prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import pytest import pandas as pd from pandas import compat import pandas.util.testing as tm import pandas.util._test_decorators as td from pandas.util.testing import assert_frame_equal, assert_raises_regex COMPRESSION_TYPES = [None, 'bz2', 'gzip', pytest.param('xz', marks=td.skip_if_no_lzma)] def decompress_file(path, compression): if compression is None: f = open(path, 'rb') elif compression == 'gzip': import gzip f = gzip.GzipFile(path, 'rb') elif compression == 'bz2': import bz2 f = bz2.BZ2File(path, 'rb') elif compression == 'xz': lzma = compat.import_lzma() f = lzma.open(path, 'rb') else: msg = 'Unrecognized compression type: {}'.format(compression) raise ValueError(msg) result = f.read().decode('utf8') f.close() return result @pytest.mark.parametrize('compression', COMPRESSION_TYPES) def test_compression_roundtrip(compression): df = pd.DataFrame([[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], index=['A', 'B'], columns=['X', 'Y', 'Z']) with tm.ensure_clean() as path: df.to_json(path, compression=compression) assert_frame_equal(df, pd.read_json(path, compression=compression)) # explicitly ensure file was compressed. uncompressed_content = decompress_file(path, compression) assert_frame_equal(df, pd.read_json(uncompressed_content)) def test_compress_zip_value_error(): df = pd.DataFrame([[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], index=['A', 'B'], columns=['X', 'Y', 'Z']) with tm.ensure_clean() as path: import zipfile pytest.raises(zipfile.BadZipfile, df.to_json, path, compression="zip") def test_read_zipped_json(): uncompressed_path = tm.get_data_path("tsframe_v012.json") uncompressed_df = pd.read_json(uncompressed_path) compressed_path = tm.get_data_path("tsframe_v012.json.zip") compressed_df = pd.read_json(compressed_path, compression='zip') assert_frame_equal(uncompressed_df, compressed_df) @pytest.mark.parametrize('compression', COMPRESSION_TYPES) def test_with_s3_url(compression): boto3 = pytest.importorskip('boto3') pytest.importorskip('s3fs') moto = pytest.importorskip('moto') df = pd.read_json('{"a": [1, 2, 3], "b": [4, 5, 6]}') with moto.mock_s3(): conn = boto3.resource("s3", region_name="us-east-1") bucket = conn.create_bucket(Bucket="pandas-test") with tm.ensure_clean() as path: df.to_json(path, compression=compression) with open(path, 'rb') as f: bucket.put_object(Key='test-1', Body=f) roundtripped_df = pd.read_json('s3://pandas-test/test-1', compression=compression) assert_frame_equal(df, roundtripped_df) @pytest.mark.parametrize('compression', COMPRESSION_TYPES) def test_lines_with_compression(compression): with tm.ensure_clean() as path: df = pd.read_json('{"a": [1, 2, 3], "b": [4, 5, 6]}') df.to_json(path, orient='records', lines=True, compression=compression) roundtripped_df = pd.read_json(path, lines=True, compression=compression) assert_frame_equal(df, roundtripped_df) @pytest.mark.parametrize('compression', COMPRESSION_TYPES) def test_chunksize_with_compression(compression): with tm.ensure_clean() as path: df = pd.read_json('{"a": ["foo", "bar", "baz"], "b": [4, 5, 6]}') df.to_json(path, orient='records', lines=True, compression=compression) roundtripped_df = pd.concat(pd.read_json(path, lines=True, chunksize=1, compression=compression))
assert_frame_equal(df, roundtripped_df)
pandas.util.testing.assert_frame_equal
from datetime import datetime, timedelta from io import StringIO import re import sys import numpy as np import pytest from pandas._libs.tslib import iNaT from pandas.compat import PYPY from pandas.compat.numpy import np_array_datetime64_compat from pandas.core.dtypes.common import ( is_datetime64_dtype, is_datetime64tz_dtype, is_object_dtype, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.dtypes import DatetimeTZDtype import pandas as pd from pandas import ( CategoricalIndex, DataFrame, DatetimeIndex, Index, Interval, IntervalIndex, PeriodIndex, Series, Timedelta, TimedeltaIndex, Timestamp, ) from pandas.core.accessor import PandasDelegate from pandas.core.arrays import DatetimeArray, PandasArray, TimedeltaArray from pandas.core.base import NoNewAttributesMixin, PandasObject from pandas.core.indexes.datetimelike import DatetimeIndexOpsMixin import pandas.util.testing as tm class CheckStringMixin: def test_string_methods_dont_fail(self): repr(self.container) str(self.container) bytes(self.container) def test_tricky_container(self): if not hasattr(self, "unicode_container"): pytest.skip("Need unicode_container to test with this") repr(self.unicode_container) str(self.unicode_container) class CheckImmutable: mutable_regex = re.compile("does not support mutable operations") def check_mutable_error(self, *args, **kwargs): # Pass whatever function you normally would to pytest.raises # (after the Exception kind). with pytest.raises(TypeError): self.mutable_regex(*args, **kwargs) def test_no_mutable_funcs(self): def setitem(): self.container[0] = 5 self.check_mutable_error(setitem) def setslice(): self.container[1:2] = 3 self.check_mutable_error(setslice) def delitem(): del self.container[0] self.check_mutable_error(delitem) def delslice(): del self.container[0:3] self.check_mutable_error(delslice) mutable_methods = getattr(self, "mutable_methods", []) for meth in mutable_methods: self.check_mutable_error(getattr(self.container, meth)) def test_slicing_maintains_type(self): result = self.container[1:2] expected = self.lst[1:2] self.check_result(result, expected) def check_result(self, result, expected, klass=None): klass = klass or self.klass assert isinstance(result, klass) assert result == expected class TestPandasDelegate: class Delegator: _properties = ["foo"] _methods = ["bar"] def _set_foo(self, value): self.foo = value def _get_foo(self): return self.foo foo = property(_get_foo, _set_foo, doc="foo property") def bar(self, *args, **kwargs): """ a test bar method """ pass class Delegate(PandasDelegate, PandasObject): def __init__(self, obj): self.obj = obj def setup_method(self, method): pass def test_invalid_delegation(self): # these show that in order for the delegation to work # the _delegate_* methods need to be overridden to not raise # a TypeError self.Delegate._add_delegate_accessors( delegate=self.Delegator, accessors=self.Delegator._properties, typ="property", ) self.Delegate._add_delegate_accessors( delegate=self.Delegator, accessors=self.Delegator._methods, typ="method" ) delegate = self.Delegate(self.Delegator()) with pytest.raises(TypeError): delegate.foo with pytest.raises(TypeError): delegate.foo = 5 with pytest.raises(TypeError): delegate.foo() @pytest.mark.skipif(PYPY, reason="not relevant for PyPy") def test_memory_usage(self): # Delegate does not implement memory_usage. # Check that we fall back to in-built `__sizeof__` # GH 12924 delegate = self.Delegate(self.Delegator()) sys.getsizeof(delegate) class Ops: def _allow_na_ops(self, obj): """Whether to skip test cases including NaN""" if (isinstance(obj, Index) and obj.is_boolean()) or not obj._can_hold_na: # don't test boolean / integer dtypes return False return True def setup_method(self, method): self.bool_index = tm.makeBoolIndex(10, name="a") self.int_index = tm.makeIntIndex(10, name="a") self.float_index = tm.makeFloatIndex(10, name="a") self.dt_index = tm.makeDateIndex(10, name="a") self.dt_tz_index = tm.makeDateIndex(10, name="a").tz_localize(tz="US/Eastern") self.period_index = tm.makePeriodIndex(10, name="a") self.string_index = tm.makeStringIndex(10, name="a") self.unicode_index = tm.makeUnicodeIndex(10, name="a") arr = np.random.randn(10) self.bool_series = Series(arr, index=self.bool_index, name="a") self.int_series = Series(arr, index=self.int_index, name="a") self.float_series = Series(arr, index=self.float_index, name="a") self.dt_series = Series(arr, index=self.dt_index, name="a") self.dt_tz_series = self.dt_tz_index.to_series(keep_tz=True) self.period_series = Series(arr, index=self.period_index, name="a") self.string_series = Series(arr, index=self.string_index, name="a") self.unicode_series = Series(arr, index=self.unicode_index, name="a") types = ["bool", "int", "float", "dt", "dt_tz", "period", "string", "unicode"] self.indexes = [getattr(self, "{}_index".format(t)) for t in types] self.series = [getattr(self, "{}_series".format(t)) for t in types] # To test narrow dtypes, we use narrower *data* elements, not *index* elements index = self.int_index self.float32_series = Series(arr.astype(np.float32), index=index, name="a") arr_int = np.random.choice(10, size=10, replace=False) self.int8_series = Series(arr_int.astype(np.int8), index=index, name="a") self.int16_series = Series(arr_int.astype(np.int16), index=index, name="a") self.int32_series = Series(arr_int.astype(np.int32), index=index, name="a") self.uint8_series = Series(arr_int.astype(np.uint8), index=index, name="a") self.uint16_series = Series(arr_int.astype(np.uint16), index=index, name="a") self.uint32_series = Series(arr_int.astype(np.uint32), index=index, name="a") nrw_types = ["float32", "int8", "int16", "int32", "uint8", "uint16", "uint32"] self.narrow_series = [getattr(self, "{}_series".format(t)) for t in nrw_types] self.objs = self.indexes + self.series + self.narrow_series def check_ops_properties(self, props, filter=None, ignore_failures=False): for op in props: for o in self.is_valid_objs: # if a filter, skip if it doesn't match if filter is not None: filt = o.index if isinstance(o, Series) else o if not filter(filt): continue try: if isinstance(o, Series): expected = Series(getattr(o.index, op), index=o.index, name="a") else: expected = getattr(o, op) except (AttributeError): if ignore_failures: continue result = getattr(o, op) # these could be series, arrays or scalars if isinstance(result, Series) and isinstance(expected, Series): tm.assert_series_equal(result, expected) elif isinstance(result, Index) and isinstance(expected, Index): tm.assert_index_equal(result, expected) elif isinstance(result, np.ndarray) and isinstance( expected, np.ndarray ): tm.assert_numpy_array_equal(result, expected) else: assert result == expected # freq raises AttributeError on an Int64Index because its not # defined we mostly care about Series here anyhow if not ignore_failures: for o in self.not_valid_objs: # an object that is datetimelike will raise a TypeError, # otherwise an AttributeError err = AttributeError if issubclass(type(o), DatetimeIndexOpsMixin): err = TypeError with pytest.raises(err): getattr(o, op) @pytest.mark.parametrize("klass", [Series, DataFrame]) def test_binary_ops_docs(self, klass): op_map = { "add": "+", "sub": "-", "mul": "*", "mod": "%", "pow": "**", "truediv": "/", "floordiv": "//", } for op_name in op_map: operand1 = klass.__name__.lower() operand2 = "other" op = op_map[op_name] expected_str = " ".join([operand1, op, operand2]) assert expected_str in getattr(klass, op_name).__doc__ # reverse version of the binary ops expected_str = " ".join([operand2, op, operand1]) assert expected_str in getattr(klass, "r" + op_name).__doc__ class TestIndexOps(Ops): def setup_method(self, method): super().setup_method(method) self.is_valid_objs = self.objs self.not_valid_objs = [] def test_none_comparison(self): # bug brought up by #1079 # changed from TypeError in 0.17.0 for o in self.is_valid_objs: if isinstance(o, Series): o[0] = np.nan # noinspection PyComparisonWithNone result = o == None # noqa assert not result.iat[0] assert not result.iat[1] # noinspection PyComparisonWithNone result = o != None # noqa assert result.iat[0] assert result.iat[1] result = None == o # noqa assert not result.iat[0] assert not result.iat[1] result = None != o # noqa assert result.iat[0] assert result.iat[1] if is_datetime64_dtype(o) or is_datetime64tz_dtype(o): # Following DatetimeIndex (and Timestamp) convention, # inequality comparisons with Series[datetime64] raise with pytest.raises(TypeError): None > o with pytest.raises(TypeError): o > None else: result = None > o assert not result.iat[0] assert not result.iat[1] result = o < None assert not result.iat[0] assert not result.iat[1] def test_ndarray_compat_properties(self): for o in self.objs: # Check that we work. for p in ["shape", "dtype", "T", "nbytes"]: assert getattr(o, p, None) is not None # deprecated properties for p in ["flags", "strides", "itemsize"]: with tm.assert_produces_warning(FutureWarning): assert getattr(o, p, None) is not None with tm.assert_produces_warning(FutureWarning): assert hasattr(o, "base") # If we have a datetime-like dtype then needs a view to work # but the user is responsible for that try: with tm.assert_produces_warning(FutureWarning): assert o.data is not None except ValueError: pass with pytest.raises(ValueError): with tm.assert_produces_warning(FutureWarning): o.item() # len > 1 assert o.ndim == 1 assert o.size == len(o) with tm.assert_produces_warning(FutureWarning): assert Index([1]).item() == 1 assert Series([1]).item() == 1 def test_value_counts_unique_nunique(self): for orig in self.objs: o = orig.copy() klass = type(o) values = o._values if isinstance(values, Index): # reset name not to affect latter process values.name = None # create repeated values, 'n'th element is repeated by n+1 times # skip boolean, because it only has 2 values at most if isinstance(o, Index) and o.is_boolean(): continue elif isinstance(o, Index): expected_index = Index(o[::-1]) expected_index.name = None o = o.repeat(range(1, len(o) + 1)) o.name = "a" else: expected_index = Index(values[::-1]) idx = o.index.repeat(range(1, len(o) + 1)) # take-based repeat indices = np.repeat(np.arange(len(o)), range(1, len(o) + 1)) rep = values.take(indices) o = klass(rep, index=idx, name="a") # check values has the same dtype as the original assert o.dtype == orig.dtype expected_s = Series( range(10, 0, -1), index=expected_index, dtype="int64", name="a" ) result = o.value_counts() tm.assert_series_equal(result, expected_s) assert result.index.name is None assert result.name == "a" result = o.unique() if isinstance(o, Index): assert isinstance(result, o.__class__) tm.assert_index_equal(result, orig) assert result.dtype == orig.dtype elif is_datetime64tz_dtype(o): # datetimetz Series returns array of Timestamp assert result[0] == orig[0] for r in result: assert isinstance(r, Timestamp) tm.assert_numpy_array_equal( result.astype(object), orig._values.astype(object) ) else: tm.assert_numpy_array_equal(result, orig.values) assert result.dtype == orig.dtype assert o.nunique() == len(np.unique(o.values)) @pytest.mark.parametrize("null_obj", [np.nan, None]) def test_value_counts_unique_nunique_null(self, null_obj): for orig in self.objs: o = orig.copy() klass = type(o) values = o._ndarray_values if not self._allow_na_ops(o): continue # special assign to the numpy array if is_datetime64tz_dtype(o): if isinstance(o, DatetimeIndex): v = o.asi8 v[0:2] = iNaT values = o._shallow_copy(v) else: o = o.copy() o[0:2] = pd.NaT values = o._values elif needs_i8_conversion(o): values[0:2] = iNaT values = o._shallow_copy(values) else: values[0:2] = null_obj # check values has the same dtype as the original assert values.dtype == o.dtype # create repeated values, 'n'th element is repeated by n+1 # times if isinstance(o, (DatetimeIndex, PeriodIndex)): expected_index = o.copy() expected_index.name = None # attach name to klass o = klass(values.repeat(range(1, len(o) + 1))) o.name = "a" else: if isinstance(o, DatetimeIndex): expected_index = orig._values._shallow_copy(values) else: expected_index = Index(values) expected_index.name = None o = o.repeat(range(1, len(o) + 1)) o.name = "a" # check values has the same dtype as the original assert o.dtype == orig.dtype # check values correctly have NaN nanloc = np.zeros(len(o), dtype=np.bool) nanloc[:3] = True if isinstance(o, Index): tm.assert_numpy_array_equal(pd.isna(o), nanloc) else: exp = Series(nanloc, o.index, name="a") tm.assert_series_equal(pd.isna(o), exp) expected_s_na = Series( list(range(10, 2, -1)) + [3], index=expected_index[9:0:-1], dtype="int64", name="a", ) expected_s = Series( list(range(10, 2, -1)), index=expected_index[9:1:-1], dtype="int64", name="a", ) result_s_na = o.value_counts(dropna=False) tm.assert_series_equal(result_s_na, expected_s_na) assert result_s_na.index.name is None assert result_s_na.name == "a" result_s = o.value_counts() tm.assert_series_equal(o.value_counts(), expected_s) assert result_s.index.name is None assert result_s.name == "a" result = o.unique() if isinstance(o, Index): tm.assert_index_equal(result, Index(values[1:], name="a")) elif is_datetime64tz_dtype(o): # unable to compare NaT / nan tm.assert_extension_array_equal(result[1:], values[2:]) assert result[0] is pd.NaT else: tm.assert_numpy_array_equal(result[1:], values[2:]) assert pd.isna(result[0]) assert result.dtype == orig.dtype assert o.nunique() == 8 assert o.nunique(dropna=False) == 9 @pytest.mark.parametrize("klass", [Index, Series]) def test_value_counts_inferred(self, klass): s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"] s = klass(s_values) expected = Series([4, 3, 2, 1], index=["b", "a", "d", "c"]) tm.assert_series_equal(s.value_counts(), expected) if isinstance(s, Index): exp = Index(np.unique(np.array(s_values, dtype=np.object_))) tm.assert_index_equal(s.unique(), exp) else: exp = np.unique(np.array(s_values, dtype=np.object_)) tm.assert_numpy_array_equal(s.unique(), exp) assert s.nunique() == 4 # don't sort, have to sort after the fact as not sorting is # platform-dep hist = s.value_counts(sort=False).sort_values() expected = Series([3, 1, 4, 2], index=list("acbd")).sort_values() tm.assert_series_equal(hist, expected) # sort ascending hist = s.value_counts(ascending=True) expected = Series([1, 2, 3, 4], index=list("cdab")) tm.assert_series_equal(hist, expected) # relative histogram. hist = s.value_counts(normalize=True) expected = Series([0.4, 0.3, 0.2, 0.1], index=["b", "a", "d", "c"]) tm.assert_series_equal(hist, expected) @pytest.mark.parametrize("klass", [Index, Series]) def test_value_counts_bins(self, klass): s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"] s = klass(s_values) # bins with pytest.raises(TypeError): s.value_counts(bins=1) s1 = Series([1, 1, 2, 3]) res1 = s1.value_counts(bins=1) exp1 = Series({Interval(0.997, 3.0): 4}) tm.assert_series_equal(res1, exp1) res1n = s1.value_counts(bins=1, normalize=True) exp1n = Series({Interval(0.997, 3.0): 1.0}) tm.assert_series_equal(res1n, exp1n) if isinstance(s1, Index): tm.assert_index_equal(s1.unique(), Index([1, 2, 3])) else: exp = np.array([1, 2, 3], dtype=np.int64) tm.assert_numpy_array_equal(s1.unique(), exp) assert s1.nunique() == 3 # these return the same res4 = s1.value_counts(bins=4, dropna=True) intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0]) exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4, exp4) res4 = s1.value_counts(bins=4, dropna=False) intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0]) exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4, exp4) res4n = s1.value_counts(bins=4, normalize=True) exp4n = Series([0.5, 0.25, 0.25, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4n, exp4n) # handle NA's properly s_values = ["a", "b", "b", "b", np.nan, np.nan, "d", "d", "a", "a", "b"] s = klass(s_values) expected = Series([4, 3, 2], index=["b", "a", "d"]) tm.assert_series_equal(s.value_counts(), expected) if isinstance(s, Index): exp = Index(["a", "b", np.nan, "d"]) tm.assert_index_equal(s.unique(), exp) else: exp = np.array(["a", "b", np.nan, "d"], dtype=object) tm.assert_numpy_array_equal(s.unique(), exp) assert s.nunique() == 3 s = klass({}) expected = Series([], dtype=np.int64) tm.assert_series_equal(s.value_counts(), expected, check_index_type=False) # returned dtype differs depending on original if isinstance(s, Index): tm.assert_index_equal(s.unique(), Index([]), exact=False) else: tm.assert_numpy_array_equal(s.unique(), np.array([]), check_dtype=False) assert s.nunique() == 0 @pytest.mark.parametrize("klass", [Index, Series]) def test_value_counts_datetime64(self, klass): # GH 3002, datetime64[ns] # don't test names though txt = "\n".join( [ "xxyyzz20100101PIE", "xxyyzz20100101GUM", "xxyyzz20100101EGG", "xxyyww20090101EGG", "foofoo20080909PIE", "foofoo20080909GUM", ] ) f = StringIO(txt) df = pd.read_fwf( f, widths=[6, 8, 3], names=["person_id", "dt", "food"], parse_dates=["dt"] ) s = klass(df["dt"].copy()) s.name = None idx = pd.to_datetime( ["2010-01-01 00:00:00", "2008-09-09 00:00:00", "2009-01-01 00:00:00"] ) expected_s = Series([3, 2, 1], index=idx) tm.assert_series_equal(s.value_counts(), expected_s) expected = np_array_datetime64_compat( ["2010-01-01 00:00:00", "2009-01-01 00:00:00", "2008-09-09 00:00:00"], dtype="datetime64[ns]", ) if isinstance(s, Index): tm.assert_index_equal(s.unique(), DatetimeIndex(expected)) else: tm.assert_numpy_array_equal(s.unique(), expected) assert s.nunique() == 3 # with NaT s = df["dt"].copy() s = klass(list(s.values) + [pd.NaT]) result = s.value_counts() assert result.index.dtype == "datetime64[ns]" tm.assert_series_equal(result, expected_s) result = s.value_counts(dropna=False) expected_s[pd.NaT] = 1 tm.assert_series_equal(result, expected_s) unique = s.unique() assert unique.dtype == "datetime64[ns]" # numpy_array_equal cannot compare pd.NaT if isinstance(s, Index): exp_idx = DatetimeIndex(expected.tolist() + [pd.NaT]) tm.assert_index_equal(unique, exp_idx) else: tm.assert_numpy_array_equal(unique[:3], expected) assert pd.isna(unique[3]) assert s.nunique() == 3 assert s.nunique(dropna=False) == 4 # timedelta64[ns] td = df.dt - df.dt + timedelta(1) td = klass(td, name="dt") result = td.value_counts() expected_s = Series([6], index=[Timedelta("1day")], name="dt") tm.assert_series_equal(result, expected_s) expected = TimedeltaIndex(["1 days"], name="dt") if isinstance(td, Index): tm.assert_index_equal(td.unique(), expected) else: tm.assert_numpy_array_equal(td.unique(), expected.values) td2 = timedelta(1) + (df.dt - df.dt) td2 = klass(td2, name="dt") result2 = td2.value_counts() tm.assert_series_equal(result2, expected_s) def test_factorize(self): for orig in self.objs: o = orig.copy() if isinstance(o, Index) and o.is_boolean(): exp_arr = np.array([0, 1] + [0] * 8, dtype=np.intp) exp_uniques = o exp_uniques = Index([False, True]) else: exp_arr = np.array(range(len(o)), dtype=np.intp) exp_uniques = o codes, uniques = o.factorize() tm.assert_numpy_array_equal(codes, exp_arr) if isinstance(o, Series): tm.assert_index_equal(uniques, Index(orig), check_names=False) else: # factorize explicitly resets name tm.assert_index_equal(uniques, exp_uniques, check_names=False) def test_factorize_repeated(self): for orig in self.objs: o = orig.copy() # don't test boolean if isinstance(o, Index) and o.is_boolean(): continue # sort by value, and create duplicates if isinstance(o, Series): o = o.sort_values() n = o.iloc[5:].append(o) else: indexer = o.argsort() o = o.take(indexer) n = o[5:].append(o) exp_arr = np.array( [5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=np.intp ) codes, uniques = n.factorize(sort=True)
tm.assert_numpy_array_equal(codes, exp_arr)
pandas.util.testing.assert_numpy_array_equal
''' Script to convert txt results to csv ''' import csv import glob import os import sys import pandas as pd def parse_gpt2_file(filename: str): ''' Parses a GPT2 file to return all the results ''' results = [] curr_output = '' with open(filename, 'r') as f: for line in f.readlines(): if len(line) == 0: continue if line.startswith('-------------'): if len(curr_output) > 0: curr_output = curr_output.strip() curr_output = curr_output.replace( '\n', ' ').replace('\r', '') results.append(curr_output) curr_output = '' else: curr_output += line if len(curr_output) > 0: curr_output = curr_output.strip() curr_output = curr_output.replace( '\n', ' ').replace('\r', '') results.append(curr_output) curr_output = '' return results def parse_ulmfit_file(filename: str): ''' Parses a GPT2 file to return all the results ''' results = [] curr_output = '' with open(filename, 'r') as f: for line in f.readlines(): if len(line) == 0: continue if line.startswith('-----'): if len(curr_output) > 0: curr_output = curr_output.strip() curr_output = curr_output.replace( '\n', ' ').replace('\r', '') results.append(curr_output) curr_output = '' else: curr_output += line if len(curr_output) > 0: curr_output = curr_output.strip() curr_output = curr_output.replace( '\n', ' ').replace('\r', '') results.append(curr_output) curr_output = '' return results if __name__ == '__main__': args = sys.argv[1:] mode = args[0] if not (mode == 'gpt2' or mode == 'ulmfit'): raise NotImplementedError('This mode is not implemented') dirname = args[1] filenames = glob.glob(os.path.join(dirname, '*.txt')) for filename in filenames: if mode == 'gpt2': results = parse_gpt2_file(filename) elif mode == 'ulmfit': results = parse_ulmfit_file(filename) # figure out the outpot name result_name = os.path.splitext(filename)[0] + '.csv' resultsmall_name = os.path.splitext(filename)[0] + '_small.csv' df =
pd.DataFrame(results, columns=['output'])
pandas.DataFrame
""" Training script. Should be pretty adaptable to whatever. """ import argparse import os import shutil import json from copy import deepcopy import multiprocessing import numpy as np import pandas as pd import torch from allennlp.common.params import Params from allennlp.training.learning_rate_schedulers import LearningRateScheduler from allennlp.training.optimizers import Optimizer from torch.nn import DataParallel from torch.nn.modules import BatchNorm2d from tqdm import tqdm from allennlp.nn.util import device_mapping from vis import grounding_vis from visualbert.utils.pytorch_misc import time_batch, save_checkpoint, clip_grad_norm, \ restore_checkpoint, print_para, restore_best_checkpoint, restore_checkpoint_flexible, load_state_dict_flexible, compute_score_with_logits from visualbert.pytorch_pretrained_bert.tokenization import BertTokenizer from visualbert.dataloaders.vcr import VCR, VCRLoader try: from visualbert.dataloaders.coco_dataset import COCODataset except: print("Import COCO dataset failed.") try: from visualbert.dataloaders.nlvr_dataset import NLVRDataset except: print("Import NLVR2 dataset failed.") try: from visualbert.dataloaders.vqa_dataset import VQADataset except: print("Import VQA dataset failed.") try: from visualbert.dataloaders.flickr_dataset import Flickr30kFeatureDataset except: print("Import Flickr30K dataset failed.") from pytorch_pretrained_bert.optimization import BertAdam import logging logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', level=logging.DEBUG) from allennlp.models import Model from visualbert.models.model_wrapper import ModelWrapper from visualbert.models import model from attrdict import AttrDict def check_prob(val_probs, INDEX_OF_CHECKED_SAMPLE): ps = np.exp(val_probs[INDEX_OF_CHECKED_SAMPLE]) ps /= np.sum(ps) return ps # If you want to play grounding analysis, feel free to use this function! def grounding_analysis(args, input_batch, output_dict, question_orig, answer_orig, obj_added_index, \ file_name_list, annot_id_list, b): if args.orig_or_new == "new": bert_input_ids = input_batch["bert_input_ids"].detach().cpu().numpy() labels = input_batch["label"].detach().cpu().numpy() objects = input_batch["objects"].detach().cpu().numpy() attention_weights = output_dict["attention_weights"][-1].detach().cpu().numpy() question_orig_cur = question_orig[b*args.eval_batch_size: b*args.eval_batch_size+len(bert_input_ids)] answer_orig_cur = answer_orig[b*args.eval_batch_size: b*args.eval_batch_size+len(bert_input_ids)] obj_added_index_cur = obj_added_index[b*args.eval_batch_size: b*args.eval_batch_size+len(bert_input_ids)] file_name_list_cur = file_name_list[b*args.eval_batch_size: b*args.eval_batch_size+len(bert_input_ids)] annot_id_list_cur = annot_id_list[b*args.eval_batch_size: b*args.eval_batch_size+len(bert_input_ids)] if args.addition_annotation_analysis: for i in range(len(bert_input_ids)): label = labels[i] dets2use = dets2uses[i] file_name = file_name_list_cur[i] annot_id = annot_id_list_cur[i] right_ans_input_ids = bert_input_ids[i][label] attention_weights_i = attention_weights[i*4+label] texts = tokenizer.convert_ids_to_tokens(right_ans_input_ids) texts, people_names = recover(texts, question_orig_cur[i], answer_orig_cur[i]) j = 0 obj_list = [] for obj in objects[i]: if obj == 0: obj_list.append("[BG]") elif obj == -1: obj_list.append("[I_PAD]") else: obj_list.append("["+obj_added_index_cur[i][int(dets2use[j])]+"]\n(image)") j += 1 texts += obj_list indices = [] for j, token in enumerate(texts): if token == "[CLS]" or token == "[SEP]" or token == "[PAD]" or token == "[I_PAD]" or token == ".": indices.append(j) texts = np.delete(texts, indices, axis=0) for j in range(len(attention_weights_i)): attention_temp = np.delete(attention_weights_i[j], indices, axis=0) final_attention = np.delete(attention_temp, indices, axis=1) assert len(texts) == len(final_attention) pos_seg = file_name.find('/') file_name = file_name[pos_seg+1:] grounding_vis(final_attention, texts, file_name.replace(".", "_"+annot_id+"_head_"+str(j)+"_result."), args.region, args.single_or_multiple) def recover(texts, question_orig, answer_orig): all_orig = question_orig + answer_orig classes_orig = [] people_names = [] GENDER_NEUTRAL_NAMES = ['Casey', 'Riley', 'Jessie', 'Jackie', 'Avery', 'Jaime', 'Peyton', 'Kerry', 'Jody', 'Kendall', 'Peyton', 'Skyler', 'Frankie', 'Pat', 'Quinn'] GENDER_NEUTRAL_NAMES_new = [name.lower() for name in GENDER_NEUTRAL_NAMES] for token in all_orig: if '[' in token and ']' in token: classes_orig.append(token) for i, token in enumerate(texts): if token in GENDER_NEUTRAL_NAMES_new: while "person" not in classes_orig[0]: if len(classes_orig) == 1: classes_orig = [] break classes_orig = classes_orig[1:] if classes_orig: texts[i] = classes_orig[0] people_names.append(classes_orig[0]) if len(classes_orig) >= 2: classes_orig = classes_orig[1:] return texts, people_names def add_index(obj_orig_list): added_index_all = [] for obj_orig in obj_orig_list: added_index = [] freq = dict() for obj in obj_orig: if obj not in freq.keys(): freq[obj] = 1 else: freq[obj] += 1 added_index.append(obj+str(freq[obj])) added_index_all.append(added_index) return added_index_all parser = argparse.ArgumentParser(description='train') parser.add_argument( '-folder', dest='folder', help='folder location', type=str, ) parser.add_argument( '-no_tqdm', dest='no_tqdm', action='store_true', ) parser.add_argument( '-config', dest='config', help='config location', type=str, ) parser.add_argument( '-region', dest='region', default='any', help='region', type=str, ) parser.add_argument( '-single_or_multiple', dest='single_or_multiple', default='single', help='single_or_multiple', type=str, ) parser.add_argument( '-orig_or_new', dest='orig_or_new', default='new', help='orig_or_new', type=str, ) parser.add_argument( '-addition_annotation_analysis', dest='addition_annotation_analysis', action='store_true', ) parser.add_argument( '-grounding', dest='grounding', action='store_true', ) parser.add_argument( '-scene', dest='scene', default='none', help='scene', type=str, ) parser.add_argument( '-not_use_all_dets', dest='not_use_all_dets', action='store_false' ) args = parser.parse_args() args = ModelWrapper.read_and_insert_args(args, args.config) ##################################################### if os.path.exists(args.folder): create_flag = 0 else: create_flag = 1 print("Making directories") os.makedirs(args.folder, exist_ok=True) import sys run_log_counter = 0 while(os.path.exists(args.folder + '/run_{}.log'.format(run_log_counter))): run_log_counter += 1 file_log = open(args.folder + '/run_{}.log'.format(run_log_counter),'w') # File where you need to keep the logs file_log.write("") class Unbuffered: def __init__(self, stream): self.stream = stream def write(self, data): self.stream.write(data) self.stream.flush() file_log.write(data) # Write the data of stdout here to a text file as well def flush(self): pass sys.stdout = Unbuffered(sys.stdout) NUM_GPUS = torch.cuda.device_count() NUM_CPUS = multiprocessing.cpu_count() if NUM_GPUS == 0: raise ValueError("you need gpus!") def _to_gpu(td): if args.get("fp16", False): _to_fp16(td) if NUM_GPUS > 1: return td for k in td: if k != 'metadata': if td[k] is not None: td[k] = {k2: v.cuda(non_blocking=True) for k2, v in td[k].items()} if isinstance(td[k], dict) else td[k].cuda(non_blocking=True) return td def _to_fp16(td): for k in td: if isinstance(td[k], torch.FloatTensor): td[k] = td[k].to(dtype=torch.float16) num_workers = args.get("num_workers", 2) val_workers = args.get("val_workers", 0) TEST_DATA_READING = False if TEST_DATA_READING: num_workers = 0 print(f"Using {num_workers} workers out of {NUM_CPUS} possible", flush=True) loader_params = {'batch_size': args.train_batch_size // NUM_GPUS, 'num_gpus':NUM_GPUS, 'num_workers':num_workers} def get_dataset_loader(args, dataset_name): if dataset_name == "vcr": train, orig_val, val, val_addition, test = VCR.splits( mode='rationale' if args.rationale else 'answer', region_keywords = args.region, scene = args.scene, single_or_multiple = args.single_or_multiple, only_use_relevant_dets = args.not_use_all_dets, do_lower_case = args.do_lower_case, bert_model_name = args.bert_model_name, max_seq_length = args.max_seq_length, pretraining = args.pretraining, pretraining_include_qa_and_qar = args.pretraining_include_qa_and_qar, complete_shuffle = args.get("complete_shuffle", False), use_alignment = args.get('use_alignment', False), add_all_features = args.add_all_features, answer_labels_path = args.get("answer_labels_path", None), vcr_annots_dir = args.vcr_annots_dir, vcr_image_dir = args.vcr_image_dir ) elif dataset_name == "coco": train, val, test = COCODataset.splits(args) elif dataset_name == "nlvr": train, val, test = NLVRDataset.splits(args) elif dataset_name == "vqa": train, val, test = VQADataset.splits(args) elif dataset_name == "flickr": train, val, test = Flickr30kFeatureDataset.splits(args) else: assert(0) loader_params = {'batch_size': args.train_batch_size // NUM_GPUS, 'num_gpus':NUM_GPUS, 'num_workers':num_workers} train_loader_params = deepcopy(loader_params) loader_params_val = {'batch_size': args.eval_batch_size // NUM_GPUS, 'num_gpus':NUM_GPUS, 'num_workers':num_workers} val_loader_params = deepcopy(loader_params_val) val_loader_params["num_workers"] = val_workers test_loader_params = deepcopy(loader_params_val) test_loader_params["num_workers"] = val_workers train_loader = VCRLoader.from_dataset(train, **train_loader_params) val_loader = VCRLoader.from_dataset(val, **val_loader_params) test_loader = VCRLoader.from_dataset(test, **test_loader_params) if dataset_name == "vcr": orig_val_loader_params = deepcopy(loader_params_val) orig_val_loader_params["num_workers"] = val_workers val_addition_loader_params = deepcopy(loader_params_val) val_addition_loader_params["num_workers"] = val_workers orig_val_loader = VCRLoader.from_dataset(orig_val, **orig_val_loader_params) val_addition_loader = VCRLoader.from_dataset(val_addition, **val_addition_loader_params) train_set_size = len(train) print("orig_val size", len(orig_val)) print("val size", len(val)) print("val-addition size", len(val_addition)) if dataset_name == "vcr": return train_loader, orig_val_loader, val_loader, val_addition_loader, test_loader, train_set_size else: return train_loader, val_loader, test_loader, train_set_size print(args) if args.dataset == "vcr": train_loader, orig_val_loader, val_loader, val_addition_loader, test_loader, train_set_size = get_dataset_loader(args, args.dataset) else: train_loader, val_loader, test_loader, train_set_size = get_dataset_loader(args, args.dataset) ARGS_RESET_EVERY = args.get("print_every", 100) train_model = ModelWrapper(args, train_set_size) # Loading from pre-trained model if args.restore_bin: train_model.restore_checkpoint_pretrained(args.restore_bin) # Loading from previous checkpoint '''if create_flag == 0: start_epoch, val_metric_per_epoch = train_model.restore_checkpoint(serialization_dir=args.folder, epoch_to_load = args.get("epoch_to_load", None)) if val_metric_per_epoch is None: val_metric_per_epoch = [] else: create_flag = 1 start_epoch, val_metric_per_epoch = 0, []''' start_epoch, val_metric_per_epoch = 0, [] shutil.copy2(args.config, args.folder) # Always copy the config if args.get("freeze_detector", True): train_model.freeze_detector() param_shapes = print_para(train_model.model) print(args) print("########### Starting from {}".format(start_epoch)) num_batches = 0 stop_epoch = args.num_train_epochs save_every = args.get("save_every", None) with open('../dataloaders/cocoontology.json', 'r') as f1: coco = json.load(f1) coco_objects = ['__background__'] + [x['name'] for k, x in sorted(coco.items(), key=lambda x: int(x[0]))] tokenizer = BertTokenizer.from_pretrained(args.bert_model_name, do_lower_case=args.do_lower_case) for epoch_num in range(start_epoch, stop_epoch): train_results = [] norms = [] train_model.model.train() if not args.get("skip_training", False): for b, (time_per_batch, batch) in enumerate(time_batch(tqdm(train_loader), reset_every=ARGS_RESET_EVERY)): del batch["dets2use"] batch = _to_gpu(batch) output_dict = train_model.step(batch) num_batches += 1 train_results.append(pd.Series({'loss': output_dict['loss'].mean().item(), 'crl': output_dict.get("cnn_regularization_loss", 0.0), 'next_sentence_loss': output_dict["next_sentence_loss"].mean().item() if "next_sentence_loss" in output_dict else 0.0, 'masked_lm_loss': output_dict["masked_lm_loss"].mean().item() if "masked_lm_loss" in output_dict else 0.0, 'accuracy': (train_model.model.module).get_metrics( reset=(b % ARGS_RESET_EVERY) == 0)[ 'accuracy'], 'sec_per_batch': time_per_batch, 'hr_per_epoch': len(train_loader) * time_per_batch / 3600, })) if b % ARGS_RESET_EVERY == 0 and b > 0: print("e{:2d}b{:5d}/{:5d}. \nsumm:\n{}\n~~~~~~~~~~~~~~~~~~\n".format( epoch_num, b, len(train_loader),
pd.DataFrame(train_results[-ARGS_RESET_EVERY:])
pandas.DataFrame
from selenium import webdriver as wd from selenium.webdriver.chrome.options import Options import time import csv import os import random import json import shutil import pandas as pd from modules.checker import Checker from modules.basic_scraping_module import get_response #, get_soup from modules.supplier_utils.uniform_category_transformer import query_uniform_category def read_scrapy_setting(): img_hist = "./res3/img_html_source/img_hist.txt" with open(img_hist, "r", encoding="utf-8-sig") as fp: data = fp.readlines() break_point = int(data[1].split(":")[-1].strip()) avg_wait_time = int(data[2].split(":")[-1].strip()) return break_point, avg_wait_time class Webdriver(): def get_webdriver(self): chrome_options = Options() chrome_options.headless = True wd_path = "D:/geckodriver/chromedriver.exe" driver = wd.Chrome(wd_path, options=chrome_options) driver.implicitly_wait(10) return driver class Clothes_crawler(): def imgID_padding(self): csv_path = "./res3/tier_2.csv" df = pd.read_csv(csv_path) #print(data.head()) new_col_data = [i for i in range(1, len(df)+1)] new_col_name = "img_id" df[new_col_name] = new_col_data #print(data.tail()) out_csv_path = "./res3/tier_2_modified.csv" df.to_csv(out_csv_path, encoding="utf-8-sig", index=False) ########################################################### def copy_single_prod_img(self, img_id, existing_img_id): img_dir = "./res3/img_html_source/" shutil.copy(f"{img_dir}{existing_img_id}.jpg", f"{img_dir}{img_id}.jpg") def download_single_prod_img(self, prod_img_link, img_id, wait_time): img_path = f"./res3/img_html_source/{img_id}.jpg" if os.path.exists(img_path): print(f"[img {img_id}] Image is already exists.") return 0 # [***] send requests to image link # put all correct image links to the new csv file # path: ./res3/img_html_source if "grey.gif" not in prod_img_link: try: r = get_response(prod_img_link) with open(img_path, "wb") as fp: fp.write(r.content) print(f"[img {img_id}] Successfully downloaded.") # 等待隨機時間 (以傳入參數 wait_time 為中心) self.wait_some_seconds(wait_time + random.randint(-53,41)/10) return 1 except: print(f"[img {img_id}] ERR-2: Fail to access image link when scrapying image") return -1 else: print("跳過") def wait_some_seconds(self, wait_time): #print(f"(隨機)等待 {wait_time} 秒") print(f"等待 {wait_time} 秒") time.sleep(wait_time) def download_multiple_prod_imgs(self, break_point=-1, wait_time=10): # reset crawler self.set_driver() # read image history if exists img_hist = "./res3/img_html_source/img_hist.txt" if os.path.exists(img_hist): with open(img_hist, "r", encoding="utf-8-sig") as fp: data = fp.readlines() img_id_start = int(data[0].split(":")[-1].strip()) # starts from next image of last image in the directory else: img_id_start = 5001 # 1 # read image mapping if exists img_mapping_json = "./res3/img_html_source/img_record.json" if os.path.exists(img_mapping_json): with open(img_mapping_json, "r", encoding="utf-8-sig") as fp: img_mapping = json.load(fp) else: img_mapping = dict() # k: prod_link, v: img_id # create env env_path = r"./res3/img_html_source" if not os.path.exists(env_path): os.mkdir(env_path) # read product urls from existing tier-2 csv csv_path = "./res3/tier_2_modified.csv" prod_data =
pd.read_csv(csv_path)
pandas.read_csv
#!/usr/bin/python # _____________________________________________________________________________ # ---------------- # import libraries # ---------------- # standard libraries # ----- import torch import numpy as np import os import pandas as pd import matplotlib.pyplot as plt from torch.utils.data import Dataset, DataLoader from torchvision import transforms, utils from PIL import Image import json # utilities # ----- # custom functions # ----- def show_batch(sample_batched): """ sample_batched: Tuple[torch.tensor, torch.tensor] -> None show_batch takes a contrastive sample sample_batched and plots an overview of the batch """ grid_border_size = 2 nrow = 10 batch_1 = sample_batched[0][0][:, 0:, :, :] batch_2 = sample_batched[0][1][:, 0:, :, :] difference = np.abs(batch_1 - batch_2) titles = ["first contrast", "second contrast", "difference"] fig, axes = plt.subplots(1, 3, figsize=(2 * 6.4, 4.8)) for (i, batch) in enumerate([batch_1, batch_2, difference]): ax = axes[i] grid = utils.make_grid(batch, nrow=nrow, padding=grid_border_size) ax.imshow(grid.numpy().transpose((1, 2, 0))) ax.set_title(titles[i]) ax.axis("off") plt.show() # ---------------- # custom classes # ---------------- # custom CLTT dataset superclass (abstract) # ----- class CLTTDataset(Dataset): """ CLTTDataset is an abstract class implementing all the necessary methods to sample data according to the CLTT approach. CLTTDataset itself should not be instantiated as a standalone class, but should be inherited from and abstract methods should be overwritten """ def __init__(self, root, train=True, transform=None, target_transform=None, n_fix=5, contrastive=True, sampling_mode='uniform', shuffle_object_order=True, circular_sampling=True, buffer_size=12096): """ __init__ initializes the CLTTDataset Class, it defines class-wide constants and builds the registry of files and the data buffer root:str path to the dataset directory train:bool training set instead of testing transform:torchvision.transform target_transform:torchvision.transform n_fix:int for deterministic n_fix, float for probabilistic contrastive:bool contrastive dataset mode sampling_mode:str how the buffer gets built circular_sampling:bool make the first object the last object buffer_size:int approximate buffersize """ super().__init__() self.train = train self.sampling_mode = sampling_mode self.shuffle_object_order = shuffle_object_order self.buffer_size = buffer_size self.n_fix = n_fix self.tau_plus = 1 self.tau_minus = 0 # contrasts from the past (experimental) self.root = os.path.expanduser(root) self.transform = transform self.target_transform = target_transform self.contrastive = contrastive self.circular_sampling = circular_sampling self.get_dataset_properties() self.registry = self.build_registry(train) if self.contrastive: self.buffer = self.build_buffer(self.registry, self.sampling_mode, self.n_fix, self.shuffle_object_order, approx_size=self.buffer_size) else: # if used in non-contrastive mode the sampler just samples from all data self.buffer = self.registry pass def __len__(self): """ __len__ defines the length of the dataset and indirectly defines how many samples can be drawn from the dataset in one epoch """ length = len(self.buffer) return length def get_dataset_properties(self): """ get_dataset_properties has to be defined for each dataset it stores number of objects, number of classes, a list of strings with labels """ # basic properties (need to be there) self.n_objects = 3 # number of different objects >= n_classes self.n_classes = 3 # number of different classes self.labels = [ "A", "B", "C", ] self.n_views_per_object = 10 # how many overall views of each object self.subdirectory = '/dataset_name/' # where is the dataset self.name = 'dataset name' # name of the dataset # custom properties (optional, dataset specific) # (anything you would want to have available in self) self.custom_property = ['one', 'two', 'three'] raise Exception("Calling abstract method, please inherit \ from the CLTTDataset class and reimplement this method") # pseudoclass pass def __getitem__(self, idx): """ __getitem__ is a method that defines how one sample of the dataset is drawn """ if self.contrastive: image, label = self.get_single_item(idx) augmentation, _ = self.sample_contrast(idx) if self.transform: image, augmentation = self.transform( image), self.transform(augmentation) if self.target_transform: label = self.target_transform(label) output = ([image, augmentation], label) else: image, label = self.get_single_item(idx) if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) output = image, label return output def sample_contrast(self, chosen_index): """ given index chosen_index, sample a corresponding contrast close in time """ chosen_time = self.buffer.iloc[chosen_index]["time_idx"] possible_indices = self.buffer[ (self.buffer["time_idx"].between(chosen_time - self.tau_minus, chosen_time + self.tau_plus)) & ( self.buffer["time_idx"] != chosen_time)].index # sampling at the end of the buffer if (chosen_time + self.tau_plus) > self.buffer.time_idx.max(): if self.circular_sampling: also_possible = self.buffer[ (self.buffer["time_idx"].between(self.buffer.time_idx.min(), ( chosen_time + self.tau_plus - 1) - self.buffer.time_idx.max())) & ( self.buffer["time_idx"] != chosen_time)].index else: also_possible = self.buffer[self.buffer["time_idx"] == chosen_time].index possible_indices = possible_indices.union(also_possible) # sampling at the beginning of the buffer if (chosen_time - self.tau_minus) < self.buffer.time_idx.min(): if self.circular_sampling: also_possible = self.buffer[ (self.buffer["time_idx"].between(self.buffer.time_idx.max() + (chosen_time - self.tau_minus) + 1, self.buffer.time_idx.max())) & ( self.buffer["time_idx"] != chosen_time)].index else: also_possible = self.buffer[self.buffer["time_idx"] == chosen_time].index possible_indices = possible_indices.union(also_possible) chosen_index = np.random.choice(possible_indices) return self.get_single_item(chosen_index) def get_single_item(self, idx): if torch.is_tensor(idx): idx = idx.tolist() elif isinstance(idx, pd.core.indexes.numeric.Int64Index): idx = idx[0] path_to_file = self.buffer.loc[idx, "path_to_file"] if isinstance(path_to_file, pd.core.series.Series): path_to_file = path_to_file.item() image = Image.open(path_to_file) obj_info = self.buffer.iloc[idx, 1:].to_dict() label = self.buffer.loc[idx, "label"] return image, label def build_registry(self, train): """ build a registry of all image files """ path_list = [] object_list = [] label_list = [] time_list = [] d = self.root + self.subdirectory + 'train/' if train else self.root + self.subdirectory + 'test/' # have an ordered list list_of_files = os.listdir(d) list_of_files.sort() for timestep, path in enumerate(list_of_files): full_path = os.path.join(d, path) if os.path.isfile(full_path): path_list.append(full_path) object_list.append(timestep // self.n_views_per_object) label_list.append(timestep // self.n_views_per_object) time_list.append(timestep % self.n_views_per_object) tempdict = {'path_to_file': path_list, 'label': label_list, 'object_nr': object_list, 'time_idx': time_list} dataframe = pd.DataFrame(tempdict) dataframe.sort_values(by=['object_nr', 'time_idx'], inplace=True) dataframe.reset_index(drop=True, inplace=True) return dataframe def build_buffer(self, registry, sampling_mode, n_fix, shuffle_object_order, approx_size): """ build_buffer builds a buffer from all data that is available according to the sampling mode specified. Default method just returns the whole registry """ # if n_fix is a probability, then get an expected value of the number of views expected_views = n_fix if n_fix >= 1 else self.expected_n(n_fix) object_order = np.arange(self.n_objects) if shuffle_object_order: np.random.shuffle(object_order) if sampling_mode == 'window': streambits = [] for _ in range(approx_size // (round(expected_views) * self.n_objects)): for o in object_order: n_views = self.get_n(n_fix) # get the n_fix for each object chosen_index = np.random.choice(np.arange(0, self.n_views_per_object - n_views)) streambits.append(registry[registry.object_nr == o][ registry.time_idx.between(chosen_index, chosen_index + n_views - 1)]) if shuffle_object_order: np.random.shuffle(object_order) timestream = pd.concat(streambits, ignore_index=True) timestream.time_idx = np.arange(len(timestream.time_idx)) elif sampling_mode == 'uniform': streambits = [] for _ in range(approx_size // (round(expected_views) * self.n_objects)): for o in object_order: n_views = self.get_n(n_fix) # get the n_fix for each object chosen_indexs = np.random.choice(np.arange(0, self.n_views_per_object), n_views) streambits.append(registry[registry.object_nr == o].iloc[chosen_indexs]) if shuffle_object_order: np.random.shuffle(object_order) timestream = pd.concat(streambits, ignore_index=True) timestream.time_idx = np.arange(len(timestream.time_idx)) elif sampling_mode == 'randomwalk': streambits = [] for _ in range(approx_size // (round(expected_views) * self.n_objects)): for o in object_order: n_views = self.get_n(n_fix) # get the n_fix for each object streambits.append(registry.iloc[self.get_N_randomwalk_steps(n_views, o)]) timestream = pd.concat(streambits, ignore_index=True) timestream.time_idx = np.arange(len(timestream.time_idx)) else: print("[INFO] Warning, no sampling mode specified, defaulting to \ whole dataset") timestream = registry #if no mode, then return the whole registry return timestream def refresh_buffer(self): """ refresh buffer takes an CLTTDataset class and refreshes its own buffer given the registry """ self.buffer = self.build_buffer(self.registry, self.sampling_mode, self.n_fix, self.shuffle_object_order, self.buffer_size) pass def get_N_randomwalk_steps(self, N, object_nr): """ Get index values of N random walk steps of a object specified by "object_nr". """ raise Exception("Calling abstract method, please inherit \ from the CLTTDataset class and reimplement this method") # pseudoclass pass def expected_n(self, probability): """ expected_n takes a float probability between 0 and 1 and returns the expected value of the number of fixations """ result = (1-probability)*(probability)/(1-(probability))**2 + 1 return result def get_n(self, input): """ get_n takes a float probability input between 0 and 1 and returns n fixations according to probability if input >= 1 it just returns its argument """ if input >= 1: return input else: result = 1 # make sure that you switch to the next object once while input > np.random.random(): result += 1 return result # datasets (CLTTDataset subclasses) # ----- # TODO: Rewrite MiyashitaDataset to be compatible with probabilistic n_fix class MiyashitaDataset(CLTTDataset): """ MiyashitaDataset is a dataset inspired by the works of Miyashita, 1988 it is comprised of a set of different fractal patterns that are presented in a specific order to be associated. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) pass def get_dataset_properties(self): # basic properties (need to be there) self.n_objects = 100 # number of different objects >= n_classes self.n_classes = 100 # number of different classes self.labels = [str(i) for i in range(self.n_classes)] self.n_views_per_object = 100 if (self.train and self.contrastive) else 1 #self.n_fix # how many overall views of each object self.subdirectory = '/fractals100_64x64/' # where is the dataset self.name = 'Miyashita Fractals' # name of the dataset # custom properties (optional, dataset specific) # (anything you would want to have available in self) # for Miyashita every mode is the same # that means we do not need to reimplement get_n_randomwalk_steps # and can just fix the sampling mode self.sampling_mode = "uniform" if (self.train and self.contrastive) else "" # overwrite sampling mode self.basic_transform = transforms.RandomAffine( degrees=(-10, 10), translate=(0.15, 0.15), scale=(0.9, 1.0)) # add the basic transform the the regular transform for training if (self.train and self.contrastive): self.transform = transforms.Compose([ self.basic_transform, self.transform, ]) pass def build_registry(self, train): """ Reimplementation of the build_registry method, because Miyashita Fractals have no testset and the in-class variability is generated virtually instead of having multiple pictures """ path_list = [] object_list = [] label_list = [] time_list = [] e = 0 d = self.root + self.subdirectory # there is no fractals testset # have an ordered list list_of_files = os.listdir(d) list_of_files.sort() for o, path in enumerate(list_of_files): full_path = os.path.join(d, path) if os.path.isfile(full_path): repetitions = self.n_views_per_object # repeat the same picture n_fix times for timestep in range(repetitions): path_list.append(full_path) time_list.append(timestep + e * self.n_views_per_object) object_list.append(o) label_list.append(o) e += 1 temporary_dict = {'path_to_file': path_list, 'label': label_list, 'object_nr': object_list, 'time_idx': time_list} dataframe = pd.DataFrame(temporary_dict) dataframe.sort_values(by=['object_nr', 'time_idx'], inplace=True) dataframe.reset_index(drop=True, inplace=True) return dataframe class TDWDataset(CLTTDataset): """ The ThreeDWorld Dataset by <NAME> is comprised of 1008 views around 12 distinct objects rendered in the TDW environment """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) pass def get_dataset_properties(self): # basic properties (need to be there) self.n_objects = 12 # number of different objects >= n_classes self.n_classes = 12 # number of different classes self.labels = [ "cup", "comb", "scissor", "hammer", "book", "calculator", "goblet", "candle", "headphones", "screwdriver", "cassette", "bottle", ] delta_phi = 10 self.phis = np.arange(0, 360, delta_phi) delta_theta = 10 self.thetas = np.arange(10, 80, delta_theta) delta_r = 0.1 self.rs = np.arange(0.3, 0.7, delta_r) self.n_views_per_object = len(self.phis) * len(self.thetas) * len(self.rs) # how many overall views of each object self.subdirectory = '/spherical_photoreal_64x64_DoF/' # where is the dataset self.name = 'ThreeDWorld Objects' # name of the dataset # custom properties (optional, dataset specific) # (anything you would want to have available in self) pass def get_N_randomwalk_steps(self, N, object_nr): """ Get index values of N random walk steps of a object specified by "object_nr". """ def get_registry_index(r, theta, phi): """ helper function to get index given a coordinate tuple, i.e. r, theta and phi value """ ix = r * (len(self.thetas) * len(self.phis)) + theta * len(self.phis) + phi return ix index = [] # Possible values for r,theta and phi r = len(self.rs) theta = len(self.thetas) phi = len(self.phis) # select random start values for r,theta and phi current_r = np.random.randint(0, r - 1) current_theta = np.random.randint(0, theta - 1) current_phi = np.random.randint(0, phi - 1) for i in range(N): while True: # 6 possible direction in which to go from the current position # Possible steps: +/-r, +/-Phi, +/-Theta rand = np.random.randint(low=0, high=5) # For the choosen step direction, it will be checked if this is a "valid". if (rand == 0) & (current_r < r - 1): current_r += 1 break if (rand == 1) & (current_r > 0): current_r -= 1 break if (rand == 2) & (current_theta < theta - 1): current_theta += 1 break if (rand == 3) & (current_theta > 0): current_theta -= 1 break if (rand == 4) & (current_phi < phi - 1): current_phi += 1 break if (rand == 5) & (current_phi > 0): current_phi -= 1 break # transform r,theta, phi values # into index number between 0 and 1008 ix = get_registry_index( current_r, current_theta, current_phi) index.append(ix) index = np.array(index) # to get index values for object "object_nr", the values are shifted index += self.n_views_per_object * object_nr return index def additional_metadata(self): # hacky way to get some metadata, to be revised phi_angle_list = [] theta_angle_list = [] radius_list = [] for o in range(self.n_classes): for r in self.rs: for theta in self.thetas: for phi in self.phis: phi_angle_list.append(phi) theta_angle_list.append(theta) radius_list.append(r) tempdict = {'phi': phi_angle_list, 'theta': theta_angle_list, 'radius': radius_list} dataframe = pd.DataFrame(tempdict) self.registry= pd.merge(self.registry, dataframe, left_index=True, right_index=True) pass class COIL100Dataset(CLTTDataset): """ COIL100Dataset is a dataset by the work of Sameer, Shree, and Hiroshi, 1996. It is comprised of color images of 100 objects, and each object has 72 views. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) pass def get_dataset_properties(self): # basic properties (need to be there) self.n_objects = 100 # number of different objects >= n_classes self.n_classes = 100 # number of different classes self.labels = [str(i) for i in range(self.n_classes)] if self.train: self.n_views_per_object = 54 # number of overall views of each object on trainset else: self.n_views_per_object = 18 # number of overall views of each object on testset self.subdirectory = '/coil100_128x128/' # where is the dataset self.name = 'Columbia University Image Library' # name of the dataset # custom properties (optional, dataset specific) # (anything you would want to have available in self) pass def get_N_randomwalk_steps(self, N, object_nr): """ Get index values of N random walk steps of a object specified by "object_nr". """ index = [] current_idx = np.random.randint(0, self.n_views_per_object - 1) for i in range(N): while True: # 2 possible direction in which to go from the current position # Possible steps: +: left, -: right rand = np.random.randint(low=0, high=2) if (rand == 0) & (current_idx > 0): current_idx -= 1 break if (rand == 1) & (current_idx < self.n_views_per_object - 1): current_idx += 1 break index.append(current_idx) index = np.array(index) index += self.n_views_per_object * object_nr return index def build_registry(self, train): """ build a registry of all image files """ path_list = [] object_list = [] label_list = [] time_list = [] # d = self.root + self.subdirectory d = self.root + self.subdirectory + 'train/' if train else self.root + self.subdirectory + 'test/' # have an ordered list list_of_files = os.listdir(d) list_of_files.sort() for timestep, path in enumerate(list_of_files): full_path = os.path.join(d, path) if os.path.isfile(full_path): path_list.append(full_path) object_list.append(timestep // self.n_views_per_object) label_list.append(timestep // self.n_views_per_object) time_list.append(timestep % self.n_views_per_object) tempdict = {'path_to_file': path_list, 'label': label_list, 'object_nr': object_list, 'time_idx': time_list} dataframe = pd.DataFrame(tempdict) dataframe.sort_values(by=['object_nr', 'time_idx'], inplace=True) dataframe.reset_index(drop=True, inplace=True) return dataframe class RoadDefectsDataset(CLTTDataset): """ """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) pass def get_dataset_properties(self): # basic properties (need to be there) self.n_objects = 12 # number of different objects >= n_classes self.n_classes = 12 # number of different classes self.labels = ['Affaissement de rive', 'Affaissement hors rive', 'Arrachement', 'Autres réparations', 'Faïençage', 'Fissure longitudinale', 'Fissure transversale', 'Glaçage - Ressuage', 'Réparation en BB sur découpe', 'Fissure thermique', 'Orniérage', 'Background' ] self.subdirectory = '/home/finn/DATASET/CD33/' # where is the dataset self.name = 'Road defects' # name of the dataset self.label_file_train = 'data/defects_train.json' self.label_file_test = 'data/defects_val_small.json' # custom properties (optional, dataset specific) # (anything you would want to have available in self) pass def get_N_randomwalk_steps(self, N, object_nr, n_views_per_object): """ Get index values of N random walk steps of a object specified by "object_nr". """ index = [] current_idx = np.random.randint(0, n_views_per_object - 1) for i in range(N): while True: # 2 possible direction in which to go from the current position # Possible steps: +: left, -: right rand = np.random.randint(low=0, high=2) if (rand == 0) & (current_idx > 0): current_idx -= 1 break if (rand == 1) & (current_idx < n_views_per_object - 1): current_idx += 1 break index.append(current_idx) index = np.array(index) index += n_views_per_object * object_nr return index def build_registry(self, train): """ build a registry of all image files """ path_list = [] object_list = [] label_list = [] time_list = [] # d = self.root + self.subdirectory # d = self.subdirectory + 'train/' if train else self.subdirectory + 'test/' d = self.subdirectory #load labels if self.train: with open(self.label_file_train, 'r') as f_in: labels = json.load(f_in) else: with open(self.label_file_test, 'r') as f_in: labels = json.load(f_in) # dict to count instances of each class/object time_dict = {l:0 for l in self.labels} for file_name, l_list in labels.items(): full_path = os.path.join(d, file_name) if os.path.isfile(full_path): for label in set(l_list): path_list.append(full_path) object_list.append(self.labels.index(label)) label_list.append(self.labels.index(label)) time_list.append(time_dict[label]) time_dict[label] += 1 tempdict = {'path_to_file': path_list, 'label': label_list, 'object_nr': object_list, 'time_idx': time_list} dataframe = pd.DataFrame(tempdict) dataframe.sort_values(by=['object_nr', 'time_idx'], inplace=True) dataframe.reset_index(drop=True, inplace=True) return dataframe def build_buffer(self, registry, sampling_mode, n_fix, shuffle_object_order, approx_size): """ build_buffer builds a buffer from all data that is available according to the sampling mode specified. Default method just returns the whole registry """ # if n_fix is a probability, then get an expected value of the number of views expected_views = n_fix if n_fix >= 1 else self.expected_n(n_fix) object_order = np.arange(self.n_objects) if shuffle_object_order: np.random.shuffle(object_order) if sampling_mode == 'window': streambits = [] for _ in range(approx_size // (round(expected_views) * self.n_objects)): for o in object_order: n_views = self.get_n(n_fix) # get the n_fix for each object chosen_index = np.random.choice(np.arange(0, registry.object_nr.value_counts()[o] - n_views)) streambits.append(registry[registry.object_nr == o][ registry.time_idx.between(chosen_index, chosen_index + n_views - 1)]) if shuffle_object_order: np.random.shuffle(object_order) timestream = pd.concat(streambits, ignore_index=True) timestream.time_idx = np.arange(len(timestream.time_idx)) elif sampling_mode == 'uniform': streambits = [] for _ in range(approx_size // (round(expected_views) * self.n_objects)): for o in object_order: n_views = self.get_n(n_fix) # get the n_fix for each object chosen_indexs = np.random.choice(np.arange(0, registry.object_nr.value_counts()[o]), n_views) streambits.append(registry[registry.object_nr == o].iloc[chosen_indexs]) if shuffle_object_order: np.random.shuffle(object_order) timestream =
pd.concat(streambits, ignore_index=True)
pandas.concat
import vectorbt as vbt import numpy as np import pandas as pd from numba import njit from datetime import datetime import pytest from vectorbt.generic import nb as generic_nb from vectorbt.generic.enums import range_dt from tests.utils import record_arrays_close seed = 42 day_dt = np.timedelta64(86400000000000) mask = pd.DataFrame([ [True, False, False], [False, True, False], [False, False, True], [True, False, False], [False, True, False] ], index=pd.Index([ datetime(2020, 1, 1), datetime(2020, 1, 2), datetime(2020, 1, 3), datetime(2020, 1, 4), datetime(2020, 1, 5) ]), columns=['a', 'b', 'c']) ts = pd.Series([1., 2., 3., 2., 1.], index=mask.index) price = pd.DataFrame({ 'open': [10, 11, 12, 11, 10], 'high': [11, 12, 13, 12, 11], 'low': [9, 10, 11, 10, 9], 'close': [11, 12, 11, 10, 9] }) group_by = pd.Index(['g1', 'g1', 'g2']) # ############# Global ############# # def setup_module(): vbt.settings.numba['check_func_suffix'] = True vbt.settings.caching.enabled = False vbt.settings.caching.whitelist = [] vbt.settings.caching.blacklist = [] def teardown_module(): vbt.settings.reset() # ############# accessors.py ############# # class TestAccessors: def test_indexing(self): assert mask.vbt.signals['a'].total() == mask['a'].vbt.signals.total() def test_freq(self): assert mask.vbt.signals.wrapper.freq == day_dt assert mask['a'].vbt.signals.wrapper.freq == day_dt assert mask.vbt.signals(freq='2D').wrapper.freq == day_dt * 2 assert mask['a'].vbt.signals(freq='2D').wrapper.freq == day_dt * 2 assert pd.Series([False, True]).vbt.signals.wrapper.freq is None assert pd.Series([False, True]).vbt.signals(freq='3D').wrapper.freq == day_dt * 3 assert pd.Series([False, True]).vbt.signals(freq=np.timedelta64(4, 'D')).wrapper.freq == day_dt * 4 @pytest.mark.parametrize( "test_n", [1, 2, 3, 4, 5], ) def test_fshift(self, test_n): pd.testing.assert_series_equal(mask['a'].vbt.signals.fshift(test_n), mask['a'].shift(test_n, fill_value=False)) np.testing.assert_array_equal( mask['a'].vbt.signals.fshift(test_n).values, generic_nb.fshift_1d_nb(mask['a'].values, test_n, fill_value=False) ) pd.testing.assert_frame_equal(mask.vbt.signals.fshift(test_n), mask.shift(test_n, fill_value=False)) @pytest.mark.parametrize( "test_n", [1, 2, 3, 4, 5], ) def test_bshift(self, test_n): pd.testing.assert_series_equal( mask['a'].vbt.signals.bshift(test_n), mask['a'].shift(-test_n, fill_value=False)) np.testing.assert_array_equal( mask['a'].vbt.signals.bshift(test_n).values, generic_nb.bshift_1d_nb(mask['a'].values, test_n, fill_value=False) ) pd.testing.assert_frame_equal(mask.vbt.signals.bshift(test_n), mask.shift(-test_n, fill_value=False)) def test_empty(self): pd.testing.assert_series_equal( pd.Series.vbt.signals.empty(5, index=np.arange(10, 15), name='a'), pd.Series(np.full(5, False), index=np.arange(10, 15), name='a') ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.empty((5, 3), index=np.arange(10, 15), columns=['a', 'b', 'c']), pd.DataFrame(np.full((5, 3), False), index=np.arange(10, 15), columns=['a', 'b', 'c']) ) pd.testing.assert_series_equal( pd.Series.vbt.signals.empty_like(mask['a']), pd.Series(np.full(mask['a'].shape, False), index=mask['a'].index, name=mask['a'].name) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.empty_like(mask), pd.DataFrame(np.full(mask.shape, False), index=mask.index, columns=mask.columns) ) def test_generate(self): @njit def choice_func_nb(from_i, to_i, col, n): if col == 0: return np.arange(from_i, to_i) elif col == 1: return np.full(1, from_i) else: return np.full(1, to_i - n) pd.testing.assert_series_equal( pd.Series.vbt.signals.generate(5, choice_func_nb, 1, index=mask['a'].index, name=mask['a'].name), pd.Series( np.array([True, True, True, True, True]), index=mask['a'].index, name=mask['a'].name ) ) with pytest.raises(Exception): _ = pd.Series.vbt.signals.generate((5, 2), choice_func_nb, 1) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate( (5, 3), choice_func_nb, 1, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [True, True, False], [True, False, False], [True, False, False], [True, False, False], [True, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate( (5, 3), choice_func_nb, 1, pick_first=True, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [True, True, False], [False, False, False], [False, False, False], [False, False, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) def test_generate_both(self): @njit def entry_func_nb(from_i, to_i, col, temp_int): temp_int[0] = from_i return temp_int[:1] @njit def exit_func_nb(from_i, to_i, col, temp_int): temp_int[0] = from_i return temp_int[:1] temp_int = np.empty((mask.shape[0],), dtype=np.int_) en, ex = pd.Series.vbt.signals.generate_both( 5, entry_func_nb, (temp_int,), exit_func_nb, (temp_int,), index=mask['a'].index, name=mask['a'].name) pd.testing.assert_series_equal( en, pd.Series( np.array([True, False, True, False, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_series_equal( ex, pd.Series( np.array([False, True, False, True, False]), index=mask['a'].index, name=mask['a'].name ) ) en, ex = pd.DataFrame.vbt.signals.generate_both( (5, 3), entry_func_nb, (temp_int,), exit_func_nb, (temp_int,), index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [False, False, False], [True, True, True], [False, False, False], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [True, True, True], [False, False, False], [True, True, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.Series.vbt.signals.generate_both( (5,), entry_func_nb, (temp_int,), exit_func_nb, (temp_int,), index=mask['a'].index, name=mask['a'].name, entry_wait=1, exit_wait=0) pd.testing.assert_series_equal( en, pd.Series( np.array([True, True, True, True, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_series_equal( ex, pd.Series( np.array([True, True, True, True, True]), index=mask['a'].index, name=mask['a'].name ) ) en, ex = pd.Series.vbt.signals.generate_both( (5,), entry_func_nb, (temp_int,), exit_func_nb, (temp_int,), index=mask['a'].index, name=mask['a'].name, entry_wait=0, exit_wait=1) pd.testing.assert_series_equal( en, pd.Series( np.array([True, True, True, True, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_series_equal( ex, pd.Series( np.array([False, True, True, True, True]), index=mask['a'].index, name=mask['a'].name ) ) @njit def entry_func2_nb(from_i, to_i, col, temp_int): temp_int[0] = from_i if from_i + 1 < to_i: temp_int[1] = from_i + 1 return temp_int[:2] return temp_int[:1] @njit def exit_func2_nb(from_i, to_i, col, temp_int): temp_int[0] = from_i if from_i + 1 < to_i: temp_int[1] = from_i + 1 return temp_int[:2] return temp_int[:1] en, ex = pd.DataFrame.vbt.signals.generate_both( (5, 3), entry_func2_nb, (temp_int,), exit_func2_nb, (temp_int,), entry_pick_first=False, exit_pick_first=False, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [True, True, True], [False, False, False], [False, False, False], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [False, False, False], [True, True, True], [True, True, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) def test_generate_exits(self): @njit def choice_func_nb(from_i, to_i, col, temp_int): temp_int[0] = from_i return temp_int[:1] temp_int = np.empty((mask.shape[0],), dtype=np.int_) pd.testing.assert_series_equal( mask['a'].vbt.signals.generate_exits(choice_func_nb, temp_int), pd.Series( np.array([False, True, False, False, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_exits(choice_func_nb, temp_int), pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, True, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_exits(choice_func_nb, temp_int, wait=0), pd.DataFrame( np.array([ [True, False, False], [False, True, False], [False, False, True], [True, False, False], [False, True, False] ]), index=mask.index, columns=mask.columns ) ) @njit def choice_func2_nb(from_i, to_i, col, temp_int): for i in range(from_i, to_i): temp_int[i - from_i] = i return temp_int[:to_i - from_i] pd.testing.assert_frame_equal( mask.vbt.signals.generate_exits(choice_func2_nb, temp_int, until_next=False, pick_first=False), pd.DataFrame( np.array([ [False, False, False], [True, False, False], [True, True, False], [True, True, True], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) mask2 = pd.Series([True, True, True, True, True], index=mask.index) pd.testing.assert_series_equal( mask2.vbt.signals.generate_exits(choice_func_nb, temp_int, until_next=False, skip_until_exit=True), pd.Series( np.array([False, True, False, True, False]), index=mask.index ) ) def test_clean(self): entries = pd.DataFrame([ [True, False, True], [True, False, False], [True, True, True], [False, True, False], [False, True, True] ], index=mask.index, columns=mask.columns) exits = pd.Series([True, False, True, False, True], index=mask.index) pd.testing.assert_frame_equal( entries.vbt.signals.clean(), pd.DataFrame( np.array([ [True, False, True], [False, False, False], [False, True, True], [False, False, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.clean(entries), pd.DataFrame( np.array([ [True, False, True], [False, False, False], [False, True, True], [False, False, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( entries.vbt.signals.clean(exits)[0], pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, False, False], [False, True, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( entries.vbt.signals.clean(exits)[1], pd.DataFrame( np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( entries.vbt.signals.clean(exits, entry_first=False)[0], pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, False, False], [False, True, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( entries.vbt.signals.clean(exits, entry_first=False)[1], pd.DataFrame( np.array([ [False, True, False], [False, False, False], [False, False, False], [False, False, False], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.clean(entries, exits)[0], pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, False, False], [False, True, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.clean(entries, exits)[1], pd.DataFrame( np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) with pytest.raises(Exception): _ = pd.Series.vbt.signals.clean(entries, entries, entries) def test_generate_random(self): pd.testing.assert_series_equal( pd.Series.vbt.signals.generate_random( 5, n=3, seed=seed, index=mask['a'].index, name=mask['a'].name), pd.Series( np.array([False, True, True, False, True]), index=mask['a'].index, name=mask['a'].name ) ) with pytest.raises(Exception): _ = pd.Series.vbt.signals.generate_random((5, 2), n=3) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate_random( (5, 3), n=3, seed=seed, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [False, False, True], [True, True, True], [True, True, False], [False, True, True], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate_random( (5, 3), n=[0, 1, 2], seed=seed, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [False, False, True], [False, False, True], [False, False, False], [False, True, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_series_equal( pd.Series.vbt.signals.generate_random( 5, prob=0.5, seed=seed, index=mask['a'].index, name=mask['a'].name), pd.Series( np.array([True, False, False, False, True]), index=mask['a'].index, name=mask['a'].name ) ) with pytest.raises(Exception): _ = pd.Series.vbt.signals.generate_random((5, 2), prob=3) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate_random( (5, 3), prob=0.5, seed=seed, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [True, True, True], [False, True, False], [False, False, False], [False, False, True], [True, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate_random( (5, 3), prob=[0., 0.5, 1.], seed=seed, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [False, True, True], [False, True, True], [False, False, True], [False, False, True], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) with pytest.raises(Exception): pd.DataFrame.vbt.signals.generate_random((5, 3)) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate_random( (5, 3), prob=[0., 0.5, 1.], pick_first=True, seed=seed, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [False, True, True], [False, False, False], [False, False, False], [False, False, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) def test_generate_random_both(self): # n en, ex = pd.Series.vbt.signals.generate_random_both( 5, n=2, seed=seed, index=mask['a'].index, name=mask['a'].name) pd.testing.assert_series_equal( en, pd.Series( np.array([True, False, True, False, False]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_series_equal( ex, pd.Series( np.array([False, True, False, False, True]), index=mask['a'].index, name=mask['a'].name ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), n=2, seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [False, False, False], [True, True, False], [False, False, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [True, True, True], [False, False, False], [False, True, False], [True, False, True] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), n=[0, 1, 2], seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [False, False, True], [False, True, False], [False, False, False], [False, False, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [False, False, True], [False, False, False], [False, True, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both((2, 3), n=2, seed=seed, entry_wait=1, exit_wait=0) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [True, True, True], ]) ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [True, True, True], [True, True, True] ]) ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both((3, 3), n=2, seed=seed, entry_wait=0, exit_wait=1) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [True, True, True], [False, False, False] ]) ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [True, True, True], [True, True, True], ]) ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both((7, 3), n=2, seed=seed, entry_wait=2, exit_wait=2) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [False, False, False], [False, False, False], [False, False, False], [True, True, True], [False, False, False], [False, False, False] ]) ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [False, False, False], [True, True, True], [False, False, False], [False, False, False], [False, False, False], [True, True, True] ]) ) ) n = 10 a = np.full(n * 2, 0.) for i in range(10000): en, ex = pd.Series.vbt.signals.generate_random_both(1000, n, entry_wait=2, exit_wait=2) _a = np.empty((n * 2,), dtype=np.int_) _a[0::2] = np.flatnonzero(en) _a[1::2] = np.flatnonzero(ex) a += _a greater = a > 10000000 / (2 * n + 1) * np.arange(0, 2 * n) less = a < 10000000 / (2 * n + 1) * np.arange(2, 2 * n + 2) assert np.all(greater & less) # probs en, ex = pd.Series.vbt.signals.generate_random_both( 5, entry_prob=0.5, exit_prob=1., seed=seed, index=mask['a'].index, name=mask['a'].name) pd.testing.assert_series_equal( en, pd.Series( np.array([True, False, False, False, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_series_equal( ex, pd.Series( np.array([False, True, False, False, False]), index=mask['a'].index, name=mask['a'].name ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), entry_prob=0.5, exit_prob=1., seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [False, False, False], [False, False, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [True, True, True], [False, False, False], [False, False, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), entry_prob=[0., 0.5, 1.], exit_prob=[0., 0.5, 1.], seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [False, True, True], [False, False, False], [False, False, True], [False, False, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [False, True, True], [False, False, False], [False, False, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), entry_prob=1., exit_prob=1., exit_wait=0, seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [True, True, True], [True, True, True], [True, True, True], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [True, True, True], [True, True, True], [True, True, True], [True, True, True], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), entry_prob=1., exit_prob=1., entry_pick_first=False, exit_pick_first=True, seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [True, True, True], [True, True, True], [True, True, True], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), entry_prob=1., exit_prob=1., entry_pick_first=True, exit_pick_first=False, seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [False, False, False], [False, False, False], [False, False, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [True, True, True], [True, True, True], [True, True, True], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) # none with pytest.raises(Exception): pd.DataFrame.vbt.signals.generate_random((5, 3)) def test_generate_random_exits(self): pd.testing.assert_series_equal( mask['a'].vbt.signals.generate_random_exits(seed=seed), pd.Series( np.array([False, False, True, False, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(seed=seed), pd.DataFrame( np.array([ [False, False, False], [False, False, False], [True, True, False], [False, False, False], [True, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(seed=seed, wait=0), pd.DataFrame( np.array([ [True, False, False], [False, False, False], [False, True, False], [False, False, True], [True, True, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_series_equal( mask['a'].vbt.signals.generate_random_exits(prob=1., seed=seed), pd.Series( np.array([False, True, False, False, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(prob=1., seed=seed), pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, True, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(prob=[0., 0.5, 1.], seed=seed), pd.DataFrame( np.array([ [False, False, False], [False, False, False], [False, False, False], [False, True, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(prob=1., wait=0, seed=seed), pd.DataFrame( np.array([ [True, False, False], [False, True, False], [False, False, True], [True, False, False], [False, True, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(prob=1., until_next=False, seed=seed), pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, True, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) def test_generate_stop_exits(self): e = pd.Series([True, False, False, False, False, False]) t = pd.Series([2, 3, 4, 3, 2, 1]).astype(np.float64) # stop loss pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(t, -0.1), pd.Series(np.array([False, False, False, False, False, True])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(t, -0.1, trailing=True), pd.Series(np.array([False, False, False, True, False, False])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(t, -0.1, trailing=True, pick_first=False), pd.Series(np.array([False, False, False, True, True, True])) ) pd.testing.assert_frame_equal( e.vbt.signals.generate_stop_exits(t.vbt.tile(3), [np.nan, -0.5, -1.], trailing=True, pick_first=False), pd.DataFrame(np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [False, True, False], [False, True, False] ])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(t, -0.1, trailing=True, exit_wait=3), pd.Series(np.array([False, False, False, False, True, False])) ) # take profit pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(4 - t, 0.1), pd.Series(np.array([False, False, False, False, False, True])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(4 - t, 0.1, trailing=True), pd.Series(np.array([False, False, False, True, False, False])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(4 - t, 0.1, trailing=True, pick_first=False), pd.Series(np.array([False, False, False, True, True, True])) ) pd.testing.assert_frame_equal( e.vbt.signals.generate_stop_exits((4 - t).vbt.tile(3), [np.nan, 0.5, 1.], trailing=True, pick_first=False), pd.DataFrame(np.array([ [False, False, False], [False, False, False], [False, False, False], [False, True, True], [False, True, True], [False, True, True] ])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(4 - t, 0.1, trailing=True, exit_wait=3), pd.Series(np.array([False, False, False, False, True, False])) ) # chain e = pd.Series([True, True, True, True, True, True]) en, ex = e.vbt.signals.generate_stop_exits(t, -0.1, trailing=True, chain=True) pd.testing.assert_series_equal( en, pd.Series(np.array([True, False, False, False, True, False])) ) pd.testing.assert_series_equal( ex, pd.Series(np.array([False, False, False, True, False, True])) ) en, ex = e.vbt.signals.generate_stop_exits(t, -0.1, trailing=True, entry_wait=2, chain=True) pd.testing.assert_series_equal( en, pd.Series(np.array([True, False, False, False, False, True])) ) pd.testing.assert_series_equal( ex, pd.Series(np.array([False, False, False, True, False, False])) ) en, ex = e.vbt.signals.generate_stop_exits(t, -0.1, trailing=True, exit_wait=2, chain=True) pd.testing.assert_series_equal( en, pd.Series(np.array([True, False, False, False, True, False])) ) pd.testing.assert_series_equal( ex, pd.Series(np.array([False, False, False, True, False, False])) ) # until_next and pick_first e2 = pd.Series([True, True, True, True, True, True]) t2 = pd.Series([6, 5, 4, 3, 2, 1]).astype(np.float64) ex = e2.vbt.signals.generate_stop_exits(t2, -0.1, until_next=False, pick_first=False) pd.testing.assert_series_equal( ex, pd.Series(np.array([False, True, True, True, True, True])) ) def test_generate_ohlc_stop_exits(self): with pytest.raises(Exception): _ = mask.vbt.signals.generate_ohlc_stop_exits(ts, sl_stop=-0.1) with pytest.raises(Exception): _ = mask.vbt.signals.generate_ohlc_stop_exits(ts, tp_stop=-0.1) pd.testing.assert_frame_equal( mask.vbt.signals.generate_stop_exits(ts, -0.1), mask.vbt.signals.generate_ohlc_stop_exits(ts, sl_stop=0.1) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_stop_exits(ts, -0.1, trailing=True), mask.vbt.signals.generate_ohlc_stop_exits(ts, sl_stop=0.1, sl_trail=True) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_stop_exits(ts, 0.1), mask.vbt.signals.generate_ohlc_stop_exits(ts, tp_stop=0.1) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_stop_exits(ts, 0.1), mask.vbt.signals.generate_ohlc_stop_exits(ts, sl_stop=0.1, reverse=True) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_stop_exits(ts, 0.1, trailing=True), mask.vbt.signals.generate_ohlc_stop_exits(ts, sl_stop=0.1, sl_trail=True, reverse=True) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_stop_exits(ts, -0.1), mask.vbt.signals.generate_ohlc_stop_exits(ts, tp_stop=0.1, reverse=True) ) def _test_ohlc_stop_exits(**kwargs): out_dict = {'stop_price': np.nan, 'stop_type': -1} result = mask.vbt.signals.generate_ohlc_stop_exits( price['open'], price['high'], price['low'], price['close'], out_dict=out_dict, **kwargs ) if isinstance(result, tuple): _, ex = result else: ex = result return result, out_dict['stop_price'], out_dict['stop_type'] ex, stop_price, stop_type = _test_ohlc_stop_exits() pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [False, False, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [-1, -1, -1], [-1, -1, -1], [-1, -1, -1], [-1, -1, -1], [-1, -1, -1] ]), index=mask.index, columns=mask.columns) ) ex, stop_price, stop_type = _test_ohlc_stop_exits(sl_stop=0.1) pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 10.8], [9.9, np.nan, np.nan] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [-1, -1, -1], [-1, -1, -1], [-1, -1, -1], [-1, -1, 0], [0, -1, -1] ]), index=mask.index, columns=mask.columns) ) ex, stop_price, stop_type = _test_ohlc_stop_exits(sl_stop=0.1, sl_trail=True) pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [False, False, False], [False, False, False], [False, False, False], [False, True, True], [True, False, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, 11.7, 10.8], [9.9, np.nan, np.nan] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [-1, -1, -1], [-1, -1, -1], [-1, -1, -1], [-1, 1, 1], [1, -1, -1] ]), index=mask.index, columns=mask.columns) ) ex, stop_price, stop_type = _test_ohlc_stop_exits(tp_stop=0.1) pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [False, False, False], [True, False, False], [False, True, False], [False, False, False], [False, False, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [np.nan, np.nan, np.nan], [11.0, np.nan, np.nan], [np.nan, 12.1, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [-1, -1, -1], [2, -1, -1], [-1, 2, -1], [-1, -1, -1], [-1, -1, -1] ]), index=mask.index, columns=mask.columns) ) ex, stop_price, stop_type = _test_ohlc_stop_exits(sl_stop=0.1, sl_trail=True, tp_stop=0.1) pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [False, False, False], [True, False, False], [False, True, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [np.nan, np.nan, np.nan], [11.0, np.nan, np.nan], [np.nan, 12.1, np.nan], [np.nan, np.nan, 10.8], [9.9, np.nan, np.nan] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [-1, -1, -1], [2, -1, -1], [-1, 2, -1], [-1, -1, 1], [1, -1, -1] ]), index=mask.index, columns=mask.columns) ) ex, stop_price, stop_type = _test_ohlc_stop_exits( sl_stop=[np.nan, 0.1, 0.2], sl_trail=True, tp_stop=[np.nan, 0.1, 0.2]) pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [False, False, False], [False, False, False], [False, True, False], [False, False, False], [False, False, True] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, 12.1, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 9.6] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [-1, -1, -1], [-1, -1, -1], [-1, 2, -1], [-1, -1, -1], [-1, -1, 1] ]), index=mask.index, columns=mask.columns) ) ex, stop_price, stop_type = _test_ohlc_stop_exits(sl_stop=0.1, sl_trail=True, tp_stop=0.1, exit_wait=0) pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [True, False, False], [False, False, False], [False, True, False], [False, False, True], [True, True, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [9.0, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, 12.1, np.nan], [np.nan, np.nan, 11.7], [10.8, 9.0, np.nan] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [1, -1, -1], [-1, -1, -1], [-1, 2, -1], [-1, -1, 1], [1, 1, -1] ]), index=mask.index, columns=mask.columns) ) (en, ex), stop_price, stop_type = _test_ohlc_stop_exits( sl_stop=0.1, sl_trail=True, tp_stop=0.1, chain=True) pd.testing.assert_frame_equal( en, pd.DataFrame(np.array([ [True, False, False], [False, True, False], [False, False, True], [True, False, False], [False, True, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [False, False, False], [True, False, False], [False, True, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [np.nan, np.nan, np.nan], [11.0, np.nan, np.nan], [np.nan, 12.1, np.nan], [np.nan, np.nan, 10.8], [9.9, np.nan, np.nan] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [-1, -1, -1], [2, -1, -1], [-1, 2, -1], [-1, -1, 1], [1, -1, -1] ]), index=mask.index, columns=mask.columns) ) def test_between_ranges(self): ranges = mask.vbt.signals.between_ranges() record_arrays_close( ranges.values, np.array([ (0, 0, 0, 3, 1), (1, 1, 1, 4, 1) ], dtype=range_dt) ) assert ranges.wrapper == mask.vbt.wrapper mask2 = pd.DataFrame([ [True, True, True], [True, True, True], [False, False, False], [False, False, False], [False, False, False] ], index=mask.index, columns=mask.columns) other_mask = pd.DataFrame([ [False, False, False], [True, False, False], [True, True, False], [False, True, True], [False, False, True] ], index=mask.index, columns=mask.columns) ranges = mask2.vbt.signals.between_ranges(other=other_mask) record_arrays_close( ranges.values, np.array([ (0, 0, 0, 1, 1), (1, 0, 1, 1, 1), (2, 1, 0, 2, 1), (3, 1, 1, 2, 1), (4, 2, 0, 3, 1), (5, 2, 1, 3, 1) ], dtype=range_dt) ) assert ranges.wrapper == mask2.vbt.wrapper ranges = mask2.vbt.signals.between_ranges(other=other_mask, from_other=True) record_arrays_close( ranges.values, np.array([ (0, 0, 1, 1, 1), (1, 0, 1, 2, 1), (2, 1, 1, 2, 1), (3, 1, 1, 3, 1), (4, 2, 1, 3, 1), (5, 2, 1, 4, 1) ], dtype=range_dt) ) assert ranges.wrapper == mask2.vbt.wrapper def test_partition_ranges(self): mask2 = pd.DataFrame([ [False, False, False], [True, False, False], [True, True, False], [False, True, True], [True, False, True] ], index=mask.index, columns=mask.columns) ranges = mask2.vbt.signals.partition_ranges() record_arrays_close( ranges.values, np.array([ (0, 0, 1, 3, 1), (1, 0, 4, 4, 0), (2, 1, 2, 4, 1), (3, 2, 3, 4, 0) ], dtype=range_dt) ) assert ranges.wrapper == mask2.vbt.wrapper def test_between_partition_ranges(self): mask2 = pd.DataFrame([ [True, False, False], [True, True, False], [False, True, True], [True, False, True], [False, True, False] ], index=mask.index, columns=mask.columns) ranges = mask2.vbt.signals.between_partition_ranges() record_arrays_close( ranges.values, np.array([ (0, 0, 1, 3, 1), (1, 1, 2, 4, 1) ], dtype=range_dt) ) assert ranges.wrapper == mask2.vbt.wrapper def test_pos_rank(self): pd.testing.assert_series_equal( (~mask['a']).vbt.signals.pos_rank(), pd.Series([-1, 0, 1, -1, 0], index=mask['a'].index, name=mask['a'].name) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.pos_rank(), pd.DataFrame( np.array([ [-1, 0, 0], [0, -1, 1], [1, 0, -1], [-1, 1, 0], [0, -1, 1] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.pos_rank(after_false=True), pd.DataFrame( np.array([ [-1, -1, -1], [0, -1, -1], [1, 0, -1], [-1, 1, 0], [0, -1, 1] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.pos_rank(allow_gaps=True), pd.DataFrame( np.array([ [-1, 0, 0], [0, -1, 1], [1, 1, -1], [-1, 2, 2], [2, -1, 3] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.pos_rank(reset_by=mask['a'], allow_gaps=True), pd.DataFrame( np.array([ [-1, 0, 0], [0, -1, 1], [1, 1, -1], [-1, 0, 0], [0, -1, 1] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.pos_rank(reset_by=mask, allow_gaps=True), pd.DataFrame( np.array([ [-1, 0, 0], [0, -1, 1], [1, 0, -1], [-1, 1, 0], [0, -1, 1] ]), index=mask.index, columns=mask.columns ) ) def test_partition_pos_rank(self): pd.testing.assert_series_equal( (~mask['a']).vbt.signals.partition_pos_rank(), pd.Series([-1, 0, 0, -1, 1], index=mask['a'].index, name=mask['a'].name) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.partition_pos_rank(), pd.DataFrame( np.array([ [-1, 0, 0], [0, -1, 0], [0, 1, -1], [-1, 1, 1], [1, -1, 1] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.partition_pos_rank(after_false=True), pd.DataFrame( np.array([ [-1, -1, -1], [0, -1, -1], [0, 0, -1], [-1, 0, 0], [1, -1, 0] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.partition_pos_rank(reset_by=mask['a']), pd.DataFrame( np.array([ [-1, 0, 0], [0, -1, 0], [0, 1, -1], [-1, 0, 0], [0, -1, 0] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.partition_pos_rank(reset_by=mask), pd.DataFrame( np.array([ [-1, 0, 0], [0, -1, 0], [0, 0, -1], [-1, 0, 0], [0, -1, 0] ]), index=mask.index, columns=mask.columns ) ) def test_pos_rank_fns(self): pd.testing.assert_frame_equal( (~mask).vbt.signals.first(), pd.DataFrame( np.array([ [False, True, True], [True, False, False], [False, True, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.nth(1), pd.DataFrame( np.array([ [False, False, False], [False, False, True], [True, False, False], [False, True, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.nth(2), pd.DataFrame( np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.from_nth(0), pd.DataFrame( np.array([ [False, True, True], [True, False, True], [True, True, False], [False, True, True], [True, False, True] ]), index=mask.index, columns=mask.columns ) ) def test_pos_rank_mapped(self): mask2 = pd.DataFrame([ [True, False, False], [True, True, False], [False, True, True], [True, False, True], [False, True, False] ], index=mask.index, columns=mask.columns) mapped = mask2.vbt.signals.pos_rank_mapped() np.testing.assert_array_equal( mapped.values, np.array([0, 1, 0, 0, 1, 0, 0, 1]) ) np.testing.assert_array_equal( mapped.col_arr, np.array([0, 0, 0, 1, 1, 1, 2, 2]) ) np.testing.assert_array_equal( mapped.idx_arr, np.array([0, 1, 3, 1, 2, 4, 2, 3]) ) assert mapped.wrapper == mask2.vbt.wrapper def test_partition_pos_rank_mapped(self): mask2 = pd.DataFrame([ [True, False, False], [True, True, False], [False, True, True], [True, False, True], [False, True, False] ], index=mask.index, columns=mask.columns) mapped = mask2.vbt.signals.partition_pos_rank_mapped() np.testing.assert_array_equal( mapped.values, np.array([0, 0, 1, 0, 0, 1, 0, 0]) ) np.testing.assert_array_equal( mapped.col_arr, np.array([0, 0, 0, 1, 1, 1, 2, 2]) ) np.testing.assert_array_equal( mapped.idx_arr, np.array([0, 1, 3, 1, 2, 4, 2, 3]) ) assert mapped.wrapper == mask2.vbt.wrapper def test_nth_index(self): assert mask['a'].vbt.signals.nth_index(0) == pd.Timestamp('2020-01-01 00:00:00') pd.testing.assert_series_equal( mask.vbt.signals.nth_index(0), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-02 00:00:00'), pd.Timestamp('2020-01-03 00:00:00') ], index=mask.columns, name='nth_index', dtype='datetime64[ns]') ) pd.testing.assert_series_equal( mask.vbt.signals.nth_index(-1), pd.Series([ pd.Timestamp('2020-01-04 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timestamp('2020-01-03 00:00:00') ], index=mask.columns, name='nth_index', dtype='datetime64[ns]') ) pd.testing.assert_series_equal( mask.vbt.signals.nth_index(-2), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-02 00:00:00'), np.nan ], index=mask.columns, name='nth_index', dtype='datetime64[ns]') ) pd.testing.assert_series_equal( mask.vbt.signals.nth_index(0, group_by=group_by), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-03 00:00:00') ], index=['g1', 'g2'], name='nth_index', dtype='datetime64[ns]') ) pd.testing.assert_series_equal( mask.vbt.signals.nth_index(-1, group_by=group_by), pd.Series([ pd.Timestamp('2020-01-05 00:00:00'), pd.Timestamp('2020-01-03 00:00:00') ], index=['g1', 'g2'], name='nth_index', dtype='datetime64[ns]') ) def test_norm_avg_index(self): assert mask['a'].vbt.signals.norm_avg_index() == -0.25 pd.testing.assert_series_equal( mask.vbt.signals.norm_avg_index(), pd.Series([-0.25, 0.25, 0.0], index=mask.columns, name='norm_avg_index') ) pd.testing.assert_series_equal( mask.vbt.signals.norm_avg_index(group_by=group_by), pd.Series([0.0, 0.0], index=['g1', 'g2'], name='norm_avg_index') ) def test_index_mapped(self): mapped = mask.vbt.signals.index_mapped() np.testing.assert_array_equal( mapped.values, np.array([0, 3, 1, 4, 2]) ) np.testing.assert_array_equal( mapped.col_arr, np.array([0, 0, 1, 1, 2]) ) np.testing.assert_array_equal( mapped.idx_arr, np.array([0, 3, 1, 4, 2]) ) assert mapped.wrapper == mask.vbt.wrapper def test_total(self): assert mask['a'].vbt.signals.total() == 2 pd.testing.assert_series_equal( mask.vbt.signals.total(), pd.Series([2, 2, 1], index=mask.columns, name='total') ) pd.testing.assert_series_equal( mask.vbt.signals.total(group_by=group_by), pd.Series([4, 1], index=['g1', 'g2'], name='total') ) def test_rate(self): assert mask['a'].vbt.signals.rate() == 0.4 pd.testing.assert_series_equal( mask.vbt.signals.rate(), pd.Series([0.4, 0.4, 0.2], index=mask.columns, name='rate') ) pd.testing.assert_series_equal( mask.vbt.signals.rate(group_by=group_by), pd.Series([0.4, 0.2], index=['g1', 'g2'], name='rate') ) def test_total_partitions(self): assert mask['a'].vbt.signals.total_partitions() == 2 pd.testing.assert_series_equal( mask.vbt.signals.total_partitions(), pd.Series([2, 2, 1], index=mask.columns, name='total_partitions') ) pd.testing.assert_series_equal( mask.vbt.signals.total_partitions(group_by=group_by), pd.Series([4, 1], index=['g1', 'g2'], name='total_partitions') ) def test_partition_rate(self): assert mask['a'].vbt.signals.partition_rate() == 1.0 pd.testing.assert_series_equal( mask.vbt.signals.partition_rate(), pd.Series([1.0, 1.0, 1.0], index=mask.columns, name='partition_rate') ) pd.testing.assert_series_equal( mask.vbt.signals.partition_rate(group_by=group_by), pd.Series([1.0, 1.0], index=['g1', 'g2'], name='partition_rate') ) def test_stats(self): stats_index = pd.Index([ 'Start', 'End', 'Period', 'Total', 'Rate [%]', 'First Index', 'Last Index', 'Norm Avg Index [-1, 1]', 'Distance: Min', 'Distance: Max', 'Distance: Mean', 'Distance: Std', 'Total Partitions', 'Partition Rate [%]', 'Partition Length: Min', 'Partition Length: Max', 'Partition Length: Mean', 'Partition Length: Std', 'Partition Distance: Min', 'Partition Distance: Max', 'Partition Distance: Mean', 'Partition Distance: Std' ], dtype='object') pd.testing.assert_series_equal( mask.vbt.signals.stats(), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 1.6666666666666667, 33.333333333333336, pd.Timestamp('2020-01-02 00:00:00'), pd.Timestamp('2020-01-04 00:00:00'), 0.0, pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), np.nan, 1.6666666666666667, 100.0, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('0 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), np.nan ], index=stats_index, name='agg_func_mean' ) ) pd.testing.assert_series_equal( mask.vbt.signals.stats(column='a'), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 2, 40.0, pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-04 00:00:00'), -0.25, pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), np.nan, 2, 100.0, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('0 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), np.nan ], index=stats_index, name='a' ) ) pd.testing.assert_series_equal( mask.vbt.signals.stats(column='a', settings=dict(to_timedelta=False)), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), 5, 2, 40.0, pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-04 00:00:00'), -0.25, 3.0, 3.0, 3.0, np.nan, 2, 100.0, 1.0, 1.0, 1.0, 0.0, 3.0, 3.0, 3.0, np.nan ], index=stats_index, name='a' ) ) pd.testing.assert_series_equal( mask.vbt.signals.stats(column='a', settings=dict(other=mask['b'], from_other=True)), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 2, 40.0, 0, 0.0, pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-04 00:00:00'), -0.25, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('0 days 00:00:00'), 2, 100.0, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('0 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), np.nan ], index=pd.Index([ 'Start', 'End', 'Period', 'Total', 'Rate [%]', 'Total Overlapping', 'Overlapping Rate [%]', 'First Index', 'Last Index', 'Norm Avg Index [-1, 1]', 'Distance <- Other: Min', 'Distance <- Other: Max', 'Distance <- Other: Mean', 'Distance <- Other: Std', 'Total Partitions', 'Partition Rate [%]', 'Partition Length: Min', 'Partition Length: Max', 'Partition Length: Mean', 'Partition Length: Std', 'Partition Distance: Min', 'Partition Distance: Max', 'Partition Distance: Mean', 'Partition Distance: Std' ], dtype='object'), name='a' ) ) pd.testing.assert_series_equal( mask.vbt.signals.stats(column='g1', group_by=group_by), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 4, 40.0, pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), 0.0, pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('0 days 00:00:00'), 4, 100.0, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'),
pd.Timedelta('0 days 00:00:00')
pandas.Timedelta
