('Invert X') invertX = True elif event.code == select and invertX == True: print ('Normal X') invertX = False elif event.code == start: print ('Start') elif event.code == home: print ('Home') if event.value == 0: # Button released if event.code == R1: # Turbo Off print ('R1 - Turbo Off') turbo = False if event.type == ecodes.EV_ABS: print('') print('---------------------------------') # Dpad if event.code == 16: if event.value == -1: print ('Dpad LEFT') if event.value == 1: print ('Dpad RIGHT') if event.code == 17: if event.value == -1: print ('Dpad UP') if event.value == 1: print ('Dpad DOWN') # Analogue sticks if event.code == 1: # Left analogue Vertical stick # The analogue stick gives a value between 0-255 # Convert the value to 0-127 for forwards # and 0- -127 for backwards LY = event.value if LY < 128: # Forwards LeftY = 127 - LY #print('LY =',LY) #print('LeftY = ',LeftY) elif LY >= 128: # Backwards LeftY = LY - 128 LeftY = -LeftY # Make negative #print('LY =',LY) #print('LeftY = ',LeftY) elif event.code == 0: # Left analogue Horizontal stick LX = event.value if LX < 128: # Left L_Left = 127 - LX print ('L_Left = ',L_Left) elif LX >= 127: # Right L_Right = LX - 128 print ('L_Right = ',L_Right) elif event.code == 5: # Right analogue Vertical stick RY = event.value if RY <= 128: # Forwards R_Fwd = 127 - RY print ('R_Fwd = ',R_Fwd) elif RY >= 127: # Backwards R_Fwd = RY - 128 R_Fwd = -R_Fwd # Make negative print ('R_Rev = ',R_Fwd) elif event.code == 2: # Right analogue Horizontal stick # The analogue stick gives a value between 0-255 # Convert the value to 0-127 for left # and 0-127 for right RX = event.value if RX < 128: # Left RightX_L = 127 - RX #print('RX =',RX) #print('RightX_Left = ',RightX_L) if RX > 128: # Right RightX_R = RX - 128 #print('RX = ',RX) #print('RightX_Right = ',RightX_R) if RX == 128: # Make sure both values are zero if stick is in the centre RightX_L = 0 RightX_R = 0 # Prepare the values to send to the motors if LeftY == 0: #Turn on the spot if not going forwards or backwards if RX <= 128: # Turn Left Leftmotor = -RightX_L # Reverse motor to turn on the spot Rightmotor = RightX_L elif RX >= 127: # Turn Right Leftmotor = RightX_R Rightmotor = -RightX_R # Reverse motor to turn on the spot elif LY <= 128: # Forwards print ('Forwards') Leftmotor = LeftY - RightX_L # Mix steering values if Leftmotor <1: # Stop motor going backwards Leftmotor = 0; Rightmotor = LeftY - RightX_R # Mix steering values if Rightmotor <1: # Stop motor going backwards Rightmotor = 0; elif LY >= 127: # Backwards print('Backwards') Leftmotor = LeftY + RightX_L # Mix steering values if Leftmotor >-1: # Stop motor going forwards Leftmotor = 0; Rightmotor = LeftY + RightX_R # Mix steering values if Rightmotor >-1: # Stop motor going forwards Rightmotor = 0; if turbo == True: # Double speed for turbo LM = Leftmotor * 2 RM = Rightmotor * 2 else: # Normal speed LM = Leftmotor RM = Rightmotor if LM != LM_OLD or RM != RM_OLD: # Only print motor speeds if they have changed print ('Left motor =',LM) print ('Right motor =',RM) LM_OLD = LM RM_OLD = RM # Set motor speed and direction if invertX == True: # Reverse steering controls print('Inverted steering') redboard.M2_8bit(RM) redboard.M1_8bit(LM) else: # Normal steering controls print ('Normal steering') redboard.M2_8bit(LM) redboard.M1_8bit(RM)
28.262357
113
0.493206
79497eacb4225881a9345cd093eb3eb6da0ad20e
6,579
py
Python
kubernetes/client/models/v1_replica_set_condition.py
kevingessner/python
3f4d09d260cf0839fae8173852c69e0419188454
[ "Apache-2.0" ]
null
null
null
kubernetes/client/models/v1_replica_set_condition.py
kevingessner/python
3f4d09d260cf0839fae8173852c69e0419188454
[ "Apache-2.0" ]
null
null
null
kubernetes/client/models/v1_replica_set_condition.py
kevingessner/python
3f4d09d260cf0839fae8173852c69e0419188454
[ "Apache-2.0" ]
1
2018-07-19T16:37:20.000Z
2018-07-19T16:37:20.000Z
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.9.3 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class V1ReplicaSetCondition(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'last_transition_time': 'datetime', 'message': 'str', 'reason': 'str', 'status': 'str', 'type': 'str' } attribute_map = { 'last_transition_time': 'lastTransitionTime', 'message': 'message', 'reason': 'reason', 'status': 'status', 'type': 'type' } def __init__(self, last_transition_time=None, message=None, reason=None, status=None, type=None): """ V1ReplicaSetCondition - a model defined in Swagger """ self._last_transition_time = None self._message = None self._reason = None self._status = None self._type = None self.discriminator = None if last_transition_time is not None: self.last_transition_time = last_transition_time if message is not None: self.message = message if reason is not None: self.reason = reason self.status = status self.type = type @property def last_transition_time(self): """ Gets the last_transition_time of this V1ReplicaSetCondition. The last time the condition transitioned from one status to another. :return: The last_transition_time of this V1ReplicaSetCondition. :rtype: datetime """ return self._last_transition_time @last_transition_time.setter def last_transition_time(self, last_transition_time): """ Sets the last_transition_time of this V1ReplicaSetCondition. The last time the condition transitioned from one status to another. :param last_transition_time: The last_transition_time of this V1ReplicaSetCondition. :type: datetime """ self._last_transition_time = last_transition_time @property def message(self): """ Gets the message of this V1ReplicaSetCondition. A human readable message indicating details about the transition. :return: The message of this V1ReplicaSetCondition. :rtype: str """ return self._message @message.setter def message(self, message): """ Sets the message of this V1ReplicaSetCondition. A human readable message indicating details about the transition. :param message: The message of this V1ReplicaSetCondition. :type: str """ self._message = message @property def reason(self): """ Gets the reason of this V1ReplicaSetCondition. The reason for the condition's last transition. :return: The reason of this V1ReplicaSetCondition. :rtype: str """ return self._reason @reason.setter def reason(self, reason): """ Sets the reason of this V1ReplicaSetCondition. The reason for the condition's last transition. :param reason: The reason of this V1ReplicaSetCondition. :type: str """ self._reason = reason @property def status(self): """ Gets the status of this V1ReplicaSetCondition. Status of the condition, one of True, False, Unknown. :return: The status of this V1ReplicaSetCondition. :rtype: str """ return self._status @status.setter def status(self, status): """ Sets the status of this V1ReplicaSetCondition. Status of the condition, one of True, False, Unknown. :param status: The status of this V1ReplicaSetCondition. :type: str """ if status is None: raise ValueError("Invalid value for `status`, must not be `None`") self._status = status @property def type(self): """ Gets the type of this V1ReplicaSetCondition. Type of replica set condition. :return: The type of this V1ReplicaSetCondition. :rtype: str """ return self._type @type.setter def type(self, type): """ Sets the type of this V1ReplicaSetCondition. Type of replica set condition. :param type: The type of this V1ReplicaSetCondition. :type: str """ if type is None: raise ValueError("Invalid value for `type`, must not be `None`") self._type = type def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, V1ReplicaSetCondition): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
27.298755
105
0.583675
79497eb9481b5b8e18bb58b89e8e984ce66b4c08
1,603
py
Python
src/commercetools/importapi/client/import_operations/by_project_key_product_variant_patches_import_sink_key_by_import_sink_key_import_operations_by_id_request_builder.py
lime-green/commercetools-python-sdk
63b77f6e5abe43e2b3ebbf3cdbbe00c7cf80dca6
[ "MIT" ]
1
2021-04-07T20:01:30.000Z
2021-04-07T20:01:30.000Z
src/commercetools/importapi/client/import_operations/by_project_key_product_variant_patches_import_sink_key_by_import_sink_key_import_operations_by_id_request_builder.py
lime-green/commercetools-python-sdk
63b77f6e5abe43e2b3ebbf3cdbbe00c7cf80dca6
[ "MIT" ]
null
null
null
src/commercetools/importapi/client/import_operations/by_project_key_product_variant_patches_import_sink_key_by_import_sink_key_import_operations_by_id_request_builder.py
lime-green/commercetools-python-sdk
63b77f6e5abe43e2b3ebbf3cdbbe00c7cf80dca6
[ "MIT" ]
null
null
null
# Generated file, please do not change!!! import typing from ...models.errors import ErrorResponse from ...models.importoperations import ImportOperation if typing.TYPE_CHECKING: from ...base_client import BaseClient class ByProjectKeyProductVariantPatchesImportSinkKeyByImportSinkKeyImportOperationsByIdRequestBuilder: _client: "BaseClient" _project_key: str _import_sink_key: str _id: str def __init__( self, project_key: str, import_sink_key: str, id: str, client: "BaseClient", ): self._project_key = project_key self._import_sink_key = import_sink_key self._id = id self._client = client def get( self, *, headers: typing.Dict[str, str] = None, options: typing.Dict[str, typing.Any] = None, ) -> "ImportOperation": """Retrieves the import operation with the given id.""" headers = {} if headers is None else headers response = self._client._get( endpoint=f"/{self._project_key}/product-variant-patches/importSinkKey={self._import_sink_key}/import-operations/{self._id}", params={}, headers=headers, options=options, ) if response.status_code == 200: return ImportOperation.deserialize(response.json()) elif response.status_code in (404, 503): obj = ErrorResponse.deserialize(response.json()) raise self._client._create_exception(obj, response) raise ValueError("Unhandled status code %s", response.status_code)
32.06
136
0.650655
79497f042372b5623c948cdf5f365645d21e656b
531
py
Python
djstripe/migrations/__init__.py
TigerDX/dj-stripe
2fd4897abaedf2d9faa3dd5af86402dae3ab86a3
[ "BSD-3-Clause" ]
null
null
null
djstripe/migrations/__init__.py
TigerDX/dj-stripe
2fd4897abaedf2d9faa3dd5af86402dae3ab86a3
[ "BSD-3-Clause" ]
null
null
null
djstripe/migrations/__init__.py
TigerDX/dj-stripe
2fd4897abaedf2d9faa3dd5af86402dae3ab86a3
[ "BSD-3-Clause" ]
1
2021-08-30T10:51:49.000Z
2021-08-30T10:51:49.000Z
""" Migrations have been built for Django=>1.7 versions. Alternative migrations for Django<1.7 users are provided with the ``south_migrations`` dir. """ SOUTH_ERROR_MESSAGE = """\n For South support, customize the SOUTH_MIGRATION_MODULES setting like so: SOUTH_MIGRATION_MODULES = { 'djstripe': 'djstripe.south_migrations', } """ try: from django.db import migrations # noqa except ImportError: from django.core.exceptions import ImproperlyConfigured raise ImproperlyConfigured(SOUTH_ERROR_MESSAGE)
27.947368
75
0.753296
79497f35aca134ae3e71ae1b1b611a241cd4bd1c
541
py
Python
smii/modeling/setup.py
ar4/smii
b7eee03f2a4c8f56f6dde61738e8aa1090621ba3
[ "MIT" ]
3
2018-07-02T15:50:34.000Z
2019-02-28T11:42:34.000Z
smii/modeling/setup.py
ar4/smii
b7eee03f2a4c8f56f6dde61738e8aa1090621ba3
[ "MIT" ]
null
null
null
smii/modeling/setup.py
ar4/smii
b7eee03f2a4c8f56f6dde61738e8aa1090621ba3
[ "MIT" ]
null
null
null
#!/usr/bin/env python def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration config = Configuration('modeling', parent_package, top_path) config.add_subpackage('propagators') config.add_subpackage('store_wavefield') config.add_subpackage('record_receivers') config.add_subpackage('wavelets') config.add_subpackage('imaging_condition') return config if __name__ == "__main__": from numpy.distutils.core import setup setup(configuration=configuration)
36.066667
64
0.763401
7949807f891fb6cd60ca8adcff9e44301647a928
7,214
py
Python
run.py
ucynthy12/Vault
812261b49dfb126c59da031f0fe618008fe4f871
[ "Unlicense" ]
null
null
null
run.py
ucynthy12/Vault
812261b49dfb126c59da031f0fe618008fe4f871
[ "Unlicense" ]
null
null
null
run.py
ucynthy12/Vault
812261b49dfb126c59da031f0fe618008fe4f871
[ "Unlicense" ]
null
null
null
#!/usr/bin/env python3.6 from user import User from credential import Credential from art import * import random import sys from simple_colors import * def create_user(fname,lname,pswd,c_pswd): """ Function to create a new user """ new_user= User(fname,lname,pswd,c_pswd) return new_user def save_users(user): """ Function to save user """ user.save_user() def create_account(ac_name,us_name,ac_pswd): """ Function to create a new account """ new_account= Credential(ac_name,us_name,ac_pswd) return new_account def save_accounts(account): """ Function to save account """ account.save_account() def delete_account(account): """ Function to delete account """ account.delete_account() def find_account(account): """ Function that finds an account name and returns the account """ return Credential.find_by_account(account) def check_existing_account(account): """ Function that check if an account exists with that account name and return a Boolean """ return Credential.account_exist(account) def display_accounts(): """ Function that returns all the saved accounts """ return Credential.display_accounts() def generate_random_pswd(): """ Function to generate a random password """ random= Credential.generate_random() return random def main(): tprint("The Vault") # print(green('The Vault','bold')) print('\n') # print("\u001b[34m"+"Hello Welcome to your password locker.\n What is your name?"+"\u001b[34m") print(blue('Hello Welcome to')+ green(' The Vault','bold')+ blue(' your password locker.')) print(blue('What is your name?')) user_name=input() print('\n') print(blue(f"Hello {user_name}, Fill in your information to create a password locker account.")) print('\n') print(blue('New Password')) print(blue("-"*15)) print(blue("First Name")) f_name=input() print(blue("Last Name")) l_name=input() print(blue("Enter password")) passWord=input() print(blue("Confirm password")) cPassword=input() save_users(create_user(f_name,l_name,passWord,cPassword)) print("\n") print(green(f"{f_name}","bright")+ blue(" Your new password locker was created succesfully!Your new password is ")+green(f'{passWord}','bold')) print('-'*85) print("\n") print(blue("Please login with your password ")) login=input() print('\n') if login== passWord: while True: print(blue("Use these short codes :","underlined")) print(blue(" cp -----create a password \n dp -----display password \n fp -----find password \n dlt ----- delete password \n ex ----- exit the account list")) print('\n') short_code= input().lower() print('\n') if short_code == 'cp': print(blue('New Credential','underlined')) # print('-'*15) print(blue('Account name ')) accountName=input() print(blue('Username ')) userName=input() print('\n') print(blue("Use these short codes:","underlined")) print(blue(" gp ---- generate your own password \n rp ---- generate random password ")) short_codes= input().lower() print('\n') if short_codes == 'gp': print(blue('Password','underlined')) password=input() save_accounts(create_account(accountName,userName,password)) print('\n') print(blue(f"{accountName}",["bold","underlined"])) print(blue("Username is ")+ green(f'{userName}','bright')) print(blue("Your password is ")+ green(f'{password}','bright')) print('\n') elif short_codes == 'rp': password=generate_random_pswd() save_accounts(create_account(accountName,userName,password)) print('\n') print(blue(f"{accountName}",['bold','underlined'])) print(blue("Username is ")+ green(f'{userName}','bright')) print(blue("Your password is ")+ green(f'{password}','bright')) print('\n') else: print(blue("I didn't get that. Please choose the right code!")) elif short_code == "dp": if display_accounts(): print("\n") print (blue('Here is a list of all passwords:','underlined')) for accounts in display_accounts(): print(green(f"{accounts.acc_name}","bold")+"----"+ green(f"{accounts.username}","italic")+"----"+green(f"{accounts.acc_pswd}","bright")) print('\n') else: print('\n') print(blue("You don't seem to have any password saved")) print('\n') elif short_code == "fp": print('\n') print(blue("Enter the account name you want to search for","blink")) search_account= input() if check_existing_account(search_account): search_account= find_account(search_account) print('\n') print(blue(f"{search_account.acc_name}","underlined")) print(blue("Username is ")+ green(f"{search_account.username}","bright")) print(blue("Password is ")+ green(f"{search_account.acc_pswd}","bright")) print('\n') else: print(blue("The password for this account doesn't exist in your vault")) print('\n') elif short_code == "dlt": print('\n') print(blue('Please enter account name you wish to delete')) print('\n') dlt_account=input() if find_account(dlt_account): search_account= find_account(dlt_account) print("-"*20) search_account.delete_account() print('\n') print(blue("Your password for :")+green(f'{search_account.acc_name}','bold')+blue(" was successfully deleted!")) print('\n') else: print(blue('This password does not exist in your Vault')) elif short_code =='ex': print('\n') print(blue('Thank You for using The Vault','bold')) print('\n') print(blue('Bye .....','bold')) break else: print(blue("I really didn't get that. Try again")) print('\n') else: print(blue("Your password doesn't match")) if __name__ == '__main__': main()
31.779736
170
0.525229
79498093c1a9c50aba17b5b1e3238c9805ac3864
150
py
Python
my_pic_hub/apps.py
asandelarvine/My_Pic_Hub
3cf11c01485e5bee75b3b3937525cedc1d55d473
[ "MIT" ]
null
null
null
my_pic_hub/apps.py
asandelarvine/My_Pic_Hub
3cf11c01485e5bee75b3b3937525cedc1d55d473
[ "MIT" ]
null
null
null
my_pic_hub/apps.py
asandelarvine/My_Pic_Hub
3cf11c01485e5bee75b3b3937525cedc1d55d473
[ "MIT" ]
null
null
null
from django.apps import AppConfig class MyPicHubConfig(AppConfig): default_auto_field = 'django.db.models.BigAutoField' name = 'my_pic_hub'
21.428571
56
0.766667
794980c0c42debd9d7d5258ed91132242ddd8be1
1,129
py
Python
ums/userapp/views/base.py
hookehu/web
637047ff47bf5df6ee3152e6976162bb8e85531c
[ "MIT" ]
null
null
null
ums/userapp/views/base.py
hookehu/web
637047ff47bf5df6ee3152e6976162bb8e85531c
[ "MIT" ]
null
null
null
ums/userapp/views/base.py
hookehu/web
637047ff47bf5df6ee3152e6976162bb8e85531c
[ "MIT" ]
null
null
null
#-*- coding:utf-8 -*- import functools from functools import update_wrapper from django.views.generic import View from django.utils.decorators import method_decorator, classonlymethod class BaseView(View): need_site_permission = False url = None def __init__(self, request, *args, **kwargs): View.__init__(self, **kwargs) self.request = request print request.method self.request_method = request.method.lower() self.init_request(*args, **kwargs) def init_request(self, *args, **kwargs): pass def get(self, request, *args, **kwargs): pass def post(self, request, *args, **kwargs): pass @classonlymethod def as_view(cls): def view(request, *args, **kwargs): self = cls(request, *args, **kwargs) if hasattr(self, 'get') and not hasattr(self, 'head'): self.head = self.get print self.request_method if self.request_method == 'get': handler = self.get else: handler = self.post return handler(request, *args, **kwargs) # take name and docstring from class update_wrapper(view, cls, updated=()) view.need_site_permission = cls.need_site_permission return view
24.021277
69
0.708592
794981e5a40dea009311f7db51ee3fec5154019b
2,820
py
Python
docs/source/conf.py
extra2000/qeeqbox-honeypots-podman
aeeb4bd83b8479e611294cde2cc48af2fe226f32
[ "MIT" ]
null
null
null
docs/source/conf.py
extra2000/qeeqbox-honeypots-podman
aeeb4bd83b8479e611294cde2cc48af2fe226f32
[ "MIT" ]
null
null
null
docs/source/conf.py
extra2000/qeeqbox-honeypots-podman
aeeb4bd83b8479e611294cde2cc48af2fe226f32
[ "MIT" ]
null
null
null
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys import subprocess as sp sys.path.insert(0, os.path.abspath(os.path.join('.'))) from version import version as __version__ # -- Project information ----------------------------------------------------- project = 'Qeeqbox Honeypots Podman' copyright = '2021, extra2000' author = 'nick@extra2000.io' version = __version__ release = __version__ # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.todo', 'sphinx.ext.githubpages', 'sphinx.ext.viewcode', 'sphinx.ext.napoleon', 'sphinx.ext.mathjax', 'sphinx.ext.autodoc', 'sphinxcontrib.programoutput', 'sphinx_rtd_dark_mode' ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] pygments_style = 'sphinx' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] html_logo = os.path.join('_static', 'logo.svg') html_theme_options = { 'logo_only': False, 'display_version': True, 'prev_next_buttons_location': 'top', 'style_external_links': False, 'style_nav_header_background': 'linear-gradient(#608081, #536f70)', # Toc options 'collapse_navigation': False, 'sticky_navigation': True, 'navigation_depth': 4, 'includehidden': True, 'titles_only': False } html_context = { 'display_github': True, 'github_user': 'extra2000', 'github_repo': 'qeeqbox-honeypots-podman', 'github_version': 'master/docs/source/', }
30.652174
79
0.675887
794981ff7947e35ef0202c6c50e5cb34a5083580
8,840
py
Python
Walkoff/main.py
R3dFruitRollUp/WALKOFF-Apps
d92dec666c253c474116f041df163a8149e06b2b
[ "CC0-1.0" ]
null
null
null
Walkoff/main.py
R3dFruitRollUp/WALKOFF-Apps
d92dec666c253c474116f041df163a8149e06b2b
[ "CC0-1.0" ]
null
null
null
Walkoff/main.py
R3dFruitRollUp/WALKOFF-Apps
d92dec666c253c474116f041df163a8149e06b2b
[ "CC0-1.0" ]
1
2018-12-01T19:37:43.000Z
2018-12-01T19:37:43.000Z
import logging from apps import App, action import requests from requests.exceptions import Timeout import json from core.config.paths import certificate_path import time logger = logging.getLogger(__name__) class Unauthorized(Exception): pass class UnknownResponse(Exception): pass class NotConnected(Exception): pass DEFAULT_TIMEOUT = 2 class Main(App): def __init__(self, name=None, device=None): App.__init__(self, name, device) self.is_connected = False self.headers = None self.refresh_token = None self.username = self.device_fields['username'] self.walkoff_address = self.device_fields['ip'] port = self.device_fields['port'] if port: self.walkoff_address += ':{}'.format(port) self.is_https = self.walkoff_address.startswith('https') @action def connect(self, timeout=DEFAULT_TIMEOUT): try: response = self._request('post', '/api/auth', timeout, data=dict(username=self.username, password=self.device.get_encrypted_field('password'))) except Timeout: return 'Connection timed out', 'TimedOut' status_code = response.status_code if status_code == 404: return 'Could not locate Walkoff instance', 'WalkoffNotFound' elif status_code == 401: return 'Invalid login', 'AuthenticationError' elif status_code == 201: response = response.json() self.refresh_token = response['refresh_token'] self.reset_authorization(response['access_token']) self.is_connected = True return 'Success' else: return 'Unknown response {}'.format(status_code), 'UnknownResponse' @action def disconnect(self, timeout=DEFAULT_TIMEOUT): if self.is_connected: try: self._request('post', '/api/auth/logout', timeout, headers=self.headers, data=dict(refresh_token=self.refresh_token)) return 'Success' except Timeout: return 'Connection timed out', 'TimedOut' else: return 'Not connected to Walkoff', 'NotConnected' @action def is_connected(self): return self.is_connected @action def get_all_workflows(self, timeout=DEFAULT_TIMEOUT): return self.standard_request('get', '/api/playbooks', timeout, headers=self.headers) @action def get_workflow_uid(self, playbook_name, workflow_name, timeout=DEFAULT_TIMEOUT): try: response = self.request_with_refresh('get', '/api/playbooks', timeout, headers=self.headers) except Timeout: return 'Connection timed out', 'TimedOut' except Unauthorized: return 'Unauthorized credentials', 'Unauthorized' except NotConnected: return 'Not connected to Walkoff', 'NotConnected' except UnknownResponse: return 'Unknown error occurred', 'UnknownResponse' else: response = response.json() playbook = next((playbook for playbook in response if playbook['name'] == playbook_name), None) if playbook is None: return 'Playbook not found', 'WorkflowNotFound' workflow = next((workflow for workflow in playbook['workflows'] if workflow['name'] == workflow_name), None) if workflow is None: return 'Workflow not found', 'WorkflowNotFound' else: return workflow['uid'] @action def trigger(self, names=None, inputs=None, data=None, tags=None, timeout=DEFAULT_TIMEOUT): trigger_data = {} if names: trigger_data['names'] = names if inputs: trigger_data['inputs'] = inputs if data: trigger_data['data'] = data if tags: trigger_data['tags'] = tags return self.standard_request('post', '/api/triggers/execute', timeout, headers=self.headers, data=data) @action def get_workflow_results(self, timeout=DEFAULT_TIMEOUT): return self.standard_request('get', '/api/workflowresults', timeout, headers=self.headers) @action def wait_for_workflow_completion(self, execution_uid, timeout=60*5, request_timeout=DEFAULT_TIMEOUT, wait_between_requests=0.1): if timeout < request_timeout: return 'Function timeout must be greater than request timeout', 'InvalidInput' elif timeout < wait_between_requests: return 'Function timeout must be greater than wait between requests', 'InvalidInput' start = time.time() while time.time() - start < timeout: try: response = self.request_with_refresh('get', '/api/workflowresults/{}'.format(execution_uid), timeout, headers=self.headers) if response.status_code == 200: response = response.json() if response['status'] == 'completed': return response time.sleep(wait_between_requests) except Timeout: return 'Connection timed out', 'TimedOut' except Unauthorized: return 'Unauthorized credentials', 'Unauthorized' except NotConnected: return 'Not connected to Walkoff', 'NotConnected' except UnknownResponse: return 'Unknown error occurred', 'UnknownResponse' def standard_request(self, method, address, timeout, headers=None, data=None, **kwargs): try: response = self.request_with_refresh(method, address, timeout, headers=headers, data=data, **kwargs) if response.status_code == 400: return 'Bad Request', 'BadRequest' return response.json() except Timeout: return 'Connection timed out', 'TimedOut' except Unauthorized: return 'Unauthorized credentials', 'Unauthorized' except NotConnected: return 'Not connected to Walkoff', 'NotConnected' except UnknownResponse: return 'Unknown error occurred', 'UnknownResponse' def _format_request_args(self, address, timeout, headers=None, data=None, **kwargs): address = '{0}{1}'.format(self.walkoff_address, address) args = kwargs args['timeout'] = timeout if not (self.headers is None and headers is None): args['headers'] = headers if headers is not None else self.headers if data is not None: args['json'] = data if self.is_https: args['verify'] = certificate_path return address, args def _request(self, method, address, timeout, headers=None, data=None, **kwargs): address, args = self._format_request_args(address, timeout, headers, data, **kwargs) if method == 'put': return requests.put(address, **args) elif method == 'post': return requests.post(address, **args) elif method == 'get': return requests.get(address, **args) elif method == 'delete': return requests.delete(address, **args) def request_with_refresh(self, method, address, timeout, headers=None, data=None, **kwargs): if self.is_connected: response = self._request(method, address, timeout, headers, data, **kwargs) if response.status_code != 401: return response else: self.refresh_token(timeout) response = self._request(method, address, timeout, headers, data, **kwargs) if response.status_code == 401: self.is_connected = False raise Unauthorized else: return response else: raise NotConnected def refresh_token(self, timeout): headers = {'Authorization': 'Bearer {}'.format(self.refresh_token)} response = self._post('/api/auth/refresh', timeout, headers=headers) if response.status_code == 401: raise Unauthorized elif response.status_code == 201: key = response.json() self.reset_authorization(key['access_token']) else: raise UnknownResponse def reset_authorization(self, token): self.headers = {'Authorization': 'Bearer {}'.format(token)} def shutdown(self): try: self._request('post', '/api/auth/logout', DEFAULT_TIMEOUT, headers=self.headers, data=dict(refresh_token=self.refresh_token)) except Timeout: logger.warning('Could not log out. Connection timed out')
39.81982
139
0.609276
794982074f85fe37f8d04ff55d776b1456b4ac93
3,098
py
Python
indico/core/db/sqlalchemy/descriptions.py
uxmaster/indico
ecd19f17ef6fdc9f5584f59c87ec647319ce5d31
[ "MIT" ]
1
2019-11-03T11:34:16.000Z
2019-11-03T11:34:16.000Z
indico/core/db/sqlalchemy/descriptions.py
NP-compete/indico
80db7ca0ef9d1f3240a16b9ff2d84bf0bf26c549
[ "MIT" ]
null
null
null
indico/core/db/sqlalchemy/descriptions.py
NP-compete/indico
80db7ca0ef9d1f3240a16b9ff2d84bf0bf26c549
[ "MIT" ]
null
null
null
# This file is part of Indico. # Copyright (C) 2002 - 2019 CERN # # Indico is free software; you can redistribute it and/or # modify it under the terms of the MIT License; see the # LICENSE file for more details. from __future__ import unicode_literals from sqlalchemy.ext.declarative import declared_attr from sqlalchemy.ext.hybrid import hybrid_property from indico.core.db import db from indico.core.db.sqlalchemy import PyIntEnum from indico.util.string import MarkdownText, PlainText, RichMarkup from indico.util.struct.enum import RichIntEnum class RenderMode(RichIntEnum): """Rendering formats that a description can be written in.""" __titles__ = [None, 'HTML', 'Markdown', 'Plain Text'] html = 1 markdown = 2 plain_text = 3 RENDER_MODE_WRAPPER_MAP = { RenderMode.html: RichMarkup, RenderMode.markdown: MarkdownText, RenderMode.plain_text: PlainText } class RenderModeMixin(object): """Mixin to add a plaintext/html/markdown-enabled column.""" possible_render_modes = {RenderMode.plain_text} default_render_mode = RenderMode.plain_text @declared_attr def render_mode(cls): # Only add the column if there's a choice # between several alternatives if len(cls.possible_render_modes) > 1: return db.Column( PyIntEnum(RenderMode), default=cls.default_render_mode, nullable=False ) else: return cls.default_render_mode @classmethod def _render_getter(cls, attr_name): def _getter(self): selected_mode = (self.default_render_mode if len(self.possible_render_modes) == 1 or self.render_mode is None else self.render_mode) description_wrapper = RENDER_MODE_WRAPPER_MAP[selected_mode] return description_wrapper(getattr(self, attr_name)) return _getter @classmethod def _render_setter(cls, attr_name): def _setter(self, value): setattr(self, attr_name, value) return _setter @classmethod def _render_expression(cls, attr_name): def _expression(cls): return getattr(cls, attr_name) return _expression @classmethod def create_hybrid_property(cls, attr_name): """Create a hybrid property that does the rendering of the column. :param attr_name: a name for the attribute the unprocessed value can be accessed through (e.g. `_description`). """ return hybrid_property(cls._render_getter(attr_name), fset=cls._render_setter(attr_name), expr=cls._render_expression(attr_name)) class DescriptionMixin(RenderModeMixin): marshmallow_aliases = {'_description': 'description'} @declared_attr def _description(cls): return db.Column( 'description', db.Text, nullable=False, default='' ) description = RenderModeMixin.create_hybrid_property('_description')
30.98
97
0.662686
7949822f7a946e6b3c767729ff7593a77f67f2f0
2,328
py
Python
tests/acceptance/cors-test.py
gevious/flask_slither
bf1fd1e58224c19883f4b19c5f727f47ee9857da
[ "MIT" ]
11
2015-05-26T10:31:02.000Z
2017-06-18T07:55:06.000Z
tests/acceptance/cors-test.py
gevious/flask_slither
bf1fd1e58224c19883f4b19c5f727f47ee9857da
[ "MIT" ]
null
null
null
tests/acceptance/cors-test.py
gevious/flask_slither
bf1fd1e58224c19883f4b19c5f727f47ee9857da
[ "MIT" ]
1
2017-11-28T01:22:19.000Z
2017-11-28T01:22:19.000Z
# -*- coding: utf-8 -*- # The cors test ensures that the CORS functionality is working for resources. from bson.objectid import ObjectId from flask import Flask from flask_slither import register_resource from flask_slither.resources import BaseResource from pymongo import MongoClient import json import unittest class CorsResource(BaseResource): db_collection = 'cors' cors_enabled = True class CorsTest(unittest.TestCase): def setUp(self): self.app = Flask('Cors') self.app.config['TESTING'] = True self.client = self.app.test_client() register_resource(self.app, CorsResource, url="cors") self.db_client = MongoClient('localhost', 27017) self.db = self.db_client['test_slither'] self._load_fixtures() def tearDown(self): self.db['cors'].drop() self.db_client.close() self.client = None self.app = None def _load_fixtures(self): fixtures = [ {'name': "Cors single record"}, ] for f in fixtures: self.db['cors'].insert(f) def test_basic_check(self): """Check header of get response to ensure it matches CORS spec""" with self.app.test_client() as c: r = c.open('/cors', method='OPTIONS') self.assertEquals(r.status_code, 200) expected_headers = { # 'access-control-allow-origin': "http://localhost", 'access-control-allow-methods': "GET, POST, PUT, PATCH, DELETE, OPTIONS", 'access-control-max-age': "21600", } for k, v in expected_headers.items(): self.assertEquals( r.headers.get(k), v, "Bad header: {}".format(k)) self.assertFalse('access-control-allow-headers' in r.headers) def test_check_rq_header(self): """Check header of get response to ensure it matches CORS spec""" with self.app.test_client() as c: headers = {'access-control-request-headers': "Authorization"} r = c.open('/cors', method='OPTIONS', headers=headers) self.assertEquals(r.status_code, 200) self.assertEquals(r.headers['access-control-allow-headers'], 'Authorization')
33.73913
77
0.598797
794982bba66fef9fdf365dad228cc37a67d2037e
15,572
py
Python
ironic/tests/unit/drivers/modules/redfish/test_utils.py
ljmcgann/ironic
09f79416e2820cf0fcef001c4c956b7732b7e7ca
[ "Apache-2.0" ]
null
null
null
ironic/tests/unit/drivers/modules/redfish/test_utils.py
ljmcgann/ironic
09f79416e2820cf0fcef001c4c956b7732b7e7ca
[ "Apache-2.0" ]
null
null
null
ironic/tests/unit/drivers/modules/redfish/test_utils.py
ljmcgann/ironic
09f79416e2820cf0fcef001c4c956b7732b7e7ca
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 Red Hat, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import collections import copy import os from unittest import mock from oslo_config import cfg from oslo_utils import importutils import requests from ironic.common import exception from ironic.drivers.modules.redfish import utils as redfish_utils from ironic.tests.unit.db import base as db_base from ironic.tests.unit.db import utils as db_utils from ironic.tests.unit.objects import utils as obj_utils sushy = importutils.try_import('sushy') INFO_DICT = db_utils.get_test_redfish_info() class RedfishUtilsTestCase(db_base.DbTestCase): def setUp(self): super(RedfishUtilsTestCase, self).setUp() # Default configurations self.config(enabled_hardware_types=['redfish'], enabled_power_interfaces=['redfish'], enabled_boot_interfaces=['redfish-virtual-media'], enabled_management_interfaces=['redfish']) # Redfish specific configurations self.config(connection_attempts=1, group='redfish') self.node = obj_utils.create_test_node( self.context, driver='redfish', driver_info=INFO_DICT) self.parsed_driver_info = { 'address': 'https://example.com', 'system_id': '/redfish/v1/Systems/FAKESYSTEM', 'username': 'username', 'password': 'password', 'verify_ca': True, 'auth_type': 'auto', 'node_uuid': self.node.uuid } def test_parse_driver_info(self): response = redfish_utils.parse_driver_info(self.node) self.assertEqual(self.parsed_driver_info, response) def test_parse_driver_info_default_scheme(self): self.node.driver_info['redfish_address'] = 'example.com' response = redfish_utils.parse_driver_info(self.node) self.assertEqual(self.parsed_driver_info, response) def test_parse_driver_info_default_scheme_with_port(self): self.node.driver_info['redfish_address'] = 'example.com:42' self.parsed_driver_info['address'] = 'https://example.com:42' response = redfish_utils.parse_driver_info(self.node) self.assertEqual(self.parsed_driver_info, response) def test_parse_driver_info_missing_info(self): for prop in redfish_utils.REQUIRED_PROPERTIES: self.node.driver_info = INFO_DICT.copy() self.node.driver_info.pop(prop) self.assertRaises(exception.MissingParameterValue, redfish_utils.parse_driver_info, self.node) def test_parse_driver_info_invalid_address(self): for value in ['/banana!', 42]: self.node.driver_info['redfish_address'] = value self.assertRaisesRegex(exception.InvalidParameterValue, 'Invalid Redfish address', redfish_utils.parse_driver_info, self.node) @mock.patch.object(os.path, 'isdir', autospec=True) def test_parse_driver_info_path_verify_ca(self, mock_isdir): mock_isdir.return_value = True fake_path = '/path/to/a/valid/CA' self.node.driver_info['redfish_verify_ca'] = fake_path self.parsed_driver_info['verify_ca'] = fake_path response = redfish_utils.parse_driver_info(self.node) self.assertEqual(self.parsed_driver_info, response) mock_isdir.assert_called_once_with(fake_path) @mock.patch.object(os.path, 'isfile', autospec=True) def test_parse_driver_info_valid_capath(self, mock_isfile): mock_isfile.return_value = True fake_path = '/path/to/a/valid/CA.pem' self.node.driver_info['redfish_verify_ca'] = fake_path self.parsed_driver_info['verify_ca'] = fake_path response = redfish_utils.parse_driver_info(self.node) self.assertEqual(self.parsed_driver_info, response) mock_isfile.assert_called_once_with(fake_path) def test_parse_driver_info_invalid_value_verify_ca(self): # Integers are not supported self.node.driver_info['redfish_verify_ca'] = 123456 self.assertRaisesRegex(exception.InvalidParameterValue, 'Invalid value type', redfish_utils.parse_driver_info, self.node) def test_parse_driver_info_invalid_system_id(self): # Integers are not supported self.node.driver_info['redfish_system_id'] = 123 self.assertRaisesRegex(exception.InvalidParameterValue, 'The value should be a path', redfish_utils.parse_driver_info, self.node) def test_parse_driver_info_missing_system_id(self): self.node.driver_info.pop('redfish_system_id') redfish_utils.parse_driver_info(self.node) def test_parse_driver_info_valid_string_value_verify_ca(self): for value in ('0', 'f', 'false', 'off', 'n', 'no'): self.node.driver_info['redfish_verify_ca'] = value response = redfish_utils.parse_driver_info(self.node) parsed_driver_info = copy.deepcopy(self.parsed_driver_info) parsed_driver_info['verify_ca'] = False self.assertEqual(parsed_driver_info, response) for value in ('1', 't', 'true', 'on', 'y', 'yes'): self.node.driver_info['redfish_verify_ca'] = value response = redfish_utils.parse_driver_info(self.node) self.assertEqual(self.parsed_driver_info, response) def test_parse_driver_info_invalid_string_value_verify_ca(self): for value in ('xyz', '*', '!123', '123'): self.node.driver_info['redfish_verify_ca'] = value self.assertRaisesRegex(exception.InvalidParameterValue, 'The value should be a Boolean', redfish_utils.parse_driver_info, self.node) def test_parse_driver_info_valid_auth_type(self): for value in 'basic', 'session', 'auto': self.node.driver_info['redfish_auth_type'] = value response = redfish_utils.parse_driver_info(self.node) self.parsed_driver_info['auth_type'] = value self.assertEqual(self.parsed_driver_info, response) def test_parse_driver_info_invalid_auth_type(self): for value in 'BasiC', 'SESSION', 'Auto': self.node.driver_info['redfish_auth_type'] = value self.assertRaisesRegex(exception.InvalidParameterValue, 'The value should be one of ', redfish_utils.parse_driver_info, self.node) def test_parse_driver_info_with_root_prefix(self): test_redfish_address = 'https://example.com/test/redfish/v0/' self.node.driver_info['redfish_address'] = test_redfish_address self.parsed_driver_info['root_prefix'] = '/test/redfish/v0/' response = redfish_utils.parse_driver_info(self.node) self.assertEqual(self.parsed_driver_info, response) @mock.patch.object(sushy, 'Sushy', autospec=True) @mock.patch('ironic.drivers.modules.redfish.utils.' 'SessionCache._sessions', {}) def test_get_system(self, mock_sushy): fake_conn = mock_sushy.return_value fake_system = fake_conn.get_system.return_value response = redfish_utils.get_system(self.node) self.assertEqual(fake_system, response) fake_conn.get_system.assert_called_once_with( '/redfish/v1/Systems/FAKESYSTEM') @mock.patch.object(sushy, 'Sushy', autospec=True) @mock.patch('ironic.drivers.modules.redfish.utils.' 'SessionCache._sessions', {}) def test_get_system_resource_not_found(self, mock_sushy): fake_conn = mock_sushy.return_value fake_conn.get_system.side_effect = ( sushy.exceptions.ResourceNotFoundError('GET', '/', requests.Response())) self.assertRaises(exception.RedfishError, redfish_utils.get_system, self.node) fake_conn.get_system.assert_called_once_with( '/redfish/v1/Systems/FAKESYSTEM') @mock.patch.object(sushy, 'Sushy', autospec=True) @mock.patch('ironic.drivers.modules.redfish.utils.' 'SessionCache._sessions', {}) def test_get_system_multiple_systems(self, mock_sushy): self.node.driver_info.pop('redfish_system_id') fake_conn = mock_sushy.return_value redfish_utils.get_system(self.node) fake_conn.get_system.assert_called_once_with(None) @mock.patch('time.sleep', autospec=True) @mock.patch.object(sushy, 'Sushy', autospec=True) @mock.patch('ironic.drivers.modules.redfish.utils.' 'SessionCache._sessions', {}) def test_get_system_resource_connection_error_retry(self, mock_sushy, mock_sleep): # Redfish specific configurations self.config(connection_attempts=3, group='redfish') fake_conn = mock_sushy.return_value fake_conn.get_system.side_effect = sushy.exceptions.ConnectionError() self.assertRaises(exception.RedfishConnectionError, redfish_utils.get_system, self.node) expected_get_system_calls = [ mock.call(self.parsed_driver_info['system_id']), mock.call(self.parsed_driver_info['system_id']), mock.call(self.parsed_driver_info['system_id']), ] fake_conn.get_system.assert_has_calls(expected_get_system_calls) mock_sleep.assert_called_with( redfish_utils.CONF.redfish.connection_retry_interval) @mock.patch.object(sushy, 'Sushy', autospec=True) @mock.patch('ironic.drivers.modules.redfish.utils.' 'SessionCache._sessions', {}) def test_ensure_session_reuse(self, mock_sushy): redfish_utils.get_system(self.node) redfish_utils.get_system(self.node) self.assertEqual(1, mock_sushy.call_count) @mock.patch.object(sushy, 'Sushy', autospec=True) def test_ensure_new_session_address(self, mock_sushy): self.node.driver_info['redfish_address'] = 'http://bmc.foo' redfish_utils.get_system(self.node) self.node.driver_info['redfish_address'] = 'http://bmc.bar' redfish_utils.get_system(self.node) self.assertEqual(2, mock_sushy.call_count) @mock.patch.object(sushy, 'Sushy', autospec=True) def test_ensure_new_session_username(self, mock_sushy): self.node.driver_info['redfish_username'] = 'foo' redfish_utils.get_system(self.node) self.node.driver_info['redfish_username'] = 'bar' redfish_utils.get_system(self.node) self.assertEqual(2, mock_sushy.call_count) @mock.patch.object(sushy, 'Sushy', autospec=True) @mock.patch('ironic.drivers.modules.redfish.utils.' 'SessionCache.AUTH_CLASSES', autospec=True) @mock.patch('ironic.drivers.modules.redfish.utils.SessionCache._sessions', collections.OrderedDict()) def test_ensure_basic_session_caching(self, mock_auth, mock_sushy): self.node.driver_info['redfish_auth_type'] = 'basic' mock_session_or_basic_auth = mock_auth['auto'] redfish_utils.get_system(self.node) mock_sushy.assert_called_with( mock.ANY, verify=mock.ANY, auth=mock_session_or_basic_auth.return_value, ) self.assertEqual(len(redfish_utils.SessionCache._sessions), 1) @mock.patch.object(sushy, 'Sushy', autospec=True) def test_expire_old_sessions(self, mock_sushy): cfg.CONF.set_override('connection_cache_size', 10, 'redfish') for num in range(20): self.node.driver_info['redfish_username'] = 'foo-%d' % num redfish_utils.get_system(self.node) self.assertEqual(mock_sushy.call_count, 20) self.assertEqual(len(redfish_utils.SessionCache._sessions), 10) @mock.patch.object(sushy, 'Sushy', autospec=True) @mock.patch('ironic.drivers.modules.redfish.utils.' 'SessionCache._sessions', {}) def test_disabled_sessions_cache(self, mock_sushy): cfg.CONF.set_override('connection_cache_size', 0, 'redfish') for num in range(2): self.node.driver_info['redfish_username'] = 'foo-%d' % num redfish_utils.get_system(self.node) self.assertEqual(mock_sushy.call_count, 2) self.assertEqual(len(redfish_utils.SessionCache._sessions), 0) @mock.patch.object(sushy, 'Sushy', autospec=True) @mock.patch('ironic.drivers.modules.redfish.utils.' 'SessionCache.AUTH_CLASSES', autospec=True) @mock.patch('ironic.drivers.modules.redfish.utils.' 'SessionCache._sessions', {}) def test_auth_auto(self, mock_auth, mock_sushy): redfish_utils.get_system(self.node) mock_session_or_basic_auth = mock_auth['auto'] mock_session_or_basic_auth.assert_called_with( username=self.parsed_driver_info['username'], password=self.parsed_driver_info['password'] ) mock_sushy.assert_called_with( self.parsed_driver_info['address'], auth=mock_session_or_basic_auth.return_value, verify=True) @mock.patch.object(sushy, 'Sushy', autospec=True) @mock.patch('ironic.drivers.modules.redfish.utils.' 'SessionCache.AUTH_CLASSES', autospec=True) @mock.patch('ironic.drivers.modules.redfish.utils.' 'SessionCache._sessions', {}) def test_auth_session(self, mock_auth, mock_sushy): self.node.driver_info['redfish_auth_type'] = 'session' mock_session_auth = mock_auth['session'] redfish_utils.get_system(self.node) mock_session_auth.assert_called_with( username=self.parsed_driver_info['username'], password=self.parsed_driver_info['password'] ) mock_sushy.assert_called_with( mock.ANY, verify=mock.ANY, auth=mock_session_auth.return_value ) @mock.patch.object(sushy, 'Sushy', autospec=True) @mock.patch('ironic.drivers.modules.redfish.utils.' 'SessionCache.AUTH_CLASSES', autospec=True) @mock.patch('ironic.drivers.modules.redfish.utils.' 'SessionCache._sessions', {}) def test_auth_basic(self, mock_auth, mock_sushy): self.node.driver_info['redfish_auth_type'] = 'basic' mock_basic_auth = mock_auth['basic'] redfish_utils.get_system(self.node) mock_basic_auth.assert_called_with( username=self.parsed_driver_info['username'], password=self.parsed_driver_info['password'] ) sushy.Sushy.assert_called_with( mock.ANY, verify=mock.ANY, auth=mock_basic_auth.return_value )
45.532164
78
0.666517
79498385d6877af53ae31256dc8da03564d19172
5,347
py
Python
dev_tools/check.py
joshp112358/Cirq
c4fac27a9849e589ee05b4f702f2d7c9049aaeea
[ "Apache-2.0" ]
2
2019-04-02T09:16:28.000Z
2019-05-25T18:35:19.000Z
dev_tools/check.py
joshp112358/Cirq
c4fac27a9849e589ee05b4f702f2d7c9049aaeea
[ "Apache-2.0" ]
36
2019-04-03T23:03:51.000Z
2019-05-15T23:49:01.000Z
dev_tools/check.py
joshp112358/Cirq
c4fac27a9849e589ee05b4f702f2d7c9049aaeea
[ "Apache-2.0" ]
2
2019-04-03T22:55:05.000Z
2019-04-24T23:24:53.000Z
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Tuple, Optional, cast, Set import abc import os.path from dev_tools import env_tools, shell_tools class CheckResult: """Output of a status check that passed, failed, or error'ed.""" def __init__(self, check: 'Check', success: bool, message: str, unexpected_error: Optional[Exception]) -> None: self.check = check self.success = success self.message = message self.unexpected_error = unexpected_error def __str__(self): outcome = ('ERROR' if self.unexpected_error else 'pass' if self.success else 'FAIL') msg = self.unexpected_error if self.unexpected_error else self.message result = '{}: {} ({})'.format(outcome, self.check.context(), msg) return shell_tools.highlight( result, shell_tools.GREEN if self.success else shell_tools.RED) class Check(metaclass=abc.ABCMeta): """A status check that can performed in a python environment.""" def __init__(self, *dependencies): self.dependencies = dependencies @abc.abstractmethod def command_line_switch(self) -> str: """Used to identify this check from the command line.""" @abc.abstractmethod def context(self) -> str: """The name of this status check, as shown on github.""" @abc.abstractmethod def perform_check(self, env: env_tools.PreparedEnv, verbose: bool) -> Tuple[bool, str]: """Evaluates the status check and returns a pass/fail with message. Args: env: Describes a prepared python 3 environment in which to run. verbose: When set, more progress output is produced. Returns: A tuple containing a pass/fail boolean and then a details message. """ def needs_python2_env(self): return False def run(self, env: env_tools.PreparedEnv, verbose: bool, previous_failures: Set['Check']) -> CheckResult: """Evaluates this check. Args: env: The prepared python environment to run the check in. verbose: When set, more progress output is produced. previous_failures: Checks that have already run and failed. Returns: A CheckResult instance. """ # Skip if a dependency failed. if previous_failures.intersection(self.dependencies): print(shell_tools.highlight( 'Skipped ' + self.command_line_switch(), shell_tools.YELLOW)) return CheckResult( self, False, 'Skipped due to dependency failing.', None) print(shell_tools.highlight( 'Running ' + self.command_line_switch(), shell_tools.GREEN)) try: success, message = self.perform_check(env, verbose=verbose) result = CheckResult(self, success, message, None) except Exception as ex: result = CheckResult(self, False, 'Unexpected error.', ex) print(shell_tools.highlight( 'Finished ' + self.command_line_switch(), shell_tools.GREEN if result.success else shell_tools.RED)) if verbose: print(result) return result def pick_env_and_run_and_report(self, env: env_tools.PreparedEnv, verbose: bool, previous_failures: Set['Check'] ) -> CheckResult: """Evaluates this check in python 3 or 2.7, and reports to github. If the prepared environments are not linked to a github repository, with a known access token, reporting to github is skipped. Args: env: A prepared python 3 environment. verbose: When set, more progress output is produced. previous_failures: Checks that have already run and failed. Returns: A CheckResult instance. """ env.report_status_to_github('pending', 'Running...', self.context()) chosen_env = cast(env_tools.PreparedEnv, env) os.chdir(cast(str, chosen_env.destination_directory)) result = self.run(chosen_env, verbose, previous_failures) if result.unexpected_error is not None: env.report_status_to_github('error', 'Unexpected error.', self.context()) else: env.report_status_to_github( 'success' if result.success else 'failure', result.message, self.context()) return result
35.410596
78
0.607069
794983d1b37b99882de3f91703d022c3549c37ba
3,300
py
Python
mark_scripts/topicsandcollocations/lx.py
syhw/contextual_word_segmentation
401ce2030db814783b9447534006d6b7387527e4
[ "MIT" ]
2
2016-06-29T10:32:49.000Z
2020-11-17T20:18:43.000Z
scripts/lx.py
syhw/contextual_word_segmentation
401ce2030db814783b9447534006d6b7387527e4
[ "MIT" ]
null
null
null
scripts/lx.py
syhw/contextual_word_segmentation
401ce2030db814783b9447534006d6b7387527e4
[ "MIT" ]
null
null
null
"""lx.py -- Mark Johnson, 24th Febuary 2005 lx contains utility functions for the other programs in this directory.""" import csv, os, os.path def incr(d, k, inc=1): """incr adds inc to the value of d[k] if d[k] is defined, or sets d[k] to inc if d[k] is undefined. d is the dictionary being incremented. k is the dictionary key whose value is incremented. inc is the size of the increment (default 1).""" if k in d: d[k] += inc else: d[k] = inc def incr2(d, k1, k2, inc=1): """incr2 adds inc to the value of d[k1][k2] if d[k1][k2] is defined, or sets d[k1][k2] to inc if d[k1][k2] is undefined. d is the dictionary of dictionaries being incremented. k1, k2 are the dictionary keys whose value is incremented. inc is the size of the increment (default 1).""" if k1 in d: dk1 = d[k1] if k2 in dk1: dk1[k2] += inc else: dk1[k2] = inc else: d[k1] = {k2:inc} def incr3(d, k1, k2, k3, inc=1): """incr3 adds inc to the value of d[k1][k2][k3] if it is defined, otherwise it sets d[k1][k2][k3] to inc. d is the dictionary of dictionaries being incremented. k1, k2, k3 are the dictionary keys whose value is incremented. inc is the size of the increment (default 1). """ if k1 in d: dk1 = d[k1] if k2 in dk1: dk1k2 = dk1[k2] if k3 in dk1k2: dk1k2[k3] += inc else: dk1k2[k3] = inc else: dk1[k2] = {k3:inc} else: d[k1] = {k2:{k3:inc}} def second(xs): """second() returns the second element in a sequence. This is mainly usefule as the value of the key argument to sort and sorted.""" return xs[1] def count_elements(xs, dct=None): """Given a sequence xs of elements, return a dictionary dct of mapping elements to the number of times they appear in items. If dct is not None, use dct as this dictionary.""" if dct==None: dct = {} for item in xs: incr(dct, item) return dct # Finding all files that meet a condition def findfiles(topdir, file_re): """Returns a list of filenames below dir whose names match filenameregex.""" filenames = [] for root, dirs, files in os.walk(topdir): for file in files: if file_re.match(file): filenames.append(os.path.join(root, file)) return filenames def writecsvfile(filename, data, header=None): """writecsvfile writes data to a file in a format that can be easily imported to a spreadsheet. Specifically, it writes data to csvfilename.csv, with header at the top. If Header != None, it also checks that each tuple in data has same length as header. CSV stands for Comma Separated Values, and CSV files are generally readable by spreadsheet programs like Excel.""" outf = csv.writer(file(filename+".csv", "wb")) if header != None: outf.writerow(header) for row in data: outf.writerow(row) if header != None and len(header) != len(row): print "## Error in zipf:writecsv(): header = %s, row = %s" % (header,row)
33
86
0.591515
794985b2dbb77e4d7691753432c53ddf3ad31377
2,818
py
Python
tensorflow/python/ops/dequantize_op_test.py
PaulWang1905/tensorflow
ebf12d22b4801fb8dab5034cc94562bf7cc33fa0
[ "Apache-2.0" ]
848
2019-12-03T00:16:17.000Z
2022-03-31T22:53:17.000Z
tensorflow/python/ops/dequantize_op_test.py
PaulWang1905/tensorflow
ebf12d22b4801fb8dab5034cc94562bf7cc33fa0
[ "Apache-2.0" ]
656
2019-12-03T00:48:46.000Z
2022-03-31T18:41:54.000Z
tensorflow/python/ops/dequantize_op_test.py
PaulWang1905/tensorflow
ebf12d22b4801fb8dab5034cc94562bf7cc33fa0
[ "Apache-2.0" ]
506
2019-12-03T00:46:26.000Z
2022-03-30T10:34:56.000Z
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Dequantize Operations.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.platform import test class DequantizeOpTest(test.TestCase): def __init__(self, method_name="runTest"): super(DequantizeOpTest, self).__init__(method_name) def _testDequantizeOp(self, inputs, min_range, max_range, dtype): with self.cached_session(): input_op = constant_op.constant(inputs, shape=[len(inputs)], dtype=dtype) dequantized = array_ops.dequantize(input_op, min_range, max_range) tf_ans = self.evaluate(dequantized) # TODO(vrv): Add support for DT_QINT32 quantization if needed. type_dict = { dtypes.quint8: np.uint8, dtypes.qint8: np.int8, dtypes.quint16: np.uint16, dtypes.qint16: np.int16 } self.assertTrue(dtype in type_dict.keys()) v_max = np.iinfo(type_dict[dtype]).max v_min = np.iinfo(type_dict[dtype]).min self.assertTrue(min_range >= v_min) self.assertTrue(max_range <= v_max) type_range = v_max - v_min if v_min < 0: half_range = (type_range + 1) / 2 else: half_range = 0.0 np_ans = ((inputs.astype(np.float32) + half_range) * (max_range - min_range) / type_range) + min_range self.assertAllClose(tf_ans, np_ans, rtol=1e-5, atol=1e-5) def testBasicQuint8(self): self._testDequantizeOp(np.array([0, 128, 255]), 0.0, 6.0, dtypes.quint8) self._testDequantizeOp(np.array([0, 128, 255]), 0.0, 123.456, dtypes.quint8) self._testDequantizeOp( np.array([0, 4, 42, 108, 243]), 5.0, 200.2, dtypes.quint8) def testBasicQint8(self): self._testDequantizeOp(np.array([-128, 0, 127]), -1.0, 2.0, dtypes.qint8) self._testDequantizeOp(np.array([-2, 4, -17]), -5.0, -3.0, dtypes.qint8) self._testDequantizeOp(np.array([0, -4, 42, -108]), 5.0, 40.0, dtypes.qint8) if __name__ == "__main__": test.main()
37.078947
80
0.688786
79498608b6eaa2acb8693d94bddd6b4c52d36e60
1,894
py
Python
redrugs/tests/functional/test_root.py
dlmcguinness/redrugs
d49857b1f291c0b3bdd0b25417ba42068ca73c62
[ "MIT" ]
5
2015-01-23T15:28:59.000Z
2017-10-23T12:01:36.000Z
redrugs/tests/functional/test_root.py
dlmcguinness/redrugs
d49857b1f291c0b3bdd0b25417ba42068ca73c62
[ "MIT" ]
14
2015-02-03T21:20:58.000Z
2015-10-13T02:32:18.000Z
redrugs/tests/functional/test_root.py
dlmcguinness/redrugs
d49857b1f291c0b3bdd0b25417ba42068ca73c62
[ "MIT" ]
5
2015-01-28T17:55:44.000Z
2018-12-03T02:47:05.000Z
# -*- coding: utf-8 -*- """ Functional test suite for the root controller. This is an example of how functional tests can be written for controllers. As opposed to a unit-test, which test a small unit of functionality, functional tests exercise the whole application and its WSGI stack. Please read http://pythonpaste.org/webtest/ for more information. """ from nose.tools import assert_true from redrugs.tests import TestController class TestRootController(TestController): """Tests for the method in the root controller.""" def test_index(self): """The front page is working properly""" response = self.app.get('/') msg = 'TurboGears 2 is rapid web application development toolkit '\ 'designed to make your life easier.' # You can look for specific strings: assert_true(msg in response) # You can also access a BeautifulSoup'ed response in your tests # (First run $ easy_install BeautifulSoup # and then uncomment the next two lines) #links = response.html.findAll('a') #print links #assert_true(links, "Mummy, there are no links here!") def test_environ(self): """Displaying the wsgi environ works""" response = self.app.get('/environ.html') assert_true('The keys in the environment are: ' in response) def test_data(self): """The data display demo works with HTML""" response = self.app.get('/data.html?a=1&b=2') expected1 = """<td>a</td> <td>1</td>""" expected2 = """<td>b</td> <td>2</td>""" assert expected1 in response, response assert expected2 in response, response def test_data_json(self): """The data display demo works with JSON""" resp = self.app.get('/data.json?a=1&b=2') assert '"a": "1", "b": "2"' in resp, resp
32.655172
75
0.635164
794986f1ffa50f50977fe6ad7b6480235b0936a2
1,036
py
Python
fairness/fairness_check.py
Tomcli/ffdl-knative
b68edaaa1717ac34c946e25d24198590012b0e20
[ "Apache-2.0" ]
2
2019-01-18T16:10:50.000Z
2019-10-24T11:42:31.000Z
fairness/fairness_check.py
Tomcli/ffdl-knative
b68edaaa1717ac34c946e25d24198590012b0e20
[ "Apache-2.0" ]
null
null
null
fairness/fairness_check.py
Tomcli/ffdl-knative
b68edaaa1717ac34c946e25d24198590012b0e20
[ "Apache-2.0" ]
null
null
null
import json import argparse from app import fairness_check if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--s3_url', type=str, help='Object storage endpoint') parser.add_argument('--bucket_name', type=str, help='Object storage bucket name') parser.add_argument('--s3_username', type=str, help='Object storage access key id') parser.add_argument('--s3_password', type=str, help='Object storage access key secret') parser.add_argument('--model_id', type=str, help='Training model ID') parser.add_argument('--metric_path', type=str, help='Path for robustness check output') args = parser.parse_args() s3_url = args.s3_url bucket_name = args.bucket_name s3_username = args.s3_username s3_password = args.s3_password metric_path = args.metric_path model_id = args.model_id metrics = fairness_check(s3_url, bucket_name, s3_username, s3_password, model_id) with open(metric_path, "w") as report: report.write(json.dumps(metrics))
