prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import subprocess import json import os import csv import numpy as np import pandas as pd import pysam from Bio import SeqIO from Bio.Seq import Seq from Bio.SeqRecord import SeqRecord def get_orf(input_genome, output_genome, orf): orf = int(orf) record = SeqIO.read(input_genome, 'fasta') record.seq = record.seq[orf:] SeqIO.write(record, output_genome, 'fasta') def backtranslate(input_nucleotide, input_protein, output_codon): nucleotides = SeqIO.parse(input_nucleotide, 'fasta') proteins = SeqIO.parse(input_protein, 'fasta') codons = [] for protein_record, nucleotide_record in zip(proteins, nucleotides): i = 0 codon_list = [] for character in protein_record.seq: if character != '-': codon = str(nucleotide_record.seq[3*i:3*i+3]) codon_list.append(codon) i += 1 else: codon_list.append('---') codon_record = SeqRecord( Seq(''.join(codon_list)), id=protein_record.id, description=protein_record.description ) codons.append(codon_record) SeqIO.write(codons, output_codon, 'fasta') def select_simulated_gene(dataset, gene, output): aligned_filename = "output/simulation/%s/aligned_%s_orf-%d_codon.fasta" nucleotide_genome_filename = "output/simulation/%s/genome.fasta" % dataset nucleotide_genome = SeqIO.read(nucleotide_genome_filename, 'fasta') max_percent_identity = 0 for i in range(3): non_gaps = 0 matches = 0 codon_list = [] records = SeqIO.parse(aligned_filename % (dataset, gene, i), 'fasta') translated_genome = next(records) reference = next(records) genome_i = 0 for j in range(len(reference)): if reference[j] != '-': non_gaps += 1 codon = str(nucleotide_genome[3*genome_i+i:3*genome_i+i+3].seq) codon_list.append(codon) if reference[j] == translated_genome[j]: matches += 1 if translated_genome[j] != '-': genome_i += 1 percent_identity = matches/non_gaps if percent_identity > max_percent_identity: max_percent_identity = percent_identity desired_codons = ''.join(codon_list) record = SeqRecord( Seq(desired_codons).ungap('-'), id=nucleotide_genome.id, description=gene ) SeqIO.write(record, output, 'fasta') def write_abayesqr_config(sam_filename, reference_filename, output): config_string = ("""filename of reference sequence (FASTA) : %s filname of the aligned reads (sam format) : %s paired-end (1 = true, 0 = false) : 0 SNV_thres : 0.01 reconstruction_start : 1 reconstruction_stop: 1300 min_mapping_qual : 20 min_read_length : 50 max_insert_length : 250 characteristic zone name : test seq_err (assumed sequencing error rate(%%)) : 0.1 MEC improvement threshold : 0.0395 """ % (reference_filename, sam_filename)) with open(output, 'w') as config_file: config_file.write(config_string) def parse_abayesqr_output(input_text, output_fasta): with open(input_text) as input_file: lines = input_file.readlines() records = [] for i, line in enumerate(lines): if i % 2 == 0: freq = float(line.split()[-1]) number = int(i/2)+1 header = 'haplotype-%d_freq-%f' % (number, freq) if i % 2 == 1: seq = Seq(line.strip()) record = SeqRecord(seq, id=header, description='') records.append(record) SeqIO.write(records, output_fasta, 'fasta') def pairwise_distance_csv(fasta_filename, csv_filename): records = list(SeqIO.parse(fasta_filename, 'fasta')) np_seqs = np.array( [list(str(record.seq)) for record in records], dtype='<U1' ) first_records = [] second_records = [] distances = [] search_term = 'quasispecies' for i in range(len(records)): for j in range(len(records)): if records[j].name[: len(search_term)] == search_term: continue first_records.append(records[i].id) second_records.append(records[j].id) distance = (np_seqs[i, :] != np_seqs[j, :]).sum() distances.append(distance) pd.DataFrame({ 'first_record': first_records, 'second_record': second_records, 'distance': distances, }).to_csv(csv_filename) def add_subtype_information(input_csv, output_csv): df = pd.read_csv(input_csv) df['Subtype1'] = df['ID1'].apply(lambda row: row.split('.')[0]) df['Subtype2'] = df['ID2'].apply(lambda row: row.split('.')[0]) df.to_csv(output_csv, index=False) def extract_truth( input_fasta, reference_path, dataset, reference, output_path, output_json_path ): sequences = list(SeqIO.parse(input_fasta, "fasta")) aligned_sequences = [] output_dir = os.path.join("output", "truth", dataset) tmp_dir = os.path.join( output_dir, "truth-%s-%s-temp" % (dataset, reference) ) os.mkdir(tmp_dir) for sequence in sequences: sequence_path = os.path.join(tmp_dir, "ref.fasta") alignment_path = os.path.join(tmp_dir, "aligned.fasta") SeqIO.write(sequence, sequence_path, "fasta") command = [ "water", "-asequence", sequence_path, "-bsequence", reference_path, "-gapopen", "10.0", "-gapextend", ".5", "-aformat", "fasta", "-outfile", alignment_path ] subprocess.run(command) aligned_sequence = list(SeqIO.parse(alignment_path, "fasta"))[0] aligned_sequence.seq = aligned_sequence.seq.ungap('-') aligned_sequences.append(aligned_sequence) os.remove(sequence_path) os.remove(alignment_path) os.rmdir(tmp_dir) sequence_length = min([len(record.seq) for record in aligned_sequences]) for record in aligned_sequences: record.seq = record.seq[:sequence_length] SeqIO.write(aligned_sequences, output_path, "fasta") pairwise_distances = [] for i in range(len(aligned_sequences)): first_sequence = aligned_sequences[i] first_np = np.array(list(first_sequence.seq), dtype='<U1') for j in range(i+1, len(aligned_sequences)): second_sequence = aligned_sequences[j] second_np = np.array(list(second_sequence.seq), dtype='<U1') disagreement = int((first_np != second_np).sum()) pairwise_distances.append({ 'sequenceA': first_sequence.name, 'sequenceB': second_sequence.name, 'disagreement': disagreement }) with open(output_json_path, 'w') as json_file: json.dump(pairwise_distances, json_file, indent=2) def covarying_truth( input_computed, input_actual, input_reference, output_json ): reference = SeqIO.read(input_reference, 'fasta') rl = len(reference.seq) with open(input_computed) as input_file: cvs = json.load(input_file) with open(input_actual) as input_file: true_cvs = json.load(input_file) tp = [] fp = [] tn = [] fn = [] for i in range(rl): if i in true_cvs and i in cvs: tp.append(i) elif i in true_cvs and i not in cvs: fn.append(i) elif i not in true_cvs and i in cvs: fp.append(i) elif i not in true_cvs and i not in cvs: tn.append(i) precision = len(tp)/(len(tp)+len(fp)) recall = len(tp)/(len(tp)+len(fn)) result = { 'true_positives': tp, 'true_negative': tn, 'false_positives': fp, 'false_negatives': fn, 'precision': precision, 'recall': recall } with open(output_json, 'w') as output_file: json.dump(result, output_file, indent=2) def restrict_fasta_to_cvs(input_fasta, input_cvs, output_fasta): with open(input_cvs) as json_file: cvs = json.load(json_file) records = list(SeqIO.parse(input_fasta, 'fasta')) for record in records: record.seq = Seq(''.join([record.seq[site] for site in cvs])) SeqIO.write(records, output_fasta, 'fasta') def downsample_bam(input_bam_path, output_bam_path, downsample_amount): downsample_percentage = 1 - int(downsample_amount) / 100 input_bam = pysam.AlignmentFile(input_bam_path, 'rb') number_of_reads = input_bam.count() downsample_number = np.ceil(downsample_percentage * number_of_reads) \ .astype(np.int) np.random.seed(1) downsample_indices = np.random.choice( number_of_reads, downsample_number, replace=False ) downsample_indices.sort() downsample_index = 0 output_bam = pysam.AlignmentFile( output_bam_path, 'wb', header=input_bam.header ) for i, read in enumerate(input_bam.fetch()): if i == downsample_indices[downsample_index]: output_bam.write(read) downsample_index += 1 if downsample_index == len(downsample_indices): break output_bam.close() pysam.index(output_bam_path) input_bam.close() def pluck_record(input_fasta_path, output_fasta_path, record): all_records = SeqIO.parse(input_fasta_path, 'fasta') desired_record = SeqIO.to_dict(all_records)[record] SeqIO.write(desired_record, output_fasta_path, 'fasta') def single_mapping_dataset(bam_path, ref_path, output_path): bam = pysam.AlignmentFile(bam_path) ref = SeqIO.read(ref_path, 'fasta') percent_identity = np.zeros(bam.mapped, dtype=np.float) differences = np.zeros(bam.mapped, dtype=np.float) number_of_aligned_pairs = np.zeros(bam.mapped, dtype=np.float) for i, read in enumerate(bam.fetch()): aligned_pairs = read.get_aligned_pairs(matches_only=True) aligned_query = np.array([ read.query[pair[0]] for pair in aligned_pairs ], dtype='<U1') aligned_reference = np.array([ ref[pair[1]] for pair in aligned_pairs ], dtype='<U1') agreement = (aligned_query == aligned_reference).sum() number_of_aligned_pairs[i] = len(aligned_pairs) differences[i] = number_of_aligned_pairs[i] - agreement percent_identity[i] = agreement/number_of_aligned_pairs[i] quality = np.array([ read.mapping_quality for read in bam.fetch() ], dtype=np.int) query_length = np.array([ read.query_length for read in bam.fetch() ], dtype=np.int) result = pd.DataFrame({ 'mapping_quality': quality, 'differences': differences, 'number_of_aligned_pairs': number_of_aligned_pairs, 'percent_identity': percent_identity, 'query_length': query_length }, index=[read.query_name for read in bam.fetch()]) result.to_csv(output_path, index_label='read_id') def full_fvm_mapping_dataset(dataset_paths, output_csv_path): all_datasets = list(map( lambda path: pd.read_csv(path, index_col='read_id'), dataset_paths )) for dataset_path, dataset in zip(dataset_paths, all_datasets): dataset_name = dataset_path.split('/')[-2] dataset['reference'] = dataset_name pd.concat(all_datasets, axis=0, sort=False, ignore_index=True) \ .to_csv(output_csv_path) def true_covarying_kmers(input_fasta, input_json, output_csv, k): k = int(k) records = np.array([ list(record.seq) for record in SeqIO.parse(input_fasta, 'fasta') ], dtype='<U1') data = { **{'index_%d' % i: [] for i in range(k)}, **{'character_%d' % i: [] for i in range(k)} } with open(input_json) as json_file: covarying_sites = np.array(json.load(json_file), dtype=np.int) for i in range(len(covarying_sites) - k): covarying_indices = covarying_sites[i:i+k] covarying_kmers = set() for row_index in range(records.shape[0]): covarying_kmer = ''.join(records[row_index, covarying_indices]) covarying_kmers.add(covarying_kmer) for covarying_kmer in list(covarying_kmers): for i in range(k): data['index_%d' % i].append(covarying_indices[i]) data['character_%d' % i].append(covarying_kmer[i])