from flowsa.common import WITHDRAWN_KEYWORD from flowsa.flowbyfunctions import assign_fips_location_system from flowsa.location import US_FIPS import math import pandas as pd import io from flowsa.settings import log from string import digits YEARS_COVERED = { "asbestos": "2014-2018", "barite": "2014-2018", "bauxite": "2013-2017", "beryllium": "2014-2018", "boron": "2014-2018", "chromium": "2014-2018", "clay": "2015-2016", "cobalt": "2013-2017", "copper": "2011-2015", "diatomite": "2014-2018", "feldspar": "2013-2017", "fluorspar": "2013-2017", "fluorspar_inports": ["2016", "2017"], "gallium": "2014-2018", "garnet": "2014-2018", "gold": "2013-2017", "graphite": "2013-2017", "gypsum": "2014-2018", "iodine": "2014-2018", "ironore": "2014-2018", "kyanite": "2014-2018", "lead": "2012-2018", "lime": "2014-2018", "lithium": "2013-2017", "magnesium": "2013-2017", "manganese": "2012-2016", "manufacturedabrasive": "2017-2018", "mica": "2014-2018", "molybdenum": "2014-2018", "nickel": "2012-2016", "niobium": "2014-2018", "peat": "2014-2018", "perlite": "2013-2017", "phosphate": "2014-2018", "platinum": "2014-2018", "potash": "2014-2018", "pumice": "2014-2018", "rhenium": "2014-2018", "salt": "2013-2017", "sandgravelconstruction": "2013-2017", "sandgravelindustrial": "2014-2018", "silver": "2012-2016", "sodaash": "2010-2017", "sodaash_t4": ["2016", "2017"], "stonecrushed": "2013-2017", "stonedimension": "2013-2017", "strontium": "2014-2018", "talc": "2013-2017", "titanium": "2013-2017", "tungsten": "2013-2017", "vermiculite": "2014-2018", "zeolites": "2014-2018", "zinc": "2013-2017", "zirconium": "2013-2017", } def usgs_myb_year(years, current_year_str): """ Sets the column for the string based on the year. Checks that the year you picked is in the last file. :param years: string, with hypthon :param current_year_str: string, year of interest :return: string, year """ years_array = years.split("-") lower_year = int(years_array[0]) upper_year = int(years_array[1]) current_year = int(current_year_str) if lower_year <= current_year <= upper_year: column_val = current_year - lower_year + 1 return "year_" + str(column_val) else: log.info("Your year is out of scope. Pick a year between %s and %s", lower_year, upper_year) def usgs_myb_name(USGS_Source): """ Takes the USGS source name and parses it so it can be used in other parts of Flow by activity. :param USGS_Source: string, usgs source name :return: """ source_split = USGS_Source.split("_") name_cc = str(source_split[2]) name = "" for char in name_cc: if char.isupper(): name = name + " " + char else: name = name + char name = name.lower() name = name.strip() return name def usgs_myb_static_variables(): """ Populates the data values for Flow by activity that are the same for all of USGS_MYB Files :return: """ data = {} data["Class"] = "Geological" data['FlowType'] = "ELEMENTARY_FLOWS" data["Location"] = US_FIPS data["Compartment"] = "ground" data["Context"] = None data["ActivityConsumedBy"] = None return data def usgs_myb_remove_digits(value_string): """ Eliminates numbers in a string :param value_string: :return: """ remove_digits = str.maketrans('', '', digits) return_string = value_string.translate(remove_digits) return return_string def usgs_myb_url_helper(*, build_url, **_): """ This helper function uses the "build_url" input from flowbyactivity.py, which is a base url for data imports that requires parts of the url text string to be replaced with info specific to the data year. This function does not parse the data, only modifies the urls from which data is obtained. :param build_url: string, base url :param config: dictionary, items in FBA method yaml :param args: dictionary, arguments specified when running flowbyactivity.py flowbyactivity.py ('year' and 'source') :return: list, urls to call, concat, parse, format into Flow-By-Activity format """ return [build_url] def usgs_asbestos_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param resp: df, response from url call :param year: year :return: pandas dataframe of original source data """ df_raw_data = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data = pd.DataFrame(df_raw_data.loc[4:11]).reindex() df_data = df_data.reset_index() del df_data["index"] if len(df_data.columns) > 12: for x in range(12, len(df_data.columns)): col_name = "Unnamed: " + str(x) del df_data[col_name] if len(df_data. columns) == 12: df_data.columns = ["Production", "Unit", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['asbestos'], year)) for col in df_data.columns: if col not in col_to_use: del df_data[col] return df_data def usgs_asbestos_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param source: source :param year: year :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Quantity"] product = "" name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() col_name = usgs_myb_year(YEARS_COVERED['asbestos'], year) for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == \ "Imports for consumption:": product = "imports" elif df.iloc[index]["Production"].strip() == \ "Exports and reexports:": product = "exports" if df.iloc[index]["Production"].strip() in row_to_use: data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Metric Tons" data['FlowName'] = name + " " + product data["Description"] = name data["ActivityProducedBy"] = name col_name = usgs_myb_year(YEARS_COVERED['asbestos'], year) if str(df.iloc[index][col_name]) == "--": data["FlowAmount"] = str(0) elif str(df.iloc[index][col_name]) == "nan": data["FlowAmount"] = WITHDRAWN_KEYWORD else: data["FlowAmount"] = str(df.iloc[index][col_name]) dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system(dataframe, str(year)) return dataframe def usgs_barite_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param args: dictionary, arguments specified when running flowbyactivity.py ('year' and 'source') :return: pandas dataframe of original source data """ df_raw_data = pd.io.excel.read_excel( io.BytesIO(resp.content), sheet_name='T1') df_data = pd.DataFrame(df_raw_data.loc[7:14]).reindex() df_data = df_data.reset_index() del df_data["index"] if len(df_data. columns) == 11: df_data.columns = ["Production", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['barite'], year)) for col in df_data.columns: if col not in col_to_use: del df_data[col] return df_data def usgs_barite_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param args: dictionary, used to run flowbyactivity.py ('year' and 'source') :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Quantity"] prod = "" name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() col_name = usgs_myb_year(YEARS_COVERED['barite'], year) for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == \ "Imports for consumption:3": product = "imports" elif df.iloc[index]["Production"].strip() == \ "Crude, sold or used by producers:": product = "production" elif df.iloc[index]["Production"].strip() == "Exports:2": product = "exports" if df.iloc[index]["Production"].strip() in row_to_use: data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Metric Tons" data['FlowName'] = name + " " + product data["Description"] = name data["ActivityProducedBy"] = name col_name = usgs_myb_year(YEARS_COVERED['barite'], year) if str(df.iloc[index][col_name]) == "--" or \ str(df.iloc[index][col_name]) == "(3)": data["FlowAmount"] = str(0) else: data["FlowAmount"] = str(df.iloc[index][col_name]) dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_bauxite_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param resp: df, response from url call :param year: year :return: pandas dataframe of original source data """ df_raw_data_one = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data_one = pd.DataFrame(df_raw_data_one.loc[6:14]).reindex() df_data_one = df_data_one.reset_index() del df_data_one["index"] if len(df_data_one. columns) == 11: df_data_one.columns = ["Production", "space_2", "year_1", "space_3", "year_2", "space_4", "year_3", "space_5", "year_4", "space_6", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['bauxite'], year)) for col in df_data_one.columns: if col not in col_to_use: del df_data_one[col] frames = [df_data_one] df_data = pd.concat(frames) df_data = df_data.reset_index() del df_data["index"] return df_data def usgs_bauxite_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param args: dictionary, used to run flowbyactivity.py ('year' and 'source') :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Production", "Total"] prod = "" name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() col_name = usgs_myb_year(YEARS_COVERED['bauxite'], year) for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == "Production": prod = "production" elif df.iloc[index]["Production"].strip() == \ "Imports for consumption, as shipped:": prod = "import" elif df.iloc[index]["Production"].strip() == \ "Exports, as shipped:": prod = "export" if df.iloc[index]["Production"].strip() in row_to_use: product = df.iloc[index]["Production"].strip() data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Metric Tons" flow_amount = str(df.iloc[index][col_name]) if str(df.iloc[index][col_name]) == "W": data["FlowAmount"] = WITHDRAWN_KEYWORD else: data["FlowAmount"] = flow_amount data["Description"] = des data["ActivityProducedBy"] = name data['FlowName'] = name + " " + prod dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_beryllium_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param args: dictionary, arguments specified when running flowbyactivity.py ('year' and 'source') :return: pandas dataframe of original source data """ df_raw_data = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T4') df_raw_data_two = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data_1 = pd.DataFrame(df_raw_data_two.loc[6:9]).reindex() df_data_1 = df_data_1.reset_index() del df_data_1["index"] df_data_2 = pd.DataFrame(df_raw_data.loc[12:12]).reindex() df_data_2 = df_data_2.reset_index() del df_data_2["index"] if len(df_data_2.columns) > 11: for x in range(11, len(df_data_2.columns)): col_name = "Unnamed: " + str(x) del df_data_2[col_name] if len(df_data_1. columns) == 11: df_data_1.columns = ["Production", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] if len(df_data_2. columns) == 11: df_data_2.columns = ["Production", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['beryllium'], year)) for col in df_data_1.columns: if col not in col_to_use: del df_data_1[col] for col in df_data_2.columns: if col not in col_to_use: del df_data_2[col] frames = [df_data_1, df_data_2] df_data = pd.concat(frames) df_data = df_data.reset_index() del df_data["index"] return df_data def usgs_beryllium_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param args: dictionary, used to run flowbyactivity.py ('year' and 'source') :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["United States6", "Mine shipments1", "Imports for consumption, beryl2"] prod = "" name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() col_name = usgs_myb_year(YEARS_COVERED['beryllium'], year) for df in df_list: for index, row in df.iterrows(): prod = "production" if df.iloc[index]["Production"].strip() == \ "Imports for consumption, beryl2": prod = "imports" if df.iloc[index]["Production"].strip() in row_to_use: remove_digits = str.maketrans('', '', digits) product = df.iloc[index][ "Production"].strip().translate(remove_digits) data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Thousand Metric Tons" data["Description"] = name data["ActivityProducedBy"] = name data['FlowName'] = name + " " + prod data["FlowAmount"] = str(df.iloc[index][col_name]) dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_boron_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param args: dictionary, arguments specified when running flowbyactivity.py ('year' and 'source') :return: pandas dataframe of original source data """ df_raw_data = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data_one = pd.DataFrame(df_raw_data.loc[8:8]).reindex() df_data_one = df_data_one.reset_index() del df_data_one["index"] df_data_two = pd.DataFrame(df_raw_data.loc[21:22]).reindex() df_data_two = df_data_two.reset_index() del df_data_two["index"] df_data_three = pd.DataFrame(df_raw_data.loc[27:28]).reindex() df_data_three = df_data_three.reset_index() del df_data_three["index"] if len(df_data_one. columns) == 11: df_data_one.columns = ["Production", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] df_data_two.columns = ["Production", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] df_data_three.columns = ["Production", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['boron'], year)) for col in df_data_one.columns: if col not in col_to_use: del df_data_one[col] del df_data_two[col] del df_data_three[col] frames = [df_data_one, df_data_two, df_data_three] df_data = pd.concat(frames) df_data = df_data.reset_index() del df_data["index"] return df_data def usgs_boron_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param args: dictionary, used to run flowbyactivity.py ('year' and 'source') :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["B2O3 content", "Quantity"] prod = "" name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() col_name = usgs_myb_year(YEARS_COVERED['boron'], year) for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == "B2O3 content" or \ df.iloc[index]["Production"].strip() == "Quantity": product = "production" if df.iloc[index]["Production"].strip() == "Colemanite:4": des = "Colemanite" elif df.iloc[index]["Production"].strip() == "Ulexite:4": des = "Ulexite" if df.iloc[index]["Production"].strip() in row_to_use: data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Metric Tons" if des == name: data['FlowName'] = name + " " + product else: data['FlowName'] = name + " " + product + " " + des data["Description"] = des data["ActivityProducedBy"] = name if str(df.iloc[index][col_name]) == "--" or \ str(df.iloc[index][col_name]) == "(3)": data["FlowAmount"] = str(0) elif str(df.iloc[index][col_name]) == "W": data["FlowAmount"] = WITHDRAWN_KEYWORD else: data["FlowAmount"] = str(df.iloc[index][col_name]) dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_chromium_call(*, resp, year, **_): """" Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param args: dictionary, arguments specified when running flowbyactivity.py ('year' and 'source') :return: pandas dataframe of original source data """ df_raw_data = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data = pd.DataFrame(df_raw_data.loc[4:24]).reindex() df_data = df_data.reset_index() del df_data["index"] if len(df_data. columns) == 12: df_data.columns = ["Production", "Unit", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] elif len(df_data. columns) == 13: df_data.columns = ["Production", "Unit", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5", "space_6"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['chromium'], year)) for col in df_data.columns: if col not in col_to_use: del df_data[col] return df_data def usgs_chromium_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param args: dictionary, used to run flowbyactivity.py ('year' and 'source') :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Secondary2", "Total"] prod = "" name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() col_name = usgs_myb_year(YEARS_COVERED['chromium'], year) for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == "Imports:": product = "imports" elif df.iloc[index]["Production"].strip() == "Secondary2": product = "production" elif df.iloc[index]["Production"].strip() == "Exports:": product = "exports" if df.iloc[index]["Production"].strip() in row_to_use: data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Metric Tons" data['FlowName'] = name + " " + product data["Description"] = name data["ActivityProducedBy"] = name col_name = usgs_myb_year(YEARS_COVERED['chromium'], year) if str(df.iloc[index][col_name]) == "--" or \ str(df.iloc[index][col_name]) == "(3)": data["FlowAmount"] = str(0) else: data["FlowAmount"] = str(df.iloc[index][col_name]) dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_clay_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param args: dictionary, arguments specified when running flowbyactivity.py ('year' and 'source') :return: pandas dataframe of original source data """ df_raw_data_ball = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T3') df_data_ball = pd.DataFrame(df_raw_data_ball.loc[19:19]).reindex() df_data_ball = df_data_ball.reset_index() del df_data_ball["index"] df_raw_data_bentonite = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T4 ') df_data_bentonite = pd.DataFrame( df_raw_data_bentonite.loc[28:28]).reindex() df_data_bentonite = df_data_bentonite.reset_index() del df_data_bentonite["index"] df_raw_data_common = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T5 ') df_data_common = pd.DataFrame(df_raw_data_common.loc[40:40]).reindex() df_data_common = df_data_common.reset_index() del df_data_common["index"] df_raw_data_fire = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T6 ') df_data_fire = pd.DataFrame(df_raw_data_fire.loc[12:12]).reindex() df_data_fire = df_data_fire.reset_index() del df_data_fire["index"] df_raw_data_fuller = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T7 ') df_data_fuller = pd.DataFrame(df_raw_data_fuller.loc[17:17]).reindex() df_data_fuller = df_data_fuller.reset_index() del df_data_fuller["index"] df_raw_data_kaolin = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T8 ') df_data_kaolin = pd.DataFrame(df_raw_data_kaolin.loc[18:18]).reindex() df_data_kaolin = df_data_kaolin.reset_index() del df_data_kaolin["index"] df_raw_data_export = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T13') df_data_export = pd.DataFrame(df_raw_data_export.loc[6:15]).reindex() df_data_export = df_data_export.reset_index() del df_data_export["index"] df_raw_data_import = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T14') df_data_import = pd.DataFrame(df_raw_data_import.loc[6:13]).reindex() df_data_import = df_data_import.reset_index() del df_data_import["index"] df_data_ball.columns = ["Production", "space_1", "year_1", "space_2", "value_1", "space_3", "year_2", "space_4", "value_2"] df_data_bentonite.columns = ["Production", "space_1", "year_1", "space_2", "value_1", "space_3", "year_2", "space_4", "value_2"] df_data_common.columns = ["Production", "space_1", "year_1", "space_2", "value_1", "space_3", "year_2", "space_4", "value_2"] df_data_fire.columns = ["Production", "space_1", "year_1", "space_2", "value_1", "space_3", "year_2", "space_4", "value_2"] df_data_fuller.columns = ["Production", "space_1", "year_1", "space_2", "value_1", "space_3", "year_2", "space_4", "value_2"] df_data_kaolin.columns = ["Production", "space_1", "year_1", "space_2", "value_1", "space_3", "year_2", "space_4", "value_2"] df_data_export.columns = ["Production", "space_1", "year_1", "space_2", "value_1", "space_3", "year_2", "space_4", "value_2", "space_5", "extra"] df_data_import.columns = ["Production", "space_1", "year_1", "space_2", "value_1", "space_3", "year_2", "space_4", "value_2", "space_5", "extra"] df_data_ball["type"] = "Ball clay" df_data_bentonite["type"] = "Bentonite" df_data_common["type"] = "Common clay" df_data_fire["type"] = "Fire clay" df_data_fuller["type"] = "Fuller’s earth" df_data_kaolin["type"] = "Kaolin" df_data_export["type"] = "export" df_data_import["type"] = "import" col_to_use = ["Production", "type"] col_to_use.append(usgs_myb_year(YEARS_COVERED['clay'], year)) for col in df_data_import.columns: if col not in col_to_use: del df_data_import[col] del df_data_export[col] for col in df_data_ball.columns: if col not in col_to_use: del df_data_ball[col] del df_data_bentonite[col] del df_data_common[col] del df_data_fire[col] del df_data_fuller[col] del df_data_kaolin[col] frames = [df_data_import, df_data_export, df_data_ball, df_data_bentonite, df_data_common, df_data_fire, df_data_fuller, df_data_kaolin] df_data = pd.concat(frames) df_data = df_data.reset_index() del df_data["index"] return df_data def usgs_clay_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param args: dictionary, used to run flowbyactivity.py ('year' and 'source') :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Ball clay", "Bentonite", "Fire clay", "Kaolin", "Fuller’s earth", "Total", "Grand total", "Artificially activated clay and earth", "Clays, not elsewhere classified", "Clays, not elsewhere classified"] dataframe = pd.DataFrame() for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["type"].strip() == "import": product = "imports" elif df.iloc[index]["type"].strip() == "export": product = "exports" else: product = "production" if str(df.iloc[index]["Production"]).strip() in row_to_use: data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Metric Tons" if product == "production": data['FlowName'] = \ df.iloc[index]["type"].strip() + " " + product data["Description"] = df.iloc[index]["type"].strip() data["ActivityProducedBy"] = df.iloc[index]["type"].strip() else: data['FlowName'] = \ df.iloc[index]["Production"].strip() + " " + product data["Description"] = df.iloc[index]["Production"].strip() data["ActivityProducedBy"] = \ df.iloc[index]["Production"].strip() col_name = usgs_myb_year(YEARS_COVERED['clay'], year) if str(df.iloc[index][col_name]) == "--" or \ str(df.iloc[index][col_name]) == "(3)" or \ str(df.iloc[index][col_name]) == "(2)": data["FlowAmount"] = str(0) else: data["FlowAmount"] = str(df.iloc[index][col_name]) dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_cobalt_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param args: dictionary, arguments specified when running flowbyactivity.py ('year' and 'source') :return: pandas dataframe of original source data """ df_raw_data = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T8') df_raw_data_two = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data_1 = pd.DataFrame(df_raw_data_two.loc[6:11]).reindex() df_data_1 = df_data_1.reset_index() del df_data_1["index"] df_data_2 = pd.DataFrame(df_raw_data.loc[23:23]).reindex() df_data_2 = df_data_2.reset_index() del df_data_2["index"] if len(df_data_2.columns) > 11: for x in range(11, len(df_data_2.columns)): col_name = "Unnamed: " + str(x) del df_data_2[col_name] if len(df_data_1. columns) == 12: df_data_1.columns = ["Production", "space_6", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] if len(df_data_2. columns) == 11: df_data_2.columns = ["Production", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['cobalt'], year)) for col in df_data_1.columns: if col not in col_to_use: del df_data_1[col] for col in df_data_2.columns: if col not in col_to_use: del df_data_2[col] frames = [df_data_1, df_data_2] df_data = pd.concat(frames) df_data = df_data.reset_index() del df_data["index"] return df_data def usgs_cobalt_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param args: dictionary, used to run flowbyactivity.py ('year' and 'source') :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} name = usgs_myb_name(source) des = name row_to_use = ["United Statese, 16, 17", "Mine productione", "Imports for consumption", "Exports"] dataframe = pd.DataFrame() for df in df_list: for index, row in df.iterrows(): prod = "production" if df.iloc[index]["Production"].strip() == \ "United Statese, 16, 17": prod = "production" elif df.iloc[index]["Production"].strip() == \ "Imports for consumption": prod = "imports" elif df.iloc[index]["Production"].strip() == "Exports": prod = "exports" if df.iloc[index]["Production"].strip() in row_to_use: remove_digits = str.maketrans('', '', digits) product = df.iloc[index][ "Production"].strip().translate(remove_digits) data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Thousand Metric Tons" col_name = usgs_myb_year(YEARS_COVERED['cobalt'], year) data["Description"] = des data["ActivityProducedBy"] = name data['FlowName'] = name + " " + prod data["FlowAmount"] = str(df.iloc[index][col_name]) remove_rows = ["(18)", "(2)"] if data["FlowAmount"] not in remove_rows: dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_copper_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param resp: df, response from url call :param year: year :return: pandas dataframe of original source data """ df_raw_data = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data_1 = pd.DataFrame(df_raw_data.loc[12:12]).reindex() df_data_1 = df_data_1.reset_index() del df_data_1["index"] df_data_2 = pd.DataFrame(df_raw_data.loc[30:31]).reindex() df_data_2 = df_data_2.reset_index() del df_data_2["index"] if len(df_data_1. columns) == 12: df_data_1.columns = ["Production", "Unit", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] df_data_2.columns = ["Production", "Unit", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] col_to_use = ["Production", "Unit"] col_to_use.append(usgs_myb_year(YEARS_COVERED['copper'], year)) for col in df_data_1.columns: if col not in col_to_use: del df_data_1[col] for col in df_data_2.columns: if col not in col_to_use: del df_data_2[col] frames = [df_data_1, df_data_2] df_data = pd.concat(frames) df_data = df_data.reset_index() del df_data["index"] return df_data def usgs_copper_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param args: dictionary, used to run flowbyactivity.py ('year' and 'source') :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() for df in df_list: for index, row in df.iterrows(): remove_digits = str.maketrans('', '', digits) product = df.iloc[index][ "Production"].strip().translate(remove_digits) data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) if product == "Total": prod = "production" elif product == "Exports, refined": prod = "exports" elif product == "Imports, refined": prod = "imports" data["ActivityProducedBy"] = "Copper; Mine" data['FlowName'] = name + " " + prod data["Unit"] = "Metric Tons" col_name = usgs_myb_year(YEARS_COVERED['copper'], year) data["Description"] = "Copper; Mine" data["FlowAmount"] = str(df.iloc[index][col_name]) dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_diatomite_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param year: year :return: pandas dataframe of original source data """ df_raw_data_one = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data_one = pd.DataFrame(df_raw_data_one.loc[7:10]).reindex() df_data_one = df_data_one.reset_index() del df_data_one["index"] if len(df_data_one.columns) == 10: df_data_one.columns = ["Production", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['diatomite'], year)) for col in df_data_one.columns: if col not in col_to_use: del df_data_one[col] frames = [df_data_one] df_data = pd.concat(frames) df_data = df_data.reset_index() del df_data["index"] return df_data def usgs_diatomite_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param source: source :param year: year :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Quantity", "Exports2", "Imports for consumption2"] prod = "" name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == "Exports2": prod = "exports" elif df.iloc[index]["Production"].strip() == \ "Imports for consumption2": prod = "imports" elif df.iloc[index]["Production"].strip() == "Quantity": prod = "production" if df.iloc[index]["Production"].strip() in row_to_use: product = df.iloc[index]["Production"].strip() data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Thousand metric tons" col_name = usgs_myb_year(YEARS_COVERED['diatomite'], year) data["FlowAmount"] = str(df.iloc[index][col_name]) data["Description"] = name data["ActivityProducedBy"] = name data['FlowName'] = name + " " + prod dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_feldspar_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param year: year :return: pandas dataframe of original source data """ df_raw_data_two = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data_two = pd.DataFrame(df_raw_data_two.loc[4:8]).reindex() df_data_two = df_data_two.reset_index() del df_data_two["index"] df_data_one = pd.DataFrame(df_raw_data_two.loc[10:15]).reindex() df_data_one = df_data_one.reset_index() del df_data_one["index"] if len(df_data_two. columns) == 13: df_data_two.columns = ["Production", "space_1", "unit", "space_2", "year_1", "space_3", "year_2", "space_4", "year_3", "space_5", "year_4", "space_6", "year_5"] df_data_one.columns = ["Production", "space_1", "unit", "space_2", "year_1", "space_3", "year_2", "space_4", "year_3", "space_5", "year_4", "space_6", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['feldspar'], year)) for col in df_data_two.columns: if col not in col_to_use: del df_data_two[col] del df_data_one[col] frames = [df_data_two, df_data_one] df_data = pd.concat(frames) df_data = df_data.reset_index() del df_data["index"] return df_data def usgs_feldspar_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param args: dictionary, used to run flowbyactivity.py ('year' and 'source') :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Quantity", "Quantity3"] prod = "" name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == "Exports, feldspar:4": prod = "exports" elif df.iloc[index]["Production"].strip() == \ "Imports for consumption:4": prod = "imports" elif df.iloc[index]["Production"].strip() == \ "Production, feldspar:e, 2": prod = "production" elif df.iloc[index]["Production"].strip() == "Nepheline syenite:": prod = "production" des = "Nepheline syenite" if df.iloc[index]["Production"].strip() in row_to_use: product = df.iloc[index]["Production"].strip() data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Metric Tons" col_name = usgs_myb_year(YEARS_COVERED['feldspar'], year) data["FlowAmount"] = str(df.iloc[index][col_name]) data["Description"] = des data["ActivityProducedBy"] = name if name == des: data['FlowName'] = name + " " + prod else: data['FlowName'] = name + " " + prod + " " + des dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_fluorspar_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param year: year :return: pandas dataframe of original source data """ df_raw_data_one = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') if year in YEARS_COVERED['fluorspar_inports']: df_raw_data_two = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T2') df_raw_data_three = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T7') df_raw_data_four = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T8') df_data_one = pd.DataFrame(df_raw_data_one.loc[5:15]).reindex() df_data_one = df_data_one.reset_index() del df_data_one["index"] if year in YEARS_COVERED['fluorspar_inports']: df_data_two = pd.DataFrame(df_raw_data_two.loc[7:8]).reindex() df_data_three = pd.DataFrame(df_raw_data_three.loc[19:19]).reindex() df_data_four = pd.DataFrame(df_raw_data_four.loc[11:11]).reindex() if len(df_data_two.columns) == 13: df_data_two.columns = ["Production", "space_1", "not_1", "space_2", "not_2", "space_3", "not_3", "space_4", "not_4", "space_5", "year_4", "space_6", "year_5"] if len(df_data_three.columns) == 9: df_data_three.columns = ["Production", "space_1", "year_4", "space_2", "not_1", "space_3", "year_5", "space_4", "not_2"] df_data_four.columns = ["Production", "space_1", "year_4", "space_2", "not_1", "space_3", "year_5", "space_4", "not_2"] if len(df_data_one. columns) == 13: df_data_one.columns = ["Production", "space_1", "unit", "space_2", "year_1", "space_3", "year_2", "space_4", "year_3", "space_5", "year_4", "space_6", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['fluorspar'], year)) for col in df_data_one.columns: if col not in col_to_use: del df_data_one[col] if year in YEARS_COVERED['fluorspar_inports']: for col in df_data_two.columns: if col not in col_to_use: del df_data_two[col] for col in df_data_three.columns: if col not in col_to_use: del df_data_three[col] for col in df_data_four.columns: if col not in col_to_use: del df_data_four[col] df_data_one["type"] = "data_one" if year in YEARS_COVERED['fluorspar_inports']: # aluminum fluoride # cryolite df_data_two["type"] = "data_two" df_data_three["type"] = "Aluminum Fluoride" df_data_four["type"] = "Cryolite" frames = [df_data_one, df_data_two, df_data_three, df_data_four] else: frames = [df_data_one] df_data = pd.concat(frames) df_data = df_data.reset_index() del df_data["index"] return df_data def usgs_fluorspar_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param args: dictionary, used to run flowbyactivity.py ('year' and 'source') :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Quantity", "Quantity3", "Total", "Hydrofluoric acid", "Metallurgical", "Production"] prod = "" name = usgs_myb_name(source) dataframe = pd.DataFrame() for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == "Exports:3": prod = "exports" des = name elif df.iloc[index]["Production"].strip() == \ "Imports for consumption:3": prod = "imports" des = name elif df.iloc[index]["Production"].strip() == "Fluorosilicic acid:": prod = "production" des = "Fluorosilicic acid:" if str(df.iloc[index]["type"]).strip() == "data_two": prod = "imports" des = df.iloc[index]["Production"].strip() elif str(df.iloc[index]["type"]).strip() == \ "Aluminum Fluoride" or \ str(df.iloc[index]["type"]).strip() == "Cryolite": prod = "imports" des = df.iloc[index]["type"].strip() if df.iloc[index]["Production"].strip() in row_to_use: data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Metric Tons" col_name = usgs_myb_year(YEARS_COVERED['fluorspar'], year) if str(df.iloc[index][col_name]) == "W": data["FlowAmount"] = WITHDRAWN_KEYWORD else: data["FlowAmount"] = str(df.iloc[index][col_name]) data["Description"] = des data["ActivityProducedBy"] = name data['FlowName'] = name + " " + prod dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_gallium_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param args: dictionary, arguments specified when running flowbyactivity.py ('year' and 'source') :return: pandas dataframe of original source data """ df_raw_data = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data = pd.DataFrame(df_raw_data.loc[5:7]).reindex() df_data = df_data.reset_index() del df_data["index"] if len(df_data.columns) > 11: for x in range(11, len(df_data.columns)): col_name = "Unnamed: " + str(x) del df_data[col_name] if len(df_data.columns) == 11: df_data.columns = ["Production", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['gallium'], year)) for col in df_data.columns: if col not in col_to_use: del df_data[col] return df_data def usgs_gallium_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param source: source :param year: year :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Production, primary crude", "Metal"] prod = "" name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() col_name = usgs_myb_year(YEARS_COVERED['gallium'], year) for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == \ "Imports for consumption:": product = "imports" elif df.iloc[index]["Production"].strip() == \ "Production, primary crude": product = "production" if df.iloc[index]["Production"].strip() in row_to_use: data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Kilograms" data['FlowName'] = name + " " + product data["Description"] = name data["ActivityProducedBy"] = name col_name = usgs_myb_year(YEARS_COVERED['gallium'], year) if str(df.iloc[index][col_name]).strip() == "--": data["FlowAmount"] = str(0) elif str(df.iloc[index][col_name]) == "nan": data["FlowAmount"] = WITHDRAWN_KEYWORD else: data["FlowAmount"] = str(df.iloc[index][col_name]) dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_garnet_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param resp: df, response from url call :param year: year :return: pandas dataframe of original source data """ df_raw_data_two = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data_two = pd.DataFrame(df_raw_data_two.loc[4:5]).reindex() df_data_two = df_data_two.reset_index() del df_data_two["index"] df_data_one = pd.DataFrame(df_raw_data_two.loc[10:14]).reindex() df_data_one = df_data_one.reset_index() del df_data_one["index"] if len(df_data_one.columns) > 13: for x in range(13, len(df_data_one.columns)): col_name = "Unnamed: " + str(x) del df_data_one[col_name] del df_data_two[col_name] if len(df_data_two. columns) == 13: df_data_two.columns = ["Production", "space_1", "unit", "space_2", "year_1", "space_3", "year_2", "space_4", "year_3", "space_5", "year_4", "space_6", "year_5"] df_data_one.columns = ["Production", "space_1", "unit", "space_2", "year_1", "space_3", "year_2", "space_4", "year_3", "space_5", "year_4", "space_6", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['garnet'], year)) for col in df_data_two.columns: if col not in col_to_use: del df_data_two[col] del df_data_one[col] frames = [df_data_two, df_data_one] df_data = pd.concat(frames) df_data = df_data.reset_index() del df_data["index"] return df_data def usgs_garnet_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param source: source :param year: year :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Quantity"] prod = "" name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == "Exports:2": prod = "exports" elif df.iloc[index]["Production"].strip() == \ "Imports for consumption: 3": prod = "imports" elif df.iloc[index]["Production"].strip() == "Crude production:": prod = "production" if df.iloc[index]["Production"].strip() in row_to_use: product = df.iloc[index]["Production"].strip() data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Metric Tons" col_name = usgs_myb_year(YEARS_COVERED['garnet'], year) data["FlowAmount"] = str(df.iloc[index][col_name]) data["Description"] = des data["ActivityProducedBy"] = name data['FlowName'] = name + " " + prod dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_gold_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param args: dictionary, arguments specified when running flowbyactivity.py ('year' and 'source') :return: pandas dataframe of original source data """ df_raw_data = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data = pd.DataFrame(df_raw_data.loc[6:14]).reindex() df_data = df_data.reset_index() del df_data["index"] if len(df_data.columns) == 13: df_data.columns = ["Production", "Space", "Units", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['gold'], year)) for col in df_data.columns: if col not in col_to_use: del df_data[col] return df_data def usgs_gold_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param source: source :param year: year :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Quantity", "Exports, refined bullion", "Imports for consumption, refined bullion"] dataframe = pd.DataFrame() product = "production" name = usgs_myb_name(source) des = name for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == "Quantity": product = "production" elif df.iloc[index]["Production"].strip() == \ "Exports, refined bullion": product = "exports" elif df.iloc[index]["Production"].strip() == \ "Imports for consumption, refined bullion": product = "imports" if df.iloc[index]["Production"].strip() in row_to_use: data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "kilograms" data['FlowName'] = name + " " + product data["Description"] = des data["ActivityProducedBy"] = name col_name = usgs_myb_year(YEARS_COVERED['gold'], year) if str(df.iloc[index][col_name]) == "--": data["FlowAmount"] = str(0) else: data["FlowAmount"] = str(df.iloc[index][col_name]) dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_graphite_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param resp: df, response from url call :param year: year :return: pandas dataframe of original source data """ df_raw_data = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data = pd.DataFrame(df_raw_data.loc[5:9]).reindex() df_data = df_data.reset_index() del df_data["index"] if len(df_data. columns) == 13: df_data.columns = ["Production", "space_1", "Unit", "space_6", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['graphite'], year)) for col in df_data.columns: if col not in col_to_use: del df_data[col] return df_data def usgs_graphite_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param source: source :param year: year :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Quantiy", "Quantity"] prod = "" name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() col_name = usgs_myb_year(YEARS_COVERED['graphite'], year) for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == \ "Imports for consumption:": product = "imports" elif df.iloc[index]["Production"].strip() == "Exports:": product = "exports" if df.iloc[index]["Production"].strip() in row_to_use: data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Metric Tons" data['FlowName'] = name + " " + product data["Description"] = name data["ActivityProducedBy"] = name col_name = usgs_myb_year(YEARS_COVERED['graphite'], year) if str(df.iloc[index][col_name]) == "--": data["FlowAmount"] = str(0) elif str(df.iloc[index][col_name]) == "nan": data["FlowAmount"] = WITHDRAWN_KEYWORD else: data["FlowAmount"] = str(df.iloc[index][col_name]) dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_gypsum_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param args: dictionary, arguments specified when running flowbyactivity.py ('year' and 'source') :return: pandas dataframe of original source data """ df_raw_data_one = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data_one = pd.DataFrame(df_raw_data_one.loc[7:10]).reindex() df_data_one = df_data_one.reset_index() del df_data_one["index"] if len(df_data_one.columns) > 11: for x in range(11, len(df_data_one.columns)): col_name = "Unnamed: " + str(x) del df_data_one[col_name] if len(df_data_one.columns) == 11: df_data_one.columns = ["Production", "space_1", "year_1", "space_3", "year_2", "space_4", "year_3", "space_5", "year_4", "space_6", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['gypsum'], year)) for col in df_data_one.columns: if col not in col_to_use: del df_data_one[col] frames = [df_data_one] df_data = pd.concat(frames) df_data = df_data.reset_index() del df_data["index"] return df_data def usgs_gypsum_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param source: source :param year: year :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Quantity", "Imports for consumption"] prod = "" name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() col_name = usgs_myb_year(YEARS_COVERED['gypsum'], year) for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == \ "Imports for consumption": prod = "imports" elif df.iloc[index]["Production"].strip() == "Quantity": prod = "production" if df.iloc[index]["Production"].strip() in row_to_use: product = df.iloc[index]["Production"].strip() data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Metric Tons" data["FlowAmount"] = str(df.iloc[index][col_name]) if str(df.iloc[index][col_name]) == "W": data["FlowAmount"] = WITHDRAWN_KEYWORD data["Description"] = des data["ActivityProducedBy"] = name data['FlowName'] = name + " " + prod dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_iodine_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param args: dictionary, arguments specified when running flowbyactivity.py ('year' and 'source') :return: pandas dataframe of original source data """ df_raw_data = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data = pd.DataFrame(df_raw_data.loc[6:10]).reindex() df_data = df_data.reset_index() del df_data["index"] if len(df_data. columns) == 11: df_data.columns = ["Production", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] elif len(df_data. columns) == 13: df_data.columns = ["Production", "unit", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5", "space_6"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['iodine'], year)) for col in df_data.columns: if col not in col_to_use: del df_data[col] return df_data def usgs_iodine_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param source: source :param year: year :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Production", "Quantity, for consumption", "Exports2"] prod = "" name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() col_name = usgs_myb_year(YEARS_COVERED['iodine'], year) for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == "Imports:2": product = "imports" elif df.iloc[index]["Production"].strip() == "Production": product = "production" elif df.iloc[index]["Production"].strip() == "Exports2": product = "exports" if df.iloc[index]["Production"].strip() in row_to_use: data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Metric Tons" data['FlowName'] = name + " " + product data["Description"] = name data["ActivityProducedBy"] = name col_name = usgs_myb_year(YEARS_COVERED['iodine'], year) if str(df.iloc[index][col_name]) == "--": data["FlowAmount"] = str(0) elif str(df.iloc[index][col_name]) == "W": data["FlowAmount"] = WITHDRAWN_KEYWORD else: data["FlowAmount"] = str(df.iloc[index][col_name]) dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_iron_ore_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param resp: df, response from url call :param year: year :return: pandas dataframe of original source data """ df_raw_data = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data = pd.DataFrame(df_raw_data.loc[7:25]).reindex() df_data = df_data.reset_index() del df_data["index"] if len(df_data. columns) == 12: df_data.columns = ["Production", "Units", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] col_to_use = ["Production", "Units"] col_to_use.append(usgs_myb_year(YEARS_COVERED['ironore'], year)) for col in df_data.columns: if col not in col_to_use: del df_data[col] return df_data def usgs_iron_ore_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param source: source :param year: year :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} name = usgs_myb_name(source) des = name row_to_use = ["Gross weight", "Quantity"] dataframe = pd.DataFrame() for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == "Production:": product = "production" elif df.iloc[index]["Production"].strip() == "Exports:": product = "exports" elif df.iloc[index]["Production"].strip() == \ "Imports for consumption:": product = "imports" if df.iloc[index]["Production"].strip() in row_to_use: data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Thousand Metric Tons" data['FlowName'] = "Iron Ore " + product data["Description"] = "Iron Ore" data["ActivityProducedBy"] = "Iron Ore" col_name = usgs_myb_year(YEARS_COVERED['ironore'], year) if str(df.iloc[index][col_name]) == "--": data["FlowAmount"] = str(0) else: data["FlowAmount"] = str(df.iloc[index][col_name]) dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_kyanite_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param year: year :return: pandas dataframe of original source data """ df_raw_data_one = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data_one = pd.DataFrame(df_raw_data_one.loc[4:13]).reindex() df_data_one = df_data_one.reset_index() del df_data_one["index"] if len(df_data_one. columns) == 12: df_data_one.columns = ["Production", "unit", "space_2", "year_1", "space_3", "year_2", "space_4", "year_3", "space_5", "year_4", "space_6", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['kyanite'], year)) for col in df_data_one.columns: if col not in col_to_use: del df_data_one[col] frames = [df_data_one] df_data = pd.concat(frames) df_data = df_data.reset_index() del df_data["index"] return df_data def usgs_kyanite_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param args: dictionary, used to run flowbyactivity.py ('year' and 'source') :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Quantity", "Quantity2"] prod = "" name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() col_name = usgs_myb_year(YEARS_COVERED['kyanite'], year) for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == \ "Exports of kyanite concentrate:3": prod = "exports" elif df.iloc[index]["Production"].strip() == \ "Imports for consumption, all kyanite minerals:3": prod = "imports" elif df.iloc[index]["Production"].strip() == "Production:": prod = "production" if df.iloc[index]["Production"].strip() in row_to_use: product = df.iloc[index]["Production"].strip() data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Metric Tons" data["FlowAmount"] = str(df.iloc[index][col_name]) if str(df.iloc[index][col_name]) == "W": data["FlowAmount"] = WITHDRAWN_KEYWORD data["Description"] = des data["ActivityProducedBy"] = name data['FlowName'] = name + " " + prod dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_lead_url_helper(*, year, **_): """ This helper function uses the "build_url" input from flowbyactivity.py, which is a base url for data imports that requires parts of the url text string to be replaced with info specific to the data year. This function does not parse the data, only modifies the urls from which data is obtained. :param build_url: string, base url :return: list, urls to call, concat, parse, format into Flow-By-Activity format """ if int(year) < 2013: build_url = ('https://d9-wret.s3.us-west-2.amazonaws.com/assets/' 'palladium/production/atoms/files/myb1-2016-lead.xls') elif int(year) < 2014: build_url = ('https://d9-wret.s3.us-west-2.amazonaws.com/assets/' 'palladium/production/atoms/files/myb1-2017-lead.xls') else: build_url = ('https://d9-wret.s3.us-west-2.amazonaws.com/assets/' 'palladium/production/s3fs-public/media/files/myb1-2018-lead-advrel.xlsx') url = build_url return [url] def usgs_lead_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param year: year :return: pandas dataframe of original source data """ df_raw_data = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data = pd.DataFrame(df_raw_data.loc[8:15]).reindex() df_data = df_data.reset_index() del df_data["index"] if len(df_data.columns) > 12: for x in range(12, len(df_data.columns)): col_name = "Unnamed: " + str(x) del df_data[col_name] if len(df_data. columns) == 12: df_data.columns = ["Production", "Units", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] col_to_use = ["Production", "Units"] if int(year) == 2013: modified_sy = "2013-2018" col_to_use.append(usgs_myb_year(modified_sy, year)) elif int(year) > 2013: modified_sy = "2014-2018" col_to_use.append(usgs_myb_year(modified_sy, year)) else: col_to_use.append(usgs_myb_year(YEARS_COVERED['lead'], year)) for col in df_data.columns: if col not in col_to_use: del df_data[col] return df_data def usgs_lead_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param source: source :param year: year :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} name = usgs_myb_name(source) des = name row_to_use = ["Primary lead, refined content, " "domestic ores and base bullion", "Secondary lead, lead content", "Lead ore and concentrates", "Lead in base bullion"] import_export = ["Exports, lead content:", "Imports for consumption, lead content:"] dataframe = pd.DataFrame() product = "production" for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() in import_export: if df.iloc[index]["Production"].strip() == \ "Exports, lead content:": product = "exports" elif df.iloc[index]["Production"].strip() == \ "Imports for consumption, lead content:": product = "imports" if df.iloc[index]["Production"].strip() in row_to_use: data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Metric Tons" data['FlowName'] = name + " " + product data["ActivityProducedBy"] = df.iloc[index]["Production"] if int(year) == 2013: modified_sy = "2013-2018" col_name = usgs_myb_year(modified_sy, year) elif int(year) > 2013: modified_sy = "2014-2018" col_name = usgs_myb_year(modified_sy, year) else: col_name = usgs_myb_year(YEARS_COVERED['lead'], year) if str(df.iloc[index][col_name]) == "--": data["FlowAmount"] = str(0) else: data["FlowAmount"] = str(df.iloc[index][col_name]) dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_lime_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param year: year :return: pandas dataframe of original source data """ df_raw_data_two = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data_1 = pd.DataFrame(df_raw_data_two.loc[16:16]).reindex() df_data_1 = df_data_1.reset_index() del df_data_1["index"] df_data_2 = pd.DataFrame(df_raw_data_two.loc[28:32]).reindex() df_data_2 = df_data_2.reset_index() del df_data_2["index"] if len(df_data_1.columns) > 12: for x in range(12, len(df_data_1.columns)): col_name = "Unnamed: " + str(x) del df_data_1[col_name] del df_data_2[col_name] if len(df_data_1. columns) == 12: df_data_1.columns = ["Production", "Unit", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] df_data_2.columns = ["Production", "Unit", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['lime'], year)) for col in df_data_1.columns: if col not in col_to_use: del df_data_1[col] for col in df_data_2.columns: if col not in col_to_use: del df_data_2[col] frames = [df_data_1, df_data_2] df_data = pd.concat(frames) df_data = df_data.reset_index() del df_data["index"] return df_data def usgs_lime_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param source: source :param year: year :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Total", "Quantity"] import_export = ["Exports:7", "Imports for consumption:7"] name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() for df in df_list: prod = "production" for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == "Exports:7": prod = "exports" elif df.iloc[index]["Production"].strip() == \ "Imports for consumption:7": prod = "imports" if df.iloc[index]["Production"].strip() in row_to_use: remove_digits = str.maketrans('', '', digits) product = df.iloc[index][ "Production"].strip().translate(remove_digits) data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Thousand Metric Tons" col_name = usgs_myb_year(YEARS_COVERED['lime'], year) data["Description"] = des data["ActivityProducedBy"] = name if product.strip() == "Total": data['FlowName'] = name + " " + prod elif product.strip() == "Quantity": data['FlowName'] = name + " " + prod data["FlowAmount"] = str(df.iloc[index][col_name]) dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_lithium_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param year: year :return: pandas dataframe of original source data """ df_raw_data_one = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data_one = pd.DataFrame(df_raw_data_one.loc[6:8]).reindex() df_data_one = df_data_one.reset_index() del df_data_one["index"] if len(df_data_one.columns) > 11: for x in range(11, len(df_data_one.columns)): col_name = "Unnamed: " + str(x) del df_data_one[col_name] if len(df_data_one. columns) == 11: df_data_one.columns = ["Production", "space_2", "year_1", "space_3", "year_2", "space_4", "year_3", "space_5", "year_4", "space_6", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['lithium'], year)) for col in df_data_one.columns: if col not in col_to_use: del df_data_one[col] frames = [df_data_one] df_data = pd.concat(frames) df_data = df_data.reset_index() del df_data["index"] return df_data def usgs_lithium_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param source: source :param year: year :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Exports3", "Imports3", "Production"] prod = "" name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() col_name = usgs_myb_year(YEARS_COVERED['lithium'], year) for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == "Exports3": prod = "exports" elif df.iloc[index]["Production"].strip() == "Imports3": prod = "imports" elif df.iloc[index]["Production"].strip() == "Production": prod = "production" if df.iloc[index]["Production"].strip() in row_to_use: product = df.iloc[index]["Production"].strip() data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Metric Tons" data["FlowAmount"] = str(df.iloc[index][col_name]) if str(df.iloc[index][col_name]) == "W": data["FlowAmount"] = WITHDRAWN_KEYWORD data["Description"] = des data["ActivityProducedBy"] = name data['FlowName'] = name + " " + prod dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_magnesium_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param year: year :return: pandas dataframe of original source data """ df_raw_data = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data = pd.DataFrame(df_raw_data.loc[7:15]).reindex() df_data = df_data.reset_index() del df_data["index"] if len(df_data. columns) == 12: df_data.columns = ["Production", "Units", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['magnesium'], year)) for col in df_data.columns: if col not in col_to_use: del df_data[col] return df_data def usgs_magnesium_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param source: source :param year: year :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Secondary", "Primary", "Exports", "Imports for consumption"] dataframe = pd.DataFrame() name = usgs_myb_name(source) des = name for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == "Exports": product = "exports" elif df.iloc[index]["Production"].strip() == \ "Imports for consumption": product = "imports" elif df.iloc[index]["Production"].strip() == "Secondary" or \ df.iloc[index]["Production"].strip() == "Primary": product = "production" + " " + \ df.iloc[index]["Production"].strip() if df.iloc[index]["Production"].strip() in row_to_use: data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Metric Tons" data['FlowName'] = name + " " + product data["Description"] = name data["ActivityProducedBy"] = name col_name = usgs_myb_year(YEARS_COVERED['magnesium'], year) if str(df.iloc[index][col_name]) == "--": data["FlowAmount"] = str(0) elif str(df.iloc[index][col_name]) == "W": data["FlowAmount"] = WITHDRAWN_KEYWORD else: data["FlowAmount"] = str(df.iloc[index][col_name]) dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_manganese_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param resp: df, response from url call :param year: year :return: pandas dataframe of original source data """ df_raw_data = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data = pd.DataFrame(df_raw_data.loc[7:9]).reindex() df_data = df_data.reset_index() del df_data["index"] if len(df_data.columns) > 12: for x in range(12, len(df_data.columns)): col_name = "Unnamed: " + str(x) del df_data[col_name] if len(df_data. columns) == 12: df_data.columns = ["Production", "Unit", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['manganese'], year)) for col in df_data.columns: if col not in col_to_use: del df_data[col] return df_data def usgs_manganese_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param source: source :param year: year :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Production", "Exports", "Imports for consumption"] prod = "" name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() col_name = usgs_myb_year(YEARS_COVERED['manganese'], year) for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == \ "Imports for consumption": product = "imports" elif df.iloc[index]["Production"].strip() == "Production": product = "production" elif df.iloc[index]["Production"].strip() == "Exports": product = "exports" if df.iloc[index]["Production"].strip() in row_to_use: data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Metric Tons" data['FlowName'] = name + " " + product data["Description"] = name data["ActivityProducedBy"] = name col_name = usgs_myb_year(YEARS_COVERED['manganese'], year) if str(df.iloc[index][col_name]) == "--" or \ str(df.iloc[index][col_name]) == "(3)": data["FlowAmount"] = str(0) else: data["FlowAmount"] = str(df.iloc[index][col_name]) dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_ma_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param args: dictionary, arguments specified when running flowbyactivity.py ('year' and 'source') :return: pandas dataframe of original source data """ df_raw_data = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T2') df_data = pd.DataFrame(df_raw_data.loc[6:7]).reindex() df_data = df_data.reset_index() del df_data["index"] if len(df_data.columns) > 9: for x in range(9, len(df_data.columns)): col_name = "Unnamed: " + str(x) del df_data[col_name] if len(df_data. columns) == 9: df_data.columns = ["Product", "space_1", "quality_year_1", "space_2", "value_year_1", "space_3", "quality_year_2", "space_4", "value_year_2"] elif len(df_data. columns) == 9: df_data.columns = ["Product", "space_1", "quality_year_1", "space_2", "value_year_1", "space_3", "quality_year_2", "space_4", "value_year_2"] col_to_use = ["Product"] col_to_use.append("quality_" + usgs_myb_year(YEARS_COVERED['manufacturedabrasive'], year)) for col in df_data.columns: if col not in col_to_use: del df_data[col] return df_data def usgs_ma_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param args: dictionary, used to run flowbyactivity.py ('year' and 'source') :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Silicon carbide"] name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() for df in df_list: for index, row in df.iterrows(): remove_digits = str.maketrans('', '', digits) product = df.iloc[index][ "Product"].strip().translate(remove_digits) if product in row_to_use: data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data['FlowName'] = "Silicon carbide" data["ActivityProducedBy"] = "Silicon carbide" data["Unit"] = "Metric Tons" col_name = ("quality_" + usgs_myb_year( YEARS_COVERED['manufacturedabrasive'], year)) col_name_array = col_name.split("_") data["Description"] = product + " " + col_name_array[0] data["FlowAmount"] = str(df.iloc[index][col_name]) dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_mica_call(*, resp, source, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param year: year :return: pandas dataframe of original source data """ df_raw_data_one = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data_one = pd.DataFrame(df_raw_data_one.loc[4:6]).reindex() df_data_one = df_data_one.reset_index() del df_data_one["index"] name = usgs_myb_name(source) des = name if len(df_data_one. columns) == 12: df_data_one.columns = ["Production", "Unit", "space_2", "year_1", "space_3", "year_2", "space_4", "year_3", "space_5", "year_4", "space_6", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['mica'], year)) for col in df_data_one.columns: if col not in col_to_use: del df_data_one[col] frames = [df_data_one] df_data = pd.concat(frames) df_data = df_data.reset_index() del df_data["index"] return df_data def usgs_mica_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param source: source :param year: year :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Quantity"] prod = "" name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() col_name = usgs_myb_year(YEARS_COVERED['mica'], year) for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == \ "Production, sold or used by producers:": prod = "production" if df.iloc[index]["Production"].strip() in row_to_use: product = df.iloc[index]["Production"].strip() data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Metric Tons" data["FlowAmount"] = str(df.iloc[index][col_name]) if str(df.iloc[index][col_name]) == "W": data["FlowAmount"] = WITHDRAWN_KEYWORD data["Description"] = des data["ActivityProducedBy"] = name data['FlowName'] = name + " " + prod dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_molybdenum_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param year: year :return: pandas dataframe of original source data """ df_raw_data = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data = pd.DataFrame(df_raw_data.loc[7:11]).reindex() df_data = df_data.reset_index() del df_data["index"] if len(df_data. columns) == 11: df_data.columns = ["Production", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['molybdenum'], year)) for col in df_data.columns: if col not in col_to_use: del df_data[col] return df_data def usgs_molybdenum_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param source: source :param year: year :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Production", "Imports for consumption", "Exports"] dataframe = pd.DataFrame() name = usgs_myb_name(source) des = name for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == "Exports": product = "exports" elif df.iloc[index]["Production"].strip() == \ "Imports for consumption": product = "imports" elif df.iloc[index]["Production"].strip() == "Production": product = "production" if df.iloc[index]["Production"].strip() in row_to_use: data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Metric Tons" data['FlowName'] = name + " " + product data["Description"] = des data["ActivityProducedBy"] = name col_name = usgs_myb_year(YEARS_COVERED['molybdenum'], year) if str(df.iloc[index][col_name]) == "--": data["FlowAmount"] = str(0) else: data["FlowAmount"] = str(df.iloc[index][col_name]) dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_nickel_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param year: year :return: pandas dataframe of original source data """ df_raw_data = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T10') df_data_1 = pd.DataFrame(df_raw_data.loc[36:36]).reindex() df_data_1 = df_data_1.reset_index() del df_data_1["index"] df_raw_data_two = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data_2 = pd.DataFrame(df_raw_data_two.loc[11:16]).reindex() df_data_2 = df_data_2.reset_index() del df_data_2["index"] if len(df_data_1.columns) > 11: for x in range(11, len(df_data_1.columns)): col_name = "Unnamed: " + str(x) del df_data_1[col_name] if len(df_data_1. columns) == 11: df_data_1.columns = ["Production", "space_1", "year_1", "space_2", "year_2", "space_3", "year_3", "space_4", "year_4", "space_5", "year_5"] if len(df_data_2.columns) == 12: df_data_2.columns = ["Production", "space_1", "space_2", "year_1", "space_3", "year_2", "space_4", "year_3", "space_5", "year_4", "space_6", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['nickel'], year)) for col in df_data_1.columns: if col not in col_to_use: del df_data_1[col] for col in df_data_2.columns: if col not in col_to_use: del df_data_2[col] frames = [df_data_1, df_data_2] df_data = pd.concat(frames) df_data = df_data.reset_index() del df_data["index"] return df_data def usgs_nickel_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param source: source :param year: year :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Ores and concentrates3", "United States, sulfide ore, concentrate"] import_export = ["Exports:", "Imports for consumption:"] name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() for df in df_list: prod = "production" for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == "Exports:": prod = "exports" elif df.iloc[index]["Production"].strip() == \ "Imports for consumption:": prod = "imports" if df.iloc[index]["Production"].strip() in row_to_use: remove_digits = str.maketrans('', '', digits) product = df.iloc[index][ "Production"].strip().translate(remove_digits) data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Metric Tons" col_name = usgs_myb_year(YEARS_COVERED['nickel'], year) if product.strip() == \ "United States, sulfide ore, concentrate": data["Description"] = \ "United States, sulfide ore, concentrate Nickel" data["ActivityProducedBy"] = name data['FlowName'] = name + " " + prod elif product.strip() == "Ores and concentrates": data["Description"] = "Ores and concentrates Nickel" data["ActivityProducedBy"] = name data['FlowName'] = name + " " + prod if str(df.iloc[index][col_name]) == "--" or \ str(df.iloc[index][col_name]) == "(4)": data["FlowAmount"] = str(0) else: data["FlowAmount"] = str(df.iloc[index][col_name]) dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_niobium_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param year: year :return: pandas dataframe of original source data """ df_raw_data = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data = pd.DataFrame(df_raw_data.loc[4:19]).reindex() df_data = df_data.reset_index() del df_data["index"] if len(df_data.columns) > 13: for x in range(13, len(df_data.columns)): col_name = "Unnamed: " + str(x) del df_data[col_name] if len(df_data. columns) == 13: df_data.columns = ["Production", "space_1", "Unit_1", "space_2", "year_1", "space_3", "year_2", "space_4", "year_3", "space_5", "year_4", "space_6", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['niobium'], year)) for col in df_data.columns: if col not in col_to_use: del df_data[col] return df_data def usgs_niobium_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param source: source :param year: year :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Total imports, Nb content", "Total exports, Nb content"] prod = "" name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() col_name = usgs_myb_year(YEARS_COVERED['niobium'], year) for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == \ "Imports for consumption:": product = "imports" elif df.iloc[index]["Production"].strip() == "Exports:": product = "exports" if df.iloc[index]["Production"].strip() in row_to_use: data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Metric Tons" data['FlowName'] = name + " " + product data["Description"] = name data["ActivityProducedBy"] = name col_name = usgs_myb_year(YEARS_COVERED['niobium'], year) if str(df.iloc[index][col_name]) == "--" or \ str(df.iloc[index][col_name]) == "(3)": data["FlowAmount"] = str(0) else: data["FlowAmount"] = str(df.iloc[index][col_name]) dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_peat_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param year: year :return: pandas dataframe of original source data """ """Calls the excel sheet for nickel and removes extra columns""" df_raw_data_one = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data_one = pd.DataFrame(df_raw_data_one.loc[7:18]).reindex() df_data_one = df_data_one.reset_index() del df_data_one["index"] if len(df_data_one.columns) > 12: for x in range(12, len(df_data_one.columns)): col_name = "Unnamed: " + str(x) del df_data_one[col_name] if len(df_data_one.columns) == 12: df_data_one.columns = ["Production", "Unit", "space_2", "year_1", "space_3", "year_2", "space_4", "year_3", "space_5", "year_4", "space_6", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['peat'], year)) for col in df_data_one.columns: if col not in col_to_use: del df_data_one[col] frames = [df_data_one] df_data = pd.concat(frames) df_data = df_data.reset_index() del df_data["index"] return df_data def usgs_peat_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param source: source :param year: year :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Production", "Exports", "Imports for consumption"] prod = "" name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() col_name = usgs_myb_year(YEARS_COVERED['peat'], year) for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == "Production": prod = "production" elif df.iloc[index]["Production"].strip() == \ "Imports for consumption": prod = "import" elif df.iloc[index]["Production"].strip() == "Exports": prod = "export" if df.iloc[index]["Production"].strip() in row_to_use: product = df.iloc[index]["Production"].strip() data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Thousand Metric Tons" data["FlowAmount"] = str(df.iloc[index][col_name]) if str(df.iloc[index][col_name]) == "W": data["FlowAmount"] = WITHDRAWN_KEYWORD data["Description"] = des data["ActivityProducedBy"] = name data['FlowName'] = name + " " + prod dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_perlite_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param resp: df, response from url call :param year: year :return: pandas dataframe of original source data """ df_raw_data_one = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data_one = pd.DataFrame(df_raw_data_one.loc[6:6]).reindex() df_data_one = df_data_one.reset_index() del df_data_one["index"] df_data_two = pd.DataFrame(df_raw_data_one.loc[20:25]).reindex() df_data_two = df_data_two.reset_index() del df_data_two["index"] if len(df_data_one. columns) == 12: df_data_one.columns = ["Production", "space_1", "space_2", "year_1", "space_3", "year_2", "space_4", "year_3", "space_5", "year_4", "space_6", "year_5"] df_data_two.columns = ["Production", "space_1", "space_2", "year_1", "space_3", "year_2", "space_4", "year_3", "space_5", "year_4", "space_6", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['perlite'], year)) for col in df_data_one.columns: if col not in col_to_use: del df_data_one[col] del df_data_two[col] frames = [df_data_one, df_data_two] df_data = pd.concat(frames) df_data = df_data.reset_index() del df_data["index"] return df_data def usgs_perlite_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param source: source :param year: year :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Quantity", "Mine production2"] prod = "" name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() col_name = usgs_myb_year(YEARS_COVERED['perlite'], year) for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == "Mine production2": prod = "production" elif df.iloc[index]["Production"].strip() == \ "Imports for consumption:3": prod = "import" elif df.iloc[index]["Production"].strip() == "Exports:3": prod = "export" if df.iloc[index]["Production"].strip() in row_to_use: product = df.iloc[index]["Production"].strip() data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Thousand Metric Tons" data["FlowAmount"] = str(df.iloc[index][col_name]) if str(df.iloc[index][col_name]) == "W": data["FlowAmount"] = WITHDRAWN_KEYWORD data["Description"] = des data["ActivityProducedBy"] = name data['FlowName'] = name + " " + prod dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_phosphate_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param url: string, url :param resp: df, response from url call :param year: year :return: pandas dataframe of original source data """ df_raw_data_one = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data_one = pd.DataFrame(df_raw_data_one.loc[7:9]).reindex() df_data_one = df_data_one.reset_index() del df_data_one["index"] df_data_two = pd.DataFrame(df_raw_data_one.loc[19:21]).reindex() df_data_two = df_data_two.reset_index() del df_data_two["index"] if len(df_data_one.columns) > 12: for x in range(11, len(df_data_one.columns)): col_name = "Unnamed: " + str(x) del df_data_one[col_name] del df_data_two[col_name] if len(df_data_one. columns) == 12: df_data_one.columns = ["Production", "unit", "space_1", "year_1", "space_3", "year_2", "space_4", "year_3", "space_5", "year_4", "space_6", "year_5"] df_data_two.columns = ["Production", "unit", "space_1", "year_1", "space_3", "year_2", "space_4", "year_3", "space_5", "year_4", "space_6", "year_5"] col_to_use = ["Production"] col_to_use.append(usgs_myb_year(YEARS_COVERED['phosphate'], year)) for col in df_data_one.columns: if col not in col_to_use: del df_data_one[col] del df_data_two[col] frames = [df_data_one, df_data_two] df_data = pd.concat(frames) df_data = df_data.reset_index() del df_data["index"] return df_data def usgs_phosphate_parse(*, df_list, source, year, **_): """ Combine, parse, and format the provided dataframes :param df_list: list of dataframes to concat and format :param source: source :param year: year :return: df, parsed and partially formatted to flowbyactivity specifications """ data = {} row_to_use = ["Gross weight", "Quantity, gross weight"] prod = "" name = usgs_myb_name(source) des = name dataframe = pd.DataFrame() col_name = usgs_myb_year(YEARS_COVERED['phosphate'], year) for df in df_list: for index, row in df.iterrows(): if df.iloc[index]["Production"].strip() == \ "Marketable production:": prod = "production" elif df.iloc[index]["Production"].strip() == \ "Imports for consumption:3": prod = "import" if df.iloc[index]["Production"].strip() in row_to_use: product = df.iloc[index]["Production"].strip() data = usgs_myb_static_variables() data["SourceName"] = source data["Year"] = str(year) data["Unit"] = "Thousand Metric Tons" data["FlowAmount"] = str(df.iloc[index][col_name]) if str(df.iloc[index][col_name]) == "W": data["FlowAmount"] = WITHDRAWN_KEYWORD data["Description"] = des data["ActivityProducedBy"] = name data['FlowName'] = name + " " + prod dataframe = dataframe.append(data, ignore_index=True) dataframe = assign_fips_location_system( dataframe, str(year)) return dataframe def usgs_platinum_call(*, resp, year, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param resp: df, response from url call :param year: year :return: pandas dataframe of original source data """ df_raw_data = pd.io.excel.read_excel(io.BytesIO(resp.content), sheet_name='T1') df_data_1 =
pd.DataFrame(df_raw_data.loc[4:9])
pandas.DataFrame
from __future__ import print_function import unittest from unittest import mock from io import BytesIO, StringIO import random import six import os import re import logging import numpy as np import pandas as pd from . import utils as test_utils import dataprofiler as dp from dataprofiler.profilers.profile_builder import StructuredColProfiler, \ UnstructuredProfiler, UnstructuredCompiler, StructuredProfiler, Profiler from dataprofiler.profilers.profiler_options import ProfilerOptions, \ StructuredOptions, UnstructuredOptions from dataprofiler.profilers.column_profile_compilers import \ ColumnPrimitiveTypeProfileCompiler, ColumnStatsProfileCompiler, \ ColumnDataLabelerCompiler from dataprofiler import StructuredDataLabeler, UnstructuredDataLabeler from dataprofiler.profilers.helpers.report_helpers import _prepare_report test_root_path = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) def setup_save_mock_open(mock_open): mock_file = BytesIO() mock_file.close = lambda: None mock_open.side_effect = lambda *args: mock_file return mock_file class TestStructuredProfiler(unittest.TestCase): @classmethod def setUp(cls): test_utils.set_seed(seed=0) @classmethod def setUpClass(cls): test_utils.set_seed(seed=0) cls.input_file_path = os.path.join( test_root_path, 'data', 'csv/aws_honeypot_marx_geo.csv' ) cls.aws_dataset = pd.read_csv(cls.input_file_path) profiler_options = ProfilerOptions() profiler_options.set({'data_labeler.is_enabled': False}) with test_utils.mock_timeit(): cls.trained_schema = dp.StructuredProfiler( cls.aws_dataset, len(cls.aws_dataset), options=profiler_options) @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnPrimitiveTypeProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnStatsProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnDataLabelerCompiler') @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler', spec=StructuredDataLabeler) def test_bad_input_data(self, *mocks): allowed_data_types = (r"\(<class 'list'>, " r"<class 'pandas.core.series.Series'>, " r"<class 'pandas.core.frame.DataFrame'>\)") bad_data_types = [1, {}, np.inf, 'sdfs'] for data in bad_data_types: with self.assertRaisesRegex(TypeError, r"Data must either be imported using " r"the data_readers or using one of the " r"following: " + allowed_data_types): StructuredProfiler(data) @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnPrimitiveTypeProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnStatsProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnDataLabelerCompiler') @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler', spec=StructuredDataLabeler) @mock.patch('dataprofiler.profilers.profile_builder.' 'StructuredProfiler._update_correlation') def test_list_data(self, *mocks): data = [[1, 1], [None, None], [3, 3], [4, 4], [5, 5], [None, None], [1, 1]] with test_utils.mock_timeit(): profiler = dp.StructuredProfiler(data) # test properties self.assertEqual("<class 'list'>", profiler.file_type) self.assertIsNone(profiler.encoding) self.assertEqual(2, profiler.row_has_null_count) self.assertEqual(2, profiler.row_is_null_count) self.assertEqual(7, profiler.total_samples) self.assertEqual(5, len(profiler.hashed_row_dict)) self.assertListEqual([0, 1], list(profiler._col_name_to_idx.keys())) self.assertIsNone(profiler.correlation_matrix) self.assertDictEqual({'row_stats': 1}, profiler.times) # validates the sample out maintains the same visual data format as the # input. self.assertListEqual(['5', '1', '1', '3', '4'], profiler.profile[0].sample) @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnPrimitiveTypeProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnStatsProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnDataLabelerCompiler') @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler', spec=StructuredDataLabeler) @mock.patch('dataprofiler.profilers.profile_builder.' 'StructuredProfiler._update_correlation') def test_pandas_series_data(self, *mocks): data = pd.Series([1, None, 3, 4, 5, None, 1]) with test_utils.mock_timeit(): profiler = dp.StructuredProfiler(data) # test properties self.assertEqual( "<class 'pandas.core.series.Series'>", profiler.file_type) self.assertIsNone(profiler.encoding) self.assertEqual(2, profiler.row_has_null_count) self.assertEqual(2, profiler.row_is_null_count) self.assertEqual(7, profiler.total_samples) self.assertEqual(5, len(profiler.hashed_row_dict)) self.assertListEqual([0], list(profiler._col_name_to_idx.keys())) self.assertIsNone(profiler.correlation_matrix) self.assertDictEqual({'row_stats': 1}, profiler.times) # test properties when series has name data.name = 'test' profiler = dp.StructuredProfiler(data) self.assertEqual( "<class 'pandas.core.series.Series'>", profiler.file_type) self.assertIsNone(profiler.encoding) self.assertEqual(2, profiler.row_has_null_count) self.assertEqual(2, profiler.row_is_null_count) self.assertEqual(7, profiler.total_samples) self.assertEqual(5, len(profiler.hashed_row_dict)) self.assertListEqual(['test'], list(profiler._col_name_to_idx.keys())) self.assertIsNone(profiler.correlation_matrix) @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnPrimitiveTypeProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnStatsProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnDataLabelerCompiler') @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler', spec=StructuredDataLabeler) @mock.patch('dataprofiler.profilers.profile_builder.' 'StructuredProfiler._update_correlation') @mock.patch('dataprofiler.profilers.profile_builder.' 'StructuredProfiler._merge_correlation') @mock.patch('dataprofiler.profilers.profile_builder.' 'StructuredProfiler._update_chi2') def test_add_profilers(self, *mocks): data = pd.DataFrame([1, None, 3, 4, 5, None, 1]) with test_utils.mock_timeit(): profile1 = dp.StructuredProfiler(data[:2]) profile2 = dp.StructuredProfiler(data[2:]) # test incorrect type with self.assertRaisesRegex(TypeError, '`StructuredProfiler` and `int` are ' 'not of the same profiler type.'): profile1 + 3 # test mismatched profiles profile2._profile.pop(0) profile2._col_name_to_idx.pop(0) with self.assertRaisesRegex(ValueError, "Cannot merge empty profiles."): profile1 + profile2 # test mismatched profiles due to options profile2._profile.append(None) profile2._col_name_to_idx[0] = [0] with self.assertRaisesRegex(ValueError, 'The two profilers were not setup with the ' 'same options, hence they do not calculate ' 'the same profiles and cannot be added ' 'together.'): profile1 + profile2 # test success profile1._profile = [1] profile1._col_name_to_idx = {"test": [0]} profile2._profile = [2] profile2._col_name_to_idx = {"test": [0]} merged_profile = profile1 + profile2 self.assertEqual(3, merged_profile._profile[ merged_profile._col_name_to_idx["test"][0]]) self.assertIsNone(merged_profile.encoding) self.assertEqual( "<class 'pandas.core.frame.DataFrame'>", merged_profile.file_type) self.assertEqual(2, merged_profile.row_has_null_count) self.assertEqual(2, merged_profile.row_is_null_count) self.assertEqual(7, merged_profile.total_samples) self.assertEqual(5, len(merged_profile.hashed_row_dict)) self.assertDictEqual({'row_stats': 2}, merged_profile.times) # test success if drawn from multiple files profile2.encoding = 'test' profile2.file_type = 'test' merged_profile = profile1 + profile2 self.assertEqual('multiple files', merged_profile.encoding) self.assertEqual('multiple files', merged_profile.file_type) @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnPrimitiveTypeProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnStatsProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnDataLabelerCompiler') @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler') @mock.patch('dataprofiler.profilers.profile_builder.' 'StructuredProfiler._get_correlation') def test_stream_profilers(self, *mocks): mocks[0].return_value = None data = pd.DataFrame([ ['test1', 1.0], ['test2', None], ['test1', 1.0], [None, None], [None, 5.0], [None, 5.0], [None, None], ['test3', 7.0]]) # check prior to update with test_utils.mock_timeit(): profiler = dp.StructuredProfiler(data[:3]) self.assertEqual(1, profiler.row_has_null_count) self.assertEqual(0, profiler.row_is_null_count) self.assertEqual(3, profiler.total_samples) self.assertEqual(2, len(profiler.hashed_row_dict)) self.assertIsNone(profiler.correlation_matrix) self.assertDictEqual({'row_stats': 1}, profiler.times) # check after update with test_utils.mock_timeit(): profiler.update_profile(data[3:]) self.assertIsNone(profiler.encoding) self.assertEqual( "<class 'pandas.core.frame.DataFrame'>", profiler.file_type) self.assertEqual(5, profiler.row_has_null_count) self.assertEqual(2, profiler.row_is_null_count) self.assertEqual(8, profiler.total_samples) self.assertEqual(5, len(profiler.hashed_row_dict)) self.assertIsNone(profiler.correlation_matrix) self.assertDictEqual({'row_stats': 2}, profiler.times) def test_correct_unique_row_ratio_test(self): self.assertEqual(2999, len(self.trained_schema.hashed_row_dict)) self.assertEqual(2999, self.trained_schema.total_samples) self.assertEqual(1.0, self.trained_schema._get_unique_row_ratio()) def test_correct_rows_ingested(self): self.assertEqual(2999, self.trained_schema.total_samples) def test_correct_null_row_ratio_test(self): self.assertEqual(2999, self.trained_schema.row_has_null_count) self.assertEqual(1.0, self.trained_schema._get_row_has_null_ratio()) self.assertEqual(0, self.trained_schema.row_is_null_count) self.assertEqual(0, self.trained_schema._get_row_is_null_ratio()) self.assertEqual(2999, self.trained_schema.total_samples) def test_correct_duplicate_row_count_test(self): self.assertEqual(2999, len(self.trained_schema.hashed_row_dict)) self.assertEqual(2999, self.trained_schema.total_samples) self.assertEqual(0.0, self.trained_schema._get_duplicate_row_count()) @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnDataLabelerCompiler') @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler', spec=StructuredDataLabeler) def test_correlation(self, *mock): # Use the following formula to obtain the pairwise correlation # sum((x - np.mean(x))*(y-np.mean(y))) / # np.sqrt(sum((x - np.mean(x)**2)))/np.sqrt(sum((y - np.mean(y)**2))) profile_options = dp.ProfilerOptions() profile_options.set({"correlation.is_enabled": True}) # data with a sole numeric column data = pd.DataFrame([1.0, 8.0, 1.0, -2.0, 5.0]) with test_utils.mock_timeit(): profiler = dp.StructuredProfiler(data, options=profile_options) expected_corr_mat = np.array([[1.0]]) np.testing.assert_array_equal(expected_corr_mat, profiler.correlation_matrix) self.assertDictEqual({'row_stats': 1, 'correlation': 1}, profiler.times) # data with one column with non-numeric calues data = pd.DataFrame([1.0, None, 1.0, None, 5.0]) profiler = dp.StructuredProfiler(data, options=profile_options) expected_corr_mat = np.array([[1]]) np.testing.assert_array_equal(expected_corr_mat, profiler.correlation_matrix) # data with two columns, but one is numerical data = pd.DataFrame([ ['test1', 1.0], ['test2', None], ['test1', 1.0], [None, None]]) profiler = dp.StructuredProfiler(data, options=profile_options) # Even the correlation with itself is NaN because the variance is zero expected_corr_mat = np.array([ [np.nan, np.nan], [np.nan, np.nan] ]) np.testing.assert_array_equal(expected_corr_mat, profiler.correlation_matrix) # data with multiple numerical columns data = pd.DataFrame({'a': [3, 2, 1, 7, 5, 9, 4, 10, 7, 2], 'b': [10, 11, 1, 4, 2, 5, 6, 3, 9, 8], 'c': [1, 5, 3, 5, 7, 2, 6, 8, 1, 2]}) profiler = dp.StructuredProfiler(data, options=profile_options) expected_corr_mat = np.array([ [1.0, -0.26559388521279237, 0.26594894270403086], [-0.26559388521279237, 1.0, -0.49072329], [0.26594894270403086, -0.49072329, 1.0] ]) np.testing.assert_array_almost_equal(expected_corr_mat, profiler.correlation_matrix) # data with multiple numerical columns, with nan values data = pd.DataFrame({'a': [np.nan, np.nan, 1, 7, 5, 9, 4, 10, 7, 2], 'b': [10, 11, np.nan, 4, 2, 5, 6, 3, 9, 8], 'c': [1, 5, 3, 5, 7, 2, 6, 8, np.nan, np.nan]}) profiler = dp.StructuredProfiler(data, options=profile_options) expected_corr_mat = np.array([ [1, -0.28527657, 0.18626508], [-0.28527657, 1, -0.52996792], [0.18626508, -0.52996792, 1] ]) np.testing.assert_array_almost_equal(expected_corr_mat, profiler.correlation_matrix) # data with multiple numerical columns, with nan values in only one # column data = pd.DataFrame({'a': [np.nan, np.nan, 1, 7, 5, 9, 4, 10, 7, 2], 'b': [10, 11, 1, 4, 2, 5, 6, 3, 9, 8], 'c': [1, 5, 3, 5, 7, 2, 6, 8, 1, 2]}) profiler = dp.StructuredProfiler(data, options=profile_options) expected_corr_mat = np.array([ [1, 0.03673504, 0.22844891], [0.03673504, 1, -0.49072329], [0.22844891, -0.49072329, 1]]) np.testing.assert_array_almost_equal(expected_corr_mat, profiler.correlation_matrix) # data with only one numerical columns without nan values data = pd.DataFrame({'a': [3, 2, 1, 7, 5, 9, 4, 10, 7, 2]}) profiler = dp.StructuredProfiler(data, options=profile_options) expected_corr_mat = np.array([[1]]) np.testing.assert_array_almost_equal(expected_corr_mat, profiler.correlation_matrix) # data with no numeric columns data = pd.DataFrame({'a': ['hi', 'hi2', 'hi3'], 'b': ['test1', 'test2', 'test3']}) profiler = dp.StructuredProfiler(data, options=profile_options) expected_corr_mat = np.array([ [np.nan, np.nan], [np.nan, np.nan] ]) np.testing.assert_array_almost_equal(expected_corr_mat, profiler.correlation_matrix) # data with only one numeric column # data with no numeric columns data = pd.DataFrame({'a': ['hi', 'hi2', 'hi3'], 'b': ['test1', 'test2', 'test3'], 'c': [1, 2, 3]}) profiler = dp.StructuredProfiler(data, options=profile_options) expected_corr_mat = np.array([ [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 1] ]) np.testing.assert_array_almost_equal(expected_corr_mat, profiler.correlation_matrix) # Data with null rows data = pd.DataFrame({'a': [None, 2, 1, np.nan, 5, np.nan, 4, 10, 7, np.nan], 'b': [np.nan, 11, 1, 'nan', 2, np.nan, 6, 3, 9, np.nan], 'c': [np.nan, 5, 3, np.nan, 7, np.nan, 6, 8, 1, None]}) profiler = dp.StructuredProfiler(data, options=profile_options) # correlation between [2, 1, 5, 4, 10, 7], # [11, 1, 2, 6, 3, 9], # [5, 3, 7, 6, 8, 1] expected_corr_mat = np.array([ [1, -0.06987956, 0.32423975], [-0.06987956, 1, -0.3613099], [0.32423975, -0.3613099, 1] ]) np.testing.assert_array_almost_equal(expected_corr_mat, profiler.correlation_matrix) # Data with null rows and some imputed values data = pd.DataFrame({'a': [None, np.nan, 1, 7, 5, 9, 4, 10, np.nan, 2], 'b': [10, 11, 1, 4, 2, 5, np.nan, 3, np.nan, 8], 'c': [1, 5, 3, 5, np.nan, 2, 6, 8, np.nan, 2]}) profiler = dp.StructuredProfiler(data, options=profile_options) # correlation between [*38/7*, *38/7*, 1, 7, 5, 9, 4, 10, 2], # [10, 11, 1, 4, 2, 5, *11/2*, 3, 8], # [1, 5, 3, 5, *4*, 2, 6, 8, 2] expected_corr_mat = np.array([ [1, -0.03283837, 0.40038038], [-0.03283837, 1, -0.30346637], [0.40038038, -0.30346637, 1] ]) np.testing.assert_array_almost_equal(expected_corr_mat, profiler.correlation_matrix) @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnDataLabelerCompiler') @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler', spec=StructuredDataLabeler) def test_merge_correlation(self, *mocks): # Use the following formular to obtain the pairwise correlation # sum((x - np.mean(x))*(y-np.mean(y))) / # np.sqrt(sum((x - np.mean(x)**2)))/np.sqrt(sum((y - np.mean(y)**2))) profile_options = dp.ProfilerOptions() profile_options.set({"correlation.is_enabled": True}) # merge between two existing correlations data = pd.DataFrame({'a': [3, 2, 1, 7, 5, 9, 4, 10, 7, 2], 'b': [10, 11, 1, 4, 2, 5, 6, 3, 9, 8], 'c': [1, 5, 3, 5, 7, 2, 6, 8, 1, 2]}) data1 = data[:5] data2 = data[5:] with test_utils.mock_timeit(): profile1 = dp.StructuredProfiler(data1, options=profile_options) profile2 = dp.StructuredProfiler(data2, options=profile_options) merged_profile = profile1 + profile2 expected_corr_mat = np.array([ [1.0, -0.26559388521279237, 0.26594894270403086], [-0.26559388521279237, 1.0, -0.49072329], [0.26594894270403086, -0.49072329, 1.0] ]) np.testing.assert_array_almost_equal(expected_corr_mat, merged_profile.correlation_matrix) self.assertDictEqual({'row_stats': 2, 'correlation': 2}, merged_profile.times) # merge between an existing corr and None correlation (without data) with test_utils.mock_timeit(): profile1 = dp.StructuredProfiler(None, options=profile_options) profile2 = dp.StructuredProfiler(data, options=profile_options) # TODO: remove the mock below when merge profile is update with mock.patch('dataprofiler.profilers.profile_builder.' 'StructuredProfiler._add_error_checks'): merged_profile = profile1 + profile2 expected_corr_mat = np.array([ [1.0, -0.26559388521279237, 0.26594894270403086], [-0.26559388521279237, 1.0, -0.49072329], [0.26594894270403086, -0.4907239, 1.0] ]) np.testing.assert_array_almost_equal(expected_corr_mat, merged_profile.correlation_matrix) self.assertDictEqual({'row_stats': 1, 'correlation': 1}, merged_profile.times) # Merge between existing data and empty data that still has samples data = pd.DataFrame({'a': [1, 2, 4, np.nan, None, np.nan], 'b': [5, 7, 1, np.nan, np.nan, 'nan']}) data1 = data[:3] data2 = data[3:] profile1 = dp.StructuredProfiler(data1, options=profile_options) expected_corr_mat = np.array([ [1, -0.78571429], [-0.78571429, 1] ]) np.testing.assert_array_almost_equal(expected_corr_mat, profile1.correlation_matrix) profile2 = dp.StructuredProfiler(data2, options=profile_options) merged_profile = profile1 + profile2 np.testing.assert_array_almost_equal(expected_corr_mat, merged_profile.correlation_matrix) def test_correlation_update(self): profile_options = dp.ProfilerOptions() profile_options.set({"correlation.is_enabled": True}) # Test with all numeric columns data = pd.DataFrame({'a': [3, 2, 1, 7, 5, 9, 4, 10, 7, 2], 'b': [10, 11, 1, 4, 2, 5, 6, 3, 9, 8], 'c': [1, 5, 3, 5, 7, 2, 6, 8, 1, 2]}) data1 = data[:5] data2 = data[5:] with test_utils.mock_timeit(): profiler = dp.StructuredProfiler(data1, options=profile_options) profiler.update_profile(data2) expected_corr_mat = np.array([ [1.0, -0.26559388521279237, 0.26594894270403086], [-0.26559388521279237, 1.0, -0.4907239], [0.26594894270403086, -0.4907239, 1.0] ]) np.testing.assert_array_almost_equal(expected_corr_mat, profiler.correlation_matrix) self.assertDictEqual({'row_stats': 2, 'correlation': 2}, profiler.times) # Test when there's a non-numeric column data = pd.DataFrame({'a': [3, 2, 1, 7, 5, 9, 4, 10, 7, 2], 'b': [10, 11, 1, 4, 2, 5, 6, 3, 9, 8], 'c': ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']}) data1 = data[:5] data2 = data[5:] profiler = dp.StructuredProfiler(data1, options=profile_options) profiler.update_profile(data2) expected_corr_mat = np.array([ [1.0, -0.26559388521279237, np.nan], [-0.26559388521279237, 1.0, np.nan], [np.nan, np.nan, np.nan] ]) np.testing.assert_array_almost_equal(expected_corr_mat, profiler.correlation_matrix) # Data with multiple numerical and non-numeric columns, with nan values in only one column # NaNs imputed to (9+4+10)/3 data = pd.DataFrame({'a': [7, 2, 1, 7, 5, 9, 4, 10, np.nan, np.nan], 'b': [10, 11, 1, 4, 2, 5, 6, 3, 9, 8], 'c': ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'], 'd': [1, 5, 3, 5, 7, 2, 6, 8, 1, 2]}) data1 = data[:5] data2 = data[5:] profiler = dp.StructuredProfiler(data1, options=profile_options) profiler.update_profile(data2) expected_corr_mat = np.array([ [ 1, 0.04721482, np.nan, -0.09383408], [ 0.04721482, 1, np.nan,-0.49072329], [np.nan, np.nan, np.nan, np.nan], [-0.09383408, -0.49072329, np.nan, 1]] ) np.testing.assert_array_almost_equal(expected_corr_mat, profiler.correlation_matrix) # Data with null rows, all null rows are dropped data = pd.DataFrame({'a': [np.nan, 2, 1, None, 5, np.nan, 4, 10, 7, 'NaN'], 'b': [np.nan, 11, 1, np.nan, 2, np.nan, 6, 3, 9, np.nan], 'c': [np.nan, 5, 3, np.nan, 7, None, 6, 8, 1, np.nan]}) data1 = data[:5] data2 = data[5:] profiler = dp.StructuredProfiler(data1, options=profile_options) profiler.update_profile(data2) # correlation between [2, 1, 5, 4, 10, 7], # [11, 1, 2, 6, 3, 9], # [5, 3, 7, 6, 8, 1] expected_corr_mat = np.array([ [1, -0.06987956, 0.32423975], [-0.06987956, 1, -0.3613099], [0.32423975, -0.3613099, 1] ]) np.testing.assert_array_almost_equal(expected_corr_mat, profiler.correlation_matrix) # Data with null rows and some imputed values data = pd.DataFrame({'a': [None, np.nan, 1, 7, 5, 9, 4, 10, 'nan', 2], 'b': [10, 11, 1, 4, 2, 5, 'NaN', 3, None, 8], 'c': [1, 5, 3, 5, np.nan, 2, 6, 8, None, 2]}) data1 = data[:5] data2 = data[5:] profiler = dp.StructuredProfiler(data1, options=profile_options) profiler.update_profile(data2) # correlation between [*13/3*, *13/3*, 1, 7, 5] # [10, 11, 1, 4, 2] # [1, 5, 3, 5, *7/2*] # then updated with correlation (9th row dropped) between # [9, 4, 10, 2], # [5, *16/3*, 3, 8], # [2, 6, 8, 2] expected_corr_mat = np.array([ [1, -0.16079606, 0.43658332], [-0.16079606, 1, -0.2801748], [0.43658332, -0.2801748, 1] ]) np.testing.assert_array_almost_equal(expected_corr_mat, profiler.correlation_matrix) @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnDataLabelerCompiler') @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler', spec=StructuredDataLabeler) def test_chi2(self, *mocks): # Empty data = pd.DataFrame([]) profiler = dp.StructuredProfiler(data) self.assertIsNone(profiler.chi2_matrix) # Single column data = pd.DataFrame({'a': ["y", "y", "n", "n", "y"]}) profiler = dp.StructuredProfiler(data) expected_mat = np.array([1]) self.assertEqual(expected_mat, profiler.chi2_matrix) data = pd.DataFrame({'a': ["y", "y", "y", "y", "n", "n", "n"], 'b': ["y", "maybe", "y", "y", "n", "n", "maybe"], 'c': ["n", "maybe", "n", "n", "n", "y", "y"]}) profiler = dp.StructuredProfiler(data) expected_mat = np.array([ [1, 0.309924, 0.404638], [0.309924, 1, 0.548812], [0.404638, 0.548812, 1] ]) np.testing.assert_array_almost_equal(expected_mat, profiler.chi2_matrix) # All different categories data = pd.DataFrame({'a': ["y", "y", "y", "y", "n", "n", "n"], 'b': ["a", "maybe", "a", "a", "b", "b", "maybe"], 'c': ["d", "d", "g", "g", "g", "t", "t"]}) profiler = dp.StructuredProfiler(data) expected_mat = np.array([ [1, 0.007295, 0.007295], [0.007295, 1, 0.015609], [0.007295, 0.015609, 1] ]) np.testing.assert_array_almost_equal(expected_mat, profiler.chi2_matrix) # Identical columns data = pd.DataFrame({'a': ["y", "y", "y", "y", "n", "n", "n"], 'b': ["y", "y", "y", "y", "n", "n", "n"], 'c': ["y", "y", "y", "y", "n", "n", "n"]}) profiler = dp.StructuredProfiler(data) expected_mat = np.array([ [1, 1, 1], [1, 1, 1], [1, 1, 1] ]) np.testing.assert_array_almost_equal(expected_mat, profiler.chi2_matrix) @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnDataLabelerCompiler') @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler', spec=StructuredDataLabeler) def test_merge_chi2(self, *mocks): # Merge empty data data = pd.DataFrame({'a': ["y", "y", "y", "y", "n", "n", "n"], 'b': ["y", "maybe", "y", "y", "n", "n", "maybe"], 'c': ["n", "maybe", "n", "n", "n", "y", "y"]}) profiler1 = dp.StructuredProfiler(None) profiler2 = dp.StructuredProfiler(data) with mock.patch('dataprofiler.profilers.profile_builder.' 'StructuredProfiler._add_error_checks'): profiler3 = profiler1 + profiler2 expected_mat = np.array([ [1, 0.309924, 0.404638], [0.309924, 1, 0.548812], [0.404638, 0.548812, 1] ]) np.testing.assert_array_almost_equal(expected_mat, profiler3.chi2_matrix) data = pd.DataFrame({'a': ["y", "y", "y", "y", "n", "n", "n"], 'b': ["y", "maybe", "y", "y", "n", "n", "maybe"], 'c': ["n", "maybe", "n", "n", "n", "y", "y"]}) data1 = data[:4] data2 = data[4:] profiler1 = dp.StructuredProfiler(data1) profiler2 = dp.StructuredProfiler(data2) profiler3 = profiler1 + profiler2 expected_mat = np.array([ [1, 0.309924, 0.404638], [0.309924, 1, 0.548812], [0.404638, 0.548812, 1] ]) np.testing.assert_array_almost_equal(expected_mat, profiler3.chi2_matrix) # All different categories data = pd.DataFrame({'a': ["y", "y", "y", "y", "n", "n", "n"], 'b': ["a", "maybe", "a", "a", "b", "b", "maybe"], 'c': ["d", "d", "g", "g", "g", "t", "t"]}) data1 = data[:4] data2 = data[4:] profiler1 = dp.StructuredProfiler(data1) profiler2 = dp.StructuredProfiler(data2) profiler3 = profiler1 + profiler2 expected_mat = np.array([ [1, 0.007295, 0.007295], [0.007295, 1, 0.015609], [0.007295, 0.015609, 1] ]) np.testing.assert_array_almost_equal(expected_mat, profiler3.chi2_matrix) # Identical columns data = pd.DataFrame({'a': ["y", "y", "y", "y", "n", "n", "n"], 'b': ["y", "y", "y", "y", "n", "n", "n"], 'c': ["y", "y", "y", "y", "n", "n", "n"]}) data1 = data[:4] data2 = data[4:] profiler1 = dp.StructuredProfiler(data1) profiler2 = dp.StructuredProfiler(data2) profiler3 = profiler1 + profiler2 expected_mat = np.array([ [1, 1, 1], [1, 1, 1], [1, 1, 1] ]) np.testing.assert_array_almost_equal(expected_mat, profiler3.chi2_matrix) @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnDataLabelerCompiler') @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler', spec=StructuredDataLabeler) def test_update_chi2(self, *mocks): # Update with empty data data1 = pd.DataFrame({'a': ["y", "y", "y", "y", "n", "n", "n"], 'b': ["y", "maybe", "y", "y", "n", "n", "maybe"], 'c': ["n", "maybe", "n", "n", "n", "y", "y"]}) data2 = pd.DataFrame({'a': [], 'b': [], 'c': []}) profiler = dp.StructuredProfiler(data1) profiler.update_profile(data2) expected_mat = np.array([ [1, 0.309924, 0.404638], [0.309924, 1, 0.548812], [0.404638, 0.548812, 1] ]) np.testing.assert_array_almost_equal(expected_mat, profiler.chi2_matrix) data = pd.DataFrame({'a': ["y", "y", "y", "y", "n", "n", "n"], 'b': ["y", "maybe", "y", "y", "n", "n", "maybe"], 'c': ["n", "maybe", "n", "n", "n", "y", "y"]}) data1 = data[:4] data2 = data[4:] profiler = dp.StructuredProfiler(data1) profiler.update_profile(data2) expected_mat = np.array([ [1, 0.309924, 0.404638], [0.309924, 1, 0.548812], [0.404638, 0.548812, 1] ]) np.testing.assert_array_almost_equal(expected_mat, profiler.chi2_matrix) # All different categories data = pd.DataFrame({'a': ["y", "y", "y", "y", "n", "n", "n"], 'b': ["a", "maybe", "a", "a", "b", "b", "maybe"], 'c': ["d", "d", "g", "g", "g", "t", "t"]}) data1 = data[:4] data2 = data[4:] profiler = dp.StructuredProfiler(data1) profiler.update_profile(data2) expected_mat = np.array([ [1, 0.007295, 0.007295], [0.007295, 1, 0.015609], [0.007295, 0.015609, 1] ]) np.testing.assert_array_almost_equal(expected_mat, profiler.chi2_matrix) # Identical columns data = pd.DataFrame({'a': ["y", "y", "y", "y", "n", "n", "n"], 'b': ["y", "y", "y", "y", "n", "n", "n"], 'c': ["y", "y", "y", "y", "n", "n", "n"]}) data1 = data[:4] data2 = data[4:] profiler = dp.StructuredProfiler(data1) profiler.update_profile(data2) expected_mat = np.array([ [1, 1, 1], [1, 1, 1], [1, 1, 1] ]) np.testing.assert_array_almost_equal(expected_mat, profiler.chi2_matrix) def test_correct_datatime_schema_test(self): profile_idx = self.trained_schema._col_name_to_idx["datetime"][0] profile = self.trained_schema.profile[profile_idx] col_schema_info = \ profile.profiles['data_type_profile']._profiles["datetime"] self.assertEqual(2999, profile.sample_size) self.assertEqual(col_schema_info.sample_size, col_schema_info.match_count) self.assertEqual(2, profile.null_count) six.assertCountEqual(self, ['nan'], profile.null_types) self.assertEqual(['%m/%d/%y %H:%M'], col_schema_info['date_formats']) def test_correct_integer_column_detection_src(self): profile_idx = self.trained_schema._col_name_to_idx["src"][0] profile = self.trained_schema.profile[profile_idx] col_schema_info = profile.profiles['data_type_profile']._profiles["int"] self.assertEqual(2999, profile.sample_size) self.assertEqual(col_schema_info.sample_size, col_schema_info.match_count) self.assertEqual(3, profile.null_count) def test_correct_integer_column_detection_int_col(self): profile_idx = self.trained_schema._col_name_to_idx["int_col"][0] profile = self.trained_schema.profile[profile_idx] col_schema_info = profile.profiles['data_type_profile']._profiles["int"] self.assertEqual(2999, profile.sample_size) self.assertEqual(col_schema_info.sample_size, col_schema_info.match_count) self.assertEqual(0, profile.null_count) def test_correct_integer_column_detection_port(self): profile_idx = self.trained_schema._col_name_to_idx["srcport"][0] profile = self.trained_schema.profile[profile_idx] col_schema_info = profile.profiles['data_type_profile']._profiles["int"] self.assertEqual(2999, profile.sample_size) self.assertEqual(col_schema_info.sample_size, col_schema_info.match_count) self.assertEqual(197, profile.null_count) def test_correct_integer_column_detection_destport(self): profile_idx = self.trained_schema._col_name_to_idx["destport"][0] profile = self.trained_schema.profile[profile_idx] col_schema_info = profile.profiles['data_type_profile']._profiles["int"] self.assertEqual(2999, profile.sample_size) self.assertEqual(col_schema_info.sample_size, col_schema_info.match_count) self.assertEqual(197, profile.null_count) def test_report(self): report = self.trained_schema.report() self.assertListEqual(list(report.keys()), [ 'global_stats', 'data_stats']) self.assertListEqual( list(report['global_stats']), [ "samples_used", "column_count", "row_count", "row_has_null_ratio", 'row_is_null_ratio', "unique_row_ratio", "duplicate_row_count", "file_type", "encoding", "correlation_matrix", "chi2_matrix", "profile_schema", "times" ] ) flat_report = self.trained_schema.report( report_options={"output_format": "flat"}) self.assertEqual(test_utils.get_depth(flat_report), 1) with mock.patch('dataprofiler.profilers.helpers.report_helpers' '._prepare_report') as pr_mock: self.trained_schema.report( report_options={"output_format": 'pretty'}) # Once for global_stats, once for each of 16 columns self.assertEqual(pr_mock.call_count, 17) def test_report_schema_and_data_stats_match_order(self): data = pd.DataFrame([[1, 2, 3, 4, 5, 6], [10, 20, 30, 40, 50, 60]], columns=["a", "b", "a", "b", "c", "d"]) profiler_options = ProfilerOptions() profiler_options.set({'data_labeler.is_enabled': False}) profiler = dp.StructuredProfiler(data=data, options=profiler_options) report = profiler.report() schema = report["global_stats"]["profile_schema"] data_stats = report["data_stats"] expected_schema = {"a": [0, 2], "b": [1, 3], "c": [4], "d": [5]} self.assertDictEqual(expected_schema, schema) # Check that the column order in the report matches the column order # In the schema (and in the data) for name in schema: for idx in schema[name]: # Use min of column to validate column order amongst duplicates col_min = data.iloc[0, idx] self.assertEqual(name, data_stats[idx]["column_name"]) self.assertEqual(col_min, data_stats[idx]["statistics"]["min"]) def test_pretty_report_doesnt_cast_schema(self): report = self.trained_schema.report( report_options={"output_format": "pretty"}) # Want to ensure the values of this dict are of type list[int] # Since pretty "prettifies" lists into strings with ... to shorten expected_schema = {"datetime": [0], "host": [1], "src": [2], "proto": [3], "type": [4], "srcport": [5], "destport": [6], "srcip": [7], "locale": [8], "localeabbr": [9], "postalcode": [10], "latitude": [11], "longitude": [12], "owner": [13], "comment": [14], "int_col": [15]} self.assertDictEqual(expected_schema, report["global_stats"]["profile_schema"]) def test_omit_keys_with_duplicate_cols(self): data = pd.DataFrame([[1, 2, 3, 4, 5, 6], [10, 20, 30, 40, 50, 60]], columns=["a", "b", "a", "b", "c", "d"]) profiler_options = ProfilerOptions() profiler_options.set({'data_labeler.is_enabled': False}) profiler = dp.StructuredProfiler(data=data, options=profiler_options) report = profiler.report(report_options={ "omit_keys": ["data_stats.a.statistics.min", "data_stats.d.statistics.max", "data_stats.*.statistics.null_types_index"]}) # Correctness of schema asserted in prior test schema = report["global_stats"]["profile_schema"] data_stats = report["data_stats"] for idx in range(len(report["data_stats"])): # Assert that min is absent from a's data_stats and not the others if idx in schema["a"]: self.assertNotIn("min", data_stats[idx]["statistics"]) else: self.assertIn("min", report["data_stats"][idx]["statistics"]) # Assert that max is absent from d's data_stats and not the others if idx in schema["d"]: self.assertNotIn("max", report["data_stats"][idx]["statistics"]) else: self.assertIn("max", report["data_stats"][idx]["statistics"]) # Assert that null_types_index not present in any self.assertNotIn("null_types_index", report["data_stats"][idx]["statistics"]) def test_omit_cols_preserves_schema(self): data = pd.DataFrame([[1, 2, 3, 4, 5, 6], [10, 20, 30, 40, 50, 60]], columns=["a", "b", "a", "b", "c", "d"]) omit_cols = ["a", "d"] omit_idxs = [0, 2, 5] omit_keys = [f"data_stats.{col}" for col in omit_cols] profiler_options = ProfilerOptions() profiler_options.set({'data_labeler.is_enabled': False}) profiler = dp.StructuredProfiler(data=data, options=profiler_options) report = profiler.report(report_options={"omit_keys": omit_keys}) for idx in range(len(report["data_stats"])): if idx in omit_idxs: self.assertIsNone(report["data_stats"][idx]) else: self.assertIsNotNone(report["data_stats"][idx]) # This will keep the data_stats key but remove all columns report = profiler.report(report_options={"omit_keys": ["data_stats.*"]}) for col_report in report["data_stats"]: self.assertIsNone(col_report) def test_report_quantiles(self): report_none = self.trained_schema.report( report_options={"num_quantile_groups": None}) report = self.trained_schema.report() self.assertEqual(report_none, report) for col in report["data_stats"]: if col["column_name"] == "int_col": report_quantiles = col["statistics"]["quantiles"] break self.assertEqual(len(report_quantiles), 3) report2 = self.trained_schema.report( report_options={"num_quantile_groups": 1000}) for col in report2["data_stats"]: if col["column_name"] == "int_col": report2_1000_quant = col["statistics"]["quantiles"] break self.assertEqual(len(report2_1000_quant), 999) self.assertEqual(report_quantiles, { 0: report2_1000_quant[249], 1: report2_1000_quant[499], 2: report2_1000_quant[749], }) def test_report_omit_keys(self): # Omit both report keys manually no_report_keys = self.trained_schema.report( report_options={"omit_keys": ['global_stats', 'data_stats']}) self.assertCountEqual({}, no_report_keys) # Omit just data_stats no_data_stats = self.trained_schema.report( report_options={"omit_keys": ['data_stats']}) self.assertCountEqual({"global_stats"}, no_data_stats) # Omit a global stat no_samples_used = self.trained_schema.report( report_options={"omit_keys": ['global_stats.samples_used']}) self.assertNotIn("samples_used", no_samples_used["global_stats"]) # Omit all keys nothing = self.trained_schema.report( report_options={"omit_keys": ['*']}) self.assertCountEqual({}, nothing) # Omit every data_stats column empty_data_stats_cols = self.trained_schema.report( report_options={"omit_keys": ['global_stats', 'data_stats.*']}) # data_stats key still present, but all columns are None self.assertCountEqual({"data_stats"}, empty_data_stats_cols) self.assertTrue(all([rep is None for rep in empty_data_stats_cols["data_stats"]])) # Omit specific data_stats column no_datetime = self.trained_schema.report( report_options={"omit_keys": ['data_stats.datetime']}) self.assertNotIn("datetime", no_datetime["data_stats"]) # Omit a statistic from each column no_sum = self.trained_schema.report( report_options={"omit_keys": ['data_stats.*.statistics.sum']}) self.assertTrue(all(["sum" not in rep["statistics"] for rep in no_sum["data_stats"]])) def test_report_compact(self): report = self.trained_schema.report( report_options={ "output_format": "pretty" }) omit_keys = [ "data_stats.*.statistics.times", "data_stats.*.statistics.avg_predictions", "data_stats.*.statistics.data_label_representation", "data_stats.*.statistics.null_types_index", "data_stats.*.statistics.histogram" ] report = _prepare_report(report, 'pretty', omit_keys) report_compact = self.trained_schema.report( report_options={"output_format": "compact"}) self.assertEqual(report, report_compact) def test_profile_key_name_without_space(self): def recursive_test_helper(report, prev_key=None): for key in report: # do not test keys in 'data_stats' as they contain column names # neither for 'ave_predictions' and 'data_label_representation' # as they contain label names # same for 'null_types_index' if prev_key not in ['data_stats', 'avg_predictions', 'data_label_representation', 'null_types_index', 'categorical_count']: # key names should contain only alphanumeric letters or '_' self.assertIsNotNone(re.match('^[a-zA-Z0-9_]+$', str(key))) if isinstance(report[key], dict): recursive_test_helper(report[key], key) _report = self.trained_schema.report() recursive_test_helper(_report) def test_data_label_assigned(self): # only use 5 samples trained_schema = dp.StructuredProfiler(self.aws_dataset, samples_per_update=5) report = trained_schema.report() has_non_null_column = False for i in range(len(report['data_stats'])): # only test non-null columns if report['data_stats'][i]['data_type'] is not None: self.assertIsNotNone(report['data_stats'][i]['data_label']) has_non_null_column = True if not has_non_null_column: self.fail( "Dataset tested did not have a non-null column and therefore " "could not validate the test.") def test_text_data_raises_error(self): text_file_path = os.path.join( test_root_path, 'data', 'txt/sentence-10x.txt' ) with self.assertRaisesRegex(TypeError, 'Cannot provide TextData object' ' to StructuredProfiler'): profiler = dp.StructuredProfiler(dp.Data(text_file_path)) @mock.patch('dataprofiler.profilers.profile_builder.' 'StructuredProfiler._update_correlation') @mock.patch('dataprofiler.profilers.profile_builder.' 'StructuredProfiler._update_chi2') @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler') @mock.patch('dataprofiler.profilers.profile_builder.StructuredProfiler.' '_update_row_statistics') @mock.patch('dataprofiler.profilers.profile_builder.StructuredColProfiler') def test_sample_size_warning_in_the_profiler(self, *mocks): # structure data profile mock sdp_mock = mock.Mock() sdp_mock.clean_data_and_get_base_stats.return_value = (None, None) mocks[0].return_value = sdp_mock data = pd.DataFrame([1, None, 3, 4, 5, None]) with self.assertWarnsRegex(UserWarning, "The data will be profiled with a sample " "size of 3. All statistics will be based on " "this subsample and not the whole dataset."): profile1 = dp.StructuredProfiler(data, samples_per_update=3) @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnPrimitiveTypeProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnStatsProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnDataLabelerCompiler') @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler') @mock.patch('dataprofiler.profilers.profile_builder.' 'StructuredProfiler._update_correlation') def test_min_col_samples_used(self, *mocks): # No cols sampled since no cols to sample empty_df = pd.DataFrame([]) empty_profile = dp.StructuredProfiler(empty_df) self.assertEqual(0, empty_profile._min_col_samples_used) # Every column fully sampled full_df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) full_profile = dp.StructuredProfiler(full_df) self.assertEqual(3, full_profile._min_col_samples_used) # First col sampled only twice, so that is min sparse_df = pd.DataFrame([[1, None, None], [1, 1, None], [1, None, 1]]) sparse_profile = dp.StructuredProfiler(sparse_df, min_true_samples=2, samples_per_update=1) self.assertEqual(2, sparse_profile._min_col_samples_used) @mock.patch('dataprofiler.profilers.profile_builder.StructuredProfiler.' '_update_profile_from_chunk') @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler') def test_min_true_samples(self, *mocks): empty_df = pd.DataFrame([]) # Test invalid input msg = "`min_true_samples` must be an integer or `None`." with self.assertRaisesRegex(ValueError, msg): profile = dp.StructuredProfiler(empty_df, min_true_samples="Bloop") # Test invalid input given to update_profile profile = dp.StructuredProfiler(empty_df) with self.assertRaisesRegex(ValueError, msg): profile.update_profile(empty_df, min_true_samples="Bloop") # Test None input (equivalent to zero) profile = dp.StructuredProfiler(empty_df, min_true_samples=None) self.assertEqual(None, profile._min_true_samples) # Test valid input profile = dp.StructuredProfiler(empty_df, min_true_samples=10) self.assertEqual(10, profile._min_true_samples) def test_save_and_load(self): datapth = "dataprofiler/tests/data/" test_files = ["csv/guns.csv", "csv/iris.csv"] for test_file in test_files: # Create Data and StructuredProfiler objects data = dp.Data(os.path.join(datapth, test_file)) options = ProfilerOptions() options.set({"correlation.is_enabled": True}) save_profile = dp.StructuredProfiler(data) # store the expected data_labeler data_labeler = save_profile.options.data_labeler.data_labeler_object # Save and Load profile with Mock IO with mock.patch('builtins.open') as m: mock_file = setup_save_mock_open(m) save_profile.save() mock_file.seek(0) with mock.patch('dataprofiler.profilers.profile_builder.' 'DataLabeler', return_value=data_labeler): load_profile = dp.StructuredProfiler.load("mock.pkl") # validate loaded profile has same data labeler class self.assertIsInstance( load_profile.options.data_labeler.data_labeler_object, data_labeler.__class__) # only checks first columns # get first column first_column_profile = load_profile.profile[0] self.assertIsInstance( first_column_profile.profiles['data_label_profile'] ._profiles['data_labeler'].data_labeler, data_labeler.__class__) # Check that reports are equivalent save_report = test_utils.clean_report(save_profile.report()) load_report = test_utils.clean_report(load_profile.report()) np.testing.assert_equal(save_report, load_report) def test_save_and_load_no_labeler(self): # Create Data and UnstructuredProfiler objects data = pd.DataFrame([1, 2, 3], columns=["a"]) profile_options = dp.ProfilerOptions() profile_options.set({"data_labeler.is_enabled": False}) save_profile = dp.StructuredProfiler(data, options=profile_options) # Save and Load profile with Mock IO with mock.patch('builtins.open') as m: mock_file = setup_save_mock_open(m) save_profile.save() mock_file.seek(0) with mock.patch('dataprofiler.profilers.profile_builder.' 'DataLabeler'): load_profile = dp.StructuredProfiler.load("mock.pkl") # Check that reports are equivalent save_report = test_utils.clean_report(save_profile.report()) load_report = test_utils.clean_report(load_profile.report()) self.assertDictEqual(save_report, load_report) # validate both are still usable after save_profile.update_profile(pd.DataFrame({"a": [4, 5]})) load_profile.update_profile(pd.DataFrame({"a": [4, 5]})) @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnPrimitiveTypeProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnStatsProfileCompiler') @mock.patch('dataprofiler.profilers.profile_builder.' 'ColumnDataLabelerCompiler') @mock.patch('dataprofiler.profilers.profile_builder.DataLabeler') @mock.patch('dataprofiler.profilers.profile_builder.' 'StructuredProfiler._update_correlation') def test_string_index_doesnt_cause_error(self, *mocks): dp.StructuredProfiler(
pd.DataFrame([[1, 2, 3]], index=["hello"])
pandas.DataFrame
import pandas as pd from pathlib import Path import matplotlib.pyplot as plt import numpy as np import os import argparse from sklearn import preprocessing from matplotlib.ticker import EngFormatter if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-f1', '--logFolder1', help='Log folder 1', type=str) parser.add_argument('-f2', '--logFolder2', help='Log folder 2', type=str) parser.add_argument('-s', '--saveFolder', help='save folder', type=str) args = parser.parse_args() path_base = args.logFolder1 # "logs/train_1M_widowx_reach-v3/" path_base2 = args.logFolder2 # "logs/train_1M_widowx_reach-v3/" save_dir = args.saveFolder #"experiment_reports/1M_widowx_reach-v3/" os.makedirs(save_dir, exist_ok=True) ### GET DATA ### df1 = pd.read_csv(path_base+"a2c/all_rewards_smooth.csv") df2 = pd.read_csv(path_base+"acktr/all_rewards_smooth.csv") df3 = pd.read_csv(path_base+"ddpg/all_rewards_smooth.csv") df4 = pd.read_csv(path_base+"ppo2/all_rewards_smooth.csv") df5 = pd.read_csv(path_base+"sac/all_rewards_smooth.csv") df6 = pd.read_csv(path_base+"td3/all_rewards_smooth.csv") df7 = pd.read_csv(path_base+"trpo/all_rewards_smooth.csv") df8 = pd.read_csv(path_base+"her_sac/all_rewards_smooth.csv") df9 = pd.read_csv(path_base+"her_td3/all_rewards_smooth.csv") env2_df1 = pd.read_csv(path_base2+"a2c/all_rewards_smooth.csv") env2_df2 = pd.read_csv(path_base2+"acktr/all_rewards_smooth.csv") env2_df3 = pd.read_csv(path_base2+"ddpg/all_rewards_smooth.csv") env2_df4 = pd.read_csv(path_base2+"ppo2/all_rewards_smooth.csv") env2_df5 = pd.read_csv(path_base2+"sac/all_rewards_smooth.csv") env2_df6 = pd.read_csv(path_base2+"td3/all_rewards_smooth.csv") env2_df7 = pd.read_csv(path_base2+"trpo/all_rewards_smooth.csv") env2_df8 = pd.read_csv(path_base2+"her_sac/all_rewards_smooth.csv") env2_df9 = pd.read_csv(path_base2+"her_td3/all_rewards_smooth.csv") df_list = [ df1, df2, df3, df4, df5, df6, df7, df8, df9 ] df_list2 = [ env2_df1, env2_df2, env2_df3, env2_df4, env2_df5, env2_df6, env2_df7, env2_df8, env2_df9 ] df_label = [ "A2C", "ACKTR", "DDPG", "PPO2", "SAC", "TD3", "TRPO", "SAC + HER", "TD3 + HER" ] ff1 = pd.read_csv(path_base+"/a2c/results_seed_exp.csv") ff2 = pd.read_csv(path_base+"/acktr/results_seed_exp.csv") ff3 = pd.read_csv(path_base+"/ddpg/results_seed_exp.csv") ff4 = pd.read_csv(path_base+"/ppo2/results_seed_exp.csv") ff5 = pd.read_csv(path_base+"/sac/results_seed_exp.csv") ff6 = pd.read_csv(path_base+"/td3/results_seed_exp.csv") ff7 = pd.read_csv(path_base+"/trpo/results_seed_exp.csv") ff8 = pd.read_csv(path_base+"/her_sac/results_seed_exp.csv") ff9 = pd.read_csv(path_base+"/her_td3/results_seed_exp.csv") env2_ff1 = pd.read_csv(path_base2+"/a2c/results_seed_exp.csv") env2_ff2 = pd.read_csv(path_base2+"/acktr/results_seed_exp.csv") env2_ff3 =
pd.read_csv(path_base2+"/ddpg/results_seed_exp.csv")
pandas.read_csv
import pytest from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.neural_network import MLPClassifier, MLPRegressor from sklearn.svm import LinearSVC, LinearSVR from foreshadow.console import generate_model from foreshadow.estimators import AutoEstimator from foreshadow.utils import EstimatorFamily, ProblemType from foreshadow.utils.testing import get_file_path @pytest.mark.skip("level 2 is not implemented.") def test_console_generate_level2(): pass def test_console_get_method_default_regression(): import pandas as pd from foreshadow.console import get_method from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression boston = load_boston() X_df = pd.DataFrame(boston.data, columns=boston.feature_names) y_df = pd.DataFrame(boston.target, columns=["target"]) X_train, X_test, y_train, y_test = train_test_split( X_df, y_df, test_size=0.2 ) result = get_method( None, y_train, family=EstimatorFamily.LINEAR, problem_type=ProblemType.REGRESSION, ) assert isinstance(result, LinearRegression) def test_console_get_method_default_classification(): import pandas as pd from foreshadow.console import get_method from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression cancer = load_breast_cancer() X_df =
pd.DataFrame(cancer.data, columns=cancer.feature_names)
pandas.DataFrame
#!/usr/bin/env python # -*- coding:utf-8 -*- """ Date: 2022/2/24 15:02 Desc: 东方财富网-数据中心-新股数据-打新收益率 东方财富网-数据中心-新股数据-打新收益率 http://data.eastmoney.com/xg/xg/dxsyl.html 东方财富网-数据中心-新股数据-新股申购与中签查询 http://data.eastmoney.com/xg/xg/default_2.html """ import pandas as pd import requests from tqdm import tqdm from akshare.utils import demjson def _get_page_num_dxsyl() -> int: """ 东方财富网-数据中心-新股数据-打新收益率-总页数 http://data.eastmoney.com/xg/xg/dxsyl.html :return: 总页数 :rtype: int """ url = "https://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" params = { "st": "16", "sr": "-1", "ps": "500", "p": '1', "type": "NS", "sty": "NSDXSYL", "js": "({data:[(x)],pages:(pc)})", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[1:-1]) total_page = data_json["pages"] return total_page def stock_dxsyl_em() -> pd.DataFrame: """ 东方财富网-数据中心-新股数据-打新收益率 http://data.eastmoney.com/xg/xg/dxsyl.html :return: 指定市场的打新收益率数据 :rtype: pandas.DataFrame """ url = "https://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" page_num = _get_page_num_dxsyl() big_df = pd.DataFrame() for page in tqdm(range(1, page_num + 1), leave=False): params = { "st": "16", "sr": "-1", "ps": "500", "p": str(page), "type": "NS", "sty": "NSDXSYL", "js": "({data:[(x)],pages:(pc)})", } res = requests.get(url, params=params) data_text = res.text data_json = demjson.decode(data_text[1:-1]) temp_df = pd.DataFrame([item.split(',') for item in data_json["data"]]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.reset_index(inplace=True) big_df['index'] = big_df.index + 1 big_df.columns = [ "序号", "股票代码", "股票简称", "发行价", "最新价", "网上-发行中签率", "网上-有效申购股数", "网上-有效申购户数", "网上-超额认购倍数", "网下-配售中签率", "网下-有效申购股数", "网下-有效申购户数", "网下-配售认购倍数", "总发行数量", "开盘溢价", "首日涨幅", "打新收益", "上市日期", "-", ] big_df = big_df[[ "序号", "股票代码", "股票简称", "发行价", "最新价", "网上-发行中签率", "网上-有效申购股数", "网上-有效申购户数", "网上-超额认购倍数", "网下-配售中签率", "网下-有效申购股数", "网下-有效申购户数", "网下-配售认购倍数", "总发行数量", "开盘溢价", "首日涨幅", "打新收益", "上市日期", ]] big_df["发行价"] = pd.to_numeric(big_df["发行价"], errors='coerce') big_df["最新价"] = pd.to_numeric(big_df["最新价"]) big_df["网上-发行中签率"] = pd.to_numeric(big_df["网上-发行中签率"]) big_df["网上-有效申购股数"] = pd.to_numeric(big_df["网上-有效申购股数"]) big_df["网上-有效申购户数"] = pd.to_numeric(big_df["网上-有效申购户数"]) big_df["网上-超额认购倍数"] = pd.to_numeric(big_df["网上-超额认购倍数"]) big_df["网下-配售中签率"] = pd.to_numeric(big_df["网下-配售中签率"]) big_df["网下-有效申购股数"] = pd.to_numeric(big_df["网下-有效申购股数"]) big_df["网下-有效申购户数"] = pd.to_numeric(big_df["网下-有效申购户数"]) big_df["网下-配售认购倍数"] = pd.to_numeric(big_df["网下-配售认购倍数"]) big_df["总发行数量"] = pd.to_numeric(big_df["总发行数量"]) big_df["开盘溢价"] = pd.to_numeric(big_df["开盘溢价"]) big_df["首日涨幅"] = pd.to_numeric(big_df["首日涨幅"]) big_df["打新收益"] = pd.to_numeric(big_df["打新收益"]) return big_df def stock_xgsglb_em(symbol: str = "京市A股") -> pd.DataFrame: """ 新股申购与中签查询 http://data.eastmoney.com/xg/xg/default_2.html :param symbol: choice of {"全部股票", "沪市A股", "科创板", "深市A股", "创业板", "京市A股"} :type symbol: str :return: 新股申购与中签数据 :rtype: pandas.DataFrame """ market_map = { "全部股票": """(APPLY_DATE>'2010-01-01')""", "沪市A股": """(APPLY_DATE>'2010-01-01')(SECURITY_TYPE_CODE in ("058001001","058001008"))(TRADE_MARKET_CODE in ("069001001001","069001001003","069001001006"))""", "科创板": """(APPLY_DATE>'2010-01-01')(SECURITY_TYPE_CODE in ("058001001","058001008"))(TRADE_MARKET_CODE="069001001006")""", "深市A股": """(APPLY_DATE>'2010-01-01')(SECURITY_TYPE_CODE="058001001")(TRADE_MARKET_CODE in ("069001002001","069001002002","069001002003","069001002005"))""", "创业板": """(APPLY_DATE>'2010-01-01')(SECURITY_TYPE_CODE="058001001")(TRADE_MARKET_CODE="069001002002")""", } url = "http://datacenter-web.eastmoney.com/api/data/v1/get" if symbol == "京市A股": params = { 'sortColumns': 'APPLY_DATE', 'sortTypes': '-1', 'pageSize': '500', 'pageNumber': '1', 'columns': 'ALL', 'reportName': 'RPT_NEEQ_ISSUEINFO_LIST', 'quoteColumns': 'f14~01~SECURITY_CODE~SECURITY_NAME_ABBR', 'source': 'NEEQSELECT', 'client': 'WEB', } r = requests.get(url, params=params) data_json = r.json() total_page = data_json['result']['pages'] big_df = pd.DataFrame() for page in tqdm(range(1, 1+int(total_page)), leave=False): params.update({ 'pageNumber': page }) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json['result']['data']) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.reset_index(inplace=True) big_df['index'] = big_df.index + 1 big_df.columns = [ '序号', '-', '代码', '-', '简称', '申购代码', '发行总数', '-', '发行价格', '发行市盈率', '申购日', '发行结果公告日', '上市日', '网上发行数量', '顶格申购所需资金', '申购上限', '网上申购缴款日', '网上申购退款日', '-', '网上获配比例', '最新价', '首日收盘价', '网下有效申购倍数', '每百股获利', '-', '-', '-', '-', '-', '-', ] big_df = big_df[[ '序号', '代码', '简称', '申购代码', '发行总数', '网上发行数量', '顶格申购所需资金', '申购上限', '发行价格', '最新价', '首日收盘价', '申购日', '网上申购缴款日', '网上申购退款日', '上市日', '发行结果公告日', '发行市盈率', '网上获配比例', '网下有效申购倍数', '每百股获利', ]] big_df['发行总数'] = pd.to_numeric(big_df['发行总数']) big_df['网上发行数量'] = pd.to_numeric(big_df['网上发行数量']) big_df['顶格申购所需资金'] = pd.to_numeric(big_df['顶格申购所需资金']) big_df['申购上限'] = pd.to_numeric(big_df['申购上限']) big_df['发行价格'] = pd.to_numeric(big_df['发行价格']) big_df['最新价'] = pd.to_numeric(big_df['最新价']) big_df['首日收盘价'] = pd.to_numeric(big_df['首日收盘价']) big_df['发行市盈率'] = pd.to_numeric(big_df['发行市盈率']) big_df['网上获配比例'] = pd.to_numeric(big_df['网上获配比例']) big_df['网下有效申购倍数'] = pd.to_numeric(big_df['网下有效申购倍数']) big_df['每百股获利'] = pd.to_numeric(big_df['每百股获利']) big_df['申购日'] = pd.to_datetime(big_df['申购日']).dt.date big_df['网上申购缴款日'] = pd.to_datetime(big_df['网上申购缴款日']).dt.date big_df['网上申购退款日'] = pd.to_datetime(big_df['网上申购退款日']).dt.date big_df['上市日'] = pd.to_datetime(big_df['上市日']).dt.date big_df['发行结果公告日'] = pd.to_datetime(big_df['发行结果公告日']).dt.date return big_df else: params = { 'sortColumns': 'APPLY_DATE,SECURITY_CODE', 'sortTypes': '-1,-1', 'pageSize': '5000', 'pageNumber': '1', 'reportName': 'RPTA_APP_IPOAPPLY', 'columns': 'SECURITY_CODE,SECURITY_NAME,TRADE_MARKET_CODE,APPLY_CODE,TRADE_MARKET,MARKET_TYPE,ORG_TYPE,ISSUE_NUM,ONLINE_ISSUE_NUM,OFFLINE_PLACING_NUM,TOP_APPLY_MARKETCAP,PREDICT_ONFUND_UPPER,ONLINE_APPLY_UPPER,PREDICT_ONAPPLY_UPPER,ISSUE_PRICE,LATELY_PRICE,CLOSE_PRICE,APPLY_DATE,BALLOT_NUM_DATE,BALLOT_PAY_DATE,LISTING_DATE,AFTER_ISSUE_PE,ONLINE_ISSUE_LWR,INITIAL_MULTIPLE,INDUSTRY_PE_NEW,OFFLINE_EP_OBJECT,CONTINUOUS_1WORD_NUM,TOTAL_CHANGE,PROFIT,LIMIT_UP_PRICE,INFO_CODE,OPEN_PRICE,LD_OPEN_PREMIUM,LD_CLOSE_CHANGE,TURNOVERRATE,LD_HIGH_CHANG,LD_AVERAGE_PRICE,OPEN_DATE,OPEN_AVERAGE_PRICE,PREDICT_PE,PREDICT_ISSUE_PRICE2,PREDICT_ISSUE_PRICE,PREDICT_ISSUE_PRICE1,PREDICT_ISSUE_PE,PREDICT_PE_THREE,ONLINE_APPLY_PRICE,MAIN_BUSINESS', 'filter': market_map[symbol], 'source': 'WEB', 'client': 'WEB', } r = requests.get(url, params=params) data_json = r.json() total_page = data_json['result']['pages'] big_df = pd.DataFrame() for page in tqdm(range(1, total_page+1), leave=False): params.update({"pageNumber": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json['result']['data']) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "股票代码", "股票简称", "_", "申购代码", "_", "_", "_", "发行总数", "网上发行", "_", "顶格申购需配市值", "_", "申购上限", "_", "发行价格", "最新价", "首日收盘价", "申购日期", "中签号公布日", "中签缴款日期", "上市日期", "发行市盈率", "中签率", "询价累计报价倍数", "_", "配售对象报价家数", "连续一字板数量", "涨幅", "每中一签获利", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "行业市盈率", "_", "_", "_", ] big_df = big_df[ [ "股票代码", "股票简称", "申购代码", "发行总数", "网上发行", "顶格申购需配市值", "申购上限", "发行价格", "最新价", "首日收盘价", "申购日期", "中签号公布日", "中签缴款日期", "上市日期", "发行市盈率", "行业市盈率", "中签率", "询价累计报价倍数", "配售对象报价家数", "连续一字板数量", "涨幅", "每中一签获利", ] ] big_df['申购日期'] = pd.to_datetime(big_df['申购日期']).dt.date big_df['中签号公布日'] = pd.to_datetime(big_df['中签号公布日']).dt.date big_df['中签缴款日期'] = pd.to_dateti
me(big_df['中签缴款日期'])
pandas.to_datetime
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import abc import sys import copy import time import datetime import importlib from pathlib import Path from concurrent.futures import ThreadPoolExecutor, as_completed import fire import requests import numpy as np import pandas as pd from tqdm import tqdm from loguru import logger from yahooquery import Ticker from dateutil.tz import tzlocal CUR_DIR = Path(__file__).resolve().parent sys.path.append(str(CUR_DIR.parent.parent)) from data_collector.utils import get_calendar_list, get_hs_stock_symbols, get_us_stock_symbols INDEX_BENCH_URL = "http://push2his.eastmoney.com/api/qt/stock/kline/get?secid=1.{index_code}&fields1=f1%2Cf2%2Cf3%2Cf4%2Cf5&fields2=f51%2Cf52%2Cf53%2Cf54%2Cf55%2Cf56%2Cf57%2Cf58&klt=101&fqt=0&beg={begin}&end={end}" REGION_CN = "CN" REGION_US = "US" class YahooCollector: START_DATETIME = pd.Timestamp("2000-01-01") HIGH_FREQ_START_DATETIME = pd.Timestamp(datetime.datetime.now() - pd.Timedelta(days=5 * 5)) END_DATETIME = pd.Timestamp(datetime.datetime.now() +
pd.Timedelta(days=1)
pandas.Timedelta
import numpy as np import pytest import sklearn import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.utils.validation import check_is_fitted from sklearn.exceptions import NotFittedError from distutils.version import LooseVersion from dirty_cat import SuperVectorizer from dirty_cat import GapEncoder def check_same_transformers(expected_transformers: dict, actual_transformers: list): # Construct the dict from the actual transformers actual_transformers_dict = dict([(name, cols) for name, trans, cols in actual_transformers]) assert actual_transformers_dict == expected_transformers def _get_clean_dataframe(): """ Creates a simple DataFrame with various types of data, and without missing values. """ return pd.DataFrame({ 'int': pd.Series([15, 56, 63, 12, 44], dtype='int'), 'float':
pd.Series([5.2, 2.4, 6.2, 10.45, 9.], dtype='float')
pandas.Series
""" Prepare training and testing datasets as CSV dictionaries 2.0 (Further modification required for GBM) Created on 04/26/2019 @author: RH """ import os import pandas as pd import sklearn.utils as sku import numpy as np import re # get all full paths of images def image_ids_in(root_dir, ignore=['.DS_Store','dict.csv', 'all.csv']): ids = [] for id in os.listdir(root_dir): if id in ignore: print('Skipping ID:', id) else: ids.append(id) return ids # Get intersection of 2 lists def intersection(lst1, lst2): lst3 = [value for value in lst1 if value in lst2] return lst3 # pair tiles of 20x, 10x, 5x of the same area def paired_tile_ids_in(slide, label, root_dir, sldnum): dira = os.path.isdir(root_dir + 'level0') dirb = os.path.isdir(root_dir + 'level1') dirc = os.path.isdir(root_dir + 'level2') if dira and dirb and dirc: fac = 500 ids = [] for level in range(3): dirr = root_dir + 'level{}'.format(str(level)) for id in os.listdir(dirr): if '_{}.png'.format(str(sldnum)) in id: x = int(float(id.split('x-', 1)[1].split('-', 1)[0]) / fac) y = int(float(re.split('_', id.split('y-', 1)[1])[0]) / fac) try: dup = int(re.split('.p', re.split('_', id.split('y-', 1)[1])[1])[0]) except IndexError: dup = np.nan ids.append([slide, label, level, dirr + '/' + id, x, y, dup]) ids = pd.DataFrame(ids, columns=['slide', 'label', 'level', 'path', 'x', 'y', 'dup']) idsa = ids.loc[ids['level'] == 0] idsa = idsa.drop(columns=['level']) idsa = idsa.rename(index=str, columns={"path": "L0path"}) idsb = ids.loc[ids['level'] == 1] idsb = idsb.drop(columns=['slide', 'label', 'level']) idsb = idsb.rename(index=str, columns={"path": "L1path"}) idsc = ids.loc[ids['level'] == 2] idsc = idsc.drop(columns=['slide', 'label', 'level']) idsc = idsc.rename(index=str, columns={"path": "L2path"}) idsa = pd.merge(idsa, idsb, on=['x', 'y', 'dup'], how='left', validate="many_to_many") idsa['x'] = idsa['x'] - (idsa['x'] % 2) idsa['y'] = idsa['y'] - (idsa['y'] % 2) idsa = pd.merge(idsa, idsc, on=['x', 'y', 'dup'], how='left', validate="many_to_many") idsa = idsa.drop(columns=['x', 'y', 'dup']) idsa = idsa.dropna() idsa = sku.shuffle(idsa) else: idsa = pd.DataFrame(columns=['slide', 'label', 'L0path', 'L1path', 'L2path']) return idsa # Get all svs images with its label as one file; level is the tile resolution level def big_image_sum(pmd, path='../tiles/', dict_file='../tcia_pathology_slides.tsv', ref_file='../gbm_all_subtype_collections.2019-10-13.tsv'): refdict = {'low': 0, 'high': 1, False: 0, True: 1, 'normal': 0, 'short': 1, 'long': 2} dct = pd.read_csv(dict_file, sep='\t', header=0) # dct = dct.loc[dct['used_in_proteome'] == True] ref = pd.read_csv(ref_file, sep='\t', header=0) ref = ref.dropna(subset=[pmd]) ref[pmd] = ref[pmd].replace(refdict) big_images = [] if pmd == 'telomere': normalimg = intersection(ref.loc[ref[pmd] == 0]['case'].tolist(), dct['case_id'].tolist()) normalsld = dct[dct['case_id'].isin(normalimg)]['slide_id'].tolist() shortimg = intersection(ref.loc[ref[pmd] == 1]['case'].tolist(), dct['case_id'].tolist()) shortsld = dct[dct['case_id'].isin(shortimg)]['slide_id'].tolist() longimg = intersection(ref.loc[ref[pmd] == 2]['case'].tolist(), dct['case_id'].tolist()) longsld = dct[dct['case_id'].isin(longimg)]['slide_id'].tolist() for i in normalsld: sldnum = i.split('-')[-1] pctnum = i[:-3] big_images.append([pctnum, 0, path + "{}/".format(pctnum), sldnum]) for i in shortsld: sldnum = i.split('-')[-1] pctnum = i[:-3] big_images.append([pctnum, 1, path + "{}/".format(pctnum), sldnum]) for i in longsld: sldnum = i.split('-')[-1] pctnum = i[:-3] big_images.append([pctnum, 2, path + "{}/".format(pctnum), sldnum]) else: negimg = intersection(ref.loc[ref[pmd] == 0]['case'].tolist(), dct['case_id'].tolist()) negsld = dct[dct['case_id'].isin(negimg)]['slide_id'].tolist() posimg = intersection(ref.loc[ref[pmd] == 1]['case'].tolist(), dct['case_id'].tolist()) possld = dct[dct['case_id'].isin(posimg)]['slide_id'].tolist() for i in negsld: sldnum = i.split('-')[-1] pctnum = i[:-3] big_images.append([pctnum, 0, path + "{}/".format(pctnum), sldnum]) for i in possld: sldnum = i.split('-')[-1] pctnum = i[:-3] big_images.append([pctnum, 1, path + "{}/".format(pctnum), sldnum]) datapd = pd.DataFrame(big_images, columns=['slide', 'label', 'path', 'sldnum']) return datapd # seperate into training and testing; each type is the same separation ratio on big images # test and train csv files contain tiles' path. def set_sep(alll, path, cls, cut=0.3, batchsize=24): trlist = [] telist = [] valist = [] CPTAC = alll for i in range(cls): subset = CPTAC.loc[CPTAC['label'] == i] unq = list(subset.slide.unique()) np.random.shuffle(unq) validation = unq[:int(len(unq) * cut / 2)] valist.append(subset[subset['slide'].isin(validation)]) test = unq[int(len(unq) * cut / 2):int(len(unq) * cut)] telist.append(subset[subset['slide'].isin(test)]) train = unq[int(len(unq) * cut):] trlist.append(subset[subset['slide'].isin(train)]) test = pd.concat(telist) train =