38.37037
91
0.724903
7949878648cf58b251ae02447bc8c7b4ec031103
12,239
py
Python
apero/recipes/nirps_ha/cal_preprocess_nirps_ha.py
njcuk9999/apero-drs
83b043e9f277a011b03e0227c77307961b200901
[ "MIT" ]
1
2021-03-09T17:49:31.000Z
2021-03-09T17:49:31.000Z
apero/recipes/nirps_ha/cal_preprocess_nirps_ha.py
njcuk9999/apero-drs
83b043e9f277a011b03e0227c77307961b200901
[ "MIT" ]
43
2020-10-06T18:42:24.000Z
2022-03-28T21:23:10.000Z
apero/recipes/nirps_ha/cal_preprocess_nirps_ha.py
njcuk9999/apero-drs
83b043e9f277a011b03e0227c77307961b200901
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ # CODE DESCRIPTION HERE Created on 2019-03-05 16:38 @author: ncook Version 0.0.1 """ import numpy as np import os from apero import core from apero import lang from apero.core import constants from apero.science import preprocessing as pp from apero.io import drs_image from apero.io import drs_fits from apero.core.instruments.spirou import file_definitions # ============================================================================= # Define variables # ============================================================================= __NAME__ = 'cal_preprocess_nirps_ha.py' __INSTRUMENT__ = 'NIRPS_HA' # Get constants Constants = constants.load(__INSTRUMENT__) # Get version and author __version__ = Constants['DRS_VERSION'] __author__ = Constants['AUTHORS'] __date__ = Constants['DRS_DATE'] __release__ = Constants['DRS_RELEASE'] # Get Logging function WLOG = core.wlog # Get the text types TextEntry = lang.drs_text.TextEntry # Raw prefix RAW_PREFIX = file_definitions.raw_prefix # ============================================================================= # Define functions # ============================================================================= # All recipe code goes in _main # Only change the following from here: # 1) function calls (i.e. main(arg1, arg2, **kwargs) # 2) fkwargs (i.e. fkwargs=dict(arg1=arg1, arg2=arg2, **kwargs) # 3) config_main outputs value (i.e. None, pp, reduced) # Everything else is controlled from recipe_definition def main(directory=None, files=None, **kwargs): """ Main function for cal_preprocess_spirou.py :param directory: string, the night name sub-directory :param files: list of strings or string, the list of files to process :param kwargs: any additional keywords :type directory: str :type files: list[str] :keyword debug: int, debug level (0 for None) :returns: dictionary of the local space :rtype: dict """ # assign function calls (must add positional) fkwargs = dict(directory=directory, files=files, **kwargs) # ---------------------------------------------------------------------- # deal with command line inputs / function call inputs recipe, params = core.setup(__NAME__, __INSTRUMENT__, fkwargs) # solid debug mode option if kwargs.get('DEBUG0000', False): return recipe, params # ---------------------------------------------------------------------- # run main bulk of code (catching all errors) llmain, success = core.run(__main__, recipe, params) # ---------------------------------------------------------------------- # End Message # ---------------------------------------------------------------------- return core.end_main(params, llmain, recipe, success, outputs='None') def __main__(recipe, params): # ---------------------------------------------------------------------- # Main Code # ---------------------------------------------------------------------- # Get hot pixels for corruption check hotpixels = pp.get_hot_pixels(params) # get skip parmaeter skip = params['SKIP_DONE_PP'] # ---------------------------------------------------------------------- # Loop around input files # ---------------------------------------------------------------------- # get files infiles = params['INPUTS']['FILES'][1] # Number of files num_files = len(params['INPUTS']['FILES'][1]) # storage for output files output_names = [] # loop around number of files for it in range(num_files): # ------------------------------------------------------------------ # add level to recipe log log1 = recipe.log.add_level(params, 'num', it) # ------------------------------------------------------------------ # print file iteration progress core.file_processing_update(params, it, num_files) # ge this iterations file file_instance = infiles[it] # ------------------------------------------------------------------ # Fix the nirps header # ------------------------------------------------------------------ # certain keys may not be in some spirou files file_instance = drs_fits.fix_header(params, recipe, file_instance) # ------------------------------------------------------------------ # identification of file drs type # ------------------------------------------------------------------ # identify this iterations file type cond, infile = pp.drs_infile_id(params, recipe, file_instance) # ------------------------------------------------------------------ # if it wasn't found skip this file, if it was print a message if cond: eargs = [infile.name] WLOG(params, 'info', TextEntry('40-010-00001', args=eargs)) else: eargs = [infile.filename] WLOG(params, 'info', TextEntry('40-010-00002', args=eargs)) continue # get data from file instance image = np.array(infile.data) # ------------------------------------------------------------------ # Get out file and check skip # ------------------------------------------------------------------ # get the output drs file oargs = [params, recipe, infile, recipe.outputs['PP_FILE'], RAW_PREFIX] found, outfile = pp.drs_outfile_id(*oargs) # construct out filename outfile.construct_filename(params, infile=infile) # if we didn't find the output file we should log this error if not found: eargs = [outfile.name] WLOG(params, 'error', TextEntry('00-010-00003', args=eargs)) if skip: if os.path.exists(outfile.filename): wargs = [infile.filename] WLOG(params, 'info', TextEntry('40-010-00012', args=wargs)) continue # ---------------------------------------------------------------------- # Check for pixel shift and/or corrupted files # ---------------------------------------------------------------------- # storage snr_hotpix, rms_list = [], [] shiftdy, shiftdx = 0.0, 0.0 # do this iteratively as if there is a shift need to re-workout QC for iteration in range(2): # get pass condition cout = pp.test_for_corrupt_files(params, image, hotpixels) snr_hotpix, rms_list = cout[0], cout[1] shiftdx, shiftdy = cout[2], cout[3] # use dx/dy to shift the image back to where the engineering flat # is located if shiftdx != 0 or shiftdy != 0: # log process wmsg = TextEntry('40-010-00013', args=[shiftdx, shiftdy]) WLOG(params, '', wmsg) # shift image image = np.roll(image, [shiftdy], axis=0) image = np.roll(image, [shiftdx], axis=1) # work out QC here qargs = [snr_hotpix, infile, rms_list] qc_params, passed = pp.quality_control(params, *qargs, log=False) # if passed break if passed: break # ------------------------------------------------------------------ # Quality control to check for corrupt files # ------------------------------------------------------------------ # re-calculate qc qargs = [snr_hotpix, infile, rms_list] qc_params, passed = pp.quality_control(params, *qargs, log=True) # update recipe log log1.add_qc(params, qc_params, passed) if not passed: # end log here log1.end(params) # go to next iteration continue # ------------------------------------------------------------------ # correct image # ------------------------------------------------------------------ # correct for the top and bottom reference pixels WLOG(params, '', TextEntry('40-010-00003')) image = pp.correct_top_bottom(params, image) # correct by a median filter from the dark amplifiers WLOG(params, '', TextEntry('40-010-00016')) image, pfile = pp.nirps_correction(params, image, header=infile.header) # ------------------------------------------------------------------ # calculate mid observation time # ------------------------------------------------------------------ mout = drs_fits.get_mid_obs_time(params, infile.header) mid_obs_time, mid_obs_method = mout # ------------------------------------------------------------------ # rotate image # ------------------------------------------------------------------ # rotation to match HARPS orientation (expected by DRS) image = drs_image.rotate_image(image, params['RAW_TO_PP_ROTATION']) # ------------------------------------------------------------------ # Save rotated image # ------------------------------------------------------------------ # define header keys for output file # copy keys from input file outfile.copy_original_keys(infile) # add version outfile.add_hkey('KW_PPVERSION', value=params['DRS_VERSION']) # add dates outfile.add_hkey('KW_DRS_DATE', value=params['DRS_DATE']) outfile.add_hkey('KW_DRS_DATE_NOW', value=params['DATE_NOW']) # add process id outfile.add_hkey('KW_PID', value=params['PID']) # add input filename outfile.add_hkey_1d('KW_INFILE1', values=[infile.basename], dim1name='infile') # add qc parameters outfile.add_qckeys(qc_params) # add dprtype outfile.add_hkey('KW_DPRTYPE', value=outfile.name) # add the shift that was used to correct the image outfile.add_hkey('KW_PPSHIFTX', value=shiftdx) outfile.add_hkey('KW_PPSHIFTY', value=shiftdy) outfile.add_hkey('KW_PPMSTR_FILE', value=os.path.basename(pfile)) # add mid observation time outfile.add_hkey('KW_MID_OBS_TIME', value=mid_obs_time.mjd) outfile.add_hkey('KW_MID_OBSTIME_METHOD', value=mid_obs_method) # ------------------------------------------------------------------ # copy data outfile.data = image # ------------------------------------------------------------------ # log that we are saving rotated image wargs = [outfile.filename] WLOG(params, '', TextEntry('40-010-00009', args=wargs)) # ------------------------------------------------------------------ # writefits image to file outfile.write_file() # add to output files (for indexing) recipe.add_output_file(outfile) # index this file core.end_main(params, None, recipe, success=True, outputs='pp', end=False) # ------------------------------------------------------------------ # append to output storage in p # ------------------------------------------------------------------ output_names.append(outfile.filename) # ------------------------------------------------------------------ # update recipe log file # ------------------------------------------------------------------ log1.end(params) # ---------------------------------------------------------------------- # End of main code # ---------------------------------------------------------------------- return core.return_locals(params, dict(locals())) # ============================================================================= # Start of code # ============================================================================= if __name__ == "__main__": # run main with no arguments (get from command line - sys.argv) ll = main() # ============================================================================= # End of code # =============================================================================
42.644599
80
0.448158
7949881235fb13f4f1c15113ac4d8fe095de4222
3,521
py
Python
trisicell/tl/partition_function/_clt_sampler.py
faridrashidi/trisicell
4db89edd44c03ccb6c7d3477beff0079c3ff8035
[ "BSD-3-Clause" ]
2
2021-07-02T13:53:15.000Z
2021-11-16T03:14:36.000Z
trisicell/tl/partition_function/_clt_sampler.py
faridrashidi/trisicell
4db89edd44c03ccb6c7d3477beff0079c3ff8035
[ "BSD-3-Clause" ]
58
2021-06-14T17:14:39.000Z
2022-03-11T19:32:54.000Z
trisicell/tl/partition_function/_clt_sampler.py
faridrashidi/trisicell
4db89edd44c03ccb6c7d3477beff0079c3ff8035
[ "BSD-3-Clause" ]
null
null
null
import copy from decimal import Decimal import numpy as np import numpy.linalg as la from scipy.special import softmax from sklearn.metrics.pairwise import pairwise_distances def draw_sample_clt(P, greedy, c=1, coef=2): r""" Draw sample clt. :param P: :param greedy: :param c: gaussian kernel parameter :param coef: :return: edges, subtrees, prior_prob prior_prob in the latex: Prob_{T\sim E}[T] """ edges, prior_prob = clt_sample_rec(P, greedy, c, coef=coef) n_cells = P.shape[0] n_nodes = 2 * n_cells - 1 edges_map = {a: (b, d) for a, b, d in edges} subtrees = [] for i in range(n_nodes): if i not in edges_map: # leaf row = np.zeros(n_cells, dtype=np.int8) row[i] = 1 else: pair = edges_map[i] row = subtrees[pair[0]] + subtrees[pair[1]] # logical_or subtrees.append(row) return edges, subtrees, prior_prob def clt_sample_rec( P, greedy, c, names=None, namecount=None, coef=2, prior_prob=None, join_prob_matrix=None, ): """ Clt sample recursion. O(n^2 m^2) n: depth of the recursion two edges at each call nm^2 : runtime of each call can be improved to :param P: probability matrix :param greedy: sample or max :param c: gaussian kernel parameter :param names: for rec :param namecount: for rec :param coef: coef between dist and common mut :param prior_prob: for rec :return: edges, prior_prob """ # TODO make this faster by not recalculating if prior_prob is None: prior_prob = Decimal(1.0) if P.shape[0] == 1: return [], prior_prob if names is None: names = list(range(P.shape[0])) namecount = P.shape[0] if join_prob_matrix is None: def join_neg_priority(a, b): # smaller values should be joined first return la.norm(a - b) - row_leafness_score(a, b) * coef dist = pairwise_distances(P, metric=join_neg_priority) # O(n m^2) dist = dist.astype(np.float128) np.fill_diagonal(dist, np.inf) # This block adjusts c if dist/2c is too big for sotfmax. c_rec = c for _ in range(10): sim = softmax(-dist / (2 * c_rec)) if not np.any(np.isnan(sim)): break c_rec *= 2.0 else: # add new row to join_prob_matrix to get sim pass prob = sim if greedy: pair = np.unravel_index(np.argmax(prob), prob.shape) else: flat_probs = np.float64(prob.flat) ind = np.random.choice(len(flat_probs), p=flat_probs) pair = np.unravel_index(ind, prob.shape) # conversion from numpy.float128 to Decimal is not supported prior_prob = prior_prob * Decimal(np.float64(prob[pair])) P_new = np.delete(P, pair, axis=0) # remove two rows P_new = np.append( P_new, np.minimum(P[pair[0]], P[pair[1]]).reshape(1, -1), axis=0 ) # add one row that has only common ones new_edge = [namecount, names[pair[0]], names[pair[1]]] new_names = copy.copy(names) del new_names[np.max(pair)] del new_names[np.min(pair)] new_names.append(namecount) newnamecount = namecount + 1 edges, prior_prob = clt_sample_rec( P_new, greedy, c, new_names, newnamecount, coef, prior_prob ) edges.append(new_edge) return edges, prior_prob def row_leafness_score(row_a, row_b): return np.sum(np.minimum(row_a, row_b))
28.168
77
0.618574
7949898777f7cb5036a036ca7691a820932c4476
455
py
Python
manoria_project/apps/manoria/utils.py
jtauber/team566
2884e6bbfd4f8ae0f5e0f09fcee645a6552f1d7a
[ "MIT" ]
1
2019-06-13T16:18:47.000Z
2019-06-13T16:18:47.000Z
manoria_project/apps/manoria/utils.py
jtauber/team566
2884e6bbfd4f8ae0f5e0f09fcee645a6552f1d7a
[ "MIT" ]
null
null
null
manoria_project/apps/manoria/utils.py
jtauber/team566
2884e6bbfd4f8ae0f5e0f09fcee645a6552f1d7a
[ "MIT" ]
null
null
null
import random def weighted_choices(weighted_population, k): s = [] for choice, weight in weighted_population: for i in range(weight): s.append(choice) results = [] while s: r = random.choice(s) results.append(r) if len(results) == k: break s = [item for item in s if item != r] d = dict(weighted_population) return sorted(results, key=lambda x: d[x], reverse=True)
25.277778
60
0.582418
7949898f8298628db2fce6d26a61a665a90bc92d
569
py
Python
corpora/test.py
mobarski/sandbox
64ac79143750d5dcbd4d0f3abdab6efeb9bdf50c
[ "MIT" ]
null
null
null
corpora/test.py
mobarski/sandbox
64ac79143750d5dcbd4d0f3abdab6efeb9bdf50c
[ "MIT" ]
null
null
null
corpora/test.py
mobarski/sandbox
64ac79143750d5dcbd4d0f3abdab6efeb9bdf50c
[ "MIT" ]
null
null
null
import sqlite3 db=sqlite3.connect('freq.sqlite') sql = "select count(*) from freq where key=='SC1'" sql = "select * from freq where key=='SC2' limit 90" sql = "select sum(freq) from freq" sql = "create table agg as select * from (select token,sum(freq) as freq group by token) order by freq desc, token asc" #db.execute('drop table if exists agg') sql = "create table agg as select token,sum(freq) as freq from freq group by token order by 2 desc, 1 asc" sql = "select rowid,* from agg where token like 'd%' limit 10" for x in db.execute(sql): print(x) db.commit()
35.5625
119
0.706503
79498a5898b17bec205cfd67c896efc2f998e8a3
2,236
py
Python
gui/constants.py
ErlendHer/AlgoView
946c2bb38e2ab3af011281c9672af4fcca84ae87
[ "Apache-2.0" ]
1
2020-11-26T09:37:28.000Z
2020-11-26T09:37:28.000Z
gui/constants.py
ErlendHer/AlgoView
946c2bb38e2ab3af011281c9672af4fcca84ae87
[ "Apache-2.0" ]
null
null
null
gui/constants.py
ErlendHer/AlgoView
946c2bb38e2ab3af011281c9672af4fcca84ae87
[ "Apache-2.0" ]
1
2020-12-09T17:18:12.000Z
2020-12-09T17:18:12.000Z
import os import sys import yaml from yaml.scanner import ScannerError WIDTH = 0 # Height of our _maze in pixels HEIGHT = 0 # Width of our _maze in pixels SCREEN_WIDTH = 0 # Application width in pixels SCREEN_HEIGHT = 0 # Application height in pixels MAZE_LOC = (0, 0) # Location of the first pixel of the _maze FONT = "Courier New" running = True # Controls the game loop, terminates application when False TICK = None # Number of updates performed per second PADX = None # Global padding in the y direction PADY = None # Global padding in the x direction BOX_SIZE = None # Size of each individual box representing the _maze BORDER_SIZE = None # Thickness of the application borders default_config = { "tick": 60, "pad_x": 4, "pad_y": 4, "box_size": 20, "border_size": 2 } cfg_path = "config.yml" def load_config(): """ Loads the config.yml file. If the file does not exist, a default configuration file is created. """ # All constants are in the global scope global TICK, PADX, PADY, BOX_SIZE, BORDER_SIZE if not os.path.exists(cfg_path): _create_config(cfg_path) config = None fail_safe = 0 # Implement fail_safe to prevent infinite loops while not config: if fail_safe > 4: print("Fatal error reading config.yml, terminating application") sys.exit(-1) try: fail_safe += 1 with open(cfg_path) as f: config = yaml.load(f, Loader=yaml.FullLoader) except ScannerError: _create_config(cfg_path) continue if not default_config.keys() == config.keys(): _create_config() config = None for key, value in config.items(): if key == "tick": TICK = value elif key == "pad_x": PADX = value elif key == "pad_y": PADY = value elif key == "box_size": BOX_SIZE = value elif key == "border_size": BORDER_SIZE = value def _create_config(path): """ Creates default config file. """ with open(path, "w+") as f: yaml.dump(default_config, f)
26.939759
99
0.605098
79498ac5dee8c52121bb990e1b193bcffdda1e34
16,115
py
Python
omnizart/patch_cnn/app.py
nicolasanjoran/omnizart
b0e74af39b2e3a312ef32dbf0837626b2e043cb6
[ "MIT" ]
1,145
2020-11-13T10:07:47.000Z
2022-03-29T17:35:36.000Z
omnizart/patch_cnn/app.py
nicolasanjoran/omnizart
b0e74af39b2e3a312ef32dbf0837626b2e043cb6
[ "MIT" ]
44
2020-12-29T04:51:16.000Z
2022-03-15T06:52:04.000Z
omnizart/patch_cnn/app.py
nicolasanjoran/omnizart
b0e74af39b2e3a312ef32dbf0837626b2e043cb6
[ "MIT" ]
61
2020-12-19T09:09:42.000Z
2022-03-23T01:26:22.000Z
import os from os.path import join as jpath from datetime import datetime import h5py import numpy as np import tensorflow as tf from mir_eval import sonify from mir_eval.util import midi_to_hz from scipy.io.wavfile import write as wavwrite from omnizart.io import write_yaml, write_agg_f0_results from omnizart.utils import get_logger, parallel_generator, get_filename, ensure_path_exists, aggregate_f0_info from omnizart.base import BaseTranscription, BaseDatasetLoader from omnizart.constants import datasets as d_struct from omnizart.feature.cfp import extract_patch_cfp from omnizart.setting_loaders import PatchCNNSettings from omnizart.models.patch_cnn import patch_cnn_model from omnizart.patch_cnn.inference import inference from omnizart.train import get_train_val_feat_file_list logger = get_logger("Patch CNN Transcription") class PatchCNNTranscription(BaseTranscription): """Application class of PatchCNN module.""" def __init__(self, conf_path=None): super().__init__(PatchCNNSettings, conf_path=conf_path) def transcribe(self, input_audio, model_path=None, output="./"): """Transcribe frame-level fundamental frequency of vocal from the given audio. Parameters ---------- input_audio: Path Path to the wav audio file. model_path: Path Path to the trained model or the transcription mode. If given a path, should be the folder that contains `arch.yaml`, `weights.h5`, and `configuration.yaml`. output: Path (optional) Path for writing out the extracted vocal f0. Default to current path. Returns ------- agg_f0: list[dict] List of aggregated F0 information, with each entry containing the onset, offset, and freqeuncy (Hz). See Also -------- omnizart.cli.patch_cnn.transcribe: The coressponding command line entry. """ if not os.path.isfile(input_audio): raise FileNotFoundError(f"The given audio path does not exist. Path: {input_audio}") logger.info("Loading model...") model, model_settings = self._load_model(model_path) logger.info("Extracting patch CFP feature...") feat, mapping, zzz, cenf = extract_patch_cfp( input_audio, patch_size=model_settings.feature.patch_size, threshold=model_settings.feature.peak_threshold, down_fs=model_settings.feature.sampling_rate, hop=model_settings.feature.hop_size, win_size=model_settings.feature.window_size, fr=model_settings.feature.frequency_resolution, fc=model_settings.feature.frequency_center, tc=model_settings.feature.time_center, g=model_settings.feature.gamma, bin_per_octave=model_settings.feature.bins_per_octave, ) logger.info("Predicting...") feat = np.expand_dims(feat, axis=-1) pred = model.predict(feat) logger.info("Inferring contour...") contour = inference( pred=pred, mapping=mapping, zzz=zzz, cenf=cenf, threshold=model_settings.inference.threshold, max_method=model_settings.inference.max_method ) agg_f0 = aggregate_f0_info(contour, t_unit=model_settings.feature.hop_size) output = self._output_midi(output, input_audio, verbose=False) if output is not None: # Output contour information write_agg_f0_results(agg_f0, output_path=f"{output}_f0.csv") # Synthesize audio timestamp = np.arange(len(contour)) * model_settings.feature.hop_size wav = sonify.pitch_contour( timestamp, contour, model_settings.feature.sampling_rate, amplitudes=0.5 * np.ones(len(contour)) ) wavwrite(f"{output}_trans.wav", model_settings.feature.sampling_rate, wav) logger.info("Text and Wav files have been written to %s", os.path.abspath(os.path.dirname(output))) return agg_f0 def generate_feature(self, dataset_path, patch_cnn_settings=None, num_threads=4): """Extract the feature from the given dataset. To train the model, the first step is to pre-process the data into feature representations. After downloading the dataset, use this function to generate the feature by giving the path of the stored dataset. To specify the output path, modify the attribute ``patch_cnn_settings.dataset.feature_save_path``. It defaults to the folder of the stored dataset, and creates two folders: ``train_feature`` and ``test_feature``. Parameters ---------- dataset_path: Path Path to the downloaded dataset. patch_cnn_settings: PatchCNNSettings The configuration instance that holds all relative settings for the life-cycle of building a model. num_threads: Number of threads for parallel extraction of the feature. See Also -------- omnizart.constants.datasets: The supported datasets and the corresponding training/testing splits. """ settings = self._validate_and_get_settings(patch_cnn_settings) struct = d_struct.MIR1KStructure ## Below are examples of dealing with multiple supported datasets. # noqa: E266 # dataset_type = resolve_dataset_type( # dataset_path, # keywords={"maps": "maps", "musicnet": "musicnet", "maestro": "maestro", "rhythm": "pop", "pop": "pop"} # ) # if dataset_type is None: # logger.warning( # "The given path %s does not match any built-in processable dataset. Do nothing...", # dataset_path # ) # return # logger.info("Inferred dataset type: %s", dataset_type) # # Build instance mapping # struct = { # "maps": d_struct.MapsStructure, # "musicnet": d_struct.MusicNetStructure, # "maestro": d_struct.MaestroStructure, # "pop": d_struct.PopStructure # }[dataset_type] # label_extractor = { # "maps": MapsLabelExtraction, # "musicnet": MusicNetLabelExtraction, # "maestro": MaestroLabelExtraction, # "pop": PopLabelExtraction # }[dataset_type] # Fetching wav files train_data_pair = struct.get_train_data_pair(dataset_path=dataset_path) test_data_pair = struct.get_test_data_pair(dataset_path=dataset_path) logger.info("Number of total training wavs: %d", len(train_data_pair)) logger.info("Number of total testing wavs: %d", len(test_data_pair)) # Resolve feature output path train_feat_out_path, test_feat_out_path = self._resolve_feature_output_path(dataset_path, settings) logger.info("Output training feature to %s", train_feat_out_path) logger.info("Output testing feature to %s", test_feat_out_path) # Feature extraction logger.info( "Start extracting the training feature. " "This may take time to finish and affect the computer's performance" ) _parallel_feature_extraction( train_data_pair, out_path=train_feat_out_path, feat_settings=settings.feature, num_threads=num_threads ) logger.info( "Start extracting the testing feature. " "This may take time to finish and affect the computer's performance" ) _parallel_feature_extraction( test_data_pair, out_path=test_feat_out_path, feat_settings=settings.feature, num_threads=num_threads ) # Writing out the settings write_yaml(settings.to_json(), jpath(train_feat_out_path, ".success.yaml")) write_yaml(settings.to_json(), jpath(test_feat_out_path, ".success.yaml")) logger.info("All done") def train(self, feature_folder, model_name=None, input_model_path=None, patch_cnn_settings=None): """Model training. Train the model from scratch or continue training given a model checkpoint. Parameters ---------- feature_folder: Path Path to the generated feature. model_name: str The name of the trained model. If not given, will default to the current timestamp. input_model_path: Path Specify the path to the model checkpoint in order to fine-tune the model. patch_cnn_settings: VocalContourSettings The configuration that holds all relative settings for the life-cycle of model building. """ settings = self._validate_and_get_settings(patch_cnn_settings) if input_model_path is not None: logger.info("Continue to train on model: %s", input_model_path) model, prev_set = self._load_model(input_model_path, custom_objects=self.custom_objects) settings.feature.patch_size = prev_set.feature.patch_size logger.info("Constructing dataset instance") split = settings.training.steps / (settings.training.steps + settings.training.val_steps) train_feat_files, val_feat_files = get_train_val_feat_file_list(feature_folder, split=split) output_types = (tf.float32, tf.float32) output_shapes = ((settings.feature.patch_size, settings.feature.patch_size, 1), (2)) train_dataset = PatchCNNDatasetLoader( feature_files=train_feat_files, num_samples=settings.training.epoch * settings.training.batch_size * settings.training.steps ) \ .get_dataset(settings.training.batch_size, output_types=output_types, output_shapes=output_shapes) val_dataset = PatchCNNDatasetLoader( feature_files=val_feat_files, num_samples=settings.training.epoch * settings.training.val_batch_size * settings.training.val_steps ) \ .get_dataset(settings.training.val_batch_size, output_types=output_types, output_shapes=output_shapes) if input_model_path is None: logger.info("Constructing new model") model = patch_cnn_model(patch_size=settings.feature.patch_size) logger.info("Compiling model") optimizer = tf.keras.optimizers.Adam(learning_rate=settings.training.init_learning_rate) model.compile(optimizer=optimizer, loss="categorical_crossentropy", metrics=["accuracy"]) logger.info("Resolving model output path") if model_name is None: model_name = str(datetime.now()).replace(" ", "_") if not model_name.startswith(settings.model.save_prefix): model_name = settings.model.save_prefix + "_" + model_name model_save_path = jpath(settings.model.save_path, model_name) ensure_path_exists(model_save_path) write_yaml(settings.to_json(), jpath(model_save_path, "configurations.yaml")) write_yaml(model.to_yaml(), jpath(model_save_path, "arch.yaml"), dump=False) logger.info("Model output to: %s", model_save_path) logger.info("Constrcuting callbacks") callbacks = [ tf.keras.callbacks.EarlyStopping(patience=settings.training.early_stop), tf.keras.callbacks.ModelCheckpoint(jpath(model_save_path, "weights.h5"), save_weights_only=True) ] logger.info("Callback list: %s", callbacks) logger.info("Start training") history = model.fit( train_dataset, validation_data=val_dataset, epochs=settings.training.epoch, steps_per_epoch=settings.training.steps, validation_steps=settings.training.val_steps, callbacks=callbacks, use_multiprocessing=True, workers=8 ) return model_save_path, history def extract_label(label_path, label_loader, mapping, cenf, t_unit): """Label extraction function of PatchCNN module. Extracts the label representation required by PatchCNN module. The output dimesions are: patch_length x 2. The second dimension indicates whether there is an active vocal pitch or not of that patch. Small probabilities are assigned to those patch with pitch slightly shifted to augment the sparse label. The probabilities are computed according to the distance of that pitch index to the ground-truth index: 1 / (dist + 1). Parameters ---------- label_path: Path Path to the ground-truth file. label_loader: Label loader that contains ``load_label`` function for parsing the ground-truth file into list :class:`Label` representation. mapping: 2D numpy array The original frequency and time index of patches. See ``omnizart.feature.cfp.extract_patch_cfp`` for more details. cenf: list[float] Center frequencies in Hz of each frequency index. t_unit: float Time unit of each frame in seconds. Returns ------- gt_roll: 2D numpy array A sequence of binary classes, represents whether the patch contains the pitch of vocal. """ labels = label_loader.load_label(label_path) total_len = len(mapping) cenf = np.array(cenf) gt_roll = np.zeros((total_len, 2)) for label in labels: start_tidx = int(round(label.start_time / t_unit)) end_tidx = int(round(label.end_time / t_unit)) frm_start = np.argmin(np.abs(mapping[:, 1] - start_tidx)) frm_end = total_len - np.argmin(np.abs(mapping[::-1, 1] - end_tidx)) cur_hz = midi_to_hz(label.note) pitch_idx = np.argmin(np.abs(cenf - cur_hz)) for idx in range(frm_start, frm_end): dist = abs(mapping[idx, 0] - pitch_idx) prob = 1 / (1 + dist) gt_roll[idx, 1] = prob gt_roll[:, 0] = 1 - gt_roll[:, 1] return gt_roll def _all_in_one_extract(data_pair, **feat_params): feat, mapping, zzz, cenf = extract_patch_cfp(data_pair[0], **feat_params) label = extract_label(data_pair[1], d_struct.MIR1KStructure, mapping=mapping, cenf=cenf, t_unit=feat_params["hop"]) return feat, mapping, zzz, label def _parallel_feature_extraction(data_pair_list, out_path, feat_settings, num_threads=4): feat_params = { "patch_size": feat_settings.patch_size, "threshold": feat_settings.peak_threshold, "down_fs": feat_settings.sampling_rate, "hop": feat_settings.hop_size, "win_size": feat_settings.window_size, "fr": feat_settings.frequency_resolution, "fc": feat_settings.frequency_center, "tc": feat_settings.time_center, "g": feat_settings.gamma, "bin_per_octave": feat_settings.bins_per_octave, } iters = enumerate( parallel_generator( _all_in_one_extract, data_pair_list, max_workers=num_threads, use_thread=True, chunk_size=num_threads, **feat_params ) ) for idx, ((feat, mapping, zzz, label), audio_idx) in iters: audio = data_pair_list[audio_idx][0] # logger.info("Progress: %s/%s - %s", idx+1, len(data_pair_list), audio) print(f"Progress: {idx + 1}/{len(data_pair_list)} - {audio}", end="\r") filename = get_filename(audio) out_hdf = jpath(out_path, filename + ".hdf") with h5py.File(out_hdf, "w") as out_f: out_f.create_dataset("feature", data=feat) out_f.create_dataset("mapping", data=mapping) out_f.create_dataset("Z", data=zzz) out_f.create_dataset("label", data=label) print("") class PatchCNNDatasetLoader(BaseDatasetLoader): """Dataset loader for PatchCNN module.""" def _get_feature(self, hdf_name, slice_start): feat = self.hdf_refs[hdf_name][self.feat_col_name][slice_start:slice_start + self.slice_hop].squeeze() return np.expand_dims(feat, axis=-1)
42.407895
119
0.662985
79498ba74276fc1ebed3f588a5106bfd97b96987
4,835
py
Python
setup.py
yuttie/pylti
18a608282e0d5bc941beb2eaaeea3b7ad484b399
[ "BSD-2-Clause" ]
55
2015-03-04T02:08:51.000Z
2022-01-21T20:57:38.000Z
setup.py
yuttie/pylti
18a608282e0d5bc941beb2eaaeea3b7ad484b399
[ "BSD-2-Clause" ]
69
2015-01-07T18:38:37.000Z
2021-08-31T23:35:48.000Z
setup.py
yuttie/pylti
18a608282e0d5bc941beb2eaaeea3b7ad484b399
[ "BSD-2-Clause" ]
44
2015-03-28T01:18:15.000Z
2021-12-28T16:45:09.000Z
#!/usr/bin/env python # Copyright 2009-2014 MIT ODL Engineering # # This file is part of PyLTI. # from __future__ import print_function import os import sys if sys.version_info < (2, 7): error = "ERROR: PyLTI requires Python 2.7+ ... exiting." print(error, file=sys.stderr) sys.exit(1) try: from setuptools import setup, find_packages from setuptools.command.test import test as testcommand class PyTest(testcommand): user_options = testcommand.user_options[:] user_options += [ ('coverage', 'C', 'Produce a coverage report for PyLTI'), ('pep8', 'P', 'Produce a pep8 report for PyLTI'), ('flakes', 'F', 'Produce a flakes report for PyLTI'), ] coverage = None pep8 = None flakes = None test_suite = False test_args = [] def initialize_options(self): testcommand.initialize_options(self) def finalize_options(self): testcommand.finalize_options(self) self.test_suite = True self.test_args = [] if self.coverage: self.test_args.append('--cov') self.test_args.append('pylti') if self.pep8: self.test_args.append('--pep8') if self.flakes: self.test_args.append('--flakes') def run_tests(self): # import here, cause outside the eggs aren't loaded import pytest errno = pytest.main(self.test_args) sys.exit(errno) extra = dict(test_suite="pylti.tests", tests_require=["pytest-cov>=2.3.0", "pytest-pep8>=1.0.6", "pytest-flakes>=1.0.1", "pytest>=2.9.2", "httpretty>=0.8.3", "flask>=0.10.1", "oauthlib>=0.6.3", "semantic_version>=2.3.1", "mock==1.0.1"], cmdclass={"test": PyTest}, install_requires=["oauth2>=1.9.0.post1", "httplib2>=0.9", "six>=1.10.0"], include_package_data=True, zip_safe=False) except ImportError as err: import string from distutils.core import setup def convert_path(pathname): """ Local copy of setuptools.convert_path used by find_packages (only used with distutils which is missing the find_packages feature) """ if os.sep == '/': return pathname if not pathname: return pathname if pathname[0] == '/': raise ValueError("path '%s' cannot be absolute" % pathname) if pathname[-1] == '/': raise ValueError("path '%s' cannot end with '/'" % pathname) paths = string.split(pathname, '/') while '.' in paths: paths.remove('.') if not paths: return os.curdir return os.path.join(*paths) def find_packages(where='.', exclude=()): """ Local copy of setuptools.find_packages (only used with distutils which is missing the find_packages feature) """ out = [] stack = [(convert_path(where), '')] while stack: where, prefix = stack.pop(0) for name in os.listdir(where): fn = os.path.join(where, name) isdir = os.path.isdir(fn) has_init = os.path.isfile(os.path.join(fn, '__init__.py')) if '.' not in name and isdir and has_init: out.append(prefix + name) stack.append((fn, prefix + name + '.')) for pat in list(exclude) + ['ez_setup', 'distribute_setup']: from fnmatch import fnmatchcase out = [item for item in out if not fnmatchcase(item, pat)] return out print("Non-Fatal Error:", err, "\n") print("Setup encountered an error while importing setuptools (see above).") print("Proceeding anyway with manual replacements for setuptools.find_packages.") print("Try installing setuptools if you continue to have problems.\n\n") extra = dict() VERSION = __import__('pylti').__version__ README = open('README.rst').read() setup( name='PyLTI', version=VERSION, packages=find_packages(), package_data={'pylti.templates': ['web/*.*', 'web/css/*', 'web/js/*']}, license='BSD', author='MIT ODL Engineering', author_email='odl-engineering@mit.edu', url="http://github.com/mitodl/pylti", description="PyLTI provides Python Implementation of IMS" " LTI interface that works with edX", long_description=README, classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Developers', 'Intended Audience :: Education', ], **extra )
34.049296
90
0.562358
79498c9430f1e2aa1df0702c9f5ca1ae38c6a19e
241
py
Python
setup.py
mayabenowitz/neuralcraft
00622818e6a078d906399d2be6d641acf040186c
[ "MIT" ]
1
2020-09-28T21:24:25.000Z
2020-09-28T21:24:25.000Z
setup.py
mayabenowitz/neuralcraft
00622818e6a078d906399d2be6d641acf040186c
[ "MIT" ]
null
null
null
setup.py
mayabenowitz/neuralcraft
00622818e6a078d906399d2be6d641acf040186c
[ "MIT" ]
null
null
null
from setuptools import find_packages, setup setup( name='src', packages=find_packages(), version='0.1.0', description='A Free Massively Multiplayer Online Learning Platform', author='maya benowitz', license='MIT', )
21.909091
72
0.692946
79498c94f4977fcdf537034c99c52026d5146aae
151
py
Python
src/index.py
oprogramador/facebook-graph-analyser
59c80378d95da10a6ec912b5f0fc1cb9500b03a1
[ "MIT" ]
null
null
null
src/index.py
oprogramador/facebook-graph-analyser
59c80378d95da10a6ec912b5f0fc1cb9500b03a1
[ "MIT" ]
null
null
null
src/index.py
oprogramador/facebook-graph-analyser
59c80378d95da10a6ec912b5f0fc1cb9500b03a1
[ "MIT" ]
null
null
null
import GraphAnalyser import FacebookConnector import sys print GraphAnalyser.findShortestPath(FacebookConnector.getFriends, sys.argv[1], sys.argv[2])
25.166667
92
0.847682
79498e62d8821d2dcf0b7b4ec4ce4f28d37cefcf
8,429
py
Python
ppci/utils/codepage.py
dcoles/ppci-mirror
51181db69d933adbb3c5b5ada2bd427d140b1385
[ "BSD-2-Clause" ]
null
null
null
ppci/utils/codepage.py
dcoles/ppci-mirror
51181db69d933adbb3c5b5ada2bd427d140b1385
[ "BSD-2-Clause" ]
null
null
null
ppci/utils/codepage.py
dcoles/ppci-mirror
51181db69d933adbb3c5b5ada2bd427d140b1385
[ "BSD-2-Clause" ]
null
null
null
""" Cool idea to load actual object code into memory and execute it from python using ctypes Credits for idea: Luke Campagnola """ import inspect import sys import mmap import struct import logging import ctypes from ..arch import get_current_arch from .. import ir from ..binutils import debuginfo, layout from ..binutils.linker import link def get_ctypes_type(debug_type): mapping = { "int": ctypes.c_int, "char": ctypes.c_int, # TODO: how to handle this? "long": ctypes.c_long, "void": ctypes.c_int, # TODO: what to do? "double": ctypes.c_double, "float": ctypes.c_float, "bool": ctypes.c_int, "byte": ctypes.c_int, } if isinstance(debug_type, debuginfo.DebugBaseType): return mapping[debug_type.name] elif isinstance(debug_type, debuginfo.DebugPointerType): if isinstance(debug_type.pointed_type, debuginfo.DebugStructType): # TODO: treat struct pointers as void pointers for now. # TODO: fix this? return ctypes.c_voidp else: return ctypes.POINTER(get_ctypes_type(debug_type.pointed_type)) elif debug_type is None: return elif isinstance(debug_type, type): mapping = {int: ctypes.c_int, float: ctypes.c_double} return mapping[debug_type] elif isinstance(debug_type, ir.BasicTyp): mapping = { ir.f32: ctypes.c_float, ir.f64: ctypes.c_double, ir.i32: ctypes.c_int32, ir.i64: ctypes.c_int64, # TODO: which one of 32 and 64 is int? } return mapping[debug_type] else: # pragma: no cover raise NotImplementedError(str(debug_type) + str(type(debug_type))) uintt = ctypes.c_uint64 if struct.calcsize("P") == 8 else ctypes.c_uint32 class WinPage: """ Nice windows hack to emulate mmap. Copied from: https://github.com/campagnola/pycca/blob/master/pycca/asm/codepage.py """ def __init__(self, size): kern = ctypes.windll.kernel32 valloc = kern.VirtualAlloc valloc.argtypes = (uintt,) * 4 valloc.restype = uintt self.addr = valloc(0, size, 0x1000 | 0x2000, 0x40) self.ptr = 0 self.size = size self.mem = (ctypes.c_char * size).from_address(self.addr) def write(self, data): self.mem[self.ptr : self.ptr + len(data)] = data self.ptr += len(data) def seek(self, pos): self.ptr = pos def read(self): return bytes(self.mem[self.ptr : self.size]) def __len__(self): return self.size def __del__(self): kern = ctypes.windll.kernel32 vfree = kern.VirtualFree vfree.argtypes = (uintt,) * 3 vfree(self.addr, self.size, 0x8000) logger = logging.getLogger("codepage") class MemoryPage: """ Allocate a memory slab in the current process. """ def __init__(self, size): self.size = size if size > 0: if sys.platform == "win32": self._page = WinPage(size) self.addr = self._page.addr else: self._page = mmap.mmap(-1, size, prot=1 | 2 | 4) buf = (ctypes.c_char * size).from_buffer(self._page) self.addr = ctypes.addressof(buf) logger.debug("Allocated %s bytes at 0x%x", size, self.addr) else: self._page = None self.addr = 0 def write(self, data): """ Fill page with the given data """ if data: assert self._page self._page.write(data) def seek(self, pos): if self._page: self._page.seek(pos) def read(self, size=None): if self._page: return self._page.read(size) else: return bytes() class Mod: """ Container for machine code """ def __init__(self, obj, imports=None): size = obj.byte_size if not obj.debug_info: raise ValueError( 'Unable to load "{}"' " because it does not contain debug info.".format(obj) ) # Create a code page into memory: self._code_page = MemoryPage(size) self._data_page = MemoryPage(size) # Create callback pointers if any: imports = imports or {} self._import_symbols = [] extra_symbols = {} for name, function in imports.items(): signature = inspect.signature(function) if signature.return_annotation is inspect._empty: raise ValueError( '"{}" requires return type annotations'.format(name) ) return_type = signature.return_annotation argument_types = [ p.annotation for p in signature.parameters.values() ] restype = get_ctypes_type(return_type) argtypes = [get_ctypes_type(a) for a in argument_types] ftype = ctypes.CFUNCTYPE(restype, *argtypes) callback = ftype(function) logger.debug("Import name %s", name) self._import_symbols.append((name, callback, ftype)) extra_symbols[name] = ctypes.cast(callback, ctypes.c_void_p).value # Link to e.g. apply offset to global literals layout2 = layout.Layout() layout_code_mem = layout.Memory("codepage") layout_code_mem.location = self._code_page.addr layout_code_mem.size = size layout_code_mem.add_input(layout.Section("code")) layout2.add_memory(layout_code_mem) layout_data_mem = layout.Memory("datapage") layout_data_mem.location = self._data_page.addr layout_data_mem.size = size layout_data_mem.add_input(layout.Section("data")) layout2.add_memory(layout_data_mem) # Link the object into memory: obj = link( [obj], layout=layout2, debug=True, extra_symbols=extra_symbols ) assert obj.byte_size == size # Load the code into the page: code = bytes(obj.get_section("code").data) self._code_page.write(code) data = bytes(obj.get_section("data").data) self._data_page.write(data) # TODO: we might have more sections! # Get a function pointer for function in obj.debug_info.functions: function_name = function.name # Determine the function type: restype = get_ctypes_type(function.return_type) argtypes = [get_ctypes_type(a.typ) for a in function.arguments] logger.debug("function sig %s %s", restype, argtypes) ftype = ctypes.CFUNCTYPE(restype, *argtypes) # Create a function pointer: vaddress = obj.get_symbol_id_value(function.begin.symbol_id) fpointer = ftype(vaddress) # Set the attribute: setattr(self, function_name, fpointer) # Get a variable pointers for variable in obj.debug_info.variables: variable_name = variable.name assert isinstance(variable, debuginfo.DebugVariable) assert isinstance(variable.address, debuginfo.DebugAddress) vaddress = obj.get_symbol_id_value(variable.address.symbol_id) var_ctyp = ctypes.POINTER(get_ctypes_type(variable.typ)) vpointer = ctypes.cast(vaddress, var_ctyp) # Set the attribute: setattr(self, variable_name, vpointer) # Store object for later usage: self._obj = obj def get_symbol_offset(self, name): """ Get the memory address of a symbol """ return self._obj.get_symbol(name).value def load_code_as_module(source_file, reporter=None): """ Load c3 code as a module """ from ..api import c3c # Compile a simple function march = get_current_arch() if march is None: raise NotImplementedError(sys.platform) obj = c3c( [source_file], [], march, debug=True, opt_level=2, reporter=reporter ) # Convert obj to executable module m = Mod(obj) return m def load_obj(obj, imports=None): """ Load an object into memory. Args: obj: the code object to load. imports: A dictionary of functions to attach. Optionally a dictionary of functions that must be imported can be provided. """ return Mod(obj, imports=imports)
31.569288
78
0.609206
79498f88d2c3e79ed25b04394bb3ec7d080f237a
3,212
py
Python
automox_console_sdk/models/api_keys_id_body.py
AutomoxCommunity/automox-console-sdk-python
9e921b138d63f90750e071d0a40e1d7edfa06733
[ "MIT" ]
1
2021-10-05T22:09:10.000Z
2021-10-05T22:09:10.000Z
automox_console_sdk/models/api_keys_id_body.py
AutomoxCommunity/automox-console-sdk-python
9e921b138d63f90750e071d0a40e1d7edfa06733
[ "MIT" ]
1
2021-09-16T06:00:51.000Z
2021-09-16T06:00:51.000Z
automox_console_sdk/models/api_keys_id_body.py
AutomoxCommunity/automox-console-sdk-python
9e921b138d63f90750e071d0a40e1d7edfa06733
[ "MIT" ]
4
2021-09-16T02:35:32.000Z
2022-02-16T01:09:57.000Z
# coding: utf-8 """ Automox Console API API for use with the Automox Console # noqa: E501 OpenAPI spec version: 2021-11-16 Contact: support@automox.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class ApiKeysIdBody(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'is_enabled': 'bool' } attribute_map = { 'is_enabled': 'is_enabled' } def __init__(self, is_enabled=None): # noqa: E501 """ApiKeysIdBody - a model defined in Swagger""" # noqa: E501 self._is_enabled = None self.discriminator = None self.is_enabled = is_enabled @property def is_enabled(self): """Gets the is_enabled of this ApiKeysIdBody. # noqa: E501 :return: The is_enabled of this ApiKeysIdBody. # noqa: E501 :rtype: bool """ return self._is_enabled @is_enabled.setter def is_enabled(self, is_enabled): """Sets the is_enabled of this ApiKeysIdBody. :param is_enabled: The is_enabled of this ApiKeysIdBody. # noqa: E501 :type: bool """ if is_enabled is None: raise ValueError("Invalid value for `is_enabled`, must not be `None`") # noqa: E501 self._is_enabled = is_enabled def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(ApiKeysIdBody, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ApiKeysIdBody): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
28.678571
96
0.565691
794990d322bf21f2201943c7b77f810cd74a33a2
941
py
Python
angr/procedures/libc/strcmp.py
mariusmue/angr
f8304c4b1f0097a721a6692b02a45cabaae137c5
[ "BSD-2-Clause" ]
2
2018-05-02T17:41:36.000Z
2020-05-18T02:49:16.000Z
angr/procedures/libc/strcmp.py
mariusmue/angr
f8304c4b1f0097a721a6692b02a45cabaae137c5
[ "BSD-2-Clause" ]
null
null
null
angr/procedures/libc/strcmp.py
mariusmue/angr
f8304c4b1f0097a721a6692b02a45cabaae137c5
[ "BSD-2-Clause" ]
1
2022-02-10T02:29:38.000Z
2022-02-10T02:29:38.000Z
import angr from angr.sim_type import SimTypeString, SimTypeInt import logging l = logging.getLogger("angr.procedures.libc.strcmp") class strcmp(angr.SimProcedure): #pylint:disable=arguments-differ def run(self, a_addr, b_addr, wchar=False, ignore_case=False): self.argument_types = {0: self.ty_ptr(SimTypeString()), 1: self.ty_ptr(SimTypeString())} self.return_type = SimTypeInt(32, True) strlen = angr.SIM_PROCEDURES['libc']['strlen'] a_strlen = self.inline_call(strlen, a_addr, wchar=wchar) b_strlen = self.inline_call(strlen, b_addr, wchar=wchar) maxlen = self.state.se.BVV(max(a_strlen.max_null_index, b_strlen.max_null_index), self.state.arch.bits) strncmp = self.inline_call(angr.SIM_PROCEDURES['libc']['strncmp'], a_addr, b_addr, maxlen, a_len=a_strlen, b_len=b_strlen, wchar=wchar, ignore_case=ignore_case) return strncmp.ret_expr
40.913043
168
0.706695
794991186df01f8dcad2311738a088ba3bd27824
4,899
py
Python
kitchen/kitchen2/tests/test_text_utf8.py
crylearner/RobotFrameworkAppiumIntegration
895b96025dbc04c152b820faf62ba8525dd7af78
[ "Apache-2.0" ]
2
2017-08-10T16:14:15.000Z
2021-11-28T10:47:46.000Z
kitchen/kitchen2/tests/test_text_utf8.py
crylearner/RobotFrameworkAppiumIntegration
895b96025dbc04c152b820faf62ba8525dd7af78
[ "Apache-2.0" ]
null
null
null
kitchen/kitchen2/tests/test_text_utf8.py
crylearner/RobotFrameworkAppiumIntegration
895b96025dbc04c152b820faf62ba8525dd7af78
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # import unittest from nose import tools import warnings from kitchen.text import utf8 import base_classes class TestUTF8(base_classes.UnicodeTestData, unittest.TestCase): def setUp(self): # All of the utf8* functions are deprecated warnings.simplefilter('ignore', DeprecationWarning) def tearDown(self): warnings.simplefilter('default', DeprecationWarning) def test_utf8_width(self): '''Test that we find the proper number of spaces that a utf8 string will consume''' tools.ok_(utf8.utf8_width(self.utf8_japanese) == 31) tools.ok_(utf8.utf8_width(self.utf8_spanish) == 50) tools.ok_(utf8.utf8_width(self.utf8_mixed) == 23) def test_utf8_width_non_utf8(self): '''Test that we handle non-utf8 bytes in utf8_width without backtracing''' # utf8_width() treats non-utf8 byte sequences as undecodable so you # end up with less characters than normal. In this string: # Python-2.7+ replaces problematic characters in a different manner # than older pythons. # Python >= 2.7: # El veloz murci�lago salt� sobre el perro perezoso. # Python < 2.7: # El veloz murci�go salt�bre el perro perezoso. if len(unicode(u'\xe9la'.encode('latin1'), 'utf8', 'replace')) == 1: # Python < 2.7 tools.ok_(utf8.utf8_width(self.latin1_spanish) == 45) else: # Python >= 2.7 tools.ok_(utf8.utf8_width(self.latin1_spanish) == 50) def test_utf8_width_chop(self): '''utf8_width_chop with byte strings''' tools.ok_(utf8.utf8_width_chop(self.utf8_mixed) == (23, self.utf8_mixed)) tools.ok_(utf8.utf8_width_chop(self.utf8_mixed, 23) == (23, self.utf8_mixed)) tools.ok_(utf8.utf8_width_chop(self.utf8_mixed, 22) == (22, self.utf8_mixed[:-1])) tools.ok_(utf8.utf8_width_chop(self.utf8_mixed, 19) == (18, self.u_mixed[:-4].encode('utf8'))) tools.ok_(utf8.utf8_width_chop(self.utf8_mixed, 2) == (2, self.u_mixed[0].encode('utf8'))) tools.ok_(utf8.utf8_width_chop(self.utf8_mixed, 1) == (0, '')) def test_utf8_width_chop_unicode(self): '''utf8_width_chop with unicode input''' tools.ok_(utf8.utf8_width_chop(self.u_mixed) == (23, self.u_mixed)) tools.ok_(utf8.utf8_width_chop(self.u_mixed, 23) == (23, self.u_mixed)) tools.ok_(utf8.utf8_width_chop(self.u_mixed, 22) == (22, self.u_mixed[:-1])) tools.ok_(utf8.utf8_width_chop(self.u_mixed, 19) == (18, self.u_mixed[:-4])) tools.ok_(utf8.utf8_width_chop(self.u_mixed, 2) == (2, self.u_mixed[0])) tools.ok_(utf8.utf8_width_chop(self.u_mixed, 1) == (0, u'')) def test_utf8_width_fill(self): '''Pad a utf8 string''' tools.ok_(utf8.utf8_width_fill(self.utf8_mixed, 1) == self.utf8_mixed) tools.ok_(utf8.utf8_width_fill(self.utf8_mixed, 25) == self.utf8_mixed + ' ') tools.ok_(utf8.utf8_width_fill(self.utf8_mixed, 25, left=False) == ' ' + self.utf8_mixed) tools.ok_(utf8.utf8_width_fill(self.utf8_mixed, 25, chop=18) == self.u_mixed[:-4].encode('utf8') + ' ') tools.ok_(utf8.utf8_width_fill(self.utf8_mixed, 25, chop=18, prefix=self.utf8_spanish, suffix=self.utf8_spanish) == self.utf8_spanish + self.u_mixed[:-4].encode('utf8') + self.utf8_spanish + ' ') tools.ok_(utf8.utf8_width_fill(self.utf8_mixed, 25, chop=18) == self.u_mixed[:-4].encode('utf8') + ' ') tools.ok_(utf8.utf8_width_fill(self.u_mixed, 25, chop=18, prefix=self.u_spanish, suffix=self.utf8_spanish) == self.u_spanish.encode('utf8') + self.u_mixed[:-4].encode('utf8') + self.u_spanish.encode('utf8') + ' ') pass def test_utf8_valid(self): '''Test that a utf8 byte sequence is validated''' warnings.simplefilter('ignore', DeprecationWarning) tools.ok_(utf8.utf8_valid(self.utf8_japanese) == True) tools.ok_(utf8.utf8_valid(self.utf8_spanish) == True) warnings.simplefilter('default', DeprecationWarning) def test_utf8_invalid(self): '''Test that we return False with non-utf8 chars''' warnings.simplefilter('ignore', DeprecationWarning) tools.ok_(utf8.utf8_valid('\xff') == False) tools.ok_(utf8.utf8_valid(self.latin1_spanish) == False) warnings.simplefilter('default', DeprecationWarning) def test_utf8_text_wrap(self): tools.ok_(utf8.utf8_text_wrap(self.utf8_mixed) == [self.utf8_mixed]) tools.ok_(utf8.utf8_text_wrap(self.utf8_paragraph) == self.utf8_paragraph_out) tools.ok_(utf8.utf8_text_wrap(self.utf8_mixed_para) == self.utf8_mixed_para_out) tools.ok_(utf8.utf8_text_wrap(self.utf8_mixed_para, width=57, initial_indent=' ', subsequent_indent='----') == self.utf8_mixed_para_57_initial_subsequent_out)
52.677419
227
0.664013
7949911a29de6bbc08f9ad875797e5a2e7b9e706
43,349
py
Python
app/baremetal_service/repository/serializers.py
21vcloud/Controller
63169d220f412330a22e3a2fe9964c73893d4e0f
[ "Apache-2.0" ]
null
null
null
app/baremetal_service/repository/serializers.py
21vcloud/Controller
63169d220f412330a22e3a2fe9964c73893d4e0f
[ "Apache-2.0" ]
null
null
null
app/baremetal_service/repository/serializers.py
21vcloud/Controller
63169d220f412330a22e3a2fe9964c73893d4e0f
[ "Apache-2.0" ]
null
null
null