pd.DataFrame(data)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Sat Jul 20 20:59:18 2019 @author: <NAME> """ # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # Importing the dataset data = pd.read_csv('data/data.csv') data.drop(['Unnamed: 0'], axis=1, inplace=True) # 'match_id', 'team_id' data.describe() data.apply(lambda x:sum(x.isnull())) data.apply(lambda x:len(x.unique())) data['shot_id_number'] = data.index+1 data.fillna({'remaining_min':data['remaining_min'].mean(), 'power_of_shot':data['power_of_shot'].mean(), 'remaining_sec':data['remaining_sec'].mean(), 'distance_of_shot':data['distance_of_shot'].mean(), 'location_x':data['location_x'].mean(), 'location_y':data['location_y'].mean(), 'remaining_min.1':data['remaining_min.1'].mean(), 'power_of_shot.1':data['power_of_shot.1'].mean(), 'remaining_sec.1':data['remaining_sec.1'].mean(), 'distance_of_shot.1':data['distance_of_shot.1'].mean(), 'knockout_match.1':data['knockout_match.1'].mean()},inplace=True) vars=['knockout_match','area_of_shot','shot_basics', 'range_of_shot', 'team_name', 'date_of_game', 'home/away', 'type_of_shot', 'type_of_combined_shot', 'lat/lng', 'game_season'] for var in vars: data[var].fillna(method='ffill', inplace=True) data['type_of_combined_shot'].fillna(method='bfill', inplace=True) data['home_or_away'] = data['home/away'].apply(lambda x: 'AWA' if x[5:6] == '@' else 'HOM') data['time_min.1'] = data['remaining_min.1'] + data['remaining_sec.1'].apply(lambda x: x if x==0 else x/60) times = [i for i in range(2, 131, 2)] start_time = [i for i in range(0, 129, 2)] def imputeTime(cols): time = cols[0] for i,time_i in enumerate(times): if float(time)<=float(time_i): return str(start_time[i])+'-'+str(time_i) data['remaining_time'] = data[['time_min.1']].apply(imputeTime, axis=1).astype(str) data.drop(['time_min.1','location_y', 'shot_basics', 'lat/lng','power_of_shot.1','distance_of_shot.1', 'knockout_match.1','distance_of_shot.1', 'range_of_shot', 'type_of_shot', 'match_event_id', 'team_name', 'team_id', 'match_id', 'date_of_game', 'home/away', 'remaining_min', 'remaining_min.1', 'remaining_sec', 'remaining_sec.1'], axis=1,inplace=True) data.apply(lambda x:sum(x.isnull())) data.apply(lambda x:len(x.unique())) # Create broad seasons of 4 years each seasons = ['2000','2004', '2008','2012','2016'] start_seasons = ['1996','2001','2005', '2009', '2013'] def imputSeason(cols): season=cols[0] for i,year in enumerate(seasons): if year>=season[:4]: return start_seasons[i]+'-'+year[-2:] data['game_season_broad'] = data[['game_season']].apply(imputSeason, axis=1).astype(str) data.drop(['game_season'],axis=1, inplace=True) # Label Encoding from sklearn.preprocessing import LabelEncoder le = LabelEncoder() vars = ['area_of_shot', 'home_or_away', 'type_of_combined_shot', 'game_season_broad', 'remaining_time'] for var in vars: data[var]=le.fit_transform(data[var]) # Correalation table(matrix) cor = data.corr( method='pearson') # OneHotEncoding data=pd.get_dummies(data, columns=vars) # Save modified data data.to_csv("modified_data.csv", index=False) # Read dataset data_all =
pd.read_csv("modified_data.csv")
pandas.read_csv
import os import sqlite3 import pandas as pd import datetime import numpy as np import wget def updateModisDB(filenames, cacheDir): if len(filenames) > 0: db_fn = os.path.join(cacheDir, "modis_db.db") fn = filenames[0].split(os.sep)[-1] product = fn.split('.')[0] years = [] doys = [] tiles = [] fns = [] for filename in filenames: fn = filename.split(os.sep)[-1] fns.append(filename) years.append(fn.split('.')[1][1:5]) doys.append(fn.split('.')[1][5:9]) tiles.append(fn.split('.')[2]) if not os.path.exists(db_fn): conn = sqlite3.connect(db_fn) modis_dict = {"TILE": tiles, "YEAR": years, "DOY": doys, "filename": fns} modis_df = pd.DataFrame.from_dict(modis_dict) modis_df.to_sql("%s" % product, conn, if_exists="replace", index=False) conn.close() else: conn = sqlite3.connect(db_fn) orig_df = pd.read_sql_query("SELECT * from %s" % product, conn) modis_dict = {"TILE": tiles, "YEAR": years, "DOY": doys, "filename": fns} modis_df =
pd.DataFrame.from_dict(modis_dict)
pandas.DataFrame.from_dict
# Copyright [2020] [Two Six Labs, LLC] # Licensed under the Apache License, Version 2.0 from flask import current_app, render_template, Blueprint, request import pandas as pd from app_deploy_data.authentication import auth from utility.constants import ( INDEX_COLUMN, UPLOAD_ID, DATA_SOURCE_TYPE, MAIN_DATA_SOURCE, TABLE_COLUMN_SEPARATOR, NOTES, USERNAME, DATA_SOURCE, CSVFILE, ) from utility.exceptions import ValidationError UPLOAD_HTML = "data_upload.html" upload_blueprint = Blueprint("upload", __name__) def validate_data_form(request_form, request_files): """ We want to validate a submitted form whether it comes from the HTML page or an API request. This function checks the form values, not the content of the upload. :param request_form: flask request.form object :param request_files: flask request.files object :return: required fields """ try: notes = request_form[ NOTES ] # require this field to be here, but no other checks username = request_form[USERNAME] data_source_name = request_form[DATA_SOURCE] # todo: validate file types in request_files except KeyError as e: raise ValidationError(e) current_app.logger.info(f"POST {username} {data_source_name}") return username, data_source_name, request_files def validate_submission_content(csvfile, data_source_schema): """ This function validates the contents of an uplaoded file against the expected schema Raises ValidationError if the file does not have the correct format/data types :param csvfile: request.file from flask for the uploaded file :param data_source_schema: sqlalchemy columns to use for validation :return: pandas dataframe of the uploaded csv """ try: filename = csvfile.filename df =
pd.read_csv(csvfile, sep=",", comment="#")
pandas.read_csv
# Copyright 2019 Elasticsearch BV # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # File called _pytest for PyCharm compatability import pandas as pd import pytest from eland.dataframe import DEFAULT_NUM_ROWS_DISPLAYED from eland.tests.common import TestData, assert_pandas_eland_series_equal class TestDataFrameRepr(TestData): @classmethod def setup_class(cls): # conftest.py changes this default - restore to original setting pd.set_option("display.max_rows", 60) """ to_string """ def test_simple_lat_lon(self): """ Note on nested object order - this can change when note this could be a bug in ES... PUT my_index/doc/1 { "location": { "lat": "50.033333", "lon": "8.570556" } } GET my_index/_search "_source": { "location": { "lat": "50.033333", "lon": "8.570556" } } GET my_index/_search { "_source": "location" } "_source": { "location": { "lon": "8.570556", "lat": "50.033333" } } Hence we store the pandas df source json as 'lon', 'lat' """ pd_dest_location = self.pd_flights()["DestLocation"].head(1) ed_dest_location = self.ed_flights()["DestLocation"].head(1) assert_pandas_eland_series_equal(pd_dest_location, ed_dest_location) def test_num_rows_to_string(self): # check setup works assert pd.get_option("display.max_rows") == 60 # Test eland.DataFrame.to_string vs pandas.DataFrame.to_string # In pandas calling 'to_string' without max_rows set, will dump ALL rows # Test n-1, n, n+1 for edge cases self.num_rows_to_string(DEFAULT_NUM_ROWS_DISPLAYED - 1) self.num_rows_to_string(DEFAULT_NUM_ROWS_DISPLAYED) with pytest.warns(UserWarning): # UserWarning displayed by eland here (compare to pandas with max_rows set) self.num_rows_to_string( DEFAULT_NUM_ROWS_DISPLAYED + 1, None, DEFAULT_NUM_ROWS_DISPLAYED ) # Test for where max_rows lt or gt num_rows self.num_rows_to_string(10, 5, 5) self.num_rows_to_string(100, 200, 200) def num_rows_to_string(self, rows, max_rows_eland=None, max_rows_pandas=None): ed_flights = self.ed_flights()[["DestLocation", "OriginLocation"]] pd_flights = self.pd_flights()[["DestLocation", "OriginLocation"]] ed_head = ed_flights.head(rows) pd_head = pd_flights.head(rows) ed_head_str = ed_head.to_string(max_rows=max_rows_eland) pd_head_str = pd_head.to_string(max_rows=max_rows_pandas) # print("\n", ed_head_str) # print("\n", pd_head_str) assert pd_head_str == ed_head_str def test_empty_dataframe_string(self): ed_ecom = self.ed_ecommerce() pd_ecom = self.pd_ecommerce() ed_ecom_s = ed_ecom[ed_ecom["currency"] == "USD"].to_string() pd_ecom_s = pd_ecom[pd_ecom["currency"] == "USD"].to_string() assert ed_ecom_s == pd_ecom_s """ repr """ def test_num_rows_repr(self): self.num_rows_repr( pd.get_option("display.max_rows") - 1, pd.get_option("display.max_rows") - 1 ) self.num_rows_repr( pd.get_option("display.max_rows"), pd.get_option("display.max_rows") ) self.num_rows_repr(
pd.get_option("display.max_rows")
pandas.get_option
""" This script contains experiment set ups for results in figure 1. """ import os import pandas as pd from experiment_Setup import Experiment_Setup from agent_env import get_pi_env from SVRG import * if __name__ == '__main__': NUM_RUNS = 10 # Random MDP alg_settings = [ {"method": svrg_classic, "name": "svrg", "sigma_theta": 1e-3, "sigma_omega": 1e-3, "grid_search": False, "record_per_dataset_pass": False, "record_per_epoch":True, "num_epoch":50, "num_checks":10, "inner_loop_multiplier":1 }, {"method": batch_svrg, "name": 'batch_svrg', "sigma_theta": 1e-3, 'sigma_omega': 1e-3, "grid_search": False, "record_per_dataset_pass": False, "record_per_epoch": True, "num_epoch": 50, "num_checks": 10, "inner_loop_multiplier": 1, "batch_svrg_init_ratio": 0.1, "batch_svrg_increment_ratio": 1.05}, ] results = [] for i in range(NUM_RUNS): exp_setup = Experiment_Setup(num_epoch=50, exp_settings=alg_settings, saving_dir_path="./", multi_process_exps=False, use_gpu=False, num_processes=1, batch_size=100, num_workers=0) pi_env = get_pi_env(env_type="rmdp", exp_setup=exp_setup, loading_path="", is_loading=False, saving_path="./", is_saving=True, policy_iteration_episode=1, init_method="zero", num_data=5000) results.extend(pi_env.run_policy_iteration()) pd.DataFrame(pi_results).to_pickle('./rmdp_results.pkl') # Mountain Car alg_settings = [ {"method": svrg_classic, "name": "svrg", "sigma_theta": 1e-1, "sigma_omega": 1e-1, "grid_search": False, "record_per_dataset_pass": False, "record_per_epoch":True, "num_epoch":20, "num_checks":10, "inner_loop_multiplier":1 }, {"method": batch_svrg, "name": 'batch_svrg', "sigma_theta": 1e-1, 'sigma_omega': 1e-1, "grid_search": False, "record_per_dataset_pass": False, "record_per_epoch": True, "num_epoch": 20, "num_checks": 10, "inner_loop_multiplier": 1, "batch_svrg_init_ratio": 0.2, "batch_svrg_increment_ratio": 1.1}, ] results = [] for i in range(NUM_RUNS): exp_setup = Experiment_Setup(num_epoch=20, exp_settings=alg_settings, saving_dir_path="./", multi_process_exps=False, use_gpu=False, num_processes=1, batch_size=100, num_workers=0) pi_env = get_pi_env(env_type="mc", exp_setup=exp_setup, loading_path="", is_loading=False, saving_path="./", is_saving=True, policy_iteration_episode=1, init_method="zero", num_data=5000) results.extend(pi_env.run_policy_iteration()) pd.DataFrame(pi_results).to_pickle('./mc_results.pkl') # Cart Pole alg_settings = [ {"method": svrg_classic, "name": "svrg", "sigma_theta": 1, "sigma_omega": 1, "grid_search": False, "record_per_dataset_pass": False, "record_per_epoch":True, "num_epoch":50, "num_checks":10, "inner_loop_multiplier":1 }, {"method": batch_svrg, "name": 'batch_svrg', "sigma_theta": 1, 'sigma_omega': 1, "grid_search": False, "record_per_dataset_pass": False, "record_per_epoch": True, "num_epoch": 50, "num_checks": 10, "inner_loop_multiplier": 1, "batch_svrg_init_ratio": 0.1, "batch_svrg_increment_ratio": 1.05}, ] results = [] for i in range(NUM_RUNS): exp_setup = Experiment_Setup(num_epoch=50, exp_settings=alg_settings, saving_dir_path="./", multi_process_exps=False, use_gpu=False, num_processes=1, batch_size=100, num_workers=0) pi_env = get_pi_env(env_type="cp", exp_setup=exp_setup, loading_path="", is_loading=False, saving_path="./", is_saving=True, policy_iteration_episode=1, init_method="zero", num_data=5000) results.extend(pi_env.run_policy_iteration())