pd.concat(trlist)
pandas.concat
import pandas as pd from databalancer.paraphraseGeneratorClient import paraPharaseGenerator from databalancer.paraphraseGeneratorClient import modelAndTokenizerInitializer from databalancer.paraphraseInputGeneratorClient import paraphraseInputSentenceGenerator import matplotlib.pyplot as plt ''' Datset balancer function 1 - identify the column names from an input dataset 2 - Find the class with maximum text count 3 - Identify the number of texts required for each class to meet the maximum value 4 - Using t5_paraphraser generate as many as texts for each class to meet the maximum value 5 - Depends on the saveAsCsv value,store the balanced dataset as balanced_data.csv to local machine or return the balanced pandas dataframe to user ''' def balanceDataset(dataset_name,saveAsCsv=True,pretrained_model="ramsrigouthamg/t5_paraphraser",pretrained_tokenizer="t5-base",seed=42): data = pd.read_csv(dataset_name) model,tokenizer,device = modelAndTokenizerInitializer(pretrained_model,pretrained_tokenizer,seed) columnList = list() for col in data.columns: columnList.append(col) text_column = columnList[0] class_column = columnList[1] dataOriginal = data value_dict = data[class_column].value_counts().to_dict() balanced_flag = len(list(set(list(value_dict.values())))) == 1 print("Balancing started ") iteration_count = 0 while not (balanced_flag): iteration_count += 1 print("Balancing iteration " + str(iteration_count) + "...") balanceCountDict = dict() max_key = max(value_dict, key=value_dict.get) max_count = value_dict[max_key] value_dict.pop(max_key) for key, value in value_dict.items(): balanceCountDict[key] = max_count - value for key, value in balanceCountDict.items(): if (value != 0): inputSentenceList = paraphraseInputSentenceGenerator(data,class_column,text_column,key) if (value < 5): each_para_count = 1 inputSentenceList = inputSentenceList[:value] else: each_para_count = int(value / 5) paraQuestionlist = [] for sentence in inputSentenceList: paraQuestionlist = paraPharaseGenerator(sentence,each_para_count,model,tokenizer,device) paraFrame = { text_column: paraQuestionlist, class_column: key } each_df = pd.DataFrame(paraFrame, columns=[text_column, class_column]) dataOriginal =
pd.concat([dataOriginal, each_df], ignore_index=True)
pandas.concat
# -*- coding: utf-8 -*- """ Created on Fri Jun 02 16:27:16 2017 @author: daniel """ import Tomography as tom import quPy as qp import numpy as np import matplotlib.pyplot as plt import pandas as pd import os import json import io dataNN=np.loadtxt("foersterdefect_n_n.tsv") dataNN_2=np.loadtxt("foersterdefect_n_n-2.tsv") plot_dict={} f=plt.figure() #plt.subplot(121) #plt.plot(dataNN[:,0], dataNN[:,1]/1e9, marker='o',ls='',color='b') #plt.plot(dataNN[:,0], dataNN[:,2]/1e9, marker='o',ls='',color='r') #plt.plot(dataNN[:,0], dataNN[:,3]/1e9, marker='o',ls='',color='g') #plt.plot(dataNN[:,0], dataNN[:,4]/1e9, marker='o',ls='',color='orange') #plt.xlim((45,120)) #plt.ylim((-4,0)) h=pd.DataFrame(index=dataNN[:,0],data=dataNN[:,1]/1e9) h2=pd.DataFrame(index=dataNN[:,0],data=dataNN[:,2]/1e9) h3=pd.DataFrame(index=dataNN[:,0],data=dataNN[:,3]/1e9) h4=
pd.DataFrame(index=dataNN[:,0],data=dataNN[:,4]/1e9)
pandas.DataFrame
import re import pandas as pd # import matplotlib # matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib.figure import Figure import matplotlib.ticker as ticker import matplotlib.dates as mdates import numpy as np import seaborn as sns; sns.set() from scipy.spatial.distance import squareform from scipy.spatial.distance import pdist, euclidean from sklearn.preprocessing import MinMaxScaler from datetime import datetime, timedelta from io import StringIO, BytesIO from app.models import Country, CountryStatus import base64 import plotly.figure_factory as ff data_dir = 'data/' def get_all_places(level='countries'): # df_places = pd.read_csv(data_dir + 'all_{}_compare.csv'.format(level)) df_places = Country.all_countries_names_as_df() return list(df_places['Name']) def get_all_countries_response(): df_places = pd.read_csv(data_dir + 'all_countries_response.csv') return list(df_places['Country']) def get_df_similar_places(place, level = 'countries'): # if level == 'cities': # df_sim = pd.read_csv(data_dir + 'all_{}_similarity.csv'.format(level)) # df_sim = df_sim[df_sim['CityBase'] == place] # df_sim = df_sim[['Name', 'gap', 'dist', 'Similarity']].set_index('Name') # return df_sim # df_orig = pd.read_csv(data_dir + 'total_cases_{}_normalized.csv'.format(level)) df_orig = Country.all_countries_as_df() df_orig_piv_day = df_orig.pivot(index='Name', columns='Day', values='TotalDeaths') df_orig_piv_day = df_orig_piv_day.fillna(0) sr_place = df_orig_piv_day.loc[place,] place_start = (sr_place > 0).idxmax() # place_start_cases = (df_orig.set_index('Name').loc[place,].set_index('Day')['Total'] > 0).idxmax() days_ahead = 14 #if level == 'countries' else 5 df_places_ahead = df_orig_piv_day[df_orig_piv_day.loc[:, max(place_start - days_ahead,0)] > 0.0] df_places_rate_norm = df_orig_piv_day.loc[df_places_ahead.index, :] # df_places_rate_norm = df_orig_piv_day.loc[['France', 'Italy'], :] df_places_rate_norm = df_places_rate_norm.append(df_orig_piv_day.loc[place,]) # reverse order to keep base place on top df_places_rate_norm = df_places_rate_norm.iloc[::-1] sr_place = df_orig_piv_day.loc[place,] # place_start = (sr_place > 0).idxmax() # sr_place_compare = sr_place.loc[place_start:].dropna() sr_place = df_orig_piv_day.loc[place,] place_start = (sr_place > 0).idxmax() sr_place_compare = sr_place.loc[place_start:].dropna() df_places_gap = pd.DataFrame({'Name': [], 'gap': [], 'dist': []}) df_places_gap = df_places_gap.append(pd.Series([place, 0.0, -1], index=df_places_gap.columns), ignore_index=True) for other_place in df_places_rate_norm.index[1:]: sr_other_place = df_places_rate_norm.loc[other_place,].fillna(0) min_dist = np.inf min_pos = 0 for i in range(0, 1 + len(sr_other_place) - len(sr_place_compare)): sr_other_place_compare = sr_other_place[i: i + len(sr_place_compare)] dist = euclidean(sr_place_compare, sr_other_place_compare) if (dist < min_dist): min_dist = dist min_pos = i day_place2 = sr_other_place.index[min_pos] gap = day_place2 - place_start df_places_gap = df_places_gap.append( pd.Series([other_place, gap, min_dist], index=df_places_gap.columns), ignore_index=True) df_places_gap = df_places_gap.set_index('Name') similar_places = df_places_gap.sort_values('dist') dist_max = euclidean(sr_place_compare, np.zeros(len(sr_place_compare))) similar_places['Similarity'] = similar_places['dist'].apply(lambda x: (1.0 - x / dist_max) if x >= 0 else 1) return similar_places # get similar places based on alighment of death curve def get_similar_places(place, level = 'countries'): similar_places = get_df_similar_places(place, level = level) # print(similar_places) tuples = [tuple(x) for x in similar_places[1:8].reset_index().to_numpy()] return tuples #get similar places based on socioeconomic features def get_similar_places_socio(place, level = 'countries'): df_socio_stats_orig = pd.read_csv(data_dir + 'socio_stats_{}.csv'.format(level)).drop('score', axis=1) if not len(df_socio_stats_orig.query('Name == "{}"'.format(place))): return [] df_socio_stats_orig_piv = df_socio_stats_orig.pivot(index='Name', columns='variable') df_socio_stats_orig_piv = df_socio_stats_orig_piv.fillna(df_socio_stats_orig_piv.mean()) scaler = MinMaxScaler() # feature_range=(-1, 1) df_socio_stats_orig_piv_norm = pd.DataFrame(scaler.fit_transform(df_socio_stats_orig_piv), columns=df_socio_stats_orig_piv.columns, index=df_socio_stats_orig_piv.index) df_dist = pd.DataFrame(squareform(pdist(df_socio_stats_orig_piv_norm)), index=df_socio_stats_orig_piv_norm.index, columns=df_socio_stats_orig_piv_norm.index) df_sim = df_dist.loc[:, place].to_frame(name='dist') df_sim['similarity'] = 1 - (df_sim['dist'] / df_sim['dist'].max()) df_sim = df_sim.sort_values('similarity', ascending=False).drop('dist', axis=1) tuples = [tuple(x) for x in df_sim[1:11].reset_index().to_numpy()] return tuples def get_places_by_variable(type = 'socio', level = 'countries', variable = 'Population', ascending = False): if type == 'socio': df_orig = pd.read_csv(data_dir + 'socio_stats_{}.csv'.format(level)).drop('score', axis=1) else: df_orig = pd.read_csv(data_dir + 'live_stats_{}.csv'.format(level)) # df_orig = df_orig.groupby(['Name', 'Date']).tail(1) df_orig = df_orig[df_orig['variable'] == variable].pivot(index='Name', columns='variable', values='value').reset_index() df_orig = df_orig[['Name', variable]].sort_values(variable, ascending = ascending).head(10) tuples = [tuple(x) for x in df_orig.reset_index(drop=True).to_numpy()] return tuples def get_fig_compare_rates(place, place2, level = 'countries', scale='log', y='total', mode='static', priority = 'now'): df_places_to_show = get_place_comparison_df(place, place2, level = level, priority = priority) fig = make_chart_comparison(df_places_to_show, level = level, scale=scale, y=y, mode=mode) return fig def get_html_compare_response(place, place2, level = 'countries', scale='log', y='total', mode='static', priority = 'now'): # df_places_to_show = get_place_comparison_df(place, place2, level = level, priority = priority, type = 'response') data_dir = 'data/' df_orig = pd.read_csv(data_dir + 'response/official_response_countries.csv', parse_dates=['Date']) cols = list(df_orig.columns[df_orig.dtypes.eq('float64')][:15]) + ['ConfirmedDeaths'] df_orig[cols] = df_orig[cols].astype(pd.Int64Dtype()) countries = [place, place2] df_orig = df_orig[df_orig['Name'].isin(countries)] df_gantt = df_orig[['Name', 'Date', 'StringencyIndexForDisplay', 'ConfirmedDeaths']].rename( columns={'Date': 'Start', 'Name': 'Task'}) df_gantt['StringencyIndexForDisplay'] = df_gantt['StringencyIndexForDisplay'].fillna(0) df_gantt['Finish'] = df_gantt['Start'] + timedelta(days=1) df_gantt['Description'] = df_orig.apply(lambda x: "Stringency Index: {StringencyIndexForDisplay}<br>Confirmed Deaths: {ConfirmedDeaths}<br>School closing: {C1_School closing}<br>Workplace closing: {C2_Workplace closing}<br>Cancel public events: {C3_Cancel public events}<br>Restrictions on gatherings: {C4_Restrictions on gatherings}<br>Close public transport: {C5_Close public transport}<br>Stay at home requirements: {C6_Stay at home requirements}<br>Restrictions on internal movement: {C7_Restrictions on internal movement}<br>International travel controls: {C8_International travel controls}".format( **x), axis=1) df_gantt['ConfirmedDeaths'] = np.log(df_gantt['ConfirmedDeaths']) df_gantt = df_gantt.replace([-np.inf], 0) df_gantt['DeathsNorm'] = 0.7 * (df_gantt['ConfirmedDeaths'] - df_gantt['ConfirmedDeaths'].min()) / ( df_gantt['ConfirmedDeaths'].max() - df_gantt['ConfirmedDeaths'].min()) - 0.35 df_gantt_c1 = df_gantt[df_gantt['Task'] == place] df_gantt_c1['DeathsNorm'] = df_gantt_c1['DeathsNorm'] + 1 df_gantt_c2 = df_gantt[df_gantt['Task'] == place2] fig = make_chart_response_comparison(df_gantt_c1, df_gantt_c2, level = level, scale=scale, y=y, mode=mode) return fig def get_html_compare_response_econ(place, place2, level = 'countries', scale='log', y='total', mode='static', priority = 'now'): # df_places_to_show = get_place_comparison_df(place, place2, level = level, priority = priority, type = 'response') data_dir = 'data/' df_orig = pd.read_csv(data_dir + 'response/official_response_economic_countries.csv', parse_dates=['Date']) # cols = list(df_orig.columns[df_orig.dtypes.eq('float64')][:15]) + ['ConfirmedDeaths'] # df_orig[cols] = df_orig[cols].astype(pd.Int64Dtype()) countries = [place, place2] df_orig = df_orig[df_orig['Name'].isin(countries)] df_gantt = df_orig[['Name', 'Date', 'EconomicSupportIndexForDisplay', 'ConfirmedDeaths', 'Description']].rename( columns={'Date': 'Start', 'Name': 'Task'}) df_gantt['EconomicSupportIndexForDisplay'] = df_gantt['EconomicSupportIndexForDisplay'].fillna(0) df_gantt['Finish'] = df_gantt['Start'] + timedelta(days=1) df_gantt['ConfirmedDeaths'] = np.log(df_gantt['ConfirmedDeaths']) df_gantt = df_gantt.replace([-np.inf], 0) df_gantt['DeathsNorm'] = 0.7 * (df_gantt['ConfirmedDeaths'] - df_gantt['ConfirmedDeaths'].min()) / ( df_gantt['ConfirmedDeaths'].max() - df_gantt['ConfirmedDeaths'].min()) - 0.35 df_gantt_c1 = df_gantt[df_gantt['Task'] == place] df_gantt_c1['DeathsNorm'] = df_gantt_c1['DeathsNorm'] + 1 df_gantt_c2 = df_gantt[df_gantt['Task'] == place2] fig = make_chart_response_comparison(df_gantt_c1, df_gantt_c2, level = level, scale=scale, y=y, mode=mode, var='EconomicSupportIndexForDisplay') return fig def get_fig_compare_doubling_rates(place, place2, level = 'countries'): df_places_to_show = get_place_comparison_df(place, place2, level = level) fig = make_chart_comparison_growth(df_places_to_show, level = level) return fig def get_fig_response(country): df_orig_response = pd.read_csv(data_dir + 'pollution_countries_raw.csv', parse_dates=['Date']) df_orig_cases = pd.read_csv(data_dir + 'total_cases_countries_normalized.csv', parse_dates=['Date']).rename( columns={'Name': 'Country'}) df_orig = pd.merge(df_orig_response, df_orig_cases, how='left') df_to_show = df_orig[df_orig['Country'] == country][['Country', 'City', 'Date', 'no2', 'TotalDeaths']].sort_values('Date') deaths_start = 10 start_deaths = (df_to_show['TotalDeaths'] >= deaths_start).idxmax() avg_before_deaths = df_to_show.loc[:start_deaths, 'no2'].mean() start_display = max(start_deaths - 60, 0) df_to_show = df_to_show.loc[start_display:, ] df_to_show['no2'] = df_to_show[['no2']].rolling(5).mean() fig = make_chart_response(country, deaths_start, avg_before_deaths, df_to_show) return fig def get_places_gap_df(df_orig, place, place2, priority = 'now'): df_places_gap = pd.DataFrame({'Name': [], 'gap': [], 'dist': []}) df_places_gap = df_places_gap.append(pd.Series([place, 0.0, -1], index=df_places_gap.columns), ignore_index=True) df_orig = df_orig.set_index('Name') if not ((df_orig.loc[place,'TotalDeaths'].max()>0) and (df_orig.loc[place2,'TotalDeaths'].max()>0)): # one of the places has 0 deaths min_dist = 0 # means nothing here dist_max = 1 # means nothing here gap = 0 elif priority != 'now': # must align based on beginning of deaths day_place = (df_orig.loc[place,:].set_index('Day')['TotalDeaths'] > 10).idxmax() day_place2 = (df_orig.loc[place2,:].set_index('Day')['TotalDeaths'] > 10).idxmax() min_dist = 0 # means nothing here dist_max = 1 # means nothing here gap = day_place2 - day_place else: # similarity alignment df_orig_piv_day = df_orig.reset_index().pivot(index='Name', columns='Day', values='TotalDeaths') sr_place = df_orig_piv_day.loc[place,] place_start = (sr_place > 0).idxmax() sr_place_compare = sr_place.loc[place_start:].dropna() sr_other_place = df_orig_piv_day.loc[place2,].fillna(0) min_dist = np.inf min_pos = 0 for i in range(0, 1 + len(sr_other_place) - len(sr_place_compare)): sr_other_place_compare = sr_other_place[i: i + len(sr_place_compare)] dist = euclidean(sr_place_compare, sr_other_place_compare) if (dist < min_dist): min_dist = dist min_pos = i dist_max = euclidean(sr_place_compare, np.zeros(len(sr_place_compare))) day_place2 = sr_other_place.index[min_pos] # gap = min_pos - place_start gap = day_place2 - place_start df_places_gap = df_places_gap.append( pd.Series([place2, gap, min_dist], index=df_places_gap.columns), ignore_index=True) df_places_gap = df_places_gap.set_index('Name')#.sort_values('dist') df_places_gap['Similarity'] = df_places_gap['dist'].apply(lambda x: (1.0 - x / dist_max) if x >= 0 else 1) return df_places_gap def get_total_cases_df_adjusted(df_orig, df_places_gap, place, place2): df_total_cases = df_orig.set_index('Name') df_total_cases_top = df_total_cases.join(df_places_gap) df_total_cases_top['DayAdj'] = ((df_total_cases_top['Day'] - df_total_cases_top['gap']) - 1).astype(int) # df_total_cases_top.loc[place2, 'DayAdj'] = ((df_total_cases_top.loc[place2, 'Day'] - df_total_cases_top.loc[place2, 'gap']) - 1) # df_total_cases_top['DayAdj'] = df_total_cases_top['DayAdj'].astype(int) return df_total_cases_top def get_place_comparison_df(place, place2, level = 'countries', priority = 'now'): # df_orig = pd.read_csv(data_dir + 'total_cases_{}_normalized.csv'.format(level)) df_orig = Country.all_countries_as_df() # to force place order df_orig_c1 = df_orig[df_orig['Name'] == place] df_orig_c2 = df_orig[df_orig['Name'] == place2] len_c1 = len(df_orig_c1[df_orig_c1['TotalDeaths'] > 0]) len_c2 = len(df_orig_c2[df_orig_c2['TotalDeaths'] > 0]) # place has to be the one with smallest number of values for Deaths if (len_c1 > len_c2): place, place2 = place2, place df_orig = pd.concat([df_orig_c2, df_orig_c1]) else: df_orig = pd.concat([df_orig_c1, df_orig_c2]) df_countries_gap = get_places_gap_df(df_orig, place, place2, priority) df_total_cases_top = get_total_cases_df_adjusted(df_orig, df_countries_gap, place, place2) place_start_cases = (df_orig.set_index('Name').loc[place,].set_index('Day')['Total'] > 0).idxmax() df_total_cases_top = df_total_cases_top[df_total_cases_top['DayAdj'] >= place_start_cases] return df_total_cases_top.reset_index() def make_chart_comparison(df_places_to_show, level='countries', scale='log', y='total', mode='static'): week = mdates.WeekdayLocator(interval=2) # every year months = mdates.MonthLocator() # every month month_fmt = mdates.DateFormatter('%b-%d') var_y_suffix = '' if y == 'total' else 'Per100k' label_y_scale = ' (log)' if scale == 'log' else '' label_y_y = '' if y == 'total' else ' per 100k' # get last date from dataframe date = df_places_to_show['Date'].max() # datetime.today().strftime('%Y-%m-%d') gap = int(df_places_to_show['gap'].min()) y_lim = df_places_to_show['Total' + var_y_suffix].max() #* 1.2 # Generate the figure **without using pyplot**. fig = Figure(figsize=(8, 5)) ax = fig.subplots() places_to_show = df_places_to_show['Name'].unique()[:2] place_name = 'Country' if level == 'countries' else 'City' df_places_to_show = df_places_to_show.rename(columns={'Name': place_name}) ax.set_title('{} Comparison - COVID-19 Cases vs. Deaths - {}'.format(place_name, date), fontsize=14) sns.scatterplot(x="DayAdj", y='Total' + var_y_suffix, hue=place_name, lw=6, alpha=0.8, data=df_places_to_show, ax=ax) ax.xaxis.set_major_locator(months) ax.xaxis.set_major_formatter(month_fmt) ax.legend(loc='upper left', title="Confirmed cases", frameon=True) ax.set(ylabel='Total confirmed cases{}{}'.format(label_y_y, label_y_scale), xlabel="Date for {} ({}'s data shifted {} days to align death curves)".format(places_to_show[0], places_to_show[1], gap)) ax.set_ylim(0.5, y_lim) if scale == 'log' else ax.set_ylim(-5, y_lim) ax2 = ax.twinx() if scale == 'log': ax.set_yscale('log') ax2.set_yscale('log') ax.yaxis.set_major_formatter(ticker.FuncFormatter(lambda y, _: '{:g}'.format(y))) ax2.yaxis.set_major_formatter(ticker.FuncFormatter(lambda y, _: '{:g}'.format(y))) ax2.grid(False) sns.lineplot(x="DayAdj", y='TotalDeaths' + var_y_suffix, hue=place_name, alpha=0.7, lw=6, ax=ax2, data=df_places_to_show) ax2.legend(loc='lower right', title="Deaths", frameon=True) ax2.set(ylabel='Total deaths{}{}'.format(label_y_y, label_y_scale)) ax2.set_ylim(0.5, y_lim) if scale == 'log' else ax2.set_ylim(-5, y_lim) logo = plt.imread('./static/img/new_logo_site.png') ax.figure.figimage(logo, 95, 70, alpha=.35, zorder=1) fig.tight_layout() # display(fig) # Save it to a temporary buffer. buf = BytesIO() fig.savefig(buf, format="png") buf.seek(0) return buf def make_chart_response_comparison(df_gantt_c1, df_gantt_c2, level='countries', scale='log', y='total', mode='static', var='StringencyIndexForDisplay'): # to force place order df_gantt = pd.concat([df_gantt_c1, df_gantt_c2]) fig = ff.create_gantt(df_gantt, colors=['#93e4c1', '#333F44'], index_col=var, show_colorbar=False, bar_width=0.2, showgrid_x=True, showgrid_y=True, group_tasks=True, title='Comparing response', height=350 ) fig.add_scatter(x=df_gantt_c1['Start'], y=df_gantt_c1['DeathsNorm'], hoverinfo='skip', line=dict(color='rgb(222, 132, 82)', width=4)) fig.add_scatter(x=df_gantt_c2['Start'], y=df_gantt_c2['DeathsNorm'], hoverinfo='skip', line=dict(color='rgb(222, 132, 82)', width=4)) fig.update_layout( xaxis=dict( showline=True, showgrid=False, showticklabels=True, linecolor='rgb(204, 204, 204)', linewidth=2, ticks='outside', tickfont=dict( family='Arial', size=12, color='rgb(82, 82, 82)', ), type="date" ), yaxis=dict( showgrid=False, zeroline=False, showline=False, showticklabels=True, autorange=True, ), autosize=False, margin=dict( autoexpand=False, l=100, r=20, t=110, ), showlegend=False, plot_bgcolor='white' ) annotations = [] annotations.append(dict(xref='paper', yref='paper', x=0.5, y=-0.13, xanchor='center', yanchor='top', text='Date', font=dict(family='Arial', size=12, color='rgb(150,150,150)'), showarrow=False)) fig.update_layout(annotations=annotations) # fig.write_html("gantt.html") # fig.show() html = fig.to_html(full_html=False, include_plotlyjs=False, ) return html def make_chart_comparison_growth(df_places_to_show, level='countries'): # get last date from dataframe date = df_places_to_show['Date'].max() # datetime.today().strftime('%Y-%m-%d') gap = int(df_places_to_show['gap'].min()) # Generate the figure **without using pyplot**. fig = Figure(figsize=(8, 6)) axs = fig.subplots(nrows=2) place_name = 'Country' if level == 'countries' else 'City' axs[0].set_title('{} Comparison - COVID-19 Weekly Growth (%) - {}'.format(place_name, date), fontsize=14) places_to_show = df_places_to_show['Name'].unique()[:2] df_places_to_show = df_places_to_show.rename(columns={'Name': place_name}) sns.lineplot(x="DayAdj", y='WeeklyGrowth', hue=place_name, lw = 6, alpha = 0.8, ax=axs[0], data=df_places_to_show) axs[0].set(ylabel='Weekly growth of cases', xlabel='') axs[0].set_ylim(0, 500) sns.lineplot(x="DayAdj", y='WeeklyGrowthDeaths', hue=place_name, alpha = 0.7, lw = 6, ax=axs[1], data=df_places_to_show) axs[1].set(ylabel='Weekly growth of deaths', xlabel="Day ({}'s data shifted {} days for the death curves to align)".format(places_to_show[1], gap)) axs[1].set_ylim(0, 500) # Save it to a temporary buffer. buf = BytesIO() fig.savefig(buf, format="png") buf.seek(0) return buf def make_chart_response(country, deaths_start, avg_before_deaths, df_to_show): city = df_to_show['City'].iloc[0] df_quar = pd.read_csv(data_dir + 'all_countries_response.csv', parse_dates = ['Quarantine']) quarantine = df_quar[df_quar['Country'] == country]['Quarantine'].iloc[0] week = mdates.WeekdayLocator(interval=2) # every year months = mdates.MonthLocator() # every month month_fmt = mdates.DateFormatter('%b-%d') y_lim = df_to_show['TotalDeaths'].max() * 1.2 y2_lim = df_to_show['no2'].max() * 1.8 # Generate the figure **without using pyplot**. fig = Figure(figsize=(10, 5)) ax = fig.subplots() ax.set_title('Assessing quarantine implementation - ' + country, fontsize=16, loc='left') if not pd.isnull(quarantine): ax.axvline(x=quarantine, color='k', linestyle='--', lw=3, label='Official quarantine') ax.scatter(df_to_show['Date'], df_to_show['TotalDeaths'], color='black', alpha = 0.7, label = 'Confirmed deaths') ax.xaxis.set_major_locator(week) ax.xaxis.set_major_formatter(month_fmt) ax.set_yscale('log') ax.yaxis.set_major_formatter(ticker.FuncFormatter(lambda y, _: '{:g}'.format(y))) ax.set_ylim(1, y_lim) ax.set(ylabel='Confirmed deaths') ax2 = ax.twinx() sns.lineplot(x="Date", y='no2', alpha = 0.7, lw = 6, label = 'Daily $\mathrm{{NO}}_2$ pollution *', ax=ax2, data=df_to_show) sns.lineplot(x="Date", y=avg_before_deaths, alpha = 0.7, lw = 6, label = 'Average pollution **', ax=ax2, data=df_to_show) ax2.grid(False) ax2.xaxis.set_major_locator(week) ax2.xaxis.set_major_formatter(month_fmt) ax2.set_ylim(1, y2_lim) ax2.set(ylabel='$\mathrm{{NO}}_2$ pollution') # ask matplotlib for the plotted objects and their labels lines, labels = ax.get_legend_handles_labels() lines2, labels2 = ax2.get_legend_handles_labels() ax2.legend(lines + lines2, labels + labels2, loc='upper left') annotation = """* Median of $\mathrm{{NO}}_2$ measurements in the most affected city ({city}), 5 days rolling average over time series\n** Average daily $\mathrm{{NO}}_2$ measurements from the begining of 2020 until the first day after {deaths_start} deaths""".format(city=city, deaths_start = deaths_start) ax.annotate(annotation, (0,0), (0, -30), xycoords='axes fraction', textcoords='offset points', va='top') logo = plt.imread('./static/img/new_logo_site.png') ax.figure.figimage(logo, 100, 110, alpha=.35, zorder=1) fig.tight_layout() # Save it to a temporary buffer. buf = BytesIO() fig.savefig(buf, format="png") buf.seek(0) return buf def get_timeline_list(place, place2, level = 'countries'): # df_orig = pd.read_csv(data_dir + 'total_cases_{}_normalized.csv'.format(level)) df_orig = Country.all_countries_as_df() # to force place order df_orig_c1 = df_orig[df_orig['Name'] == place] df_orig_c2 = df_orig[df_orig['Name'] == place2] len_c1 = len(df_orig_c1[df_orig_c1['TotalDeaths'] > 0]) len_c2 = len(df_orig_c2[df_orig_c2['TotalDeaths'] > 0]) # place has to be the one with smallest number of values for Deaths if (len_c1 > len_c2): place, place2 = place2, place df_orig = pd.concat([df_orig_c2, df_orig_c1]) else: df_orig = pd.concat([df_orig_c1, df_orig_c2]) df_places_gap = get_places_gap_df(df_orig, place, place2) df_total_cases_top = get_total_cases_df_adjusted(df_orig, df_places_gap, place, place2) places = [place, place2] df_places_to_show = df_total_cases_top.loc[places, :] places_to_show = list(df_places_to_show.index.unique()) df_events_owd = pd.DataFrame({'Date': [], 'Name': [], 'Desc': [], 'FullText': [], 'Highlight': []}) today = df_places_to_show['Date'].max() for c in places_to_show: df_place = df_places_to_show.loc[c,] # df_events_owd = df_events_owd.append(pd.DataFrame({'Date':['2019-12-31'], 'Name': [c], 'Desc':['Begining of epidemic'], 'FullText':['First day of data tracking.']})) df_events_owd = df_events_owd.append( pd.Series([(df_place.set_index('Date')['Total'] > 0).idxmax(), c, '1st Confirmed Case', '', 1], index=df_events_owd.columns), ignore_index=True) df_events_owd = df_events_owd.append( pd.Series([(df_place.set_index('Date')['TotalDeaths'] > 0).idxmax(), c, '1st Death', '', 5], index=df_events_owd.columns), ignore_index=True) msg = """{} is approximately {} days behind {}'s epidemic progression. This is an estimate based on matching their death growth curves.""".format(place, abs( df_places_gap.loc[place2, 'gap']), place2) df_events_owd = df_events_owd.append(pd.Series([today, c, 'Today', msg, 1], index=df_events_owd.columns), ignore_index=True) df_events_owd['Source'] = 'Our World in Data' # Adding data from Situation Reports if level == 'countries': df_events_sr = pd.read_csv(data_dir + 'situation_reports_countries_highlight.csv') else: df_events_sr = pd.DataFrame({'Name':[]}) df_events_sr = df_events_sr[df_events_sr['Name'].isin([place, place2])] df_events =
pd.concat([df_events_owd, df_events_sr], sort=True)
pandas.concat
""" Combines medication statistics for various sublocalizations. """ import pandas as pd from click import * from logging import * from typing import * def load_data(path: str, sublocalization: str) -> pd.DataFrame: """ Loads data from the given path and with the given sublocalization. Args: path: the path to load data from. sublocalization: the sublocalization to assign to the loaded data. """ debug(f'Loading {path!r}') result = pd.read_csv(path) debug(f'Result: {result.shape}') result['sublocalization'] = sublocalization return result @command() @option( '--input', required=True, multiple=True, help='the CSV files to read inputs from') @option( '--sublocalization', required=True, multiple=True, help='the sublocalizations to assign to each input') @option('--output', required=True, help='the Excel file to write output to') def main(input: Tuple[str], sublocalization: Tuple[str], output: str): if len(input) != len(sublocalization): raise UsageError( 'number of --inputs must match the number of --sublocalizations') basicConfig(level=DEBUG) info('Loading data') data = [load_data(i, s) for i, s in zip(input, sublocalization)] info('Concatenating data') data =
pd.concat(data)
pandas.concat
# -*- coding: utf-8 -*- # pylint: disable=E1101 # flake8: noqa from datetime import datetime import csv import os import sys import re import nose import platform from multiprocessing.pool import ThreadPool from numpy import nan import numpy as np from pandas.io.common import DtypeWarning from pandas import DataFrame, Series, Index, MultiIndex, DatetimeIndex from pandas.compat import( StringIO, BytesIO, PY3, range, long, lrange, lmap, u ) from pandas.io.common import URLError import pandas.io.parsers as parsers from pandas.io.parsers import (read_csv, read_table, read_fwf, TextFileReader, TextParser) import pandas.util.testing as tm import pandas as pd from pandas.compat import parse_date import pandas.lib as lib from pandas import compat from pandas.lib import Timestamp from pandas.tseries.index import date_range import pandas.tseries.tools as tools from numpy.testing.decorators import slow import pandas.parser class ParserTests(object): """ Want to be able to test either C+Cython or Python+Cython parsers """ data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def read_csv(self, *args, **kwargs): raise NotImplementedError def read_table(self, *args, **kwargs): raise NotImplementedError def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) self.dirpath = tm.get_data_path() self.csv1 = os.path.join(self.dirpath, 'test1.csv') self.csv2 = os.path.join(self.dirpath, 'test2.csv') self.xls1 = os.path.join(self.dirpath, 'test.xls') def construct_dataframe(self, num_rows): df = DataFrame(np.random.rand(num_rows, 5), columns=list('abcde')) df['foo'] = 'foo' df['bar'] = 'bar' df['baz'] = 'baz' df['date'] = pd.date_range('20000101 09:00:00', periods=num_rows, freq='s') df['int'] = np.arange(num_rows, dtype='int64') return df def generate_multithread_dataframe(self, path, num_rows, num_tasks): def reader(arg): start, nrows = arg if not start: return pd.read_csv(path, index_col=0, header=0, nrows=nrows, parse_dates=['date']) return pd.read_csv(path, index_col=0, header=None, skiprows=int(start) + 1, nrows=nrows, parse_dates=[9]) tasks = [ (num_rows * i / num_tasks, num_rows / num_tasks) for i in range(num_tasks) ] pool = ThreadPool(processes=num_tasks) results = pool.map(reader, tasks) header = results[0].columns for r in results[1:]: r.columns = header final_dataframe = pd.concat(results) return final_dataframe def test_converters_type_must_be_dict(self): with tm.assertRaisesRegexp(TypeError, 'Type converters.+'): self.read_csv(StringIO(self.data1), converters=0) def test_empty_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), decimal='') def test_empty_thousands_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands='') def test_multi_character_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands=',,') def test_empty_string(self): data = """\ One,Two,Three a,1,one b,2,two ,3,three d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv(StringIO(data)) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}, keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv( StringIO(data), na_values=['a'], keep_default_na=False) xp = DataFrame({'One': [np.nan, 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) # GH4318, passing na_values=None and keep_default_na=False yields # 'None' as a na_value data = """\ One,Two,Three a,1,None b,2,two ,3,None d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv( StringIO(data), keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['None', 'two', 'None', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) def test_read_csv(self): if not compat.PY3: if compat.is_platform_windows(): prefix = u("file:///") else: prefix = u("file://") fname = prefix + compat.text_type(self.csv1) # it works! read_csv(fname, index_col=0, parse_dates=True) def test_dialect(self): data = """\ label1,label2,label3 index1,"a,c,e index2,b,d,f """ dia = csv.excel() dia.quoting = csv.QUOTE_NONE df = self.read_csv(StringIO(data), dialect=dia) data = '''\ label1,label2,label3 index1,a,c,e index2,b,d,f ''' exp = self.read_csv(StringIO(data)) exp.replace('a', '"a', inplace=True) tm.assert_frame_equal(df, exp) def test_dialect_str(self): data = """\ fruit:vegetable apple:brocolli pear:tomato """ exp = DataFrame({ 'fruit': ['apple', 'pear'], 'vegetable': ['brocolli', 'tomato'] }) dia = csv.register_dialect('mydialect', delimiter=':') # noqa df = self.read_csv(StringIO(data), dialect='mydialect') tm.assert_frame_equal(df, exp) csv.unregister_dialect('mydialect') def test_1000_sep(self): data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_1000_sep_with_decimal(self): data = """A|B|C 1|2,334.01|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334.01, 13], 'C': [5, 10.] }) tm.assert_equal(expected.A.dtype, 'int64') tm.assert_equal(expected.B.dtype, 'float') tm.assert_equal(expected.C.dtype, 'float') df = self.read_csv(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) data_with_odd_sep = """A|B|C 1|2.334,01|5 10|13|10, """ df = self.read_csv(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) def test_separator_date_conflict(self): # Regression test for issue #4678: make sure thousands separator and # date parsing do not conflict. data = '06-02-2013;13:00;1-000.215' expected = DataFrame( [[datetime(2013, 6, 2, 13, 0, 0), 1000.215]], columns=['Date', 2] ) df = self.read_csv(StringIO(data), sep=';', thousands='-', parse_dates={'Date': [0, 1]}, header=None) tm.assert_frame_equal(df, expected) def test_squeeze(self): data = """\ a,1 b,2 c,3 """ idx = Index(['a', 'b', 'c'], name=0) expected = Series([1, 2, 3], name=1, index=idx) result = self.read_table(StringIO(data), sep=',', index_col=0, header=None, squeeze=True) tm.assertIsInstance(result, Series) tm.assert_series_equal(result, expected) def test_squeeze_no_view(self): # GH 8217 # series should not be a view data = """time,data\n0,10\n1,11\n2,12\n4,14\n5,15\n3,13""" result = self.read_csv(StringIO(data), index_col='time', squeeze=True) self.assertFalse(result._is_view) def test_inf_parsing(self): data = """\ ,A a,inf b,-inf c,Inf d,-Inf e,INF f,-INF g,INf h,-INf i,inF j,-inF""" inf = float('inf') expected = Series([inf, -inf] * 5) df = read_csv(StringIO(data), index_col=0) tm.assert_almost_equal(df['A'].values, expected.values) df = read_csv(StringIO(data), index_col=0, na_filter=False) tm.assert_almost_equal(df['A'].values, expected.values) def test_multiple_date_col(self): # Can use multiple date parsers data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def func(*date_cols): return lib.try_parse_dates(parsers._concat_date_cols(date_cols)) df = self.read_csv(StringIO(data), header=None, date_parser=func, prefix='X', parse_dates={'nominal': [1, 2], 'actual': [1, 3]}) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'nominal'], d) df = self.read_csv(StringIO(data), header=None, date_parser=func, parse_dates={'nominal': [1, 2], 'actual': [1, 3]}, keep_date_col=True) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ df = read_csv(StringIO(data), header=None, prefix='X', parse_dates=[[1, 2], [1, 3]]) self.assertIn('X1_X2', df) self.assertIn('X1_X3', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'X1_X2'], d) df = read_csv(StringIO(data), header=None, parse_dates=[[1, 2], [1, 3]], keep_date_col=True) self.assertIn('1_2', df) self.assertIn('1_3', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = '''\ KORD,19990127 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 ''' df = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[1], index_col=1) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.index[0], d) def test_multiple_date_cols_int_cast(self): data = ("KORD,19990127, 19:00:00, 18:56:00, 0.8100\n" "KORD,19990127, 20:00:00, 19:56:00, 0.0100\n" "KORD,19990127, 21:00:00, 20:56:00, -0.5900\n" "KORD,19990127, 21:00:00, 21:18:00, -0.9900\n" "KORD,19990127, 22:00:00, 21:56:00, -0.5900\n" "KORD,19990127, 23:00:00, 22:56:00, -0.5900") date_spec = {'nominal': [1, 2], 'actual': [1, 3]} import pandas.io.date_converters as conv # it works! df = self.read_csv(StringIO(data), header=None, parse_dates=date_spec, date_parser=conv.parse_date_time) self.assertIn('nominal', df) def test_multiple_date_col_timestamp_parse(self): data = """05/31/2012,15:30:00.029,1306.25,1,E,0,,1306.25 05/31/2012,15:30:00.029,1306.25,8,E,0,,1306.25""" result = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[[0, 1]], date_parser=Timestamp) ex_val = Timestamp('05/31/2012 15:30:00.029') self.assertEqual(result['0_1'][0], ex_val) def test_single_line(self): # GH 6607 # Test currently only valid with python engine because sep=None and # delim_whitespace=False. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'sep=None with delim_whitespace=False'): # sniff separator buf = StringIO() sys.stdout = buf # printing warning message when engine == 'c' for now try: # it works! df = self.read_csv(StringIO('1,2'), names=['a', 'b'], header=None, sep=None) tm.assert_frame_equal(DataFrame({'a': [1], 'b': [2]}), df) finally: sys.stdout = sys.__stdout__ def test_multiple_date_cols_with_header(self): data = """\ ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" df = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}) self.assertNotIsInstance(df.nominal[0], compat.string_types) ts_data = """\ ID,date,nominalTime,actualTime,A,B,C,D,E KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def test_multiple_date_col_name_collision(self): self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), parse_dates={'ID': [1, 2]}) data = """\ date_NominalTime,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" # noqa self.assertRaises(ValueError, self.read_csv, StringIO(data), parse_dates=[[1, 2]]) def test_index_col_named(self): no_header = """\ KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" h = "ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir\n" data = h + no_header rs = self.read_csv(StringIO(data), index_col='ID') xp = self.read_csv(StringIO(data), header=0).set_index('ID') tm.assert_frame_equal(rs, xp) self.assertRaises(ValueError, self.read_csv, StringIO(no_header), index_col='ID') data = """\ 1,2,3,4,hello 5,6,7,8,world 9,10,11,12,foo """ names = ['a', 'b', 'c', 'd', 'message'] xp = DataFrame({'a': [1, 5, 9], 'b': [2, 6, 10], 'c': [3, 7, 11], 'd': [4, 8, 12]}, index=Index(['hello', 'world', 'foo'], name='message')) rs = self.read_csv(StringIO(data), names=names, index_col=['message']) tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) rs = self.read_csv(StringIO(data), names=names, index_col='message') tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) def test_usecols_index_col_False(self): # Issue 9082 s = "a,b,c,d\n1,2,3,4\n5,6,7,8" s_malformed = "a,b,c,d\n1,2,3,4,\n5,6,7,8," cols = ['a', 'c', 'd'] expected = DataFrame({'a': [1, 5], 'c': [3, 7], 'd': [4, 8]}) df = self.read_csv(StringIO(s), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(s_malformed), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) def test_index_col_is_True(self): # Issue 9798 self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), index_col=True) def test_converter_index_col_bug(self): # 1835 data = "A;B\n1;2\n3;4" rs = self.read_csv(StringIO(data), sep=';', index_col='A', converters={'A': lambda x: x}) xp = DataFrame({'B': [2, 4]}, index=Index([1, 3], name='A')) tm.assert_frame_equal(rs, xp) self.assertEqual(rs.index.name, xp.index.name) def test_date_parser_int_bug(self): # #3071 log_file = StringIO( 'posix_timestamp,elapsed,sys,user,queries,query_time,rows,' 'accountid,userid,contactid,level,silo,method\n' '1343103150,0.062353,0,4,6,0.01690,3,' '12345,1,-1,3,invoice_InvoiceResource,search\n' ) def f(posix_string): return datetime.utcfromtimestamp(int(posix_string)) # it works! read_csv(log_file, index_col=0, parse_dates=0, date_parser=f) def test_multiple_skts_example(self): data = "year, month, a, b\n 2001, 01, 0.0, 10.\n 2001, 02, 1.1, 11." pass def test_malformed(self): # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ try: df = self.read_table( StringIO(data), sep=',', header=1, comment='#') self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # skip_footer data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: try: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): # XXX df = self.read_table( StringIO(data), sep=',', header=1, comment='#', skip_footer=1) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(5) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read(2) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read() self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) def test_passing_dtype(self): # GH 6607 # Passing dtype is currently only supported by the C engine. # Temporarily copied to TestCParser*. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): df = DataFrame(np.random.rand(5, 2), columns=list( 'AB'), index=['1A', '1B', '1C', '1D', '1E']) with tm.ensure_clean('__passing_str_as_dtype__.csv') as path: df.to_csv(path) # GH 3795 # passing 'str' as the dtype result = self.read_csv(path, dtype=str, index_col=0) tm.assert_series_equal(result.dtypes, Series( {'A': 'object', 'B': 'object'})) # we expect all object columns, so need to convert to test for # equivalence result = result.astype(float) tm.assert_frame_equal(result, df) # invalid dtype self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'foo', 'B': 'float64'}, index_col=0) # valid but we don't support it (date) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0, parse_dates=['B']) # valid but we don't support it self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'timedelta64', 'B': 'float64'}, index_col=0) with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): # empty frame # GH12048 self.read_csv(StringIO('A,B'), dtype=str) def test_quoting(self): bad_line_small = """printer\tresult\tvariant_name Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jacob Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jakob Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\t"Furststiftische Hofdruckerei, <Kempten"" Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tGaller, Alois Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tHochfurstliche Buchhandlung <Kempten>""" self.assertRaises(Exception, self.read_table, StringIO(bad_line_small), sep='\t') good_line_small = bad_line_small + '"' df = self.read_table(StringIO(good_line_small), sep='\t') self.assertEqual(len(df), 3) def test_non_string_na_values(self): # GH3611, na_values that are not a string are an issue with tm.ensure_clean('__non_string_na_values__.csv') as path: df = DataFrame({'A': [-999, 2, 3], 'B': [1.2, -999, 4.5]}) df.to_csv(path, sep=' ', index=False) result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, result2) tm.assert_frame_equal(result2, result3) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, result3) tm.assert_frame_equal(result5, result3) tm.assert_frame_equal(result6, result3) tm.assert_frame_equal(result7, result3) good_compare = result3 # with an odd float format, so we can't match the string 999.0 # exactly, but need float matching df.to_csv(path, sep=' ', index=False, float_format='%.3f') result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, good_compare) tm.assert_frame_equal(result2, good_compare) tm.assert_frame_equal(result3, good_compare) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, good_compare) tm.assert_frame_equal(result5, good_compare) tm.assert_frame_equal(result6, good_compare) tm.assert_frame_equal(result7, good_compare) def test_default_na_values(self): _NA_VALUES = set(['-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN', '#N/A', 'N/A', 'NA', '#NA', 'NULL', 'NaN', 'nan', '-NaN', '-nan', '#N/A N/A', '']) self.assertEqual(_NA_VALUES, parsers._NA_VALUES) nv = len(_NA_VALUES) def f(i, v): if i == 0: buf = '' elif i > 0: buf = ''.join([','] * i) buf = "{0}{1}".format(buf, v) if i < nv - 1: buf = "{0}{1}".format(buf, ''.join([','] * (nv - i - 1))) return buf data = StringIO('\n'.join([f(i, v) for i, v in enumerate(_NA_VALUES)])) expected = DataFrame(np.nan, columns=range(nv), index=range(nv)) df = self.read_csv(data, header=None) tm.assert_frame_equal(df, expected) def test_custom_na_values(self): data = """A,B,C ignore,this,row 1,NA,3 -1.#IND,5,baz 7,8,NaN """ expected = [[1., nan, 3], [nan, 5, nan], [7, 8, nan]] df = self.read_csv(StringIO(data), na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df.values, expected) df2 = self.read_table(StringIO(data), sep=',', na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df2.values, expected) df3 = self.read_table(StringIO(data), sep=',', na_values='baz', skiprows=[1]) tm.assert_almost_equal(df3.values, expected) def test_nat_parse(self): # GH 3062 df = DataFrame(dict({ 'A': np.asarray(lrange(10), dtype='float64'), 'B': pd.Timestamp('20010101')})) df.iloc[3:6, :] = np.nan with tm.ensure_clean('__nat_parse_.csv') as path: df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) expected = Series(dict(A='float64', B='datetime64[ns]')) tm.assert_series_equal(expected, result.dtypes) # test with NaT for the nan_rep # we don't have a method to specif the Datetime na_rep (it defaults # to '') df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) def test_skiprows_bug(self): # GH #505 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=lrange(6), header=None, index_col=0, parse_dates=True) data2 = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) tm.assert_frame_equal(data, data2) def test_deep_skiprows(self): # GH #4382 text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in range(10)]) condensed_text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in [0, 1, 2, 3, 4, 6, 8, 9]]) data = self.read_csv(StringIO(text), skiprows=[6, 8]) condensed_data = self.read_csv(StringIO(condensed_text)) tm.assert_frame_equal(data, condensed_data) def test_skiprows_blank(self): # GH 9832 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) def test_detect_string_na(self): data = """A,B foo,bar NA,baz NaN,nan """ expected = [['foo', 'bar'], [nan, 'baz'], [nan, nan]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) def test_unnamed_columns(self): data = """A,B,C,, 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] df = self.read_table(StringIO(data), sep=',') tm.assert_almost_equal(df.values, expected) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'Unnamed: 3', 'Unnamed: 4']) def test_string_nas(self): data = """A,B,C a,b,c d,,f ,g,h """ result = self.read_csv(StringIO(data)) expected = DataFrame([['a', 'b', 'c'], ['d', np.nan, 'f'], [np.nan, 'g', 'h']], columns=['A', 'B', 'C']) tm.assert_frame_equal(result, expected) def test_duplicate_columns(self): for engine in ['python', 'c']: data = """A,A,B,B,B 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ # check default beahviour df = self.read_table(StringIO(data), sep=',', engine=engine) self.assertEqual(list(df.columns), ['A', 'A.1', 'B', 'B.1', 'B.2']) df = self.read_table(StringIO(data), sep=',', engine=engine, mangle_dupe_cols=False) self.assertEqual(list(df.columns), ['A', 'A', 'B', 'B', 'B']) df = self.read_table(StringIO(data), sep=',', engine=engine, mangle_dupe_cols=True) self.assertEqual(list(df.columns), ['A', 'A.1', 'B', 'B.1', 'B.2']) def test_csv_mixed_type(self): data = """A,B,C a,1,2 b,3,4 c,4,5 """ df = self.read_csv(StringIO(data)) # TODO def test_csv_custom_parser(self): data = """A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ f = lambda x: datetime.strptime(x, '%Y%m%d') df = self.read_csv(StringIO(data), date_parser=f) expected = self.read_csv(StringIO(data), parse_dates=True) tm.assert_frame_equal(df, expected) def test_parse_dates_implicit_first_col(self): data = """A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ df = self.read_csv(StringIO(data), parse_dates=True) expected = self.read_csv(StringIO(data), index_col=0, parse_dates=True) self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) tm.assert_frame_equal(df, expected) def test_parse_dates_string(self): data = """date,A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ rs = self.read_csv( StringIO(data), index_col='date', parse_dates='date') idx = date_range('1/1/2009', periods=3) idx.name = 'date' xp = DataFrame({'A': ['a', 'b', 'c'], 'B': [1, 3, 4], 'C': [2, 4, 5]}, idx) tm.assert_frame_equal(rs, xp) def test_yy_format(self): data = """date,time,B,C 090131,0010,1,2 090228,1020,3,4 090331,0830,5,6 """ rs = self.read_csv(StringIO(data), index_col=0, parse_dates=[['date', 'time']]) idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0), datetime(2009, 2, 28, 10, 20, 0), datetime(2009, 3, 31, 8, 30, 0)], dtype=object, name='date_time') xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx) tm.assert_frame_equal(rs, xp) rs = self.read_csv(StringIO(data), index_col=0, parse_dates=[[0, 1]]) idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0), datetime(2009, 2, 28, 10, 20, 0), datetime(2009, 3, 31, 8, 30, 0)], dtype=object, name='date_time') xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx) tm.assert_frame_equal(rs, xp) def test_parse_dates_column_list(self): from pandas.core.datetools import to_datetime data = '''date;destination;ventilationcode;unitcode;units;aux_date 01/01/2010;P;P;50;1;12/1/2011 01/01/2010;P;R;50;1;13/1/2011 15/01/2010;P;P;50;1;14/1/2011 01/05/2010;P;P;50;1;15/1/2011''' expected = self.read_csv(StringIO(data), sep=";", index_col=lrange(4)) lev = expected.index.levels[0] levels = list(expected.index.levels) levels[0] = lev.to_datetime(dayfirst=True) # hack to get this to work - remove for final test levels[0].name = lev.name expected.index.set_levels(levels, inplace=True) expected['aux_date'] = to_datetime(expected['aux_date'], dayfirst=True) expected['aux_date'] = lmap(Timestamp, expected['aux_date']) tm.assertIsInstance(expected['aux_date'][0], datetime) df = self.read_csv(StringIO(data), sep=";", index_col=lrange(4), parse_dates=[0, 5], dayfirst=True) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data), sep=";", index_col=lrange(4), parse_dates=['date', 'aux_date'], dayfirst=True) tm.assert_frame_equal(df, expected) def test_no_header(self): data = """1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ df = self.read_table(StringIO(data), sep=',', header=None) df_pref = self.read_table(StringIO(data), sep=',', prefix='X', header=None) names = ['foo', 'bar', 'baz', 'quux', 'panda'] df2 = self.read_table(StringIO(data), sep=',', names=names) expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] tm.assert_almost_equal(df.values, expected) tm.assert_almost_equal(df.values, df2.values) self.assert_numpy_array_equal(df_pref.columns, ['X0', 'X1', 'X2', 'X3', 'X4']) self.assert_numpy_array_equal(df.columns, lrange(5)) self.assert_numpy_array_equal(df2.columns, names) def test_no_header_prefix(self): data = """1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ df_pref = self.read_table(StringIO(data), sep=',', prefix='Field', header=None) expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] tm.assert_almost_equal(df_pref.values, expected) self.assert_numpy_array_equal(df_pref.columns, ['Field0', 'Field1', 'Field2', 'Field3', 'Field4']) def test_header_with_index_col(self): data = """foo,1,2,3 bar,4,5,6 baz,7,8,9 """ names = ['A', 'B', 'C'] df = self.read_csv(StringIO(data), names=names) self.assertEqual(names, ['A', 'B', 'C']) values = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] expected = DataFrame(values, index=['foo', 'bar', 'baz'], columns=['A', 'B', 'C']) tm.assert_frame_equal(df, expected) def test_read_csv_dataframe(self): df = self.read_csv(self.csv1, index_col=0, parse_dates=True) df2 = self.read_table(self.csv1, sep=',', index_col=0, parse_dates=True) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'D']) self.assertEqual(df.index.name, 'index') self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) self.assertEqual(df.values.dtype, np.float64) tm.assert_frame_equal(df, df2) def test_read_csv_no_index_name(self): df = self.read_csv(self.csv2, index_col=0, parse_dates=True) df2 = self.read_table(self.csv2, sep=',', index_col=0, parse_dates=True) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'D', 'E']) self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) self.assertEqual(df.ix[:, ['A', 'B', 'C', 'D'] ].values.dtype, np.float64) tm.assert_frame_equal(df, df2) def test_read_csv_infer_compression(self): # GH 9770 expected = self.read_csv(self.csv1, index_col=0, parse_dates=True) inputs = [self.csv1, self.csv1 + '.gz', self.csv1 + '.bz2', open(self.csv1)] for f in inputs: df = self.read_csv(f, index_col=0, parse_dates=True, compression='infer') tm.assert_frame_equal(expected, df) inputs[3].close() def test_read_table_unicode(self): fin = BytesIO(u('\u0141aski, Jan;1').encode('utf-8')) df1 = read_table(fin, sep=";", encoding="utf-8", header=None) tm.assertIsInstance(df1[0].values[0], compat.text_type) def test_read_table_wrong_num_columns(self): # too few! data = """A,B,C,D,E,F 1,2,3,4,5,6 6,7,8,9,10,11,12 11,12,13,14,15,16 """ self.assertRaises(Exception, self.read_csv, StringIO(data)) def test_read_table_duplicate_index(self): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ result = self.read_csv(StringIO(data), index_col=0) expected = self.read_csv(
StringIO(data)
pandas.compat.StringIO
import operator import warnings import numpy as np import pandas as pd from pandas import DataFrame, Series, Timestamp, date_range, to_timedelta import pandas._testing as tm from pandas.core.algorithms import checked_add_with_arr from .pandas_vb_common import numeric_dtypes try: import pandas.core.computation.expressions as expr except ImportError: import pandas.computation.expressions as expr try: import pandas.tseries.holiday except ImportError: pass class IntFrameWithScalar: params = [ [np.float64, np.int64], [2, 3.0, np.int32(4), np.float64(5)], [ operator.add, operator.sub, operator.mul, operator.truediv, operator.floordiv, operator.pow, operator.mod, operator.eq, operator.ne, operator.gt, operator.ge, operator.lt, operator.le, ], ] param_names = ["dtype", "scalar", "op"] def setup(self, dtype, scalar, op): arr = np.random.randn(20000, 100) self.df = DataFrame(arr.astype(dtype)) def time_frame_op_with_scalar(self, dtype, scalar, op): op(self.df, scalar) class OpWithFillValue: def setup(self): # GH#31300 arr = np.arange(10 ** 6) df = DataFrame({"A": arr}) ser = df["A"] self.df = df self.ser = ser def time_frame_op_with_fill_value_no_nas(self): self.df.add(self.df, fill_value=4) def time_series_op_with_fill_value_no_nas(self): self.ser.add(self.ser, fill_value=4) class MixedFrameWithSeriesAxis: params = [ [ "eq", "ne", "lt", "le", "ge", "gt", "add", "sub", "truediv", "floordiv", "mul", "pow", ] ] param_names = ["opname"] def setup(self, opname): arr = np.arange(10 ** 6).reshape(1000, -1) df = DataFrame(arr) df["C"] = 1.0 self.df = df self.ser = df[0] self.row = df.iloc[0] def time_frame_op_with_series_axis0(self, opname): getattr(self.df, opname)(self.ser, axis=0) def time_frame_op_with_series_axis1(self, opname): getattr(operator, opname)(self.df, self.ser) class Ops: params = [[True, False], ["default", 1]] param_names = ["use_numexpr", "threads"] def setup(self, use_numexpr, threads): self.df = DataFrame(np.random.randn(20000, 100)) self.df2 = DataFrame(np.random.randn(20000, 100)) if threads != "default": expr.set_numexpr_threads(threads) if not use_numexpr: expr.set_use_numexpr(False) def time_frame_add(self, use_numexpr, threads): self.df + self.df2 def time_frame_mult(self, use_numexpr, threads): self.df * self.df2 def time_frame_multi_and(self, use_numexpr, threads): self.df[(self.df > 0) & (self.df2 > 0)] def time_frame_comparison(self, use_numexpr, threads): self.df > self.df2 def teardown(self, use_numexpr, threads): expr.set_use_numexpr(True) expr.set_numexpr_threads() class Ops2: def setup(self): N = 10 ** 3 self.df = DataFrame(np.random.randn(N, N)) self.df2 = DataFrame(np.random.randn(N, N)) self.df_int = DataFrame( np.random.randint( np.iinfo(np.int16).min, np.iinfo(np.int16).max, size=(N, N) ) ) self.df2_int = DataFrame( np.random.randint( np.iinfo(np.int16).min, np.iinfo(np.int16).max, size=(N, N) ) ) self.s = Series(np.random.randn(N)) # Division def time_frame_float_div(self): self.df // self.df2 def time_frame_float_div_by_zero(self): self.df / 0 def time_frame_float_floor_by_zero(self): self.df // 0 def time_frame_int_div_by_zero(self): self.df_int / 0 # Modulo def time_frame_int_mod(self): self.df_int % self.df2_int def time_frame_float_mod(self): self.df % self.df2 # Dot product def time_frame_dot(self): self.df.dot(self.df2) def time_series_dot(self): self.s.dot(self.s) def time_frame_series_dot(self): self.df.dot(self.s) class Timeseries: params = [None, "US/Eastern"] param_names = ["tz"] def setup(self, tz): N = 10 ** 6 halfway = (N // 2) - 1 self.s = Series(date_range("20010101", periods=N, freq="T", tz=tz)) self.ts = self.s[halfway] self.s2 = Series(date_range("20010101", periods=N, freq="s", tz=tz)) def time_series_timestamp_compare(self, tz): self.s <= self.ts def time_timestamp_series_compare(self, tz): self.ts >= self.s def time_timestamp_ops_diff(self, tz): self.s2.diff() def time_timestamp_ops_diff_with_shift(self, tz): self.s - self.s.shift() class IrregularOps: def setup(self): N = 10 ** 5 idx = date_range(start="1/1/2000", periods=N, freq="s") s = Series(np.random.randn(N), index=idx) self.left = s.sample(frac=1) self.right = s.sample(frac=1) def time_add(self): self.left + self.right class TimedeltaOps: def setup(self): self.td = to_timedelta(np.arange(1000000)) self.ts = Timestamp("2000") def time_add_td_ts(self): self.td + self.ts class CategoricalComparisons: params = ["__lt__", "__le__", "__eq__", "__ne__", "__ge__", "__gt__"] param_names = ["op"] def setup(self, op): N = 10 ** 5 self.cat = pd.Categorical(list("aabbcd") * N, ordered=True) def time_categorical_op(self, op): getattr(self.cat, op)("b") class IndexArithmetic: params = ["float", "int"] param_names = ["dtype"] def setup(self, dtype): N = 10 ** 6 indexes = {"int": "makeIntIndex", "float": "makeFloatIndex"} self.index = getattr(tm, indexes[dtype])(N) def time_add(self, dtype): self.index + 2 def time_subtract(self, dtype): self.index - 2 def time_multiply(self, dtype): self.index * 2 def time_divide(self, dtype): self.index / 2 def time_modulo(self, dtype): self.index % 2 class NumericInferOps: # from GH 7332 params = numeric_dtypes param_names = ["dtype"] def setup(self, dtype): N = 5 * 10 ** 5 self.df = DataFrame( {"A": np.arange(N).astype(dtype), "B": np.arange(N).astype(dtype)} ) def time_add(self, dtype): self.df["A"] + self.df["B"] def time_subtract(self, dtype): self.df["A"] - self.df["B"] def time_multiply(self, dtype): self.df["A"] * self.df["B"] def time_divide(self, dtype): self.df["A"] / self.df["B"] def time_modulo(self, dtype): self.df["A"] % self.df["B"] class DateInferOps: # from GH 7332 def setup_cache(self): N = 5 * 10 ** 5 df = DataFrame({"datetime64": np.arange(N).astype("datetime64[ms]")}) df["timedelta"] = df["datetime64"] - df["datetime64"] return df def time_subtract_datetimes(self, df): df["datetime64"] - df["datetime64"] def time_timedelta_plus_datetime(self, df): df["timedelta"] + df["datetime64"] def time_add_timedeltas(self, df): df["timedelta"] + df["timedelta"] class AddOverflowScalar: params = [1, -1, 0] param_names = ["scalar"] def setup(self, scalar): N = 10 ** 6 self.arr = np.arange(N) def time_add_overflow_scalar(self, scalar): checked_add_with_arr(self.arr, scalar) class AddOverflowArray: def setup(self): N = 10 ** 6 self.arr = np.arange(N) self.arr_rev = np.arange(-N, 0) self.arr_mixed = np.array([1, -1]).repeat(N / 2) self.arr_nan_1 = np.random.choice([True, False], size=N) self.arr_nan_2 = np.random.choice([True, False], size=N) def time_add_overflow_arr_rev(self): checked_add_with_arr(self.arr, self.arr_rev) def time_add_overflow_arr_mask_nan(self): checked_add_with_arr(self.arr, self.arr_mixed, arr_mask=self.arr_nan_1) def time_add_overflow_b_mask_nan(self): checked_add_with_arr(self.arr, self.arr_mixed, b_mask=self.arr_nan_1) def time_add_overflow_both_arg_nan(self): checked_add_with_arr( self.arr, self.arr_mixed, arr_mask=self.arr_nan_1, b_mask=self.arr_nan_2 ) hcal = pd.tseries.holiday.USFederalHolidayCalendar() # These offsets currently raise a NotImplimentedError with .apply_index() non_apply = [ pd.offsets.Day(), pd.offsets.BYearEnd(), pd.offsets.BYearBegin(), pd.offsets.BQuarterEnd(), pd.offsets.BQuarterBegin(), pd.offsets.BMonthEnd(), pd.offsets.BMonthBegin(), pd.offsets.CustomBusinessDay(), pd.offsets.CustomBusinessDay(calendar=hcal), pd.offsets.CustomBusinessMonthBegin(calendar=hcal), pd.offsets.CustomBusinessMonthEnd(calendar=hcal), pd.offsets.CustomBusinessMonthEnd(calendar=hcal), ] other_offsets = [ pd.offsets.YearEnd(),
pd.offsets.YearBegin()
pandas.offsets.YearBegin
import unittest import numpy as np import pandas as pd from pyalink.alink import * class TestDataFrame(unittest.TestCase): def setUp(self): data_null = np.array([ ["007", 1, 1, 2.0, True], [None, 2, 2, None, True], ["12", None, 4, 2.0, False], ["1312", 0, None, 1.2, None], ]) self.df_null = pd.DataFrame({ "f_string": data_null[:, 0], "f_long": data_null[:, 1], "f_int": data_null[:, 2], "f_double": data_null[:, 3], "f_boolean": data_null[:, 4] }) data = np.array([ ["a", 1, 1, 2.0, True], ["abc", 2, 2, 2.4, True], ["c", 4, 4, 2.0, False], ["a", 0, 1, 1.2, False], ]) self.df = pd.DataFrame({ "f_string": data[:, 0], "f_long": data[:, 1], "f_int": data[:, 2], "f_double": data[:, 3], "f_boolean": data[:, 4] }) def test_memory_null(self): from pyalink.alink.config import g_config g_config["collect_storage_type"] = "memory" schema = "f_string string,f_long long,f_int int,f_double double,f_boolean boolean" op = dataframeToOperator(self.df_null, schema, op_type="batch") col_names = op.getColNames() col_types = op.getColTypes() self.assertEqual(col_names[0], "f_string") self.assertEqual(col_names[1], "f_long") self.assertEqual(col_names[2], "f_int") self.assertEqual(col_names[3], "f_double") self.assertEqual(col_names[4], "f_boolean") self.assertEqual(col_types[0], "VARCHAR") self.assertEqual(col_types[1], "BIGINT") self.assertEqual(col_types[2], "INT") self.assertEqual(col_types[3], "DOUBLE") self.assertEqual(col_types[4], "BOOLEAN") df2 = op.collectToDataframe() print(df2) print(df2.dtypes) self.assertEqual(df2['f_string'].dtype, pd.StringDtype()) self.assertEqual(df2['f_long'].dtype, pd.Int64Dtype()) self.assertEqual(df2['f_int'].dtype, pd.Int32Dtype()) self.assertEqual(df2['f_double'].dtype, np.float64) self.assertEqual(df2['f_boolean'].dtype, pd.BooleanDtype()) def test_memory(self): from pyalink.alink.config import g_config g_config["collect_storage_type"] = "memory" schema = "f_string string,f_long long,f_int int,f_double double,f_boolean boolean" op = dataframeToOperator(self.df, schemaStr=schema, op_type="batch") col_names = op.getColNames() col_types = op.getColTypes() self.assertEqual(col_names[0], "f_string") self.assertEqual(col_names[1], "f_long") self.assertEqual(col_names[2], "f_int") self.assertEqual(col_names[3], "f_double") self.assertEqual(col_names[4], "f_boolean") self.assertEqual(col_types[0], "VARCHAR") self.assertEqual(col_types[1], "BIGINT") self.assertEqual(col_types[2], "INT") self.assertEqual(col_types[3], "DOUBLE") self.assertEqual(col_types[4], "BOOLEAN") df2 = op.collectToDataframe() print(df2) print(df2.dtypes) self.assertEqual(df2['f_string'].dtype, pd.StringDtype()) self.assertEqual(df2['f_long'].dtype,
pd.Int64Dtype()
pandas.Int64Dtype
import sys sys.path.insert(0, './') try: import wandb except: pass from rlf.exp_mgr import config_mgr from rlf.rl.utils import CacheHelper import yaml import argparse from collections import defaultdict import pickle import os import os.path as osp import pandas as pd import hashlib import json def get_arg_parser(): parser = argparse.ArgumentParser() parser.add_argument('--cfg', type=str, default='./config.yaml') parser.add_argument('--force-refresh', action='store_true', default=False) return parser def get_report_data_from_spec(spec_str, force_refresh=False, cfg='./config.yaml'): spec = yaml.safe_load(spec_str) return get_report_data(spec['report_name'], spec['plot_column'], spec['fields'], force_refresh, cfg) def get_run_params(wb_run_id): wb_proj_name = config_mgr.get_prop('proj_name') wb_entity = config_mgr.get_prop('wb_entity') api = wandb.Api() run = api.run(f"{wb_entity}/{wb_proj_name}/{wb_run_id}") for f in run.files(): if f.name == 'wandb-metadata.json': with f.download(replace=True) as f: lines = f.readlines() data_d = json.loads('\n'.join(lines)) data_d['full_name'] = run.name return data_d return None def get_run_data(run_names, plot_field, method_name, cfg='./config.yaml'): config_mgr.init(cfg) wb_proj_name = config_mgr.get_prop('proj_name') wb_entity = config_mgr.get_prop('wb_entity') all_df = None api = wandb.Api() for run_name in run_names: runs = api.runs(f"{wb_entity}/{wb_proj_name}", {"config.prefix": run_name}) assert len(runs) == 1 wbrun = next(iter(runs)) df = wbrun.history(samples=15000) df = df[['_step', plot_field]] df['run'] = run_name if all_df is None: all_df = df else: all_df = pd.concat([all_df, df]) all_df['method'] = method_name return all_df def get_run_ids_from_report(wb_search, report_name, get_sections, api): reports = api.reports(wb_search) report = None for cur_report in reports: id_parts = cur_report.description.split('ID:') if len(id_parts) > 1: cur_id = id_parts[1].split(' ')[0] if report_name == cur_id: report = cur_report break if report is None: raise ValueError('Could not find report') # Find which section the run sets are in report_section_idx = None run_sets = None try: for i in range(len(report.sections)): if 'runSets' in report.sections[i]: report_section_idx = i break run_sets = report.sections[report_section_idx]['runSets'] except Exception as e: for i in range(len(report.spec['blocks'])): spec = report.spec['blocks'][i] if 'metadata' in spec and 'runSets' in spec['metadata']: report_section_idx = i break run_sets = report.spec['blocks'][i]['metadata']['runSets'] run_ids = [] for run_set in run_sets: report_section = run_set['name'] if report_section not in get_sections: continue report_runs = run_set['selections']['tree'] for run_id in report_runs: run_ids.append((report_section, run_id)) if len(run_ids) == 0: raise ValueError(""" Could not find runs %s from report. Check: - There is only one section. - The names don't have trailing spaces. - The report is saved. """ % str(get_sections)) return run_ids def get_report_data(report_name, plot_field, plot_sections, force_refresh=False, match_pat=None, other_plot_fields=[], cfg='./config.yaml', other_fetch_fields=[], get_any_cols=False): """ Converts the selected data sets in a W&B report into a Pandas DataFrame. Fetches only the plot_field you specify. - get_any_cols: If true, will filter plot_field to be the subset of columns which in the report. """ config_mgr.init(cfg) wb_proj_name = config_mgr.get_prop('proj_name') wb_entity = config_mgr.get_prop('wb_entity') wb_search = config_mgr.get_prop('wb_search', wb_entity+'/'+wb_proj_name) save_report_name = report_name.replace(' ', '-').replace("/", "-") cacher = CacheHelper(f"{wb_entity}_{wb_proj_name}_{save_report_name}", plot_sections) all_df = None if cacher.exists() and not force_refresh: all_df = cacher.load() uniq_methods = all_df['method'].unique() for k in uniq_methods: idx = plot_sections.index(k) del plot_sections[idx] if len(plot_sections) == 0: return all_df api = wandb.Api() run_ids = get_run_ids_from_report(wb_search, report_name, plot_sections, api) for report_section, run_id in run_ids: wbrun = api.run(f"{wb_entity}/{wb_proj_name}/{run_id}") if match_pat is not None: any_matches = False for x in match_pat: if x in wbrun.name: any_matches = True break if not any_matches: continue df = wbrun.history(samples=15000) if not isinstance(plot_field, str): orig_not_found = False for k in plot_field: if k not in df.columns: orig_not_found = True break if orig_not_found: if len(other_plot_fields) > 0: plot_field = other_plot_fields if get_any_cols: plot_field = [x for x in plot_field if x in df.columns] for k in plot_field: if k not in df.columns: raise ValueError((f"Requested key {k} is not present in", f" data frame with {df.columns} for run {run_id}", f" section {report_section}")) df = df[['_step', *plot_field]] else: if plot_field not in df.columns: match_other_plot = None for k in other_plot_fields: if k in df.columns: match_other_plot = k break if match_other_plot is None: raise ValueError(""" Could not find colums from %s in %s containing %s """ % (str(other_plot_fields), report_section, str(df.columns))) df = df.rename(columns={match_other_plot: plot_field}) df = df[['_step', plot_field]] if len(other_fetch_fields) > 0: run_cfg = json.loads(wbrun.json_config) for k in other_fetch_fields: parts = k.split('.') cur_d = run_cfg for part in parts: cur_d = cur_d[part] if isinstance(cur_d, dict): cur_d = cur_d['value'] df[k] = cur_d df['method'] = report_section df['run'] = run_id if all_df is None: all_df = df else: all_df =
pd.concat([all_df, df])
pandas.concat
# -*- coding: utf-8 -*- """ Created on Wed Dec 30 18:07:56 2020 @author: Fabio """ import pandas as pd import matplotlib.pyplot as plt def df_filterbydate(df, dataLB, dataUB): df['Data_Registrazione'] = pd.to_datetime(df['Data_Registrazione'], infer_datetime_format=True).dt.date df = df[(df['Data_Registrazione'] >= dataLB) & (df['Data_Registrazione'] <= dataUB)] return df def get_df_classi(df, soglia=180): # creo df delle classi non prof == 0/ prof == 1/ molto prof == 2 """ df0 = df[df['profitto'] <= 0] df1 = df[(df['profitto'] > 0) & (df['profitto'] <= soglia)] df2 = df[df['profitto'] > soglia] return df0, df1, df2 def get_classi_cliente(cliente, df, soglia): # estraggo il df del singolo cliente considerando tutti i suoi produttori df_cliente = df[df['Produttore'] == cliente] visit_num = len(df_cliente.index) df0, df1, df2 = get_df_classi(df_cliente,soglia) class_0c = len(df0.index) # conto il totale degli ordini non prof class_1c = len(df1.index) # conto il totale degli ordini prof class_2c = len(df2.index) # conto il totale degli ordini max prof class_c = [class_0c, class_1c, class_2c] class_0p = class_0c / visit_num class_1p = class_1c / visit_num class_2p = class_2c / visit_num class_p = [class_0p, class_1p, class_2p] class_0s = df0['profitto'].sum() # sommo il totale degli ordini non prof class_1s = df1['profitto'].sum() # sommo il totale degli ordini prof class_2s = df2['profitto'].sum() # sommo il totale degli ordini max prof class_s = [class_0s, class_1s, class_2s] if (class_0s >= class_1s + class_2s) or (class_0p > class_1p and class_0p > class_2p): color = 'red' # se non profittevole classe = 0 elif (class_1p >= class_0p) and (class_1p >= class_2p): color = 'lightblue' # se profittevole classe = 1 elif (class_2p >= class_0p) and (class_2p >= class_1p): color = 'blue' # se ottimo profitto classe = 2 return class_c, class_p, class_s, color, classe def get_classi_produttore(cliente, lat, long, df, soglia): # creo un df per singolo cliente con le coordinate di tutti i suoi produttori df_produttore = df[(df['Produttore'] == cliente) & (df['lat_P'] == lat) & (df['long_P'] == long)] visit_num = len(df_produttore.index) df0, df1, df2 = get_df_classi(df_produttore, soglia) class_0c = df0['profitto'].count() # conto il totale degli ordini non prof class_1c = df1['profitto'].count() # conto il totale degli ordini prof class_2c = df2['profitto'].count() # conto il totale degli ordini max prof class_c = [class_0c, class_1c, class_2c] class_0p = class_0c / visit_num class_1p = class_1c / visit_num class_2p = class_2c / visit_num class_p = [class_0p, class_1p, class_2p] class_0s = df0['profitto'].sum() # sommo il totale degli ordini non prof class_1s = df1['profitto'].sum() # sommo il totale degli ordini prof class_2s = df2['profitto'].sum() # sommo il totale degli ordini max prof class_s = [class_0s, class_1s, class_2s] if (class_0s >= class_1s + class_2s) or (class_0p > class_1p and class_0p > class_2p): color = 'red' # se non profittevole classe = 0 elif (class_1p >= class_0p) and (class_1p >= class_2p): color = 'blue' # se profittevole classe = 1 elif (class_2p >= class_0p) and (class_2p >= class_1p): color = 'darkblue' # se ottimo profitto classe = 2 return class_c, class_p, class_s, color, classe def filtro_ordine_peggiore(df,df2): # restituisce i peggiori ordini dei singoli clienti nella classe specificata dal df in input, df2 è il df totale produttori = df['Produttore'].drop_duplicates().tolist() ordini_peggiori = [] for produttore in produttori: """ seleziono i peggiori ordini del produttore sulla base del profitto""" peggiore = min(df[df['Produttore'] == produttore]['profitto']) """ estraggo gli indici dei peggiori ordini""" peggiore_index = df[df['profitto'] == peggiore].index """ ne estraggo il num fiscale""" num_ordine = df2.iloc[peggiore_index]['NumFiscale'].values """ creo una lista con produttore, num ficale e profitto dei peggiori ordini""" ordini_peggiori.append([produttore, num_ordine, peggiore]) """ creo un df dalla lista""" df_ordini = pd.DataFrame(data=ordini_peggiori, columns=['Produttore', 'NumFiscale', 'profitto']) return df_ordini def filtro_classifica( df): # da usare con i dataframe df_non_prof\df_prof\df_max_prof, restituisce la classifica dei clienti sulla base del profitto totale """ creo un df ordinato in modo decrescente sulla base del profitto""" classifica = df.sort_values(by='profitto', ascending=False) profitto = classifica['profitto'] produttori = classifica['Produttore'] df_classifica = pd.DataFrame() df_classifica['Produttore'] = produttori df_classifica['profitto'] = profitto return df_classifica def best_n(df, n): df_best = df.nlargest(n, 'profitto') produttori_list = df_best['Produttore'].tolist() return df_best, produttori_list def worst_n(df, n): df_worst = df.nsmallest(n, 'profitto') produttori_list = df_worst['Produttore'].tolist() return df_worst, produttori_list def grafici(df, df2, dfn, dfp, dfo, hist, pie, best, worst): # dare in input df, dfpneg, dfp, dfpmax e df2 è il df_produttori """ per scegliere il tipo di grafico inserire un valore al posto di hist/pie (o entrambi) e None su quello non richiesto, stessa cosa per scegliere se peggiori o migliori, ma non entrambi""" ax_i = [] ax_t = [] """blocco di if/elif per verificare la scelta del tipo di grafico """ if (pd.isna(hist) == False) & (pd.isna(pie) == False): """blocco di if/elif per verificare la scelta tra peggiori e migliori """ if pd.isna(best) == False: produttori = best_n(df2, 10) elif pd.isna(worst) == False: produttori = worst_n(df2, 10) else: produttori = [] """blocco di if/elif per verificare la scelta del tipo di grafico """ for produttore in produttori: """ per l'istogramma seleziono il produttore e estraggo la serie delle commesse nel df ed eseguo il plot""" serie = df[df['Produttore'] == produttore]['profitto'] figure, axes = plt.subplots(1, 1) plt.title(produttore) ax = serie.plot.hist() plt.ylabel('numero commesse') ax_i.append([produttore, ax]) """ per la torta seleziono il produttore ed estraggo la serie delle commesse in df_pneg, df_p e df_pmax""" serie_neg = dfn[dfn['Produttore'] == produttore]['profitto'] serie_prof = dfp[dfp['Produttore'] == produttore]['profitto'] serie_max = dfo[dfo['Produttore'] == produttore]['profitto'] """ eseguo il plot sul numero di volte che il produttore compare nelle singole classi """ y = [len(serie_neg), len(serie_prof), len(serie_max)] label = ['non profittevoli', 'profittevoli', 'ottimo profitto'] figure, ax = plt.subplots() plt.title(produttore) ax.pie(y) plt.legend(label, loc="best") ax_t.append([produttore, ax]) elif pd.isna(hist) == False: if pd.isna(best) == False: produttori = best_n(df2, 10) elif pd.isna(worst) == False: produttori = worst_n(df2, 10) else: produttori = [] for produttore in produttori: serie = df[df['Produttore'] == produttore]['profitto'] figure, axes = plt.subplots(1, 1) plt.title(produttore) ax = serie.plot.hist() plt.ylabel('numero commesse') ax_i.append([produttore, ax]) elif
pd.isna(pie)
pandas.isna
from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import pandas as pd if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-f', '--format', default='forex', choices=['forex', 'stock'], help="csv format") parser.add_argument('-s', '--source', required=True, help="Row forex text file path") parser.add_argument('-o', '--output', required=True, help="Output data csv file path") parser.add_argument('-p', '--period', required=True, help="Time period(minutes) of the data:\n" "1T: 1 minute\n" "1H:1 hour\n;" "1D: 1 day\n" "1W: 1 week\n" "1M: 1 month\n" "1A: 1 year") args = parser.parse_args() source = args.source output = args.output period = args.period df = pd.read_csv(os.path.join(os.path.dirname(__file__), 'data', source)) df['Raw_time'] = df['Day'].apply(str) + df['Time'].apply(str).apply(lambda x: x.zfill(6)) df['Time'] = pd.to_datetime(df['Raw_time'], format='%Y%m%d%H%M%S') # df['Timestamp'] = df['Timestamp'].astype('int64') // 1e9 df['Time'] = pd.to_datetime(df['Time'], unit='s') df.index = df['Time'].tolist() # columns = ['Timestamp', 'Open', 'High', 'Low', 'Close', 'Volume', 'Volume_(Currency)', 'Weighted_Price'] columns = ['Time', 'Open', 'High', 'Low', 'Close', 'Volume'] df_out =
pd.DataFrame(columns=columns)
pandas.DataFrame
#!/usr/bin/env python # -*- coding:utf-8 -*- """ Date: 2022/2/2 23:26 Desc: 东方财富网-行情首页-沪深京 A 股 """ import requests import pandas as pd def stock_zh_a_spot_em() -> pd.DataFrame: """ 东方财富网-沪深京 A 股-实时行情 http://quote.eastmoney.com/center/gridlist.html#hs_a_board :return: 实时行情 :rtype: pandas.DataFrame """ url = "http://82.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "5000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:0 t:6,m:0 t:80,m:1 t:2,m:1 t:23,m:0 t:81 s:2048", "fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f22,f11,f62,f128,f136,f115,f152", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["diff"]: return pd.DataFrame() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df.columns = [ "_", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", "市盈率-动态", "量比", "_", "代码", "_", "名称", "最高", "最低", "今开", "昨收", "_", "_", "_", "市净率", "_", "_", "_", "_", "_", "_", "_", "_", "_", ] temp_df.reset_index(inplace=True) temp_df["index"] = temp_df.index + 1 temp_df.rename(columns={"index": "序号"}, inplace=True) temp_df = temp_df[ [ "序号", "代码", "名称", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "最高", "最低", "今开", "昨收", "量比", "换手率", "市盈率-动态", "市净率", ] ] temp_df["最新价"] = pd.to_numeric(temp_df["最新价"], errors="coerce") temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce") temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"], errors="coerce") temp_df["成交量"] = pd.to_numeric(temp_df["成交量"], errors="coerce") temp_df["成交额"] = pd.to_numeric(temp_df["成交额"], errors="coerce") temp_df["振幅"] = pd.to_numeric(temp_df["振幅"], errors="coerce") temp_df["最高"] = pd.to_numeric(temp_df["最高"], errors="coerce") temp_df["最低"] = pd.to_numeric(temp_df["最低"], errors="coerce") temp_df["今开"] = pd.to_numeric(temp_df["今开"], errors="coerce") temp_df["昨收"] = pd.to_numeric(temp_df["昨收"], errors="coerce") temp_df["量比"] = pd.to_numeric(temp_df["量比"], errors="coerce") temp_df["换手率"] = pd.to_numeric(temp_df["换手率"], errors="coerce") temp_df["市盈率-动态"] = pd.to_numeric(temp_df["市盈率-动态"], errors="coerce") temp_df["市净率"] = pd.to_numeric(temp_df["市净率"], errors="coerce") return temp_df def stock_zh_b_spot_em() -> pd.DataFrame: """ 东方财富网- B 股-实时行情 http://quote.eastmoney.com/center/gridlist.html#hs_a_board :return: 实时行情 :rtype: pandas.DataFrame """ url = "http://28.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "5000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:0 t:7,m:1 t:3", "fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f22,f11,f62,f128,f136,f115,f152", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["diff"]: return pd.DataFrame() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df.columns = [ "_", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", "市盈率-动态", "量比", "_", "代码", "_", "名称", "最高", "最低", "今开", "昨收", "_", "_", "_", "市净率", "_", "_", "_", "_", "_", "_", "_", "_", "_", ] temp_df.reset_index(inplace=True) temp_df["index"] = range(1, len(temp_df) + 1) temp_df.rename(columns={"index": "序号"}, inplace=True) temp_df = temp_df[ [ "序号", "代码", "名称", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "最高", "最低", "今开", "昨收", "量比", "换手率", "市盈率-动态", "市净率", ] ] temp_df["最新价"] = pd.to_numeric(temp_df["最新价"], errors="coerce") temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce") temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"], errors="coerce") temp_df["成交量"] = pd.to_numeric(temp_df["成交量"], errors="coerce") temp_df["成交额"] = pd.to_numeric(temp_df["成交额"], errors="coerce") temp_df["振幅"] = pd.to_numeric(temp_df["振幅"], errors="coerce") temp_df["最高"] = pd.to_numeric(temp_df["最高"], errors="coerce") temp_df["最低"] = pd.to_numeric(temp_df["最低"], errors="coerce") temp_df["今开"] = pd.to_numeric(temp_df["今开"], errors="coerce") temp_df["昨收"] = pd.to_numeric(temp_df["昨收"], errors="coerce") temp_df["量比"] = pd.to_numeric(temp_df["量比"], errors="coerce") temp_df["换手率"] = pd.to_numeric(temp_df["换手率"], errors="coerce") temp_df["市盈率-动态"] = pd.to_numeric(temp_df["市盈率-动态"], errors="coerce") temp_df["市净率"] = pd.to_numeric(temp_df["市净率"], errors="coerce") return temp_df def code_id_map_em() -> dict: """ 东方财富-股票和市场代码 http://quote.eastmoney.com/center/gridlist.html#hs_a_board :return: 股票和市场代码 :rtype: dict """ url = "http://80.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "5000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:1 t:2,m:1 t:23", "fields": "f12", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["diff"]: return dict() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df["market_id"] = 1 temp_df.columns = ["sh_code", "sh_id"] code_id_dict = dict(zip(temp_df["sh_code"], temp_df["sh_id"])) params = { "pn": "1", "pz": "5000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:0 t:6,m:0 t:80", "fields": "f12", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["diff"]: return dict() temp_df_sz = pd.DataFrame(data_json["data"]["diff"]) temp_df_sz["sz_id"] = 0 code_id_dict.update(dict(zip(temp_df_sz["f12"], temp_df_sz["sz_id"]))) params = { "pn": "1", "pz": "5000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:0 t:81 s:2048", "fields": "f12", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["diff"]: return dict() temp_df_sz = pd.DataFrame(data_json["data"]["diff"]) temp_df_sz["bj_id"] = 0 code_id_dict.update(dict(zip(temp_df_sz["f12"], temp_df_sz["bj_id"]))) return code_id_dict def stock_zh_a_hist( symbol: str = "000001", period: str = "daily", start_date: str = "19700101", end_date: str = "20500101", adjust: str = "", ) -> pd.DataFrame: """ 东方财富网-行情首页-沪深京 A 股-每日行情 http://quote.eastmoney.com/concept/sh603777.html?from=classic :param symbol: 股票代码 :type symbol: str :param period: choice of {'daily', 'weekly', 'monthly'} :type period: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :param adjust: choice of {"qfq": "前复权", "hfq": "后复权", "": "不复权"} :type adjust: str :return: 每日行情 :rtype: pandas.DataFrame """ code_id_dict = code_id_map_em() adjust_dict = {"qfq": "1", "hfq": "2", "": "0"} period_dict = {"daily": "101", "weekly": "102", "monthly": "103"} url = "http://push2his.eastmoney.com/api/qt/stock/kline/get" params = { "fields1": "f1,f2,f3,f4,f5,f6", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58,f59,f60,f61,f116", "ut": "7eea3edcaed734bea9cbfc24409ed989", "klt": period_dict[period], "fqt": adjust_dict[adjust], "secid": f"{code_id_dict[symbol]}.{symbol}", "beg": start_date, "end": end_date, "_": "1623766962675", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["klines"]: return pd.DataFrame() temp_df = pd.DataFrame( [item.split(",") for item in data_json["data"]["klines"]] ) temp_df.columns = [ "日期", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "振幅", "涨跌幅", "涨跌额", "换手率", ] temp_df.index = pd.to_datetime(temp_df["日期"]) temp_df.reset_index(inplace=True, drop=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["振幅"] = pd.to_numeric(temp_df["振幅"]) temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"]) temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"]) temp_df["换手率"] = pd.to_numeric(temp_df["换手率"]) return temp_df def stock_zh_a_hist_min_em( symbol: str = "000001", start_date: str = "1979-09-01 09:32:00", end_date: str = "2222-01-01 09:32:00", period: str = "5", adjust: str = "", ) -> pd.DataFrame: """ 东方财富网-行情首页-沪深京 A 股-每日分时行情 http://quote.eastmoney.com/concept/sh603777.html?from=classic :param symbol: 股票代码 :type symbol: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :param period: choice of {'1', '5', '15', '30', '60'} :type period: str :param adjust: choice of {'', 'qfq', 'hfq'} :type adjust: str :return: 每日分时行情 :rtype: pandas.DataFrame """ code_id_dict = code_id_map_em() adjust_map = { "": "0", "qfq": "1", "hfq": "2", } if period == "1": url = "https://push2his.eastmoney.com/api/qt/stock/trends2/get" params = { "fields1": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58", "ut": "7eea3edcaed734bea9cbfc24409ed989", "ndays": "5", "iscr": "0", "secid": f"{code_id_dict[symbol]}.{symbol}", "_": "1623766962675", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame( [item.split(",") for item in data_json["data"]["trends"]] ) temp_df.columns = [ "时间", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "最新价", ] temp_df.index = pd.to_datetime(temp_df["时间"]) temp_df = temp_df[start_date:end_date] temp_df.reset_index(drop=True, inplace=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["时间"] = pd.to_datetime(temp_df["时间"]).astype(str) return temp_df else: url = "http://push2his.eastmoney.com/api/qt/stock/kline/get" params = { "fields1": "f1,f2,f3,f4,f5,f6", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58,f59,f60,f61", "ut": "7eea3edcaed734bea9cbfc24409ed989", "klt": period, "fqt": adjust_map[adjust], "secid": f"{code_id_dict[symbol]}.{symbol}", "beg": "0", "end": "20500000", "_": "1630930917857", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame( [item.split(",") for item in data_json["data"]["klines"]] ) temp_df.columns = [ "时间", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "振幅", "涨跌幅", "涨跌额", "换手率", ] temp_df.index = pd.to_datetime(temp_df["时间"]) temp_df = temp_df[start_date:end_date] temp_df.reset_index(drop=True, inplace=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["振幅"] = pd.to_numeric(temp_df["振幅"]) temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"]) temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"]) temp_df["换手率"] = pd.to_numeric(temp_df["换手率"]) temp_df["时间"] = pd.to_datetime(temp_df["时间"]).astype(str) temp_df = temp_df[ [ "时间", "开盘", "收盘", "最高", "最低", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", ] ] return temp_df def stock_zh_a_hist_pre_min_em( symbol: str = "000001", start_time: str = "09:00:00", end_time: str = "15:50:00", ) -> pd.DataFrame: """ 东方财富网-行情首页-沪深京 A 股-每日分时行情包含盘前数据 http://quote.eastmoney.com/concept/sh603777.html?from=classic :param symbol: 股票代码 :type symbol: str :param start_time: 开始时间 :type start_time: str :param end_time: 结束时间 :type end_time: str :return: 每日分时行情包含盘前数据 :rtype: pandas.DataFrame """ code_id_dict = code_id_map_em() url = "https://push2.eastmoney.com/api/qt/stock/trends2/get" params = { "fields1": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58", "ut": "fa5fd1943c7b386f172d6893dbfba10b", "ndays": "1", "iscr": "1", "iscca": "0", "secid": f"{code_id_dict[symbol]}.{symbol}", "_": "1623766962675", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame( [item.split(",") for item in data_json["data"]["trends"]] ) temp_df.columns = [ "时间", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "最新价", ] temp_df.index = pd.to_datetime(temp_df["时间"]) date_format = temp_df.index[0].date().isoformat() temp_df = temp_df[ date_format + " " + start_time : date_format + " " + end_time ] temp_df.reset_index(drop=True, inplace=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["时间"] = pd.to_datetime(temp_df["时间"]).astype(str) return temp_df def stock_hk_spot_em() -> pd.DataFrame: """ 东方财富网-港股-实时行情 http://quote.eastmoney.com/center/gridlist.html#hk_stocks :return: 港股-实时行情 :rtype: pandas.DataFrame """ url = "http://72.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "5000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:128 t:3,m:128 t:4,m:128 t:1,m:128 t:2", "fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f22,f11,f62,f128,f136,f115,f152", "_": "1624010056945", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df.columns = [ "_", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", "市盈率-动态", "量比", "_", "代码", "_", "名称", "最高", "最低", "今开", "昨收", "_", "_", "_", "市净率", "_", "_", "_", "_", "_", "_", "_", "_", "_", ] temp_df.reset_index(inplace=True) temp_df["index"] = temp_df.index + 1 temp_df.rename(columns={"index": "序号"}, inplace=True) temp_df = temp_df[ [ "序号", "代码", "名称", "最新价", "涨跌额", "涨跌幅", "今开", "最高", "最低", "昨收", "成交量", "成交额", ] ] temp_df["序号"] = pd.to_numeric(temp_df["序号"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"], errors="coerce") temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"], errors="coerce") temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce") temp_df["今开"] = pd.to_numeric(temp_df["今开"], errors="coerce") temp_df["最高"] = pd.to_numeric(temp_df["最高"], errors="coerce") temp_df["最低"] = pd.to_numeric(temp_df["最低"], errors="coerce") temp_df["昨收"] = pd.to_numeric(temp_df["昨收"], errors="coerce") temp_df["成交量"] = pd.to_numeric(temp_df["成交量"], errors="coerce") temp_df["成交额"] = pd.to_numeric(temp_df["成交额"], errors="coerce") return temp_df def stock_hk_hist( symbol: str = "40224", period: str = "daily", start_date: str = "19700101", end_date: str = "22220101", adjust: str = "", ) -> pd.DataFrame: """ 东方财富网-行情-港股-每日行情 http://quote.eastmoney.com/hk/08367.html :param symbol: 港股-每日行情 :type symbol: str :param period: choice of {'daily', 'weekly', 'monthly'} :type period: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :param adjust: choice of {"qfq": "1", "hfq": "2", "": "不复权"} :type adjust: str :return: 每日行情 :rtype: pandas.DataFrame """ adjust_dict = {"qfq": "1", "hfq": "2", "": "0"} period_dict = {"daily": "101", "weekly": "102", "monthly": "103"} url = "http://33.push2his.eastmoney.com/api/qt/stock/kline/get" params = { "secid": f"116.{symbol}", "ut": "fa5fd1943c7b386f172d6893dbfba10b", "fields1": "f1,f2,f3,f4,f5,f6", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58,f59,f60,f61", "klt": period_dict[period], "fqt": adjust_dict[adjust], "end": "20500000", "lmt": "1000000", "_": "1623766962675", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame( [item.split(",") for item in data_json["data"]["klines"]] ) if temp_df.empty: return pd.DataFrame() temp_df.columns = [ "日期", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "振幅", "涨跌幅", "涨跌额", "换手率", ] temp_df.index = pd.to_datetime(temp_df["日期"]) temp_df = temp_df[start_date:end_date] if temp_df.empty: return pd.DataFrame() temp_df.reset_index(inplace=True, drop=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["振幅"] = pd.to_numeric(temp_df["振幅"]) temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"]) temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"]) temp_df["换手率"] = pd.to_numeric(temp_df["换手率"]) return temp_df def stock_hk_hist_min_em( symbol: str = "01611", period: str = "1", adjust: str = "", start_date: str = "1979-09-01 09:32:00", end_date: str = "2222-01-01 09:32:00", ) -> pd.DataFrame: """ 东方财富网-行情-港股-每日分时行情 http://quote.eastmoney.com/hk/00948.html :param symbol: 股票代码 :type symbol: str :param period: choice of {'1', '5', '15', '30', '60'} :type period: str :param adjust: choice of {'', 'qfq', 'hfq'} :type adjust: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :return: 每日分时行情 :rtype: pandas.DataFrame """ adjust_map = { "": "0", "qfq": "1", "hfq": "2", } if period == "1": url = "http://push2his.eastmoney.com/api/qt/stock/trends2/get" params = { "fields1": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58", "ut": "fa5fd1943c7b386f172d6893dbfba10b", "iscr": "0", "ndays": "5", "secid": f"116.{symbol}", "_": "1623766962675", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame( [item.split(",") for item in data_json["data"]["trends"]] ) temp_df.columns = [ "时间", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "最新价", ] temp_df.index = pd.to_datetime(temp_df["时间"]) temp_df = temp_df[start_date:end_date] temp_df.reset_index(drop=True, inplace=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["时间"] = pd.to_datetime(temp_df["时间"]).astype(str) return temp_df else: url = "http://push2his.eastmoney.com/api/qt/stock/kline/get" params = { "fields1": "f1,f2,f3,f4,f5,f6", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58,f59,f60,f61", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "klt": period, "fqt": adjust_map[adjust], "secid": f"116.{symbol}", "beg": "0", "end": "20500000", "_": "1630930917857", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame( [item.split(",") for item in data_json["data"]["klines"]] ) temp_df.columns = [ "时间", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "振幅", "涨跌幅", "涨跌额", "换手率", ] temp_df.index = pd.to_datetime(temp_df["时间"]) temp_df = temp_df[start_date:end_date] temp_df.reset_index(drop=True, inplace=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["振幅"] = pd.to_numeric(temp_df["振幅"]) temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"]) temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"]) temp_df["换手率"] = pd.to_numeric(temp_df["换手率"]) temp_df["时间"] = pd.to_datetime(temp_df["时间"]).astype(str) temp_df = temp_df[ [ "时间", "开盘", "收盘", "最高", "最低", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", ] ] return temp_df def stock_us_spot_em() -> pd.DataFrame: """ 东方财富-美股-实时行情 http://quote.eastmoney.com/center/gridlist.html#us_stocks :return: 美股-实时行情; 延迟 15 min :rtype: pandas.DataFrame """ url = "http://72.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "20000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:105,m:106,m:107", "fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f26,f22,f33,f11,f62,f128,f136,f115,f152", "_": "1624010056945", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df.columns = [ "_", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", "_", "_", "_", "简称", "编码", "名称", "最高价", "最低价", "开盘价", "昨收价", "总市值", "_", "_", "_", "_", "_", "_", "_", "_", "市盈率", "_", "_", "_", "_", "_", ] temp_df.reset_index(inplace=True) temp_df["index"] = range(1, len(temp_df) + 1) temp_df.rename(columns={"index": "序号"}, inplace=True) temp_df["代码"] = temp_df["编码"].astype(str) + "." + temp_df["简称"] temp_df = temp_df[ [ "序号", "名称", "最新价", "涨跌额", "涨跌幅", "开盘价", "最高价", "最低价", "昨收价", "总市值", "市盈率", "成交量", "成交额", "振幅", "换手率", "代码", ] ] temp_df["最新价"] = pd.to_numeric(temp_df["最新价"], errors="coerce") temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"], errors="coerce") temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce") temp_df["开盘价"] = pd.to_numeric(temp_df["开盘价"], errors="coerce") temp_df["最高价"] = pd.to_numeric(temp_df["最高价"], errors="coerce") temp_df["最低价"] = pd.to_numeric(temp_df["最低价"], errors="coerce") temp_df["昨收价"] = pd.to_numeric(temp_df["昨收价"], errors="coerce") temp_df["总市值"] = pd.to_
numeric(temp_df["总市值"], errors="coerce")
pandas.to_numeric
import pyspark from pyspark.sql import SQLContext import pandas as pd import csv import os def load_states(): # read US states f = open('states.txt', 'r') states = set() for line in f.readlines(): l = line.strip('\n') if l != '': states.add(l) return states def validate2(states, bt): #sqlContext = SQLContext(sc) for state in states: if not os.path.exists("US/" + state): continue """ Train """ train_prefix = "US/" + state + '/' + bt + "/train/" + state + "_train_" business_train_fname = train_prefix + 'yelp_academic_dataset_business.csv' business_train_fname2 = train_prefix + 'yelp_academic_dataset_business2.csv' review_train_fname = train_prefix + 'yelp_academic_dataset_review.csv' checkins_train_fname = train_prefix + 'yelp_academic_dataset_checkin.csv' tip_train_fname = train_prefix + 'yelp_academic_dataset_tip.csv' user_train_fname = train_prefix + 'yelp_academic_dataset_user.csv' df_business_train = pd.read_csv(business_train_fname) df_review_train = pd.read_csv(review_train_fname) df_checkins_train = pd.read_csv(checkins_train_fname) df_tip_train = pd.read_csv(tip_train_fname) df_user_train = pd.read_csv(user_train_fname) count_business_train = df_business_train.shape[0] count_review_train = df_review_train.shape[0] count_checkins_train = df_checkins_train.shape[0] count_tip_train = df_tip_train.shape[0] count_user_train = df_user_train.shape[0] df_train_busi_review_count = df_review_train.groupby(['business_id']).agg(['count']) dict_train_busi_review_count = df_train_busi_review_count['review_id'].apply(list).to_dict()['count'] new_pdf_train_busi_review_count =
pd.DataFrame.from_dict(dict_train_busi_review_count, orient='index')
pandas.DataFrame.from_dict
# # Copyright (c) nexB Inc. and others. All rights reserved. # http://nexb.com and https://github.com/nexB/scancode-toolkit/ # The ScanCode software is licensed under the Apache License version 2.0. # Data generated with ScanCode require an acknowledgment. # ScanCode is a trademark of nexB Inc. # # # Copyright (c) nexB Inc. and others. All rights reserved. # ScanCode is a trademark of nexB Inc. # SPDX-License-Identifier: Apache-2.0 # See http://www.apache.org/licenses/LICENSE-2.0 for the license text. # See https://github.com/nexB/scancode-toolkit for support or download. # See https://aboutcode.org for more information about nexB OSS projects. # import os import pandas as pd import json HDF5_STORE_FORMAT = 'fixed' class TestData: def __init__(self): self.test_data_dir = os.path.join(os.path.dirname(__file__), 'data') self.test_data_json_dir = os.path.join(os.path.dirname(__file__), 'data/results-test') self.mock_metadata_filename = 'sample_metadata.json' self.mock_metadata_filepath = os.path.join(self.test_data_dir, self.mock_metadata_filename) self.json_dict_metadata = DataFrameFileIO.import_data_from_json(self.mock_metadata_filepath) self.rule_scans = self.get_scans_from_folder("rule") self.lic_scans = self.get_scans_from_folder("lic") def get_scans_from_folder(self, folder_name): data_path = os.path.join(self.test_data_json_dir, folder_name) files_all = [] for (dirpath, dirnames, filenames) in os.walk(data_path): filenames.sort() files_all.extend(filenames) json_dict_metadata = DataFrameFileIO.import_data_from_json(self.mock_metadata_filepath) mock_path = pd.Series(["mock/data/-/multiple-packages/random/1.0.0/tool/scancode/3.2.2.json"]) packages_all = [] for file in files_all: json_filepath = os.path.join(data_path, file) json_dict_content = DataFrameFileIO.import_data_from_json(json_filepath) json_dict = pd.Series([{"_metadata": json_dict_metadata, "content": json_dict_content}]) json_df = pd.DataFrame({"path": mock_path, "json_content": json_dict}) packages_all.append(json_df) pkg_dataframe = pd.concat(packages_all) return pkg_dataframe class DataFrameFileIO: def __init__(self): self.data_dir = os.path.join(os.path.dirname(__file__), 'data') self.metadata_filename = 'projects_metadata.h5' self.mock_metadata_filename = 'sample_metadata.json' self.hdf_dir = os.path.join(os.path.dirname(__file__), 'data/hdf5/') self.json_input_dir = os.path.join(os.path.dirname(__file__), 'data/json-scan-results/') self.from_scancode_dir = os.path.join(os.path.dirname(__file__), 'data/from-scancode/') self.path_scancode_folders_json = os.path.join(os.path.dirname(__file__), 'data/rule_lic_folder_paths.json') @staticmethod def import_data_from_json(file_path): """ Fetch postgres Database credentials. :returns credentials: JSON dict with credentials """ with open(file_path) as f: json_dict = json.load(f) return json_dict def load_folder_names(self): files = self.import_data_from_json(self.path_scancode_folders_json) lic_folder_path = os.path.join(files["lic_folder"]) rule_folder_path = os.path.join(files["rule_folder"]) return lic_folder_path, rule_folder_path @staticmethod def get_hdf5_file_path(hdf_dir, filename): """ Gets filepath. :param hdf_dir : string :param filename : string :returns filepath : os.Path """ file_path = os.path.join(hdf_dir, filename) return file_path # ToDo: Support Selective Query/Search @staticmethod def load_dataframe_from_hdf5(file_path, df_key): """ Loads data from the hdf5 to a Pandas Dataframe. :param file_path : string :param df_key : string :returns filepath : pd.DataFrame object containing the Data read from the hdf5 file. """ dataframe =
pd.read_hdf(path_or_buf=file_path, key=df_key)
pandas.read_hdf
import pytest import numpy as np import pandas as pd from pandas.testing import assert_frame_equal import dask.dataframe as dd from dask_sql.utils import ParsingException def test_select(c, df): result_df = c.sql("SELECT * FROM df") result_df = result_df.compute() assert_frame_equal(result_df, df) def test_select_alias(c, df): result_df = c.sql("SELECT a as b, b as a FROM df") result_df = result_df.compute() expected_df = pd.DataFrame(index=df.index) expected_df["b"] = df.a expected_df["a"] = df.b assert_frame_equal(result_df[["a", "b"]], expected_df[["a", "b"]]) def test_select_column(c, df): result_df = c.sql("SELECT a FROM df") result_df = result_df.compute() assert_frame_equal(result_df, df[["a"]]) def test_select_different_types(c): expected_df = pd.DataFrame( { "date": pd.to_datetime(["2022-01-21 17:34", "2022-01-21", "17:34", pd.NaT]), "string": ["this is a test", "another test", "äölüć", ""], "integer": [1, 2, -4, 5], "float": [-1.1, np.NaN, pd.NA, np.sqrt(2)], } ) c.create_table("df", expected_df) df = c.sql( """ SELECT * FROM df """ ) df = df.compute() assert_frame_equal(df, expected_df) def test_select_expr(c, df): result_df = c.sql("SELECT a + 1 AS a, b AS bla, a - 1 FROM df") result_df = result_df.compute() expected_df = pd.DataFrame( {"a": df["a"] + 1, "bla": df["b"], '"df"."a" - 1': df["a"] - 1,} ) assert_frame_equal(result_df, expected_df) def test_select_of_select(c, df): result_df = c.sql( """ SELECT 2*c AS e, d - 1 AS f FROM ( SELECT a - 1 AS c, 2*b AS d FROM df ) AS "inner" """ ) result_df = result_df.compute() expected_df = pd.DataFrame({"e": 2 * (df["a"] - 1), "f": 2 * df["b"] - 1}) assert_frame_equal(result_df, expected_df) def test_select_of_select_with_casing(c, df): result_df = c.sql( """ SELECT AAA, aaa, aAa FROM ( SELECT a - 1 AS aAa, 2*b AS aaa, a + b AS AAA FROM df ) AS "inner" """ ) result_df = result_df.compute() expected_df = pd.DataFrame( {"AAA": df["a"] + df["b"], "aaa": 2 * df["b"], "aAa": df["a"] - 1} )
assert_frame_equal(result_df, expected_df)
pandas.testing.assert_frame_equal
# pylint: disable=E1101,E1103,W0232 from datetime import datetime, timedelta from pandas.compat import range, lrange, lzip, u, zip import operator import re import nose import warnings import os import numpy as np from numpy.testing import assert_array_equal from pandas import period_range, date_range from pandas.core.index import (Index, Float64Index, Int64Index, MultiIndex, InvalidIndexError, NumericIndex) from pandas.tseries.index import DatetimeIndex from pandas.tseries.tdi import TimedeltaIndex from pandas.tseries.period import PeriodIndex from pandas.core.series import Series from pandas.util.testing import (assert_almost_equal, assertRaisesRegexp, assert_copy) from pandas import compat from pandas.compat import long import pandas.util.testing as tm import pandas.core.config as cf from pandas.tseries.index import _to_m8 import pandas.tseries.offsets as offsets import pandas as pd from pandas.lib import Timestamp class Base(object): """ base class for index sub-class tests """ _holder = None _compat_props = ['shape', 'ndim', 'size', 'itemsize', 'nbytes'] def verify_pickle(self,index): unpickled = self.round_trip_pickle(index) self.assertTrue(index.equals(unpickled)) def test_pickle_compat_construction(self): # this is testing for pickle compat if self._holder is None: return # need an object to create with self.assertRaises(TypeError, self._holder) def test_numeric_compat(self): idx = self.create_index() tm.assertRaisesRegexp(TypeError, "cannot perform __mul__", lambda : idx * 1) tm.assertRaisesRegexp(TypeError, "cannot perform __mul__", lambda : 1 * idx) div_err = "cannot perform __truediv__" if compat.PY3 else "cannot perform __div__" tm.assertRaisesRegexp(TypeError, div_err, lambda : idx / 1) tm.assertRaisesRegexp(TypeError, div_err, lambda : 1 / idx) tm.assertRaisesRegexp(TypeError, "cannot perform __floordiv__", lambda : idx // 1) tm.assertRaisesRegexp(TypeError, "cannot perform __floordiv__", lambda : 1 // idx) def test_boolean_context_compat(self): # boolean context compat idx = self.create_index() def f(): if idx: pass tm.assertRaisesRegexp(ValueError,'The truth value of a',f) def test_ndarray_compat_properties(self): idx = self.create_index() self.assertTrue(idx.T.equals(idx)) self.assertTrue(idx.transpose().equals(idx)) values = idx.values for prop in self._compat_props: self.assertEqual(getattr(idx, prop), getattr(values, prop)) # test for validity idx.nbytes idx.values.nbytes class TestIndex(Base, tm.TestCase): _holder = Index _multiprocess_can_split_ = True def setUp(self): self.indices = dict( unicodeIndex = tm.makeUnicodeIndex(100), strIndex = tm.makeStringIndex(100), dateIndex = tm.makeDateIndex(100), intIndex = tm.makeIntIndex(100), floatIndex = tm.makeFloatIndex(100), boolIndex = Index([True,False]), empty = Index([]), tuples = MultiIndex.from_tuples(lzip(['foo', 'bar', 'baz'], [1, 2, 3])) ) for name, ind in self.indices.items(): setattr(self, name, ind) def create_index(self): return Index(list('abcde')) def test_wrong_number_names(self): def testit(ind): ind.names = ["apple", "banana", "carrot"] for ind in self.indices.values(): assertRaisesRegexp(ValueError, "^Length", testit, ind) def test_set_name_methods(self): new_name = "This is the new name for this index" indices = (self.dateIndex, self.intIndex, self.unicodeIndex, self.empty) for ind in indices: original_name = ind.name new_ind = ind.set_names([new_name]) self.assertEqual(new_ind.name, new_name) self.assertEqual(ind.name, original_name) res = ind.rename(new_name, inplace=True) # should return None self.assertIsNone(res) self.assertEqual(ind.name, new_name) self.assertEqual(ind.names, [new_name]) #with assertRaisesRegexp(TypeError, "list-like"): # # should still fail even if it would be the right length # ind.set_names("a") with assertRaisesRegexp(ValueError, "Level must be None"): ind.set_names("a", level=0) # rename in place just leaves tuples and other containers alone name = ('A', 'B') ind = self.intIndex ind.rename(name, inplace=True) self.assertEqual(ind.name, name) self.assertEqual(ind.names, [name]) def test_hash_error(self): with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(self.strIndex).__name__): hash(self.strIndex) def test_new_axis(self): new_index = self.dateIndex[None, :] self.assertEqual(new_index.ndim, 2) tm.assert_isinstance(new_index, np.ndarray) def test_copy_and_deepcopy(self): from copy import copy, deepcopy for func in (copy, deepcopy): idx_copy = func(self.strIndex) self.assertIsNot(idx_copy, self.strIndex) self.assertTrue(idx_copy.equals(self.strIndex)) new_copy = self.strIndex.copy(deep=True, name="banana") self.assertEqual(new_copy.name, "banana") new_copy2 = self.intIndex.copy(dtype=int) self.assertEqual(new_copy2.dtype.kind, 'i') def test_duplicates(self): idx = Index([0, 0, 0]) self.assertFalse(idx.is_unique) def test_sort(self): self.assertRaises(TypeError, self.strIndex.sort) def test_mutability(self): self.assertRaises(TypeError, self.strIndex.__setitem__, 0, 'foo') def test_constructor(self): # regular instance creation tm.assert_contains_all(self.strIndex, self.strIndex) tm.assert_contains_all(self.dateIndex, self.dateIndex) # casting arr = np.array(self.strIndex) index = Index(arr) tm.assert_contains_all(arr, index) self.assert_numpy_array_equal(self.strIndex, index) # copy arr = np.array(self.strIndex) index = Index(arr, copy=True, name='name') tm.assert_isinstance(index, Index) self.assertEqual(index.name, 'name') assert_array_equal(arr, index) arr[0] = "SOMEBIGLONGSTRING" self.assertNotEqual(index[0], "SOMEBIGLONGSTRING") # what to do here? # arr = np.array(5.) # self.assertRaises(Exception, arr.view, Index) def test_constructor_corner(self): # corner case self.assertRaises(TypeError, Index, 0) def test_constructor_from_series(self): expected = DatetimeIndex([Timestamp('20110101'),Timestamp('20120101'),Timestamp('20130101')]) s = Series([Timestamp('20110101'),Timestamp('20120101'),Timestamp('20130101')]) result = Index(s) self.assertTrue(result.equals(expected)) result = DatetimeIndex(s) self.assertTrue(result.equals(expected)) # GH 6273 # create from a series, passing a freq s = Series(pd.to_datetime(['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'])) result = DatetimeIndex(s, freq='MS') expected = DatetimeIndex(['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'],freq='MS') self.assertTrue(result.equals(expected)) df = pd.DataFrame(np.random.rand(5,3)) df['date'] = ['1-1-1990', '2-1-1990', '3-1-1990', '4-1-1990', '5-1-1990'] result = DatetimeIndex(df['date'], freq='MS') # GH 6274 # infer freq of same result = pd.infer_freq(df['date']) self.assertEqual(result,'MS') def test_constructor_ndarray_like(self): # GH 5460#issuecomment-44474502 # it should be possible to convert any object that satisfies the numpy # ndarray interface directly into an Index class ArrayLike(object): def __init__(self, array): self.array = array def __array__(self, dtype=None): return self.array for array in [np.arange(5), np.array(['a', 'b', 'c']), date_range('2000-01-01', periods=3).values]: expected = pd.Index(array) result = pd.Index(ArrayLike(array)) self.assertTrue(result.equals(expected)) def test_index_ctor_infer_periodindex(self): xp = period_range('2012-1-1', freq='M', periods=3) rs = Index(xp) assert_array_equal(rs, xp) tm.assert_isinstance(rs, PeriodIndex) def test_constructor_simple_new(self): idx = Index([1, 2, 3, 4, 5], name='int') result = idx._simple_new(idx, 'int') self.assertTrue(result.equals(idx)) idx = Index([1.1, np.nan, 2.2, 3.0], name='float') result = idx._simple_new(idx, 'float') self.assertTrue(result.equals(idx)) idx = Index(['A', 'B', 'C', np.nan], name='obj') result = idx._simple_new(idx, 'obj') self.assertTrue(result.equals(idx)) def test_copy(self): i = Index([], name='Foo') i_copy = i.copy() self.assertEqual(i_copy.name, 'Foo') def test_view(self): i = Index([], name='Foo') i_view = i.view() self.assertEqual(i_view.name, 'Foo') def test_legacy_pickle_identity(self): # GH 8431 pth = tm.get_data_path() s1 = pd.read_pickle(os.path.join(pth,'s1-0.12.0.pickle')) s2 = pd.read_pickle(os.path.join(pth,'s2-0.12.0.pickle')) self.assertFalse(s1.index.identical(s2.index)) self.assertFalse(s1.index.equals(s2.index)) def test_astype(self): casted = self.intIndex.astype('i8') # it works! casted.get_loc(5) # pass on name self.intIndex.name = 'foobar' casted = self.intIndex.astype('i8') self.assertEqual(casted.name, 'foobar') def test_compat(self): self.strIndex.tolist() def test_equals(self): # same self.assertTrue(Index(['a', 'b', 'c']).equals(Index(['a', 'b', 'c']))) # different length self.assertFalse(Index(['a', 'b', 'c']).equals(Index(['a', 'b']))) # same length, different values self.assertFalse(Index(['a', 'b', 'c']).equals(Index(['a', 'b', 'd']))) # Must also be an Index self.assertFalse(Index(['a', 'b', 'c']).equals(['a', 'b', 'c'])) def test_insert(self): # GH 7256 # validate neg/pos inserts result = Index(['b', 'c', 'd']) #test 0th element self.assertTrue(Index(['a', 'b', 'c', 'd']).equals( result.insert(0, 'a'))) #test Nth element that follows Python list behavior self.assertTrue(Index(['b', 'c', 'e', 'd']).equals( result.insert(-1, 'e'))) #test loc +/- neq (0, -1) self.assertTrue(result.insert(1, 'z').equals( result.insert(-2, 'z'))) #test empty null_index = Index([]) self.assertTrue(Index(['a']).equals( null_index.insert(0, 'a'))) def test_delete(self): idx = Index(['a', 'b', 'c', 'd'], name='idx') expected = Index(['b', 'c', 'd'], name='idx') result = idx.delete(0) self.assertTrue(result.equals(expected)) self.assertEqual(result.name, expected.name) expected = Index(['a', 'b', 'c'], name='idx') result = idx.delete(-1) self.assertTrue(result.equals(expected)) self.assertEqual(result.name, expected.name) with tm.assertRaises((IndexError, ValueError)): # either depeidnig on numpy version result = idx.delete(5) def test_identical(self): # index i1 = Index(['a', 'b', 'c']) i2 = Index(['a', 'b', 'c']) self.assertTrue(i1.identical(i2)) i1 = i1.rename('foo') self.assertTrue(i1.equals(i2)) self.assertFalse(i1.identical(i2)) i2 = i2.rename('foo') self.assertTrue(i1.identical(i2)) i3 = Index([('a', 'a'), ('a', 'b'), ('b', 'a')]) i4 = Index([('a', 'a'), ('a', 'b'), ('b', 'a')], tupleize_cols=False) self.assertFalse(i3.identical(i4)) def test_is_(self): ind = Index(range(10)) self.assertTrue(ind.is_(ind)) self.assertTrue(ind.is_(ind.view().view().view().view())) self.assertFalse(ind.is_(Index(range(10)))) self.assertFalse(ind.is_(ind.copy())) self.assertFalse(ind.is_(ind.copy(deep=False))) self.assertFalse(ind.is_(ind[:])) self.assertFalse(ind.is_(ind.view(np.ndarray).view(Index))) self.assertFalse(ind.is_(np.array(range(10)))) # quasi-implementation dependent self.assertTrue(ind.is_(ind.view())) ind2 = ind.view() ind2.name = 'bob' self.assertTrue(ind.is_(ind2)) self.assertTrue(ind2.is_(ind)) # doesn't matter if Indices are *actually* views of underlying data, self.assertFalse(ind.is_(Index(ind.values))) arr = np.array(range(1, 11)) ind1 = Index(arr, copy=False) ind2 = Index(arr, copy=False) self.assertFalse(ind1.is_(ind2)) def test_asof(self): d = self.dateIndex[0] self.assertIs(self.dateIndex.asof(d), d) self.assertTrue(np.isnan(self.dateIndex.asof(d - timedelta(1)))) d = self.dateIndex[-1] self.assertEqual(self.dateIndex.asof(d + timedelta(1)), d) d = self.dateIndex[0].to_datetime() tm.assert_isinstance(self.dateIndex.asof(d), Timestamp) def test_asof_datetime_partial(self): idx = pd.date_range('2010-01-01', periods=2, freq='m') expected = Timestamp('2010-01-31') result = idx.asof('2010-02') self.assertEqual(result, expected) def test_nanosecond_index_access(self): s = Series([Timestamp('20130101')]).values.view('i8')[0] r = DatetimeIndex([s + 50 + i for i in range(100)]) x = Series(np.random.randn(100), index=r) first_value = x.asof(x.index[0]) # this does not yet work, as parsing strings is done via dateutil #self.assertEqual(first_value, x['2013-01-01 00:00:00.000000050+0000']) self.assertEqual(first_value, x[Timestamp(np.datetime64('2013-01-01 00:00:00.000000050+0000', 'ns'))]) def test_argsort(self): result = self.strIndex.argsort() expected = np.array(self.strIndex).argsort() self.assert_numpy_array_equal(result, expected) def test_comparators(self): index = self.dateIndex element = index[len(index) // 2] element = _to_m8(element) arr = np.array(index) def _check(op): arr_result = op(arr, element) index_result = op(index, element) self.assertIsInstance(index_result, np.ndarray) self.assert_numpy_array_equal(arr_result, index_result) _check(operator.eq) _check(operator.ne) _check(operator.gt) _check(operator.lt) _check(operator.ge) _check(operator.le) def test_booleanindex(self): boolIdx = np.repeat(True, len(self.strIndex)).astype(bool) boolIdx[5:30:2] = False subIndex = self.strIndex[boolIdx] for i, val in enumerate(subIndex): self.assertEqual(subIndex.get_loc(val), i) subIndex = self.strIndex[list(boolIdx)] for i, val in enumerate(subIndex): self.assertEqual(subIndex.get_loc(val), i) def test_fancy(self): sl = self.strIndex[[1, 2, 3]] for i in sl: self.assertEqual(i, sl[sl.get_loc(i)]) def test_empty_fancy(self): empty_farr = np.array([], dtype=np.float_) empty_iarr = np.array([], dtype=np.int_) empty_barr = np.array([], dtype=np.bool_) # pd.DatetimeIndex is excluded, because it overrides getitem and should # be tested separately. for idx in [self.strIndex, self.intIndex, self.floatIndex]: empty_idx = idx.__class__([]) values = idx.values self.assertTrue(idx[[]].identical(empty_idx)) self.assertTrue(idx[empty_iarr].identical(empty_idx)) self.assertTrue(idx[empty_barr].identical(empty_idx)) # np.ndarray only accepts ndarray of int & bool dtypes, so should # Index. self.assertRaises(IndexError, idx.__getitem__, empty_farr) def test_getitem(self): arr = np.array(self.dateIndex) exp = self.dateIndex[5] exp = _to_m8(exp) self.assertEqual(exp, arr[5]) def test_shift(self): shifted = self.dateIndex.shift(0, timedelta(1)) self.assertIs(shifted, self.dateIndex) shifted = self.dateIndex.shift(5, timedelta(1)) self.assert_numpy_array_equal(shifted, self.dateIndex + timedelta(5)) shifted = self.dateIndex.shift(1, 'B') self.assert_numpy_array_equal(shifted, self.dateIndex + offsets.BDay()) shifted.name = 'shifted' self.assertEqual(shifted.name, shifted.shift(1, 'D').name) def test_intersection(self): first = self.strIndex[:20] second = self.strIndex[:10] intersect = first.intersection(second) self.assertTrue(tm.equalContents(intersect, second)) # Corner cases inter = first.intersection(first) self.assertIs(inter, first) # non-iterable input assertRaisesRegexp(TypeError, "iterable", first.intersection, 0.5) idx1 = Index([1, 2, 3, 4, 5], name='idx') # if target has the same name, it is preserved idx2 = Index([3, 4, 5, 6, 7], name='idx') expected2 = Index([3, 4, 5], name='idx') result2 = idx1.intersection(idx2) self.assertTrue(result2.equals(expected2)) self.assertEqual(result2.name, expected2.name) # if target name is different, it will be reset idx3 = Index([3, 4, 5, 6, 7], name='other') expected3 = Index([3, 4, 5], name=None) result3 = idx1.intersection(idx3) self.assertTrue(result3.equals(expected3)) self.assertEqual(result3.name, expected3.name) # non monotonic idx1 = Index([5, 3, 2, 4, 1], name='idx') idx2 = Index([4, 7, 6, 5, 3], name='idx') result2 = idx1.intersection(idx2) self.assertTrue(tm.equalContents(result2, expected2)) self.assertEqual(result2.name, expected2.name) idx3 = Index([4, 7, 6, 5, 3], name='other') result3 = idx1.intersection(idx3) self.assertTrue(tm.equalContents(result3, expected3)) self.assertEqual(result3.name, expected3.name) # non-monotonic non-unique idx1 = Index(['A','B','A','C']) idx2 = Index(['B','D']) expected = Index(['B'], dtype='object') result = idx1.intersection(idx2) self.assertTrue(result.equals(expected)) def test_union(self): first = self.strIndex[5:20] second = self.strIndex[:10] everything = self.strIndex[:20] union = first.union(second) self.assertTrue(
tm.equalContents(union, everything)
pandas.util.testing.equalContents