from django.db import models from rest_framework import serializers from baremetal_service.repository import service_model from drf_yasg import openapi class NoneMeta(models.Model): class Meta: managed = False db_table = 'NoneMeta' CookiesParameter = [ openapi.Parameter( name='COOKIE', in_=openapi.IN_HEADER, type=openapi.TYPE_STRING, description="COOKIES", required=True, default="" ), openapi.Parameter( name='cookies', in_=openapi.IN_HEADER, type=openapi.TYPE_STRING, description="cookies", required=False, default="" ), ] TokenParameter = [ openapi.Parameter( name='token', in_=openapi.IN_HEADER, type=openapi.TYPE_STRING, description="token", required=True, default="" ) ] BucketUploadOjbectSerializer = [ # openapi.Parameter( # name='container_name', in_=openapi.IN_PATH, # type=openapi.TYPE_STRING, # description="container_name", # required=True, # default="" # ), # openapi.Parameter( # name='object_name', in_=openapi.IN_PATH, # type=openapi.TYPE_STRING, # description="object_name", # required=True, # default="" # ), openapi.Parameter( name='file', in_=openapi.IN_FORM, type=openapi.TYPE_FILE, description="file", required=True, ) ] class ObjectFileUploadSerializer(serializers.ModelSerializer): object_name = serializers.CharField(required=True) container_name = serializers.CharField(required=True) class Meta: model = NoneMeta fields = ['container_name', 'object_name'] class GetConfInfoSerializer(serializers.ModelSerializer): key_value = serializers.CharField(required=True) class Meta: model = NoneMeta fields = ["key_value"] class ServiceInstanceFeedbackSerializer(serializers.ModelSerializer): uuid = serializers.CharField(required=True, label="实例所对应的机器", help_text="示例: c4130c54-bc4b-4249-928d-c014827653db") status = serializers.CharField(required=True, label="当前实例状态", help_text="示例:active/DELETED") task = serializers.CharField(required=True, label="实例更新结果", help_text="示例:success/instance_build") class Meta: model = NoneMeta fields = ["uuid", "status", "task"] class ServiceMachineFeedbackSerializer(serializers.ModelSerializer): machine_id = serializers.CharField(required=True, label="machine id", help_text="5d5f9d0c419049990ddd19d2") uuid = serializers.CharField(required=True, label="对应flavor id", help_text="c4130c54-bc4b-4249-928d-c014827653db") job_model = serializers.JSONField(required=False, label="job model") class Meta: model = NoneMeta fields = ["machine_id", "uuid", "job_model"] class ServiceOrderWithIdSerializer(serializers.ModelSerializer): class Meta: model = service_model.BmServiceOrder exclude = ["deleted", "create_at", "update_at", "delivery_status", "project"] class ServiceOrderDeliveryUpdateSerializer(serializers.ModelSerializer): order_id = serializers.CharField(required=True, label="订单id", help_text="示例:BMS201908231116166874034") delivery_status = serializers.CharField(required=True, label="订单状态", help_text="示例:delivered") class Meta: model = NoneMeta fields = ["order_id", "delivery_status"] class DiskInfoSerializer(serializers.ModelSerializer): volume_type = serializers.CharField(required=True, label="云硬盘类型", help_text="inspure_iscsi") size = serializers.IntegerField(required=True, label="云硬盘大小", help_text="1") volume_order_price = serializers.IntegerField(required=True, label="所购买云硬盘价格", help_text="30") count = serializers.IntegerField(required=True, label="所购买云硬盘数量", help_text="2") class Meta: model = NoneMeta fields = ["volume_type", "size", "volume_order_price", "count"] class FloatingIPInfoSerializer(serializers.ModelSerializer): # floating_ip_allocation = serializers.BooleanField(required=True) shared_qos_policy_type = serializers.BooleanField(required=False, default=False, label="带宽类型") qos_policy_id = serializers.CharField(required=False, label="共享带宽id") qos_policy_name = serializers.CharField(required=True, label="带宽名称") external_line_type = serializers.CharField(required=True, label="对外网络类型") firewall_id = serializers.CharField(required=True, label="防火墙id") firewall_name = serializers.CharField(required=True, label="防火墙名称") floating_ip_order_price = serializers.IntegerField(required=True, label="所购买弹性公网IP价格") class Meta: model = NoneMeta fields = ["qos_policy_name", "external_line_type", "firewall_id", "firewall_name", "floating_ip_order_price", "shared_qos_policy_type", "qos_policy_id"] class ServiceMachineCreateSerializer(serializers.ModelSerializer): disk_info = DiskInfoSerializer(many=True) floating_ip_info = FloatingIPInfoSerializer(many=False) class Meta: model = service_model.BmServiceMachine exclude = ['id', "deleted", "create_at", "update_at", "order", "uuid", "status", "firewall_id", "firewall_name", "floating_ip_line", "floating_ip_bandwidth"] class ServiceOrderCreateSerializer(serializers.ModelSerializer): class Meta: model = service_model.BmServiceOrder exclude = ['id', "deleted", "create_at", "update_at", "delivery_status", "project"] class ServiceOrderAlterationSerializer(serializers.ModelSerializer): order_type = serializers.CharField(required=True, label="订单类型", help_text="alteration") order_price = serializers.FloatField(required=True, label="订单价格", help_text="-4000") product_type = serializers.CharField(required=True, label="产品类型", help_text="带宽") product_info = serializers.CharField(required=True, label="产品信息") class Meta: model = NoneMeta fields = ['order_type', "order_price", "product_type", "product_info"] class ServiceCreateListSerializer(serializers.ModelSerializer): order_info = ServiceOrderCreateSerializer(required=True) service_info = ServiceMachineCreateSerializer(required=True) class Meta: model = NoneMeta fields = ["order_info", "service_info"] class MonitoringInstanceSerializer(serializers.ModelSerializer): project_id = serializers.CharField(required=True) region = serializers.CharField(required=True) class Meta: model = NoneMeta fields = ['project_id', "region"] class ServiceInstanceSerializer(serializers.ModelSerializer): class Meta: model = service_model.BmServiceInstance exclude = ['id', "deleted", "update_at"] class ServiceOrderQuerybyAccountSerializer(serializers.ModelSerializer): account_id = serializers.CharField(required=True, help_text="示例:3f4cb35aeec544d3af33150f38b55286") class Meta: model = NoneMeta fields = ["account_id"] class ServiceMachineIdSerializer(serializers.ModelSerializer): machine_id = serializers.CharField(required=True, label="Machine id", help_text="示例:5d5f9d0c419049990ddd19d2") class Meta: model = NoneMeta fields = ["machine_id"] class ServiceRetrySerializer(serializers.ModelSerializer): order_id = serializers.CharField(required=True, label="Order id", help_text="示例:BMS201911251135127208056") machine_id = serializers.CharField(required=False, label="Machine id", help_text="示例:5d5f9d0c419049990ddd19d2") class Meta: model = NoneMeta fields = ["order_id", "machine_id"] class ServiceInstanceUuidSerializer(serializers.ModelSerializer): instance_uuid = serializers.CharField(required=True, label="instance uuid ", help_text="示例:c63a51b9-ccbf-412a-b250-661791473a6b") class Meta: model = NoneMeta fields = ["instance_uuid"] class ServiceBmServiceFloatingIp(serializers.ModelSerializer): class Meta: model = service_model.BmServiceFloatingIp exclude = ['id', "order_id", "account_id", "project_id", "contract_number", "create_at", "update_at", "status", "is_measure_end", "floating_ip", "floating_ip_id", "attached", "instance_uuid", "instance_name", "fixed_address", "external_name", "external_name_id", "first_create_at", "attached_type"] class ServiceCreateFloatingIpSerializer(serializers.ModelSerializer): order_info = ServiceOrderCreateSerializer(required=True) floating_ip_info = ServiceBmServiceFloatingIp(required=True) firewall_id = serializers.CharField(required=True, label="防火墙id 示例:5d68dbc679580c3d577bca3e") class Meta: model = NoneMeta fields = ["order_info", "floating_ip_info", "firewall_id"] class ServiceCreateFloatingIpWithOrderSerializer(serializers.ModelSerializer): order_info = ServiceOrderWithIdSerializer(required=True) floating_ip_info = ServiceBmServiceFloatingIp(required=True) firewall_id = serializers.CharField(required=True) class Meta: model = NoneMeta fields = ["order_info", "floating_ip_info", "firewall_id"] class ServiceFloatingIpQuotasSetSerializer(serializers.ModelSerializer): # qos_policy_id = serializers.CharField(required=True) order_info = ServiceOrderAlterationSerializer(required=True) floating_ip_id = serializers.CharField(required=True) qos_policy_name = serializers.CharField(required=True) class Meta: model = NoneMeta fields = ['order_info', 'floating_ip_id', 'qos_policy_name'] class ServiceDeleteFloatingIpSerializer(serializers.ModelSerializer): floating_ip_id_list = serializers.ListField(required=True, label="", help_text="示例:[‘41deaaeb-b007-41c2-8150-f953cb9765e9’]") class Meta: model = NoneMeta fields = ['floating_ip_id_list'] class ServiceAddFloatingIptoServerSerializer(serializers.ModelSerializer): instance_uuid = serializers.CharField(required=True, label="实例 id", help_text="51c7094c-f039-41b5-865d-d37faa148c96") instance_name = serializers.CharField(required=True, label="实例名称", help_text="node_8_32") floating_ip_id = serializers.CharField(required=True, label="弹性公网IP id", help_text="172d6c81-595f-4aa6-b2f7-1ec99e01716c") floating_ip_address = serializers.CharField(required=False, label="弹性公网IP", help_text="10.100.2.172") fixed_address = serializers.CharField(required=True, label="所绑定的端口", help_text="172.24.0.24") class Meta: model = NoneMeta fields = ['instance_uuid', "instance_name", 'floating_ip_id', "floating_ip_address", "fixed_address"] class ServiceAddFloatingIptoLoadbalanceSerializer(serializers.Serializer): loadbalance_name = serializers.CharField(required=True) loadbalance_id = serializers.CharField(required=True) floating_ip_id = serializers.CharField(required=True) class ServiceDetachFloatingIptoLoadbalanceSerializer(serializers.Serializer): loadbalance_id = serializers.CharField(required=True) floating_ip_id = serializers.CharField(required=True) class LoadbalanceSerializer(serializers.Serializer): loadbalancer_id = serializers.CharField(required=True) listener_protocol = serializers.CharField(required=True) class ServiceDetachFloatingIptoServerSerializer(serializers.ModelSerializer): instance_uuid = serializers.CharField(required=True, label="实例 id", help_text="51c7094c-f039-41b5-865d-d37faa148c96") floating_ip_id = serializers.CharField(required=True, label="弹性公网IP id", help_text="172d6c81-595f-4aa6-b2f7-1ec99e01716c") class Meta: model = NoneMeta fields = ['instance_uuid', 'floating_ip_id'] class ServiceFloatingIpAssociateFirewall(serializers.ModelSerializer): floating_ip_id = serializers.CharField(required=True, label="弹性公网IP id", help_text="1458e4d9-c0f0-46ae-96f6-3eac0cd34d33") floating_ip = serializers.CharField(required=True, label="弹性公网IP", help_text="10.200.204.107") firewall_id = serializers.CharField(required=True, label="防火墙id", help_text="5d5f59d7af7b14da70048a6f") class Meta: model = NoneMeta fields = ['floating_ip_id', 'floating_ip', 'firewall_id'] class ServiceBmServiceVolume(serializers.ModelSerializer): class Meta: model = service_model.BmServiceVolume exclude = ['id', 'order_id', 'account_id', 'project_id', 'create_at', 'update_at', 'is_measure_end', 'region', 'attached_type', 'instance_uuid', 'instance_name', 'volume_id', 'contract_number'] class VolumeCreateSerializer(serializers.ModelSerializer): order_info = ServiceOrderCreateSerializer(required=True) volume_info = ServiceBmServiceVolume(required=True) class Meta: model = NoneMeta fields = ['order_info', 'volume_info'] class VolumeCreateWithOrderSerializer(serializers.ModelSerializer): order_info = ServiceOrderWithIdSerializer(required=True) volume_info = ServiceBmServiceVolume(required=True) class Meta: model = NoneMeta fields = ['order_info', 'volume_info'] class VolumeUpdateSerializer(serializers.ModelSerializer): order_info = ServiceOrderAlterationSerializer(required=True) volume_id = serializers.CharField(required=True) name = serializers.CharField(required=False) size = serializers.CharField(required=False) class Meta: model = NoneMeta fields = ['order_info', 'volume_id', 'name', 'size'] class VolumeDeleteSerailizer(serializers.ModelSerializer): volume_ids = serializers.ListField(required=True) class Meta: model = NoneMeta fields = ['volume_ids'] class VolumeRollBackSerailizer(serializers.ModelSerializer): volume_id_list = serializers.ListField(required=True) class Meta: model = NoneMeta fields = ['volume_id_list'] class VolumeBackCreateSerializer(serializers.ModelSerializer): order_info = ServiceOrderCreateSerializer(required=True, label="订单信息", help_text="示例:") volume_id = serializers.CharField(required=True, label="云硬盘id", help_text="示例:bdbdd6f9-6c5f-4b33-bf19-563389565d3f") name = serializers.CharField(required=False, label="备份名称", help_text="示例:ding_test") volume_name = serializers.CharField(required=True, label="云硬盘名称", help_text="示例:ds2334445555555555555555566666666") description = serializers.CharField(required=False, label="描述信息", help_text="示例:") class Meta: model = NoneMeta fields = ['volume_id', 'name', 'description', 'order_info', "volume_name"] class VolumeBackupDeleteSerializer(serializers.ModelSerializer): backup_ids = serializers.ListField(required=True, label="所删除的云硬盘备份id列表", help_text="[6d4dafbf-cb34-47f6-953e-f45e084cf8fa]") class Meta: model = NoneMeta fields = ['backup_ids'] class VolumeBackupRestoreSerializer(serializers.ModelSerializer): order_info = ServiceOrderCreateSerializer(required=True) backup_id = serializers.CharField(required=True) volume_name = serializers.CharField(required=False) class Meta: model = NoneMeta fields = ['backup_id', 'volume_name', 'order_info'] class VolumeAttachSerializer(serializers.ModelSerializer): server_id = serializers.CharField(required=True, label="绑定的示例ID", help_text="示例:776c046b-4675-4ccb-a16a-30db03e44caa") volume_id = serializers.CharField(required=True, label="云硬盘ID", help_text="示例:b264e220-8d1c-4695-9941-e1c19a99a246") server_name = serializers.CharField(required=False, label="实例名称", help_text="示例:cen7") class Meta: model = NoneMeta fields = ['server_id', 'volume_id', 'server_name'] class BucketCreateSerializer(serializers.ModelSerializer): order_info = ServiceOrderCreateSerializer(required=True, label="订单信息") container_name = serializers.CharField(required=True, label="桶名称 示例:ding") is_public = serializers.BooleanField(required=False, default=False, label="权限是否公有 示例:True/False") class Meta: model = NoneMeta fields = ['container_name', 'is_public', 'order_info'] class BucketDeleteSerializer(serializers.ModelSerializer): buckets = serializers.ListField(required=True, label="删除桶列表", help_text="示例:[ding]") class Meta: model = NoneMeta fields = ['buckets'] class MaterialSerializer(serializers.ModelSerializer): contract_number = serializers.CharField(required=True) class Meta: model = NoneMeta fields = ['contract_number'] class MaterialIPSerializer(serializers.ModelSerializer): floating_ip_id = serializers.CharField(required=True, label="弹性公网IP ", help_text="示例:eb345bb0-9bf0-461d-b5e1-ca1896d50997") material_ip_date = serializers.DateField(required=True, label="查询时间", help_text="示例:2019-08-20") class Meta: model = NoneMeta exclude = ["id"] class MaterialIPSeasonSerializer(serializers.ModelSerializer): # contract_number = serializers.CharField(required=True) floating_ip_id = serializers.CharField(required=True, label="", help_text="示例:eb345bb0-9bf0-461d-b5e1-ca1896d50997") start_date = serializers.DateField(required=True, label="", help_text="示例:2019-08-20") end_date = serializers.DateField(required=True, label="", help_text="示例:2019-08-20") class Meta: model = NoneMeta exclude = ["id"] class ContarctIPSeasonSerializer(serializers.ModelSerializer): contract_number = serializers.CharField(required=True, label="合同编码", help_text="示例:huo123456") start_date = serializers.DateField(required=True, label="开始日期", help_text="示例:2019-09-26") end_date = serializers.DateField(required=True, label="结束日期", help_text="示例:2019-09-26") class Meta: model = NoneMeta exclude = ["id"] class ContarctVolumeSerializer(serializers.ModelSerializer): contract_number = serializers.CharField(required=True, label="合同编码", help_text="示例:ding") class Meta: model = NoneMeta exclude = ["id"] class ContarctVolumeSeasonalSerializer(serializers.ModelSerializer): # contract_number = serializers.CharField(required=True, label="合同编码", help_text="示例:ding") start_date = serializers.DateField(required=True, label="开始日期", help_text="示例:2019-09-26") end_date = serializers.DateField(required=True, label="结束日期", help_text="示例:2019-09-26") class Meta: model = NoneMeta exclude = ["id"] class MaterialIpContract(serializers.ModelSerializer): contract_number = serializers.CharField(required=True, label="合同编码", help_text="示例:ding") contract_ip_date = serializers.DateField(required=True, label="所查询的日期", help_text="示例:2019-10-14") class Meta: model = NoneMeta exclude = ["id"] class FloatingIPCalculaterInRangeParamDictSerializer(serializers.ModelSerializer): contract_number = serializers.CharField(default=None) project_id = serializers.CharField(required=False) account_id = serializers.CharField(required=False) class Meta: model = NoneMeta fields = ["contract_number", "project_id", "account_id"] class FloatingIPCalculaterInRangeSerializer(serializers.ModelSerializer): start_date = serializers.DateField(required=True, label="开始日期", help_text="示例:2019-09-26") end_date = serializers.DateField(required=True, label="结束日期", help_text="示例:2019-09-26") contract_number = serializers.CharField(required=False, label="合同编号", help_text="示例:w20190924") project_id = serializers.CharField(required=False, label="项目id", help_text="示例:7ae5a60714014778baddea703b85cd93") account_id = serializers.CharField(required=False, label="用户id", help_text="示例:c46c3de5d6984241ad21e8fe45761059") class Meta: model = NoneMeta fields = ["start_date", "end_date", "contract_number", "project_id", "account_id"] class BucketUpdateSeraializer(serializers.ModelSerializer): container_name = serializers.CharField(required=True, label="桶名称", help_text="示例:ding") is_public = serializers.BooleanField(required=False, default=False, label="是否公有", help_text="示例:True/False") class Meta: model = NoneMeta fields = ['container_name', 'is_public'] class BucketShowSerializer(serializers.ModelSerializer): container_name = serializers.CharField(required=True, label="桶名称", help_text="示例:container_jacky_test") path = serializers.CharField(required=False, label="路径", help_text="示例:container_jacky_test") class Meta: model = NoneMeta fields = ['container_name', 'path'] class BucketCreateDirSerializer(serializers.ModelSerializer): container_name = serializers.CharField(required=True) floder_name = serializers.CharField(required=True) class Meta: model = NoneMeta fields = ['container_name', 'floder_name'] class BucketShowObjectSerializer(serializers.ModelSerializer): container_name = serializers.CharField(required=True, help_text="示例:韩总Q1_-") object_name = serializers.CharField(required=True, help_text="object_name为目录时末尾加斜杠/") class Meta: model = NoneMeta fields = ['container_name', 'object_name'] class BucketDeleteObjectSerializer(serializers.ModelSerializer): container_name = serializers.CharField(required=True) object_names = serializers.ListField(required=True, help_text="""object_name为目录时末尾加斜杠/, ['ccc/ddd/, 'ccc/eee/d']""") class Meta: model = NoneMeta fields = ['container_name', 'object_names'] class BucketUploadParamOjbectSerializer(serializers.ModelSerializer): object_name = serializers.CharField(required=True) # file = serializers.FileField(required=True) container_name = serializers.CharField(required=True) class Meta: model = NoneMeta fields = ['container_name', 'object_name'] class BucketCopyObjectSerializer(serializers.ModelSerializer): src_container_name = serializers.CharField(required=True) src_object_name = serializers.CharField(required=True, help_text="""object_name为目录时末尾加斜杠/, ['ccc/ddd/, 'ccc/eee/d']""") dst_container_name = serializers.CharField(required=True) dst_object_name = serializers.CharField(required=True) class Meta: model = NoneMeta fields = ['src_container_name', 'src_object_name', 'dst_container_name', 'dst_object_name'] class CreateLoadBalancersSerializer(serializers.Serializer): floating_ip_order_info = ServiceOrderCreateSerializer(required=False) loadbalance_order_info = ServiceOrderCreateSerializer(required=False) floating_ip_info = ServiceBmServiceFloatingIp(required=False) firewall_id = serializers.CharField(required=False, label="防火墙id 示例:5d68dbc679580c3d577bca3e") name = serializers.CharField(required=True) flavor_id = serializers.CharField(required=False) vip_network_id = serializers.CharField(required=True) location = serializers.CharField(required=False) is_public = serializers.BooleanField(required=False) network_name = serializers.CharField(required=False) public_ip_id = serializers.CharField(required=False) vpc_name = serializers.CharField(required=False) vpc_id = serializers.CharField(required=False) listener_count = serializers.CharField(required=False) pool_count = serializers.CharField(required=False) is_new_ip = serializers.BooleanField(required=False) class CreateListenerSerializer(serializers.Serializer): whether_insert_headers = serializers.CharField(required=False, help_text="判断监听器是否需要获取客户端真实IP的头字典") listener_name = serializers.CharField(required=True, help_text="监听器名称") loadbalancer_id = serializers.CharField(required=True, help_text="负载均衡器ID") protocol = serializers.CharField(required=True, help_text="监听器协议") protocol_port = serializers.IntegerField(required=True, help_text="监听器协议端口") timeout_member_connect = serializers.IntegerField(required=True, help_text="监听器成员连接超时时限(秒)") class CreateSNIListenerSerializer(serializers.Serializer): default_tls_container_ref = serializers.CharField(required=False, help_text="监听器SNI证书管理处的引用") listener_name = serializers.CharField(required=True, help_text="监听器名称") loadbalancer_id = serializers.CharField(required=True, help_text="负载均衡器ID") protocol = serializers.CharField(required=True, help_text="监听器协议") protocol_port = serializers.IntegerField(required=True, help_text="监听器协议端口") sni_container_refs = serializers.ListField(required=False, help_text="监听器SNI证书的引用(PKCS12格式)") timeout_member_connect = serializers.IntegerField(required=False, help_text="监听器成员连接超时时限(秒)") class UpdateListenerSerializer(serializers.Serializer): whether_insert_headers = serializers.CharField(required=False, help_text="判断监听器是否需要获取客户端真实IP的头字典") loadbalancer_id = serializers.CharField(required=True, help_text="负载均衡器ID") protocol = serializers.CharField(required=True, help_text="监听器协议") protocol_port = serializers.IntegerField(required=True, help_text="监听器协议端口") listener_name = serializers.CharField(required=False, help_text="监听器名称") timeout_member_connect = serializers.IntegerField(required=False, help_text="监听器成员连接超时时限(秒)") default_pool_id = serializers.CharField(required=True, help_text="监听器所绑定的资源池") class DeleteCertificatesSerializer(serializers.Serializer): crt_name = serializers.CharField(required=False, help_text="SNI证书名称") crt_domain = serializers.IntegerField(required=False, help_text="SNI证书对应域名") class UpdateCertificatesSerializer(serializers.Serializer): crt_name = serializers.CharField(required=False, help_text="SNI证书名称") crt_domain = serializers.IntegerField(required=False, help_text="SNI证书对应域名") class CreateCertificatesSerializer(serializers.Serializer): crt_name = serializers.CharField(required=True, help_text="Secret名称") crt_type = serializers.CharField(required=True, help_text="SNI证书类型") crt_contents = serializers.CharField(required=True, help_text="Secret内容") crt_secret_key = serializers.CharField(required=False, help_text="SNI证书私钥") crt_domain = serializers.CharField(required=False, help_text="当前SNI证书对应域名") class CreateSecretsSerializer(serializers.Serializer): crt_name = serializers.CharField(required=True, help_text="Secret名称") # crt_type = serializers.CharField(required=True, help_text="SNI证书类型") crt_contents = serializers.CharField(required=True, help_text="Secret内容") # crt_secret_key = serializers.CharField(required=False, help_text="SNI证书私钥") # crt_domain = serializers.CharField(required=False, help_text="当前SNI证书对应域名") class CreatePoliciesSerializer(serializers.Serializer): # admin_state_up = serializers.BooleanField(required=False) name = serializers.CharField(required=False) # position = serializers.IntegerField(required=False) # redirect_http_code = serializers.IntegerField(required=False) redirect_pool_id = serializers.CharField(required=False) # redirect_prefix = serializers.CharField(required=False) # redirect_url = serializers.CharField(required=False) # tags = serializers.ListField(required=False) domain_compare_type = serializers.CharField(required=False, default="EQUAL_TO") domain_name = serializers.CharField(required=False) url_compare_type = serializers.CharField(required=False, default="STARTS_WITH") url = serializers.CharField(required=True, ) class CreateSessionSerializer(serializers.ModelSerializer): type = serializers.CharField(required=True) persistence_timeout = serializers.CharField(required=False) cookie_name = serializers.CharField(required=False) class Meta: model = NoneMeta fields = ['type', 'persistence_timeout', 'cookie_name'] class CreatePoolsSerializer(serializers.Serializer): lb_algorithm = serializers.CharField(required=True) loadbalancer_id = serializers.CharField(required=False) listener_id = serializers.CharField(required=False) name = serializers.CharField(required=False) protocol = serializers.CharField(required=True) session_persistence = CreateSessionSerializer(required=False) is_keep_session = serializers.BooleanField(required=False) class CreateHealthMonitorSerializer(serializers.Serializer): delay = serializers.IntegerField(required=True, help_text="健康检查器检查间隔(秒)") max_retries = serializers.IntegerField(required=True, help_text="转为ONLINE状态前健康检查器最大重试次数(次)") timeout = serializers.IntegerField(required=True, help_text="健康检查器超时时间(秒)") pool_id = serializers.CharField(required=True, help_text="健康检查器将要绑定的资源池ID") type = serializers.CharField(required=True, help_text="健康检查器协议类型(One of HTTP, HTTPS, PING, TCP, TLS-HELLO, or UDP-CONNECT)") url_path = serializers.CharField(required=False, help_text="健康检查器的请求的HTTP URL路径;必须以'/'开头,default:/") # expected_codes = serializers.CharField(required=False, # help_text="后端成员的预期HTTP状态码;单个状态码'200',或列表[200, 202],或状态码范围200-204,default:200") class CreatePoliciesRuleSerializer(serializers.Serializer): compare_type = serializers.CharField(required=False) type = serializers.CharField(required=False) value = serializers.CharField(required=False) class AttachPoolMemberSerializer(serializers.ModelSerializer): name = serializers.CharField(required=False, help_text="成员名称") private_address = serializers.CharField(required=True, help_text="当前成员private IP地址") public_address = serializers.CharField(required=False, help_text="当前成员public IP地址") protocol_port = serializers.IntegerField(required=True, help_text="当前成员端口号") weight = serializers.IntegerField(required=True, help_text="当前成员权重") instance_id = serializers.CharField(required=True, help_text="添加的裸金属实例id") loadbancer_id = serializers.CharField(required=True, help_text="当前资源池所对应的负载均衡名称") class Meta: model = NoneMeta fields = ["name", "private_address", "public_address", "protocol_port", "weight", "instance_id", "loadbancer_id"] class AttachPoolMemberListSerializer(serializers.ModelSerializer): member_obj_list = AttachPoolMemberSerializer(many=True) class Meta: model = NoneMeta fields = ["member_obj_list"] class CreatePoolMemberSerializer(serializers.Serializer): address = serializers.CharField(required=True, help_text="当前成员IP地址") protocol_port = serializers.IntegerField(required=True, help_text="当前成员端口号") weight = serializers.IntegerField(required=True, help_text="当前成员权重") class UpdateLoadBalancersSerializer(serializers.Serializer): name = serializers.CharField(required=False) admin_state_up = serializers.BooleanField(required=False) class UpdatePoliciesSerializer(serializers.Serializer): redirect_pool_id = serializers.CharField(required=False) name = serializers.CharField(required=False) class UpdatePoolSerializer(serializers.Serializer): lb_algorithm = serializers.CharField(required=True) name = serializers.CharField(required=False) session_persistence = CreateSessionSerializer(required=False) is_keep_session = serializers.BooleanField(required=False) class UpdateHealthMonitorSerializer(serializers.Serializer): delay = serializers.IntegerField(required=True, help_text="健康检查器检查间隔(秒)") max_retries = serializers.IntegerField(required=True, help_text="转为ONLINE状态前健康检查器最大重试次数(次)") timeout = serializers.IntegerField(required=True, help_text="健康检查器超时时间(秒)") url_path = serializers.CharField(required=False, help_text="健康检查器的请求的HTTP URL路径;必须以'/'开头,default:/") class UpdatePoolsSerializer(serializers.ModelSerializer): admin_state_up = serializers.BooleanField(required=False) ca_tls_container_ref = serializers.CharField(required=False) crl_container_ref = serializers.CharField(required=False) description = serializers.CharField(required=False) lb_algorithm = serializers.CharField(required=False) name = serializers.CharField(required=False) session_persistence = serializers.CharField(required=False) tags = serializers.ListField(required=False) tls_enabled = serializers.BooleanField(required=False) tls_container_ref = serializers.CharField(required=False) class Meta: model = NoneMeta fields = ['admin_state_up', 'ca_tls_container_ref', 'crl_container_ref', 'description', 'lb_algorithm', 'listener_id', 'loadbalancer_id', 'name', 'session_persistence', 'tags', "tls_enabled", "tls_container_ref"] class UpdatePoliciesRuleSerializer(serializers.ModelSerializer): admin_state_up = serializers.BooleanField(required=False) compare_type = serializers.CharField(required=False) invert = serializers.BooleanField(required=False) key = serializers.CharField(required=False) tags = serializers.ListField(required=False) type = serializers.CharField(required=False) value = serializers.CharField(required=False) class Meta: model = NoneMeta fields = ['admin_state_up', 'compare_type', 'invert', 'key', 'tags', "type", "value"] class UpdatePoolMemberSerializer(serializers.Serializer): # protocol_port = serializers.IntegerField(required=True, help_text="当前成员监控端口") weight = serializers.IntegerField(required=True, help_text="当前成员权重") class ShowLoadBalancersSerializer(serializers.Serializer): # loadbalancer_id = serializers.UUIDField(required=True) fields = serializers.CharField(required=False, help_text="可提供参数值,按需返回;如果该参数为空,返回默认策略设置的所有属性") class ListenerDeatilSerializer(serializers.ModelSerializer): listener_id = serializers.UUIDField(required=True) class Meta: model = NoneMeta fields = ['listener_id'] class GetBalancersStatisticsSerializer(serializers.ModelSerializer): loadbalancer_id = serializers.CharField(required=True) class Meta: model = NoneMeta fields = ['loadbalancer_id'] class InstanceInterfaceAttachmentSerializer(serializers.ModelSerializer): server_id = serializers.CharField(required=True) net_id = serializers.CharField(required=True) class Meta: model = NoneMeta fields = ['server_id', 'net_id'] class InstanceInterfaceDetSerializer(serializers.ModelSerializer): server_id = serializers.CharField(required=True) port_ids = serializers.ListField(required=True) class Meta: model = NoneMeta fields = ['server_id', 'port_ids'] class InstancePostSerializer(serializers.ModelSerializer): name = serializers.CharField(required=True) image = serializers.CharField(required=True) flavor = serializers.CharField(required=True) network_dict = serializers.DictField(required=True) class Meta: model = NoneMeta fields = ['name', 'image', 'flavor', 'network_dict'] class InstStopSerializer(serializers.ModelSerializer): server_id = serializers.CharField(required=True) class Meta: model = NoneMeta fields = ['server_id'] class InstRestartSerializer(serializers.ModelSerializer): server_id = serializers.CharField(required=True) class Meta: model = NoneMeta fields = ['server_id'] class InstStartSerializer(serializers.ModelSerializer): server_id = serializers.CharField(required=True) class Meta: model = NoneMeta fields = ['server_id'] class InstanceDelSerializer(serializers.ModelSerializer): server_id_list = serializers.ListField(required=True) class Meta: model = NoneMeta fields = ['server_id_list'] class InstanceIdListSerializer(serializers.ModelSerializer): server_id = serializers.CharField(required=True) class Meta: model = NoneMeta fields = ['server_id'] class CreateVpcsSerializer(serializers.ModelSerializer): vpc_name = serializers.CharField(required=True) region = serializers.CharField(required=True) net_name = serializers.CharField(required=True) vpc_type = serializers.CharField(required=True) cidr = serializers.CharField(required=True) enable_dhcp = serializers.BooleanField(required=False) gateway_ip = serializers.CharField(required=False) dns = serializers.ListField(required=False) class Meta: model = NoneMeta fields = ['vpc_name', 'region', 'net_name', 'cidr', 'enable_dhcp', 'gateway_ip', 'dns', 'vpc_type'] class UpdateVpcsSerializer(serializers.ModelSerializer): vpc_id = serializers.IntegerField(required=True) name = serializers.CharField(required=True) class Meta: model = NoneMeta fields = ['vpc_id', 'name'] class DleleteVpcsSerializer(serializers.ModelSerializer): vpc_ids = serializers.ListField(required=True) class Meta: model = NoneMeta fields = ['vpc_ids'] class ListVpcNetworks(serializers.ModelSerializer): vpc_id = serializers.IntegerField(required=True) class Meta: model = NoneMeta fields = ['vpc_id'] class PostVpcNetwork(serializers.ModelSerializer): vpc_id = serializers.IntegerField(required=True) net_name = serializers.CharField(required=True) cidr = serializers.CharField(required=True) enable_dhcp = serializers.BooleanField(required=False) gateway_ip = serializers.CharField(required=False) dns = serializers.ListField(required=False) class Meta: model = NoneMeta fields = ['vpc_id', 'net_name', 'cidr', 'enable_dhcp', 'gateway_ip', 'dns'] class PutVpcNetwork(serializers.ModelSerializer): vpc_id = serializers.IntegerField(required=True) net_id = serializers.CharField(required=True) net_name = serializers.CharField(required=False) enable_dhcp = serializers.BooleanField(required=False) dns = serializers.ListField(required=False) class Meta: model = NoneMeta fields = ['vpc_id', 'net_id', 'net_name', 'enable_dhcp', 'dns'] class DelVpcNetwork(serializers.ModelSerializer): vpc_id = serializers.IntegerField(required=True) net_id = serializers.CharField(required=True) class Meta: model = NoneMeta fields = ['vpc_id', 'net_id'] class NatGateWayCreate(serializers.ModelSerializer): order_info = ServiceOrderCreateSerializer(required=True, label="订单信息", help_text="示例:") name = serializers.CharField(required=True) vpc_id = serializers.IntegerField(required=True) description = serializers.CharField(required=False) class Meta: model = NoneMeta fields = ['order_info', 'name', 'vpc_id', 'description'] class DnatRuleCreate(serializers.ModelSerializer): scenes = serializers.CharField(required=False, label="使用场景", default="VPC") floatingip_id = serializers.CharField(required=True, label="floating ip id") floating_ip_address = serializers.CharField(required=True, label='floating ip 地址') external_port = serializers.IntegerField(required=True, label="公网端口") protocol = serializers.ChoiceField(choices=['tcp', 'udp']) internal_ip_address = serializers.CharField(required=True, label="内网ip地址") internal_port_id = serializers.CharField(required=True, label="内网port id") internal_port = serializers.IntegerField(required=True, label="内网端口号") description = serializers.CharField(required=False, label="描述") class Meta: model = NoneMeta fields = ['scenes', 'floatingip_id', 'floating_ip_address', 'external_port', 'protocol', 'internal_ip_address', 'internal_port_id', 'internal_port', 'description'] class DnatRuleUpdate(serializers.ModelSerializer): external_port = serializers.IntegerField(required=True, label="公网端口") protocol = serializers.ChoiceField(choices=['tcp', 'udp']) internal_ip_address = serializers.CharField(required=True, label="内网ip地址") internal_port_id = serializers.CharField(required=True, label="内网port id") internal_port = serializers.IntegerField(required=True, label="内网端口号") description = serializers.CharField(required=False, label="描述") class Meta: model = NoneMeta fields = ['external_port', 'protocol', 'internal_ip_address', 'internal_port_id', 'internal_port', 'description'] class NatGateWayUpdate(serializers.ModelSerializer): name = serializers.CharField(required=True) description = serializers.CharField(required=True) class Meta: model = NoneMeta fields = ['name', 'description'] class DnatRuleDelete(serializers.ModelSerializer): nat_rules = serializers.ListField(required=True, label='nat规则列表') class Meta: model = NoneMeta fields = ['nat_rules'] class ServiceBandWidth(serializers.ModelSerializer): class Meta: model = service_model.BmShareBandWidth exclude = ['id', 'order_id', 'account_id', 'project_id', 'create_at', 'update_at', 'is_measure_end', 'contract_number', 'first_create_at', 'shared_bandwidth_id', "contract_id", 'status', 'deleted_at'] class BandWidthCreateSerializer(serializers.Serializer): order_info = ServiceOrderCreateSerializer(required=True) bandwidth_info = ServiceBandWidth(required=True) contract_id = serializers.CharField(required=True) class BandWidthUpdateNameSerializer(serializers.Serializer): bandwidth_id = serializers.CharField(required=True) name = serializers.CharField(required=False) class BandWidthUpdateSerializer(serializers.Serializer): order_info = ServiceOrderAlterationSerializer(required=False) bandwidth_id = serializers.CharField(required=True) name = serializers.CharField(required=False) max_kbps = serializers.IntegerField(required=False) class BandWidthDeleteSerializer(serializers.Serializer): bandwidth_ids = serializers.ListField(required=True) class BandWidthDetailsSerializer(serializers.Serializer): fields_key = serializers.CharField(required=False, help_text="取值:name, fip") fields_value = serializers.CharField(required=False) class SharedBWFipAttachSerializer(serializers.Serializer): floating_ip_ids = serializers.ListField(required=True) class SharedBWFipDetachSerializer(serializers.Serializer): order_info = ServiceOrderAlterationSerializer(required=False) floating_ip_ids = serializers.ListField(required=True) qos_policy_name = serializers.CharField(required=True, help_text="150M") service_count = serializers.IntegerField(required=True, help_text="1")
39.44404
123
0.727122
794992c4f0c79775e61c16ae7330e2f96a83c284
2,633
py
Python
projects/cats/gui_files/leaderboard_integrity.py
jjllzhang/CS61A
57b68c7c06999210d96499f6d84e4ec99085d396
[ "MIT" ]
8
2020-07-28T11:10:49.000Z
2021-05-29T15:27:17.000Z
11-Project-CATS/cats/cats/gui_files/leaderboard_integrity.py
ericchen12377/CS61A_LearningDoc
31f23962b0e2834795bf61eeb0f4884cc5da1809
[ "MIT" ]
null
null
null
11-Project-CATS/cats/cats/gui_files/leaderboard_integrity.py
ericchen12377/CS61A_LearningDoc
31f23962b0e2834795bf61eeb0f4884cc5da1809
[ "MIT" ]
1
2022-02-13T08:28:27.000Z
2022-02-13T08:28:27.000Z
import base64 import json import os import random import time from functools import wraps from queue import Queue from threading import Thread import cats fernet = None COMMON_WORDS_SET = set(cats.lines_from_file('data/common_words.txt')) CAPTCHA_QUEUE_LEN = 200 CAPTCHA_LENGTH = 10 CAPTCHA_WORD_LEN = 6 captcha_queue = Queue() def require_fernet(f): @wraps(f) def wrapped(*args, **kwargs): global fernet if not fernet: from cryptography.fernet import Fernet fernet = Fernet(os.environ.get("FERNET_KEY", Fernet.generate_key())) return f(*args, **kwargs) return wrapped def token_writer(f): @wraps(f) @require_fernet def wrapped(*args, **kwargs): data = f(*args, **kwargs) decoded = json.dumps(data).encode("utf-8") return fernet.encrypt(decoded).decode("utf-8") return wrapped def token_reader(fail): def decorator(f): @wraps(f) @require_fernet def wrapped(*, token, **kwargs): from cryptography.fernet import InvalidToken if not token: return fail try: return f(token=json.loads(fernet.decrypt(token.encode("utf-8"))), **kwargs) except (TypeError, InvalidToken): return fail return wrapped return decorator @token_writer def create_wpm_authorization(user, wpm): return { "user": user, "wpm": wpm, } @token_reader(fail=0) def get_authorized_limit(user, token): if token["user"] != user: return 0 return token["wpm"] @token_writer def encode_challenge(user, words): return { "user": user, "words": words, "startTime": time.time(), } @token_reader(fail=(False, False)) def decode_challenge(token): return token["user"], token["words"], token["startTime"] def populate_captcha_queue(): while captcha_queue.qsize() < CAPTCHA_QUEUE_LEN: captcha_queue.put(generate_captcha()) def generate_captcha(): from claptcha import Claptcha word = random.choice([x for x in COMMON_WORDS_SET if len(x) < CAPTCHA_LENGTH]) c = Claptcha(word, "gui_files/FreeMono.ttf", margin=(20, 10)) image_b64 = base64.b64encode(c.bytes[1].getvalue()).decode("utf-8") return "data:image/png;base64," + image_b64, word def get_captcha_urls(num_words=CAPTCHA_LENGTH): Thread(target=populate_captcha_queue).start() images, words = [], [] for _ in range(num_words): image, word = captcha_queue.get() images.append(image) words.append(word) return images, words
23.508929
91
0.643752
7949944cb5c8f3d960ba0835c71b50de9030b414
2,809
py
Python
src/pymor/__init__.py
pdiercks/pymor
e94f05714d666a929113543c49e88f8f494d64e1
[ "Unlicense" ]
null
null
null
src/pymor/__init__.py
pdiercks/pymor
e94f05714d666a929113543c49e88f8f494d64e1
[ "Unlicense" ]
4
2022-03-17T10:07:38.000Z
2022-03-30T12:41:06.000Z
src/pymor/__init__.py
pdiercks/pymor
e94f05714d666a929113543c49e88f8f494d64e1
[ "Unlicense" ]
null
null
null
# This file is part of the pyMOR project (http://www.pymor.org). # Copyright 2013-2020 pyMOR developers and contributors. All rights reserved. # License: BSD 2-Clause License (http://opensource.org/licenses/BSD-2-Clause) import os def _init_mpi(): """provides a way to manually set the thread init mode for MPI if necessary. Needs to happen as early as possible, otherwise mpi4py might auto-init somewhere else. """ try: import mpi4py except ImportError: return # only change finalize setting if unset finalize = (mpi4py.rc.finalize is None) or mpi4py.rc.finalize mpi4py.rc(initialize=False, finalize=finalize) from mpi4py import MPI if not MPI.Is_initialized(): required_level = int(os.environ.get('PYMOR_MPI_INIT_THREAD', MPI.THREAD_MULTIPLE)) supported_lvl = MPI.Init_thread(required_level) if supported_lvl < required_level: print(f'MPI does support threading level {required_level}, running with {supported_lvl} instead', flush=True) try: # this solves sporadic mpi calls happening after finalize import petsc4py petsc4py.init() except ImportError: return _init_mpi() from pymor.core.config import config from pymor.core.defaults import load_defaults_from_file import pymor.version as _version revstring = _version.get_versions()['version'] __version__ = str(revstring) if 'PYMOR_DEFAULTS' in os.environ: filename = os.environ['PYMOR_DEFAULTS'] if filename in ('', 'NONE'): print('Not loading any pyMOR defaults from config file') else: for fn in filename.split(':'): if not os.path.exists(fn): raise IOError('Cannot load pyMOR defaults from file ' + fn) print('Loading pyMOR defaults from file ' + fn + ' (set by PYMOR_DEFAULTS)') load_defaults_from_file(fn) else: filename = os.path.join(os.getcwd(), 'pymor_defaults.py') if os.path.exists(filename): if os.stat(filename).st_uid != os.getuid(): raise IOError('Cannot load pyMOR defaults from config file ' + filename + ': not owned by user running Python interpreter') print('Loading pyMOR defaults from file ' + filename) load_defaults_from_file(filename) from pymor.core.logger import set_log_levels, set_log_format set_log_levels() set_log_format() from pymor.tools import mpi if mpi.parallel and mpi.event_loop_settings()['auto_launch']: if mpi.rank0: import atexit @atexit.register def quit_event_loop(): if not mpi.finished: mpi.quit() else: print(f'Rank {mpi.rank}: MPI parallel run detected. Launching event loop ...') mpi.event_loop() import sys sys.exit(0)
35.556962
121
0.673549
794994c4e2b44e4ea842caa941d2387d73afffc5
5,402
py
Python
waldur_core/cost_tracking/tests/test_price_list_item.py
opennode/nodeconductor
d6c17a9592bb6c49c33567542eef8d099605a46a
[ "MIT" ]
23
2015-01-15T13:29:53.000Z
2017-05-04T05:12:24.000Z
waldur_core/cost_tracking/tests/test_price_list_item.py
opennode/nodeconductor
d6c17a9592bb6c49c33567542eef8d099605a46a
[ "MIT" ]
null
null
null
waldur_core/cost_tracking/tests/test_price_list_item.py
opennode/nodeconductor
d6c17a9592bb6c49c33567542eef8d099605a46a
[ "MIT" ]
8
2015-01-11T18:51:47.000Z
2017-06-29T18:53:12.000Z
from ddt import ddt, data from rest_framework import status from waldur_core.structure.tests import factories as structure_factories from . import factories from .base_test import BaseCostTrackingTest from .. import models @ddt class PriceListItemListTest(BaseCostTrackingTest): def setUp(self): super(PriceListItemListTest, self).setUp() self.price_list_item = factories.PriceListItemFactory(service=self.service) @data('staff', 'owner', 'manager') def test_user_with_access_to_service_can_see_services_price_list(self, user): self.client.force_authenticate(self.users[user]) response = self.client.get(factories.PriceListItemFactory.get_list_url()) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertIn(self.price_list_item.uuid.hex, [el['uuid'] for el in response.data]) @data('administrator') def test_user_without_access_to_service_cannot_see_services_price_list(self, user): self.service_project_link.delete() self.client.force_authenticate(self.users[user]) response = self.client.get(factories.PriceListItemFactory.get_list_url()) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertNotIn(self.price_list_item.uuid.hex, [el['uuid'] for el in response.data]) def test_price_list_can_be_filtered_by_service(self): other_price_list_item = factories.PriceListItemFactory() self.client.force_authenticate(self.users['staff']) response = self.client.get( factories.PriceListItemFactory.get_list_url(), data={'service': structure_factories.TestServiceFactory.get_url(self.service)} ) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertIn(self.price_list_item.uuid.hex, [el['uuid'] for el in response.data]) self.assertNotIn(other_price_list_item.uuid.hex, [el['uuid'] for el in response.data]) @ddt class PriceListItemCreateTest(BaseCostTrackingTest): def setUp(self): super(PriceListItemCreateTest, self).setUp() self.default_price_list_item = factories.DefaultPriceListItemFactory() self.valid_data = { 'service': structure_factories.TestServiceFactory.get_url(self.service), 'default_price_list_item': factories.DefaultPriceListItemFactory.get_url(self.default_price_list_item), 'value': 100, 'units': 'UAH' } @data('staff', 'owner') def test_user_with_permissions_can_create_price_list_item(self, user): self.client.force_authenticate(self.users[user]) response = self.client.post(factories.PriceListItemFactory.get_list_url(), data=self.valid_data) self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertTrue(models.PriceListItem.objects.filter( service=self.service, value=self.valid_data['value'], default_price_list_item=self.default_price_list_item).exists()) @data('manager', 'administrator') def test_user_without_permissions_cannot_create_price_list_item(self, user): self.client.force_authenticate(self.users[user]) response = self.client.post(factories.PriceListItemFactory.get_list_url(), data=self.valid_data) self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN, str(response.data) + " " + user) self.assertFalse(models.PriceListItem.objects.filter( service=self.service, value=self.valid_data['value'], default_price_list_item=self.default_price_list_item).exists()) def test_if_price_list_item_already_exists_validation_error_is_raised(self): self.client.force_authenticate(self.users['staff']) response = self.client.post(factories.PriceListItemFactory.get_list_url(), data=self.valid_data) self.assertEqual(response.status_code, status.HTTP_201_CREATED) response = self.client.post(factories.PriceListItemFactory.get_list_url(), data=self.valid_data) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) @ddt class PriceListItemUpdateTest(BaseCostTrackingTest): def setUp(self): super(PriceListItemUpdateTest, self).setUp() self.price_list_item = factories.PriceListItemFactory(service=self.service) @data('staff', 'owner') def test_user_with_permissions_can_update_price_list_item(self, user): self.client.force_authenticate(self.users[user]) data = {'value': 200} response = self.client.patch(factories.PriceListItemFactory.get_url(self.price_list_item), data=data) self.assertEqual(response.status_code, status.HTTP_200_OK) reread_price_list_item = models.PriceListItem.objects.get(id=self.price_list_item.id) self.assertEqual(reread_price_list_item.value, data['value']) # We do not execute this test for administrator, because he does not see price estimates at all @data('manager') def test_user_without_permissions_cannot_update_price_list_item(self, user): self.client.force_authenticate(self.users[user]) data = {'items': [{'name': 'cpu', 'value': 1000, 'units': 'USD per CPU'}]} response = self.client.patch(factories.PriceListItemFactory.get_url(self.price_list_item), data=data) self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN)
45.779661
115
0.735468
7949980584e76fae0bc7a8d70b5c5d9ea227d39a
18,477
py
Python
sdk/python/pulumi_azure_nextgen/network/v20181001/security_rule.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
31
2020-09-21T09:41:01.000Z
2021-02-26T13:21:59.000Z
sdk/python/pulumi_azure_nextgen/network/v20181001/security_rule.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
231
2020-09-21T09:38:45.000Z
2021-03-01T11:16:03.000Z
sdk/python/pulumi_azure_nextgen/network/v20181001/security_rule.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
4
2020-09-29T14:14:59.000Z
2021-02-10T20:38:16.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs from ._enums import * from ._inputs import * __all__ = ['SecurityRule'] class SecurityRule(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, access: Optional[pulumi.Input[Union[str, 'SecurityRuleAccess']]] = None, description: Optional[pulumi.Input[str]] = None, destination_address_prefix: Optional[pulumi.Input[str]] = None, destination_address_prefixes: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, destination_application_security_groups: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationSecurityGroupArgs']]]]] = None, destination_port_range: Optional[pulumi.Input[str]] = None, destination_port_ranges: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, direction: Optional[pulumi.Input[Union[str, 'SecurityRuleDirection']]] = None, etag: Optional[pulumi.Input[str]] = None, id: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, network_security_group_name: Optional[pulumi.Input[str]] = None, priority: Optional[pulumi.Input[int]] = None, protocol: Optional[pulumi.Input[Union[str, 'SecurityRuleProtocol']]] = None, provisioning_state: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, security_rule_name: Optional[pulumi.Input[str]] = None, source_address_prefix: Optional[pulumi.Input[str]] = None, source_address_prefixes: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, source_application_security_groups: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationSecurityGroupArgs']]]]] = None, source_port_range: Optional[pulumi.Input[str]] = None, source_port_ranges: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, __props__=None, __name__=None, __opts__=None): """ Network security rule. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[Union[str, 'SecurityRuleAccess']] access: The network traffic is allowed or denied. Possible values are: 'Allow' and 'Deny'. :param pulumi.Input[str] description: A description for this rule. Restricted to 140 chars. :param pulumi.Input[str] destination_address_prefix: The destination address prefix. CIDR or destination IP range. Asterisk '*' can also be used to match all source IPs. Default tags such as 'VirtualNetwork', 'AzureLoadBalancer' and 'Internet' can also be used. :param pulumi.Input[Sequence[pulumi.Input[str]]] destination_address_prefixes: The destination address prefixes. CIDR or destination IP ranges. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationSecurityGroupArgs']]]] destination_application_security_groups: The application security group specified as destination. :param pulumi.Input[str] destination_port_range: The destination port or range. Integer or range between 0 and 65535. Asterisk '*' can also be used to match all ports. :param pulumi.Input[Sequence[pulumi.Input[str]]] destination_port_ranges: The destination port ranges. :param pulumi.Input[Union[str, 'SecurityRuleDirection']] direction: The direction of the rule. The direction specifies if rule will be evaluated on incoming or outgoing traffic. Possible values are: 'Inbound' and 'Outbound'. :param pulumi.Input[str] etag: A unique read-only string that changes whenever the resource is updated. :param pulumi.Input[str] id: Resource ID. :param pulumi.Input[str] name: The name of the resource that is unique within a resource group. This name can be used to access the resource. :param pulumi.Input[str] network_security_group_name: The name of the network security group. :param pulumi.Input[int] priority: The priority of the rule. The value can be between 100 and 4096. The priority number must be unique for each rule in the collection. The lower the priority number, the higher the priority of the rule. :param pulumi.Input[Union[str, 'SecurityRuleProtocol']] protocol: Network protocol this rule applies to. Possible values are 'Tcp', 'Udp', and '*'. :param pulumi.Input[str] provisioning_state: The provisioning state of the public IP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[str] security_rule_name: The name of the security rule. :param pulumi.Input[str] source_address_prefix: The CIDR or source IP range. Asterisk '*' can also be used to match all source IPs. Default tags such as 'VirtualNetwork', 'AzureLoadBalancer' and 'Internet' can also be used. If this is an ingress rule, specifies where network traffic originates from. :param pulumi.Input[Sequence[pulumi.Input[str]]] source_address_prefixes: The CIDR or source IP ranges. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationSecurityGroupArgs']]]] source_application_security_groups: The application security group specified as source. :param pulumi.Input[str] source_port_range: The source port or range. Integer or range between 0 and 65535. Asterisk '*' can also be used to match all ports. :param pulumi.Input[Sequence[pulumi.Input[str]]] source_port_ranges: The source port ranges. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() if access is None and not opts.urn: raise TypeError("Missing required property 'access'") __props__['access'] = access __props__['description'] = description __props__['destination_address_prefix'] = destination_address_prefix __props__['destination_address_prefixes'] = destination_address_prefixes __props__['destination_application_security_groups'] = destination_application_security_groups __props__['destination_port_range'] = destination_port_range __props__['destination_port_ranges'] = destination_port_ranges if direction is None and not opts.urn: raise TypeError("Missing required property 'direction'") __props__['direction'] = direction __props__['etag'] = etag __props__['id'] = id __props__['name'] = name if network_security_group_name is None and not opts.urn: raise TypeError("Missing required property 'network_security_group_name'") __props__['network_security_group_name'] = network_security_group_name __props__['priority'] = priority if protocol is None and not opts.urn: raise TypeError("Missing required property 'protocol'") __props__['protocol'] = protocol __props__['provisioning_state'] = provisioning_state if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name __props__['security_rule_name'] = security_rule_name __props__['source_address_prefix'] = source_address_prefix __props__['source_address_prefixes'] = source_address_prefixes __props__['source_application_security_groups'] = source_application_security_groups __props__['source_port_range'] = source_port_range __props__['source_port_ranges'] = source_port_ranges alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:network:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/latest:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20150501preview:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20150615:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20160330:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20160601:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20160901:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20161201:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20170301:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20170601:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20170801:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20170901:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20171001:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20171101:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20180101:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20180201:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20180401:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20180601:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20180701:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20180801:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20181101:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20181201:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20190201:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20190401:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20190601:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20190701:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20190801:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20190901:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20191101:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20191201:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20200301:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20200401:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20200501:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20200601:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20200701:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20200801:SecurityRule")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(SecurityRule, __self__).__init__( 'azure-nextgen:network/v20181001:SecurityRule', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'SecurityRule': """ Get an existing SecurityRule resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() return SecurityRule(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def access(self) -> pulumi.Output[str]: """ The network traffic is allowed or denied. Possible values are: 'Allow' and 'Deny'. """ return pulumi.get(self, "access") @property @pulumi.getter def description(self) -> pulumi.Output[Optional[str]]: """ A description for this rule. Restricted to 140 chars. """ return pulumi.get(self, "description") @property @pulumi.getter(name="destinationAddressPrefix") def destination_address_prefix(self) -> pulumi.Output[Optional[str]]: """ The destination address prefix. CIDR or destination IP range. Asterisk '*' can also be used to match all source IPs. Default tags such as 'VirtualNetwork', 'AzureLoadBalancer' and 'Internet' can also be used. """ return pulumi.get(self, "destination_address_prefix") @property @pulumi.getter(name="destinationAddressPrefixes") def destination_address_prefixes(self) -> pulumi.Output[Optional[Sequence[str]]]: """ The destination address prefixes. CIDR or destination IP ranges. """ return pulumi.get(self, "destination_address_prefixes") @property @pulumi.getter(name="destinationApplicationSecurityGroups") def destination_application_security_groups(self) -> pulumi.Output[Optional[Sequence['outputs.ApplicationSecurityGroupResponse']]]: """ The application security group specified as destination. """ return pulumi.get(self, "destination_application_security_groups") @property @pulumi.getter(name="destinationPortRange") def destination_port_range(self) -> pulumi.Output[Optional[str]]: """ The destination port or range. Integer or range between 0 and 65535. Asterisk '*' can also be used to match all ports. """ return pulumi.get(self, "destination_port_range") @property @pulumi.getter(name="destinationPortRanges") def destination_port_ranges(self) -> pulumi.Output[Optional[Sequence[str]]]: """ The destination port ranges. """ return pulumi.get(self, "destination_port_ranges") @property @pulumi.getter def direction(self) -> pulumi.Output[str]: """ The direction of the rule. The direction specifies if rule will be evaluated on incoming or outgoing traffic. Possible values are: 'Inbound' and 'Outbound'. """ return pulumi.get(self, "direction") @property @pulumi.getter def etag(self) -> pulumi.Output[Optional[str]]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def name(self) -> pulumi.Output[Optional[str]]: """ The name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @property @pulumi.getter def priority(self) -> pulumi.Output[Optional[int]]: """ The priority of the rule. The value can be between 100 and 4096. The priority number must be unique for each rule in the collection. The lower the priority number, the higher the priority of the rule. """ return pulumi.get(self, "priority") @property @pulumi.getter def protocol(self) -> pulumi.Output[str]: """ Network protocol this rule applies to. Possible values are 'Tcp', 'Udp', and '*'. """ return pulumi.get(self, "protocol") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[Optional[str]]: """ The provisioning state of the public IP resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="sourceAddressPrefix") def source_address_prefix(self) -> pulumi.Output[Optional[str]]: """ The CIDR or source IP range. Asterisk '*' can also be used to match all source IPs. Default tags such as 'VirtualNetwork', 'AzureLoadBalancer' and 'Internet' can also be used. If this is an ingress rule, specifies where network traffic originates from. """ return pulumi.get(self, "source_address_prefix") @property @pulumi.getter(name="sourceAddressPrefixes") def source_address_prefixes(self) -> pulumi.Output[Optional[Sequence[str]]]: """ The CIDR or source IP ranges. """ return pulumi.get(self, "source_address_prefixes") @property @pulumi.getter(name="sourceApplicationSecurityGroups") def source_application_security_groups(self) -> pulumi.Output[Optional[Sequence['outputs.ApplicationSecurityGroupResponse']]]: """ The application security group specified as source. """ return pulumi.get(self, "source_application_security_groups") @property @pulumi.getter(name="sourcePortRange") def source_port_range(self) -> pulumi.Output[Optional[str]]: """ The source port or range. Integer or range between 0 and 65535. Asterisk '*' can also be used to match all ports. """ return pulumi.get(self, "source_port_range") @property @pulumi.getter(name="sourcePortRanges") def source_port_ranges(self) -> pulumi.Output[Optional[Sequence[str]]]: """ The source port ranges. """ return pulumi.get(self, "source_port_ranges") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
61.795987
2,495
0.697083
79499a6ef6b66fd7630e53f9e9779b674794daae
1,477
py
Python
examples/simple_identification.py
murad9001/bluesquall.recurvise_least_squares
83510c575a446ae4be4d031fb16cc42a5724c12f
[ "MIT" ]
8
2015-05-27T08:00:27.000Z
2021-06-02T04:07:43.000Z
examples/simple_identification.py
murad9001/bluesquall.recurvise_least_squares
83510c575a446ae4be4d031fb16cc42a5724c12f
[ "MIT" ]
null
null
null
examples/simple_identification.py
murad9001/bluesquall.recurvise_least_squares
83510c575a446ae4be4d031fb16cc42a5724c12f
[ "MIT" ]
4
2017-07-19T10:59:55.000Z
2021-11-24T20:47:08.000Z
#!/usr/bin/env python """ Simple RLS identification example ================================= """ import numpy as np import rlspy def generate_random_truth_data(order = 3, sigma = 1): return np.random.normal(0, sigma, [order, 1]) def generate_random_coupling_matrix(shape = [4, 3]): return np.random.normal(0, 1, shape) def generate_noisy_measurements(A, x, sigma): return np.dot(A, x) + np.random.normal(0, sigma) def example(order = 3, morder = 4, N = 20): x = generate_random_truth_data(order, 1) A = [generate_random_coupling_matrix([morder, order]) for i in xrange(N)] sm = 1e-2 * np.ones(morder).reshape(-1, 1) V = np.diag(sm.ravel()**2) b = [generate_noisy_measurements(Ai, x, sm) for Ai in A] x0 = np.ones(order).reshape(-1, 1) P0 = np.identity(order) rlsi = rlspy.data_matrix.Estimator(x0, P0) # preallocate some arrays to track the evolution of the estimate xest = np.empty([order, N + 1]) Pest = np.empty([order, order, N + 1]) xest[:,0] = x0.ravel() Pest[:,:,0] = P0 for i, (Ai, bi) in enumerate(zip(A, b)): rlsi.update(Ai, bi, V) xest[:, i + 1] = rlsi.x.ravel() Pest[:, :, i + 1] = rlsi.P xerr = x - xest return xest, Pest, xerr if __name__ == '__main__': import matplotlib.pyplot as plt x, P, r = example() plt.semilogy(np.abs(r.T)) plt.grid(True) plt.ylabel('abs(estimation error)') plt.xlabel('iteration') plt.show()
25.465517
77
0.604604
79499b28541ca712e51db51139ab1bb60cc2c643
109,645
py
Python
django/db/models/sql/query.py
Manny27nyc/django