pd.DataFrame(pi_results)
pandas.DataFrame
# -*- coding: utf-8 -*- import numpy as np import pandas as pd import matplotlib.pyplot as plt NbrOfNodes = 35 gain = [0.01,0.02,0.03,0.04] #-------------------------------------------------------------------------- # File for oversizing 5% #-------------------------------------------------------------------------- thefileso05 = ['stent_g01cn25.rsn','stent_g02cn25.rsn','stent_g03cn25.rsn','stent_g04cn25.rsn'] mesh1_data05 = {} mesh0_data05 = {} for file in thefileso05: myfile = open(file, 'r') file_aux = myfile.readlines() file_array =
pd.Series(file_aux)
pandas.Series
import pandas as pd import numpy as np class PreProcessing: data = None quarter_names = None num_years = None num_days = None def __init__(self, name): name= str(name) self.get_data(name) self.data['Normalized_Close'] = self.normalized_data_col(self.data) self.data['Quarter'] = self.get_quarter_col(self.data) self.num_days = 252 self.prices_by_year = self.get_prices_by_year() self.quarter_length = int(self.num_days / 4) def get_prices_by_year(self): df = self.modify_first_year_data() for i in range(1, len(self.num_years)): df = pd.concat([df, pd.DataFrame(self.get_year_data(year=self.num_years[i], normalized=True))], axis=1) df = df[:self.num_days] quarter_col = [] num_days_in_quarter = self.num_days // 4 for j in range(0, len(self.quarter_names)): quarter_col.extend([self.quarter_names[j]]*num_days_in_quarter) quarter_col = pd.DataFrame(quarter_col) df = pd.concat([df, quarter_col], axis=1) df.columns = self.num_years + ['Quarter'] df.index.name = 'Day' df = self.fill_nans_with_mean(df) return df def get_year_data(self, year, normalized=True): year = int(year) if year not in self.num_years: raise ValueError('\n' + 'Input year: {} not in available years: {}'.format(year, self.num_years)) prices = (self.data.loc[self.data['Date'].dt.year == year]) if normalized: return np.asarray(prices.loc[:, 'Normalized_Close']) else: return np.asarray(prices.loc[:, 'Adj Close']) def get_adj_close_prices(self, start_year, end_year): start_year,end_year = int(start_year), int(end_year) if start_year < self.num_years[0] or end_year > self.num_years[-1]: raise ValueError('\n' + 'Incorrect data! \n' + 'Max range available: {}-{}\n'.format(self.num_years[0], self.num_years[-1]) + 'Was: {}-{}'.format(start_year, end_year)) df = (self.data.loc[(self.data['Date'].dt.year >= start_year) & (self.data['Date'].dt.year <= end_year)]) df = df.loc[:, ['Date', 'Adj Close']] return df def get_data(self, file_name): file_name = str(file_name) self.data = pd.read_csv('Data/' + file_name + '.csv') self.data = self.data.iloc[:, [0, 5]] self.data = self.data.dropna() self.data.Date =
pd.to_datetime(self.data.Date)
pandas.to_datetime
import sqlite3 import pandas as pd from sklearn.manifold import TSNE from sklearn.preprocessing import StandardScaler from sklearn.cluster import KMeans from sklearn.cluster import DBSCAN from sklearn import metrics from sklearn.datasets.samples_generator import make_blobs from sklearn.preprocessing import StandardScaler from bokeh.plotting import figure, ColumnDataSource, show from bokeh.models import HoverTool import numpy as np import scipy as sp from pylab import plot,show from numpy import vstack,array from numpy.random import rand from scipy.cluster.vq import kmeans,vq from mpl_toolkits.mplot3d import Axes3D from bokeh.io import output_notebook import matplotlib.pyplot as plt import seaborn as sns database = './data/database.sqlite' conn = sqlite3.connect(database) cur = conn.cursor() query = "SELECT name FROM sqlite_master WHERE type='table';" pd.read_sql(query, conn) query = "SELECT * FROM Player;" a =
pd.read_sql(query, conn)
pandas.read_sql
import logging from pathlib import Path import click import numpy as np import pandas as pd from sklearn.impute import SimpleImputer, KNNImputer from sklearn.preprocessing import StandardScaler def engineer_features(df: pd.DataFrame) -> pd.DataFrame: """Transform the data by imputing and creating new features that will be useful for prediction. Performs the following steps: 1. Converts ``Survived`` to 0/1 rather than ``True``/``False`` 2. Creates an indicator for missing ``Cabin`` information 3. Extracts titles from ``Name`` 4. Defines ``Relatives``, the sum of ``SibSp`` and ``Parch`` 5. Bins ``Relatives``, ``SibSp`` and ``Parch`` 6. Drops ``Name``, ``Ticket`` and ``Cabin`` 7. Imputes ``Embarked`` using the most frequent embarkation port 8. Imputes ``Age`` and ``Fare`` based on 5-nearest neighbors 9. Scales ``Age`` and ``Fare`` 10. Bins ``Age`` 11. One-hot encodes categorical variables Args: df: Cleaned and combined data output by :func:`~titanic.data.clean.make_dataset` Returns: pd.DataFrame: The processed data """ # convert Survived to 0/1 rather than True/False df['Survived'] = df['Survived'].astype(float) # create indicator for missing cabin information df['has_cabin'] = (~df['Cabin'].isnull()).astype(float) # extract titles titles = df['Name'].str.extract('^.*, (.*?)\\.', expand=False) df['Title'] = titles.where(titles.isin(['Mr', 'Miss', 'Mrs', 'Master']), 'Other') # create "relatives" feature, the sum of SibSp and Parch df['Relatives'] = pd.cut(df['SibSp'] + df['Parch'], bins=[-1, 0, 3, np.Inf], labels=['0', '1-3', '4+']) # bin SibSp and Parch df['SibSp'] = pd.cut(df['SibSp'], bins=[-1, 0, 1, np.Inf], labels=['0', '1', '2+']) df['Parch'] = pd.cut(df['Parch'], bins=[-1, 0, np.Inf], labels=['0', '1+']) # drop unnecessary features df.drop(['Name', 'Ticket', 'Cabin'], axis=1, inplace=True) # impute Embarked using the most frequently appearing port df['Embarked'] = SimpleImputer(strategy='most_frequent').fit_transform(df[['Embarked']]) # do one-hot encoding df = pd.get_dummies(df, drop_first=True) # impute age and fare using k nearest neighbors impute_age = KNNImputer(n_neighbors=5, weights='distance') df_num = df.select_dtypes(include='number') df_num = pd.DataFrame(impute_age.fit_transform(df_num), index=df_num.index, columns=df_num.columns) df[['Age', 'Fare']] = df_num[['Age', 'Fare']] # bin age now that it has been imputed df['AgeBin'] = pd.cut(df['Age'], bins=[-1, 6, 14, 25, 45, np.Inf], labels=['0-6', '7-14', '15-25', '26-45', '45+']) # do one-hot encoding again to incorporate age bins df =
pd.get_dummies(df, drop_first=True)
pandas.get_dummies
import numpy as np import urllib import os import argparse from sklearn.cross_validation import train_test_split from astroML.plotting import setup_text_plots import empiriciSN from MatchingLensGalaxies_utilities import * from astropy.io import fits import GCRCatalogs import pandas as pd from GCR import GCRQuery sys.path.append('/global/homes/b/brycek/DC2/sims_GCRCatSimInterface/workspace/sed_cache/') from SedFitter import sed_from_galacticus_mags from lsst.sims.photUtils import Sed, Bandpass, BandpassDict def get_sl2s_data(): filename = os.path.join(os.environ['TWINKLES_DIR'], 'data', 'SonnenfeldEtal2013_Table3.csv') z = np.array([]) z_err = np.array([]) v_disp = np.array([]) v_disp_err = np.array([]) r_eff = np.array([]) r_eff_err = np.array([]) log_m = np.array([]) log_m_err = np.array([]) infile = open(filename, 'r') inlines = infile.readlines() for line1 in inlines: if line1[0] == '#': continue line = line1.split(',') #Params z = np.append(z, float(line[1])) v_disp = np.append(v_disp, float(line[2])) r_eff = np.append(r_eff, float(line[3])) log_m = np.append(log_m, float(line[4])) #Errors z_err = np.append(z_err, float(line[5])) v_disp_err = np.append(v_disp_err, float(line[6])) r_eff_err = np.append(r_eff_err, float(line[7])) log_m_err = np.append(log_m_err, float(line[8])) #Build final arrays X = np.vstack([z, v_disp, r_eff, log_m]).T Xerr = np.zeros(X.shape + X.shape[-1:]) diag = np.arange(X.shape[-1]) Xerr[:, diag, diag] = np.vstack([z_err**2, v_disp_err**2, r_eff_err**2, log_m_err**2]).T return X, Xerr #Write new conditioning function def get_log_m(cond_indices, m_index, X, model_file, Xerr=None): """ Uses a subset of parameters in the given data to condition the model and return a sample value for log(M/M_sun). Parameters ---------- cond_indices: array_like Array of indices indicating which parameters to use to condition the model. m_index: int Index of log(M/M_sun) in the list of parameters that were used to fit the model. X: array_like, shape = (n < n_features,) Input data. Xerr: array_like, shape = (X.shape,) (optional) Error on input data. If none, no error used to condition. Returns ------- log_m: float Sample value of log(M/M_sun) taken from the conditioned model. Notes ----- The fit_params array specifies a list of indices to use to condition the model. The model will be conditioned and then a mass will be drawn from the conditioned model. This is so that the mass can be used to find cosmoDC2 galaxies to act as hosts for OM10 systems. This does not make assumptions about what parameters are being used in the model, but does assume that the model has been fit already. """ if m_index in cond_indices: raise ValueError("Cannot condition model on log(M/M_sun).") cond_data = np.array([]) if Xerr is not None: cond_err = np.array([]) m_cond_idx = m_index n_features = empiricist.XDGMM.mu.shape[1] j = 0 for i in range(n_features): if i in cond_indices: cond_data = np.append(cond_data,X[j]) if Xerr is not None: cond_err = np.append(cond_err, Xerr[j]) j += 1 if i < m_index: m_cond_idx -= 1 else: cond_data = np.append(cond_data,np.nan) if Xerr is not None: cond_err = np.append(cond_err, 0.0) if Xerr is not None: cond_XDGMM = empiricist.XDGMM.condition(cond_data, cond_err) else: cond_XDGMM = empiricist.XDGMM.condition(cond_data) sample = cond_XDGMM.sample() log_m = sample[0][m_cond_idx] return log_m def estimate_stellar_masses_om10(): # Instantiate an empiriciSN worker object: empiricist = empiriciSN.Empiricist() X, Xerr = get_sl2s_data() # Load in cached om10 catalog filename = filename = os.path.join(os.environ['TWINKLES_DIR'], 'data', 'om10_qso_mock.fits') hdulist = fits.open(filename) twinkles_lenses = hdulist[1].data # Predict a mass for each galaxy: np.random.seed(0) cond_indices = np.array([0,1]) twinkles_log_m_1comp = np.array([]) model_file='demo_model.fit' empiricist.fit_model(X, Xerr, filename = 'demo_model.fit', n_components=1) twinkles_data = np.array([twinkles_lenses['ZLENS'], twinkles_lenses['VELDISP']]).T for x in twinkles_data: log_m = get_log_m(cond_indices, 2, x[cond_indices], model_file) twinkles_log_m_1comp = np.append(twinkles_log_m_1comp,log_m) return twinkles_lenses, log_m, twinkles_log_m_1comp def get_catalog(catalog, twinkles_lenses, twinkles_log_m_1comp): gcr_om10_match = [] err = 0 np.random.seed(10) i = 0 z_cat_min = np.power(10, np.log10(np.min(twinkles_lenses['ZLENS'])) - .1) z_cat_max = np.power(10, np.log10(np.max(twinkles_lenses['ZLENS'])) + .1) stellar_mass_cat_min = np.min(np.power(10, twinkles_log_m_1comp))*0.9 stellar_mass_cat_max = np.max(np.power(10, twinkles_log_m_1comp))*1.1 data = catalog.get_quantities(['galaxy_id', 'redshift_true', 'stellar_mass', 'ellipticity_true', 'size_true', 'size_minor_true', 'stellar_mass_bulge', 'stellar_mass_disk', 'size_bulge_true', 'size_minor_bulge_true'], filters=['stellar_mass > %f' % stellar_mass_cat_min, 'stellar_mass < %f' % stellar_mass_cat_max, 'redshift_true > %f' % z_cat_min, 'redshift_true < %f' % z_cat_max, 'stellar_mass_bulge/stellar_mass > 0.99']) #### Important Note # Twinkles issue #310 (https://github.com/LSSTDESC/Twinkles/issues/310) says OM10 defines ellipticity as 1 - b/a but # gcr_catalogs defines ellipticity as (1-b/a)/(1+b/a) (https://github.com/LSSTDESC/gcr-catalogs/blob/master/GCRCatalogs/SCHEMA.md) data['om10_ellipticity'] = (1-(data['size_minor_bulge_true']/data['size_bulge_true'])) data_df = pd.DataFrame(data) data_df.to_csv('om10_matching_checkpoint_1.csv', index=False) def match_to_cat(twinkles_lenses, twinkles_log_m_1comp, data_df): row_num = -1 keep_rows = [] for zsrc, m_star, ellip in zip(twinkles_lenses['ZLENS'], np.power(10, twinkles_log_m_1comp), twinkles_lenses['ELLIP']): row_num += 1 #print(zsrc, m_star, ellip) if row_num % 1000 == 0: print(row_num) z_min, z_max = np.power(10, np.log10(zsrc) - .1), np.power(10, np.log10(zsrc) + .1) m_star_min, m_star_max = m_star*.9, m_star*1.1 ellip_min, ellip_max = ellip*.9, ellip*1.1 data_subset = data_df.query('redshift_true > %f and redshift_true < %f and stellar_mass > %f and stellar_mass < %f and om10_ellipticity > %f and om10_ellipticity < %f' % (z_min, z_max, m_star_min, m_star_max, ellip_min, ellip_max)) #data = catalog.get_quantities(['redshift_true', 'stellar_mass', 'ellipticity_true']) #data_subset = (query).filter(data) #print(data_subset) num_matches = len(data_subset['redshift_true']) if num_matches == 0: err += 1 continue elif num_matches == 1: gcr_data = [data_subset['redshift_true'].values[0], data_subset['stellar_mass_bulge'].values[0], data_subset['om10_ellipticity'].values[0], data_subset['size_bulge_true'].values[0], data_subset['size_minor_bulge_true'].values[0], data_subset['galaxy_id'].values[0]] gcr_om10_match.append(gcr_data) keep_rows.append(row_num) elif num_matches > 1: use_idx = np.random.choice(num_matches) gcr_data = [data_subset['redshift_true'].values[use_idx], data_subset['stellar_mass_bulge'].values[use_idx], data_subset['om10_ellipticity'].values[use_idx], data_subset['size_bulge_true'].values[use_idx], data_subset['size_minor_bulge_true'].values[use_idx], data_subset['galaxy_id'].values[use_idx]] gcr_om10_match.append(gcr_data) keep_rows.append(row_num) print("Total Match Failures: ", err, " Percentage Match Failures: ", np.float(err)/len(twinkles_log_m_1comp)) np.savetxt('gcr_om10_match.dat', gcr_om10_match) def get_catalog_mags(catalog): H0 = catalog.cosmology.H0.value Om0 = catalog.cosmology.Om0 sed_label = [] sed_min_wave = [] sed_wave_width = [] for quant_label in sorted(catalog.list_all_quantities()): if (quant_label.startswith('sed') and quant_label.endswith('bulge')): sed_label.append(quant_label) label_split = quant_label.split('_') sed_min_wave.append(int(label_split[1])/10) sed_wave_width.append(int(label_split[2])/10) bin_order = np.argsort(sed_min_wave) sed_label = np.array(sed_label)[bin_order] sed_min_wave = np.array(sed_min_wave)[bin_order] sed_wave_width = np.array(sed_wave_width)[bin_order] for i in zip(sed_label, sed_min_wave, sed_wave_width): print(i) columns = ['galaxy_id', 'redshift_true', 'mag_u_lsst', 'mag_g_lsst', 'mag_r_lsst', 'mag_i_lsst', 'mag_z_lsst', 'mag_y_lsst'] for sed_bin in sed_label: columns.append(sed_bin) data = catalog.get_quantities(columns, filters=['stellar_mass > %f' % stellar_mass_cat_min, 'stellar_mass < %f' % stellar_mass_cat_max, 'redshift_true > %f' % z_cat_min, 'redshift_true < %f' % z_cat_max, 'stellar_mass_bulge/stellar_mass > 0.99']) data_df =
pd.DataFrame(data)
pandas.DataFrame
""" Description: functions for text preprocessing Author: <NAME>. @ AI - Camp Date: Spring 2022 """ import sys root = r"C:\Users\45323\Desktop\新python文件夹\AI_Camp\AICS_Bert" sys.path.append(root) import config import pandas as pd from aug_helper_func import load_dfs_from_folder, get_specific_label_dfs, add_primitive_data, augmentation_train_test_split from text_preprocessing import clean_df, map_labels from Label2Id import Label2Id from transformers import BertTokenizer from dataloader import EmailsDataset, get_label_distribution, dataloader from transformer import BertUncased import config from train import training if __name__ == '__main__': # NOTE: Load Data aug_dfs = load_dfs_from_folder(config.augmented_path, 'augmented_text', 'label') df =
pd.read_csv(config.data_path)
pandas.read_csv
from __future__ import annotations from typing import Optional, Dict, List, Union, Type, TYPE_CHECKING from datetime import date, datetime import pandas as pd import numpy as np import re import locale try: locale.setlocale(locale.LC_ALL, "en_US.UTF-8") except locale.Error: # Readthedocs has a problem, but difficult to replicate locale.setlocale(locale.LC_ALL, "") from . import CoreScript from ..models import ColumnModel from ..types import MimeType if TYPE_CHECKING: from ..schema import Schema from ..models import DataSourceModel class WranglingScript: """Get, review and restructure tabular data.""" def __init__(self): self.check_source = CoreScript().check_source self.core = CoreScript() self.DATE_FORMATS = { "date": {"fmt": ["%Y-%m-%d"], "txt": ["YYYY-MM-DD"]}, "datetime": { "fmt": ["%Y-%m-%d %H:%M:%S", "%Y-%m-%d %H:%M:%S %Z%z"], "txt": ["YYYY-MM-DD hh:mm:ss", "YYYY-MM-DD hh:mm:ss UTC+0000"], }, "year": {"fmt": ["%Y"], "txt": ["YYYY"]}, } def get_dataframe( self, source: str, preserve: Union[str, List[str]] = None, filetype: MimeType = MimeType.CSV, names: Optional[List[str]] = None, nrows: Optional[int] = None, ) -> Union[Dict[str, pd.DataFrame], pd.DataFrame]: """Return a Pandas dataframe from a given source. Accepts default pandas parameters for Excel and CSV, but the objective is to preserve the source data with little data conversion outside of the data wrangling process. With this in mind, a Parameters ---------- source: str Source filename. preserve: str or list of str, default None Column names where variable type guessing must be prevented and the original data preserved. Critical for foreign key references with weird formats, like integers with leading `0`. filetype: MimeType, default MimeType.CSV Pandas can read a diversity of filetypes, but whyqd has only been tested on `xls`, `xlsx` and `csv`. names: list of str, default None If the source data has no header row, explicitly pass a list of names - in the correct order - to address the data. nrows: int, default None A specified number of rows to return. For review, it is faster to load only a small number. Returns ------- DataFrame or dict of DataFrame """ self.check_source(source) # If the dtypes have not been set, then ensure that any provided preserved columns remain untouched # i.e. no forcing of text to numbers # defaulting to `dtype = object` ... kwargs = {} if preserve: if not isinstance(preserve, list): preserve = [preserve] # kwargs["dtype"] = {k: object for k in preserve} kwargs["dtype"] = {k: pd.StringDtype() for k in preserve} if names: kwargs["header"] = None kwargs["names"] = names if nrows: kwargs["nrows"] = nrows # Check filetype if filetype in [MimeType.XLS, MimeType.XLSX]: # This will default to returning a dictionary of dataframes for each sheet kwargs["sheet_name"] = None df = pd.read_excel(source, **kwargs) keys = list(df.keys()) for k in keys: if df[k].empty: del df[k] if len(df.keys()) == 1: df = df[keys[0]] if filetype == MimeType.CSV: # New in pandas 1.3: will ignore encoding errors - perfect for this initial wrangling process kwargs["encoding_errors"] = "ignore" # Supposed to help with fruity separater guessing kwargs["engine"] = "python" if not nrows: df = pd.read_csv(source, **kwargs) else: kwargs["iterator"] = True kwargs["chunksize"] = 10000 df_iterator = pd.read_csv(source, **kwargs) df = pd.concat(df_iterator, ignore_index=True) return df def get_dataframe_from_datasource(self, data: DataSourceModel) -> pd.DataFrame: """Return the dataframe for a data source. Parameters ---------- data: DataSourceModel Returns ------- pd.DataFrame """ path = data.path try: self.core.check_source(path) except FileNotFoundError: path = str(self.directory / data.source) self.core.check_source(path) df_columns = [d.name for d in data.columns] names = [d.name for d in data.names] if data.names else None df = self.get_dataframe( source=path, filetype=data.mime, names=names, preserve=[d.name for d in data.preserve if d.name in df_columns], ) if isinstance(df, dict): if df: df = df[data.sheet_name] else: # It's an empty df for some reason. Maybe excessive filtering. df = pd.DataFrame() if df.empty: raise ValueError( f"Data source contains no data ({data.path}). Review actions to see if any were more destructive than expected." ) return df def get_dataframe_columns(self, df: pd.DataFrame) -> List(ColumnModel): """Returns a list of ColumnModels from a source DataFrame. Parameters ---------- df: pd.DataFrame Should be derived from `get_dataframe` with a sensible default for `nrows` being 50. Returns ------- List of ColumnModel """ # Prepare summary columns = [ {"name": k, "type": "number"} if v in ["float64", "int64"] else {"name": k, "type": "date"} if v in ["datetime64[ns]"] else {"name": k, "type": "string"} for k, v in df.dtypes.apply(lambda x: x.name).to_dict().items() ] return [ColumnModel(**c) for c in columns] def deduplicate_columns(self, df: pd.DataFrame, schema: Type[Schema]) -> pd.Index: """ Source: https://stackoverflow.com/a/65254771/295606 Source: https://stackoverflow.com/a/55405151 Returns a new column list permitting deduplication of dataframes which may result from merge. Parameters ---------- df: pd.DataFrame fields: list of FieldModel Destination Schema fields Returns ------- pd.Index Updated column names """ column_index = pd.Series(df.columns.tolist()) if df.columns.has_duplicates: duplicates = column_index[column_index.duplicated()].unique() for name in duplicates: dups = column_index == name replacements = [f"{name}{i}" if i != 0 else name for i in range(dups.sum())] column_index.loc[dups] = replacements # Fix any fields with the same name as any of the target fields # Do this to 'force' schema assignment for name in [f.name for f in schema.get.fields]: dups = column_index == name replacements = [f"{name}{i}__dd" if i != 0 else f"{name}__dd" for i in range(dups.sum())] column_index.loc[dups] = replacements return pd.Index(column_index) # def check_column_unique(self, source: str, key: str) -> bool: # """ # Test a column in a dataframe to ensure all values are unique. # Parameters # ---------- # source: Source filename # key: Column name of field where data are to be tested for uniqueness # Raises # ------ # ValueError if not unique # Returns # ------- # bool, True if unique # """ # df = self.get_dataframe(source, key) # if len(df[key]) != len(df[key].unique()): # import warnings # filename = source.split("/")[-1] # Obfuscate the path # e = "'{}' contains non-unique rows in column `{}`".format(filename, key) # # raise ValueError(e) # warnings.warn(e) # return True # def check_date_format(self, date_type: str, date_value: str) -> bool: # # https://stackoverflow.com/a/37045601 # # https://www.saltycrane.com/blog/2009/05/converting-time-zones-datetime-objects-python/ # for fmt in self.DATE_FORMATS[date_type]["fmt"]: # try: # if date_value == datetime.strptime(date_value, fmt).strftime(fmt): # return True # except ValueError: # continue # raise ValueError(f"Incorrect date format, should be: `{self.DATE_FORMATS[date_type]['txt']}`") ################################################################################################### ### Pandas type parsers ################################################################################################### def parse_dates(self, x: Union[None, str]) -> Union[pd.NaT, date.isoformat]: """ This is the hard-won 'trust nobody', certainly not Americans, date parser. TODO: Replace with https://github.com/scrapinghub/dateparser The only concern is that dateparser.parse(x).date().isoformat() will coerce *any* string to a date, no matter *what* it is. """ if pd.isnull(x): return pd.NaT # Check if to_datetime can handle things if not pd.isnull(
pd.to_datetime(x, errors="coerce", dayfirst=True)
pandas.to_datetime
import sys import pandas as pd import numpy as np import catboost DUR_RU = 'Длительность разговора с оператором, сек' DUR_EN = 'oper_duration' RU_COLS = [ 'Время начала вызова', 'Время окончания вызова', 'Время постановки в очередь', 'Время переключения на оператора', 'Время окончания разговора с оператором', ] EN_COLS = ['call_start_time', 'call_end_time', 'queue_time', 'oper_start_time', 'oper_end_time'] zero_time = pd.to_datetime('00:00:00') SEC_PER_DAY = 60*60*24 NA_VALUE = -1.2345 def extract_features(data): times = data[RU_COLS].apply(pd.to_datetime) times.columns = EN_COLS abs_times = times.apply(lambda x: (x - zero_time).dt.total_seconds()).fillna(NA_VALUE) abs_times.columns = [c + '_abs' for c in EN_COLS] day = abs_times / SEC_PER_DAY * 2 * np.pi hour = (abs_times % (24 * 60)) / (24 * 60) * 2 * np.pi minute = (abs_times % 60) / 60 * 2 * np.pi day_sines = np.sin(day) day_cosines = np.cos(day) hour_sines = np.sin(hour) hour_cosines = np.cos(hour) minute_sines = np.sin(minute) minute_cosines = np.cos(minute) day_sines.columns = ['day_sin__' + c for c in EN_COLS] day_cosines.columns = ['day_cos__' + c for c in EN_COLS] hour_sines.columns = ['hour_sin__' + c for c in EN_COLS] hour_cosines.columns = ['hour_cos__' + c for c in EN_COLS] minute_sines.columns = ['minute_sin__' + c for c in EN_COLS] minute_cosines.columns = ['minute_cos__' + c for c in EN_COLS] null_times = times.isnull().astype(int) null_times.columns = [c + "_miss" for c in EN_COLS] diffs =
pd.DataFrame(index=times.index)
pandas.DataFrame
from methylcapsnet.samplers import ImbalancedDatasetSampler from pymethylprocess.MethylationDataTypes import MethylationArray import numpy as np, pandas as pd from captum.attr import GradientShap import torch from torch.utils.data import DataLoader, Dataset, TensorDataset, Subset, ConcatDataset from torch.utils.data.sampler import SubsetRandomSampler from methylcapsnet.methylcaps_data_models import * def return_spw_importances_(train_methyl_array, val_methyl_array, interest_col, select_subtypes, capsules_pickle, include_last, n_bins, spw_config, model_state_dict_pkl, batch_size, by_subtype=False ): ma=MethylationArray.from_pickle(train_methyl_array) ma_v=MethylationArray.from_pickle(val_methyl_array) try: ma.remove_na_samples(interest_col) ma_v.remove_na_samples(interest_col) except: pass if select_subtypes: ma.pheno=ma.pheno.loc[ma.pheno[interest_col].isin(select_subtypes)] ma.beta=ma.beta.loc[ma.pheno.index] ma_v.pheno=ma_v.pheno.loc[ma_v.pheno[interest_col].isin(select_subtypes)] ma_v.beta=ma_v.beta.loc[ma_v.pheno.index] capsules_dict=torch.load(capsules_pickle) final_modules, modulecpgs, module_names = capsules_dict['final_modules'],capsules_dict['modulecpgs'],capsules_dict['module_names'] if not include_last: ma.beta=ma.beta.loc[:,modulecpgs] ma_v.beta=ma_v.beta.loc[:,modulecpgs] original_interest_col=interest_col if n_bins: new_interest_col=interest_col+'_binned' ma.pheno.loc[:,new_interest_col],bins=
pd.cut(ma.pheno[interest_col],bins=n_bins,retbins=True)
pandas.cut
# Created by <NAME> at 2021/5/12 import pathlib import numpy as np import pandas as pd import statsmodels.api as sm from fracdiff import FracdiffStat from scipy.stats import entropy from sklearn.decomposition import PCA from sklearn.impute import SimpleImputer from sklearn.model_selection._split import _BaseKFold, indexable, _num_samples from sklearn.preprocessing import PowerTransformer, MinMaxScaler, OneHotEncoder from sklearn.utils.validation import _deprecate_positional_args f = FracdiffStat() p = PCA(n_components=1) imp = SimpleImputer(missing_values=np.nan, strategy="mean") def auto_label_encode(df, num=None, col=None, by=None): """ 对序列进行分Bin编码 :param df: :param col: :param num: :param by: :return: """ if not col: col = df.columns[0] if not num: num = 10 if by == 'entropy': min_entropy = -float('inf') best_num = None for i in range(2, num): cur_std = entropy(pd.cut(df[col], bins=i, ).value_counts().values) print(cur_std) if cur_std > min_entropy: best_num = i min_entropy = cur_std print(best_num) else: best_num = num df1 = pd.cut(df[col], bins=best_num, labels=[str(i) for i in range(best_num)]) df1.name = col return df1.to_frame() _auto_filter = ["rolling", "expanding", ...] def auto_filter(df): """ 自动对特征序列添加滤波 作为新特征? :param df: :return: """ return def load_data(): file = pathlib.Path("data", "课题一数据.xls") df = pd.read_excel(file, sheet_name="螺纹钢相关") del df[df.columns[1]] df["日期"] = pd.to_datetime(df["日期"]) df.set_index(df["日期"], inplace=True) df['logret'] = 100 * df['RB:活跃合约'].apply(np.log).diff() df2 = pd.read_excel(file, sheet_name="宏观数据", index_col=0) df2.index = pd.to_datetime(df2.index) # 固定资产投资完成额分行业同比(月) df3 = pd.read_csv(pathlib.Path("data", "investment.csv"), index_col=0) df3.index = pd.DatetimeIndex(pd.to_datetime(df3.index)) # add more features ... return df, df2, df3 def load_rb(start=None, end=None): """ 加载合约价格 :param start: :param end: :return: """ file = pathlib.Path("data", "rb_continuous_contracts.csv") df = pd.read_csv(file, index_col=0) df.index = pd.DatetimeIndex(df.index) if start == None and end == None: df = df else: df = df.loc[start:end] df = _cont_contract_price_adj(df) return df def _cont_contract_price_adj(df, method='ratio'): """ 移除换月跳空 :param df: :param method: :return: """ df = df.copy() df['close_adj'] = df['close'] df['settle_adj'] = df['settle'] prv_contract = None for idx, row in df.reset_index().iterrows(): cur_contract = row.trade_hiscode if prv_contract is None: prv_contract = cur_contract continue if method == "ratio": if cur_contract != prv_contract: cur_close = row.close cur_settle = row.settle prv_close = df.iloc[idx - 1].close prv_settle = df.iloc[idx - 1].settle close_ratio = cur_close / prv_close settle_ratio = cur_settle / prv_settle df.iloc[:idx, -2] *= close_ratio df.iloc[:idx, -1] *= settle_ratio elif method == 'gap': if cur_contract != prv_contract: cur_close = row.close cur_settle = row.settle prv_close = df.iloc[idx - 1].close prv_settle = df.iloc[idx - 1].settle close_gap = cur_close - prv_close settle_gap = cur_settle - prv_settle df.iloc[:idx, -2] += close_gap df.iloc[:idx, -1] += settle_gap prv_contract = cur_contract return df def process_feature(file, start, end): """ 加载特征数据,简单清洗 和 预处理 :param file: :param start: :param end: :return: """ if 'CPI' in file: return process_cpi(file, start, end) elif 'inventory' in file: return process_inventory(file, start, end) elif 'investment' in file: return process_sector_investment(file, start, end) elif 'money' in file: return process_money_supply(file, start, end) elif 'PMI' in file: return process_pmi(file, start, end) elif 'PPI' in file: return process_ppi(file, start, end) elif 'SHIBOR' in file: return process_shibor(file, start, end) elif 'ta.csv' in file: return process_ta(file, start, end) elif "社会融资规模" in file: return process_private_financing(file, start, end) elif "freight_cost.csv" in file: return process_freight_cost(file, start, end) elif "google_trend_" in file: return process_google_trend(file, start, end) elif "foreign_price.csv" in file: return process_foreign_price(file, start, end) elif "spot_spread.csv" in file: return process_spot_spread(file, start, end) elif "mysteel_price_index.csv" in file: return process_price_index(file, start, end) elif "weather.csv" in file: return process_weather(file, start, end) elif "purchase_amount.csv" in file: return process_purchase_amt(file, start, end) elif "房地产开发、销售(月).csv" in file: return process_real_estate(file, start, end) def process_cpi(file, start, end): ''' 对 CPI 特征进行清洗 1. 