# clean SG weather data import os.path import sys import pandas as pd import logging INPUT_DIR = '../../Data/raw/weather_SG' OUTPUT_DIR = '../../Data/interim/weather_SG' OUTPUT_FILE = "weekly-weather.csv" DICT_RENAME={'Station':'location', 'Year':'year', 'Month':'month', 'Day':'day', 'Daily Rainfall Total (mm)':'Rainfall Total', 'Highest 30 Min Rainfall (mm)':'Max 30Min Rainfall', 'Highest 60 Min Rainfall (mm)':'Max 60Min Rainfall', 'Highest 120 Min Rainfall (mm)':'Max 120Min Rainfall', 'Mean Temperature (°C)':'Mean Temperature', 'Maximum Temperature (°C)':'Max Temperature', 'Minimum Temperature (°C)':'Min Temperature', 'Mean Wind Speed (km/h)':'Mean Wind Speed', 'Max Wind Speed (km/h)':'Max Wind Speed'} COLS_RENAMED = ['location', 'year', 'week', 'month', 'day', 'Rainfall Total', 'Max 30Min Rainfall', 'Max 60Min Rainfall', 'Max 120Min Rainfall', 'Mean Temperature', 'Max Temperature', 'Min Temperature', 'Mean Wind Speed', 'Max Wind Speed'] COL_NUM = ['year', 'month', 'day', 'Rainfall Total', 'Max 30Min Rainfall', 'Max 60Min Rainfall', 'Max 120Min Rainfall', 'Mean Temperature', 'Max Temperature', 'Min Temperature', 'Mean Wind Speed', 'Max Wind Speed'] APPLY_LOGIC = { 'Rainfall Total' : 'sum', 'Max 30Min Rainfall' : 'max', 'Max 60Min Rainfall' : 'max', 'Max 120Min Rainfall' : 'max', 'Mean Temperature' : 'mean', 'Max Temperature' : 'max', 'Min Temperature' : 'min', 'Mean Wind Speed' : 'mean', 'Max Wind Speed' : 'max' } logger = logging.getLogger(__name__) def clean(): files = os.listdir(INPUT_DIR) os.makedirs(OUTPUT_DIR, exist_ok=True) stations = [x.split('_')[0] for x in files] stations = list(set(stations)) for station in stations: station_files = [x for x in files if x.startswith(station)] station_files.sort() dfWeeklyWeather = pd.DataFrame(columns=COLS_RENAMED) dfRemain =
pd.DataFrame(columns=COLS_RENAMED)
pandas.DataFrame
# -*- coding: utf-8 -*- # author:zhengk import pandas as pd from pandas.plotting import register_matplotlib_converters from matplotlib.font_manager import FontProperties import matplotlib.pyplot as plt # 数据分析 def pandas_analysis(): # 读取评论 df = pd.read_csv('comment.csv', sep=';', header=None) # 整理数据 df.columns = ['date', 'comment'] df['date'] =
pd.to_datetime(df['date'])
pandas.to_datetime
import sys sys.path.append("../") import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy.linalg as ln from openpyxl import Workbook import xlsxwriter as xlsx import pickle ############## Read data and convert to dictionary ############################################### data_list=['conference','hospital','primary_school','workplace','high_school'] for data in data_list: original_df=pd.read_csv('../data/'+data+'.txt', sep='\t', header=None, names=['ID1','ID2','start_time','end_time']) reverse_df=
pd.read_csv('../data/'+data+'.txt', sep='\t', header=None, names=['ID2','ID1','start_time','end_time'])
pandas.read_csv
import pandas as pd import numpy as np import scipy import os, sys, time, json, math import matplotlib.pyplot as plt import seaborn as sns from functools import reduce from os.path import join from datetime import datetime from scipy.integrate import odeint from numpy import loadtxt from scipy.optimize import minimize rootDir = os.path.abspath(os.path.curdir) print(rootDir) sys.path.insert(0, os.path.join(rootDir, 'lib')) ## use JD's optimizer #from systemSolver import optimizer as optimizer from optimizer import Differential_Evolution from getPatientData import getPatientData import copy from matplotlib.font_manager import FontProperties #riskConfig = json.load(open('amgen-risk-model/amgen-risk-model/config/riskModel_3y_LipidCxoOptimized.json')) # classConfig = json.load(open(riskConfig['patientClassConfig'])) classConfig = json.load(open('../config/lipidoptimizing.json')) def differentialequations(I, t, p): ''' This function has the differential equations of the lipids (LDL, Total Cholesterol, Triglyceride, HDL) Inputs: I: Initial conditions t: timepoints p: parameters ''' try: # Initial conditions Cldl, Cchol, Ctrig, Chdl = I # Parameters adherence, dose, Imaxldl, Imaxchol, Imaxtrig, Imaxhdl, Ic50, n, dx, Sx0ldl, Sx0chol, Sx0trig, Sx0hdl = p t = np.round(t) t = t.astype(int) # print dose.shape if t > (dose.shape[0] - 1): t = (dose.shape[0] - 1) div = (Ic50+(dose[t]*adherence[t])**n) h0 = ((dose[t] * adherence[t])**n) # llipid equation dCldldt = (Sx0ldl * (1 - np.sum((Imaxldl*h0)/div))) - (dx*Cldl) dCcholdt = (Sx0chol * (1 - np.sum((Imaxchol*h0)/div))) - (dx*Cchol) dCtrigdt = (Sx0trig * (1 - np.sum((Imaxtrig*h0)/div))) - (dx*Ctrig) dChdldt = (Sx0hdl * (1 + np.sum((Imaxhdl*h0)/div))) - (dx*Chdl) f = [dCldldt, dCcholdt, dCtrigdt, dChdldt] return f except Exception as e: # print 'There was some problem with the differentialequations function: {}'.format(e) print(dose.shape, t) raise def differential_solve(adherence, t, Sx0ldl, Sx0chol, Sx0trig, Sx0hdl, Cldl0, Cchol0, Ctrig0, Chdl0, dose): ''' This function solves the differential equations with odeint Inputs: adherence: patient's adherence for all the statins, 2-d numpy array t: timepoints Sx0: synthesis terms for all the lipids C0: baseline values for all the lipids dose: doses for all the statins, 2-d numpy array ''' try: dx = math.log(2)/14 ldl_eff = np.load('../data/final/Efficacy/ldl_efficacy.npy') chol_eff = np.load('../data/final/Efficacy/tc_efficacy.npy') trig_eff = np.load('../data/final/Efficacy/trig_efficacy.npy') hdl_eff = np.load('../data/final/Efficacy/hdl_efficacy.npy') Imaxldl = ldl_eff[0] Imaxchol = chol_eff[0] Imaxtrig = trig_eff[0] Imaxhdl = hdl_eff[0] # Imaxldl, Imaxchol, Imaxtrig, Imaxhdl = np.array([0,0,0,0,0,0]), np.array([0,0,0,0,0,0]), np.array([0,0,0,0,0,0]), np.array([0,0,0,0,0,0]) Ic50 = ldl_eff[1] n = 0.7 I0 = [Cldl0, Cchol0, Ctrig0, Chdl0] p = [adherence, dose, Imaxldl, Imaxchol, Imaxtrig, Imaxhdl, Ic50, n, dx, Sx0ldl, Sx0chol, Sx0trig, Sx0hdl] sol = odeint(differentialequations, I0, t, args = (p,)) # print(sol) Cldl = [] Cchol = [] Ctrig = [] Chdl = [] for s1 in sol: Cldl.append(s1[0]) Cchol.append(s1[1]) Ctrig.append(s1[2]) Chdl.append(s1[3]) # print(Cldl) return Cldl, Cchol, Ctrig, Chdl except Exception as e: # print('There was some problem with the differential_solve function: {}'.format(e)) raise def adherence_coding(adherence, periods): ''' This function takes the adherence and identifies where it is -1 and returns the pairs of rows and columns, number of windows and the flag Parameters ---------- adhrenece : {2-d numpy array for each patient} It has the adherence values for all the medications for each day periods_total : {1-d numpy array} It has the Returns ------- [type] [description] ''' try: # print(periods_total) period_nonzero = periods[periods!=0] row, col = np.where(adherence==-1) pairs = list(map(list, zip(row, col))) windows = len(np.where(np.roll(period_nonzero,1)!=period_nonzero)[0]) if windows == 0: windows = 1 else: windows = windows return pairs, windows, period_nonzero except Exception as e: print('There was some problem with the adherence_coding function: {}'.format(e)) def adherence_guess(adherence, pairs, values, flag): try: for i in range(len(flag)): l = pairs[i] adherence[l[0]][l[1]] = values[flag[i]-1] return adherence except Exception as e: # print 'There was some problem with the adherence_guess function: {}'.format(e) raise def h0_cal(dose, Imax, Ic50, n, adherence): try: h0 = (Imax*((dose*adherence)**n))/(Ic50 + ((dose*adherence)**n)) if all(np.isnan(h0)): h0[:] = 0 h0_dictionary = {'Atorvastatin':h0[0], 'Fluvastatin':h0[1], 'Lovastatin':h0[2], 'Pravastatin':h0[3], 'Rosuvastatin':h0[4], 'Simvastatin':h0[5]} # print(h0_dictionary) return h0_dictionary except Exception as e: print('There was some problem with the h0_cal function: {}'.format(e)) def rmse_function(real_data,real_time,max_value, t, ode_solution): try: real_time = np.array(real_time) weight = (1/max_value)**2 indices = [] for j in real_time: k = np.where(t == j)[0][0] # print(k) indices.append(k) ode_final_values = np.array(ode_solution)[indices] # print(indices) # quit() # print(ode_final_values) rmse = np.average(weight*((ode_final_values - np.array(real_data))**2)) return rmse except Exception as e: print('There was some problem with the rmse_function function: {}'.format(e)) def get_total_rmse_nonNorm(adherence, Sx0ldl, Sx0chol, Sx0trig, Sx0hdl, Cldl0, Cchol0, Ctrig0, Chdl0, dose, t_ldl, ldl, t_tc, tc, t_trig, trig, t_hdl, hdl,t): try: ldl_max = max(ldl) tc_max = max(tc) # if len(trig)>0: # trig_max = max(trig) # else: # trig_max = 1 trig_max = 1 # max(trig) hdl_max = 1 # max(hdl) Cldl, Cchol, Ctrig, Chdl = differential_solve(adherence, t, Sx0ldl, Sx0chol, Sx0trig, Sx0hdl, Cldl0, Cchol0, Ctrig0, Chdl0, dose) rmse_ldl = rmse_function(ldl, t_ldl, 1, t, Cldl) rmse_tc = rmse_function(tc, t_tc, 1, t, Cchol) # rmse_trig = rmse_function(trig, t_trig, trig_max, t, Ctrig) rmse_trig = 0 rmse_hdl = 0 #rmse_function(hdl, t_hdl, 1, t, Chdl) rmse_total = rmse_ldl + rmse_tc + (rmse_trig * 0) + rmse_hdl return rmse_total except Exception as e: # print 'There was some problem with the get_total_rmse function: {}'.format(e) raise def get_total_rmse(x, pairs, windows, period_nonzero, adherence, Sx0ldl, Sx0chol, Sx0trig, Sx0hdl, Cldl0, Cchol0, Ctrig0, Chdl0, dose, t_ldl, ldl, t_tc, tc, t_trig, trig, t_hdl, hdl,t,count, biomarker,pre_adherence,prestatin, statintype, statin_dose): try: values_adherence = x[0:windows] if count > 0: values_biomarker = x[windows:] for i in range(count): if biomarker[i] == 'ldl': Cldl0 = values_biomarker[i] if biomarker[i] == 'chol': Cchol0 = values_biomarker[i] if biomarker[i] == 'trig': Ctrig0 = values_biomarker[i] if biomarker[i] == 'hdl': Chdl0 = values_biomarker[i] if biomarker[i] == 'pre_adherence': pre_adherence = values_biomarker[i] if biomarker[i] == 'alpha': alpha = values_biomarker[i] if 'alpha' in biomarker: Cldl0 = Cldl0 * alpha Cchol0 = Cchol0 * alpha Sx0ldl, Sx0chol, Sx0trig, Sx0hdl, Cldl0, Cchol0, Ctrig0, Chdl0 = synthesis_calculation(Cldl0, Cchol0, Ctrig0, Chdl0, prestatin, statintype, statin_dose, pre_adherence) adherence = adherence_guess(adherence, pairs, values_adherence, period_nonzero) ldl_max = max(ldl) tc_max = max(tc) # if len(trig)>0: # trig_max = max(trig) # else: # trig_max = 1 trig_max = 1 #max(trig) hdl_max = 1 #max(hdl) Cldl, Cchol, Ctrig, Chdl = differential_solve(adherence, t, Sx0ldl, Sx0chol, Sx0trig, Sx0hdl, Cldl0, Cchol0, Ctrig0, Chdl0, dose) rmse_ldl = rmse_function(ldl, t_ldl, ldl_max, t, Cldl) rmse_tc = rmse_function(tc, t_tc, tc_max, t, Cchol) # rmse_trig = rmse_function(trig, t_trig, trig_max, t, Ctrig) rmse_trig = 0 rmse_hdl = 0 #rmse_function(hdl, t_hdl, hdl_max, t, Chdl) rmse_total = (1.2 * rmse_ldl) + rmse_tc + (rmse_trig * 0) +rmse_hdl return rmse_total except Exception as e: # print 'There was some problem with the get_total_rmse function: {}'.format(e) raise def synthesis_calculation(Cldl0, Cchol0, Ctrig0, Chdl0, prestatin, statintype, statin_dose, pre_adherence): try: ldl_eff = np.load('../data/final/Efficacy/ldl_efficacy.npy') chol_eff = np.load('../data/final/Efficacy/tc_efficacy.npy') trig_eff = np.load('../data/final/Efficacy/trig_efficacy.npy') hdl_eff = np.load('../data/final/Efficacy/hdl_efficacy.npy') n = 0.7 dx = math.log(2)/14 if pd.isnull(Cldl0) | pd.isnull(Cchol0) | pd.isnull(Ctrig0) | pd.isnull(Chdl0): print(Cldl0, Cchol0, Ctrig0, Chdl0, prestatin, statintype, statin_dose) Cldl0, Cchol0, Ctrig0, Chdl0 = baseline_map(Cldl0, Cchol0, Ctrig0, Chdl0, prestatin, statintype, statin_dose) if prestatin: Sx0ldl = (dx*Cldl0)/(1-h0_cal(statin_dose, ldl_eff[0], ldl_eff[1], n, pre_adherence)[statintype]) Sx0chol = (dx*Cchol0)/(1-h0_cal(statin_dose, chol_eff[0], chol_eff[1], n, pre_adherence)[statintype]) Sx0trig = (dx*Ctrig0)/(1-h0_cal(statin_dose, trig_eff[0], trig_eff[1], n, pre_adherence)[statintype]) Sx0hdl = (dx*Chdl0)/(1-h0_cal(statin_dose, hdl_eff[0], hdl_eff[1], n, pre_adherence)[statintype]) else: Sx0ldl = (dx*Cldl0) Sx0chol = (dx*Cchol0) Sx0trig = (dx*Ctrig0) Sx0hdl = (dx*Chdl0) # print(Cldl0, Cchol0, Ctrig0, Chdl0) return Sx0ldl, Sx0chol, Sx0trig, Sx0hdl, Cldl0, Cchol0, Ctrig0, Chdl0 except Exception as e: # print 'There was some problem with the synthesis_calculation function: {}'.format(e) raise def baseline_map(Cldl0, Cchol0, Ctrig0, Chdl0, prestatin, statintype, statin_dose): try: ldl = {'Atorvastatin': {'5': 0.31, '10': 0.37, '15': 0.40, '20': 0.43, '30': 0.46,'40': 0.49, '45': 0.50, '50': 0.51, '60': 0.52, '70': np.nan, '80': 0.55}, 'Fluvastatin': {'5': 0.10, '10': 0.15, '15': np.nan, '20': 0.21, '30': np.nan, '40': 0.27, '45': np.nan, '50': np.nan, '60': np.nan, '70': np.nan, '80': 0.33}, 'Lovastatin': {'5': np.nan, '10': 0.21 , '15': np.nan, '20': 0.29, '30': 0.33, '40': 0.37, '45': np.nan, '50': np.nan, '60': np.nan, '70': np.nan, '80': 0.45}, 'Pravastatin': {'5': 0.15, '10': 0.2, '15': np.nan, '20': 0.24, '30': 0.27, '40': 0.29, '45': np.nan, '50': np.nan, '60': np.nan, '70': np.nan, '80': 0.33}, 'Rosuvastatin': {'5': 0.38, '10': 0.43, '15': 0.46, '20': 0.48, '30': 0.51, '40': 0.53, '45': np.nan, '50': np.nan, '60': np.nan, '70': np.nan, '80': 0.58}, 'Simvastatin': {'5': 0.23, '10': 0.27, '15': 0.3, '20': 0.32, '30': 0.35, '40': 0.37, '45': 0.38, '50': 0.38, '60': 0.4, '70': 0.41, '80': 0.42}} tc = {'Atorvastatin': {'5': 0.24, '10': 0.29, '15': 0.31, '20': 0.33, '30': 0.36, '40': 0.38, '45': 0.39, '50': 0.39, '60': 0.4, '70': np.nan, '80': 0.43}, 'Fluvastatin': {'5': 0.07, '10': 0.12, '15': np.nan, '20': 0.17, '30': np.nan, '40': 0.21, '45': np.nan, '50': np.nan, '60': np.nan, '70':np.nan, '80': 0.26}, 'Lovastatin': {'5': np.nan, '10': 0.17, '15': np.nan, '20': 0.23, '30': 0.26, '40': 0.29, '45': np.nan, '50': np.nan, '60': np.nan, '70': np.nan, '80': 0.35}, 'Pravastatin': {'5': 0.12, '10': 0.15, '15': np.nan, '20': 0.19, '30': 0.21, '40': 0.22, '45': np.nan, '50': np.nan, '60': np.nan, '70': np.nan, '80': 0.26}, 'Rosuvastatin': {'5': 0.3, '10': 0.34, '15': 0.36, '20': 0.38, '30': 0.39, '40': 0.41, '45': np.nan, '50': np.nan, '60': np.nan, '70': np.nan, '80': 0.45}, 'Simvastatin': {'5': 0.17, '10': 0.21, '15': 0.23, '20': 0.25, '30': 0.27, '40': 0.29, '45': np.nan, '50': 0.3, '60': 0.31, '70': 0.32, '80': 0.33}} trig = {'Atorvastatin': {'5': 0.16, '10': 0.19, '15': 0.2, '20': 0.21, '30': 0.23, '40': 0.25, '45': 0.25, '50': 0.25, '60': 0.26, '70': np.nan, '80': 0.27}, 'Fluvastatin': {'5': 0.05, '10': 0.08, '15': np.nan, '20': 0.11, '30': np.nan, '40': 0.14, '45': np.nan, '50': np.nan, '60': np.nan, '70': np.nan, '80': 0.16}, 'Lovastatin': {'5': np.nan, '10': 0.11, '15': np.nan, '20': 0.15, '30': 0.16, '40': 0.18, '45': np.nan, '50': np.nan, '60': np.nan, '70': np.nan, '80': 0.22}, 'Pravastatin': {'5': 0.08, '10': 0.10, '15': np.nan, '20': 0.12, '30': 0.13, '40': 0.14, '45': np.nan, '50': np.nan, '60': np.nan, '70': np.nan, '80': 0.17}, 'Rosuvastatin': {'5': 0.19, '10': 0.22, '15': 0.23, '20': 0.24, '30': 0.25, '40': 0.27, '45': np.nan, '50': np.nan, '60': np.nan, '70': np.nan, '80': 0.29}, 'Simvastatin': {'5': 0.11, '10': 0.14, '15': 0.15, '20': 0.16, '30': 0.17, '40': 0.18, '45': np.nan, '50': 0.19, '60': 0.20, '70': 0.20, '80': 0.21}} hdl = {'Atorvastatin': {'5': 1.0, '10': 1.0, '15': 1.0, '20': 1.0, '30': 1.0, '40': 1.0, '45': 1.0, '50': 1.0, '60': 1.0, '70':1.0, '80': 1.0}, 'Fluvastatin': {'5': 1.0, '10': 1.0, '15': 1.0, '20': 1.0, '30': 1.0, '40': 1.0, '45': 1.0, '50': 1.0, '60': 1.0, '70': 1.0, '80': 1.0}, 'Lovastatin': {'5': 1.0, '10': 1.0, '15': 1.0, '20': 1.0, '30': 1.0, '40': 1.0, '45': 1.0, '50': 1.0, '60': 1.0, '70': 1.0, '80': 1.0}, 'Pravastatin': {'5': 1.0, '10': 1.0, '15': 1.0, '20': 1.0, '30': 1.0, '40': 1.0, '45': 1.0, '50': 1.0, '60': 1.0, '70': 1.0, '80': 1.0}, 'Rosuvastatin': {'5': 1.0, '10': 1.0, '15': 1.0, '20': 1.0, '30': 1.0, '40': 1.0, '45': 1.0, '50': 1.0, '60': 1.0, '70': 1.0, '80': 1.0}, 'Simvastatin': {'5': 1.0, '10': 1.0, '15': 1.0, '20': 1.0, '30': 1.0, '40': 1.0, '45': 1.0, '50': 1.0, '60': 1.0, '70': 1.0, '80': 1.0}} Cldl_prestatin = 4.78407034 Cchol_prestatin = 6.77527799 Ctrig_prestatin = 4.65168793 Chdl_prestatin = 1.81018878 if prestatin == False: if
pd.isnull(Cldl0)
pandas.isnull
from collections import ( abc, deque, ) from decimal import Decimal from warnings import catch_warnings import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, PeriodIndex, Series, concat, date_range, ) import pandas._testing as tm from pandas.core.arrays import SparseArray from pandas.core.construction import create_series_with_explicit_dtype from pandas.tests.extension.decimal import to_decimal class TestConcatenate: def test_append_concat(self): # GH#1815 d1 = date_range("12/31/1990", "12/31/1999", freq="A-DEC") d2 = date_range("12/31/2000", "12/31/2009", freq="A-DEC") s1 = Series(np.random.randn(10), d1) s2 = Series(np.random.randn(10), d2) s1 = s1.to_period() s2 = s2.to_period() # drops index result = concat([s1, s2]) assert isinstance(result.index, PeriodIndex) assert result.index[0] == s1.index[0] def test_concat_copy(self, using_array_manager): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randint(0, 10, size=4).reshape(4, 1)) df3 = DataFrame({5: "foo"}, index=range(4)) # These are actual copies. result = concat([df, df2, df3], axis=1, copy=True) for arr in result._mgr.arrays: assert arr.base is None # These are the same. result = concat([df, df2, df3], axis=1, copy=False) for arr in result._mgr.arrays: if arr.dtype.kind == "f": assert arr.base is df._mgr.arrays[0].base elif arr.dtype.kind in ["i", "u"]: assert arr.base is df2._mgr.arrays[0].base elif arr.dtype == object: if using_array_manager: # we get the same array object, which has no base assert arr is df3._mgr.arrays[0] else: assert arr.base is not None # Float block was consolidated. df4 = DataFrame(np.random.randn(4, 1)) result = concat([df, df2, df3, df4], axis=1, copy=False) for arr in result._mgr.arrays: if arr.dtype.kind == "f": if using_array_manager: # this is a view on some array in either df or df4 assert any( np.shares_memory(arr, other) for other in df._mgr.arrays + df4._mgr.arrays ) else: # the block was consolidated, so we got a copy anyway assert arr.base is None elif arr.dtype.kind in ["i", "u"]: assert arr.base is df2._mgr.arrays[0].base elif arr.dtype == object: # this is a view on df3 assert any(np.shares_memory(arr, other) for other in df3._mgr.arrays) def test_concat_with_group_keys(self): # axis=0 df = DataFrame(np.random.randn(3, 4)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1]) exp_index = MultiIndex.from_arrays( [[0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 0, 1, 2, 3]] ) expected =
DataFrame(np.r_[df.values, df2.values], index=exp_index)
pandas.DataFrame
from matplotlib.dates import date2num, num2date from matplotlib.colors import ListedColormap from matplotlib import dates as mdates from matplotlib import pyplot as plt from matplotlib.patches import Patch from matplotlib import ticker from global_config import config import matplotlib.pyplot as plt import scipy.io as sio import pandas as pd import numpy as np import os from global_config import config from functions.adjust_cases_functions import prepare_cases from functions.plot_utils import plot_fit from global_config import config from models.seird_model import SEIRModel from models.seird_model import SEIRD from datetime import date, timedelta import pandas as pd import numpy as np import datetime import os import sys if len(sys.argv) < 2: raise NotImplementedError() else: poly_run = int(sys.argv[1]) name_dir = str(sys.argv[2]) data_dir = config.get_property('data_dir_covid') geo_dir = config.get_property('geo_dir') data_dir_mnps = config.get_property('data_dir_col') results_dir = config.get_property('results_dir') agglomerated_folder = os.path.join(data_dir, 'data_stages', 'colombia', 'agglomerated', 'geometry' ) data = pd.read_csv(os.path.join(agglomerated_folder, 'cases.csv'), parse_dates=['date_time'], dayfirst=True).set_index('poly_id').loc[poly_run].set_index('date_time') data = data.resample('D').sum().fillna(0)[['num_cases','num_diseased']] data = prepare_cases(data, col='num_cases', cutoff=0) # .rename({'smoothed_num_cases':'num_cases'}) data = prepare_cases(data, col='num_diseased', cutoff=0) # .rename({'smoothed_num_cases':'num_cases'}) data = data.rename(columns={'num_cases': 'confirmed', 'num_diseased':'death'})[['confirmed', 'death']] data = prepare_cases(data, col='confirmed') data = prepare_cases(data, col='death') data['type'] = 'fitted' data.iloc[-14:]['type'] = 'preliminary' T_future = 28 path_to_checkpoints = os.path.join(results_dir, name_dir, 'checkpoints_agg') import scipy.io as sio x_post_forecast = sio.loadmat(os.path.join( path_to_checkpoints, 'forecast_xstates_bog'))['x_forecast'] para_post = sio.loadmat(os.path.join( path_to_checkpoints, '100_para_post_mean.mat'))['para_post_mean'] x_post = sio.loadmat(os.path.join( path_to_checkpoints, '100_x_post'))['x_post'] path_to_save = os.path.join(results_dir, 'weekly_forecast' , name_dir, pd.to_datetime(data[data.type=='fitted'].index.values[-1]).strftime('%Y-%m-%d')) pop = 8181047 parameters_csv = pd.DataFrame(np.mean(para_post[[0,1,-1],:,:].T, axis=1), columns=['beta_i','beta_a', 'ifr'], index=pd.date_range(start=pd.to_datetime(data[data.type=='fitted'].index.values[0]).strftime('%Y-%m-%d'), periods=para_post.shape[-1])) parameters_csv.index.name = 'date' parameters_csv['beta_a'] = parameters_csv['beta_i']*parameters_csv['beta_a'] parameters_csv.to_csv(os.path.join(path_to_save, 'parameters.csv')) variables_csv = pd.DataFrame(np.maximum(np.mean(x_post[:7,:,:len(data)].T, axis=1),0), columns=['S','E', 'I', 'A', 'Id', 'cases','deaths'], index=pd.date_range(start=pd.to_datetime(data[data.type=='fitted'].index.values[0]).strftime('%Y-%m-%d'), periods=para_post.shape[-1])) variables_csv.index.name = 'date' variables_csv['R'] = pop-variables_csv['S']+variables_csv['E']+variables_csv['A']+variables_csv['I']+variables_csv['Id']#+variables_csv['deaths'] variables_csv = variables_csv[['S', 'E','A', 'I', 'Id', 'deaths','R']] variables_csv['population'] = pop variables_csv.to_csv(os.path.join(path_to_save, 'variables.csv')) #variables_csv = variables_csv/pop*100 #variables_csv.to_csv(os.path.join(path_to_save, 'variables_percentage.csv')) recovered = np.squeeze(sio.loadmat(os.path.join(path_to_checkpoints, 'recovered'))['recovered_all']) recovered = recovered[:, :len(data[data.type=='fitted'])] def create_df_response(samples, time, date_init ='2020-03-06', forecast_horizon=27, use_future=False): dates_fitted = pd.date_range(start=pd.to_datetime(date_init), periods=time) dates_forecast = pd.date_range(start=dates_fitted[-1]+datetime.timedelta(1), periods=forecast_horizon) dates = list(dates_fitted) types = ['estimate']*len(dates_fitted) if use_future: dates += list(dates_forecast) types += ['forecast']*len(dates_forecast) results_df = pd.DataFrame(samples.T) df_response = pd.DataFrame(index=dates) # Calculate key statistics df_response['mean'] = results_df.mean(axis=1).values df_response['median'] = results_df.median(axis=1).values df_response['std'] = results_df.std(axis=1).values df_response['low_975'] = results_df.quantile(q=0.025, axis=1).values df_response['high_975'] = results_df.quantile(q=0.975, axis=1).values df_response['low_90'] = results_df.quantile(q=0.1, axis=1).values df_response['high_90'] = results_df.quantile(q=0.9, axis=1).values df_response['low_75'] = results_df.quantile(q=0.25, axis=1).values df_response['high_75'] = results_df.quantile(q=0.75, axis=1).values df_response['type'] = types df_response.index.name = 'date' return df_response df_response = create_df_response(np.cumsum(recovered, axis=1)/pop*10, recovered.shape[-1], date_init =pd.to_datetime(data[data.type=='fitted'].index.values[0]).strftime('%Y-%m-%d')) df_response.to_csv(os.path.join(path_to_save, 'recovered_percentage.csv')) fig, ax = plt.subplots(1, 1, figsize=(12.5, 7)) ax.plot(df_response.index.values, df_response["mean"], color='teal', alpha=0.4) ax.fill_between(df_response.index.values, df_response["low_975"], df_response["high_975"], color='teal', alpha=0.6, label='95 % CI') ax.xaxis.set_major_locator(mdates.MonthLocator()) ax.xaxis.set_major_formatter(mdates.DateFormatter('%b')) ax.xaxis.set_minor_locator(mdates.DayLocator()) ax.xaxis.set_major_locator(mdates.WeekdayLocator()) ax.xaxis.set_major_locator(mdates.MonthLocator()) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.grid(which='major', axis='y', c='k', alpha=.1, zorder=-2) ax.grid(which='major', axis='x', c='k', alpha=.1, zorder=-2) ax.tick_params(axis='both', labelsize=15) ax.yaxis.set_major_formatter(ticker.StrMethodFormatter("{x:.1f} %")) ax.set_ylabel(r'Recovered Fraction $R(t)/N$', fontsize=15) ax.legend(loc='upper left') fig.savefig(os.path.join(path_to_save, 'parameters','recovered.png'), dpi=300, bbox_inches='tight', transparent=False) plt.show() detection_rate = para_post[4,:,:] detection_rate_df = create_df_response(detection_rate*100, detection_rate.shape[-1], date_init =pd.to_datetime(data[data.type=='fitted'].index.values[0]).strftime('%Y-%m-%d')) I_df = create_df_response(x_post[2,:,:], x_post.shape[-1], date_init =pd.to_datetime(data[data.type=='fitted'].index.values[0]).strftime('%Y-%m-%d')) A_df = create_df_response(x_post[3,:,:], x_post.shape[-1], date_init =pd.to_datetime(data[data.type=='fitted'].index.values[0]).strftime('%Y-%m-%d')) Id_df = create_df_response(x_post[4,:,:], x_post.shape[-1], date_init =
pd.to_datetime(data[data.type=='fitted'].index.values[0])
pandas.to_datetime
# Copyright (c) 2018-2022, NVIDIA CORPORATION. import numpy as np import pandas as pd import pytest from pandas.api import types as ptypes import cudf from cudf.api import types as types @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, True), (pd.CategoricalDtype, True), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), True), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, True), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), True), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), True), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), # TODO: Currently creating an empty Series of list type ignores the # provided type and instead makes a float64 Series. (cudf.Series([[1, 2], [3, 4, 5]]), False), # TODO: Currently creating an empty Series of struct type fails because # it uses a numpy utility that doesn't understand StructDtype. (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_categorical_dtype(obj, expect): assert types.is_categorical_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, True), (int, True), (float, True), (complex, True), (str, False), (object, False), # NumPy types. (np.bool_, True), (np.int_, True), (np.float64, True), (np.complex128, True), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), True), (np.int_(), True), (np.float64(), True), (np.complex128(), True), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), True), (np.dtype("int"), True), (np.dtype("float"), True), (np.dtype("complex"), True), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), True), (np.array([], dtype=np.int_), True), (np.array([], dtype=np.float64), True), (np.array([], dtype=np.complex128), True), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), True), (pd.Series(dtype="int"), True), (pd.Series(dtype="float"), True), (pd.Series(dtype="complex"), True), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, True), (cudf.Decimal64Dtype, True), (cudf.Decimal32Dtype, True), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), True), (cudf.Decimal64Dtype(5, 2), True), (cudf.Decimal32Dtype(5, 2), True), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), True), (cudf.Series(dtype="int"), True), (cudf.Series(dtype="float"), True), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), True), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), True), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), True), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_numeric_dtype(obj, expect): assert types.is_numeric_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, True), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, True), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), True), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), True), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), True), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), True), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), True), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_integer_dtype(obj, expect): assert types.is_integer_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), True), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), True), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_integer(obj, expect): assert types.is_integer(obj) == expect # TODO: Temporarily ignoring all cases of "object" until we decide what to do. @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, True), # (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, True), (np.unicode_, True), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), True), (np.unicode_(), True), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), True), (np.dtype("unicode"), True), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), # (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), True), (np.array([], dtype=np.unicode_), True), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), # (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), True), (pd.Series(dtype="unicode"), True), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), # (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), True), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_string_dtype(obj, expect): assert types.is_string_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, True), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), True), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), True), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), True), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), True), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), True), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_datetime_dtype(obj, expect): assert types.is_datetime_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, True), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), True), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), True), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_list_dtype(obj, expect): assert types.is_list_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (
pd.Series(dtype="datetime64[s]")
pandas.Series
##### file path ### input # data_set keys and lebels path_df_part_1_uic_label = "df_part_1_uic_label.csv" path_df_part_2_uic_label = "df_part_2_uic_label.csv" path_df_part_3_uic = "df_part_3_uic.csv" # data_set features path_df_part_1_U = "df_part_1_U.csv" path_df_part_1_I = "df_part_1_I.csv" path_df_part_1_C = "df_part_1_C.csv" path_df_part_1_IC = "df_part_1_IC.csv" path_df_part_1_UI = "df_part_1_UI.csv" path_df_part_1_UC = "df_part_1_UC.csv" path_df_part_2_U = "df_part_2_U.csv" path_df_part_2_I = "df_part_2_I.csv" path_df_part_2_C = "df_part_2_C.csv" path_df_part_2_IC = "df_part_2_IC.csv" path_df_part_2_UI = "df_part_2_UI.csv" path_df_part_2_UC = "df_part_2_UC.csv" path_df_part_3_U = "df_part_3_U.csv" path_df_part_3_I = "df_part_3_I.csv" path_df_part_3_C = "df_part_3_C.csv" path_df_part_3_IC = "df_part_3_IC.csv" path_df_part_3_UI = "df_part_3_UI.csv" path_df_part_3_UC = "df_part_3_UC.csv" ### out file ### intermediate file # data partition with diffferent label path_df_part_1_uic_label_0 = "df_part_1_uic_label_0.csv" path_df_part_1_uic_label_1 = "df_part_1_uic_label_1.csv" path_df_part_2_uic_label_0 = "df_part_2_uic_label_0.csv" path_df_part_2_uic_label_1 = "df_part_2_uic_label_1.csv" # training set keys uic-label with k_means clusters' label path_df_part_1_uic_label_cluster = "df_part_1_uic_label_cluster.csv" path_df_part_2_uic_label_cluster = "df_part_2_uic_label_cluster.csv" # scalers for data standardization store as python pickle # for each part's features path_df_part_1_scaler = "df_part_1_scaler" path_df_part_2_scaler = "df_part_2_scaler" import pandas as pd import numpy as np def df_read(path, mode='r'): '''the definition of dataframe loading function ''' path_df = open(path, mode) try: df = pd.read_csv(path_df, index_col=False) finally: path_df.close() return df def subsample(df, sub_size): '''the definition of sub-sampling function @param df: dataframe @param sub_size: sub_sample set size @return sub-dataframe with the same formation of df ''' if sub_size >= len(df): return df else: return df.sample(n=sub_size) ######################################################################## '''Step 1: dividing of positive and negative sub-set by u-i-c-label keys p.s. we first generate u-i-C key, then merging for data set and operation by chunk such strange operation designed for saving my poor PC-MEM. ''' df_part_1_uic_label = df_read(path_df_part_1_uic_label) # loading total keys df_part_2_uic_label = df_read(path_df_part_2_uic_label) df_part_1_uic_label_0 = df_part_1_uic_label[df_part_1_uic_label['label'] == 0] df_part_1_uic_label_1 = df_part_1_uic_label[df_part_1_uic_label['label'] == 1] df_part_2_uic_label_0 = df_part_2_uic_label[df_part_2_uic_label['label'] == 0] df_part_2_uic_label_1 = df_part_2_uic_label[df_part_2_uic_label['label'] == 1] df_part_1_uic_label_0.to_csv(path_df_part_1_uic_label_0, index=False) df_part_1_uic_label_1.to_csv(path_df_part_1_uic_label_1, index=False) df_part_2_uic_label_0.to_csv(path_df_part_2_uic_label_0, index=False) df_part_2_uic_label_1.to_csv(path_df_part_2_uic_label_1, index=False) ####################################################################### '''Step 2: clustering on negative sub-set clusters number ~ 35, using mini-batch-k-means ''' # clustering based on sklearn from sklearn import preprocessing from sklearn.cluster import MiniBatchKMeans import pickle ##### part_1 ##### # loading features df_part_1_U = df_read(path_df_part_1_U) df_part_1_I = df_read(path_df_part_1_I) df_part_1_C = df_read(path_df_part_1_C) df_part_1_IC = df_read(path_df_part_1_IC) df_part_1_UI = df_read(path_df_part_1_UI) df_part_1_UC = df_read(path_df_part_1_UC) # process by chunk as ui-pairs size is too big # for get scale transform mechanism to large scale of data scaler_1 = preprocessing.StandardScaler() batch = 0 for df_part_1_uic_label_0 in pd.read_csv(open(path_df_part_1_uic_label_0, 'r'), chunksize=150000): try: # construct of part_1's sub-training set train_data_df_part_1 = pd.merge(df_part_1_uic_label_0, df_part_1_U, how='left', on=['user_id']) train_data_df_part_1 = pd.merge(train_data_df_part_1, df_part_1_I, how='left', on=['item_id']) train_data_df_part_1 = pd.merge(train_data_df_part_1, df_part_1_C, how='left', on=['item_category']) train_data_df_part_1 = pd.merge(train_data_df_part_1, df_part_1_IC, how='left', on=['item_id', 'item_category']) train_data_df_part_1 = pd.merge(train_data_df_part_1, df_part_1_UI, how='left', on=['user_id', 'item_id', 'item_category', 'label']) train_data_df_part_1 = pd.merge(train_data_df_part_1, df_part_1_UC, how='left', on=['user_id', 'item_category']) # getting all the complete features for clustering train_X_1 = train_data_df_part_1.as_matrix( ['u_b1_count_in_6', 'u_b2_count_in_6', 'u_b3_count_in_6', 'u_b4_count_in_6', 'u_b_count_in_6', 'u_b1_count_in_3', 'u_b2_count_in_3', 'u_b3_count_in_3', 'u_b4_count_in_3', 'u_b_count_in_3', 'u_b1_count_in_1', 'u_b2_count_in_1', 'u_b3_count_in_1', 'u_b4_count_in_1', 'u_b_count_in_1', 'u_b4_rate', 'i_u_count_in_6', 'i_u_count_in_3', 'i_u_count_in_1', 'i_b1_count_in_6', 'i_b2_count_in_6', 'i_b3_count_in_6', 'i_b4_count_in_6', 'i_b_count_in_6', 'i_b1_count_in_3', 'i_b2_count_in_3', 'i_b3_count_in_3', 'i_b4_count_in_3', 'i_b_count_in_3', 'i_b1_count_in_1', 'i_b2_count_in_1', 'i_b3_count_in_1', 'i_b4_count_in_1', 'i_b_count_in_1', 'i_b4_rate', 'c_b1_count_in_6', 'c_b2_count_in_6', 'c_b3_count_in_6', 'c_b4_count_in_6', 'c_b_count_in_6', 'c_b1_count_in_3', 'c_b2_count_in_3', 'c_b3_count_in_3', 'c_b4_count_in_3', 'c_b_count_in_3', 'c_b1_count_in_1', 'c_b2_count_in_1', 'c_b3_count_in_1', 'c_b4_count_in_1', 'c_b_count_in_1', 'c_b4_rate', 'ic_u_rank_in_c', 'ic_b_rank_in_c', 'ic_b4_rank_in_c', 'ui_b1_count_in_6', 'ui_b2_count_in_6', 'ui_b3_count_in_6', 'ui_b4_count_in_6', 'ui_b_count_in_6', 'ui_b1_count_in_3', 'ui_b2_count_in_3', 'ui_b3_count_in_3', 'ui_b4_count_in_3', 'ui_b_count_in_3', 'ui_b1_count_in_1', 'ui_b2_count_in_1', 'ui_b3_count_in_1', 'ui_b4_count_in_1', 'ui_b_count_in_1', 'ui_b_count_rank_in_u', 'ui_b_count_rank_in_uc', 'uc_b1_count_in_6', 'uc_b2_count_in_6', 'uc_b3_count_in_6', 'uc_b4_count_in_6', 'uc_b_count_in_6', 'uc_b1_count_in_3', 'uc_b2_count_in_3', 'uc_b3_count_in_3', 'uc_b4_count_in_3', 'uc_b_count_in_3', 'uc_b1_count_in_1', 'uc_b2_count_in_1', 'uc_b3_count_in_1', 'uc_b4_count_in_1', 'uc_b_count_in_1', 'uc_b_count_rank_in_u']) # feature standardization scaler_1.partial_fit(train_X_1) batch += 1 print('chunk %d done.' % batch) except StopIteration: print("finish.") break # initial clusters mbk_1 = MiniBatchKMeans(init='k-means++', n_clusters=1000, batch_size=500, reassignment_ratio=10 ** -4) classes_1 = [] batch = 0 for df_part_1_uic_label_0 in pd.read_csv(open(path_df_part_1_uic_label_0, 'r'), chunksize=15000): try: # construct of part_1's sub-training set train_data_df_part_1 = pd.merge(df_part_1_uic_label_0, df_part_1_U, how='left', on=['user_id']) train_data_df_part_1 = pd.merge(train_data_df_part_1, df_part_1_I, how='left', on=['item_id']) train_data_df_part_1 = pd.merge(train_data_df_part_1, df_part_1_C, how='left', on=['item_category']) train_data_df_part_1 = pd.merge(train_data_df_part_1, df_part_1_IC, how='left', on=['item_id', 'item_category']) train_data_df_part_1 = pd.merge(train_data_df_part_1, df_part_1_UI, how='left', on=['user_id', 'item_id', 'item_category', 'label']) train_data_df_part_1 = pd.merge(train_data_df_part_1, df_part_1_UC, how='left', on=['user_id', 'item_category']) train_X_1 = train_data_df_part_1.as_matrix( ['u_b1_count_in_6', 'u_b2_count_in_6', 'u_b3_count_in_6', 'u_b4_count_in_6', 'u_b_count_in_6', 'u_b1_count_in_3', 'u_b2_count_in_3', 'u_b3_count_in_3', 'u_b4_count_in_3', 'u_b_count_in_3', 'u_b1_count_in_1', 'u_b2_count_in_1', 'u_b3_count_in_1', 'u_b4_count_in_1', 'u_b_count_in_1', 'u_b4_rate', 'i_u_count_in_6', 'i_u_count_in_3', 'i_u_count_in_1', 'i_b1_count_in_6', 'i_b2_count_in_6', 'i_b3_count_in_6', 'i_b4_count_in_6', 'i_b_count_in_6', 'i_b1_count_in_3', 'i_b2_count_in_3', 'i_b3_count_in_3', 'i_b4_count_in_3', 'i_b_count_in_3', 'i_b1_count_in_1', 'i_b2_count_in_1', 'i_b3_count_in_1', 'i_b4_count_in_1', 'i_b_count_in_1', 'i_b4_rate', 'c_b1_count_in_6', 'c_b2_count_in_6', 'c_b3_count_in_6', 'c_b4_count_in_6', 'c_b_count_in_6', 'c_b1_count_in_3', 'c_b2_count_in_3', 'c_b3_count_in_3', 'c_b4_count_in_3', 'c_b_count_in_3', 'c_b1_count_in_1', 'c_b2_count_in_1', 'c_b3_count_in_1', 'c_b4_count_in_1', 'c_b_count_in_1', 'c_b4_rate', 'ic_u_rank_in_c', 'ic_b_rank_in_c', 'ic_b4_rank_in_c', 'ui_b1_count_in_6', 'ui_b2_count_in_6', 'ui_b3_count_in_6', 'ui_b4_count_in_6', 'ui_b_count_in_6', 'ui_b1_count_in_3', 'ui_b2_count_in_3', 'ui_b3_count_in_3', 'ui_b4_count_in_3', 'ui_b_count_in_3', 'ui_b1_count_in_1', 'ui_b2_count_in_1', 'ui_b3_count_in_1', 'ui_b4_count_in_1', 'ui_b_count_in_1', 'ui_b_count_rank_in_u', 'ui_b_count_rank_in_uc', 'uc_b1_count_in_6', 'uc_b2_count_in_6', 'uc_b3_count_in_6', 'uc_b4_count_in_6', 'uc_b_count_in_6', 'uc_b1_count_in_3', 'uc_b2_count_in_3', 'uc_b3_count_in_3', 'uc_b4_count_in_3', 'uc_b_count_in_3', 'uc_b1_count_in_1', 'uc_b2_count_in_1', 'uc_b3_count_in_1', 'uc_b4_count_in_1', 'uc_b_count_in_1', 'uc_b_count_rank_in_u']) # feature standardization standardized_train_X_1 = scaler_1.transform(train_X_1) # fit clustering model mbk_1.partial_fit(standardized_train_X_1) classes_1 = np.append(classes_1, mbk_1.labels_) batch += 1 print('chunk %d done.' % batch) except StopIteration: print(" ------------ k-means finished on part 1 ------------.") break del (df_part_1_U) del (df_part_1_I) del (df_part_1_C) del (df_part_1_IC) del (df_part_1_UI) del (df_part_1_UC) ##### part_2 ##### # loading features df_part_2_U = df_read(path_df_part_2_U) df_part_2_I = df_read(path_df_part_2_I) df_part_2_C = df_read(path_df_part_2_C) df_part_2_IC = df_read(path_df_part_2_IC) df_part_2_UI = df_read(path_df_part_2_UI) df_part_2_UC = df_read(path_df_part_2_UC) # process by chunk as ui-pairs size is too big # for get scale transform mechanism to large scale of data scaler_2 = preprocessing.StandardScaler() batch = 0 for df_part_2_uic_label_0 in pd.read_csv(open(path_df_part_2_uic_label_0, 'r'), chunksize=150000): try: # construct of part_1's sub-training set train_data_df_part_2 = pd.merge(df_part_2_uic_label_0, df_part_2_U, how='left', on=['user_id']) train_data_df_part_2 = pd.merge(train_data_df_part_2, df_part_2_I, how='left', on=['item_id']) train_data_df_part_2 = pd.merge(train_data_df_part_2, df_part_2_C, how='left', on=['item_category']) train_data_df_part_2 = pd.merge(train_data_df_part_2, df_part_2_IC, how='left', on=['item_id', 'item_category']) train_data_df_part_2 = pd.merge(train_data_df_part_2, df_part_2_UI, how='left', on=['user_id', 'item_id', 'item_category', 'label']) train_data_df_part_2 = pd.merge(train_data_df_part_2, df_part_2_UC, how='left', on=['user_id', 'item_category']) train_X_2 = train_data_df_part_2.as_matrix( ['u_b1_count_in_6', 'u_b2_count_in_6', 'u_b3_count_in_6', 'u_b4_count_in_6', 'u_b_count_in_6', 'u_b1_count_in_3', 'u_b2_count_in_3', 'u_b3_count_in_3', 'u_b4_count_in_3', 'u_b_count_in_3', 'u_b1_count_in_1', 'u_b2_count_in_1', 'u_b3_count_in_1', 'u_b4_count_in_1', 'u_b_count_in_1', 'u_b4_rate', 'i_u_count_in_6', 'i_u_count_in_3', 'i_u_count_in_1', 'i_b1_count_in_6', 'i_b2_count_in_6', 'i_b3_count_in_6', 'i_b4_count_in_6', 'i_b_count_in_6', 'i_b1_count_in_3', 'i_b2_count_in_3', 'i_b3_count_in_3', 'i_b4_count_in_3', 'i_b_count_in_3', 'i_b1_count_in_1', 'i_b2_count_in_1', 'i_b3_count_in_1', 'i_b4_count_in_1', 'i_b_count_in_1', 'i_b4_rate', 'c_b1_count_in_6', 'c_b2_count_in_6', 'c_b3_count_in_6', 'c_b4_count_in_6', 'c_b_count_in_6', 'c_b1_count_in_3', 'c_b2_count_in_3', 'c_b3_count_in_3', 'c_b4_count_in_3', 'c_b_count_in_3', 'c_b1_count_in_1', 'c_b2_count_in_1', 'c_b3_count_in_1', 'c_b4_count_in_1', 'c_b_count_in_1', 'c_b4_rate', 'ic_u_rank_in_c', 'ic_b_rank_in_c', 'ic_b4_rank_in_c', 'ui_b1_count_in_6', 'ui_b2_count_in_6', 'ui_b3_count_in_6', 'ui_b4_count_in_6', 'ui_b_count_in_6', 'ui_b1_count_in_3', 'ui_b2_count_in_3', 'ui_b3_count_in_3', 'ui_b4_count_in_3', 'ui_b_count_in_3', 'ui_b1_count_in_1', 'ui_b2_count_in_1', 'ui_b3_count_in_1', 'ui_b4_count_in_1', 'ui_b_count_in_1', 'ui_b_count_rank_in_u', 'ui_b_count_rank_in_uc', 'uc_b1_count_in_6', 'uc_b2_count_in_6', 'uc_b3_count_in_6', 'uc_b4_count_in_6', 'uc_b_count_in_6', 'uc_b1_count_in_3', 'uc_b2_count_in_3', 'uc_b3_count_in_3', 'uc_b4_count_in_3', 'uc_b_count_in_3', 'uc_b1_count_in_1', 'uc_b2_count_in_1', 'uc_b3_count_in_1', 'uc_b4_count_in_1', 'uc_b_count_in_1', 'uc_b_count_rank_in_u']) # fit the scaler scaler_2.partial_fit(train_X_2) batch += 1 print('chunk %d done.' % batch) except StopIteration: print("finish.") break # initial clusters mbk_2 = MiniBatchKMeans(init='k-means++', n_clusters=1000, batch_size=500, reassignment_ratio=10 ** -4) # process by chunk as ui-pairs size is too big batch = 0 classes_2 = [] for df_part_2_uic_label_0 in pd.read_csv(open(path_df_part_2_uic_label_0, 'r'), chunksize=15000): try: # construct of part_1's sub-training set train_data_df_part_2 =
pd.merge(df_part_2_uic_label_0, df_part_2_U, how='left', on=['user_id'])
pandas.merge
# -*- coding: utf-8 -*- # Arithmetc tests for DataFrame/Series/Index/Array classes that should # behave identically. from datetime import timedelta import operator import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas.core import ops from pandas.errors import NullFrequencyError from pandas._libs.tslibs import IncompatibleFrequency from pandas import ( Timedelta, Timestamp, NaT, Series, TimedeltaIndex, DatetimeIndex) # ------------------------------------------------------------------ # Fixtures @pytest.fixture def tdser(): """ Return a Series with dtype='timedelta64[ns]', including a NaT. """ return Series(['59 Days', '59 Days', 'NaT'], dtype='timedelta64[ns]') # ------------------------------------------------------------------ # Numeric dtypes Arithmetic with Timedelta Scalar class TestNumericArraylikeArithmeticWithTimedeltaScalar(object): @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="block.eval incorrect", strict=True)) ]) @pytest.mark.parametrize('index', [ pd.Int64Index(range(1, 11)), pd.UInt64Index(range(1, 11)), pd.Float64Index(range(1, 11)), pd.RangeIndex(1, 11)], ids=lambda x: type(x).__name__) @pytest.mark.parametrize('scalar_td', [ Timedelta(days=1), Timedelta(days=1).to_timedelta64(), Timedelta(days=1).to_pytimedelta()], ids=lambda x: type(x).__name__) def test_numeric_arr_mul_tdscalar(self, scalar_td, index, box): # GH#19333 if (box is Series and type(scalar_td) is timedelta and index.dtype == 'f8'): raise pytest.xfail(reason="Cannot multiply timedelta by float") expected = pd.timedelta_range('1 days', '10 days') index = tm.box_expected(index, box) expected = tm.box_expected(expected, box) result = index * scalar_td tm.assert_equal(result, expected) commute = scalar_td * index tm.assert_equal(commute, expected) @pytest.mark.parametrize('box', [pd.Index, Series, pd.DataFrame]) @pytest.mark.parametrize('index', [ pd.Int64Index(range(1, 3)), pd.UInt64Index(range(1, 3)), pd.Float64Index(range(1, 3)), pd.RangeIndex(1, 3)], ids=lambda x: type(x).__name__) @pytest.mark.parametrize('scalar_td', [ Timedelta(days=1), Timedelta(days=1).to_timedelta64(), Timedelta(days=1).to_pytimedelta()], ids=lambda x: type(x).__name__) def test_numeric_arr_rdiv_tdscalar(self, scalar_td, index, box): if box is Series and type(scalar_td) is timedelta: raise pytest.xfail(reason="TODO: Figure out why this case fails") if box is pd.DataFrame and isinstance(scalar_td, timedelta): raise pytest.xfail(reason="TODO: Figure out why this case fails") expected = TimedeltaIndex(['1 Day', '12 Hours']) index = tm.box_expected(index, box) expected = tm.box_expected(expected, box) result = scalar_td / index tm.assert_equal(result, expected) with pytest.raises(TypeError): index / scalar_td # ------------------------------------------------------------------ # Timedelta64[ns] dtype Arithmetic Operations class TestTimedeltaArraylikeAddSubOps(object): # Tests for timedelta64[ns] __add__, __sub__, __radd__, __rsub__ # ------------------------------------------------------------- # Invalid Operations @pytest.mark.parametrize('box', [pd.Index, Series, pd.DataFrame], ids=lambda x: x.__name__) def test_td64arr_add_str_invalid(self, box): # GH#13624 tdi = TimedeltaIndex(['1 day', '2 days']) tdi = tm.box_expected(tdi, box) with pytest.raises(TypeError): tdi + 'a' with pytest.raises(TypeError): 'a' + tdi @pytest.mark.parametrize('box', [pd.Index, Series, pd.DataFrame], ids=lambda x: x.__name__) @pytest.mark.parametrize('other', [3.14, np.array([2.0, 3.0])]) @pytest.mark.parametrize('op', [operator.add, ops.radd, operator.sub, ops.rsub], ids=lambda x: x.__name__) def test_td64arr_add_sub_float(self, box, op, other): tdi = TimedeltaIndex(['-1 days', '-1 days']) tdi = tm.box_expected(tdi, box) if box is pd.DataFrame and op in [operator.add, operator.sub]: pytest.xfail(reason="Tries to align incorrectly, " "raises ValueError") with pytest.raises(TypeError): op(tdi, other) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Tries to cast df to " "Period", strict=True, raises=IncompatibleFrequency)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('freq', [None, 'H']) def test_td64arr_sub_period(self, box, freq): # GH#13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') idx = TimedeltaIndex(['1 hours', '2 hours'], freq=freq) idx = tm.box_expected(idx, box) with pytest.raises(TypeError): idx - p with pytest.raises(TypeError): p - idx @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="broadcasts along " "wrong axis", raises=ValueError, strict=True)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('pi_freq', ['D', 'W', 'Q', 'H']) @pytest.mark.parametrize('tdi_freq', [None, 'H']) def test_td64arr_sub_pi(self, box, tdi_freq, pi_freq): # GH#20049 subtracting PeriodIndex should raise TypeError tdi = TimedeltaIndex(['1 hours', '2 hours'], freq=tdi_freq) dti = Timestamp('2018-03-07 17:16:40') + tdi pi = dti.to_period(pi_freq) # TODO: parametrize over box for pi? tdi = tm.box_expected(tdi, box) with pytest.raises(TypeError): tdi - pi # ------------------------------------------------------------- # Binary operations td64 arraylike and datetime-like @pytest.mark.parametrize('box', [pd.Index, Series, pd.DataFrame], ids=lambda x: x.__name__) def test_td64arr_sub_timestamp_raises(self, box): idx = TimedeltaIndex(['1 day', '2 day']) idx = tm.box_expected(idx, box) msg = "cannot subtract a datelike from|Could not operate" with tm.assert_raises_regex(TypeError, msg): idx - Timestamp('2011-01-01') @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object dtype", strict=True)) ], ids=lambda x: x.__name__) def test_td64arr_add_timestamp(self, box): idx = TimedeltaIndex(['1 day', '2 day']) expected = DatetimeIndex(['2011-01-02', '2011-01-03']) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, box) result = idx + Timestamp('2011-01-01')
tm.assert_equal(result, expected)
pandas.util.testing.assert_equal
__author__ = "<NAME>" __copyright__ = "Sprace.org.br" __version__ = "1.0.0" import os import numpy as np import pandas as pd #from torch.utils.data import Dataset, DataLoader from sklearn.preprocessing import MinMaxScaler, StandardScaler from enum import Enum from pickle import dump, load class FeatureType(Enum): Divided = 1, # indica as caracteristicas estao divididas em posiciones e outras informacoes Mixed = 2, # indica que todas as caracteristicas estao juntas Positions = 3 # indica que so tem posicoes dos hits class KindNormalization(Enum): Scaling = 1, Zscore = 2, Polar = 3, Nothing = 4 class Dataset(): def __init__(self, input_path, train_size, cylindrical, hits, kind_normalization, points_3d=True): #np.set_printoptions(suppress=True) # com index_col ja nao inclui a coluna index dataframe = pd.read_csv(input_path, header=0, engine='python') print("[Data] Data loaded from ", input_path) self.kind = kind_normalization if self.kind == KindNormalization.Scaling: self.x_scaler = MinMaxScaler(feature_range=(-1, 1)) self.y_scaler = MinMaxScaler(feature_range=(-1, 1)) elif self.kind == KindNormalization.Zscore: self.x_scaler = StandardScaler() # mean and standart desviation self.y_scaler = StandardScaler() # mean and standart desviation self.y_scaler_test = StandardScaler() ''' if normalise: data = self.scaler.fit_transform(dataframe.values) data = pd.DataFrame(data, columns=columns) else: data = pd.DataFrame(dataframe.values, columns=columns) ''' self.start_hits = 9 self.interval = 11 self.decimals = 4 self.data = dataframe.iloc[:, self.start_hits:] #self.self = 0 if cylindrical: self.coord_name = 'cylin' else: self.coord_name = 'xyz' self.cylindrical = cylindrical begin_coord = 0 end_coord = 0 begin_val = 10 end_val = 11 if self.cylindrical == False: # if we choose points_3d = true then the filter is 3d data points : rho, eta, phi # else then 2d data eta and phi if points_3d: begin_coord = 1 else: begin_coord = 2 end_coord = 4 # cilyndrical coordinates elif self.cylindrical == True: if points_3d: begin_coord = 4 else: begin_coord = 5 end_coord = 7 begin_cols = [begin_coord+(self.interval*hit) for hit in range(0, hits)] end_cols = [end_coord+(self.interval*hit) for hit in range(0, hits)] new_df = pd.DataFrame() for c in range(0,len(begin_cols)): frame = self.data.iloc[:,np.r_[begin_cols[c]:end_cols[c]]] new_df = pd.concat([new_df, frame], axis=1) self.data = new_df # we nee remove data for avoid problems res = len(self.data) % 10 if res != 0: # this is a big bug. the easy solution was removing some values non divided with 10. print('\t We have removed %s unuseful tracks. We believe you need to know. ' % res) self.data = self.data.iloc[:-res,:] i_split = int(len(self.data) * train_size) self.data_train = self.data.iloc[0:i_split,0:] self.data_test = self.data.iloc[i_split:,0:] print("[Data] Data set shape ", self.data.shape) print("[Data] Data train shape ", self.data_train.shape) print("[Data] Data test shape ", self.data_test.shape) print("[Data] Data coordinates ", self.coord_name) print("[Data] Data normalization type ", self.kind) def prepare_training_data(self, feature_type, normalise=True, cylindrical=False): if not isinstance(feature_type, FeatureType): raise TypeError('direction must be an instance of FeatureType Enum') self.cylindrical = cylindrical interval = self.interval # x, y, z coordinates if cylindrical == False: bp=1 ep=4 bpC=10 epC=11 # cilyndrical coordinates elif cylindrical == True: bp=4 ep=7 bpC=10 epC=11 df_hits_values = None df_hits_positions = None if feature_type==FeatureType.Divided: # get hits positions p1(X1,Y1,Z1) p2(X2,Y2,Z2) p3(X3,Y3,Z3) p4(X4,Y4,Z4) df_hits_positions = self.data.iloc[:, np.r_[ bp:ep, bp+(interval*1):ep+(interval*1), bp+(interval*2):ep+(interval*2), bp+(interval*3):ep+(interval*3)]] # get hits values p1(V1,V2,V3,V4) df_hits_values = self.data.iloc[:, np.r_[ bpC:epC, bpC+(interval*1):epC+(interval*1), bpC+(interval*2):epC+(interval*2), bpC+(interval*3):epC+(interval*3)]] frames = [df_hits_positions, df_hits_values] df_hits_positions = pd.concat(frames, axis=1) if feature_type==FeatureType.Mixed: df_hits_positions = self.data.iloc[:, np.r_[ bp:ep, bpC:epC, bp+(interval*1):ep+(interval*1), bpC+(interval*1):epC+(interval*1), bp+(interval*2):ep+(interval*2), bpC+(interval*2):epC+(interval*2), bp+(interval*3):ep+(interval*3), bpC+(interval*3):epC+(interval*3)]] elif feature_type==FeatureType.Positions: df_hits_positions = self.data.iloc[:, np.r_[ bp:ep, bp+(interval*1):ep+(interval*1), bp+(interval*2):ep+(interval*2), bp+(interval*3):ep+(interval*3)]] self.x_data = df_hits_positions self.y_data = self.data.iloc[:, np.r_[bp+(interval*4):(bp+(interval*4)+3)]] self.len = len(self.data) xcolumns = self.x_data.columns ycolumns = self.y_data.columns # normalization just of features. if normalise: xscaled = self.x_scaler.fit_transform(self.x_data.values) self.x_data = pd.DataFrame(xscaled, columns=xcolumns) yscaled = self.y_scaler.fit_transform(self.y_data.values) self.y_data = pd.DataFrame(yscaled, columns=ycolumns) print("[Data] shape datas X: ", self.x_data.shape) print("[Data] shape data y: ", self.y_data.shape) print('[Data] len data total:', self.len) #y_hit_info = self.getitem_by_hit(hit_id) if feature_type==FeatureType.Divided: # return x_data, y_data normalizated with data splited return (self.x_data.iloc[:,0:12], self.x_data.iloc[:,-4:], self.y_data) else: # return x_data, y_data normalizated with no data splited return (self.x_data, self.y_data) def get_training_data(self, n_hit_in, n_hit_out, n_features, normalise=False): ''' n_hit_in : 4 number of hits n_hit_out: 1 number of future hits n_features 3 ''' X , Y = [],[] sequences = self.data_train.values rows = sequences.shape[0] cols = sequences.shape[1] for i in range(0, rows): end_idx = 0 out_end_idx = 0 for j in range(0, cols, n_features): end_ix = j + n_hit_in*n_features out_end_idx = end_ix + n_hit_out*n_features if out_end_idx > cols+1: #print('corta ', out_end_idx) break #if i < 5: # print('[%s,%s:%s][%s,%s:%s]' % (i, j, end_ix, i, end_ix, out_end_idx)) #seq_x, seq_y = sequences.iloc[i, j:end_ix], sequences.iloc[i, end_ix:out_end_idx] seq_x, seq_y = sequences[i, j:end_ix], sequences[i, end_ix:out_end_idx] X.append(seq_x) Y.append(seq_y) x_data, y_data = 0,0 # normalization just of features. if normalise: xscaled = self.x_scaler.fit_transform(X) x_data = pd.DataFrame(xscaled) yscaled = self.y_scaler.fit_transform(Y) y_data = pd.DataFrame(yscaled) #if save_params: # self.save_scale_param() else: x_data = pd.DataFrame(X) y_data = pd.DataFrame(Y) #return pd.DataFrame(x_data).round(self.decimals) , pd.DataFrame(y_data).round(self.decimals) return
pd.DataFrame(x_data)
pandas.DataFrame
import pandas as pd from scipy import stats import numpy as np import math import os import sys import json, csv import itertools as it from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression import scikit_posthocs from statsmodels.sandbox.stats.multicomp import multipletests from collections import OrderedDict from sklearn.metrics import r2_score from scipy.stats import distributions from scipy.stats.stats import find_repeats import warnings def wilcoxon(x, y=None, zero_method="wilcox", correction=False, alternative="two-sided"): """ scipy stats function https://github.com/scipy/scipy/blob/v1.2.1/scipy/stats/morestats.py#L2709-L2806 Calculate the Wilcoxon signed-rank test. The Wilcoxon signed-rank test tests the null hypothesis that two related paired samples come from the same distribution. In particular, it tests whether the distribution of the differences x - y is symmetric about zero. It is a non-parametric version of the paired T-test. Parameters ---------- x : array_like Either the first set of measurements (in which case `y` is the second set of measurements), or the differences between two sets of measurements (in which case `y` is not to be specified.) Must be one-dimensional. y : array_like, optional Either the second set of measurements (if `x` is the first set of measurements), or not specified (if `x` is the differences between two sets of measurements.) Must be one-dimensional. zero_method : {'pratt', 'wilcox', 'zsplit'}, optional The following options are available (default is 'wilcox'): * 'pratt': Includes zero-differences in the ranking process, but drops the ranks of the zeros, see [4]_, (more conservative). * 'wilcox': Discards all zero-differences, the default. * 'zsplit': Includes zero-differences in the ranking process and split the zero rank between positive and negative ones. correction : bool, optional If True, apply continuity correction by adjusting the Wilcoxon rank statistic by 0.5 towards the mean value when computing the z-statistic. Default is False. alternative : {"two-sided", "greater", "less"}, optional The alternative hypothesis to be tested, see Notes. Default is "two-sided". Returns ------- statistic : float If `alternative` is "two-sided", the sum of the ranks of the differences above or below zero, whichever is smaller. Otherwise the sum of the ranks of the differences above zero. pvalue : float The p-value for the test depending on `alternative`. See Also -------- kruskal, mannwhitneyu Notes ----- The test has been introduced in [4]_. Given n independent samples (xi, yi) from a bivariate distribution (i.e. paired samples), it computes the differences di = xi - yi. One assumption of the test is that the differences are symmetric, see [2]_. The two-sided test has the null hypothesis that the median of the differences is zero against the alternative that it is different from zero. The one-sided test has the null hypothesis that the median is positive against the alternative that it is negative (``alternative == 'less'``), or vice versa (``alternative == 'greater.'``). The test uses a normal approximation to derive the p-value (if ``zero_method == 'pratt'``, the approximation is adjusted as in [5]_). A typical rule is to require that n > 20 ([2]_, p. 383). For smaller n, exact tables can be used to find critical values. References ---------- .. [1] https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test .. [2] <NAME>., Practical Nonparametric Statistics, 1971. .. [3] Pratt, J.W., Remarks on Zeros and Ties in the Wilcoxon Signed Rank Procedures, Journal of the American Statistical Association, Vol. 54, 1959, pp. 655-667. :doi:`10.1080/01621459.1959.10501526` .. [4] <NAME>., Individual Comparisons by Ranking Methods, Biometrics Bulletin, Vol. 1, 1945, pp. 80-83. :doi:`10.2307/3001968` .. [5] <NAME>., The Normal Approximation to the Signed-Rank Sampling Distribution When Zero Differences are Present, Journal of the American Statistical Association, Vol. 62, 1967, pp. 1068-1069. :doi:`10.1080/01621459.1967.10500917` Examples -------- In [4]_, the differences in height between cross- and self-fertilized corn plants is given as follows: >>> d = [6, 8, 14, 16, 23, 24, 28, 29, 41, -48, 49, 56, 60, -67, 75] Cross-fertilized plants appear to be be higher. To test the null hypothesis that there is no height difference, we can apply the two-sided test: >>> from scipy.stats import wilcoxon >>> w, p = wilcoxon(d) >>> w, p (24.0, 0.04088813291185591) Hence, we would reject the null hypothesis at a confidence level of 5%, concluding that there is a difference in height between the groups. To confirm that the median of the differences can be assumed to be positive, we use: >>> w, p = wilcoxon(d, alternative='greater') >>> w, p (96.0, 0.020444066455927955) This shows that the null hypothesis that the median is negative can be rejected at a confidence level of 5% in favor of the alternative that the median is greater than zero. The p-value based on the approximation is within the range of 0.019 and 0.054 given in [2]_. Note that the statistic changed to 96 in the one-sided case (the sum of ranks of positive differences) whereas it is 24 in the two-sided case (the minimum of sum of ranks above and below zero). """ if zero_method not in ["wilcox", "pratt", "zsplit"]: raise ValueError("Zero method should be either 'wilcox' " "or 'pratt' or 'zsplit'") if alternative not in ["two-sided", "less", "greater"]: raise ValueError("Alternative must be either 'two-sided', " "'greater' or 'less'") if y is None: d = np.asarray(x) if d.ndim > 1: raise ValueError('Sample x must be one-dimensional.') else: x, y = map(np.asarray, (x, y)) if x.ndim > 1 or y.ndim > 1: raise ValueError('Samples x and y must be one-dimensional.') if len(x) != len(y): raise ValueError('The samples x and y must have the same length.') d = x - y if zero_method in ["wilcox", "pratt"]: n_zero = np.sum(d == 0, axis=0) if n_zero == len(d): raise ValueError("zero_method 'wilcox' and 'pratt' do not work if " "the x - y is zero for all elements.") if zero_method == "wilcox": # Keep all non-zero differences d = np.compress(np.not_equal(d, 0), d, axis=-1) count = len(d) if count < 10: warnings.warn("Sample size too small for normal approximation.") r = stats.rankdata(abs(d)) r_plus = np.sum((d > 0) * r, axis=0) r_minus = np.sum((d < 0) * r, axis=0) if zero_method == "zsplit": r_zero = np.sum((d == 0) * r, axis=0) r_plus += r_zero / 2. r_minus += r_zero / 2. # return min for two-sided test, but r_plus for one-sided test # the literature is not consistent here # r_plus is more informative since r_plus + r_minus = count*(count+1)/2, # i.e. the sum of the ranks, so r_minus and the min can be inferred # (If alternative='pratt', r_plus + r_minus = count*(count+1)/2 - r_zero.) # [3] uses the r_plus for the one-sided test, keep min for two-sided test # to keep backwards compatibility if alternative == "two-sided": T = min(r_plus, r_minus) else: T = r_plus mn = count * (count + 1.) * 0.25 se = count * (count + 1.) * (2. * count + 1.) if zero_method == "pratt": r = r[d != 0] # normal approximation needs to be adjusted, see Cureton (1967) mn -= n_zero * (n_zero + 1.) * 0.25 se -= n_zero * (n_zero + 1.) * (2. * n_zero + 1.) replist, repnum = find_repeats(r) if repnum.size != 0: # Correction for repeated elements. se -= 0.5 * (repnum * (repnum * repnum - 1)).sum() se = np.sqrt(se / 24) # apply continuity correction if applicable d = 0 if correction: if alternative == "two-sided": d = 0.5 * np.sign(T - mn) elif alternative == "less": d = -0.5 else: d = 0.5 # compute statistic and p-value using normal approximation z = (T - mn - d) / se if alternative == "two-sided": prob = 2. * distributions.norm.sf(abs(z)) elif alternative == "greater": # large T = r_plus indicates x is greater than y; i.e. # accept alternative in that case and return small p-value (sf) prob = distributions.norm.sf(z) else: prob = distributions.norm.cdf(z) return T, prob, z def get_effect_size_text(effect_size): if effect_size == None: effect_name = "unknown" elif 0.1 <= effect_size < 0.25: effect_name = "uphill weak" elif 0.25 <= effect_size < 0.4: effect_name = "uphill moderate" elif effect_size >= 0.4: effect_name = "uphill strong" elif -0.1 >= effect_size > -0.25: effect_name = "downhill weak" elif -0.25 >= effect_size > -0.4: effect_name = "downhill moderate" elif effect_size <= -0.4: effect_name = "downhill strong" else: effect_name = "unsure" return effect_name def get_p_value_stars(p_value): if p_value <= 0.01: return "***" elif p_value <= 0.05: return "**" elif p_value <= 0.1: return "*" else: return "" def get_result_sent(test_name, feature_name, corpus_name, p_value, n_complex, avg_complex, sd_complex, n_simple, avg_simple, sd_simple, df, t_value, effect_size, p_threshold=0.05, only_relevant=False): effect_name = get_effect_size_text(effect_size) if 0 <= p_value <= p_threshold: is_significant = "a" p_value_text = "p<="+str(p_threshold) else: is_significant = "no" p_value_text = "p>"+str(p_threshold) if test_name == "No test" or effect_size == None: return "The average of {} for complex sentences is {} (SD={}, n={}) and for simple sentences {} (SD={}).".format(feature_name, round(avg_complex,2), round(sd_complex, 2), n_complex, round(avg_simple, 2), round(sd_simple, 2)) if only_relevant: if p_value > p_threshold or effect_size == None or effect_size < 0.1: return None return "A {} was conducted to compare {} in the {} corpus. " \ "There is {} significant ({}) difference in the scores for complex (n={}, M={}, SD={}) and " \ "simplified (n={}, M={}, SD={}) sentences, t({})={}. " \ "These results that the simplification level has a {} effect (r={}) on {}.\n".format(test_name, feature_name, corpus_name, is_significant, p_value_text, n_complex, round(avg_complex,2), round(sd_complex,2), n_simple, round(avg_simple,2), round(sd_simple,2), df, round(t_value,2), effect_name, round(effect_size,2), feature_name) def get_variable_names(col_names, feat_dict_path="feature_dict_checked.json", comparable=False, paired=True, difference=False): if comparable: return sorted(list(set(["_".join(col.split("_")[:-1]) for col in col_names if col.endswith("_complex") or col.endswith("_simple")]))) elif paired: return sorted([col for col in col_names if col.endswith("_paired")]) elif difference: return sorted([col for col in col_names if col.endswith("_diff")]) else: return sorted(list(col_names)) def add_difference_features(input_data): comparable_names = get_variable_names(input_data.columns.values, comparable=True, paired=False) for feat in comparable_names: input_data[feat+"_diff"] = input_data[feat+"_complex"].astype(np.float) - input_data[feat+"_simple"].astype(np.float) return input_data def change_dtype(input_data, col_names, comparable=True): if comparable: old_names = col_names col_names = list() for col in old_names: col_names.append(col+"_complex") col_names.append(col+"_simple") # do_statistics.py:409: DtypeWarning: Columns (54,55,56,60,61,62) have mixed types. Specify dtype option on import or set low_memory=False. # en newsela 2015 input_data.replace(False, 0, inplace=True) input_data.replace("False", 0, inplace=True) input_data.replace(True, 1, inplace=True) input_data.replace("True", 1, inplace=True) input_data[col_names] = input_data[col_names].apply(pd.to_numeric) return input_data def test_distribution_null_hypothesis(complex_values, simple_values, independent, feat_name, dict_path="feature_dict_checked.json"): complex_values = complex_values[complex_values.notnull()] simple_values = simple_values[simple_values.notnull()] # todo: remove if all values 0 or nan if len(complex_values) == 0 or len(simple_values) == 0 or \ (complex_values == 0).sum() == len(complex_values) or \ (simple_values == 0).sum() == len(simple_values) or \ list(complex_values) == list(simple_values): return ("0", 0, 0, None) # # 0: nominal, 1: ordinal, 2: interval, 3: ratio # scale_of_measurement = check_scale(complex_values) scale_of_measurement = check_scale_from_dict(dict_path, "comparable", feat_name) normal_distribution = check_distribution([complex_values, simple_values], p_threshold=0.05) variance_homogeneity = check_variance_homogeneity([complex_values, simple_values], p_threshold=0.05) if scale_of_measurement >= 2 and normal_distribution and variance_homogeneity and independent: t_value, p_value = stats.ttest_ind(complex_values, simple_values, equal_var=True) effect_size = abs(math.sqrt(t_value ** 2 / (t_value ** 2 + min(complex_values, simple_values) - 1))) return ("Student's t-test", t_value, p_value, effect_size) elif scale_of_measurement >= 2 and normal_distribution and not variance_homogeneity and independent: t_value, p_value = stats.ttest_ind(complex_values, simple_values, equal_var=False) effect_size = abs(math.sqrt(t_value ** 2 / (t_value ** 2 + min(complex_values, simple_values) - 1))) return ("Welch's t-test", t_value, p_value, effect_size) elif scale_of_measurement >= 1 and independent: t_value, p_value = stats.mannwhitneyu(complex_values, simple_values) #effect_size = get_effect_size(t_value, min(len(complex_values), len(simple_values))) return ("Mann–Whitney U test", t_value, p_value, None) elif scale_of_measurement >= 2 and normal_distribution and variance_homogeneity and not independent: t_value, p_value = stats.ttest_rel(complex_values, simple_values) # effect_size = abs(math.sqrt(t_value**2/(t_value**2+min(complex_values, simple_values)-1))) effect_size = stats.pearsonr(complex_values, simple_values)[0] return ("Student's t-test", t_value, p_value, effect_size) elif scale_of_measurement >= 1 and not independent: if len(complex_values) != len(simple_values): return ("No test", np.mean(complex_values), np.mean(simple_values), None) t_value, p_value, z_value = wilcoxon(complex_values, simple_values) effect_size = abs(z_value/math.sqrt(min(len(complex_values), len(simple_values)))) #effect_size = stats.pearsonr(complex_values, simple_values)[0] return ("Wilcoxon signed-rank test", t_value, p_value, effect_size) else: # todo name only distribution of values? return ("No test", np.mean(complex_values), np.mean(simple_values), None) def posthoc_dunn_z(a, val_col=None, group_col=None, p_adjust=None, sort=True): '''Post hoc pairwise test for multiple comparisons of mean rank sums (Dunn's test). May be used after Kruskal-Wallis one-way analysis of variance by ranks to do pairwise comparisons [1]_, [2]_. Parameters ---------- a : array_like or pandas DataFrame object An array, any object exposing the array interface or a pandas DataFrame. Array must be two-dimensional. Second dimension may vary, i.e. groups may have different lengths. val_col : str, optional Name of a DataFrame column that contains dependent variable values (test or response variable). Values should have a non-nominal scale. Must be specified if `a` is a pandas DataFrame object. group_col : str, optional Name of a DataFrame column that contains independent variable values (grouping or predictor variable). Values should have a nominal scale (categorical). Must be specified if `a` is a pandas DataFrame object. p_adjust : str, optional Method for adjusting p values. See `statsmodels.sandbox.stats.multicomp` for details. Available methods are: 'bonferroni' : one-step correction 'sidak' : one-step correction 'holm-sidak' : step-down method using Sidak adjustments 'holm' : step-down method using Bonferroni adjustments 'simes-hochberg' : step-up method (independent) 'hommel' : closed method based on Simes tests (non-negative) 'fdr_bh' : Benjamini/Hochberg (non-negative) 'fdr_by' : Benjamini/Yekutieli (negative) 'fdr_tsbh' : two stage fdr correction (non-negative) 'fdr_tsbky' : two stage fdr correction (non-negative) sort : bool, optional Specifies whether to sort DataFrame by group_col or not. Recommended unless you sort your data manually. Returns ------- result : pandas DataFrame P values. Notes ----- A tie correction will be employed according to Glantz (2012). References ---------- .. [1] <NAME> (1964). Multiple comparisons using rank sums. Technometrics, 6, 241-252. .. [2] <NAME> (2012), Primer of Biostatistics. New York: McGraw Hill. Examples -------- >>> x = [[1,2,3,5,1], [12,31,54, np.nan], [10,12,6,74,11]] >>> sp.posthoc_dunn(x, p_adjust = 'holm') ''' def compare_dunn_z(i, j): diff = np.abs(x_ranks_avg.loc[i] - x_ranks_avg.loc[j]) A = n * (n + 1.) / 12. B = (1. / x_lens.loc[i] + 1. / x_lens.loc[j]) z_value = diff / np.sqrt((A - x_ties) * B) #p_value = 2. * ss.norm.sf(np.abs(z_value)) return z_value x, _val_col, _group_col = scikit_posthocs.__convert_to_df(a, val_col, group_col) if not sort: x[_group_col] = pd.Categorical(x[_group_col], categories=x[_group_col].unique(), ordered=True) x.sort_values(by=[_group_col, _val_col], ascending=True, inplace=True) n = len(x.index) x_groups_unique = np.unique(x[_group_col]) x_len = x_groups_unique.size x_lens = x.groupby(_group_col)[_val_col].count() x['ranks'] = x[_val_col].rank() x_ranks_avg = x.groupby(_group_col)['ranks'].mean() # ties vals = x.groupby('ranks').count()[_val_col].values tie_sum = np.sum(vals[vals != 1] ** 3 - vals[vals != 1]) tie_sum = 0 if not tie_sum else tie_sum x_ties = tie_sum / (12. * (n - 1)) vs = np.zeros((x_len, x_len)) combs = it.combinations(range(x_len), 2) tri_upper = np.triu_indices(vs.shape[0], 1) tri_lower = np.tril_indices(vs.shape[0], -1) vs[:,:] = 0 for i,j in combs: vs[i, j] = compare_dunn_z(x_groups_unique[i], x_groups_unique[j]) if p_adjust: vs[tri_upper] = multipletests(vs[tri_upper], method = p_adjust)[1] vs[tri_lower] = vs.T[tri_lower] np.fill_diagonal(vs, -1) return pd.DataFrame(vs, index=x_groups_unique, columns=x_groups_unique) def compare_languages(list_lang_results, feat_name, list_corpus_names, p_threshold=0.05, dict_path="feature_dict_checked.json"): list_lang_no_nan = list() corpus_names = OrderedDict() for lang_values, corpus_name in zip(list_lang_results, list_corpus_names): no_nans = lang_values[lang_values.notnull()] if len(no_nans) > 0: list_lang_no_nan.append(no_nans) corpus_names[corpus_name] = len(no_nans) if len(list_lang_no_nan) == 0: return 0,0 # scale_of_measurement = check_scale(list_lang_no_nan[0]) scale_of_measurement = check_scale_from_dict(dict_path, "paired", feat_name) # # 0: nominal, 1: ordinal, 2: interval, 3: ratio normal_distribution = check_distribution(list_lang_no_nan, p_threshold=0.05) variance_homogeneity = check_variance_homogeneity(list_lang_no_nan, p_threshold=0.05) if scale_of_measurement >= 2 and normal_distribution and variance_homogeneity: # does the language affect the value of the feature? Does simplifications for each langauge work similar? t_value, p_value = stats.f_oneway(*list_lang_no_nan) return ("ANOVA", p_value) #if p_value <= p_threshold: # posthoc: which langauges are different? # stats.multicomp.pairwise_tukeyhsd # if two different ones found, use pearson to get effect size #effect_size = stats.pearsonr(complex_values, simple_values)[0] # effec_size = cohend(complex_values, simple_values) elif scale_of_measurement >= 1: try: h_statistic, p_value = stats.kruskal(*list_lang_no_nan) except ValueError: return 0,0 if 0 < p_value <= p_threshold: if p_value <= 0.01: p_value = "p<=.01" elif p_value <= 0.05: p_value = "p<=.05" else: p_value = "p>0.05" output_list = list() posthoc_frame = scikit_posthocs.posthoc_dunn(list_lang_no_nan, p_adjust="holm") posthoc_frame_z = posthoc_dunn_z(list_lang_no_nan) for i, name_corpus_col in zip(posthoc_frame.columns.values, corpus_names.keys()): for n, name_corpus_row in zip(range(0, len(posthoc_frame)), corpus_names.keys()): if p_threshold >= posthoc_frame.iloc[n][i] > 0: effect_size = abs(posthoc_frame_z.iloc[n][i]/math.sqrt(corpus_names[name_corpus_col]+corpus_names[name_corpus_row])) if effect_size >= 0.1: output_list.append(["Kruskal ", p_value, "effectsize", str(round(effect_size, 4)), "h", str(round(h_statistic, 4)), "z", str(round(posthoc_frame_z.iloc[n][i],4)), name_corpus_col, name_corpus_row]) #pos_col = list(corpus_names.keys()).index(name_corpus_col) #pos_row = list(corpus_names.keys()).index(name_corpus_row) #effect_size_pearson = stats.pearsonr(list_lang_no_nan[pos_col], list_lang_no_nan[pos_row])[0] # print(len(list_lang_no_nan[pos_col]), len(list_lang_no_nan[pos_row])) # effect_size_cohen = cohend(list_lang_no_nan[pos_col], list_lang_no_nan[pos_row]) return output_list else: return 0, 0 else: return 0, 0 def cohend(d1, d2): # code from here https://machinelearningmastery.com/effect-size-measures-in-python/ # calculate the size of samples n1, n2 = len(d1), len(d2) # calculate the variance of the samples s1, s2 = np.var(d1, ddof=1), np.var(d2, ddof=1) # calculate the pooled standard deviation s = math.sqrt(((n1 - 1) * s1 + (n2 - 1) * s2) / (n1 + n2 - 2)) # calculate the means of the samples u1, u2 = np.mean(d1), np.mean(d2) # calculate the effect size return (u1 - u2) / s def get_descriptive_values(input_values): input_values = input_values[input_values.notnull()] return len(input_values), np.mean(input_values), np.std(input_values) def get_effect_size(z_value, n): return abs(z_value/math.sqrt(n)) def scale_value_to_text(value): dict_scale = {0: "nominal", 1: "ordinal", 2: "interval", 3: "ratio"} return dict_scale[value] def check_scale(input_series): # 0: nominal, 1: ordinal, 2: interval, 3: ratio # enough to check one scale because both have equal values if len(set(input_series).difference({0,1})) == 0: #input_series.all() in [0, 1]: return 0 elif all(0 <= i <= 1 for i in input_series): return 3 else: return 1 # if len(values.difference({0,1})) <= 1: # # including nan value # return "nominal" # else: # return "interval" def check_scale_from_dict(dict_path, comparable_or_paired, feat_name): with open(dict_path) as f: data = json.load(f) if feat_name in data[comparable_or_paired].keys(): return data[comparable_or_paired][feat_name]["measurement_scale"] else: #print(feat_name, " no information in feature dict provided.") return 1 def check_distribution(list_series, p_threshold=0.05): normal_distribution = False for input_series in list_series: w, p_value = stats.shapiro(input_series) if p_value >= p_threshold: # if significant no normal distribution, hence p_value must be greater or equal to threshold normal_distribution = True else: normal_distribution = False return normal_distribution def check_variance_homogeneity(list_values, p_threshold=0.05): w, p_value = stats.levene(*list_values) if p_value >= p_threshold: # if significant then the values are heterogeneous, hence p_value must be greater or equal to threshold return True else: return False def strong_effect_bold(val): # bold = 'bold' if not isinstance(val, str) and float(val) >= 0.5 else '' # return 'font-weight: %s' % bold if isinstance(val, str): color = 'black' elif float(val) >= 0.4: color = "darkblue" elif float(val) >= 0.25: color = "darkgreen" else: color = "violet" return 'color: %s' % color def get_effect_stars(p_val, effect_size, p_threshold=0.05): if p_val <= p_threshold: if effect_size >= 0.4: return "***" elif effect_size >= 0.25: return "**" elif effect_size >= 0.1: return "*" else: return "" else: return "" def get_statistics(input_data, comparable_col_names, paired_col_names, corpus_name, output_file_text, output_file_descriptive_table, output_file_effect_table, p_threshold=0.05, key=""): result_sents = list() result_table = pd.DataFrame(columns=["feature", corpus_name]) columns_descr = pd.MultiIndex.from_tuples( [("feature", ""), (corpus_name, "complex"), (corpus_name, "simple"),(corpus_name, "effect size")]) #columns_descr = pd.MultiIndex.from_tuples([("feature", ""), (corpus_name, "N"), (corpus_name, "AVG (SD) complex"), (corpus_name, "AVG (SD) simple"), ("effect_size", "")]) #[["feature", corpus_name], ["", "N", "AVG (SD) complex", "AVG (SD) simple"]]) descriptive_table = pd.DataFrame(columns=columns_descr) columns_descr_paired = pd.MultiIndex.from_tuples([("feature", ""), (corpus_name, "N"), (corpus_name, "AVG paired"), (corpus_name, "SD paired")]) descriptive_table_paired = pd.DataFrame(columns=columns_descr_paired) # print(input_data.describe()) # print(comparable_col_names) for i, col in enumerate(comparable_col_names): #if col in ["check_if_head_is_noun", "check_if_head_is_verb", "check_if_one_child_of_root_is_subject", "check_passive_voice", # "count_characters", "count_sentences", "count_syllables_in_sentence", "get_average_length_NP", # "get_average_length_VP", "get_avg_length_PP", "get_ratio_named_entities", # "get_ratio_of_interjections", "get_ratio_of_particles", "get_ratio_of_symbols", # "get_ratio_referential", "is_non_projective"]: # continue # print(col, corpus_name, len(input_data[input_data[col+"_complex"].notnull()]), len(input_data[input_data[col+"_simple"].notnull()])) test_name, t_value, p_value, effect_size = test_distribution_null_hypothesis(input_data[col+"_complex"], input_data[col+"_simple"], False, col) n_complex, avg_complex, sd_complex = get_descriptive_values(input_data[col+"_complex"]) n_simple, avg_simple, sd_simple = get_descriptive_values(input_data[col + "_simple"]) # print(col, test_name, t_value, p_value, effect_size, "complex", n_complex, avg_complex, sd_complex, "simple", n_simple, avg_simple, sd_simple) result_sent = get_result_sent(test_name, col, corpus_name, p_value, n_complex, avg_complex, sd_complex, n_simple, avg_simple, sd_simple, min(n_complex, n_simple)-1, t_value, effect_size, p_threshold=0.05, only_relevant=True) if result_sent: result_sents.append(result_sent) if effect_size == None: effect_size = 0 if p_value > p_threshold or effect_size < 0.1: result_table.loc[i] = [col, ""] else: result_table.loc[i] = [col, str(round(effect_size,2))+get_p_value_stars(p_value)] descriptive_table.loc[i] = [col, str(round(avg_complex, 2))+"$\pm$"+str(round(sd_complex,2))+"", str(round(avg_simple, 2))+"$\pm$"+str(round(sd_simple,2))+"", get_effect_stars(p_value, effect_size, p_threshold=0.05)] descriptive_table.loc[i+1] = ["N", "", n_complex, ""] for n, col in enumerate(paired_col_names): n_paired, avg_paired, sd_paired = get_descriptive_values(input_data[col]) # print(col, test_name, t_value, p_value, effect_size, "complex", n_complex, avg_complex, sd_complex, "simple", n_simple, avg_simple, sd_simple) descriptive_table_paired.loc[n] = [col, n_paired, round(avg_paired, 2), "$\pm$" + str(round(sd_paired, 2))] if output_file_text: with open(output_file_text, "w+") as f: f.writelines(result_sents) with open(output_file_effect_table, "w+") as f: f.write(result_table.to_latex(index=False, escape=False)+"\n\n") result_table.set_index("feature") # result_table_excel = result_table.style.applymap(strong_effect_bold) # result_table_excel.to_excel(corpus_name+'styled.xlsx', engine='openpyxl') # if output_file_table: with open(output_file_descriptive_table, "w+") as f: f.write(descriptive_table.to_latex(index=False, escape=False)) return input_data, descriptive_table, result_table, descriptive_table_paired def save_results(concat_descr, concat_effect, concat_descr_paired, output_descr_paired, type_value=""): type_value_dir = "" if type_value: if not os.path.exists("data/results/"+type_value): os.makedirs("data/results/"+type_value) type_value_dir = type_value+"/" type_value = "_"+type_value with open("data/results/"+type_value_dir+"all_descr_results"+type_value+".txt", "w") as f: f.write(concat_descr.to_latex(index=False, escape=False)) with open("data/results/"+type_value_dir+"all_descr_results"+type_value+".csv", "w") as f: f.write(concat_descr.to_csv(index=False)) with open("data/results/"+type_value_dir+"all_effect_results"+type_value+".txt", "w") as f: f.write(concat_effect.to_latex(index=False, escape=False)) with open("data/results/"+type_value_dir+"all_effect_results"+type_value+".csv", "w") as f: f.write(concat_effect.to_csv(index=False)) with open("data/results/"+type_value_dir+"all_descr_paired_results"+type_value+".txt", "w") as f: f.write(concat_descr_paired.to_latex(index=False, escape=False)) with open("data/results/"+type_value_dir+"all_descr_paired_results.csv", "w") as f: f.write(concat_descr_paired.to_csv(index=False)) with open("data/results/"+type_value_dir+"all_effect_paired_results"+type_value+".txt", "w") as f: f.write(output_descr_paired) return 1 def get_feature_dict(result_files): list_lang_input = list() for input_file in result_files: input_data =
pd.read_csv("data/ALL/"+input_file, sep="\t", header=0, warn_bad_lines=True, error_bad_lines=False)
pandas.read_csv
# -*- coding: utf-8 -*- import numpy as np import pytest from pandas._libs.tslib import iNaT import pandas.compat as compat from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import ( CategoricalIndex, DatetimeIndex, Float64Index, Index, Int64Index, IntervalIndex, MultiIndex, PeriodIndex, RangeIndex, Series, TimedeltaIndex, UInt64Index, isna) from pandas.core.indexes.base import InvalidIndexError from pandas.core.indexes.datetimelike import DatetimeIndexOpsMixin import pandas.util.testing as tm class Base(object): """ base class for index sub-class tests """ _holder = None _compat_props = ['shape', 'ndim', 'size', 'nbytes'] def setup_indices(self): for name, idx in self.indices.items(): setattr(self, name, idx) def test_pickle_compat_construction(self): # need an object to create with msg = (r"Index\(\.\.\.\) must be called with a collection of some" r" kind, None was passed|" r"__new__\(\) missing 1 required positional argument: 'data'|" r"__new__\(\) takes at least 2 arguments \(1 given\)") with pytest.raises(TypeError, match=msg): self._holder() def test_to_series(self): # assert that we are creating a copy of the index idx = self.create_index() s = idx.to_series() assert s.values is not idx.values assert s.index is not idx assert s.name == idx.name def test_to_series_with_arguments(self): # GH18699 # index kwarg idx = self.create_index() s = idx.to_series(index=idx) assert s.values is not idx.values assert s.index is idx assert s.name == idx.name # name kwarg idx = self.create_index() s = idx.to_series(name='__test') assert s.values is not idx.values assert s.index is not idx assert s.name != idx.name @pytest.mark.parametrize("name", [None, "new_name"]) def test_to_frame(self, name): # see GH-15230, GH-22580 idx = self.create_index() if name: idx_name = name else: idx_name = idx.name or 0 df = idx.to_frame(name=idx_name) assert df.index is idx assert len(df.columns) == 1 assert df.columns[0] == idx_name assert df[idx_name].values is not idx.values df = idx.to_frame(index=False, name=idx_name) assert df.index is not idx def test_to_frame_datetime_tz(self): # GH 25809 idx = pd.date_range(start='2019-01-01', end='2019-01-30', freq='D') idx = idx.tz_localize('UTC') result = idx.to_frame() expected = pd.DataFrame(idx, index=idx) tm.assert_frame_equal(result, expected) def test_shift(self): # GH8083 test the base class for shift idx = self.create_index() msg = "Not supported for type {}".format(type(idx).__name__) with pytest.raises(NotImplementedError, match=msg): idx.shift(1) with pytest.raises(NotImplementedError, match=msg): idx.shift(1, 2) def test_create_index_existing_name(self): # GH11193, when an existing index is passed, and a new name is not # specified, the new index should inherit the previous object name expected = self.create_index() if not isinstance(expected, MultiIndex): expected.name = 'foo' result = pd.Index(expected) tm.assert_index_equal(result, expected) result = pd.Index(expected, name='bar') expected.name = 'bar' tm.assert_index_equal(result, expected) else: expected.names = ['foo', 'bar'] result = pd.Index(expected) tm.assert_index_equal( result, Index(Index([('foo', 'one'), ('foo', 'two'), ('bar', 'one'), ('baz', 'two'), ('qux', 'one'), ('qux', 'two')], dtype='object'), names=['foo', 'bar'])) result = pd.Index(expected, names=['A', 'B']) tm.assert_index_equal( result, Index(Index([('foo', 'one'), ('foo', 'two'), ('bar', 'one'), ('baz', 'two'), ('qux', 'one'), ('qux', 'two')], dtype='object'), names=['A', 'B'])) def test_numeric_compat(self): idx = self.create_index() with pytest.raises(TypeError, match="cannot perform __mul__"): idx * 1 with pytest.raises(TypeError, match="cannot perform __rmul__"): 1 * idx div_err = "cannot perform __truediv__" with pytest.raises(TypeError, match=div_err): idx / 1 div_err = div_err.replace(' __', ' __r') with pytest.raises(TypeError, match=div_err): 1 / idx with pytest.raises(TypeError, match="cannot perform __floordiv__"): idx // 1 with pytest.raises(TypeError, match="cannot perform __rfloordiv__"): 1 // idx def test_logical_compat(self): idx = self.create_index() with pytest.raises(TypeError, match='cannot perform all'): idx.all() with pytest.raises(TypeError, match='cannot perform any'): idx.any() def test_boolean_context_compat(self): # boolean context compat idx = self.create_index() with pytest.raises(ValueError, match='The truth value of a'): if idx: pass def test_reindex_base(self): idx = self.create_index() expected = np.arange(idx.size, dtype=np.intp) actual = idx.get_indexer(idx) tm.assert_numpy_array_equal(expected, actual) with pytest.raises(ValueError, match='Invalid fill method'): idx.get_indexer(idx, method='invalid') def test_get_indexer_consistency(self): # See GH 16819 for name, index in self.indices.items(): if isinstance(index, IntervalIndex): continue if index.is_unique or isinstance(index, CategoricalIndex): indexer = index.get_indexer(index[0:2]) assert isinstance(indexer, np.ndarray) assert indexer.dtype == np.intp else: e = "Reindexing only valid with uniquely valued Index objects" with pytest.raises(InvalidIndexError, match=e): index.get_indexer(index[0:2]) indexer, _ = index.get_indexer_non_unique(index[0:2]) assert isinstance(indexer, np.ndarray) assert indexer.dtype == np.intp def test_ndarray_compat_properties(self): idx = self.create_index() assert idx.T.equals(idx) assert idx.transpose().equals(idx) values = idx.values for prop in self._compat_props: assert getattr(idx, prop) == getattr(values, prop) # test for validity idx.nbytes idx.values.nbytes def test_repr_roundtrip(self): idx = self.create_index() tm.assert_index_equal(eval(repr(idx)), idx) def test_str(self): # test the string repr idx = self.create_index() idx.name = 'foo' assert "'foo'" in str(idx) assert idx.__class__.__name__ in str(idx) def test_repr_max_seq_item_setting(self): # GH10182 idx = self.create_index() idx = idx.repeat(50) with pd.option_context("display.max_seq_items", None): repr(idx) assert '...' not in str(idx) def test_copy_name(self): # gh-12309: Check that the "name" argument # passed at initialization is honored. for name, index in compat.iteritems(self.indices): if isinstance(index, MultiIndex): continue first = index.__class__(index, copy=True, name='mario') second = first.__class__(first, copy=False) # Even though "copy=False", we want a new object. assert first is not second # Not using tm.assert_index_equal() since names differ. assert index.equals(first) assert first.name == 'mario' assert second.name == 'mario' s1 = Series(2, index=first) s2 = Series(3, index=second[:-1]) if not isinstance(index, CategoricalIndex): # See gh-13365 s3 = s1 * s2 assert s3.index.name == 'mario' def test_ensure_copied_data(self): # Check the "copy" argument of each Index.__new__ is honoured # GH12309 for name, index in compat.iteritems(self.indices): init_kwargs = {} if isinstance(index, PeriodIndex): # Needs "freq" specification: init_kwargs['freq'] = index.freq elif isinstance(index, (RangeIndex, MultiIndex, CategoricalIndex)): # RangeIndex cannot be initialized from data # MultiIndex and CategoricalIndex are tested separately continue index_type = index.__class__ result = index_type(index.values, copy=True, **init_kwargs) tm.assert_index_equal(index, result) tm.assert_numpy_array_equal(index._ndarray_values, result._ndarray_values, check_same='copy') if isinstance(index, PeriodIndex): # .values an object array of Period, thus copied result = index_type(ordinal=index.asi8, copy=False, **init_kwargs) tm.assert_numpy_array_equal(index._ndarray_values, result._ndarray_values, check_same='same') elif isinstance(index, IntervalIndex): # checked in test_interval.py pass else: result = index_type(index.values, copy=False, **init_kwargs) tm.assert_numpy_array_equal(index.values, result.values, check_same='same') tm.assert_numpy_array_equal(index._ndarray_values, result._ndarray_values, check_same='same') def test_memory_usage(self): for name, index in compat.iteritems(self.indices): result = index.memory_usage() if len(index): index.get_loc(index[0]) result2 = index.memory_usage() result3 = index.memory_usage(deep=True) # RangeIndex, IntervalIndex # don't have engines if not isinstance(index, (RangeIndex, IntervalIndex)): assert result2 > result if index.inferred_type == 'object': assert result3 > result2 else: # we report 0 for no-length assert result == 0 def test_argsort(self): for k, ind in self.indices.items(): # separately tested if k in ['catIndex']: continue result = ind.argsort() expected = np.array(ind).argsort() tm.assert_numpy_array_equal(result, expected, check_dtype=False) def test_numpy_argsort(self): for k, ind in self.indices.items(): result = np.argsort(ind) expected = ind.argsort() tm.assert_numpy_array_equal(result, expected) # these are the only two types that perform # pandas compatibility input validation - the # rest already perform separate (or no) such # validation via their 'values' attribute as # defined in pandas.core.indexes/base.py - they # cannot be changed at the moment due to # backwards compatibility concerns if isinstance(type(ind), (CategoricalIndex, RangeIndex)): msg = "the 'axis' parameter is not supported" with pytest.raises(ValueError, match=msg): np.argsort(ind, axis=1) msg = "the 'kind' parameter is not supported" with pytest.raises(ValueError, match=msg): np.argsort(ind, kind='mergesort') msg = "the 'order' parameter is not supported" with pytest.raises(ValueError, match=msg): np.argsort(ind, order=('a', 'b')) def test_take(self): indexer = [4, 3, 0, 2] for k, ind in self.indices.items(): # separate if k in ['boolIndex', 'tuples', 'empty']: continue result = ind.take(indexer) expected = ind[indexer] assert result.equals(expected) if not isinstance(ind, (DatetimeIndex, PeriodIndex, TimedeltaIndex)): # GH 10791 with pytest.raises(AttributeError): ind.freq def test_take_invalid_kwargs(self): idx = self.create_index() indices = [1, 2] msg = r"take\(\) got an unexpected keyword argument 'foo'" with pytest.raises(TypeError, match=msg): idx.take(indices, foo=2) msg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=msg): idx.take(indices, out=indices) msg = "the 'mode' parameter is not supported" with pytest.raises(ValueError, match=msg): idx.take(indices, mode='clip') def test_repeat(self): rep = 2 i = self.create_index() expected = pd.Index(i.values.repeat(rep), name=i.name) tm.assert_index_equal(i.repeat(rep), expected) i = self.create_index() rep = np.arange(len(i)) expected = pd.Index(i.values.repeat(rep), name=i.name) tm.assert_index_equal(i.repeat(rep), expected) def test_numpy_repeat(self): rep = 2 i = self.create_index() expected = i.repeat(rep) tm.assert_index_equal(np.repeat(i, rep), expected) msg = "the 'axis' parameter is not supported" with pytest.raises(ValueError, match=msg): np.repeat(i, rep, axis=0) @pytest.mark.parametrize('klass', [list, tuple, np.array, Series]) def test_where(self, klass): i = self.create_index() cond = [True] * len(i) result = i.where(klass(cond)) expected = i tm.assert_index_equal(result, expected) cond = [False] + [True] * len(i[1:]) expected = pd.Index([i._na_value] + i[1:].tolist(), dtype=i.dtype) result = i.where(klass(cond)) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("case", [0.5, "xxx"]) @pytest.mark.parametrize("method", ["intersection", "union", "difference", "symmetric_difference"]) def test_set_ops_error_cases(self, case, method): for name, idx in compat.iteritems(self.indices): # non-iterable input msg = "Input must be Index or array-like" with pytest.raises(TypeError, match=msg): getattr(idx, method)(case) def test_intersection_base(self): for name, idx in compat.iteritems(self.indices): first = idx[:5] second = idx[:3] intersect = first.intersection(second) if isinstance(idx, CategoricalIndex): pass else: assert tm.equalContents(intersect, second) # GH 10149 cases = [klass(second.values) for klass in [np.array, Series, list]] for case in cases: if isinstance(idx, PeriodIndex): msg = "can only call with other PeriodIndex-ed objects" with pytest.raises(ValueError, match=msg): first.intersection(case) elif isinstance(idx, CategoricalIndex): pass else: result = first.intersection(case) assert tm.equalContents(result, second) if isinstance(idx, MultiIndex): msg = "other must be a MultiIndex or a list of tuples" with pytest.raises(TypeError, match=msg): first.intersection([1, 2, 3]) def test_union_base(self): for name, idx in compat.iteritems(self.indices): first = idx[3:] second = idx[:5] everything = idx union = first.union(second) assert tm.equalContents(union, everything) # GH 10149 cases = [klass(second.values) for klass in [np.array, Series, list]] for case in cases: if isinstance(idx, PeriodIndex): msg = "can only call with other PeriodIndex-ed objects" with pytest.raises(ValueError, match=msg): first.union(case) elif isinstance(idx, CategoricalIndex): pass else: result = first.union(case) assert tm.equalContents(result, everything) if isinstance(idx, MultiIndex): msg = "other must be a MultiIndex or a list of tuples" with pytest.raises(TypeError, match=msg): first.union([1, 2, 3]) @pytest.mark.parametrize("sort", [None, False]) def test_difference_base(self, sort): for name, idx in compat.iteritems(self.indices): first = idx[2:] second = idx[:4] answer = idx[4:] result = first.difference(second, sort) if isinstance(idx, CategoricalIndex): pass else: assert tm.equalContents(result, answer) # GH 10149 cases = [klass(second.values) for klass in [np.array, Series, list]] for case in cases: if isinstance(idx, PeriodIndex): msg = "can only call with other PeriodIndex-ed objects" with pytest.raises(ValueError, match=msg): first.difference(case, sort) elif isinstance(idx, CategoricalIndex): pass elif isinstance(idx, (DatetimeIndex, TimedeltaIndex)): assert result.__class__ == answer.__class__ tm.assert_numpy_array_equal(result.sort_values().asi8, answer.sort_values().asi8) else: result = first.difference(case, sort) assert tm.equalContents(result, answer) if isinstance(idx, MultiIndex): msg = "other must be a MultiIndex or a list of tuples" with pytest.raises(TypeError, match=msg): first.difference([1, 2, 3], sort) def test_symmetric_difference(self): for name, idx in compat.iteritems(self.indices): first = idx[1:] second = idx[:-1] if isinstance(idx, CategoricalIndex): pass else: answer = idx[[0, -1]] result = first.symmetric_difference(second) assert tm.equalContents(result, answer) # GH 10149 cases = [klass(second.values) for klass in [np.array, Series, list]] for case in cases: if isinstance(idx, PeriodIndex): msg = "can only call with other PeriodIndex-ed objects" with pytest.raises(ValueError, match=msg): first.symmetric_difference(case) elif isinstance(idx, CategoricalIndex): pass else: result = first.symmetric_difference(case) assert tm.equalContents(result, answer) if isinstance(idx, MultiIndex): msg = "other must be a MultiIndex or a list of tuples" with pytest.raises(TypeError, match=msg): first.symmetric_difference([1, 2, 3]) def test_insert_base(self): for name, idx in compat.iteritems(self.indices): result = idx[1:4] if not len(idx): continue # test 0th element assert idx[0:4].equals(result.insert(0, idx[0])) def test_delete_base(self): for name, idx in compat.iteritems(self.indices): if not len(idx): continue if isinstance(idx, RangeIndex): # tested in class continue expected = idx[1:] result = idx.delete(0) assert result.equals(expected) assert result.name == expected.name expected = idx[:-1] result = idx.delete(-1) assert result.equals(expected) assert result.name == expected.name with pytest.raises((IndexError, ValueError)): # either depending on numpy version idx.delete(len(idx)) def test_equals(self): for name, idx in compat.iteritems(self.indices): assert idx.equals(idx) assert idx.equals(idx.copy()) assert idx.equals(idx.astype(object)) assert not idx.equals(list(idx)) assert not idx.equals(np.array(idx)) # Cannot pass in non-int64 dtype to RangeIndex if not isinstance(idx, RangeIndex): same_values = Index(idx, dtype=object) assert idx.equals(same_values) assert same_values.equals(idx) if idx.nlevels == 1: # do not test MultiIndex assert not idx.equals(pd.Series(idx)) def test_equals_op(self): # GH9947, GH10637 index_a = self.create_index() if isinstance(index_a, PeriodIndex): pytest.skip('Skip check for PeriodIndex') n = len(index_a) index_b = index_a[0:-1] index_c = index_a[0:-1].append(index_a[-2:-1]) index_d = index_a[0:1] msg = "Lengths must match|could not be broadcast" with pytest.raises(ValueError, match=msg): index_a == index_b expected1 = np.array([True] * n) expected2 = np.array([True] * (n - 1) + [False]) tm.assert_numpy_array_equal(index_a == index_a, expected1) tm.assert_numpy_array_equal(index_a == index_c, expected2) # test comparisons with numpy arrays array_a = np.array(index_a) array_b = np.array(index_a[0:-1]) array_c = np.array(index_a[0:-1].append(index_a[-2:-1])) array_d = np.array(index_a[0:1]) with pytest.raises(ValueError, match=msg): index_a == array_b tm.assert_numpy_array_equal(index_a == array_a, expected1) tm.assert_numpy_array_equal(index_a == array_c, expected2) # test comparisons with Series series_a = Series(array_a) series_b =
Series(array_b)
pandas.Series
# -*- coding: utf-8 -*- """ dopplertext is a program to convert Doppler parameters stored on DCM images of PW Doppler into a readable, useable format. Copyright (c) 2018 <NAME>. This file is part of dopplertext. dopplertext is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. dopplertext is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with dopplertext. If not, see <http://www.gnu.org/licenses/>. dopplertext Created on Thu July 12 14:41:18 2018 @author: gordon """ import skimage.io import skimage.color import skimage.util from skimage.feature import match_template import pandas as pd import imghdr try: import cPickle as pickle except ImportError: import pickle try: import pydicom as dicom except: import dicom import numpy as np import os, glob, sys from gooey import Gooey, GooeyParser @Gooey(default_size=(800,600)) def main(): parser = GooeyParser(description="GE DICOM Text Parser") parser.add_argument('outputfile', help='Select Output Spreadsheet Filename',widget="FileChooser") area_threshold_group = parser.add_mutually_exclusive_group(required=True) area_threshold_group.add_argument('--inputfile', help='Input DCM File', widget='FileChooser') area_threshold_group.add_argument('--inputdir', help='Input DCM Directory', widget='DirChooser') args = parser.parse_args() runFile(args) def loadImgDict(): if not os.path.isfile('image_dictionary.pickle'): raise NotImplementedError try: with open('image_dictionary.pickle', 'rb') as handle: image_dictionary = pickle.load(handle) except UnicodeDecodeError as e: with open('image_dictionary.pickle', 'rb') as f: image_dictionary = pickle.load(f, encoding='latin1') return image_dictionary def runFile(args): """ :param args: dictionary :return: """ inputfile = args.inputfile inputdir = args.inputdir image_dictionary = loadImgDict() output_df = [] final_df = pd.DataFrame() if inputfile is not None: print('Analysing Single File....') inputfile = inputfile.replace('\\', '/') output_df, y_order = getTextFromDCMFile(inputfile, image_dictionary) output_df = pd.DataFrame(output_df) output_df['FileName'] = [inputfile[inputfile.rfind('/') + 1:] for i in range(len(output_df))] output_df = output_df.iloc[np.argsort(y_order)].reset_index(drop=True) write_df = pd.DataFrame(output_df) print('done!') if inputdir is not None: file_list = glob.glob(args.inputdir + '/*') print('Analysing Each DCM File....') final_df =
pd.DataFrame([])
pandas.DataFrame
""" [Optional] When using db_out.csv check consistency: should be the same ID column in raw and out. With this I won't need the ID column at all. """ import os.path as p from typing import NamedTuple, List, Tuple, Callable, Dict, Any import ast import pandas as pd from pandas import DataFrame import numpy as np # noinspection PyPep8Naming from numpy import ndarray as Array from kiwi_bugfix_typechecker import test_assert BETTER: bool = False # use good enough types or better types test_assert() TO_DICT: Dict[str, Dict[int, int]] = dict( dom={ 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 2, 7: 6, 8: 4, 9: 5, 10: 7, 11: 6, 12: 8, 13: 1, 14: 7, 15: 3, 16: 8 }, temper={ 1: 1, 2: 2, 3: 3, 4: 4, 5: 1, 6: 2, 7: 3, 8: 4, 9: 1, 10: 2, 11: 3, 12: 4, 13: 1, 14: 2, 15: 3, 16: 4 }, quadra_club={ 1: 1, 2: 1, 3: 2, 4: 2, 5: 3, 6: 3, 7: 4, 8: 4, 9: 5, 10: 5, 11: 6, 12: 6, 13: 7, 14: 7, 15: 8, 16: 8 }, quadra={ 1: 1, 2: 1, 3: 1, 4: 1, 5: 2, 6: 2, 7: 2, 8: 2, 9: 3, 10: 3, 11: 3, 12: 3, 13: 4, 14: 4, 15: 4, 16: 4 }, club={ 1: 1, 2: 1, 3: 2, 4: 2, 5: 3, 6: 3, 7: 4, 8: 4, 9: 2, 10: 2, 11: 1, 12: 1, 13: 4, 14: 4, 15: 3, 16: 3 }, mr={ 1: 1, 2: 2, 3: 1, 4: 2, 5: 1, 6: 2, 7: 1, 8: 2, 9: 1, 10: 2, 11: 1, 12: 2, 13: 1, 14: 2, 15: 1, 16: 2 }, ei={ 1: 1, 2: 2, 3: 2, 4: 1, 5: 1, 6: 2, 7: 2, 8: 1, 9: 1, 10: 2, 11: 2, 12: 1, 13: 1, 14: 2, 15: 2, 16: 1 }, mr_tf={ 1: 1, 2: 2, 3: 3, 4: 4, 5: 1, 6: 2, 7: 3, 8: 4, 9: 3, 10: 4, 11: 1, 12: 2, 13: 3, 14: 4, 15: 1, 16: 2 }, xir_xer={ 1: 1, 2: 1, 3: 2, 4: 2, 5: 1, 6: 1, 7: 2, 8: 2, 9: 1, 10: 1, 11: 2, 12: 2, 13: 1, 14: 1, 15: 2, 16: 2 }, lc={ 1: 1, 2: 1, 3: 1, 4: 1, 5: 2, 6: 2, 7: 2, 8: 2, 9: 2, 10: 2, 11: 2, 12: 2, 13: 1, 14: 1, 15: 1, 16: 1 }, ) BOLTI = 'BOLTI_434__2017_08_18__N3197' SOLTI = 'SOLTI_160__2016_03_20__N6406' SOLTI_ENG = 'SOLTI_160_ENG__2019_08_07__NXXXX' EXTRA_QUESTIONS = ['sex in (female, male)', 'age in (0-20, 21-25, 26-30, 31-40, 41-100)'] EXTRA_COLUMNS_IDS = ['sex', 'age'] SOLTI_ENG_ID_Δ = 20000 # MISSING_TYPES = (3, 4, 9, 10, 16) # (3, 4, 10, 12, 16) MISSING_TYPES = tuple(range(1, 17)) class DB(NamedTuple): """ 6000 is an example number of completed questionnaires. 160 is an example number of questions in the questionnaire. Attributes: ----------- profiles : np.ndarray 2D like (~6000, ~2 + ~160) shape df : pd.DataFrame 2D like (~6000, ~8 + ~160) shape types_tal : np.ndarray 1D like (~6000,) shape; in {1, ..., 16} types_self : np.ndarray 1D like (~6000,) shape; in {-1, 1, ..., 16} types_tal_sex : np.ndarray 1D like (~6000,) shape; in {1, ..., 16, 17, ..., 32} females first types_smart_coincide : np.ndarray 1D like (~6000,) shape; in {-16, ..., -1, 1, ..., 16} questions : List[Tuple[str, str]] 2D like (~160, ~2) shape. First one is original Russian question. Second one is autotranslated English question. interesting : np.ndarray 2D like (~10, ~2) shape. Interesting indexes (not IDs!). First is a real type. Second is index. """ profiles: Array df: DataFrame types_tal: Array types_self: Array types_tal_sex: Array questions: List[Tuple[str, str]] interesting: Array type_smart_coincide: Array other_smart_coincide: Dict[str, Array] other_y_dim: Dict[str, int] class DBSpec: name: str _reader: Tuple[Callable[[], DB]] h_dims: Tuple[int, ...] def __init__(self, name: str, reader: Callable[[], DB], h_dims: Tuple[int, ...]): self.name = name self.h_dims = h_dims self._reader = (reader,) @property def reader(self) -> Callable[[], DB]: return self._reader[0] def dump(self) -> Dict[str, Any]: return dict(name=self.name, h_dims=self.h_dims) def read_profiles(profile_name: str) -> Tuple[DataFrame, DataFrame, List[str], List[str], List[List[int]]]: """ * Questions lists are prepended with 'sex' and 'age' descriptions. * ``sex`` is mapped: 0 to 1, 1 to 5. * ``self`` empty string is mapped to 0. * ``confidence`` empty string and ``'None'`` is mapped to ``-1``. :param profile_name: :return: (raw_data_frame, out_data_frame, questions, questions_eng, interesting_ids) """ _dir = p.join(p.dirname(p.abspath(__file__)), profile_name) def _questions(file_name: str): with open(p.join(_dir, file_name), 'r', encoding='utf-8') as f_: return EXTRA_QUESTIONS + f_.read().strip().splitlines() df_raw = pd.read_csv(p.join(_dir, 'db_raw.csv'), converters=dict( sex=lambda s: 5 if (int(s) == 1) else 1, self=lambda s: int(s) if s else -1, confidence=lambda s: int(s) if s not in ('None', '') else -1, )) df_out = pd.read_csv(p.join(_dir, 'db_out.csv')) if len(df_out) != len(df_raw): raise ValueError('Inconsistent db_raw.csv and db_out.csv length.') questions = _questions('questions.txt') questions_eng = _questions('questions_autotranslated.txt') columns = df_raw.columns.values.tolist() if ('sex' not in columns) or ('age' not in columns): raise ValueError("Either 'sex' or 'age' is not in the columns names.") quest_n = len([name for name in columns if name.isdigit()]) + len(EXTRA_QUESTIONS) if (quest_n != len(questions)) or (quest_n != len(questions_eng)): raise ValueError("Inconsistent number of questions.") with open(p.join(_dir, 'interesting_ids.ast'), 'r', encoding='utf-8') as f: interesting_ids = ast.literal_eval(f.read()) # patch ids add_file = p.join(_dir, 'dbo_ids_add.ast') remove_file = p.join(_dir, 'dbo_ids_remove.ast') add_ids: List[int] = [] remove_ids: List[int] = [] if p.isfile(add_file): with open(add_file, 'r', encoding='utf-8') as f: add_ids = ast.literal_eval(f.read()) if p.isfile(remove_file): with open(remove_file, 'r', encoding='utf-8') as f: remove_ids = ast.literal_eval(f.read()) Δ = SOLTI_ENG_ID_Δ if (profile_name == SOLTI_ENG) else 0 remove_ids = [i + Δ for i in remove_ids if i not in add_ids] ids = df_raw['id'].values if remove_ids: idxs = [idx for idx, id_ in enumerate(ids) if id_ in remove_ids] df_raw = df_raw.drop(df_raw.index[idxs]) df_out = df_out.drop(df_out.index[idxs]) ids = df_raw['id'].values elif profile_name == SOLTI_ENG: raise ValueError main_quest_n = quest_n - len(EXTRA_QUESTIONS) profs = df_raw[[str(i) for i in range(1, main_quest_n + 1)]].values max_same_quest = np.array([np.max(np.unique(row, return_counts=True)[1]) for row in profs]) del_mask = max_same_quest > np.mean(max_same_quest) + 4 * np.std(max_same_quest) if len(ids[del_mask]) > 0: del_ids = ids[del_mask] - Δ raise ValueError(f'These IDs have too many same questions: (for {profile_name}): {list(del_ids)}' + f' (counts: {list(max_same_quest[del_mask])})') corr = np.corrcoef(profs) - np.eye(len(profs)) if np.isnan(corr).any(): del_ids = ids[list(set(i for i, row in enumerate(corr) if all(np.isnan(row))))] - Δ raise ValueError(f'These IDs give NaN correlations with other IDs (for {profile_name}): {list(del_ids)}') mask = np.max(corr, axis=1) >= 0.99 if len(corr[mask]) > 0: idxs = np.arange(0, len(profs)) has_equals = [int(i) for i in idxs[mask]] del_idxs: List[int] = [] for i in has_equals.copy(): for j, c in enumerate(corr[i]): if (c >= 0.99) and (i in has_equals): del_idxs.append(j) has_equals = [s for s in has_equals if s != j] assert len(has_equals) == len(set(has_equals)) del_ids = ids[del_idxs] - Δ raise ValueError(f'Duplicate profiles. Recommended to delete IDs (for {profile_name}): {list(del_ids)}') return df_raw, df_out, questions, questions_eng, interesting_ids def types_tal_good_mask(df_out: DataFrame, tal_profs: Array, second_type_gap_pc_thr: int=70, k_the_sigma_thr: float=-2, k_halves_correl_thr: float=-2) -> Array: """ :param df_out: of shape (~6000, K) :param tal_profs: of shape (~6000, 16) :param second_type_gap_pc_thr: threshold for second type. Default: the 2nd type should be <= 67% of the 1st type. :param k_the_sigma_thr: threshold is mean(the_sigma) + k_the_sigma_thr * std(the_sigma) :param k_halves_correl_thr: threshold is mean(halves_correl) + k_halves_correl_thr * std(halves_correl) :return: bool mask of shape (~6000,) that is True when profile is "good". """ sort = np.sort(tal_profs, axis=-1) sort[sort <= 0] = 0 sort = np.round(np.einsum('ij,i->ij', sort, np.max(tal_profs, axis=-1)**-1) * 100).astype(int) second_type_gap_mask = (sort[:, -1] == 100) & (sort[:, -2] <= second_type_gap_pc_thr) the_sigma = df_out['sigma_of_the_profile'].values the_sigma_mask = the_sigma >= (np.mean(the_sigma) + k_the_sigma_thr * np.std(the_sigma)) halves_correl = df_out['correl_of_the_halves'].values halves_correl_mask = halves_correl >= (np.mean(halves_correl) + k_halves_correl_thr * np.std(halves_correl)) return second_type_gap_mask & the_sigma_mask & halves_correl_mask def _smart_coincide( tal_profs: Array, types_self: Array, types_tal: Array, threshold: int=-80, thresholds: Tuple[Tuple[int, Tuple[int, ...]], ...]=(), labels: str='type') -> Array: """ >>> TO_DICT Old: threshold=90, thresholds_plus=((81, (4, 8, 16)),) :param tal_profs: of shape (~6000, 16) of float :param types_self: of shape (~6000,) from {-1, 1, ..., 16} :param types_tal: of shape (~6000,) from {1, ..., 16} :param threshold: default threshold for smart Talanov's types. Positive: self type can be from a set of Talanov's types formed by threshold percent from max type scale. Zero: self type should coincide with Talanov's. Negative: self type should coincide with Talanov's and additionally the next type should be not closer than threshold percent from max type scale. :param thresholds: custom thresholds per type like ((81, (4, 16)),) that would turn into {81: (4, 16)} :param labels: for other values see keys of TO_DICT const :return: of shape (~6000,) in {-16, ..., -1, 1, ..., 16} positive when smart coincided """ if len(tal_profs) != len(types_self): raise ValueError('Inconsistent tal_profs and types_self length.') tal_profs = np.round(np.einsum('ij,i->ij', tal_profs, np.max(tal_profs, axis=1)**-1) * 100).astype(int) types_tal_one_hot = np.eye(16).astype(int)[types_tal - 1] def trimmed_tal_profs(thr: int) -> Array: if thr == 0: return 100 * types_tal_one_hot ret = np.copy(tal_profs) ret[ret < abs(thr)] = 0 return ret thr_types = dict(thresholds) defined = [i for types in thr_types.values() for i in types] assert (len(defined) == len(set(defined))) and (threshold not in thr_types) thr_types[threshold] = tuple(i for i in range(1, 17) if i not in defined) absthr_arr: Dict[int, Array] = {thr: trimmed_tal_profs(thr) for thr in set(abs(t) for t in thr_types) | {0}} def get_thr(type_: int) -> int: if type_ == -1: return 0 for thr, types in thr_types.items(): if type_ in types: return thr raise AssertionError type_thr: Dict[int, int] = {i: get_thr(i) for i in range(-1, 17) if i != 0} tal_profs_ = np.array([absthr_arr[abs(type_thr[n])][i] for i, n in enumerate(types_self)]) if labels == 'type': map_: Dict[int, int] = {i: i for i in range(1, 17)} else: map_ = TO_DICT[labels] def kernel(bests: List[int], self: int, tal: int, thr_pos: bool) -> int: assert tal >= 1 if self < 1: return -tal if thr_pos: return self if (self in bests) else -tal return self if (len(bests) == 1) and (bests[0] == self) else -tal smart_coin = np.array([kernel( bests=[map_[int(s)] for s in list(np.where(row > abs(type_thr[self]))[0] + 1)], self=map_[int(self)] if (self >= 1) else -1, tal=map_[int(tal)], thr_pos=type_thr[self] > 0 ) for row, self, tal in zip(tal_profs_, types_self, types_tal)]) return smart_coin def smart_coincide_db(tal_profs: Array, types_self: Array, types_tal: Array, males: Array, threshold: int=90, labels: str='type', thresholds_males: Tuple[Tuple[int, Tuple[int, ...]], ...]=(), thresholds_females: Tuple[Tuple[int, Tuple[int, ...]], ...]=()) -> Array: smart_coin_males = _smart_coincide( tal_profs=tal_profs, types_self=types_self, types_tal=types_tal, labels=labels, threshold=threshold, thresholds=thresholds_males ) smart_coin_females = _smart_coincide( tal_profs=tal_profs, types_self=types_self, types_tal=types_tal, labels=labels, threshold=threshold, thresholds=thresholds_females ) smart_coin = smart_coin_females smart_coin[males] = smart_coin_males[males] return smart_coin def smart_coincide_solti_good( tal_profs: Array, types_self: Array, types_tal: Array, males: Array, threshold: int=90, labels: str='type', thresholds_males: Tuple[Tuple[int, Tuple[int, ...]], ...]=( (81, (4,)), ), thresholds_females: Tuple[Tuple[int, Tuple[int, ...]], ...]=()) -> Array: return smart_coincide_db(tal_profs=tal_profs, types_self=types_self, types_tal=types_tal, males=males, threshold=threshold, labels=labels, thresholds_males=thresholds_males, thresholds_females=thresholds_females) def smart_coincide_solti_better( tal_profs: Array, types_self: Array, types_tal: Array, males: Array, threshold: int=-80, labels: str='type', thresholds_males: Tuple[Tuple[int, Tuple[int, ...]], ...]=( (-99, (16,)), (-90, (3, 4)), # old: (81, (3,)), (-97, (3, 16)), ), thresholds_females: Tuple[Tuple[int, Tuple[int, ...]], ...]=( (-90, (16,)), # old: (-95, (16,)), )) -> Array: return smart_coincide_db(tal_profs=tal_profs, types_self=types_self, types_tal=types_tal, males=males, threshold=threshold, labels=labels, thresholds_males=thresholds_males, thresholds_females=thresholds_females) def smart_coincide_bolti( tal_profs: Array, types_self: Array, types_tal: Array, males: Array, threshold: int=90, labels: str='type', thresholds_males: Tuple[Tuple[int, Tuple[int, ...]], ...]=( (81, (3, 4, 16)), ), thresholds_females: Tuple[Tuple[int, Tuple[int, ...]], ...]=()) -> Array: return smart_coincide_db(tal_profs=tal_profs, types_self=types_self, types_tal=types_tal, males=males, threshold=threshold, labels=labels, thresholds_males=thresholds_males, thresholds_females=thresholds_females) def preprocess_profiles(df_raw: DataFrame, df_out: DataFrame, questions: List[str], questions_eng: List[str], select_columns: List[str], interesting_indexes: Array, db_name: str=None) -> DB: tal_profs = df_out.loc[:, [str(i) for i in range(1, 17)]].values types_self = df_raw['self'].values types_tal = df_raw['diagnosis'].values profiles = df_raw.loc[:, select_columns].values sex = profiles[:, 0] if tuple(np.unique(types_tal)) != tuple(range(1, 17)): raise ValueError if tuple(np.unique(types_self)) != ((-1,) + tuple(range(1, 17))): raise ValueError if tuple(np.unique(sex)) != (1, 5): raise ValueError def _types_self_extra() -> Array: good = types_tal_good_mask(df_out=df_out, tal_profs=tal_profs) good_no_self = good & (types_self == -1) # & (sex == 5) types_ = types_tal == MISSING_TYPES[0] for type_ in MISSING_TYPES[1:]: types_ = types_ | (types_tal == type_) good_no_self_types = good_no_self & types_ types_self_extra_ = np.copy(types_self) types_self_extra_[good_no_self_types] = types_tal[good_no_self_types] if db_name == 'bolti': special_type = 4 good_special = types_tal_good_mask( df_out=df_out, tal_profs=tal_profs, second_type_gap_pc_thr=90, k_the_sigma_thr=-2, k_halves_correl_thr=-2) good_no_self_special = good_special & (types_self == -1) & (types_tal == special_type) # print(len(types_self[good_no_self_special])) # raise types_self_extra_[good_no_self_special] = types_tal[good_no_self_special] return types_self_extra_ types_self_extra = _types_self_extra() types_tal_ = np.copy(types_tal) males = profiles[:, 0] == 5 if db_name == 'bolti': smart_coincide = smart_coincide_bolti elif BETTER: smart_coincide = smart_coincide_solti_better else: smart_coincide = smart_coincide_solti_good def smart_coincide_(labels: str) -> Array: return smart_coincide(tal_profs=tal_profs, types_self=types_self_extra, types_tal=types_tal_, males=males, labels=labels) type_smart_coin = smart_coincide_('type') type_smart_mask = type_smart_coin > 0 types_tal[type_smart_mask] = type_smart_coin[type_smart_mask] # print(df, '\n-----------------------\n', profiles, '\n\n', profiles.shape) if len({len(profiles), len(df_raw), len(types_self), len(types_tal)}) != 1: raise ValueError('Data has inconsistent dimensions.') types_tal_sex = np.copy(types_tal) types_tal_sex[males] += 16 return DB(profiles=profiles, df=df_raw, types_tal=types_tal, types_self=types_self, types_tal_sex=types_tal_sex, questions=list(zip(questions, questions_eng)), interesting=interesting_indexes, type_smart_coincide=type_smart_coin, other_smart_coincide={tp: smart_coincide_(tp) for tp in TO_DICT}, other_y_dim={tp: len(set(TO_DICT[tp].values())) for tp in TO_DICT}) def ids_to_idx(interesting_ids: List[List[int]], ids: Array) -> Array: inters_idxs = [np.argmin(np.abs(ids - id_)) for id_ in [s[-1] for s in interesting_ids]] # inters_idxs = [idx for idx, id_ in enumerate(ids) if id_ in [s[-1] for s in interesting_ids]] if len(interesting_ids) != len(inters_idxs): raise AssertionError(interesting_ids, inters_idxs) interesting_indexes = np.array([[lst[0], idx] for lst, idx in zip(interesting_ids, inters_idxs)]) return interesting_indexes def read_bolti_434() -> DB: _df_raw, _df_out, questions, questions_eng, interesting_ids = read_profiles(BOLTI) mask = _df_raw['goal'] != 3 df_raw: DataFrame = _df_raw.loc[mask] df_out: DataFrame = _df_out.loc[mask] if len(_df_raw) == len(df_raw): raise ValueError('Selecting (goal != 3) failed.') interesting_indexes = ids_to_idx(interesting_ids, df_raw['id'].values) columns = EXTRA_COLUMNS_IDS + [str(i) for i in range(1, 430 + 1)] return preprocess_profiles(df_raw=df_raw, df_out=df_out, questions=questions, questions_eng=questions_eng, select_columns=columns, interesting_indexes=interesting_indexes, db_name='bolti') def read_solti_160() -> DB: df_ru, df_out_ru, questions, questions_eng, interesting_ids_ru = read_profiles(SOLTI) df_en, df_out_en, _, _, interesting_ids_en = read_profiles(SOLTI_ENG) out_columns = ['sigma_of_the_profile', 'correl_of_the_halves'] + [str(i) for i in range(1, 17)] df_raw: DataFrame = pd.concat([df_ru, df_en], ignore_index=True) df_out: DataFrame =