28f66b2783e52d5be51887c31cd2be907b820e11
[ "BSD-3-Clause", "0BSD" ]
1
2021-11-07T12:42:43.000Z
2021-11-07T12:42:43.000Z
django/db/models/sql/query.py
Manny27nyc/django
28f66b2783e52d5be51887c31cd2be907b820e11
[ "BSD-3-Clause", "0BSD" ]
1
2016-02-24T19:56:50.000Z
2016-04-03T11:29:06.000Z
django/db/models/sql/query.py
Manny27nyc/django
28f66b2783e52d5be51887c31cd2be907b820e11
[ "BSD-3-Clause", "0BSD" ]
null
null
null
""" Create SQL statements for QuerySets. The code in here encapsulates all of the SQL construction so that QuerySets themselves do not have to (and could be backed by things other than SQL databases). The abstraction barrier only works one way: this module has to know all about the internals of models in order to get the information it needs. """ import copy import difflib import functools import sys from collections import Counter, namedtuple from collections.abc import Iterator, Mapping from itertools import chain, count, product from string import ascii_uppercase from django.core.exceptions import FieldDoesNotExist, FieldError from django.db import DEFAULT_DB_ALIAS, NotSupportedError, connections from django.db.models.aggregates import Count from django.db.models.constants import LOOKUP_SEP from django.db.models.expressions import ( BaseExpression, Col, Exists, F, OuterRef, Ref, ResolvedOuterRef, ) from django.db.models.fields import Field from django.db.models.fields.related_lookups import MultiColSource from django.db.models.lookups import Lookup from django.db.models.query_utils import ( Q, check_rel_lookup_compatibility, refs_expression, ) from django.db.models.sql.constants import INNER, LOUTER, ORDER_DIR, SINGLE from django.db.models.sql.datastructures import ( BaseTable, Empty, Join, MultiJoin, ) from django.db.models.sql.where import ( AND, OR, ExtraWhere, NothingNode, WhereNode, ) from django.utils.functional import cached_property from django.utils.tree import Node __all__ = ['Query', 'RawQuery'] def get_field_names_from_opts(opts): return set(chain.from_iterable( (f.name, f.attname) if f.concrete else (f.name,) for f in opts.get_fields() )) def get_children_from_q(q): for child in q.children: if isinstance(child, Node): yield from get_children_from_q(child) else: yield child JoinInfo = namedtuple( 'JoinInfo', ('final_field', 'targets', 'opts', 'joins', 'path', 'transform_function') ) class RawQuery: """A single raw SQL query.""" def __init__(self, sql, using, params=()): self.params = params self.sql = sql self.using = using self.cursor = None # Mirror some properties of a normal query so that # the compiler can be used to process results. self.low_mark, self.high_mark = 0, None # Used for offset/limit self.extra_select = {} self.annotation_select = {} def chain(self, using): return self.clone(using) def clone(self, using): return RawQuery(self.sql, using, params=self.params) def get_columns(self): if self.cursor is None: self._execute_query() converter = connections[self.using].introspection.identifier_converter return [converter(column_meta[0]) for column_meta in self.cursor.description] def __iter__(self): # Always execute a new query for a new iterator. # This could be optimized with a cache at the expense of RAM. self._execute_query() if not connections[self.using].features.can_use_chunked_reads: # If the database can't use chunked reads we need to make sure we # evaluate the entire query up front. result = list(self.cursor) else: result = self.cursor return iter(result) def __repr__(self): return "<%s: %s>" % (self.__class__.__name__, self) @property def params_type(self): if self.params is None: return None return dict if isinstance(self.params, Mapping) else tuple def __str__(self): if self.params_type is None: return self.sql return self.sql % self.params_type(self.params) def _execute_query(self): connection = connections[self.using] # Adapt parameters to the database, as much as possible considering # that the target type isn't known. See #17755. params_type = self.params_type adapter = connection.ops.adapt_unknown_value if params_type is tuple: params = tuple(adapter(val) for val in self.params) elif params_type is dict: params = {key: adapter(val) for key, val in self.params.items()} elif params_type is None: params = None else: raise RuntimeError("Unexpected params type: %s" % params_type) self.cursor = connection.cursor() self.cursor.execute(self.sql, params) ExplainInfo = namedtuple('ExplainInfo', ('format', 'options')) class Query(BaseExpression): """A single SQL query.""" alias_prefix = 'T' empty_result_set_value = None subq_aliases = frozenset([alias_prefix]) compiler = 'SQLCompiler' def __init__(self, model, alias_cols=True): self.model = model self.alias_refcount = {} # alias_map is the most important data structure regarding joins. # It's used for recording which joins exist in the query and what # types they are. The key is the alias of the joined table (possibly # the table name) and the value is a Join-like object (see # sql.datastructures.Join for more information). self.alias_map = {} # Whether to provide alias to columns during reference resolving. self.alias_cols = alias_cols # Sometimes the query contains references to aliases in outer queries (as # a result of split_exclude). Correct alias quoting needs to know these # aliases too. # Map external tables to whether they are aliased. self.external_aliases = {} self.table_map = {} # Maps table names to list of aliases. self.default_cols = True self.default_ordering = True self.standard_ordering = True self.used_aliases = set() self.filter_is_sticky = False self.subquery = False # SQL-related attributes # Select and related select clauses are expressions to use in the # SELECT clause of the query. # The select is used for cases where we want to set up the select # clause to contain other than default fields (values(), subqueries...) # Note that annotations go to annotations dictionary. self.select = () self.where = WhereNode() # The group_by attribute can have one of the following forms: # - None: no group by at all in the query # - A tuple of expressions: group by (at least) those expressions. # String refs are also allowed for now. # - True: group by all select fields of the model # See compiler.get_group_by() for details. self.group_by = None self.order_by = () self.low_mark, self.high_mark = 0, None # Used for offset/limit self.distinct = False self.distinct_fields = () self.select_for_update = False self.select_for_update_nowait = False self.select_for_update_skip_locked = False self.select_for_update_of = () self.select_for_no_key_update = False self.select_related = False # Arbitrary limit for select_related to prevents infinite recursion. self.max_depth = 5 # Holds the selects defined by a call to values() or values_list() # excluding annotation_select and extra_select. self.values_select = () # SQL annotation-related attributes self.annotations = {} # Maps alias -> Annotation Expression self.annotation_select_mask = None self._annotation_select_cache = None # Set combination attributes self.combinator = None self.combinator_all = False self.combined_queries = () # These are for extensions. The contents are more or less appended # verbatim to the appropriate clause. self.extra = {} # Maps col_alias -> (col_sql, params). self.extra_select_mask = None self._extra_select_cache = None self.extra_tables = () self.extra_order_by = () # A tuple that is a set of model field names and either True, if these # are the fields to defer, or False if these are the only fields to # load. self.deferred_loading = (frozenset(), True) self._filtered_relations = {} self.explain_info = None @property def output_field(self): if len(self.select) == 1: select = self.select[0] return getattr(select, 'target', None) or select.field elif len(self.annotation_select) == 1: return next(iter(self.annotation_select.values())).output_field @property def has_select_fields(self): return bool(self.select or self.annotation_select_mask or self.extra_select_mask) @cached_property def base_table(self): for alias in self.alias_map: return alias def __str__(self): """ Return the query as a string of SQL with the parameter values substituted in (use sql_with_params() to see the unsubstituted string). Parameter values won't necessarily be quoted correctly, since that is done by the database interface at execution time. """ sql, params = self.sql_with_params() return sql % params def sql_with_params(self): """ Return the query as an SQL string and the parameters that will be substituted into the query. """ return self.get_compiler(DEFAULT_DB_ALIAS).as_sql() def __deepcopy__(self, memo): """Limit the amount of work when a Query is deepcopied.""" result = self.clone() memo[id(self)] = result return result def get_compiler(self, using=None, connection=None, elide_empty=True): if using is None and connection is None: raise ValueError("Need either using or connection") if using: connection = connections[using] return connection.ops.compiler(self.compiler)(self, connection, using, elide_empty) def get_meta(self): """ Return the Options instance (the model._meta) from which to start processing. Normally, this is self.model._meta, but it can be changed by subclasses. """ return self.model._meta def clone(self): """ Return a copy of the current Query. A lightweight alternative to to deepcopy(). """ obj = Empty() obj.__class__ = self.__class__ # Copy references to everything. obj.__dict__ = self.__dict__.copy() # Clone attributes that can't use shallow copy. obj.alias_refcount = self.alias_refcount.copy() obj.alias_map = self.alias_map.copy() obj.external_aliases = self.external_aliases.copy() obj.table_map = self.table_map.copy() obj.where = self.where.clone() obj.annotations = self.annotations.copy() if self.annotation_select_mask is not None: obj.annotation_select_mask = self.annotation_select_mask.copy() if self.combined_queries: obj.combined_queries = tuple([ query.clone() for query in self.combined_queries ]) # _annotation_select_cache cannot be copied, as doing so breaks the # (necessary) state in which both annotations and # _annotation_select_cache point to the same underlying objects. # It will get re-populated in the cloned queryset the next time it's # used. obj._annotation_select_cache = None obj.extra = self.extra.copy() if self.extra_select_mask is not None: obj.extra_select_mask = self.extra_select_mask.copy() if self._extra_select_cache is not None: obj._extra_select_cache = self._extra_select_cache.copy() if self.select_related is not False: # Use deepcopy because select_related stores fields in nested # dicts. obj.select_related = copy.deepcopy(obj.select_related) if 'subq_aliases' in self.__dict__: obj.subq_aliases = self.subq_aliases.copy() obj.used_aliases = self.used_aliases.copy() obj._filtered_relations = self._filtered_relations.copy() # Clear the cached_property try: del obj.base_table except AttributeError: pass return obj def chain(self, klass=None): """ Return a copy of the current Query that's ready for another operation. The klass argument changes the type of the Query, e.g. UpdateQuery. """ obj = self.clone() if klass and obj.__class__ != klass: obj.__class__ = klass if not obj.filter_is_sticky: obj.used_aliases = set() obj.filter_is_sticky = False if hasattr(obj, '_setup_query'): obj._setup_query() return obj def relabeled_clone(self, change_map): clone = self.clone() clone.change_aliases(change_map) return clone def _get_col(self, target, field, alias): if not self.alias_cols: alias = None return target.get_col(alias, field) def rewrite_cols(self, annotation, col_cnt): # We must make sure the inner query has the referred columns in it. # If we are aggregating over an annotation, then Django uses Ref() # instances to note this. However, if we are annotating over a column # of a related model, then it might be that column isn't part of the # SELECT clause of the inner query, and we must manually make sure # the column is selected. An example case is: # .aggregate(Sum('author__awards')) # Resolving this expression results in a join to author, but there # is no guarantee the awards column of author is in the select clause # of the query. Thus we must manually add the column to the inner # query. orig_exprs = annotation.get_source_expressions() new_exprs = [] for expr in orig_exprs: # FIXME: These conditions are fairly arbitrary. Identify a better # method of having expressions decide which code path they should # take. if isinstance(expr, Ref): # Its already a Ref to subquery (see resolve_ref() for # details) new_exprs.append(expr) elif isinstance(expr, (WhereNode, Lookup)): # Decompose the subexpressions further. The code here is # copied from the else clause, but this condition must appear # before the contains_aggregate/is_summary condition below. new_expr, col_cnt = self.rewrite_cols(expr, col_cnt) new_exprs.append(new_expr) else: # Reuse aliases of expressions already selected in subquery. for col_alias, selected_annotation in self.annotation_select.items(): if selected_annotation is expr: new_expr = Ref(col_alias, expr) break else: # An expression that is not selected the subquery. if isinstance(expr, Col) or (expr.contains_aggregate and not expr.is_summary): # Reference column or another aggregate. Select it # under a non-conflicting alias. col_cnt += 1 col_alias = '__col%d' % col_cnt self.annotations[col_alias] = expr self.append_annotation_mask([col_alias]) new_expr = Ref(col_alias, expr) else: # Some other expression not referencing database values # directly. Its subexpression might contain Cols. new_expr, col_cnt = self.rewrite_cols(expr, col_cnt) new_exprs.append(new_expr) annotation.set_source_expressions(new_exprs) return annotation, col_cnt def get_aggregation(self, using, added_aggregate_names): """ Return the dictionary with the values of the existing aggregations. """ if not self.annotation_select: return {} existing_annotations = [ annotation for alias, annotation in self.annotations.items() if alias not in added_aggregate_names ] # Decide if we need to use a subquery. # # Existing annotations would cause incorrect results as get_aggregation() # must produce just one result and thus must not use GROUP BY. But we # aren't smart enough to remove the existing annotations from the # query, so those would force us to use GROUP BY. # # If the query has limit or distinct, or uses set operations, then # those operations must be done in a subquery so that the query # aggregates on the limit and/or distinct results instead of applying # the distinct and limit after the aggregation. if (isinstance(self.group_by, tuple) or self.is_sliced or existing_annotations or self.distinct or self.combinator): from django.db.models.sql.subqueries import AggregateQuery inner_query = self.clone() inner_query.subquery = True outer_query = AggregateQuery(self.model, inner_query) inner_query.select_for_update = False inner_query.select_related = False inner_query.set_annotation_mask(self.annotation_select) # Queries with distinct_fields need ordering and when a limit is # applied we must take the slice from the ordered query. Otherwise # no need for ordering. inner_query.clear_ordering(force=False) if not inner_query.distinct: # If the inner query uses default select and it has some # aggregate annotations, then we must make sure the inner # query is grouped by the main model's primary key. However, # clearing the select clause can alter results if distinct is # used. has_existing_aggregate_annotations = any( annotation for annotation in existing_annotations if getattr(annotation, 'contains_aggregate', True) ) if inner_query.default_cols and has_existing_aggregate_annotations: inner_query.group_by = (self.model._meta.pk.get_col(inner_query.get_initial_alias()),) inner_query.default_cols = False relabels = {t: 'subquery' for t in inner_query.alias_map} relabels[None] = 'subquery' # Remove any aggregates marked for reduction from the subquery # and move them to the outer AggregateQuery. col_cnt = 0 for alias, expression in list(inner_query.annotation_select.items()): annotation_select_mask = inner_query.annotation_select_mask if expression.is_summary: expression, col_cnt = inner_query.rewrite_cols(expression, col_cnt) outer_query.annotations[alias] = expression.relabeled_clone(relabels) del inner_query.annotations[alias] annotation_select_mask.remove(alias) # Make sure the annotation_select wont use cached results. inner_query.set_annotation_mask(inner_query.annotation_select_mask) if inner_query.select == () and not inner_query.default_cols and not inner_query.annotation_select_mask: # In case of Model.objects[0:3].count(), there would be no # field selected in the inner query, yet we must use a subquery. # So, make sure at least one field is selected. inner_query.select = (self.model._meta.pk.get_col(inner_query.get_initial_alias()),) else: outer_query = self self.select = () self.default_cols = False self.extra = {} empty_set_result = [ expression.empty_result_set_value for expression in outer_query.annotation_select.values() ] elide_empty = not any(result is NotImplemented for result in empty_set_result) outer_query.clear_ordering(force=True) outer_query.clear_limits() outer_query.select_for_update = False outer_query.select_related = False compiler = outer_query.get_compiler(using, elide_empty=elide_empty) result = compiler.execute_sql(SINGLE) if result is None: result = empty_set_result converters = compiler.get_converters(outer_query.annotation_select.values()) result = next(compiler.apply_converters((result,), converters)) return dict(zip(outer_query.annotation_select, result)) def get_count(self, using): """ Perform a COUNT() query using the current filter constraints. """ obj = self.clone() obj.add_annotation(Count('*'), alias='__count', is_summary=True) return obj.get_aggregation(using, ['__count'])['__count'] def has_filters(self): return self.where def exists(self, using, limit=True): q = self.clone() if not q.distinct: if q.group_by is True: q.add_fields((f.attname for f in self.model._meta.concrete_fields), False) # Disable GROUP BY aliases to avoid orphaning references to the # SELECT clause which is about to be cleared. q.set_group_by(allow_aliases=False) q.clear_select_clause() if q.combined_queries and q.combinator == 'union': limit_combined = connections[using].features.supports_slicing_ordering_in_compound q.combined_queries = tuple( combined_query.exists(using, limit=limit_combined) for combined_query in q.combined_queries ) q.clear_ordering(force=True) if limit: q.set_limits(high=1) q.add_extra({'a': 1}, None, None, None, None, None) q.set_extra_mask(['a']) return q def has_results(self, using): q = self.exists(using) compiler = q.get_compiler(using=using) return compiler.has_results() def explain(self, using, format=None, **options): q = self.clone() q.explain_info = ExplainInfo(format, options) compiler = q.get_compiler(using=using) return '\n'.join(compiler.explain_query()) def combine(self, rhs, connector): """ Merge the 'rhs' query into the current one (with any 'rhs' effects being applied *after* (that is, "to the right of") anything in the current query. 'rhs' is not modified during a call to this function. The 'connector' parameter describes how to connect filters from the 'rhs' query. """ if self.model != rhs.model: raise TypeError('Cannot combine queries on two different base models.') if self.is_sliced: raise TypeError('Cannot combine queries once a slice has been taken.') if self.distinct != rhs.distinct: raise TypeError('Cannot combine a unique query with a non-unique query.') if self.distinct_fields != rhs.distinct_fields: raise TypeError('Cannot combine queries with different distinct fields.') # Work out how to relabel the rhs aliases, if necessary. change_map = {} conjunction = (connector == AND) # Determine which existing joins can be reused. When combining the # query with AND we must recreate all joins for m2m filters. When # combining with OR we can reuse joins. The reason is that in AND # case a single row can't fulfill a condition like: # revrel__col=1 & revrel__col=2 # But, there might be two different related rows matching this # condition. In OR case a single True is enough, so single row is # enough, too. # # Note that we will be creating duplicate joins for non-m2m joins in # the AND case. The results will be correct but this creates too many # joins. This is something that could be fixed later on. reuse = set() if conjunction else set(self.alias_map) # Base table must be present in the query - this is the same # table on both sides. self.get_initial_alias() joinpromoter = JoinPromoter(connector, 2, False) joinpromoter.add_votes( j for j in self.alias_map if self.alias_map[j].join_type == INNER) rhs_votes = set() # Now, add the joins from rhs query into the new query (skipping base # table). rhs_tables = list(rhs.alias_map)[1:] for alias in rhs_tables: join = rhs.alias_map[alias] # If the left side of the join was already relabeled, use the # updated alias. join = join.relabeled_clone(change_map) new_alias = self.join(join, reuse=reuse) if join.join_type == INNER: rhs_votes.add(new_alias) # We can't reuse the same join again in the query. If we have two # distinct joins for the same connection in rhs query, then the # combined query must have two joins, too. reuse.discard(new_alias) if alias != new_alias: change_map[alias] = new_alias if not rhs.alias_refcount[alias]: # The alias was unused in the rhs query. Unref it so that it # will be unused in the new query, too. We have to add and # unref the alias so that join promotion has information of # the join type for the unused alias. self.unref_alias(new_alias) joinpromoter.add_votes(rhs_votes) joinpromoter.update_join_types(self) # Combine subqueries aliases to ensure aliases relabelling properly # handle subqueries when combining where and select clauses. self.subq_aliases |= rhs.subq_aliases # Now relabel a copy of the rhs where-clause and add it to the current # one. w = rhs.where.clone() w.relabel_aliases(change_map) self.where.add(w, connector) # Selection columns and extra extensions are those provided by 'rhs'. if rhs.select: self.set_select([col.relabeled_clone(change_map) for col in rhs.select]) else: self.select = () if connector == OR: # It would be nice to be able to handle this, but the queries don't # really make sense (or return consistent value sets). Not worth # the extra complexity when you can write a real query instead. if self.extra and rhs.extra: raise ValueError("When merging querysets using 'or', you cannot have extra(select=...) on both sides.") self.extra.update(rhs.extra) extra_select_mask = set() if self.extra_select_mask is not None: extra_select_mask.update(self.extra_select_mask) if rhs.extra_select_mask is not None: extra_select_mask.update(rhs.extra_select_mask) if extra_select_mask: self.set_extra_mask(extra_select_mask) self.extra_tables += rhs.extra_tables # Ordering uses the 'rhs' ordering, unless it has none, in which case # the current ordering is used. self.order_by = rhs.order_by or self.order_by self.extra_order_by = rhs.extra_order_by or self.extra_order_by def deferred_to_data(self, target, callback): """ Convert the self.deferred_loading data structure to an alternate data structure, describing the field that *will* be loaded. This is used to compute the columns to select from the database and also by the QuerySet class to work out which fields are being initialized on each model. Models that have all their fields included aren't mentioned in the result, only those that have field restrictions in place. The "target" parameter is the instance that is populated (in place). The "callback" is a function that is called whenever a (model, field) pair need to be added to "target". It accepts three parameters: "target", and the model and list of fields being added for that model. """ field_names, defer = self.deferred_loading if not field_names: return orig_opts = self.get_meta() seen = {} must_include = {orig_opts.concrete_model: {orig_opts.pk}} for field_name in field_names: parts = field_name.split(LOOKUP_SEP) cur_model = self.model._meta.concrete_model opts = orig_opts for name in parts[:-1]: old_model = cur_model if name in self._filtered_relations: name = self._filtered_relations[name].relation_name source = opts.get_field(name) if is_reverse_o2o(source): cur_model = source.related_model else: cur_model = source.remote_field.model opts = cur_model._meta # Even if we're "just passing through" this model, we must add # both the current model's pk and the related reference field # (if it's not a reverse relation) to the things we select. if not is_reverse_o2o(source): must_include[old_model].add(source) add_to_dict(must_include, cur_model, opts.pk) field = opts.get_field(parts[-1]) is_reverse_object = field.auto_created and not field.concrete model = field.related_model if is_reverse_object else field.model model = model._meta.concrete_model if model == opts.model: model = cur_model if not is_reverse_o2o(field): add_to_dict(seen, model, field) if defer: # We need to load all fields for each model, except those that # appear in "seen" (for all models that appear in "seen"). The only # slight complexity here is handling fields that exist on parent # models. workset = {} for model, values in seen.items(): for field in model._meta.local_fields: if field not in values: m = field.model._meta.concrete_model add_to_dict(workset, m, field) for model, values in must_include.items(): # If we haven't included a model in workset, we don't add the # corresponding must_include fields for that model, since an # empty set means "include all fields". That's why there's no # "else" branch here. if model in workset: workset[model].update(values) for model, values in workset.items(): callback(target, model, values) else: for model, values in must_include.items(): if model in seen: seen[model].update(values) else: # As we've passed through this model, but not explicitly # included any fields, we have to make sure it's mentioned # so that only the "must include" fields are pulled in. seen[model] = values # Now ensure that every model in the inheritance chain is mentioned # in the parent list. Again, it must be mentioned to ensure that # only "must include" fields are pulled in. for model in orig_opts.get_parent_list(): seen.setdefault(model, set()) for model, values in seen.items(): callback(target, model, values) def table_alias(self, table_name, create=False, filtered_relation=None): """ Return a table alias for the given table_name and whether this is a new alias or not. If 'create' is true, a new alias is always created. Otherwise, the most recently created alias for the table (if one exists) is reused. """ alias_list = self.table_map.get(table_name) if not create and alias_list: alias = alias_list[0] self.alias_refcount[alias] += 1 return alias, False # Create a new alias for this table. if alias_list: alias = '%s%d' % (self.alias_prefix, len(self.alias_map) + 1) alias_list.append(alias) else: # The first occurrence of a table uses the table name directly. alias = filtered_relation.alias if filtered_relation is not None else table_name self.table_map[table_name] = [alias] self.alias_refcount[alias] = 1 return alias, True def ref_alias(self, alias): """Increases the reference count for this alias.""" self.alias_refcount[alias] += 1 def unref_alias(self, alias, amount=1): """Decreases the reference count for this alias.""" self.alias_refcount[alias] -= amount def promote_joins(self, aliases): """ Promote recursively the join type of given aliases and its children to an outer join. If 'unconditional' is False, only promote the join if it is nullable or the parent join is an outer join. The children promotion is done to avoid join chains that contain a LOUTER b INNER c. So, if we have currently a INNER b INNER c and a->b is promoted, then we must also promote b->c automatically, or otherwise the promotion of a->b doesn't actually change anything in the query results. """ aliases = list(aliases) while aliases: alias = aliases.pop(0) if self.alias_map[alias].join_type is None: # This is the base table (first FROM entry) - this table # isn't really joined at all in the query, so we should not # alter its join type. continue # Only the first alias (skipped above) should have None join_type assert self.alias_map[alias].join_type is not None parent_alias = self.alias_map[alias].parent_alias parent_louter = parent_alias and self.alias_map[parent_alias].join_type == LOUTER already_louter = self.alias_map[alias].join_type == LOUTER if ((self.alias_map[alias].nullable or parent_louter) and not already_louter): self.alias_map[alias] = self.alias_map[alias].promote() # Join type of 'alias' changed, so re-examine all aliases that # refer to this one. aliases.extend( join for join in self.alias_map if self.alias_map[join].parent_alias == alias and join not in aliases ) def demote_joins(self, aliases): """ Change join type from LOUTER to INNER for all joins in aliases. Similarly to promote_joins(), this method must ensure no join chains containing first an outer, then an inner join are generated. If we are demoting b->c join in chain a LOUTER b LOUTER c then we must demote a->b automatically, or otherwise the demotion of b->c doesn't actually change anything in the query results. . """ aliases = list(aliases) while aliases: alias = aliases.pop(0) if self.alias_map[alias].join_type == LOUTER: self.alias_map[alias] = self.alias_map[alias].demote() parent_alias = self.alias_map[alias].parent_alias if self.alias_map[parent_alias].join_type == INNER: aliases.append(parent_alias) def reset_refcounts(self, to_counts): """ Reset reference counts for aliases so that they match the value passed in `to_counts`. """ for alias, cur_refcount in self.alias_refcount.copy().items(): unref_amount = cur_refcount - to_counts.get(alias, 0) self.unref_alias(alias, unref_amount) def change_aliases(self, change_map): """ Change the aliases in change_map (which maps old-alias -> new-alias), relabelling any references to them in select columns and the where clause. """ assert set(change_map).isdisjoint(change_map.values()) # 1. Update references in "select" (normal columns plus aliases), # "group by" and "where". self.where.relabel_aliases(change_map) if isinstance(self.group_by, tuple): self.group_by = tuple([col.relabeled_clone(change_map) for col in self.group_by]) self.select = tuple([col.relabeled_clone(change_map) for col in self.select]) self.annotations = self.annotations and { key: col.relabeled_clone(change_map) for key, col in self.annotations.items() } # 2. Rename the alias in the internal table/alias datastructures. for old_alias, new_alias in change_map.items(): if old_alias not in self.alias_map: continue alias_data = self.alias_map[old_alias].relabeled_clone(change_map) self.alias_map[new_alias] = alias_data self.alias_refcount[new_alias] = self.alias_refcount[old_alias] del self.alias_refcount[old_alias] del self.alias_map[old_alias] table_aliases = self.table_map[alias_data.table_name] for pos, alias in enumerate(table_aliases): if alias == old_alias: table_aliases[pos] = new_alias break self.external_aliases = { # Table is aliased or it's being changed and thus is aliased. change_map.get(alias, alias): (aliased or alias in change_map) for alias, aliased in self.external_aliases.items() } def bump_prefix(self, outer_query): """ Change the alias prefix to the next letter in the alphabet in a way that the outer query's aliases and this query's aliases will not conflict. Even tables that previously had no alias will get an alias after this call. """ def prefix_gen(): """ Generate a sequence of characters in alphabetical order: -> 'A', 'B', 'C', ... When the alphabet is finished, the sequence will continue with the Cartesian product: -> 'AA', 'AB', 'AC', ... """ alphabet = ascii_uppercase prefix = chr(ord(self.alias_prefix) + 1) yield prefix for n in count(1): seq = alphabet[alphabet.index(prefix):] if prefix else alphabet for s in product(seq, repeat=n): yield ''.join(s) prefix = None if self.alias_prefix != outer_query.alias_prefix: # No clashes between self and outer query should be possible. return # Explicitly avoid infinite loop. The constant divider is based on how # much depth recursive subquery references add to the stack. This value # might need to be adjusted when adding or removing function calls from # the code path in charge of performing these operations. local_recursion_limit = sys.getrecursionlimit() // 16 for pos, prefix in enumerate(prefix_gen()): if prefix not in self.subq_aliases: self.alias_prefix = prefix break if pos > local_recursion_limit: raise RecursionError( 'Maximum recursion depth exceeded: too many subqueries.' ) self.subq_aliases = self.subq_aliases.union([self.alias_prefix]) outer_query.subq_aliases = outer_query.subq_aliases.union(self.subq_aliases) self.change_aliases({ alias: '%s%d' % (self.alias_prefix, pos) for pos, alias in enumerate(self.alias_map) }) def get_initial_alias(self): """ Return the first alias for this query, after increasing its reference count. """ if self.alias_map: alias = self.base_table self.ref_alias(alias) else: alias = self.join(BaseTable(self.get_meta().db_table, None)) return alias def count_active_tables(self): """ Return the number of tables in this query with a non-zero reference count. After execution, the reference counts are zeroed, so tables added in compiler will not be seen by this method. """ return len([1 for count in self.alias_refcount.values() if count]) def join(self, join, reuse=None): """ Return an alias for the 'join', either reusing an existing alias for that join or creating a new one. 'join' is either a sql.datastructures.BaseTable or Join. The 'reuse' parameter can be either None which means all joins are reusable, or it can be a set containing the aliases that can be reused. A join is always created as LOUTER if the lhs alias is LOUTER to make sure chains like t1 LOUTER t2 INNER t3 aren't generated. All new joins are created as LOUTER if the join is nullable. """ reuse_aliases = [ a for a, j in self.alias_map.items() if (reuse is None or a in reuse) and j.equals(join) ] if reuse_aliases: if join.table_alias in reuse_aliases: reuse_alias = join.table_alias else: # Reuse the most recent alias of the joined table # (a many-to-many relation may be joined multiple times). reuse_alias = reuse_aliases[-1] self.ref_alias(reuse_alias) return reuse_alias # No reuse is possible, so we need a new alias. alias, _ = self.table_alias(join.table_name, create=True, filtered_relation=join.filtered_relation) if join.join_type: if self.alias_map[join.parent_alias].join_type == LOUTER or join.nullable: join_type = LOUTER else: join_type = INNER join.join_type = join_type join.table_alias = alias self.alias_map[alias] = join return alias def join_parent_model(self, opts, model, alias, seen): """ Make sure the given 'model' is joined in the query. If 'model' isn't a parent of 'opts' or if it is None this method is a no-op. The 'alias' is the root alias for starting the join, 'seen' is a dict of model -> alias of existing joins. It must also contain a mapping of None -> some alias. This will be returned in the no-op case. """ if model in seen: return seen[model] chain = opts.get_base_chain(model) if not chain: return alias curr_opts = opts for int_model in chain: if int_model in seen: curr_opts = int_model._meta alias = seen[int_model] continue # Proxy model have elements in base chain # with no parents, assign the new options # object and skip to the next base in that # case if not curr_opts.parents[int_model]: curr_opts = int_model._meta continue link_field = curr_opts.get_ancestor_link(int_model) join_info = self.setup_joins([link_field.name], curr_opts, alias) curr_opts = int_model._meta alias = seen[int_model] = join_info.joins[-1] return alias or seen[None] def add_annotation(self, annotation, alias, is_summary=False, select=True): """Add a single annotation expression to the Query.""" annotation = annotation.resolve_expression(self, allow_joins=True, reuse=None, summarize=is_summary) if select: self.append_annotation_mask([alias]) else: self.set_annotation_mask(set(self.annotation_select).difference({alias})) self.annotations[alias] = annotation def resolve_expression(self, query, *args, **kwargs): clone = self.clone() # Subqueries need to use a different set of aliases than the outer query. clone.bump_prefix(query) clone.subquery = True clone.where.resolve_expression(query, *args, **kwargs) for key, value in clone.annotations.items(): resolved = value.resolve_expression(query, *args, **kwargs) if hasattr(resolved, 'external_aliases'): resolved.external_aliases.update(clone.external_aliases) clone.annotations[key] = resolved # Outer query's aliases are considered external. for alias, table in query.alias_map.items(): clone.external_aliases[alias] = ( (isinstance(table, Join) and table.join_field.related_model._meta.db_table != alias) or (isinstance(table, BaseTable) and table.table_name != table.table_alias) ) return clone def get_external_cols(self): exprs = chain(self.annotations.values(), self.where.children) return [ col for col in self._gen_cols(exprs, include_external=True) if col.alias in self.external_aliases ] def as_sql(self, compiler, connection): # Some backends (e.g. Oracle) raise an error when a subquery contains # unnecessary ORDER BY clause. if ( self.subquery and not connection.features.ignores_unnecessary_order_by_in_subqueries ): self.clear_ordering(force=False) sql, params = self.get_compiler(connection=connection).as_sql() if self.subquery: sql = '(%s)' % sql return sql, params def resolve_lookup_value(self, value, can_reuse, allow_joins): if hasattr(value, 'resolve_expression'): value = value.resolve_expression( self, reuse=can_reuse, allow_joins=allow_joins, ) elif isinstance(value, (list, tuple)): # The items of the iterable may be expressions and therefore need # to be resolved independently. values = ( self.resolve_lookup_value(sub_value, can_reuse, allow_joins) for sub_value in value ) type_ = type(value) if hasattr(type_, '_make'): # namedtuple return type_(*values) return type_(values) return value def solve_lookup_type(self, lookup): """ Solve the lookup type from the lookup (e.g.: 'foobar__id__icontains'). """ lookup_splitted = lookup.split(LOOKUP_SEP) if self.annotations: expression, expression_lookups = refs_expression(lookup_splitted, self.annotations) if expression: return expression_lookups, (), expression _, field, _, lookup_parts = self.names_to_path(lookup_splitted, self.get_meta()) field_parts = lookup_splitted[0:len(lookup_splitted) - len(lookup_parts)] if len(lookup_parts) > 1 and not field_parts: raise FieldError( 'Invalid lookup "%s" for model %s".' % (lookup, self.get_meta().model.__name__) ) return lookup_parts, field_parts, False def check_query_object_type(self, value, opts, field): """ Check whether the object passed while querying is of the correct type. If not, raise a ValueError specifying the wrong object. """ if hasattr(value, '_meta'): if not check_rel_lookup_compatibility(value._meta.model, opts, field): raise ValueError( 'Cannot query "%s": Must be "%s" instance.' % (value, opts.object_name)) def check_related_objects(self, field, value, opts): """Check the type of object passed to query relations.""" if field.is_relation: # Check that the field and the queryset use the same model in a # query like .filter(author=Author.objects.all()). For example, the # opts would be Author's (from the author field) and value.model # would be Author.objects.all() queryset's .model (Author also). # The field is the related field on the lhs side. if (isinstance(value, Query) and not value.has_select_fields and not check_rel_lookup_compatibility(value.model, opts, field)): raise ValueError( 'Cannot use QuerySet for "%s": Use a QuerySet for "%s".' % (value.model._meta.object_name, opts.object_name) ) elif hasattr(value, '_meta'): self.check_query_object_type(value, opts, field) elif hasattr(value, '__iter__'): for v in value: self.check_query_object_type(v, opts, field) def check_filterable(self, expression): """Raise an error if expression cannot be used in a WHERE clause.""" if ( hasattr(expression, 'resolve_expression') and not getattr(expression, 'filterable', True) ): raise NotSupportedError( expression.__class__.__name__ + ' is disallowed in the filter ' 'clause.' ) if hasattr(expression, 'get_source_expressions'): for expr in expression.get_source_expressions(): self.check_filterable(expr) def build_lookup(self, lookups, lhs, rhs): """ Try to extract transforms and lookup from given lhs. The lhs value is something that works like SQLExpression. The rhs value is what the lookup is going to compare against. The lookups is a list of names to extract using get_lookup() and get_transform(). """ # __exact is the default lookup if one isn't given. *transforms, lookup_name = lookups or ['exact'] for name in transforms: lhs = self.try_transform(lhs, name) # First try get_lookup() so that the lookup takes precedence if the lhs # supports both transform and lookup for the name. lookup_class = lhs.get_lookup(lookup_name) if not lookup_class: if lhs.field.is_relation: raise FieldError('Related Field got invalid lookup: {}'.format(lookup_name)) # A lookup wasn't found. Try to interpret the name as a transform # and do an Exact lookup against it. lhs = self.try_transform(lhs, lookup_name) lookup_name = 'exact' lookup_class = lhs.get_lookup(lookup_name) if not lookup_class: return lookup = lookup_class(lhs, rhs) # Interpret '__exact=None' as the sql 'is NULL'; otherwise, reject all # uses of None as a query value unless the lookup supports it. if lookup.rhs is None and not lookup.can_use_none_as_rhs: if lookup_name not in ('exact', 'iexact'): raise ValueError("Cannot use None as a query value") return lhs.get_lookup('isnull')(lhs, True) # For Oracle '' is equivalent to null. The check must be done at this # stage because join promotion can't be done in the compiler. Using # DEFAULT_DB_ALIAS isn't nice but it's the best that can be done here. # A similar thing is done in is_nullable(), too. if ( lookup_name == 'exact' and lookup.rhs == '' and connections[DEFAULT_DB_ALIAS].features.interprets_empty_strings_as_nulls ): return lhs.get_lookup('isnull')(lhs, True) return lookup def try_transform(self, lhs, name): """ Helper method for build_lookup(). Try to fetch and initialize a transform for name parameter from lhs. """ transform_class = lhs.get_transform(name) if transform_class: return transform_class(lhs) else: output_field = lhs.output_field.__class__ suggested_lookups = difflib.get_close_matches(name, output_field.get_lookups()) if suggested_lookups: suggestion = ', perhaps you meant %s?' % ' or '.join(suggested_lookups) else: suggestion = '.' raise FieldError( "Unsupported lookup '%s' for %s or join on the field not " "permitted%s" % (name, output_field.__name__, suggestion) ) def build_filter(self, filter_expr, branch_negated=False, current_negated=False, can_reuse=None, allow_joins=True, split_subq=True, check_filterable=True): """ Build a WhereNode for a single filter clause but don't add it to this Query. Query.add_q() will then add this filter to the where Node. The 'branch_negated' tells us if the current branch contains any negations. This will be used to determine if subqueries are needed. The 'current_negated' is used to determine if the current filter is negated or not and this will be used to determine if IS NULL filtering is needed. The difference between current_negated and branch_negated is that branch_negated is set on first negation, but current_negated is flipped for each negation. Note that add_filter will not do any negating itself, that is done upper in the code by add_q(). The 'can_reuse' is a set of reusable joins for multijoins. The method will create a filter clause that can be added to the current query. However, if the filter isn't added to the query then the caller is responsible for unreffing the joins used. """ if isinstance(filter_expr, dict): raise FieldError("Cannot parse keyword query as dict") if isinstance(filter_expr, Q): return self._add_q( filter_expr, branch_negated=branch_negated, current_negated=current_negated, used_aliases=can_reuse, allow_joins=allow_joins, split_subq=split_subq, check_filterable=check_filterable, ) if hasattr(filter_expr, 'resolve_expression'): if not getattr(filter_expr, 'conditional', False): raise TypeError('Cannot filter against a non-conditional expression.') condition = filter_expr.resolve_expression(self, allow_joins=allow_joins) if not isinstance(condition, Lookup): condition = self.build_lookup(['exact'], condition, True) return WhereNode([condition], connector=AND), [] arg, value = filter_expr if not arg: raise FieldError("Cannot parse keyword query %r" % arg) lookups, parts, reffed_expression = self.solve_lookup_type(arg) if check_filterable: self.check_filterable(reffed_expression) if not allow_joins and len(parts) > 1: raise FieldError("Joined field references are not permitted in this query") pre_joins = self.alias_refcount.copy() value = self.resolve_lookup_value(value, can_reuse, allow_joins) used_joins = {k for k, v in self.alias_refcount.items() if v > pre_joins.get(k, 0)} if check_filterable: self.check_filterable(value) if reffed_expression: condition = self.build_lookup(lookups, reffed_expression, value) return WhereNode([condition], connector=AND), [] opts = self.get_meta() alias = self.get_initial_alias() allow_many = not branch_negated or not split_subq try: join_info = self.setup_joins( parts, opts, alias, can_reuse=can_reuse, allow_many=allow_many, ) # Prevent iterator from being consumed by check_related_objects() if isinstance(value, Iterator): value = list(value) self.check_related_objects(join_info.final_field, value, join_info.opts) # split_exclude() needs to know which joins were generated for the # lookup parts self._lookup_joins = join_info.joins except MultiJoin as e: return self.split_exclude(filter_expr, can_reuse, e.names_with_path) # Update used_joins before trimming since they are reused to determine # which joins could be later promoted to INNER. used_joins.update(join_info.joins) targets, alias, join_list = self.trim_joins(join_info.targets, join_info.joins, join_info.path) if can_reuse is not None: can_reuse.update(join_list) if join_info.final_field.is_relation: # No support for transforms for relational fields num_lookups = len(lookups) if num_lookups > 1: raise FieldError('Related Field got invalid lookup: {}'.format(lookups[0])) if len(targets) == 1: col = self._get_col(targets[0], join_info.final_field, alias) else: col = MultiColSource(alias, targets, join_info.targets, join_info.final_field) else: col = self._get_col(targets[0], join_info.final_field, alias) condition = self.build_lookup(lookups, col, value) lookup_type = condition.lookup_name clause = WhereNode([condition], connector=AND) require_outer = lookup_type == 'isnull' and condition.rhs is True and not current_negated if current_negated and (lookup_type != 'isnull' or condition.rhs is False) and condition.rhs is not None: require_outer = True if lookup_type != 'isnull': # The condition added here will be SQL like this: # NOT (col IS NOT NULL), where the first NOT is added in # upper layers of code. The reason for addition is that if col # is null, then col != someval will result in SQL "unknown" # which isn't the same as in Python. The Python None handling # is wanted, and it can be gotten by # (col IS NULL OR col != someval) # <=> # NOT (col IS NOT NULL AND col = someval). if ( self.is_nullable(targets[0]) or self.alias_map[join_list[-1]].join_type == LOUTER ): lookup_class = targets[0].get_lookup('isnull') col = self._get_col(targets[0], join_info.targets[0], alias) clause.add(lookup_class(col, False), AND) # If someval is a nullable column, someval IS NOT NULL is # added. if isinstance(value, Col) and self.is_nullable(value.target): lookup_class = value.target.get_lookup('isnull') clause.add(lookup_class(value, False), AND) return clause, used_joins if not require_outer else () def add_filter(self, filter_lhs, filter_rhs): self.add_q(Q((filter_lhs, filter_rhs))) def add_q(self, q_object): """ A preprocessor for the internal _add_q(). Responsible for doing final join promotion. """ # For join promotion this case is doing an AND for the added q_object # and existing conditions. So, any existing inner join forces the join # type to remain inner. Existing outer joins can however be demoted. # (Consider case where rel_a is LOUTER and rel_a__col=1 is added - if # rel_a doesn't produce any rows, then the whole condition must fail. # So, demotion is OK. existing_inner = {a for a in self.alias_map if self.alias_map[a].join_type == INNER} clause, _ = self._add_q(q_object, self.used_aliases) if clause: self.where.add(clause, AND) self.demote_joins(existing_inner) def build_where(self, filter_expr): return self.build_filter(filter_expr, allow_joins=False)[0] def clear_where(self): self.where = WhereNode() def _add_q(self, q_object, used_aliases, branch_negated=False, current_negated=False, allow_joins=True, split_subq=True, check_filterable=True): """Add a Q-object to the current filter.""" connector = q_object.connector current_negated = current_negated ^ q_object.negated branch_negated = branch_negated or q_object.negated target_clause = WhereNode(connector=connector, negated=q_object.negated) joinpromoter = JoinPromoter(q_object.connector, len(q_object.children), current_negated) for child in q_object.children: child_clause, needed_inner = self.build_filter( child, can_reuse=used_aliases, branch_negated=branch_negated, current_negated=current_negated, allow_joins=allow_joins, split_subq=split_subq, check_filterable=check_filterable, ) joinpromoter.add_votes(needed_inner) if child_clause: target_clause.add(child_clause, connector) needed_inner = joinpromoter.update_join_types(self) return target_clause, needed_inner def build_filtered_relation_q(self, q_object, reuse, branch_negated=False, current_negated=False): """Add a FilteredRelation object to the current filter.""" connector = q_object.connector current_negated ^= q_object.negated branch_negated = branch_negated or q_object.negated target_clause = WhereNode(connector=connector, negated=q_object.negated) for child in q_object.children: if isinstance(child, Node): child_clause = self.build_filtered_relation_q( child, reuse=reuse, branch_negated=branch_negated, current_negated=current_negated, ) else: child_clause, _ = self.build_filter( child, can_reuse=reuse, branch_negated=branch_negated, current_negated=current_negated, allow_joins=True, split_subq=False, ) target_clause.add(child_clause, connector) return target_clause def add_filtered_relation(self, filtered_relation, alias): filtered_relation.alias = alias lookups = dict(get_children_from_q(filtered_relation.condition)) relation_lookup_parts, relation_field_parts, _ = self.solve_lookup_type(filtered_relation.relation_name) if relation_lookup_parts: raise ValueError( "FilteredRelation's relation_name cannot contain lookups " "(got %r)." % filtered_relation.relation_name ) for lookup in chain(lookups): lookup_parts, lookup_field_parts, _ = self.solve_lookup_type(lookup) shift = 2 if not lookup_parts else 1 lookup_field_path = lookup_field_parts[:-shift] for idx, lookup_field_part in enumerate(lookup_field_path): if len(relation_field_parts) > idx: if relation_field_parts[idx] != lookup_field_part: raise ValueError( "FilteredRelation's condition doesn't support " "relations outside the %r (got %r)." % (filtered_relation.relation_name, lookup) ) else: raise ValueError( "FilteredRelation's condition doesn't support nested " "relations deeper than the relation_name (got %r for " "%r)." % (lookup, filtered_relation.relation_name) ) self._filtered_relations[filtered_relation.alias] = filtered_relation def names_to_path(self, names, opts, allow_many=True, fail_on_missing=False): """ Walk the list of names and turns them into PathInfo tuples. A single name in 'names' can generate multiple PathInfos (m2m, for example). 'names' is the path of names to travel, 'opts' is the model Options we start the name resolving from, 'allow_many' is as for setup_joins(). If fail_on_missing is set to True, then a name that can't be resolved will generate a FieldError. Return a list of PathInfo tuples. In addition return the final field (the last used join field) and target (which is a field guaranteed to contain the same value as the final field). Finally, return those names that weren't found (which are likely transforms and the final lookup). """ path, names_with_path = [], [] for pos, name in enumerate(names): cur_names_with_path = (name, []) if name == 'pk': name = opts.pk.name field = None filtered_relation = None try: field = opts.get_field(name) except FieldDoesNotExist: if name in self.annotation_select: field = self.annotation_select[name].output_field elif name in self._filtered_relations and pos == 0: filtered_relation = self._filtered_relations[name] if LOOKUP_SEP in filtered_relation.relation_name: parts = filtered_relation.relation_name.split(LOOKUP_SEP) filtered_relation_path, field, _, _ = self.names_to_path( parts, opts, allow_many, fail_on_missing, ) path.extend(filtered_relation_path[:-1]) else: field = opts.get_field(filtered_relation.relation_name) if field is not None: # Fields that contain one-to-many relations with a generic # model (like a GenericForeignKey) cannot generate reverse # relations and therefore cannot be used for reverse querying. if field.is_relation and not field.related_model: raise FieldError( "Field %r does not generate an automatic reverse " "relation and therefore cannot be used for reverse " "querying. If it is a GenericForeignKey, consider " "adding a GenericRelation." % name ) try: model = field.model._meta.concrete_model except AttributeError: # QuerySet.annotate() may introduce fields that aren't # attached to a model. model = None else: # We didn't find the current field, so move position back # one step. pos -= 1 if pos == -1 or fail_on_missing: available = sorted([ *get_field_names_from_opts(opts), *self.annotation_select, *self._filtered_relations, ]) raise FieldError("Cannot resolve keyword '%s' into field. " "Choices are: %s" % (name, ", ".join(available))) break # Check if we need any joins for concrete inheritance cases (the # field lives in parent, but we are currently in one of its # children) if model is not opts.model: path_to_parent = opts.get_path_to_parent(model) if path_to_parent: path.extend(path_to_parent) cur_names_with_path[1].extend(path_to_parent) opts = path_to_parent[-1].to_opts if hasattr(field, 'get_path_info'): pathinfos = field.get_path_info(filtered_relation) if not allow_many: for inner_pos, p in enumerate(pathinfos): if p.m2m: cur_names_with_path[1].extend(pathinfos[0:inner_pos + 1]) names_with_path.append(cur_names_with_path) raise MultiJoin(pos + 1, names_with_path) last = pathinfos[-1] path.extend(pathinfos) final_field = last.join_field opts = last.to_opts targets = last.target_fields cur_names_with_path[1].extend(pathinfos) names_with_path.append(cur_names_with_path) else: # Local non-relational field. final_field = field targets = (field,) if fail_on_missing and pos + 1 != len(names): raise FieldError( "Cannot resolve keyword %r into field. Join on '%s'" " not permitted." % (names[pos + 1], name)) break return path, final_field, targets, names[pos + 1:] def setup_joins(self, names, opts, alias, can_reuse=None, allow_many=True): """ Compute the necessary table joins for the passage through the fields given in 'names'. 