更新特征 2. 平稳化 Fractional Difference算法 :param file: :param start: :param end: :return: ''' df = pd.read_csv(file, index_col=0) df.index = pd.DatetimeIndex(df.index) df.dropna(inplace=True) df = df.shift(1) # 更新延迟 df.fillna(method='bfill', inplace=True) df = df.loc[ : end] cpi_LP = ['CPI:环比', 'CPI:不包括食品和能源(核心CPI):环比'] cpi_POP = df.columns.difference(cpi_LP) df_new = _process_cpi(df, ) return df_new.loc[start: end] def _process_cpi(df, ): cpi_LP = ['CPI:环比', 'CPI:不包括食品和能源(核心CPI):环比'] cpi_POP = df.columns.difference(cpi_LP) df_new = pd.DataFrame() df_new['cpi_LP'] = f.fit_transform(p.fit_transform(df[cpi_LP])).flatten() df_new['cpi_POP'] = f.fit_transform(p.fit_transform(df[['CPI:累计同比', 'CPI:不包括食品和能源(核心CPI):当月同比']])).flatten() df_new.index = df.index return df_new def process_inventory(file, start, end): """ 处理 社会螺纹钢库存指标 1. 去季节性,取 STL 分解后的残差 :param file: :param start: :param end: :return: """ df = pd.read_csv(file, index_col=0) df.index = pd.DatetimeIndex(df.index) df.dropna(inplace=True) df = df.loc[: end] result = _process_inventory(df) return result.loc[start: end] def _process_inventory(df): inventory_df = 100 * df.pct_change() inventory_df.fillna(method='bfill', inplace=True) inventory_resid = sm.tsa.STL(inventory_df['螺纹钢库存'], period=52).fit().resid inventory_resid.name = 'spot_inventory_level_resid' item = inventory_resid.to_frame() return item def process_sector_investment(file, start, end): """ 在看盘软件叠加主力价格和黑色金属冶炼投资累计同比,后者对前者有一定领先。 :param file: :param start: :param end: :return: """ df = pd.read_csv(file, index_col=0).shift(1).dropna() df.index = pd.DatetimeIndex(df.index) df = df.loc[: end] investment_new = _process_sector_investment(df) return investment_new.loc[start: end] def _process_sector_investment(df): investment_new = pd.DataFrame() try: investment_new['indus_invest'] = f.fit_transform(df.values).flatten() except: investment_new['indus_invest'] = (1+df.pct_change()).cumprod().values.flatten() investment_new.index = df.index return investment_new def process_money_supply(file, start, end): """ 处理货币供应特征 M1&M2 1. 平稳化 Fractional Difference算法处理 2. 发布延迟处理 :param file: :param start: :param end: :return: """ df = pd.read_csv(file, index_col=0) df = df.dropna() df = df.shift(1) df = df.dropna() df.index = pd.DatetimeIndex(pd.to_datetime(df.index)) df = df.loc[:end] money_new = pd.DataFrame() try: for col in df.columns: money_new[col] = f.fit_transform(df[col].values.reshape(-1, 1)).flatten() except: money_new['money_supply'] = p.fit_transform(df[df.columns]).flatten() money_new.index = df.index return money_new.loc[start:end] def process_pmi(file, start, end): """ 处理 PMI 相关特征 1. PCA 降维 2. 发布延迟处理 :param file: :param start: :param end: :return: """ df = pd.read_csv(file, index_col=0) df = df.shift(1) df.index = pd.to_datetime(df.index) df = df.loc[:end] pmi_new = pd.DataFrame() pmi_new['pmi'] = p.fit_transform(imp.fit_transform(df)).flatten() pmi_new.index = df.index return pmi_new.loc[start:end] def process_ppi(file, start, end): """ PPI 平稳处理 :param file: :param start: :param end: :return: """ df = pd.read_csv(file, index_col=0) df = df.dropna() df = df.shift(1) df = df.dropna() df.index = pd.DatetimeIndex(
pd.to_datetime(df.index)
pandas.to_datetime
import pandas as pd import datetime from typing import List, Dict # Define hourly cost per line - regular, overtime and weekend reg_costs_per_line = {"Line_1": 245, "Line_2": 315, "Line_3": 245} lines: List[str] = list(reg_costs_per_line.keys()) # Get orders customer_orders = pd.read_excel("Customer_orders.xlsx") # Get cycle times capacity = pd.read_excel("Constraints.xlsx", sheet_name="8h capacity").set_index("Line") cycle_time = capacity.rdiv(8) def check_duplicates(list_to_check): if len(list_to_check) == len(set(list_to_check)): return else: print("Duplicate order, please check the requirements file") exit() return order_list = customer_orders["Order"].to_list() check_duplicates(order_list) # Create cycle times dictionnary customer_orders = customer_orders.merge( cycle_time, left_on="Product_Family", right_index=True ) customer_orders["Delivery_Date"] = pd.to_datetime( customer_orders["Delivery_Date"] ).dt.strftime("%Y/%m/%d") customer_orders = customer_orders.sort_values(by=["Delivery_Date", "Order"]) # Define calendar start_date = datetime.datetime.strptime( customer_orders["Delivery_Date"].min(), "%Y/%m/%d" ) end_date = datetime.datetime.strptime( customer_orders["Delivery_Date"].max(), "%Y/%m/%d" ) date_modified = start_date calendar = [start_date.strftime("%Y/%m/%d")] while date_modified < end_date: date_modified += datetime.timedelta(days=1) calendar.append(date_modified.strftime("%Y/%m/%d")) # Get changeover data =
pd.read_csv("Planning_model4_list.csv")
pandas.read_csv
import math from datetime import datetime, timedelta import pandas as pd import requests from pandas.io.json import json_normalize def build_query_url( begin_date, end_date, stationid, product, datum=None, bin_num=None, interval=None, units='metric', time_zone='gmt'): """ Build an URL to be used to fetch data from the NOAA CO-OPS API (see https://tidesandcurrents.noaa.gov/api/) """ base_url = 'http://tidesandcurrents.noaa.gov/api/datagetter?' # If the data product is water levels, check that a datum is specified if product == 'water_level': if datum is None: raise ValueError('No datum specified for water level data.See' ' https://tidesandcurrents.noaa.gov/api/#datum ' 'for list of available datums') else: # Compile parameter string for use in URL parameters = {'begin_date': begin_date, 'end_date': end_date, 'station': stationid, 'product': product, 'datum': datum, 'units': units, 'time_zone': time_zone, 'application': 'py_noaa', 'format': 'json'} elif product == 'hourly_height': if datum is None: raise ValueError('No datum specified for water level data.See' ' https://tidesandcurrents.noaa.gov/api/#datum ' 'for list of available datums') else: # Compile parameter string for use in URL parameters = {'begin_date': begin_date, 'end_date': end_date, 'station': stationid, 'product': product, 'datum': datum, 'units': units, 'time_zone': time_zone, 'application': 'py_noaa', 'format': 'json'} elif product == 'high_low': if datum is None: raise ValueError('No datum specified for water level data.See' ' https://tidesandcurrents.noaa.gov/api/#datum ' 'for list of available datums') else: # Compile parameter string for use in URL parameters = {'begin_date': begin_date, 'end_date': end_date, 'station': stationid, 'product': product, 'datum': datum, 'units': units, 'time_zone': time_zone, 'application': 'py_noaa', 'format': 'json'} elif product == 'predictions': # If no interval provided, return 6-min predictions data if interval is None: # Compile parameter string for use in URL parameters = {'begin_date': begin_date, 'end_date': end_date, 'station': stationid, 'product': product, 'datum': datum, 'units': units, 'time_zone': time_zone, 'application': 'py_noaa', 'format': 'json'} else: # Compile parameter string, including interval, for use in URL parameters = {'begin_date': begin_date, 'end_date': end_date, 'station': stationid, 'product': product, 'datum': datum, 'interval': interval, 'units': units, 'time_zone': time_zone, 'application': 'py_noaa', 'format': 'json'} # If the data product is currents, check that a bin number is specified elif product == 'currents': if bin_num is None: raise ValueError( 'No bin specified for current data. Bin info can be ' 'found on the station info page' ' (e.g., https://tidesandcurrents.noaa.gov/cdata/StationInfo?id=PUG1515)') else: # Compile parameter string for use in URL parameters = {'begin_date': begin_date, 'end_date': end_date, 'station': stationid, 'product': product, 'bin': str(bin_num), 'units': units, 'time_zone': time_zone, 'application': 'py_noaa', 'format': 'json'} # For all other data types (e.g., meteoroligcal conditions) else: # If no interval provided, return 6-min met data if interval is None: # Compile parameter string for use in URL parameters = {'begin_date': begin_date, 'end_date': end_date, 'station': stationid, 'product': product, 'units': units, 'time_zone': time_zone, 'application': 'py_noaa', 'format': 'json'} else: # Compile parameter string, including interval, for use in URL parameters = {'begin_date': begin_date, 'end_date': end_date, 'station': stationid, 'product': product, 'interval': interval, 'units': units, 'time_zone': time_zone, 'application': 'py_noaa', 'format': 'json'} # Build URL with requests library query_url = requests.Request( 'GET', base_url, params=parameters).prepare().url return query_url def url2pandas(data_url, product, num_request_blocks): """ Takes in a provided URL using the NOAA CO-OPS API conventions (see https://tidesandcurrents.noaa.gov/api/) and converts the corresponding JSON data into a pandas dataframe. """ response = requests.get(data_url) # Get JSON data from URL json_dict = response.json() # Create a dictionary from JSON data df = pd.DataFrame() # Initialize a empty DataFrame # Error when the requested begin_date and/or end_date does not have data large_data_gap_error = 'No data was found. This product may not be offered at this station at the requested time.' # Handle coops.get_data() request size & errors from COOPS API, cases below: # 1. coops.get_data() makes a large request (i.e. >1 block requests) # and an error occurs in one of the individual blocks of data # 2. coops.get_data() makes a large request (i.e. >1 block requests) # and an error does not occur in one of the individual blocks of data # 3. coops.get_data() makes a small request (i.e. 1 request) # and an error occurs in the data requested # 4. coops.get_data() makes a small request (i.e. 1 request) # and an error does not occur in the data requested # Case 1 if (num_request_blocks > 1) and ('error' in json_dict): error_message = json_dict['error'].get('message', 'Error retrieving data') error_message = error_message.lstrip() error_message = error_message.rstrip() if error_message == large_data_gap_error: return df # Return the empty DataFrame else: raise