pd.concat([df_out_ru[out_columns], df_out_en[out_columns]], ignore_index=True)
pandas.concat
import os import pandas as pd from pandas.io.json import json_normalize import streamlit as st from typing import List import streamlit.components.v1 as components from awesome_table.column import (ColumnDType, Column) _RELEASE = True class AwesomeTable(): """AwesomeTable is a component for Streamlit to build a table based in bootstrap with search and order funcionality.""" if _RELEASE: _root_dir = os.path.dirname(os.path.abspath(__file__)) _build_dir = os.path.join(_root_dir, 'frontend/build') _awesome_table_ = components.declare_component( "awesome_table", path=_build_dir ) else: _awesome_table_ = components.declare_component( "awesome_table", url='http://localhost:3001' ) def __init__(self, data: pd.DataFrame, columns: List =[], show_order = False, show_search= False, show_search_order_in_sidebar = False, key = 'awesome_table'): """AwesomeTable is a component for Streamlit to build a table based in bootstrap with search and order funcionality. Can build this table based in a pandas dataframe. The order and search components would be displayed on the sidebar or above the table. Args: data (pd.Dataframe): Dataframe to build the table. If you've a JSON data, you can use the `pd.json_normalize(json)` method. columns (List, optional): Columns that will be displayed in table. You can pass parameters to personalize each. Defaults to []. show_order (bool, optional): Show order components. Defaults to False. show_search (bool, optional): Show search components. Defaults to False. show_search_order_in_sidebar (bool, optional): [description]. Defaults to False. key (str, optional): Key for identification table. Defaults to 'awesome_table'. """ self.data = self.set_data(data, columns) self.columns = self.set_columns(columns) self.key = key self.show_order = show_order self.show_search = show_search self.show_search_order_in_sidebar = show_search_order_in_sidebar self.build_table_content() self.build_order_component() AwesomeTable._awesome_table_(data=self.table_content, columns=[column.to_json() for column in self.columns], key=self.key) def set_data(self, data, columns) -> pd.DataFrame: """Set dataframe based in columns passed by parameter. Args: data (pd.DataFrame): Dataframe pandas. columns (List[Column]): List of the columns. Returns: pd.Dataframe: Pandas Dataframe based in columns passed by parameter. """ if columns is not None and len(columns) > 0: if type(columns[0]) is str: data = data[[column for column in columns]] else: data = data[[column.name for column in columns]] for col in [column.name for column in columns if column.dtype == ColumnDType.DATETIME]: data[col] = pd.to_datetime(data[col]) return data def set_columns(self, columns): """Set columns based in parameters passed by parameter. Args: columns (_type_): _description_ Returns: _type_: _description_ """ if columns is None or len(columns) == 0: self.columns = None return self.get_columns() if columns is not None and len(columns) > 0 and type(columns[0]) is str: return [Column(column) for column in columns] return columns def get_columns(self): """If columns not passed by parameter, return all columns based in pandas Dataframe columns. Returns: List[Column]: List of columns. """ if self.columns is None or len(self.columns) == 0: self.columns = list() for col in self.data.columns: self.columns.append(Column(col, dtype=ColumnDType.STRING)) return self.columns def get_column_label_by_name(self, name): """Return the label of the column based in the name passed by parameter. Args: name (str): Name of the column. Returns: str: Return label if exists, else return name. """ for column in self.get_columns(): if column.name == name: return column.get_label() return None def get_column_name(self): """Return all columns names. Returns: List[str]: Columns name """ return [column.name for column in self.get_columns()] def build_table_content(self): """Create json to populate table from pandas Dataframe. """ data = self.data.copy() for col in [column for column in self.columns if column.dtype == ColumnDType.DATETIME]: data[col.name] =
pd.to_datetime(data[col.name])
pandas.to_datetime
""" Pulsar search analysis """ import os, glob import numpy as np import pylab as plt import matplotlib.ticker as ticker import pandas as pd from astropy.io import fits from skymaps import SkyDir, Band from . import (sourceinfo, associations, _html, fermi_catalog) from .. import tools from analysis_base import html_table, FloatFormat from astropy.table import Table def bigfile( path='$FERMI/catalog/srcid/cat/Pulsars_BigFile_*.fits'): """"manage look up in the BigFile""" ff = sorted(glob.glob(os.path.expandvars(path))) filename = ff[-1] version = filename.split('_')[-1][:-5] t= fits.open(filename) df = pd.DataFrame(t[1].data) names=[t.strip() for t in df.NAME.values] jnames=[t.strip() for t in df.PSRJ.values] psrnames = map(lambda s:'PSR '+s, jnames) df.index = psrnames return df class Pulsars(sourceinfo.SourceInfo): """Pulsar plots and analysis """ def setup(self, **kw): super(Pulsars, self).setup(**kw) self.plotfolder='pulsars' self.psr = np.asarray([s.startswith('PSR') for s in self.df.index],bool) plt.rc('font', size=14) # get the LAT pulsar table as a DataFrame, with index as the name self.lcat=lcat = glob.glob(os.path.expandvars('$FERMI/catalog/srcid/cat/obj-pulsar-lat_v1*'))[-1] filename= os.path.split(lcat)[-1] self.version = filename.split('.')[0][-4:] print ('Loading LAT pulsar catalog {}'.format(filename)) self.lcatdf = df =Table.read(lcat, hdu=1).to_pandas() self.lcatdf['msec']=msec = np.array([code.find('m')>-1 for code in df.PSR_Code ], bool) print ('Found {} entries, {} millisecond pulsars'.format(len(df), sum(msec))) self.latpsr_info = 'From file {}: {} entries, {} millisecond pulsars'.format(filename,len(df), sum(msec)) df.index= map(lambda name: name.strip(), df.Source_Name.values) # msec designation to corresponding entries in full source list self.df['msec'] = self.lcatdf.msec def load_assoc(df): # add association info to the data frame associations = df.associations probfun = lambda x: x['prob'][0] if not pd.isnull(x) else 0 df['aprob'] = np.array([ probfun(assoc) for assoc in associations]) df['acat'] = np.array([ assoc['cat'][0] if not pd.isnull(assoc) else 'unid' for assoc in associations]) df['aname'] = np.array([ assoc['name'][0] if not pd.isnull(assoc) else 'unid' for assoc in associations]) df['aang'] = np.array([ assoc['ang'][0] if not pd.isnull(assoc) else np.nan for assoc in associations]) df['adeltats'] = np.array([assoc['deltats'][0] if not pd.isnull(assoc) else np.nan for assoc in associations]) load_assoc(self.df) def check4FGL(self, pattern=None): # add 4FGL info to dataframe of pointlike soruies df=self.df cindex = [n.replace(' ','') for n in self.df.index] systematic = self.config['localization_systematics'] f95, quad = 2.45*systematic[0], systematic[1]/60. self.df['r95'] = (f95**2*(self.df.a * self.df.b) + quad**2)** 0.5 # get the catalog "gll" entries as a DataFrame and set corresponding values if pattern is None: pattern=self.config['gllcat'] if not pattern.startswith('/'): pattern = '$FERMI/catalog/'+pattern filename = sorted(glob.glob(os.path.expandvars(pattern)))[-1] fcat = fermi_catalog.GLL_PSC2(filename) self.fhl_file = fcat.filename.split('/')[-1] self.gdf = gdf= fcat.df gdf['uw_ts'] = self.df.ts gdf['uw_r95'] = self.df.r95 gdf['uw_pindex']= self.df.pindex gdf['uw_eflux100']=self.df.eflux100 # add boolean for in FL8Y self.df['fl8y'] = np.isin(cindex, gdf.index ) print ('{} of {} have nicknames in pointlike list'.format(sum(df.fl8y), len(gdf))) # for sources not already tagged via the pointlike name being the same as the gtlike nickname # look for nearest 4FGL source: add name, its distance to DataFrame ok = df.fl8y==True added = np.logical_not(ok) df.loc[df.index[ok],'otherid']= df[ok].name df.loc[df.index[ok], 'distance']=0 # look for nearest 4FGL source in rejected list: add name, distance to DataFrame print ('Searching 4FGL for nearest source to the {} not found in it...'.format(sum(added)),) close = tools.find_close(df[added], self.gdf) df.loc[df.index[~ok],'otherid'] = close.otherid df.loc[df.index[~ok], 'distance'] = close.distance df['b4fgl'] = df.distance<0.015 df['otherts'] = [self.gdf.loc[s.otherid.replace(' ','')].ts for name,s in df.iterrows() ] df['other_extended'] = [self.gdf.loc[s.otherid.replace(' ','')].extended for name,s in df.iterrows() ] print ('done.') def LATpulsars(self): """ LAT pulsar information %(latpsr_info)s """ df = self.lcatdf msec = np.array(df.msec, bool) def fig1(ax): ax.loglog(-df.F1[msec],df.F0[msec], 'o', label='Millisecond'); ax.loglog(-df.F1[~msec],df.F0[~msec], 'o', label='Young'); ax.set(xlabel='Frequency derivative [Hz/s]', ylabel='Frequency [Hz]') ax.grid(alpha=0.5) ax.legend() def fig2(ax): sd = map(SkyDir, df.RAJ2000, df.DEJ2000) sinb = np.sin(np.radians(map(lambda s:s.b(), sd))) hkw= dict(bins=np.linspace(-1,1,21), histtype='step', lw=2 ) ax.hist(sinb[msec], label='msec', **hkw) ax.hist(sinb[~msec], label='young', **hkw) ax.set(xlabel='sin(b)') ax.legend(); ax.grid(alpha=0.5) fig, axx = plt.subplots(1,2, figsize=(12,6)) map( lambda f,ax: f(ax), [fig1,fig2], axx.flatten() ) fig.suptitle('LAT pulsars v{}'.format(self.version)) return fig def spectra(self, index_min=0.0, index_max=2.5, cutoff_max=1e4, taillist=True): """ Spectral distributions Spectral parameters for %(spectral_fits)d pulsars with significant fits (TS>16) %(pulsar_tail_check)s """ psrmodel = (self.df.ts>16) & (self.df.modelname=='PLSuperExpCutoff') & self.df.psr self.spectral_fits = sum(psrmodel) t = self.df.loc[psrmodel]\ ['ts flux pindex cutoff e0 index2 index2_unc roiname freebits fitqual msec'.split()] t['eflux'] = t.flux * t.e0**2 * 1e6 msec = np.array(t.msec.values,bool) def histit(ax, bins, vals): hkw = dict(histtype='stepfilled', alpha=0.5, lw=2) ax.hist(vals[msec], bins, label='msec', color='lightblue',edgecolor='blue', **hkw ) ax.hist(vals[~msec], bins, label='young',color='pink', edgecolor='red', **hkw) def plot1(ax, efmin=1e-2,efmax=1e3): bins = np.logspace(np.log10(efmin),np.log10(efmax),26) vals = np.array(t.eflux,float).clip(efmin,efmax) histit(ax, bins, vals) ax.set(xscale='log', xlabel='energy flux', xlim=(efmin,efmax)); ax.grid(alpha=0.5); ax.legend(prop=dict(size=10)) def plot3(ax): bins = np.linspace(index_min,index_max,16) vals = np.array(t.pindex,float).clip(index_min,index_max) histit(ax, bins, vals) ax.set( xlabel='spectral index'); ax.grid(alpha=0.5); ax.legend(prop=dict(size=10)) def plot2(ax): bins = np.logspace(2,4,26) vals = np.array(t.cutoff,float).clip(None,cutoff_max) histit(ax,bins, vals) ax.set(xscale='log', xlabel='cutoff energy (GeV)'); ax.grid(alpha=0.5) ax.legend(prop=dict(size=10)) ax.xaxis.set_major_formatter(ticker.FuncFormatter( lambda val,pos: { 100:'0.1', 1000:'1', 10000:'10'}.get(val,''))) def plot4(ax): xvals = np.array(t.cutoff,float).clip(None, cutoff_max) yvals = np.array(t.pindex,float).clip(index_min,index_max) ax.plot(xvals[msec], yvals[msec], 'o', color='blue', label='msec') ax.plot(xvals[~msec], yvals[~msec], 'D', color='orange', label='young') ax.set(xscale='log', xlabel='cutoff [GeV]', ylabel='spectral index', ylim=(index_min-0.1, index_max+0.1), ) ax.grid(alpha=0.5); ax.legend(loc='lower right', prop=dict(size=10)) ax.xaxis.set_major_formatter(ticker.FuncFormatter( lambda val,pos: { 100:'0.1', 1000:'1', 10000:'10'}.get(val,''))) fig, axx = plt.subplots( 2,2, figsize=(12,12)) plt.subplots_adjust(wspace=0.3, left=0.05,bottom=0.15) map(lambda f,ax:f(ax),(plot1,plot2,plot3,plot4,), axx.flatten()) tail_cut = (t.pindex<=index_min) | (t.pindex>index_max) | (t.cutoff>cutoff_max) tails = t.loc[tail_cut].index print ('%d pulsar sources found in tails of index or cutoff' % sum(tail_cut)) if taillist & (sum(tail_cut)>0) : tails=t[tail_cut]['ts eflux pindex cutoff freebits roiname'.split()] filename = 'pulsar_tails.html' html_file = self.plotfolder+'/%s' % filename #html = tails.sort_values(by='roiname').to_html(float_format=FloatFormat(2)) html = html_table(tails.sort_values(by='roiname'), float_format=FloatFormat(2)) open(html_file,'w').write('<head>\n'+ _html.style + '</head>\n<body>'+ html+'\n</body>') self.pulsar_tail_check = '<p><a href="%s?skipDecoration">Table of %d sources on tails</a>: '% (filename, len(tails)) self.pulsar_tail_check += 'Criteria: require index between 0 and 2.5, cutoff < {:.1f} GeV'.format(cutoff_max*1e-3) else: self.pulsar_tail_check ='<p>No sources on tails' return fig def pulsar_check(self): """LAT pulsar check %(atable)s """ # compare with LAT pulsar catalog lat=self.lcatdf lat['ts'] = self.df[self.df.psr]['ts'] lat['aprob'] = self.df[self.df.psr]['aprob'] lat['ROI_index'] = [Band(12).index(SkyDir(float(ra),float(dec))) for ra,dec in zip(lat.RAJ2000,lat.DEJ2000)] lat['skydir'] = [SkyDir(float(ra),float(dec)) for ra,dec in zip(lat.RAJ2000, lat.DEJ2000)] lat['sourcedir'] = self.df.skydir[self.df.psr] lat['delta'] = [np.degrees(s.difference(t)) if not type(t)==float else np.nan for s,t in zip(lat.skydir,lat.sourcedir)] far = lat.delta>0.25 dc2names =set(self.lcatdf.index) tt = set(self.df.name[self.df.psr]) print ('Catalog entries not found:', list(dc2names.difference(tt))) missing = np.array([ np.isnan(x) or x<10. for x in lat.ts]) missing |= np.array((lat.aprob==0) & (lat.ts<1000) ) missing_names = lat.index[missing] cols = 'RAJ2000 DEJ2000 ts delta ROI_index'.split() self.latsel=latsel = pd.DataFrame( np.array([lat[id][missing] for id in cols]), index=cols, columns=missing_names).T self.atable = '<h4>Compare with LAT pulsar catalog: {}</h4>'.format( self.version) label_info= dict(ts='TS,Test Statistic', delta='delta,distance to fit position (deg)', ROI_index='ROI Index,Index of the ROI, a HEALPix ring index') self.atable += html_table(latsel.query('ts<10'), label_info, heading = '<p>LAT catalog entries with weak or no fit (TS<10)', name=self.plotfolder+'/weak', maxlines=20, float_format=(FloatFormat(2))) self.atable += html_table(latsel.query('ts>10'), label_info, heading = '<p>LAT catalog entries with nearby, but unassociated source ', name=self.plotfolder+'/far', maxlines=20, float_format=(FloatFormat(2))) def bigfile_associations(self, test=False): """BigFile Associations Construct a list of non LAT pulsar point sources associated with the BigFile pulsar list (Version %(bigfile_version)s). <br>Exclude sources with poor localization (quality>5) and BigFile pulsars in clusters. <ul> <li>%(bigfile_hi_table)s </li> <li>%(bigfile_lo_table)s </li> </ul> """ class BigFile(object): """"manage look up in the BigFile""" def __init__(self): ff = sorted(glob.glob(os.path.expandvars('$FERMI/catalog/srcid/cat/Pulsars_BigFile_*.fits'))) t= fits.open(ff[-1]) print ('Read file {}'.format(ff[-1])) self.version = ff[-1].split('_')[-1].split('.')[0] self.d = pd.DataFrame(t[1].data) self.names=[t.strip() for t in self.d.NAME.values] self.jnames=[t.strip() for t in self.d.PSRJ.values] def __call__(self, name): """Find the entry with given name""" if name in self.names: i = self.names.index(name) elif name in self.jnames: i= self.jnames.index(name) else: error = 'Data for source %s not found' %name print (error) raise ValueError(error) return self.d.iloc[i] not_psr = np.array([not n.startswith('PSR') for n in self.df.index],bool) psrx = np.array([x=='pulsar_big' for x in self.df.acat], bool) & not_psr & (self.df.locqual<5) print ('%d sources associated with BigFile pulsar list' % sum(psrx)) pt = self.df[psrx]['aprob aname aang ts glat glon pivot_energy curvature locqual'.split()] # look it up in BigFile, add other stuff self.bf = bf=BigFile() self.bigfile_version = bf.version anames = self.df[psrx].aname pt['jname'] = jname = [bf(n).PSRJ for n in anames] # test for the jname not ending in numeric character not_incluster = [n[-1] in '0123456789' for n in pt.jname] print (' Selected {} out of {} associations not in clusters'.format(sum(not_incluster), len(pt))) def hmax(n): t = bf(n) return max(t.Hall32, t.Hall36, t.Hall40, t.Hval32, t.Hval36, t.Hval40) pt['Hmax'] = [hmax(n) for n in anames] pt['history']= [bf(n).History[1:-1].replace("'","") for n in anames] pt['edot'] = ['%.2e'%bf(n).EDOT for n in anames] pt['P0'] = ['{:.3f}'.format(bf(n).P0) for n in anames] # make file table ptx = pt[not_incluster]['jname glat glon edot P0 history Hmax ts aprob aang curvature pivot_energy locqual'.split()] hilat = abs(pt.glat)>5 if len(ptx)>0: colinfo=dict(name='Source Name,click for link to SED', jname='Pulsar name,J version', edot='Edot, rate of energy change', Hmax='Hmax, max(Hall32, Hall36, Hall40, Hval32, Hval36, Hval40)', pivot_energy='Pivot Energy,Energy of zero correlation between spectral index and normalization ', history='History,BigFile history entry', ts='TS,Test Statistic for the source', aprob='Probability,Bayesian association probability', aang='Angle,angular distance (deg)', #curvature='curvature,?', locqual='Localization quality,measure of the goodness of the localization fit\n greater than 5 is questionable', ) self.bigfile_hi_table= \ html_table(ptx[hilat], colinfo, float_format=FloatFormat(2), heading = """<b>Table of %d high-latitude (|b|>5) associations.</b>""" % sum(hilat), name=self.plotfolder+'/hilat_table', maxlines=10) self.bigfile_lo_table= \ html_table(ptx[~hilat], colinfo, float_format=FloatFormat(2), heading = """<b>Table of %d low-latitude (|b|<5) associations.</b> """ % sum(~hilat), name=self.plotfolder+'/lolat_table', maxlines=10) else: self.bigfile_hi_table= self.bigfile_lo_table='' return ptx if test else None def curvature(self, setup=False, cmax=1.0): """Curvature Distribution of the curvature per source, equivalent to the beta parameter for a LogParabola spectral model. """ if setup: #expect to be called initially self.df['curvature']= np.array([model.curvature() for model in self.df.model]) return assert 'curvature' in self.df, 'Curvature not calculated' df = self.df psr = np.asarray([n.startswith('PSR') for n in df.index], bool) fig,ax = plt.subplots(figsize=(8,6)) hkw = dict(bins=np.linspace(0,cmax,41), log=True, histtype='step', lw=2) ax.hist(df.curvature.clip(0,cmax), label='all sources', **hkw) ax.hist(df[df.psr].curvature.clip(0,cmax), label='EC model', **hkw) ax.hist(df[psr].curvature.clip(0,cmax), label='PSR souce', **hkw) plt.setp(ax, xlabel='Curvature', ylim=(0.5,None)) ax.legend() ax.grid() return fig def new_candidates(self): """Potential pulsar candidates Make a list of sources with the selections <ul> <li>not associated <li>not in 4FGL or withinn 0.5 deg of one <li>nearest 4FGL source is extended or has TS>1000 <ii> </ul> The plots are of this list, showing effect of curvature selection. <h4>%(candidate_table)s</h4> <br>A csv file of the above is <a href="../../%(pulsar_candidate_filename)s?download=true">here</a> """ # add info about 4FGL self.check4FGL(pattern=None) df=self.df # select subset not in 4FGL and not associated and not close to a 4FGL source and that the closest is very strong dfx = df.query('fl8y==False & aprob<0.8 & locqual<8 & distance>0.5 & other_extended==False & otherts<1000') # values to display ts = dfx.ts.astype(float).clip(0,1000) singlat = np.sin(np.radians(dfx.glat.astype(float))) curvature= dfx.curvature.astype(float).clip(0,1) #curvature selection cut = np.logical_and(curvature<0.75, curvature>0.15) label_info = dict() dfcut = dfx[cut]['ra dec ts glat pindex curvature locqual distance otherid otherts'.split()].sort_values(by='ts', ascending=False) self.candidate_table = html_table(dfcut, label_info, heading = '<b>Table of {} pointlike sources not in 4FGL, not assocated and with curvature selection</b>'.format(len(dfcut)), name=self.plotfolder+'/candidates', maxlines=20, float_format=(FloatFormat(2))) self.pulsar_candidate_filename=self.plotfolder+'/pulsar_candidates.csv' dfcut.to_csv(self.pulsar_candidate_filename) self.df_pulsar_candidates = dfcut #for interactive fig, (ax1,ax2, ax3) = plt.subplots(1,3, figsize=(12,5)) hkw = dict(histtype='step', lw=2) def doit(ax, x, bins, xlabel, xlog=False): ax.hist(x, bins, **hkw) ax.hist(x[cut], bins, label='curvature cut', **hkw) ax.set(xlabel=xlabel, xscale='log' if xlog else 'linear') doit(ax2, ts, np.logspace(1,3,51), 'TS', xlog=True) doit(ax3, singlat, np.linspace(-1,1,41), 'sin(b)') doit(ax1, curvature, np.linspace(0,1,21), 'curvature') return fig def all_plots(self): self.runfigures([ self.LATpulsars, self.spectra, self.pulsar_check, self.bigfile_associations, self.new_candidates, ]) #================================================================================================= # Old stuff, may be useful def efratio(self, e1=2000, e2=20000): """Examine energy flux ratio Ratio of the energy flux at 20 GeV to that at 2 GeV. The identified pulsar subset is shown. """ df=self.df efr = df['eflux_ratio']=np.asarray([model(e2)/model(e1)*(e2/e1)**2 for model in self.df.model]) fig,ax = plt.subplots(figsize=(5,5)) xlim = (1e-2,10) dom = np.logspace( np.log10(xlim[0]),np.log10(xlim[1]) ,31) ax.hist(efr.clip(*xlim), dom ,log=True); ax.hist(efr[self.psr].clip(*xlim), dom, log=True, color='orange', label='PSR'); plt.setp(ax, xscale='log', xlabel='eflux(20 GeV)/eflux(2 GeV)') ax.legend() ax.grid(); return fig def selection(self, curvature_cut=0.1, ts_cut=10): """Select candidates. %(selection_info)s """ self.curvature_cut=curvature_cut self.ts_cut=ts_cut df=self.df probfun = lambda x: x['prob'][0] if not pd.isnull(x) else 0 aprob = np.array([ probfun(assoc) for assoc in self.df.associations]) no3fgl = np.asarray([s is None for s in self.df.cat3fgl]); self.keep= keep = no3fgl &(~self.psr) \ & (self.df.curvature>curvature_cut) & (self.df.ts>ts_cut) & (self.df.locqual<8) &(aprob<0.1) self.total=sum(keep) self.cvsname='pulsar_candidates.csv' t = self.df[keep]['ra dec glat ts pivot_energy pindex eflux_ratio curvature roiname'.split()] t.to_csv(self.cvsname) print ('wrote %d sources to %s' % (len(t), self.cvsname)) self.selection_info="""\ Cuts: non-3FGL, non-LAT PSR, association probability < 0.1, curvature>%(curvature_cut)s, TS>%(ts_cut)s<br>, <br>Total:%(total)s <br>%(html_list)s <br> Link to csv format table: <a href="../../%(cvsname)s?download=true">%(cvsname)s</a></li> """ self.html_list = html_table(t, name=self.plotfolder+'/candidates', heading='<h4>%d Candidate pulsar sources</h4>' % len(t), float_format=FloatFormat(2)) def no_curvature(self, prefix='S966', ts_high_cut=2): """Weak new sources with PW fits %(weak_list)s """ df = self.df pcut = np.array([n.startswith(prefix) for n in df.index],bool); cut = (df.ts>10) & (df.locqual<8) & (df.curvature<0.01) & pcut & (df.ts_high<ts_high_cut) & (df.ts_low<5) t = self.df[cut]['ra dec glat ts pivot_energy pindex fitqual locqual ts_low ts_med ts_high roiname'.split()] self.noc_df=t.sort_index(by='roiname') print ('selected %d %s sources' % (len(t), prefix)) self.weak_list = html_table(t, name=self.plotfolder+'/weak_pl_sources', heading='<h4>%d weak new power-law sources</h4>' % len(t), float_format=FloatFormat(2)) def load_list(self, filename): df = self.df print ('Reading the LOFAR list "{}"'.format(filename)) self.lofar=lofar=
pd.read_csv(filename, index_col=0)
pandas.read_csv
""" This script contains all necessary code to extract and convert the patients data from the Sciensano hospital survey into parameters usable by the BIOMATH COVID-19 SEIRD model. You must place the super secret detailed hospitalization dataset `COVID19BE_CLINIC.csv` in the same folder as this script in order to run it. Further, you must MANUALLY replace décédé and rétabli in the file `COVID19BE_CLINIC.csv` with D and R. To load the resulting .xlsx into a pandas dataframe use: dataframe = pd.read_excel('../../data/interim/model_parameters/COVID19_SEIRD/sciensano_hospital_parameters.xlsx', sheet_name='residence_times', index_col=0, header=[0,1]) """ __author__ = "<NAME>" __copyright__ = "Copyright (c) 2020 by <NAME>, BIOMATH, Ghent University. All Rights Reserved." # ---------------------- # Load required packages # ---------------------- import os import math import numpy as np import pandas as pd from scipy.stats import mannwhitneyu, ttest_ind, gamma, exponweib, weibull_min import matplotlib.pyplot as plt import datetime from datetime import timedelta import argparse # ---------------- # Script arguments # ---------------- parser = argparse.ArgumentParser() parser.add_argument("-s", "--subset_size", help="Size of subset drawn from total population during bootstrapping", default=1000, type=int) parser.add_argument("-n", "--number_iterations", help="Total number of bootstraps", default=100, type=int) parser.add_argument("-a", "--age_stratification_size", help="Total number of age groups", default=9, type=int) # Save as dict args = parser.parse_args() # Set correct age_classes if args.age_stratification_size == 3: age_classes = pd.IntervalIndex.from_tuples([(0,20),(20,60),(60,120)], closed='left') age_path = '0_20_60/' elif args.age_stratification_size == 9: age_classes = pd.IntervalIndex.from_tuples([(0,10),(10,20),(20,30),(30,40),(40,50),(50,60),(60,70),(70,80),(80,120)], closed='left') age_path = '0_10_20_30_40_50_60_70_80/' elif args.age_stratification_size == 10: age_classes =pd.IntervalIndex.from_tuples([(0,12),(12,18),(18,25),(25,35),(35,45),(45,55),(55,65),(65,75),(75,85),(85,120)], closed='left') age_path = '0_12_18_25_35_45_55_65_75_85/' else: raise ValueError( "age_stratification_size '{0}' is not legitimate. Valid options are 3, 9 or 10".format(args.age_stratification_size) ) # ----- # Paths # ----- fig_path = '../../results/analysis/hospital/'+age_path data_path = '../../data/interim/model_parameters/COVID19_SEIQRD/hospitals/' + age_path # Verify that the paths exist and if not, generate them for directory in [fig_path, data_path]: if not os.path.exists(directory): os.makedirs(directory) # ----------------------------- # Helper functions and settings # ----------------------------- plot_fit=False colorscale_okabe_ito = {"orange" : "#E69F00", "light_blue" : "#56B4E9", "green" : "#009E73", "yellow" : "#F0E442", "blue" : "#0072B2", "red" : "#D55E00", "pink" : "#CC79A7", "black" : "#000000"} def adjacent_values(vals, q1, q3): upper_adjacent_value = q3 + (q3 - q1) * 1.5 upper_adjacent_value = np.clip(upper_adjacent_value, q3, vals[-1]) lower_adjacent_value = q1 - (q3 - q1) * 1.5 lower_adjacent_value = np.clip(lower_adjacent_value, vals[0], q1) return lower_adjacent_value, upper_adjacent_value def set_axis_style(ax, labels): ax.xaxis.set_tick_params(direction='out') ax.xaxis.set_ticks_position('bottom') ax.set_xticks(np.arange(1, len(labels) + 1)) ax.set_xticklabels(labels) ax.set_xlim(0.25, len(labels) + 0.75) ax.set_xlabel('Sample name') def fit_weibull(v): sample_size_lst=[] shape_lst=[] loc_lst=[] scale_lst=[] for age_group in v.index.get_level_values(0).unique().values: if isinstance(v[age_group],list): values = [x for x in v[age_group] if (math.isnan(x) == False)] shape, loc, scale = weibull_min.fit(values,floc=0) sample_size_lst.append(len(v[age_group])) else: v[age_group][v[age_group]==0] = 0.01 v = v.dropna() shape, loc, scale = weibull_min.fit(v[age_group].values,floc=0) sample_size_lst.append(len(v[age_group].values)) shape_lst.append(shape) loc_lst.append(loc) scale_lst.append(scale) return sample_size_lst, shape_lst, loc_lst, scale_lst def plot_weibull_fit(v,par,max_val): fig,axes = plt.subplots(nrows=3,ncols=3,sharex=True,figsize=(12,12)) axes = axes.flatten() for idx,age_group in enumerate(v.index.get_level_values(0).unique().values): bins = np.linspace(0, max_val, 10) axes[idx].hist(v[age_group], bins=bins, density=True) x = np.linspace (0.5, max_val, 1000) #y = gamma.pdf(x, a=residence_times[par,'shape'][age_group], loc=residence_times[par,'loc'][age_group], scale=residence_times[par,'scale'][age_group]) y = weibull_min.pdf(x, c=residence_times[par,'shape'][age_group], loc=residence_times[par,'loc'][age_group], scale=residence_times[par,'scale'][age_group]) axes[idx].plot(x,y) axes[idx].text(x=0.70,y=0.82,s='Shape: '+"{:.2f}".format(residence_times[par,'shape'][age_group]) + '\nScale: ' + "{:.2f}".format(residence_times[par,'scale'][age_group]) + '\nLoc: '+ "{:.2f}".format(residence_times[par,'loc'][age_group]), transform=axes[idx].transAxes, fontsize=8) axes[idx].set_title('Age group: ' + str(age_group), fontsize=12) axes[idx].set_xlim([0,max_val]) fig.suptitle(par,fontsize=16) plt.show() plt.close() ####################################################### ## Load and format Sciensano hospital survey dataset ## ####################################################### df = pd.read_csv('COVID19BE_CLINIC.csv') n_orig = df.shape[0] print('The original dataset contains ' + str(n_orig) + ' entries.') # Drop the columns on admission_data and discharge_data --> do this myself df=df.drop(columns=['admission_data','discharge_data']) # Drop the columns with missing age df.dropna(subset=['age'], inplace=True) n_filtering_age = df.shape[0] print(str(n_orig-n_filtering_age) + ' entries were removed because the age was missing.') # Only if admission data, discharge data, status of discharge and ICU transfer is known, the data can be used by our model df.dropna(subset=['dt_admission'], inplace=True) df.dropna(subset=['dt_discharge'], inplace=True) df.dropna(subset=['status_discharge'], inplace=True) df.dropna(subset=['ICU_transfer'], inplace=True) df.drop(df[df.status_discharge == 'Autre'].index, inplace=True) df.drop(df[df.status_discharge == 'Inconnu'].index, inplace=True) df.drop(df[df.status_discharge == 'Transfert'].index, inplace=True) n_filtering_dates = df.shape[0] print(str(n_filtering_age-n_filtering_dates) + ' entries were removed because the admission date, discharge date, status at discharge or ICU transfer was missing.') # Convert dates to pd.datetimes df['dt_admission'] = pd.to_datetime(df['dt_admission']) df['dt_admission'] = df['dt_admission'].dt.date df['dt_discharge'] = pd.to_datetime(df['dt_discharge']) df['dt_discharge'] = df['dt_discharge'].dt.date df['dt_onset'] = pd.to_datetime(df['dt_onset']) df['dt_onset'] = df['dt_onset'].dt.date df['dt_icu_transfer'] = pd.to_datetime(df['dt_icu_transfer']) df['dt_icu_transfer'] = df['dt_icu_transfer'].dt.date # Add column with the age classes df['age_class'] = pd.cut(df.age, bins=age_classes) # Remove the negative residence times df.drop(df[((df['dt_discharge'] - df['dt_admission'])/datetime.timedelta(days=1)) < 0].index, inplace=True) # Remove the negative admission to onset times df.drop(df[((df['dt_admission'] - df['dt_onset'])/datetime.timedelta(days=1)) < 0].index, inplace=True) # Remove all residence times larger than 180 days df.drop(df[((df['dt_discharge'] - df['dt_admission'])/datetime.timedelta(days=1)) >= 180].index, inplace=True) n_filtering_times = df.shape[0] print(str(n_filtering_dates-n_filtering_times) + ' entries were removed because the residence time or onset time were negative.') # Drop retirement home patients from dataset exclude_homes = True if exclude_homes: df.drop(df[df.Expo_retirement_home == 'Oui'].index, inplace=True) n_filtering_homes = df.shape[0] print(str(n_filtering_times-n_filtering_homes) + ' additional entries were removed because the patient came from a retirement home.') # Print a summary of the filtering print(str(n_orig-n_filtering_homes)+' entries were removed during filtering. '+str(n_filtering_homes)+' entries remained.') else: # Print a summary of the filtering print(str(n_orig-n_filtering_times)+' entries were removed during filtering. '+str(n_filtering_times)+' entries remained.') ################################################### ## Compute fractions: c, m0, m0_{ICU} and m0_{C} ## ################################################### quantiles = [25,75,2.5,97.5] # ------------------------------------------------------ # Initialize dataframe for results and population totals # ------------------------------------------------------ columns = [[],[]] tuples = list(zip(*columns)) columns = pd.MultiIndex.from_tuples(tuples, names=["parameter", "quantity"]) fractions = pd.DataFrame(index=age_classes, columns=columns) averages = pd.DataFrame(index=['population'],columns=columns) # ------------------------------------------- # Compute fraction parameters point estimates # ------------------------------------------- # Sample size fractions['total_sample_size','point estimate']=df.groupby(by='age_class').apply(lambda x: x.age.count()) # Hospitalization propensity fractions['admission_propensity','point estimate']=df.groupby(by='age_class').apply(lambda x: x.age.count())/df.shape[0] # Distribution cohort/icu fractions['c','point estimate'] = df.groupby(by='age_class').apply(lambda x: x[x.ICU_transfer=='Non'].age.count()/x[x.ICU_transfer.isin(['Oui', 'Non'])].age.count()) # Mortalities fractions['m0','point estimate']=df.groupby(by='age_class').apply( lambda x: x[( (x.status_discharge=='D'))].age.count()/ x[x.ICU_transfer.isin(['Oui', 'Non'])].age.count()) fractions['m0_{ICU}','point estimate']= df.groupby(by='age_class').apply( lambda x: x[((x.ICU_transfer=='Oui') & (x.status_discharge=='D'))].age.count()/ x[x.ICU_transfer.isin(['Oui'])].age.count()) fractions['m0_{C}','point estimate']= df.groupby(by='age_class').apply( lambda x: x[((x.ICU_transfer=='Non') & (x.status_discharge=='D'))].age.count()/ x[x.ICU_transfer.isin(['Non'])].age.count()) # ----------------------------- # Bootstrap fraction parameters # ----------------------------- subset_size = args.subset_size n = args.number_iterations # First initialize a numpy array for the results # First axis: parameter: c, m0, m0_C, m0_ICU # Second axis: age group # Third axis: bootstrap sample bootstrap_fractions_age = np.zeros([4, len(age_classes), n]) # Loop over parameters for idx in range(4): for jdx in range(n): smpl = df.groupby(by='age_class').apply(lambda x: x.sample(n=subset_size,replace=True)) smpl=smpl.drop(columns='age_class') if idx == 0: bootstrap_fractions_age[idx,:,jdx] = smpl.groupby(by='age_class').apply(lambda x: x[x.ICU_transfer=='Non'].age.count()/ x[x.ICU_transfer.isin(['Oui', 'Non'])].age.count()).values elif idx == 1: bootstrap_fractions_age[idx,:,jdx] = smpl.groupby(by='age_class').apply(lambda x: x[( (x.status_discharge=='D'))].age.count()/ x[x.ICU_transfer.isin(['Oui', 'Non'])].age.count()).values elif idx == 2: bootstrap_fractions_age[idx,:,jdx] = smpl.groupby(by='age_class').apply(lambda x: x[((x.ICU_transfer=='Non') & (x.status_discharge=='D'))].age.count()/ x[x.ICU_transfer.isin(['Non'])].age.count()).values elif idx == 3: bootstrap_fractions_age[idx,:,jdx] = smpl.groupby(by='age_class').apply(lambda x: x[((x.ICU_transfer=='Oui') & (x.status_discharge=='D'))].age.count()/ x[x.ICU_transfer.isin(['Oui'])].age.count()).values # Compute summary statistics for idx,par in enumerate(['c', 'm0', 'm0_{C}', 'm0_{ICU}']): fractions[par,'bootstrap mean'] = np.median(bootstrap_fractions_age[idx,:,:], axis=1) fractions[par,'bootstrap median'] = np.median(bootstrap_fractions_age[idx,:,:], axis=1) for quantile in quantiles: fractions[par,'bootstrap Q'+str(quantile)] = np.quantile(bootstrap_fractions_age[idx,:,:], q=quantile/100, axis=1) # Save raw samples as a .npy with open(data_path+'sciensano_bootstrap_fractions.npy', 'wb') as f: np.save(f,bootstrap_fractions_age) # Compute population average/total point estimate averages['total_sample_size','point estimate'] = fractions['total_sample_size','point estimate'].sum() averages['admission_propensity', 'point estimate'] = sum(((fractions['total_sample_size','point estimate']*fractions['admission_propensity', 'point estimate']).values)/(np.ones(len(age_classes))*fractions['total_sample_size', 'point estimate'].sum())) averages['c', 'point estimate'] = df[df.ICU_transfer=='Non'].age.count()/df[df.ICU_transfer.isin(['Oui', 'Non'])].age.count() averages['m0', 'point estimate'] = df[((df.status_discharge=='D'))].age.count()/df[df.ICU_transfer.isin(['Oui', 'Non'])].age.count() averages['m0_{ICU}', 'point estimate'] = df[((df.ICU_transfer=='Oui') & (df.status_discharge=='D'))].age.count()/df[df.ICU_transfer.isin(['Oui'])].age.count() averages['m0_{C}', 'point estimate'] = df[((df.ICU_transfer=='Non') & (df.status_discharge=='D'))].age.count()/df[df.ICU_transfer.isin(['Non'])].age.count() # Bootstrap total population bootstrap_fractions = np.zeros([4, n]) # Loop over parameters for idx in range(4): for jdx in range(n): smpl = df.sample(n=subset_size,replace=True) if idx == 0: bootstrap_fractions[idx,jdx] = smpl[smpl.ICU_transfer=='Non'].age.count()/smpl[smpl.ICU_transfer.isin(['Oui', 'Non'])].age.count() elif idx == 1: bootstrap_fractions[idx,jdx] = smpl[((smpl.status_discharge=='D'))].age.count()/smpl[smpl.ICU_transfer.isin(['Oui', 'Non'])].age.count() elif idx == 2: bootstrap_fractions[idx,jdx] = smpl[((smpl.ICU_transfer=='Non') & (smpl.status_discharge=='D'))].age.count()/smpl[smpl.ICU_transfer.isin(['Non'])].age.count() elif idx == 3: bootstrap_fractions[idx,jdx] = smpl[((smpl.ICU_transfer=='Oui') & (smpl.status_discharge=='D'))].age.count()/smpl[smpl.ICU_transfer.isin(['Oui'])].age.count() # Compute summary statistics for idx,par in enumerate(['c', 'm0', 'm0_{C}', 'm0_{ICU}']): averages[par,'bootstrap mean'] = np.median(bootstrap_fractions[idx,:]) averages[par,'bootstrap median'] = np.median(bootstrap_fractions[idx,:]) for quantile in quantiles: averages[par,'bootstrap Q'+str(quantile)] = np.quantile(bootstrap_fractions[idx,:], q=quantile/100) # ------------------------------------------- # Perform Mann-Whitney U-tests on mortalities # ------------------------------------------- # Difference in mortality, ICU vs. Cohort # Boxplot x = bootstrap_fractions[2,:] y = bootstrap_fractions[3,:] stat, p_tt = ttest_ind(x, y) stat, p_mwu = mannwhitneyu(x, y) fig, ax = plt.subplots(figsize=(8,6)) bp = ax.boxplot([x, y], positions=[1,2]) plt.setp(bp['medians'], color='k') ax.set_ylabel('mortality (-)') ax.set_ylim(0,1) ax.set_xticklabels(['Cohort mortality (N={}) \n median = {:.2f} \n mean = {:.2f}'.format(len(x), np.median(x), np.mean(x)), 'ICU mortality (N={}) \n median = {:.2f} \n mean = {:.2f}'.format(len(y), np.median(y), np.mean(y))]) ax.set_title('Difference in overall mortality, \ntwo-sided t-test: p={:.2e} \nMann-Withney U-test: p={:.2e}'.format(p_tt,p_mwu)) plt.savefig(fig_path+'SCIENSANO_test_mortalities.pdf', dpi=600, bbox_inches='tight',orientation='portrait', papertype='a4') plt.close() # ----------------------------------------------------------------- # Make a violin plot of mortalities in ICU and cohort per age group # ----------------------------------------------------------------- data = [] for idx,age_class in enumerate(age_classes): data.append(bootstrap_fractions_age[2,idx,:]) # Violin plot fig,ax = plt.subplots(figsize=(12,4)) parts = ax.violinplot( data, positions=range(1,len(age_classes)+1), vert=False,showmeans=False, showmedians=False, showextrema=False) for idx,pc in enumerate(parts['bodies']): pc.set_facecolor(colorscale_okabe_ito['green']) pc.set_edgecolor('black') pc.set_alpha(1) quartiles = [25, 50, 75] quartile1 = np.zeros(len(data)) medians = np.zeros(len(data)) quartile3 = np.zeros(len(data)) for i,x in enumerate(data): quartile1[i],medians[i],quartile3[i] = np.percentile(x, quartiles) whiskers = np.array([ adjacent_values(sorted_array, q1, q3) for sorted_array, q1, q3 in zip(data, quartile1, quartile3)]) whiskers_min, whiskers_max = whiskers[:, 0], whiskers[:, 1] inds = np.arange(1, len(medians)+1) ax.scatter( medians, inds, marker='o', color='white', s=30, zorder=3) ax.hlines(inds, quartile1, quartile3, color='k', linestyle='-', lw=5) ax.hlines(inds, whiskers_min, whiskers_max, color='k', linestyle='-', lw=1) data = [] for idx,age_class in enumerate(age_classes): data.append(bootstrap_fractions_age[3,idx,:]) parts = ax.violinplot( data, positions=range(1,len(age_classes)+1), vert=False,showmeans=False, showmedians=False, showextrema=False) for idx,pc in enumerate(parts['bodies']): pc.set_facecolor(colorscale_okabe_ito['red']) pc.set_edgecolor('black') pc.set_alpha(1) quartiles = [25, 50, 75] quartile1 = np.zeros(len(data)) medians = np.zeros(len(data)) quartile3 = np.zeros(len(data)) for i,x in enumerate(data): quartile1[i],medians[i],quartile3[i] = np.percentile(x, quartiles) whiskers = np.array([ adjacent_values(sorted_array, q1, q3) for sorted_array, q1, q3 in zip(data, quartile1, quartile3)]) whiskers_min, whiskers_max = whiskers[:, 0], whiskers[:, 1] inds = np.arange(1, len(medians)+1) ax.scatter( medians, inds, marker='o', color='white', s=30, zorder=3) ax.hlines(inds, quartile1, quartile3, color='k', linestyle='-', lw=5) ax.hlines(inds, whiskers_min, whiskers_max, color='k', linestyle='-', lw=1) ax.set_xlabel('mortality (-)') ax.set_xlim(0,1) ax.set_ylim(0,len(age_classes)+1) ax.set_yticks(inds) ax.set_yticklabels(age_classes.values,fontsize=10) plt.tight_layout() plt.savefig(fig_path+'SCIENSANO_violin_mortalities.pdf', dpi=300, bbox_inches='tight',orientation='portrait', papertype='a4') plt.close() # Concatenate dataframes fractions = pd.concat([fractions, averages]) ################################################################################### ## Compute residence times: d_{hospital}, d_{C,R}, d_{C,D}, d_{ICU,R}, d_{ICU,D} ## ################################################################################### # -------------------------------- # Initialize dataframe for results # -------------------------------- columns = [[],[]] tuples = list(zip(*columns)) columns = pd.MultiIndex.from_tuples(tuples, names=["parameter", "quantity"]) residence_times = pd.DataFrame(index=age_classes, columns=columns) samples = pd.DataFrame(index=age_classes, columns=[]) samples_total = pd.DataFrame(index=['total'], columns=[]) # ---------- # d_hospital # ---------- # Summary statistics residence_times['d_hospital','mean'] = df.groupby(by='age_class').apply(lambda x: (x['dt_admission'] - x['dt_onset']).mean()/datetime.timedelta(days=1)) residence_times['d_hospital','median'] = df.groupby(by='age_class').apply(lambda x: (x['dt_admission'] - x['dt_onset']).median()/datetime.timedelta(days=1)) for quantile in quantiles: residence_times['d_hospital','Q'+str(quantile)] = df.groupby(by='age_class').apply(lambda x: (x['dt_admission'] - x['dt_onset']).quantile(q=quantile/100)/datetime.timedelta(days=1)) # Gamma fit v = df.groupby(by='age_class').apply(lambda x: (x['dt_admission'] - x['dt_onset'])/datetime.timedelta(days=1)) residence_times['d_hospital','sample_size'], residence_times['d_hospital','shape'],residence_times['d_hospital','loc'],residence_times['d_hospital','scale'] = fit_weibull(v) if plot_fit: plot_weibull_fit(v,'d_hospital',30) # ---------------------------- # Transfer time cohort --> ICU # ---------------------------- # Days in cohort before ICU transfer df['d_transfer'] = np.nan values=[] for i in range(len(df['d_transfer'])): if ((df['ICU_transfer'].iloc[i] == 'Oui') & (not pd.isnull(df['dt_icu_transfer'].iloc[i]))): val = (df['dt_icu_transfer'].iloc[i] - df['dt_admission'].iloc[i])/datetime.timedelta(days=1) if ((val >= 0) & (val <= 21)): df['d_transfer'].iloc[i] = val if val == 0: values.append(0.010) else: values.append(val) values_d_transfer = values # Summary statistics residence_times['d_transfer','mean'] = df.groupby(by='age_class').apply(lambda x: x[x.ICU_transfer=='Oui'].d_transfer.mean()) residence_times['d_transfer','median'] = df.groupby(by='age_class').apply(lambda x: x[x.ICU_transfer=='Oui'].d_transfer.median()) for quantile in quantiles: residence_times['d_transfer','Q'+str(quantile)] = df.groupby(by='age_class').apply(lambda x: x[x.ICU_transfer=='Oui'].d_transfer.quantile(q=quantile/100)) # Gamma fit v = df.groupby(by='age_class').apply(lambda x: x[x.ICU_transfer=='Oui'].d_transfer) residence_times['d_transfer','sample_size'], residence_times['d_transfer','shape'], residence_times['d_transfer','loc'], residence_times['d_transfer', 'scale'] = fit_weibull(v) if plot_fit: plot_weibull_fit(v,'d_transfer',30) # Append samples samples['d_transfer'] = df.groupby(by='age_class').d_transfer.agg(lambda x: list(x.dropna())) samples_total['d_transfer'] = [df.d_transfer.agg(lambda x: list(x.dropna()))] # -------- # dICU,rec # -------- cutoff = 60 df['dICUrec'] = np.nan values=[] for i in range(len(df['d_transfer'])): if ((df['ICU_transfer'].iloc[i] == 'Oui') & (not pd.isnull(df['dt_icu_transfer'].iloc[i])) & (df['status_discharge'].iloc[i] == 'R') & (not pd.isnull(df['length_stay_ICU'].iloc[i]))): val = (df['dt_discharge'].iloc[i] - (df['dt_icu_transfer'].iloc[i] + datetime.timedelta(days=df['length_stay_ICU'].iloc[i])))/datetime.timedelta(days=1) if ((val >= 0) & (val <= cutoff)): df['dICUrec'].iloc[i] = val # Summary statistics residence_times['dICUrec','mean'] = df.groupby(by='age_class').apply(lambda x: x[((x.ICU_transfer=='Oui')&(x.status_discharge=='R'))].dICUrec.mean()) residence_times['dICUrec','median'] = df.groupby(by='age_class').apply(lambda x: x[((x.ICU_transfer=='Oui')&(x.status_discharge=='R'))].dICUrec.median()) for quantile in quantiles: residence_times['dICUrec','Q'+str(quantile)] = df.groupby(by='age_class').apply(lambda x: x[((x.ICU_transfer=='Oui')&(x.status_discharge=='R'))].dICUrec.quantile(q=quantile/100)) # Gamma fit v = df.groupby(by='age_class').apply(lambda x: x[((x.ICU_transfer=='Oui')&(x.status_discharge=='R'))].dICUrec) residence_times['dICUrec','sample_size'], residence_times['dICUrec','shape'], residence_times['dICUrec','loc'], residence_times['dICUrec', 'scale'] = fit_weibull(v) if plot_fit: plot_weibull_fit(v,'dICUrec',cutoff) # --- # dC # --- # Summary statistics residence_times['dC','mean']=df.groupby(by='age_class').apply(lambda x: ((x['dt_discharge'][x.ICU_transfer=='Non'] - x['dt_admission'][x.ICU_transfer=='Non'])/datetime.timedelta(days=1)).mean()) residence_times['dC','median']=df.groupby(by='age_class').apply(lambda x: ((x['dt_discharge'][x.ICU_transfer=='Non'] - x['dt_admission'][x.ICU_transfer=='Non'])/datetime.timedelta(days=1)).median()) for quantile in quantiles: residence_times['dC','Q'+str(quantile)]=df.groupby(by='age_class').apply(lambda x: ((x['dt_discharge'][x.ICU_transfer=='Non'] - x['dt_admission'][x.ICU_transfer=='Non'])/datetime.timedelta(days=1)).quantile(q=quantile/100)) # Gamma fit v = df.groupby(by='age_class').apply(lambda x: ((x['dt_discharge'][x.ICU_transfer=='Non'] - x['dt_admission'][x.ICU_transfer=='Non'])/datetime.timedelta(days=1))) residence_times['dC','sample_size'], residence_times['dC','shape'],residence_times['dC','loc'],residence_times['dC','scale'] = fit_weibull(v) if plot_fit: plot_weibull_fit(v,'dC',90) # Append samples samples['dC'] = df.groupby(by='age_class').apply(lambda x: ((x['dt_discharge'][x.ICU_transfer=='Non'] - x['dt_admission'][x.ICU_transfer=='Non'])/datetime.timedelta(days=1))).groupby(by='age_class').agg(lambda x: list(x)) samples_total['dC'] = [df.groupby(by='age_class').apply(lambda x: ((x['dt_discharge'][x.ICU_transfer=='Non'] - x['dt_admission'][x.ICU_transfer=='Non'])/datetime.timedelta(days=1))).agg(lambda x: list(x))] # ----- # dC_R # ----- # Summary statistics residence_times['dC_R', 'mean']= df.groupby(by='age_class').apply(lambda x: ((x['dt_discharge'][((x.ICU_transfer=='Non')&(x.status_discharge=='R'))] - x['dt_admission'][((x.ICU_transfer=='Non')&(x.status_discharge=='R'))])/datetime.timedelta(days=1)).mean()) residence_times['dC_R', 'median']= df.groupby(by='age_class').apply(lambda x: ((x['dt_discharge'][((x.ICU_transfer=='Non')&(x.status_discharge=='R'))] - x['dt_admission'][((x.ICU_transfer=='Non')&(x.status_discharge=='R'))])/datetime.timedelta(days=1)).median()) for quantile in quantiles: residence_times['dC_R', 'Q'+str(quantile)] = df.groupby(by='age_class').apply(lambda x: ((x['dt_discharge'][((x.ICU_transfer=='Non')&(x.status_discharge=='R'))] - x['dt_admission'][((x.ICU_transfer=='Non')&(x.status_discharge=='R'))])/datetime.timedelta(days=1)).quantile(q=quantile/100)) # Gamma fit v = df.groupby(by='age_class').apply(lambda x: ((x['dt_discharge'][((x.ICU_transfer=='Non')&(x.status_discharge=='R'))] - x['dt_admission'][((x.ICU_transfer=='Non')&(x.status_discharge=='R'))])/datetime.timedelta(days=1))) residence_times['dC_R','sample_size'], residence_times['dC_R','shape'],residence_times['dC_R','loc'],residence_times['dC_R','scale'] = fit_weibull(v) if plot_fit: plot_weibull_fit(v,'dC_R',90) # Append samples samples['dC_R'] = df.groupby(by='age_class').apply(lambda x: ((x['dt_discharge'][((x.ICU_transfer=='Non')&(x.status_discharge=='R'))] - x['dt_admission'][((x.ICU_transfer=='Non')&(x.status_discharge=='R'))])/datetime.timedelta(days=1))).groupby(by='age_class').agg(lambda x: list(x)) samples_total['dC_R'] = [df.groupby(by='age_class').apply(lambda x: ((x['dt_discharge'][((x.ICU_transfer=='Non')&(x.status_discharge=='R'))] - x['dt_admission'][((x.ICU_transfer=='Non')&(x.status_discharge=='R'))])/datetime.timedelta(days=1))).agg(lambda x: list(x))] # ----- # dC_D # ----- df['dt_discharge'] = pd.to_datetime(df['dt_discharge']) df['dt_admission'] = pd.to_datetime(df['dt_admission']) # Summary statistics residence_times['dC_D', 'mean']=df.groupby(by='age_class').apply(lambda x: ((pd.to_datetime(x['dt_discharge'][((x.ICU_transfer=='Non')&(x.status_discharge=='D'))]) - pd.to_datetime(x['dt_admission'][((x.ICU_transfer=='Non')&(x.status_discharge=='D'))]))/datetime.timedelta(days=1)).mean()).fillna(1) residence_times['dC_D', 'median']=df.groupby(by='age_class').apply(lambda x: ((x['dt_discharge'][((x.ICU_transfer=='Non')&(x.status_discharge=='D'))] - x['dt_admission'][((x.ICU_transfer=='Non')&(x.status_discharge=='D'))])/datetime.timedelta(days=1)).median()).fillna(1) for quantile in quantiles: residence_times['dC_D', 'Q'+str(quantile)]=df.groupby(by='age_class').apply(lambda x: ((x['dt_discharge'][((x.ICU_transfer=='Non')&(x.status_discharge=='D'))] - x['dt_admission'][((x.ICU_transfer=='Non')&(x.status_discharge=='D'))])/datetime.timedelta(days=1)).quantile(q=quantile/100)).fillna(1) # Gamma fit v = df.groupby(by='age_class').apply(lambda x: ((x['dt_discharge'][((x.ICU_transfer=='Non')&(x.status_discharge=='D'))] - x['dt_admission'][((x.ICU_transfer=='Non')&(x.status_discharge=='D'))])/datetime.timedelta(days=1))) sample_size, shape, loc, scale = fit_weibull(v) if args.age_stratification_size == 3: append_idx = 1 elif args.age_stratification_size == 9: append_idx = 2 elif args.age_stratification_size == 10: append_idx = 2 for i in range(append_idx): sample_size.insert(0,0) shape.insert(0,1) loc.insert(0,0) scale.insert(0,1) residence_times['dC_D','sample_size'], residence_times['dC_D','shape'],residence_times['dC_D','loc'],residence_times['dC_D','scale'] = sample_size, shape, loc, scale if plot_fit: plot_weibull_fit(v,'dC_D',90) # Append samples samples['dC_D'] = df.groupby(by='age_class').apply(lambda x: ((x['dt_discharge'][((x.ICU_transfer=='Non')&(x.status_discharge=='D'))] - x['dt_admission'][((x.ICU_transfer=='Non')&(x.status_discharge=='D'))])/datetime.timedelta(days=1))).groupby(by='age_class').agg(lambda x: list(x)) samples_total['dC_D'] = [df.groupby(by='age_class').apply(lambda x: ((x['dt_discharge'][((x.ICU_transfer=='Non')&(x.status_discharge=='D'))] - x['dt_admission'][((x.ICU_transfer=='Non')&(x.status_discharge=='D'))])/datetime.timedelta(days=1))).agg(lambda x: list(x))] samples['dC_D'].loc[residence_times.index.get_level_values(0).unique().values[0]] = [1] samples['dC_D'].loc[residence_times.index.get_level_values(0).unique().values[1]] = [1] # ------- # dICU_R # ------- # Summary statistics residence_times['dICU_R','mean']=df.groupby(by='age_class').apply(lambda x: (((x['dt_discharge'][((x.ICU_transfer=='Oui')&(x.status_discharge=='R'))] - pd.to_datetime(x['dt_admission'][((x.ICU_transfer=='Oui')&(x.status_discharge=='R'))]))/datetime.timedelta(days=1)) - x.d_transfer[((x.ICU_transfer=='Oui')&(x.status_discharge=='R'))] - x.dICUrec[((x.ICU_transfer=='Oui')&(x.status_discharge=='R'))]).mean()) residence_times['dICU_R','median']=df.groupby(by='age_class').apply(lambda x: (((x['dt_discharge'][((x.ICU_transfer=='Oui')&(x.status_discharge=='R'))] - pd.to_datetime(x['dt_admission'][((x.ICU_transfer=='Oui')&(x.status_discharge=='R'))]))/datetime.timedelta(days=1)) - x.d_transfer[((x.ICU_transfer=='Oui')&(x.status_discharge=='R'))] - x.dICUrec[((x.ICU_transfer=='Oui')&(x.status_discharge=='R'))]).median()) for quantile in quantiles: residence_times['dICU_R','Q'+str(quantile)]=df.groupby(by='age_class').apply(lambda x: (((x['dt_discharge'][((x.ICU_transfer=='Oui')&(x.status_discharge=='R'))] - pd.to_datetime(x['dt_admission'][((x.ICU_transfer=='Oui')&(x.status_discharge=='R'))]))/datetime.timedelta(days=1)) - x.d_transfer[((x.ICU_transfer=='Oui')&(x.status_discharge=='R'))] - x.dICUrec[((x.ICU_transfer=='Oui')&(x.status_discharge=='R'))]).quantile(q=quantile/100)) # Gamma fit v = df.groupby(by='age_class').apply(lambda x: (((x['dt_discharge'][((x.ICU_transfer=='Oui')&(x.status_discharge=='R'))] - pd.to_datetime(x['dt_admission'][((x.ICU_transfer=='Oui')&(x.status_discharge=='R'))]))/datetime.timedelta(days=1)) - x.d_transfer[((x.ICU_transfer=='Oui')&(x.status_discharge=='R'))] - x.dICUrec[((x.ICU_transfer=='Oui')&(x.status_discharge=='R'))])) residence_times['dICU_R','sample_size'], residence_times['dICU_R','shape'],residence_times['dICU_R','loc'],residence_times['dICU_R','scale'] = fit_weibull(v) if plot_fit: plot_weibull_fit(v,'dICU_R',90) # Append samples samples['dICU_R'] =df.groupby(by='age_class').apply(lambda x: (((x['dt_discharge'][((x.ICU_transfer=='Oui')&(x.status_discharge=='R'))] - pd.to_datetime(x['dt_admission'][((x.ICU_transfer=='Oui')&(x.status_discharge=='R'))]))/datetime.timedelta(days=1)) - x.d_transfer[((x.ICU_transfer=='Oui')&(x.status_discharge=='R'))] - x.dICUrec[((x.ICU_transfer=='Oui')&(x.status_discharge=='R'))])).groupby(by='age_class').agg(lambda x: list(x)) samples_total['dICU_R'] = [df.groupby(by='age_class').apply(lambda x: ((x['dt_discharge'][((x.ICU_transfer=='Oui')&(x.status_discharge=='R'))] - x['dt_admission'][((x.ICU_transfer=='Oui')&(x.status_discharge=='R'))])/datetime.timedelta(days=1)) - x.d_transfer[((x.ICU_transfer=='Oui')&(x.status_discharge=='R'))] - x.dICUrec[((x.ICU_transfer=='Oui')&(x.status_discharge=='R'))]).agg(lambda x: list(x))] # ------- # dICU_D # ------- # Summary statistics residence_times['dICU_D','mean']=df.groupby(by='age_class').apply(lambda x: (((x['dt_discharge'][((x.ICU_transfer=='Oui')&(x.status_discharge=='D'))] - pd.to_datetime(x['dt_admission'][((x.ICU_transfer=='Oui')&(x.status_discharge=='D'))]))/datetime.timedelta(days=1)) - x.d_transfer[((x.ICU_transfer=='Oui')&(x.status_discharge=='D'))]).mean()).fillna(1) residence_times['dICU_D','median']=df.groupby(by='age_class').apply(lambda x: (((x['dt_discharge'][((x.ICU_transfer=='Oui')&(x.status_discharge=='D'))] - pd.to_datetime(x['dt_admission'][((x.ICU_transfer=='Oui')&(x.status_discharge=='D'))]))/datetime.timedelta(days=1)) - x.d_transfer[((x.ICU_transfer=='Oui')&(x.status_discharge=='D'))]).median()).fillna(1) for quantile in quantiles: residence_times['dICU_D','Q'+str(quantile)]=df.groupby(by='age_class').apply(lambda x: (((x['dt_discharge'][((x.ICU_transfer=='Oui')&(x.status_discharge=='D'))] - pd.to_datetime(x['dt_admission'][((x.ICU_transfer=='Oui')&(x.status_discharge=='D'))]))/datetime.timedelta(days=1)) - x.d_transfer[((x.ICU_transfer=='Oui')&(x.status_discharge=='D'))]).quantile(q=quantile/100)).fillna(1) # Gamma fit v = df.groupby(by='age_class').apply(lambda x: (((x['dt_discharge'][((x.ICU_transfer=='Oui')&(x.status_discharge=='D'))] - pd.to_datetime(x['dt_admission'][((x.ICU_transfer=='Oui')&(x.status_discharge=='D'))]))/datetime.timedelta(days=1)) - x.d_transfer[((x.ICU_transfer=='Oui')&(x.status_discharge=='D'))])) sample_size, shape, loc, scale = fit_weibull(v) if args.age_stratification_size == 3: append_idx = 0 elif args.age_stratification_size == 9: append_idx = 1 elif args.age_stratification_size == 10: append_idx = 1 for i in range(append_idx): sample_size.insert(0,0) shape.insert(0,1) loc.insert(0,0) scale.insert(0,1) residence_times['dICU_D','sample_size'], residence_times['dICU_D','shape'],residence_times['dICU_D','loc'],residence_times['dICU_D','scale'] = sample_size, shape, loc, scale if plot_fit: plot_weibull_fit(v,'dICU_D',90) # Append samples samples['dICU_D'] = df.groupby(by='age_class').apply(lambda x: (((x['dt_discharge'][((x.ICU_transfer=='Oui')&(x.status_discharge=='D'))] - pd.to_datetime(x['dt_admission'][((x.ICU_transfer=='Oui')&(x.status_discharge=='D'))]))/datetime.timedelta(days=1)) - x.d_transfer[((x.ICU_transfer=='Oui')&(x.status_discharge=='D'))])).groupby(by='age_class').agg(lambda x: list(x)) samples_total['dICU_D'] = [df.groupby(by='age_class').apply(lambda x: (((x['dt_discharge'][((x.ICU_transfer=='Oui')&(x.status_discharge=='D'))] - pd.to_datetime(x['dt_admission'][((x.ICU_transfer=='Oui')&(x.status_discharge=='D'))]))/datetime.timedelta(days=1)) - x.d_transfer[((x.ICU_transfer=='Oui')&(x.status_discharge=='D'))])).agg(lambda x: list(x))] samples['dICU_D'].loc[residence_times.index.get_level_values(0).unique().values[0]] = [1] #------ # dICU # ----- # Add dICU_R and dICU_D together to compute parameters of dICU samples['dICU'] = samples['dICU_R'] + samples['dICU_D'] # Summary statistics residence_times['dICU','mean'] = np.nan residence_times['dICU','median'] = np.nan for quantile in quantiles: residence_times['dICU','Q'+str(quantile)] = np.nan for idx,age_group in enumerate(samples['dICU'].index.get_level_values(0).unique().values): residence_times['dICU','mean'].loc[age_group] = np.nanmean(samples['dICU'][age_group]) residence_times['dICU','median'].loc[age_group] = np.nanmedian(samples['dICU'][age_group]) for quantile in quantiles: residence_times['dICU','Q'+str(quantile)].loc[age_group] = np.nanquantile(samples['dICU'][age_group],q=quantile/100) # Gamma fit v = samples['dICU']#df.groupby(by='age_class').apply(lambda x: (((x['dt_discharge'][x.ICU_transfer=='Oui'] - pd.to_datetime(x['dt_admission'][x.ICU_transfer=='Oui']))/datetime.timedelta(days=1)) - x.d_transfer[x.ICU_transfer=='Oui'])) residence_times['dICU','sample_size'], residence_times['dICU','shape'],residence_times['dICU','loc'],residence_times['dICU','scale'] = fit_weibull(v) if plot_fit: plot_weibull_fit(v,'dICU',90) # Append samples samples_total['dICU'] = '' samples_total['dICU'] = samples_total['dICU'].apply(list) total_list=[] for idx,age_group in enumerate(samples['dICU'].index.get_level_values(0).unique().values): total_list.extend(samples['dICU'][age_group]) samples_total['dICU']['total'] = total_list samples = pd.concat([samples, samples_total]) ################################# ## Compute averages and totals ## ################################# columns = [[],[]] tuples = list(zip(*columns)) columns = pd.MultiIndex.from_tuples(tuples, names=["parameter", "quantity"]) averages = pd.DataFrame(index=['averages'], columns=columns) # --- # dC # --- # Summary statistics averages['dC','mean'] = ((df['dt_discharge'][df.ICU_transfer=='Non'] - df['dt_admission'][df.ICU_transfer=='Non'])/datetime.timedelta(days=1)).mean() averages['dC','median'] = ((df['dt_discharge'][df.ICU_transfer=='Non'] - df['dt_admission'][df.ICU_transfer=='Non'])/datetime.timedelta(days=1)).median() for quantile in quantiles: averages['dC','Q'+str(quantile)] = ((df['dt_discharge'][df.ICU_transfer=='Non'] - df['dt_admission'][df.ICU_transfer=='Non'])/datetime.timedelta(days=1)).quantile(q=quantile/100) # Gamma fit v = ((df['dt_discharge'][df.ICU_transfer=='Non'] - df['dt_admission'][df.ICU_transfer=='Non'])/datetime.timedelta(days=1)) v[v==0] = 0.01 averages['dC','sample_size'] = len(v) averages['dC','shape'],averages['dC','loc'],averages['dC','scale'] = gamma.fit(v, floc=0) # ---- # dC,R # ---- # Summary statistics averages['dC_R','mean'] = ((df['dt_discharge'][((df.ICU_transfer=='Non')&(df.status_discharge=='R'))] - df['dt_admission'][((df.ICU_transfer=='Non')&(df.status_discharge=='R'))])/datetime.timedelta(days=1)).mean() averages['dC_R','median'] = ((df['dt_discharge'][((df.ICU_transfer=='Non')&(df.status_discharge=='R'))] - df['dt_admission'][((df.ICU_transfer=='Non')&(df.status_discharge=='R'))])/datetime.timedelta(days=1)).median() for quantile in quantiles: averages['dC_R','Q'+str(quantile)] = ((df['dt_discharge'][((df.ICU_transfer=='Non')&(df.status_discharge=='R'))] - df['dt_admission'][((df.ICU_transfer=='Non')&(df.status_discharge=='R'))])/datetime.timedelta(days=1)).quantile(q=quantile/100) # Gamma fit v = ((df['dt_discharge'][((df.ICU_transfer=='Non')&(df.status_discharge=='R'))] - df['dt_admission'][((df.ICU_transfer=='Non')&(df.status_discharge=='R'))])/datetime.timedelta(days=1)) v[v==0] = 0.01 averages['dC_R','sample_size'] = len(v) averages['dC_R','shape'],averages['dC_R','loc'],averages['dC_R','scale'] = gamma.fit(v, floc=0) # ---- # dC,D # ---- # Summary statistics averages['dC_D','mean'] = ((df['dt_discharge'][((df.ICU_transfer=='Non')&(df.status_discharge=='D'))] - df['dt_admission'][((df.ICU_transfer=='Non')&(df.status_discharge=='D'))])/datetime.timedelta(days=1)).mean() averages['dC_D','median'] = ((df['dt_discharge'][((df.ICU_transfer=='Non')&(df.status_discharge=='D'))] - df['dt_admission'][((df.ICU_transfer=='Non')&(df.status_discharge=='D'))])/datetime.timedelta(days=1)).median() for quantile in quantiles: averages['dC_D','Q'+str(quantile)] = ((df['dt_discharge'][((df.ICU_transfer=='Non')&(df.status_discharge=='D'))] - df['dt_admission'][((df.ICU_transfer=='Non')&(df.status_discharge=='D'))])/datetime.timedelta(days=1)).quantile(q=quantile/100) # Gamma fit v = ((df['dt_discharge'][((df.ICU_transfer=='Non')&(df.status_discharge=='D'))] - df['dt_admission'][((df.ICU_transfer=='Non')&(df.status_discharge=='D'))])/datetime.timedelta(days=1)) v[v==0] = 0.01 averages['dC_D','sample_size'] = len(v) averages['dC_D','shape'],averages['dC_D','loc'],averages['dC_D','scale'] = gamma.fit(v, floc=0) # ------ # dICU,R # ------ # Summary statistics averages['dICU_R','mean'] = ((df['dt_discharge'][((df.ICU_transfer=='Oui')&(df.status_discharge=='R'))] - df['dt_admission'][((df.ICU_transfer=='Oui')&(df.status_discharge=='R'))])/datetime.timedelta(days=1) - df['d_transfer'][((df['ICU_transfer']=='Oui')&(df['status_discharge']=='R'))] - df['dICUrec'][((df['ICU_transfer']=='Oui')&(df['status_discharge']=='R'))] ).mean() averages['dICU_R','median'] = ((df['dt_discharge'][((df.ICU_transfer=='Oui')&(df.status_discharge=='R'))] - df['dt_admission'][((df.ICU_transfer=='Oui')&(df.status_discharge=='R'))])/datetime.timedelta(days=1) - df['d_transfer'][((df['ICU_transfer']=='Oui')&(df['status_discharge']=='R'))] - df['dICUrec'][((df['ICU_transfer']=='Oui')&(df['status_discharge']=='R'))] ).median() for quantile in quantiles: averages['dICU_R','Q'+str(quantile)] = ((df['dt_discharge'][((df.ICU_transfer=='Oui')&(df.status_discharge=='R'))] - df['dt_admission'][((df.ICU_transfer=='Oui')&(df.status_discharge=='R'))])/datetime.timedelta(days=1) - df['d_transfer'][((df['ICU_transfer']=='Oui')&(df['status_discharge']=='R'))] - df['dICUrec'][((df['ICU_transfer']=='Oui')&(df['status_discharge']=='R'))] ).quantile(q=quantile/100) # Gamma fit v = ((df['dt_discharge'][((df.ICU_transfer=='Oui')&(df.status_discharge=='R'))] - df['dt_admission'][((df.ICU_transfer=='Oui')&(df.status_discharge=='R'))])/datetime.timedelta(days=1)- df['d_transfer'][((df['ICU_transfer']=='Oui')&(df['status_discharge']=='R'))] - df['dICUrec'][((df['ICU_transfer']=='Oui')&(df['status_discharge']=='R'))]) v[v==0] = 0.01 v = [x for x in v if (math.isnan(x) == False)] v = [x for x in v if (x > 0)] averages['dICU_R','sample_size'] = len(v) averages['dICU_R','shape'],averages['dICU_R','loc'],averages['dICU_R','scale'] = gamma.fit(v, floc=0) # ------ # dICU,D # ------ # Summary statistics averages['dICU_D','mean'] = ((df['dt_discharge'][((df.ICU_transfer=='Oui')&(df.status_discharge=='D'))] - df['dt_admission'][((df.ICU_transfer=='Oui')&(df.status_discharge=='D'))])/datetime.timedelta(days=1) - df['d_transfer'][((df['ICU_transfer']=='Oui')&(df['status_discharge']=='D'))]).mean() averages['dICU_D','median'] = ((df['dt_discharge'][((df.ICU_transfer=='Oui')&(df.status_discharge=='D'))] - df['dt_admission'][((df.ICU_transfer=='Oui')&(df.status_discharge=='D'))])/datetime.timedelta(days=1) - df['d_transfer'][((df['ICU_transfer']=='Oui')&(df['status_discharge']=='D'))]).median() for quantile in quantiles: averages['dICU_D','Q'+str(quantile)] = ((df['dt_discharge'][((df.ICU_transfer=='Oui')&(df.status_discharge=='D'))] - df['dt_admission'][((df.ICU_transfer=='Oui')&(df.status_discharge=='D'))])/datetime.timedelta(days=1) - df['d_transfer'][((df['ICU_transfer']=='Oui')&(df['status_discharge']=='D'))]).quantile(q=quantile/100) # Gamma fit v = ((df['dt_discharge'][((df.ICU_transfer=='Oui')&(df.status_discharge=='D'))] - df['dt_admission'][((df.ICU_transfer=='Oui')&(df.status_discharge=='D'))])/datetime.timedelta(days=1) - df['d_transfer'][((df['ICU_transfer']=='Oui')&(df['status_discharge']=='D'))]) v[v==0] = 0.01 v = [x for x in v if (math.isnan(x) == False)] v = [x for x in v if (x > 0)] averages['dICU_D','sample_size'] = len(v) averages['dICU_D','shape'],averages['dICU_D','loc'],averages['dICU_D','scale'] = gamma.fit(v, floc=0) # ---- # dICU # ---- # Summary statistics averages['dICU','mean'] = np.nanmean(samples_total['dICU'][0]) averages['dICU','median'] = np.nanmedian(samples_total['dICU'][0])#((df['dt_discharge'][df.ICU_transfer=='Oui'] - df['dt_admission'][df.ICU_transfer=='Oui'])/datetime.timedelta(days=1)- df['d_transfer'][df['ICU_transfer']=='Oui']).median() for quantile in quantiles: averages['dICU','Q'+str(quantile)] = np.nanquantile(samples_total['dICU'][0],q=quantile/100)#((df['dt_discharge'][df.ICU_transfer=='Oui'] - df['dt_admission'][df.ICU_transfer=='Oui'])/datetime.timedelta(days=1)- df['d_transfer'][df['ICU_transfer']=='Oui']).quantile(q=quantile/100) # Gamma fit v = samples_total['dICU'][0]#((df['dt_discharge'][df.ICU_transfer=='Oui'] - df['dt_admission'][df.ICU_transfer=='Oui'])/datetime.timedelta(days=1)- df['d_transfer'][df['ICU_transfer']=='Oui']) v[(v==0)] = 0.01 v = [x for x in v if (math.isnan(x) == False)] v = [x for x in v if (x > 0)] averages['dICU','sample_size'] = len(v) averages['dICU','shape'],averages['dICU','loc'],averages['dICU','scale'] = gamma.fit(v, floc=0) # -------- # dICU,rec # -------- averages['dICUrec','mean'] = df['dICUrec'].mean() averages['dICUrec','median'] = df['dICUrec'].median() for quantile in quantiles: averages['dICUrec','Q'+str(quantile)] = df['dICUrec'].quantile(q=quantile/100) v = df['dICUrec'] v = [x for x in v if (math.isnan(x) == False)] v = [x for x in v if (x > 0)] averages['dICUrec','sample_size'] = len(v) averages['dICUrec','shape'],averages['dICUrec','loc'],averages['dICUrec','scale'] = gamma.fit(v, floc=0) # ---------- # d_transfer # ---------- averages['d_transfer','mean'] = np.mean(values_d_transfer) averages['d_transfer','median'] = np.median(values_d_transfer) for quantile in quantiles: averages['d_transfer','Q'+str(quantile)] = np.quantile(values_d_transfer,q=quantile/100) averages['d_transfer','shape'], averages['d_transfer','loc'], averages['d_transfer', 'scale'] = gamma.fit(values, floc=0) averages['d_transfer','sample_size'] = len(values) # ---------- # d_hospital # ---------- df['dt_onset'] =
pd.to_datetime(df['dt_onset'])
pandas.to_datetime
import os import pandas def getProfInfo(ProfFile): f=open(ProfFile) lines=f.readlines() f.close() return lines curDirect=os.getcwd() os.chdir(curDirect+"/Data") UniFiles=iter(os.listdir(curDirect+"/Data")) data={'Name':[],'Profile Link':[],'Department Website':[],'E-mail':[],'Interests':[]} for unifile in UniFiles: os.chdir(curDirect+"/Data/"+unifile) ProfFiles=iter(os.listdir(curDirect+"/Data/"+unifile)) for prof in ProfFiles: info=getProfInfo(prof) print("Scanning:"+unifile+"/"+prof) # if len(info)<4: # for i in range(4-len(info)): # info.append('') data['Name'].append(info[0][:-1]) data['Profile Link'].append(info[1][:-1]) data['Department Website'].append(info[2][:-1]) data['E-mail'].append(info[3][:-1]) data['Interests'].append(info[4][:-1]) df=
pandas.DataFrame(data)
pandas.DataFrame
import pandas as pd import numpy as np from ini.ini import * from constant.constant import * import time import pickle # import keras as ks class Deep_Learning: def __init__(self,env): self.__env = env self.__model = None pass def get_env(self): return self.__env def set_env(self,env): self.__env = env def get_model(self): return self.__model def set_model(self, model): self.__model = model def build_net_blstm(self): model = ks.Sequential() model.add( ks.layers.Bidirectional(ks.layers.LSTM( 50 ),input_shape=(11,10)) ) model.add( ks.layers.Dropout(0.01) ) model.add(ks.layers.Dense(256)) model.add( ks.layers.Dropout(0.01) ) model.add(ks.layers.Dense(64)) model.add(ks.layers.Dense(1)) model.compile(optimizer='sgd', loss='mse') model.summary() self.set_model(model) def build_net_cnn(self): model = ks.Sequential() model.add( ks.layers.Conv2D( 256, kernel_size=(5, 5), strides=(1, 1), activation='relu', input_shape=(11,50,1) ) ) # model.add( # ks.layers.MaxPooling2D( # pool_size=(2, 2), # strides=(2, 2) # ) # ) model.add( ks.layers.Conv2D( 256, kernel_size=(3, 3), strides=(1, 1), activation='relu', ) ) model.add( ks.layers.MaxPooling2D( pool_size=(2, 2), strides=(2, 2) ) ) model.add( ks.layers.Dropout(0.01) ) model.add(ks.layers.Flatten()) model.add(ks.layers.Dense(256)) model.add( ks.layers.Dropout(0.01) ) model.add(ks.layers.Dense(64)) model.add(ks.layers.Dense(1)) model.compile(optimizer='sgd', loss='mse') model.summary() self.set_model(model) def train(self,islocal=False): if islocal: res = pd.read_csv(os.path.join(RESULTS, Y_HAT + '2.csv')) else: model = self.get_model() date_list = os.listdir(os.path.join(RESULTS,'train')) res = pd.DataFrame() for date in date_list: with open(os.path.join(RESULTS,'train',date),'rb') as f: data = pickle.load(f) model.fit( np.array(data['train']).reshape((len(data['train']), 11, 10)), np.array(data['label']), batch_size=1024, epochs=400, ) data_cell =
pd.DataFrame(columns=[COM_SEC, COM_DATE, Y_HAT])
pandas.DataFrame
# -*- coding: utf-8 -*- """ @author: LeeZChuan """ import pandas as pd import numpy as np import requests import os from pandas.core.frame import DataFrame import json import datetime import time pd.set_option('display.max_columns',1000) pd.set_option('display.width', 1000) pd.set_option('display.max_colwidth',1000) def addressProcess(address): result = address if '镇' in address: item = address.split('镇') result = item[0]+'镇' elif '农场' in address: item = address.split('农场') result = item[0]+'农场' elif '街道' in address: item = address.split('街道') result = item[0]+'街道' elif '路' in address: item = address.split('路') result = item[0]+'路' elif '大道' in address: item = address.split('大道') result = item[0]+'大道' elif '街' in address: item = address.split('街') result = item[0]+'街' elif '村' in address: item = address.split('村') result = item[0]+'村' return result def processJson(filePath): orderNum = 0 #订单数 with open(filepath, 'r', encoding="utf-8") as f: # 读取所有行 每行会是一个字符串 i = 0 for jsonstr in f.readlines(): list_address = [] list_name = [] jsonstr = jsonstr[1:-1] # listValue = jsonstr.split(']];,') listValue = jsonstr.split(']],') for listitem in listValue: listitem = listitem[1:] listCon = listitem.split(',[') listAddr = listCon[3][:-1].split(',') if len(listAddr) == 2 and '海南省海口市' in listAddr[0] and '海南省海口市' in listAddr[1]: list_address_each = [] startAdd = addressProcess(listAddr[0][6:]) endAdd = addressProcess(listAddr[1][6:]) if startAdd != endAdd: list_address_each.append(startAdd) list_address_each.append(endAdd) list_address.append(list_address_each) list_name.append(startAdd) list_name.append(endAdd) pd_list_address = pd.DataFrame(list_name) # print (pd_list_address) name_list_count = pd.value_counts(pd_list_address[0], sort=False) name_df = pd_list_address[0].unique() name_list = name_df.tolist() name_list_all = [[name, name_list_count[name]] for name in name_list if name_list_count[name] > 300] name_list_new = [] for item in name_list_all: name_list_new.append(item[0]) print (name_list_new) new_list_address = [] for item in list_address: if item[0] in name_list_new and item[1] in name_list_new: new_list = [] new_list.append(item[0]) new_list.append(item[1]) new_list_address.append(new_list) orderNum += 1 return orderNum, list_address def save(filename, contents): fh = open(filename, 'w', encoding='utf-8') fh.write(contents) fh.close() def dataSta(list_address, txtname): raw_file_df =
pd.DataFrame(list_address)
pandas.DataFrame
# Fundamental libraries import os import re import sys import time import glob import random import datetime import warnings import itertools import numpy as np import pandas as pd import pickle as cp import seaborn as sns import multiprocessing from scipy import stats from pathlib import Path from ast import literal_eval import matplotlib.pyplot as plt from collections import Counter from scipy.special import logit from argparse import ArgumentParser from pandas.api.types import CategoricalDtype os.environ['CUDA_LAUNCH_BLOCKING'] = "1" warnings.filterwarnings(action="ignore") # SciKit-Learn methods from sklearn.metrics import confusion_matrix, accuracy_score, roc_auc_score, roc_curve from sklearn.preprocessing import LabelEncoder, KBinsDiscretizer, OneHotEncoder, StandardScaler from sklearn.model_selection import StratifiedShuffleSplit from sklearn.utils import resample from sklearn.utils.class_weight import compute_class_weight # StatsModel methods from statsmodels.nonparametric.smoothers_lowess import lowess from statsmodels.miscmodels.ordinal_model import OrderedModel from statsmodels.discrete.discrete_model import Logit from statsmodels.tools.tools import add_constant # TQDM for progress tracking from tqdm import tqdm # Function to load and compile test prediction files def collect_preds(pred_file_info,progress_bar = True, progress_bar_desc = ''): output_df = [] if progress_bar: iterator = tqdm(range(pred_file_info.shape[0]),desc=progress_bar_desc) else: iterator = range(pred_file_info.shape[0]) for i in iterator: curr_pred = pd.read_csv(pred_file_info.file[i]) curr_pred['repeat'] = pred_file_info.repeat[i] curr_pred['fold'] = pred_file_info.fold[i] output_df.append(curr_pred) return pd.concat(output_df,ignore_index=True) # Function to load and compile test performance metrics for DeepIMPACT models def collect_metrics(metric_file_info,progress_bar = True, progress_bar_desc = ''): output_df = [] if progress_bar: iterator = tqdm(metric_file_info.file,desc=progress_bar_desc) else: iterator = metric_file_info.file return pd.concat([pd.read_csv(f) for f in iterator],ignore_index=True) # Function to calculate ordinal c-index via bootstrapping def calc_bs_ORC(curr_resamples, compiled_test_preds, progress_bar = True, progress_bar_desc = ''): if progress_bar: iterator = tqdm(range(curr_resamples.shape[0]),desc=progress_bar_desc) else: iterator = range(curr_resamples.shape[0]) num_classes = len(compiled_test_preds.TrueLabel.unique()) compiled_orc = [] compiled_steps = [] compiled_rs_idx = [] for curr_rs_row in iterator: compiled_rs_idx.append(curr_resamples.RESAMPLE_IDX[curr_rs_row]) curr_in_sample = curr_resamples.GUPIs[curr_rs_row] curr_rs_preds = compiled_test_preds[compiled_test_preds.GUPI.isin(curr_in_sample)].reset_index(drop=True) prob_cols = [col for col in curr_rs_preds if col.startswith('Pr(GOSE=')] pairs = [] aucs = [] for ix, (a, b) in enumerate(itertools.combinations(np.sort(curr_rs_preds.TrueLabel.unique()), 2)): filt_rs_preds = curr_rs_preds[curr_rs_preds.TrueLabel.isin([a,b])].reset_index(drop=True) filt_rs_preds['ConditProb'] = filt_rs_preds[prob_cols[b]]/(filt_rs_preds[prob_cols[a]] + filt_rs_preds[prob_cols[b]]) filt_rs_preds['ConditLabel'] = (filt_rs_preds.TrueLabel == b).astype(int) aucs.append(roc_auc_score(filt_rs_preds['ConditLabel'],filt_rs_preds['ConditProb'])) pairs.append((a,b)) compiled_orc.append(np.mean(aucs)) compiled_steps.append((1 - np.mean(aucs))*(num_classes*(num_classes-1)/2)) return pd.DataFrame({'RESAMPLE_IDX':compiled_rs_idx,'ORC':compiled_orc,'S':compiled_steps}) # Function to calculate generalised c-index via bootstrapping def calc_bs_gen_c(curr_resamples, compiled_test_preds, progress_bar = True, progress_bar_desc = ''): if progress_bar: iterator = tqdm(range(curr_resamples.shape[0]),desc=progress_bar_desc) else: iterator = range(curr_resamples.shape[0]) num_classes = len(compiled_test_preds.TrueLabel.unique()) compiled_gen_c = [] compiled_D = [] compiled_rs_idx = [] for curr_rs_row in iterator: compiled_rs_idx.append(curr_resamples.RESAMPLE_IDX[curr_rs_row]) curr_in_sample = curr_resamples.GUPIs[curr_rs_row] curr_rs_preds = compiled_test_preds[compiled_test_preds.GUPI.isin(curr_in_sample)].reset_index(drop=True) prob_cols = [col for col in curr_rs_preds if col.startswith('Pr(GOSE=')] pairs = [] aucs = [] prevalence = [] for ix, (a, b) in enumerate(itertools.combinations(np.sort(curr_rs_preds.TrueLabel.unique()), 2)): filt_rs_preds = curr_rs_preds[curr_rs_preds.TrueLabel.isin([a,b])].reset_index(drop=True) filt_rs_preds['ConditProb'] = filt_rs_preds[prob_cols[b]]/(filt_rs_preds[prob_cols[a]] + filt_rs_preds[prob_cols[b]]) filt_rs_preds['ConditLabel'] = (filt_rs_preds.TrueLabel == b).astype(int) prevalence.append((filt_rs_preds.TrueLabel == a).sum()*(filt_rs_preds.TrueLabel == b).sum()) aucs.append(roc_auc_score(filt_rs_preds['ConditLabel'],filt_rs_preds['ConditProb'])) pairs.append((a,b)) compiled_gen_c.append(np.sum(np.multiply(aucs,prevalence))/np.sum(prevalence)) compiled_D.append(2*(np.sum(np.multiply(aucs,prevalence))/np.sum(prevalence))-1) return pd.DataFrame({'RESAMPLE_IDX':compiled_rs_idx,'Gen_C':compiled_gen_c,'D_xy':compiled_D}) # Function to calculate threshold-level AUROCs def calc_bs_thresh_AUC(curr_resamples, compiled_test_preds, progress_bar = True, progress_bar_desc = ''): thresh_labels = ['GOSE>1','GOSE>3','GOSE>4','GOSE>5','GOSE>6','GOSE>7'] compiled_AUCs = [] if progress_bar: iterator = tqdm(range(curr_resamples.shape[0]),desc=progress_bar_desc) else: iterator = range(curr_resamples.shape[0]) for curr_rs_row in iterator: curr_in_sample = curr_resamples.GUPIs[curr_rs_row] curr_rs_preds = compiled_test_preds[compiled_test_preds.GUPI.isin(curr_in_sample)].reset_index(drop=True) prob_cols = [col for col in curr_rs_preds if col.startswith('Pr(GOSE=')] for thresh in range(1,len(prob_cols)): cols_gt = prob_cols[thresh:] prob_gt = curr_rs_preds[cols_gt].sum(1).values gt = (curr_rs_preds['TrueLabel'] >= thresh).astype(int).values curr_AUC = roc_auc_score(gt, prob_gt) compiled_AUCs.append(pd.DataFrame({'RESAMPLE_IDX':[curr_resamples.RESAMPLE_IDX[curr_rs_row]],'Threshold':thresh_labels[thresh-1],'AUC':curr_AUC},index=[0])) return pd.concat(compiled_AUCs,ignore_index = True) # Function to calculate normalized confusion matrices def calc_bs_cm(curr_resamples, compiled_test_preds, progress_bar = True, progress_bar_desc = ''): compiled_cm = [] if progress_bar: iterator = tqdm(range(curr_resamples.shape[0]),desc=progress_bar_desc) else: iterator = range(curr_resamples.shape[0]) for curr_rs_row in iterator: curr_in_sample = curr_resamples.GUPIs[curr_rs_row] curr_rs_preds = compiled_test_preds[compiled_test_preds.GUPI.isin(curr_in_sample)].reset_index(drop=True) prob_cols = [col for col in curr_rs_preds if col.startswith('Pr(GOSE=')] curr_rs_cm = confusion_matrix(curr_rs_preds.TrueLabel, curr_rs_preds.PredLabel,normalize='true') curr_rs_cm = pd.DataFrame(curr_rs_cm) curr_rs_cm.columns = ['GOSE: 1','GOSE: 2/3','GOSE: 4','GOSE: 5','GOSE: 6','GOSE: 7','GOSE: 8'] curr_rs_cm = curr_rs_cm.assign(TrueLabel=['GOSE: 1','GOSE: 2/3','GOSE: 4','GOSE: 5','GOSE: 6','GOSE: 7','GOSE: 8']) curr_rs_cm = curr_rs_cm.melt(id_vars=['TrueLabel'],var_name='PredLabel',value_name='cm_prob') curr_rs_cm['RESAMPLE_IDX'] = curr_resamples.RESAMPLE_IDX[curr_rs_row] compiled_cm.append(curr_rs_cm) return pd.concat(compiled_cm,ignore_index = True) # Function to calculate accuracy def calc_bs_accuracy(curr_resamples, compiled_test_preds, progress_bar = True, progress_bar_desc = ''): if progress_bar: iterator = tqdm(range(curr_resamples.shape[0]),desc=progress_bar_desc) else: iterator = range(curr_resamples.shape[0]) compiled_accuracy = [] compiled_rs_idx = [] for curr_rs_row in iterator: compiled_rs_idx.append(curr_resamples.RESAMPLE_IDX[curr_rs_row]) curr_in_sample = curr_resamples.GUPIs[curr_rs_row] curr_rs_preds = compiled_test_preds[compiled_test_preds.GUPI.isin(curr_in_sample)].reset_index(drop=True) prob_cols = [col for col in curr_rs_preds if col.startswith('Pr(GOSE=')] compiled_accuracy.append(accuracy_score(curr_rs_preds.TrueLabel, curr_rs_preds.PredLabel)) return
pd.DataFrame({'RESAMPLE_IDX':compiled_rs_idx,'Accuracy':compiled_accuracy})
pandas.DataFrame
import numpy as np import pandas as pd from woodwork.logical_types import ( URL, Age, AgeNullable, Boolean, BooleanNullable, Categorical, CountryCode, Datetime, Double, EmailAddress, Filepath, Integer, IntegerNullable, IPAddress, LatLong, NaturalLanguage, Ordinal, PersonFullName, PhoneNumber, PostalCode, SubRegionCode, Timedelta ) from woodwork.statistics_utils import ( _get_describe_dict, _get_mode, _make_categorical_for_mutual_info, _replace_nans_for_mutual_info ) from woodwork.tests.testing_utils import mi_between_cols, to_pandas from woodwork.utils import import_or_none dd = import_or_none('dask.dataframe') ks = import_or_none('databricks.koalas') def test_get_mode(): series_list = [ pd.Series([1, 2, 3, 4, 2, 2, 3]), pd.Series(['a', 'b', 'b', 'c', 'b']), pd.Series([3, 2, 3, 2]), pd.Series([np.nan, np.nan, np.nan]), pd.Series([pd.NA, pd.NA, pd.NA]), pd.Series([1, 2, np.nan, 2, np.nan, 3, 2]), pd.Series([1, 2, pd.NA, 2, pd.NA, 3, 2]) ] answer_list = [2, 'b', 2, None, None, 2, 2] for series, answer in zip(series_list, answer_list): mode = _get_mode(series) if answer is None: assert mode is None else: assert mode == answer def test_accessor_replace_nans_for_mutual_info(): df_nans = pd.DataFrame({ 'ints': pd.Series([2, pd.NA, 5, 2], dtype='Int64'), 'floats': pd.Series([3.3, None, 2.3, 1.3]), 'bools': pd.Series([True, None, True, False]), 'bools_pdna': pd.Series([True, pd.NA, True, False], dtype='boolean'), 'int_to_cat_nan': pd.Series([1, np.nan, 3, 1], dtype='category'), 'str': pd.Series(['test', np.nan, 'test2', 'test']), 'str_no_nan': pd.Series(['test', 'test2', 'test2', 'test']), 'dates':
pd.Series(['2020-01-01', None, '2020-01-02', '2020-01-03'])
pandas.Series
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Copyright 2014-2019 OpenEEmeter contributors Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from datetime import datetime, timedelta from pkg_resources import resource_stream import numpy as np import pandas as pd import pytest import pytz from eemeter.transform import ( as_freq, clean_caltrack_billing_data, downsample_and_clean_caltrack_daily_data, clean_caltrack_billing_daily_data, day_counts, get_baseline_data, get_reporting_data, get_terms, remove_duplicates, NoBaselineDataError, NoReportingDataError, overwrite_partial_rows_with_nan, ) def test_as_freq_not_series(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] assert meter_data.shape == (27, 1) with pytest.raises(ValueError): as_freq(meter_data, freq="H") def test_as_freq_hourly(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] assert meter_data.shape == (27, 1) as_hourly = as_freq(meter_data.value, freq="H") assert as_hourly.shape == (18961,) assert round(meter_data.value.sum(), 1) == round(as_hourly.sum(), 1) == 21290.2 def test_as_freq_daily(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] assert meter_data.shape == (27, 1) as_daily = as_freq(meter_data.value, freq="D") assert as_daily.shape == (792,) assert round(meter_data.value.sum(), 1) == round(as_daily.sum(), 1) == 21290.2 def test_as_freq_daily_all_nones_instantaneous(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] meter_data["value"] = np.nan assert meter_data.shape == (27, 1) as_daily = as_freq(meter_data.value, freq="D", series_type="instantaneous") assert as_daily.shape == (792,) assert round(meter_data.value.sum(), 1) == round(as_daily.sum(), 1) == 0 def test_as_freq_daily_all_nones(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] meter_data["value"] = np.nan assert meter_data.shape == (27, 1) as_daily = as_freq(meter_data.value, freq="D") assert as_daily.shape == (792,) assert round(meter_data.value.sum(), 1) == round(as_daily.sum(), 1) == 0 def test_as_freq_month_start(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] assert meter_data.shape == (27, 1) as_month_start = as_freq(meter_data.value, freq="MS") assert as_month_start.shape == (28,) assert round(meter_data.value.sum(), 1) == round(as_month_start.sum(), 1) == 21290.2 def test_as_freq_hourly_temperature(il_electricity_cdd_hdd_billing_monthly): temperature_data = il_electricity_cdd_hdd_billing_monthly["temperature_data"] assert temperature_data.shape == (19417,) as_hourly = as_freq(temperature_data, freq="H", series_type="instantaneous") assert as_hourly.shape == (19417,) assert round(temperature_data.mean(), 1) == round(as_hourly.mean(), 1) == 54.6 def test_as_freq_daily_temperature(il_electricity_cdd_hdd_billing_monthly): temperature_data = il_electricity_cdd_hdd_billing_monthly["temperature_data"] assert temperature_data.shape == (19417,) as_daily = as_freq(temperature_data, freq="D", series_type="instantaneous") assert as_daily.shape == (811,) assert abs(temperature_data.mean() - as_daily.mean()) <= 0.1 def test_as_freq_month_start_temperature(il_electricity_cdd_hdd_billing_monthly): temperature_data = il_electricity_cdd_hdd_billing_monthly["temperature_data"] assert temperature_data.shape == (19417,) as_month_start = as_freq(temperature_data, freq="MS", series_type="instantaneous") assert as_month_start.shape == (29,) assert round(as_month_start.mean(), 1) == 53.4 def test_as_freq_daily_temperature_monthly(il_electricity_cdd_hdd_billing_monthly): temperature_data = il_electricity_cdd_hdd_billing_monthly["temperature_data"] temperature_data = temperature_data.groupby(pd.Grouper(freq="MS")).mean() assert temperature_data.shape == (28,) as_daily = as_freq(temperature_data, freq="D", series_type="instantaneous") assert as_daily.shape == (824,) assert round(as_daily.mean(), 1) == 54.5 def test_as_freq_empty(): meter_data = pd.DataFrame({"value": []}) empty_meter_data = as_freq(meter_data.value, freq="H") assert empty_meter_data.empty def test_as_freq_perserves_nulls(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] monthly_with_nulls = meter_data[meter_data.index.year != 2016].reindex( meter_data.index ) daily_with_nulls = as_freq(monthly_with_nulls.value, freq="D") assert ( round(monthly_with_nulls.value.sum(), 2) == round(daily_with_nulls.sum(), 2) == 11094.05 ) assert monthly_with_nulls.value.isnull().sum() == 13 assert daily_with_nulls.isnull().sum() == 365 def test_day_counts(il_electricity_cdd_hdd_billing_monthly): data = il_electricity_cdd_hdd_billing_monthly["meter_data"].value counts = day_counts(data.index) assert counts.shape == (27,) assert counts.iloc[0] == 29.0 assert pd.isnull(counts.iloc[-1]) assert counts.sum() == 790.0 def test_day_counts_empty_series(): index = pd.DatetimeIndex([]) index.freq = None data = pd.Series([], index=index) counts = day_counts(data.index) assert counts.shape == (0,) def test_get_baseline_data(il_electricity_cdd_hdd_hourly): meter_data = il_electricity_cdd_hdd_hourly["meter_data"] baseline_data, warnings = get_baseline_data(meter_data) assert meter_data.shape == baseline_data.shape == (19417, 1) assert len(warnings) == 0 def test_get_baseline_data_with_timezones(il_electricity_cdd_hdd_hourly): meter_data = il_electricity_cdd_hdd_hourly["meter_data"] baseline_data, warnings = get_baseline_data( meter_data.tz_convert("America/New_York") ) assert len(warnings) == 0 baseline_data, warnings = get_baseline_data( meter_data.tz_convert("Australia/Sydney") ) assert len(warnings) == 0 def test_get_baseline_data_with_end(il_electricity_cdd_hdd_hourly): meter_data = il_electricity_cdd_hdd_hourly["meter_data"] blackout_start_date = il_electricity_cdd_hdd_hourly["blackout_start_date"] baseline_data, warnings = get_baseline_data(meter_data, end=blackout_start_date) assert meter_data.shape != baseline_data.shape == (8761, 1) assert len(warnings) == 0 def test_get_baseline_data_with_end_no_max_days(il_electricity_cdd_hdd_hourly): meter_data = il_electricity_cdd_hdd_hourly["meter_data"] blackout_start_date = il_electricity_cdd_hdd_hourly["blackout_start_date"] baseline_data, warnings = get_baseline_data( meter_data, end=blackout_start_date, max_days=None ) assert meter_data.shape != baseline_data.shape == (9595, 1) assert len(warnings) == 0 def test_get_baseline_data_empty(il_electricity_cdd_hdd_hourly): meter_data = il_electricity_cdd_hdd_hourly["meter_data"] blackout_start_date = il_electricity_cdd_hdd_hourly["blackout_start_date"] with pytest.raises(NoBaselineDataError): get_baseline_data(meter_data, end=pd.Timestamp("2000").tz_localize("UTC")) def test_get_baseline_data_start_gap(il_electricity_cdd_hdd_hourly): meter_data = il_electricity_cdd_hdd_hourly["meter_data"] start = meter_data.index.min() - timedelta(days=1) baseline_data, warnings = get_baseline_data(meter_data, start=start, max_days=None) assert meter_data.shape == baseline_data.shape == (19417, 1) assert len(warnings) == 1 warning = warnings[0] assert warning.qualified_name == "eemeter.get_baseline_data.gap_at_baseline_start" assert ( warning.description == "Data does not have coverage at requested baseline start date." ) assert warning.data == { "data_start": "2015-11-22T06:00:00+00:00", "requested_start": "2015-11-21T06:00:00+00:00", } def test_get_baseline_data_end_gap(il_electricity_cdd_hdd_hourly): meter_data = il_electricity_cdd_hdd_hourly["meter_data"] end = meter_data.index.max() + timedelta(days=1) baseline_data, warnings = get_baseline_data(meter_data, end=end, max_days=None) assert meter_data.shape == baseline_data.shape == (19417, 1) assert len(warnings) == 1 warning = warnings[0] assert warning.qualified_name == "eemeter.get_baseline_data.gap_at_baseline_end" assert ( warning.description == "Data does not have coverage at requested baseline end date." ) assert warning.data == { "data_end": "2018-02-08T06:00:00+00:00", "requested_end": "2018-02-09T06:00:00+00:00", } def test_get_baseline_data_with_overshoot(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] baseline_data, warnings = get_baseline_data( meter_data, end=datetime(2016, 11, 9, tzinfo=pytz.UTC), max_days=32, allow_billing_period_overshoot=True, ) assert baseline_data.shape == (2, 1) assert round(baseline_data.value.sum(), 2) == 632.31 assert len(warnings) == 0 baseline_data, warnings = get_baseline_data( meter_data, end=datetime(2016, 11, 9, tzinfo=pytz.UTC), max_days=32, allow_billing_period_overshoot=False, ) assert baseline_data.shape == (1, 1) assert round(baseline_data.value.sum(), 2) == 0 assert len(warnings) == 0 baseline_data, warnings = get_baseline_data( meter_data, end=datetime(2016, 11, 9, tzinfo=pytz.UTC), max_days=25, allow_billing_period_overshoot=True, ) assert baseline_data.shape == (1, 1) assert round(baseline_data.value.sum(), 2) == 0 assert len(warnings) == 0 def test_get_baseline_data_with_ignored_gap(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] baseline_data, warnings = get_baseline_data( meter_data, end=datetime(2016, 11, 9, tzinfo=pytz.UTC), max_days=45, ignore_billing_period_gap_for_day_count=True, ) assert baseline_data.shape == (2, 1) assert round(baseline_data.value.sum(), 2) == 632.31 assert len(warnings) == 0 baseline_data, warnings = get_baseline_data( meter_data, end=datetime(2016, 11, 9, tzinfo=pytz.UTC), max_days=45, ignore_billing_period_gap_for_day_count=False, ) assert baseline_data.shape == (1, 1) assert round(baseline_data.value.sum(), 2) == 0 assert len(warnings) == 0 baseline_data, warnings = get_baseline_data( meter_data, end=datetime(2016, 11, 9, tzinfo=pytz.UTC), max_days=25, ignore_billing_period_gap_for_day_count=True, ) assert baseline_data.shape == (1, 1) assert round(baseline_data.value.sum(), 2) == 0 assert len(warnings) == 0 def test_get_baseline_data_with_overshoot_and_ignored_gap( il_electricity_cdd_hdd_billing_monthly ): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] baseline_data, warnings = get_baseline_data( meter_data, end=datetime(2016, 11, 9, tzinfo=pytz.UTC), max_days=25, allow_billing_period_overshoot=True, ignore_billing_period_gap_for_day_count=True, ) assert baseline_data.shape == (2, 1) assert round(baseline_data.value.sum(), 2) == 632.31 assert len(warnings) == 0 baseline_data, warnings = get_baseline_data( meter_data, end=datetime(2016, 11, 9, tzinfo=pytz.UTC), max_days=25, allow_billing_period_overshoot=False, ignore_billing_period_gap_for_day_count=False, ) assert baseline_data.shape == (1, 1) assert round(baseline_data.value.sum(), 2) == 0 assert len(warnings) == 0 def test_get_baseline_data_n_days_billing_period_overshoot( il_electricity_cdd_hdd_billing_monthly ): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] baseline_data, warnings = get_baseline_data( meter_data, end=datetime(2017, 11, 9, tzinfo=pytz.UTC), max_days=45, allow_billing_period_overshoot=True, n_days_billing_period_overshoot=45, ignore_billing_period_gap_for_day_count=True, ) assert baseline_data.shape == (2, 1) assert round(baseline_data.value.sum(), 2) == 526.25 assert len(warnings) == 0 def test_get_baseline_data_too_far_from_date(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] end_date = datetime(2020, 11, 9, tzinfo=pytz.UTC) max_days = 45 baseline_data, warnings = get_baseline_data( meter_data, end=end_date, max_days=max_days, ignore_billing_period_gap_for_day_count=True, ) assert baseline_data.shape == (2, 1) assert round(baseline_data.value.sum(), 2) == 1393.4 assert len(warnings) == 0 with pytest.raises(NoBaselineDataError): get_baseline_data( meter_data, end=end_date, max_days=max_days, n_days_billing_period_overshoot=45, ignore_billing_period_gap_for_day_count=True, ) baseline_data, warnings = get_baseline_data( meter_data, end=end_date, max_days=max_days, allow_billing_period_overshoot=True, ignore_billing_period_gap_for_day_count=True, ) assert baseline_data.shape == (3, 1) assert round(baseline_data.value.sum(), 2) == 2043.92 assert len(warnings) == 0 # Includes 3 data points because data at index -3 is closer to start target # then data at index -2 start_target = baseline_data.index[-1] - timedelta(days=max_days) assert abs((baseline_data.index[0] - start_target).days) < abs( (baseline_data.index[1] - start_target).days ) with pytest.raises(NoBaselineDataError): get_baseline_data( meter_data, end=end_date, max_days=max_days, allow_billing_period_overshoot=True, n_days_billing_period_overshoot=45, ignore_billing_period_gap_for_day_count=True, ) def test_get_reporting_data(il_electricity_cdd_hdd_hourly): meter_data = il_electricity_cdd_hdd_hourly["meter_data"] reporting_data, warnings = get_reporting_data(meter_data) assert meter_data.shape == reporting_data.shape == (19417, 1) assert len(warnings) == 0 def test_get_reporting_data_with_timezones(il_electricity_cdd_hdd_hourly): meter_data = il_electricity_cdd_hdd_hourly["meter_data"] reporting_data, warnings = get_reporting_data( meter_data.tz_convert("America/New_York") ) assert len(warnings) == 0 reporting_data, warnings = get_reporting_data( meter_data.tz_convert("Australia/Sydney") ) assert len(warnings) == 0 def test_get_reporting_data_with_start(il_electricity_cdd_hdd_hourly): meter_data = il_electricity_cdd_hdd_hourly["meter_data"] blackout_end_date = il_electricity_cdd_hdd_hourly["blackout_end_date"] reporting_data, warnings = get_reporting_data(meter_data, start=blackout_end_date) assert meter_data.shape != reporting_data.shape == (8761, 1) assert len(warnings) == 0 def test_get_reporting_data_with_start_no_max_days(il_electricity_cdd_hdd_hourly): meter_data = il_electricity_cdd_hdd_hourly["meter_data"] blackout_end_date = il_electricity_cdd_hdd_hourly["blackout_end_date"] reporting_data, warnings = get_reporting_data( meter_data, start=blackout_end_date, max_days=None ) assert meter_data.shape != reporting_data.shape == (9607, 1) assert len(warnings) == 0 def test_get_reporting_data_empty(il_electricity_cdd_hdd_hourly): meter_data = il_electricity_cdd_hdd_hourly["meter_data"] blackout_end_date = il_electricity_cdd_hdd_hourly["blackout_end_date"] with pytest.raises(NoReportingDataError): get_reporting_data(meter_data, start=pd.Timestamp("2030").tz_localize("UTC")) def test_get_reporting_data_start_gap(il_electricity_cdd_hdd_hourly): meter_data = il_electricity_cdd_hdd_hourly["meter_data"] start = meter_data.index.min() - timedelta(days=1) reporting_data, warnings = get_reporting_data( meter_data, start=start, max_days=None ) assert meter_data.shape == reporting_data.shape == (19417, 1) assert len(warnings) == 1 warning = warnings[0] assert warning.qualified_name == "eemeter.get_reporting_data.gap_at_reporting_start" assert ( warning.description == "Data does not have coverage at requested reporting start date." ) assert warning.data == { "data_start": "2015-11-22T06:00:00+00:00", "requested_start": "2015-11-21T06:00:00+00:00", } def test_get_reporting_data_end_gap(il_electricity_cdd_hdd_hourly): meter_data = il_electricity_cdd_hdd_hourly["meter_data"] end = meter_data.index.max() + timedelta(days=1) reporting_data, warnings = get_reporting_data(meter_data, end=end, max_days=None) assert meter_data.shape == reporting_data.shape == (19417, 1) assert len(warnings) == 1 warning = warnings[0] assert warning.qualified_name == "eemeter.get_reporting_data.gap_at_reporting_end" assert ( warning.description == "Data does not have coverage at requested reporting end date." ) assert warning.data == { "data_end": "2018-02-08T06:00:00+00:00", "requested_end": "2018-02-09T06:00:00+00:00", } def test_get_reporting_data_with_overshoot(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] reporting_data, warnings = get_reporting_data( meter_data, start=datetime(2016, 9, 9, tzinfo=pytz.UTC), max_days=30, allow_billing_period_overshoot=True, ) assert reporting_data.shape == (2, 1) assert round(reporting_data.value.sum(), 2) == 632.31 assert len(warnings) == 0 reporting_data, warnings = get_reporting_data( meter_data, start=datetime(2016, 9, 9, tzinfo=pytz.UTC), max_days=30, allow_billing_period_overshoot=False, ) assert reporting_data.shape == (1, 1) assert round(reporting_data.value.sum(), 2) == 0 assert len(warnings) == 0 reporting_data, warnings = get_reporting_data( meter_data, start=datetime(2016, 9, 9, tzinfo=pytz.UTC), max_days=25, allow_billing_period_overshoot=True, ) assert reporting_data.shape == (1, 1) assert round(reporting_data.value.sum(), 2) == 0 assert len(warnings) == 0 def test_get_reporting_data_with_ignored_gap(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] reporting_data, warnings = get_reporting_data( meter_data, start=datetime(2016, 9, 9, tzinfo=pytz.UTC), max_days=45, ignore_billing_period_gap_for_day_count=True, ) assert reporting_data.shape == (2, 1) assert round(reporting_data.value.sum(), 2) == 632.31 assert len(warnings) == 0 reporting_data, warnings = get_reporting_data( meter_data, start=datetime(2016, 9, 9, tzinfo=pytz.UTC), max_days=45, ignore_billing_period_gap_for_day_count=False, ) assert reporting_data.shape == (1, 1) assert round(reporting_data.value.sum(), 2) == 0 assert len(warnings) == 0 reporting_data, warnings = get_reporting_data( meter_data, start=datetime(2016, 9, 9, tzinfo=pytz.UTC), max_days=25, ignore_billing_period_gap_for_day_count=True, ) assert reporting_data.shape == (1, 1) assert round(reporting_data.value.sum(), 2) == 0 assert len(warnings) == 0 def test_get_reporting_data_with_overshoot_and_ignored_gap( il_electricity_cdd_hdd_billing_monthly ): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] reporting_data, warnings = get_reporting_data( meter_data, start=datetime(2016, 9, 9, tzinfo=pytz.UTC), max_days=25, allow_billing_period_overshoot=True, ignore_billing_period_gap_for_day_count=True, ) assert reporting_data.shape == (2, 1) assert round(reporting_data.value.sum(), 2) == 632.31 assert len(warnings) == 0 reporting_data, warnings = get_reporting_data( meter_data, start=datetime(2016, 9, 9, tzinfo=pytz.UTC), max_days=25, allow_billing_period_overshoot=False, ignore_billing_period_gap_for_day_count=False, ) assert reporting_data.shape == (1, 1) assert round(reporting_data.value.sum(), 2) == 0 assert len(warnings) == 0 def test_get_terms_unrecognized_method(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] with pytest.raises(ValueError): get_terms(meter_data.index, term_lengths=[365], method="unrecognized") def test_get_terms_unsorted_index(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] with pytest.raises(ValueError): get_terms(meter_data.index[::-1], term_lengths=[365]) def test_get_terms_bad_term_labels(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] with pytest.raises(ValueError): terms = get_terms( meter_data.index, term_lengths=[60, 60, 60], term_labels=["abc", "def"], # too short ) def test_get_terms_default_term_labels(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] terms = get_terms(meter_data.index, term_lengths=[60, 60, 60]) assert [t.label for t in terms] == ["term_001", "term_002", "term_003"] def test_get_terms_custom_term_labels(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] terms = get_terms( meter_data.index, term_lengths=[60, 60, 60], term_labels=["abc", "def", "ghi"] ) assert [t.label for t in terms] == ["abc", "def", "ghi"] def test_get_terms_empty_index_input(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] terms = get_terms(meter_data.index[:0], term_lengths=[60, 60, 60]) assert len(terms) == 0 def test_get_terms_strict(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] strict_terms = get_terms( meter_data.index, term_lengths=[365, 365], term_labels=["year1", "year2"], start=datetime(2016, 1, 15, tzinfo=pytz.UTC), method="strict", ) assert len(strict_terms) == 2 year1 = strict_terms[0] assert year1.label == "year1" assert year1.index.shape == (12,) assert ( year1.target_start_date == pd.Timestamp("2016-01-15 00:00:00+0000", tz="UTC").to_pydatetime() ) assert ( year1.target_end_date == pd.Timestamp("2017-01-14 00:00:00+0000", tz="UTC").to_pydatetime() ) assert year1.target_term_length_days == 365 assert ( year1.actual_start_date == year1.index[0] == pd.Timestamp("2016-01-22 06:00:00+0000", tz="UTC") ) assert ( year1.actual_end_date == year1.index[-1] == pd.Timestamp("2016-12-19 06:00:00+0000", tz="UTC") ) assert year1.actual_term_length_days == 332 assert year1.complete year2 = strict_terms[1] assert year2.index.shape == (13,) assert year2.label == "year2" assert year2.target_start_date == pd.Timestamp("2016-12-19 06:00:00+0000", tz="UTC") assert ( year2.target_end_date == pd.Timestamp("2018-01-14 00:00:00+0000", tz="UTC").to_pydatetime() ) assert year2.target_term_length_days == 365 assert ( year2.actual_start_date == year2.index[0] == pd.Timestamp("2016-12-19 06:00:00+00:00", tz="UTC") ) assert ( year2.actual_end_date == year2.index[-1] == pd.Timestamp("2017-12-22 06:00:00+0000", tz="UTC") ) assert year2.actual_term_length_days == 368 assert year2.complete def test_get_terms_nearest(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] nearest_terms = get_terms( meter_data.index, term_lengths=[365, 365], term_labels=["year1", "year2"], start=datetime(2016, 1, 15, tzinfo=pytz.UTC), method="nearest", ) assert len(nearest_terms) == 2 year1 = nearest_terms[0] assert year1.label == "year1" assert year1.index.shape == (13,) assert year1.index[0] == pd.Timestamp("2016-01-22 06:00:00+0000", tz="UTC") assert year1.index[-1] == pd.Timestamp("2017-01-21 06:00:00+0000", tz="UTC") assert ( year1.target_start_date ==
pd.Timestamp("2016-01-15 00:00:00+0000", tz="UTC")
pandas.Timestamp
# Copyright 1999-2021 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import os import tempfile import time from collections import OrderedDict from datetime import datetime from string import printable import numpy as np import pandas as pd import pytest try: import pyarrow as pa except ImportError: # pragma: no cover pa = None try: import fastparquet except ImportError: # pragma: no cover fastparquet = None try: import sqlalchemy except ImportError: # pragma: no cover sqlalchemy = None from .... import tensor as mt from .... import dataframe as md from ....config import option_context from ....tests.core import require_cudf, require_ray from ....utils import arrow_array_to_objects, lazy_import, pd_release_version from ..dataframe import from_pandas as from_pandas_df from ..series import from_pandas as from_pandas_series from ..index import from_pandas as from_pandas_index, from_tileable from ..from_tensor import dataframe_from_tensor, dataframe_from_1d_tileables from ..from_records import from_records ray = lazy_import("ray") _date_range_use_inclusive = pd_release_version[:2] >= (1, 4) def test_from_pandas_dataframe_execution(setup): # test empty DataFrame pdf = pd.DataFrame() df = from_pandas_df(pdf) result = df.execute().fetch() pd.testing.assert_frame_equal(pdf, result) pdf = pd.DataFrame(columns=list("ab")) df = from_pandas_df(pdf) result = df.execute().fetch() pd.testing.assert_frame_equal(pdf, result) pdf = pd.DataFrame( np.random.rand(20, 30), index=[np.arange(20), np.arange(20, 0, -1)] ) df = from_pandas_df(pdf, chunk_size=(13, 21)) result = df.execute().fetch() pd.testing.assert_frame_equal(pdf, result) def test_from_pandas_series_execution(setup): # test empty Series ps = pd.Series(name="a") series = from_pandas_series(ps, chunk_size=13) result = series.execute().fetch() pd.testing.assert_series_equal(ps, result) series = from_pandas_series(ps) result = series.execute().fetch() pd.testing.assert_series_equal(ps, result) ps = pd.Series( np.random.rand(20), index=[np.arange(20), np.arange(20, 0, -1)], name="a" ) series = from_pandas_series(ps, chunk_size=13) result = series.execute().fetch() pd.testing.assert_series_equal(ps, result) def test_from_pandas_index_execution(setup): pd_index = pd.timedelta_range("1 days", periods=10) index = from_pandas_index(pd_index, chunk_size=7) result = index.execute().fetch() pd.testing.assert_index_equal(pd_index, result) def test_index_execution(setup): rs = np.random.RandomState(0) pdf = pd.DataFrame( rs.rand(20, 10), index=np.arange(20, 0, -1), columns=["a" + str(i) for i in range(10)], ) df = from_pandas_df(pdf, chunk_size=13) # test df.index result = df.index.execute().fetch() pd.testing.assert_index_equal(result, pdf.index) result = df.columns.execute().fetch() pd.testing.assert_index_equal(result, pdf.columns) # df has unknown chunk shape on axis 0 df = df[df.a1 < 0.5] # test df.index result = df.index.execute().fetch() pd.testing.assert_index_equal(result, pdf[pdf.a1 < 0.5].index) s = pd.Series(pdf["a1"], index=pd.RangeIndex(20)) series = from_pandas_series(s, chunk_size=13) # test series.index which has value result = series.index.execute().fetch() pd.testing.assert_index_equal(result, s.index) s = pdf["a2"] series = from_pandas_series(s, chunk_size=13) # test series.index result = series.index.execute().fetch() pd.testing.assert_index_equal(result, s.index) # test tensor raw = rs.random(20) t = mt.tensor(raw, chunk_size=13) result = from_tileable(t).execute().fetch() pd.testing.assert_index_equal(result, pd.Index(raw)) def test_initializer_execution(setup): arr = np.random.rand(20, 30) pdf = pd.DataFrame(arr, index=[np.arange(20), np.arange(20, 0, -1)]) df = md.DataFrame(pdf, chunk_size=(15, 10)) result = df.execute().fetch() pd.testing.assert_frame_equal(pdf, result) df = md.DataFrame(arr, index=md.date_range("2020-1-1", periods=20)) result = df.execute().fetch() pd.testing.assert_frame_equal( result, pd.DataFrame(arr, index=pd.date_range("2020-1-1", periods=20)) ) df = md.DataFrame( {"prices": [100, 101, np.nan, 100, 89, 88]}, index=md.date_range("1/1/2010", periods=6, freq="D"), ) result = df.execute().fetch() pd.testing.assert_frame_equal( result, pd.DataFrame( {"prices": [100, 101, np.nan, 100, 89, 88]}, index=pd.date_range("1/1/2010", periods=6, freq="D"), ), ) s = np.random.rand(20) ps = pd.Series(s, index=[np.arange(20), np.arange(20, 0, -1)], name="a") series = md.Series(ps, chunk_size=7) result = series.execute().fetch() pd.testing.assert_series_equal(ps, result) series = md.Series(s, index=md.date_range("2020-1-1", periods=20)) result = series.execute().fetch() pd.testing.assert_series_equal( result, pd.Series(s, index=pd.date_range("2020-1-1", periods=20)) ) pi = pd.IntervalIndex.from_tuples([(0, 1), (2, 3), (4, 5)]) index = md.Index(md.Index(pi)) result = index.execute().fetch() pd.testing.assert_index_equal(pi, result) def test_index_only(setup): df = md.DataFrame(index=[1, 2, 3]) pd.testing.assert_frame_equal(df.execute().fetch(), pd.DataFrame(index=[1, 2, 3])) s = md.Series(index=[1, 2, 3]) pd.testing.assert_series_equal(s.execute().fetch(), pd.Series(index=[1, 2, 3])) df = md.DataFrame(index=md.Index([1, 2, 3])) pd.testing.assert_frame_equal(df.execute().fetch(), pd.DataFrame(index=[1, 2, 3])) s = md.Series(index=md.Index([1, 2, 3]), dtype=object) pd.testing.assert_series_equal( s.execute().fetch(), pd.Series(index=[1, 2, 3], dtype=object) ) def test_series_from_tensor(setup): data = np.random.rand(10) series = md.Series(mt.tensor(data), name="a") pd.testing.assert_series_equal(series.execute().fetch(), pd.Series(data, name="a")) series = md.Series(mt.tensor(data, chunk_size=3)) pd.testing.assert_series_equal(series.execute().fetch(), pd.Series(data)) series = md.Series(mt.ones((10,), chunk_size=4)) pd.testing.assert_series_equal( series.execute().fetch(), pd.Series(np.ones(10)), ) index_data = np.random.rand(10) series = md.Series( mt.tensor(data, chunk_size=3), name="a", index=mt.tensor(index_data, chunk_size=4), ) pd.testing.assert_series_equal( series.execute().fetch(), pd.Series(data, name="a", index=index_data) ) series = md.Series( mt.tensor(data, chunk_size=3), name="a", index=md.date_range("2020-1-1", periods=10), ) pd.testing.assert_series_equal( series.execute().fetch(), pd.Series(data, name="a", index=pd.date_range("2020-1-1", periods=10)), ) def test_from_tensor_execution(setup): tensor = mt.random.rand(10, 10, chunk_size=5) df = dataframe_from_tensor(tensor) tensor_res = tensor.execute().fetch() pdf_expected = pd.DataFrame(tensor_res) df_result = df.execute().fetch() pd.testing.assert_index_equal(df_result.index, pd.RangeIndex(0, 10)) pd.testing.assert_index_equal(df_result.columns, pd.RangeIndex(0, 10)) pd.testing.assert_frame_equal(df_result, pdf_expected) # test from tensor with unknown shape tensor2 = tensor[tensor[:, 0] < 0.9] df = dataframe_from_tensor(tensor2) df_result = df.execute().fetch() tensor_res = tensor2.execute().fetch() pdf_expected = pd.DataFrame(tensor_res) pd.testing.assert_frame_equal(df_result.reset_index(drop=True), pdf_expected) # test converted with specified index_value and columns tensor2 = mt.random.rand(2, 2, chunk_size=1) df2 = dataframe_from_tensor( tensor2, index=pd.Index(["a", "b"]), columns=pd.Index([3, 4]) ) df_result = df2.execute().fetch() pd.testing.assert_index_equal(df_result.index, pd.Index(["a", "b"])) pd.testing.assert_index_equal(df_result.columns, pd.Index([3, 4])) # test converted from 1-d tensor tensor3 = mt.array([1, 2, 3]) df3 = dataframe_from_tensor(tensor3) result3 = df3.execute().fetch() pdf_expected = pd.DataFrame(np.array([1, 2, 3])) pd.testing.assert_frame_equal(pdf_expected, result3) # test converted from identical chunks tensor4 = mt.ones((10, 10), chunk_size=3) df4 = dataframe_from_tensor(tensor4) result4 = df4.execute().fetch() pdf_expected = pd.DataFrame(tensor4.execute().fetch()) pd.testing.assert_frame_equal(pdf_expected, result4) # from tensor with given index tensor5 = mt.ones((10, 10), chunk_size=3) df5 = dataframe_from_tensor(tensor5, index=np.arange(0, 20, 2)) result5 = df5.execute().fetch() pdf_expected = pd.DataFrame(tensor5.execute().fetch(), index=np.arange(0, 20, 2)) pd.testing.assert_frame_equal(pdf_expected, result5) # from tensor with given index that is a tensor raw7 = np.random.rand(10, 10) tensor7 = mt.tensor(raw7, chunk_size=3) index_raw7 = np.random.rand(10) index7 = mt.tensor(index_raw7, chunk_size=4) df7 = dataframe_from_tensor(tensor7, index=index7) result7 = df7.execute().fetch() pdf_expected = pd.DataFrame(raw7, index=index_raw7) pd.testing.assert_frame_equal(pdf_expected, result7) # from tensor with given index is a md.Index raw10 = np.random.rand(10, 10) tensor10 = mt.tensor(raw10, chunk_size=3) index10 = md.date_range("2020-1-1", periods=10, chunk_size=3) df10 = dataframe_from_tensor(tensor10, index=index10) result10 = df10.execute().fetch() pdf_expected = pd.DataFrame(raw10, index=pd.date_range("2020-1-1", periods=10)) pd.testing.assert_frame_equal(pdf_expected, result10) # from tensor with given columns tensor6 = mt.ones((10, 10), chunk_size=3) df6 = dataframe_from_tensor(tensor6, columns=list("abcdefghij")) result6 = df6.execute().fetch() pdf_expected = pd.DataFrame(tensor6.execute().fetch(), columns=list("abcdefghij")) pd.testing.assert_frame_equal(pdf_expected, result6) # from 1d tensors raws8 = [ ("a", np.random.rand(8)), ("b", np.random.randint(10, size=8)), ("c", ["".join(np.random.choice(list(printable), size=6)) for _ in range(8)]), ] tensors8 = OrderedDict((r[0], mt.tensor(r[1], chunk_size=3)) for r in raws8) raws8.append(("d", 1)) raws8.append(("e", pd.date_range("2020-1-1", periods=8))) tensors8["d"] = 1 tensors8["e"] = raws8[-1][1] df8 = dataframe_from_1d_tileables(tensors8, columns=[r[0] for r in raws8]) result = df8.execute().fetch() pdf_expected = pd.DataFrame(OrderedDict(raws8)) pd.testing.assert_frame_equal(result, pdf_expected) # from 1d tensors and specify index with a tensor index_raw9 = np.random.rand(8) index9 = mt.tensor(index_raw9, chunk_size=4) df9 = dataframe_from_1d_tileables( tensors8, columns=[r[0] for r in raws8], index=index9 ) result = df9.execute().fetch() pdf_expected = pd.DataFrame(OrderedDict(raws8), index=index_raw9) pd.testing.assert_frame_equal(result, pdf_expected) # from 1d tensors and specify index df11 = dataframe_from_1d_tileables( tensors8, columns=[r[0] for r in raws8], index=md.date_range("2020-1-1", periods=8), ) result = df11.execute().fetch() pdf_expected = pd.DataFrame( OrderedDict(raws8), index=pd.date_range("2020-1-1", periods=8) ) pd.testing.assert_frame_equal(result, pdf_expected) def test_from_records_execution(setup): dtype = np.dtype([("x", "int"), ("y", "double"), ("z", "<U16")]) ndarr = np.ones((10,), dtype=dtype) pdf_expected = pd.DataFrame.from_records(ndarr, index=pd.RangeIndex(10)) # from structured array of mars tensor = mt.ones((10,), dtype=dtype, chunk_size=3) df1 = from_records(tensor) df1_result = df1.execute().fetch() pd.testing.assert_frame_equal(df1_result, pdf_expected) # from structured array of numpy df2 = from_records(ndarr) df2_result = df2.execute().fetch() pd.testing.assert_frame_equal(df2_result, pdf_expected) def test_read_csv_execution(setup): with tempfile.TemporaryDirectory() as tempdir: file_path = os.path.join(tempdir, "test.csv") df = pd.DataFrame( np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.int64), columns=["a", "b", "c"], ) df.to_csv(file_path) pdf = pd.read_csv(file_path, index_col=0) r = md.read_csv(file_path, index_col=0) mdf = r.execute().fetch() pd.testing.assert_frame_equal(pdf, mdf) # size_res = self.executor.execute_dataframe(r, mock=True) # assert sum(s[0] for s in size_res) == os.stat(file_path).st_size mdf2 = md.read_csv(file_path, index_col=0, chunk_bytes=10).execute().fetch() pd.testing.assert_frame_equal(pdf, mdf2) mdf = md.read_csv(file_path, index_col=0, nrows=1).execute().fetch() pd.testing.assert_frame_equal(df[:1], mdf) # test names and usecols with tempfile.TemporaryDirectory() as tempdir: file_path = os.path.join(tempdir, "test.csv") df = pd.DataFrame( np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.int64), columns=["a", "b", "c"], ) df.to_csv(file_path, index=False) mdf = md.read_csv(file_path, usecols=["c", "b"]).execute().fetch() pd.testing.assert_frame_equal(pd.read_csv(file_path, usecols=["c", "b"]), mdf) mdf = ( md.read_csv(file_path, names=["a", "b", "c"], usecols=["c", "b"]) .execute() .fetch() ) pd.testing.assert_frame_equal( pd.read_csv(file_path, names=["a", "b", "c"], usecols=["c", "b"]), mdf ) mdf = ( md.read_csv(file_path, names=["a", "b", "c"], usecols=["a", "c"]) .execute() .fetch() ) pd.testing.assert_frame_equal( pd.read_csv(file_path, names=["a", "b", "c"], usecols=["a", "c"]), mdf ) mdf = md.read_csv(file_path, usecols=["a", "c"]).execute().fetch() pd.testing.assert_frame_equal(pd.read_csv(file_path, usecols=["a", "c"]), mdf) # test sep with tempfile.TemporaryDirectory() as tempdir: file_path = os.path.join(tempdir, "test.csv") df = pd.DataFrame( np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), columns=["a", "b", "c"] ) df.to_csv(file_path, sep=";") pdf = pd.read_csv(file_path, sep=";", index_col=0) mdf = md.read_csv(file_path, sep=";", index_col=0).execute().fetch() pd.testing.assert_frame_equal(pdf, mdf) mdf2 = ( md.read_csv(file_path, sep=";", index_col=0, chunk_bytes=10) .execute() .fetch() ) pd.testing.assert_frame_equal(pdf, mdf2) # test missing value with tempfile.TemporaryDirectory() as tempdir: file_path = os.path.join(tempdir, "test.csv") df = pd.DataFrame( { "c1": [np.nan, "a", "b", "c"], "c2": [1, 2, 3, np.nan], "c3": [np.nan, np.nan, 3.4, 2.2], } ) df.to_csv(file_path) pdf = pd.read_csv(file_path, index_col=0) mdf = md.read_csv(file_path, index_col=0).execute().fetch() pd.testing.assert_frame_equal(pdf, mdf) mdf2 = md.read_csv(file_path, index_col=0, chunk_bytes=12).execute().fetch() pd.testing.assert_frame_equal(pdf, mdf2) with tempfile.TemporaryDirectory() as tempdir: file_path = os.path.join(tempdir, "test.csv") index = pd.date_range(start="1/1/2018", periods=100) df = pd.DataFrame( { "col1": np.random.rand(100), "col2": np.random.choice(["a", "b", "c"], (100,)), "col3": np.arange(100), }, index=index, ) df.to_csv(file_path) pdf = pd.read_csv(file_path, index_col=0) mdf = md.read_csv(file_path, index_col=0).execute().fetch() pd.testing.assert_frame_equal(pdf, mdf) mdf2 = md.read_csv(file_path, index_col=0, chunk_bytes=100).execute().fetch() pd.testing.assert_frame_equal(pdf, mdf2) # test nan with tempfile.TemporaryDirectory() as tempdir: file_path = os.path.join(tempdir, "test.csv") df = pd.DataFrame( { "col1": np.random.rand(100), "col2": np.random.choice(["a", "b", "c"], (100,)), "col3": np.arange(100), } ) df.iloc[20:, :] = pd.NA df.to_csv(file_path) pdf = pd.read_csv(file_path, index_col=0) mdf = md.read_csv(file_path, index_col=0, head_lines=10, chunk_bytes=200) result = mdf.execute().fetch() pd.testing.assert_frame_equal(pdf, result) # dtypes is inferred as expected pd.testing.assert_series_equal( mdf.dtypes, pd.Series(["float64", "object", "int64"], index=df.columns) ) # test compression with tempfile.TemporaryDirectory() as tempdir: file_path = os.path.join(tempdir, "test.gzip") index = pd.date_range(start="1/1/2018", periods=100) df = pd.DataFrame( { "col1": np.random.rand(100), "col2": np.random.choice(["a", "b", "c"], (100,)), "col3": np.arange(100), }, index=index, ) df.to_csv(file_path, compression="gzip") pdf = pd.read_csv(file_path, compression="gzip", index_col=0) mdf = md.read_csv(file_path, compression="gzip", index_col=0).execute().fetch() pd.testing.assert_frame_equal(pdf, mdf) mdf2 = ( md.read_csv(file_path, compression="gzip", index_col=0, chunk_bytes="1k") .execute() .fetch() ) pd.testing.assert_frame_equal(pdf, mdf2) # test multiple files for merge_small_file_option in [{"n_sample_file": 1}, None]: with tempfile.TemporaryDirectory() as tempdir: df = pd.DataFrame(np.random.rand(300, 3), columns=["a", "b", "c"]) file_paths = [os.path.join(tempdir, f"test{i}.csv") for i in range(3)] df[:100].to_csv(file_paths[0]) df[100:200].to_csv(file_paths[1]) df[200:].to_csv(file_paths[2]) mdf = ( md.read_csv( file_paths, index_col=0, merge_small_file_options=merge_small_file_option, ) .execute() .fetch() ) pd.testing.assert_frame_equal(df, mdf) mdf2 = ( md.read_csv(file_paths, index_col=0, chunk_bytes=50).execute().fetch() )
pd.testing.assert_frame_equal(df, mdf2)