'opts' is the Options class for the current model (which gives the table we are starting from), 'alias' is the alias for the table to start the joining from. The 'can_reuse' defines the reverse foreign key joins we can reuse. It can be None in which case all joins are reusable or a set of aliases that can be reused. Note that non-reverse foreign keys are always reusable when using setup_joins(). If 'allow_many' is False, then any reverse foreign key seen will generate a MultiJoin exception. Return the final field involved in the joins, the target field (used for any 'where' constraint), the final 'opts' value, the joins, the field path traveled to generate the joins, and a transform function that takes a field and alias and is equivalent to `field.get_col(alias)` in the simple case but wraps field transforms if they were included in names. The target field is the field containing the concrete value. Final field can be something different, for example foreign key pointing to that value. Final field is needed for example in some value conversions (convert 'obj' in fk__id=obj to pk val using the foreign key field for example). """ joins = [alias] # The transform can't be applied yet, as joins must be trimmed later. # To avoid making every caller of this method look up transforms # directly, compute transforms here and create a partial that converts # fields to the appropriate wrapped version. def final_transformer(field, alias): if not self.alias_cols: alias = None return field.get_col(alias) # Try resolving all the names as fields first. If there's an error, # treat trailing names as lookups until a field can be resolved. last_field_exception = None for pivot in range(len(names), 0, -1): try: path, final_field, targets, rest = self.names_to_path( names[:pivot], opts, allow_many, fail_on_missing=True, ) except FieldError as exc: if pivot == 1: # The first item cannot be a lookup, so it's safe # to raise the field error here. raise else: last_field_exception = exc else: # The transforms are the remaining items that couldn't be # resolved into fields. transforms = names[pivot:] break for name in transforms: def transform(field, alias, *, name, previous): try: wrapped = previous(field, alias) return self.try_transform(wrapped, name) except FieldError: # FieldError is raised if the transform doesn't exist. if isinstance(final_field, Field) and last_field_exception: raise last_field_exception else: raise final_transformer = functools.partial(transform, name=name, previous=final_transformer) # Then, add the path to the query's joins. Note that we can't trim # joins at this stage - we will need the information about join type # of the trimmed joins. for join in path: if join.filtered_relation: filtered_relation = join.filtered_relation.clone() table_alias = filtered_relation.alias else: filtered_relation = None table_alias = None opts = join.to_opts if join.direct: nullable = self.is_nullable(join.join_field) else: nullable = True connection = Join( opts.db_table, alias, table_alias, INNER, join.join_field, nullable, filtered_relation=filtered_relation, ) reuse = can_reuse if join.m2m else None alias = self.join(connection, reuse=reuse) joins.append(alias) if filtered_relation: filtered_relation.path = joins[:] return JoinInfo(final_field, targets, opts, joins, path, final_transformer) def trim_joins(self, targets, joins, path): """ The 'target' parameter is the final field being joined to, 'joins' is the full list of join aliases. The 'path' contain the PathInfos used to create the joins. Return the final target field and table alias and the new active joins. Always trim any direct join if the target column is already in the previous table. Can't trim reverse joins as it's unknown if there's anything on the other side of the join. """ joins = joins[:] for pos, info in enumerate(reversed(path)): if len(joins) == 1 or not info.direct: break if info.filtered_relation: break join_targets = {t.column for t in info.join_field.foreign_related_fields} cur_targets = {t.column for t in targets} if not cur_targets.issubset(join_targets): break targets_dict = {r[1].column: r[0] for r in info.join_field.related_fields if r[1].column in cur_targets} targets = tuple(targets_dict[t.column] for t in targets) self.unref_alias(joins.pop()) return targets, joins[-1], joins @classmethod def _gen_cols(cls, exprs, include_external=False): for expr in exprs: if isinstance(expr, Col): yield expr elif include_external and callable(getattr(expr, 'get_external_cols', None)): yield from expr.get_external_cols() elif hasattr(expr, 'get_source_expressions'): yield from cls._gen_cols( expr.get_source_expressions(), include_external=include_external, ) @classmethod def _gen_col_aliases(cls, exprs): yield from (expr.alias for expr in cls._gen_cols(exprs)) def resolve_ref(self, name, allow_joins=True, reuse=None, summarize=False): annotation = self.annotations.get(name) if annotation is not None: if not allow_joins: for alias in self._gen_col_aliases([annotation]): if isinstance(self.alias_map[alias], Join): raise FieldError( 'Joined field references are not permitted in ' 'this query' ) if summarize: # Summarize currently means we are doing an aggregate() query # which is executed as a wrapped subquery if any of the # aggregate() elements reference an existing annotation. In # that case we need to return a Ref to the subquery's annotation. if name not in self.annotation_select: raise FieldError( "Cannot aggregate over the '%s' alias. Use annotate() " "to promote it." % name ) return Ref(name, self.annotation_select[name]) else: return annotation else: field_list = name.split(LOOKUP_SEP) annotation = self.annotations.get(field_list[0]) if annotation is not None: for transform in field_list[1:]: annotation = self.try_transform(annotation, transform) return annotation join_info = self.setup_joins(field_list, self.get_meta(), self.get_initial_alias(), can_reuse=reuse) targets, final_alias, join_list = self.trim_joins(join_info.targets, join_info.joins, join_info.path) if not allow_joins and len(join_list) > 1: raise FieldError('Joined field references are not permitted in this query') if len(targets) > 1: raise FieldError("Referencing multicolumn fields with F() objects " "isn't supported") # Verify that the last lookup in name is a field or a transform: # transform_function() raises FieldError if not. transform = join_info.transform_function(targets[0], final_alias) if reuse is not None: reuse.update(join_list) return transform def split_exclude(self, filter_expr, can_reuse, names_with_path): """ When doing an exclude against any kind of N-to-many relation, we need to use a subquery. This method constructs the nested query, given the original exclude filter (filter_expr) and the portion up to the first N-to-many relation field. For example, if the origin filter is ~Q(child__name='foo'), filter_expr is ('child__name', 'foo') and can_reuse is a set of joins usable for filters in the original query. We will turn this into equivalent of: WHERE NOT EXISTS( SELECT 1 FROM child WHERE name = 'foo' AND child.parent_id = parent.id LIMIT 1 ) """ # Generate the inner query. query = Query(self.model) query._filtered_relations = self._filtered_relations filter_lhs, filter_rhs = filter_expr if isinstance(filter_rhs, OuterRef): filter_rhs = OuterRef(filter_rhs) elif isinstance(filter_rhs, F): filter_rhs = OuterRef(filter_rhs.name) query.add_filter(filter_lhs, filter_rhs) query.clear_ordering(force=True) # Try to have as simple as possible subquery -> trim leading joins from # the subquery. trimmed_prefix, contains_louter = query.trim_start(names_with_path) col = query.select[0] select_field = col.target alias = col.alias if alias in can_reuse: pk = select_field.model._meta.pk # Need to add a restriction so that outer query's filters are in effect for # the subquery, too. query.bump_prefix(self) lookup_class = select_field.get_lookup('exact') # Note that the query.select[0].alias is different from alias # due to bump_prefix above. lookup = lookup_class(pk.get_col(query.select[0].alias), pk.get_col(alias)) query.where.add(lookup, AND) query.external_aliases[alias] = True lookup_class = select_field.get_lookup('exact') lookup = lookup_class(col, ResolvedOuterRef(trimmed_prefix)) query.where.add(lookup, AND) condition, needed_inner = self.build_filter(Exists(query)) if contains_louter: or_null_condition, _ = self.build_filter( ('%s__isnull' % trimmed_prefix, True), current_negated=True, branch_negated=True, can_reuse=can_reuse) condition.add(or_null_condition, OR) # Note that the end result will be: # (outercol NOT IN innerq AND outercol IS NOT NULL) OR outercol IS NULL. # This might look crazy but due to how IN works, this seems to be # correct. If the IS NOT NULL check is removed then outercol NOT # IN will return UNKNOWN. If the IS NULL check is removed, then if # outercol IS NULL we will not match the row. return condition, needed_inner def set_empty(self): self.where.add(NothingNode(), AND) for query in self.combined_queries: query.set_empty() def is_empty(self): return any(isinstance(c, NothingNode) for c in self.where.children) def set_limits(self, low=None, high=None): """ Adjust the limits on the rows retrieved. Use low/high to set these, as it makes it more Pythonic to read and write. When the SQL query is created, convert them to the appropriate offset and limit values. Apply any limits passed in here to the existing constraints. Add low to the current low value and clamp both to any existing high value. """ if high is not None: if self.high_mark is not None: self.high_mark = min(self.high_mark, self.low_mark + high) else: self.high_mark = self.low_mark + high if low is not None: if self.high_mark is not None: self.low_mark = min(self.high_mark, self.low_mark + low) else: self.low_mark = self.low_mark + low if self.low_mark == self.high_mark: self.set_empty() def clear_limits(self): """Clear any existing limits.""" self.low_mark, self.high_mark = 0, None @property def is_sliced(self): return self.low_mark != 0 or self.high_mark is not None def has_limit_one(self): return self.high_mark is not None and (self.high_mark - self.low_mark) == 1 def can_filter(self): """ Return True if adding filters to this instance is still possible. Typically, this means no limits or offsets have been put on the results. """ return not self.is_sliced def clear_select_clause(self): """Remove all fields from SELECT clause.""" self.select = () self.default_cols = False self.select_related = False self.set_extra_mask(()) self.set_annotation_mask(()) def clear_select_fields(self): """ Clear the list of fields to select (but not extra_select columns). Some queryset types completely replace any existing list of select columns. """ self.select = () self.values_select = () def add_select_col(self, col, name): self.select += col, self.values_select += name, def set_select(self, cols): self.default_cols = False self.select = tuple(cols) def add_distinct_fields(self, *field_names): """ Add and resolve the given fields to the query's "distinct on" clause. """ self.distinct_fields = field_names self.distinct = True def add_fields(self, field_names, allow_m2m=True): """ Add the given (model) fields to the select set. Add the field names in the order specified. """ alias = self.get_initial_alias() opts = self.get_meta() try: cols = [] for name in field_names: # Join promotion note - we must not remove any rows here, so # if there is no existing joins, use outer join. join_info = self.setup_joins(name.split(LOOKUP_SEP), opts, alias, allow_many=allow_m2m) targets, final_alias, joins = self.trim_joins( join_info.targets, join_info.joins, join_info.path, ) for target in targets: cols.append(join_info.transform_function(target, final_alias)) if cols: self.set_select(cols) except MultiJoin: raise FieldError("Invalid field name: '%s'" % name) except FieldError: if LOOKUP_SEP in name: # For lookups spanning over relationships, show the error # from the model on which the lookup failed. raise elif name in self.annotations: raise FieldError( "Cannot select the '%s' alias. Use annotate() to promote " "it." % name ) else: names = sorted([ *get_field_names_from_opts(opts), *self.extra, *self.annotation_select, *self._filtered_relations ]) raise FieldError("Cannot resolve keyword %r into field. " "Choices are: %s" % (name, ", ".join(names))) def add_ordering(self, *ordering): """ Add items from the 'ordering' sequence to the query's "order by" clause. These items are either field names (not column names) -- possibly with a direction prefix ('-' or '?') -- or OrderBy expressions. If 'ordering' is empty, clear all ordering from the query. """ errors = [] for item in ordering: if isinstance(item, str): if item == '?': continue if item.startswith('-'): item = item[1:] if item in self.annotations: continue if self.extra and item in self.extra: continue # names_to_path() validates the lookup. A descriptive # FieldError will be raise if it's not. self.names_to_path(item.split(LOOKUP_SEP), self.model._meta) elif not hasattr(item, 'resolve_expression'): errors.append(item) if getattr(item, 'contains_aggregate', False): raise FieldError( 'Using an aggregate in order_by() without also including ' 'it in annotate() is not allowed: %s' % item ) if errors: raise FieldError('Invalid order_by arguments: %s' % errors) if ordering: self.order_by += ordering else: self.default_ordering = False def clear_ordering(self, force=False, clear_default=True): """ Remove any ordering settings if the current query allows it without side effects, set 'force' to True to clear the ordering regardless. If 'clear_default' is True, there will be no ordering in the resulting query (not even the model's default). """ if not force and (self.is_sliced or self.distinct_fields or self.select_for_update): return self.order_by = () self.extra_order_by = () if clear_default: self.default_ordering = False def set_group_by(self, allow_aliases=True): """ Expand the GROUP BY clause required by the query. This will usually be the set of all non-aggregate fields in the return data. If the database backend supports grouping by the primary key, and the query would be equivalent, the optimization will be made automatically. """ # Column names from JOINs to check collisions with aliases. if allow_aliases: column_names = set() seen_models = set() for join in list(self.alias_map.values())[1:]: # Skip base table. model = join.join_field.related_model if model not in seen_models: column_names.update({ field.column for field in model._meta.local_concrete_fields }) seen_models.add(model) group_by = list(self.select) if self.annotation_select: for alias, annotation in self.annotation_select.items(): if not allow_aliases or alias in column_names: alias = None group_by_cols = annotation.get_group_by_cols(alias=alias) group_by.extend(group_by_cols) self.group_by = tuple(group_by) def add_select_related(self, fields): """ Set up the select_related data structure so that we only select certain related models (as opposed to all models, when self.select_related=True). """ if isinstance(self.select_related, bool): field_dict = {} else: field_dict = self.select_related for field in fields: d = field_dict for part in field.split(LOOKUP_SEP): d = d.setdefault(part, {}) self.select_related = field_dict def add_extra(self, select, select_params, where, params, tables, order_by): """ Add data to the various extra_* attributes for user-created additions to the query. """ if select: # We need to pair any placeholder markers in the 'select' # dictionary with their parameters in 'select_params' so that # subsequent updates to the select dictionary also adjust the # parameters appropriately. select_pairs = {} if select_params: param_iter = iter(select_params) else: param_iter = iter([]) for name, entry in select.items(): entry = str(entry) entry_params = [] pos = entry.find("%s") while pos != -1: if pos == 0 or entry[pos - 1] != '%': entry_params.append(next(param_iter)) pos = entry.find("%s", pos + 2) select_pairs[name] = (entry, entry_params) self.extra.update(select_pairs) if where or params: self.where.add(ExtraWhere(where, params), AND) if tables: self.extra_tables += tuple(tables) if order_by: self.extra_order_by = order_by def clear_deferred_loading(self): """Remove any fields from the deferred loading set.""" self.deferred_loading = (frozenset(), True) def add_deferred_loading(self, field_names): """ Add the given list of model field names to the set of fields to exclude from loading from the database when automatic column selection is done. Add the new field names to any existing field names that are deferred (or removed from any existing field names that are marked as the only ones for immediate loading). """ # Fields on related models are stored in the literal double-underscore # format, so that we can use a set datastructure. We do the foo__bar # splitting and handling when computing the SQL column names (as part of # get_columns()). existing, defer = self.deferred_loading if defer: # Add to existing deferred names. self.deferred_loading = existing.union(field_names), True else: # Remove names from the set of any existing "immediate load" names. if new_existing := existing.difference(field_names): self.deferred_loading = new_existing, False else: self.clear_deferred_loading() if new_only := set(field_names).difference(existing): self.deferred_loading = new_only, True def add_immediate_loading(self, field_names): """ Add the given list of model field names to the set of fields to retrieve when the SQL is executed ("immediate loading" fields). The field names replace any existing immediate loading field names. If there are field names already specified for deferred loading, remove those names from the new field_names before storing the new names for immediate loading. (That is, immediate loading overrides any existing immediate values, but respects existing deferrals.) """ existing, defer = self.deferred_loading field_names = set(field_names) if 'pk' in field_names: field_names.remove('pk') field_names.add(self.get_meta().pk.name) if defer: # Remove any existing deferred names from the current set before # setting the new names. self.deferred_loading = field_names.difference(existing), False else: # Replace any existing "immediate load" field names. self.deferred_loading = frozenset(field_names), False def get_loaded_field_names(self): """ If any fields are marked to be deferred, return a dictionary mapping models to a set of names in those fields that will be loaded. If a model is not in the returned dictionary, none of its fields are deferred. If no fields are marked for deferral, return an empty dictionary. """ # We cache this because we call this function multiple times # (compiler.fill_related_selections, query.iterator) try: return self._loaded_field_names_cache except AttributeError: collection = {} self.deferred_to_data(collection, self.get_loaded_field_names_cb) self._loaded_field_names_cache = collection return collection def get_loaded_field_names_cb(self, target, model, fields): """Callback used by get_deferred_field_names().""" target[model] = {f.attname for f in fields} def set_annotation_mask(self, names): """Set the mask of annotations that will be returned by the SELECT.""" if names is None: self.annotation_select_mask = None else: self.annotation_select_mask = set(names) self._annotation_select_cache = None def append_annotation_mask(self, names): if self.annotation_select_mask is not None: self.set_annotation_mask(self.annotation_select_mask.union(names)) def set_extra_mask(self, names): """ Set the mask of extra select items that will be returned by SELECT. Don't remove them from the Query since they might be used later. """ if names is None: self.extra_select_mask = None else: self.extra_select_mask = set(names) self._extra_select_cache = None def set_values(self, fields): self.select_related = False self.clear_deferred_loading() self.clear_select_fields() if fields: field_names = [] extra_names = [] annotation_names = [] if not self.extra and not self.annotations: # Shortcut - if there are no extra or annotations, then # the values() clause must be just field names. field_names = list(fields) else: self.default_cols = False for f in fields: if f in self.extra_select: extra_names.append(f) elif f in self.annotation_select: annotation_names.append(f) else: field_names.append(f) self.set_extra_mask(extra_names) self.set_annotation_mask(annotation_names) selected = frozenset(field_names + extra_names + annotation_names) else: field_names = [f.attname for f in self.model._meta.concrete_fields] selected = frozenset(field_names) # Selected annotations must be known before setting the GROUP BY # clause. if self.group_by is True: self.add_fields((f.attname for f in self.model._meta.concrete_fields), False) # Disable GROUP BY aliases to avoid orphaning references to the # SELECT clause which is about to be cleared. self.set_group_by(allow_aliases=False) self.clear_select_fields() elif self.group_by: # Resolve GROUP BY annotation references if they are not part of # the selected fields anymore. group_by = [] for expr in self.group_by: if isinstance(expr, Ref) and expr.refs not in selected: expr = self.annotations[expr.refs] group_by.append(expr) self.group_by = tuple(group_by) self.values_select = tuple(field_names) self.add_fields(field_names, True) @property def annotation_select(self): """ Return the dictionary of aggregate columns that are not masked and should be used in the SELECT clause. Cache this result for performance. """ if self._annotation_select_cache is not None: return self._annotation_select_cache elif not self.annotations: return {} elif self.annotation_select_mask is not None: self._annotation_select_cache = { k: v for k, v in self.annotations.items() if k in self.annotation_select_mask } return self._annotation_select_cache else: return self.annotations @property def extra_select(self): if self._extra_select_cache is not None: return self._extra_select_cache if not self.extra: return {} elif self.extra_select_mask is not None: self._extra_select_cache = { k: v for k, v in self.extra.items() if k in self.extra_select_mask } return self._extra_select_cache else: return self.extra def trim_start(self, names_with_path): """ Trim joins from the start of the join path. The candidates for trim are the PathInfos in names_with_path structure that are m2m joins. Also set the select column so the start matches the join. This method is meant to be used for generating the subquery joins & cols in split_exclude(). Return a lookup usable for doing outerq.filter(lookup=self) and a boolean indicating if the joins in the prefix contain a LEFT OUTER join. _""" all_paths = [] for _, paths in names_with_path: all_paths.extend(paths) contains_louter = False # Trim and operate only on tables that were generated for # the lookup part of the query. That is, avoid trimming # joins generated for F() expressions. lookup_tables = [ t for t in self.alias_map if t in self._lookup_joins or t == self.base_table ] for trimmed_paths, path in enumerate(all_paths): if path.m2m: break if self.alias_map[lookup_tables[trimmed_paths + 1]].join_type == LOUTER: contains_louter = True alias = lookup_tables[trimmed_paths] self.unref_alias(alias) # The path.join_field is a Rel, lets get the other side's field join_field = path.join_field.field # Build the filter prefix. paths_in_prefix = trimmed_paths trimmed_prefix = [] for name, path in names_with_path: if paths_in_prefix - len(path) < 0: break trimmed_prefix.append(name) paths_in_prefix -= len(path) trimmed_prefix.append( join_field.foreign_related_fields[0].name) trimmed_prefix = LOOKUP_SEP.join(trimmed_prefix) # Lets still see if we can trim the first join from the inner query # (that is, self). We can't do this for: # - LEFT JOINs because we would miss those rows that have nothing on # the outer side, # - INNER JOINs from filtered relations because we would miss their # filters. first_join = self.alias_map[lookup_tables[trimmed_paths + 1]] if first_join.join_type != LOUTER and not first_join.filtered_relation: select_fields = [r[0] for r in join_field.related_fields] select_alias = lookup_tables[trimmed_paths + 1] self.unref_alias(lookup_tables[trimmed_paths]) extra_restriction = join_field.get_extra_restriction(None, lookup_tables[trimmed_paths + 1]) if extra_restriction: self.where.add(extra_restriction, AND) else: # TODO: It might be possible to trim more joins from the start of the # inner query if it happens to have a longer join chain containing the # values in select_fields. Lets punt this one for now. select_fields = [r[1] for r in join_field.related_fields] select_alias = lookup_tables[trimmed_paths] # The found starting point is likely a Join instead of a BaseTable reference. # But the first entry in the query's FROM clause must not be a JOIN. for table in self.alias_map: if self.alias_refcount[table] > 0: self.alias_map[table] = BaseTable(self.alias_map[table].table_name, table) break self.set_select([f.get_col(select_alias) for f in select_fields]) return trimmed_prefix, contains_louter def is_nullable(self, field): """ Check if the given field should be treated as nullable. Some backends treat '' as null and Django treats such fields as nullable for those backends. In such situations field.null can be False even if we should treat the field as nullable. """ # We need to use DEFAULT_DB_ALIAS here, as QuerySet does not have # (nor should it have) knowledge of which connection is going to be # used. The proper fix would be to defer all decisions where # is_nullable() is needed to the compiler stage, but that is not easy # to do currently. return field.null or ( field.empty_strings_allowed and connections[DEFAULT_DB_ALIAS].features.interprets_empty_strings_as_nulls ) def get_order_dir(field, default='ASC'): """ Return the field name and direction for an order specification. For example, '-foo' is returned as ('foo', 'DESC'). The 'default' param is used to indicate which way no prefix (or a '+' prefix) should sort. The '-' prefix always sorts the opposite way. """ dirn = ORDER_DIR[default] if field[0] == '-': return field[1:], dirn[1] return field, dirn[0] def add_to_dict(data, key, value): """ Add "value" to the set of values for "key", whether or not "key" already exists. """ if key in data: data[key].add(value) else: data[key] = {value} def is_reverse_o2o(field): """ Check if the given field is reverse-o2o. The field is expected to be some sort of relation field or related object. """ return field.is_relation and field.one_to_one and not field.concrete class JoinPromoter: """ A class to abstract away join promotion problems for complex filter conditions. """ def __init__(self, connector, num_children, negated): self.connector = connector self.negated = negated if self.negated: if connector == AND: self.effective_connector = OR else: self.effective_connector = AND else: self.effective_connector = self.connector self.num_children = num_children # Maps of table alias to how many times it is seen as required for # inner and/or outer joins. self.votes = Counter() def add_votes(self, votes): """ Add single vote per item to self.votes. Parameter can be any iterable. """ self.votes.update(votes) def update_join_types(self, query): """ Change join types so that the generated query is as efficient as possible, but still correct. So, change as many joins as possible to INNER, but don't make OUTER joins INNER if that could remove results from the query. """ to_promote = set() to_demote = set() # The effective_connector is used so that NOT (a AND b) is treated # similarly to (a OR b) for join promotion. for table, votes in self.votes.items(): # We must use outer joins in OR case when the join isn't contained # in all of the joins. Otherwise the INNER JOIN itself could remove # valid results. Consider the case where a model with rel_a and # rel_b relations is queried with rel_a__col=1 | rel_b__col=2. Now, # if rel_a join doesn't produce any results is null (for example # reverse foreign key or null value in direct foreign key), and # there is a matching row in rel_b with col=2, then an INNER join # to rel_a would remove a valid match from the query. So, we need # to promote any existing INNER to LOUTER (it is possible this # promotion in turn will be demoted later on). if self.effective_connector == 'OR' and votes < self.num_children: to_promote.add(table) # If connector is AND and there is a filter that can match only # when there is a joinable row, then use INNER. For example, in # rel_a__col=1 & rel_b__col=2, if either of the rels produce NULL # as join output, then the col=1 or col=2 can't match (as # NULL=anything is always false). # For the OR case, if all children voted for a join to be inner, # then we can use INNER for the join. For example: # (rel_a__col__icontains=Alex | rel_a__col__icontains=Russell) # then if rel_a doesn't produce any rows, the whole condition # can't match. Hence we can safely use INNER join. if self.effective_connector == 'AND' or ( self.effective_connector == 'OR' and votes == self.num_children): to_demote.add(table) # Finally, what happens in cases where we have: # (rel_a__col=1|rel_b__col=2) & rel_a__col__gte=0 # Now, we first generate the OR clause, and promote joins for it # in the first if branch above. Both rel_a and rel_b are promoted # to LOUTER joins. After that we do the AND case. The OR case # voted no inner joins but the rel_a__col__gte=0 votes inner join # for rel_a. We demote it back to INNER join (in AND case a single # vote is enough). The demotion is OK, if rel_a doesn't produce # rows, then the rel_a__col__gte=0 clause can't be true, and thus # the whole clause must be false. So, it is safe to use INNER # join. # Note that in this example we could just as well have the __gte # clause and the OR clause swapped. Or we could replace the __gte # clause with an OR clause containing rel_a__col=1|rel_a__col=2, # and again we could safely demote to INNER. query.promote_joins(to_promote) query.demote_joins(to_demote) return to_demote
44.661914
119
0.608874
79499c0b454d3795080313931f4ce76b1c451758
9,830
py
Python
kubernetes/client/models/v1_api_group.py
woqer/python
3a6fe8231cefe1fa39a0a69d4b2f33044ab32745
[ "Apache-2.0" ]
1
2019-07-12T05:38:06.000Z
2019-07-12T05:38:06.000Z
kubernetes/client/models/v1_api_group.py
woqer/python
3a6fe8231cefe1fa39a0a69d4b2f33044ab32745
[ "Apache-2.0" ]
null
null
null
kubernetes/client/models/v1_api_group.py
woqer/python
3a6fe8231cefe1fa39a0a69d4b2f33044ab32745
[ "Apache-2.0" ]
1
2021-05-18T12:25:56.000Z
2021-05-18T12:25:56.000Z
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.11.3 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class V1APIGroup(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'api_version': 'str', 'kind': 'str', 'name': 'str', 'preferred_version': 'V1GroupVersionForDiscovery', 'server_address_by_client_cid_rs': 'list[V1ServerAddressByClientCIDR]', 'versions': 'list[V1GroupVersionForDiscovery]' } attribute_map = { 'api_version': 'apiVersion', 'kind': 'kind', 'name': 'name', 'preferred_version': 'preferredVersion', 'server_address_by_client_cid_rs': 'serverAddressByClientCIDRs', 'versions': 'versions' } def __init__(self, api_version=None, kind=None, name=None, preferred_version=None, server_address_by_client_cid_rs=None, versions=None): """ V1APIGroup - a model defined in Swagger """ self._api_version = None self._kind = None self._name = None self._preferred_version = None self._server_address_by_client_cid_rs = None self._versions = None self.discriminator = None if api_version is not None: self.api_version = api_version if kind is not None: self.kind = kind self.name = name if preferred_version is not None: self.preferred_version = preferred_version if server_address_by_client_cid_rs is not None: self.server_address_by_client_cid_rs = server_address_by_client_cid_rs self.versions = versions @property def api_version(self): """ Gets the api_version of this V1APIGroup. APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#resources :return: The api_version of this V1APIGroup. :rtype: str """ return self._api_version @api_version.setter def api_version(self, api_version): """ Sets the api_version of this V1APIGroup. APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#resources :param api_version: The api_version of this V1APIGroup. :type: str """ self._api_version = api_version @property def kind(self): """ Gets the kind of this V1APIGroup. Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#types-kinds :return: The kind of this V1APIGroup. :rtype: str """ return self._kind @kind.setter def kind(self, kind): """ Sets the kind of this V1APIGroup. Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#types-kinds :param kind: The kind of this V1APIGroup. :type: str """ self._kind = kind @property def name(self): """ Gets the name of this V1APIGroup. name is the name of the group. :return: The name of this V1APIGroup. :rtype: str """ return self._name @name.setter def name(self, name): """ Sets the name of this V1APIGroup. name is the name of the group. :param name: The name of this V1APIGroup. :type: str """ if name is None: raise ValueError("Invalid value for `name`, must not be `None`") self._name = name @property def preferred_version(self): """ Gets the preferred_version of this V1APIGroup. preferredVersion is the version preferred by the API server, which probably is the storage version. :return: The preferred_version of this V1APIGroup. :rtype: V1GroupVersionForDiscovery """ return self._preferred_version @preferred_version.setter def preferred_version(self, preferred_version): """ Sets the preferred_version of this V1APIGroup. preferredVersion is the version preferred by the API server, which probably is the storage version. :param preferred_version: The preferred_version of this V1APIGroup. :type: V1GroupVersionForDiscovery """ self._preferred_version = preferred_version @property def server_address_by_client_cid_rs(self): """ Gets the server_address_by_client_cid_rs of this V1APIGroup. a map of client CIDR to server address that is serving this group. This is to help clients reach servers in the most network-efficient way possible. Clients can use the appropriate server address as per the CIDR that they match. In case of multiple matches, clients should use the longest matching CIDR. The server returns only those CIDRs that it thinks that the client can match. For example: the master will return an internal IP CIDR only, if the client reaches the server using an internal IP. Server looks at X-Forwarded-For header or X-Real-Ip header or request.RemoteAddr (in that order) to get the client IP. :return: The server_address_by_client_cid_rs of this V1APIGroup. :rtype: list[V1ServerAddressByClientCIDR] """ return self._server_address_by_client_cid_rs @server_address_by_client_cid_rs.setter def server_address_by_client_cid_rs(self, server_address_by_client_cid_rs): """ Sets the server_address_by_client_cid_rs of this V1APIGroup. a map of client CIDR to server address that is serving this group. This is to help clients reach servers in the most network-efficient way possible. Clients can use the appropriate server address as per the CIDR that they match. In case of multiple matches, clients should use the longest matching CIDR. The server returns only those CIDRs that it thinks that the client can match. For example: the master will return an internal IP CIDR only, if the client reaches the server using an internal IP. Server looks at X-Forwarded-For header or X-Real-Ip header or request.RemoteAddr (in that order) to get the client IP. :param server_address_by_client_cid_rs: The server_address_by_client_cid_rs of this V1APIGroup. :type: list[V1ServerAddressByClientCIDR] """ self._server_address_by_client_cid_rs = server_address_by_client_cid_rs @property def versions(self): """ Gets the versions of this V1APIGroup. versions are the versions supported in this group. :return: The versions of this V1APIGroup. :rtype: list[V1GroupVersionForDiscovery] """ return self._versions @versions.setter def versions(self, versions): """ Sets the versions of this V1APIGroup. versions are the versions supported in this group. :param versions: The versions of this V1APIGroup. :type: list[V1GroupVersionForDiscovery] """ if versions is None: raise ValueError("Invalid value for `versions`, must not be `None`") self._versions = versions def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, V1APIGroup): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
36.542751
625
0.649339
79499cf1eb3e39dc24bb2fc222a931ba2e07eed1
941
py
Python
tst/regression/scripts/tests/curvilinear/blast_cyl.py
luminoctum/athena-crm
525ad5d1c442f9f6d66f2307eed88cd6fb723810
[ "BSD-3-Clause" ]
null
null
null
tst/regression/scripts/tests/curvilinear/blast_cyl.py
luminoctum/athena-crm
525ad5d1c442f9f6d66f2307eed88cd6fb723810
[ "BSD-3-Clause" ]
null
null
null
tst/regression/scripts/tests/curvilinear/blast_cyl.py
luminoctum/athena-crm
525ad5d1c442f9f6d66f2307eed88cd6fb723810
[ "BSD-3-Clause" ]
null
null
null
# Regression test to check whether blast wave remains spherical in cylindrical coords # Modules import numpy as np import math import sys import scripts.utils.athena as athena import scripts.utils.comparison as comparison # Prepare Athena++ def prepare(): athena.configure( prob='blast', coord='cylindrical') athena.make() # Run Athena++ def run(): arguments = ['problem/compute_error=true'] athena.run('hydro/athinput.blast_cyl', arguments) # Analyze output def analyze(): # read data from error file filename = 'bin/blastwave-shape.dat' data = [] with open(filename, 'r') as f: raw_data = f.readlines() for line in raw_data: if line.split()[0][0] == '#': continue data.append([float(val) for val in line.split()]) # check blast is spherical if data[0][3] > 1.0: print "Distortion of blast wave in cylindrical coords too large",data[0][3] return False return True
23.525
85
0.684378
79499dd5422c38e64b12c582fa809e4353e9c9e8
4,199
py
Python
clever_player.py
MarcusRainbow/TwoPlayerGame
a10c0a5f949bcb6e03bdf8197c513511b3c29f98
[ "MIT" ]
null
null
null
clever_player.py
MarcusRainbow/TwoPlayerGame
a10c0a5f949bcb6e03bdf8197c513511b3c29f98
[ "MIT" ]
null
null
null
clever_player.py
MarcusRainbow/TwoPlayerGame
a10c0a5f949bcb6e03bdf8197c513511b3c29f98
[ "MIT" ]
null
null
null
from player import Player from board import Board from game import Game from random import choice from typing import Tuple class CleverPlayer(Player): """ A player that tries to win, assuming it is playing against the same sort of player. """ def __init__(self, game: Game, player: int, depth: int, other = None): self.game = game self.player = player self.depth = depth tokens = game.tokens() self.token = tokens[player] other_player = 0 if player == 1 else 1 # While thinking about a move, we need a # clever opponent if other: self.other = other else: self.other = CleverPlayer(game, other_player, depth - 1, self) def next_move(self, board: Board) -> int: """ Finds the best possible move from this point, trying to win, or at least force a draw. """ if not board.available_moves(): raise Exception("I cannot move") return self.best_move(board, self.depth)[0] def best_move(self, board: Board, depth: int) -> Tuple[int, int]: """ Finds the best available move for this player, and returns a tuple of the best move, followed by the quality of the move (-1 = draw, 0 = player 0 win, 1 = player 2 win) """ possible_moves = board.available_moves() if not possible_moves: return -1, -1 # if we have descended too far into our thought processes # without an answer, treat it as a draw and pick one # choice at random if depth <= 0: # print("too deep. Returning random choice") return choice(possible_moves), -1 draw = -1 for move in possible_moves: # try out this move test_board = board.clone() test_board.apply_move(move, self.token) # print(f"try {move} for player {self.player}") winner = self.game.test_win(test_board) if winner == self.player: # Immediate win. Play this move # print(f"Win: {move} for player {self.player}") return move, winner elif winner == self.other.player: # immediate lose. Do not play this move # print(f"Lose: {move} for player {self.player}") continue elif not test_board.available_moves(): # this move results in a stalemate. Only play if forced draw = move continue else: # if we get to here, we have available moves but do not # yet know if they result in a win or lose. Ask our # opponent to make their best move. If that results # in a win for them, that is a lose for us _, winner = self.other.best_move(test_board, depth - 1) if winner == self.player: # print(f"Win: other player lost so {self.player} should play {move}") return move, winner elif winner == self.other.player: # print(f"Lose: other player won so {self.player} should not play {move}") continue else: draw = move continue # if we get to here, there are no winning moves. Aim # for a draw if draw >= 0: return draw, -1 # If there is nothing to do but lose, do so return possible_moves[0], self.other.player if __name__ == "__main__": from play import play_game from connect4 import Connect4 from human_player import HumanPlayer grid = [ [-1, 0, 0, -1, -1, 1, 1], [-1, 0, 0, -1, -1, -1, 1], [ 0, 0, 0, 0, 1, 1, 1], [ 0, 0, 0, 0, 0, 0, -1], [ 0, 0, 0, 0, 0, 0, 1], [ 0, 0, 0, 0, 0, 0, 1]] game = Connect4(grid) play_game(HumanPlayer(), CleverPlayer(game, 1, 4), game)
36.513043
95
0.522029
79499e9b40ba6bf1da815bb1ab4c657936c1467a
1,481
py
Python
src/ralph/lib/transitions/decorators.py
DoNnMyTh/ralph
97b91639fa68965ad3fd9d0d2652a6545a2a5b72
[ "Apache-2.0" ]
1,668
2015-01-01T12:51:20.000Z
2022-03-29T09:05:35.000Z
src/ralph/lib/transitions/decorators.py
hq-git/ralph
e2448caf02d6e5abfd81da2cff92aefe0a534883
[ "Apache-2.0" ]
2,314
2015-01-02T13:26:26.000Z
2022-03-29T04:06:03.000Z
src/ralph/lib/transitions/decorators.py
hq-git/ralph
e2448caf02d6e5abfd81da2cff92aefe0a534883
[ "Apache-2.0" ]
534
2015-01-05T12:40:28.000Z
2022-03-29T21:10:12.000Z
# -*- coding: utf-8 -*- from functools import wraps from ralph.lib.transitions.conf import TRANSITION_ATTR_TAG def transition_action(method=None, **kwargs): def decorator(func): func.verbose_name = kwargs.get( 'verbose_name', func.__name__.replace('_', ' ').capitalize() ) func.return_attachment = kwargs.get('return_attachment', False) func.form_fields = kwargs.get('form_fields', {}) func.run_after = kwargs.get('run_after', []) func.help_text = kwargs.get('help_text', '') func.precondition = kwargs.get( 'precondition', lambda instances, **kwargs: {} ) func.additional_validation = kwargs.get( 'additional_validation', lambda instances, data: {} ) func.disable_save_object = kwargs.get('disable_save_object', False) func.only_one_action = kwargs.get('only_one_action', False) func.is_async = kwargs.get('is_async', False) setattr(func, TRANSITION_ATTR_TAG, True) @wraps(func) def wrapper(*args, **kwargs): return func(*args, **kwargs) models = [] if 'model' in kwargs: models = [kwargs['model']] elif 'models' in kwargs: models = kwargs['models'] for model in models: setattr(model, func.__name__, classmethod(wrapper)) return wrapper if callable(method): return decorator(method) return decorator
33.659091
75
0.610398
79499ef663e49ecb1a079713762890f2503c20ef
19,529
py
Python
plotters.py
chris142857/dad_final
e791cf85d4eea2da692c59f371518494caf0670d
[ "MIT" ]
null
null
null
plotters.py
chris142857/dad_final
e791cf85d4eea2da692c59f371518494caf0670d
[ "MIT" ]
null
null
null
plotters.py
chris142857/dad_final
e791cf85d4eea2da692c59f371518494caf0670d
[ "MIT" ]
null
null
null
""" # @Description: Plot utilities for face finding applications """ import os import matplotlib.pyplot as plt import numpy as np from matplotlib.collections import LineCollection as lc from matplotlib.colors import colorConverter from mpl_toolkits.mplot3d.art3d import Line3DCollection as lc3d from scipy.interpolate import interp1d import matplotlib.image as mpimg import glob def colored_line_segments(xs, ys, zs=None, color='k', mid_colors=False): if isinstance(color, str): color = colorConverter.to_rgba(color)[:-1] color = np.array([color for i in range(len(xs))]) segs = [] seg_colors = [] lastColor = [color[0][0], color[0][1], color[0][2]] start = [xs[0], ys[0]] end = [xs[0], ys[0]] if not zs is None: start.append(zs[0]) end.append(zs[0]) else: zs = [zs] * len(xs) for x, y, z, c in zip(xs, ys, zs, color): if mid_colors: seg_colors.append([(chan + lastChan) * .5 for chan, lastChan in zip(c, lastColor)]) else: seg_colors.append(c) lastColor = c[:-1] if not z is None: start = [end[0], end[1], end[2]] end = [x, y, z] else: start = [end[0], end[1]] end = [x, y] segs.append([start, end]) colors = [(*color, 1) for color in seg_colors] return segs, colors def segmented_resample(xs, ys, zs=None, color='k', n_resample=100, mid_colors=False): n_points = len(xs) if isinstance(color, str): color = colorConverter.to_rgba(color)[:-1] color = np.array([color for i in range(n_points)]) n_segs = (n_points - 1) * (n_resample - 1) xsInterp = np.linspace(0, 1, n_resample) segs = [] seg_colors = [] hiResXs = [xs[0]] hiResYs = [ys[0]] if not zs is None: hiResZs = [zs[0]] RGB = color.swapaxes(0, 1) for i in range(n_points - 1): fit_xHiRes = interp1d([0, 1], xs[i:i + 2]) fit_yHiRes = interp1d([0, 1], ys[i:i + 2]) xHiRes = fit_xHiRes(xsInterp) yHiRes = fit_yHiRes(xsInterp) hiResXs = hiResXs + list(xHiRes[1:]) hiResYs = hiResYs + list(yHiRes[1:]) R_HiRes = interp1d([0, 1], RGB[0][i:i + 2])(xsInterp) G_HiRes = interp1d([0, 1], RGB[1][i:i + 2])(xsInterp) B_HiRes = interp1d([0, 1], RGB[2][i:i + 2])(xsInterp) lastColor = [R_HiRes[0], G_HiRes[0], B_HiRes[0]] start = [xHiRes[0], yHiRes[0]] end = [xHiRes[0], yHiRes[0]] if not zs is None: fit_zHiRes = interp1d([0, 1], zs[i:i + 2]) zHiRes = fit_zHiRes(xsInterp) hiResZs = hiResZs + list(zHiRes[1:]) start.append(zHiRes[0]) end.append(zHiRes[0]) else: zHiRes = [zs] * len(xHiRes) if mid_colors: seg_colors.append([R_HiRes[0], G_HiRes[0], B_HiRes[0]]) for x, y, z, r, g, b in zip(xHiRes[1:], yHiRes[1:], zHiRes[1:], R_HiRes[1:], G_HiRes[1:], B_HiRes[1:]): if mid_colors: seg_colors.append([(chan + lastChan) * .5 for chan, lastChan in zip((r, g, b), lastColor)]) else: seg_colors.append([r, g, b]) lastColor = [r, g, b] if not z is None: start = [end[0], end[1], end[2]] end = [x, y, z] else: start = [end[0], end[1]] end = [x, y] segs.append([start, end]) colors = [(*color, 1) for color in seg_colors] data = [hiResXs, hiResYs] if not zs is None: data = [hiResXs, hiResYs, hiResZs] return segs, colors, data def faded_segment_resample(xs, ys, zs=None, color='k', fade_len=20, n_resample=100, direction='Head'): segs, colors, hiResData = segmented_resample(xs, ys, zs, color, n_resample) n_segs = len(segs) if fade_len > len(segs): fade_len = n_segs if direction == 'Head': # Head fade alphas = np.concatenate((np.zeros(n_segs - fade_len), np.linspace(0, 1, fade_len))) else: # Tail fade alphas = np.concatenate((np.linspace(1, 0, fade_len), np.zeros(n_segs - fade_len))) colors = [(*color[:-1], alpha) for color, alpha in zip(colors, alphas)] return segs, colors, hiResData def test2d(): NPOINTS = 10 RESAMPLE = 10 N_FADE = int(RESAMPLE * NPOINTS * 0.5) N_SEGS = (NPOINTS - 1) * (RESAMPLE - 1) SHOW_POINTS_AXI_12 = True SHOW_POINTS_AXI_34 = True np.random.seed(11) xs = np.random.rand(NPOINTS) ys = np.random.rand(NPOINTS) MARKER = '.' CMAP = plt.get_cmap('hsv') COLORS = np.array([CMAP(i)[:-1] for i in np.linspace(0, 1, NPOINTS)]) MARKER_COLOR = COLORS N_SCATTER = (NPOINTS - 1) * (RESAMPLE - 1) + 1 COLORS_LONG = np.array([CMAP(i)[:-1] for i in np.linspace(1 / N_SCATTER, 1, N_SCATTER)]) fig = plt.figure(figsize=(12, 8), dpi=100) ax1 = fig.add_subplot(221) # original data segs, colors = colored_line_segments(xs, ys, color=COLORS, mid_colors=True) if SHOW_POINTS_AXI_12: ax1.scatter(xs, ys, marker=MARKER, color=COLORS) ax1.add_collection(lc(segs, colors=colors)) ax1.text(.05, 1.05, 'Original Data') ax1.set_ylim(0, 1.2) ax2 = fig.add_subplot(222, sharex=ax1, sharey=ax1) # resampled data segs, colors, hiResData = segmented_resample(xs, ys, color=COLORS, n_resample=RESAMPLE) if SHOW_POINTS_AXI_12: ax2.scatter(hiResData[0], hiResData[1], marker=MARKER, color=COLORS_LONG) ax2.add_collection(lc(segs, colors=colors)) ax2.text(.05, 1.05, 'Original Data - Resampled') ax2.set_ylim(0, 1.2) ax3 = fig.add_subplot(223, sharex=ax1, sharey=ax1) # resampled with linear alpha fade start to finish segs, colors, hiResData = faded_segment_resample(xs, ys, color=COLORS, fade_len=RESAMPLE * NPOINTS, n_resample=RESAMPLE, direction='Head') if SHOW_POINTS_AXI_34: ax3.scatter(hiResData[0], hiResData[1], marker=MARKER, color=COLORS_LONG) ax3.add_collection(lc(segs, colors=colors)) ax3.text(.05, 1.05, 'Resampled - w/Full length fade') ax3.set_ylim(0, 1.2) ax4 = fig.add_subplot(224, sharex=ax1, sharey=ax1) # resampled with linear alpha fade N_FADE long segs, colors, hiResData = faded_segment_resample(xs, ys, color=COLORS, fade_len=N_FADE, n_resample=RESAMPLE, direction='Head') if SHOW_POINTS_AXI_34: ax4.scatter(hiResData[0], hiResData[1], marker=MARKER, color=COLORS_LONG) ax4.add_collection(lc(segs, colors=colors)) ax4.text(.05, 1.05, 'Resampled - w/{} point fade'.format(N_FADE)) ax4.set_ylim(0, 1.2) fig.savefig('2d_fadeSegmentedColorLine.png') plt.show() def test3d(): def set_view(axi): axi.set_xlim(-.65, .65) axi.set_ylim(-.65, .75) axi.set_zlim(-.65, .65) axi.view_init(elev=45, azim=45) NPOINTS = 40 RESAMPLE = 2 N_FADE = int(RESAMPLE * NPOINTS * 0.5) N_FADE = 20 N_SEGS = (NPOINTS - 1) * (RESAMPLE - 1) SHOW_POINTS_AXI_12 = True SHOW_POINTS_AXI_34 = False alpha = np.linspace(.5, 1.5, NPOINTS) * np.pi theta = np.linspace(.25, 1.5, NPOINTS) * np.pi rad = np.linspace(0, 1, NPOINTS) xs = rad * np.sin(theta) * np.cos(alpha) ys = rad * np.sin(theta) * np.sin(alpha) zs = rad * np.cos(theta) MARKER = '.' CMAP = plt.get_cmap('hsv') COLORS = np.array([CMAP(i)[:-1] for i in np.linspace(0, 1, NPOINTS)]) MARKER_COLOR = COLORS N_SCATTER = (NPOINTS - 1) * (RESAMPLE - 1) + 1 COLORS_LONG = np.array([CMAP(i)[:-1] for i in np.linspace(1 / N_SCATTER, 1, N_SCATTER)]) fig = plt.figure(figsize=(12, 8), dpi=100) ax1 = fig.add_subplot(221, projection='3d') # original data segs, colors = colored_line_segments(xs, ys, zs, color=COLORS, mid_colors=True) if SHOW_POINTS_AXI_12: ax1.scatter(xs, ys, zs, marker=MARKER, color=COLORS) ax1.add_collection(lc3d(segs, colors=colors)) ax2 = fig.add_subplot(222, projection='3d', sharex=ax1, sharey=ax1) # resampled data segs, colors, hiResData = segmented_resample(xs, ys, zs, color=COLORS, n_resample=RESAMPLE) if SHOW_POINTS_AXI_12: ax2.scatter(hiResData[0], hiResData[1], hiResData[2], marker=MARKER, color=COLORS_LONG) ax2.add_collection(lc3d(segs, colors=colors)) ax3 = fig.add_subplot(223, projection='3d', sharex=ax1, sharey=ax1) # resampled with linear alpha fade start to finish segs, colors, hiResData = faded_segment_resample(xs, ys, zs, color=COLORS, fade_len=RESAMPLE * NPOINTS, n_resample=RESAMPLE, direction='Head') if SHOW_POINTS_AXI_34: ax3.scatter(hiResData[0], hiResData[1], hiResData[2], marker=MARKER, color=COLORS_LONG) ax3.add_collection(lc3d(segs, colors=colors)) ax4 = fig.add_subplot(224, projection='3d', sharex=ax1, sharey=ax1) # resampled with linear alpha fade N_FADE long segs, colors, hiResData = faded_segment_resample(xs, ys, zs, color=COLORS, fade_len=N_FADE, n_resample=RESAMPLE, direction='Head') if SHOW_POINTS_AXI_34: ax4.scatter(hiResData[0], hiResData[1], hiResData[2], marker=MARKER, color=COLORS_LONG) ax4.add_collection(lc3d(segs, colors=colors)) labels = ('Original Data', 'Original Data - Resampled', 'Resampled - w/Full length fade', 'Resampled - w/{} point fade'.format(N_FADE)) for ax, label in zip((ax1, ax2, ax3, ax4), labels): set_view(ax) ax.text(.6, -.6, 1.55, label) fig.savefig('3d_fadeSegmentedColorLine.png') plt.show() def plot_trace_2d(xs, ys, n_trace, true_theta): NPOINTS = len(xs) SHOW_POINTS_AXI_12 = True MARKER = 'o' CMAP = plt.get_cmap('gist_heat') COLORS = np.array([CMAP(i)[:-1] for i in np.linspace(0, 1, NPOINTS)]) DotCMAP = plt.get_cmap('plasma') DotCOLORS = np.array([DotCMAP(i)[:-1] for i in np.linspace(0, 1, NPOINTS)]) fig = plt.figure(figsize=(6, 4), dpi=100, constrained_layout=True) ax1 = fig.add_subplot() segs, colors = colored_line_segments(xs, ys, color=COLORS, mid_colors=True) if SHOW_POINTS_AXI_12: ax1.scatter(xs, ys, marker=MARKER, color=DotCOLORS, alpha=1) ax1.add_collection(lc(segs, linewidths=1.5, linestyles=':', colors=colors)) ax1.set_xlabel('x') ax1.set_xlabel('y') # plot true theta for theta in true_theta: ax1.scatter(theta[0], theta[1], c='r', marker='D') fig.savefig(f"res_dim_2/trace_{n_trace}.png") plt.close() def plot_trace_3d(xs, ys, zs, n_trace, true_theta): NPOINTS = len(xs) SHOW_POINTS_AXI_12 = True MARKER = 'o' CMAP = plt.get_cmap('copper') COLORS = np.array([CMAP(i)[:-1] for i in np.linspace(0, 1, NPOINTS)]) DotCMAP = plt.get_cmap('plasma') DotCOLORS = np.array([DotCMAP(i)[:-1] for i in np.linspace(0, 1, NPOINTS)]) fig = plt.figure(figsize=(6, 4), dpi=100, constrained_layout=True) ax1 = fig.add_subplot(projection='3d') # original data segs, colors = colored_line_segments(xs, ys, zs, color=COLORS, mid_colors=True) if SHOW_POINTS_AXI_12: ax1.scatter(xs, ys, zs, marker=MARKER, color=DotCOLORS, alpha=1) ax1.add_collection(lc3d(segs, linewidths=1.5, linestyles=':', colors=colors)) ax1.view_init(elev=20, azim=20) ax1.set_xlabel('x') ax1.set_ylabel('y') ax1.set_zlabel('z') # plot true theta for theta in true_theta: ax1.scatter(theta[0], theta[1], theta[2], c='r', marker='D') fig.savefig(f"res_dim_3/trace_{n_trace}.png") plt.close() def plot_trace(trace_i, p_dim, T, run_df, true_theta, *args, **kwargs): mk_plot_dir(f"res_dim_{p_dim}") if kwargs.get("face_finding"): xis = run_df[[f'xi_{i}' for i in range(p_dim)]] dist = np.linalg.norm(np.subtract(xis, true_theta), axis=-1) face_folder = kwargs.get("face_folder") num_imgs = len(glob.glob1(face_folder, "target_0*")) num_col = 5 remain = num_imgs % num_col num_row = 1 + num_imgs // num_col if not remain else 2 + num_imgs // num_col fig, axs = plt.subplots(nrows=num_row, ncols=num_col, gridspec_kw={'height_ratios': np.ones(num_row).tolist()}) # Plot recon images img_idx = 0 for r in range(1, num_row): for c in range(num_col): if os.path.exists(os.path.join(face_folder, f'target_{trace_i}_recon_{img_idx}.jpg')): img = mpimg.imread(os.path.join(face_folder, f'target_{trace_i}_recon_{img_idx}.jpg')) axs[r, c].imshow(img) img_idx += 5 axs[r, c].axes.xaxis.set_visible(False) axs[r, c].axes.yaxis.set_visible(False) else: continue # Plot target image at the last axis img = mpimg.imread(os.path.join(face_folder, f'target_{trace_i}.jpg')) axs[-1, -(num_col-remain+1)].imshow(img) axs[-1, -(num_col-remain+1)].axes.xaxis.set_visible(False) axs[-1, -(num_col-remain+1)].axes.yaxis.set_visible(False) # Remove redundant axises for ax in axs[-1, -(num_col-remain):]: ax.remove() # Plot 1d distances at top gs = axs[0, 0].get_gridspec() # remove the underlying axes for ax in axs[0, 0:]: ax.remove() axbig = fig.add_subplot(gs[0, :]) axbig.plot(run_df["order"], dist, 'ro--') # Plot points of shown faces face_order = [] face_points = [] for p in range(len(dist)): if p % 5 == 0: face_order.append(run_df["order"][p]) face_points.append(dist[p]) axbig.plot(face_order, face_points, 'bo', label='displayed faces') axbig.set(xlabel='order', ylabel='distance', title=f'distance for p is {p_dim}') axbig.axes.xaxis.set_visible(False) axbig.grid() axbig.legend() # Save plot plt.savefig(os.path.join(face_folder, f"trace_{trace_i}_combo.jpg")) plt.close() if kwargs.get("categorical_face_finding"): xis = run_df[[f'xi_{i}' for i in range(p_dim)]] dist = np.linalg.norm(np.subtract(xis, true_theta), axis=-1) face_folder = kwargs.get("face_folder") num_imgs = len(glob.glob1(face_folder, "target_0*")) num_col = 5 remain = num_imgs % num_col num_row = 1 + num_imgs // num_col if not remain else 2 + num_imgs // num_col fig, axs = plt.subplots(nrows=num_row, ncols=num_col, gridspec_kw={'height_ratios': np.ones(num_row).tolist()}) # Plot recon images img_idx = 0 for r in range(1, num_row): for c in range(num_col): if os.path.exists(os.path.join(face_folder, f'target_{trace_i}_recon_{img_idx}.jpg')): img = mpimg.imread(os.path.join(face_folder, f'target_{trace_i}_recon_{img_idx}.jpg')) axs[r, c].imshow(img) img_idx += 5 axs[r, c].axes.xaxis.set_visible(False) axs[r, c].axes.yaxis.set_visible(False) else: continue # Plot target image at the last axis img = mpimg.imread(os.path.join(face_folder, f'target_{trace_i}.jpg')) axs[-1, -(num_col-remain+1)].imshow(img) axs[-1, -(num_col-remain+1)].axes.xaxis.set_visible(False) axs[-1, -(num_col-remain+1)].axes.yaxis.set_visible(False) # Remove redundant axises for ax in axs[-1, -(num_col-remain):]: ax.remove() # Plot 1d distances at top gs = axs[0, 0].get_gridspec() # remove the underlying axes for ax in axs[0, 0:]: ax.remove() axbig = fig.add_subplot(gs[0, :]) axbig.plot(run_df["order"], dist, 'ko--') # Decorate points in 1d plot face_order, face_points = [], [] green_order, green_points = [], [] red_order, red_points = [], [] amber_order, amber_points = [], [] for id in range(len(dist)): if np.array_equal(run_df["observations"][id], [1,0,0]): # Green green_order.append(run_df["order"][id]) green_points.append(dist[id]) elif np.array_equal(run_df["observations"][id], [0,1,0]): # Red red_order.append(run_df["order"][id]) red_points.append(dist[id]) else: # Amber amber_order.append(run_df["order"][id]) amber_points.append(dist[id]) if id % 5 == 0: face_order.append(run_df["order"][id]) face_points.append(dist[id]) axbig.plot(face_order, face_points, 'kD', markersize=8) axbig.plot(green_order, green_points, 'g.') axbig.plot(red_order, red_points, 'r.') axbig.plot(amber_order, amber_points, 'y.') axbig.set(xlabel='order', ylabel='distance', title=f'distance for p is {p_dim}') axbig.axes.xaxis.set_visible(False) axbig.grid() # plt.show() # Save plot plt.savefig(os.path.join(face_folder, f"trace_{trace_i}_combo.jpg")) plt.close() else: if p_dim == 1: fig, ax = plt.subplots() ax.plot(run_df["order"], run_df[f"xi_0"], 'ro--') ax.plot(T, true_theta, 'bo') ax.set(xlabel='order', ylabel='location') ax.grid() plt.savefig(f"res_dim_1/trace_{trace_i}.png") plt.close() elif p_dim == 2: plot_trace_2d(run_df["xi_0"], run_df["xi_1"], trace_i, true_theta) elif p_dim == 3: plot_trace_3d(run_df["xi_0"], run_df["xi_1"], run_df["xi_2"], trace_i, true_theta) # Save data run_df.to_csv(f'res_dim_3/trace_{trace_i}.csv') # save trace data np.save(f'res_dim_3/target_{trace_i}.npy', true_theta) # save target data elif p_dim > 3: xis = run_df[[f'xi_{i}' for i in range(p_dim)]] dist = np.linalg.norm(np.subtract(xis, true_theta), axis=-1) fig, ax = plt.subplots() ax.plot(run_df["order"], dist, 'ro--') ax.set(xlabel='order', ylabel='distance', title=f'distance for p is {p_dim}') ax.grid() plt.savefig(f"trace_{trace_i}.png") plt.close() def mk_plot_dir(dir_name): if os.path.exists(dir_name): return else: os.makedirs(dir_name) if __name__ == "__main__": # # 2D plot demo # NPOINTS = 30 # true_theta = np.array([[2, 2]]) # xs = np.random.rand(NPOINTS) # ys = np.random.rand(NPOINTS) # plot_trace_2d(xs, ys, 0, true_theta) # # # 3D plot demo # NPOINTS = 30 # true_theta = np.array([[0, 0, 0]]) # alpha = np.linspace(.5, 1.5, NPOINTS) * np.pi # theta = np.linspace(.25, 1.5, NPOINTS) * np.pi # rad = np.linspace(0, 1, NPOINTS) # xs = rad * np.sin(theta) * np.cos(alpha) # ys = rad * np.sin(theta) * np.sin(alpha) # zs = rad * np.cos(theta) # plot_trace_3d(xs, ys, zs, 1, true_theta) # <editor-fold desc="[+] Face plot"> # fig, axs = plt.subplots(nrows=4, ncols=5, figsize=(10,6)) fig, axs = plt.subplots(nrows=4, ncols=5, gridspec_kw={'height_ratios': [1,1,1,1]}) gs = axs[0, 0].get_gridspec() # remove the underlying axes for ax in axs[0, 1:]: ax.remove() axbig = fig.add_subplot(gs[0, :]) axbig.annotate('Big Axes \nGridSpec[1:, -1]', (0.1, 0.5), xycoords='axes fraction', va='center') fig.tight_layout() plt.show() # </editor-fold>
38.90239
146
0.598443
79499f319389ea63c9924ae6d6656d6fedfd53eb
53,434
py
Python
nio/responses.py
tkjenll/matrix-nio
8ac48ed0fda5da129c008e129305a512e8619cde
[ "Apache-2.0" ]
1
2021-11-19T23:41:23.000Z
2021-11-19T23:41:23.000Z
nio/responses.py
METHLAB-LTD/matrix-nio
8ac48ed0fda5da129c008e129305a512e8619cde
[ "Apache-2.0" ]
null
null
null
nio/responses.py
METHLAB-LTD/matrix-nio
8ac48ed0fda5da129c008e129305a512e8619cde
[ "Apache-2.0" ]
1
2021-11-19T23:41:26.000Z
2021-11-19T23:41:26.000Z