pandas.testing.assert_frame_equal
import numpy as np import pandas as pd from scipy import signal import matplotlib.pyplot as plt import matplotlib as mpl import seaborn as sns from matplotlib.pyplot import cm from scipy.interpolate import interp1d from .core import spk_time_to_scv, firing_pos_from_scv, smooth from ..base import SPKTAG from ..utils import colorbar from ..utils.plotting import colorline def info_bits(Fr, P): Fr[Fr==0] = 1e-25 MFr = sum(P.ravel()*Fr.ravel()) return sum(P.ravel()*(Fr.ravel()/MFr)*np.log2(Fr.ravel()/MFr)) def info_sparcity(Fr, P): Fr[Fr==0] = 1e-25 MFr = sum(P.ravel()*Fr.ravel()) return sum(P.ravel()*Fr.ravel()**2/MFr**2) class place_field(object): ''' place cells class contains `ts` `pos` `scv` for analysis load_log for behavior load_spktag for spike data get_fields for computing the representaions using spike and behavior data ''' def __init__(self, pos, v_cutoff=5, bin_size=2.5, ts=None, t_step=None): ''' resample the trajectory with new time interval reinitiallize with a new t_step (dt) ''' if ts is None: ts = np.arange(0, pos.shape[0]*t_step, t_step) self.t_step = t_step self.ts, self.pos = ts, pos self._ts_restore, self._pos_restore = ts, pos self.spk_time_array, self.spk_time_dict = None, None self.df = {} # key parameters for initialization (before self.initialize we need to align behavior with ephys) self.bin_size = bin_size self.v_cutoff = v_cutoff self.initialize(bin_size=self.bin_size, v_cutoff=self.v_cutoff) def __call__(self, t_step): ''' resample the trajectory with new time interval reinitiallize with a new t_step (dt) ''' fs = self.fs new_fs = 1/t_step self.t_step = t_step self.ts, self.pos = self.interp_pos(self.ts, self.pos, self.t_step) self.get_speed() def restore(self): self.ts, self.pos = self._ts_restore, self._pos_restore @property def fs(self): self._fs = 1/(self.ts[1]-self.ts[0]) return self._fs def interp_pos(self, t, pos, new_dt): ''' convert irregularly sampled pos into regularly sampled pos N is the dilution sampling factor. N=2 means half of the resampled pos example: >>> new_fs = 200. >>> pc.ts, pc.pos = pc.interp_pos(ts, pos, N=fs/new_fs) ''' dt = t[1] - t[0] x, y = interp1d(t, pos[:,0], fill_value="extrapolate"), interp1d(t, pos[:,1], fill_value="extrapolate") new_t = np.arange(t[0], t[-1], new_dt) new_pos = np.hstack((x(new_t).reshape(-1,1), y(new_t).reshape(-1,1))) return new_t, new_pos def align_with_recording(self, recording_start_time, recording_end_time, replay_offset=0): ''' ts before alignment |--------------------| behavior start: | behavior end: | recording start: |------------ recording end: ------------| replay_offset : | ts after alignment |------------| ''' self.ts += replay_offset # 0 if the ephys is not offset by replaying through neural signal generator self.pos = self.pos[np.logical_and(self.ts>recording_start_time, self.ts<recording_end_time)] self.ts = self.ts[np.logical_and(self.ts>recording_start_time, self.ts<recording_end_time)] self.t_start = self.ts[0] self.t_end = self.ts[-1] self._ts_restore, self._pos_restore = self.ts, self.pos def initialize(self, bin_size, v_cutoff, maze_range=None): self.dt = self.ts[1] - self.ts[0] self.v_cutoff = v_cutoff self.get_maze_range(maze_range) self.get_speed() self.occupation_map(bin_size) self.pos_df = pd.DataFrame(np.hstack((self.ts.reshape(-1,1), self.pos)), columns=['time', 'x', 'y']) # self.binned_pos = (self.pos-self.maze_original)//self.bin_size def get_maze_range(self, maze_range=None): if maze_range is None: self.maze_range = np.vstack((self.pos.min(axis=0), self.pos.max(axis=0))).T self._maze_original = self.maze_range[:,0] # the left, down corner location else: self.maze_range = np.array(maze_range) self._maze_original = self.maze_range[:,0] # the left, down corner location @property def maze_center(self): self._maze_center = self.maze_original[0]+self.maze_length[0]/2, self.maze_original[1]+self.maze_length[1]/2 return self._maze_center @property def maze_original(self): return self._maze_original @property def maze_length(self): return np.diff(self.maze_range, axis=1).ravel() @property def maze_ratio(self): return self.maze_length[0]/self.maze_length[1] @property def binned_pos(self): return (self.pos-self.maze_original)//self.bin_size def binned_pos_2_real_pos(self, binned_pos): pos = binned_pos*self.bin_size + self.maze_original return pos def real_pos_2_binned_pos(self, real_pos, interger_output=True): if interger_output: binned_pos = (real_pos - self.maze_original)//self.bin_size else: binned_pos = (real_pos - self.maze_original)/self.bin_size return binned_pos def get_speed(self): ''' self.ts, self.pos is required ''' self.v = np.linalg.norm(np.diff(self.pos, axis=0), axis=1)/np.diff(self.ts) self.v = np.hstack((self.v[0], self.v)) self.v_smoothed = smooth(self.v.reshape(-1,1), int(np.round(self.fs))).ravel() self.low_speed_idx = np.where(self.v_smoothed < self.v_cutoff)[0] self.df['pos'] = pd.DataFrame(data=np.hstack((self.pos, self.v_smoothed.reshape(-1,1))), index=self.ts, columns=['x','y','v']) self.df['pos'].index.name = 'ts' ''' # check speed: f, ax = plt.subplots(1,1, figsize=(18,8)) offset=20000 plot(ts[offset:1000+offset], v[offset:1000+offset]) plot(ts[offset:1000+offset], v_smoothed[offset:1000+offset]) ax.axhline(5, c='m', ls='-.') ''' # return v_smoothed, v def plot_speed(self, start=None, stop=None, v_cutoff=5): if start is None: start = self.ts[0] if stop is None: stop = self.ts[-1] fig, ax = plt.subplots(1,1, figsize=(18,5)) period = np.logical_and(self.ts>start, self.ts<stop) plt.plot(self.ts[period], self.v[period], alpha=.7) plt.plot(self.ts[period], self.v_smoothed[period], lw=3) ax.axhline(v_cutoff, c='m', ls='-.') sns.despine() return fig def occupation_map(self, bin_size=4, time_cutoff=None): ''' f, ax = plt.subplots(1,2,figsize=(20,9)) ax[0].plot(self.pos[:,0], self.pos[:,1]) ax[0].plot(self.pos[0,0], self.pos[0,1], 'ro') ax[0].plot(self.pos[-1,0], self.pos[-1,1], 'ko') ax[0].pcolormesh(self.X, self.Y, self.O, cmap=cm.hot_r) sns.heatmap(self.O[::-1]*self.dt, annot=False, cbar=False, ax=ax[1]) ''' # if maze_range != 'auto': # self.maze_range = maze_range self.maze_size = np.array([self.maze_range[0][1]-self.maze_range[0][0], self.maze_range[1][1]-self.maze_range[1][0]]) self.bin_size = bin_size self.nbins = self.maze_size/bin_size self.nbins = self.nbins.astype(int) # occupation, self.x_edges, self.y_edges = np.histogram2d(x=self.pos[1:,0], y=self.pos[1:,1], # bins=self.nbins, range=self.maze_range) idx = np.where(self.v_smoothed >= self.v_cutoff)[0] if time_cutoff is not None: idx = np.delete(idx, np.where(self.ts[idx]>time_cutoff)[0]) occupation, self.x_edges, self.y_edges = np.histogram2d(x=self.pos[idx,0], y=self.pos[idx,1], bins=self.nbins, range=self.maze_range) self.X, self.Y = np.meshgrid(self.x_edges, self.y_edges) self.O = occupation.T.astype(int) # Let each row list bins with common y range. self.P = self.O/float(self.O.sum()) # occupation prabability #### parameter used to calculate the fields self.kernlen = 18 self.kernstd = 2.5 def plot_occupation_map(self, cmap=cm.viridis): f, ax = plt.subplots(1,2,figsize=(20,9)) ax[0].plot(self.pos[:,0], self.pos[:,1]) ax[0].plot(self.pos[0,0], self.pos[0,1], 'ro') ax[0].plot(self.pos[-1,0], self.pos[-1,1], 'go') ax[0].pcolormesh(self.X, self.Y, self.O, cmap=cmap) ax[1].pcolormesh(self.X, self.Y, self.O, cmap=cmap) plt.show() @property def map_binned_size(self): return np.array(np.diff(self.maze_range)/self.bin_size, dtype=np.int).ravel()[::-1] @staticmethod def gkern(kernlen=21, std=2): """Returns a 2D Gaussian kernel array.""" gkern1d = signal.gaussian(kernlen, std=std).reshape(kernlen, 1) gkern2d = np.outer(gkern1d, gkern1d) gkern2d /= gkern2d.sum() return gkern2d def _get_field(self, spk_times): spk_ts = np.searchsorted(self.ts, spk_times) - 1 idx = np.setdiff1d(spk_ts, self.low_speed_idx) self.firing_ts = self.ts[spk_ts] #[:,1] self.firing_pos = self.pos[idx] self.firing_map, x_edges, y_edges = np.histogram2d(x=self.firing_pos[:,0], y=self.firing_pos[:,1], bins=self.nbins, range=self.maze_range) self.firing_map = self.firing_map.T np.seterr(divide='ignore', invalid='ignore') self.FR = self.firing_map/self.O/self.dt # self.FR = np.nan_to_num(self.FR) self.FR[np.isnan(self.FR)] = 0 self.FR[np.isinf(self.FR)] = 0 self.FR_smoothed = signal.convolve2d(self.FR, self.gkern(self.kernlen, self.kernstd), boundary='symm', mode='same') return self.FR_smoothed def firing_map_from_scv(self, scv, t_step, section=[0,1]): ''' firing heat map constructed from spike count vector (scv) and position ''' # assert(scv.shape[1]==self.pos.shape[0]) scv = scv.T.copy() n_neurons, total_bin = scv.shape valid_bin = np.array(np.array(section)*total_bin, dtype=np.int) firing_map_smoothed = np.zeros((n_neurons, *self.map_binned_size)) for neuron_id in range(n_neurons): firing_pos = firing_pos_from_scv(scv, self.pos, neuron_id, valid_bin) firing_map, x_edges, y_edges = np.histogram2d(x=firing_pos[:,0], y=firing_pos[:,1], bins=self.nbins, range=self.maze_range) firing_map = firing_map.T/self.O/t_step firing_map[np.isnan(firing_map)] = 0 firing_map[np.isinf(firing_map)] = 0 firing_map_smoothed[neuron_id] = signal.convolve2d(firing_map, self.gkern(self.kernlen, self.kernstd), boundary='symm', mode='same') firing_map_smoothed[firing_map_smoothed==0] = 1e-25 self.fields = firing_map_smoothed self.n_fields = self.fields.shape[0] self.n_units = self.n_fields def get_field(self, spk_time_dict, neuron_id, start=None, end=None): ''' f, ax = plt.subplots(1,2,figsize=(20,9)) ax[0].plot(self.pos[:,0], self.pos[:,1]) ax[0].plot(self.firing_pos[:,0], self.firing_pos[:,1], 'mo', alpha=0.5) # ax[0].pcolormesh(self.X, self.Y, self.FR, cmap=cm.hot) pc = ax[1].pcolormesh(X, Y, FR_GAU, cmap=cm.hot) colorbar(pc, ax=ax[1], label='Hz') ''' spk_times = spk_time_dict[neuron_id] ### for cross-validation and field stability check ### calculate representation from `start` to `end` if start is not None and end is not None: spk_times = spk_times[np.logical_and(start<=spk_times, spk_times<end)] self._get_field(spk_times) def _plot_field(self, trajectory=False, cmap='viridis', marker=True, alpha=0.5, markersize=5, markercolor='m'): f, ax = plt.subplots(1,1,figsize=(13,10)); pcm = ax.pcolormesh(self.X, self.Y, self.FR_smoothed, cmap=cmap); plt.colorbar(pcm, ax=ax, label='Hz'); if trajectory: ax.plot(self.pos[:,0], self.pos[:,1], alpha=0.8); ax.plot(self.pos[0,0], self.pos[0,1], 'ro'); ax.plot(self.pos[-1,0],self.pos[-1,1], 'ko'); if marker: ax.plot(self.firing_pos[:,0], self.firing_pos[:,1], 'o', c=markercolor, alpha=alpha, markersize=markersize); return f,ax def get_fields(self, spk_time_dict=None, start=None, end=None, v_cutoff=None, rank=True): ''' spk_time_dict is dictionary start from 0: (each spike train is a numpy array) {0: spike trains for neuron 0 1: spike trains for neuron 1 2: spike trains for neuron 2 ... N: spike trains for neuron N} ''' if spk_time_dict is None: spk_time_dict = self.spk_time_dict self.n_fields = len(spk_time_dict.keys()) self.n_units = self.n_fields self.fields = np.zeros((self.n_fields, self.O.shape[0], self.O.shape[1])) self.firing_pos_dict = {} if v_cutoff is None: self.get_speed() else: self.v_cutoff = v_cutoff self.get_speed() for i in spk_time_dict.keys(): ### get place fields from neuron i self.get_field(spk_time_dict, i, start, end) self.fields[i] = self.FR_smoothed self.firing_pos_dict[i] = self.firing_pos self.fields[i] = self.FR_smoothed ### metrics for place fields self.fields[self.fields==0] = 1e-25 if rank is True: self.rank_fields(metric_name='spatial_bit_smoothed_spike') def plot_fields(self, idx=None, nspks=None, N=10, size=3, cmap='hot', marker=False, markersize=1, alpha=0.8, order=False): ''' order: if True will plot with ranked fields according to the metric ''' if idx is None: # plot all fields nrow = self.n_fields/N + 1 ncol = N fig = plt.figure(figsize=(ncol*size, nrow*size)); # plt.tight_layout(); plt.subplots_adjust(wspace=None, hspace=None); for i in range(self.n_fields): ax = fig.add_subplot(nrow, ncol, i+1); if order: field_id = self.sorted_fields_id[i] else: field_id = i pcm = ax.pcolormesh(self.X, self.Y, self.fields[field_id], cmap=cmap); ax.set_title('#{0}: {1:.2f}Hz'.format(field_id, self.fields[field_id].max()), fontsize=20) ax.set_xticks([]) ax.set_yticks([]) ax.set_aspect(self.maze_ratio) if marker: ax.plot(self.firing_pos_dict[field_id][:,0], self.firing_pos_dict[field_id][:,1], 'mo', markersize=markersize, alpha=alpha) plt.grid(False) plt.show(); else: nrow = len(idx)/N + 1 ncol = N fig = plt.figure(figsize=(ncol*size, nrow*size)); plt.subplots_adjust(wspace=None, hspace=None); for i, field_id in enumerate(idx): ax = fig.add_subplot(nrow, ncol, i+1); pcm = ax.pcolormesh(self.X, self.Y, self.fields[field_id], cmap=cmap); ax.set_title('#{0}: {1:.2f}Hz'.format(field_id, self.fields[field_id].max())) ax.set_xticks([]) ax.set_yticks([]) if nspks is not None: ax.set_xlabel('{} spikes'.format(nspks[i])) if marker: ax.plot(self.firing_pos_dict[field_id][:,0], self.firing_pos_dict[field_id][:,1], 'mo', markersize=markersize, alpha=alpha) ax.set_aspect(self.maze_ratio) plt.grid(False) plt.show(); return fig def plot_field(self, i=0, cmap=None, alpha=.3, markersize=10, markercolor='#66f456', trajectory=True): ''' plot ith place field with information in detail, only called after `pc.get_fields(pc.spk_time_dict, rank=True)` example: @interact(i=(0, pc.n_units-1, 1)) def view_fields(i=0): pc.plot_field(i) ''' if cmap is None: cmap = sns.cubehelix_palette(as_cmap=True, dark=0.05, light=1.2, reverse=True); neuron_id = self.sorted_fields_id[i] self._get_field(self.spk_time_dict[neuron_id]) f,ax = self._plot_field(cmap=cmap, alpha=alpha, markersize=markersize, markercolor=markercolor, trajectory=trajectory); n_bits = self.metric['spatial_bit_spike'][neuron_id] p_rate = self.metric['peak_rate'][neuron_id] ax.set_title('neuron {0}: max firing rate {1:.2f}Hz, {2:.3f} bits'.format(neuron_id, p_rate, n_bits)) return f,ax def rank_fields(self, metric_name): ''' metric_name: spatial_bit_spike, spatial_bit_smoothed_spike, spatial_sparcity ''' self.metric = {} self.metric['peak_rate'] = np.zeros((self.n_fields,)) self.metric['spatial_bit_spike'] = np.zeros((self.n_fields,)) self.metric['spatial_bit_smoothed_spike'] = np.zeros((self.n_fields,)) self.metric['spatial_sparcity'] = np.zeros((self.n_fields,)) for neuron_id in range(self.fields.shape[0]): self.metric['peak_rate'][neuron_id] = self.fields[neuron_id].max() self.metric['spatial_bit_spike'][neuron_id] = info_bits(self.fields[neuron_id], self.P) self.metric['spatial_bit_smoothed_spike'][neuron_id] = info_bits(self.fields[neuron_id], self.P) self.metric['spatial_sparcity'][neuron_id] = info_sparcity(self.fields[neuron_id], self.P) self.sorted_fields_id = np.argsort(self.metric[metric_name])[::-1] def raster(self, ls, colorful=False, xlim=None, ylim=None): color_list = ['C{}'.format(i) for i in range(self.n_units)] fig, ax = plt.subplots(1,1, figsize=(15,10)); if colorful: ax.eventplot(positions=self.spk_time_array, colors=color_list, ls=ls, alpha=.2); else: ax.eventplot(positions=self.spk_time_array, colors='k', ls=ls, alpha=.2); if xlim is not None: ax.set_xlim(xlim); if ylim is not None: ax.set_ylim(ylim); ax.set_ylabel('unit') ax.set_xlabel('time (secs)') sns.despine() return fig def load_spkdf(self, df_file, fs=25000., replay_offset=0, show=False): ''' core function: load spike dataframe in spktag folder (to get Spikes) This function also align ephys with behavior and compute the place fields of each found units in the `df_file` Example: ------------ pc = place_field(pos=pos, ts=ts) pc.load_spkdf(spktag_file_df) pc.report() ''' print('--------------- place cell object: load spktag dataframe ---------------\r\n') try: self.spike_df = pd.read_pickle(df_file) self.spike_df['frame_id'] /= fs self.spike_df.set_index('spike_id', inplace=True) self.spike_df.index = self.spike_df.index.astype(int) self.spike_df.index -= self.spike_df.index.min() self.df['spk'] = self.spike_df self.spk_time_dict = {i: self.spike_df.loc[i]['frame_id'].to_numpy() for i in self.spike_df.index.unique().sort_values()} self.df['spk'].reset_index(inplace=True) self.n_units = np.sort(self.spike_df.spike_id.unique()).shape[0] self.n_groups = np.sort(self.spike_df.group_id.unique()).shape[0] print('1. Load the spktag dataframe\r\n {} units are found in {} electrode-groups\r\n'.format(self.n_units, self.n_groups)) except: print('! Fail to load spike dataframe') start, end = self.spike_df.frame_id.iloc[0], self.spike_df.frame_id.iloc[-1] self.align_with_recording(start, end, replay_offset) # after align_with_recording we have the correct self.ts and self.pos self.total_spike = len(self.spike_df) self.total_time = self.ts[-1] - self.ts[0] self.mean_mua_firing_rate = self.total_spike/self.total_time self.dt = np.diff(self.ts)[0]*1e3 print('2. Align the behavior and ephys data with {0} offset\r\n starting at {1:.3f} secs, end at {2:.3f} secs, step at {3:.3f} ms\r\n all units mount up to {4:.3f} spikes/sec\r\n'.format(replay_offset, start, end, self.dt, self.mean_mua_firing_rate)) print('3. Calculate the place field during [{},{}] secs\r\n spatially bin the maze, calculate speed and occupation_map with {}cm bin_size\r\n dump spikes when speed is lower than {}cm/secs\r\n'.format(start, end, self.bin_size, self.v_cutoff)) self.initialize(bin_size=self.bin_size, v_cutoff=self.v_cutoff) self.get_fields(self.spk_time_dict, rank=True) try: self.df['spk']['x'] = np.interp(self.df['spk']['frame_id'], self.ts, self.pos[:,0]) self.df['spk']['y'] = np.interp(self.df['spk']['frame_id'], self.ts, self.pos[:,1]) self.df['spk']['v'] = np.interp(self.df['spk']['frame_id'], self.ts, self.v_smoothed) print('4. Interpolate the position and speed to each spikes, check `pc.spike_df`\r\n') except: print('! Fail to fill the position and speed to the spike dataframe') if show is True: self.field_fig = self.plot_fields(); print('------------------------------------------------------------------------') def report(self): print('occupation map from {0:.2f} to {1:.2f}, with speed cutoff:{2:.2f}'.format(self.ts[0], self.ts[-1], self.v_cutoff)) self.plot_occupation_map(); self.plot_speed(self.ts[0], self.ts[-1]//10, v_cutoff=self.v_cutoff); self.plot_fields(N=10, cmap='hot', order=True); def load_spktag(self, spktag_file, show=False): ''' 1. load spktag 2. extract unit time stamps 3. calculate the place fields 4. rank based on its information bit 5. (optional) plot place fields of each unit check pc.n_units, pc.n_fields and pc.metric after this ''' spktag = SPKTAG() spktag.load(spktag_file) self.spktag_file = spktag_file self.spk_time_array, self.spk_time_dict = spktag.spk_time_array, spktag.spk_time_dict self.get_fields(self.spk_time_dict, rank=True) if show is True: self.field_fig = self.plot_fields(); def get_scv(self, t_window): ''' The offline binner to calculate the spike count vector (scv) run `pc.load_spktag(spktag_file)` first t_window is the window to count spikes t_step defines the sliding window size ''' # if t_step is None: self.scv = spk_time_to_scv(self.spk_time_dict, t_window=t_window, ts=self.ts) self.mua_count = self.scv.sum(axis=1) # scv = scv[self.sorted_fields_id] return self.scv # else: # new_ts = np.arange(self.t_start, self.t_end, t_step) # scv = spk_time_to_scv(self.spk_time_dict, delta_t=t_window, ts=new_ts) # # scv = scv[self.sorted_fields_id] # x, y = interp1d(self.ts, self.pos[:,0], fill_value="extrapolate"), interp1d(self.ts, self.pos[:,1], fill_value="extrapolate") # new_pos = np.hstack((x(new_ts).reshape(-1,1), y(new_ts).reshape(-1,1))) # return scv, new_ts, new_pos def plot_epoch(self, time_range, figsize=(5,5), marker=['ro', 'wo'], markersize=15, alpha=.5, cmap=None, legend_loc=None): ''' plot trajactory within time_range: [[a0,b0],[a1,b1]...] with color code indicate the speed. ''' gs = dict(height_ratios=[20,1]) fig, ax = plt.subplots(2,1,figsize=(5, 5), gridspec_kw=gs) for i, _time_range in enumerate(time_range): # ith epoches epoch = np.where((self.ts<_time_range[1]) & (self.ts>=_time_range[0]))[0] if cmap is None: cmap = mpl.cm.cool norm = mpl.colors.Normalize(vmin=self.v_smoothed.min(), vmax=self.v_smoothed.max()) ax[0] = colorline(x=self.pos[epoch, 0], y=self.pos[epoch, 1], z=self.v_smoothed[epoch]/self.v_smoothed.max(), #[0,1] cmap=cmap, ax=ax[0]) if i ==0: ax[0].plot(self.pos[epoch[-1], 0], self.pos[epoch[-1], 1], marker[0], markersize=markersize, alpha=alpha, label='end') ax[0].plot(self.pos[epoch[0], 0], self.pos[epoch[0], 1], marker[1], markersize=markersize, alpha=alpha, label='start') else: ax[0].plot(self.pos[epoch[-1], 0], self.pos[epoch[-1], 1], marker[0], markersize=markersize, alpha=alpha) ax[0].plot(self.pos[epoch[0], 0], self.pos[epoch[0], 1], marker[1], markersize=markersize, alpha=alpha) ax[0].set_xlim(self.maze_range[0]); ax[0].set_ylim(self.maze_range[1]); # ax[0].set_title('trajectory in [{0:.2f},{1:.2f}] secs'.format(_time_range[0], _time_range[1])) if legend_loc is not None: ax[0].legend(loc=legend_loc) cb = mpl.colorbar.ColorbarBase(ax[1], cmap=cmap, norm=norm, orientation='horizontal') cb.set_label('speed (cm/sec)') return ax def to_file(self, filename): df_all_in_one =
pd.concat([self.pos_df, self.spike_df], sort=True)
pandas.concat
"""Tests for Table Schema integration.""" import json from collections import OrderedDict import numpy as np import pandas as pd import pytest from pandas import DataFrame from pandas.core.dtypes.dtypes import ( PeriodDtype, CategoricalDtype, DatetimeTZDtype) from pandas.io.json.table_schema import ( as_json_table_type, build_table_schema, make_field, set_default_names) class TestBuildSchema(object): def setup_method(self, method): self.df = DataFrame( {'A': [1, 2, 3, 4], 'B': ['a', 'b', 'c', 'c'], 'C': pd.date_range('2016-01-01', freq='d', periods=4), 'D': pd.timedelta_range('1H', periods=4, freq='T'), }, index=pd.Index(range(4), name='idx')) def test_build_table_schema(self): result = build_table_schema(self.df, version=False) expected = { 'fields': [{'name': 'idx', 'type': 'integer'}, {'name': 'A', 'type': 'integer'}, {'name': 'B', 'type': 'string'}, {'name': 'C', 'type': 'datetime'}, {'name': 'D', 'type': 'duration'}, ], 'primaryKey': ['idx'] } assert result == expected result = build_table_schema(self.df) assert "pandas_version" in result def test_series(self): s = pd.Series([1, 2, 3], name='foo') result = build_table_schema(s, version=False) expected = {'fields': [{'name': 'index', 'type': 'integer'}, {'name': 'foo', 'type': 'integer'}], 'primaryKey': ['index']} assert result == expected result = build_table_schema(s) assert 'pandas_version' in result def test_series_unnamed(self): result = build_table_schema(pd.Series([1, 2, 3]), version=False) expected = {'fields': [{'name': 'index', 'type': 'integer'}, {'name': 'values', 'type': 'integer'}], 'primaryKey': ['index']} assert result == expected def test_multiindex(self): df = self.df.copy() idx = pd.MultiIndex.from_product([('a', 'b'), (1, 2)]) df.index = idx result = build_table_schema(df, version=False) expected = { 'fields': [{'name': 'level_0', 'type': 'string'}, {'name': 'level_1', 'type': 'integer'}, {'name': 'A', 'type': 'integer'}, {'name': 'B', 'type': 'string'}, {'name': 'C', 'type': 'datetime'}, {'name': 'D', 'type': 'duration'}, ], 'primaryKey': ['level_0', 'level_1'] } assert result == expected df.index.names = ['idx0', None] expected['fields'][0]['name'] = 'idx0' expected['primaryKey'] = ['idx0', 'level_1'] result = build_table_schema(df, version=False) assert result == expected class TestTableSchemaType(object): def test_as_json_table_type_int_data(self): int_data = [1, 2, 3] int_types = [np.int, np.int16, np.int32, np.int64] for t in int_types: assert as_json_table_type(np.array( int_data, dtype=t)) == 'integer' def test_as_json_table_type_float_data(self): float_data = [1., 2., 3.] float_types = [np.float, np.float16, np.float32, np.float64] for t in float_types: assert as_json_table_type(np.array( float_data, dtype=t)) == 'number' def test_as_json_table_type_bool_data(self): bool_data = [True, False] bool_types = [bool, np.bool] for t in bool_types: assert as_json_table_type(np.array( bool_data, dtype=t)) == 'boolean' def test_as_json_table_type_date_data(self): date_data = [pd.to_datetime(['2016']), pd.to_datetime(['2016'], utc=True), pd.Series(pd.to_datetime(['2016'])), pd.Series(
pd.to_datetime(['2016'], utc=True)
pandas.to_datetime
from datetime import date from typing import Dict, List, Optional, Union try: from sklearn.base import TransformerMixin # type: ignore from sklearn.exceptions import NotFittedError # type: ignore except ImportError: TransformerMixin = object NotFittedError = Exception import itertools import uuid import numpy as np import pandas as pd from upgini.dataset import Dataset from upgini.metadata import ( SYSTEM_FAKE_DATE, SYSTEM_RECORD_ID, FileColumnMeaningType, ModelTaskType, SearchKey, ) from upgini.search_task import SearchTask from upgini.utils.format import Format class FeaturesEnricher(TransformerMixin): # type: ignore """Retrieve external features via Upgini that are most relevant to predict your target. Parameters ---------- search_keys: dict of str->SearchKey or int->SearchKey Dictionary with column names or indices mapping to key types. Each of this columns will be used as a search key to find features. keep_input: bool, optional (default=False) If True, copy original input columns to the output dataframe. accurate_model: bool, optional (default=False) If True, search takes longer but returned metrics may be more accurate. api_key: str, optional (default=None) Token to authorize search requests. You can get it on https://profile.upgini.com/. If not specified then read the value from the environment variable UPGINI_API_KEY. endpoint: str, optional (default=None) URL of Upgini API where search requests are submitted. If not specified then used the default value. Please don't overwrite it if you are unsure. search_id: str, optional (default=None) Identifier of fitted enricher. If not specified transform could be called only after fit or fit_transform call """ TARGET_NAME = "target" EVAL_SET_INDEX = "eval_set_index" _search_task: Optional[SearchTask] = None passed_features: List[str] = [] def __init__( self, search_keys: Union[Dict[str, SearchKey], Dict[int, SearchKey]], keep_input: bool = False, accurate_model: bool = False, api_key: Optional[str] = None, endpoint: Optional[str] = None, search_id: Optional[str] = None, ): if len(search_keys) == 0: if search_id: raise ValueError("To transform with search_id please set search_keys to the value used for fitting.") else: raise ValueError("Key columns should be marked up by search_keys.") self.search_keys = search_keys self.keep_input = keep_input self.accurate_model = accurate_model self.endpoint = endpoint self.api_key = api_key if search_id: search_task = SearchTask( search_id, endpoint=self.endpoint, api_key=self.api_key, ) print("Checking existing search...") self._search_task = search_task.poll_result(quiet=True) print("Search found. Now you can use transform") def _inner_fit( self, X: pd.DataFrame, y: Union[pd.Series, np.ndarray, list] = None, eval_set: Optional[List[tuple]] = None, extract_features: bool = False, **fit_params, ) -> pd.DataFrame: if not isinstance(X, pd.DataFrame): raise TypeError(f"Only pandas.DataFrame supported for X, but {type(X)} was passed.") if not isinstance(y, pd.Series) and not isinstance(y, np.ndarray) and not isinstance(y, list): raise TypeError(f"Only pandas.Series or numpy.ndarray or list supported for y, but {type(y)} was passed.") if isinstance(y, pd.Series): y_array = y.values else: y_array = y if X.shape[0] != len(y_array): raise ValueError("X and y should be the same size") validated_search_keys = self._prepare_search_keys(X) search_keys = [] for L in range(1, len(validated_search_keys.keys()) + 1): for subset in itertools.combinations(validated_search_keys.keys(), L): search_keys.append(subset) meaning_types = { **validated_search_keys.copy(), **{str(c): FileColumnMeaningType.FEATURE for c in X.columns if c not in validated_search_keys.keys()}, } df = X.copy() df[self.TARGET_NAME] = y_array df.reset_index(drop=True, inplace=True) meaning_types[self.TARGET_NAME] = FileColumnMeaningType.TARGET df[SYSTEM_RECORD_ID] = df.apply(lambda row: hash(tuple(row)), axis=1) meaning_types[SYSTEM_RECORD_ID] = FileColumnMeaningType.SYSTEM_RECORD_ID df_without_eval_set = df.copy() if eval_set is not None and len(eval_set) > 0: df[self.EVAL_SET_INDEX] = 0 meaning_types[self.EVAL_SET_INDEX] = FileColumnMeaningType.EVAL_SET_INDEX for idx, eval_pair in enumerate(eval_set): if len(eval_pair) != 2: raise TypeError( f"Invalid size of eval_set pair: {len(eval_pair)}. " "It should contain tuples of 2 elements: X and y." ) eval_X = eval_pair[0] eval_y = eval_pair[1] if not isinstance(eval_X, pd.DataFrame): raise TypeError( f"Only pandas.DataFrame supported for X in eval_set, but {type(eval_X)} was passed." ) if ( not isinstance(eval_y, pd.Series) and not isinstance(eval_y, np.ndarray) and not isinstance(eval_y, list) ): raise TypeError( "pandas.Series or numpy.ndarray or list supported for y in eval_set, " f"but {type(eval_y)} was passed." ) eval_df = eval_X.copy() eval_df[self.TARGET_NAME] = pd.Series(eval_y) eval_df[SYSTEM_RECORD_ID] = eval_df.apply(lambda row: hash(tuple(row)), axis=1) eval_df[self.EVAL_SET_INDEX] = idx + 1 df = pd.concat([df, eval_df], ignore_index=True) if FileColumnMeaningType.DATE not in meaning_types.values(): df[SYSTEM_FAKE_DATE] = date.today() search_keys.append((SYSTEM_FAKE_DATE,)) meaning_types[SYSTEM_FAKE_DATE] = FileColumnMeaningType.DATE dataset = Dataset("tds_" + str(uuid.uuid4()), df=df, endpoint=self.endpoint, api_key=self.api_key) dataset.meaning_types = meaning_types dataset.search_keys = search_keys self.passed_features = [ column for column, meaning_type in meaning_types.items() if meaning_type == FileColumnMeaningType.FEATURE ] self._search_task = dataset.search(extract_features=extract_features, accurate_model=self.accurate_model) self.__show_metrics() return df_without_eval_set def fit( self, X: pd.DataFrame, y: Union[pd.Series, np.ndarray, List], eval_set: Optional[List[tuple]] = None, **fit_params, ): self._inner_fit(X, y, eval_set, False, **fit_params) def fit_transform( self, X: pd.DataFrame, y: Union[pd.Series, np.ndarray, List], eval_set: Optional[List[tuple]] = None, **fit_params, ) -> pd.DataFrame: df = self._inner_fit(X, y, eval_set, extract_features=True, **fit_params) etalon_columns = X.columns + self.TARGET_NAME if self._search_task is None: raise RuntimeError("Fit wasn't completed successfully.") print("Executing transform step...") result_features = self._search_task.get_all_initial_raw_features() if result_features is None: raise RuntimeError("Search engine crashed on this request.") if self.keep_input: result = pd.merge( df.drop(columns=self.TARGET_NAME), result_features, left_on=SYSTEM_RECORD_ID, right_on=SYSTEM_RECORD_ID, how="left", ) else: result = pd.merge(df, result_features, left_on=SYSTEM_RECORD_ID, right_on=SYSTEM_RECORD_ID, how="left") result.drop(columns=etalon_columns, inplace=True) result.index = X.index if SYSTEM_RECORD_ID in result.columns: result.drop(columns=SYSTEM_RECORD_ID, inplace=True) if SYSTEM_FAKE_DATE in result.columns: result.drop(columns=SYSTEM_FAKE_DATE, inplace=True) return result def transform(self, X: pd.DataFrame) -> pd.DataFrame: if self._search_task is None: raise NotFittedError("`fit` or `fit_transform` should be called before `transform`.") if not isinstance(X, pd.DataFrame): raise TypeError(f"Only pandas.DataFrame supported for X, but {type(X)} was passed.") validated_search_keys = self._prepare_search_keys(X) search_keys = [] for L in range(1, len(validated_search_keys.keys()) + 1): for subset in itertools.combinations(validated_search_keys.keys(), L): search_keys.append(subset) meaning_types = validated_search_keys.copy() feature_columns = [column for column in X.columns if column not in meaning_types.keys()] df = X.copy() df = df.reset_index(drop=True) if FileColumnMeaningType.DATE not in meaning_types.values(): df[SYSTEM_FAKE_DATE] = date.today() search_keys.append((SYSTEM_FAKE_DATE,)) meaning_types[SYSTEM_FAKE_DATE] = FileColumnMeaningType.DATE df[SYSTEM_RECORD_ID] = df.apply(lambda row: hash(tuple(row[meaning_types.keys()])), axis=1) meaning_types[SYSTEM_RECORD_ID] = FileColumnMeaningType.SYSTEM_RECORD_ID # Don't pass features in backend on transform if feature_columns: df_without_features = df.drop(columns=feature_columns) else: df_without_features = df dataset = Dataset( "sample_" + str(uuid.uuid4()), df=df_without_features, endpoint=self.endpoint, api_key=self.api_key ) dataset.meaning_types = meaning_types dataset.search_keys = search_keys validation_task = self._search_task.validation(dataset, extract_features=True) etalon_columns = list(self.search_keys.keys()) print("Executing transform step...") result_features = validation_task.get_all_validation_raw_features() if result_features is None: raise RuntimeError("Search engine crashed on this request.") if not self.keep_input: result = pd.merge( df_without_features, result_features, left_on=SYSTEM_RECORD_ID, right_on=SYSTEM_RECORD_ID, how="left" ) result.drop(columns=etalon_columns, inplace=True) else: result =
pd.merge(df, result_features, left_on=SYSTEM_RECORD_ID, right_on=SYSTEM_RECORD_ID, how="left")
pandas.merge
#!/usr/bin/env python # -*- coding: utf-8 -*- "Merge meteogram files" import re import glob import functools import itertools from collections import OrderedDict, defaultdict, namedtuple import netCDF4 import numpy as np import pandas as pd var_signature = namedtuple('var_signature', 'name dtype dimensions') time_signature = var_signature('time', 'i4', ('time',)) fill_value = {'_FillValue': 9.96920996839e+36} time_metadata = OrderedDict([ ("standard_name", "time"), ("long_name", "time"), ("units", "seconds since"), ("calendar", "proleptic_gregorian"), ("axis", "T"), ]) group_mapping = OrderedDict([ # group_key -> primary_key ('station_', 'station_name'), ('var_', 'var_name'), ('sfcvar_', 'sfcvar_name'), ]) class OrderedDefaultDict(OrderedDict, defaultdict): "default dict that keeps the order" def __init__(self, factory, *args, **kwargs): defaultdict.__init__(self, factory) OrderedDict.__init__(self, *args, **kwargs) def memoize(func): cache = func.cache = {} @functools.wraps(func) def wrapper(*args, **kwargs): key = (args, frozenset(kwargs.items())) if key not in cache: cache[key] = func(*args, **kwargs) return cache[key] return wrapper def index2slice(indices, *more_indices): def inc(i): return i + 1 def inc_deduct(values, counter=itertools.count()): c = next(counter) if isinstance(values, int): return values - c return [(val - c) for val in values] if more_indices: indices = zip(indices, *more_indices) slices = [] for (_, g) in itertools.groupby(indices, inc_deduct): values = list(g) end = values.pop() if values: start = values.pop(0) if isinstance(start, tuple): slices.append( [slice(s, e) for (s, e) in zip(start, map(inc, end))]) else: slices.append(slice(start, inc(end))) else: slices.append(end) if more_indices: slices = zip(*slices) return slices def empty(*items): if not items: return True result = [] for item in items: if isinstance(item, (pd.Series, pd.DataFrame)): result.append(False if not item.empty else True) elif isinstance(item, (pd.Index, np.ndarray)): result.append(False if item.size else True) else: result.append(False if item else True) return all(result) def merge_dimensions(ncids): ncids = sorted(ncids, key=lambda nc: len(nc.dimensions), reverse=True) dims = OrderedDefaultDict(list) for nc in ncids: for d in nc.dimensions.values(): dims[d.name].append(None if d.isunlimited() else len(d)) for name, val in dims.items(): dims[name] = max(val) return OrderedDict(dims) def name_dtype_dimension(ncids, varlist): ncids = sorted(ncids, key=lambda nc: len(nc.variables), reverse=True) varlist = OrderedDict.fromkeys(varlist) for name in varlist: for nc in ncids: if name in nc.variables: obj = nc.variables[name] varlist[name] = var_signature( obj.name, obj.dtype, obj.dimensions) break varlist['time'] = time_signature for name, val in varlist.items(): if val is None: varlist.popitem(name) return varlist def _ensure_time_in_variable_list(varlist): if 'time' not in varlist: time_index = varlist.index('date') - 1 varlist.insert(time_index, 'time') return varlist def merge_variable_names(ncids): ncids = sorted(ncids, key=lambda nc: len(nc.variables), reverse=True) names = [name for nc in ncids for name in nc.variables] names = list(pd.Series(names, names).drop_duplicates()) varlist = [] for name in group_mapping: varlist.extend(filter(lambda x: x.startswith(name), names)) rest = pd.Index(names).difference(pd.Index(varlist)) varlist.extend(filter(lambda x: x in rest, names)) varlist = _ensure_time_in_variable_list(varlist) varlist = name_dtype_dimension(ncids, varlist) return varlist @memoize def group_primary_ds(ncid, key): valid_keys = group_mapping.values() assert key in valid_keys, "valid keys: {}".format(valid_keys) if key not in ncid.variables: return pd.Series([]) values = netCDF4.chartostring(ncid.variables[key][:]) indices, values = zip(*[ (ind, val) for (ind, val) in enumerate(values) if val]) indices = np.array(indices) values = np.array(values) return pd.Series(indices, index=values, name=key) def merged_group_primary_ds(ncids, key): valid_keys = group_mapping.values() assert key in valid_keys, "valid keys: {}".format(valid_keys) series = [group_primary_ds(nc, key) for nc in ncids] series.sort(key=len, reverse=True) combined = pd.concat(series).drop_duplicates().index return pd.Series(np.arange(len(combined)), index=combined, name=key) def ncattrs(ncids): ncids = sorted(ncids, key=lambda nc: len(nc.variables), reverse=True) attrs = OrderedDefaultDict(OrderedDict) for nc in ncids: for name in nc.variables: attrs[name].update(nc[name].__dict__) attrs['time'].update(time_metadata) if 'values' in attrs: attrs['values'].update(fill_value) if 'sfcvalues' in attrs: attrs['sfcvalues'].update(fill_value) return attrs @memoize def parse_date(ncid): "Fix typo in date if applicable." dates = netCDF4.chartostring(ncid['date'][:]) _dates = pd.to_datetime(dates).to_series() dif = _dates.diff() mask = dif < pd.Timedelta(-1, 'ns') if not mask.any(): # return pd.to_datetime(dates) return pd.Series(np.arange(len(_dates)), index=_dates, name='date') tofix = dif[mask].abs() print("date typos", list(_dates[mask])) freq = dif.dropna().value_counts().argmax() correction = _dates[mask] + freq + tofix print("corrections", list(correction)) _dates[mask] = correction # return pd.to_datetime(_dates.values) return pd.Series(np.arange(len(_dates)), index=_dates, name='date') def dates_as_array_of_strings(dates, ncids): ncid = ncids if isinstance(ncids, (list, tuple, set, dict)): ncid = ncids[0] ndates, numchars = ncid.variables['date'].shape stringtoarr = netCDF4.stringtoarr if getattr(dates, 'index', None) is None: dates_obj = dates else: dates_obj = dates.index dates_formatted = dates_obj.strftime("%Y%m%dT%H%M%SZ") dates_str = np.vstack( [stringtoarr(d, NUMCHARS=numchars) for d in dates_formatted]) return dates_str def merge_parse_date(ncids, fullday_timesteps=True): """ This does not literally merge the dates from files as is. It looks at the total span of the combined dates and produces a time series with a uniform frequency. If the datasets have varying frequency, it opts for maximum occuring frequency. """ dates = [parse_date(nc) for nc in ncids] freq = max([d.index.to_series().diff().dropna().value_counts().argmax() for d in dates]) dates_min = min([d.index.min() for d in dates]) dates_max = max([d.index.max() for d in dates]) if fullday_timesteps: if dates_min.time(): dates_min = pd.Timestamp(dates_min.date()) if dates_max.time(): dates_max = dates_max.date() + pd.Timedelta('1 day') dates = pd.date_range(dates_min, dates_max, freq=freq) return pd.Series(np.arange(len(dates)), index=dates, name='date') def create_time_step(ntimesteps, dtype='i4'): return np.arange(ntimesteps, dtype=dtype) * 3 def create_time(dates, metadata=time_metadata): start_date = str(dates[0]) units = metadata['units'] calendar = metadata['calendar'] units = " ".join([units.strip(), start_date]) metadata['units'] = units tis = netCDF4.date2num(dates.to_pydatetime(), units, calendar) dtype = time_signature.dtype return tis.astype(dtype) def domain_in_filename(files): domain_re = re.compile("(DOM\d+)").search if isinstance(files, (basestring, str)): dom = domain_re(files) if dom: return dom.group(0) objs = [domain_re(f) for f in files] doms = [obj.group(0) for obj in objs if obj] doms = set(doms) if len(doms) > 1: raise ValueError('Mutiple domains detected: {}'.format(doms)) return doms.pop() def get_indices(merged_ds, var_ds, varnames=None): """ merge_ds: pd.Series var_ds: pd.Series varnames: (pd.Index or list or array or None) """ required = merged_ds.index.intersection(var_ds.index) if varnames is not None: required = required.intersection(varnames) varnames = varnames.drop(required, errors='ignore') merged_index = merged_ds[required].values var_index = var_ds[required].values if varnames is not None: return merged_index, var_index, varnames return merged_index, var_index def get_time_indices(merged_ds, var_ds, visited_dates): """ merge_ds: pd.Series var_ds: pd.Series visited_dates: (pd.Index or list or np.array) """ if not isinstance(visited_dates, (pd.Index, list, np.array)): msg = ("'visited_dates' must be one of these types " "(pd.Index list np.array)") raise ValueError(msg) visited_dates = pd.Index(visited_dates) notseen = var_ds.index.drop(visited_dates, errors='ignore') visited_dates = visited_dates.append(notseen).sort_values() return merged_ds[notseen].values, var_ds[notseen].values, visited_dates def copy_group_data(ncids, outnc, group_key, varlist): valid_keys = group_mapping.keys() assert group_key in valid_keys, "valid keys: {}".format(valid_keys) primary_key = group_mapping[group_key] merged_ds = merged_group_primary_ds(ncids, key=primary_key) grp_names = filter(lambda x: x.startswith(group_key), varlist) for varname in grp_names: oobj = outnc.variables[varname] ndims = oobj.ndim pending = merged_ds.index[:] for nc in ncids: if varname not in nc.variables: continue var_ds = group_primary_ds(nc, primary_key) merged_index, var_index, pending = get_indices( merged_ds, var_ds, pending) if empty(merged_index, var_index): continue data = nc.variables[varname][var_index] if ndims == 1: oobj[merged_index] = data elif ndims == 2: oobj[merged_index, :] = data elif ndims == 3: oobj[merged_index, :, :] = data else: raise NotImplemented("only upto 3 dimensions implemented.") if empty(pending): break return def merge_datasets(files, reference_file=None, domain=None, outfile=None, fullday_timesteps=True): if domain is None: domain = domain_in_filename(files) if domain is None: domain = "DOMxx" ncids = allncids = [netCDF4.Dataset(f) for f in files] if reference_file is not None: refnc = netCDF4.Dataset(reference_file) allncids = [refnc] + ncids print("reading dates from files...") dates_ds = merge_parse_date(ncids, fullday_timesteps=fullday_timesteps) time_step = create_time_step(len(dates_ds)) time_data = create_time(dates_ds.index) if outfile is None: start_ts = dates_ds.index[0].strftime("%Y%m%dT%H%M%SZ") end_ts = dates_ds.index[-1].strftime("%Y%m%dT%H%M%SZ") outfile = "1d_vars_{}_{}-{}.nc".format(domain, start_ts, end_ts) print("outfile is set to: {}".format(outfile)) outnc = netCDF4.Dataset(outfile, "w") print("Creating dimensions") dimensions = merge_dimensions(allncids) for dname, dsize in dimensions.items(): outnc.createDimension(dname, dsize) varlist = merge_variable_names(allncids) attrs = ncattrs(allncids) print("Creating variables") for vname, vsig in varlist.items(): obj = outnc.createVariable(*vsig) obj.setncatts(attrs[vname]) station_ds = merged_group_primary_ds(allncids, key='station_name') profile_ds = merged_group_primary_ds(allncids, key='var_name') surface_ds = merged_group_primary_ds(allncids, key='sfcvar_name') print("copying metadata") for group_key in group_mapping: copy_group_data(allncids, outnc, group_key, varlist) ts_obj = outnc.variables['time_step'] ts_obj[:] = time_step[:] time_obj = outnc.variables['time'] time_obj[:] = time_data[:] date_obj = outnc.variables['date'] date_str = dates_as_array_of_strings(dates_ds.index, ncids) date_obj[:, :] = date_str # populating heights data print('copying heights data') heights_obj = outnc.variables['heights'] req_stations = station_ds.index[:] req_profile = profile_ds.index[:] for nc in ncids: if 'heights' not in nc.variables: continue if 'var_name' not in nc.variables: continue if 'station_name' not in nc.variables: continue nc_station_ds = group_primary_ds(nc, 'station_name') nc_profile_ds = group_primary_ds(nc, 'var_name') if not empty(req_stations): station_index, nc_station_index, req_stations = get_indices( station_ds, nc_station_ds, req_stations) else: station_index, nc_station_index = get_indices( station_ds, nc_station_ds) if not empty(req_profile): profile_index, nc_profile_index, req_profile = get_indices( profile_ds, nc_profile_ds, req_profile) else: profile_index, nc_profile_index = get_indices( profile_ds, nc_profile_ds) # print('station_index', station_index) # print('nc_station_index', nc_station_index) # print('req_stations', req_stations) # print('profile_index', profile_index) # print('nc_profile_index', nc_profile_index) # print('req_profiles', req_profile) if empty(station_index): continue if empty(profile_index): continue station_slices, nc_station_slices = index2slice( station_index, nc_station_index) profile_slices, nc_profile_slices = index2slice( profile_index, nc_profile_index) for ps, nc_ps in zip(profile_slices, nc_profile_slices): for sta, nc_sta in zip(station_slices, nc_station_slices): data = nc.variables['heights'][:, nc_ps, nc_sta] heights_obj[:, ps, sta] = data # if station_index.size and profile_index.size: # data = nc.variables['heights'][:] # for pind, pind_m in zip(nc_profile_index, profile_index): # for sind, sind_m in zip(nc_station_index, station_index): # heights_obj[:, pind_m, sind_m] = data[:, pind, sind] # if req_stations.empty and req_profile.empty: if empty(req_stations, req_profile): break # populating profile data print("copying profile data") profile_obj = outnc.variables['values'] seen_dates =
pd.Index([])
pandas.Index
# -*- coding: utf-8 -*- import locale from datetime import date from os import chdir, path import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import pandas as pd from adjustText import adjust_text from matplotlib.ticker import PercentFormatter from mpl_toolkits.axes_grid1.inset_locator import inset_axes from custom.plots import apply_plot_treatment, get_xticks_labels, palette from custom.plots_confronti import (compute_vaccini_decessi_eu, fit_model, get_epidemic_data, get_vaccine_data, import_epidem_data, import_vaccines_data, paesi_abitanti_eu, paesi_eu_ita) from custom.watermarks import add_last_updated, add_watermark def map_vaccinated(f_vacc): if f_vacc >= 0 and f_vacc < 20: return "0%-20%" elif f_vacc >= 20 and f_vacc < 40: return "20-40%" elif f_vacc >= 40 and f_vacc < 60: return "40-60%" elif f_vacc >= 60 and f_vacc < 80: return "60-80%" elif f_vacc >= 80 and f_vacc <= 100: return "80-100%" def group_vaccinated(vacc_res_2021, dec_res_2021): df_res = pd.DataFrame(vacc_res_2021, columns=["vaccinati"]) df_res["deceduti"] = dec_res_2021 df_res["vacc_mapped"] = df_res["vaccinati"].apply(map_vaccinated) df_grouped = df_res.groupby("vacc_mapped").mean()["deceduti"] return df_grouped # Rappresentazione grafica risultati @mpl.rc_context({"lines.marker": None}) def plot_selection(show=False): """ Plot dati epidemiologia e vaccini dei paesi selezionati """ # nota: nomi in Inglese nomi_nazioni = ["Italy", "Romania", "Portugal", "Spain", "Bulgaria"] label_nazioni = ["Italia", "Romania", "Portogallo", "Spagna", "Bulgaria"] abitanti_nazioni = [59.55, 19.29, 10.31, 47.35, 6.927] fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10, 5)) # Unpack all the axes subplots axes = ax.ravel() for i in range(len(nomi_nazioni)): df_epid = get_epidemic_data(nomi_nazioni[i], df_confirmed, df_deaths, df_recovered) mask_ = df_epid.index >= "2021-06-01" df_epid = df_epid.loc[mask_, :] values = 1/(abitanti_nazioni[i])*(df_epid["Total deaths"]-df_epid["Total deaths"][0]) values.plot(ax=axes[0], label=label_nazioni[i]) for i in range(len(nomi_nazioni)): df_country = get_vaccine_data(df_vacc, nomi_nazioni[i]) mask_ = df_country.index >= "2021-06-01" df_country = df_country.loc[mask_, :] df_country["% fully vaccinated"].plot(ax=axes[1], label=label_nazioni[i], linewidth=2) x_ticks, x_labels = get_xticks_labels(df_country.index) axes[0].set_title("Decessi dal 1° Giugno ad oggi") axes[0].set_ylabel("Decessi per milione di abitanti") axes[0].set_xlabel("") axes[0].set_xticks(x_ticks) axes[0].set_xticklabels(x_labels) axes[0].legend() axes[0].grid() axes[1].set_ylim(0, 100) axes[1].set_yticks(np.arange(0, 101, 20)) axes[1].set_yticklabels(["0%", "20%", "40%", "60%", "80%", "100%"]) axes[1].set_title("Vaccinati con ciclo completo") axes[1].set_xlabel("") axes[1].set_xticks(x_ticks) axes[1].set_xticklabels(x_labels) axes[1].legend() axes[1].grid() # Add watermarks add_last_updated(fig, axes[-1], dati="JHU, Our World in Data") fig.tight_layout() fig.savefig("../risultati/confronto_nazioni_epidemia-vaccino.png", dpi=300, bbox_inches="tight") if show: plt.show() @mpl.rc_context({"lines.marker": None}) def plot_corr_vaccini_decessi(show=False): """ scatter plot correlazione vaccini e decessi """ # linear fit x_grid, y_grid, score = fit_model(vacc_res, dec_res) # calcola coefficiente di correlazione (pearson) corr_coeff = round(np.corrcoef(vacc_res, dec_res)[0, 1], 2) fig, ax = plt.subplots(figsize=(13, 8)) # scatter plot volume = dec_res.max()*0.050 # genera lista di colori num_colors = len(paesi_abitanti_eu) cm = plt.get_cmap("GnBu_r") ax.set_prop_cycle("color", [cm(i/num_colors) for i in range(num_colors)]) for i in range(num_colors): ax.scatter(df_["% vaccini"].values[i], df_["decessi"].values[i], alpha=0.50, edgecolor="black", linewidth=0.75, s=volume) texts = [ax.text(vacc_res[i], dec_res[i], paesi_eu_ita[i]) for i in range(len(paesi_eu_ita))] # fix text overlap adjust_text(texts, expand_text=(1.20, 1.35), arrowprops=dict(arrowstyle="-", color="black", linewidth=.75)) # linear fit plot ax.plot(x_grid, y_grid, linestyle="--", c=palette[0], label=f"Fit lineare, R$^2$ score={score}") # parabolic fit x_grid_p, y_grid_p, score_p = fit_model(vacc_res, dec_res, degree=2) ax.plot(x_grid_p, y_grid_p, linestyle="--", c=palette[2], label=f"Fit parabolico, R$^2$ score={score_p}") ax.set_ylim(-70, ) ax.set_xlim(0, 100) title = f"Frazione di vaccinati vs decessi nei 27 Paesi dell'UE dal 22/09/2021\n\ Coefficiente di correlazione = {corr_coeff}" ax.set_title(title, fontsize=15) ax.set_xlabel("Frazione media di vaccinati con almeno 1 dose al 22/09/2021", fontsize=15) ax.set_ylabel("Decessi per milione di abitanti", fontsize=15) ax.set_xticks(np.arange(0, 101, 20), ["0%", "20%", "40%", "60%", "80%", "100%"]) ax.grid() ax.legend(fontsize=15) fig.tight_layout() # bar plot df_grouped = group_vaccinated(vacc_res, dec_res) ax_bar = inset_axes(ax, "30%", "30%", loc="lower left", bbox_to_anchor=(0.01, 0.075, 0.98, 0.95), bbox_transform=ax.transAxes) ax_bar.set_facecolor((0, 0, 0, 0)) ax_bar.bar(df_grouped.index, df_grouped, width=1, edgecolor="black", color=palette[1], alpha=0.30) labels_pad = 50 if df_grouped.max() > 1000 else 10 for index, data in enumerate(df_grouped): ax_bar.text(x=index, y=data+labels_pad, ha="center", s=round(data), fontdict=dict(fontweight="bold")) ax_bar.xaxis.set_tick_params(rotation=0) ax_bar.set_title("Decessi medi per milione", pad=15) ax_bar.set_xlabel("Frazione media vaccinati") ax_bar.set_yticks([]) ax_bar.spines["bottom"].set_linewidth(1.5) ax_bar.spines["bottom"].set_color("black") # Add watermarks fig.text(0.95, 0.425, "github.com/apalladi/covid_vaccini_monitoraggio", fontsize=16, alpha=0.50, color=palette[-1], va="center", rotation="vertical") add_last_updated(fig, ax, dati="JHU, Our World in Data", y=-0.05) fig.savefig("../risultati/vaccini_decessi_EU.png", dpi=300, bbox_inches="tight") if show: plt.show() def which_axe(axis, step=10): axis.set_yticklabels([]) start, end = axis.get_xlim() axis.xaxis.set_ticks(np.arange(start, end, step)) x_ticks = axis.xaxis.get_major_ticks() x_ticks[0].label1.set_visible(False) x_ticks[-1].label1.set_visible(False) ymin, ymax = axis.get_ylim() axis.axvline(0.1, ymin=ymin, ymax=ymax, color="black", linewidth=0.5) axis.grid() def plot_corr_vaccini_decessi_div(show=False): """ tornado plot vaccini vs decessi """ # ordina valori in un df df_ = pd.DataFrame({"% vaccini": vacc_res, "decessi": dec_res}) df_.index = paesi_eu_ita df_.sort_values(by="% vaccini", inplace=True) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10, 5), sharey=True) # Unpack all the axes subplots axes = ax.ravel() axes[0].barh(df_.index, df_["% vaccini"], facecolor=palette[5]) axes[0].set_xlim(0, 101) axes[0].xaxis.set_major_formatter(PercentFormatter()) axes[0].set_title("Frazione di vaccinati", color=palette[5], size=10) axes[0].set_xlabel("Frazione media di vaccinati con almeno 1 dose al 22/09/2021") which_axe(axes[0]) axes[0].invert_xaxis() for country in df_.index: axes[0].text(x=1.0, y=country, color="white", va="center", ha="right", s=country, fontdict=dict(fontweight="bold", size=6)) axes[1].barh(df_.index, df_["decessi"], facecolor=palette[4]) axes[1].set_title("Decessi per milione di abitanti", color=palette[4], size=10) axes[1].set_xlabel("Decessi per milione di abitanti dal 22/09/2021") which_axe(axes[1], step=250) title = "Frazione di vaccinati vs decessi nei 27 Paesi dell'UE dal 22/09/2021" fig.suptitle(title) # Add watermarks add_watermark(fig) add_last_updated(fig, axes[-1], dati="JHU, Our World in Data", y=-0.030) fig.subplots_adjust(wspace=0, hspace=0) fig.savefig("../risultati/vaccini_decessi_EU_div.png", dpi=300, bbox_inches="tight") if show: plt.show() if __name__ == "__main__": # Set work directory for the script scriptpath = path.dirname(path.realpath(__file__)) chdir(scriptpath) # Set locale to "it" to parse the month correctly locale.setlocale(locale.LC_ALL, "it_IT.UTF-8") # importa dati df_confirmed, df_deaths, df_recovered = import_epidem_data() df_vacc = import_vaccines_data() # recupera dati vaccini vs. decessi # da inizio autunno (22 settembre 2021) window = abs((date.today() - date(2021, 9, 22)).days) # recupera dati per la finestra temporale selezionata vacc_res, dec_res = compute_vaccini_decessi_eu(df_vacc, df_deaths, window, fully=False) # Imposta stile grafici apply_plot_treatment() # plot dati selezione paesi plot_selection() # ordina valori in un df per far si che seguano la sequenza dei colori df_ =
pd.DataFrame({"% vaccini": vacc_res, "decessi": dec_res})
pandas.DataFrame
import pandas as pd # A simple script to convert my excel file to be readable by YNAB. # YNAB wants: Date,Payee,Category,Memo,Outflow,Inflow __author__ = "<NAME> <<EMAIL>>" import_csv = 'xacts.csv' # read csv df = pd.read_csv(import_csv, encoding = "ISO-8859-1", thousands=',') # Build YNAB Category df['Category'] = df['Master Category'] + ":" + df['Sub Category'] # Move column order df = df[['Date', 'Payee', 'Category', 'Memo', 'Outflow', 'Inflow', 'Account']] # Change Types df['Outflow'] =
pd.to_numeric(df['Outflow'])
pandas.to_numeric
#################################################### # IMPORTS (FROM LIBRARY) ########################### #################################################### from pandas import DataFrame #################################################### # FUNCTION TO GENERATE THE PARTICIPATION DATA ###### #################################################### def generate_data(data): users = list(data[0]) events = list(data[1]) data = [] for user in users: for event in events: if (user['Id'] == event['Id']): temp = dict(user) temp['Event'] = event['Event'] data.append(temp) df =
DataFrame(data)
pandas.DataFrame
"""Unit tests for the reading functionality in dframeio.parquet""" # pylint: disable=redefined-outer-name from pathlib import Path import pandas as pd import pandera as pa import pandera.typing import pytest from pandas.testing import assert_frame_equal import dframeio class SampleDataSchema(pa.SchemaModel): """pandera schema of the parquet test dataset""" registration_dttm: pa.typing.Series[pa.typing.DateTime] id: pa.typing.Series[pd.Int64Dtype] = pa.Field(nullable=True, coerce=True) first_name: pa.typing.Series[pa.typing.String] last_name: pa.typing.Series[pa.typing.String] email: pa.typing.Series[pa.typing.String] gender: pa.typing.Series[pa.typing.String] = pa.Field(coerce=True) ip_address: pa.typing.Series[pa.typing.String] cc: pa.typing.Series[pa.typing.String] country: pa.typing.Series[pa.typing.String] birthdate: pa.typing.Series[pa.typing.String] salary: pa.typing.Series[pa.typing.Float64] = pa.Field(nullable=True) title: pa.typing.Series[pa.typing.String] comments: pa.typing.Series[pa.typing.String] = pa.Field(nullable=True) @staticmethod def length(): """Known length of the data""" return 5000 @staticmethod def n_salary_over_150000(): """Number of rows with salary > 150000""" return 2384 @pytest.fixture(params=["multifile", "singlefile.parquet", "multifolder"]) def sample_data_path(request): """Path of a parquet dataset for testing""" return Path(__file__).parent / "data" / "parquet" / request.param def read_sample_dataframe(): """Read the sample dataframe to pandas and return a cached copy""" if not hasattr(read_sample_dataframe, "df"): parquet_file = Path(__file__).parent / "data" / "parquet" / "singlefile.parquet" backend = dframeio.ParquetBackend(str(parquet_file.parent)) read_sample_dataframe.df = backend.read_to_pandas(parquet_file.name) return read_sample_dataframe.df.copy() @pytest.fixture(scope="function") def sample_dataframe(): """Provide the sample dataframe""" return read_sample_dataframe() @pytest.fixture(scope="function") def sample_dataframe_dict(): """Provide the sample dataframe""" parquet_file = Path(__file__).parent / "data" / "parquet" / "singlefile.parquet" backend = dframeio.ParquetBackend(str(parquet_file.parent)) return backend.read_to_dict(parquet_file.name) @pytest.mark.parametrize( "kwargs, exception", [ ({"base_path": "/some/dir", "partitions": -1}, TypeError), ({"base_path": "/some/dir", "partitions": 2.2}, TypeError), ({"base_path": "/some/dir", "partitions": "abc"}, TypeError), ({"base_path": "/some/dir", "partitions": b"abc"}, TypeError), ({"base_path": "/some/dir", "rows_per_file": b"abc"}, TypeError), ({"base_path": "/some/dir", "rows_per_file": 1.1}, TypeError), ({"base_path": "/some/dir", "rows_per_file": -5}, ValueError), ], ) def test_init_argchecks(kwargs, exception): """Challenge the argument validation of the constructor""" with pytest.raises(exception): dframeio.ParquetBackend(**kwargs) def test_read_to_pandas(sample_data_path): """Read a sample dataset into a pandas dataframe""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_pandas(sample_data_path.name) SampleDataSchema.to_schema().validate(df) assert len(df) == SampleDataSchema.length() def test_read_to_pandas_some_columns(sample_data_path): """Read a sample dataset into a pandas dataframe, selecting some columns""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_pandas(sample_data_path.name, columns=["id", "first_name"]) SampleDataSchema.to_schema().select_columns(["id", "first_name"]).validate(df) assert len(df) == SampleDataSchema.length() def test_read_to_pandas_some_rows(sample_data_path): """Read a sample dataset into a pandas dataframe, filtering some rows""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_pandas(sample_data_path.name, row_filter="salary > 150000") SampleDataSchema.to_schema().validate(df) assert len(df) == SampleDataSchema.n_salary_over_150000() def test_read_to_pandas_sample(sample_data_path): """Read a sample dataset into a pandas dataframe, filtering some rows""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_pandas(sample_data_path.name, sample=10) SampleDataSchema.to_schema().validate(df) assert len(df) == 10 @pytest.mark.parametrize("limit", [0, 10]) def test_read_to_pandas_limit(sample_data_path, limit): """Read a sample dataset into a pandas dataframe, filtering some rows""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_pandas(sample_data_path.name, limit=limit) SampleDataSchema.to_schema().validate(df) assert len(df) == limit def test_read_to_pandas_base_path_check(sample_data_path): """Try if it isn't possible to read from outside the base path""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) with pytest.raises(ValueError): backend.read_to_pandas("/tmp") def test_read_to_dict(sample_data_path): """Read a sample dataset into a dictionary""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_dict(sample_data_path.name) assert isinstance(df, dict) assert set(df.keys()) == SampleDataSchema.to_schema().columns.keys() df = pd.DataFrame(df) SampleDataSchema.to_schema().validate(df) assert len(df) == SampleDataSchema.length() def test_read_to_dict_some_columns(sample_data_path): """Read a sample dataset into a dictionary, filtering some columns""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_dict(sample_data_path.name, columns=["id", "first_name"]) assert isinstance(df, dict) assert set(df.keys()) == {"id", "first_name"} df = pd.DataFrame(df) SampleDataSchema.to_schema().select_columns(["id", "first_name"]).validate(df) assert len(df) == SampleDataSchema.length() def test_read_to_dict_some_rows(sample_data_path): """Read a sample dataset into a dictionary, filtering some rows""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_dict(sample_data_path.name, row_filter="salary > 150000") assert isinstance(df, dict) assert set(df.keys()) == SampleDataSchema.to_schema().columns.keys() df = pd.DataFrame(df) SampleDataSchema.to_schema().validate(df) assert len(df) == SampleDataSchema.n_salary_over_150000() def test_read_to_dict_limit(sample_data_path): """Read a sample dataset into a dictionary, filtering some rows""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_dict(sample_data_path.name, columns=["id", "first_name"], limit=10) assert isinstance(df, dict) assert set(df.keys()) == {"id", "first_name"} df = pd.DataFrame(df) SampleDataSchema.to_schema().select_columns(["id", "first_name"]).validate(df) assert len(df) == 10 def test_read_to_dict_sample(sample_data_path): """Read a sample dataset into a dictionary, filtering some rows""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_dict(sample_data_path.name, sample=10) assert isinstance(df, dict) assert set(df.keys()) == SampleDataSchema.to_schema().columns.keys() df =
pd.DataFrame(df)
pandas.DataFrame
import requests,json,os,re,argparse import pandas as pd from time import sleep parser=argparse.ArgumentParser() parser.add_argument('-i','--input_file', required=True, help='Input csv file with user name and orcid id') parser.add_argument('-o','--output_xml', required=True, help='Output xml file') args=parser.parse_args() input_file=args.input_file output_xml=args.output_xml def get_pmc_data(orcid_id,cursor=''): ''' A method for fetching pmc data :param orcid_id: An orcid id :param cursor: A cursor string, default empty string ''' try: data=list() url_str='https://www.ebi.ac.uk/europepmc/webservices/rest/search?query=AUTHORID:{0}&format=json&sort_date:y%20BDESC&cursorMark={1}'.format(orcid_id,cursor) response=requests.get(url_str) if response.ok: json_data=json.loads(response.content.decode('utf-8')) data=json_data['resultList']['result'] #print(json_data) if 'nextCursorMark' in json_data: if cursor !=json_data['nextCursorMark']: cursor=json_data['nextCursorMark'] else: cursor='' return data,cursor except: raise def add_pmc_link(series): ''' A method for adding pubmed link to the data table :param series: A data series with 'pmid' (pubmed id) ''' try: pmid=series['pmid'] series['link']='https://www.ncbi.nlm.nih.gov/pubmed/{0}'.format(pmid) return series except: raise def get_pmc_data_for_user(user,orcid_id): ''' A method for fetching all publication info for a user :param user: A user name :param orcid_id: An orcid id for PMC lookup :returns: A dataframe containing list of publications ''' try: all_data=list() cursor='' while True: data,cursor=get_pmc_data(orcid_id=orcid_id,cursor=cursor) if len(data)>0 or cursor !='': all_data.extend(data) sleep(10) else: break all_data=pd.DataFrame(all_data) all_data['user']=user all_data=all_data.apply(lambda x: add_pmc_link(series=x), axis=1) return all_data except: raise def get_publication_list(input_file): ''' A method for fetching publication list and writing it to an output csv file :param input_file: An input csv file containing 'name' and 'orcid' column returns: A pandas dataframe containing publication info of all the users ''' try: final_data=pd.DataFrame() input_data=
pd.read_csv(input_file)
pandas.read_csv
# -*- coding: utf-8 -*- from __future__ import print_function import pytest import random import numpy as np import pandas as pd from pandas.compat import lrange from pandas.api.types import CategoricalDtype from pandas import (DataFrame, Series, MultiIndex, Timestamp, date_range, NaT, IntervalIndex, Categorical) from pandas.util.testing import assert_series_equal, assert_frame_equal import pandas.util.testing as tm from pandas.tests.frame.common import TestData class TestDataFrameSorting(TestData): def test_sort_values(self): frame = DataFrame([[1, 1, 2], [3, 1, 0], [4, 5, 6]], index=[1, 2, 3], columns=list('ABC')) # by column (axis=0) sorted_df = frame.sort_values(by='A') indexer = frame['A'].argsort().values expected = frame.loc[frame.index[indexer]] assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by='A', ascending=False) indexer = indexer[::-1] expected = frame.loc[frame.index[indexer]] assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by='A', ascending=False) assert_frame_equal(sorted_df, expected) # GH4839 sorted_df = frame.sort_values(by=['A'], ascending=[False]) assert_frame_equal(sorted_df, expected) # multiple bys sorted_df = frame.sort_values(by=['B', 'C']) expected = frame.loc[[2, 1, 3]] assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=['B', 'C'], ascending=False) assert_frame_equal(sorted_df, expected[::-1]) sorted_df = frame.sort_values(by=['B', 'A'], ascending=[True, False]) assert_frame_equal(sorted_df, expected) pytest.raises(ValueError, lambda: frame.sort_values( by=['A', 'B'], axis=2, inplace=True)) # by row (axis=1): GH 10806 sorted_df = frame.sort_values(by=3, axis=1) expected = frame assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=3, axis=1, ascending=False) expected = frame.reindex(columns=['C', 'B', 'A']) assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=[1, 2], axis='columns') expected = frame.reindex(columns=['B', 'A', 'C']) assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=[1, 3], axis=1, ascending=[True, False]) assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=[1, 3], axis=1, ascending=False) expected = frame.reindex(columns=['C', 'B', 'A']) assert_frame_equal(sorted_df, expected) msg = r'Length of ascending \(5\) != length of by \(2\)' with tm.assert_raises_regex(ValueError, msg): frame.sort_values(by=['A', 'B'], axis=0, ascending=[True] * 5) def test_sort_values_inplace(self): frame = DataFrame(np.random.randn(4, 4), index=[1, 2, 3, 4], columns=['A', 'B', 'C', 'D']) sorted_df = frame.copy() sorted_df.sort_values(by='A', inplace=True) expected = frame.sort_values(by='A') assert_frame_equal(sorted_df, expected) sorted_df = frame.copy() sorted_df.sort_values(by=1, axis=1, inplace=True) expected = frame.sort_values(by=1, axis=1) assert_frame_equal(sorted_df, expected) sorted_df = frame.copy() sorted_df.sort_values(by='A', ascending=False, inplace=True) expected = frame.sort_values(by='A', ascending=False) assert_frame_equal(sorted_df, expected) sorted_df = frame.copy() sorted_df.sort_values(by=['A', 'B'], ascending=False, inplace=True) expected = frame.sort_values(by=['A', 'B'], ascending=False) assert_frame_equal(sorted_df, expected) def test_sort_nan(self): # GH3917 nan = np.nan df = DataFrame({'A': [1, 2, nan, 1, 6, 8, 4], 'B': [9, nan, 5, 2, 5, 4, 5]}) # sort one column only expected = DataFrame( {'A': [nan, 1, 1, 2, 4, 6, 8], 'B': [5, 9, 2, nan, 5, 5, 4]}, index=[2, 0, 3, 1, 6, 4, 5]) sorted_df = df.sort_values(['A'], na_position='first') assert_frame_equal(sorted_df, expected) expected = DataFrame( {'A': [nan, 8, 6, 4, 2, 1, 1], 'B': [5, 4, 5, 5, nan, 9, 2]}, index=[2, 5, 4, 6, 1, 0, 3]) sorted_df = df.sort_values(['A'], na_position='first', ascending=False) assert_frame_equal(sorted_df, expected) expected = df.reindex(columns=['B', 'A']) sorted_df = df.sort_values(by=1, axis=1, na_position='first') assert_frame_equal(sorted_df, expected) # na_position='last', order expected = DataFrame( {'A': [1, 1, 2, 4, 6, 8, nan], 'B': [2, 9, nan, 5, 5, 4, 5]}, index=[3, 0, 1, 6, 4, 5, 2]) sorted_df = df.sort_values(['A', 'B']) assert_frame_equal(sorted_df, expected) # na_position='first', order expected = DataFrame( {'A': [nan, 1, 1, 2, 4, 6, 8], 'B': [5, 2, 9, nan, 5, 5, 4]}, index=[2, 3, 0, 1, 6, 4, 5]) sorted_df = df.sort_values(['A', 'B'], na_position='first') assert_frame_equal(sorted_df, expected) # na_position='first', not order expected = DataFrame( {'A': [nan, 1, 1, 2, 4, 6, 8], 'B': [5, 9, 2, nan, 5, 5, 4]}, index=[2, 0, 3, 1, 6, 4, 5]) sorted_df = df.sort_values(['A', 'B'], ascending=[ 1, 0], na_position='first') assert_frame_equal(sorted_df, expected) # na_position='last', not order expected = DataFrame( {'A': [8, 6, 4, 2, 1, 1, nan], 'B': [4, 5, 5, nan, 2, 9, 5]}, index=[5, 4, 6, 1, 3, 0, 2]) sorted_df = df.sort_values(['A', 'B'], ascending=[ 0, 1], na_position='last') assert_frame_equal(sorted_df, expected) # Test DataFrame with nan label df = DataFrame({'A': [1, 2, nan, 1, 6, 8, 4], 'B': [9, nan, 5, 2, 5, 4, 5]}, index=[1, 2, 3, 4, 5, 6, nan]) # NaN label, ascending=True, na_position='last' sorted_df = df.sort_index( kind='quicksort', ascending=True, na_position='last') expected = DataFrame({'A': [1, 2, nan, 1, 6, 8, 4], 'B': [9, nan, 5, 2, 5, 4, 5]}, index=[1, 2, 3, 4, 5, 6, nan]) assert_frame_equal(sorted_df, expected) # NaN label, ascending=True, na_position='first' sorted_df = df.sort_index(na_position='first') expected = DataFrame({'A': [4, 1, 2, nan, 1, 6, 8], 'B': [5, 9, nan, 5, 2, 5, 4]}, index=[nan, 1, 2, 3, 4, 5, 6]) assert_frame_equal(sorted_df, expected) # NaN label, ascending=False, na_position='last' sorted_df = df.sort_index(kind='quicksort', ascending=False) expected = DataFrame({'A': [8, 6, 1, nan, 2, 1, 4], 'B': [4, 5, 2, 5, nan, 9, 5]}, index=[6, 5, 4, 3, 2, 1, nan]) assert_frame_equal(sorted_df, expected) # NaN label, ascending=False, na_position='first' sorted_df = df.sort_index( kind='quicksort', ascending=False, na_position='first') expected = DataFrame({'A': [4, 8, 6, 1, nan, 2, 1], 'B': [5, 4, 5, 2, 5, nan, 9]}, index=[nan, 6, 5, 4, 3, 2, 1]) assert_frame_equal(sorted_df, expected) def test_stable_descending_sort(self): # GH #6399 df = DataFrame([[2, 'first'], [2, 'second'], [1, 'a'], [1, 'b']], columns=['sort_col', 'order']) sorted_df = df.sort_values(by='sort_col', kind='mergesort', ascending=False) assert_frame_equal(df, sorted_df) def test_stable_descending_multicolumn_sort(self): nan = np.nan df = DataFrame({'A': [1, 2, nan, 1, 6, 8, 4], 'B': [9, nan, 5, 2, 5, 4, 5]}) # test stable mergesort expected = DataFrame( {'A': [nan, 8, 6, 4, 2, 1, 1], 'B': [5, 4, 5, 5, nan, 2, 9]}, index=[2, 5, 4, 6, 1, 3, 0]) sorted_df = df.sort_values(['A', 'B'], ascending=[0, 1], na_position='first', kind='mergesort') assert_frame_equal(sorted_df, expected) expected = DataFrame( {'A': [nan, 8, 6, 4, 2, 1, 1], 'B': [5, 4, 5, 5, nan, 9, 2]}, index=[2, 5, 4, 6, 1, 0, 3]) sorted_df = df.sort_values(['A', 'B'], ascending=[0, 0], na_position='first', kind='mergesort') assert_frame_equal(sorted_df, expected) def test_stable_categorial(self): # GH 16793 df = DataFrame({ 'x': pd.Categorical(np.repeat([1, 2, 3, 4], 5), ordered=True) }) expected = df.copy() sorted_df = df.sort_values('x', kind='mergesort') assert_frame_equal(sorted_df, expected) def test_sort_datetimes(self): # GH 3461, argsort / lexsort differences for a datetime column df = DataFrame(['a', 'a', 'a', 'b', 'c', 'd', 'e', 'f', 'g'], columns=['A'], index=date_range('20130101', periods=9)) dts = [Timestamp(x) for x in ['2004-02-11', '2004-01-21', '2004-01-26', '2005-09-20', '2010-10-04', '2009-05-12', '2008-11-12', '2010-09-28', '2010-09-28']] df['B'] = dts[::2] + dts[1::2] df['C'] = 2. df['A1'] = 3. df1 = df.sort_values(by='A') df2 = df.sort_values(by=['A']) assert_frame_equal(df1, df2) df1 = df.sort_values(by='B') df2 = df.sort_values(by=['B']) assert_frame_equal(df1, df2) df1 = df.sort_values(by='B') df2 = df.sort_values(by=['C', 'B']) assert_frame_equal(df1, df2) def test_frame_column_inplace_sort_exception(self): s = self.frame['A'] with tm.assert_raises_regex(ValueError, "This Series is a view"): s.sort_values(inplace=True) cp = s.copy() cp.sort_values() # it works! def test_sort_nat_values_in_int_column(self): # GH 14922: "sorting with large float and multiple columns incorrect" # cause was that the int64 value NaT was considered as "na". Which is # only correct for datetime64 columns. int_values = (2, int(NaT)) float_values = (2.0, -1.797693e308) df = DataFrame(dict(int=int_values, float=float_values), columns=["int", "float"]) df_reversed = DataFrame(dict(int=int_values[::-1], float=float_values[::-1]), columns=["int", "float"], index=[1, 0]) # NaT is not a "na" for int64 columns, so na_position must not # influence the result: df_sorted = df.sort_values(["int", "float"], na_position="last") assert_frame_equal(df_sorted, df_reversed) df_sorted = df.sort_values(["int", "float"], na_position="first") assert_frame_equal(df_sorted, df_reversed) # reverse sorting order df_sorted = df.sort_values(["int", "float"], ascending=False) assert_frame_equal(df_sorted, df) # and now check if NaT is still considered as "na" for datetime64 # columns: df = DataFrame(dict(datetime=[Timestamp("2016-01-01"), NaT], float=float_values), columns=["datetime", "float"]) df_reversed = DataFrame(dict(datetime=[NaT, Timestamp("2016-01-01")], float=float_values[::-1]), columns=["datetime", "float"], index=[1, 0]) df_sorted = df.sort_values(["datetime", "float"], na_position="first") assert_frame_equal(df_sorted, df_reversed) df_sorted = df.sort_values(["datetime", "float"], na_position="last") assert_frame_equal(df_sorted, df) # Ascending should not affect the results. df_sorted = df.sort_values(["datetime", "float"], ascending=False) assert_frame_equal(df_sorted, df) def test_sort_nat(self): # GH 16836 d1 = [Timestamp(x) for x in ['2016-01-01', '2015-01-01', np.nan, '2016-01-01']] d2 = [Timestamp(x) for x in ['2017-01-01', '2014-01-01', '2016-01-01', '2015-01-01']] df = pd.DataFrame({'a': d1, 'b': d2}, index=[0, 1, 2, 3]) d3 = [Timestamp(x) for x in ['2015-01-01', '2016-01-01', '2016-01-01', np.nan]] d4 = [Timestamp(x) for x in ['2014-01-01', '2015-01-01', '2017-01-01', '2016-01-01']] expected = pd.DataFrame({'a': d3, 'b': d4}, index=[1, 3, 0, 2]) sorted_df = df.sort_values(by=['a', 'b'], ) tm.assert_frame_equal(sorted_df, expected) class TestDataFrameSortIndexKinds(TestData): def test_sort_index_multicolumn(self): A = np.arange(5).repeat(20) B = np.tile(np.arange(5), 20) random.shuffle(A) random.shuffle(B) frame = DataFrame({'A': A, 'B': B, 'C': np.random.randn(100)}) # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): frame.sort_index(by=['A', 'B']) result = frame.sort_values(by=['A', 'B']) indexer = np.lexsort((frame['B'], frame['A'])) expected = frame.take(indexer) assert_frame_equal(result, expected) # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): frame.sort_index(by=['A', 'B'], ascending=False) result = frame.sort_values(by=['A', 'B'], ascending=False) indexer = np.lexsort((frame['B'].rank(ascending=False), frame['A'].rank(ascending=False))) expected = frame.take(indexer) assert_frame_equal(result, expected) # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): frame.sort_index(by=['B', 'A']) result = frame.sort_values(by=['B', 'A']) indexer = np.lexsort((frame['A'], frame['B'])) expected = frame.take(indexer) assert_frame_equal(result, expected) def test_sort_index_inplace(self): frame = DataFrame(np.random.randn(4, 4), index=[1, 2, 3, 4], columns=['A', 'B', 'C', 'D']) # axis=0 unordered = frame.loc[[3, 2, 4, 1]] a_id = id(unordered['A']) df = unordered.copy() df.sort_index(inplace=True) expected = frame assert_frame_equal(df, expected) assert a_id != id(df['A']) df = unordered.copy() df.sort_index(ascending=False, inplace=True) expected = frame[::-1] assert_frame_equal(df, expected) # axis=1 unordered = frame.loc[:, ['D', 'B', 'C', 'A']] df = unordered.copy() df.sort_index(axis=1, inplace=True) expected = frame assert_frame_equal(df, expected) df = unordered.copy() df.sort_index(axis=1, ascending=False, inplace=True) expected = frame.iloc[:, ::-1] assert_frame_equal(df, expected) def test_sort_index_different_sortorder(self): A = np.arange(20).repeat(5) B = np.tile(np.arange(5), 20) indexer = np.random.permutation(100) A = A.take(indexer) B = B.take(indexer) df = DataFrame({'A': A, 'B': B, 'C': np.random.randn(100)}) # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): df.sort_index(by=['A', 'B'], ascending=[1, 0]) result = df.sort_values(by=['A', 'B'], ascending=[1, 0]) ex_indexer = np.lexsort((df.B.max() - df.B, df.A)) expected = df.take(ex_indexer) assert_frame_equal(result, expected) # test with multiindex, too idf = df.set_index(['A', 'B']) result = idf.sort_index(ascending=[1, 0]) expected = idf.take(ex_indexer) assert_frame_equal(result, expected) # also, Series! result = idf['C'].sort_index(ascending=[1, 0]) assert_series_equal(result, expected['C']) def test_sort_index_duplicates(self): # with 9816, these are all translated to .sort_values df = DataFrame([lrange(5, 9), lrange(4)], columns=['a', 'a', 'b', 'b']) with tm.assert_raises_regex(ValueError, 'not unique'): # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): df.sort_index(by='a') with tm.assert_raises_regex(ValueError, 'not unique'): df.sort_values(by='a') with tm.assert_raises_regex(ValueError, 'not unique'): # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): df.sort_index(by=['a']) with tm.assert_raises_regex(ValueError, 'not unique'): df.sort_values(by=['a']) with tm.assert_raises_regex(ValueError, 'not unique'): # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): # multi-column 'by' is separate codepath df.sort_index(by=['a', 'b']) with tm.assert_raises_regex(ValueError, 'not unique'): # multi-column 'by' is separate codepath df.sort_values(by=['a', 'b']) # with multi-index # GH4370 df = DataFrame(np.random.randn(4, 2), columns=MultiIndex.from_tuples([('a', 0), ('a', 1)])) with tm.assert_raises_regex(ValueError, 'level'): # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): df.sort_index(by='a') with tm.assert_raises_regex(ValueError, 'level'): df.sort_values(by='a') # convert tuples to a list of tuples # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): df.sort_index(by=[('a', 1)]) expected = df.sort_values(by=[('a', 1)]) # use .sort_values #9816 with tm.assert_produces_warning(FutureWarning): df.sort_index(by=('a', 1)) result = df.sort_values(by=('a', 1)) assert_frame_equal(result, expected) def test_sort_index_level(self): mi = MultiIndex.from_tuples([[1, 1, 3], [1, 1, 1]], names=list('ABC')) df = DataFrame([[1, 2], [3, 4]], mi) res = df.sort_index(level='A', sort_remaining=False) assert_frame_equal(df, res) res = df.sort_index(level=['A', 'B'], sort_remaining=False) assert_frame_equal(df, res) def test_sort_index_categorical_index(self): df = (DataFrame({'A': np.arange(6, dtype='int64'), 'B': Series(list('aabbca')) .astype(CategoricalDtype(list('cab')))}) .set_index('B')) result = df.sort_index() expected = df.iloc[[4, 0, 1, 5, 2, 3]] assert_frame_equal(result, expected) result = df.sort_index(ascending=False) expected = df.iloc[[3, 2, 5, 1, 0, 4]] assert_frame_equal(result, expected) def test_sort_index(self): # GH13496 frame = DataFrame(np.arange(16).reshape(4, 4), index=[1, 2, 3, 4], columns=['A', 'B', 'C', 'D']) # axis=0 : sort rows by index labels unordered = frame.loc[[3, 2, 4, 1]] result = unordered.sort_index(axis=0) expected = frame assert_frame_equal(result, expected) result = unordered.sort_index(ascending=False) expected = frame[::-1] assert_frame_equal(result, expected) # axis=1 : sort columns by column names unordered = frame.iloc[:, [2, 1, 3, 0]] result = unordered.sort_index(axis=1) assert_frame_equal(result, frame) result = unordered.sort_index(axis=1, ascending=False) expected = frame.iloc[:, ::-1] assert_frame_equal(result, expected) @pytest.mark.parametrize("level", ['A', 0]) # GH 21052 def test_sort_index_multiindex(self, level): # GH13496 # sort rows by specified level of multi-index mi = MultiIndex.from_tuples([ [2, 1, 3], [2, 1, 2], [1, 1, 1]], names=list('ABC')) df = DataFrame([[1, 2], [3, 4], [5, 6]], index=mi) expected_mi = MultiIndex.from_tuples([ [1, 1, 1], [2, 1, 2], [2, 1, 3]], names=list('ABC')) expected = pd.DataFrame([ [5, 6], [3, 4], [1, 2]], index=expected_mi) result = df.sort_index(level=level) assert_frame_equal(result, expected) # sort_remaining=False expected_mi = MultiIndex.from_tuples([ [1, 1, 1], [2, 1, 3], [2, 1, 2]], names=list('ABC')) expected = pd.DataFrame([ [5, 6], [1, 2], [3, 4]], index=expected_mi) result = df.sort_index(level=level, sort_remaining=False) assert_frame_equal(result, expected) def test_sort_index_intervalindex(self): # this is a de-facto sort via unstack # confirming that we sort in the order of the bins y = Series(np.random.randn(100)) x1 = Series(np.sign(np.random.randn(100))) x2 = pd.cut(Series(np.random.randn(100)), bins=[-3, -0.5, 0, 0.5, 3]) model = pd.concat([y, x1, x2], axis=1, keys=['Y', 'X1', 'X2']) result = model.groupby(['X1', 'X2'], observed=True).mean().unstack() expected = IntervalIndex.from_tuples( [(-3.0, -0.5), (-0.5, 0.0), (0.0, 0.5), (0.5, 3.0)], closed='right') result = result.columns.levels[1].categories tm.assert_index_equal(result, expected) def test_sort_index_na_position_with_categories(self): # GH 22556 # Positioning missing value properly when column is Categorical. categories = ['A', 'B', 'C'] category_indices = [0, 2, 4] list_of_nans = [np.nan, np.nan] na_indices = [1, 3] na_position_first = 'first' na_position_last = 'last' column_name = 'c' reversed_categories = sorted(categories, reverse=True) reversed_category_indices = sorted(category_indices, reverse=True) reversed_na_indices = sorted(na_indices, reverse=True) df = pd.DataFrame({ column_name: pd.Categorical(['A', np.nan, 'B', np.nan, 'C'], categories=categories, ordered=True)}) # sort ascending with na first result = df.sort_values(by=column_name, ascending=True, na_position=na_position_first) expected = DataFrame({ column_name: Categorical(list_of_nans + categories, categories=categories, ordered=True) }, index=na_indices + category_indices)
assert_frame_equal(result, expected)
pandas.util.testing.assert_frame_equal
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import zipfile import os import geopy.distance import random import pandas as pd import numpy as np import csv from enum import Enum from yaml import safe_load from maro.cli.data_pipeline.utils import download_file, StaticParameter from maro.utils.logger import CliLogger from maro.cli.data_pipeline.base import DataPipeline, DataTopology logger = CliLogger(name=__name__) class CitiBikePipeline(DataPipeline): _download_file_name = "trips.zip" _station_info_file_name = "full_station.json" _clean_file_name = "trips.csv" _build_file_name = "trips.bin" _station_meta_file_name = "station_meta.csv" _distance_file_name = "distance_adj.csv" _meta_file_name = "trips.yml" def __init__(self, topology: str, source: str, station_info: str, is_temp: bool = False): """ Generate citi_bike data bin and other necessary files for the specified topology from specified source. They will be generated in ~/.maro/data/citi_bike/[topology]/_build. Folder structure: ~/.maro /data/citi_bike/[topology] /_build bin data file and other necessary files /source /_download original data files /_clean cleaned data files /temp download temp files Args: topology(str): topology name of the data files source(str): source url of original data file station_info(str): source url of station info file is_temp(bool): (optional) if the data file is temporary """ super().__init__("citi_bike", topology, source, is_temp) self._station_info = station_info self._station_info_file = os.path.join(self._download_folder, self._station_info_file_name) self._distance_file = os.path.join(self._build_folder, self._distance_file_name) self._station_meta_file = os.path.join(self._build_folder, self._station_meta_file_name) self._common_data = {} def download(self, is_force: bool = False): """download the zip file""" super().download(is_force) self._new_file_list.append(self._station_info_file) if (not is_force) and os.path.exists(self._station_info_file): logger.info_green("File already exists, skipping download.") else: logger.info_green(f"Downloading trip data from {self._station_info} to {self._station_info_file}") download_file(source=self._station_info, destination=self._station_info_file) def clean(self): """unzip the csv file and process it for building binary file""" super().clean() logger.info_green("Cleaning trip data") if os.path.exists(self._download_file): # unzip logger.info_green("Unzip start") with zipfile.ZipFile(self._download_file, "r") as zip_ref: for filename in zip_ref.namelist(): # Only one csv file is expected. if ( filename.endswith(".csv") and (not (filename.startswith("__MACOSX") or filename.startswith("."))) ): logger.info_green(f"Unzip {filename} from {self._download_file}") zip_ref.extractall(self._clean_folder, [filename]) unzip_file = os.path.join(self._clean_folder, filename) self._new_file_list.append(unzip_file) self._preprocess(unzipped_file=unzip_file) break else: logger.warning(f"Not found downloaded trip data: {self._download_file}") def _read_common_data(self): """read and full init data and existed stations""" full_stations = None with open(self._station_info_file, mode="r", encoding="utf-8") as station_file: # read station to station file raw_station_data = pd.DataFrame.from_dict(pd.read_json(station_file)["data"]["stations"]) station_data = raw_station_data.rename(columns={ "lon": "station_longitude", "lat": "station_latitude", "region_id": "region"}) # group by station to generate station init info full_stations = station_data[ ["station_id", "capacity", "station_longitude", "station_latitude"] ].reset_index(drop=True) # generate station id by index full_stations["station_id"] = pd.to_numeric(full_stations["station_id"], downcast="integer") full_stations["capacity"] = pd.to_numeric(full_stations["capacity"], downcast="integer") full_stations["station_longitude"] = pd.to_numeric(full_stations["station_longitude"], downcast="float") full_stations["station_latitude"] = pd.to_numeric(full_stations["station_latitude"], downcast="float") full_stations.drop(full_stations[full_stations["capacity"] == 0].index, axis=0, inplace=True) full_stations.dropna( subset=["station_id", "capacity", "station_longitude", "station_latitude"], inplace=True ) self._common_data["full_stations"] = full_stations self._common_data["full_station_num"] = len(self._common_data["full_stations"]) self._common_data["full_dock_num"] = self._common_data["full_stations"]["capacity"].sum() def _read_src_file(self, file: str): """read and return processed rows""" ret = [] if os.path.exists(file): # For ignoring the unimportant issues in the source file. with open(file, "r", encoding="utf-8", errors="ignore") as fp: ret = pd.read_csv(fp) ret = ret[[ "tripduration", "starttime", "start station id", "end station id", "start station latitude", "start station longitude", "end station latitude", "end station longitude", "gender", "usertype", "bikeid" ]] ret["tripduration"] = pd.to_numeric( pd.to_numeric(ret["tripduration"], downcast="integer") / 60, downcast="integer" ) ret["starttime"] = pd.to_datetime(ret["starttime"]) ret["start station id"] = pd.to_numeric(ret["start station id"], errors="coerce", downcast="integer") ret["end station id"] = pd.to_numeric(ret["end station id"], errors="coerce", downcast="integer") ret["start station latitude"] = pd.to_numeric(ret["start station latitude"], downcast="float") ret["start station longitude"] = pd.to_numeric(ret["start station longitude"], downcast="float") ret["end station latitude"] = pd.to_numeric(ret["end station latitude"], downcast="float") ret["end station longitude"] = pd.to_numeric(ret["end station longitude"], downcast="float") ret["bikeid"] = pd.to_numeric(ret["bikeid"], errors="coerce", downcast="integer") ret["gender"] = pd.to_numeric(ret["gender"], errors="coerce", downcast="integer") ret["usertype"] = ret["usertype"].apply(str).apply( lambda x: 0 if x in ["Subscriber", "subscriber"] else 1 if x in ["Customer", "customer"] else 2 ) ret.dropna(subset=[ "start station id", "end station id", "start station latitude", "end station latitude", "start station longitude", "end station longitude" ], inplace=True) ret.drop( ret[ (ret["tripduration"] <= 1) | (ret["start station latitude"] == 0) | (ret["start station longitude"] == 0) | (ret["end station latitude"] == 0) | (ret["end station longitude"] == 0) ].index, axis=0, inplace=True ) ret = ret.sort_values(by="starttime", ascending=True) return ret def _process_src_file(self, src_data: pd.DataFrame): used_bikes = len(src_data[["bikeid"]].drop_duplicates(subset=["bikeid"])) trip_data = src_data[ (src_data["start station latitude"] > 40.689960) & (src_data["start station latitude"] < 40.768334) & (src_data["start station longitude"] > -74.019623) & (src_data["start station longitude"] < -73.909760) ] trip_data = trip_data[ (trip_data["end station latitude"] > 40.689960) & (trip_data["end station latitude"] < 40.768334) & (trip_data["end station longitude"] > -74.019623) & (trip_data["end station longitude"] < -73.909760) ] trip_data["start_station_id"] = trip_data["start station id"] trip_data["end_station_id"] = trip_data["end station id"] # get new stations used_stations = [] used_stations.append( trip_data[["start_station_id", "start station latitude", "start station longitude", ]].drop_duplicates( subset=["start_station_id"]).rename( columns={ "start_station_id": "station_id", "start station latitude": "latitude", "start station longitude": "longitude" })) used_stations.append( trip_data[["end_station_id", "end station latitude", "end station longitude", ]].drop_duplicates( subset=["end_station_id"]).rename( columns={ "end_station_id": "station_id", "end station latitude": "latitude", "end station longitude": "longitude" })) in_data_station =
pd.concat(used_stations, ignore_index=True)
pandas.concat
import boto3 import json import matplotlib import matplotlib.pyplot as plt import pandas as pd from l4ecwcw import * from io import StringIO from matplotlib import gridspec # Mandatory to ensure text is rendered in SVG plots: matplotlib.rcParams['svg.fonttype'] = 'none' client = boto3.client('lookoutequipment') dpi = 100 def get_predictions(event, context): model_name = event['model_name'] widget_context = event['widgetContext'] width = widget_context['width'] # Height taking into account the height of the tag selection form: height = int(widget_context['height']) - 50 tags_list = get_tags_list(model_name) tag = get_selected_tag(widget_context) if tag is None: tag = tags_list[0] svg = get_model_evaluations_infos(model_name, width, height, tag) html = build_tag_selection_form(event, context, tags_list, tag) html = html + f'<div>{svg}</div>' return html def get_tags_list(model_name): model_response = client.describe_model(ModelName=model_name) predictions = json.loads(model_response['ModelMetrics'])['predicted_ranges'] diagnostics = predictions[0]['diagnostics'] tags_list = [d['name'].split('\\')[-1] for d in diagnostics] return tags_list def get_selected_tag(widget_context): print(widget_context['forms']['all']) if len(widget_context['forms']['all']) > 0: return widget_context['forms']['all']['tags'] else: return None def get_model_evaluations_infos(model_name, width, height, tag): model_response = client.describe_model(ModelName=model_name) predictions = json.loads(model_response['ModelMetrics'])['predicted_ranges'] start_date = pd.to_datetime(model_response['EvaluationDataStartTime']).tz_localize(None) end_date =
pd.to_datetime(model_response['EvaluationDataEndTime'])
pandas.to_datetime
import string import matplotlib.pyplot as plt import numpy as np import pandas as pd ############### # for first time use uncomment this # # read in data data=pd.read_csv('VS_Extensions_1week_correct.csv') data=data.drop(['MacAddressHash1'], axis=1) # now we need to parse out Extensions Used df=data.groupby('MacAddressHash').agg(lambda x: ' , '.join(set(x))).reset_index() df2 = df.ExtensionsUsed.str.split(' , ', expand=True) df2 = pd.get_dummies(df2, prefix='', prefix_sep='') # dfpre = df2.groupby(by=df2.columns, axis=1).max() #df2 = dfpre.groupby(dfpre.columns, axis=1).sum() newdf=
pd.concat([df, dfpre], axis=1)
pandas.concat
import xlrd import os import pandas as pd os.chdir('/Users/zhengzhiheng/PycharmProjects/untitled3') wordbook = xlrd.open_workbook('test.xlsx') sheet_name = wordbook.sheet_names() print(sheet_name) lst = pd.read_excel('test.xlsx', sheet_name=0) lst2 = pd.read_excel('test.xlsx', sheet_name=1) print(lst.head(5)) # ignore_index 索引重置 print(
pd.concat([lst, lst2], axis=0, ignore_index=True)
pandas.concat
import re import numpy as np import numpy.testing as npt import pandas as pd import pandas.testing as pdt import pytest from aneris.convenience import harmonise_all from aneris.errors import ( AmbiguousHarmonisationMethod, MissingHarmonisationYear, MissingHistoricalError, ) pytest.importorskip("pint") import pint.errors @pytest.mark.parametrize( "method,exp_res", ( ( "constant_ratio", { 2010: 10 * 1.1, 2030: 5 * 1.1, 2050: 3 * 1.1, 2100: 1 * 1.1, }, ), ( "reduce_ratio_2050", { 2010: 11, 2030: 5 * 1.05, 2050: 3, 2100: 1, }, ), ( "reduce_ratio_2030", { 2010: 11, 2030: 5, 2050: 3, 2100: 1, }, ), ( "reduce_ratio_2150", { 2010: 11, 2030: 5 * (1 + 0.1 * (140 - 20) / 140), 2050: 3 * (1 + 0.1 * (140 - 40) / 140), 2100: 1 * (1 + 0.1 * (140 - 90) / 140), }, ), ( "constant_offset", { 2010: 10 + 1, 2030: 5 + 1, 2050: 3 + 1, 2100: 1 + 1, }, ), ( "reduce_offset_2050", { 2010: 11, 2030: 5 + 0.5, 2050: 3, 2100: 1, }, ), ( "reduce_offset_2030", { 2010: 11, 2030: 5, 2050: 3, 2100: 1, }, ), ( "reduce_offset_2150", { 2010: 11, 2030: 5 + 1 * (140 - 20) / 140, 2050: 3 + 1 * (140 - 40) / 140, 2100: 1 + 1 * (140 - 90) / 140, }, ), ( "model_zero", { 2010: 10 + 1, 2030: 5 + 1, 2050: 3 + 1, 2100: 1 + 1, }, ), ( "hist_zero", { 2010: 10, 2030: 5, 2050: 3, 2100: 1, }, ), ), ) def test_different_unit_handling(method, exp_res): idx = ["variable", "unit", "region", "model", "scenario"] hist = pd.DataFrame( { "variable": ["Emissions|CO2"], "unit": ["MtC / yr"], "region": ["World"], "model": ["CEDS"], "scenario": ["historical"], 2010: [11000], } ).set_index(idx) scenario = pd.DataFrame( { "variable": ["Emissions|CO2"], "unit": ["GtC / yr"], "region": ["World"], "model": ["IAM"], "scenario": ["abc"], 2010: [10], 2030: [5], 2050: [3], 2100: [1], } ).set_index(idx) overrides = [{"variable": "Emissions|CO2", "method": method}] overrides = pd.DataFrame(overrides) res = harmonise_all( scenarios=scenario, history=hist, harmonisation_year=2010, overrides=overrides, ) for year, val in exp_res.items(): npt.assert_allclose(res[year], val) @pytest.fixture() def hist_df(): idx = ["variable", "unit", "region", "model", "scenario"] hist = pd.DataFrame( { "variable": ["Emissions|CO2", "Emissions|CH4"], "unit": ["MtCO2 / yr", "MtCH4 / yr"], "region": ["World"] * 2, "model": ["CEDS"] * 2, "scenario": ["historical"] * 2, 2010: [11000 * 44 / 12, 200], 2015: [12000 * 44 / 12, 250], 2020: [13000 * 44 / 12, 300], } ).set_index(idx) return hist @pytest.fixture() def scenarios_df(): idx = ["variable", "unit", "region", "model", "scenario"] scenario = pd.DataFrame( { "variable": ["Emissions|CO2", "Emissions|CH4"], "unit": ["GtC / yr", "GtCH4 / yr"], "region": ["World"] * 2, "model": ["IAM"] * 2, "scenario": ["abc"] * 2, 2010: [10, 0.1], 2015: [11, 0.15], 2020: [5, 0.25], 2030: [5, 0.1], 2050: [3, 0.05], 2100: [1, 0.03], } ).set_index(idx) return scenario @pytest.mark.parametrize("extra_col", (False, "mip_era")) @pytest.mark.parametrize( "harmonisation_year,scales", ( (2010, [1.1, 2]), (2015, [12 / 11, 25 / 15]), ), ) def test_different_unit_handling_multiple_timeseries_constant_ratio( hist_df, scenarios_df, extra_col, harmonisation_year, scales, ): if extra_col: scenarios_df[extra_col] = "test" scenarios_df = scenarios_df.set_index(extra_col, append=True) exp = scenarios_df.multiply(scales, axis=0) overrides = [{"method": "constant_ratio"}] overrides = pd.DataFrame(overrides) res = harmonise_all( scenarios=scenarios_df, history=hist_df, harmonisation_year=harmonisation_year, overrides=overrides, ) pdt.assert_frame_equal(res, exp) @pytest.mark.parametrize( "harmonisation_year,offset", ( (2010, [1, 0.1]), (2015, [1, 0.1]), (2020, [8, 0.05]), ), ) def test_different_unit_handling_multiple_timeseries_constant_offset( hist_df, scenarios_df, harmonisation_year, offset, ): exp = scenarios_df.add(offset, axis=0) overrides = [{"method": "constant_offset"}] overrides = pd.DataFrame(overrides) res = harmonise_all( scenarios=scenarios_df, history=hist_df, harmonisation_year=harmonisation_year, overrides=overrides, ) pdt.assert_frame_equal(res, exp) def test_different_unit_handling_multiple_timeseries_overrides( hist_df, scenarios_df, ): harmonisation_year = 2015 exp = scenarios_df.sort_index() for r in exp.index: for c in exp: if "CO2" in r[0]: harm_year_ratio = 12 / 11 if c >= 2050: sf = 1 elif c <= 2015: # this custom pre-harmonisation year logic doesn't apply to # offsets which seems surprising sf = harm_year_ratio else: sf = 1 + ( (harm_year_ratio - 1) * (2050 - c) / (2050 - harmonisation_year) ) exp.loc[r, c] *= sf else: harm_year_offset = 0.1 if c >= 2030: of = 0 else: of = harm_year_offset * (2030 - c) / (2030 - harmonisation_year) exp.loc[r, c] += of overrides = [ {"variable": "Emissions|CO2", "method": "reduce_ratio_2050"}, {"variable": "Emissions|CH4", "method": "reduce_offset_2030"}, ] overrides = pd.DataFrame(overrides) res = harmonise_all( scenarios=scenarios_df, history=hist_df, harmonisation_year=harmonisation_year, overrides=overrides, ) pdt.assert_frame_equal(res, exp, check_like=True) def test_raise_if_variable_not_in_hist(hist_df, scenarios_df): hist_df = hist_df[~hist_df.index.get_level_values("variable").str.endswith("CO2")] error_msg = re.escape("No historical data for `World` `Emissions|CO2`") with pytest.raises(MissingHistoricalError, match=error_msg): harmonise_all( scenarios=scenarios_df, history=hist_df, harmonisation_year=2010, overrides=pd.DataFrame([{"method": "constant_ratio"}]), ) def test_raise_if_region_not_in_hist(hist_df, scenarios_df): hist_df = hist_df[~hist_df.index.get_level_values("region").str.startswith("World")] error_msg = re.escape("No historical data for `World` `Emissions|CH4`") with pytest.raises(MissingHistoricalError, match=error_msg): harmonise_all( scenarios=scenarios_df, history=hist_df, harmonisation_year=2010, overrides=pd.DataFrame([{"method": "constant_ratio"}]), ) def test_raise_if_incompatible_unit(hist_df, scenarios_df): scenarios_df = scenarios_df.reset_index("unit") scenarios_df["unit"] = "Mt CO2 / yr" scenarios_df = scenarios_df.set_index("unit", append=True) error_msg = re.escape( "Cannot convert from 'megatCH4 / a' ([mass] * [methane] / [time]) to " "'CO2 * megametric_ton / a' ([carbon] * [mass] / [time])" ) with pytest.raises(pint.errors.DimensionalityError, match=error_msg): harmonise_all( scenarios=scenarios_df, history=hist_df, harmonisation_year=2010, overrides=pd.DataFrame([{"method": "constant_ratio"}]), ) def test_raise_if_undefined_unit(hist_df, scenarios_df): scenarios_df = scenarios_df.reset_index("unit") scenarios_df["unit"] = "Mt CO2eq / yr" scenarios_df = scenarios_df.set_index("unit", append=True) with pytest.raises(pint.errors.UndefinedUnitError): harmonise_all( scenarios=scenarios_df, history=hist_df, harmonisation_year=2010, overrides=pd.DataFrame([{"method": "constant_ratio"}]), ) def test_raise_if_harmonisation_year_missing(hist_df, scenarios_df): hist_df = hist_df.drop(2015, axis="columns") error_msg = re.escape( "No historical data for year 2015 for `World` `Emissions|CH4`" ) with pytest.raises(MissingHarmonisationYear, match=error_msg): harmonise_all( scenarios=scenarios_df, history=hist_df, harmonisation_year=2015, overrides=pd.DataFrame([{"method": "constant_ratio"}]), ) def test_raise_if_harmonisation_year_nan(hist_df, scenarios_df): hist_df.loc[ hist_df.index.get_level_values("variable").str.endswith("CO2"), 2015 ] = np.nan error_msg = re.escape( "Historical data is null for year 2015 for `World` `Emissions|CO2`" ) with pytest.raises(MissingHarmonisationYear, match=error_msg): harmonise_all( scenarios=scenarios_df, history=hist_df, harmonisation_year=2015, overrides=pd.DataFrame([{"method": "constant_ratio"}]), ) def test_override_multi_level(hist_df, scenarios_df): asia_hist = hist_df * 0.7 asia_hist.index = asia_hist.index.set_levels(["World|R5.2ASIA"], level="region") hist_df = pd.concat([hist_df, asia_hist]) asia = scenarios_df.copy() asia.index = asia.index.set_levels(["World|R5.2ASIA"], level="region") model_2 = scenarios_df.copy() model_2.index = model_2.index.set_levels(["FaNCY"], level="model") scenario_2 = scenarios_df.copy() scenario_2.index = scenario_2.index.set_levels(["EMF33 quick"], level="scenario") scenarios_df = pd.concat([scenarios_df, asia, model_2, scenario_2]) overrides = pd.DataFrame( [ { "variable": "Emissions|CO2", "region": "World", "model": "IAM", "scenario": "abc", "method": "constant_ratio", }, { "variable": "Emissions|CH4", "region": "World", "model": "IAM", "scenario": "abc", "method": "constant_offset", }, { "variable": "Emissions|CO2", "region": "World|R5.2ASIA", "model": "IAM", "scenario": "abc", "method": "reduce_ratio_2030", }, { "variable": "Emissions|CH4", "region": "World|R5.2ASIA", "model": "IAM", "scenario": "abc", "method": "reduce_ratio_2050", }, { "variable": "Emissions|CO2", "region": "World", "model": "FaNCY", "scenario": "abc", "method": "reduce_ratio_2070", }, { "variable": "Emissions|CH4", "region": "World", "model": "FaNCY", "scenario": "abc", "method": "reduce_ratio_2090", }, { "variable": "Emissions|CO2", "region": "World", "model": "IAM", "scenario": "EMF33 quick", "method": "reduce_offset_2050", }, { "variable": "Emissions|CH4", "region": "World", "model": "IAM", "scenario": "EMF33 quick", "method": "reduce_offset_2070", }, ] ) res = harmonise_all( scenarios=scenarios_df, history=hist_df, harmonisation_year=2015, overrides=overrides, ) co2_rows = res.index.get_level_values("variable") == "Emissions|CO2" world_rows = res.index.get_level_values("region") == "World" fancy_rows = res.index.get_level_values("model") == "FaNCY" emf33_rows = res.index.get_level_values("scenario") == "EMF33 quick" atol = 1e-4 pick_rows = co2_rows & world_rows & ~fancy_rows & ~emf33_rows npt.assert_allclose( res.loc[pick_rows, :], 12 / 11 * scenarios_df.loc[pick_rows, :], atol=atol, ) npt.assert_allclose( res.loc[~co2_rows & world_rows & ~fancy_rows & ~emf33_rows, :], 0.1 + scenarios_df.loc[~co2_rows & world_rows & ~fancy_rows & ~emf33_rows, :], atol=atol, ) npt.assert_allclose( res.loc[co2_rows & ~world_rows & ~fancy_rows & ~emf33_rows, :].squeeze(), [7.636363, 8.4, 4.21212121, 5, 3, 1], atol=atol, ) npt.assert_allclose( res.loc[~co2_rows & ~world_rows & ~fancy_rows & ~emf33_rows, :].squeeze(), [0.11667, 0.175, 0.285714, 0.109524, 0.05, 0.03], atol=atol, ) npt.assert_allclose( res.loc[co2_rows & world_rows & fancy_rows & ~emf33_rows, :].squeeze(), [10.909090, 12, 5.413233, 5.330579, 3.099174, 1], atol=atol, ) npt.assert_allclose( res.loc[~co2_rows & world_rows & fancy_rows & ~emf33_rows, :].squeeze(), [0.16667, 0.25, 0.405555, 0.15333, 0.067777, 0.03], atol=atol, ) npt.assert_allclose( res.loc[co2_rows & world_rows & ~fancy_rows & emf33_rows, :].squeeze(), [11.142857, 12, 5.857143, 5.571429, 3, 1], atol=atol, ) npt.assert_allclose( res.loc[~co2_rows & world_rows & ~fancy_rows & emf33_rows, :].squeeze(), [0.2090909, 0.25, 0.340909, 0.172727, 0.086364, 0.03], atol=atol, ) @pytest.mark.parametrize( "overrides", ( pd.DataFrame( [ {"region": "World", "method": "constant_ratio"}, {"region": "World", "method": "constant_offset"}, ] ), pd.DataFrame( [ { "region": "World", "variable": "Emissions|CH4", "method": "constant_ratio", }, {"region": "World", "method": "constant_offset"}, ] ), pd.DataFrame( [ {"variable": "Emissions|CH4", "method": "constant_ratio"}, {"variable": "Emissions|CH4", "method": "reduce_offset_2030"}, ] ), pd.DataFrame( [ {"variable": "Emissions|CH4", "method": "constant_ratio"}, { "variable": "Emissions|CH4", "model": "IAM", "method": "reduce_offset_2030", }, ] ), ), ) def test_multiple_matching_overrides(hist_df, scenarios_df, overrides): with pytest.raises( AmbiguousHarmonisationMethod, match="More than one override for metadata" ): harmonise_all( scenarios=scenarios_df, history=hist_df, harmonisation_year=2015, overrides=overrides, ) def test_defaults(hist_df, scenarios_df): co2_afolu = scenarios_df[ scenarios_df.index.get_level_values("variable") == "Emissions|CO2" ].copy() co2_afolu = co2_afolu.reset_index() co2_afolu["variable"] = "Emissions|CO2|AFOLU" co2_afolu = co2_afolu.set_index(scenarios_df.index.names) co2_afolu.iloc[:, :] = [2, 0.5, -1, -1.5, -2, -3] bc_afolu = scenarios_df[ scenarios_df.index.get_level_values("variable") == "Emissions|CO2" ].copy() bc_afolu = bc_afolu.reset_index() bc_afolu["variable"] = "Emissions|BC|AFOLU" bc_afolu["unit"] = "Mt BC / yr" bc_afolu = bc_afolu.set_index(scenarios_df.index.names) bc_afolu.iloc[:, :] = [30, 33, 40, 42, 36, 24] scenarios_df = pd.concat([scenarios_df, co2_afolu, bc_afolu]) co2_afolu_hist = hist_df[ hist_df.index.get_level_values("variable") == "Emissions|CO2" ].copy() co2_afolu_hist = co2_afolu_hist.reset_index() co2_afolu_hist["variable"] = "Emissions|CO2|AFOLU" co2_afolu_hist = co2_afolu_hist.set_index(hist_df.index.names) co2_afolu_hist.iloc[:, :] = [ 1.5 * 44000 / 12, 1.6 * 44000 / 12, 1.7 * 44000 / 12, ] bc_afolu_hist = hist_df[ hist_df.index.get_level_values("variable") == "Emissions|CO2" ].copy() bc_afolu_hist = bc_afolu_hist.reset_index() bc_afolu_hist["variable"] = "Emissions|BC|AFOLU" bc_afolu_hist["unit"] = "Gt BC / yr" bc_afolu_hist = bc_afolu_hist.set_index(hist_df.index.names) bc_afolu_hist.iloc[:, :] = [20, 35, 28] hist_df =
pd.concat([hist_df, co2_afolu_hist, bc_afolu_hist])
pandas.concat
from __future__ import division import pandas as pd def merge_subunits(genes): """ Merge list of protein subunit genes into complex Args: genes (pandas.Series): list of genes Returns: str: boolean rule """ genes = genes.dropna() if len(genes) == 0: return None else: protein = ' and '.join(sorted(genes)) if len(genes) > 1: return '(' + protein + ')' else: return protein def merge_subunit_scores(scores): """ Merge scores of all genes in a protein complex. Calculates the mean score among all subunits. Args: scores: individual gene scores Returns: float: merged score """ return scores.fillna(0).mean() def merge_proteins(proteins): """ Merge all isozymes that catalyze a given reaction. Automatically removes all isozymes with missing score. Args: proteins (pandas.Series): list of proteins Returns: str: boolean rule """ proteins = set(proteins.dropna()) if not proteins: return None gpr_str = ' or '.join(sorted(proteins)) if len(proteins) > 1: return '(' + gpr_str + ')' else: return gpr_str def merge_protein_scores(scores): """ Merge scores of all isozymes that catalyze a given reaction. Calculates the maximum score among all isozymes. Args: scores (pandas.Series): protein scores Returns: float: merged score """ return scores.max(skipna=True) def reaction_scoring(annotation, gprs, spontaneous_score=0.0, debug_output=None): """ Calculate reaction scores using new eggnog output. Args: annotation (pandas.DataFrame): gene annotation results gprs (pandas.DataFrame): BiGG GPR rules spontaneous_score (float): score to give to spontaneous reactions (default: 0.0) Returns: pandas.DataFrame: reaction scores """ # filter best match for each gene gene2gene = annotation.sort_values(by='score', ascending=False) \ .groupby('BiGG_gene', as_index=False).apply(lambda x: x.iloc[0]) # merge with gpr table gprs['BiGG_gene'] = gprs.apply(lambda row: '{}.{}'.format(row['model'], row['gene'][2:]), axis=1) gene_scores =
pd.merge(gene2gene, gprs, how='right')
pandas.merge
""" Test our groupby support based on the pandas groupby tests. """ # # This file is licensed under the Pandas 3 clause BSD license. # from sparklingpandas.test.sp_test_case import \ SparklingPandasTestCase from pandas import bdate_range from pandas.core.index import Index, MultiIndex from pandas.core.api import DataFrame from pandas.core.series import Series from pandas.util.testing import assert_frame_equal from pandas import compat import pandas.util.testing as tm import unittest2 import numpy as np try: # rands was moved to util.testing in pandas 0.15 from pandas.core.common import rands # pylint: disable=no-name-in-module except ImportError: from pandas.util.testing import rands class PandasGroupby(SparklingPandasTestCase): def setUp(self): """ Setup the dataframes used for the groupby tests derived from pandas """ self.date_rng = bdate_range('1/1/2005', periods=250) self.string_idx = Index([rands(8).upper() for x in range(250)]) self.group_id = Series([x[0] for x in self.string_idx], index=self.string_idx) self.group_dict = dict((key, value) for key, value in compat.iteritems(self.group_id)) self.col_idx = Index(['A', 'B', 'C', 'D', 'E']) rand_matrix = np.random.randn(250, 5) self.string_matrix = DataFrame(rand_matrix, columns=self.col_idx, index=self.string_idx) self.time_matrix = DataFrame(rand_matrix, columns=self.col_idx, index=self.date_rng) self.time_series = tm.makeTimeSeries() self.seriesd = tm.getSeriesData() self.tsd = tm.getTimeSeriesData() self.frame = DataFrame(self.seriesd) self.tsframe = DataFrame(self.tsd) self.pd_df_foobar = DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'], 'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'C': np.random.randn(8), 'D': np.random.randn(8)}) self.df_mixed_floats = DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'], 'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'C': np.random.randn(8), 'D': np.array(np.random.randn(8), dtype='float32')}) index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) self.mframe = DataFrame(np.random.randn(10, 3), index=index, columns=['A', 'B', 'C']) self.three_group = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) super(self.__class__, self).setUp() def test_first_last_nth(self): # tests for first / last / nth ddf = self.psc.from_pd_data_frame(self.pd_df_foobar) assert_frame_equal(ddf.collect(), self.pd_df_foobar) grouped = self.psc.from_pd_data_frame(self.pd_df_foobar).groupby('A') first = grouped.first().collect() expected = self.pd_df_foobar.ix[[1, 0], ['B', 'C', 'D']] expected.index = Index(['bar', 'foo'], name='A') expected = expected.sort_index() assert_frame_equal(first, expected) nth = grouped.nth(0).collect() assert_frame_equal(nth, expected) last = grouped.last().collect() expected = self.pd_df_foobar.ix[[5, 7], ['B', 'C', 'D']] expected.index =
Index(['bar', 'foo'], name='A')
pandas.core.index.Index
import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm from matplotlib.colors import LogNorm import matplotlib import os import sys import appaloosa import pandas as pd import datetime import warnings from scipy.optimize import curve_fit, minimize from astropy.stats import funcs import emcee import corner import appaloosa.analysis as analysis def paper2_plots(condorfile='condorout.dat.gz', debug=False, kicfile='kic.txt.gz', statsfile='stats.txt', figdir='figures2/', figtype='.pdf', rerun=False, oldplot=True): ''' Paper 2: flares vs ages PREVIOUSLY: Run on WWU workstation in dir: ~/research/kepler-flares/ NOW: Run on UW Workstation in dir: /Volumes/Davenport WWU-1/Data/WWU_20180618/research/kepler-flares/ ''' # if doing the re-run (make FFD for all objects) then do all the old extra plots too if rerun: oldplot = True # read in KIC file # http://archive.stsci.edu/pub/kepler/catalogs/ <- data source # http://archive.stsci.edu/kepler/kic10/help/quickcol.html <- info print('RUNNING PAPER2_PLOTS') print('reading in ' ,datetime.datetime.now()) kicdata =
pd.read_csv(kicfile, delimiter='|')
pandas.read_csv
import pandas as pd def merge_data(left_df, right_df, date_col="date"): # get clean copies of data with date format left_df = left_df.copy() left_df[date_col] =
pd.to_datetime(left_df[date_col])
pandas.to_datetime
import sys import numpy import pandas as pd import constants as kk from pyswarm import pso import os import input import datetime as dt def preparation(): project_path = 'C:\\Users\\FrancescoBaldi\\switchdrive\\Work in progress\\Paper 0\\Ecos2015PaperExtension\\' path_files = project_path + os.sep sys.path.append(path_files) filenames = input.filenames(project_path) # Note: this is just a test CONSTANTS = kk.constantsSetting() CONSTANTS["filenames"] = filenames processed_temp = pd.read_hdf(CONSTANTS["filenames"]["dataset_output"], 'processed') dataset_raw = pd.read_hdf(filenames["dataset_raw"], 'table') data =
pd.DataFrame(index=processed_temp.index)
pandas.DataFrame
import argparse from ast import literal_eval from astropy.io import fits import base64 from bson.json_util import loads import confluent_kafka from copy import deepcopy import datetime import fastavro import gzip import io from matplotlib.colors import LogNorm import matplotlib.pyplot as plt import multiprocessing import numpy as np import os import pandas as pd import requests from requests.adapters import HTTPAdapter from requests.packages.urllib3.util.retry import Retry import subprocess import sys from tensorflow.keras.models import load_model import time import traceback from utils import ( datetime_to_jd, deg2dms, deg2hms, great_circle_distance, in_ellipse, load_config, Mongo, radec2lb, time_stamp, ) ''' load config and secrets ''' config = load_config(config_file='config.yaml')['kowalski'] DEFAULT_TIMEOUT = 5 # seconds class TimeoutHTTPAdapter(HTTPAdapter): def __init__(self, *args, **kwargs): self.timeout = DEFAULT_TIMEOUT if "timeout" in kwargs: self.timeout = kwargs["timeout"] del kwargs["timeout"] super().__init__(*args, **kwargs) def send(self, request, **kwargs): timeout = kwargs.get("timeout") if timeout is None: kwargs["timeout"] = self.timeout return super().send(request, **kwargs) def read_schema_data(bytes_io): """Read data that already has an Avro schema. Parameters ---------- bytes_io : `_io.BytesIO` Data to be decoded. Returns ------- `dict` Decoded data. """ bytes_io.seek(0) message = fastavro.reader(bytes_io) return message class EopError(Exception): """ Exception raised when reaching end of partition. Parameters ---------- msg : Kafka message The Kafka message result from consumer.poll(). """ def __init__(self, msg): message = f'{time_stamp()}: topic:{msg.topic()}, partition:{msg.partition()}, '\ f'status:end, offset:{msg.offset()}, key:{str(msg.key())}\n' self.message = message def __str__(self): return self.message def log(message): print(f"{time_stamp()}: {message}") def make_photometry(alert: dict, jd_start: float = None): """Make a de-duplicated pandas.DataFrame with photometry of alert['objectId'] :param alert: ZTF alert packet/dict :param jd_start: :return: """ alert = deepcopy(alert) df_candidate = pd.DataFrame(alert['candidate'], index=[0]) df_prv_candidates =
pd.DataFrame(alert['prv_candidates'])
pandas.DataFrame
from collections import Counter from importlib.machinery import SourceFileLoader import numpy as np from os.path import join import warnings warnings.filterwarnings("ignore") import nltk nltk.download('punkt') import seaborn as sns import matplotlib from nltk.tokenize import sent_tokenize, word_tokenize from nltk.stem.wordnet import WordNetLemmatizer from nltk.stem.porter import * from nltk.corpus import stopwords nltk.download('stopwords' ,quiet=True) from sklearn.feature_extraction.text import CountVectorizer from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split import pandas as pd from sklearn.metrics import multilabel_confusion_matrix from sklearn import metrics import gdown import string import numpy import matplotlib.pyplot as plt import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.models import Sequential from keras.layers import Dense, Embedding, LSTM, SpatialDropout1D from sklearn.model_selection import train_test_split from keras.utils.np_utils import to_categorical from keras.callbacks import EarlyStopping from keras.layers import Dropout import re from nltk.corpus import stopwords from nltk import word_tokenize STOPWORDS = set(stopwords.words('english')) from bs4 import BeautifulSoup from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences import string def get_finance_train(): df_train = pd.read_csv("finance_train.csv") return df_train def get_finance_test(): df_test = pd.read_csv("finance_test.csv") return df_test PUNCTUATION = '!#$%&()*,-./:;<=>?@^_`{|}~' REPLACE_BY_SPACE_RE = re.compile('[/(){}\[\]\|@,;]') BAD_SYMBOLS_RE = re.compile('[^0-9a-z #+_]') STOPWORDS = set(stopwords.words('english')) def clean_text(text): """ text: a string return: modified initial string """ text = text.lower() text = REPLACE_BY_SPACE_RE.sub(' ', text) text = BAD_SYMBOLS_RE.sub('', text) text = text.replace('x', '') text = ' '.join(word for word in text.split() if word not in STOPWORDS) return text def pad_sequences_train(df_train, df_test): tokenizer = Tokenizer(num_words=MAX_NB_WORDS, filters='!"#$%&()*+,-./:;<=>?@[\]^_`{|}~', lower=True) tokenizer.fit_on_texts(df_train['Sentence'].values) word_index = tokenizer.word_index X = tokenizer.texts_to_sequences(df_train['Sentence'].values) X_train = pad_sequences(X, maxlen=MAX_SEQUENCE_LENGTH) return X_train def pad_sequences_test(df_train, df_test): tokenizer = Tokenizer(num_words=MAX_NB_WORDS, filters='!"#$%&()*+,-./:;<=>?@[\]^_`{|}~', lower=True) tokenizer.fit_on_texts(df_train['Sentence'].values) word_index = tokenizer.word_index X = tokenizer.texts_to_sequences(df_test['Sentence'].values) X_test = pad_sequences(X, maxlen=MAX_SEQUENCE_LENGTH) return X_test def run_model(X_train, y_train, X_test, y_test, epochs=5, max_sequence_length=256, max_nb_words=1000, embedding_dim=300): if any(x is None for x in [X_train, y_train, X_test, y_test, epochs, max_sequence_length, max_nb_words, embedding_dim]): print('Replace the None values above with your new values before calling the run_model() function.') return None, None, None model = Sequential() model.add(Embedding(max_nb_words+1, embedding_dim, mask_zero=True, input_length=max_sequence_length)) model.add(SpatialDropout1D(0.2)) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2)) model.add(Dense(n_labels, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) print(model.summary()) history = model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, validation_split=0.1, callbacks=[EarlyStopping(monitor='val_loss', patience=3, min_delta=0.0001)]) test_loss, test_accuracy = model.evaluate(X_test, y_test) return model, history, test_accuracy EMBEDDING_DIM = 300 nltk.download('wordnet') gdown.download('https://drive.google.com/uc?id=1q4U2gVY9tWEPdT6W-pdQpKmo152QqWLE', 'finance_train.csv', True) gdown.download('https://drive.google.com/uc?id=1nIBqAsItwVEGVayYTgvybz7HeK0asom0', 'finance_test.csv', True) print ("Train & Test Files are loaded") df_train = get_finance_train() df_train.head() df_test = get_finance_test() print(df_test) n_labels = 3 label_map = {0 : "negative", 1 : "neutral", 2 : "positive"} model = Sequential() model.add(Embedding(MAX_NB_WORDS+1, EMBEDDING_DIM, mask_zero=True, input_length=MAX_SEQUENCE_LENGTH)) model.add(SpatialDropout1D(0.2)) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2)) model.add(Dense(n_labels, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) print(model.summary()) epochs = 8 batch_size = 32 X_train= pad_sequences_train(df_train, df_test) print(X_train[0]) X_test= pad_sequences_test(df_test, df_test) print(X_test[0]) y_train =