# -*- coding: utf-8 -*- # Copyright © 2018 Damir Jelić <poljar@termina.org.uk> # Copyright © 2020 Famedly GmbH # # Permission to use, copy, modify, and/or distribute this software for # any purpose with or without fee is hereby granted, provided that the # above copyright notice and this permission notice appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY # SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER # RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF # CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN # CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. from __future__ import unicode_literals from builtins import str from dataclasses import dataclass, field from datetime import datetime from functools import wraps from typing import Any, Dict, Generator, List, Optional, Set, Tuple, Union from jsonschema.exceptions import SchemaError, ValidationError from logbook import Logger from .event_builders import ToDeviceMessage from .events import (AccountDataEvent, BadEventType, Event, InviteEvent, ToDeviceEvent, EphemeralEvent) from .events.presence import PresenceEvent from .http import TransportResponse from .log import logger_group from .schemas import Schemas, validate_json logger = Logger("nio.responses") logger_group.add_logger(logger) __all__ = [ "ContentRepositoryConfigResponse", "ContentRepositoryConfigError", "FileResponse", "DeleteDevicesAuthResponse", "DeleteDevicesResponse", "DeleteDevicesError", "DeletePushRuleError", "DeletePushRuleResponse", "Device", "DeviceList", "DevicesResponse", "DevicesError", "DeviceOneTimeKeyCount", "DiscoveryInfoError", "DiscoveryInfoResponse", "DownloadResponse", "DownloadError", "EnablePushRuleResponse", "EnablePushRuleError", "ErrorResponse", "InviteInfo", "JoinResponse", "JoinError", "JoinedMembersResponse", "JoinedMembersError", "JoinedRoomsResponse", "JoinedRoomsError", "KeysClaimResponse", "KeysClaimError", "KeysQueryResponse", "KeysQueryError", "KeysUploadResponse", "KeysUploadError", "RegisterResponse", "LoginResponse", "LoginError", "LoginInfoResponse", "LoginInfoError", "LogoutResponse", "LogoutError", "Response", "RoomBanResponse", "RoomBanError", "RoomCreateResponse", "RoomCreateError", "RoomDeleteAliasError", "RoomDeleteAliasResponse", "RoomInfo", "RoomInviteResponse", "RoomInviteError", "RoomKickResponse", "RoomKickError", "RoomLeaveResponse", "RoomLeaveError", "RoomForgetResponse", "RoomForgetError", "RoomMember", "RoomMessagesResponse", "RoomMessagesError", "RoomGetStateResponse", "RoomGetStateError", "RoomGetStateEventResponse", "RoomGetStateEventError", "RoomGetEventResponse", "RoomGetEventError", "RoomGetVisibilityResponse", "RoomPutAliasResponse", "RoomPutStateResponse", "RoomPutStateError", "RoomRedactResponse", "RoomRedactError", "RoomResolveAliasResponse", "RoomResolveAliasError", "RoomSendResponse", "RoomSendError", "RoomSummary", "RoomUnbanResponse", "RoomUnbanError", "Rooms", "SetPushRuleError", "SetPushRuleResponse", "SetPushRuleActionsError", "SetPushRuleActionsResponse", "ShareGroupSessionResponse", "ShareGroupSessionError", "SyncResponse", "SyncError", "Timeline", "UpdateDeviceResponse", "UpdateDeviceError", "RoomTypingResponse", "RoomTypingError", "RoomReadMarkersResponse", "RoomReadMarkersError", "UploadResponse", "UploadError", "ProfileGetResponse", "ProfileGetError", "ProfileGetDisplayNameResponse", "ProfileGetDisplayNameError", "ProfileSetDisplayNameResponse", "ProfileSetDisplayNameError", "ProfileGetAvatarResponse", "ProfileGetAvatarError", "ProfileSetAvatarResponse", "ProfileSetAvatarError", "PresenceGetResponse", "PresenceGetError", "PresenceSetResponse", "PresenceSetError", "RoomKeyRequestResponse", "RoomKeyRequestError", "ThumbnailResponse", "ThumbnailError", "ToDeviceResponse", "ToDeviceError", "RoomContextResponse", "RoomContextError", "UploadFilterError", "UploadFilterResponse", "UpdateReceiptMarkerError", "UpdateReceiptMarkerResponse", ] def verify(schema, error_class, pass_arguments=True): def decorator(f): @wraps(f) def wrapper(cls, parsed_dict, *args, **kwargs): try: logger.info("Validating response schema") validate_json(parsed_dict, schema) except (SchemaError, ValidationError) as e: logger.warn("Error validating response: " + str(e.message)) if pass_arguments: return error_class.from_dict(parsed_dict, *args, **kwargs) else: return error_class.from_dict(parsed_dict) return f(cls, parsed_dict, *args, **kwargs) return wrapper return decorator @dataclass class Rooms: invite: Dict[str, "InviteInfo"] = field() join: Dict[str, "RoomInfo"] = field() leave: Dict[str, "RoomInfo"] = field() @dataclass class DeviceOneTimeKeyCount: curve25519: Optional[int] = field() signed_curve25519: Optional[int] = field() @dataclass class DeviceList: changed: List[str] = field() left: List[str] = field() @dataclass class Timeline: events: List = field() limited: bool = field() prev_batch: Optional[str] = field() @dataclass class InviteInfo: invite_state: List = field() @dataclass class RoomSummary: invited_member_count: Optional[int] = None joined_member_count: Optional[int] = None heroes: Optional[List[str]] = None @dataclass class UnreadNotifications: notification_count: Optional[int] = None highlight_count: Optional[int] = None @dataclass class RoomInfo: timeline: Timeline = field() state: List = field() ephemeral: List = field() account_data: List = field() summary: Optional[RoomSummary] = None unread_notifications: Optional[UnreadNotifications] = None @staticmethod def parse_account_data(event_dict): """Parse the account data dictionary and produce a list of events.""" events = [] for event in event_dict: events.append(AccountDataEvent.parse_event(event)) return events @dataclass class RoomMember: user_id: str = field() display_name: str = field() avatar_url: str = field() @dataclass class Device: id: str = field() display_name: str = field() last_seen_ip: str = field() last_seen_date: datetime = field() @classmethod def from_dict(cls, parsed_dict): date = None if parsed_dict["last_seen_ts"] is not None: date = datetime.fromtimestamp(parsed_dict["last_seen_ts"] / 1000) return cls( parsed_dict["device_id"], parsed_dict["display_name"], parsed_dict["last_seen_ip"], date ) @dataclass class Response: uuid: str = field(default="", init=False) start_time: Optional[float] = field(default=None, init=False) end_time: Optional[float] = field(default=None, init=False) timeout: int = field(default=0, init=False) transport_response: Optional[TransportResponse] = field( init=False, default=None, ) @property def elapsed(self): if not self.start_time or not self.end_time: return 0 elapsed = self.end_time - self.start_time return max(0, elapsed - (self.timeout / 1000)) @dataclass class FileResponse(Response): """A response representing a successful file content request. Attributes: body (bytes): The file's content in bytes. content_type (str): The content MIME type of the file, e.g. "image/png". filename (str, optional): The file's name returned by the server. """ body: bytes = field() content_type: str = field() filename: Optional[str] = field() def __str__(self): return "{} bytes, content type: {}, filename: {}".format( len(self.body), self.content_type, self.filename ) @classmethod def from_data(cls, data, content_type, filename=None): """Create a FileResponse from file content returned by the server. Args: data (bytes): The file's content in bytes. content_type (str): The content MIME type of the file, e.g. "image/png". """ raise NotImplementedError() @dataclass class ErrorResponse(Response): message: str = field() status_code: Optional[str] = None retry_after_ms: Optional[int] = None soft_logout: bool = False def __str__(self) -> str: if self.status_code and self.message: e = "{} {}".format(self.status_code, self.message) elif self.message: e = self.message elif self.status_code: e = "{} unknown error".format(self.status_code) else: e = "unknown error" if self.retry_after_ms: e = "{} - retry after {}ms".format(e, self.retry_after_ms) return "{}: {}".format(self.__class__.__name__, e) @classmethod def from_dict(cls, parsed_dict: Dict[Any, Any]): # type: (...) -> ErrorResponse try: validate_json(parsed_dict, Schemas.error) except (SchemaError, ValidationError): return cls("unknown error") return cls( parsed_dict["error"], parsed_dict["errcode"], parsed_dict.get("retry_after_ms"), parsed_dict.get("soft_logout", False), ) @dataclass class _ErrorWithRoomId(ErrorResponse): room_id: str = "" @classmethod def from_dict(cls, parsed_dict, room_id): try: validate_json(parsed_dict, Schemas.error) except (SchemaError, ValidationError): return cls("unknown error") return cls( parsed_dict["error"], parsed_dict["errcode"], parsed_dict.get("retry_after_ms"), parsed_dict.get("soft_logout", False), room_id ) class LoginError(ErrorResponse): pass class LogoutError(ErrorResponse): pass class SyncError(ErrorResponse): pass class RoomSendError(_ErrorWithRoomId): pass class RoomGetStateError(_ErrorWithRoomId): """A response representing an unsuccessful room state query.""" pass class RoomGetStateEventError(_ErrorWithRoomId): """A response representing an unsuccessful room state query.""" pass class RoomGetEventError(ErrorResponse): """A response representing an unsuccessful room get event request.""" pass class RoomPutStateError(_ErrorWithRoomId): """A response representing an unsuccessful room state sending request.""" pass class RoomRedactError(_ErrorWithRoomId): pass class RoomResolveAliasError(ErrorResponse): """A response representing an unsuccessful room alias query.""" pass class RoomDeleteAliasError(ErrorResponse): """A response representing an unsuccessful room alias delete request.""" pass class RoomPutAliasError(ErrorResponse): """A response representing an unsuccessful room alias put request.""" pass class RoomGetVisibilityError(ErrorResponse): """A response representing an unsuccessful room get visibility request.""" pass class RoomTypingError(_ErrorWithRoomId): """A response representing a unsuccessful room typing request.""" pass class UpdateReceiptMarkerError(ErrorResponse): pass class RoomReadMarkersError(_ErrorWithRoomId): """A response representing a unsuccessful room read markers request.""" pass class RoomKickError(ErrorResponse): pass class RoomBanError(ErrorResponse): pass class RoomUnbanError(ErrorResponse): pass class RoomInviteError(ErrorResponse): pass class RoomCreateError(ErrorResponse): """A response representing a unsuccessful create room request.""" pass class JoinError(ErrorResponse): pass class RoomLeaveError(ErrorResponse): pass class RoomForgetError(_ErrorWithRoomId): pass class RoomMessagesError(_ErrorWithRoomId): pass class KeysUploadError(ErrorResponse): pass class KeysQueryError(ErrorResponse): pass class KeysClaimError(_ErrorWithRoomId): pass class ContentRepositoryConfigError(ErrorResponse): """A response for a unsuccessful content repository config request.""" class UploadError(ErrorResponse): """A response representing a unsuccessful upload request.""" class DownloadError(ErrorResponse): """A response representing a unsuccessful download request.""" class ThumbnailError(ErrorResponse): """A response representing a unsuccessful thumbnail request.""" @dataclass class ShareGroupSessionError(_ErrorWithRoomId): """Response representing unsuccessful group sessions sharing request.""" users_shared_with: Set[Tuple[str, str]] = field(default_factory=set) @classmethod def from_dict(cls, parsed_dict, room_id, users_shared_with): try: validate_json(parsed_dict, Schemas.error) except (SchemaError, ValidationError): return cls("unknown error") return cls(parsed_dict["error"], parsed_dict["errcode"], room_id, users_shared_with) class DevicesError(ErrorResponse): pass class DeleteDevicesError(ErrorResponse): pass class UpdateDeviceError(ErrorResponse): pass class JoinedMembersError(_ErrorWithRoomId): pass class JoinedRoomsError(ErrorResponse): """A response representing an unsuccessful joined rooms query.""" pass class ProfileGetError(ErrorResponse): pass class ProfileGetDisplayNameError(ErrorResponse): pass class ProfileSetDisplayNameError(ErrorResponse): pass class ProfileGetAvatarError(ErrorResponse): pass class PresenceGetError(ErrorResponse): """Response representing a unsuccessful get presence request.""" pass class PresenceSetError(ErrorResponse): """Response representing a unsuccessful set presence request.""" pass class ProfileSetAvatarError(ErrorResponse): pass @dataclass class DiscoveryInfoError(ErrorResponse): pass @dataclass class DiscoveryInfoResponse(Response): """A response for a successful discovery info request. Attributes: homeserver_url (str): The base URL of the homeserver corresponding to the requested domain. identity_server_url (str, optional): The base URL of the identity server corresponding to the requested domain, if any. """ homeserver_url: str = field() identity_server_url: Optional[str] = None @classmethod @verify(Schemas.discovery_info, DiscoveryInfoError) def from_dict( cls, parsed_dict: Dict[str, Any], ) -> Union["DiscoveryInfoResponse", DiscoveryInfoError]: homeserver_url = parsed_dict["m.homeserver"]["base_url"].rstrip("/") identity_server_url = parsed_dict.get( "m.identity_server", {}, ).get("base_url", "").rstrip("/") or None return cls(homeserver_url, identity_server_url) @dataclass class RegisterErrorResponse(ErrorResponse): pass @dataclass class RegisterResponse(Response): user_id: str = field() device_id: str = field() access_token: str = field() def __str__(self) -> str: return "Registered {}, device id {}.".format( self.user_id, self.device_id, ) @classmethod @verify(Schemas.register, RegisterErrorResponse) def from_dict(cls, parsed_dict): return cls( parsed_dict["user_id"], parsed_dict["device_id"], parsed_dict["access_token"], ) @dataclass class LoginInfoError(ErrorResponse): pass @dataclass class LoginInfoResponse(Response): flows: List[str] = field() @classmethod @verify(Schemas.login_info, LoginInfoError) def from_dict(cls, parsed_dict: Dict[Any, Any]): # type: (...) -> Union[LoginInfoResponse, ErrorResponse] flow_types = [flow["type"] for flow in parsed_dict["flows"]] return cls(flow_types) @dataclass class LoginResponse(Response): user_id: str = field() device_id: str = field() access_token: str = field() def __str__(self) -> str: return "Logged in as {}, device id: {}.".format( self.user_id, self.device_id ) @classmethod @verify(Schemas.login, LoginError) def from_dict(cls, parsed_dict: Dict[Any, Any]): # type: (...) -> Union[LoginResponse, ErrorResponse] return cls( parsed_dict["user_id"], parsed_dict["device_id"], parsed_dict["access_token"], ) @dataclass class LogoutResponse(Response): def __str__(self) -> str: return "Logged out" @classmethod @verify(Schemas.empty, LogoutError) def from_dict(cls, parsed_dict: Dict[Any, Any]): # type: (...) -> Union[LogoutResponse, ErrorResponse] """Create a response for logout response from server.""" return cls() @dataclass class JoinedMembersResponse(Response): members: List[RoomMember] = field() room_id: str = field() @classmethod @verify(Schemas.joined_members, JoinedMembersError) def from_dict( cls, parsed_dict: Dict[Any, Any], room_id: str, ): # type: (...) -> Union[JoinedMembersResponse, ErrorResponse] members = [] for user_id, user_info in parsed_dict["joined"].items(): user = RoomMember( user_id, user_info.get("display_name", None), user_info.get("avatar_url", None) ) members.append(user) return cls(members, room_id) @dataclass class JoinedRoomsResponse(Response): """A response containing a list of joined rooms. Attributes: rooms (List[str]): The rooms joined by the account. """ rooms: List[str] = field() @classmethod @verify(Schemas.joined_rooms, JoinedRoomsError) def from_dict( cls, parsed_dict: Dict[Any, Any], ): # type: (...) -> Union[JoinedRoomsResponse, ErrorResponse] return cls(parsed_dict["joined_rooms"]) @dataclass class ContentRepositoryConfigResponse(Response): """A response for a successful content repository config request. Attributes: upload_size (Optional[int]): The maximum file size in bytes for an upload. If `None`, the limit is unknown. """ upload_size: Optional[int] = None @classmethod @verify(Schemas.content_repository_config, ContentRepositoryConfigError) def from_dict( cls, parsed_dict: dict, ) -> Union["ContentRepositoryConfigResponse", ErrorResponse]: return cls(parsed_dict.get("m.upload.size")) @dataclass class UploadResponse(Response): """A response representing a successful upload request.""" content_uri: str = field() @classmethod @verify(Schemas.upload, UploadError) def from_dict(cls, parsed_dict: Dict[Any, Any]): # type: (...) -> Union[UploadResponse, ErrorResponse] return cls( parsed_dict["content_uri"], ) @dataclass class DownloadResponse(FileResponse): """A response representing a successful download request.""" @classmethod def from_data( cls, data: bytes, content_type: str, filename: Optional[str] = None ): # type: (...) -> Union[DownloadResponse, DownloadError] if isinstance(data, bytes): return cls(body=data, content_type=content_type, filename=filename) if isinstance(data, dict): return DownloadError.from_dict(data) return DownloadError("invalid data") @dataclass class ThumbnailResponse(FileResponse): """A response representing a successful thumbnail request.""" @classmethod def from_data( cls, data: bytes, content_type: str, filename: Optional[str] = None ): # type: (...) -> Union[ThumbnailResponse, ThumbnailError] if not content_type.startswith("image/"): return ThumbnailError(f"invalid content type: {content_type}") if isinstance(data, bytes): return cls(body=data, content_type=content_type, filename=filename) if isinstance(data, dict): return ThumbnailError.from_dict(data) return ThumbnailError("invalid data") @dataclass class RoomEventIdResponse(Response): event_id: str = field() room_id: str = field() @staticmethod def create_error(parsed_dict, _room_id): return ErrorResponse.from_dict(parsed_dict) @classmethod def from_dict( cls, parsed_dict: Dict[Any, Any], room_id: str, ): # type: (...) -> Union[RoomEventIdResponse, ErrorResponse] try: validate_json(parsed_dict, Schemas.room_event_id) except (SchemaError, ValidationError): return cls.create_error(parsed_dict, room_id) return cls(parsed_dict["event_id"], room_id) class RoomSendResponse(RoomEventIdResponse): @staticmethod def create_error(parsed_dict, room_id): return RoomSendError.from_dict(parsed_dict, room_id) @dataclass class RoomGetStateResponse(Response): """A response containing the state of a room. Attributes: events (List): The events making up the room state. room_id (str): The ID of the room. """ events: List = field() room_id: str = field() @staticmethod def create_error(parsed_dict, room_id): return RoomGetStateError.from_dict(parsed_dict, room_id) @classmethod def from_dict( cls, parsed_dict: List[Dict[Any, Any]], room_id: str, ): # type: (...) -> Union[RoomGetStateResponse, RoomGetStateError] try: validate_json(parsed_dict, Schemas.room_state) except (SchemaError, ValidationError): return cls.create_error(parsed_dict, room_id) return cls(parsed_dict, room_id) @dataclass class RoomGetStateEventResponse(Response): """A response containing the content of a specific bit of room state. Attributes: content (Dict): The content of the state event. event_type (str): The type of the state event. state_key (str): The key of the state event. room_id (str): The ID of the room that the state event comes from. """ content: Dict = field() event_type: str = field() state_key: str = field() room_id: str = field() @staticmethod def create_error(parsed_dict, room_id): return RoomGetStateEventError.from_dict(parsed_dict, room_id) @classmethod def from_dict( cls, parsed_dict: Dict[str, Any], event_type: str, state_key: str, room_id: str, ) -> Union["RoomGetStateEventResponse", RoomGetStateEventError]: return cls(parsed_dict, event_type, state_key, room_id) class RoomGetEventResponse(Response): """A response indicating successful room get event request. Attributes: event (Event): The requested event. """ event: Event = field() @classmethod @verify( Schemas.room_event, RoomGetEventError, pass_arguments=False, ) def from_dict( cls, parsed_dict: Dict[str, Any] ) -> Union["RoomGetEventResponse", RoomGetEventError]: event = Event.parse_event(parsed_dict) resp = cls() resp.event = event return resp class RoomPutStateResponse(RoomEventIdResponse): """A response indicating successful sending of room state.""" @staticmethod def create_error(parsed_dict, room_id): return RoomPutStateError.from_dict(parsed_dict, room_id) class RoomRedactResponse(RoomEventIdResponse): @staticmethod def create_error(parsed_dict, room_id): return RoomRedactError.from_dict(parsed_dict, room_id) @dataclass class RoomResolveAliasResponse(Response): """A response containing the result of resolving an alias. Attributes: room_alias (str): The alias of the room. room_id (str): The resolved id of the room. servers (List[str]): Servers participating in the room. """ room_alias: str = field() room_id: str = field() servers: List[str] = field() @classmethod @verify( Schemas.room_resolve_alias, RoomResolveAliasError, pass_arguments=False, ) def from_dict( cls, parsed_dict: Dict[Any, Any], room_alias: str, ): # type: (...) -> Union[RoomResolveAliasResponse, ErrorResponse] room_id = parsed_dict["room_id"] servers = parsed_dict["servers"] return cls(room_alias, room_id, servers) @dataclass class RoomDeleteAliasResponse(Response): """A response containing the result of deleting an alias. """ room_alias: str = field() @classmethod def from_dict(cls, parsed_dict: Dict[Any, Any], room_alias: str): # type: (...) -> Union[RoomDeleteAliasResponse, ErrorResponse] return cls(room_alias) @dataclass class RoomPutAliasResponse(Response): """A response containing the result of adding an alias. """ room_alias: str = field() room_id: str = field() @classmethod def from_dict(cls, parsed_dict: Dict[Any, Any], room_alias: str, room_id: str): # type: (...) -> Union[RoomPutAliasResponse, ErrorResponse] return cls(room_alias, room_id) @dataclass class RoomGetVisibilityResponse(Response): """A response containing the result of a get visibility request. """ room_id: str = field() visibility: str = field() @classmethod @verify( Schemas.room_get_visibility, RoomGetVisibilityError, pass_arguments=False, ) def from_dict(cls, parsed_dict: Dict[Any, Any], room_id: str): # type: (...) -> Union[RoomGetVisibilityResponse, ErrorResponse] visibility = parsed_dict["visibility"] return cls(room_id, visibility) class EmptyResponse(Response): @staticmethod def create_error(parsed_dict): return ErrorResponse.from_dict(parsed_dict) @classmethod def from_dict(cls, parsed_dict: Dict[Any, Any]): # type: (...) -> Union[Any, ErrorResponse] try: validate_json(parsed_dict, Schemas.empty) except (SchemaError, ValidationError): return cls.create_error(parsed_dict) return cls() @dataclass class _EmptyResponseWithRoomId(Response): room_id: str = field() @staticmethod def create_error(parsed_dict, room_id): return _ErrorWithRoomId.from_dict(parsed_dict, room_id) @classmethod def from_dict(cls, parsed_dict: Dict[Any, Any], room_id: str): # type: (...) -> Union[Any, ErrorResponse] try: validate_json(parsed_dict, Schemas.empty) except (SchemaError, ValidationError): return cls.create_error(parsed_dict, room_id) return cls(room_id) class RoomKickResponse(EmptyResponse): @staticmethod def create_error(parsed_dict): return RoomKickError.from_dict(parsed_dict) class RoomBanResponse(EmptyResponse): @staticmethod def create_error(parsed_dict): return RoomBanError.from_dict(parsed_dict) class RoomUnbanResponse(EmptyResponse): @staticmethod def create_error(parsed_dict): return RoomUnbanError.from_dict(parsed_dict) class RoomInviteResponse(EmptyResponse): @staticmethod def create_error(parsed_dict): return RoomInviteError.from_dict(parsed_dict) @dataclass class ShareGroupSessionResponse(Response): """Response representing a successful group sessions sharing request. Attributes: room_id (str): The room id of the group session. users_shared_with (Set[Tuple[str, str]]): A set containing a tuple of user id device id pairs with whom we shared the group session in this request. """ room_id: str = field() users_shared_with: set = field() @classmethod @verify(Schemas.empty, ShareGroupSessionError) def from_dict( cls, _: Dict[Any, Any], room_id: str, users_shared_with: Set[Tuple[str, str]], ): # type: (...) -> Union[ShareGroupSessionResponse, ErrorResponse] """Create a response from the json dict the server returns. Args: parsed_dict (Dict): The dict containing the raw json response. room_id (str): The room id of the room to which the group session belongs to. users_shared_with (Set[Tuple[str, str]]): A set containing a tuple of user id device id pairs with whom we shared the group session in this request. """ return cls(room_id, users_shared_with) class RoomTypingResponse(_EmptyResponseWithRoomId): """A response representing a successful room typing request.""" @staticmethod def create_error(parsed_dict, room_id): return RoomTypingError.from_dict(parsed_dict, room_id) class UpdateReceiptMarkerResponse(EmptyResponse): @staticmethod def create_error(parsed_dict): return UpdateReceiptMarkerError.from_dict(parsed_dict) class RoomReadMarkersResponse(_EmptyResponseWithRoomId): """A response representing a successful room read markers request.""" @staticmethod def create_error(parsed_dict, room_id): return RoomTypingError.from_dict(parsed_dict, room_id) @dataclass class DeleteDevicesAuthResponse(Response): session: str = field() flows: Dict = field() params: Dict = field() @classmethod @verify(Schemas.delete_devices, DeleteDevicesError) def from_dict( cls, parsed_dict: Dict[Any, Any], ): # type: (...) -> Union[DeleteDevicesAuthResponse, ErrorResponse] return cls( parsed_dict["session"], parsed_dict["flows"], parsed_dict["params"] ) class DeleteDevicesResponse(EmptyResponse): @staticmethod def create_error(parsed_dict): return DeleteDevicesError.from_dict(parsed_dict) @dataclass class RoomMessagesResponse(Response): room_id: str = field() chunk: List[Union[Event, BadEventType]] = field() start: str = field() end: str = field() @classmethod @verify(Schemas.room_messages, RoomMessagesError) def from_dict( cls, parsed_dict: Dict[Any, Any], room_id: str, ): # type: (...) -> Union[RoomMessagesResponse, ErrorResponse] chunk: List[Union[Event, BadEventType]] = [] chunk = SyncResponse._get_room_events(parsed_dict["chunk"]) return cls(room_id, chunk, parsed_dict["start"], parsed_dict["end"]) @dataclass class RoomIdResponse(Response): room_id: str = field() @staticmethod def create_error(parsed_dict): return ErrorResponse.from_dict(parsed_dict) @classmethod def from_dict(cls, parsed_dict: Dict[Any, Any]): # type: (...) -> Union[RoomIdResponse, ErrorResponse] try: validate_json(parsed_dict, Schemas.room_id) except (SchemaError, ValidationError): return cls.create_error(parsed_dict) return cls(parsed_dict["room_id"]) @dataclass class RoomCreateResponse(Response): """Response representing a successful create room request.""" room_id: str = field() @classmethod @verify( Schemas.room_create_response, RoomCreateError, pass_arguments=False, ) def from_dict( cls, parsed_dict: Dict[Any, Any], ): # type: (...) -> Union[RoomCreateResponse, RoomCreateError] return cls(parsed_dict["room_id"]) class JoinResponse(RoomIdResponse): @staticmethod def create_error(parsed_dict): return JoinError.from_dict(parsed_dict) class RoomLeaveResponse(EmptyResponse): @staticmethod def create_error(parsed_dict): return RoomLeaveError.from_dict(parsed_dict) class RoomForgetResponse(_EmptyResponseWithRoomId): """Response representing a successful forget room request.""" @staticmethod def create_error(parsed_dict, room_id): return RoomForgetError.from_dict(parsed_dict, room_id) @dataclass class KeysUploadResponse(Response): curve25519_count: int = field() signed_curve25519_count: int = field() @classmethod @verify(Schemas.keys_upload, KeysUploadError) def from_dict(cls, parsed_dict: Dict[Any, Any]): # type: (...) -> Union[KeysUploadResponse, ErrorResponse] counts = parsed_dict["one_time_key_counts"] return cls(counts["curve25519"], counts["signed_curve25519"]) @dataclass class KeysQueryResponse(Response): device_keys: Dict = field() failures: Dict = field() changed: Dict[str, Dict[str, Any]] = field( init=False, default_factory=dict, ) @classmethod @verify(Schemas.keys_query, KeysQueryError) def from_dict(cls, parsed_dict: Dict[Any, Any]): # type: (...) -> Union[KeysQueryResponse, ErrorResponse] device_keys = parsed_dict["device_keys"] failures = parsed_dict["failures"] return cls(device_keys, failures) @dataclass class KeysClaimResponse(Response): one_time_keys: Dict[Any, Any] = field() failures: Dict[Any, Any] = field() room_id: str = "" @classmethod @verify(Schemas.keys_claim, KeysClaimError) def from_dict( cls, parsed_dict: Dict[Any, Any], room_id: str = "", ): # type: (...) -> Union[KeysClaimResponse, ErrorResponse] one_time_keys = parsed_dict["one_time_keys"] failures = parsed_dict["failures"] return cls(one_time_keys, failures, room_id) @dataclass class DevicesResponse(Response): devices: List[Device] = field() @classmethod @verify(Schemas.devices, DevicesError) def from_dict(cls, parsed_dict: Dict[Any, Any]): # type: (...) -> Union[DevicesResponse, ErrorResponse] devices = [] for device_dict in parsed_dict["devices"]: try: device = Device.from_dict(device_dict) except ValueError: continue devices.append(device) return cls(devices) @dataclass class RoomKeyRequestError(ErrorResponse): """Response representing a failed room key request.""" pass @dataclass class RoomKeyRequestResponse(Response): """Response representing a successful room key request. Attributes: request_id (str): The id of the that uniquely identifies this key request that was requested, if we receive a to_device event it will contain the same request id. session_id (str): The id of the session that we requested. room_id (str): The id of the room that the session belongs to. algorithm (str): The encryption algorithm of the session. """ request_id: str = field() session_id: str = field() room_id: str = field() algorithm: str = field() @classmethod @verify(Schemas.empty, RoomKeyRequestError, False) def from_dict(cls, _, request_id, session_id, room_id, algorithm): """Create a RoomKeyRequestResponse from a json response. Args: parsed_dict (Dict): The dictionary containing the json response. request_id (str): The id of that uniquely identifies this key request that was requested, if we receive a to_device event it will contain the same request id. session_id (str): The id of the session that we requested. room_id (str): The id of the room that the session belongs to. algorithm (str): The encryption algorithm of the session. """ return cls(request_id, session_id, room_id, algorithm) class UpdateDeviceResponse(EmptyResponse): @staticmethod def create_error(parsed_dict): return UpdateDeviceError.from_dict(parsed_dict) @dataclass class ProfileGetResponse(Response): """Response representing a successful get profile request. Attributes: displayname (str, optional): The display name of the user. None if the user doesn't have a display name. avatar_url (str, optional): The matrix content URI for the user's avatar. None if the user doesn't have an avatar. other_info (dict): Contains any other information returned for the user's profile. """ displayname: Optional[str] = None avatar_url: Optional[str] = None other_info: Dict[Any, Any] = field(default_factory=dict) def __str__(self) -> str: return "Display name: {}, avatar URL: {}, other info: {}".format( self.displayname, self.avatar_url, self.other_info, ) @classmethod @verify(Schemas.get_profile, ProfileGetError) def from_dict(cls, parsed_dict: Dict[Any, Any]): # type: (...) -> Union[ProfileGetResponse, ErrorResponse] return cls( parsed_dict.get("displayname"), parsed_dict.get("avatar_url"), {k: v for k, v in parsed_dict.items() if k not in ("displayname", "avatar_url")}, ) @dataclass class ProfileGetDisplayNameResponse(Response): """Response representing a successful get display name request. Attributes: displayname (str, optional): The display name of the user. None if the user doesn't have a display name. """ displayname: Optional[str] = None def __str__(self) -> str: return "Display name: {}".format(self.displayname) @classmethod @verify(Schemas.get_displayname, ProfileGetDisplayNameError) def from_dict( cls, parsed_dict: (Dict[Any, Any]), ): # type: (...) -> Union[ProfileGetDisplayNameResponse, ErrorResponse] return cls(parsed_dict.get("displayname")) class ProfileSetDisplayNameResponse(EmptyResponse): @staticmethod def create_error(parsed_dict): return ProfileSetDisplayNameError.from_dict(parsed_dict) @dataclass class ProfileGetAvatarResponse(Response): """Response representing a successful get avatar request. Attributes: avatar_url (str, optional): The matrix content URI for the user's avatar. None if the user doesn't have an avatar. """ avatar_url: Optional[str] = None def __str__(self) -> str: return "Avatar URL: {}".format(self.avatar_url) @classmethod @verify(Schemas.get_avatar, ProfileGetAvatarError) def from_dict( cls, parsed_dict: (Dict[Any, Any]), ): # type: (...) -> Union[ProfileGetAvatarResponse, ErrorResponse] return cls(parsed_dict.get("avatar_url")) class ProfileSetAvatarResponse(EmptyResponse): @staticmethod def create_error(parsed_dict): return ProfileSetAvatarError.from_dict(parsed_dict) @dataclass class PresenceGetResponse(Response): """Response representing a successful get presence request. Attributes: user_id (str): The user´s id presence (str): The user's presence state. One of: ["online", "offline", "unavailable"] last_active_ago (int, optional): The length of time in milliseconds since an action was performed by this user. None if not set. currently_active (bool, optional): Whether the user is currently active. None if not set. status_msg (str, optional): The state message for this user. None if not set. """ user_id: str presence: str last_active_ago: Optional[int] currently_active: Optional[bool] status_msg: Optional[str] @classmethod @verify(Schemas.get_presence, PresenceGetError, pass_arguments=False) def from_dict( cls, parsed_dict: Dict[Any, Any], user_id: str ) -> Union["PresenceGetResponse", PresenceGetError]: return cls( user_id, parsed_dict.get("presence", "offline"), parsed_dict.get("last_active_ago"), parsed_dict.get("currently_active"), parsed_dict.get("status_msg") ) class PresenceSetResponse(EmptyResponse): """Response representing a successful set presence request.""" @staticmethod def create_error(parsed_dict): return PresenceSetError.from_dict(parsed_dict) @dataclass class ToDeviceError(ErrorResponse): """Response representing a unsuccessful room key request.""" to_device_message: Optional[ToDeviceMessage] = None @classmethod def from_dict(cls, parsed_dict, message): try: validate_json(parsed_dict, Schemas.error) except (SchemaError, ValidationError): return cls("unknown error", None, message) return cls(parsed_dict["error"], parsed_dict["errcode"], message) @dataclass class ToDeviceResponse(Response): """Response representing a successful room key request.""" to_device_message: ToDeviceMessage = field() @classmethod @verify(Schemas.empty, ToDeviceError) def from_dict(cls, parsed_dict, message): """Create a ToDeviceResponse from a json response.""" return cls(message) @dataclass class RoomContextError(_ErrorWithRoomId): """Response representing a unsuccessful room context request.""" @dataclass class RoomContextResponse(Response): """Room event context response. This Response holds a number of events that happened just before and after a specified event. Attributes: room_id(str): The room id of the room which the events belong to. start(str): A token that can be used to paginate backwards with. end(str): A token that can be used to paginate forwards with. events_before(List[Event]): A list of room events that happened just before the requested event, in reverse-chronological order. event(Event): Details of the requested event. events_after(List[Event]): A list of room events that happened just after the requested event, in chronological order. state(List[Event]): The state of the room at the last event returned. """ room_id: str = field() start: str = field() end: str = field() event: Optional[Union[Event, BadEventType]] = field() events_before: List[Union[Event, BadEventType]] = field() events_after: List[Union[Event, BadEventType]] = field() state: List[Union[Event, BadEventType]] = field() @classmethod @verify(Schemas.room_context, RoomContextError) def from_dict( cls, parsed_dict: Dict[Any, Any], room_id: str, ): # type: (...) -> Union[RoomContextResponse, ErrorResponse] events_before = SyncResponse._get_room_events( parsed_dict["events_before"] ) events_after = SyncResponse._get_room_events( parsed_dict["events_after"] ) event = Event.parse_event(parsed_dict["event"]) state = SyncResponse._get_room_events( parsed_dict["state"] ) return cls(room_id, parsed_dict["start"], parsed_dict["end"], event, events_before, events_after, state) @dataclass class SyncResponse(Response): next_batch: str = field() rooms: Rooms = field() device_key_count: DeviceOneTimeKeyCount = field() device_list: DeviceList = field() to_device_events: List[ToDeviceEvent] = field() presence_events: List[PresenceEvent] = field() account_data_events: List[AccountDataEvent] = field(default_factory=list) def __str__(self) -> str: result = [] for room_id, room_info in self.rooms.join.items(): room_header = " Messages for room {}:\n ".format(room_id) messages = [] for event in room_info.timeline.events: messages.append(str(event)) room_message = room_header + "\n ".join(messages) result.append(room_message) if len(self.to_device_events) > 0: result.append(" Device messages:") for event in self.to_device_events: result.append(" {}".format(event)) body = "\n".join(result) string = ("Sync response until batch: {}:\n{}").format( self.next_batch, body ) return string @staticmethod def _get_room_events(parsed_dict: List[Dict[Any, Any]]) -> List[Union[Event, BadEventType]]: events: List[Union[Event, BadEventType]] = [] for event_dict in parsed_dict: event = Event.parse_event(event_dict) if event: events.append(event) return events @staticmethod def _get_to_device(parsed_dict: Dict[Any, Any]): # type: (...) -> List[ToDeviceEvent] events: List[ToDeviceEvent] = [] for event_dict in parsed_dict.get("events", []): event = ToDeviceEvent.parse_event(event_dict) if event: events.append(event) return events @staticmethod def _get_timeline(parsed_dict: Dict[Any, Any]) -> Timeline: validate_json(parsed_dict, Schemas.room_timeline) events = SyncResponse._get_room_events(parsed_dict.get("events", [])) return Timeline( events, parsed_dict["limited"], parsed_dict.get("prev_batch") ) @staticmethod def _get_state(parsed_dict: Dict[Any, Any]) -> List[Union[Event, BadEventType]]: validate_json(parsed_dict, Schemas.sync_room_state) events = SyncResponse._get_room_events( parsed_dict.get("events", []), ) return events @staticmethod def _get_invite_state(parsed_dict): validate_json(parsed_dict, Schemas.sync_room_state) events = [] for event_dict in parsed_dict.get("events", []): event = InviteEvent.parse_event(event_dict) if event: events.append(event) return events @staticmethod def _get_ephemeral_events(parsed_dict): events = [] for event_dict in parsed_dict: event = EphemeralEvent.parse_event(event_dict) if event: events.append(event) return events @staticmethod def _get_join_info( state_events: List[Any], timeline_events: List[Any], prev_batch: Optional[str], limited: bool, ephemeral_events: List[Any], summary_events: Dict[str, Any], unread_notification_events: Dict[str, Any], account_data_events: List[Any], ) -> RoomInfo: state = SyncResponse._get_room_events(state_events) events = SyncResponse._get_room_events(timeline_events) timeline = Timeline(events, limited, prev_batch) ephemeral_event_list = SyncResponse._get_ephemeral_events( ephemeral_events ) summary = RoomSummary( summary_events.get("m.invited_member_count"), summary_events.get("m.joined_member_count"), summary_events.get("m.heroes"), ) unread_notifications = UnreadNotifications( unread_notification_events.get("notification_count"), unread_notification_events.get("highlight_count"), ) account_data = RoomInfo.parse_account_data(account_data_events) return RoomInfo( timeline, state, ephemeral_event_list, account_data, summary, unread_notifications, ) @staticmethod def _get_room_info(parsed_dict: Dict[Any, Any]) -> Rooms: joined_rooms: Dict[str, RoomInfo] = {} invited_rooms: Dict[str, InviteInfo] = {} left_rooms: Dict[str, RoomInfo] = {} for room_id, room_dict in parsed_dict.get("invite", {}).items(): state = SyncResponse._get_invite_state(room_dict["invite_state"]) invite_info = InviteInfo(state) invited_rooms[room_id] = invite_info for room_id, room_dict in parsed_dict.get("leave", {}).items(): state = SyncResponse._get_state(room_dict["state"]) timeline = SyncResponse._get_timeline(room_dict["timeline"]) leave_info = RoomInfo(timeline, state, [], []) left_rooms[room_id] = leave_info for room_id, room_dict in parsed_dict.get("join", {}).items(): join_info = SyncResponse._get_join_info( room_dict["state"]["events"], room_dict["timeline"]["events"], room_dict["timeline"].get("prev_batch"), room_dict["timeline"]["limited"], room_dict["ephemeral"]["events"], room_dict.get("summary", {}), room_dict.get("unread_notifications", {}), room_dict["account_data"]["events"], ) joined_rooms[room_id] = join_info return Rooms(invited_rooms, joined_rooms, left_rooms) @staticmethod def _get_presence(parsed_dict) -> List[PresenceEvent]: presence_events = [] for presence_dict in parsed_dict.get("presence", {}).get("events", []): presence_events.append(PresenceEvent.from_dict(presence_dict)) return presence_events @staticmethod def _get_account_data( parsed_dict: Dict[str, Any], ) -> Generator[AccountDataEvent, None, None]: for ev_dict in parsed_dict.get("account_data", {}).get("events", []): yield AccountDataEvent.parse_event(ev_dict) @classmethod @verify(Schemas.sync, SyncError, False) def from_dict( cls, parsed_dict: Dict[Any, Any], ): # type: (...) -> Union[SyncResponse, ErrorResponse] to_device = cls._get_to_device(parsed_dict.get("to_device", {})) key_count_dict = parsed_dict.get("device_one_time_keys_count", {}) key_count = DeviceOneTimeKeyCount( key_count_dict.get("curve25519"), key_count_dict.get("signed_curve25519") ) devices = DeviceList( parsed_dict.get("device_lists", {}).get("changed", []), parsed_dict.get("device_lists", {}).get("left", []), ) presence_events = SyncResponse._get_presence(parsed_dict) rooms = SyncResponse._get_room_info(parsed_dict.get("rooms", {})) return SyncResponse( parsed_dict["next_batch"], rooms, key_count, devices, to_device, presence_events, list(SyncResponse._get_account_data(parsed_dict)), ) class UploadFilterError(ErrorResponse): pass @dataclass class UploadFilterResponse(Response): """Response representing a successful filter upload request. Attributes: filter_id (str): A filter ID that may be used in future requests to restrict which events are returned to the client. """ filter_id: str = field() @classmethod @verify(Schemas.upload_filter, UploadFilterError) def from_dict( cls, parsed_dict: Dict[Any, Any], ) -> Union["UploadFilterResponse", UploadFilterError]: return cls(parsed_dict["filter_id"]) class WhoamiError(ErrorResponse): pass @dataclass class WhoamiResponse(Response): user_id: str = field() @classmethod @verify(Schemas.whoami, WhoamiError) def from_dict( cls, parsed_dict: Dict[Any, Any], ) -> Union["WhoamiResponse", WhoamiError]: return cls(parsed_dict["user_id"]) @dataclass class SetPushRuleResponse(EmptyResponse): @staticmethod def create_error(parsed_dict: Dict[str, Any]): return SetPushRuleError.from_dict(parsed_dict) class SetPushRuleError(ErrorResponse): pass @dataclass class DeletePushRuleResponse(EmptyResponse): @staticmethod def create_error(parsed_dict: Dict[str, Any]): return DeletePushRuleError.from_dict(parsed_dict) class DeletePushRuleError(ErrorResponse): pass @dataclass class EnablePushRuleResponse(EmptyResponse): @staticmethod def create_error(parsed_dict: Dict[str, Any]): return EnablePushRuleError.from_dict(parsed_dict) class EnablePushRuleError(ErrorResponse): pass @dataclass class SetPushRuleActionsResponse(EmptyResponse): @staticmethod def create_error(parsed_dict: Dict[str, Any]): return SetPushRuleActionsError.from_dict(parsed_dict) class SetPushRuleActionsError(ErrorResponse): pass
27.844711
96
0.657896
79499fbffbd5e6dd955306e5be5c6c951cd40791
394
py
Python
examples/__init__.py
rishavpramanik/mealpy
d4a4d5810f15837764e4ee61517350fef3dc92b3
[ "MIT" ]
null
null
null
examples/__init__.py
rishavpramanik/mealpy
d4a4d5810f15837764e4ee61517350fef3dc92b3
[ "MIT" ]
null
null
null
examples/__init__.py
rishavpramanik/mealpy
d4a4d5810f15837764e4ee61517350fef3dc92b3
[ "MIT" ]
null
null
null
#!/usr/bin/env python # Created by "Thieu" at 10:07, 02/03/2022 ----------% # Email: nguyenthieu2102@gmail.com % # Github: https://github.com/thieu1995 % # --------------------------------------------------%
65.666667
132
0.253807
7949a2e9b1aa25b53d4552e2044ecdd7b2e275c7
6,900
py
Python
src/solutions/common/bizz/bulk_invite.py
goubertbrent/oca-backend
b9f59cc02568aecb55d4b54aec05245790ea25fd
[ "Apache-2.0" ]
null
null
null
src/solutions/common/bizz/bulk_invite.py
goubertbrent/oca-backend
b9f59cc02568aecb55d4b54aec05245790ea25fd
[ "Apache-2.0" ]
null
null
null
src/solutions/common/bizz/bulk_invite.py
goubertbrent/oca-backend
b9f59cc02568aecb55d4b54aec05245790ea25fd
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2020 Green Valley Belgium NV # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # @@license_version:1.7@@ import logging import time from types import NoneType from google.appengine.ext import deferred, db from mcfw.rpc import returns, arguments from rogerthat.rpc import users from rogerthat.service.api import system from rogerthat.to.service import UserDetailsTO from rogerthat.translations import DEFAULT_LANGUAGE from rogerthat.utils import now from rogerthat.utils.app import create_app_user_by_email from rogerthat.utils.channel import send_message from rogerthat.utils.models import reconstruct_key from rogerthat.utils.transactions import run_in_xg_transaction from solutions import translate as common_translate from solutions.common.bizz import SERVICE_AUTOCONNECT_INVITE_TAG from solutions.common.bizz.inbox import create_solution_inbox_message from solutions.common.bizz.messaging import send_inbox_forwarders_message from solutions.common.bizz.settings import get_service_info from solutions.common.dal import get_solution_settings from solutions.common.models import RestaurantInvite, SolutionSettings, SolutionInboxMessage from solutions.common.to import SolutionInboxMessageTO @returns(NoneType) @arguments(service_user=users.User, service_identity=unicode, emails=[unicode], message=unicode, app_id=unicode) def bulk_invite(service_user, service_identity, emails, message, app_id=None): def trans(app_id): emailz = list(emails) counter = 0 while emailz: counter += 1 if counter < 4: email = emailz.pop() deferred.defer(_create_restaurant_invite, service_user, service_identity, email, message, app_id, _transactional=True) else: deferred.defer(bulk_invite, service_user, service_identity, emailz, message, app_id, _transactional=True) break if not app_id: app_id = system.get_info().app_ids[0] db.run_in_transaction(trans, app_id) @returns(NoneType) @arguments(service_user=users.User, service_identity=unicode, invitee=unicode, message=unicode, app_id=unicode) def _create_restaurant_invite(service_user, service_identity, invitee, message, app_id): def trans(): # 1: Check if invitee has been send from service in the last month sln_settings = get_solution_settings(service_user) db_key = RestaurantInvite.create_key(service_user, service_identity, invitee, sln_settings.solution) old_invite = db.get(db_key) t = time.time() # 2: Store in datastore if old_invite: if old_invite.status == RestaurantInvite.STATUS_ACCEPTED: return if not old_invite.epoch < t - 30 * 24 * 60 * 60: return else: old_invite.epoch = t old_invite.put() else: invite = RestaurantInvite(key=db_key) invite.epoch = t invite.put() # 3: Do invite deferred.defer(_restaurant_invite, service_user, service_identity, invitee, message, unicode(db_key), sln_settings, app_id, _transactional=True) xg_on = db.create_transaction_options(xg=True) db.run_in_transaction_options(xg_on, trans) @returns(NoneType) @arguments(service_user=users.User, service_identity=unicode, invitee=unicode, message=unicode, tag=unicode, sln_settings=SolutionSettings, app_id=unicode) def _restaurant_invite(service_user, service_identity, invitee, message, tag, sln_settings, app_id): from rogerthat.service.api.friends import invite as invite_api_call from rogerthat.bizz.friends import CanNotInviteFriendException language = sln_settings.main_language or DEFAULT_LANGUAGE users.set_user(service_user) try: invite_api_call(invitee, None, message, language, tag, service_identity, app_id) except CanNotInviteFriendException: logging.debug('%s is already connected with %s', invitee, service_user) pass finally: users.clear_user() @returns(NoneType) @arguments(service_user=users.User, service_identity=unicode, tag=unicode, email=unicode, result=unicode, user_details=[UserDetailsTO]) def bulk_invite_result(service_user, service_identity, tag, email, result, user_details): if not tag: logging.exception("Expected tag in bulk_invite_result") return if tag in (SERVICE_AUTOCONNECT_INVITE_TAG,): return try: key = db.Key(tag) except db.BadKeyError: logging.info('Tag is no db.Key: %s. Ignoring...', tag) return def trans(): invite = db.get(reconstruct_key(key)) if not invite: logging.error("Invite object not found in datastore") return save_message = False if "accepted" == result: invite.status = RestaurantInvite.STATUS_ACCEPTED save_message = True else: invite.status = RestaurantInvite.STATUS_REJECTED invite.put() return save_message save_message = run_in_xg_transaction(trans) if save_message: now_ = now() sln_settings = get_solution_settings(service_user) msg = common_translate(sln_settings.main_language, 'if-accepted-invitation', if_name=user_details[0].name, if_email=user_details[0].email) message = create_solution_inbox_message( service_user, service_identity, SolutionInboxMessage.CATEGORY_BULK_INVITE, None, False, user_details, now_, msg, False) app_user = create_app_user_by_email(user_details[0].email, user_details[0].app_id) send_inbox_forwarders_message(service_user, service_identity, app_user, msg, { 'if_name': user_details[0].name, 'if_email': user_details[0].email }, message_key=message.solution_inbox_message_key, reply_enabled=message.reply_enabled, send_reminder=False) service_info = get_service_info(service_user, service_identity) send_message(service_user, u"solutions.common.messaging.update", service_identity=service_identity, message=SolutionInboxMessageTO.fromModel(message, sln_settings, service_info, True).to_dict())
42.592593
155
0.708841
7949a2fbf4bf59334f5d269f90370e3d17e5be01
3,291
py
Python
covidfaq/scrape/convert_scrape.py
dialoguemd/covidfaq
a493ed72e07b83cdf736684ce1cc9ee47b9bfb3f
[ "MIT" ]
3
2020-06-22T17:05:22.000Z
2021-07-18T20:51:57.000Z
covidfaq/scrape/convert_scrape.py
dialoguemd/covidfaq
a493ed72e07b83cdf736684ce1cc9ee47b9bfb3f
[ "MIT" ]
25
2020-03-21T14:58:05.000Z
2021-04-02T14:27:28.000Z
covidfaq/scrape/convert_scrape.py
dialoguemd/covidfaq
a493ed72e07b83cdf736684ce1cc9ee47b9bfb3f
[ "MIT" ]
6
2020-03-21T23:33:02.000Z
2020-07-27T15:12:22.000Z
import argparse import json import logging import os logger = logging.getLogger(__name__) def collapse_jsons(json_files): collapsed = {} for json_file in json_files: with open(json_file, "r", encoding="utf-8") as fh: faq = json.load(fh) for k, v in faq.items(): if k != "document_URL": collapsed[k] = v return collapsed def json_to_passages(collapsed_json, passage_id_start_idx=0): passages = [] passage_id = passage_id_start_idx for entry in collapsed_json.values(): passage = { "passage_id": passage_id, "source": entry["source"], "uri": entry["url"], "time_of_scrape": entry["time"], "reference_type": entry["type"], "reference": { "page_title": "".join(entry["nested_title"]).strip(), "section_headers": [entry["title"]], "section_content": "".join(entry["plaintext"]).strip(), "section_raw_html": entry["html"], "section_converted_html": entry["converted_html"], "selected_span": None, }, } passage_id += 1 passages.append(passage) logger.info("generated {} passages from the scrape provided".format(len(passages))) return passages def dump_passages(passages, fname): with open(fname, "w", encoding="utf-8") as f: json.dump({"passages": passages}, f, indent=6, ensure_ascii=False) def get_scraped_json_filenames(scrapes_path, source, lang, is_faq=True): matches = [source, lang, ".json"] if is_faq: matches += ["faq"] return [ os.path.join(scrapes_path, f) for f in os.listdir(scrapes_path) if all(match in f for match in matches) ] else: return [ os.path.join(scrapes_path, f) for f in os.listdir(scrapes_path) if all(match in f for match in matches) and "faq" not in f ] def scrapes_to_passages(scrapes_path, source, lang, is_faq): """Writes the scrapes to the proper format in output_file""" json_filenames = get_scraped_json_filenames(scrapes_path, source, lang, is_faq) collapsed_json = collapse_jsons(json_filenames) passages = json_to_passages(collapsed_json) return passages def main(): parser = argparse.ArgumentParser() parser.add_argument( "--input", help="input json (list of files to convert, can use a regex, e.g. quebec-en-faq*.json ", required=True, nargs="+", ) parser.add_argument("--output-passages", help="output file in bert_reranker format") args = parser.parse_args() logging.basicConfig(level=logging.INFO) # Load json scrapes and collapse them to a single json collapsed_json = collapse_jsons(args.input) logger.info( "collapsed {} files into a single dict with {} elements".format( len(args.input), len(collapsed_json) ) ) # generate passages from the scrape to the appropriate format passages = json_to_passages(collapsed_json) if args.output_passages is not None: dump_passages(passages, args.output_passages) if __name__ == "__main__": main()
30.757009
96
0.614099
7949a3f6da293abdd85512209242bae76ab4d816
13,672
py
Python
tensorflow/contrib/eager/python/evaluator.py
tianyapiaozi/tensorflow
fb3ce0467766a8e91f1da0ad7ada7c24fde7a73a
[ "Apache-2.0" ]
71
2017-05-25T16:02:15.000Z
2021-06-09T16:08:08.000Z
tensorflow/contrib/eager/python/evaluator.py
shrikunjsarda/tensorflow
7e8927e7af0c51ac20a63bd4eab6ff83df1a39ae
[ "Apache-2.0" ]
133
2017-04-26T16:49:49.000Z
2019-10-15T11:39:26.000Z
tensorflow/contrib/eager/python/evaluator.py
shrikunjsarda/tensorflow
7e8927e7af0c51ac20a63bd4eab6ff83df1a39ae
[ "Apache-2.0" ]
31
2018-09-11T02:17:17.000Z
2021-12-15T10:33:35.000Z
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Class Evaluator holds Metrics for the duration of an evaluation run.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import six from tensorflow.contrib.eager.python import datasets from tensorflow.contrib.eager.python import metrics from tensorflow.python.eager import context from tensorflow.python.eager import function from tensorflow.python.framework import errors_impl from tensorflow.python.framework import ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import summary_ops_v2 as summary_ops class Evaluator(object): """This holds and updates Metrics for the duration of a single eval run. Usage: evaluator = my_model.evaluator() # or MyEvaluator(my_model) for example_batch in ...: evaluator(example_batch) results = evaluator.all_metric_results(optional_summary_logdir) Or, if you are getting your examples from a tf.data.Dataset, you can use the evaluate_on_dataset() method. Implementers of Evaluators should (a) Call `track_metric()` and/or `track_evaluator()` in __init__(). (b) Override the `call()` method. It will be passed the output of the model's `eval_data()` method, and should call its contained metrics (treating them as callables) and any child Evaluators (using their call() method to avoid calling eval_data() again). Args: model: A `Model` object with an `eval_data()` method. """ def __init__(self, model): self._model = model self._metrics = {} self._evaluators = {} if not context.executing_eagerly(): self.call = function.defun(self.call) # ---- API for users ---- def __call__(self, *args, **kwargs): """Update metrics with a minibatch of input examples. Args: *args: **kwargs: Arguments representing an input mini-batch of examples to pass to self.model.eval_data(). Returns: The op to execute or None if executing eagerly. """ return self.call(self._model.eval_data(*args, **kwargs)) def init_variables(self): """Return an op for initializing all contained uninitialized variables. Only for graph execution. Should be called after variables are created in the first execution of __call__(). Returns: An op. Raises: RuntimeError: if eager execution is enabled. @compatibility(eager) Only for graph execution. @end_compatibility """ if context.executing_eagerly(): raise RuntimeError("Evaluator.init_variables() not needed when " "eager execution is enabled.") return control_flow_ops.group([m.init_variables() for _, m in self.metrics]) def all_metric_results(self, summary_logdir=None): """Computes results for all contained metrics. Args: summary_logdir: An optional string. If specified, metric results will be written as summaries to this directory. Returns: A `dict` mapping string names to tensors. """ if summary_logdir is None: with summary_ops.never_record_summaries(): return self._all_metric_results() else: def f(): with summary_ops.create_file_writer( summary_logdir).as_default(), summary_ops.always_record_summaries(): return self._all_metric_results() if context.executing_eagerly(): return f() else: return function.defun(f)() def _all_metric_results(self): """Implementation of `all_metric_results` in the summary context.""" results = {} for name, metric in six.iteritems(self._metrics): results[name] = metric.result() for prefix, evaluator in six.iteritems(self._evaluators): for name, metric in six.iteritems(evaluator._metrics): # pylint: disable=protected-access results[prefix + "/" + name] = metric.result() return results def evaluate_on_dataset(self, dataset, *args, **kwargs): """Convenience method for performing an eval on a Dataset. Args: dataset: Dataset object with the input data to evaluate on. *args: **kwargs: Optional additional arguments to __call__(), except `summary_logdir`: if specified, metrics will be written as summaries to this directory. Returns: @compatibility(eager) When eager execution is enabled, this returns the result of performing an evaluation as a dictionary. With graph execution, this returns a tuple (init_op, call_op, results_op) which may be executed using this code: ```python sess.run(init_op) try: while True: sess.run(call_op) except tf.errors.OutOfRangeError: pass return sess.run(results_op) # A dictionary # equivalently: return evaluator.run_evaluation(init_op, call_op, results_op, sess=sess) ``` @end_compatibility """ summary_logdir = kwargs.pop("summary_logdir", None) if context.executing_eagerly(): for example in datasets.Iterator(dataset): self.__call__(example, *args, **kwargs) return self.all_metric_results(summary_logdir) # Graph construction call_op = self.__call__(dataset.make_one_shot_iterator().get_next(), *args, **kwargs) init_op = self.init_variables() results_op = self.all_metric_results(summary_logdir) return (init_op, call_op, results_op) @staticmethod def run_evaluation(init_op, call_op, results_op, sess=None): """Convenience method for running the ops returned by evaluate_on_dataset. Args: init_op: An op that initializes/resets evaluation state. call_op: An op that updates evaluation state on a mini-batch of examples. Must generate an tf.errors.OutOfRangeError when done. results_op: A dictionary of tensors that compute the final evaluation results from the evaluation state. sess: The Session to run the evaluation in. Defaults to the default Session. Returns: A dictionary of values, parallel to results_op. Raises: RuntimeError: if eager execution is enabled. @compatibility(eager) Only for graph execution. @end_compatibility """ if context.executing_eagerly(): raise RuntimeError("Evaluator.run_evaluation() not supported when " "eager execution is enabled.") sess = sess or ops.get_default_session() sess.run(init_op) try: while True: sess.run(call_op) except errors_impl.OutOfRangeError: pass return sess.run(results_op) # ---- To be implemented by descendants --- def call(self, eval_data): """Update metrics using the output of self.model. Note: This function is executed as a graph function in graph mode. This means: a) Operations on the same resource are executed in textual order. This should make it easier to do things like add the updated value of a variable to another, for example. b) You don't need to worry about collecting the update ops to execute. All update ops added to the graph by this function will be executed. As a result, code should generally work the same way with graph or eager execution. Args: eval_data: The output of self.model.eval_data() on a mini-batch of examples. """ raise NotImplementedError("Evaluators must define a call member function.") # ---- For use by descendants --- @property def model(self): return self._model def track_metric(self, metric): """Add a Metric to be tracked. Metrics can only be tracked by one `Evaluator`. Metrics must be tracked or they will not appear in `all_metric_results()`. Args: metric: A `Metric` object. Returns: The `metric` passed into this function. Raises: RuntimeError: If called before __init__. TypeError: If `metric` is not of the correct type. ValueError: If there is a name collision between Metrics or `metric` has already been added to another `Evaluator`. """ if not hasattr(self, "_metrics"): raise RuntimeError( "Need to call Evaluator.__init__ before adding metrics") if not isinstance(metric, metrics.Metric): raise TypeError( "Evaluator.track_metric() passed type %s, not a tfe.metrics.Metric" % (type(metric),)) if metric.name in self._metrics: if metric is self._metrics[metric.name]: return metric raise ValueError( "Attempt to add two Metrics with the name '%s' to the same Evaluator " "'%s'" % (metric.name, self.name)) # pylint: disable=protected-access if hasattr(metric, "_added_to_an_evaluator"): raise ValueError("Metric %s already added to Evaluator %s" % (metric.name, metric._added_to_an_evaluator)) metric._added_to_an_evaluator = self.__class__.__name__ # pylint: enable=protected-access self._metrics[metric.name] = metric return metric def track_evaluator(self, prefix, evaluator): """Add a contained `Evaluator`. This is for delegating to another `Evaluator`, e.g. for when you have a model with multiple heads. Users should manually invoke the child `Evaluator`'s `call` method from their `call` method. Args: prefix: A string. Metrics from `evaluator` are exported with this prefix and a '/'. evaluator: An `Evaluator` object. Returns: The value of `evaluator` passed into this function. Raises: RuntimeError: If called before __init__. TypeError: If `evaluator` is not of the correct type. ValueError: If an `Evaluator` has already been added with that `prefix`. """ if not hasattr(self, "_evaluators"): raise RuntimeError( "Need to call Evaluator.__init__ before adding evaluators") if not isinstance(evaluator, Evaluator): raise TypeError( "Evaluator.track_evaluator() passed type %s, not a tfe.Evaluator." % (type(evaluator),)) if prefix in self._evaluators: if evaluator is self._evaluators[prefix]: return evaluator raise RuntimeError( "Attempt to add two Evaluators with the same prefix '%s'." % prefix) self._evaluators[prefix] = evaluator return evaluator @property def metric_variables(self): v = [] for metric in six.itervalues(self._metrics): v += metric.variables for evaluator in six.itervalues(self._evaluators): v += evaluator.metric_variables return v @property def metrics(self): """Returns a list of (prefix, metric) pairs.""" m = [] for metric in six.itervalues(self._metrics): m.append(("", metric)) for prefix, evaluator in six.iteritems(self._evaluators): m += [(prefix + "/" + p, m) for p, m in evaluator.metrics] return m class SparseSoftmaxEvaluator(Evaluator): """Evaluator for a sparse softmax model. Computes a standard set of metrics for single-label, multi-class models. Args: model: A `SparseSoftmaxModel` object or a `Model` whose `eval_data()` method produces a `dict` containing values for the loss, true label, predicted class, and optional weights. loss_key: Optional key for looking up the value of the loss in the `eval_data()` dict. Defaults to "loss". label_key: Optional key for looking up the value of the label in the `eval_data()` dict. Defaults to "label". predicted_class_key: Optional key for looking up the value of the predicted class in the `eval_data()` dict. Defaults to "predicted_class". weights_key: Optional key for looking up the value of the weights in the `eval_data()` dict. Defaults to "weights". Note that weights are optional, and default to 1 if not present in `eval_data`. """ def __init__(self, model, loss_key="loss", label_key="label", predicted_class_key="predicted_class", weights_key="weights"): super(SparseSoftmaxEvaluator, self).__init__(model) # TODO(josh11b): Expand this to include everything from the standard # SparseSoftmax Head. self.avg_loss = self.track_metric(metrics.Mean("Avg Loss")) self.accuracy = self.track_metric(metrics.Accuracy()) self.loss_key = loss_key self.label_key = label_key self.predicted_class_key = predicted_class_key self.weights_key = weights_key def call(self, eval_data): """Update metrics for `eval_data` dict (described above).""" weights = eval_data.get(self.weights_key, None) if weights is None: self.avg_loss(eval_data[self.loss_key]) self.accuracy(eval_data[self.label_key], eval_data[self.predicted_class_key]) else: self.avg_loss(eval_data[self.loss_key], weights=weights) self.accuracy(eval_data[self.label_key], eval_data[self.predicted_class_key], weights=weights)