pd.get_dummies(df_train['Label'])
pandas.get_dummies
# -*- coding: utf-8 -*- """ These the test the public routines exposed in types/common.py related to inference and not otherwise tested in types/test_common.py """ from warnings import catch_warnings, simplefilter import collections import re from datetime import datetime, date, timedelta, time from decimal import Decimal from numbers import Number from fractions import Fraction import numpy as np import pytz import pytest import pandas as pd from pandas._libs import lib, iNaT, missing as libmissing from pandas import (Series, Index, DataFrame, Timedelta, DatetimeIndex, TimedeltaIndex, Timestamp, Panel, Period, Categorical, isna, Interval, DateOffset) from pandas import compat from pandas.compat import u, PY2, StringIO, lrange from pandas.core.dtypes import inference from pandas.core.dtypes.common import ( is_timedelta64_dtype, is_timedelta64_ns_dtype, is_datetime64_dtype, is_datetime64_ns_dtype, is_datetime64_any_dtype, is_datetime64tz_dtype, is_number, is_integer, is_float, is_bool, is_scalar, is_scipy_sparse, ensure_int32, ensure_categorical) from pandas.util import testing as tm import pandas.util._test_decorators as td @pytest.fixture(params=[True, False], ids=str) def coerce(request): return request.param # collect all objects to be tested for list-like-ness; use tuples of objects, # whether they are list-like or not (special casing for sets), and their ID ll_params = [ ([1], True, 'list'), # noqa: E241 ([], True, 'list-empty'), # noqa: E241 ((1, ), True, 'tuple'), # noqa: E241 (tuple(), True, 'tuple-empty'), # noqa: E241 ({'a': 1}, True, 'dict'), # noqa: E241 (dict(), True, 'dict-empty'), # noqa: E241 ({'a', 1}, 'set', 'set'), # noqa: E241 (set(), 'set', 'set-empty'), # noqa: E241 (frozenset({'a', 1}), 'set', 'frozenset'), # noqa: E241 (frozenset(), 'set', 'frozenset-empty'), # noqa: E241 (iter([1, 2]), True, 'iterator'), # noqa: E241 (iter([]), True, 'iterator-empty'), # noqa: E241 ((x for x in [1, 2]), True, 'generator'), # noqa: E241 ((x for x in []), True, 'generator-empty'), # noqa: E241 (Series([1]), True, 'Series'), # noqa: E241 (Series([]), True, 'Series-empty'), # noqa: E241 (Series(['a']).str, True, 'StringMethods'), # noqa: E241 (Series([], dtype='O').str, True, 'StringMethods-empty'), # noqa: E241 (Index([1]), True, 'Index'), # noqa: E241 (Index([]), True, 'Index-empty'), # noqa: E241 (DataFrame([[1]]), True, 'DataFrame'), # noqa: E241 (DataFrame(), True, 'DataFrame-empty'), # noqa: E241 (np.ndarray((2,) * 1), True, 'ndarray-1d'), # noqa: E241 (np.array([]), True, 'ndarray-1d-empty'), # noqa: E241 (np.ndarray((2,) * 2), True, 'ndarray-2d'), # noqa: E241 (np.array([[]]), True, 'ndarray-2d-empty'), # noqa: E241 (np.ndarray((2,) * 3), True, 'ndarray-3d'), # noqa: E241 (np.array([[[]]]), True, 'ndarray-3d-empty'), # noqa: E241 (np.ndarray((2,) * 4), True, 'ndarray-4d'), # noqa: E241 (np.array([[[[]]]]), True, 'ndarray-4d-empty'), # noqa: E241 (np.array(2), False, 'ndarray-0d'), # noqa: E241 (1, False, 'int'), # noqa: E241 (b'123', False, 'bytes'), # noqa: E241 (b'', False, 'bytes-empty'), # noqa: E241 ('123', False, 'string'), # noqa: E241 ('', False, 'string-empty'), # noqa: E241 (str, False, 'string-type'), # noqa: E241 (object(), False, 'object'), # noqa: E241 (np.nan, False, 'NaN'), # noqa: E241 (None, False, 'None') # noqa: E241 ] objs, expected, ids = zip(*ll_params) @pytest.fixture(params=zip(objs, expected), ids=ids) def maybe_list_like(request): return request.param def test_is_list_like(maybe_list_like): obj, expected = maybe_list_like expected = True if expected == 'set' else expected assert inference.is_list_like(obj) == expected def test_is_list_like_disallow_sets(maybe_list_like): obj, expected = maybe_list_like expected = False if expected == 'set' else expected assert inference.is_list_like(obj, allow_sets=False) == expected def test_is_sequence(): is_seq = inference.is_sequence assert (is_seq((1, 2))) assert (is_seq([1, 2])) assert (not is_seq("abcd")) assert (not is_seq(u("abcd"))) assert (not is_seq(np.int64)) class A(object): def __getitem__(self): return 1 assert (not is_seq(A())) def test_is_array_like(): assert inference.is_array_like(Series([])) assert inference.is_array_like(Series([1, 2])) assert inference.is_array_like(np.array(["a", "b"])) assert inference.is_array_like(Index(["2016-01-01"])) class DtypeList(list): dtype = "special" assert inference.is_array_like(DtypeList()) assert not inference.is_array_like([1, 2, 3]) assert not inference.is_array_like(tuple()) assert not inference.is_array_like("foo") assert not inference.is_array_like(123) @pytest.mark.parametrize('inner', [ [], [1], (1, ), (1, 2), {'a': 1}, {1, 'a'}, Series([1]), Series([]), Series(['a']).str, (x for x in range(5)) ]) @pytest.mark.parametrize('outer', [ list, Series, np.array, tuple ]) def test_is_nested_list_like_passes(inner, outer): result = outer([inner for _ in range(5)]) assert inference.is_list_like(result) @pytest.mark.parametrize('obj', [ 'abc', [], [1], (1,), ['a'], 'a', {'a'}, [1, 2, 3], Series([1]), DataFrame({"A": [1]}), ([1, 2] for _ in range(5)), ]) def test_is_nested_list_like_fails(obj): assert not inference.is_nested_list_like(obj) @pytest.mark.parametrize( "ll", [{}, {'A': 1}, Series([1])]) def test_is_dict_like_passes(ll): assert inference.is_dict_like(ll) @pytest.mark.parametrize( "ll", ['1', 1, [1, 2], (1, 2), range(2), Index([1])]) def test_is_dict_like_fails(ll): assert not inference.is_dict_like(ll) @pytest.mark.parametrize("has_keys", [True, False]) @pytest.mark.parametrize("has_getitem", [True, False]) @pytest.mark.parametrize("has_contains", [True, False]) def test_is_dict_like_duck_type(has_keys, has_getitem, has_contains): class DictLike(object): def __init__(self, d): self.d = d if has_keys: def keys(self): return self.d.keys() if has_getitem: def __getitem__(self, key): return self.d.__getitem__(key) if has_contains: def __contains__(self, key): return self.d.__contains__(key) d = DictLike({1: 2}) result = inference.is_dict_like(d) expected = has_keys and has_getitem and has_contains assert result is expected def test_is_file_like(mock): class MockFile(object): pass is_file = inference.is_file_like data = StringIO("data") assert is_file(data) # No read / write attributes # No iterator attributes m = MockFile() assert not is_file(m) MockFile.write = lambda self: 0 # Write attribute but not an iterator m = MockFile() assert not is_file(m) # gh-16530: Valid iterator just means we have the # __iter__ attribute for our purposes. MockFile.__iter__ = lambda self: self # Valid write-only file m = MockFile() assert is_file(m) del MockFile.write MockFile.read = lambda self: 0 # Valid read-only file m = MockFile() assert is_file(m) # Iterator but no read / write attributes data = [1, 2, 3] assert not is_file(data) assert not is_file(mock.Mock()) @pytest.mark.parametrize( "ll", [collections.namedtuple('Test', list('abc'))(1, 2, 3)]) def test_is_names_tuple_passes(ll): assert inference.is_named_tuple(ll) @pytest.mark.parametrize( "ll", [(1, 2, 3), 'a', Series({'pi': 3.14})]) def test_is_names_tuple_fails(ll): assert not inference.is_named_tuple(ll) def test_is_hashable(): # all new-style classes are hashable by default class HashableClass(object): pass class UnhashableClass1(object): __hash__ = None class UnhashableClass2(object): def __hash__(self): raise TypeError("Not hashable") hashable = (1, 3.14, np.float64(3.14), 'a', tuple(), (1, ), HashableClass(), ) not_hashable = ([], UnhashableClass1(), ) abc_hashable_not_really_hashable = (([], ), UnhashableClass2(), ) for i in hashable: assert inference.is_hashable(i) for i in not_hashable: assert not inference.is_hashable(i) for i in abc_hashable_not_really_hashable: assert not inference.is_hashable(i) # numpy.array is no longer collections.Hashable as of # https://github.com/numpy/numpy/pull/5326, just test # is_hashable() assert not inference.is_hashable(np.array([])) # old-style classes in Python 2 don't appear hashable to # collections.Hashable but also seem to support hash() by default if PY2: class OldStyleClass(): pass c = OldStyleClass() assert not isinstance(c, compat.Hashable) assert inference.is_hashable(c) hash(c) # this will not raise @pytest.mark.parametrize( "ll", [re.compile('ad')]) def test_is_re_passes(ll): assert inference.is_re(ll) @pytest.mark.parametrize( "ll", ['x', 2, 3, object()]) def test_is_re_fails(ll): assert not inference.is_re(ll) @pytest.mark.parametrize( "ll", [r'a', u('x'), r'asdf', re.compile('adsf'), u(r'\u2233\s*'), re.compile(r'')]) def test_is_recompilable_passes(ll): assert inference.is_re_compilable(ll) @pytest.mark.parametrize( "ll", [1, [], object()]) def test_is_recompilable_fails(ll): assert not inference.is_re_compilable(ll) class TestInference(object): def test_infer_dtype_bytes(self): compare = 'string' if PY2 else 'bytes' # string array of bytes arr = np.array(list('abc'), dtype='S1') assert lib.infer_dtype(arr) == compare # object array of bytes arr = arr.astype(object) assert lib.infer_dtype(arr) == compare # object array of bytes with missing values assert lib.infer_dtype([b'a', np.nan, b'c'], skipna=True) == compare def test_isinf_scalar(self): # GH 11352 assert libmissing.isposinf_scalar(float('inf')) assert libmissing.isposinf_scalar(np.inf) assert not libmissing.isposinf_scalar(-np.inf) assert not libmissing.isposinf_scalar(1) assert not libmissing.isposinf_scalar('a') assert libmissing.isneginf_scalar(float('-inf')) assert libmissing.isneginf_scalar(-np.inf) assert not libmissing.isneginf_scalar(np.inf) assert not libmissing.isneginf_scalar(1) assert not libmissing.isneginf_scalar('a') def test_maybe_convert_numeric_infinities(self): # see gh-13274 infinities = ['inf', 'inF', 'iNf', 'Inf', 'iNF', 'InF', 'INf', 'INF'] na_values = {'', 'NULL', 'nan'} pos = np.array(['inf'], dtype=np.float64) neg = np.array(['-inf'], dtype=np.float64) msg = "Unable to parse string" for infinity in infinities: for maybe_int in (True, False): out = lib.maybe_convert_numeric( np.array([infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) out = lib.maybe_convert_numeric( np.array(['-' + infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, neg) out = lib.maybe_convert_numeric( np.array([u(infinity)], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) out = lib.maybe_convert_numeric( np.array(['+' + infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) # too many characters with pytest.raises(ValueError, match=msg): lib.maybe_convert_numeric( np.array(['foo_' + infinity], dtype=object), na_values, maybe_int) def test_maybe_convert_numeric_post_floatify_nan(self, coerce): # see gh-13314 data = np.array(['1.200', '-999.000', '4.500'], dtype=object) expected = np.array([1.2, np.nan, 4.5], dtype=np.float64) nan_values = {-999, -999.0} out = lib.maybe_convert_numeric(data, nan_values, coerce) tm.assert_numpy_array_equal(out, expected) def test_convert_infs(self): arr = np.array(['inf', 'inf', 'inf'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False) assert result.dtype == np.float64 arr = np.array(['-inf', '-inf', '-inf'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False) assert result.dtype == np.float64 def test_scientific_no_exponent(self): # See PR 12215 arr = np.array(['42E', '2E', '99e', '6e'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False, True) assert np.all(np.isnan(result)) def test_convert_non_hashable(self): # GH13324 # make sure that we are handing non-hashables arr = np.array([[10.0, 2], 1.0, 'apple']) result = lib.maybe_convert_numeric(arr, set(), False, True) tm.assert_numpy_array_equal(result, np.array([np.nan, 1.0, np.nan])) def test_convert_numeric_uint64(self): arr = np.array([2**63], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set()), exp) arr = np.array([str(2**63)], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set()), exp) arr = np.array([np.uint64(2**63)], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set()), exp) @pytest.mark.parametrize("arr", [ np.array([2**63, np.nan], dtype=object), np.array([str(2**63), np.nan], dtype=object), np.array([np.nan, 2**63], dtype=object), np.array([np.nan, str(2**63)], dtype=object)]) def test_convert_numeric_uint64_nan(self, coerce, arr): expected = arr.astype(float) if coerce else arr.copy() result = lib.maybe_convert_numeric(arr, set(), coerce_numeric=coerce) tm.assert_almost_equal(result, expected) def test_convert_numeric_uint64_nan_values(self, coerce): arr = np.array([2**63, 2**63 + 1], dtype=object) na_values = {2**63} expected = (np.array([np.nan, 2**63 + 1], dtype=float) if coerce else arr.copy()) result = lib.maybe_convert_numeric(arr, na_values, coerce_numeric=coerce) tm.assert_almost_equal(result, expected) @pytest.mark.parametrize("case", [ np.array([2**63, -1], dtype=object), np.array([str(2**63), -1], dtype=object), np.array([str(2**63), str(-1)], dtype=object), np.array([-1, 2**63], dtype=object), np.array([-1, str(2**63)], dtype=object), np.array([str(-1), str(2**63)], dtype=object)]) def test_convert_numeric_int64_uint64(self, case, coerce): expected = case.astype(float) if coerce else case.copy() result = lib.maybe_convert_numeric(case, set(), coerce_numeric=coerce) tm.assert_almost_equal(result, expected) @pytest.mark.parametrize("value", [-2**63 - 1, 2**64]) def test_convert_int_overflow(self, value): # see gh-18584 arr = np.array([value], dtype=object) result = lib.maybe_convert_objects(arr) tm.assert_numpy_array_equal(arr, result) def test_maybe_convert_objects_uint64(self): # see gh-4471 arr = np.array([2**63], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) # NumPy bug: can't compare uint64 to int64, as that # results in both casting to float64, so we should # make sure that this function is robust against it arr = np.array([np.uint64(2**63)], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) arr = np.array([2, -1], dtype=object) exp = np.array([2, -1], dtype=np.int64) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) arr = np.array([2**63, -1], dtype=object) exp = np.array([2**63, -1], dtype=object) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) def test_mixed_dtypes_remain_object_array(self): # GH14956 array = np.array([datetime(2015, 1, 1, tzinfo=pytz.utc), 1], dtype=object) result = lib.maybe_convert_objects(array, convert_datetime=1) tm.assert_numpy_array_equal(result, array) class TestTypeInference(object): # Dummy class used for testing with Python objects class Dummy(): pass def test_inferred_dtype_fixture(self, any_skipna_inferred_dtype): # see pandas/conftest.py inferred_dtype, values = any_skipna_inferred_dtype # make sure the inferred dtype of the fixture is as requested assert inferred_dtype == lib.infer_dtype(values, skipna=True) def test_length_zero(self): result = lib.infer_dtype(np.array([], dtype='i4')) assert result == 'integer' result = lib.infer_dtype([]) assert result == 'empty' # GH 18004 arr = np.array([np.array([], dtype=object), np.array([], dtype=object)]) result = lib.infer_dtype(arr) assert result == 'empty' def test_integers(self): arr = np.array([1, 2, 3, np.int64(4), np.int32(5)], dtype='O') result = lib.infer_dtype(arr) assert result == 'integer' arr = np.array([1, 2, 3, np.int64(4), np.int32(5), 'foo'], dtype='O') result = lib.infer_dtype(arr) assert result == 'mixed-integer' arr = np.array([1, 2, 3, 4, 5], dtype='i4') result = lib.infer_dtype(arr) assert result == 'integer' def test_bools(self): arr = np.array([True, False, True, True, True], dtype='O') result = lib.infer_dtype(arr) assert result == 'boolean' arr = np.array([np.bool_(True), np.bool_(False)], dtype='O') result = lib.infer_dtype(arr) assert result == 'boolean' arr = np.array([True, False, True, 'foo'], dtype='O') result = lib.infer_dtype(arr) assert result == 'mixed' arr = np.array([True, False, True], dtype=bool) result = lib.infer_dtype(arr) assert result == 'boolean' arr = np.array([True, np.nan, False], dtype='O') result = lib.infer_dtype(arr, skipna=True) assert result == 'boolean' def test_floats(self): arr = np.array([1., 2., 3., np.float64(4), np.float32(5)], dtype='O') result = lib.infer_dtype(arr) assert result == 'floating' arr = np.array([1, 2, 3, np.float64(4), np.float32(5), 'foo'], dtype='O') result = lib.infer_dtype(arr) assert result == 'mixed-integer' arr = np.array([1, 2, 3, 4, 5], dtype='f4') result = lib.infer_dtype(arr) assert result == 'floating' arr = np.array([1, 2, 3, 4, 5], dtype='f8') result = lib.infer_dtype(arr) assert result == 'floating' def test_decimals(self): # GH15690 arr = np.array([Decimal(1), Decimal(2), Decimal(3)]) result = lib.infer_dtype(arr) assert result == 'decimal' arr = np.array([1.0, 2.0, Decimal(3)]) result = lib.infer_dtype(arr) assert result == 'mixed' arr = np.array([Decimal(1), Decimal('NaN'), Decimal(3)]) result = lib.infer_dtype(arr) assert result == 'decimal' arr = np.array([Decimal(1), np.nan, Decimal(3)], dtype='O') result = lib.infer_dtype(arr) assert result == 'decimal' def test_string(self): pass def test_unicode(self): arr = [u'a', np.nan, u'c'] result = lib.infer_dtype(arr) assert result == 'mixed' arr = [u'a', np.nan, u'c'] result = lib.infer_dtype(arr, skipna=True) expected = 'unicode' if PY2 else 'string' assert result == expected @pytest.mark.parametrize('dtype, missing, skipna, expected', [ (float, np.nan, False, 'floating'), (float, np.nan, True, 'floating'), (object, np.nan, False, 'floating'), (object, np.nan, True, 'empty'), (object, None, False, 'mixed'), (object, None, True, 'empty') ]) @pytest.mark.parametrize('box', [pd.Series, np.array]) def test_object_empty(self, box, missing, dtype, skipna, expected): # GH 23421 arr = box([missing, missing], dtype=dtype) result = lib.infer_dtype(arr, skipna=skipna) assert result == expected def test_datetime(self): dates = [datetime(2012, 1, x) for x in range(1, 20)] index = Index(dates) assert index.inferred_type == 'datetime64' def test_infer_dtype_datetime(self): arr = np.array([Timestamp('2011-01-01'), Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([np.datetime64('2011-01-01'), np.datetime64('2011-01-01')], dtype=object) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([datetime(2011, 1, 1), datetime(2012, 2, 1)]) assert lib.infer_dtype(arr) == 'datetime' # starts with nan for n in [pd.NaT, np.nan]: arr = np.array([n, pd.Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([n, np.datetime64('2011-01-02')]) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([n, datetime(2011, 1, 1)]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([n, pd.Timestamp('2011-01-02'), n]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([n, np.datetime64('2011-01-02'), n]) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([n, datetime(2011, 1, 1), n]) assert lib.infer_dtype(arr) == 'datetime' # different type of nat arr = np.array([np.timedelta64('nat'), np.datetime64('2011-01-02')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.datetime64('2011-01-02'), np.timedelta64('nat')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' # mixed datetime arr = np.array([datetime(2011, 1, 1), pd.Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'datetime' # should be datetime? arr = np.array([np.datetime64('2011-01-01'), pd.Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([pd.Timestamp('2011-01-02'), np.datetime64('2011-01-01')]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.nan, pd.Timestamp('2011-01-02'), 1]) assert lib.infer_dtype(arr) == 'mixed-integer' arr = np.array([np.nan, pd.Timestamp('2011-01-02'), 1.1]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.nan, '2011-01-01', pd.Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'mixed' def test_infer_dtype_timedelta(self): arr = np.array([pd.Timedelta('1 days'), pd.Timedelta('2 days')]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([np.timedelta64(1, 'D'), np.timedelta64(2, 'D')], dtype=object) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([timedelta(1), timedelta(2)]) assert lib.infer_dtype(arr) == 'timedelta' # starts with nan for n in [pd.NaT, np.nan]: arr = np.array([n, Timedelta('1 days')]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, np.timedelta64(1, 'D')]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, timedelta(1)]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, pd.Timedelta('1 days'), n]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, np.timedelta64(1, 'D'), n]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, timedelta(1), n]) assert lib.infer_dtype(arr) == 'timedelta' # different type of nat arr = np.array([np.datetime64('nat'), np.timedelta64(1, 'D')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.timedelta64(1, 'D'), np.datetime64('nat')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' def test_infer_dtype_period(self): # GH 13664 arr = np.array([pd.Period('2011-01', freq='D'), pd.Period('2011-02', freq='D')]) assert lib.infer_dtype(arr) == 'period' arr = np.array([pd.Period('2011-01', freq='D'), pd.Period('2011-02', freq='M')]) assert lib.infer_dtype(arr) == 'period' # starts with nan for n in [pd.NaT, np.nan]: arr = np.array([n, pd.Period('2011-01', freq='D')]) assert lib.infer_dtype(arr) == 'period' arr = np.array([n, pd.Period('2011-01', freq='D'), n]) assert lib.infer_dtype(arr) == 'period' # different type of nat arr = np.array([np.datetime64('nat'), pd.Period('2011-01', freq='M')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([pd.Period('2011-01', freq='M'), np.datetime64('nat')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' @pytest.mark.parametrize( "data", [ [datetime(2017, 6, 12, 19, 30), datetime(2017, 3, 11, 1, 15)], [Timestamp("20170612"), Timestamp("20170311")], [Timestamp("20170612", tz='US/Eastern'), Timestamp("20170311", tz='US/Eastern')], [date(2017, 6, 12), Timestamp("20170311", tz='US/Eastern')], [np.datetime64("2017-06-12"), np.datetime64("2017-03-11")], [np.datetime64("2017-06-12"), datetime(2017, 3, 11, 1, 15)] ] ) def test_infer_datetimelike_array_datetime(self, data): assert lib.infer_datetimelike_array(data) == "datetime" @pytest.mark.parametrize( "data", [ [timedelta(2017, 6, 12), timedelta(2017, 3, 11)], [timedelta(2017, 6, 12), date(2017, 3, 11)], [np.timedelta64(2017, "D"), np.timedelta64(6, "s")], [np.timedelta64(2017, "D"), timedelta(2017, 3, 11)] ] ) def test_infer_datetimelike_array_timedelta(self, data): assert lib.infer_datetimelike_array(data) == "timedelta" def test_infer_datetimelike_array_date(self): arr = [date(2017, 6, 12), date(2017, 3, 11)] assert lib.infer_datetimelike_array(arr) == "date" @pytest.mark.parametrize( "data", [ ["2017-06-12", "2017-03-11"], [20170612, 20170311], [20170612.5, 20170311.8], [Dummy(), Dummy()], [Timestamp("20170612"), Timestamp("20170311", tz='US/Eastern')], [Timestamp("20170612"), 20170311], [timedelta(2017, 6, 12), Timestamp("20170311", tz='US/Eastern')] ] ) def test_infer_datetimelike_array_mixed(self, data): assert lib.infer_datetimelike_array(data) == "mixed" @pytest.mark.parametrize( "first, expected", [ [[None], "mixed"], [[np.nan], "mixed"], [[pd.NaT], "nat"], [[datetime(2017, 6, 12, 19, 30), pd.NaT], "datetime"], [[np.datetime64("2017-06-12"), pd.NaT], "datetime"], [[date(2017, 6, 12), pd.NaT], "date"], [[timedelta(2017, 6, 12), pd.NaT], "timedelta"], [[np.timedelta64(2017, "D"), pd.NaT], "timedelta"] ] ) @pytest.mark.parametrize("second", [None, np.nan]) def test_infer_datetimelike_array_nan_nat_like(self, first, second, expected): first.append(second) assert lib.infer_datetimelike_array(first) == expected def test_infer_dtype_all_nan_nat_like(self): arr = np.array([np.nan, np.nan]) assert lib.infer_dtype(arr) == 'floating' # nan and None mix are result in mixed arr = np.array([np.nan, np.nan, None]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([None, np.nan, np.nan]) assert lib.infer_dtype(arr) == 'mixed' # pd.NaT arr = np.array([pd.NaT]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([pd.NaT, np.nan]) assert
lib.infer_dtype(arr)
pandas._libs.lib.infer_dtype
from datetime import datetime import unittest import numpy as np import pandas.core.datetools as datetools from pandas.core.daterange import DateRange, XDateRange #### ## XDateRange Tests #### def eqXDateRange(kwargs, expected): assert(np.array_equal(list(XDateRange(**kwargs)), expected)) def testXDateRange1(): eqXDateRange(dict(start = datetime(2009, 3, 25), nPeriods = 2), [datetime(2009, 3, 25), datetime(2009, 3, 26)]) def testXDateRange2(): eqXDateRange(dict(start = datetime(2008, 1, 1), end = datetime(2008, 1, 3)), [datetime(2008, 1, 1), datetime(2008, 1, 2), datetime(2008, 1, 3)]) def testXDateRange3(): eqXDateRange(dict(start = datetime(2008, 1, 5), end = datetime(2008, 1, 6)), []) START, END = datetime(2009, 1, 1), datetime(2010, 1, 1) class TestXDateRange(unittest.TestCase): def test_constructor(self): rng = XDateRange(START, END, offset=datetools.bday) self.assertEquals(rng.timeRule, 'WEEKDAY') rng = XDateRange(START, END, timeRule='WEEKDAY') self.assertEquals(rng.offset, datetools.bday) class TestDateRange(unittest.TestCase): def setUp(self): self.rng = DateRange(START, END, offset=datetools.bday) def test_constructor(self): rng = DateRange(START, END, offset=datetools.bday) rng =
DateRange(START, periods=20, offset=datetools.bday)
pandas.core.daterange.DateRange
# Copyright (c) <NAME> # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import chronos_utils import pandas as pd import numpy as np import torch from torch.optim import Rprop from torch.distributions import constraints import pyro import pyro.distributions as dist from pyro.optim import ExponentialLR from pyro.infer import SVI, Trace_ELBO, Predictive, JitTrace_ELBO from pyro.infer.autoguide import AutoDelta from pyro.infer.autoguide.initialization import init_to_feasible import warnings pyro.enable_validation(True) class Chronos: ''' Parameters: ------------ method="MAP" - [str] The estimation method used. Currently only supports one of "MAP" (Maximum A Posteriori), or "MLE" (Maximum Likelihood Estimation). If "MLE" is chosen, 'changepoint_prior_scale' is ignored. Default is "MAP" n_changepoints - [int] The number of changepoints the model considers when fitting to the data, must be 0 or larger. Changepoints are points in time when the slope of the trend can change. More changepoints will allow for a better fit, but will also increase uncertainty when predicting into the future. Default is 20 year_seasonality_order - [int] The fourier order used to predict yearly seasonality. Must be 0 or larger. Larger values will allow for a better fit for yearly seasonality but increase the odds of overfitting, as well as fitting time. Setting this value to 0 implies there is no yearly seasonality. Default is 10 month_seasonality_order - [int] The fourier order used to predict monthly seasonality. Must be 0 or larger. Larger values will allow for a better fit for monthly seasonality but increase the odds of overfitting, as well as fitting time. Setting this value to 0 implies there is no monthly seasonality. Default is 5 weekly_seasonality_order - [int] The fourier order used to predict weekly seasonality. Must be 0 or larger. Larger values will allow for a better fit for weekly seasonality but increase the odds of overfitting, as well as fitting time. Setting this value to 0 implies there is no weekly seasonality. Default is 3 learning_rate - [float] The learning rate used for optimization when the optimization method is "MAP" or "MLE". Most be larger than 0. Larger values make the algorithm learn faster but might produce worse solutions. Smaller values allow for better convergence but will require more iterations to be specified at [max_iter]. Default is 0.01 changepoint_range - [float] The range of the historical data to apply changepoints to. Must be between 0.0 - 1.0. 0.8 would mean only considering changepoints for the first 80% of historical data. Larger values would provide better fit, but would also be more sensitive to recent changes which may or may not indicate trends. Default is 0.8 changepoint_prior_scale - [float] the scale for the changepoint value prior distribution. Must be larger than 0.0. The changepoints are assumed to come from a Laplace distribution which is centered at 0 and is specified by the scale value. Larger values for the scale allow for more changepoints with larger changes, and may increase fit, but will also increase the uncertainty in future predictions. Default is 0.05 distribution - [string] The distribution which describes the behaviour of the data (mainly of the residuals) at each timestamp. Supported distributions are: "Normal" - The normal (Guassian) distribution "StudentT" - Student's t-distribution. Unlike the normal distribution it has fatter tails, so can be more resistent to outliers "Gamma" - The gamma distribution. Only has support for positive values. Default is "Normal" seasonality_mode - [string] Whether seasonality is an additive quantity ("add") or a multiplicative one ("mul"). If seasonality is specified as "add", the seasonal components are added to the trend. For example, if every Saturday you see 5 additiona clients, that seasonal component is additive. If the seasonality is specified as "mul", the seasonal components are multiplied by the trend. For example, if every Saturday you see a 50% increase in clients, that seasonal component is multiplicative as it depends on the number of clients already expected. Default is "add" max_iter - [int] The maximum number of iterations the algorithm is allowed to run for. Must be larger than 0. Chronos employes an optimization based approach for the "MAP" and "MLE" method, and this parameter determines how long the optimization algorithm can run for. Larger values will increase run-time, but will lead to better results. Smaller learning_rate values require larger max_iter values. Default is 1000. Example Usage: ---------------- # Create sample data >>> import chronos_plotting >>> from chronos import Chronos >>> x = np.array(range(365*4)) >>> my_df = pd.DataFrame({"ds": pd.date_range(start="2016-01-01", periods=365*4, freq='d'), "y": 0.01 * x + np.sin(x/30)}) >>> print(my_df.head()) ds y 0 2016-01-01 0.000000 1 2016-01-02 0.043327 2 2016-01-03 0.086617 3 2016-01-04 0.129833 4 2016-01-05 0.172939 >>> my_chronos = Chronos() >>> my_chronos.fit(my_df) Employing Maximum A Posteriori 100.0% - ELBO loss: -2.4531 | Mean Absolute Error: 0.2296 >>> predictions = my_chronos.predict(period=31) Prediction no: 1000 >>> chronos_plotting.plot_components(predictions, my_chronos) ... plot appears ''' def __init__(self, method="MAP", n_changepoints = 20, year_seasonality_order=10, month_seasonality_order=5, weekly_seasonality_order=3, learning_rate=0.01, changepoint_range = 0.8, changepoint_prior_scale = 0.05, distribution = "Normal", seasonality_mode = "add", max_iter=1000): ''' The initialization function. See class docstring for an in-depth explanation of all parameters ''' self.__method = self.__check_is_string_supported(method, "method", chronos_utils.SUPPORTED_METHODS) self.__seasonality_mode = self.__check_is_string_supported(seasonality_mode, "seasonality_mode", ["add", "mul"]) self.__y_likelihood_distribution = self.__check_is_string_supported(distribution, "distribution", chronos_utils.SUPPORTED_DISTRIBUTIONS) self.__number_of_changepoints = self.__check_is_supported_integer(n_changepoints, "n_changepoints", positive=False) self.__year_seasonality_fourier_order = self.__check_is_supported_integer(year_seasonality_order, "year_seasonality_order", positive=False) self.__weekly_seasonality_fourier_order = self.__check_is_supported_integer(weekly_seasonality_order, "weekly_seasonality_order", positive=False) self.__month_seasonality_fourier_order = self.__check_is_supported_integer(month_seasonality_order, "month_seasonality_order", False) self.__number_of_iterations = self.__check_is_supported_integer(max_iter, "max_iter", positive=True) self.__learning_rate = self.__check_is_supported_float(learning_rate, "learning_rate", positive=True) self.__changepoint_prior_scale = self.__check_is_supported_float(changepoint_prior_scale, "changepoint_prior_scale", positive=True) self.__proportion_of_data_subject_to_changepoints = self.__check_is_supported_float(changepoint_range, "changepoint_range", positive=False) if (self.__proportion_of_data_subject_to_changepoints > 1.0): raise ValueError("changepoint_range must be less than, or equal to, 1.0") self.__y_max = None self.__history_min_time_seconds = None self.__history_max_time_seconds = None self.__prediction_verbose = False self.__multiplicative_seasonalities = [] self.__multiplicative_additional_regressors = [] self.__additive_seasonalities = [] self.__additive_additional_regressors = [] self.__reserved_names = [f"trend{suffix}" for suffix in ["", "_upper", "_lower"]] self.__reserved_names.extend([f"yhat{suffix}" for suffix in ["", "_upper", "_lower"]]) self.__add_default_seasonalities() # Some distributions will require extra work to ensure the # parameters fed in are positive if (self.__y_likelihood_distribution in chronos_utils.POSITIVE_DISTRIBUTIONS): self.__make_likelihood_mean_positive = True else: self.__make_likelihood_mean_positive = False ######################################################################################################################## def __check_is_string_supported(self, variable, variable_name, options): ''' Checks if the string supplied is one of the options, and throws a value error if it is not Parameters: ------------ variable - [str] A string which is the value variable_name - [str] A string which is the variable name. Is included for output purposes options - [list] A list of strings which contains the available options for the given variable Returns: ------------ variable - [str] The inputted variable, unmodified, if no errors occured ''' if (not isinstance(variable, str)): raise TypeError(f"A value of {variable} for {variable_name} is not supported. Supported values are: {options}") if (variable not in options): raise ValueError(f"A value of {variable} for {variable_name} is not supported. Supported values are: {options}") else: return variable ######################################################################################################################## def __check_is_supported_float(self, variable, variable_name, positive=True): ''' Checks if the float provided is supported, and throws an error if it is not Parameters: ------------ variable - [float] An integer which is the value variable_name - [str] A string which is the variable name. Is included for output purposes positive - [bool] A flag denoting if only positive values are supported or all non-negatives are Returns: ------------ variable - [float] The inputted variable, unmodified, if no errors occured ''' if (positive == True): error_message = f"{variable_name} must be a positive float" else: error_message = f"{variable_name} must be a non-negative float" if (not isinstance(variable, float)): if (not isinstance(variable, int)): raise TypeError(error_message) elif (isinstance(variable, bool)): raise TypeError(error_message) elif (positive == True): if (variable <= 0.0): raise ValueError(error_message) elif (positive == False): if (variable < 0.0): raise ValueError(error_message) return variable ######################################################################################################################## def __check_is_supported_integer(self, variable, variable_name, positive=True): ''' Checks if the integer provided is supported, and throws an error if it is not Parameters: ------------ variable - [int] An integer which is the value variable_name - [str] A string which is the variable name. Is included for output purposes positive - [bool] A flag denoting if only positive values are supported or all non-negatives are Returns: ------------ variable - [int] The inputted variable, unmodified, if no errors occured ''' if (positive == True): error_message = f"{variable_name} must be a positive integer" else: error_message = f"{variable_name} must be a non-negative integer" if (not isinstance(variable, int)): raise TypeError(error_message) elif (isinstance(variable, bool)): raise TypeError(error_message) elif (positive == True): if (variable <= 0): raise ValueError(error_message) elif (positive == False): if (variable < 0): raise ValueError(error_message) return variable ######################################################################################################################## def __add_default_seasonalities(self): ''' A function to add the built-in default seasonalities Parameters: ------------ None Returns: ------------ None ''' self.add_seasonality("yearly", self.__year_seasonality_fourier_order, self.__yearly_cycle_extraction_function, self.__seasonality_mode) self.add_seasonality("monthly", self.__month_seasonality_fourier_order, self.__monthly_cycle_extraction_function, self.__seasonality_mode) self.add_seasonality("weekly", self.__weekly_seasonality_fourier_order, self.__weekly_cycle_extraction_function, self.__seasonality_mode) ######################################################################################################################## def __is_regressor_name_available(self, regressor_name): ''' A function which checks to see if the regressor name is available. Parameters: ------------ regressor_name - [str] A string which is the regressor name Returns: ------------ is_available - [bool] True if the name is available, False otherwise ''' if (regressor_name in self.__additive_additional_regressors) or \ (regressor_name in self.__multiplicative_additional_regressors) or \ (regressor_name in self.__reserved_names): return False else: return True ######################################################################################################################## def add_regressors(self, regressor_name, regressor_method="add"): ''' A function which adds the name of a regressor that should be considered when fitting the model. The regressor can be either additive or multiplicative Parameters: ------------ regressor_name - [str] A string denoting the name of the regressor. Cannot be one of the names 'yhat', 'yhat_upper', 'yhat_lower', 'trend', 'trend_upper', or 'trend_lower'. Also cannot be the name of a previously added regressor, i.e. two regressors cannot have the same name regressor_method - [str] either additive "add" or multiplicative "mul". Specifies the mode of regressor incorporation Returns: ------------ None ''' # First check the name is available if (not self.__is_regressor_name_available(regressor_name)): raise ValueError(f"Name {regressor_name} is already in use") # Now add it to the appropriate bucket if (regressor_method == "add"): self.__additive_additional_regressors.append(regressor_name) elif (regressor_method == "mul"): self.__multiplicative_additional_regressors.append(regressor_name) else: raise ValueError(f"method {regressor_method} is not supported, supported methods are 'add' or 'mul'") ######################################################################################################################## def __weekly_cycle_extraction_function(self, date_column): ''' A function which extracts the weekly cycle from the date column provided to it. Parameters: ------------ date_column - [pd.Series] A pandas series of date type which supports datetime functions. Returns: ------------ normalized_data - [pd.Series] A pandas series with values in the half open interval [0, 1.0) where 1.0 would correspond to a full cycle, and each value correspond to the position in the cycle. ''' day_of_week = date_column.dt.dayofweek # days already start at 0 if (self.__trained_on_weekend): normalized_data = day_of_week/7 # normalize data to be between 0.0 and 1.0 else: normalized_data = day_of_week/5 # normalize data to be between 0.0 and 1.0 return normalized_data ######################################################################################################################## def __monthly_cycle_extraction_function(self, date_column): ''' A function which extracts the monthly cycle from the date column provided to it. Parameters: ------------ date_column - [pd.Series] A pandas series of date type which supports datetime functions. Returns: ------------ normalized_data - [pd.Series] A pandas series with values in the half open interval [0, 1.0) where 1.0 would correspond to a full cycle, and each value correspond to the position in the cycle. ''' day_of_month = date_column.dt.day - 1 # make days start at 0 normalized_data = day_of_month/31 # normalize data to be between 0.0 and 1.0 return normalized_data ######################################################################################################################## def __yearly_cycle_extraction_function(self, date_column): ''' A function which extracts the yearly cycle from the date column provided to it. Parameters: ------------ date_column - [pd.Series] A pandas series of date type which supports datetime functions. Returns: ------------ normalized_data - [pd.Series] A pandas series with values in the half open interval [0, 1.0) where 1.0 would correspond to a full cycle, and each value correspond to the position in the cycle. ''' day_of_year = date_column.dt.dayofyear - 1 # make days start at 0 normalized_data = day_of_year/366 # normalize data to be between 0.0 and 1.0 return normalized_data ######################################################################################################################## def add_seasonality(self, seasonality_name, fourier_order, cycle_extraction_function, seasonality_mode="add"): ''' A function to add a requested seasonality to the inference process. The seasonality is added to a list of seasonalities to construct, but is not constructed here. It is constructed during the .fit method. Parameters: ------------ seasonality_name - [str] The name of the seasonality. Must be a unique name and cannot be one of the reserved names. e.g. 'yearly', 'monthly', or 'daily'. fourier_order - [int] The fourier order of the seasonality. Must be a positive integer. Higher values allow for better fitting, but might also overfit. cycle_extraction_function - [callable] A function which implements cycle extraction from a date column. It should accept a pandas series of datetime and return a pandas series of the same size with values from the half open interval [0.0, 1.0) seasonality_mode - [str] The mode of this seasonality. Must be either "add" or "mul". Returns: ------------ None ''' if (not self.__is_regressor_name_available(seasonality_name)): raise ValueError(f"Name {seasonality_name} is already in use") seasonality_information = {"name": seasonality_name, "order": fourier_order, "extraction_function":cycle_extraction_function} if (seasonality_mode == "add"): self.__additive_seasonalities.append(seasonality_information) elif (seasonality_mode == "mul"): self.__multiplicative_seasonalities.append(seasonality_information) else: raise ValueError(f"Seasonality mode {seasonality_mode} is unsupported. Must be one of 'add' or 'mul'") self.__reserved_names.append(seasonality_name) ######################################################################################################################## def __transform_data(self, data): ''' A function which takes the raw data containing the timestamp and target column, and returns tensors for the trend, seasonality, and additional components Parameters: ------------ data - [DataFrame] The dataframe with the raw data. Must contain at least one column with the timestamp (with dtype np.datetime64). It can optionally also contain the target column Returns: ------------ X_time - [tensor] A tensor of shape (n_samples, ), where n_samples is the number of samples in data X_dataframe - [pd.DataFrame] - A pandas dataframe of all columns except the target column if it is present y - [tensor] A tensor of shape (n_samples, ), where n_samples is the number of samples in data, or None if there is no target column in the original data ''' # make a copy to avoid side effects of changing the original df internal_data = data.copy() for regressor_list in [self.__additive_additional_regressors, self.__multiplicative_additional_regressors]: for regressor_name in regressor_list: if regressor_name not in internal_data.columns.values: raise KeyError(f"Could not find regressor '{regressor_name}' in data provided") if (self.__target_col in internal_data.columns): X_dataframe = internal_data.drop(self.__target_col, axis=1) else: X_dataframe = internal_data # Convert ms values to seconds internal_data[self.__time_col] = internal_data[self.__time_col].values.astype(float)/1e9 if (self.__history_min_time_seconds is None): self.__history_min_time_seconds = internal_data[self.__time_col].min() self.__history_max_time_seconds = internal_data[self.__time_col].max() # Make time column go from 0 to 1 internal_data[self.__time_col] = internal_data[self.__time_col] - self.__history_min_time_seconds internal_data[self.__time_col] = internal_data[self.__time_col]/(self.__history_max_time_seconds - self.__history_min_time_seconds) X_time = torch.tensor(internal_data[self.__time_col].values, dtype=torch.float32) # we only want to define y_max once if (self.__y_max is None): self.__y_max = internal_data[self.__target_col].max() # If we don't have a target column (i.e. we're predicting), don't try and grab it if (self.__target_col in internal_data.columns): # Possion distribution requires counts, so we don't want to scale for it if (self.__y_likelihood_distribution not in [chronos_utils.Poisson_dist_code]): y_values = internal_data[self.__target_col].values/self.__y_max else: y_values = internal_data[self.__target_col].values y = torch.tensor(y_values, dtype=torch.float32) else: y = None return X_time, X_dataframe, y ######################################################################################################################## def __find_changepoint_positions(self, X_time, changepoint_num, changepoint_range, min_value = None, drop_first = True): ''' A function which takes a tensor of the time, expressed in days, and the number oc changepoints to find, and finds the desired number of changepoints. Parameters: ------------ X_time - [tensor] A tensor of the time, expressed in seconds. The seconds need not be consecutive, or evenly spaced. changepoint_num - [int] The number of changepoints to find changepoint_range - [float] The range of the available times to consider. A value between 0.0 and 1.0. 0.8 means only the first 80% of the range is considered min_value - [int] The timepoint which describes the beginning of the range where changepoints can be found. Default is None, which means the first measurement sets the beginning of the range drop_first - [bool] Whether to drop the first measurement found. When True, this prevents from the first measurement of being considered as a changepoint (we don't want the first second to be a changepoint usually) Returns: ------------ changepoints - [tensor] A tensor of shape (changepoint_num, ) where each entry is a day where a changepoint can happen. The changepoints are chosen to be evenly spaced based on the DATE RANGE, not the number of samples, in case samples are unevenly spaced. ''' # Set the minimum value in case it is None if (min_value is None): min_value = X_time.min().item() # Find the maximum value available in the data max_value_in_data = X_time.max().item() # We usually don't want to consider the entire range, so we only # consider a certain section, dictated by changepoint_range max_distance = (max_value_in_data - min_value) * changepoint_range max_value = min_value + max_distance # When fitting, we don't want the first day to be a changepoint candidate # However, when predicting the future, it is very much possible our first # prediction day is a changepoint if (drop_first): changepoints = np.linspace(min_value, max_value, changepoint_num+1, dtype=np.float32) changepoints = changepoints[1:] # The first entry will always be 0, but we don't # want a changepoint right in the beginning else: changepoints = np.linspace(min_value, max_value, changepoint_num, dtype=np.float32) changepoints = torch.tensor(changepoints, dtype=torch.float32) return changepoints ######################################################################################################################## def __make_A_matrix(self, X_time, changepoints): ''' A function which takes in the time tensor, and the changepoints chosen, and produces a matrix A which specifies when to add the effect of the changepoints Parameters: ------------ X_time - [tensor] A tensor of the time, in seconds changepoints - [tensor] A tensor of changepoints where each element is a second when a changepoint can happen Returns: ------------ A - [tensor] A tensor of shape (n_samples, S), where n_samples is the number of samples in X_time, and S is the number of changepoints ''' A = torch.zeros((X_time.shape[0], len(changepoints))) # For each row t and column j, # A(t, j) = 1 if X_time[t] >= changepoints[j]. i.e. if the current time # denoted by that row is greater or equal to the time of the most recent # changepoint for j in range(A.shape[1]): row_mask = (X_time >= changepoints[j]) A[row_mask, j] = 1.0 return A ######################################################################################################################## def __check_incoming_data_for_nulls(self, data, predictions=False): ''' Checks incoming data for null values and advises the user what to do Parameters: ------------ data - [pd.DataFrame] - A pandas dataframe which contains the incoming data predictions - [bool] A flag which determines if we are in prediction mode. If we are, we don't care about the target column containing null values since we won't be using it Returns: ------------ None ''' if (data[self.__target_col].isna().sum() > 0): if (predictions == False): raise ValueError(f"{self.__target_col} contains null values, which Chronos cannot process. Consider either removing the null values, or setting them as 0, whichever makes more sense for your data") elif (data[self.__time_col].isna().sum() > 0): raise ValueError(f"{self.__time_col} contains null values, which Chronos cannot process. Consider removing these values") else: for col in data.columns: if (col not in [self.__time_col, self.__target_col]): if (data[col].isna().sum() > 0): raise ValueError(f"{col} contains null values, which Chronos cannot process. Consider removing these values") ######################################################################################################################## def fit(self, data, time_col = "ds", target_col="y"): ''' A function which performs fitting of the required method on the data provided, and thus estimates the parameters of this model. Parameters: ------------ data - [DataFrame] A pandas dataframe with at least two columns. One specifying the timestamp, and one specifying the target value (the time series observations). The default expected column names are 'ds' and 'y' but can be set to other names. time_col - [str] A string denoting the name of the timestamp column. Default is 'ds' target_col - [str] A string denoting the name of the time series observation column. Default is 'y' Returns: ------------ self - [Chronos] A fitted Chronos model ''' # Record the time-series named columns. We will use them a lot self.__time_col = time_col self.__target_col = target_col self.__check_incoming_data_for_nulls(data, predictions=False) # Make a copy of the history self.history = data.copy() if (self.history[self.__time_col].dt.day_name().isin(["Sunday", "Saturday"]).any() == False): print("No weekends found in training data, will only consider Monday - Friday") self.__trained_on_weekend = False else: self.__trained_on_weekend = True X_time, X_dataframe, y = self.__transform_data(data) number_of_valid_changepoints = int(X_time.shape[0] * self.__proportion_of_data_subject_to_changepoints) if (number_of_valid_changepoints < self.__number_of_changepoints): warnings.warn(f"Number of datapoints in range, {number_of_valid_changepoints}, is smaller than number of changepoints, {self.__number_of_changepoints}. Using {number_of_valid_changepoints} instead", RuntimeWarning) self.__number_of_changepoints = number_of_valid_changepoints # Compute the changepoint frequency in changepoints/seconds self.__changepoint_frequency = self.__number_of_changepoints/(self.__history_max_time_seconds - self.__history_min_time_seconds) # Find a set of evenly spaced changepoints in the training data, and # buid a matrix describing the effect of the changepoints on each timepoint self.__changepoints = self.__find_changepoint_positions(X_time, self.__number_of_changepoints, self.__proportion_of_data_subject_to_changepoints) self.__trend_components = {} self.__multiplicative_components = {} self.__additive_components = {} if (self.__method in ["MLE", "MAP"]): # Point estimate methods if (self.__method == "MLE"): print("Employing Maximum Likelihood Estimation") self.__model = self.__model_function self.__guide = self.__guide_MLE self.__param_prefix = "" elif (self.__method == "MAP"): print("Employing Maximum A Posteriori") self.__model = self.__model_function self.__guide = AutoDelta(self.__model, init_loc_fn=init_to_feasible) self.__param_prefix = "AutoDelta." self.__train_point_estimate(X_time, X_dataframe, y) elif (self.__method == "MCMC"): print("Employing Markov Chain Monte Carlo") raise NotImplementedError("Did not implement MCMC methods") return self ######################################################################################################################## def __train_point_estimate(self, X_time, X_dataframe, y): ''' A function which takes in the model and guide to use for the training of point estimates of the parameters, as well as the regressor tensors, the changepoint matrix, and the target, and performs optimization on the model parameters Parameters: ------------ X_time - [tensor] The time tensor specifying the time regressor X_dataframe - [pd.DataFrame] A pandas dataframe containing all columns except for the target. This dataframe is included if additional regressors are requested y - [tensor] The target to predict, i.e. the time series measurements Returns: ------------ None ''' # Make sure we are working with a fresh param store # TODO: see if there is a way to protect this pyro.clear_param_store() # Use a decaying optimizer which starts with a given learning # rate, but then slowly drops it to take smaller and smaller # steps optimizer = Rprop scheduler = pyro.optim.ExponentialLR({'optimizer': optimizer, 'optim_args': {'lr': self.__learning_rate}, 'gamma': 0.9}) # Use the ELBO (evidence lower bound) loss function # and Stochastic Variational Inference optimzation # technique my_loss = Trace_ELBO() self.svi_ = SVI(self.__model, self.__guide, scheduler, loss=my_loss) # Calculate when to print output print_interval = max(self.__number_of_iterations//10000, 10) # Keep track of this for MAE metric y_true = y.detach().numpy().copy() if (self.__y_max is not None): y_true *= self.__y_max # Create a predictive object to predict for us for # metric reporting purposes predictive = Predictive(model=self.__model, guide=self.__guide, num_samples=1, return_sites=("_RETURN",)) # Iterate through the optimization for step in range(self.__number_of_iterations): loss = self.svi_.step(X_time, X_dataframe, y) # After calculating the loss, normalize by the # number of points loss = round(loss/y.shape[0], 4) # If required, print out the results if (step % print_interval == 0): pct_done = round(100*(step+1)/self.__number_of_iterations, 2) # If we're reporting, grab samples for the predictions samples = predictive(X_time, X_dataframe) y_pred = samples["_RETURN"].detach().numpy()[0] if (self.__y_max is not None): y_pred *= self.__y_max # Calculate mean absolute error and format it nicely mean_absolute_error_loss = "{:.4f}".format(np.mean(np.abs(y_true - y_pred))) print(" "*100, end="\r") print(f"{pct_done}% - ELBO loss: {loss} | Mean Absolute Error: {mean_absolute_error_loss}", end="\r") # Always have a final printout pct_done = 100.0 print(" "*100, end="\r") print(f"{pct_done}% - ELBO loss: {loss} | Mean Absolute Error: {mean_absolute_error_loss}") ######################################################################################################################## def __add_future_changepoints(self, past_deltas, future_trend_period): ''' A function which accepts a changepoint matrix, and a changepoint rate change tensor and adds compares their sizes. If the matrix A specifies more changepoints than deltas, new changepoint values are added to deltas. Otherwise deltas is unchanged The additions to deltas are randomly drawn from a Laplace distribution since they are simulations of potential future changepoints, and thus are not fixed. Each run of this function is designed to be a single possible future. Parameters: ------------ past_deltas - [tensor] A 1D tensor specifying the increase, or decrease, in slope at each changepoint. The size is (S, ) where S is the number of changepoints future_trend_period - [int] The duration of the future trend, in seconds. This is the number of seconds the future trend spans, not the number of observations (for example, there can be two observations, 15 seconds apart, so the period will be 15 seconds) Returns: ------------ deltas - [tensor] A new 1D tensor which contains the increase, or decrease, in slope for both past and future changepoints. ''' # Find the number of future changepoints in this simulation extra_changepoint_num = np.random.binomial(n=future_trend_period, p = self.__changepoint_frequency) # Infer future changepoint scale future_laplace_scale = torch.abs(past_deltas).mean() if (future_laplace_scale > 0.0): changepoint_dist = torch.distributions.Laplace(0, future_laplace_scale) # The future changepoints can be any value from the # inferred Laplace distribution future_deltas = changepoint_dist.sample((extra_changepoint_num,)) else: future_deltas = torch.zeros(extra_changepoint_num) # Combine the past change rates as # well as future ones deltas = torch.cat([past_deltas, future_deltas]) return deltas ######################################################################################################################## def __simulate_potential_future(self, X_time, past_deltas): ''' A function which simulates a potential future to account for future changepoints over X_time. The future may or may not contain changepoints and so a single run of this function simulates a potential future where additional changepoints are added. X_time can contain the time tensor for both past and future Parameters: ------------ X_time - [tensor] The time tensor specifying the time regressor past_deltas - [tensor] A 1D tensor specifying the increase, or decrease, in slope at each changepoint. The size is (S, ) where S is the number of changepoints in the past, and not for the entire duration of X_time Returns: ------------ A tuple of (deltas, combined_changepoints, A) deltas - [tensor] A 1D tensor of the rate adjustments for the entire time of X_time. future_changepoints - [tensor] A 1D Tensor specifing the times, where each changepoint occurs. May be the same size as past_changepoints if no new changepoints have been simulated ''' # Simulate potential changepoint generation We've scaled the history so the last timestamp # is 1.0, so we need to find, proportionally, how much the future period is # bigger future_raw_value = (X_time.max() - 1.0) future_seconds_number = int(future_raw_value * (self.__history_max_time_seconds - self.__history_min_time_seconds)) deltas = self.__add_future_changepoints(past_deltas, future_seconds_number) # Count the number of future changepoints simulated future_changepoint_number = int(deltas.shape[0] - self.__number_of_changepoints) # If we need to simulate a certain number of future changepoints, # we will randomly draw their positions and create a new A # matrix to be used to correct the trend. # Otherwise, we can continue as usual if (future_changepoint_number > 0): # The values start at 1.0, and torch doesn't have a random number generator # for random floats, only the values from 0.0 - 1.0, so need to do some magic first_future_trend_value = 1.0#X_time[-future_changepoint_number].item() last_future_trend_value = X_time[-1].item() # Make some random values random_values = torch.rand(size = (future_changepoint_number, )).type(torch.float32) # Employ inverse scaling to get the values from 0.0 - 1.0 to first_future_trend_value - last_future_trend_value future_changepoints = random_values * (last_future_trend_value - first_future_trend_value) + first_future_trend_value else: future_changepoints = torch.tensor([]) return deltas, future_changepoints ######################################################################################################################## def __sample_initial_slope_and_intercept(self, method): ''' A function which samples the initial values for the slope and intercept. Depending on the method these could be distributions or single parameters Parameters: ------------ method - [str] A method describing which sampling method to employ. If MAP, the samples are from a prior distribution. If MLE, the samples are point parameters. Returns: ------------ return_tuple - [tuple] A tuple of an intercept and slope; intercept_init - [float] The value of the initial intercept slope_init - [float] The value of the initial slope ''' if (method == "MAP"): # Define paramters for the constant and slope intercept_init = pyro.sample("intercept", dist.Normal(0.0, 10.0)) slope_init = pyro.sample("trend_slope", dist.Normal(0.0, 10.0)) elif (method == "MLE"): intercept_init = pyro.param("intercept", torch.tensor(0.0)) slope_init = pyro.param("trend_slope", torch.tensor(0.0)) return intercept_init, slope_init ######################################################################################################################## def __sample_past_slope_changes(self, method): ''' A function which samples the values for the slope changes. Depending on the method these could be distributions or single parameters Parameters: ------------ method - [str] A method describing which sampling method to employ. If MAP, the samples are from a prior distribution. If MLE, the samples are point parameters. Returns: ------------ past_deltas - [tensor] A tensor of the slope changes for the trend component. ''' if (method == "MAP"): # sample from a Laplace distribution means = torch.zeros(self.__number_of_changepoints) scales = torch.full((self.__number_of_changepoints, ), self.__changepoint_prior_scale) slope_change_laplace_distribution = dist.Laplace(means, scales).to_event(1) past_deltas = pyro.sample("delta", slope_change_laplace_distribution) elif (method == "MLE"): past_deltas = pyro.param("delta", torch.zeros(self.__number_of_changepoints)) return past_deltas ######################################################################################################################## def __sample_seasonalities_coefficients(self, method, seasonality_component, seasonality_name): ''' A function which samples the values for the seasonality coefficients. Depending on the method these could be distributions or single parameters Parameters: ------------ method - [str] A method describing which sampling method to employ. If MAP, the samples are from a prior distribution. If MLE, the samples are point parameters. seasonality_component - [tensor] The matrix of seasonality fourier sine-cosine pairs. This matrix has an even number of rows. Each row pair is a sine-cosine pair of the seasonality fourier series seasonality_name - [str] The name of the seasonality Returns: ------------ betas_seasonality - [tensor] A tensor of the coefficients for the seasonality components. For a single seasonality these are coefficients for a pair of sine-cosine fourier terms ''' if (method == "MAP"): # sample from a normal distribution means = torch.zeros(seasonality_component.size(1)) standard_deviations = torch.full((seasonality_component.size(1),), 10.0) seasonality_coefficient_normal_distribution = dist.Normal(means, standard_deviations).to_event(1) betas_seasonality = pyro.sample(f"betas_{seasonality_name}", seasonality_coefficient_normal_distribution) elif (method == "MLE"): betas_seasonality = pyro.param(f"betas_{seasonality_name}", torch.zeros(seasonality_component.size(1))) return betas_seasonality ######################################################################################################################## def __sample_additional_regressors_coefficients(self, method, regressor_compoents, regressor_modes): ''' A function which samples the values for the additional regressor coefficients. Depending on the method these could be distributions or single parameters Parameters: ------------ method - [str] A method describing which sampling method to employ. If MAP, the samples are from a prior distribution. If MLE, the samples are point parameters regressor_compoents - [tensor] A matrix of the additional regressors for which coefficients are requested regressor_modes - [str] The mode of regressor incorporation. provided for naming purposes but should be either "mul" or "add" Returns: ------------ betas_regressors - [tensor] A tensor of the coefficients for the additional regressor components. ''' if (method == "MAP"): means = torch.zeros(regressor_compoents.size(1)) standard_deviations = torch.full((regressor_compoents.size(1),), 10.0) additional_regressor_normal_distribution = dist.Normal(means, standard_deviations).to_event(1) # Compute coefficients for the regressors betas_regressors = pyro.sample(f"betas_{regressor_modes}_regressors", additional_regressor_normal_distribution) elif (method == "MLE"): betas_regressors = pyro.param(f"betas_{regressor_modes}_regressors", torch.zeros(regressor_compoents.size(1))) return betas_regressors ######################################################################################################################## ######################################################################################################################## ######################################################################################################################## def __guide_MLE(self, X_time, X_dataframe, y=None): ''' A function which specifies a special guide which does nothing. This guide is used in MLE optimization since there is no relationship between parameters and prior distributions. Parameters: ------------ X_time - [tensor] The time tensor specifying the time regressor X_dataframe - [pd.DataFrame] A pandas dataframe containing all columns except for the target. This dataframe is included if additional regressors are requested y - [tensor] The target to predict, i.e. the time series measurements. If None, the model generates these observations instead. Returns: ------------ None ''' pass ######################################################################################################################## ######################################################################################################################## def __predict_normal_likelihood(self, method, mu, y): ''' A function which takes up the expected values and employs them to specify a normal distribution, conditioned on the observed data. An additional sigma (standard deviation) value is registered as either a distribution or a parameter based on the method used Parameters: ------------ method - [str] Which method is used. Either MAP or MLE mu - [tensor] The expected values computed from the model paramters y - [tensor] The observed values Returns: ------------ None ''' # Define additional paramters specifying the likelihood # distribution. if (method == "MAP"): sigma = pyro.sample("sigma", dist.HalfCauchy(1.0)) elif (method == "MLE"): sigma = pyro.param("sigma", torch.tensor(1.0), constraint = constraints.positive) # Finally sample from the likelihood distribution and # optionally condition on the observed values. # If y is None, this simply samples from the distribution with pyro.plate("data", mu.size(0)): pyro.sample("obs", dist.Normal(mu, sigma), obs=y) ######################################################################################################################## def __predict_studentT_likelihood(self, method, mu, y): ''' A function which takes up the expected values and employs them to specify a Student t-distribution, conditioned on the observed data. Additional sigma (standard deviation), and df (degrees of freedom) values are registered as either distributions or parameters based on the method used Parameters: ------------ method - [str] Which method is used. Either MAP or MLE mu - [tensor] The expected values computed from the model paramters y - [tensor] The observed values Returns: ------------ None ''' # Define additional paramters specifying the likelihood # distribution. if (method == "MAP"): sigma = pyro.sample("sigma", dist.HalfCauchy(1.0)) df = pyro.sample("df", dist.HalfCauchy(1.0)) elif (method == "MLE"): sigma = pyro.param("sigma", torch.tensor(1.0), constraint = constraints.positive) df = pyro.param("df", torch.tensor(1.0), constraint = constraints.positive) # Finally sample from the likelihood distribution and # optionally condition on the observed values. # If y is None, this simply samples from the distribution with pyro.plate("data", mu.size(0)): pyro.sample("obs", dist.StudentT(df, mu, sigma), obs=y) ######################################################################################################################## def __predict_gamma_likelihood(self, method, mu, y): ''' A function which takes up the expected values and employs them to specify a gamma distribution, conditioned on the observed data. An additional rate value is registered as either a distribution or a parameter based on the method used, and a shape tensor is computed based on the rate and mu. Parameters: ------------ method - [str] Which method is used. Either MAP or MLE mu - [tensor] The expected values computed from the model paramters y - [tensor] The observed values Returns: ------------ None ''' # Define additional paramters specifying the likelihood # distribution. if (method == "MAP"): rate = pyro.sample("rate", dist.HalfCauchy(1.0)).clamp(min=torch.finfo(torch.float32).eps) elif (method == "MLE"): rate = pyro.param("rate", torch.tensor(1.0), constraint = constraints.positive) shape = rate * mu if (y is not None): y_obs = y + torch.finfo(torch.float32).eps else: y_obs = y # Finally sample from the likelihood distribution and # optionally condition on the observed values. # If y is None, this simply samples from the distribution with pyro.plate("data", mu.size(0)): pyro.sample("obs", dist.Gamma(concentration=shape, rate=rate), obs=y_obs) ######################################################################################################################## ######################################################################################################################## def __predict_likelihood(self, method, distribution, mu, y): ''' A function which takes up the trend, seasonalities, and additional regressors and combines them to form the expected values, then conditions them on the observed data based on the distribution requested Parameters: ------------ method - [str] Which method is used distribution - [str] Which distribution to use. Must be one of the distributions specified in chronos_utils mu - [tensor] The expected values computed from the model paramters y - [tensor] The observed values Returns: ------------ None ''' if (distribution == chronos_utils.Normal_dist_code): self.__predict_normal_likelihood(method, mu, y) elif (distribution == chronos_utils.StudentT_dist_code): self.__predict_studentT_likelihood(method, mu, y) elif (distribution == chronos_utils.Gamma_dist_code): self.__predict_gamma_likelihood(method, mu, y) ######################################################################################################################## def __compute_changepoint_positions_and_values(self, X_time, y): ''' A function which finds the position of changepoints in the time frame provided, and samples their values. If unobserved time frame is provided (prediction), also simulated future changepoints. Parameters: ------------ X_time - [tensor] The tensor of timesteps, in seconds y - [tensor] The tensor of observed values. Or None if we are in prediction mode Returns: ------------ changepoint_tuple - [tuple] A tuple of: deltas - [tensor] The changepoint values combined_changepoints - [tensor] the changepoint positions ''' past_deltas = self.__sample_past_slope_changes(self.__method) # If no observations are given, we assume we are in # prediction mode. Therefore, we have to generate possible scenarios # for the future changepoints as a simulation if (y is None): deltas, future_changepoints = self.__simulate_potential_future(X_time, past_deltas) combined_changepoints = torch.cat([self.__changepoints, future_changepoints]) else: # If we are not in prediction mode, we only care about learning the past deltas = past_deltas combined_changepoints = self.__changepoints return deltas, combined_changepoints ######################################################################################################################## def __compute_trend(self, X_time, y): ''' A function which computes the trend component T(t). The function computes the initial slope, intercept, and changepoints for the time series and then combines them. Parameters: ------------ X_time - [tensor] The tensor of timesteps, in seconds y - [tensor] The tensor of observed values. Or None if we are in prediction mode Returns: ------------ trend - [tensor] The trend tensor which describes the growth excluding seasonalities and additional regressors ''' intercept_init, slope_init = self.__sample_initial_slope_and_intercept(self.__method) deltas, combined_changepoints = self.__compute_changepoint_positions_and_values(X_time, y) A = self.__make_A_matrix(X_time, combined_changepoints) # To adjust the rates we also need to adjust the displacement during each rate change intercept_adjustments = -deltas * combined_changepoints # There is a unique slope value and intercept value for each # timepoint to create a piece-wise function slope = slope_init + torch.matmul(A, deltas) intercept = intercept_init + torch.matmul(A, intercept_adjustments) # Finally compute the trend component and record it in the global # parameter store using the pyro.deterministic command trend = slope * X_time + intercept if (self.__make_likelihood_mean_positive == True): trend = torch.nn.functional.softplus(trend, beta=100) pyro.deterministic('trend', trend) return trend ######################################################################################################################## def __create_seasonality_from_specs(self, X_date, seasonality_specs, seasonality_memoization_dictionary): ''' A function which takes up a series of dates, and specs on how to construct seasonality from the dates, and returns the constructed seasonality. If the seasonality fourier terms have been calculated once they are loaded from the seasonality_memoization_dictionary. Otherwise, they are stored there after being computed Parameters: ------------ X_date - [pd.Series] A pandas series of dates as dtype pd.datetime64 seasonality_specs - [dict] A dictionary with the seasonality specifications seasonality_memoization_dictionary - [dict] A memoization dictionary which stores the fourier components of the seasonality after it is calculated once Returns: ------------ X_seasonality - [tensor] A tensor containing the values of the computed seasonality. The tensor is the same length as the date series inputted. ''' seasonality_name = seasonality_specs['name'] seasonality_order = seasonality_specs['order'] seasonality_extraction_function = seasonality_specs['extraction_function'] if (seasonality_name in seasonality_memoization_dictionary): seasonality_tensor = seasonality_memoization_dictionary[seasonality_name] else: cycle = torch.tensor(2 * np.pi * seasonality_extraction_function(X_date).values) seasonality_tensor = torch.empty(X_date.shape[0], seasonality_order*2) index = 0 for f in range(seasonality_order): fourier_term = (f+1) * cycle seasonality_tensor[:, index] = np.sin(fourier_term) seasonality_tensor[:, index+1] = np.cos(fourier_term) index += 2 seasonality_memoization_dictionary[seasonality_name] = seasonality_tensor betas_seasonality = self.__sample_seasonalities_coefficients(self.__method, seasonality_tensor, seasonality_name) X_seasonality = seasonality_tensor.matmul(betas_seasonality) return X_seasonality ######################################################################################################################## def __compute_multiplicative_seasonalities_product(self, X_date): ''' A function which accepts a pandas date series and computes all multiplicative seasonalities. Then combines the seasonalities by computing their product. e.g. if seasonalities s1, s2, and s3 are requested, the resulting tensor is (s1 * s2 * s3). The seasonalities have 1.0 added to them so that positive values amplify the results, and negative values dampen the results. Parameters: ------------ X_date - [pd.Series] A pandas series of dates as dtype pd.datetime64 Returns: ------------ total_seasonalities_product - [tensor] A tensor of all multiplicative seasonalities, multiplied together. ''' total_seasonalities_product = torch.ones(X_date.shape[0], ) for multiplicative_seasonality in self.__multiplicative_seasonalities: X_seasonality = self.__create_seasonality_from_specs(X_date, multiplicative_seasonality, self.__multiplicative_components) X_seasonality = 1.0 + X_seasonality total_seasonalities_product = total_seasonalities_product * X_seasonality return total_seasonalities_product ######################################################################################################################## def __compute_multiplicative_regressors_product(self, X_dataframe): ''' A function which accepts a pandas dataframe and computes all multiplicative regressors' coefficients and effects. Then combines the regressors by computing the individual regressors' product. e.g. if regressor effects r1, r2, and r3 are requested, the resulting tensor is (r1 * r2 * r3). The regressors have 1.0 added to them so that positive values amplify the results, and negative values dampen the results. Parameters: ------------ X_dataframe - [pd.DataFrame] A pandas dataframe which contains the regressor values. Returns: ------------ multiplicative_regressors_product - [tensor] A tensor of all multiplicative seasonalities, multiplied together. ''' for additional_regressor in self.__multiplicative_additional_regressors: if (additional_regressor not in X_dataframe.columns): raise KeyError(f"Regressor '{additional_regressor}' not found in provided dataframe") if ("regressors" not in self.__multiplicative_components): X_multiplicative_regressors = torch.tensor(X_dataframe[self.__multiplicative_additional_regressors].values) self.__multiplicative_components["regressors"] = X_multiplicative_regressors else: X_multiplicative_regressors = self.__multiplicative_components["regressors"] betas_multiplicative_regressors = self.__sample_additional_regressors_coefficients(self.__method, X_multiplicative_regressors, "mul") # Notice we don't do a matrix-vector product here, but rather an # row-wise multipication. The reason is we want to then find a cumulative # product of all multiplicative regressors. # i.e. if I have regressors reg1, reg2, and reg3, I want to multiply the trend # by (reg1 * reg2 * reg3) rather than by (reg1 + reg2 + reg3) multiplicative_regressors = X_multiplicative_regressors * betas_multiplicative_regressors # The multiplicative regressors have to be adjusted so that they are larger than 1 # when positive, and between 0.0 and 1.0 when negative so that their multiplicative # effect either dampens, or amplifies, the results, but never flips the sign multiplicative_regressors = (1 + multiplicative_regressors) multiplicative_regressors_product = torch.prod(multiplicative_regressors, dim=1) return multiplicative_regressors_product ######################################################################################################################## def __compute_multiplicative_component(self, X_dataframe): ''' A function which looks at the data and computes all components that were labeled as multiplicative. The function computes the product of all multiplicative seasonalities, then the product of all multiplicative regressors, and then produces their product. Parameters: ------------ X_dataframe - [pd.DataFrame] A pandas dataframe which contains all columns of the data except the target Returns: ------------ multiplicative_component - [tenspr] A tensor containing the data for the multiplicative component of the model ''' X_date = X_dataframe[self.__time_col] multiplicative_seasonalities_product = self.__compute_multiplicative_seasonalities_product(X_date) multiplicative_regressors_product = self.__compute_multiplicative_regressors_product(X_dataframe) multiplicative_component = multiplicative_seasonalities_product * multiplicative_regressors_product return multiplicative_component ######################################################################################################################## def __compute_additive_seasonalities_sum(self, X_date): ''' A function which accepts a pandas date series and computes all additive seasonalities. Then combines the seasonalities by computing their sum. e.g. if seasonalities s1, s2, and s3 are requested, the resulting tensor is (s1 + s2 + s3). Parameters: ------------ X_date - [pd.Series] A pandas series of dates as dtype pd.datetime64 Returns: ------------ total_seasonalities_sum - [tensor] A tensor of all additive seasonalities, summed together. ''' total_seasonalities_sum = torch.zeros(X_date.shape[0], ) for additive_seasonality in self.__additive_seasonalities: X_seasonality = self.__create_seasonality_from_specs(X_date, additive_seasonality, self.__additive_components) total_seasonalities_sum = total_seasonalities_sum + X_seasonality return total_seasonalities_sum ######################################################################################################################## def __compute_additive_regressors_sum(self, X_dataframe): ''' A function which accepts a pandas dataframe and computes all additive regressors' coefficients and effects. Then combines the regressors by computing the individual regressors' sum. e.g. if regressor effects r1, r2, and r3 are requested, the resulting tensor is (r1 + r2 + r3). Parameters: ------------ X_dataframe - [pd.DataFrame] A pandas dataframe which contains the regressor values. Returns: ------------ additive_regressors_sum - [tensor] A tensor of all additive seasonalities, summed together. ''' for additional_regressor in self.__additive_additional_regressors: if (additional_regressor not in X_dataframe.columns): raise KeyError(f"Regressor '{additional_regressor}' not found in provided dataframe") if ("regressors" not in self.__additive_components): X_additive_regressors = torch.tensor(X_dataframe[self.__additive_additional_regressors].values, dtype=torch.float32) self.__additive_components["regressors"] = X_additive_regressors else: X_additive_regressors = self.__additive_components["regressors"] betas_additive_regressors = self.__sample_additional_regressors_coefficients(self.__method, X_additive_regressors, "add") additive_regressors_sum = X_additive_regressors.matmul(betas_additive_regressors) return additive_regressors_sum ######################################################################################################################## def __compute_additive_component(self, X_dataframe): ''' A function which looks at the data and computes all components that were labeled as additive. The function computes the sum of all additive seasonalities, then the sum of all additive regressors, and then produces their sum. Parameters: ------------ X_dataframe - [pd.DataFrame] A pandas dataframe which contains all columns of the data except the target Returns: ------------ additive_component - [tenspr] A tensor containing the data for the additive component of the model ''' X_date = X_dataframe[self.__time_col] additive_seasonalities_sum = self.__compute_additive_seasonalities_sum(X_date) additive_regressors_sum = self.__compute_additive_regressors_sum(X_dataframe) additive_component = additive_seasonalities_sum + additive_regressors_sum return additive_component ######################################################################################################################## def __model_function(self, X_time, X_dataframe, y=None): ''' The major powerhouse function of this object, performs the modeling of the generative process which generates y from X_dataframe and X_time. Returns the expected values given the regressors and the learned parameters. Parameters: ------------ X_time - [tensor] A tensor of time values, normalized. If we are training, this will contain values between 0.0 and 1.0. Otherwise, it will contain values normalized to reflect the range of the training data (i.e. from 1.0 unward if it contains only future times, and from 0.0 to 1.0 and unward if it contains both past and future times). X_dataframe - [pd.DataFrame] A pandas dataframe which contains the raw data passed into this Chronos object. Used to compute seasonality and additional regressors y - [tesnor] A tensor of the observaed values, normalized to the range 0.0 - 1.0, if we are training, or a None object if we are predicting. Returns: ------------ mu - [tensor] A tensor of the expected values given X_dataframe and the learned parameters. ''' prediction_mode = y is None if (prediction_mode): # Poor man's verbose printing of prediction number if (self.__prediction_verbose == True): self.predict_counter_ += 1 if (self.predict_counter_ > 0): print(f"Prediction no: {self.predict_counter_}", end="\r") trend = self.__compute_trend(X_time, y) multiplicative_component = self.__compute_multiplicative_component(X_dataframe) additive_component = self.__compute_additive_component(X_dataframe) mu = (trend * multiplicative_component) + additive_component if (self.__make_likelihood_mean_positive == True): mu = torch.nn.functional.softplus(mu, beta=100) mu = mu + torch.finfo(torch.float32).eps # Sample observations based on the appropriate distribution self.__predict_likelihood(self.__method, self.__y_likelihood_distribution, mu, y) return mu ######################################################################################################################## def predict(self, future_df=None, sample_number=1000, ci_interval=0.95, period=30, frequency='D', include_history=True, verbose=True): ''' A function which accepts a dataframe with at least one column, the timestamp and employes the learned parameters to predict observations as well as credibility intervals and uncertainty intervals. Alternatively, the function can accept the parameters accepted by .make_future_dataframe and produce the future dataframe internally. Returns a dataframe with predictions for observations, upper and lower limits for credibility intervals, trend, and upper and lower limits on trend uncertainty. Parameters: ------------ future_df - [DataFrame] The dataframe. Must at least have a single column of timestamp with the same name as the training dataframe. If data is not provided, period, frequency, and include_history must be provided. If data is provided, period, frequency, and include_history are ignored Default is None sample_number - [int] The number of posterior samples to generate in order to draw the uncertainty intervals and credibility intervals. Larger values give more accurate results, but also take longer to run. Default 1000 ci_interval - [float] The credibility interval range to generate. Must be between 0.0 and 1.0, 0.95 generates a range such that 95% of all observations fall within this range. Default is 0.95. period - [int] The number of future observations based on frequency. The default is 30, and the default for frequency id 'D' which means 30 days ahead. Default is 30 frequency - [str] The frequency of the period. See https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases for a list of supported freuqncies. The default is 'D' which stands for calendar day. Default is 'D' incldue_history - [bool] A boolean describing whether to include history observations or not used by the fit method. Default is True Returns: ------------ predictions - [DataFrame] A dataframe with: [time_col] - The time column fed into this method [target_col] - The name for the original target column if history is included in the dataframe yhat - The predicted value for observations yhat_upper - The upper value for uncertainty + credibility interval yhat_lower - The lower value for uncertainty + credibility interval trend - The predicted value for the trend, excluding seasonality trend_upper - The upper value for trend uncertainty trend_lower - The lower value for trend uncertainty Seasonality is not returned in the dataframe, but is incorporated when computing yhat. ''' self.__prediction_verbose = verbose # Make a future dataframe if one is not provided if (future_df is None): future_df = self.make_future_dataframe(period=period, frequency=frequency, include_history=include_history) self.__check_incoming_data_for_nulls(future_df, predictions=True) # Transform data into trend and seasonality as before X_time, X_dataframe, y = self.__transform_data(future_df) # For some reason the predictive method runs for 2 extra runs # so we need to set the counter to -2 to tell the predictive method # when to start printing out output self.predict_counter_ = -2 self.__trend_components = {} self.__multiplicative_components = {} self.__additive_components = {} # For point estimates, use the predictive interface if (self.__method in ["MAP", "MLE"]): # https://pyro.ai/examples/bayesian_regression.html#Model-Evaluation predictive = Predictive(model=self.__model, guide=self.__guide, num_samples=sample_number, return_sites=("obs", "trend")) samples = predictive(X_time, X_dataframe) # Calculate ntiles based on the CI provided. Each side should have # CI/2 credibility space_on_each_side = (1.0 - ci_interval)/2.0 lower_ntile = int(len(samples['obs']) * space_on_each_side) upper_ntile = int(len(samples['obs']) * (1.0 - space_on_each_side)) # The resulting tensor returns with (sample_number, 1, n_samples) shape trend_array = samples['trend'].squeeze() # Calculate uncertainty trend = trend_array.mean(dim=0) trend_upper = trend_array.max(dim=0).values trend_lower = trend_array.min(dim=0).values # Build the output dataframe predictions = pd.DataFrame({"yhat": torch.mean(samples['obs'], 0).detach().numpy(), "yhat_lower": samples['obs'].kthvalue(lower_ntile, dim=0)[0].detach().numpy(), "yhat_upper": samples['obs'].kthvalue(upper_ntile, dim=0)[0].detach().numpy(), "trend": trend.detach().numpy(), "trend_lower": trend_lower.detach().numpy(), "trend_upper": trend_upper.detach().numpy()}) # Incorporate the original values, and build the column order to return columns_to_return = [] columns_to_return.append(self.__time_col) predictions[self.__time_col] = future_df[self.__time_col] if (y is not None): predictions[self.__target_col] = y.detach().numpy() columns_to_return.append(self.__target_col) columns_to_return.extend(['yhat', 'yhat_upper', 'yhat_lower', 'trend', 'trend_upper', 'trend_lower']) predictions = predictions[columns_to_return] numeric_columns = columns_to_return[1:] if (self.__y_max is not None): predictions[numeric_columns] *= self.__y_max return predictions else: raise NotImplementedError(f"Did not implement .predict for {self.__method}") ######################################################################################################################## def make_future_dataframe(self, period=30, frequency="D", include_history=True): ''' A function which takes in a future range specified by the period and the frequency and returns a dataframe which can be used by the predict method. By default, the history is included as well for easy diagnostics via the plotting methods. NOTE: You should only use this method if you plan on adding additional custom regressors. If there are no custom regressors involved you can use the .predict method directly Parameters: ------------ period - [int] The number of future observations based on frequency. The default is 30, and the default for frequency id 'D' which means 30 days ahead. Default is 30 frequency - [str] The frequency of the period. See https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases for a list of supported freuqncies. The default is 'D' which stands for calendar day. Default is 'D' incldue_history - [bool] A boolean describing whether to include history observations or not used by the fit method. Default is True Returns: ------------ future_df - [DataFrame] A dataframe with a datestamp column, and a target column ready to be used by the predict method. The datestamp and target column names are the same as the ones used in the fitting dataframe. ''' # Find the highest timestamp observed, and build a new series of timestamps starting # at that timestamp, then remove the first of that series. The resulting date range # will begin one [frequency] ahead of the last datestamp in history (for example, # one day after, or one hour after) max_date_observed = self.history[self.__time_col].max() date_range = pd.date_range(start=str(max_date_observed), periods=period+1, freq=frequency) date_range = date_range[1:] # Package everything into a dataframe future_df = pd.DataFrame({self.__time_col: date_range, self.__target_col: [np.nan] * date_range.shape[0]}) # Optionally add the history if (include_history == True): past_df = self.history.copy() future_df = pd.concat([past_df, future_df], axis=0).reset_index(drop=True) return future_df ######################################################################################################################## def __compute_seasonality(self, param_pairs, numeric_values, cycle_period): ''' A function which accepts a tensor of coefficients in param pairs, the time values and the cycle period, and returns a seasonal (cyclical) tensor of the required seasonality using pairs of sin and cos calculations. Parameters: ------------ param_pairs - [tensor] A tensor of parameter pairs. The tensor should always be of shape (N, 2) where N is the order of the given seasonality. numeric_values - [tensor] A tensor of the time values to be calculated. This can be weekdays, which will range from 0-6, month days which will range from 0-30 etc' cycle_periods - [tensor] The period of the cycle. For weekdays, the cycle repeats every 7 days, so the period will be 7. For months, it will be 31. For years, 366, etc' Returns: ------------ seasonality - [tensor] The seasonal component specified by the input parameters. e.g. weekly seasonality, or yearly seasonality. ''' seasonality = np.zeros_like(numeric_values, dtype=np.float32) # Go through each parameter pair and apply it to # a pair of sin and cos functions defining the # seasonality. for i, pair in enumerate(param_pairs): cycle_order = i+1 sin_coef = pair[0] cosin_coef = pair[1] cycle_pos = cycle_order * 2 * np.pi * numeric_values/cycle_period seasonality += (sin_coef * np.sin(cycle_pos)) + (cosin_coef * np.cos(cycle_pos)) return seasonality ######################################################################################################################## def get_seasonality(self, seasonality_name): ''' A function which returns a tensor denoting the seasonality requested. If a method not in [MAP, MLE] is requested, the function throws an error Parameters: ------------ seasonality_name - [str] A string denoting the name of the seasonality requested Returns: ------------ seasonality - [DataFrame] A pandas dataframe of the requested seasonality ''' if (self.__method in ["MAP", "MLE"]): if (seasonality_name == "weekly"): seasonality = self.__get_weekly_seasonality_point(f'{self.__param_prefix}betas') elif (seasonality_name == "monthly"): seasonality = self.__get_monthly_seasonality_point(f'{self.__param_prefix}betas') elif (seasonality_name == "yearly"): seasonality = self.__get_yearly_seasonality_point(f'{self.__param_prefix}betas') if (self.__seasonality_mode == "add"): if (self.__y_max is not None): seasonality['Y'] *= self.__y_max elif (self.__seasonality_mode == "mul"): seasonality['Y'] = 100*(1.0 + seasonality['Y']) return seasonality else: raise NotImplementedError("Did not implement weekly seasonality for non MAP non MLE") ######################################################################################################################## def __get_seasonal_params(self, param_name): ''' A function which accepts the name of the parameter store where seasonality coefficients are stored, and the seasonality name, and returns the coefficients corresponding to the requested seasonality. Parameters: ------------ param_name - [str] The name of the global param store where the specific seasonality is stored. Returns: ------------ seasonality_params - [tensor] A tensor of shape (N,2) where N is the order of the requested seasonality. This tensor contains the seasonality coefficients. ''' seasonal_params = [] for param in pyro.param(param_name): seasonal_params.append(param.item()) # Reshape to have two columns. The parameters are assumed to be # in order (sin_param1, cos_param1, sin_param2, cos_param2, ...) seasonal_params = np.array(seasonal_params).reshape(-1, 2) return seasonal_params ######################################################################################################################## def __get_weekly_seasonality_point(self, param_name): ''' A function which accepts the name of the parameter where point estimates of seasonalities are stored and returns a pandas dataframe containing the data for the weekly seasonality as well axis labels Parameters: ------------ param_name - [str] The name of the pyro parameter store where the point estimates are stored Returns: ------------ weekly_seasonality - [DataFrame] A pandas dataframe containing three columns: X - The values for the weekly seasonality (0-6) Label - The labels for the days ("Monday" - "Sunday") Y - The seasonal response for each day ''' # Get the parameter pairs of coefficients weekly_params = self.__get_seasonal_params(param_name+"_weekly") # Monday is assumed to be 0 weekdays_numeric = np.arange(0, 7, 1) weekdays = chronos_utils.weekday_names_ if (self.__trained_on_weekend == False): weekdays_numeric = weekdays_numeric[:-2] weekdays = weekdays[:-2] # Compute seasonal response seasonality = self.__compute_seasonality(weekly_params, weekdays_numeric, weekdays_numeric.shape[0]) # Package everything nicely into a df weekly_seasonality = pd.DataFrame({"X": weekdays_numeric, "Label": weekdays, "Y": seasonality}) return weekly_seasonality ######################################################################################################################## def __get_monthly_seasonality_point(self, param_name): ''' A function which accepts the name of the parameter where point estimates of seasonalities are stored and returns a pandas dataframe containing the data for the monthly seasonality as well axis labels Parameters: ------------ param_name - [str] The name of the pyro parameter store where the point estimates are stored Returns: ------------ weekly_seasonality - [DataFrame] A pandas dataframe containing three columns: X - The values for the monthly seasonality (0-30) Label - The labels for the days ("1st" - "31st") Y - The seasonal response for each day ''' # Get the parameter pairs of coefficients monthly_params = self.__get_seasonal_params(param_name+"_monthly") monthdays_numeric = np.arange(0, 31, 1) monthday_names = chronos_utils.monthday_names_ # Compute seasonal response seasonality = self.__compute_seasonality(monthly_params, monthdays_numeric, 31) # Package everything nicely into a df monthly_seasonality = pd.DataFrame({"X": monthdays_numeric, "Label": monthday_names, "Y": seasonality}) return monthly_seasonality ######################################################################################################################## def __get_yearly_seasonality_point(self, param_name): ''' A function which accepts the name of the parameter where point estimates of seasonalities are stored and returns a pandas dataframe containing the data for the yearly seasonality as well axis labels Parameters: ------------ param_name - [str] The name of the pyro parameter store where the point estimates are stored Returns: ------------ weekly_seasonality - [DataFrame] A pandas dataframe containing three columns: X - The values for the yearly seasonality days (0-366) Label - The labels for the days (the individual dates) Y - The seasonal response for each day ''' # Get the parameter pairs of coefficients yearly_params = self.__get_seasonal_params(param_name+"_yearly") yeardays_numeric = np.arange(0, 366, 1) yearly_dates =
pd.date_range(start="01-01-2020", periods=366)
pandas.date_range
import itertools import re import pandas as pd import numpy as np from catboost import Pool, FeaturesData from constants import SCHOOLS_REVERSED, TARGET_LABELS def _parse_str_nums(num_string): """ parse strings of numbers and take averages if there are multiple :param num_string: a string of numbers and text :type num_string: String :return: float of the number found or average of multiple numbers found :rtype: Float :example: >>> _parse_str_nums("40% to 50%") >>> 45. >>> _parse_str_nums("30%-50%") >>> 40. >>> _parse_str_nums("-20%") >>> -20. """ num_string.upper().replace("ZERO", "0").replace("Forget it", "0") # regex to find numbers nums = re.findall(r'\d+', num_string) # but if theres only one number, then we know its NOT a range and thus we can look for negative numbers if len(nums) == 1: nums = re.findall(r'[+-]?\d+(?:\.\d+)?', num_string) # cast strings to ints nums = [int(n) for n in nums] # average ints derived from string averaged = np.average(np.asarray(nums)) return averaged def _squash_nested_lists(l_of_l): """ compress list of lists into one single list :param l_of_l: list of lists :type l_of_l: List :return: single list with all elements of list of list :rtype: List :example: >>> _squash_nested_list([['a','b'],['c'],['d','e']]) >>> ['a','b','c','d','e'] """ return list(itertools.chain.from_iterable(l_of_l)) # TODO: do we care about case sensitivity? def _preprocess_odds_string(string_of_odds): """ :param string_of_odds: string scraped from site describing an applicants odds of admittance :type string_of_odds: String :return: list of strings with entries for either schools or percent chances :rtype: list :example: >>> _preprocess_odds_string("Harvard Business School: 85% Stanford: 80% Wharton: 90% Tuck: 95% Kellogg: 95%") >>> ['Harvard Business School', '85', 'Stanford', '80', 'Wharton', '90', 'Tuck', '95', 'Kellogg', '95', ''] """ # split on colons divied_list_split_colon = string_of_odds.split(':') # split on last occurrence of '%' using rsplit divied_list_percent = [entry.rsplit('%', 1) for entry in divied_list_split_colon] # recombine list of lists into one list of strings divied_list_percent = _squash_nested_lists(divied_list_percent) # split again on last occurence of new lines # some snarky assessments have only text and no percent sign; i.e. "Forget it" or "Zero" divied_list_of_lists = [entry.rsplit('\n', 1) for entry in divied_list_percent] # recombine list of lists into one continuous list compressed_divied_list = _squash_nested_lists(divied_list_of_lists) # strip spaces for every entry compressed_divied_list = [entry.strip() for entry in compressed_divied_list] return compressed_divied_list def _reduce_majors_dimensionality(data): """ The original dataset has a high number of majors specified The dimensionality of the expanded numeric representation probably hurts the model performance (in theory) Thus we are reducing the dimensionality by combining all the stem into one category and all the non stem into another category. """ stem_majors = ['Engineering', 'STEM'] # get all the majors that are not in the stem category nonstem_majors = list(set(list(data.MAJOR.values)) - set(stem_majors)) majors_df = data.MAJOR stem_replaced = majors_df.replace(to_replace=stem_majors, value=1.0) new_majors_col = stem_replaced.replace(to_replace=nonstem_majors, value=0.0) df_without_major_col = data.drop(['MAJOR'], axis=1, inplace=False) reduced_df = df_without_major_col.join(pd.DataFrame({'STEM_MAJOR': new_majors_col})) # print reduced_df return reduced_df def _reduce_race_dimensionality(data): """ The original dataset has a high number of races specified The dimensionality of the expanded numeric representation probably hurts the model performance (in theory) Thus we are reducing the dimensionality by combining all the underrepresented into one category and all the others into another """ underrepresented = ['Black', 'Latinx', 'Native American'] # get all the non-under represented races non_underrepresented = list(set(list(data.RACE.values)) - set(underrepresented)) races_df = data.RACE replace_races = races_df.replace(to_replace=underrepresented, value=1.0) race_column = replace_races.replace(to_replace=non_underrepresented, value=0.0) df_without_race_col = data.drop(['RACE'], axis=1, inplace=False) reduced_df = df_without_race_col.join(pd.DataFrame({'UNDER_REP': race_column})) return reduced_df def _reduced_university_dimensionality(data): """ Use only binary classification. Tier 1 University Yes / No """ name_brand_schools = ['Tier 1', 'Tier 2'] small_schools = ['Tier 3'] uni_df = data.UNIVERSITY replace_uni = uni_df.replace(to_replace=name_brand_schools, value=1.0) uni_column = replace_uni.replace(to_replace=small_schools, value=0.0) df_without_uni_col = data.drop(['UNIVERSITY'], axis=1, inplace=False) reduced_df = df_without_uni_col.join(pd.DataFrame({'NAME_BRAND_SCHOOL': uni_column})) return reduced_df def _reduce_gender_dimensionality(data): """ Use only binary classification for simplifying dimensions """ gen_df = data.GENDER replace_gen = gen_df.replace(to_replace=['Female'], value=1.0) gen_column = replace_gen.replace(to_replace=['MALE'], value=0.0) df_without_gen_col = data.drop(['GENDER'], axis=1, inplace=False) reduced_df = df_without_gen_col.join(pd.DataFrame({'FEMALE': gen_column})) return reduced_df def _drop_unused_and_expand_categorical_columns(data): """ Drop data columns that were unused or have mostly NaNs Expand categorical datas so they can be represented numerically """ # drop unused columns data_after_drop = data.drop(['ODDS', 'INTERNATIONAL', 'JOBTITLE', 'AGE'], axis=1, inplace=False) # dropped_data = data.drop(['ODDS','INTERNATIONAL','JOBTITLE','UNIVERSITY','MAJOR','GENDER','RACE'],axis=1,inplace=False) # #change categorical data into numeric # categorical_cols = ['UNIVERSITY','MAJOR','GENDER','RACE'] # # categorical_cols = [] # df_processed = pd.get_dummies(data=data_after_drop,columns=categorical_cols) return data_after_drop def preprocess_data_4_catboost(data_df, output_path=None): """ preprocess data for working with gradient boosting techniques specifically with the catboost library. since this is going to use the preprocessing built into the catboost library there are slightly different steps to be done """ """ train_data = Pool( data=FeaturesData( num_feature_data=np.array([[1, 4, 5, 6], [4, 5, 6, 7], [30, 40, 50, 60]], dtype=np.float32), cat_feature_data=np.array([[b"a", b"b"], [b"a", b"b"], [b"c", b"d"]], dtype=object) ), label=[1, 1, -1] ) """ new_df_w_labels = data_df.copy() for idx, odds_string in data_df.ODDS.iteritems(): # skip data qual errors and abnormalities if not isinstance(odds_string, str): continue divied_list = _preprocess_odds_string(odds_string) for school_or_perc in divied_list: if school_or_perc in SCHOOLS_REVERSED.keys(): school_idx = divied_list.index(school_or_perc) # the percent is always the next index after the school perc = divied_list[school_idx + 1] # print "School: {};Odds: {}".format(school_or_perc,perc) # use the standardized name standard_school_name = SCHOOLS_REVERSED[school_or_perc] # insert the specific name value for the correct row new_df_w_labels.at[idx, standard_school_name] = _parse_str_nums(perc) new_df_w_labels = _reduce_majors_dimensionality(new_df_w_labels) # drop unused columns data_after_drop = new_df_w_labels.drop(['ODDS', 'INTERNATIONAL', 'JOBTITLE'], axis=1, inplace=False) # change categorical data into numeric categorical_cols = ['UNIVERSITY', 'MAJOR', 'GENDER', 'RACE'] # a dataframe of ONLY the features features_only_df = data_after_drop.drop(TARGET_LABELS, axis=1, inplace=False) # determine the columns that are features by subtracting from labels feature_cols = set(data_after_drop.columns) - set(TARGET_LABELS) # a dataframe with ONLY labels labels = data_after_drop.drop(feature_cols, axis=1, inplace=False) multi_data_set_dict = {} for school in labels.columns: df_for_school = features_only_df.join(
pd.DataFrame({school: labels[school]})
pandas.DataFrame
# coding: utf-8 import numpy as np import netCDF4 as nc import pandas as pd from glob import glob from datetime import datetime from os import path from j24 import home arm_dir = path.join(home(), 'DATA', 'arm') SOUNDING_DIR = path.join(arm_dir, 'sounding') GROUND_DIR = path.join(arm_dir, 'ground') MWR_DIR = path.join(arm_dir, 'MWR') all_soundings_f = 'tmpsondewnpnM1.b1.20140121.125200..20140330.172000.custom.cdf' sounding_f = 'tmpsondewnpnM1.b1.20140131.115000.cdf' # sample all_soundings_path = path.join(SOUNDING_DIR, all_soundings_f) sounding_path = path.join(SOUNDING_DIR, sounding_f) SOUNDING_GLOB = path.join(SOUNDING_DIR, 'tmpsondewnpnM1.b1.20??????.??????.cdf') GROUND_GLOB = path.join(GROUND_DIR, 'tmpmetM1.b1.20??????.??????.cdf') MWR_GLOB = path.join(MWR_DIR, '*.cdf') #s = nc.Dataset(soundings_f) def time(ncdata, as_np=False): """time from ARM netCDF""" t0 = ncdata.variables['base_time'][0] if as_np: return np.array(t0 + ncdata.variables['time_offset'][:]).astype('datetime64[s]') return
pd.to_datetime(t0 + ncdata.variables['time_offset'][:], unit='s')
pandas.to_datetime
import unittest import pandas as pd import numpy as np from scipy.sparse.csr import csr_matrix from string_grouper.string_grouper import DEFAULT_MIN_SIMILARITY, \ DEFAULT_REGEX, DEFAULT_NGRAM_SIZE, DEFAULT_N_PROCESSES, DEFAULT_IGNORE_CASE, \ StringGrouperConfig, StringGrouper, StringGrouperNotFitException, \ match_most_similar, group_similar_strings, match_strings, \ compute_pairwise_similarities from unittest.mock import patch, Mock def mock_symmetrize_matrix(x: csr_matrix) -> csr_matrix: return x class SimpleExample(object): def __init__(self): self.customers_df = pd.DataFrame( [ ('BB016741P', 'Mega Enterprises Corporation', 'Address0', 'Tel0', 'Description0', 0.2), ('CC082744L', 'Hyper Startup Incorporated', '', 'Tel1', '', 0.5), ('AA098762D', 'Hyper Startup Inc.', 'Address2', 'Tel2', 'Description2', 0.3), ('BB099931J', 'Hyper-Startup Inc.', 'Address3', 'Tel3', 'Description3', 0.1), ('HH072982K', 'Hyper Hyper Inc.', 'Address4', '', 'Description4', 0.9), ('EE059082Q', 'Mega Enterprises Corp.', 'Address5', 'Tel5', 'Description5', 1.0) ], columns=('Customer ID', 'Customer Name', 'Address', 'Tel', 'Description', 'weight') ) self.customers_df2 = pd.DataFrame( [ ('BB016741P', 'Mega Enterprises Corporation', 'Address0', 'Tel0', 'Description0', 0.2), ('CC082744L', 'Hyper Startup Incorporated', '', 'Tel1', '', 0.5), ('AA098762D', 'Hyper Startup Inc.', 'Address2', 'Tel2', 'Description2', 0.3), ('BB099931J', 'Hyper-Startup Inc.', 'Address3', 'Tel3', 'Description3', 0.1), ('DD012339M', 'HyperStartup Inc.', 'Address4', 'Tel4', 'Description4', 0.1), ('HH072982K', 'Hyper Hyper Inc.', 'Address5', '', 'Description5', 0.9), ('EE059082Q', 'Mega Enterprises Corp.', 'Address6', 'Tel6', 'Description6', 1.0) ], columns=('Customer ID', 'Customer Name', 'Address', 'Tel', 'Description', 'weight') ) self.a_few_strings = pd.Series(['BB016741P', 'BB082744L', 'BB098762D', 'BB099931J', 'BB072982K', 'BB059082Q']) self.one_string = pd.Series(['BB0']) self.two_strings = pd.Series(['Hyper', 'Hyp']) self.whatever_series_1 = pd.Series(['whatever']) self.expected_result_with_zeroes = pd.DataFrame( [ (1, 'Hyper Startup Incorporated', 0.08170638, 'whatever', 0), (0, 'Mega Enterprises Corporation', 0., 'whatever', 0), (2, 'Hyper Startup Inc.', 0., 'whatever', 0), (3, 'Hyper-Startup Inc.', 0., 'whatever', 0), (4, 'Hyper Hyper Inc.', 0., 'whatever', 0), (5, 'Mega Enterprises Corp.', 0., 'whatever', 0) ], columns=['left_index', 'left_Customer Name', 'similarity', 'right_side', 'right_index'] ) self.expected_result_centroid = pd.Series( [ 'Mega Enterprises Corporation', 'Hyper Startup Inc.', 'Hyper Startup Inc.', 'Hyper Startup Inc.', 'Hyper Hyper Inc.', 'Mega Enterprises Corporation' ], name='group_rep_Customer Name' ) self.expected_result_centroid_with_index_col = pd.DataFrame( [ (0, 'Mega Enterprises Corporation'), (2, 'Hyper Startup Inc.'), (2, 'Hyper Startup Inc.'), (2, 'Hyper Startup Inc.'), (4, 'Hyper Hyper Inc.'), (0, 'Mega Enterprises Corporation') ], columns=['group_rep_index', 'group_rep_Customer Name'] ) self.expected_result_first = pd.Series( [ 'Mega Enterprises Corporation', 'Hyper Startup Incorporated', 'Hyper Startup Incorporated', 'Hyper Startup Incorporated', 'Hyper Hyper Inc.', 'Mega Enterprises Corporation' ], name='group_rep_Customer Name' ) class StringGrouperConfigTest(unittest.TestCase): def test_config_defaults(self): """Empty initialisation should set default values""" config = StringGrouperConfig() self.assertEqual(config.min_similarity, DEFAULT_MIN_SIMILARITY) self.assertEqual(config.max_n_matches, None) self.assertEqual(config.regex, DEFAULT_REGEX) self.assertEqual(config.ngram_size, DEFAULT_NGRAM_SIZE) self.assertEqual(config.number_of_processes, DEFAULT_N_PROCESSES) self.assertEqual(config.ignore_case, DEFAULT_IGNORE_CASE) def test_config_immutable(self): """Configurations should be immutable""" config = StringGrouperConfig() with self.assertRaises(Exception) as _: config.min_similarity = 0.1 def test_config_non_default_values(self): """Configurations should be immutable""" config = StringGrouperConfig(min_similarity=0.1, max_n_matches=100, number_of_processes=1) self.assertEqual(0.1, config.min_similarity) self.assertEqual(100, config.max_n_matches) self.assertEqual(1, config.number_of_processes) class StringGrouperTest(unittest.TestCase): def test_auto_blocking_single_DataFrame(self): """tests whether automatic blocking yields consistent results""" # This function will force an OverflowError to occur when # the input Series have a combined length above a given number: # OverflowThreshold. This will in turn trigger automatic splitting # of the Series/matrices into smaller blocks when n_blocks = None sort_cols = ['right_index', 'left_index'] def fix_row_order(df): return df.sort_values(sort_cols).reset_index(drop=True) simple_example = SimpleExample() df1 = simple_example.customers_df2['<NAME>'] # first do manual blocking sg = StringGrouper(df1, min_similarity=0.1) pd.testing.assert_series_equal(sg.master, df1) self.assertEqual(sg.duplicates, None) matches = fix_row_order(sg.match_strings(df1, n_blocks=(1, 1))) self.assertEqual(sg._config.n_blocks, (1, 1)) # Create a custom wrapper for this StringGrouper instance's # _build_matches() method which will later be used to # mock _build_matches(). # Note that we have to define the wrapper here because # _build_matches() is a non-static function of StringGrouper # and needs access to the specific StringGrouper instance sg # created here. def mock_build_matches(OverflowThreshold, real_build_matches=sg._build_matches): def wrapper(left_matrix, right_matrix, nnz_rows=None, sort=True): if (left_matrix.shape[0] + right_matrix.shape[0]) > \ OverflowThreshold: raise OverflowError return real_build_matches(left_matrix, right_matrix, nnz_rows, sort) return wrapper def do_test_with(OverflowThreshold): nonlocal sg # allows reference to sg, as sg will be modified below # Now let us mock sg._build_matches: sg._build_matches = Mock(side_effect=mock_build_matches(OverflowThreshold)) sg.clear_data() matches_auto = fix_row_order(sg.match_strings(df1, n_blocks=None)) pd.testing.assert_series_equal(sg.master, df1) pd.testing.assert_frame_equal(matches, matches_auto) self.assertEqual(sg._config.n_blocks, None) # Note that _build_matches is called more than once if and only if # a split occurred (that is, there was more than one pair of # matrix-blocks multiplied) if len(sg._left_Series) + len(sg._right_Series) > \ OverflowThreshold: # Assert that split occurred: self.assertGreater(sg._build_matches.call_count, 1) else: # Assert that split did not occur: self.assertEqual(sg._build_matches.call_count, 1) # now test auto blocking by forcing an OverflowError when the # combined Series' lengths is greater than 10, 5, 3, 2 do_test_with(OverflowThreshold=100) # does not trigger auto blocking do_test_with(OverflowThreshold=10) do_test_with(OverflowThreshold=5) do_test_with(OverflowThreshold=3) do_test_with(OverflowThreshold=2) def test_n_blocks_single_DataFrame(self): """tests whether manual blocking yields consistent results""" sort_cols = ['right_index', 'left_index'] def fix_row_order(df): return df.sort_values(sort_cols).reset_index(drop=True) simple_example = SimpleExample() df1 = simple_example.customers_df2['<NAME>'] matches11 = fix_row_order(match_strings(df1, min_similarity=0.1)) matches12 = fix_row_order( match_strings(df1, n_blocks=(1, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches12) matches13 = fix_row_order( match_strings(df1, n_blocks=(1, 3), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches13) matches14 = fix_row_order( match_strings(df1, n_blocks=(1, 4), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches14) matches15 = fix_row_order( match_strings(df1, n_blocks=(1, 5), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches15) matches16 = fix_row_order( match_strings(df1, n_blocks=(1, 6), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches16) matches17 = fix_row_order( match_strings(df1, n_blocks=(1, 7), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches17) matches18 = fix_row_order( match_strings(df1, n_blocks=(1, 8), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches18) matches21 = fix_row_order( match_strings(df1, n_blocks=(2, 1), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches21) matches22 = fix_row_order( match_strings(df1, n_blocks=(2, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches22) matches32 = fix_row_order( match_strings(df1, n_blocks=(3, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches32) # Create a custom wrapper for this StringGrouper instance's # _build_matches() method which will later be used to # mock _build_matches(). # Note that we have to define the wrapper here because # _build_matches() is a non-static function of StringGrouper # and needs access to the specific StringGrouper instance sg # created here. sg = StringGrouper(df1, min_similarity=0.1) def mock_build_matches(OverflowThreshold, real_build_matches=sg._build_matches): def wrapper(left_matrix, right_matrix, nnz_rows=None, sort=True): if (left_matrix.shape[0] + right_matrix.shape[0]) > \ OverflowThreshold: raise OverflowError return real_build_matches(left_matrix, right_matrix, nnz_rows, sort) return wrapper def test_overflow_error_with(OverflowThreshold, n_blocks): nonlocal sg sg._build_matches = Mock(side_effect=mock_build_matches(OverflowThreshold)) sg.clear_data() max_left_block_size = (len(df1)//n_blocks[0] + (1 if len(df1) % n_blocks[0] > 0 else 0)) max_right_block_size = (len(df1)//n_blocks[1] + (1 if len(df1) % n_blocks[1] > 0 else 0)) if (max_left_block_size + max_right_block_size) > OverflowThreshold: with self.assertRaises(Exception): _ = sg.match_strings(df1, n_blocks=n_blocks) else: matches_manual = fix_row_order(sg.match_strings(df1, n_blocks=n_blocks)) pd.testing.assert_frame_equal(matches11, matches_manual) test_overflow_error_with(OverflowThreshold=100, n_blocks=(1, 1)) test_overflow_error_with(OverflowThreshold=10, n_blocks=(1, 1)) test_overflow_error_with(OverflowThreshold=10, n_blocks=(2, 1)) test_overflow_error_with(OverflowThreshold=10, n_blocks=(1, 2)) test_overflow_error_with(OverflowThreshold=10, n_blocks=(4, 4)) def test_n_blocks_both_DataFrames(self): """tests whether manual blocking yields consistent results""" sort_cols = ['right_index', 'left_index'] def fix_row_order(df): return df.sort_values(sort_cols).reset_index(drop=True) simple_example = SimpleExample() df1 = simple_example.customers_df['Customer Name'] df2 = simple_example.customers_df2['Customer Name'] matches11 = fix_row_order(match_strings(df1, df2, min_similarity=0.1)) matches12 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches12) matches13 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 3), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches13) matches14 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 4), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches14) matches15 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 5), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches15) matches16 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 6), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches16) matches17 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 7), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches17) matches18 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 8), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches18) matches21 = fix_row_order( match_strings(df1, df2, n_blocks=(2, 1), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches21) matches22 = fix_row_order( match_strings(df1, df2, n_blocks=(2, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches22) matches32 = fix_row_order( match_strings(df1, df2, n_blocks=(3, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches32) def test_n_blocks_bad_option_value(self): """Tests that bad option values for n_blocks are caught""" simple_example = SimpleExample() df1 = simple_example.customers_df2['<NAME>'] with self.assertRaises(Exception): _ = match_strings(df1, n_blocks=2) with self.assertRaises(Exception): _ = match_strings(df1, n_blocks=(0, 2)) with self.assertRaises(Exception): _ = match_strings(df1, n_blocks=(1, 2.5)) with self.assertRaises(Exception): _ = match_strings(df1, n_blocks=(1, 2, 3)) with self.assertRaises(Exception): _ = match_strings(df1, n_blocks=(1, )) def test_tfidf_dtype_bad_option_value(self): """Tests that bad option values for n_blocks are caught""" simple_example = SimpleExample() df1 = simple_example.customers_df2['<NAME>'] with self.assertRaises(Exception): _ = match_strings(df1, tfidf_matrix_dtype=None) with self.assertRaises(Exception): _ = match_strings(df1, tfidf_matrix_dtype=0) with self.assertRaises(Exception): _ = match_strings(df1, tfidf_matrix_dtype='whatever') def test_compute_pairwise_similarities(self): """tests the high-level function compute_pairwise_similarities""" simple_example = SimpleExample() df1 = simple_example.customers_df['<NAME>'] df2 = simple_example.expected_result_centroid similarities = compute_pairwise_similarities(df1, df2) expected_result = pd.Series( [ 1.0, 0.6336195351561589, 1.0000000000000004, 1.0000000000000004, 1.0, 0.826462625999832 ], name='similarity' ) expected_result = expected_result.astype(np.float32) pd.testing.assert_series_equal(expected_result, similarities) sg = StringGrouper(df1, df2) similarities = sg.compute_pairwise_similarities(df1, df2) pd.testing.assert_series_equal(expected_result, similarities) def test_compute_pairwise_similarities_data_integrity(self): """tests that an exception is raised whenever the lengths of the two input series of the high-level function compute_pairwise_similarities are unequal""" simple_example = SimpleExample() df1 = simple_example.customers_df['<NAME>'] df2 = simple_example.expected_result_centroid with self.assertRaises(Exception): _ = compute_pairwise_similarities(df1, df2[:-2]) @patch('string_grouper.string_grouper.StringGrouper') def test_group_similar_strings(self, mock_StringGouper): """mocks StringGrouper to test if the high-level function group_similar_strings utilizes it as expected""" mock_StringGrouper_instance = mock_StringGouper.return_value mock_StringGrouper_instance.fit.return_value = mock_StringGrouper_instance mock_StringGrouper_instance.get_groups.return_value = 'whatever' test_series_1 = None test_series_id_1 = None df = group_similar_strings( test_series_1, string_ids=test_series_id_1 ) mock_StringGrouper_instance.fit.assert_called_once() mock_StringGrouper_instance.get_groups.assert_called_once() self.assertEqual(df, 'whatever') @patch('string_grouper.string_grouper.StringGrouper') def test_match_most_similar(self, mock_StringGouper): """mocks StringGrouper to test if the high-level function match_most_similar utilizes it as expected""" mock_StringGrouper_instance = mock_StringGouper.return_value mock_StringGrouper_instance.fit.return_value = mock_StringGrouper_instance mock_StringGrouper_instance.get_groups.return_value = 'whatever' test_series_1 = None test_series_2 = None test_series_id_1 = None test_series_id_2 = None df = match_most_similar( test_series_1, test_series_2, master_id=test_series_id_1, duplicates_id=test_series_id_2 ) mock_StringGrouper_instance.fit.assert_called_once() mock_StringGrouper_instance.get_groups.assert_called_once() self.assertEqual(df, 'whatever') @patch('string_grouper.string_grouper.StringGrouper') def test_match_strings(self, mock_StringGouper): """mocks StringGrouper to test if the high-level function match_strings utilizes it as expected""" mock_StringGrouper_instance = mock_StringGouper.return_value mock_StringGrouper_instance.fit.return_value = mock_StringGrouper_instance mock_StringGrouper_instance.get_matches.return_value = 'whatever' test_series_1 = None test_series_id_1 = None df = match_strings(test_series_1, master_id=test_series_id_1) mock_StringGrouper_instance.fit.assert_called_once() mock_StringGrouper_instance.get_matches.assert_called_once() self.assertEqual(df, 'whatever') @patch( 'string_grouper.string_grouper.StringGrouper._symmetrize_matrix', side_effect=mock_symmetrize_matrix ) def test_match_list_symmetry_without_symmetrize_function(self, mock_symmetrize_matrix_param): """mocks StringGrouper._symmetrize_matches_list so that this test fails whenever _matches_list is **partially** symmetric which often occurs when the kwarg max_n_matches is too small""" simple_example = SimpleExample() df = simple_example.customers_df2['<NAME>'] sg = StringGrouper(df, max_n_matches=2).fit() mock_symmetrize_matrix_param.assert_called_once() # obtain the upper and lower triangular parts of the matrix of matches: upper = sg._matches_list[sg._matches_list['master_side'] < sg._matches_list['dupe_side']] lower = sg._matches_list[sg._matches_list['master_side'] > sg._matches_list['dupe_side']] # switch the column names of lower triangular part (i.e., transpose) to convert it to upper triangular: upper_prime = lower.rename(columns={'master_side': 'dupe_side', 'dupe_side': 'master_side'}) # obtain the intersection between upper and upper_prime: intersection = upper_prime.merge(upper, how='inner', on=['master_side', 'dupe_side']) # if the intersection is empty then _matches_list is completely non-symmetric (this is acceptable) # if the intersection is not empty then at least some matches are repeated. # To make sure all (and not just some) matches are repeated, the lengths of # upper, upper_prime and their intersection should be identical. self.assertFalse(intersection.empty or len(upper) == len(upper_prime) == len(intersection)) def test_match_list_symmetry_with_symmetrize_function(self): """This test ensures that _matches_list is symmetric""" simple_example = SimpleExample() df = simple_example.customers_df2['<NAME>'] sg = StringGrouper(df, max_n_matches=2).fit() # Obtain the upper and lower triangular parts of the matrix of matches: upper = sg._matches_list[sg._matches_list['master_side'] < sg._matches_list['dupe_side']] lower = sg._matches_list[sg._matches_list['master_side'] > sg._matches_list['dupe_side']] # Switch the column names of the lower triangular part (i.e., transpose) to convert it to upper triangular: upper_prime = lower.rename(columns={'master_side': 'dupe_side', 'dupe_side': 'master_side'}) # Obtain the intersection between upper and upper_prime: intersection = upper_prime.merge(upper, how='inner', on=['master_side', 'dupe_side']) # If the intersection is empty this means _matches_list is completely non-symmetric (this is acceptable) # If the intersection is not empty this means at least some matches are repeated. # To make sure all (and not just some) matches are repeated, the lengths of # upper, upper_prime and their intersection should be identical. self.assertTrue(intersection.empty or len(upper) == len(upper_prime) == len(intersection)) @patch( 'string_grouper.string_grouper.StringGrouper._fix_diagonal', side_effect=mock_symmetrize_matrix ) def test_match_list_diagonal_without_the_fix(self, mock_fix_diagonal): """test fails whenever _matches_list's number of self-joins is not equal to the number of strings""" # This bug is difficult to reproduce -- I mostly encounter it while working with very large datasets; # for small datasets setting max_n_matches=1 reproduces the bug simple_example = SimpleExample() df = simple_example.customers_df['<NAME>'] matches = match_strings(df, max_n_matches=1) mock_fix_diagonal.assert_called_once() num_self_joins = len(matches[matches['left_index'] == matches['right_index']]) num_strings = len(df) self.assertNotEqual(num_self_joins, num_strings) def test_match_list_diagonal(self): """This test ensures that all self-joins are present""" # This bug is difficult to reproduce -- I mostly encounter it while working with very large datasets; # for small datasets setting max_n_matches=1 reproduces the bug simple_example = SimpleExample() df = simple_example.customers_df['Customer Name'] matches = match_strings(df, max_n_matches=1) num_self_joins = len(matches[matches['left_index'] == matches['right_index']]) num_strings = len(df) self.assertEqual(num_self_joins, num_strings) def test_zero_min_similarity(self): """Since sparse matrices exclude zero elements, this test ensures that zero similarity matches are returned when min_similarity <= 0. A bug related to this was first pointed out by @nbcvijanovic""" simple_example = SimpleExample() s_master = simple_example.customers_df['Customer Name'] s_dup = simple_example.whatever_series_1 matches = match_strings(s_master, s_dup, min_similarity=0) pd.testing.assert_frame_equal(simple_example.expected_result_with_zeroes, matches) def test_zero_min_similarity_small_max_n_matches(self): """This test ensures that a warning is issued when n_max_matches is suspected to be too small while min_similarity <= 0 and include_zeroes is True""" simple_example = SimpleExample() s_master = simple_example.customers_df['Customer Name'] s_dup = simple_example.two_strings with self.assertRaises(Exception): _ = match_strings(s_master, s_dup, max_n_matches=1, min_similarity=0) def test_get_non_matches_empty_case(self): """This test ensures that _get_non_matches() returns an empty DataFrame when all pairs of strings match""" simple_example = SimpleExample() s_master = simple_example.a_few_strings s_dup = simple_example.one_string sg = StringGrouper(s_master, s_dup, max_n_matches=len(s_master), min_similarity=0).fit() self.assertTrue(sg._get_non_matches_list().empty) def test_n_grams_case_unchanged(self): """Should return all ngrams in a string with case""" test_series = pd.Series(pd.Series(['aaa'])) # Explicit do not ignore case sg = StringGrouper(test_series, ignore_case=False) expected_result = ['McD', 'cDo', 'Don', 'ona', 'nal', 'ald', 'lds'] self.assertListEqual(expected_result, sg.n_grams('McDonalds')) def test_n_grams_ignore_case_to_lower(self): """Should return all case insensitive ngrams in a string""" test_series = pd.Series(pd.Series(['aaa'])) # Explicit ignore case sg = StringGrouper(test_series, ignore_case=True) expected_result = ['mcd', 'cdo', 'don', 'ona', 'nal', 'ald', 'lds'] self.assertListEqual(expected_result, sg.n_grams('McDonalds')) def test_n_grams_ignore_case_to_lower_with_defaults(self): """Should return all case insensitive ngrams in a string""" test_series = pd.Series(pd.Series(['aaa'])) # Implicit default case (i.e. default behaviour) sg = StringGrouper(test_series) expected_result = ['mcd', 'cdo', 'don', 'ona', 'nal', 'ald', 'lds'] self.assertListEqual(expected_result, sg.n_grams('McDonalds')) def test_build_matrix(self): """Should create a csr matrix only master""" test_series = pd.Series(['foo', 'bar', 'baz']) sg = StringGrouper(test_series) master, dupe = sg._get_right_tf_idf_matrix(), sg._get_left_tf_idf_matrix() c = csr_matrix([[0., 0., 1.], [1., 0., 0.], [0., 1., 0.]]) np.testing.assert_array_equal(c.toarray(), master.toarray()) np.testing.assert_array_equal(c.toarray(), dupe.toarray()) def test_build_matrix_master_and_duplicates(self): """Should create a csr matrix for master and duplicates""" test_series_1 = pd.Series(['foo', 'bar', 'baz']) test_series_2 = pd.Series(['foo', 'bar', 'bop']) sg = StringGrouper(test_series_1, test_series_2) master, dupe = sg._get_right_tf_idf_matrix(), sg._get_left_tf_idf_matrix() master_expected = csr_matrix([[0., 0., 0., 1.], [1., 0., 0., 0.], [0., 1., 0., 0.]]) dupes_expected = csr_matrix([[0., 0., 0., 1.], [1., 0., 0., 0.], [0., 0., 1., 0.]]) np.testing.assert_array_equal(master_expected.toarray(), master.toarray()) np.testing.assert_array_equal(dupes_expected.toarray(), dupe.toarray()) def test_build_matches(self): """Should create the cosine similarity matrix of two series""" test_series_1 = pd.Series(['foo', 'bar', 'baz']) test_series_2 = pd.Series(['foo', 'bar', 'bop']) sg = StringGrouper(test_series_1, test_series_2) master, dupe = sg._get_right_tf_idf_matrix(), sg._get_left_tf_idf_matrix() expected_matches = np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 0.]]) np.testing.assert_array_equal(expected_matches, sg._build_matches(master, dupe)[0].toarray()) def test_build_matches_list(self): """Should create the cosine similarity matrix of two series""" test_series_1 = pd.Series(['foo', 'bar', 'baz']) test_series_2 = pd.Series(['foo', 'bar', 'bop']) sg = StringGrouper(test_series_1, test_series_2) sg = sg.fit() master = [0, 1] dupe_side = [0, 1] similarity = [1.0, 1.0] expected_df = pd.DataFrame({'master_side': master, 'dupe_side': dupe_side, 'similarity': similarity}) expected_df.loc[:, 'similarity'] = expected_df.loc[:, 'similarity'].astype(sg._config.tfidf_matrix_dtype) pd.testing.assert_frame_equal(expected_df, sg._matches_list) def test_case_insensitive_build_matches_list(self): """Should create the cosine similarity matrix of two case insensitive series""" test_series_1 = pd.Series(['foo', 'BAR', 'baz']) test_series_2 = pd.Series(['FOO', 'bar', 'bop']) sg = StringGrouper(test_series_1, test_series_2) sg = sg.fit() master = [0, 1] dupe_side = [0, 1] similarity = [1.0, 1.0] expected_df =
pd.DataFrame({'master_side': master, 'dupe_side': dupe_side, 'similarity': similarity})
pandas.DataFrame
#coding=utf-8 import pandas as pd import numpy as np import sys import os from sklearn import preprocessing import datetime import scipy as sc from sklearn.preprocessing import MinMaxScaler,StandardScaler from sklearn.externals import joblib #import joblib class FEbase(object): """description of class""" def __init__(self, **kwargs): pass def create(self,*DataSetName): #print (self.__class__.__name__) (filepath, tempfilename) = os.path.split(DataSetName[0]) (filename, extension) = os.path.splitext(tempfilename) #bufferstring='savetest2017.csv' bufferstringoutput=filepath+'/'+filename+'_'+self.__class__.__name__+extension if(os.path.exists(bufferstringoutput)==False): #df_all=pd.read_csv(bufferstring,index_col=0,header=0,nrows=100000) df_all=self.core(DataSetName) df_all.to_csv(bufferstringoutput) return bufferstringoutput def core(self,df_all,Data_adj_name=''): return df_all def real_FE(): return 0 class FEg30eom0110network(FEbase): #这个版本变为3天预测 def __init__(self): pass def core(self,DataSetName): intflag=True df_data=pd.read_csv(DataSetName[0],index_col=0,header=0) df_adj_all=pd.read_csv(DataSetName[1],index_col=0,header=0) df_limit_all=pd.read_csv(DataSetName[2],index_col=0,header=0) df_long_all=pd.read_csv(DataSetName[4],index_col=0,header=0) df_all=pd.merge(df_data, df_adj_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_limit_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_long_all, how='inner', on=['ts_code','trade_date']) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) df_all['limit_percent']=df_all['down_limit']/df_all['up_limit'] #是否st或其他 df_all['st_or_otherwrong']=0 df_all.loc[(df_all['limit_percent']<0.85) & (0.58<df_all['limit_percent']),'st_or_otherwrong']=1 df_all.drop(['up_limit','down_limit','limit_percent'],axis=1,inplace=True) ##排除科创版 #print(df_all) df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['real_price']=df_all['close']*df_all['adj_factor'] #df_all['real_open']=df_all['adj_factor']*df_all['open'] #===================================================================================================================================# df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) if(intflag): df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) if(intflag): df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) if(intflag): df_all['ps_ttm']=df_all['ps_ttm']*10//1 #===================================================================================================================================# df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min',True) df_all,_=FEsingle.CloseWithHighLow(df_all,8,'min',True) df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max',True) df_all,_=FEsingle.CloseWithHighLow(df_all,8,'max',True) df_all,_=FEsingle.HighLowRange(df_all,8,True) df_all,_=FEsingle.HighLowRange(df_all,25,True) df_all.drop(['change','vol'],axis=1,inplace=True) #===================================================================================================================================# #df_all['mvadj']=1 #df_all.loc[df_all['total_mv_rank']<11,'mvadj']=0.9 #df_all.loc[df_all['total_mv_rank']<7,'mvadj']=0.85 #df_all.loc[df_all['total_mv_rank']<4,'mvadj']=0.6 #df_all.loc[df_all['total_mv_rank']<2,'mvadj']=0.45 #df_all.loc[df_all['total_mv_rank']<1,'mvadj']=0.35 #是否停 df_all['high_stop']=0 df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 #df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 ###真实价格范围(区分实际股价高低) #df_all['price_real_rank']=df_all.groupby('trade_date')['pre_close'].rank(pct=True) #df_all['price_real_rank']=df_all['price_real_rank']*10//1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) if(intflag): df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) if(intflag): df_all['pct_chg_abs_rank']=df_all['pct_chg_abs_rank']*10//2 df_all=FEsingle.PctChgAbsSumRank(df_all,6,True) df_all=FEsingle.PctChgSumRank(df_all,3,True) df_all=FEsingle.PctChgSumRank(df_all,6,True) df_all=FEsingle.PctChgSumRank(df_all,12,True) df_all=FEsingle.AmountChgRank(df_all,12,True) #df_all=FEsingle.AmountChgRank(df_all,30) #计算三种比例rank dolist=['open','high','low'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) if(intflag): df_all[curc]=df_all[curc]*9.9//2 df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],1) df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],2) df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],3) df_all.drop(['pre_close','adj_factor','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) df_all=FEsingle.PredictDaysTrend(df_all,5) #df_all['tomorrow_chg_rank'] = np.random.randint(0, 10, df_all.shape[0]) #df_all.drop(['mvadj'],axis=1,inplace=True) df_all.drop(['pct_chg'],axis=1,inplace=True) #删除股价过低的票 df_all=df_all[df_all['close']>3] #df_all=df_all[df_all['8_pct_rank_min']>0.1] #df_all=df_all[df_all['25_pct_rank_max']>0.1] #df_all=df_all[df_all['total_mv_rank']>18] #df_all=df_all[df_all['total_mv_rank']>2] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['circ_mv_pct']>3] #df_all=df_all[df_all['ps_ttm']>3] #df_all=df_all[df_all['pb_rank']>3] #暂时不用的列 df_all=df_all[df_all['high_stop']==0] df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['high_stop','amount','close','real_price'],axis=1,inplace=True) df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) print(df_all) df_all=df_all.reset_index(drop=True) return df_all class FEg30eom0110onlinew6d(FEbase): #这个版本变为3天预测 def __init__(self): pass def core(self,DataSetName): df_data=pd.read_csv(DataSetName[0],index_col=0,header=0) df_adj_all=pd.read_csv(DataSetName[1],index_col=0,header=0) df_limit_all=pd.read_csv(DataSetName[2],index_col=0,header=0) df_money_all=pd.read_csv(DataSetName[3],index_col=0,header=0) df_long_all=pd.read_csv(DataSetName[4],index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) print(df_money_all) df_all=pd.merge(df_data, df_adj_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_limit_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_money_all, how='inner', on=['ts_code','trade_date']) df_all['sm_amount_pos']=df_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['lg_amount_pos']=df_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['net_mf_amount_pos']=df_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['sm_amount_pos']=df_all.groupby('ts_code')['sm_amount_pos'].shift(1) df_all['lg_amount_pos']=df_all.groupby('ts_code')['lg_amount_pos'].shift(1) df_all['net_mf_amount_pos']=df_all.groupby('ts_code')['net_mf_amount_pos'].shift(1) df_all['sm_amount']=df_all.groupby('ts_code')['sm_amount'].shift(1) df_all['lg_amount']=df_all.groupby('ts_code')['lg_amount'].shift(1) df_all['net_mf_amount']=df_all.groupby('ts_code')['net_mf_amount'].shift(1) df_all=pd.merge(df_all, df_long_all, how='inner', on=['ts_code','trade_date']) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) df_all['limit_percent']=df_all['down_limit']/df_all['up_limit'] #是否st或其他 df_all['st_or_otherwrong']=0 df_all.loc[(df_all['limit_percent']<0.85) & (0.58<df_all['limit_percent']),'st_or_otherwrong']=1 df_all.drop(['up_limit','down_limit','limit_percent'],axis=1,inplace=True) ##排除科创版 #print(df_all) #df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['real_price']=df_all['close']*df_all['adj_factor'] #df_all['real_open']=df_all['adj_factor']*df_all['open'] #===================================================================================================================================# df_all['real_price_pos']=df_all.groupby('ts_code')['real_price'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) #df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) #df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) #df_all['ps_ttm']=df_all['ps_ttm']*10//1 #===================================================================================================================================# df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'max') df_all,_=FEsingle.HighLowRange(df_all,8) df_all,_=FEsingle.HighLowRange(df_all,25) df_all.drop(['change','vol'],axis=1,inplace=True) #===================================================================================================================================# #df_all['mvadj']=1 #df_all.loc[df_all['total_mv_rank']<11,'mvadj']=0.9 #df_all.loc[df_all['total_mv_rank']<7,'mvadj']=0.85 #df_all.loc[df_all['total_mv_rank']<4,'mvadj']=0.6 #df_all.loc[df_all['total_mv_rank']<2,'mvadj']=0.45 #df_all.loc[df_all['total_mv_rank']<1,'mvadj']=0.35 #是否停 df_all['high_stop']=0 df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 #df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 ###真实价格范围(区分实际股价高低) #df_all['price_real_rank']=df_all.groupby('trade_date')['pre_close'].rank(pct=True) #df_all['price_real_rank']=df_all['price_real_rank']*10//1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) #df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) #df_all=FEsingle.PctChgAbsSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,3) df_all=FEsingle.PctChgSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,12) df_all=FEsingle.PctChgSum(df_all,3) df_all=FEsingle.PctChgSum(df_all,6) df_all=FEsingle.PctChgSum(df_all,12) df_all=FEsingle.AmountChgRank(df_all,12) #df_all=FEsingle.AmountChgRank(df_all,30) #计算三种比例rank dolist=['open','high','low'] df_all['pct_chg_r']=df_all['pct_chg'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) #df_all[curc]=df_all[curc]*9.9//2 df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12','real_price_pos'],1) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],3) df_all.drop(['pre_close','adj_factor','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) df_all=FEsingle.PredictDaysTrend(df_all,5) #df_all['tomorrow_chg_rank'] = np.random.randint(0, 10, df_all.shape[0]) #df_all.drop(['mvadj'],axis=1,inplace=True) df_all.drop(['pct_chg'],axis=1,inplace=True) #删除股价过低的票 df_all=df_all[df_all['close']>3] #df_all=df_all[df_all['8_pct_rank_min']>0.1] #df_all=df_all[df_all['25_pct_rank_max']>0.1] #df_all=df_all[df_all['total_mv_rank']>18] #df_all=df_all[df_all['total_mv_rank']>2] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['circ_mv_pct']>3] #df_all=df_all[df_all['ps_ttm']>3] #df_all=df_all[df_all['pb_rank']>3] #暂时不用的列 df_all=df_all[df_all['high_stop']==0] df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['high_stop','amount','close','real_price'],axis=1,inplace=True) df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) print(df_all) df_all=df_all.reset_index(drop=True) return df_all class FE_a23(FEbase): #这个版本变为3天预测 def __init__(self): pass def core(self,DataSetName): df_data=pd.read_csv(DataSetName[0],index_col=0,header=0) df_adj_all=pd.read_csv(DataSetName[1],index_col=0,header=0) df_limit_all=pd.read_csv(DataSetName[2],index_col=0,header=0) df_money_all=pd.read_csv(DataSetName[3],index_col=0,header=0) df_long_all=pd.read_csv(DataSetName[4],index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount_pos'] #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount_pos'] #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount_pos'] #df_money_all['sm_amount']=df_money_all.groupby('ts_code')['sm_amount'].shift(1) #df_money_all['lg_amount']=df_money_all.groupby('ts_code')['lg_amount'].shift(1) #df_money_all['net_mf_amount']=df_money_all.groupby('ts_code')['net_mf_amount'].shift(1) df_money_all=FEsingle.InputChgSum(df_money_all,5,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'net_mf_amount') print(df_money_all) df_all=
pd.merge(df_data, df_adj_all, how='inner', on=['ts_code','trade_date'])
pandas.merge
from typing import Union, List import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from sklearn.metrics import roc_auc_score, roc_curve def plot_bars(df, path, title=None): sns.set(style="whitegrid", font_scale=1.5) pl = df.plot(figsize=(10, 10), kind='bar', cmap='Accent', width=1) if title: pl.title.set_text(title) pl.get_figure().savefig(path, bbox_inches='tight') plt.close() def plot_roc_curve_image(y_true, y_pred, path): sns.set(style="whitegrid", font_scale=1.5) plt.figure(figsize=(10, 10)) fpr_reg, tpr_reg, _ = roc_curve(y_true, y_pred) auc_score_reg = roc_auc_score(y_true, y_score=y_pred) lw = 2 plt.plot(fpr_reg, tpr_reg, color='darkorange', lw=lw, label='WhiteBox модель (GINI = {:.3f})'.format(2 * auc_score_reg - 1)) plt.plot([0, 1], [0, 1], color='red', lw=lw, linestyle='--', label='Random Model') plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') lgd = plt.legend(bbox_to_anchor=(0.5, -0.15), loc='upper center', ncol=2) plt.xticks(np.arange(0, 1.01, 0.05), rotation=45) plt.yticks(np.arange(0, 1.01, 0.05)) plt.grid(color='gray', linestyle='-', linewidth=1) plt.title('ROC кривая (GINI = {:.3f})'.format(2 * auc_score_reg - 1)) plt.savefig(path, bbox_extra_artists=(lgd,), bbox_inches='tight') plt.close() def plot_double_roc_curve(train_y_true, train_y_pred, test_y_true, test_y_pred, path): sns.set(style="whitegrid", font_scale=1.5) plt.figure(figsize=(10, 10)) train_fpr_reg, train_tpr_reg, _ = roc_curve(train_y_true, train_y_pred) train_auc_score_reg = roc_auc_score(train_y_true, y_score=train_y_pred) test_fpr_reg, test_tpr_reg, _ = roc_curve(test_y_true, test_y_pred) test_auc_score_reg = roc_auc_score(test_y_true, y_score=test_y_pred) lw = 2 plt.plot( train_fpr_reg, train_tpr_reg, color='darkorange', lw=lw, label='По данным train (GINI = {:.3f})'.format(2 * train_auc_score_reg - 1) ) plt.plot( test_fpr_reg, test_tpr_reg, color='blue', lw=lw, label='По данным test (GINI = {:.3f})'.format(2 * test_auc_score_reg - 1) ) plt.plot([0, 1], [0, 1], color='red', lw=lw, linestyle='--', label='Random Model') plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.legend(loc='lower right') plt.xticks(np.arange(0, 1.01, 0.05), rotation=45) plt.yticks(np.arange(0, 1.01, 0.05)) plt.grid(color='gray', linestyle='-', linewidth=1) plt.title('ROC кривая') plt.savefig(path, bbox_inches='tight') plt.close() def plot_roc_curve_feature_image(feature_name, y_true, y_pred, path): sns.set(style="whitegrid", font_scale=1.5) plt.figure(figsize=(10, 10)) fpr_reg, tpr_reg, _ = roc_curve(y_true, y_pred) auc_score_reg = roc_auc_score(y_true, y_score=y_pred) lw = 2 plt.plot(fpr_reg, tpr_reg, color='darkorange', lw=lw, label=feature_name + ' (GINI = {:.3f})'.format(2 * auc_score_reg - 1)) plt.plot([0, 1], [0, 1], color='red', lw=lw, linestyle='--', label='Random Model') plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') lgd = plt.legend(bbox_to_anchor=(0.5, -0.15), loc='upper center', ncol=2) plt.xticks(np.arange(0, 1.01, 0.05), rotation=45) plt.yticks(np.arange(0, 1.01, 0.05)) plt.grid(color='gray', linestyle='-', linewidth=1) plt.title('ROC curve(GINI = {:.3f})'.format(2 * auc_score_reg - 1) + f" of feature {feature_name}") plt.savefig(path, bbox_extra_artists=(lgd,), bbox_inches='tight') plt.close() def plot_model_weights(features, path): sns.set(style="whitegrid", font_scale=1.5) fig = plt.figure(figsize=(20, 5)) ax = fig.add_axes([0, 0, 1, 1]) ax.bar(features.index, features.values, color='g') lgd = plt.legend(bbox_to_anchor=(0.5, -0.15), loc='upper center', ncol=2) plt.title('Model coefs', fontsize=28) plt.xlabel('Features', fontsize=20) plt.ylabel('Coef values', fontsize=20) plt.xticks(fontsize=15, rotation=90) plt.yticks(fontsize=15) plt.savefig(path, bbox_extra_artists=(lgd,), bbox_inches='tight') plt.close() def plot_feature_split(feature_name, features, path): sns.set(style="whitegrid", font_scale=1.5) fig = plt.figure(figsize=(15, 5)) ax = fig.add_axes([0, 0, 1, 1]) ax.bar(features.index, features.values, color='g') lgd = plt.legend(bbox_to_anchor=(0.5, -0.15), loc='upper center', ncol=2) plt.title("Split of feature " + feature_name + " and woe values") plt.xlabel('Bins', fontsize=20) plt.ylabel('WoE values', fontsize=20) plt.xticks(fontsize=15) plt.yticks(fontsize=15) plt.savefig(path, bbox_extra_artists=(lgd,), bbox_inches='tight') plt.close() def plot_ginis(data_enc, target, path): sns.set(style="whitegrid", font_scale=1.5) feats = list(data_enc.columns) aucs = [roc_auc_score(target, -data_enc[col].values) for col in feats] ginis = [(x - 0.5) * 2 for x in aucs] ginis = pd.Series(ginis, index=feats).sort_values(ascending=True) pl = ginis.plot(kind='barh', figsize=(10, 10)) pl.get_figure().savefig(path, bbox_inches='tight') plt.close() def plot_woe_bars(train_enc, train_target, test_enc, test_target, target_name, column, path): sns.set(style="whitegrid", font_scale=1.5) names = ['train', 'test'] samples = [] for df, target in zip([train_enc, test_enc], [train_target, test_target]): df_copy = df.copy().round(3) df_copy[target_name] = target samples.append(df_copy) samples = [x[[target_name, column]].groupby(column)[target_name].agg(['mean', 'count']).reset_index() for x in samples] for df in samples: df['count'] /= df['count'].sum() df.rename({'count': 'Freq', 'mean': 'DefaultRate', column: 'WOE: ' + column}, inplace=True, axis=1) total =
pd.concat(samples, axis=0, ignore_index=True)
pandas.concat
from re import X from dash import Dash, dcc, html, Input, Output import dash_bootstrap_components as dbc import pandas as pd import altair as alt import os alt.data_transformers.disable_max_rows() # import data # absolute path to this file FILE_DIR = os.path.dirname(os.path.abspath(__file__)) # absolute path to this file's root directory PARENT_DIR = os.path.join(FILE_DIR, os.pardir) dir_of_interest = os.path.join(PARENT_DIR, 'data') raw_df = pd.read_csv(f"{dir_of_interest}/processed/medals.csv") noc_list = pd.read_csv(f"{dir_of_interest}/processed/noc_list.csv") # list of available olympics years for the year slider # sets the label opacity to 0 to make invisible so you # only see the tooltip for current year selection years = list(raw_df['year'].unique()) years.sort() slider_years = dict.fromkeys(map(int, years)) for year in years: my_dict = {} my_dict['label'] = str(year) my_dict['style'] = {'opacity': 0} slider_years[year] = my_dict # list of the top 20 events top20_events = (raw_df .groupby("sport") .count()['id'] .sort_values(ascending=False) .head(20) .index .tolist()) # Creating the objects of the dashboard season_checkbox = dcc.RadioItems( id='season', options=[ {'label': 'Summer', 'value': 'Summer'}, {'label': 'Winter', 'value': 'Winter'}, {'label': 'All', 'value': 'all'}], value='all', labelStyle={'display': 'block'}) medal_checklist = dcc.Checklist( id='medal_type', options=[ {'label': 'Gold', 'value': 'Gold'}, {'label': 'Silver', 'value': 'Silver'}, {'label': 'Bronze', 'value': 'Bronze'}], value=['Gold', 'Silver', 'Bronze'], labelStyle={'display': 'block'}) bubble_plot = html.Div([ html.Iframe( id='scatter', style={'border-width': '0', 'width': '140%', 'height': '420px'}) ]) height_hist = html.Iframe( id='height_hist', style={'border-width': '0', 'width': '140%', 'height': '420px'}) year_slider = dcc.Slider(id='medals_by_country', min=1896, max=2016, marks=slider_years, step=None, value=2000, tooltip={"placement": "bottom", "always_visible": True}, included=False) age_hist = html.Iframe( id='age_hist', style={'border-width': '0', 'width': '140%', 'height': '420px'}) age_slider = dcc.RangeSlider(id='age_slider', min=0, max=75, step=1, value=[0, 75], marks=None, tooltip={"placement": "bottom", "always_visible": True}) line_plot = html.Iframe( id='line', style={'border-width': '0', 'width': '140%', 'height': '420px'}) ## Setup app and layout/frontend #app = Dash(__name__, external_stylesheets=['https://codepen.io/chriddyp/pen/bWLwgP.css']) app = Dash(__name__, external_stylesheets=[dbc.themes.MINTY]) server = app.server app.title = "Olympic Dash" app.layout = dbc.Container([ dbc.Toast( [html.P( "Here is the place for the historic olympic data and trends." ), html.A( "Data", href="https://github.com/rfordatascience/tidytuesday", style={"text-decoration": "underline", "color": "#074983"}, ), html.P( "The dataset is from tidytuesday, which includes the data from 1896 up until 2016." ), html.P( "Please note that the Winter and Summer Games were held in the same year up until 1992. After that, they staggered them such that Winter Games occur on a four-year cycle starting with 1994, then Summer in 1996, then Winter in 1998, and so on." ), html.A( "GitHub Repo", href="https://github.com/UBC-MDS/olympic-dash", style={ "text-decoration": "underline", "color": "#074983"}, ), html.P( "Please go to the GitHub repository for more information." ),], id="toast", header="About", is_open=False, dismissable=True, style={ "position": "fixed", "top": 75, "right": 10, "width": 400, "z-index": "1"}, ), dbc.Row( [ html.Div( html.Img(src="assets/olympic_pic.png", height="80px"), style ={"position" : "left", "top": "20px", "left": 0, "width": 70, } ), html.Div("Olympics Dashboard", style={"font-size": "260%", "color":"#FFF","text-aligh":"right", "padding": "0", "white-space":"nowrap", "position" : "left", "top": 10, "left": 90, "width": 800, }, ), dbc.Button( "About", id="toast-toggle", color="#074983", n_clicks=0, style={ "white-space":"nowrap", "top": 15, "position" : "absolute", "right":"20px", 'text-aligh':'center', "width": 120, "font-size": "120%" } ) ], id="header", className="g-0", style={ "background-image": "linear-gradient(to right, #074983, #ced2cc)", "position": "absolute", "width":"100%", "left": 0, "height":80, } ), html.Br(), dbc.Row( [ # dcc.Store stores the intermediate value dcc.Store(id='filter_df'), # filers dbc.Col([ html.H3("Season"), season_checkbox ], style={"position": "absolute", "left": 110, "top": 20}), dbc.Col([ html.H3("Medal Type"), medal_checklist, ], style={"position": "absolute", "left": 500, "top": 20}), dbc.Col([ html.H3("Year"), year_slider, ], style={"position": "absolute", "left": 900, "top": 20, "width": 500,}), ], style={ "position": "absolute", "top": 80, "left": 0, "width":"110%", "height":160, "background-color": "#E4EBF5", }, ), html.Br(), dbc.Row([ dbc.Col([ dbc.Card( [ dbc.CardHeader( html.Label("Total Medal Count", style={"font-size":18, 'text_aligh': 'left', 'color': '#3F69A9', 'font-family': 'sans-serif'})), html.Br(), html.Br(), dbc.Spinner(children = bubble_plot, color="primary") ], style={"width": "39rem", "height": "36rem"}, ), dbc.Row([ html.Br() ]), dbc.Card( [ dbc.CardHeader( html.Label("Athlete Height Distribution", style={"font-size":18, 'text_aligh': 'left', 'color': '#3F69A9', 'font-family': 'sans-serif'})), html.Br(), html.Br(), dbc.Spinner(children = height_hist, color="success") ], style={"width": "39rem", "height": "33rem"}, ) ], style={ "position": "absolute", "left": 100, }, ), dbc.Col([ dbc.Card( [ dbc.CardHeader( html.Label("Olympic Medals Earned by Age Group", style={"font-size":18, 'text_aligh': 'left', 'color': '#3F69A9', 'font-family': 'sans-serif'}) ), html.Br(), dbc.Spinner(children = age_hist, color="warning"), html.Div( [ html.H6("Age Slider", style={'text-align': "center"}), age_slider ], ) ], style={"width": "39rem", "height": "36rem"} ), dbc.Row([ html.Br() ]), dbc.Card( [ dbc.CardHeader( html.Label("Medals Earned Over Time", style={"font-size":18, 'text_aligh': 'left', 'color': '#3F69A9', 'font-family': 'sans-serif'})), html.Br(), html.Br(), dbc.Spinner(children = line_plot, color="danger"), ], style={"width": "39rem", "height": "33rem"}, ) ], style={ "position": "absolute", "left": 770, }, ), ], style={ "position": "absolute", "top": 240, "left": 0, "width":"110%", "height":1200, "background-color": "#E4EBF5", }, ), ]) # dcc.Store stores the intermediate value dcc.Store(id='filter_df') # Set up callbacks/backend @app.callback( Output('filter_df', 'data'), Input('season', 'value'), Input('medal_type', 'value')) def data_preprocess(season, medal_type): temp_df = raw_df filter = pd.DataFrame() if season != 'all': temp_df = temp_df[temp_df['season'] == season] if len(medal_type) > 0: for medal in medal_type: temp = temp_df[temp_df['medal'] == medal] filter = pd.concat([filter, temp]) return filter.to_json() else: return temp_df.to_json() @app.callback( Output('scatter', 'srcDoc'), Input('filter_df', 'data'), Input('medals_by_country', 'value')) def plot_altair(filter_df, medals_by_country): temp = pd.read_json(filter_df) year = int(medals_by_country) temp = temp[temp['year'] == year] athlete_df = pd.read_csv(f"{dir_of_interest}/processed/athlete_count.csv") athlete_df = athlete_df[athlete_df['year'] == year] df = pd.DataFrame() df = athlete_df.loc[:,['noc', 'athletes']].reset_index(drop = True) df = df.join(temp.groupby(['noc'])['medal'].count(), on = 'noc') df['ave_medals'] = df['medal'] / df['athletes'] df = df.dropna() df = df.join(noc_list.reset_index()).reset_index() chart = alt.Chart(df).mark_circle().encode( x = alt.X('athletes', title = 'Athletes'), y = alt.Y('ave_medals', title = 'Ave. Medals per Athlete'), size = alt.Size('medal', legend=alt.Legend( orient = 'right', title='Total Medal Count' )), color = alt.Color('continent', legend = alt.Legend( orient = 'right', title = 'IOC Region') ), tooltip='country' ).interactive() return chart.to_html() @app.callback( Output('height_hist', 'srcDoc'), Input('filter_df', 'data'), Input('medals_by_country', 'value'), Input('medal_type', 'value')) def plot_altair(filter_df, medals_by_country, medal_type): temp = pd.read_json(filter_df) year = int(medals_by_country) temp = temp[temp['year'] == year] if type(medal_type) != list: temp = temp[temp['medal'] == medal_type] event_dropdown = alt.binding_select(options=top20_events) event_select = alt.selection_single(fields=['sport'], bind=event_dropdown, name='Olympic') chart = alt.Chart(temp).mark_bar().encode( x=alt.X('height', bin=alt.Bin(maxbins=20), title="Athlete Height"), y=alt.Y('count()',title="Count"), tooltip = ['count()'] ).add_selection( event_select ).transform_filter( event_select ) # .properties(title="Athlete Height Distribution" # ) return chart.to_html() @app.callback( Output('age_hist', 'srcDoc'), Input('filter_df', 'data'), Input('age_slider', 'value'), Input('medals_by_country', 'value'), Input('medal_type', 'value')) def plot_altair(filter_df, age_slider, medals_by_country, medal_type): temp = pd.read_json(filter_df) minage = int(age_slider[0]) maxage = int(age_slider[1]) year = int(medals_by_country) temp = temp[temp['year'] == year] temp = temp[temp['age'].between(minage, maxage)] temp["order"] = temp["medal"].replace({ 'Bronze' : 1, 'Silver' : 2, 'Gold' : 3 }) if type(medal_type) != list: temp = temp[temp['medal'] == medal_type] chart = alt.Chart(temp).mark_area( interpolate='step' ).encode( x=alt.X('age:Q', bin=alt.Bin(maxbins=100), title = "Athlete age range"), y=alt.Y('count()', title = "Medals Earned"), tooltip = ['count()'], color=alt.Color('medal:N', sort=["Gold", "Silver", "Bronze"], scale=alt.Scale( domain=['Bronze', 'Silver', 'Gold'], range=['#CD7F32', '#C0C0C0', '#FFD700']), legend=alt.Legend(orient='right')), order=alt.Order('order', sort='ascending') ) # .properties( # title='Olympic medals earned by age group') return chart.to_html() @app.callback( Output('line', 'srcDoc'), Input('filter_df', 'data')) def plot_altair(filter_df): line_chart_df =
pd.read_json(filter_df)
pandas.read_json
import pytest import os import sys import json from random import randint from mercury_ml.common.artifact_storage.local import store_dict_json, store_pandas_json, store_pandas_pickle, \ store_h2o_frame import shutil input_dict = {"hello": [randint(0,100),randint(0,100),randint(0,100),randint(0,100)]} dir = "./results" if os.path.isdir(dir): shutil.rmtree(dir) os.makedirs(dir) @pytest.mark.parametrize("input_dict, directory, filename, force, parts", [(input_dict, dir, "test_h2o", False, 1), (input_dict, dir, "test_h2o_dir", False, 2)]) def test_store_h2o_frame(input_dict, directory, filename, force, parts): import pandas as pd import h2o h2o.init() data = h2o.H2OFrame(
pd.DataFrame(input_dict)
pandas.DataFrame
#! /usr/bin/env python3.5 from __future__ import print_function import argparse import csv import pandas import random import numpy from keras import backend as K from keras.models import Sequential from keras.layers import Dense, Dropout from collections import Counter, OrderedDict # Label regularization loss, according to Keras API # Actually, our y_true is 1D, containing prior probabilities for # our labels. But Keras API wants it to be a 2D array of shape # (batch_size, num_classes) # So, we expand it to 2D when calling train_on_batch (see below) and # just take a mean # in this function def label_reg_loss(y_true, y_pred): # KL-div y_true = K.clip(y_true, K.epsilon(), 1) y_pred = K.clip(y_pred, K.epsilon(), 1) y_true_mean = K.mean(y_true, axis=0) y_pred_mean = K.mean(y_pred, axis=0) return K.sum(y_true_mean * K.log(y_true_mean / y_pred_mean), axis=-1) if __name__ == '__main__': random.seed(42) parser = argparse.ArgumentParser(description="Train a DNN") parser.add_argument("--save-model", default=None) parser.add_argument("--min-spk-occ", default=5, type=int, help="Keep speaker names that occur at least in that many shows") parser.add_argument("--num-epochs", type=int, default=20, help="Number of epochs to train") parser.add_argument("--num-dev-shows", default=10, type=int, help="Number of dev shows for validation") parser.add_argument("--confidence-threshold", type=float, default=0.7, help="Posterior probability threshold for confident predictions") parser.add_argument("spk_file", help="File speaker data (IDs and i-vectors) in CSV format") parser.add_argument("meta_file", help="Metadata file CSV format") args = parser.parse_args() metadata_df =
pandas.read_csv(args.meta_file, sep=";", encoding='utf-8-sig')
pandas.read_csv
# coding: utf-8 import numpy as np from itertools import product from collections import Counter import pandas as pd import os import re import json import openslide from matplotlib import pyplot as plt import cv2 #cell# from extract_rois_svs_xml import extract_rois_svs_xml from slideutils import (plot_contour, get_median_color, get_thumbnail_magnification, CropRotateRoi, get_img_bbox, get_rotated_highres_roi, get_uniform_tiles, get_contour_centre, read_roi_patches_from_slide, clip_roi_wi_bbox, sample_points_wi_contour, remove_outlier_vertices) #cell# # ## Read XML ROI, convert, and save as JSON #cell# fnxml = "examples/6371/6371 1.xml" fnsvs = re.sub(".xml$", ".svs", fnxml) #cell# fnjson = extract_rois_svs_xml(fnxml) #cell# with open(fnjson,'r') as fh: roilist = json.load(fh) #cell#
pd.Series([roi["name"] for roi in roilist])
pandas.Series
"""Tests for system parameter identification functions.""" import pytest import pandas as pd import numpy as np import pvlib from pvlib import location, pvsystem, tracking, modelchain, irradiance from pvanalytics import system from .conftest import requires_pvlib @pytest.fixture(scope='module') def summer_times(): """One hour time stamps from May 1 through September 30, 2020 in GMT+7""" return pd.date_range( start='2020-5-1', end='2020-10-1', freq='H', closed='left', tz='Etc/GMT+7' ) @pytest.fixture(scope='module') def summer_clearsky(summer_times, albuquerque): """Clearsky irradiance for `sumer_times` in Albuquerque, NM.""" return albuquerque.get_clearsky(summer_times, model='simplified_solis') @pytest.fixture def summer_ghi(summer_clearsky): """Clearsky GHI for Summer, 2020 in Albuquerque, NM.""" return summer_clearsky['ghi'] @pytest.fixture def summer_power_fixed(summer_clearsky, albuquerque, array_parameters, system_parameters): """Simulated power from a FIXED PVSystem in Albuquerque, NM.""" pv_system = pvsystem.PVSystem(surface_azimuth=180, surface_tilt=albuquerque.latitude, **array_parameters, **system_parameters) mc = modelchain.ModelChain( pv_system, albuquerque, ) mc.run_model(summer_clearsky) try: ac = mc.results.ac except AttributeError: ac = mc.ac # pvlib < 0.9.0 return ac @pytest.fixture def summer_power_tracking_old_pvlib(summer_clearsky, albuquerque, array_parameters, system_parameters): """Simulated power for a TRACKING PVSystem in Albuquerque""" # copy of `summer_power_tracking` but with older pvlib API # TODO: remove when minimum pvlib version is >= 0.9.0 pv_system = tracking.SingleAxisTracker(**array_parameters, **system_parameters) mc = modelchain.ModelChain( pv_system, albuquerque ) mc.run_model(summer_clearsky) return mc.ac @pytest.fixture def summer_power_tracking(summer_clearsky, albuquerque, array_parameters, system_parameters): """Simulated power for a TRACKING PVSystem in Albuquerque""" array = pvsystem.Array(pvsystem.SingleAxisTrackerMount(), **array_parameters) system = pvsystem.PVSystem(arrays=[array], **system_parameters) mc = modelchain.ModelChain( system, albuquerque ) mc.run_model(summer_clearsky) return mc.results.ac def test_ghi_tracking_envelope_fixed(summer_ghi): """Clearsky GHI for a system that is FIXED.""" assert system.is_tracking_envelope( summer_ghi, summer_ghi > 0, pd.Series(False, index=summer_ghi.index) ) is system.Tracker.FIXED def test_power_tracking_envelope_fixed(summer_power_fixed): """Simulated system under clearsky condidtions is FIXED.""" assert system.is_tracking_envelope( summer_power_fixed, summer_power_fixed > 0, pd.Series(False, index=summer_power_fixed.index) ) is system.Tracker.FIXED @requires_pvlib('<0.9.0', reason="SingleAxisTracker deprecation") def test_power_tracking_envelope_tracking_old_pvlib( summer_power_tracking_old_pvlib): """Simulated single axis tracker is identified as TRACKING.""" # copy of `test_power_tracking_envelope_tracking` but with older pvlib API # TODO: remove when minimum pvlib version is >= 0.9.0 assert system.is_tracking_envelope( summer_power_tracking_old_pvlib, summer_power_tracking_old_pvlib > 0, pd.Series(False, index=summer_power_tracking_old_pvlib.index) ) is system.Tracker.TRACKING @requires_pvlib('>=0.9.0', reason="Array class") def test_power_tracking_envelope_tracking(summer_power_tracking): """Simulated single axis tracker is identified as TRACKING.""" assert system.is_tracking_envelope( summer_power_tracking, summer_power_tracking > 0, pd.Series(False, index=summer_power_tracking.index) ) is system.Tracker.TRACKING def test_high_clipping_unknown_tracking_envelope(summer_power_fixed): """If the amount of clipping is high then tracking is UNKNOWN""" clipping = pd.Series(False, index=summer_power_fixed.index) # 50% clipping clipping.iloc[0:len(clipping) // 2] = True assert system.is_tracking_envelope( summer_power_fixed, summer_power_fixed > 0, clipping, clip_max=0.4 ) is system.Tracker.UNKNOWN @pytest.mark.filterwarnings("ignore:invalid value encountered in", "ignore:divide by zero encountered in") def test_constant_unknown_tracking_envelope(summer_ghi): """A constant signal has unknown tracking.""" constant = pd.Series(1, index=summer_ghi.index) assert system.is_tracking_envelope( constant, pd.Series(True, index=summer_ghi.index), pd.Series(False, index=summer_ghi.index), ) is system.Tracker.UNKNOWN @requires_pvlib('<0.9.0', reason="SingleAxisTracker deprecation") @pytest.mark.filterwarnings("ignore:invalid value encountered in", "ignore:divide by zero encountered in") def test_median_mismatch_tracking_old_pvlib(summer_power_tracking_old_pvlib): """If the median does not have the same fit as the 99.5% quantile then tracking is UNKNOWN.""" # copy of `test_median_mismatch_tracking` but with older pvlib API # TODO: remove when minimum pvlib version is >= 0.9.0 power_half_tracking = summer_power_tracking_old_pvlib.copy() power_half_tracking.iloc[0:100*24] = 1 assert system.is_tracking_envelope( power_half_tracking, pd.Series(True, index=power_half_tracking.index), pd.Series(False, index=power_half_tracking.index), fit_median=False ) is system.Tracker.TRACKING assert system.is_tracking_envelope( power_half_tracking, pd.Series(True, index=power_half_tracking.index), pd.Series(False, index=power_half_tracking.index) ) is system.Tracker.UNKNOWN @requires_pvlib('>=0.9.0', reason="Array class") @pytest.mark.filterwarnings("ignore:invalid value encountered in", "ignore:divide by zero encountered in") def test_median_mismatch_tracking(summer_power_tracking): """If the median does not have the same fit as the 99.5% quantile then tracking is UNKNOWN.""" power_half_tracking = summer_power_tracking.copy() power_half_tracking.iloc[0:100*24] = 1 assert system.is_tracking_envelope( power_half_tracking, pd.Series(True, index=power_half_tracking.index), pd.Series(False, index=power_half_tracking.index), fit_median=False ) is system.Tracker.TRACKING assert system.is_tracking_envelope( power_half_tracking, pd.Series(True, index=power_half_tracking.index),
pd.Series(False, index=power_half_tracking.index)
pandas.Series
# -*- coding: utf-8 -*- import csv import os import platform import codecs import re import sys from datetime import datetime import pytest import numpy as np from pandas._libs.lib import Timestamp import pandas as pd import pandas.util.testing as tm from pandas import DataFrame, Series, Index, MultiIndex from pandas import compat from pandas.compat import (StringIO, BytesIO, PY3, range, lrange, u) from pandas.errors import DtypeWarning, EmptyDataError, ParserError from pandas.io.common import URLError from pandas.io.parsers import TextFileReader, TextParser class ParserTests(object): """ Want to be able to test either C+Cython or Python+Cython parsers """ data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def test_empty_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ # Parsers support only length-1 decimals msg = 'Only length-1 decimal markers supported' with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(data), decimal='') def test_bad_stream_exception(self): # Issue 13652: # This test validates that both python engine # and C engine will raise UnicodeDecodeError instead of # c engine raising ParserError and swallowing exception # that caused read to fail. handle = open(self.csv_shiftjs, "rb") codec = codecs.lookup("utf-8") utf8 = codecs.lookup('utf-8') # stream must be binary UTF8 stream = codecs.StreamRecoder( handle, utf8.encode, utf8.decode, codec.streamreader, codec.streamwriter) if compat.PY3: msg = "'utf-8' codec can't decode byte" else: msg = "'utf8' codec can't decode byte" with tm.assert_raises_regex(UnicodeDecodeError, msg): self.read_csv(stream) stream.close() def test_read_csv(self): if not compat.PY3: if compat.is_platform_windows(): prefix = u("file:///") else: prefix = u("file://") fname = prefix + compat.text_type(self.csv1) self.read_csv(fname, index_col=0, parse_dates=True) def test_1000_sep(self): data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_squeeze(self): data = """\ a,1 b,2 c,3 """ idx = Index(['a', 'b', 'c'], name=0) expected = Series([1, 2, 3], name=1, index=idx) result = self.read_table(StringIO(data), sep=',', index_col=0, header=None, squeeze=True) assert isinstance(result, Series) tm.assert_series_equal(result, expected) def test_squeeze_no_view(self): # see gh-8217 # Series should not be a view data = """time,data\n0,10\n1,11\n2,12\n4,14\n5,15\n3,13""" result = self.read_csv(StringIO(data), index_col='time', squeeze=True) assert not result._is_view def test_malformed(self): # see gh-6607 # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 4, saw 5' with tm.assert_raises_regex(Exception, msg): self.read_table(StringIO(data), sep=',', header=1, comment='#') # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 6, saw 5' with tm.assert_raises_regex(Exception, msg): it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) it.read(5) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 6, saw 5' with tm.assert_raises_regex(Exception, msg): it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) it.read(3) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 6, saw 5' with tm.assert_raises_regex(Exception, msg): it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) it.read() # skipfooter is not supported with the C parser yet if self.engine == 'python': # skipfooter data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ msg = 'Expected 3 fields in line 4, saw 5' with tm.assert_raises_regex(Exception, msg): self.read_table(StringIO(data), sep=',', header=1, comment='#', skipfooter=1) def test_quoting(self): bad_line_small = """printer\tresult\tvariant_name Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jacob Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jakob Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\t"Furststiftische Hofdruckerei, <Kempten"" Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tGaller, Alois Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tHochfurstliche Buchhandlung <Kempten>""" # noqa pytest.raises(Exception, self.read_table, StringIO(bad_line_small), sep='\t') good_line_small = bad_line_small + '"' df = self.read_table(StringIO(good_line_small), sep='\t') assert len(df) == 3 def test_unnamed_columns(self): data = """A,B,C,, 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ expected = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]], dtype=np.int64) df = self.read_table(StringIO(data), sep=',') tm.assert_almost_equal(df.values, expected) tm.assert_index_equal(df.columns, Index(['A', 'B', 'C', 'Unnamed: 3', 'Unnamed: 4'])) def test_csv_mixed_type(self): data = """A,B,C a,1,2 b,3,4 c,4,5 """ expected = DataFrame({'A': ['a', 'b', 'c'], 'B': [1, 3, 4], 'C': [2, 4, 5]}) out = self.read_csv(StringIO(data)) tm.assert_frame_equal(out, expected) def test_read_csv_dataframe(self): df = self.read_csv(self.csv1, index_col=0, parse_dates=True) df2 = self.read_table(self.csv1, sep=',', index_col=0, parse_dates=True) tm.assert_index_equal(df.columns, pd.Index(['A', 'B', 'C', 'D'])) assert df.index.name == 'index' assert isinstance( df.index[0], (datetime, np.datetime64, Timestamp)) assert df.values.dtype == np.float64 tm.assert_frame_equal(df, df2) def test_read_csv_no_index_name(self): df = self.read_csv(self.csv2, index_col=0, parse_dates=True) df2 = self.read_table(self.csv2, sep=',', index_col=0, parse_dates=True) tm.assert_index_equal(df.columns, pd.Index(['A', 'B', 'C', 'D', 'E'])) assert isinstance(df.index[0], (datetime, np.datetime64, Timestamp)) assert df.loc[:, ['A', 'B', 'C', 'D']].values.dtype == np.float64 tm.assert_frame_equal(df, df2) def test_read_table_unicode(self): fin = BytesIO(u('\u0141aski, Jan;1').encode('utf-8')) df1 = self.read_table(fin, sep=";", encoding="utf-8", header=None) assert isinstance(df1[0].values[0], compat.text_type) def test_read_table_wrong_num_columns(self): # too few! data = """A,B,C,D,E,F 1,2,3,4,5,6 6,7,8,9,10,11,12 11,12,13,14,15,16 """ pytest.raises(ValueError, self.read_csv, StringIO(data)) def test_read_duplicate_index_explicit(self): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ result = self.read_csv(StringIO(data), index_col=0) expected = self.read_csv(StringIO(data)).set_index( 'index', verify_integrity=False) tm.assert_frame_equal(result, expected) result = self.read_table(StringIO(data), sep=',', index_col=0) expected = self.read_table(StringIO(data), sep=',', ).set_index( 'index', verify_integrity=False) tm.assert_frame_equal(result, expected) def test_read_duplicate_index_implicit(self): data = """A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ # make sure an error isn't thrown self.read_csv(StringIO(data)) self.read_table(StringIO(data), sep=',') def test_parse_bools(self): data = """A,B True,1 False,2 True,3 """ data = self.read_csv(StringIO(data)) assert data['A'].dtype == np.bool_ data = """A,B YES,1 no,2 yes,3 No,3 Yes,3 """ data = self.read_csv(StringIO(data), true_values=['yes', 'Yes', 'YES'], false_values=['no', 'NO', 'No']) assert data['A'].dtype == np.bool_ data = """A,B TRUE,1 FALSE,2 TRUE,3 """ data = self.read_csv(StringIO(data)) assert data['A'].dtype == np.bool_ data = """A,B foo,bar bar,foo""" result = self.read_csv(StringIO(data), true_values=['foo'], false_values=['bar']) expected = DataFrame({'A': [True, False], 'B': [False, True]}) tm.assert_frame_equal(result, expected) def test_int_conversion(self): data = """A,B 1.0,1 2.0,2 3.0,3 """ data = self.read_csv(StringIO(data)) assert data['A'].dtype == np.float64 assert data['B'].dtype == np.int64 def test_read_nrows(self): expected = self.read_csv(StringIO(self.data1))[:3] df = self.read_csv(StringIO(self.data1), nrows=3) tm.assert_frame_equal(df, expected) # see gh-10476 df = self.read_csv(StringIO(self.data1), nrows=3.0) tm.assert_frame_equal(df, expected) msg = r"'nrows' must be an integer >=0" with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), nrows=1.2) with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), nrows='foo') with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), nrows=-1) def test_read_chunksize(self): reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # with invalid chunksize value: msg = r"'chunksize' must be an integer >=1" with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), chunksize=1.3) with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), chunksize='foo') with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), chunksize=0) def test_read_chunksize_and_nrows(self): # gh-15755 # With nrows reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=2, nrows=5) df = self.read_csv(StringIO(self.data1), index_col=0, nrows=5) tm.assert_frame_equal(pd.concat(reader), df) # chunksize > nrows reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=8, nrows=5) df = self.read_csv(StringIO(self.data1), index_col=0, nrows=5) tm.assert_frame_equal(pd.concat(reader), df) # with changing "size": reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=8, nrows=5) df = self.read_csv(StringIO(self.data1), index_col=0, nrows=5) tm.assert_frame_equal(reader.get_chunk(size=2), df.iloc[:2]) tm.assert_frame_equal(reader.get_chunk(size=4), df.iloc[2:5]) with pytest.raises(StopIteration): reader.get_chunk(size=3) def test_read_chunksize_named(self): reader = self.read_csv( StringIO(self.data1), index_col='index', chunksize=2) df = self.read_csv(StringIO(self.data1), index_col='index') chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_get_chunk_passed_chunksize(self): data = """A,B,C 1,2,3 4,5,6 7,8,9 1,2,3""" result = self.read_csv(StringIO(data), chunksize=2) piece = result.get_chunk() assert len(piece) == 2 def test_read_chunksize_generated_index(self): # GH 12185 reader = self.read_csv(StringIO(self.data1), chunksize=2) df = self.read_csv(StringIO(self.data1)) tm.assert_frame_equal(pd.concat(reader), df) reader = self.read_csv(StringIO(self.data1), chunksize=2, index_col=0) df = self.read_csv(StringIO(self.data1), index_col=0) tm.assert_frame_equal(pd.concat(reader), df) def test_read_text_list(self): data = """A,B,C\nfoo,1,2,3\nbar,4,5,6""" as_list = [['A', 'B', 'C'], ['foo', '1', '2', '3'], ['bar', '4', '5', '6']] df = self.read_csv(StringIO(data), index_col=0) parser = TextParser(as_list, index_col=0, chunksize=2) chunk = parser.read(None) tm.assert_frame_equal(chunk, df) def test_iterator(self): # See gh-6607 reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True) df = self.read_csv(StringIO(self.data1), index_col=0) chunk = reader.read(3) tm.assert_frame_equal(chunk, df[:3]) last_chunk = reader.read(5) tm.assert_frame_equal(last_chunk, df[3:]) # pass list lines = list(csv.reader(StringIO(self.data1))) parser = TextParser(lines, index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # pass skiprows parser = TextParser(lines, index_col=0, chunksize=2, skiprows=[1]) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[1:3]) treader = self.read_table(StringIO(self.data1), sep=',', index_col=0, iterator=True) assert isinstance(treader, TextFileReader) # gh-3967: stopping iteration when chunksize is specified data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ reader = self.read_csv(StringIO(data), iterator=True) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) tm.assert_frame_equal(result[0], expected) # chunksize = 1 reader = self.read_csv(StringIO(data), chunksize=1) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) assert len(result) == 3 tm.assert_frame_equal(
pd.concat(result)
pandas.concat
import numpy as np import pandas as pd import matplotlib.pyplot as plt data_path = 'Bike-Sharing-Dataset/hour.csv' rides = pd.read_csv(data_path) dummy_fields = ['season', 'weathersit', 'mnth', 'hr', 'weekday'] for each in dummy_fields: dummies = pd.get_dummies(rides[each], prefix=each, drop_first=False) rides =
pd.concat([rides, dummies], axis=1)
pandas.concat
#!/usr/bin/env python """ DataExplore pluin differential expression using R Created June 2017 Copyright (C) <NAME> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA """ from __future__ import absolute_import, division, print_function import sys,os import subprocess import numpy as np from pandastable.plugin import Plugin from pandastable import core, plotting, dialogs try: from tkinter import * from tkinter.ttk import * except: from Tkinter import * from ttk import * import pandas as pd import pylab as plt from mpl_toolkits.mplot3d import Axes3D from collections import OrderedDict class MultivariatePlugin(Plugin): """Plugin for DataExplore""" capabilities = [] #['gui','uses_sidepane'] requires = [''] menuentry = 'Multivariate Analysis' gui_methods = {} version = '0.1' def __init__(self): self.result = None return def main(self, parent): if parent==None: return self.parent = parent self._doFrame() grps = {'data':['class_labels','target_col','use_selected'], 'options':['analysis','transform','3d_plot'] } self.groups = grps = OrderedDict(grps) kinds = [''] methods = ['PCA','LDA','MDS','logistic_regression']#,'feature selection'] transforms = ['','log'] sheets = self.parent.getSheetList() self.opts = {'class_labels': {'type':'combobox','default':'','items':sheets}, 'target_col': {'type':'combobox','default':'','items':[]}, 'analysis': {'type':'combobox','default':'PCA','items':methods}, 'use_selected': {'type':'checkbutton','default':False,'label':'use selected data'}, 'transform': {'type':'combobox','default':'','items':transforms}, '3d_plot': {'type':'checkbutton','default':False,'label':'3d plot'}, } fr = self._createWidgets(self.mainwin) fr.pack(side=LEFT,fill=BOTH) bf = Frame(self.mainwin, padding=2) bf.pack(side=LEFT,fill=BOTH) b = Button(bf, text="Run", command=self.run) b.pack(side=TOP,fill=X,pady=2) b = Button(bf, text="View Results", command=self.showResults) b.pack(side=TOP,fill=X,pady=2) bf = Frame(self.mainwin, padding=2) bf.pack(side=LEFT,fill=BOTH) b = Button(bf, text="Refresh", command=self.update) b.pack(side=TOP,fill=X,pady=2) b = Button(bf, text="Close", command=self.quit) b.pack(side=TOP,fill=X,pady=2) b = Button(bf, text="Help", command=self.online_help) b.pack(side=TOP,fill=X,pady=2) self.update() sheet = self.parent.getCurrentSheet() #reference to parent frame in sheet pw = self.parent.sheetframes[sheet] self.pf = self.table.pf return def applyOptions(self): """Set the options""" kwds = {} for i in self.opts: if self.opts[i]['type'] == 'listbox': items = self.widgets[i].curselection() kwds[i] = [self.widgets[i].get(j) for j in items] print (items, kwds[i]) else: kwds[i] = self.tkvars[i].get() self.kwds = kwds return def _createWidgets(self, parent, callback=None): """Auto create tk vars, widgets for corresponding options and and return the frame""" dialog, self.tkvars, self.widgets = plotting.dialogFromOptions(parent, self.opts, self.groups) #self.widgets['class_labels'].bind("<<ComboboxSelected>>", self.update) return dialog def update(self, evt=None): """Update data widget(s)""" self.table = self.parent.getCurrentTable() df = self.table.model.df cols = list(df.columns) cols += '' #self.widgets['sample_labels']['values'] = self.parent.getSheetList() self.widgets['class_labels']['values'] = cols self.widgets['target_col']['values'] = cols return def run(self): """Run chosen method""" import sklearn method = self.tkvars['analysis'].get() sel = self.tkvars['use_selected'].get() cats = self.tkvars['class_labels'].get() target = self.tkvars['target_col'].get() plot3d = self.tkvars['3d_plot'].get() transform = self.tkvars['transform'].get() if sel == 1: data = self.table.getSelectedDataFrame() else: data = self.table.model.df #setup plot self.pf._initFigure() if plot3d == True: fig = self.pf.fig ax = self.pf.ax = ax = Axes3D(fig) else: ax = self.pf.ax self.pf.mplopts.applyOptions() self.pf.labelopts.applyOptions() opts = self.pf.mplopts.kwds lopts = self.pf.labelopts.kwds #print (opts) X = pre_process(data, transform=transform) result = None if cats != '': X = X.set_index(cats) print (X) if method == 'PCA': pX, result = do_pca(X=X) plot_matrix(pX, ax=ax, plot3d=plot3d, **opts) elif method == 'LDA': pX, result = do_lda(X=X) plot_matrix(pX, ax=ax, plot3d=plot3d, **opts) elif method == 'MDS': pX, result = do_mds(X=X) plot_matrix(pX, ax=ax, plot3d=plot3d, **opts) elif method == 'feature selection': pX = feature_selection(X)#, y=y) elif method == 'logistic_regression': pX = logistic_regression(X, ax, **opts) self.result_obj = result self.result_mat = pX self.pf.ax.set_title(lopts['title']) self.pf.canvas.draw() return def showResults(self): import sklearn df = self.result_mat result = self.result_obj if df is None: return w = self.resultswin = Toplevel(width=600,height=800) w.title('results') fr=Frame(w) fr.pack(fill=BOTH,expand=1) if type(result) is sklearn.decomposition.pca.PCA: print (result.components_) elif type(result) is sklearn.discriminant_analysis.LinearDiscriminantAnalysis: print (result) t = core.Table(fr, dataframe=df, showtoolbar=True) t.show() return def clustermap(self): data = self.data res = res = self.getFiltered() cluster_map(data, res.name) plt.show() return def quit(self, evt=None): """Override this to handle pane closing""" self.mainwin.destroy() return def online_help(self,event=None): """Open the online documentation""" import webbrowser link='https://github.com/dmnfarrell/pandastable/wiki' webbrowser.open(link,autoraise=1) return def pre_process(X, transform='log'): X = X._get_numeric_data() if transform == 'log': X = X+1 X = np.log(X) #print (X) X = X.fillna(0) return X def do_pca(X, c=3): """Do PCA""" from sklearn import preprocessing from sklearn.decomposition.pca import PCA, RandomizedPCA #do PCA #S = standardize_data(X) #remove non numeric X = X._get_numeric_data() S = pd.DataFrame(preprocessing.scale(X),columns = X.columns) pca = PCA(n_components=c) pca.fit(S) out = 'explained variance %s' %pca.explained_variance_ratio_ print (out) #print pca.components_ w = pd.DataFrame(pca.components_,columns=S.columns) print (w.T.max(1).sort_values()) pX = pca.fit_transform(S) pX = pd.DataFrame(pX,index=X.index) return pX, pca def plot_matrix(pX, plot3d=False, palette='Spectral', labels=False, ax=None, colors=None, **kwargs): """Plot PCA result, input should be a dataframe""" if ax==None: fig,ax = plt.subplots(1,1,figsize=(6,6)) #print (kwargs) colormap = kwargs['colormap'] fs = kwargs['fontsize'] ms = kwargs['ms']*12 kwargs = {k:kwargs[k] for k in ('linewidth','alpha')} cats = pX.index.unique() import seaborn as sns colors = sns.mpl_palette(colormap, len(cats)) for c, i in zip(colors, cats): print (i, len(pX.ix[i])) if plot3d == True: ax.scatter(pX.ix[i, 0], pX.ix[i, 1], pX.ix[i, 2], color=c, s=ms, label=i, edgecolor='black', **kwargs) else: ax.scatter(pX.ix[i, 0], pX.ix[i, 1], color=c, s=ms, label=i, edgecolor='black', **kwargs) ax.set_xlabel('PC1') ax.set_ylabel('PC2') if labels == True: for i, point in pX.iterrows(): ax.text(point[0]+.3, point[1]+.3, str(i),fontsize=(9)) if len(cats)<20: ax.legend(fontsize=fs*.8) return def do_lda(X, c=3): from sklearn.discriminant_analysis import LinearDiscriminantAnalysis idx = X.index cla = pd.Categorical(idx) y = cla.codes X = X._get_numeric_data() lda = LinearDiscriminantAnalysis(n_components=c) pX = lda.fit(X, y).transform(X) pX = pd.DataFrame(pX,index=idx) return pX, lda def do_mds(X, c=3): """Do MDS""" X = X._get_numeric_data() from sklearn import manifold seed = np.random.RandomState(seed=3) mds = manifold.MDS(n_components=c, max_iter=500, eps=1e-9, random_state=seed, n_jobs=1) pX = mds.fit(X.values).embedding_ pX = pd.DataFrame(pX,index=X.index) return pX, mds def feature_selection(X, y=None): """feature selection""" if y is None: idx = X.index cla =
pd.Categorical(idx)
pandas.Categorical
import numpy as np import scipy as sp import pandas as pd import scipy.stats import scanpy import csv import glob import random from sklearn import preprocessing min_max_scaler = preprocessing.MinMaxScaler() # <- todo predefined_col_order = "./data/col_index" string_gene_list_pwd = "./data/genesort_string_hit.txt" # -> def sample_test_split(geo, num_of_class_test, num_of_example, num_of_testing, string_set, sorting, label_dic=False, pp=False): class_folders = geo.keys() class_folders = random.sample(class_folders, num_of_class_test) if label_dic: labels_to_text = label_dic labels_converter = {value:key for key, value in label_dic.items()} else: labels_converter = np.array(range(len(class_folders))) labels_converter = dict(zip(class_folders, labels_converter)) labels_to_text = {value:key for key, value in labels_converter.items()} example_set = pd.DataFrame() test_set = pd.DataFrame() example_label = [] test_label = [] # balance sampler for subtype in labels_converter.keys(): this_exp = geo[subtype] if (len(this_exp.index.intersection(string_set)) == 0): this_exp = this_exp.transpose() assert(len(this_exp.index.intersection(string_set)) != 0), "exp array has not symbol" this_exp = this_exp[~this_exp.index.duplicated(keep='first')] total_colno = (this_exp.shape)[1] col_nu = list(range(total_colno) ) random.shuffle(col_nu) assert(len(col_nu) >= num_of_example+num_of_testing), [total_colno, num_of_example+num_of_testing, subtype] example_ids = col_nu[0 : num_of_example] ex = this_exp.iloc[:,example_ids] test_ids = col_nu[num_of_example : num_of_example + num_of_testing] te = this_exp.iloc[:,test_ids] #ex = np.log(ex+1.0) #ex = np.clip(ex, 1, np.max(ex)[1]) #ex = ex.transpose() #te = np.log(te+1.0) #te = np.clip(te, 1, np.max(te)[1]) #te = te.transpose() example_set = pd.concat([example_set,ex],axis=1) test_set = pd.concat([test_set, te],axis=1) example_label += [labels_converter[subtype]] * num_of_example test_label += [labels_converter[subtype]] * num_of_testing if string_set is not None: example_set = example_set.transpose() example_set = example_set.filter(items=string_set) example_set = example_set.transpose() test_set = test_set.transpose() test_set = test_set.filter(items=string_set) test_set = test_set.transpose() out_ex = pd.DataFrame(index=string_set) out_ex = pd.concat([out_ex, example_set],axis=1) out_ex = out_ex.replace(np.nan,0) test_set = test_set.transpose() test_set['label'] = test_label test_set = test_set.sample(frac=1) test_label = test_set['label'] test_set = test_set.drop(columns='label') test_set = test_set.transpose() out_te = pd.DataFrame(index=string_set) out_te =
pd.concat([out_te,test_set], axis=1)
pandas.concat
# fetch_california_housing from sklearn.datasets import fetch_california_housing from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression import pandas as pd import matplotlib.pyplot as plt import seaborn as sns # 加载数据集 california = fetch_california_housing() # 数据格式化的一些操作 pd.set_option('precision', 4) # 精度设置 pd.set_option('max_columns', 9) # 最大显示列(8个特征和针对目标房价中值添加的一列(california.target)) pd.set_option('display.width', None) # 指定字符宽度 # 创建DataFrame california_df = pd.DataFrame(california.data, columns=california.feature_names) # california.target中存储的中值房价添加一列 california_df['MedHouseValue'] =
pd.Series(california.target)
pandas.Series
import string import numpy as np import pandas as pd from pandas import DataFrame import pandas._testing as tm from pandas.api.types import ( is_extension_array_dtype, pandas_dtype, ) from .pandas_vb_common import ( datetime_dtypes, extension_dtypes, numeric_dtypes, string_dtypes, ) _numpy_dtypes = [ np.dtype(dtype) for dtype in (numeric_dtypes + datetime_dtypes + string_dtypes) ] _dtypes = _numpy_dtypes + extension_dtypes class Dtypes: params = _dtypes + list(map(lambda dt: dt.name, _dtypes)) param_names = ["dtype"] def time_pandas_dtype(self, dtype): pandas_dtype(dtype) class DtypesInvalid: param_names = ["dtype"] params = ["scalar-string", "scalar-int", "list-string", "array-string"] data_dict = { "scalar-string": "foo", "scalar-int": 1, "list-string": ["foo"] * 1000, "array-string": np.array(["foo"] * 1000), } def time_pandas_dtype_invalid(self, dtype): try: pandas_dtype(self.data_dict[dtype]) except TypeError: pass class SelectDtypes: params = [ tm.ALL_INT_NUMPY_DTYPES + tm.ALL_INT_EA_DTYPES + tm.FLOAT_NUMPY_DTYPES + tm.COMPLEX_DTYPES + tm.DATETIME64_DTYPES + tm.TIMEDELTA64_DTYPES + tm.BOOL_DTYPES ] param_names = ["dtype"] def setup(self, dtype): N, K = 5000, 50 self.index = tm.makeStringIndex(N) self.columns = tm.makeStringIndex(K) def create_df(data): return
DataFrame(data, index=self.index, columns=self.columns)
pandas.DataFrame
import itertools import jax.numpy as jnp import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from skillmodels.params_index import get_params_index from skillmodels.parse_params import create_parsing_info from skillmodels.parse_params import parse_params from skillmodels.process_data import process_data from skillmodels.process_debug_data import create_state_ranges from skillmodels.process_model import process_model def visualize_transition_equations( model_dict, params, states, period, state_ranges=None, quantiles_of_other_factors=(0.25, 0.5, 0.75), plot_marginal_effects=False, n_points=50, n_draws=50, sharex=False, sharey="row", data=None, ): """Visualize transition equations. Args: model_dict (dict): The model specification. See: :ref:`model_specs` params (pandas.DataFrame): DataFrame with model parameters. states (pandas.DataFrame): Tidy DataFrame with filtered or simulated states. They are used to estimate the state ranges in each period (if state_ranges are not given explicitly) and to estimate the distribution of the factors that are not visualized. period (int): The start period of the transition equations that are plotted. combine_plots_in_grid (boolen): Return a figure containing subplots for each pair of factors or a dictionary of individual plots. Default True. state_ranges (dict): The keys are the names of the latent factors. The values are DataFrames with the columns "period", "minimum", "maximum". The state_ranges are used to define the axis limits of the plots. quantiles_of_other_factors (float, list or None): Quantiles at which the factors that are not varied in a given plot are fixed. If None, those factors are not fixed but integrated out. n_points (int): Number of grid points per input. Default 50. n_draws (int): Number of randomly drawn values of the factors that are averaged out. Only relevant if quantiles_of_other_factors is *None*. Default 50. sharex (bool or {'none', 'all', 'col'}): Whether to share the properties of x-axis across subplots. See API docs of matplotlib.pyplot.subplots. Default False. sharey (bool or {'none', 'all', 'row'}): : Whether to share the properties of y-axis across subplots. See API docs of matplotlib.pyplot.subplots. Default 'row'. data (pd.DataFrame): Empirical dataset that is used to estimate the model. Only needed if the model has observed factors. Those factors are directly taken from the data to calculate their quantiles or averages. Returns: matplotlib.Figure: The plot pandas.DataFrame: The data from which the plot was generated. """ if isinstance(quantiles_of_other_factors, float): quantiles_of_other_factors = [quantiles_of_other_factors] elif isinstance(quantiles_of_other_factors, tuple): quantiles_of_other_factors = list(quantiles_of_other_factors) if plot_marginal_effects: raise NotImplementedError() model = process_model(model_dict) if period >= model["labels"]["periods"][-1]: raise ValueError( "*period* must be the penultimate period of the model or earlier." ) latent_factors = model["labels"]["latent_factors"] observed_factors = model["labels"]["observed_factors"] all_factors = model["labels"]["all_factors"] if observed_factors and data is None: raise ValueError( "The model has observed factors. You must pass the empirical data to " "'visualize_transition_equations' via the keyword *data*." ) if observed_factors: _, _, _observed_arr = process_data( df=data, labels=model["labels"], update_info=model["update_info"], anchoring_info=model["anchoring"], ) # convert from jax to numpy _observed_arr = np.array(_observed_arr) observed_data = pd.DataFrame( data=_observed_arr[period], columns=observed_factors ) observed_data["id"] = observed_data.index observed_data["period"] = period states_data = pd.merge( left=states, right=observed_data, left_on=["id", "period"], right_on=["id", "period"], how="left", ) else: states_data = states.copy() params_index = get_params_index( update_info=model["update_info"], labels=model["labels"], dimensions=model["dimensions"], transition_info=model["transition_info"], ) params = params.reindex(params_index) parsing_info = create_parsing_info( params_index=params.index, update_info=model["update_info"], labels=model["labels"], anchoring=model["anchoring"], ) _, _, _, pardict = parse_params( params=jnp.array(params["value"].to_numpy()), parsing_info=parsing_info, dimensions=model["dimensions"], labels=model["labels"], n_obs=1, ) if state_ranges is None: state_ranges = create_state_ranges(states_data, all_factors) figsize = (2.5 * len(all_factors), 2 * len(latent_factors)) fig, axes = plt.subplots( nrows=len(latent_factors), ncols=len(all_factors), figsize=figsize, sharex=sharex, sharey=sharey, ) for (output_factor, input_factor), ax in zip( itertools.product(latent_factors, all_factors), axes.flatten() ): transition_function = model["transition_info"]["individual_functions"][ output_factor ] transition_params = { output_factor: pardict["transition"][output_factor][period] } if quantiles_of_other_factors is not None: plot_data = _prepare_data_for_one_plot_fixed_quantile_2d( states_data=states_data, state_ranges=state_ranges, period=period, input_factor=input_factor, output_factor=output_factor, quantiles_of_other_factors=quantiles_of_other_factors, n_points=n_points, transition_function=transition_function, transition_params=transition_params, all_factors=all_factors, ) else: plot_data = _prepare_data_for_one_plot_average_2d( states_data=states_data, state_ranges=state_ranges, period=period, input_factor=input_factor, output_factor=output_factor, n_points=n_points, n_draws=n_draws, transition_function=transition_function, transition_params=transition_params, all_factors=all_factors, ) if ( isinstance(quantiles_of_other_factors, list) and len(quantiles_of_other_factors) > 1 ): hue = "quantile" else: hue = None sns.lineplot( data=plot_data, x=f"{input_factor} in period {period}", y=f"{output_factor} in period {period + 1}", hue=hue, ax=ax, ) handles, labels = ax.get_legend_handles_labels() if ax.get_legend() is not None: ax.get_legend().remove() if hue is not None: fig.legend( handles=handles, labels=labels, bbox_to_anchor=(0.5, -0.05), loc="lower center", ncol=len(quantiles_of_other_factors), ) fig.tight_layout() sns.despine() return fig def _prepare_data_for_one_plot_fixed_quantile_2d( states_data, state_ranges, period, input_factor, output_factor, quantiles_of_other_factors, n_points, transition_function, transition_params, all_factors, ): period_data = states_data.query(f"period == {period}")[all_factors] input_min = state_ranges[input_factor].loc[period]["minimum"] input_max = state_ranges[input_factor].loc[period]["maximum"] to_concat = [] for quantile in quantiles_of_other_factors: input_data = pd.DataFrame() input_data[input_factor] = np.linspace(input_min, input_max, n_points) fixed_quantiles = period_data.drop(columns=input_factor).quantile(quantile) input_data[fixed_quantiles.index] = fixed_quantiles input_arr = jnp.array(input_data[all_factors].to_numpy()) # convert from jax to numpy array output_arr = np.array(transition_function(transition_params, input_arr)) quantile_data = pd.DataFrame() quantile_data[f"{input_factor} in period {period}"] = input_data[input_factor] quantile_data[f"{output_factor} in period {period + 1}"] = np.array(output_arr) quantile_data["quantile"] = quantile to_concat.append(quantile_data) out =
pd.concat(to_concat)
pandas.concat
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import logging from pathlib import Path import shutil from tempfile import NamedTemporaryFile from typing import Optional, Tuple import pandas as pd import torchaudio from examples.speech_to_text.data_utils_new import ( create_zip, extract_fbank_features, filter_manifest_df, gen_config_yaml_with_src, gen_vocab, get_zip_manifest, load_df_from_tsv, save_df_to_tsv, asr_normalize, ) from torch import Tensor from torch.utils.data import Dataset from tqdm import tqdm log = logging.getLogger(__name__) MANIFEST_COLUMNS = ["id", "audio", "n_frames", "src_text", "tgt_text", "speaker"] class CommonVoice(Dataset): """ Args: root (str): root path to the dataset and generated manifests/features source_language (str): source (audio) language """ SPLITS = ["train", "dev", "test"] def __init__( self, root: str, split: str, source_language: str, ) -> None: assert split in self.SPLITS assert source_language is not None self.root: Path = Path(root) cv_tsv_path = self.root / f"{split}.tsv" assert cv_tsv_path.is_file() df = load_df_from_tsv(cv_tsv_path) data = df.to_dict(orient="index").items() data = [v for k, v in sorted(data, key=lambda x: x[0])] self.data = [] for e in data: try: path = self.root / "clips" / e["path"] _ = torchaudio.info(path.as_posix()) self.data.append(e) except RuntimeError: pass def __getitem__( self, n: int ) -> Tuple[Tensor, int, str, str, str]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: tuple: ``(waveform, sample_rate, sentence, speaker_id, sample_id)`` """ data = self.data[n] path = self.root / "clips" / data["path"] waveform, sample_rate = torchaudio.load(path) sentence = data["sentence"] speaker_id = data["client_id"] _id = data["path"].replace(".mp3", "") return waveform, sample_rate, sentence, speaker_id, _id def __len__(self) -> int: return len(self.data) def process(args): root = Path(args.data_root).absolute() / args.src_lang if not root.is_dir(): raise NotADirectoryError(f"{root} does not exist") # Extract features feature_root = root / "fbank" feature_root.mkdir(exist_ok=True) for split in CommonVoice.SPLITS: print(f"Fetching split {split}...") dataset = CommonVoice(root, split, args.src_lang) print("Extracting log mel filter bank features...") for waveform, sample_rate, _, _, utt_id in tqdm(dataset): extract_fbank_features( waveform, sample_rate, feature_root / f"{utt_id}.npy", args.n_mel_bins ) # Pack features into ZIP zip_path = root / "fbank.zip" print("ZIPing features...") create_zip(feature_root, zip_path) print("Fetching ZIP manifest...") zip_manifest = get_zip_manifest(zip_path) # Generate TSV manifest print("Generating manifest...") train_text = [] train_text_src = [] task = f"asr_{args.src_lang}" for split in CommonVoice.SPLITS: manifest = {c: [] for c in MANIFEST_COLUMNS} dataset = CommonVoice(root, split, args.src_lang) for wav, sr, src_utt, speaker_id, utt_id in tqdm(dataset): manifest["id"].append(utt_id) manifest["audio"].append(zip_manifest[utt_id]) duration_ms = int(wav.size(1) / sr * 1000) manifest["n_frames"].append(int(1 + (duration_ms - 25) / 10)) manifest["src_text"].append(asr_normalize(src_utt)) manifest["tgt_text"].append(asr_normalize(src_utt)) manifest["speaker"].append(speaker_id) is_train_split = split.startswith("train") if is_train_split: train_text.extend(manifest["tgt_text"]) train_text_src.extend(manifest["src_text"]) df =
pd.DataFrame.from_dict(manifest)
pandas.DataFrame.from_dict
import unittest import pandas as pd import numpy as np from scipy.sparse.csr import csr_matrix from string_grouper.string_grouper import DEFAULT_MIN_SIMILARITY, \ DEFAULT_REGEX, DEFAULT_NGRAM_SIZE, DEFAULT_N_PROCESSES, DEFAULT_IGNORE_CASE, \ StringGrouperConfig, StringGrouper, StringGrouperNotFitException, \ match_most_similar, group_similar_strings, match_strings, \ compute_pairwise_similarities from unittest.mock import patch, Mock def mock_symmetrize_matrix(x: csr_matrix) -> csr_matrix: return x class SimpleExample(object): def __init__(self): self.customers_df = pd.DataFrame( [ ('BB016741P', 'Mega Enterprises Corporation', 'Address0', 'Tel0', 'Description0', 0.2), ('CC082744L', 'Hyper Startup Incorporated', '', 'Tel1', '', 0.5), ('AA098762D', 'Hyper Startup Inc.', 'Address2', 'Tel2', 'Description2', 0.3), ('BB099931J', 'Hyper-Startup Inc.', 'Address3', 'Tel3', 'Description3', 0.1), ('HH072982K', 'Hyper Hyper Inc.', 'Address4', '', 'Description4', 0.9), ('EE059082Q', 'Mega Enterprises Corp.', 'Address5', 'Tel5', 'Description5', 1.0) ], columns=('Customer ID', 'Customer Name', 'Address', 'Tel', 'Description', 'weight') ) self.customers_df2 = pd.DataFrame( [ ('BB016741P', 'Mega Enterprises Corporation', 'Address0', 'Tel0', 'Description0', 0.2), ('CC082744L', 'Hyper Startup Incorporated', '', 'Tel1', '', 0.5), ('AA098762D', 'Hyper Startup Inc.', 'Address2', 'Tel2', 'Description2', 0.3), ('BB099931J', 'Hyper-Startup Inc.', 'Address3', 'Tel3', 'Description3', 0.1), ('DD012339M', 'HyperStartup Inc.', 'Address4', 'Tel4', 'Description4', 0.1), ('HH072982K', 'Hyper Hyper Inc.', 'Address5', '', 'Description5', 0.9), ('EE059082Q', 'Mega Enterprises Corp.', 'Address6', 'Tel6', 'Description6', 1.0) ], columns=('Customer ID', 'Customer Name', 'Address', 'Tel', 'Description', 'weight') ) self.a_few_strings = pd.Series(['BB016741P', 'BB082744L', 'BB098762D', 'BB099931J', 'BB072982K', 'BB059082Q']) self.one_string = pd.Series(['BB0']) self.two_strings = pd.Series(['Hyper', 'Hyp']) self.whatever_series_1 = pd.Series(['whatever']) self.expected_result_with_zeroes = pd.DataFrame( [ (1, 'Hyper Startup Incorporated', 0.08170638, 'whatever', 0), (0, 'Mega Enterprises Corporation', 0., 'whatever', 0), (2, 'Hyper Startup Inc.', 0., 'whatever', 0), (3, 'Hyper-Startup Inc.', 0., 'whatever', 0), (4, 'Hyper Hyper Inc.', 0., 'whatever', 0), (5, 'Mega Enterprises Corp.', 0., 'whatever', 0) ], columns=['left_index', 'left_Customer Name', 'similarity', 'right_side', 'right_index'] ) self.expected_result_centroid = pd.Series( [ 'Mega Enterprises Corporation', 'Hyper Startup Inc.', 'Hyper Startup Inc.', 'Hyper Startup Inc.', 'Hyper Hyper Inc.', 'Mega Enterprises Corporation' ], name='group_rep_Customer Name' ) self.expected_result_centroid_with_index_col = pd.DataFrame( [ (0, 'Mega Enterprises Corporation'), (2, 'Hyper Startup Inc.'), (2, 'Hyper Startup Inc.'), (2, 'Hyper Startup Inc.'), (4, 'Hyper Hyper Inc.'), (0, 'Mega Enterprises Corporation') ], columns=['group_rep_index', 'group_rep_Customer Name'] ) self.expected_result_first = pd.Series( [ 'Mega Enterprises Corporation', 'Hyper Startup Incorporated', 'Hyper Startup Incorporated', 'Hyper Startup Incorporated', 'Hyper Hyper Inc.', 'Mega Enterprises Corporation' ], name='group_rep_Customer Name' ) class StringGrouperConfigTest(unittest.TestCase): def test_config_defaults(self): """Empty initialisation should set default values""" config = StringGrouperConfig() self.assertEqual(config.min_similarity, DEFAULT_MIN_SIMILARITY) self.assertEqual(config.max_n_matches, None) self.assertEqual(config.regex, DEFAULT_REGEX) self.assertEqual(config.ngram_size, DEFAULT_NGRAM_SIZE) self.assertEqual(config.number_of_processes, DEFAULT_N_PROCESSES) self.assertEqual(config.ignore_case, DEFAULT_IGNORE_CASE) def test_config_immutable(self): """Configurations should be immutable""" config = StringGrouperConfig() with self.assertRaises(Exception) as _: config.min_similarity = 0.1 def test_config_non_default_values(self): """Configurations should be immutable""" config = StringGrouperConfig(min_similarity=0.1, max_n_matches=100, number_of_processes=1) self.assertEqual(0.1, config.min_similarity) self.assertEqual(100, config.max_n_matches) self.assertEqual(1, config.number_of_processes) class StringGrouperTest(unittest.TestCase): def test_auto_blocking_single_DataFrame(self): """tests whether automatic blocking yields consistent results""" # This function will force an OverflowError to occur when # the input Series have a combined length above a given number: # OverflowThreshold. This will in turn trigger automatic splitting # of the Series/matrices into smaller blocks when n_blocks = None sort_cols = ['right_index', 'left_index'] def fix_row_order(df): return df.sort_values(sort_cols).reset_index(drop=True) simple_example = SimpleExample() df1 = simple_example.customers_df2['<NAME>'] # first do manual blocking sg = StringGrouper(df1, min_similarity=0.1) pd.testing.assert_series_equal(sg.master, df1) self.assertEqual(sg.duplicates, None) matches = fix_row_order(sg.match_strings(df1, n_blocks=(1, 1))) self.assertEqual(sg._config.n_blocks, (1, 1)) # Create a custom wrapper for this StringGrouper instance's # _build_matches() method which will later be used to # mock _build_matches(). # Note that we have to define the wrapper here because # _build_matches() is a non-static function of StringGrouper # and needs access to the specific StringGrouper instance sg # created here. def mock_build_matches(OverflowThreshold, real_build_matches=sg._build_matches): def wrapper(left_matrix, right_matrix, nnz_rows=None, sort=True): if (left_matrix.shape[0] + right_matrix.shape[0]) > \ OverflowThreshold: raise OverflowError return real_build_matches(left_matrix, right_matrix, nnz_rows, sort) return wrapper def do_test_with(OverflowThreshold): nonlocal sg # allows reference to sg, as sg will be modified below # Now let us mock sg._build_matches: sg._build_matches = Mock(side_effect=mock_build_matches(OverflowThreshold)) sg.clear_data() matches_auto = fix_row_order(sg.match_strings(df1, n_blocks=None)) pd.testing.assert_series_equal(sg.master, df1) pd.testing.assert_frame_equal(matches, matches_auto) self.assertEqual(sg._config.n_blocks, None) # Note that _build_matches is called more than once if and only if # a split occurred (that is, there was more than one pair of # matrix-blocks multiplied) if len(sg._left_Series) + len(sg._right_Series) > \ OverflowThreshold: # Assert that split occurred: self.assertGreater(sg._build_matches.call_count, 1) else: # Assert that split did not occur: self.assertEqual(sg._build_matches.call_count, 1) # now test auto blocking by forcing an OverflowError when the # combined Series' lengths is greater than 10, 5, 3, 2 do_test_with(OverflowThreshold=100) # does not trigger auto blocking do_test_with(OverflowThreshold=10) do_test_with(OverflowThreshold=5) do_test_with(OverflowThreshold=3) do_test_with(OverflowThreshold=2) def test_n_blocks_single_DataFrame(self): """tests whether manual blocking yields consistent results""" sort_cols = ['right_index', 'left_index'] def fix_row_order(df): return df.sort_values(sort_cols).reset_index(drop=True) simple_example = SimpleExample() df1 = simple_example.customers_df2['<NAME>'] matches11 = fix_row_order(match_strings(df1, min_similarity=0.1)) matches12 = fix_row_order( match_strings(df1, n_blocks=(1, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches12) matches13 = fix_row_order( match_strings(df1, n_blocks=(1, 3), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches13) matches14 = fix_row_order( match_strings(df1, n_blocks=(1, 4), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches14) matches15 = fix_row_order( match_strings(df1, n_blocks=(1, 5), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches15) matches16 = fix_row_order( match_strings(df1, n_blocks=(1, 6), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches16) matches17 = fix_row_order( match_strings(df1, n_blocks=(1, 7), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches17) matches18 = fix_row_order( match_strings(df1, n_blocks=(1, 8), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches18) matches21 = fix_row_order( match_strings(df1, n_blocks=(2, 1), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches21) matches22 = fix_row_order( match_strings(df1, n_blocks=(2, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches22) matches32 = fix_row_order( match_strings(df1, n_blocks=(3, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches32) # Create a custom wrapper for this StringGrouper instance's # _build_matches() method which will later be used to # mock _build_matches(). # Note that we have to define the wrapper here because # _build_matches() is a non-static function of StringGrouper # and needs access to the specific StringGrouper instance sg # created here. sg = StringGrouper(df1, min_similarity=0.1) def mock_build_matches(OverflowThreshold, real_build_matches=sg._build_matches): def wrapper(left_matrix, right_matrix, nnz_rows=None, sort=True): if (left_matrix.shape[0] + right_matrix.shape[0]) > \ OverflowThreshold: raise OverflowError return real_build_matches(left_matrix, right_matrix, nnz_rows, sort) return wrapper def test_overflow_error_with(OverflowThreshold, n_blocks): nonlocal sg sg._build_matches = Mock(side_effect=mock_build_matches(OverflowThreshold)) sg.clear_data() max_left_block_size = (len(df1)//n_blocks[0] + (1 if len(df1) % n_blocks[0] > 0 else 0)) max_right_block_size = (len(df1)//n_blocks[1] + (1 if len(df1) % n_blocks[1] > 0 else 0)) if (max_left_block_size + max_right_block_size) > OverflowThreshold: with self.assertRaises(Exception): _ = sg.match_strings(df1, n_blocks=n_blocks) else: matches_manual = fix_row_order(sg.match_strings(df1, n_blocks=n_blocks)) pd.testing.assert_frame_equal(matches11, matches_manual) test_overflow_error_with(OverflowThreshold=100, n_blocks=(1, 1)) test_overflow_error_with(OverflowThreshold=10, n_blocks=(1, 1)) test_overflow_error_with(OverflowThreshold=10, n_blocks=(2, 1)) test_overflow_error_with(OverflowThreshold=10, n_blocks=(1, 2)) test_overflow_error_with(OverflowThreshold=10, n_blocks=(4, 4)) def test_n_blocks_both_DataFrames(self): """tests whether manual blocking yields consistent results""" sort_cols = ['right_index', 'left_index'] def fix_row_order(df): return df.sort_values(sort_cols).reset_index(drop=True) simple_example = SimpleExample() df1 = simple_example.customers_df['Customer Name'] df2 = simple_example.customers_df2['Customer Name'] matches11 = fix_row_order(match_strings(df1, df2, min_similarity=0.1)) matches12 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches12) matches13 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 3), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches13) matches14 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 4), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches14) matches15 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 5), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches15) matches16 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 6), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches16) matches17 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 7), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches17) matches18 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 8), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches18) matches21 = fix_row_order( match_strings(df1, df2, n_blocks=(2, 1), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches21) matches22 = fix_row_order( match_strings(df1, df2, n_blocks=(2, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches22) matches32 = fix_row_order( match_strings(df1, df2, n_blocks=(3, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches32) def test_n_blocks_bad_option_value(self): """Tests that bad option values for n_blocks are caught""" simple_example = SimpleExample() df1 = simple_example.customers_df2['<NAME>'] with self.assertRaises(Exception): _ = match_strings(df1, n_blocks=2) with self.assertRaises(Exception): _ = match_strings(df1, n_blocks=(0, 2)) with self.assertRaises(Exception): _ = match_strings(df1, n_blocks=(1, 2.5)) with self.assertRaises(Exception): _ = match_strings(df1, n_blocks=(1, 2, 3)) with self.assertRaises(Exception): _ = match_strings(df1, n_blocks=(1, )) def test_tfidf_dtype_bad_option_value(self): """Tests that bad option values for n_blocks are caught""" simple_example = SimpleExample() df1 = simple_example.customers_df2['<NAME>'] with self.assertRaises(Exception): _ = match_strings(df1, tfidf_matrix_dtype=None) with self.assertRaises(Exception): _ = match_strings(df1, tfidf_matrix_dtype=0) with self.assertRaises(Exception): _ = match_strings(df1, tfidf_matrix_dtype='whatever') def test_compute_pairwise_similarities(self): """tests the high-level function compute_pairwise_similarities""" simple_example = SimpleExample() df1 = simple_example.customers_df['<NAME>'] df2 = simple_example.expected_result_centroid similarities = compute_pairwise_similarities(df1, df2) expected_result = pd.Series( [ 1.0, 0.6336195351561589, 1.0000000000000004, 1.0000000000000004, 1.0, 0.826462625999832 ], name='similarity' ) expected_result = expected_result.astype(np.float32) pd.testing.assert_series_equal(expected_result, similarities) sg = StringGrouper(df1, df2) similarities = sg.compute_pairwise_similarities(df1, df2) pd.testing.assert_series_equal(expected_result, similarities) def test_compute_pairwise_similarities_data_integrity(self): """tests that an exception is raised whenever the lengths of the two input series of the high-level function compute_pairwise_similarities are unequal""" simple_example = SimpleExample() df1 = simple_example.customers_df['<NAME>'] df2 = simple_example.expected_result_centroid with self.assertRaises(Exception): _ = compute_pairwise_similarities(df1, df2[:-2]) @patch('string_grouper.string_grouper.StringGrouper') def test_group_similar_strings(self, mock_StringGouper): """mocks StringGrouper to test if the high-level function group_similar_strings utilizes it as expected""" mock_StringGrouper_instance = mock_StringGouper.return_value mock_StringGrouper_instance.fit.return_value = mock_StringGrouper_instance mock_StringGrouper_instance.get_groups.return_value = 'whatever' test_series_1 = None test_series_id_1 = None df = group_similar_strings( test_series_1, string_ids=test_series_id_1 ) mock_StringGrouper_instance.fit.assert_called_once() mock_StringGrouper_instance.get_groups.assert_called_once() self.assertEqual(df, 'whatever') @patch('string_grouper.string_grouper.StringGrouper') def test_match_most_similar(self, mock_StringGouper): """mocks StringGrouper to test if the high-level function match_most_similar utilizes it as expected""" mock_StringGrouper_instance = mock_StringGouper.return_value mock_StringGrouper_instance.fit.return_value = mock_StringGrouper_instance mock_StringGrouper_instance.get_groups.return_value = 'whatever' test_series_1 = None test_series_2 = None test_series_id_1 = None test_series_id_2 = None df = match_most_similar( test_series_1, test_series_2, master_id=test_series_id_1, duplicates_id=test_series_id_2 ) mock_StringGrouper_instance.fit.assert_called_once() mock_StringGrouper_instance.get_groups.assert_called_once() self.assertEqual(df, 'whatever') @patch('string_grouper.string_grouper.StringGrouper') def test_match_strings(self, mock_StringGouper): """mocks StringGrouper to test if the high-level function match_strings utilizes it as expected""" mock_StringGrouper_instance = mock_StringGouper.return_value mock_StringGrouper_instance.fit.return_value = mock_StringGrouper_instance mock_StringGrouper_instance.get_matches.return_value = 'whatever' test_series_1 = None test_series_id_1 = None df = match_strings(test_series_1, master_id=test_series_id_1) mock_StringGrouper_instance.fit.assert_called_once() mock_StringGrouper_instance.get_matches.assert_called_once() self.assertEqual(df, 'whatever') @patch( 'string_grouper.string_grouper.StringGrouper._symmetrize_matrix', side_effect=mock_symmetrize_matrix ) def test_match_list_symmetry_without_symmetrize_function(self, mock_symmetrize_matrix_param): """mocks StringGrouper._symmetrize_matches_list so that this test fails whenever _matches_list is **partially** symmetric which often occurs when the kwarg max_n_matches is too small""" simple_example = SimpleExample() df = simple_example.customers_df2['<NAME>'] sg = StringGrouper(df, max_n_matches=2).fit() mock_symmetrize_matrix_param.assert_called_once() # obtain the upper and lower triangular parts of the matrix of matches: upper = sg._matches_list[sg._matches_list['master_side'] < sg._matches_list['dupe_side']] lower = sg._matches_list[sg._matches_list['master_side'] > sg._matches_list['dupe_side']] # switch the column names of lower triangular part (i.e., transpose) to convert it to upper triangular: upper_prime = lower.rename(columns={'master_side': 'dupe_side', 'dupe_side': 'master_side'}) # obtain the intersection between upper and upper_prime: intersection = upper_prime.merge(upper, how='inner', on=['master_side', 'dupe_side']) # if the intersection is empty then _matches_list is completely non-symmetric (this is acceptable) # if the intersection is not empty then at least some matches are repeated. # To make sure all (and not just some) matches are repeated, the lengths of # upper, upper_prime and their intersection should be identical. self.assertFalse(intersection.empty or len(upper) == len(upper_prime) == len(intersection)) def test_match_list_symmetry_with_symmetrize_function(self): """This test ensures that _matches_list is symmetric""" simple_example = SimpleExample() df = simple_example.customers_df2['<NAME>'] sg = StringGrouper(df, max_n_matches=2).fit() # Obtain the upper and lower triangular parts of the matrix of matches: upper = sg._matches_list[sg._matches_list['master_side'] < sg._matches_list['dupe_side']] lower = sg._matches_list[sg._matches_list['master_side'] > sg._matches_list['dupe_side']] # Switch the column names of the lower triangular part (i.e., transpose) to convert it to upper triangular: upper_prime = lower.rename(columns={'master_side': 'dupe_side', 'dupe_side': 'master_side'}) # Obtain the intersection between upper and upper_prime: intersection = upper_prime.merge(upper, how='inner', on=['master_side', 'dupe_side']) # If the intersection is empty this means _matches_list is completely non-symmetric (this is acceptable) # If the intersection is not empty this means at least some matches are repeated. # To make sure all (and not just some) matches are repeated, the lengths of # upper, upper_prime and their intersection should be identical. self.assertTrue(intersection.empty or len(upper) == len(upper_prime) == len(intersection)) @patch( 'string_grouper.string_grouper.StringGrouper._fix_diagonal', side_effect=mock_symmetrize_matrix ) def test_match_list_diagonal_without_the_fix(self, mock_fix_diagonal): """test fails whenever _matches_list's number of self-joins is not equal to the number of strings""" # This bug is difficult to reproduce -- I mostly encounter it while working with very large datasets; # for small datasets setting max_n_matches=1 reproduces the bug simple_example = SimpleExample() df = simple_example.customers_df['<NAME>'] matches = match_strings(df, max_n_matches=1) mock_fix_diagonal.assert_called_once() num_self_joins = len(matches[matches['left_index'] == matches['right_index']]) num_strings = len(df) self.assertNotEqual(num_self_joins, num_strings) def test_match_list_diagonal(self): """This test ensures that all self-joins are present""" # This bug is difficult to reproduce -- I mostly encounter it while working with very large datasets; # for small datasets setting max_n_matches=1 reproduces the bug simple_example = SimpleExample() df = simple_example.customers_df['Customer Name'] matches = match_strings(df, max_n_matches=1) num_self_joins = len(matches[matches['left_index'] == matches['right_index']]) num_strings = len(df) self.assertEqual(num_self_joins, num_strings) def test_zero_min_similarity(self): """Since sparse matrices exclude zero elements, this test ensures that zero similarity matches are returned when min_similarity <= 0. A bug related to this was first pointed out by @nbcvijanovic""" simple_example = SimpleExample() s_master = simple_example.customers_df['Customer Name'] s_dup = simple_example.whatever_series_1 matches = match_strings(s_master, s_dup, min_similarity=0) pd.testing.assert_frame_equal(simple_example.expected_result_with_zeroes, matches) def test_zero_min_similarity_small_max_n_matches(self): """This test ensures that a warning is issued when n_max_matches is suspected to be too small while min_similarity <= 0 and include_zeroes is True""" simple_example = SimpleExample() s_master = simple_example.customers_df['Customer Name'] s_dup = simple_example.two_strings with self.assertRaises(Exception): _ = match_strings(s_master, s_dup, max_n_matches=1, min_similarity=0) def test_get_non_matches_empty_case(self): """This test ensures that _get_non_matches() returns an empty DataFrame when all pairs of strings match""" simple_example = SimpleExample() s_master = simple_example.a_few_strings s_dup = simple_example.one_string sg = StringGrouper(s_master, s_dup, max_n_matches=len(s_master), min_similarity=0).fit() self.assertTrue(sg._get_non_matches_list().empty) def test_n_grams_case_unchanged(self): """Should return all ngrams in a string with case""" test_series = pd.Series(pd.Series(['aaa'])) # Explicit do not ignore case sg = StringGrouper(test_series, ignore_case=False) expected_result = ['McD', 'cDo', 'Don', 'ona', 'nal', 'ald', 'lds'] self.assertListEqual(expected_result, sg.n_grams('McDonalds')) def test_n_grams_ignore_case_to_lower(self): """Should return all case insensitive ngrams in a string""" test_series = pd.Series(pd.Series(['aaa'])) # Explicit ignore case sg = StringGrouper(test_series, ignore_case=True) expected_result = ['mcd', 'cdo', 'don', 'ona', 'nal', 'ald', 'lds'] self.assertListEqual(expected_result, sg.n_grams('McDonalds')) def test_n_grams_ignore_case_to_lower_with_defaults(self): """Should return all case insensitive ngrams in a string""" test_series = pd.Series(pd.Series(['aaa'])) # Implicit default case (i.e. default behaviour) sg = StringGrouper(test_series) expected_result = ['mcd', 'cdo', 'don', 'ona', 'nal', 'ald', 'lds'] self.assertListEqual(expected_result, sg.n_grams('McDonalds')) def test_build_matrix(self): """Should create a csr matrix only master""" test_series = pd.Series(['foo', 'bar', 'baz']) sg = StringGrouper(test_series) master, dupe = sg._get_right_tf_idf_matrix(), sg._get_left_tf_idf_matrix() c = csr_matrix([[0., 0., 1.], [1., 0., 0.], [0., 1., 0.]]) np.testing.assert_array_equal(c.toarray(), master.toarray()) np.testing.assert_array_equal(c.toarray(), dupe.toarray()) def test_build_matrix_master_and_duplicates(self): """Should create a csr matrix for master and duplicates""" test_series_1 = pd.Series(['foo', 'bar', 'baz']) test_series_2 = pd.Series(['foo', 'bar', 'bop']) sg = StringGrouper(test_series_1, test_series_2) master, dupe = sg._get_right_tf_idf_matrix(), sg._get_left_tf_idf_matrix() master_expected = csr_matrix([[0., 0., 0., 1.], [1., 0., 0., 0.], [0., 1., 0., 0.]]) dupes_expected = csr_matrix([[0., 0., 0., 1.], [1., 0., 0., 0.], [0., 0., 1., 0.]]) np.testing.assert_array_equal(master_expected.toarray(), master.toarray()) np.testing.assert_array_equal(dupes_expected.toarray(), dupe.toarray()) def test_build_matches(self): """Should create the cosine similarity matrix of two series""" test_series_1 = pd.Series(['foo', 'bar', 'baz']) test_series_2 = pd.Series(['foo', 'bar', 'bop']) sg = StringGrouper(test_series_1, test_series_2) master, dupe = sg._get_right_tf_idf_matrix(), sg._get_left_tf_idf_matrix() expected_matches = np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 0.]]) np.testing.assert_array_equal(expected_matches, sg._build_matches(master, dupe)[0].toarray()) def test_build_matches_list(self): """Should create the cosine similarity matrix of two series""" test_series_1 = pd.Series(['foo', 'bar', 'baz']) test_series_2 = pd.Series(['foo', 'bar', 'bop']) sg = StringGrouper(test_series_1, test_series_2) sg = sg.fit() master = [0, 1] dupe_side = [0, 1] similarity = [1.0, 1.0] expected_df = pd.DataFrame({'master_side': master, 'dupe_side': dupe_side, 'similarity': similarity}) expected_df.loc[:, 'similarity'] = expected_df.loc[:, 'similarity'].astype(sg._config.tfidf_matrix_dtype) pd.testing.assert_frame_equal(expected_df, sg._matches_list) def test_case_insensitive_build_matches_list(self): """Should create the cosine similarity matrix of two case insensitive series""" test_series_1 = pd.Series(['foo', 'BAR', 'baz']) test_series_2 = pd.Series(['FOO', 'bar', 'bop']) sg = StringGrouper(test_series_1, test_series_2) sg = sg.fit() master = [0, 1] dupe_side = [0, 1] similarity = [1.0, 1.0] expected_df = pd.DataFrame({'master_side': master, 'dupe_side': dupe_side, 'similarity': similarity}) expected_df.loc[:, 'similarity'] = expected_df.loc[:, 'similarity'].astype(sg._config.tfidf_matrix_dtype)
pd.testing.assert_frame_equal(expected_df, sg._matches_list)
pandas.testing.assert_frame_equal
name = 'nfl_data_py' import pandas import numpy import datetime def import_pbp_data(years, columns=None, downcast=True): """Imports play-by-play data Args: years (List[int]): years to get PBP data for columns (List[str]): only return these columns downcast (bool): convert float64 to float32, default True Returns: DataFrame """ if not isinstance(years, (list, range)): raise ValueError('Input must be list or range.') if min(years) < 1999: raise ValueError('Data not available before 1999.') if columns is None: columns = [] plays = pandas.DataFrame() url1 = r'https://github.com/nflverse/nflfastR-data/raw/master/data/play_by_play_' url2 = r'.parquet' for year in years: try: if len(columns) != 0: data = pandas.read_parquet(url1 + str(year) + url2, columns=columns, engine='fastparquet') else: data = pandas.read_parquet(url1 + str(year) + url2, engine='fastparquet') raw = pandas.DataFrame(data) raw['season'] = year if len(plays) == 0: plays = raw else: plays = plays.append(raw) print(str(year) + ' done.') except: print('Data not available for ' + str(year)) # converts float64 to float32, saves ~30% memory if downcast: cols = plays.select_dtypes(include=[numpy.float64]).columns plays.loc[:, cols] = plays.loc[:, cols].astype(numpy.float32) return plays def import_weekly_data(years, columns=None, downcast=True): """Imports weekly player data Args: years (List[int]): years to get PBP data for columns (List[str]): only return these columns downcast (bool): convert float64 to float32, default True Returns: DataFrame """ if not isinstance(years, (list, range)): raise ValueError('Input must be list or range.') if min(years) < 1999: raise ValueError('Data not available before 1999.') if columns is None: columns = [] data = pandas.read_parquet(r'https://github.com/nflverse/nflfastR-data/raw/master/data/player_stats.parquet', engine='fastparquet') data = data[data['season'].isin(years)] if len(columns) > 0: data = data[columns] # converts float64 to float32, saves ~30% memory if downcast: cols = data.select_dtypes(include=[numpy.float64]).columns data.loc[:, cols] = data.loc[:, cols].astype(numpy.float32) return data def import_seasonal_data(years, s_type='REG'): if not isinstance(years, (list, range)): raise ValueError('years input must be list or range.') if min(years) < 1999: raise ValueError('Data not available before 1999.') if s_type not in ('REG','ALL','POST'): raise ValueError('Only REG, ALL, POST allowed for s_type.') data = pandas.read_parquet(r'https://github.com/nflverse/nflfastR-data/raw/master/data/player_stats.parquet', engine='fastparquet') if s_type == 'ALL': data = data[data['season'].isin(years)] else: data = data[(data['season'].isin(years)) & (data['season_type'] == s_type)] pgstats = data[['recent_team', 'season', 'week', 'attempts', 'completions', 'passing_yards', 'passing_tds', 'passing_air_yards', 'passing_yards_after_catch', 'passing_first_downs', 'fantasy_points_ppr']].groupby( ['recent_team', 'season', 'week']).sum().reset_index() pgstats.columns = ['recent_team', 'season', 'week', 'atts', 'comps', 'p_yds', 'p_tds', 'p_ayds', 'p_yac', 'p_fds', 'ppr_pts'] all_stats = data[ ['player_id', 'player_name', 'recent_team', 'season', 'week', 'carries', 'rushing_yards', 'rushing_tds', 'rushing_first_downs', 'rushing_2pt_conversions', 'receptions', 'targets', 'receiving_yards', 'receiving_tds', 'receiving_air_yards', 'receiving_yards_after_catch', 'receiving_first_downs', 'receiving_epa', 'fantasy_points_ppr']].merge(pgstats, how='left', on=['recent_team', 'season', 'week']).fillna(0) season_stats = all_stats.drop(['recent_team', 'week'], axis=1).groupby( ['player_id', 'player_name', 'season']).sum().reset_index() season_stats['tgt_sh'] = season_stats['targets'] / season_stats['atts'] season_stats['ay_sh'] = season_stats['receiving_air_yards'] / season_stats['p_ayds'] season_stats['yac_sh'] = season_stats['receiving_yards_after_catch'] / season_stats['p_yac'] season_stats['wopr'] = season_stats['tgt_sh'] * 1.5 + season_stats['ay_sh'] * 0.8 season_stats['ry_sh'] = season_stats['receiving_yards'] / season_stats['p_yds'] season_stats['rtd_sh'] = season_stats['receiving_tds'] / season_stats['p_tds'] season_stats['rfd_sh'] = season_stats['receiving_first_downs'] / season_stats['p_fds'] season_stats['rtdfd_sh'] = (season_stats['receiving_tds'] + season_stats['receiving_first_downs']) / ( season_stats['p_tds'] + season_stats['p_fds']) season_stats['dom'] = (season_stats['ry_sh'] + season_stats['rtd_sh']) / 2 season_stats['w8dom'] = season_stats['ry_sh'] * 0.8 + season_stats['rtd_sh'] * 0.2 season_stats['yptmpa'] = season_stats['receiving_yards'] / season_stats['atts'] season_stats['ppr_sh'] = season_stats['fantasy_points_ppr'] / season_stats['ppr_pts'] data.drop(['recent_team', 'week'], axis=1, inplace=True) szn = data.groupby(['player_id', 'player_name', 'season', 'season_type']).sum().reset_index().merge( data[['player_id', 'season', 'season_type']].groupby(['player_id', 'season']).count().reset_index().rename( columns={'season_type': 'games'}), how='left', on=['player_id', 'season']) szn = szn.merge(season_stats[['player_id', 'season', 'tgt_sh', 'ay_sh', 'yac_sh', 'wopr', 'ry_sh', 'rtd_sh', 'rfd_sh', 'rtdfd_sh', 'dom', 'w8dom', 'yptmpa', 'ppr_sh']], how='left', on=['player_id', 'season']) return szn def see_pbp_cols(): data = pandas.read_parquet(r'https://github.com/nflverse/nflfastR-data/raw/master/data/play_by_play_2020.parquet', engine='fastparquet') cols = data.columns return cols def see_weekly_cols(): data = pandas.read_parquet(r'https://github.com/nflverse/nflfastR-data/raw/master/data/player_stats.parquet', engine='fastparquet') cols = data.columns return cols def import_rosters(years, columns=None): if not isinstance(years, (list, range)): raise ValueError('years input must be list or range.') if min(years) < 1999: raise ValueError('Data not available before 1999.') if columns is None: columns = [] rosters = [] for y in years: temp = pandas.read_csv(r'https://github.com/mrcaseb/nflfastR-roster/blob/master/data/seasons/roster_' + str(y) + '.csv?raw=True', low_memory=False) rosters.append(temp) rosters = pandas.DataFrame(pandas.concat(rosters)).rename( columns={'full_name': 'player_name', 'gsis_id': 'player_id'}) rosters.drop_duplicates(subset=['season', 'player_name', 'position', 'player_id'], keep='first', inplace=True) if len(columns) > 0: rosters = rosters[columns] def calc_age(x): ca = pandas.to_datetime(x[0]) bd = pandas.to_datetime(x[1]) return ca.year - bd.year + numpy.where(ca.month > bd.month, 0, -1) if 'birth_date' in columns and 'current_age' in columns: rosters['current_age'] = rosters['season'].apply(lambda x: datetime.datetime(int(x), 9, 1)) rosters['age'] = rosters[['current_age', 'birth_date']].apply(calc_age, axis=1) rosters.drop(['current_age'], axis=1, inplace=True) rosters.dropna(subset=['player_id'], inplace=True) return rosters def import_team_desc(): df =
pandas.read_csv(r'https://github.com/nflverse/nflfastR-data/raw/master/teams_colors_logos.csv')
pandas.read_csv
import logging from typing import Tuple import pandas as pd from pandas import DataFrame from dbnd import task from dbnd.testing.helpers_pytest import assert_run_task from dbnd_test_scenarios.test_common.targets.target_test_base import TargetTestBase logger = logging.getLogger(__name__) @task(result=("features", "scores")) def t_d_multiple_return(p: int) -> (DataFrame, int): return
pd.DataFrame(data=[[p, 1]], columns=["c1", "c2"])
pandas.DataFrame