36.654155
96
0.684391
7949a41509759ff35a5b27c6e39e494eb8ab73d7
2,096
py
Python
extensions/.stubs/clrclasses/__clrclasses__/System/Media/__init__.py
vicwjb/Pycad
7391cd694b7a91ad9f9964ec95833c1081bc1f84
[ "MIT" ]
1
2020-03-25T03:27:24.000Z
2020-03-25T03:27:24.000Z
extensions/.stubs/clrclasses/__clrclasses__/System/Media/__init__.py
vicwjb/Pycad
7391cd694b7a91ad9f9964ec95833c1081bc1f84
[ "MIT" ]
null
null
null
extensions/.stubs/clrclasses/__clrclasses__/System/Media/__init__.py
vicwjb/Pycad
7391cd694b7a91ad9f9964ec95833c1081bc1f84
[ "MIT" ]
null
null
null
from __clrclasses__.System import EventHandler as _n_0_t_0 from __clrclasses__.System.ComponentModel import Component as _n_1_t_0 from __clrclasses__.System.ComponentModel import IComponent as _n_1_t_1 from __clrclasses__.System.ComponentModel import AsyncCompletedEventHandler as _n_1_t_2 from __clrclasses__.System.IO import Stream as _n_2_t_0 from __clrclasses__.System.Runtime.Serialization import ISerializable as _n_3_t_0 import typing class SoundPlayer(_n_1_t_0, _n_1_t_1, _n_3_t_0): @property def IsLoadCompleted(self) -> bool:"""IsLoadCompleted { get; } -> bool""" @property def LoadTimeout(self) -> int:"""LoadTimeout { get; set; } -> int""" @property def SoundLocation(self) -> str:"""SoundLocation { get; set; } -> str""" @property def Stream(self) -> _n_2_t_0:"""Stream { get; set; } -> Stream""" @property def Tag(self) -> object:"""Tag { get; set; } -> object""" @property def LoadCompleted(self) -> _n_1_t_2: """LoadCompleted Event: AsyncCompletedEventHandler""" @property def SoundLocationChanged(self) -> _n_0_t_0: """SoundLocationChanged Event: EventHandler""" @property def StreamChanged(self) -> _n_0_t_0: """StreamChanged Event: EventHandler""" def __init__(self, stream: _n_2_t_0) -> SoundPlayer:... def __init__(self, soundLocation: str) -> SoundPlayer:... def __init__(self) -> SoundPlayer:... def Load(self):... def LoadAsync(self):... def Play(self):... def PlayLooping(self):... def PlaySync(self):... def Stop(self):... class SystemSound(object): def Play(self):... class SystemSounds(object): @property def Asterisk(self) -> SystemSound:"""Asterisk { get; } -> SystemSound""" @property def Beep(self) -> SystemSound:"""Beep { get; } -> SystemSound""" @property def Exclamation(self) -> SystemSound:"""Exclamation { get; } -> SystemSound""" @property def Hand(self) -> SystemSound:"""Hand { get; } -> SystemSound""" @property def Question(self) -> SystemSound:"""Question { get; } -> SystemSound"""
41.92
87
0.676527
7949a423d406c26f49a6ef631947026a6f579f79
1,858
py
Python
app/pathfinder.py
Pulotum/BattleSnake2019
87b53fd38ad158b73c3eeb9a651d5339edf103cf
[ "MIT" ]
null
null
null
app/pathfinder.py
Pulotum/BattleSnake2019
87b53fd38ad158b73c3eeb9a651d5339edf103cf
[ "MIT" ]
1
2019-11-06T23:57:51.000Z
2019-11-06T23:57:51.000Z
app/pathfinder.py
Pulotum/BattleSnake
87b53fd38ad158b73c3eeb9a651d5339edf103cf
[ "MIT" ]
null
null
null
import returnMap import returnHazards import mapCoordinates def find_path(data, start, goal): width = data['board']['width'] height = data['board']['height'] map = returnMap.returnMap(data) # dist and visited arrays for visited and unvisited vertices dist = [10000 for x in range(width*height)] vertices = [i for i in range(width*height)] visited = [-1 for x in range(width*height)] # remove unreachable vertices hazards = returnHazards.returnHazards(map) for hazard in hazards: if goal == hazard: return False val = mapCoordinates.mapToVertex(hazard, width) vertices.remove(val) # set initial distance to 0 (need conversion method) start_index = mapCoordinates.mapToVertex(start) dist[start_index] = 0 while len(vertices) > 0: # set u as vertex with min distance u = min_index(vertices) # check for end condition coord = mapCoordinates.VertexToMap(u) if coord['x'] == goal['x'] and coord['y'] == goal['y']: path = [] if (visited[u] or (coord['x'] == start['x'] and coord['y'] == start['y'])): while u is not -1: move = mapCoordinates.VertexToMap(u) [move] + path u = visited[u] return path # remove u from vertices vertices.remove(u) neighbours = mapCoordinates.neighbours(u) for neighbour in neighbours: alt = dist[u] + 1 if alt < dist[neighbour]: dist[neighbour] = alt visited[neighbour] = u return None def distance(start, goal): dist_x = abs(start['x'] - goal['x']) dist_y = abs(start['y'] - goal['y']) return dist_x + dist_y def min_index(num_list): return num_list.index(min(num_list))
29.492063
87
0.583961
7949a471ecdfabe8772a8ec1beedf01c56e025af
1,273
py
Python
examples/units_and_coordinates/planet_locations.py
fluxtransport/sunpy
351d3edca97e779179f367670292c95574c7a222
[ "BSD-2-Clause" ]
1
2021-07-03T14:08:05.000Z
2021-07-03T14:08:05.000Z
examples/units_and_coordinates/planet_locations.py
fluxtransport/sunpy
351d3edca97e779179f367670292c95574c7a222
[ "BSD-2-Clause" ]
null
null
null
examples/units_and_coordinates/planet_locations.py
fluxtransport/sunpy
351d3edca97e779179f367670292c95574c7a222
[ "BSD-2-Clause" ]
null
null
null
""" =================================== Getting the location of the planets =================================== How to get the position of planetary bodies im the solar system using `astropy's solar system ephemeris <http://docs.astropy.org/en/stable/coordinates/solarsystem.html#solar-system-ephemerides>`__ information and SunPy. """ import matplotlib.pyplot as plt from astropy.time import Time from sunpy.coordinates import get_body_heliographic_stonyhurst ############################################################################## # Lets grab the positions of each of the planets in Heliographic Stonyhurst # coordinates. obstime = Time('2014-05-15T07:54:00.005') planet_list = ['earth', 'venus', 'mars', 'mercury', 'jupiter', 'neptune', 'uranus', 'sun'] planet_coord = [get_body_heliographic_stonyhurst( this_planet, time=obstime) for this_planet in planet_list] ############################################################################## # Let's plot the results. Remember the Sun is at the center of this coordinate # system. fig = plt.figure() ax = plt.subplot(projection='polar') for this_planet, this_coord in zip(planet_list, planet_coord): ax.plot(this_coord.lon.to('rad'), this_coord.radius, 'o', label=this_planet) ax.legend() plt.show()
39.78125
149
0.628437
7949a4adf673f5c810c5944cdfd7ae2475e44266
7,276
py
Python
wordpress/api.py
DivvyHQ/wp-api-python
6028d265c00f5fb6db0aa10520d649c6696d0dd0
[ "MIT" ]
null
null
null
wordpress/api.py
DivvyHQ/wp-api-python
6028d265c00f5fb6db0aa10520d649c6696d0dd0
[ "MIT" ]
1
2018-07-20T13:46:59.000Z
2018-10-31T17:51:14.000Z
wordpress/api.py
DivvyHQ/wp-api-python
6028d265c00f5fb6db0aa10520d649c6696d0dd0
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Wordpress API Class """ from __future__ import unicode_literals import logging from json import dumps as jsonencode from wordpress.auth import BasicAuth, OAuth, OAuth_3Leg, NoAuth from wordpress.helpers import StrUtils, UrlUtils from wordpress.transport import API_Requests_Wrapper __title__ = "wordpress-api" class API(object): """ API Class """ def __init__(self, url, consumer_key, consumer_secret, **kwargs): self.logger = logging.getLogger(__name__) self.requester = API_Requests_Wrapper(url=url, **kwargs) auth_kwargs = dict( requester=self.requester, consumer_key=consumer_key, consumer_secret=consumer_secret, ) auth_kwargs.update(kwargs) auth_class = OAuth if kwargs.get('basic_auth'): auth_class = BasicAuth elif kwargs.get('oauth1a_3leg'): auth_class = OAuth_3Leg elif kwargs.get('no_auth'): auth_class = NoAuth if kwargs.get('version', '').startswith('wc') and kwargs.get('oauth1a_3leg'): self.logger.warn("WooCommerce JSON Api does not seem to support 3leg") self.auth = auth_class(**auth_kwargs) @property def url(self): return self.requester.url @property def timeout(self): return self.requester.timeout @property def namespace(self): return self.requester.api @property def version(self): return self.requester.api_version @property def verify_ssl(self): return self.requester.verify_ssl @property def is_ssl(self): return self.requester.is_ssl @property def consumer_key(self): return self.auth.consumer_key @property def consumer_secret(self): return self.auth.consumer_secret @property def callback(self): return self.auth.callback def request_post_mortem(self, response=None): """ Attempt to diagnose what went wrong in a request """ reason = None remedy = None response_json = {} try: response_json = response.json() except ValueError: pass # import pudb; pudb.set_trace() request_body = {} request_url = "" if hasattr(response, 'request'): if hasattr(response.request, 'url'): request_url = response.request.url if hasattr(response.request, 'body'): request_body = response.request.body if 'code' in response_json or 'message' in response_json: reason = u" - ".join([ unicode(response_json.get(key)) for key in ['code', 'message', 'data'] \ if key in response_json ]) if 'code' == 'rest_user_invalid_email': remedy = "Try checking the email %s doesn't already exist" % \ request_body.get('email') elif 'code' == 'json_oauth1_consumer_mismatch': remedy = "Try deleting the cached credentials at %s" % \ self.auth.creds_store elif 'code' == 'woocommerce_rest_cannot_view': if not self.auth.query_string_auth: remedy = "Try enabling query_string_auth" else: remedy = ( "This error is super generic and can be caused by just " "about anything. Here are some things to try: \n" " - Check that the account which as assigned to your " "oAuth creds has the correct access level\n" " - Enable logging and check for error messages in " "wp-content and wp-content/uploads/wc-logs\n" " - Check that your query string parameters are valid\n" " - Make sure your server is not messing with authentication headers\n" " - Try a different endpoint\n" " - Try enabling HTTPS and using basic authentication\n" ) response_headers = {} if hasattr(response, 'headers'): response_headers = response.headers if not reason: requester_api_url = self.requester.api_url if hasattr(response, 'links') and response.links: links = response.links first_link_key = list(links)[0] header_api_url = links[first_link_key].get('url', '') if header_api_url: header_api_url = StrUtils.eviscerate(header_api_url, '/') if header_api_url and requester_api_url\ and header_api_url != requester_api_url: reason = "hostname mismatch. %s != %s" % ( header_api_url, requester_api_url ) header_url = StrUtils.eviscerate(header_api_url, '/') header_url = StrUtils.eviscerate(header_url, self.requester.api) header_url = StrUtils.eviscerate(header_url, '/') remedy = "try changing url to %s" % header_url msg = "API call to %s returned \nCODE: %s\nRESPONSE:%s \nHEADERS: %s\nREQ_BODY:%s" % ( request_url, unicode(response.status_code), UrlUtils.beautify_response(response), unicode(response_headers), unicode(request_body.encode('utf-8'))[:1000] ) if reason: msg += "\nBecause of %s" % reason if remedy: msg += "\n%s" % remedy raise UserWarning(msg) def __request(self, method, endpoint, data, **kwargs): """ Do requests """ endpoint_url = self.requester.endpoint_url(endpoint) endpoint_url = self.auth.get_auth_url(endpoint_url, method, **kwargs) auth = self.auth.get_auth() content_type = kwargs.get('headers', {}).get('content-type', 'application/json') if data is not None and content_type.startswith('application/json'): data = jsonencode(data, ensure_ascii=False).encode('utf-8') response = self.requester.request( method=method, url=endpoint_url, auth=auth, data=data, **kwargs ) if response.status_code not in [200, 201, 202]: self.request_post_mortem(response) return response # TODO add kwargs option for headers def get(self, endpoint, **kwargs): """ Get requests """ return self.__request("GET", endpoint, None, **kwargs) def post(self, endpoint, data, **kwargs): """ POST requests """ return self.__request("POST", endpoint, data, **kwargs) def put(self, endpoint, data, **kwargs): """ PUT requests """ return self.__request("PUT", endpoint, data, **kwargs) def delete(self, endpoint, **kwargs): """ DELETE requests """ return self.__request("DELETE", endpoint, None, **kwargs) def options(self, endpoint, **kwargs): """ OPTIONS requests """ return self.__request("OPTIONS", endpoint, None, **kwargs)
33.376147
95
0.574079
7949a4e3925ae45f67d1099e076495f2842afb16
5,058
py
Python
websecurityscanner/noxfile.py
hugovk/google-cloud-python
b387134827dbc3be0e1b431201e0875798002fda
[ "Apache-2.0" ]
1
2019-03-26T21:44:51.000Z
2019-03-26T21:44:51.000Z
websecurityscanner/noxfile.py
hugovk/google-cloud-python
b387134827dbc3be0e1b431201e0875798002fda
[ "Apache-2.0" ]
40
2019-07-16T10:04:48.000Z
2020-01-20T09:04:59.000Z
websecurityscanner/noxfile.py
hugovk/google-cloud-python
b387134827dbc3be0e1b431201e0875798002fda
[ "Apache-2.0" ]
2
2019-07-18T00:05:31.000Z
2019-11-27T14:17:22.000Z
# -*- coding: utf-8 -*- # # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Generated by synthtool. DO NOT EDIT! from __future__ import absolute_import import os import shutil import nox LOCAL_DEPS = (os.path.join("..", "api_core"), os.path.join("..", "core")) BLACK_VERSION = "black==19.3b0" BLACK_PATHS = ["docs", "google", "tests", "noxfile.py", "setup.py"] if os.path.exists("samples"): BLACK_PATHS.append("samples") @nox.session(python="3.7") def lint(session): """Run linters. Returns a failure if the linters find linting errors or sufficiently serious code quality issues. """ session.install("flake8", BLACK_VERSION, *LOCAL_DEPS) session.run("black", "--check", *BLACK_PATHS) session.run("flake8", "google", "tests") @nox.session(python="3.6") def blacken(session): """Run black. Format code to uniform standard. This currently uses Python 3.6 due to the automated Kokoro run of synthtool. That run uses an image that doesn't have 3.6 installed. Before updating this check the state of the `gcp_ubuntu_config` we use for that Kokoro run. """ session.install(BLACK_VERSION) session.run("black", *BLACK_PATHS) @nox.session(python="3.7") def lint_setup_py(session): """Verify that setup.py is valid (including RST check).""" session.install("docutils", "pygments") session.run("python", "setup.py", "check", "--restructuredtext", "--strict") def default(session): # Install all test dependencies, then install this package in-place. session.install("mock", "pytest", "pytest-cov") for local_dep in LOCAL_DEPS: session.install("-e", local_dep) session.install("-e", ".") # Run py.test against the unit tests. session.run( "py.test", "--quiet", "--cov=google.cloud", "--cov=tests.unit", "--cov-append", "--cov-config=.coveragerc", "--cov-report=", "--cov-fail-under=0", os.path.join("tests", "unit"), *session.posargs, ) @nox.session(python=["2.7", "3.5", "3.6", "3.7", "3.8"]) def unit(session): """Run the unit test suite.""" default(session) @nox.session(python=["2.7", "3.7"]) def system(session): """Run the system test suite.""" system_test_path = os.path.join("tests", "system.py") system_test_folder_path = os.path.join("tests", "system") # Sanity check: Only run tests if the environment variable is set. if not os.environ.get("GOOGLE_APPLICATION_CREDENTIALS", ""): session.skip("Credentials must be set via environment variable") system_test_exists = os.path.exists(system_test_path) system_test_folder_exists = os.path.exists(system_test_folder_path) # Sanity check: only run tests if found. if not system_test_exists and not system_test_folder_exists: session.skip("System tests were not found") # Use pre-release gRPC for system tests. session.install("--pre", "grpcio") # Install all test dependencies, then install this package into the # virtualenv's dist-packages. session.install("mock", "pytest") for local_dep in LOCAL_DEPS: session.install("-e", local_dep) session.install("-e", "../test_utils/") session.install("-e", ".") # Run py.test against the system tests. if system_test_exists: session.run("py.test", "--quiet", system_test_path, *session.posargs) if system_test_folder_exists: session.run("py.test", "--quiet", system_test_folder_path, *session.posargs) @nox.session(python="3.7") def cover(session): """Run the final coverage report. This outputs the coverage report aggregating coverage from the unit test runs (not system test runs), and then erases coverage data. """ session.install("coverage", "pytest-cov") session.run("coverage", "report", "--show-missing", "--fail-under=100") session.run("coverage", "erase") @nox.session(python="3.7") def docs(session): """Build the docs for this library.""" session.install("-e", ".") session.install("sphinx", "alabaster", "recommonmark") shutil.rmtree(os.path.join("docs", "_build"), ignore_errors=True) session.run( "sphinx-build", "-W", # warnings as errors "-T", # show full traceback on exception "-N", # no colors "-b", "html", "-d", os.path.join("docs", "_build", "doctrees", ""), os.path.join("docs", ""), os.path.join("docs", "_build", "html", ""), )
31.416149
84
0.653618
7949a58fe6ea4495f40bf1fb98bc2818e79a23ba
5,347
py
Python
voicefixer/base.py
anonymous20211004/iclr2022-vf
01464bab64812a299d3e63fbf280ccb8e3c5ab9c
[ "MIT" ]
1
2022-02-21T07:49:20.000Z
2022-02-21T07:49:20.000Z
voicefixer/base.py
anonymous20211004/iclr2022-vf
01464bab64812a299d3e63fbf280ccb8e3c5ab9c
[ "MIT" ]
null
null
null
voicefixer/base.py
anonymous20211004/iclr2022-vf
01464bab64812a299d3e63fbf280ccb8e3c5ab9c
[ "MIT" ]
null
null
null
import librosa.display from voicefixer.tools.pytorch_util import * from voicefixer.tools.wav import * from voicefixer.restorer.model import VoiceFixer as voicefixer_fe import os EPS=1e-8 class VoiceFixer(): def __init__(self): self._model = voicefixer_fe(channels=2, sample_rate=44100) self._model = self._model.load_from_checkpoint(os.path.join(os.path.expanduser('~'), ".cache/voicefixer/analysis_module/checkpoints/epoch=15_trimed_bn.ckpt")) self._model.eval() def _load_wav_energy(self, path, sample_rate, threshold=0.95): wav_10k, _ = librosa.load(path, sr=sample_rate) stft = np.log10(np.abs(librosa.stft(wav_10k))+1.0) fbins = stft.shape[0] e_stft = np.sum(stft, axis=1) for i in range(e_stft.shape[0]): e_stft[-i-1] = np.sum(e_stft[:-i-1]) total = e_stft[-1] for i in range(e_stft.shape[0]): if(e_stft[i] < total*threshold):continue else: break return wav_10k, int((sample_rate//2) * (i/fbins)) def _load_wav(self, path, sample_rate, threshold=0.95): wav_10k, _ = librosa.load(path, sr=sample_rate) return wav_10k def _amp_to_original_f(self, mel_sp_est, mel_sp_target, cutoff=0.2): freq_dim = mel_sp_target.size()[-1] mel_sp_est_low, mel_sp_target_low = mel_sp_est[..., 5:int(freq_dim * cutoff)], mel_sp_target[..., 5:int(freq_dim * cutoff)] energy_est, energy_target = torch.mean(mel_sp_est_low, dim=(2, 3)), torch.mean(mel_sp_target_low, dim=(2, 3)) amp_ratio = energy_target / energy_est return mel_sp_est * amp_ratio[..., None, None], mel_sp_target def _trim_center(self, est, ref): diff = np.abs(est.shape[-1] - ref.shape[-1]) if (est.shape[-1] == ref.shape[-1]): return est, ref elif (est.shape[-1] > ref.shape[-1]): min_len = min(est.shape[-1], ref.shape[-1]) est, ref = est[..., int(diff // 2):-int(diff // 2)], ref est, ref = est[..., :min_len], ref[..., :min_len] return est, ref else: min_len = min(est.shape[-1], ref.shape[-1]) est, ref = est, ref[..., int(diff // 2):-int(diff // 2)] est, ref = est[..., :min_len], ref[..., :min_len] return est, ref def _pre(self, model, input, cuda): input = input[None, None, ...] input = torch.tensor(input) if(cuda and torch.cuda.is_available()): input = input.cuda() sp, _, _ = model.f_helper.wav_to_spectrogram_phase(input) mel_orig = model.mel(sp.permute(0,1,3,2)).permute(0,1,3,2) # return models.to_log(sp), models.to_log(mel_orig) return sp, mel_orig def remove_higher_frequency(self, wav, ratio=0.95): stft = librosa.stft(wav) real, img = np.real(stft), np.imag(stft) mag = (real ** 2 + img ** 2) ** 0.5 cos, sin = real / (mag+EPS), img / (mag+EPS) spec = np.abs(stft) # [1025,T] feature = spec.copy() feature = np.log10(feature+EPS) feature[feature < 0] = 0 energy_level = np.sum(feature, axis=1) threshold = np.sum(energy_level) * ratio curent_level, i = energy_level[0], 0 while (i < energy_level.shape[0] and curent_level < threshold): curent_level += energy_level[i + 1, ...] i += 1 print(i) spec[i:, ...] = np.zeros_like(spec[i:, ...]) stft = spec * cos + 1j * spec * sin return librosa.istft(stft) @torch.no_grad() def restore_inmem(self, wav_10k, cuda=False, mode=0, your_vocoder_func=None): if(cuda and torch.cuda.is_available()): self._model = self._model.cuda() # metrics = {} if(mode == 0): self._model.eval() elif(mode == 1): self._model.eval() elif(mode == 2): self._model.train() # More effective on seriously demaged speech res = [] seg_length = 44100*30 break_point = seg_length while break_point < wav_10k.shape[0]+seg_length: segment = wav_10k[break_point-seg_length:break_point] if (mode == 1): segment = self.remove_higher_frequency(segment) sp,mel_noisy = self._pre(self._model, segment, cuda) out_model = self._model(sp, mel_noisy) denoised_mel = from_log(out_model['mel']) if(your_vocoder_func is None): out = self._model.vocoder(denoised_mel) else: out = your_vocoder_func(denoised_mel) # unify energy if(torch.max(torch.abs(out)) > 1.0): out = out / torch.max(torch.abs(out)) print("Warning: Exceed energy limit,", input) # frame alignment out, _ = self._trim_center(out, segment) res.append(out) break_point += seg_length out = torch.cat(res,-1) return tensor2numpy(out.squeeze(0)) def restore(self, input, output, cuda=False, mode=0, your_vocoder_func=None): wav_10k = self._load_wav(input, sample_rate=44100) out_np_wav = self.restore_inmem(wav_10k, cuda=cuda, mode=mode, your_vocoder_func=your_vocoder_func) save_wave(out_np_wav,fname=output,sample_rate=44100)
42.436508
166
0.587993
7949a60a26a342498163f65cde07a95bd785da98
7,392
py
Python
src/clients/python/api_v1/examples/simple_shm_string_client.py
AliAzG/triton-inference-server
fbce250035d049d13f32c362e2d76a5cb787da51
[ "BSD-3-Clause" ]
null
null
null
src/clients/python/api_v1/examples/simple_shm_string_client.py
AliAzG/triton-inference-server
fbce250035d049d13f32c362e2d76a5cb787da51
[ "BSD-3-Clause" ]
null
null
null
src/clients/python/api_v1/examples/simple_shm_string_client.py
AliAzG/triton-inference-server
fbce250035d049d13f32c362e2d76a5cb787da51
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import argparse import numpy as np import os from builtins import range from tensorrtserver.api import * import tensorrtserver.shared_memory as shm from ctypes import * FLAGS = None if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-v', '--verbose', action="store_true", required=False, default=False, help='Enable verbose output') parser.add_argument('-u', '--url', type=str, required=False, default='localhost:8000', help='Inference server URL. Default is localhost:8000.') parser.add_argument('-i', '--protocol', type=str, required=False, default='http', help='Protocol ("http"/"grpc") used to ' + 'communicate with inference service. Default is "http".') parser.add_argument('-H', dest='http_headers', metavar="HTTP_HEADER", required=False, action='append', help='HTTP headers to add to inference server requests. ' + 'Format is -H"Header:Value".') FLAGS = parser.parse_args() protocol = ProtocolType.from_str(FLAGS.protocol) # We use a simple model that takes 2 input tensors of 16 strings # each and returns 2 output tensors of 16 strings each. The input # strings must represent integers. One output tensor is the # element-wise sum of the inputs and one output is the element-wise # difference. model_name = "simple_string" model_version = -1 batch_size = 1 # Create the inference context for the model. infer_ctx = InferContext(FLAGS.url, protocol, model_name, model_version, FLAGS.verbose) # Create the shared memory control context shared_memory_ctx = SharedMemoryControlContext(FLAGS.url, protocol, \ http_headers=FLAGS.http_headers, verbose=FLAGS.verbose) # Create the data for the two input tensors. Initialize the first # to unique integers and the second to all ones. The input tensors # are the string representation of these values. in0 = np.arange(start=0, stop=16, dtype=np.int32) in1 = np.ones(shape=16, dtype=np.int32) expected_sum = np.add(in0, in1) expected_diff = np.subtract(in0, in1) in0n = np.array([str(x) for x in in0.reshape(in0.size)], dtype=object) input0_data = in0n.reshape(in0.shape) in1n = np.array([str(x) for x in in1.reshape(in1.size)], dtype=object) input1_data = in1n.reshape(in1.shape) # serialize the string tensors input0_data_serialized = serialize_string_tensor(input0_data) input1_data_serialized = serialize_string_tensor(input1_data) # Use the size of the serialized tensors to create the shared memory regions input0_byte_size = input0_data_serialized.size * input0_data_serialized.itemsize input1_byte_size = input1_data_serialized.size * input1_data_serialized.itemsize output_byte_size = max(input0_byte_size, input1_byte_size) + 1 output_byte_size = max(input0_byte_size, input1_byte_size) + 1 # Create Output0 and Output1 in Shared Memory and store shared memory handles shm_op0_handle = shm.create_shared_memory_region("output0_data", "/output0_simple", output_byte_size) shm_op1_handle = shm.create_shared_memory_region("output1_data", "/output1_simple", output_byte_size) # Register Output0 and Output1 shared memory with TRTIS shared_memory_ctx.register(shm_op0_handle) shared_memory_ctx.register(shm_op1_handle) # Create Input0 and Input1 in Shared Memory and store shared memory handles shm_ip0_handle = shm.create_shared_memory_region("input0_data", "/input0_simple", input0_byte_size) shm_ip1_handle = shm.create_shared_memory_region("input1_data", "/input1_simple", input1_byte_size) # Put input data values into shared memory shm.set_shared_memory_region(shm_ip0_handle, [input0_data_serialized]) shm.set_shared_memory_region(shm_ip1_handle, [input1_data_serialized]) # Register Input0 and Input1 shared memory with TRTIS shared_memory_ctx.register(shm_ip0_handle) shared_memory_ctx.register(shm_ip1_handle) # Send inference request to the inference server. Get results for both # output tensors. Passing shape of input tensors is necessary for # String and variable size tensors. results = infer_ctx.run({ 'INPUT0' : (shm_ip0_handle, input0_data.shape), 'INPUT1' : (shm_ip1_handle, input1_data.shape)}, { 'OUTPUT0' : (InferContext.ResultFormat.RAW, shm_op0_handle), 'OUTPUT1' : (InferContext.ResultFormat.RAW, shm_op1_handle) }, batch_size) # We expect there to be 2 results (each with batch-size 1). Walk # over all 16 result elements and print the sum and difference # calculated by the model. output0_data = results['OUTPUT0'][0] output1_data = results['OUTPUT1'][0] for i in range(16): print(str(input0_data[i]) + " + " + str(input1_data[i]) + " = " + output0_data[i].decode("utf-8")) print(str(input0_data[i]) + " - " + str(input1_data[i]) + " = " + output1_data[i].decode("utf-8")) # Convert result from string to int to check result r0 = int(output0_data[i]) r1 = int(output1_data[i]) if expected_sum[i] != r0: print("error: incorrect sum"); sys.exit(1); if expected_diff[i] != r1: print("error: incorrect difference"); sys.exit(1); print(shared_memory_ctx.get_shared_memory_status()) shared_memory_ctx.unregister_all() shm.destroy_shared_memory_region(shm_ip0_handle) shm.destroy_shared_memory_region(shm_ip1_handle) shm.destroy_shared_memory_region(shm_op0_handle) shm.destroy_shared_memory_region(shm_op1_handle)
49.610738
106
0.71131
7949a7a44fab71462847083e9085e08d237760af
4,790
py
Python
homeassistant/components/sensor/dht.py
michaelarnauts/home-assistant
7d905e6c0c99a4454de26d63af0581b454f01ca1
[ "MIT" ]
1
2017-12-02T11:40:01.000Z
2017-12-02T11:40:01.000Z
homeassistant/components/sensor/dht.py
michaelarnauts/home-assistant
7d905e6c0c99a4454de26d63af0581b454f01ca1
[ "MIT" ]
null
null
null
homeassistant/components/sensor/dht.py
michaelarnauts/home-assistant
7d905e6c0c99a4454de26d63af0581b454f01ca1
[ "MIT" ]
null
null
null
""" homeassistant.components.sensor.dht ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Adafruit DHT temperature and humidity sensor. You need a Python3 compatible version of the Adafruit_Python_DHT library (e.g. https://github.com/mala-zaba/Adafruit_Python_DHT, also see requirements.txt). As this requires access to the GPIO, you will need to run home-assistant as root. Configuration: To use the Adafruit DHT sensor you will need to add something like the following to your config/configuration.yaml: sensor: platform: dht sensor: DHT22 pin: 23 monitored_conditions: - temperature - humidity Variables: sensor *Required The sensor type, DHT11, DHT22 or AM2302 pin *Required The pin the sensor is connected to, something like 'P8_11' for Beaglebone, '23' for Raspberry Pi monitored_conditions *Optional Conditions to monitor. Available conditions are temperature and humidity. """ import logging from datetime import timedelta from homeassistant.util import Throttle from homeassistant.const import TEMP_FAHRENHEIT from homeassistant.helpers.entity import Entity # update this requirement to upstream as soon as it supports python3 REQUIREMENTS = ['http://github.com/mala-zaba/Adafruit_Python_DHT/archive/' + '4101340de8d2457dd194bca1e8d11cbfc237e919.zip'] _LOGGER = logging.getLogger(__name__) SENSOR_TYPES = { 'temperature': ['Temperature', ''], 'humidity': ['Humidity', '%'] } # Return cached results if last scan was less then this time ago # DHT11 is able to deliver data once per second, DHT22 once every two MIN_TIME_BETWEEN_UPDATES = timedelta(seconds=30) def setup_platform(hass, config, add_devices, discovery_info=None): """ Get the DHT sensor. """ try: import Adafruit_DHT except ImportError: _LOGGER.exception( "Unable to import Adafruit_DHT. " "Did you maybe not install the 'Adafruit_DHT' package?") return False SENSOR_TYPES['temperature'][1] = hass.config.temperature_unit unit = hass.config.temperature_unit available_sensors = { "DHT11": Adafruit_DHT.DHT11, "DHT22": Adafruit_DHT.DHT22, "AM2302": Adafruit_DHT.AM2302 } sensor = available_sensors[config['sensor']] pin = config['pin'] if not sensor or not pin: _LOGGER.error( "Config error " "Please check your settings for DHT, sensor not supported.") return None data = DHTClient(Adafruit_DHT, sensor, pin) dev = [] try: for variable in config['monitored_conditions']: if variable not in SENSOR_TYPES: _LOGGER.error('Sensor type: "%s" does not exist', variable) else: dev.append(DHTSensor(data, variable, unit)) except KeyError: pass add_devices(dev) # pylint: disable=too-few-public-methods class DHTSensor(Entity): """ Implements an DHT sensor. """ def __init__(self, dht_client, sensor_type, temp_unit): self.client_name = 'DHT sensor' self._name = SENSOR_TYPES[sensor_type][0] self.dht_client = dht_client self.temp_unit = temp_unit self.type = sensor_type self._state = None self._unit_of_measurement = SENSOR_TYPES[sensor_type][1] self.update() @property def name(self): return '{} {}'.format(self.client_name, self._name) @property def state(self): """ Returns the state of the device. """ return self._state @property def unit_of_measurement(self): """ Unit of measurement of this entity, if any. """ return self._unit_of_measurement def update(self): """ Gets the latest data from the DHT and updates the states. """ self.dht_client.update() data = self.dht_client.data if self.type == 'temperature': self._state = round(data['temperature'], 1) if self.temp_unit == TEMP_FAHRENHEIT: self._state = round(data['temperature'] * 1.8 + 32, 1) elif self.type == 'humidity': self._state = round(data['humidity'], 1) class DHTClient(object): """ Gets the latest data from the DHT sensor. """ def __init__(self, adafruit_dht, sensor, pin): self.adafruit_dht = adafruit_dht self.sensor = sensor self.pin = pin self.data = dict() @Throttle(MIN_TIME_BETWEEN_UPDATES) def update(self): """ Gets the latest data the DHT sensor. """ humidity, temperature = self.adafruit_dht.read_retry(self.sensor, self.pin) if temperature: self.data['temperature'] = temperature if humidity: self.data['humidity'] = humidity
29.030303
76
0.650522
7949a8bc4ea4939bd8bb6c9c28700c7947e7e546
15,137
py
Python
zhusuan/legacy/variational_legacy.py
weiwang2330/BayesNeuralNet
6be81289d9bc46657a1b14ded440c8160721a464
[ "MIT" ]
null
null
null
zhusuan/legacy/variational_legacy.py
weiwang2330/BayesNeuralNet
6be81289d9bc46657a1b14ded440c8160721a464
[ "MIT" ]
null
null
null
zhusuan/legacy/variational_legacy.py
weiwang2330/BayesNeuralNet
6be81289d9bc46657a1b14ded440c8160721a464
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import print_function from __future__ import division import warnings import tensorflow as tf import six from six.moves import zip, map from tensorflow.python.training import moving_averages from zhusuan.utils import log_mean_exp, merge_dicts from zhusuan.evaluation import is_loglikelihood __all__ = [ 'sgvb', 'iwae', 'rws', 'nvil', 'vimco' ] def sgvb(log_joint, observed, latent, axis=None): """ Implements the stochastic gradient variational bayes (SGVB) algorithm from (Kingma, 2013). This only works for continuous latent `StochasticTensor` s that can be reparameterized (Kingma, 2013). :param log_joint: A function that accepts a dictionary argument of ``(string, Tensor)`` pairs, which are mappings from all `StochasticTensor` names in the model to their observed values. The function should return a Tensor, representing the log joint likelihood of the model. :param observed: A dictionary of ``(string, Tensor)`` pairs. Mapping from names of observed `StochasticTensor` s to their values :param latent: A dictionary of ``(string, (Tensor, Tensor))`` pairs. Mapping from names of latent `StochasticTensor` s to their samples and log probabilities. :param axis: The sample dimension(s) to reduce when computing the outer expectation in variational lower bound. If `None`, no dimension is reduced. :return: A Tensor. The variational lower bound. """ warnings.warn("sgvb(): This function will be deprecated in the coming " "version (0.3.1). Variational utilities are moving to " "`zs.variational`. The new sgvb gradient estimator can be " "accessed by first constructing the elbo objective (using " "`zs.variational.elbo` and then calling its sgvb() method.", category=FutureWarning) latent_k, latent_v = map(list, zip(*six.iteritems(latent))) latent_outputs = dict(zip(latent_k, map(lambda x: x[0], latent_v))) latent_logpdfs = map(lambda x: x[1], latent_v) joint_obs = merge_dicts(observed, latent_outputs) lower_bound = log_joint(joint_obs) - sum(latent_logpdfs) if axis is not None: lower_bound = tf.reduce_mean(lower_bound, axis) return lower_bound def iwae(log_joint, observed, latent, axis=None): """ Implements the importance weighted lower bound from (Burda, 2015). This only works for continuous latent `StochasticTensor` s that can be reparameterized (Kingma, 2013). :param log_joint: A function that accepts a dictionary argument of ``(string, Tensor)`` pairs, which are mappings from all `StochasticTensor` names in the model to their observed values. The function should return a Tensor, representing the log joint likelihood of the model. :param observed: A dictionary of ``(string, Tensor)`` pairs. Mapping from names of observed `StochasticTensor` s to their values. :param latent: A dictionary of ``(string, (Tensor, Tensor))``) pairs. Mapping from names of latent `StochasticTensor` s to their samples and log probabilities. :param axis: The sample dimension(s) to reduce when computing the outer expectation in variational lower bound. If `None`, no dimension is reduced. :return: A Tensor. The importance weighted lower bound. """ warnings.warn("iwae(): This function will be deprecated in the coming " "version (0.3.1). Variational utilities are moving to " "`zs.variational`. The new iwae gradient estimator can be " "accessed by first constructing the importance weighted " "objective (using `zs.variational.iw_objective` and then " "calling its sgvb() method.", category=FutureWarning) return is_loglikelihood(log_joint, observed, latent, axis) def rws(log_joint, observed, latent, axis=None): """ Implements Reweighted Wake-sleep from (Bornschein, 2015). This works for both continuous and discrete latent `StochasticTensor` s. :param log_joint: A function that accepts a dictionary argument of ``(string, Tensor)`` pairs, which are mappings from all `StochasticTensor` names in the model to their observed values. The function should return a Tensor, representing the log joint likelihood of the model. :param observed: A dictionary of ``(string, Tensor)`` pairs. Mapping from names of observed `StochasticTensor` s to their values. :param latent: A dictionary of ``(string, (Tensor, Tensor))``) pairs. Mapping from names of latent `StochasticTensor` s to their samples and log probabilities. :param axis: The sample dimension(s) to reduce when computing the outer expectation in log likelihood and in the cost for adapting proposals. If `None`, no dimension is reduced. :return: A Tensor. The surrogate cost to minimize. :return: A Tensor. Estimated log likelihoods. """ warnings.warn("rws(): This function will be deprecated in the coming " "version (0.3.1). Variational utilities are moving to " "`zs.variational`. Features of the original rws() can be " "achieved by two new variational objectives. For learning " "model parameters, please use the importance weighted " "objective: `zs.variational.iw_objective()`. For adapting " "the proposal, the new rws gradient estimator can be " "accessed by first constructing the inclusive KL divergence " "objective using `zs.variational.klpq` and then calling " "its rws() method.", category=FutureWarning) latent_k, latent_v = map(list, zip(*six.iteritems(latent))) latent_outputs = dict(zip(latent_k, map(lambda x: x[0], latent_v))) latent_logpdfs = map(lambda x: x[1], latent_v) joint_obs = merge_dicts(observed, latent_outputs) log_joint_value = log_joint(joint_obs) entropy = -sum(latent_logpdfs) log_w = log_joint_value + entropy if axis is not None: log_w_max = tf.reduce_max(log_w, axis, keep_dims=True) w_u = tf.exp(log_w - log_w_max) w_tilde = tf.stop_gradient( w_u / tf.reduce_sum(w_u, axis, keep_dims=True)) log_likelihood = log_mean_exp(log_w, axis) fake_log_joint_cost = -tf.reduce_sum(w_tilde * log_joint_value, axis) fake_proposal_cost = tf.reduce_sum(w_tilde * entropy, axis) cost = fake_log_joint_cost + fake_proposal_cost else: cost = log_w log_likelihood = log_w return cost, log_likelihood def nvil(log_joint, observed, latent, baseline=None, decay=0.8, variance_normalization=False, axis=None): """ Implements the variance reduced score function estimator for gradients of the variational lower bound from (Mnih, 2014). This algorithm is also called "REINFORCE" or "baseline". This works for both continuous and discrete latent `StochasticTensor` s. :param log_joint: A function that accepts a dictionary argument of ``(string, Tensor)`` pairs, which are mappings from all `StochasticTensor` names in the model to their observed values. The function should return a Tensor, representing the log joint likelihood of the model. :param observed: A dictionary of ``(string, Tensor)`` pairs. Mapping from names of observed `StochasticTensor` s to their values. :param latent: A dictionary of ``(string, (Tensor, Tensor))``) pairs. Mapping from names of latent `StochasticTensor` s to their samples and log probabilities. :param baseline: A Tensor that can broadcast to match the shape returned by `log_joint`. A trainable estimation for the scale of the variational lower bound, which is typically dependent on observed values, e.g., a neural network with observed values as inputs. :param variance_normalization: Whether to use variance normalization. :param decay: Float. The moving average decay for variance normalization. :param axis: The sample dimension(s) to reduce when computing the outer expectation in variational lower bound. If `None`, no dimension is reduced. :return: A Tensor. The surrogate cost to minimize. :return: A Tensor. The variational lower bound. """ warnings.warn("nvil(): This function will be deprecated in the coming " "version (0.3.1). Variational utilities are moving to " "`zs.variational`. The new nvil gradient estimator can be " "accessed by first constructing the elbo objective (using " "`zs.variational.elbo` and then calling its reinforce() " "method.", category=FutureWarning) latent_k, latent_v = map(list, zip(*six.iteritems(latent))) latent_outputs = dict(zip(latent_k, map(lambda x: x[0], latent_v))) latent_logpdfs = map(lambda x: x[1], latent_v) joint_obs = merge_dicts(observed, latent_outputs) log_joint_value = log_joint(joint_obs) entropy = -sum(latent_logpdfs) l_signal = log_joint_value + entropy cost = 0. if baseline is not None: baseline_cost = 0.5 * tf.square(tf.stop_gradient(l_signal) - baseline) l_signal = l_signal - baseline cost += baseline_cost if variance_normalization is True: # TODO: extend to non-scalar bc = tf.reduce_mean(l_signal) bv = tf.reduce_mean(tf.square(l_signal - bc)) moving_mean = tf.get_variable( 'moving_mean', shape=[], initializer=tf.constant_initializer(0.), trainable=False) moving_variance = tf.get_variable( 'moving_variance', shape=[], initializer=tf.constant_initializer(1.), trainable=False) update_mean = moving_averages.assign_moving_average( moving_mean, bc, decay=decay) update_variance = moving_averages.assign_moving_average( moving_variance, bv, decay=decay) l_signal = (l_signal - moving_mean) / tf.maximum( 1., tf.sqrt(moving_variance)) with tf.control_dependencies([update_mean, update_variance]): l_signal = tf.identity(l_signal) fake_log_joint_cost = -log_joint_value fake_variational_cost = tf.stop_gradient(l_signal) * entropy cost += fake_log_joint_cost + fake_variational_cost lower_bound = log_joint_value + entropy if axis is not None: cost = tf.reduce_mean(cost, axis) lower_bound = tf.reduce_mean(lower_bound, axis) return cost, lower_bound def vimco(log_joint, observed, latent, axis=None): """ Implements the multi-sample variance reduced score function estimator for gradients of the variational lower bound from (Minh, 2016). This works for both continuous and discrete latent `StochasticTensor` s. .. note:: :func:`vimco` is a multi-sample objective, size along `axis` in the objective should be larger than 1, else an error is raised. :param log_joint: A function that accepts a dictionary argument of ``(string, Tensor)`` pairs, which are mappings from all `StochasticTensor` names in the model to their observed values. The function should return a Tensor, representing the log joint likelihood of the model. :param observed: A dictionary of ``(string, Tensor)`` pairs. Mapping from names of observed `StochasticTensor` s to their values. :param latent: A dictionary of ``(string, (Tensor, Tensor))``) pairs. Mapping from names of latent `StochasticTensor` s to their samples and log probabilities. :param axis: The sample dimension to reduce when computing the outer expectation in variational lower bound. Must be specified. If `None`, an error is raised. :return: A Tensor. The surrogate cost to minimize. :return: A Tensor. The variational lower bound. """ warnings.warn("vimco(): This function will be deprecated in the coming " "version (0.3.1). Variational utilities are moving to " "`zs.variational`. The new vimco gradient estimator can be " "accessed by first constructing the importance weighted " "objective (using `zs.variational.iw_objective` and then " "calling its vimco() method.", category=FutureWarning) if axis is None: raise ValueError("vimco is a multi-sample objective, " "the 'axis' argument must be specified.") latent_k, latent_v = map(list, zip(*six.iteritems(latent))) latent_outputs = dict(zip(latent_k, map(lambda x: x[0], latent_v))) latent_logpdfs = map(lambda x: x[1], latent_v) joint_obs = merge_dicts(observed, latent_outputs) log_joint_value = log_joint(joint_obs) entropy = -sum(latent_logpdfs) l_signal = log_joint_value + entropy # check size along the sample axis err_msg = "vimco() is a multi-sample objective, " \ "size along 'axis' in the objective should be larger than 1." if l_signal.get_shape()[axis:axis + 1].is_fully_defined(): if l_signal.get_shape()[axis].value < 2: raise ValueError(err_msg) _assert_size_along_axis = tf.assert_greater_equal( tf.shape(l_signal)[axis], 2, message=err_msg) with tf.control_dependencies([_assert_size_along_axis]): l_signal = tf.identity(l_signal) # compute variance reduction term mean_except_signal = (tf.reduce_sum(l_signal, axis, keep_dims=True) - l_signal) / tf.to_float(tf.shape(l_signal)[axis] - 1) x, sub_x = tf.to_float(l_signal), tf.to_float(mean_except_signal) n_dim = tf.rank(x) axis_dim_mask = tf.cast(tf.one_hot(axis, n_dim), tf.bool) original_mask = tf.cast(tf.one_hot(n_dim - 1, n_dim), tf.bool) axis_dim = tf.ones([n_dim], tf.int32) * axis originals = tf.ones([n_dim], tf.int32) * (n_dim - 1) perm = tf.where(original_mask, axis_dim, tf.range(n_dim)) perm = tf.where(axis_dim_mask, originals, perm) multiples = tf.concat([tf.ones([n_dim], tf.int32), [tf.shape(x)[axis]]], 0) x = tf.transpose(x, perm=perm) sub_x = tf.transpose(sub_x, perm=perm) x_ex = tf.tile(tf.expand_dims(x, n_dim), multiples) x_ex = x_ex - tf.matrix_diag(x) + tf.matrix_diag(sub_x) control_variate = tf.transpose(log_mean_exp(x_ex, n_dim - 1), perm=perm) # variance reduced objective l_signal = log_mean_exp(l_signal, axis, keep_dims=True) - control_variate fake_term = tf.reduce_sum(-entropy * tf.stop_gradient(l_signal), axis) lower_bound = log_mean_exp(log_joint_value + entropy, axis) cost = -fake_term - log_mean_exp(log_joint_value + entropy, axis) return cost, lower_bound
47.303125
79
0.675101
7949a9ada8a9da49612835b859316455db3c0fbd
1,763
py
Python
sahara/plugins/mapr/versions/version_handler_factory.py
ksshanam/sahara
0d259f7a71447cd0cefe4f11184cc2ee335f4e33
[ "Apache-2.0" ]
null
null
null
sahara/plugins/mapr/versions/version_handler_factory.py
ksshanam/sahara
0d259f7a71447cd0cefe4f11184cc2ee335f4e33
[ "Apache-2.0" ]
1
2020-10-06T07:50:12.000Z
2020-10-06T07:50:12.000Z
sahara/plugins/mapr/versions/version_handler_factory.py
ksshanam/sahara
0d259f7a71447cd0cefe4f11184cc2ee335f4e33
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2015, MapR Technologies # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os def _load_versions(): d_name = os.path.dirname(__file__) m_template = 'sahara.plugins.mapr.versions.%s.version_handler' def predicate(v_dir): if v_dir != "__pycache__": v_dir = os.path.join(d_name, v_dir) return os.path.isdir(v_dir) and os.listdir(v_dir) return False def mapper(v_dir): return m_template % v_dir v_dirs = filter(predicate, os.listdir(d_name)) m_names = map(mapper, v_dirs) versions = {} for m_name in m_names: m = __import__(m_name, fromlist=['sahara']) versions[m.version] = getattr(m, 'VersionHandler')() return versions class VersionHandlerFactory(object): instance = None versions = None @staticmethod def get(): if not VersionHandlerFactory.instance: VersionHandlerFactory.versions = _load_versions() VersionHandlerFactory.instance = VersionHandlerFactory() return VersionHandlerFactory.instance def get_versions(self): return list(VersionHandlerFactory.versions.keys()) def get_handler(self, version): return VersionHandlerFactory.versions[version]
30.396552
75
0.695973
7949aac7eedc2737d3d8740ce795efdb018af698
141
py
Python
pyroSAR/tests/test_snap.py
ibaris/pyroSAR
04924500c61674a68e9dc56c1f71b7dd195c480a
[ "MIT" ]
1
2020-03-09T10:33:06.000Z
2020-03-09T10:33:06.000Z
pyroSAR/tests/test_snap.py
ibaris/pyroSAR
04924500c61674a68e9dc56c1f71b7dd195c480a
[ "MIT" ]
null
null
null
pyroSAR/tests/test_snap.py
ibaris/pyroSAR
04924500c61674a68e9dc56c1f71b7dd195c480a
[ "MIT" ]
null
null
null
from pyroSAR.snap import geocode def test_geocode(tmpdir, testdata): scene = testdata['s1'] geocode(scene, str(tmpdir), test=True)
20.142857
42
0.716312
7949aade4a27764ef39330da2261e19b21c9c51f
351
py
Python
renamer.py
Billthedeve/QuRen-Rename-tool
d8c989183a97b607187941b74983062ad6b5ae37
[ "MIT" ]
null
null
null
renamer.py
Billthedeve/QuRen-Rename-tool
d8c989183a97b607187941b74983062ad6b5ae37
[ "MIT" ]
null
null
null
renamer.py
Billthedeve/QuRen-Rename-tool
d8c989183a97b607187941b74983062ad6b5ae37
[ "MIT" ]
null
null
null
import os fpath = input("Enter the directory the file is in... ") if "C:\\" not in fpath: print("invalid directory. File must be in C:/") if "C:\\" in fpath: os.system("cd " + fpath) name = input("Enter file name...") newname = input("Enter new file name...") os.system("ren " + name + " " + newname) print("file renamed")
23.4
55
0.586895
7949abc36838e16ca57348298b7a85f1c479f4cb
1,872
py
Python
streamblocks/migrations/0003_auto_20200207_1852.py
andywar65/rpnew_root
9281cb16783313a1cd23b1394f2bad485ac1b33d
[ "BSD-2-Clause" ]
null
null
null
streamblocks/migrations/0003_auto_20200207_1852.py
andywar65/rpnew_root
9281cb16783313a1cd23b1394f2bad485ac1b33d
[ "BSD-2-Clause" ]
null
null
null
streamblocks/migrations/0003_auto_20200207_1852.py
andywar65/rpnew_root
9281cb16783313a1cd23b1394f2bad485ac1b33d
[ "BSD-2-Clause" ]
null
null
null
# Generated by Django 3.0.2 on 2020-02-07 17:52 from django.db import migrations, models import filebrowser.fields class Migration(migrations.Migration): dependencies = [ ('streamblocks', '0002_indexedparagraph_height'), ] operations = [ migrations.CreateModel( name='DownloadableFile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('fb_file', filebrowser.fields.FileBrowseField(blank=True, max_length=200, null=True, verbose_name='File')), ('description', models.CharField(blank=True, max_length=200, null=True, verbose_name='Descrizione')), ], options={ 'verbose_name': 'File scaricabile', 'verbose_name_plural': 'File scaricabili', }, ), migrations.AlterField( model_name='captionedimage', name='caption', field=models.CharField(blank=True, max_length=200, null=True, verbose_name='Didascalia'), ), migrations.AlterField( model_name='indexedparagraph', name='body', field=models.TextField(blank=True, help_text='Accetta tag HTML', null=True, verbose_name='Testo'), ), migrations.AlterField( model_name='indexedparagraph', name='height', field=models.CharField(choices=[('1', 'Troppo grande'), ('2', 'Molto grande'), ('3', 'Grande'), ('4', 'Medio'), ('5', 'Piccolo'), ('6', 'Molto piccolo')], default='4', max_length=1, verbose_name='Altezza titolo'), ), migrations.AlterField( model_name='indexedparagraph', name='title', field=models.CharField(blank=True, max_length=100, null=True, verbose_name='Titolo'), ), ]
39.829787
225
0.59188
7949abd1c9e92bd409a495431b195a20387797cc
1,075
py
Python
setup.py
negillett/osc-ingest-tools
c1536771f8a3dee8b0b155542cb57c3d46ab3f21
[ "Apache-2.0" ]
null
null
null
setup.py
negillett/osc-ingest-tools
c1536771f8a3dee8b0b155542cb57c3d46ab3f21
[ "Apache-2.0" ]
null
null
null
setup.py
negillett/osc-ingest-tools
c1536771f8a3dee8b0b155542cb57c3d46ab3f21
[ "Apache-2.0" ]
null
null
null
import pathlib from setuptools import find_packages, setup # The directory containing this file HERE = pathlib.Path(__file__).resolve().parent # The text of the README file is used as a description README = (HERE / "README.md").read_text() setup( name="osc-ingest-tools", version="0.3.1", description="python tools to assist with standardized data ingestion workflows for the OS-Climate project", long_description=README, long_description_content_type="text/markdown", url="https://github.com/os-climate/osc-ingest-tools", author="OS-Climate", author_email="eje@redhat.com", license="Apache-2.0", classifiers=[ "License :: OSI Approved :: Apache Software License", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3 :: Only", ], packages=find_packages(), include_package_data=True, install_requires=["pandas", "trino", "boto3", "sqlalchemy", "sqlalchemy-trino", "python-dotenv"], entry_points={"console_scripts": []}, )
33.59375
111
0.686512
7949ac0ecb939062524779c2c9288726fd866ad9
35,892
py
Python
flavio/statistics/test_probability.py
Felicia56/flavio
ea735bd8febbb961d249eddf338a4960c1fbee69
[ "MIT" ]
61
2016-03-09T16:19:39.000Z
2022-03-30T00:55:51.000Z
flavio/statistics/test_probability.py
Felicia56/flavio
ea735bd8febbb961d249eddf338a4960c1fbee69
[ "MIT" ]
167
2016-03-15T15:25:57.000Z
2022-02-27T22:19:22.000Z
flavio/statistics/test_probability.py
Felicia56/flavio
ea735bd8febbb961d249eddf338a4960c1fbee69
[ "MIT" ]
57
2016-03-15T14:24:23.000Z
2022-01-14T01:00:03.000Z
import unittest import numpy as np import numpy.testing as npt import scipy.stats from math import pi, sqrt, exp, log from flavio.statistics.probability import * import itertools import yaml class TestProbability(unittest.TestCase): def test_multiv_normal(self): # test that the rescaling of the MultivariateNormalDistribution # does not affect the log PDF! c = np.array([1e-3, 2]) cov = np.array([[(0.2e-3)**2, 0.2e-3*0.5*0.3],[0.2e-3*0.5*0.3, 0.5**2]]) pdf = MultivariateNormalDistribution(c, cov) x=np.array([1.5e-3, 0.8]) num_lpdf = pdf.logpdf(x) ana_lpdf = log(1/sqrt(4*pi**2*np.linalg.det(cov))*exp(-np.dot(np.dot(x-c,np.linalg.inv(cov)),x-c)/2)) self.assertAlmostEqual(num_lpdf, ana_lpdf, delta=1e-6) self.assertEqual(len(pdf.get_random(10)), 10) def test_normal(self): d = NormalDistribution(2, 0.3) self.assertEqual(d.cdf(2), 0.5) self.assertEqual(d.ppf(0.5), 2) def test_halfnormal(self): pdf_p_1 = HalfNormalDistribution(1.7, 0.3) pdf_n_1 = HalfNormalDistribution(1.7, -0.3) pdf_p_2 = AsymmetricNormalDistribution(1.7, 0.3, 0.0001) pdf_n_2 = AsymmetricNormalDistribution(1.7, 0.0001, 0.3) self.assertAlmostEqual(pdf_p_1.logpdf(1.99), pdf_p_2.logpdf(1.99), delta=0.001) self.assertEqual(pdf_p_1.logpdf(1.55), -np.inf) self.assertAlmostEqual(pdf_n_1.logpdf(1.55), pdf_n_2.logpdf(1.55), delta=0.001) self.assertEqual(pdf_n_1.logpdf(1.99), -np.inf) self.assertEqual(len(pdf_p_1.get_random(10)), 10) self.assertEqual(len(pdf_p_2.get_random(10)), 10) d = HalfNormalDistribution(2, 0.3) self.assertEqual(d.cdf(2), 0.0) self.assertAlmostEqual(d.cdf(2.3), 0.6827, places=4) self.assertAlmostEqual(d.ppf(0.6827), 2.3, places=4) def test_lognormal(self): with self.assertRaises(ValueError): LogNormalDistribution(1, 0.8) with self.assertRaises(ValueError): LogNormalDistribution(1, -1.2) pdf = LogNormalDistribution(3, 2) self.assertAlmostEqual(pdf.get_error_left(), 1.5) self.assertAlmostEqual(pdf.get_error_right(), 3) pdf2 = LogNormalDistribution(-3, 2) self.assertAlmostEqual(pdf2.get_error_right(), 1.5) self.assertAlmostEqual(pdf2.get_error_left(), 3) self.assertEqual(pdf2.pdf(-2.7), pdf.pdf(2.7)) self.assertEqual(pdf2.cdf(-2.7), 1 - pdf.cdf(2.7)) self.assertEqual(pdf2.ppf(0.25), -pdf.ppf(0.75)) def test_limit(self): p1 = GaussianUpperLimit(2*1.78, 0.9544997) p2 = HalfNormalDistribution(0, 1.78) self.assertAlmostEqual(p1.logpdf(0.237), p2.logpdf(0.237), delta=0.0001) self.assertEqual(p2.logpdf(-1), -np.inf) self.assertAlmostEqual(p1.cdf(2*1.78), 0.9544997, delta=0.0001) def test_gamma(self): # check for loc above and below a-1 for loc in (-5, -15): p = GammaDistribution(a=11, loc=loc, scale=1) self.assertEqual(p.central_value, loc + 10) r = p.get_random(10) self.assertEqual(len(r), 10) self.assertAlmostEqual(p.cdf(p.support[1]), 1-2e-9, delta=0.1e-9) self.assertAlmostEqual(p.ppf(1-2e-9), p.support[1], delta=0.0001) self.assertEqual(loc, p.support[0]) # nearly normal distribution p = GammaDistribution(a=10001, loc=0, scale=1) self.assertAlmostEqual(p.error_left, sqrt(10000), delta=1) self.assertAlmostEqual(p.get_error_left(nsigma=2), 2*sqrt(10000), delta=2) self.assertAlmostEqual(p.error_right, sqrt(10000), delta=1) self.assertAlmostEqual(p.get_error_right(nsigma=2), 2*sqrt(10000), delta=2) def test_gamma_positive(self): # check for loc above and below a-1 for loc in (-5, -15): p = GammaDistributionPositive(a=11, loc=loc, scale=1) self.assertEqual(p.central_value, max(loc + 10, 0)) r = p.get_random(10) self.assertEqual(len(r), 10) self.assertTrue(np.min(r) >= 0) self.assertEqual(p.logpdf(-0.1), -np.inf) self.assertEqual(p.cdf(0), 0) self.assertAlmostEqual(p.cdf(p.support[1]), 1-2e-9, delta=0.1e-9) self.assertAlmostEqual(p.ppf(0), 0, places=14) self.assertAlmostEqual(p.ppf(1-2e-9), p.support[1], delta=0.0001) self.assertEqual(p.cdf(-1), 0) p = GammaDistributionPositive(a=11, loc=-9, scale=1) self.assertEqual(p.central_value, 1) self.assertEqual(p.error_left, 1) # nearly normal distribution p = GammaDistributionPositive(a=10001, loc=0, scale=1) self.assertAlmostEqual(p.error_left, sqrt(10000), delta=1) self.assertAlmostEqual(p.get_error_left(nsigma=2), 2*sqrt(10000), delta=2) self.assertAlmostEqual(p.error_right, sqrt(10000), delta=1) self.assertAlmostEqual(p.get_error_right(nsigma=2), 2*sqrt(10000), delta=2) def test_gamma_limit(self): p = GammaUpperLimit(counts_total=30, counts_background=10, limit=2e-5, confidence_level=0.68) self.assertAlmostEqual(p.cdf(2e-5), 0.68, delta=0.0001) # no counts p = GammaUpperLimit(counts_total=0, counts_background=0, limit=2e-5, confidence_level=0.68) self.assertAlmostEqual(p.cdf(2e-5), 0.68, delta=0.0001) # background excess p = GammaUpperLimit(counts_total=30, counts_background=50, limit=2e5, confidence_level=0.68) self.assertAlmostEqual(p.cdf(2e5), 0.68, delta=0.0001) p = GammaUpperLimit(counts_total=10000, counts_background=10000, limit=3., confidence_level=0.95) p_norm = GaussianUpperLimit(limit=3., confidence_level=0.95) # check that large-statistics Gamma and Gauss give nearly same PDF for x in [0, 1, 2, 3, 4]: self.assertAlmostEqual(p.logpdf(x), p_norm.logpdf(x), delta=0.1) def test_general_gamma_limit(self): p = GeneralGammaUpperLimit(counts_total=30, counts_background=10, limit=2e-5, confidence_level=0.68, background_variance=5) self.assertAlmostEqual(p.cdf(2e-5), 0.68, delta=0.0001) # background excess p = GeneralGammaUpperLimit(counts_total=30, counts_background=50, limit=2e5, confidence_level=0.68, background_variance=25) self.assertAlmostEqual(p.cdf(2e5), 0.68, delta=0.0001) p = GeneralGammaUpperLimit(counts_total=10000, counts_background=10000, limit=3., confidence_level=0.95, background_variance=1000) p_norm = GaussianUpperLimit(limit=3., confidence_level=0.95) # check that large-statistics Gamma and Gauss give nearly same PDF for x in [1, 2, 3, 4]: self.assertAlmostEqual(p.logpdf(x), p_norm.logpdf(x), delta=0.1) # check that warning is raised for very small background variance with self.assertWarns(Warning): GeneralGammaUpperLimit(counts_total=10000, counts_background=10000, limit=3., confidence_level=0.95, background_variance=10) def test_numerical(self): x = np.arange(-5,7,0.01) y = scipy.stats.norm.pdf(x, loc=1) y_crazy = 14.7 * y # multiply PDF by crazy number p_num = NumericalDistribution(x, y_crazy) p_norm = NormalDistribution(1, 1) self.assertAlmostEqual(p_num.logpdf(0.237), p_norm.logpdf(0.237), delta=0.02) self.assertAlmostEqual(p_num.logpdf(-2.61), p_norm.logpdf(-2.61), delta=0.02) self.assertAlmostEqual(p_num.ppf_interp(0.1), scipy.stats.norm.ppf(0.1, loc=1), delta=0.02) self.assertAlmostEqual(p_num.ppf_interp(0.95), scipy.stats.norm.ppf(0.95, loc=1), delta=0.02) self.assertEqual(len(p_num.get_random(10)), 10) def test_multiv_numerical(self): x0 = np.arange(-5,5,0.01) x1 = np.arange(-4,6,0.02) cov = [[0.2**2, 0.5*0.2*0.4], [0.5*0.2*0.4, 0.4**2]] y = scipy.stats.multivariate_normal.pdf(np.array(list(itertools.product(x0, x1))), mean=[0, 1], cov=cov) y = y.reshape(len(x0), len(x1)) y_crazy = 14.7 * y # multiply PDF by crazy number p_num = MultivariateNumericalDistribution((x0, x1), y_crazy) p_norm = MultivariateNormalDistribution([0, 1], cov) self.assertAlmostEqual(p_num.logpdf([0.237, 0.346]), p_norm.logpdf([0.237, 0.346]), delta=0.02) self.assertAlmostEqual(p_num.logpdf([0.237], exclude=(1,)), p_norm.logpdf([0.237], exclude=(1,)), delta=0.02) # try again with length-2 xi p_num = MultivariateNumericalDistribution(([-5, 4.99], [-4, 5.98]), y_crazy) self.assertAlmostEqual(p_num.logpdf([0.237, 0.346]), p_norm.logpdf([0.237, 0.346]), delta=0.02) self.assertAlmostEqual(p_num.logpdf([0.237], exclude=(1,)), p_norm.logpdf([0.237], exclude=(1,)), delta=0.02) # test exceptions with self.assertRaises(NotImplementedError): p_num.error_left with self.assertRaises(NotImplementedError): p_num.error_right self.assertEqual(len(p_num.get_random(10)), 10) def test_numerical_from_analytic(self): p_norm = NormalDistribution(1.64, 0.32) p_norm_num = NumericalDistribution.from_pd(p_norm) self.assertEqual(p_norm.central_value, p_norm_num.central_value) self.assertEqual(p_norm.support, p_norm_num.support) npt.assert_array_almost_equal(p_norm.logpdf([0.7, 1.9]), p_norm_num.logpdf([0.7, 1.9]), decimal=3) p_asym = AsymmetricNormalDistribution(1.64, 0.32, 0.67) p_asym_num = NumericalDistribution.from_pd(p_asym) npt.assert_array_almost_equal(p_asym.logpdf([0.7, 1.9]), p_asym_num.logpdf([0.7, 1.9]), decimal=3) p_unif = UniformDistribution(1.64, 0.32) p_unif_num = NumericalDistribution.from_pd(p_unif) npt.assert_array_almost_equal(p_unif.logpdf([0.7, 1.9]), p_unif_num.logpdf([0.7, 1.9]), decimal=3) p_half = HalfNormalDistribution(1.64, -0.32) p_half_num = NumericalDistribution.from_pd(p_half) npt.assert_array_almost_equal(p_half.logpdf([0.7, 1.3]), p_half_num.logpdf([0.7, 1.3]), decimal=3) def test_numerical_from_analytic_mv(self): p = MultivariateNormalDistribution([2, 5], [[(0.2)**2, 0.2e-3*0.5*0.3],[0.2*0.5*0.3, 0.5**2]]) p_num = MultivariateNumericalDistribution.from_pd(p) npt.assert_array_equal(p.central_value, p_num.central_value) npt.assert_array_equal(p.support, p_num.support) npt.assert_array_almost_equal(p.logpdf([1.6, 2.5]), p_num.logpdf([1.6, 2.5]), decimal=2) npt.assert_array_almost_equal(p.logpdf([2.33, 7]), p_num.logpdf([2.33, 7]), decimal=2) def test_convolve_normal(self): p_1 = NormalDistribution(12.4, 0.346) p_2 = NormalDistribution(12.4, 2.463) p_x = NormalDistribution(12.3, 2.463) from flavio.statistics.probability import convolve_distributions # error if not the same central value: with self.assertRaises(AssertionError): convolve_distributions([p_1, p_x]) p_comb = convolve_distributions([p_1, p_2]) self.assertIsInstance(p_comb, NormalDistribution) self.assertEqual(p_comb.central_value, 12.4) self.assertEqual(p_comb.standard_deviation, sqrt(0.346**2+2.463**2)) # check for addition of central values p_comb = convolve_distributions([p_1, p_x], central_values='sum') self.assertIsInstance(p_comb, NormalDistribution) self.assertAlmostEqual(p_comb.central_value, 24.7) self.assertEqual(p_comb.standard_deviation, sqrt(0.346**2+2.463**2)) def test_convolve_delta(self): p_1 = DeltaDistribution(12.4) p_2 = NormalDistribution(12.4, 2.463) p_x = DeltaDistribution(12.3) from flavio.statistics.probability import convolve_distributions with self.assertRaises(NotImplementedError): convolve_distributions([p_1, p_x], central_values='sum') with self.assertRaises(AssertionError): convolve_distributions([p_x, p_2]) p_comb = convolve_distributions([p_1, p_2]) self.assertIsInstance(p_comb, NormalDistribution) self.assertEqual(p_comb.central_value, 12.4) self.assertEqual(p_comb.standard_deviation, 2.463) def test_convolve_numerical(self): from flavio.statistics.probability import _convolve_numerical p_1 = NumericalDistribution.from_pd(NormalDistribution(12.4, 0.346)) p_2 = NumericalDistribution.from_pd(NormalDistribution(12.4, 2.463)) p_3 = NumericalDistribution.from_pd(NormalDistribution(12.4, 1.397)) conv_p_12 = _convolve_numerical([p_1, p_2]) comb_p_12 = NormalDistribution(12.4, sqrt(0.346**2 + 2.463**2)) conv_p_123 = _convolve_numerical([p_1, p_2, p_3]) comb_p_123 = NormalDistribution(12.4, sqrt(0.346**2 + 2.463**2 + 1.397**2)) x = np.linspace(2, 20, 10) npt.assert_array_almost_equal(conv_p_12.logpdf(x), comb_p_12.logpdf(x), decimal=1) npt.assert_array_almost_equal(conv_p_123.logpdf(x), comb_p_123.logpdf(x), decimal=1) # same again for addition p_1 = NumericalDistribution.from_pd(NormalDistribution(-986, 0.346)) p_2 = NumericalDistribution.from_pd(NormalDistribution(16, 2.463)) p_3 = NumericalDistribution.from_pd(NormalDistribution(107, 1.397)) conv_p_12 = _convolve_numerical([p_1, p_2], central_values='sum') comb_p_12 = NormalDistribution(-970, sqrt(0.346**2 + 2.463**2)) conv_p_123 = _convolve_numerical([p_1, p_2, p_3], central_values='sum') comb_p_123 = NormalDistribution(-863, sqrt(0.346**2 + 2.463**2 + 1.397**2)) x = np.linspace(-10, 10, 10) npt.assert_array_almost_equal(conv_p_12.logpdf(x-970), comb_p_12.logpdf(x-970), decimal=1) npt.assert_array_almost_equal(conv_p_123.logpdf(x-863), comb_p_123.logpdf(x-863), decimal=1) def test_convolve_multivariate_gaussian(self): from flavio.statistics.probability import _convolve_multivariate_gaussians cov1 = np.array([[(0.2e-3)**2, 0.2e-3*0.5*0.3],[0.2e-3*0.5*0.3, 0.5**2]]) cov2 = np.array([[0.2**2, 0.5*0.2*0.4], [0.5*0.2*0.4, 0.4**2]]) cov12 = cov1 + cov2 c1 = [2, 5] c2 = [-100, -250] p_11 = MultivariateNormalDistribution(c1, cov1) p_12 = MultivariateNormalDistribution(c1, cov2) p_22 = MultivariateNormalDistribution(c2, cov2) conv_11_12 = convolve_distributions([p_11, p_12]) self.assertIsInstance(conv_11_12, MultivariateNormalDistribution) npt.assert_array_equal(conv_11_12.central_value, [2, 5]) npt.assert_array_almost_equal(conv_11_12.covariance, cov12, decimal=15) with self.assertRaises(AssertionError): convolve_distributions([p_11, p_22]) conv_11_22 = convolve_distributions([p_11, p_22], central_values='sum') self.assertIsInstance(conv_11_22, MultivariateNormalDistribution) npt.assert_array_almost_equal(conv_11_22.covariance, cov12, decimal=15) npt.assert_array_equal(conv_11_22.central_value, [-100+2, -250+5]) def test_convolve_multivariate_gaussian_numerical(self): from flavio.statistics.probability import convolve_distributions cov1 = [[(0.1)**2, 0.1*0.5*0.3],[0.1*0.5*0.3, 0.5**2]] cov2 = [[0.2**2, 0.5*0.2*0.4], [0.5*0.2*0.4, 0.4**2]] c1 = [2, 5] c2 = [-100, -250] p_11 = MultivariateNormalDistribution(c1, cov1) p_12 = MultivariateNormalDistribution(c1, cov2) p_22 = MultivariateNormalDistribution(c2, cov2) n_11 = MultivariateNumericalDistribution.from_pd(p_11) n_12 = MultivariateNumericalDistribution.from_pd(p_12) n_22 = MultivariateNumericalDistribution.from_pd(p_22) conv_11_12_gauss = convolve_distributions([p_11, p_12]) conv_11_12 = convolve_distributions([p_11, n_12]) self.assertIsInstance(conv_11_12, MultivariateNumericalDistribution) npt.assert_array_almost_equal(conv_11_12.central_value, [2, 5], decimal=1) self.assertAlmostEqual(conv_11_12.logpdf([2.2, 4]), conv_11_12_gauss.logpdf([2.2, 4]), delta=0.1) self.assertAlmostEqual(conv_11_12.logpdf([2.2, 6]), conv_11_12_gauss.logpdf([2.2, 6]), delta=0.1) self.assertAlmostEqual(conv_11_12.logpdf([1.4, 4]), conv_11_12_gauss.logpdf([1.4, 4]), delta=0.2) self.assertAlmostEqual(conv_11_12.logpdf([1.4, 6]), conv_11_12_gauss.logpdf([1.4, 6]), delta=0.1) with self.assertRaises(AssertionError): convolve_distributions([p_11, n_22]) conv_11_22 = convolve_distributions([p_11, n_22], central_values='sum') conv_11_22_gauss = convolve_distributions([p_11, p_22], central_values='sum') self.assertIsInstance(conv_11_22, MultivariateNumericalDistribution) npt.assert_array_almost_equal(conv_11_22.central_value, [-100+2, -250+5], decimal=1) self.assertAlmostEqual(conv_11_22.logpdf([2.2-100, 4-250]), conv_11_22_gauss.logpdf([2.2-100, 4-250]), delta=0.1) self.assertAlmostEqual(conv_11_22.logpdf([1.6-100, 5.5-250]), conv_11_22_gauss.logpdf([1.6-100, 5.5-250]), delta=0.1) def test_1d_errors(self): p = NormalDistribution(3, 0.2) q = NumericalDistribution.from_pd(p) self.assertEqual(p.error_left, 0.2) self.assertEqual(p.error_right, 0.2) self.assertAlmostEqual(q.error_left, 0.2, places=2) self.assertAlmostEqual(q.error_right, 0.2, places=2) self.assertAlmostEqual(q.get_error_left(method='hpd'), 0.2, places=2) self.assertAlmostEqual(q.get_error_left(method='hpd', nsigma=2), 0.4, places=2) self.assertAlmostEqual(q.get_error_right(method='hpd'), 0.2, places=2) p = AsymmetricNormalDistribution(3, 0.2, 0.5) q = NumericalDistribution.from_pd(p) self.assertEqual(p.error_left, 0.5) self.assertEqual(p.error_right, 0.2) self.assertAlmostEqual(q.error_left, 0.5, places=2) self.assertAlmostEqual(q.error_right, 0.2, places=2) self.assertAlmostEqual(q.get_error_left(method='hpd'), 0.5, places=2) self.assertAlmostEqual(q.get_error_right(method='hpd'), 0.2, places=2) self.assertAlmostEqual(q.get_error_right(method='hpd', nsigma=2), 0.4, places=2) p = DeltaDistribution(3) self.assertEqual(p.error_left, 0) self.assertEqual(p.error_right, 0) p = UniformDistribution(3, 0.4) q = NumericalDistribution.from_pd(p) self.assertAlmostEqual(p.error_left, 0.4*0.68, places=2) self.assertAlmostEqual(p.error_right, 0.4*0.68, places=2) self.assertAlmostEqual(q.error_left, 0.4*0.68, places=2) self.assertAlmostEqual(q.error_right, 0.4*0.68, places=2) self.assertAlmostEqual(q.get_error_left(method='hpd'), 0.4*0.68, places=2) self.assertAlmostEqual(q.get_error_right(method='hpd'), 0.4*0.68, places=2) self.assertAlmostEqual(q.get_error_right(method='hpd', nsigma=2), 0.4*0.95, places=2) p = HalfNormalDistribution(3, +0.5) q = NumericalDistribution.from_pd(p) self.assertEqual(p.error_left, 0) self.assertEqual(p.error_right, 0.5) self.assertAlmostEqual(q.error_left, 0, places=2) self.assertAlmostEqual(q.error_right, 0.5, places=2) # this does not work (returns nan) self.assertTrue(np.isnan(q.get_error_left(method='hpd'))) self.assertTrue(np.isnan(q.get_error_right(method='hpd'))) # this works self.assertAlmostEqual(q.get_error_right(method='limit'), 0.5, places=2) p = HalfNormalDistribution(3, -0.5) q = NumericalDistribution.from_pd(p) self.assertEqual(p.error_left, 0.5) self.assertEqual(p.error_right, 0) self.assertAlmostEqual(q.error_left, 0.5, places=2) self.assertAlmostEqual(q.error_right, 0, places=2) # this does not work (returns nan) self.assertTrue(np.isnan(q.get_error_left(method='hpd'))) self.assertTrue(np.isnan(q.get_error_right(method='hpd'))) # this works self.assertAlmostEqual(q.get_error_left(method='limit'), 0.5, places=2) self.assertAlmostEqual(q.get_error_left(method='limit', nsigma=2), 1, places=2) def test_multivariate_exclude(self): c2 = np.array([1e-3, 2]) c3 = np.array([1e-3, 2, 0.4]) cov22 = np.array([[(0.2e-3)**2, 0.2e-3*0.5*0.3],[0.2e-3*0.5*0.3, 0.5**2]]) cov33 = np.array([[(0.2e-3)**2, 0.2e-3*0.5*0.3 , 0],[0.2e-3*0.5*0.3, 0.5**2, 0.01], [0, 0.01, 0.1**2]]) pdf1 = NormalDistribution(2, 0.5) pdf2 = MultivariateNormalDistribution(c2, cov22) pdf3 = MultivariateNormalDistribution(c3, cov33) self.assertEqual(pdf2.logpdf([1.1e-3, 2.4]), pdf3.logpdf([1.1e-3, 2.4], exclude=2)) self.assertEqual(pdf1.logpdf(2.4), pdf3.logpdf([2.4], exclude=(0,2))) with self.assertRaises(ValueError): # dimensions don't match self.assertEqual(pdf2.logpdf([1.1e-3, 2.4]), pdf3.logpdf([1.1e-3, 2.4, 0.2], exclude=2)) def test_gaussian_kde(self): # check that a random Gaussian is reproduced correctly np.random.seed(42) dat = np.random.normal(117, 23, size=100) kde = GaussianKDE(dat) norm = scipy.stats.norm(117, 23) x = np.linspace(117-23, 117+23, 10) npt.assert_array_almost_equal(kde.pdf(x)/norm.pdf(x), np.ones(10), decimal=1) # check scott's factor self.assertAlmostEqual(kde.bandwidth, 0.4*23, delta=0.4*23*0.1*2) def test_vectorize(self): # check that all logpdf methods work on arrays as well np.random.seed(42) xr = np.random.rand(10) d = UniformDistribution(0, 1) self.assertEqual(d.logpdf(xr).shape, (10,)) d = DeltaDistribution(1) lpd = d.logpdf([2,3,4,5,1,1,3,6,1,3,5,1]) npt.assert_array_equal(lpd, [-np.inf, -np.inf, -np.inf, -np.inf, 0, 0, -np.inf, -np.inf, 0, -np.inf, -np.inf, 0 ]) d = NormalDistribution(0, 1) self.assertEqual(d.logpdf(xr).shape, (10,)) d = AsymmetricNormalDistribution(0, 1, 0.5) self.assertEqual(d.logpdf(xr).shape, (10,)) d = HalfNormalDistribution(0, 1) self.assertEqual(d.logpdf(xr).shape, (10,)) d = GammaDistributionPositive(1, 0, 3) self.assertEqual(d.logpdf(xr).shape, (10,)) d = NumericalDistribution.from_pd(NormalDistribution(0, 1)) self.assertEqual(d.logpdf(xr).shape, (10,)) d = MultivariateNormalDistribution([1, 2, 3], np.eye(3)) xr3 = np.random.rand(10, 3) xr2 = np.random.rand(10, 2) self.assertEqual(d.logpdf(xr3[0]).shape, ()) self.assertEqual(d.logpdf(xr3).shape, (10,)) self.assertEqual(d.logpdf(xr2[0], exclude=(0,)).shape, ()) self.assertEqual(d.logpdf(xr2, exclude=(0,)).shape, (10,)) self.assertEqual(d.logpdf(xr[0], exclude=(0, 1)).shape, ()) self.assertEqual(d.logpdf(xr, exclude=(0, 1)).shape, (10,)) xi = [np.linspace(-1,1,5), np.linspace(-1,1,6), np.linspace(-1,1,7)] y = np.random.rand(5,6,7) d = MultivariateNumericalDistribution(xi, y) xr3 = np.random.rand(10, 3) xr2 = np.random.rand(10, 2) self.assertEqual(d.logpdf(xr3[0]).shape, ()) self.assertEqual(d.logpdf(xr3).shape, (10,)) self.assertEqual(d.logpdf(xr2[0], exclude=(0,)).shape, ()) self.assertEqual(d.logpdf(xr2, exclude=(0,)).shape, (10,)) self.assertEqual(d.logpdf(xr[0], exclude=(0, 1)).shape, ()) self.assertEqual(d.logpdf(xr, exclude=(0, 1)).shape, (10,)) def test_repr(self): """Test the __repr__ method of all PDs""" fsp = 'flavio.statistics.probability.' self.assertEqual(repr(NormalDistribution(1, 2)), fsp + 'NormalDistribution(1, 2)') self.assertEqual(repr(HalfNormalDistribution(1, -2)), fsp + 'HalfNormalDistribution(1, -2)') self.assertEqual(repr(AsymmetricNormalDistribution(1, 2, 3.)), fsp + 'AsymmetricNormalDistribution(1, 2, 3.0)') self.assertEqual(repr(DeltaDistribution(-3.)), fsp + 'DeltaDistribution(-3.0)') self.assertEqual(repr(UniformDistribution(1, 2)), fsp + 'UniformDistribution(1, 2)') self.assertEqual(repr(GaussianUpperLimit(1e-9, 0.95)), fsp + 'GaussianUpperLimit(1e-09, 0.95)') self.assertEqual(repr(GammaDistribution(5, -2, 1.5)), fsp + 'GammaDistribution(5, -2, 1.5)') self.assertEqual(repr(GammaDistributionPositive(5, -2, 1.5)), fsp + 'GammaDistributionPositive(5, -2, 1.5)') self.assertEqual(repr(GammaUpperLimit(15, 10, 1e-9, 0.95)), fsp + 'GammaUpperLimit(15, 10, 1e-09, 0.95)') self.assertEqual(repr(GeneralGammaUpperLimit(1e-9, 0.95, counts_total=15, counts_background=10, background_variance=0.2)), fsp + 'GeneralGammaUpperLimit(1e-09, 0.95, counts_total=15, counts_signal=5, background_variance=0.2)') self.assertEqual(repr(MultivariateNormalDistribution([1., 2], [[2, 0.1], [0.1, 2]])), fsp + 'MultivariateNormalDistribution([1.0, 2], [[2, 0.1], [0.1, 2]])') self.assertEqual(repr(NumericalDistribution([1., 2], [3, 4.])), fsp + 'NumericalDistribution([1.0, 2], [3, 4.0])') self.assertEqual(repr(GaussianKDE([1, 2, 3], 0.1)), fsp + 'GaussianKDE([1, 2, 3], 0.1, 3)') self.assertEqual(repr(KernelDensityEstimate([1, 2, 3], NormalDistribution(0, 0.5))), fsp + 'KernelDensityEstimate([1, 2, 3], ' + fsp + 'NormalDistribution(0, 0.5), 3)') self.assertEqual(repr(MultivariateNumericalDistribution([[1., 2], [10., 20]], [[3, 4.],[5, 6.]], [2, 3])), fsp + 'MultivariateNumericalDistribution([[1.0, 2.0], [10.0, 20.0]], [[3.0, 4.0], [5.0, 6.0]], [2, 3])') def test_class_string(self): class_from_string_old = { 'delta': DeltaDistribution, 'uniform': UniformDistribution, 'normal': NormalDistribution, 'asymmetric_normal': AsymmetricNormalDistribution, 'half_normal': HalfNormalDistribution, 'gaussian_upper_limit': GaussianUpperLimit, 'gamma': GammaDistribution, 'gamma_positive': GammaDistributionPositive, 'gamma_upper_limit': GammaUpperLimit, 'general_gamma_upper_limit': GeneralGammaUpperLimit, 'numerical': NumericalDistribution, 'multivariate_normal': MultivariateNormalDistribution, 'multivariate_numerical': MultivariateNumericalDistribution, 'gaussian_kde': GaussianKDE, 'general_gamma_positive': GeneralGammaDistributionPositive, } for k, v in class_from_string_old.items(): self.assertEqual(v.class_to_string(), k) self.assertEqual(string_to_class(k), v) self.assertEqual(string_to_class(v.__name__), v) self.assertEqual(class_from_string_old, {k: v for k, v in class_from_string.items() if v != KernelDensityEstimate and v != LogNormalDistribution}, msg="Failed for {}".format(k)) def test_get_yaml(self): """Test the test_get_yaml method of all PDs""" self.assertEqual(yaml.safe_load(NormalDistribution(1, 2).get_yaml()), {'distribution': 'normal', 'central_value': 1, 'standard_deviation': 2}) self.assertEqual(yaml.safe_load(HalfNormalDistribution(1, -2).get_yaml()), {'distribution': 'half_normal', 'central_value': 1, 'standard_deviation': -2}) self.assertEqual(yaml.safe_load(AsymmetricNormalDistribution(1, 2, 3.).get_yaml()), {'distribution': 'asymmetric_normal', 'central_value': 1, 'right_deviation': 2, 'left_deviation': 3.}) self.assertEqual(yaml.safe_load(MultivariateNormalDistribution([1., 2], [[4, 0.2], [0.2, 4]]).get_yaml()), {'distribution': 'multivariate_normal', 'central_value': [1., 2], 'covariance': [[4, 0.2], [0.2, 4]], 'standard_deviation': [2, 2], 'correlation': [[1, 0.05], [0.05, 1]], }) self.assertEqual(yaml.safe_load(KernelDensityEstimate([1, 2, 3], NormalDistribution(0, 0.5)).get_yaml()), {'distribution': 'kernel_density_estimate', 'data': [1, 2, 3], 'kernel': {'distribution': 'normal', 'central_value': 0, 'standard_deviation': 0.5}, 'n_bins': 3}) self.assertEqual(yaml.safe_load(MultivariateNumericalDistribution([[1., 2], [10., 20]], [[3, 4.],[5, 6.]], [2, 3]).get_yaml()), {'distribution': 'multivariate_numerical', 'xi': [[1.0, 2.0], [10.0, 20.0]], 'y': [[3.0, 4.0], [5.0, 6.0]], 'central_value': [2, 3]}) def test_get_dict(self): ps = [ NormalDistribution(1, 2), HalfNormalDistribution(1, -2), AsymmetricNormalDistribution(1, 2, 3.), DeltaDistribution(-3.), UniformDistribution(1, 2), GaussianUpperLimit(1e-9, 0.95), GammaDistribution(5, -2, 1.5), GammaDistributionPositive(5, -2, 1.5), GammaUpperLimit(15, 10, 1e-9, 0.95), GeneralGammaUpperLimit(1e-9, 0.95, counts_total=15, counts_background=10, background_variance=0.2), MultivariateNormalDistribution([1., 2], [[2, 0.1], [0.1, 2]]), NumericalDistribution([1., 2], [3, 4.]), GaussianKDE([1, 2, 3], 0.1), KernelDensityEstimate([1, 2, 3], NormalDistribution(0, 0.5)), MultivariateNumericalDistribution([[1., 2], [10., 20]], [[3, 4.],[5, 6.]], [2, 3]) ] for p in ps: # try instantiating a class by feeding the get_dict to __init__ d = p.get_dict() pnew = p.__class__(**d) # check if the new class is the same as the old self.assertEqual(repr(pnew), repr(p)) self.assertEqual(pnew.get_yaml(), p.get_yaml()) def test_dict2dist(self): d = [ {'distribution': 'normal', 'central_value': 1, 'standard_deviation': 0.2}, {'distribution': 'uniform', 'central_value': 2, 'half_range': 1} ] p = dict2dist(d) self.assertEqual(repr(p[0]), repr(NormalDistribution(1.0, 0.2))) self.assertEqual(repr(p[1]), repr(UniformDistribution(2.0, 1.0))) p = dict2dist(d[0]) self.assertEqual(repr(p[0]), repr(NormalDistribution(1.0, 0.2))) def test_mvnormal_correlation(self): p1 = MultivariateNormalDistribution([0, 0], [[1, 1.5], [1.5, 4]]) p2 = MultivariateNormalDistribution([0, 0], standard_deviation=[1, 2], correlation=[[1, 0.75], [0.75, 1]]) for p in [p1, p2]: npt.assert_array_equal(p.covariance, np.array([[1, 1.5], [1.5, 4]])) npt.assert_array_equal(p.standard_deviation, np.array([1, 2])) npt.assert_array_equal(p.correlation, np.array([[1, 0.75], [0.75, 1]])) with self.assertRaises(ValueError): MultivariateNormalDistribution([0, 0], correlation=[[1, 0.75], [0.75, 1]]) class TestCombineDistributions(unittest.TestCase): def test_combine_normal(self): p_1 = NormalDistribution(5, 0.2) p_2 = NormalDistribution(4, 0.3) p_comb = combine_distributions([p_1, p_2]) self.assertIsInstance(p_comb, NormalDistribution) s = np.array([0.2, 0.3]) c = np.array([5, 4]) w = 1 / s**2 # weights s_comb = sqrt(1 / np.sum(w)) c_comb = np.sum(c * w) / np.sum(w) self.assertEqual(p_comb.central_value, c_comb) self.assertEqual(p_comb.standard_deviation, s_comb) def test_combine_delta(self): pd_1 = DeltaDistribution(12.5) pd_2 = DeltaDistribution(12.3) pn = NormalDistribution(12.4, 2.463) with self.assertRaises(ValueError): combine_distributions([pd_1, pd_2]) for pd in [pd_1, pd_2]: p_comb = combine_distributions([pd, pn]) self.assertIsInstance(p_comb, DeltaDistribution) self.assertEqual(p_comb.central_value, pd.central_value) def test_combine_numerical(self): p_1 = NumericalDistribution.from_pd(NormalDistribution(5, 0.2)) p_2 = NumericalDistribution.from_pd(NormalDistribution(4, 0.3)) p_comb = combine_distributions([p_1, p_2]) self.assertIsInstance(p_comb, NumericalDistribution) s = np.array([0.2, 0.3]) c = np.array([5, 4]) w = 1 / s**2 # weights s_comb = sqrt(1 / np.sum(w)) c_comb = np.sum(c * w) / np.sum(w) self.assertAlmostEqual(p_comb.central_value, c_comb, places=2) self.assertAlmostEqual(p_comb.error_left, s_comb, places=2) self.assertAlmostEqual(p_comb.error_right, s_comb, places=2) def test_combine_multivariate_normal(self): # compare combination of to univariate Gaussians # with the multivariate combination of two uncorrelated 2D Gaussians p11 = NormalDistribution(3, 1) p12 = NormalDistribution(5, 2) p21 = NormalDistribution(4, 2) p22 = NormalDistribution(6, 3) p1 = MultivariateNormalDistribution([3, 5], [[1, 0], [0, 4]]) p2 = MultivariateNormalDistribution([4, 6], [[4, 0], [0, 9]]) pc1 = combine_distributions([p11, p21]) pc2 = combine_distributions([p12, p22]) pc = combine_distributions([p1, p2]) self.assertIsInstance(pc, MultivariateNormalDistribution) self.assertAlmostEqual(pc.central_value[0], pc1.central_value) self.assertAlmostEqual(pc.central_value[1], pc2.central_value) self.assertAlmostEqual(pc.covariance[0, 0], pc1.standard_deviation**2) self.assertAlmostEqual(pc.covariance[1, 1], pc2.standard_deviation**2) def test_combine_multivariate_numerical(self): p1 = MultivariateNormalDistribution([3, 5], [[1, 0], [0, 4]]) p2 = MultivariateNormalDistribution([4, 6], [[4, 0], [0, 9]]) p1n = MultivariateNumericalDistribution.from_pd(p1) p2n = MultivariateNumericalDistribution.from_pd(p2) pc = combine_distributions([p1, p2]) pcn = combine_distributions([p1n, p2n]) self.assertAlmostEqual(pc.logpdf([2.7, 4.8]), pcn.logpdf([2.7, 4.8]), delta=0.01) self.assertAlmostEqual(pc.logpdf([6.7, 2.8]), pcn.logpdf([6.7, 2.8]), delta=0.01)
53.811094
135
0.615374
7949ac1d83c40c7ff3d1e5ad8de3e58b41c1808d
6,833
py
Python
tunas/depthwise_initializers_test.py
deepneuralmachine/google-research
d2ce2cf0f5c004f8d78bfeddf6e88e88f4840231
[ "Apache-2.0" ]
23,901
2018-10-04T19:48:53.000Z
2022-03-31T21:27:42.000Z
tunas/depthwise_initializers_test.py
deepneuralmachine/google-research
d2ce2cf0f5c004f8d78bfeddf6e88e88f4840231
[ "Apache-2.0" ]
891
2018-11-10T06:16:13.000Z
2022-03-31T10:42:34.000Z
tunas/depthwise_initializers_test.py
deepneuralmachine/google-research
d2ce2cf0f5c004f8d78bfeddf6e88e88f4840231
[ "Apache-2.0" ]
6,047
2018-10-12T06:31:02.000Z
2022-03-31T13:59:28.000Z
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python2, python3 """Tests for depthwise_initializers.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np import tensorflow.compat.v1 as tf from tunas import depthwise_initializers class ModelOpsTest(tf.test.TestCase): def test_variance_scaling_untruncated_normal_fan_in(self): initializer = depthwise_initializers.DepthwiseVarianceScaling( scale=1.0, mode='fan_in', distribution='untruncated_normal') tensor = initializer([3, 5, 1024, 1]) value = self.evaluate(tensor) self.assertEqual(value.shape, (3, 5, 1024, 1)) self.assertNear(np.mean(value), 0.0, 0.01) self.assertNear(np.std(value), 1.0 / math.sqrt(3 * 5), 0.01) def test_variance_scaling_truncated_normal_fan_in(self): initializer = depthwise_initializers.DepthwiseVarianceScaling( scale=1.0, mode='fan_in', distribution='truncated_normal') tensor = initializer([3, 5, 1024, 1]) value = self.evaluate(tensor) self.assertEqual(value.shape, (3, 5, 1024, 1)) self.assertNear(np.mean(value), 0.0, 0.01) self.assertNear(np.std(value), 1.0 / math.sqrt(3 * 5), 0.01) def test_variance_scaling_uniform_fan_in(self): initializer = depthwise_initializers.DepthwiseVarianceScaling( scale=1.0, mode='fan_in', distribution='uniform') tensor = initializer([3, 5, 1024, 1]) value = self.evaluate(tensor) self.assertEqual(value.shape, (3, 5, 1024, 1)) self.assertNear(np.mean(value), 0.0, 0.01) self.assertNear(np.std(value), 1.0 / math.sqrt(3 * 5), 0.01) def test_variance_scaling_scale_is_2(self): initializer = depthwise_initializers.DepthwiseVarianceScaling( scale=2.0, mode='fan_in', distribution='untruncated_normal') tensor = initializer([3, 5, 1024, 1]) value = self.evaluate(tensor) self.assertEqual(value.shape, (3, 5, 1024, 1)) self.assertNear(np.mean(value), 0.0, 0.01) self.assertNear(np.std(value), math.sqrt(2.0 / (3 * 5)), 0.01) def test_fan_in_depth_multiplier_is_2(self): initializer = depthwise_initializers.DepthwiseVarianceScaling( scale=1.0, mode='fan_in', distribution='untruncated_normal') tensor = initializer([3, 5, 1024, 2]) value = self.evaluate(tensor) self.assertEqual(value.shape, (3, 5, 1024, 2)) self.assertNear(np.mean(value), 0.0, 0.01) self.assertNear(np.std(value), 1.0 / math.sqrt(3 * 5), 0.01) def test_fan_out_depth_multiplier_is_2(self): initializer = depthwise_initializers.DepthwiseVarianceScaling( scale=1.0, mode='fan_out', distribution='untruncated_normal') tensor = initializer([3, 5, 1024, 2]) value = self.evaluate(tensor) self.assertEqual(value.shape, (3, 5, 1024, 2)) self.assertNear(np.mean(value), 0.0, 0.01) self.assertNear(np.std(value), 1.0 / math.sqrt(2 * 3 * 5), 0.01) def test_fan_avg_depth_multiplier_is_2(self): initializer = depthwise_initializers.DepthwiseVarianceScaling( scale=1.0, mode='fan_avg', distribution='untruncated_normal') tensor = initializer([3, 5, 1024, 2]) value = self.evaluate(tensor) self.assertEqual(value.shape, (3, 5, 1024, 2)) self.assertNear(np.mean(value), 0.0, 0.01) self.assertNear(np.std(value), 1.0 / math.sqrt(1.5 * 3 * 5), 0.01) def test_depthwise_variance_scaling_end_to_end(self): # This is an end-to-end test for the VarianceScaling() class. # We apply he initializer to a tensor, and verify that the # distribution of outputs matches what we expect. input_tensor = tf.random.normal( shape=(32, 20, 20, 1024), mean=0.0, stddev=1) kernel_initializer = depthwise_initializers.DepthwiseVarianceScaling( scale=1.0, mode='fan_in', distribution='truncated_normal') kernel = tf.get_variable( name='kernel', initializer=kernel_initializer, shape=[5, 5, 1024, 1]) output_tensor = tf.nn.depthwise_conv2d( input_tensor, kernel, strides=(1, 1, 1, 1), padding='VALID') self.evaluate(tf.global_variables_initializer()) result = self.evaluate(output_tensor) self.assertNear(np.mean(result), 0.0, 0.05) self.assertNear(np.std(result), 1.0, 0.05) def test_depthwise_he_normal_initializer_end_to_end(self): # This is an end-to-end test for the depthwise_he_normal() function. # We apply a depthwise_he_normal() to a tensor, and verify that the # distribution of outputs matches what we expect. input_tensor = tf.random.normal( shape=(32, 20, 20, 1024), mean=0.0, stddev=1) kernel_initializer = depthwise_initializers.depthwise_he_normal() kernel = tf.get_variable( name='kernel', initializer=kernel_initializer, shape=[5, 5, 1024, 1]) output_tensor = tf.nn.depthwise_conv2d( tf.nn.relu(input_tensor), kernel, strides=(1, 1, 1, 1), padding='VALID') self.evaluate(tf.global_variables_initializer()) result = self.evaluate(output_tensor) self.assertNear(np.mean(result), 0.0, 0.05) self.assertNear(np.std(result), 1.0, 0.05) def test_variance_scaling_initializer_dtypes(self): initializer0 = depthwise_initializers.DepthwiseVarianceScaling() tensor0 = initializer0([3, 3, 128, 1]) self.assertEqual(tensor0.dtype, tf.float32) initializer1 = depthwise_initializers.DepthwiseVarianceScaling() tensor1 = initializer1([3, 3, 128, 1], dtype=tf.float64) self.assertEqual(tensor1.dtype, tf.float64) initializer2 = depthwise_initializers.DepthwiseVarianceScaling( dtype=tf.float64) tensor2 = initializer2([3, 3, 128, 1]) self.assertEqual(tensor2.dtype, tf.float64) def test_variance_scaling_seed(self): initializer = depthwise_initializers.DepthwiseVarianceScaling(seed=42) tensor1 = initializer([3, 3, 128, 1]) tensor2 = initializer([3, 3, 128, 1]) self.assertAllClose(self.evaluate(tensor1), self.evaluate(tensor2)) if __name__ == '__main__': tf.disable_v2_behavior() tf.test.main()
35.404145
74
0.687985
7949ac7c98e798d33250e6e8b74e8adb5d136331
1,856
py
Python
test/functional/rpc_timestampindex.py
Lucky1689/ukcoin
11bcd6ded7b11a7179e32f1bf0d6f75615c0dde1
[ "MIT" ]
null
null
null
test/functional/rpc_timestampindex.py
Lucky1689/ukcoin
11bcd6ded7b11a7179e32f1bf0d6f75615c0dde1
[ "MIT" ]
null
null
null
test/functional/rpc_timestampindex.py
Lucky1689/ukcoin
11bcd6ded7b11a7179e32f1bf0d6f75615c0dde1
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2018 The Bitcoin Core developers # Copyright (c) 2017 The Raven Core developers # Copyright (c) 2018 The Rito Core developers # Copyright (c) 2020 The Ukcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Test timestampindex generation and fetching # import time from test_framework.test_framework import UkcoinTestFramework from test_framework.util import * class TimestampIndexTest(UkcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 4 def setup_network(self): self.add_nodes(4, [ # Nodes 0/1 are "wallet" nodes ["-debug"], ["-debug", "-timestampindex"], # Nodes 2/3 are used for testing ["-debug"], ["-debug", "-timestampindex"]]) self.start_nodes() connect_nodes_bi(self.nodes, 0, 1) connect_nodes_bi(self.nodes, 0, 2) connect_nodes_bi(self.nodes, 0, 3) self.sync_all() def run_test(self): print("Mining 25 blocks...") blockhashes = self.nodes[0].generate(25) time.sleep(3) print("Mining 25 blocks...") blockhashes.extend(self.nodes[0].generate(25)) time.sleep(3) print("Mining 25 blocks...") blockhashes.extend(self.nodes[0].generate(25)) self.sync_all() low = self.nodes[1].getblock(blockhashes[0])["time"] high = low + 76 print("Checking timestamp index...") hashes = self.nodes[1].getblockhashes(high, low) assert_equal(len(hashes), len(blockhashes)) assert_equal(hashes, blockhashes) print("Passed\n") if __name__ == '__main__': TimestampIndexTest().main()
27.701493
69
0.634698
7949ad5253e2bae10b32bd84627ba89dda338ed4
339
py
Python
src/AddressBook/migrations/0002_auto_20180101_1700.py
thunderoy/AddressBook
0d848c1732585c990f057b8e99b4b9290d0b043c
[ "MIT" ]
1
2018-06-13T07:45:13.000Z
2018-06-13T07:45:13.000Z
src/AddressBook/migrations/0002_auto_20180101_1700.py
thunderoy/AddressBook
0d848c1732585c990f057b8e99b4b9290d0b043c
[ "MIT" ]
null
null
null
src/AddressBook/migrations/0002_auto_20180101_1700.py
thunderoy/AddressBook
0d848c1732585c990f057b8e99b4b9290d0b043c
[ "MIT" ]
null
null
null
# Generated by Django 2.0 on 2018-01-01 17:00 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('admin', '0002_logentry_remove_auto_add'), ('AddressBook', '0001_initial'), ] operations = [ migrations.DeleteModel( name='AppUser', ), ]
18.833333
51
0.60472
7949ad602c0a3aa0ff475a786ab5b898c4bccbf8
1,618
py
Python
src/test_receive_addresses/test_receive_addresses.py
ska-telescope/sdp-workflows-procfunc
ef6e7be9584a006e936139ae653902a41af4d906
[ "BSD-3-Clause" ]
null
null
null
src/test_receive_addresses/test_receive_addresses.py
ska-telescope/sdp-workflows-procfunc
ef6e7be9584a006e936139ae653902a41af4d906
[ "BSD-3-Clause" ]
null
null
null
src/test_receive_addresses/test_receive_addresses.py
ska-telescope/sdp-workflows-procfunc
ef6e7be9584a006e936139ae653902a41af4d906
[ "BSD-3-Clause" ]
null
null
null
""" Workflow to test generation of receive addresses. The purpose of this workflow is to test the mechanism for generating SDP receive addresses from the channel link map contained in the SBI. The workflow picks it up from there, uses it to generate the receive addresses for each scan type and writes them to the processing block state. The subarray publishes this address map on the appropriate attribute to complete the transition following AssignResources. This workflow does not generate any deployments. """ import logging import ska_ser_logging from ska_sdp_workflow import workflow ska_ser_logging.configure_logging() LOG = logging.getLogger("test_receive_addresses") LOG.setLevel(logging.DEBUG) # Claim processing block pb = workflow.ProcessingBlock() # Default maximum number of channels per receive process max_channels = 20 # Port configuration port_start = 9000 num_ports = 1 # Get the channel link map from SBI scan_types = pb.get_scan_types() # Port and receive process configuration host_port, num_process = pb.configure_recv_processes_ports( scan_types, max_channels, port_start, num_ports ) # Create work phase LOG.info("Create work phase") work_phase = pb.create_phase("Work", []) with work_phase: # Deploying a fake execution engine. work_phase.ee_deploy_helm("test-receive") # Add receive addresses to pb pb.receive_addresses(configured_host_port=host_port) # ... Do some processing here ... LOG.info("Done, now idling...") for txn in work_phase.wait_loop(): if work_phase.is_sbi_finished(txn): break txn.loop(wait=True)
26.966667
79
0.767614
7949ae13bd1b600938681275bf3ee97309e995e4
1,652
py
Python
allure-pytest/setup.py
wuhuizuo/allure-python
7285adf0690bb703225d45e236594581bfb62728
[ "Apache-2.0" ]
1
2018-07-23T16:09:54.000Z
2018-07-23T16:09:54.000Z
allure-pytest/setup.py
hosniadala-dt/allure-python
7285adf0690bb703225d45e236594581bfb62728
[ "Apache-2.0" ]
null
null
null
allure-pytest/setup.py
hosniadala-dt/allure-python
7285adf0690bb703225d45e236594581bfb62728
[ "Apache-2.0" ]
1
2020-08-05T05:40:44.000Z
2020-08-05T05:40:44.000Z
import os,sys from setuptools import setup from pkg_resources import require, DistributionNotFound, VersionConflict try: require('pytest-allure-adaptor') print(""" You have pytest-allure-adaptor installed. You need to remove pytest-allure-adaptor from your site-packages before installing allure-pytest, or conflicts may result. """) sys.exit() except (DistributionNotFound, VersionConflict): pass PACKAGE = "allure-pytest" VERSION = "2.4.1" classifiers = [ 'Development Status :: 5 - Production/Stable', 'Framework :: Pytest', 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache Software License', 'Topic :: Software Development :: Quality Assurance', 'Topic :: Software Development :: Testing', ] install_requires = [ "pytest>=3.3.0", "six>=1.9.0", "allure-python-commons==2.4.1" ] def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() def main(): setup( name=PACKAGE, version=VERSION, description="Allure pytest integration", url="https://github.com/allure-framework/allure-python", author="QAMetaSoftware, Stanislav Seliverstov", author_email="sseliverstov@qameta.io", license="Apache-2.0", classifiers=classifiers, keywords="allure reporting pytest", long_description=read('README.rst'), packages=["allure_pytest"], package_dir={"allure_pytest": "src"}, entry_points={"pytest11": ["allure_pytest = allure_pytest.plugin"]}, install_requires=install_requires ) if __name__ == '__main__': main()
27.533333
76
0.66586
7949ae3669a030b8cf6b5885d53ca361ba9a6f32
4,468
py
Python
test/confs/sugar.conf.py
Thecarisma/themata
09a8ce670479ea4e9b5a26457f5cb290728f604a
[ "CC0-1.0" ]
2
2020-04-27T10:14:54.000Z
2020-04-28T01:24:59.000Z
test/confs/sugar.conf.py
Thecarisma/themata
09a8ce670479ea4e9b5a26457f5cb290728f604a
[ "CC0-1.0" ]
28
2020-05-16T19:50:54.000Z
2021-12-02T07:38:03.000Z
test/confs/sugar.conf.py
Thecarisma/themata
09a8ce670479ea4e9b5a26457f5cb290728f604a
[ "CC0-1.0" ]
null
null
null
import os import themata project = 'First Doc' copyright = '2020, Adewale Azeez' author = 'Adewale Azeez' html_theme_path = [themata.get_html_theme_path()] extensions = ['recommonmark'] source_suffix = { '.rst': 'restructuredtext', '.txt': 'markdown', '.md': 'markdown', } html_theme_options = { 'project_icon': "https://github.com/Thecarisma/themata/raw/main/docs/images/themata.png", 'has_left_sidebar': True, 'has_right_sidebar': True, 'show_navigators': True, 'show_navigators_in_index': False, 'left_sidebar_only': [ "leftpage" ], 'right_sidebar_only': [ "sampleregex1" ], 'no_sidebar': [ "singlepage" ], 'navbar_links': [ ("General", "general/index"), ("Download", "https://pypi.python.org/pypi/themata"), ("Introduction", "general/introduction"), ("FAQ", "general/faq") ], 'navbar_sec_links': [ ("General", "general/index"), ("Download", "https://pypi.python.org/pypi/themata"), ("Introduction", "general/introduction"), ("FAQ", "general/faq") ], 'social_icons': [ ("fab fa-twitter", "https://twitter.com/iamthecarisma"), ("fab fa-twitch", "https://www.twitch.tv/amsiraceht"), ("fab fa-github", "https://github.com/Thecarisma"), ("fab fa-linkedin", "https://www.linkedin.com/in/azeez-adewale/"), ("fab fa-stackoverflow", "https://stackoverflow.com/users/6626422/thecarisma") ], 'footer_menus': [ { 'icon': 'fa-phone', 'title': 'Contact', 'menu_items': [ { 'link': "#", 'title': 'https://thecarisma.github.io/' }, { 'link': "", 'title': '12345678998' } ] }, { 'icon': 'fa-book', 'title': 'Documentation', 'menu_items': [ { 'link': "#", 'title': 'Title One' }, { 'link': "#", 'title': 'Two' }, { 'link': "#", 'title': 'Three' }, { 'link': "#", 'title': 'Title Four' }, { 'link': "#", 'title': 'Item Five' }, ] }, { 'icon': 'fa-users', 'title': 'Community', 'menu_items': [ { 'link': "#", 'title': 'Stackoverflow' }, { 'link': "", 'title': 'Slack' }, { 'link': "", 'title': 'Forum' }, { 'link': "", 'title': 'IRC' } ] } ], "source_root": "https://github.com/Thecarisma/themata/tree/test/test/test_rst", "metadata": { "enable": True, "url": "https://thecarisma.github.io/themata", "type": "website", "title": "Set of Highly customizable sphinx themes.", "description": "Themata package contains different sphinx theme that can be easily customized to look like a complete website or just a documentation webpage.", "image": "https://raw.githubusercontent.com/Thecarisma/themata/main/docs/images/themata.small.png", "keywords": "python, sphinx, thecarisma, themata, documentation, markdown, rst, themes", "author": "Adewale Azeez" }, "twitter_metadata": { "enable": True, "card": "summary", "site": "@iamthecarisma", "creator": "@iamthecarisma", "title": "Set of Highly customizable sphinx themes.", "description": "Themata package contains different sphinx theme that can be easily customized to look like a complete website or just a documentation webpage.", "image": "https://raw.githubusercontent.com/Thecarisma/themata/main/docs/images/themata.small.png", } } html_theme = 'sugar'
32.613139
169
0.450761
7949b07f350c247420b50c9a0d607ded2b700d97
4,377
py
Python
db-server/dbcon/views.py
JannisBush/xs-leaks-browser-web
15ed76a87c1c30e15cd7d0b070e2853d17d322bc
[ "MIT" ]
null
null
null
db-server/dbcon/views.py
JannisBush/xs-leaks-browser-web
15ed76a87c1c30e15cd7d0b070e2853d17d322bc
[ "MIT" ]
null
null
null
db-server/dbcon/views.py
JannisBush/xs-leaks-browser-web
15ed76a87c1c30e15cd7d0b070e2853d17d322bc
[ "MIT" ]
null
null
null
import json from django.http import HttpResponse from .models import (Result, Browser, Test, ObjectProperties, GlobalProperties, Events, Observation, WindowProperties, LeakResult, CookieSecFetch) import logging logger = logging.getLogger(__name__) def save_data_v2(request): try: message = "Success" body_json = json.loads(request.body) # Site is not set, we are in the Browser Mode if body_json["site"] == "": observation = {} observation["browser"], _ = Browser.objects.get_or_create(**body_json["browser"]) observation["test"], _ = Test.objects.get_or_create(**body_json["test"]) if "events" in body_json: observation["events"], _ = Events.objects.get_or_create(**body_json["events"]) if "op" in body_json: observation["object_properties"], _ = ObjectProperties.objects.get_or_create(**body_json["op"]) if "gp" in body_json: observation["global_properties"], _ = GlobalProperties.objects.get_or_create(**body_json["gp"]) if "win" in body_json: observation["window_properties"], _ = WindowProperties.objects.get_or_create(**body_json["win"]) if "loading_time" in body_json: observation["loading_time"] = body_json["loading_time"] if "complete_time" in body_json: observation["complete_time"] = body_json["complete_time"] if "timed_out" in body_json: observation["timed_out"] = body_json["timed_out"] if "apg_url" in body_json: observation["apg_url"] = body_json["apg_url"] if "retest" in body_json: observation["retest"] = body_json["retest"] obsv = Observation(**observation) obsv.save() # Site is set, we are in the dynamic confirmation mode else: leak_result = {} leak_result["browser"], _ = Browser.objects.get_or_create(**body_json["browser"]) test_json = body_json["test"] test_json["url_dict_version"] = "notapplicable" leak_result["test"], _ = Test.objects.get_or_create(**test_json) if "events" in body_json: leak_result["events"], _ = Events.objects.get_or_create(**body_json["events"]) if "op" in body_json: leak_result["object_properties"], _ = ObjectProperties.objects.get_or_create(**body_json["op"]) if "gp" in body_json: leak_result["global_properties"], _ = GlobalProperties.objects.get_or_create(**body_json["gp"]) if "win" in body_json: leak_result["window_properties"], _ = WindowProperties.objects.get_or_create(**body_json["win"]) if "loading_time" in body_json: leak_result["loading_time"] = body_json["loading_time"] if "complete_time" in body_json: leak_result["complete_time"] = body_json["complete_time"] if "timed_out" in body_json: leak_result["timed_out"] = body_json["timed_out"] if "apg_url" in body_json: leak_result["apg_url"] = body_json["apg_url"] if "retest" in body_json: leak_result["retest_num"] = body_json["retest"] if "cookies" in body_json: leak_result["cookies"] = body_json["cookies"] if "site" in body_json: leak_result["site"] = body_json["site"] lkr = LeakResult(**leak_result) lkr.save() except Exception as e: logger.warning(e) message = "Failed" finally: return HttpResponse(message) def save_data(request): """Save the data in a database. Request needs to be post and the body needs to be json and adhere to the schema of the result model. """ body_json = json.loads(request.body) res = Result(**body_json) res.save() return HttpResponse() def save_test(request): """Save the cookie/sec-fetch data in a database.""" message = "Success" try: body_json = json.loads(request.body) _, _ = CookieSecFetch.objects.get_or_create(**body_json) except Exception as e: logger.warning(e) message = "Failed" finally: return HttpResponse(message)
44.212121
112
0.60658
7949b1469ec730f420fdf776fbf81d61e17bfd7a
2,880
py
Python
apps/hashblock_cli/scripts/ucum_to_assets.py
hashblock/sawtooth-uom
0b8f131ee4f2a3a70a19f21bc88fe064d39fe5cd
[ "MIT" ]
5
2018-04-05T07:02:04.000Z
2018-07-10T09:39:03.000Z
apps/hashblock_cli/scripts/ucum_to_assets.py
hashblock/sawtooth-uom
0b8f131ee4f2a3a70a19f21bc88fe064d39fe5cd
[ "MIT" ]
89
2018-03-11T14:46:07.000Z
2018-09-07T14:50:42.000Z
apps/hashblock_cli/scripts/ucum_to_assets.py
hashblock/sawtooth-uom
0b8f131ee4f2a3a70a19f21bc88fe064d39fe5cd
[ "MIT" ]
null
null
null
# ------------------------------------------------------------------------------ # Copyright 2018 Frank V. Castellucci and Arthur Greef # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------------------ import urllib.request from xml.dom import minidom, Node def get_name(parent_node): """Fetches the node tag value for 'name'""" return parent_node.getElementsByTagName('name')[0].childNodes[0].nodeValue def get_code(parent_node): """Fetches the node attribute value for 'Code'""" return str(parent_node.attributes["Code"].value) def get_symbol(parent_node): """Fetches the node tag value for 'printSymbol'""" def traverse(node): while node != Node.TEXT_NODE: if len(node.childNodes) != 0: traverse(node.childNodes[0]) else: return get_name(parent_node) return node.data x = parent_node.getElementsByTagName('printSymbol') if len(x) == 0: return get_name(parent_node) else: x0 = x[0] cn = x0.childNodes if len(cn) == 0: return get_name(parent_node) else: return traverse(cn[0]) def genucum(): """Generates a list of dictionaries representing ucum base units and units""" ucum = urllib.request.urlopen( 'http://unitsofmeasure.org/ucum-essence.xml').read() dom = minidom.parseString(ucum) base_units = dom.getElementsByTagName('base-unit') units = dom.getElementsByTagName('unit') primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37] used_primes = set() genesis_array = [ {"system": "universal", "prime": "1".zfill(44), "key": "unity"}] for b in base_units: prime_id = None for p in primes: if p not in used_primes: used_primes.add(p) prime_id = "{:x}".format(p) break bname = { "system": "ucum", "prime": prime_id.zfill(44), "key": get_code(b)} genesis_array.append(bname) for u in units: uname = {"system": "ucum", "prime": "", "key": get_code(u)} genesis_array.append(uname) # print("{}".format(json.dumps(genesis_array))) return genesis_array if __name__ == '__main__': x = genucum() print("{}".format(x))
30.967742
80
0.587847
7949b1a561f113dc5d0f06aa6c43eaa8050dff3a
6,135
py
Python
rp/rsa.py
bptripp/rp
f076034547f7f8afe0f8aad8d0122f7035ca4ed1
[ "MIT" ]
null
null
null
rp/rsa.py
bptripp/rp
f076034547f7f8afe0f8aad8d0122f7035ca4ed1
[ "MIT" ]
null
null
null
rp/rsa.py
bptripp/rp
f076034547f7f8afe0f8aad8d0122f7035ca4ed1
[ "MIT" ]
null
null
null
# Gradient descent to find random activity pattern with given representational # similarity matrix. This works better than taking steps in null space of similarity # matrix. import numpy as np import matplotlib.pyplot as plt import tensorflow as tf def get_random_stimuli(n_stim, dim): """ :param n_stim: Number of "stimuli" to sample (stimuli are vectors) :param dim: Dimension of each stimulus :return: Random stimulus vectors with entries between -1 and 1 (#stim by dim) """ return -1 + 2 * np.random.rand(n_stim, dim) def get_gaussian_population_response(stim, n_neurons, dim, sigma): """ :param stim: Matrix of stimulus vectors (#stim by dim) :param n_neurons: Number of neurons in a population :param dim: Dimension of stimulus vectors :param sigma: Width of Gaussian tuning curves of dim dimensions :return: Responses of population of Gaussian tuning curves to given stimuli """ centres = -1 + 2 * np.random.rand(n_neurons, dim) responses = np.zeros((stim.shape[0], n_neurons)) for i in range(n_stim): for j in range(n_neurons): dist = np.linalg.norm(stim[i, :] - centres[j, :]) responses[i, j] = np.exp(-dist ** 2 / (2 * sigma ** 2)) return responses def get_tf_corrcoef(tf_responses): """ :param tf_responses: A TensorFlow variable that holds a matrix of population responses to a list of stimuli :return: A TensorFlow variable that holds the matrix of correlations between responses to pairs of stimlui """ deviations = tf_responses - tf.expand_dims(tf.reduce_mean(tf_responses, axis=1), axis=1) numerator = tf.matmul(deviations, tf.transpose(deviations)) d = tf.sqrt(tf.diag_part(numerator)) return tf.div(numerator, tf.tensordot(d, d, axes=0)) def test_get_tf_corrcoef(): responses = np.random.rand(80, 100) tf_corrcoef = get_tf_corrcoef(responses) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) np.testing.assert_allclose(sess.run(tf_corrcoef), np.corrcoef(responses)) def get_population_response_with_similarity(n_neurons, similarity, initial_responses=None, iterations=10): """ :param n_neurons: Number of neurons in population :param similarity: Correlation matrix to approximate (correlations between population responses to pairs of stimuli) :param initial_responses (optional): An initial guess at the population responses (initialized to a random matrix if not given) :param iterations (optional): Iterations of an outer optimization loop (several optimization steps per iteration) :return: Population responses that optimally approximate the similarity matrix """ if initial_responses is None: initial_responses = np.random.rand(similarity.shape[0], n_neurons) tf_responses = tf.get_variable('responses', initializer=tf.constant(initial_responses)) tf_target_similarity = tf.constant(similarity) tf_actual_similarity = get_tf_corrcoef(tf_responses) cost = tf.reduce_mean(tf.pow(tf_actual_similarity - tf_target_similarity, 2)) optimizer = tf.train.AdamOptimizer(learning_rate=.1) clip_op = tf.assign(tf_responses, tf.clip_by_value(tf_responses, 0, 1000000)) opt_op = optimizer.minimize(cost, var_list=tf_responses) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) print(sess.run(cost)) for i in range(iterations): for j in range(25): opt_op.run() sess.run(clip_op) print(sess.run(cost)) result = sess.run(tf_responses) return result def get_similarity_via_random_subsets(n_neurons, similarity, n_batch, batches): """ :param n_neurons: Number of neurons in population :param similarity: Ccorrelation matrix to approximate (correlations between population responses to pairs of stimuli) :param n_batch: Size of subsets of stimuli to optimize at once :param batches: Number of batches to optimize :return: Population responses that optimally approximate the similarity matrix """ #TODO: manage memory by saving and loading parts of response and similarity matrices n_stimuli = similarity.shape[0] responses = np.random.rand(n_stimuli, n_neurons) for i in range(batches): print('iteration {}'.format(i)) subset = np.random.choice(range(n_stimuli), size=n_batch, replace=False) similarity_subset = similarity[subset,:][:,subset] responses_subset = responses[subset,:] tf.reset_default_graph() new_responses = get_population_response_with_similarity(n_neurons, similarity_subset, initial_responses=responses_subset, iterations=1) responses[subset,:] = new_responses return responses if __name__ == '__main__': # test_get_rf_corrcoef() n_neurons = 1500 n_stim = 1000 sigma = .5 dim = 2 stim = get_random_stimuli(n_stim, dim) responses = get_gaussian_population_response(stim, n_neurons, dim, sigma) similarity = np.corrcoef(responses) # perturbed = get_population_response_with_similarity(n_neurons, similarity) perturbed = get_similarity_via_random_subsets(n_neurons, similarity, 300, 50) plt.subplot(2,3,1) plt.imshow(np.corrcoef(responses), vmin=-1, vmax=1) plt.title('Original Similarity') plt.subplot(2,3,2) plt.imshow(np.corrcoef(perturbed), vmin=-1, vmax=1) plt.title('Optimized Similarity') plt.subplot(2,3,3) plt.imshow(np.corrcoef(perturbed) - np.corrcoef(responses), vmin=-1, vmax=1) plt.title('Difference') plt.subplot(2,3,4) plt.imshow(responses) plt.title('Original Responses') plt.subplot(2,3,5) plt.imshow(perturbed) plt.title('Optimized Responses') plt.subplot(2,3,6) plt.imshow(perturbed - responses) plt.title('Difference') plt.show()
38.829114
121
0.68639
7949b28ad48d7dda88914ce7fdd42833993026c7
2,442
py
Python
emailnetwork/tests/test_extract.py
supertypeai/emailnetwork
65f8f72301ef40c35fa6e36a8589d27ab961243a
[ "MIT" ]
1
2021-01-29T04:26:36.000Z
2021-01-29T04:26:36.000Z
emailnetwork/tests/test_extract.py
supertypeai/emailnetwork
65f8f72301ef40c35fa6e36a8589d27ab961243a
[ "MIT" ]
null
null
null
emailnetwork/tests/test_extract.py
supertypeai/emailnetwork
65f8f72301ef40c35fa6e36a8589d27ab961243a
[ "MIT" ]
1
2022-01-21T09:03:50.000Z
2022-01-21T09:03:50.000Z
import os import datetime from unittest import TestCase from emailnetwork.extract import MBoxReader, extract_meta from emailnetwork.emails import EmailAddress, EmailMeta MBOX_PATH = f'{os.path.dirname(__file__)}/test.mbox' class TestExtract(TestCase): def setUp(self): self.reader = MBoxReader(MBOX_PATH) self.emails = self.reader.extract() def tearDown(self): self.reader = None def test_read_mbox(self): self.assertTrue(isinstance(self.reader, MBoxReader)) def test_length_mbox(self): self.assertEqual(len(self.reader), 140) def test_extract(self): # self.assertTrue(isinstance(next(self.emails), EmailMeta)) firstemail = next(self.emails) self.assertIsInstance(firstemail, EmailMeta) self.assertIsInstance(firstemail.subject, str) self.assertIsInstance(firstemail.date, datetime.datetime) for msg in self.emails: self.assertGreaterEqual(len(msg.recipients), 1) self.assertIsInstance(msg.cc, list) def test_email_address(self): firstemail = next(self.emails) self.assertIsInstance(firstemail.sender, EmailAddress) self.assertIsInstance(firstemail.sender.name, str) self.assertIsInstance(firstemail.sender.email, str) def test_filter_by_date(self): newmails = self.reader.filter_by_date(">=", "2020-01-01") self.assertEqual(len(newmails), 4) for email in newmails: self.assertGreater(email.date, datetime.datetime(2020,1,1)) self.assertLess(email.date, datetime.datetime.now()) oldmails = self.reader.filter_by_date("<=", "2019-12-31") self.assertEqual(len(oldmails), 136) exactmails = self.reader.filter_by_date("==", "2020-04-17") self.assertEqual(len(exactmails), 1) self.assertEqual(exactmails[0].date.date(), datetime.date(2020, 4, 17)) # also need tests to fail with expected exception when not in [==, <=, >=] def test_afunction_throws_exception(self): self.assertRaises(ValueError, self.reader.filter_by_date, "<", "2019-12-31") def test_extract_meta_single(self): for email in self.reader.mbox: emailmsg = extract_meta(email) self.assertIsInstance(emailmsg, EmailMeta) self.assertIsInstance(emailmsg.origin_domain, str) self.assertIsInstance(emailmsg.subject, str)
37
84
0.677314
7949b2ef91c9a44425e0c4e22666bfc384fc22ad
1,110
py
Python
queue_rules/data/management/commands/clear_user_locks.py
benmckibben/queue-rules
8beaf6e306f42866a6a2ed1b9c67d94e29bacd33
[ "MIT" ]
null
null
null
queue_rules/data/management/commands/clear_user_locks.py
benmckibben/queue-rules
8beaf6e306f42866a6a2ed1b9c67d94e29bacd33
[ "MIT" ]
2
2021-06-10T20:11:42.000Z
2021-09-22T19:36:39.000Z
queue_rules/data/management/commands/clear_user_locks.py
benmckibben/queue-rules
8beaf6e306f42866a6a2ed1b9c67d94e29bacd33
[ "MIT" ]
null
null
null
from datetime import datetime, timezone from django.core.management.base import BaseCommand from data.models import UserLock def _parse_datetime(string_dt: str) -> datetime: return datetime.strptime(string_dt, "%Y-%m-%dT%H:%M:%S").replace( tzinfo=timezone.utc ) class Command(BaseCommand): help = "Clear existing user locks." def add_arguments(self, parser): parser.add_argument( "-c", "--created-before", action="store", type=_parse_datetime, default=None, help=( "Only delete locks created before this UTC datetime, provided in " "the format YYYY-MM-DDTHH:MM:SS (such as 2020-09-04T19:18:09)" ), ) def handle(self, *args, **options): locks = UserLock.objects.all() created_upper_bound = options["created_before"] if created_upper_bound is not None: locks = locks.filter(created__lt=created_upper_bound) num_deleted = locks.delete()[0] self.stdout.write(f"Deleted {num_deleted} locks.")
28.461538
82
0.614414
7949b34c2cd0fcdd01fae1066acd4df3e032196e
2,209
py
Python
tests/tests/correctness/EPLAnalytics/Flow_Manipulation/Filter/f_cor_014/run.py
rpeach-sag/apama-industry-analytics-kit
a3f6039915501d41251b6f7ec41b0cb8111baf7b
[ "Apache-2.0" ]
3
2019-09-02T18:21:22.000Z
2020-04-17T16:34:57.000Z
tests/tests/correctness/EPLAnalytics/Flow_Manipulation/Filter/f_cor_014/run.py
rpeach-sag/apama-industry-analytics-kit
a3f6039915501d41251b6f7ec41b0cb8111baf7b
[ "Apache-2.0" ]
null
null
null
tests/tests/correctness/EPLAnalytics/Flow_Manipulation/Filter/f_cor_014/run.py
rpeach-sag/apama-industry-analytics-kit
a3f6039915501d41251b6f7ec41b0cb8111baf7b
[ "Apache-2.0" ]
null
null
null
# $Copyright (c) 2015 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or Terracotta Inc., San Francisco, CA, USA, and/or Software AG (Canada) Inc., Cambridge, Ontario, Canada, and/or, Software AG (UK) Ltd., Derby, United Kingdom, and/or Software A.G. (Israel) Ltd., Or-Yehuda, Israel and/or their licensors.$ # Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with Software AG from industry.framework.AnalyticsBaseTest import AnalyticsBaseTest from pysys.constants import * class PySysTest(AnalyticsBaseTest): def execute(self): # Start the correlator correlator = self.startTest() self.injectAnalytic(correlator) self.injectDataSourceService(correlator) self.injectFilter(correlator) self.ready(correlator) correlator.injectMonitorscript(['test.mon'], self.input) self.waitForSignal('correlator.out', expr='TEST COMPLETE', condition='==1', timeout=5) def validate(self): # Basic sanity checks self.checkSanity() # Ensure the test output was correct exprList=[] exprList.append('TEST PASSED: 1') exprList.append('FAILED TO CREATE ANALYTIC: 2') exprList.append('FAILED TO CREATE ANALYTIC: 3') exprList.append('FAILED TO CREATE ANALYTIC: 4') exprList.append('FAILED TO CREATE ANALYTIC: 5') exprList.append('FAILED TO CREATE ANALYTIC: 6') exprList.append('FAILED TO CREATE ANALYTIC: 7') exprList.append('FAILED TO CREATE ANALYTIC: 8') exprList.append('FAILED TO CREATE ANALYTIC: 9') exprList.append('FAILED TO CREATE ANALYTIC: 10') exprList.append('FAILED TO CREATE ANALYTIC: 11') exprList.append('FAILED TO CREATE ANALYTIC: 12') exprList.append('TEST PASSED: 13') exprList.append('TEST PASSED: 14') exprList.append('TEST PASSED: 15') exprList.append('TEST PASSED: 16') self.assertOrderedGrep("correlator.out", exprList=exprList) # Make sure that the we got the right number of actions/listeners called self.assertLineCount('correlator.out', expr='TEST PASSED', condition='==5') self.assertLineCount('correlator.out', expr='FAILED TO CREATE ANALYTIC:', condition='==11')
46.020833
343
0.732911