ValueError( json_dict['error'].get('message', 'Error retrieving data')) # Case 2 elif (num_request_blocks > 1) and ('error' not in json_dict): if product == 'predictions': key = 'predictions' else: key = 'data' df = json_normalize(json_dict[key]) # Parse JSON dict into dataframe return df # Case 3 elif (num_request_blocks == 1) and ('error' in json_dict): raise ValueError( json_dict['error'].get('message', 'Error retrieving data')) # Case 4 else: if product == 'predictions': key = 'predictions' else: key = 'data' df = json_normalize(json_dict[key]) # Parse JSON dict into dataframe return df def parse_known_date_formats(dt_string): """Attempt to parse CO-OPS accepted date formats.""" for fmt in ('%Y%m%d', '%Y%m%d %H:%M', '%m/%d/%Y', '%m/%d/%Y %H:%M'): try: return datetime.strptime(dt_string, fmt) except ValueError: pass raise ValueError("No valid date format found." "See https://tidesandcurrents.noaa.gov/api/ " "for list of accepted date formats.") def get_data( begin_date, end_date, stationid, product, datum=None, bin_num=None, interval=None, units='metric', time_zone='gmt'): """ Function to get data from NOAA CO-OPS API and convert it to a pandas dataframe for convenient analysis. Info on the NOOA CO-OPS API can be found at https://tidesandcurrents.noaa.gov/api/, the arguments listed below generally follow the same (or a very similar) format. Arguments: begin_date -- the starting date of request (yyyyMMdd, yyyyMMdd HH:mm, MM/dd/yyyy, or MM/dd/yyyy HH:mm), string end_date -- the ending date of request (yyyyMMdd, yyyyMMdd HH:mm, MM/dd/yyyy, or MM/dd/yyyy HH:mm), string stationid -- station at which you want data, string product -- the product type you would like, string datum -- the datum to be used for water level data, string (default None) bin_num -- the bin number you would like your currents data at, int (default None) interval -- the interval you would like data returned, string units -- units to be used for data output, string (default metric) time_zone -- time zone to be used for data output, string (default gmt) """ # Convert dates to datetime objects so deltas can be calculated begin_datetime = parse_known_date_formats(begin_date) end_datetime = parse_known_date_formats(end_date) delta = end_datetime - begin_datetime # If the length of our data request is less or equal to 31 days, # we can pull the data from API in one request if delta.days <= 31: data_url = build_query_url( begin_datetime.strftime("%Y%m%d %H:%M"), end_datetime.strftime("%Y%m%d %H:%M"), stationid, product, datum, bin_num, interval, units, time_zone) df = url2pandas(data_url, product, num_request_blocks=1) # If the length of the user specified data request is less than 365 days # AND the product is hourly_height or high_low, we can pull data directly # from the API in one request elif delta.days <= 365 and ( product == 'hourly_height' or product == 'high_low'): data_url = build_query_url( begin_date, end_date, stationid, product, datum, bin_num, interval, units, time_zone) df = url2pandas(data_url, product, num_request_blocks=1) # If the length of the user specified data request is greater than 365 days # AND the product is hourly_height or high_low, we need to load data from # the API in365 day blocks. elif product == 'hourly_height' or product == 'high_low': # Find the number of 365 day blocks in our desired period, # constrain the upper limit of index in the for loop to follow num_365day_blocks = int(math.floor(delta.days / 365)) df = pd.DataFrame([]) # Empty dataframe for data from API requests # Loop through in 365 day blocks, # adjust the begin_datetime and end_datetime accordingly, # make a request to the NOAA CO-OPS API for i in range(num_365day_blocks + 1): begin_datetime_loop = begin_datetime + timedelta(days=(i * 365)) end_datetime_loop = begin_datetime_loop + timedelta(days=365) # If end_datetime_loop of the current 365 day block is greater # than end_datetime specified by user, use end_datetime if end_datetime_loop > end_datetime: end_datetime_loop = end_datetime # Build url for each API request as we proceed through the loop data_url = build_query_url( begin_datetime_loop.strftime('%Y%m%d'), end_datetime_loop.strftime('%Y%m%d'), stationid, product, datum, bin_num, interval, units, time_zone) df_new = url2pandas(data_url, product, num_365day_blocks) # Get dataframe for block df = df.append(df_new) # Append to existing dataframe # If the length of the user specified data request is greater than 31 days # for any other products, we need to load data from the API in 31 day # blocks else: # Find the number of 31 day blocks in our desired period, # constrain the upper limit of index in the for loop to follow num_31day_blocks = int(math.floor(delta.days / 31)) df = pd.DataFrame([]) # Empty dataframe for data from API requests # Loop through in 31 day blocks, # adjust the begin_datetime and end_datetime accordingly, # make a request to the NOAA CO-OPS API for i in range(num_31day_blocks + 1): begin_datetime_loop = begin_datetime + timedelta(days=(i * 31)) end_datetime_loop = begin_datetime_loop + timedelta(days=31) # If end_datetime_loop of the current 31 day block is greater # than end_datetime specified by user, use end_datetime if end_datetime_loop > end_datetime: end_datetime_loop = end_datetime # Build URL for each API request as we proceed through the loop data_url = build_query_url( begin_datetime_loop.strftime('%Y%m%d'), end_datetime_loop.strftime('%Y%m%d'), stationid, product, datum, bin_num, interval, units, time_zone) df_new = url2pandas(data_url, product, num_31day_blocks) # Get dataframe for block df = df.append(df_new) # Append to existing dataframe # Rename output dataframe columns based on requested product # and convert to useable data types if product == 'water_level': # Rename columns for clarity df.rename(columns={'f': 'flags', 'q': 'QC', 's': 'sigma', 't': 'date_time', 'v': 'water_level'}, inplace=True) # Convert columns to numeric values data_cols = df.columns.drop(['flags', 'QC', 'date_time']) df[data_cols] = df[data_cols].apply( pd.to_numeric, axis=1, errors='coerce') # Convert date & time strings to datetime objects df['date_time'] = pd.to_datetime(df['date_time']) elif product == 'hourly_height': # Rename columns for clarity df.rename(columns={'f': 'flags', 's': 'sigma', 't': 'date_time', 'v': 'water_level'}, inplace=True) # Convert columns to numeric values data_cols = df.columns.drop(['flags', 'date_time']) df[data_cols] = df[data_cols].apply( pd.to_numeric, axis=1, errors='coerce') # Convert date & time strings to datetime objects df['date_time'] = pd.to_datetime(df['date_time']) elif product == 'high_low': # Rename columns for clarity df.rename(columns={'f': 'flags', 'ty': 'high_low', 't': 'date_time', 'v': 'water_level'}, inplace=True) # Separate to high and low dataframes df_HH = df[df['high_low'] == "HH"].copy() df_HH.rename(columns={'date_time': 'date_time_HH', 'water_level': 'HH_water_level'}, inplace=True) df_H = df[df['high_low'] == "H "].copy() df_H.rename(columns={'date_time': 'date_time_H', 'water_level': 'H_water_level'}, inplace=True) df_L = df[df['high_low'].str.contains("L ")].copy() df_L.rename(columns={'date_time': 'date_time_L', 'water_level': 'L_water_level'}, inplace=True) df_LL = df[df['high_low'].str.contains("LL")].copy() df_LL.rename(columns={'date_time': 'date_time_LL', 'water_level': 'LL_water_level'}, inplace=True) # Extract dates (without time) for each entry dates_HH = [x.date() for x in
pd.to_datetime(df_HH['date_time_HH'])
pandas.to_datetime
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Nov 11 16:31:58 2021 @author: snoone """ import os import glob import pandas as pd pd.options.mode.chained_assignment = None # default='warn' OUTDIR = "D:/Python_CDM_conversion/hourly/qff/cdm_out/observations_table" os.chdir("D:/Python_CDM_conversion/hourly/qff/test") extension = 'qff' #my_file = open("D:/Python_CDM_conversion/hourly/qff/ls1.txt", "r") #all_filenames = my_file.readlines() #print(all_filenames) ##use alist of file name sto run 5000 parallel #with open("D:/Python_CDM_conversion/hourly/qff/ls.txt", "r") as f: # all_filenames = f.read().splitlines() all_filenames = [i for i in glob.glob('*.{}'.format(extension))] ##to start at begining of files for filename in all_filenames: ##to start at next file after last processe #for filename in all_filenames[all_filenames.index('SWM00002338.qff'):] : df=pd.read_csv(filename, sep="|") ##set up master df to extrcat each variable df["report_id"]="" df["observation_id"]="" df["data_policy_licence"]="" df["date_time_meaning"]="1" df["observation_duration"]="0" df["latitude"]=df["Latitude"] df["longitude"]=df["Longitude"] df["crs"]="" df["z_coordinate"]="" df["z_coordinate_type"]="" df["observation_height_above_station_surface"]="" df["observed_variable"]="" df["secondary_variable"]="" df["observation_value"]="" df["value_significance"]="12" df["secondary_value"]="" df["units"]="" df["code_table"]="" df["conversion_flag"]="" df["location_method"]="" df["location_precision"]="" df["z_coordinate_method"]="" df["bbox_min_longitude"]="" df["bbox_max_longitude"]="" df["bbox_min_latitude"]="" df["bbox_max_latitude"]="" df["spatial_representativeness"]="" df["original_code_table"]="" df["quality_flag"]="" df["numerical_precision"]="" df["sensor_id"]="" df["sensor_automation_status"]="" df["exposure_of_sensor"]="" df["original_precision"]="" df["original_units"]="" df["original_code_table"]="" df["original_value"]="" df["conversion_method"]="" df["processing_code"]="" df["processing_level"]="0" df["adjustment_id"]="" df["traceability"]="" df["advanced_qc"]="" df["advanced_uncertainty"]="" df["advanced_homogenisation"]="" df["advanced_assimilation_feedback"]="" df["source_id"]="" df["source_record_id"]="" df["primary_station_id"]=df["Station_ID"] df["Timestamp2"] = df["Year"].map(str) + "-" + df["Month"].map(str)+ "-" + df["Day"].map(str) df["Seconds"]="00" df["offset"]="+00" df["date_time"] = df["Timestamp2"].map(str)+ " " + df["Hour"].map(str)+":"+df["Minute"].map(str)+":"+df["Seconds"].map(str) df['date_time'] = pd.to_datetime(df['date_time'], format='%Y/%m/%d' " ""%H:%M") df['date_time'] = df['date_time'].astype('str') df.date_time = df.date_time + '+00' #========================================================================================= ##convert temperature changes for each variable dft = df[["observation_id","report_id","data_policy_licence","date_time", "date_time_meaning","observation_duration","longitude","latitude", "crs","z_coordinate","z_coordinate_type","observation_height_above_station_surface", "observed_variable","secondary_variable","observation_value", "value_significance","secondary_value","units","code_table", "conversion_flag","location_method","location_precision", "z_coordinate_method","bbox_min_longitude","bbox_max_longitude", "bbox_min_latitude","bbox_max_latitude","spatial_representativeness", "quality_flag","numerical_precision","sensor_id","sensor_automation_status", "exposure_of_sensor","original_precision","original_units", "original_code_table","original_value","conversion_method", "processing_code","processing_level","adjustment_id","traceability", "advanced_qc","advanced_uncertainty","advanced_homogenisation", "advanced_assimilation_feedback","source_id","primary_station_id"]] ##change for each variable to convert to cdm compliant values dft["observation_value"]=df["temperature"]+273.15 dft["source_id"]=df["temperature_Source_Code"] dft["Seconds"]="00" dft["quality_flag"]=df["temperature_QC_flag"] dft["qc_method"]=dft["quality_flag"] dft["conversion_flag"]="0" dft["conversion_method"]="1" dft["numerical_precision"]="0.01" dft["original_precision"]="0.1" dft["original_units"]="60" dft["original_value"]=df["temperature"] dft["observation_height_above_station_surface"]="2" dft["units"]="5" dft["observed_variable"]="85" ##set quality flag from df master for variable and fill all nan with Null then change all nonnan to dft.loc[dft['quality_flag'].notnull(), "quality_flag"] = 1 dft = dft.fillna("Null") dft.quality_flag[dft.quality_flag == "Null"] = 0 #change for each variable if required ##remove unwanted mising data rows dft = dft.fillna("null") dft = dft.replace({"null":"-99999"}) dft = dft[dft.observation_value != -99999] #df = df.astype(str) dft["source_id"] = pd.to_numeric(dft["source_id"],errors='coerce') #df = df.astype(str) #concatenate columns for joining df for next step dft['source_id'] = dft['source_id'].astype(str).apply(lambda x: x.replace('.0','')) dft['primary_station_id_2']=dft['primary_station_id'].astype(str)+'-'+dft['source_id'].astype(str) dft["observation_value"] = pd.to_numeric(dft["observation_value"],errors='coerce') #dft.to_csv("ttest.csv", index=False, sep=",") ###add data policy and record number to df df2=pd.read_csv("D:/Python_CDM_conversion/new recipe tables/record_id.csv") dft = dft.astype(str) df2 = df2.astype(str) dft= df2.merge(dft, on=['primary_station_id_2']) dft['data_policy_licence'] = dft['data_policy_licence_x'] dft['data_policy_licence'] = dft['data_policy_licence'].astype(str).apply(lambda x: x.replace('.0','')) dft['observation_id']=dft['primary_station_id'].astype(str)+'-'+dft['record_number'].astype(str)+'-'+dft['date_time'].astype(str) dft['observation_id'] = dft['observation_id'].str.replace(r' ', '-') ##remove unwanted last twpo characters dft['observation_id'] = dft['observation_id'].str[:-6] dft["observation_id"]=dft["observation_id"]+'-'+dft['observed_variable'].astype(str)+'-'+dft['value_significance'].astype(str) dft["report_id"]=dft["observation_id"].str[:-6] ##set up qc table dft = dft[["observation_id","report_id","data_policy_licence","date_time", "date_time_meaning","observation_duration","longitude","latitude", "crs","z_coordinate","z_coordinate_type","observation_height_above_station_surface", "observed_variable","secondary_variable","observation_value", "value_significance","secondary_value","units","code_table", "conversion_flag","location_method","location_precision", "z_coordinate_method","bbox_min_longitude","bbox_max_longitude", "bbox_min_latitude","bbox_max_latitude","spatial_representativeness", "quality_flag","numerical_precision","sensor_id","sensor_automation_status", "exposure_of_sensor","original_precision","original_units", "original_code_table","original_value","conversion_method", "processing_code","processing_level","adjustment_id","traceability", "advanced_qc","advanced_uncertainty","advanced_homogenisation", "advanced_assimilation_feedback","source_id"]] df.dropna(subset = ["observation_value"], inplace=True) dft['source_id'] = dft['source_id'].astype(str).apply(lambda x: x.replace('.0','')) dft['data_policy_licence'] = dft['data_policy_licence'].astype(str).apply(lambda x: x.replace('.0','')) dft["source_id"] = pd.to_numeric(dft["source_id"],errors='coerce') dft["observation_value"] = pd.to_numeric(dft["observation_value"],errors='coerce') dft["observation_value"]= dft["observation_value"].round(2) #dft.to_csv("isuest.csv", index=False, sep=",") #================================================================================= ##convert dew point temperature changes for each variable dfdpt= df[["observation_id","report_id","data_policy_licence","date_time", "date_time_meaning","observation_duration","longitude","latitude", "crs","z_coordinate","z_coordinate_type","observation_height_above_station_surface", "observed_variable","secondary_variable","observation_value", "value_significance","secondary_value","units","code_table", "conversion_flag","location_method","location_precision", "z_coordinate_method","bbox_min_longitude","bbox_max_longitude", "bbox_min_latitude","bbox_max_latitude","spatial_representativeness", "quality_flag","numerical_precision","sensor_id","sensor_automation_status", "exposure_of_sensor","original_precision","original_units", "original_code_table","original_value","conversion_method", "processing_code","processing_level","adjustment_id","traceability", "advanced_qc","advanced_uncertainty","advanced_homogenisation", "advanced_assimilation_feedback","source_id","primary_station_id"]] ##change for each variable to convert to cdm compliant values dfdpt["observation_value"]=df["dew_point_temperature"]+273.15 dfdpt["source_id"]=df["dew_point_temperature_Source_Code"] dfdpt["Seconds"]="00" dfdpt["quality_flag"]=df["dew_point_temperature_QC_flag"] dfdpt["conversion_flag"]="0" dfdpt["conversion_method"]="1" dfdpt["numerical_precision"]="0.01" dfdpt["original_precision"]="0.1" dfdpt["original_units"]="60" dfdpt["original_value"]=df["dew_point_temperature"] dfdpt["observation_height_above_station_surface"]="2" dfdpt["units"]="5" dfdpt["observed_variable"]="36" ##set quality flag from df master for variable and fill all nan with Null then change all nonnan to dfdpt.loc[dfdpt['quality_flag'].notnull(), "quality_flag"] = 1 dfdpt= dfdpt.fillna("Null") dfdpt.quality_flag[dfdpt.quality_flag == "Null"] = 0 ##remove unwanted mising data rows dfdpt= dfdpt.fillna("null") dfdpt= dfdpt.replace({"null":"-99999"}) dfdpt= dfdpt[dfdpt.observation_value != -99999] #df = df.astype(str) dfdpt["source_id"] = pd.to_numeric(dfdpt["source_id"],errors='coerce') #df = df.astype(str) #concatenate columns for joining df for next step dfdpt['source_id'] = dfdpt['source_id'].astype(str).apply(lambda x: x.replace('.0','')) dfdpt['primary_station_id_2']=dfdpt['primary_station_id'].astype(str)+'-'+dfdpt['source_id'].astype(str) dfdpt["observation_value"] = pd.to_numeric(dfdpt["observation_value"],errors='coerce') #dfdpt.to_csv("ttest.csv", index=False, sep=",") ###add data policy and record number to df df2=pd.read_csv("D:/Python_CDM_conversion/new recipe tables/record_id.csv") dfdpt= dfdpt.astype(str) df2 = df2.astype(str) dfdpt= df2.merge(dfdpt, on=['primary_station_id_2']) dfdpt['data_policy_licence'] = dfdpt['data_policy_licence_x'] dfdpt['data_policy_licence'] = dfdpt['data_policy_licence'].astype(str).apply(lambda x: x.replace('.0','')) dfdpt['observation_id']=dfdpt['primary_station_id'].astype(str)+'-'+dfdpt['record_number'].astype(str)+'-'+dfdpt['date_time'].astype(str) dfdpt['observation_id'] = dfdpt['observation_id'].str.replace(r' ', '-') ##remove unwanted last twpo characters dfdpt['observation_id'] = dfdpt['observation_id'].str[:-6] dfdpt["observation_id"]=dfdpt["observation_id"]+'-'+dfdpt['observed_variable'].astype(str)+'-'+dfdpt['value_significance'].astype(str) dfdpt["report_id"]=dfdpt["observation_id"].str[:-6] ##set up qc table dfdpt= dfdpt[["observation_id","report_id","data_policy_licence","date_time", "date_time_meaning","observation_duration","longitude","latitude", "crs","z_coordinate","z_coordinate_type","observation_height_above_station_surface", "observed_variable","secondary_variable","observation_value", "value_significance","secondary_value","units","code_table", "conversion_flag","location_method","location_precision", "z_coordinate_method","bbox_min_longitude","bbox_max_longitude", "bbox_min_latitude","bbox_max_latitude","spatial_representativeness", "quality_flag","numerical_precision","sensor_id","sensor_automation_status", "exposure_of_sensor","original_precision","original_units", "original_code_table","original_value","conversion_method", "processing_code","processing_level","adjustment_id","traceability", "advanced_qc","advanced_uncertainty","advanced_homogenisation", "advanced_assimilation_feedback","source_id"]] dfdpt.dropna(subset = ["observation_value"], inplace=True) dfdpt['source_id'] = dfdpt['source_id'].astype(str).apply(lambda x: x.replace('.0','')) dfdpt['data_policy_licence'] = dfdpt['data_policy_licence'].astype(str).apply(lambda x: x.replace('.0','')) dfdpt["source_id"] = pd.to_numeric(dfdpt["source_id"],errors='coerce') dfdpt["observation_value"] = pd.to_numeric(dfdpt["observation_value"],errors='coerce') dfdpt["observation_value"]= dfdpt["observation_value"].round(2) #==================================================================================== #convert station level to cdmlite dfslp = df[["observation_id","report_id","data_policy_licence","date_time", "date_time_meaning","observation_duration","longitude","latitude", "crs","z_coordinate","z_coordinate_type","observation_height_above_station_surface", "observed_variable","secondary_variable","observation_value", "value_significance","secondary_value","units","code_table", "conversion_flag","location_method","location_precision", "z_coordinate_method","bbox_min_longitude","bbox_max_longitude", "bbox_min_latitude","bbox_max_latitude","spatial_representativeness", "quality_flag","numerical_precision","sensor_id","sensor_automation_status", "exposure_of_sensor","original_precision","original_units", "original_code_table","original_value","conversion_method", "processing_code","processing_level","adjustment_id","traceability", "advanced_qc","advanced_uncertainty","advanced_homogenisation", "advanced_assimilation_feedback","source_id","primary_station_id"]] ##change for each variable to convert to cdm compliant values dfslp["observation_value"]=df["station_level_pressure"] dfslp["source_id"]=df["station_level_pressure_Source_Code"] dfslp["Seconds"]="00" dfslp["quality_flag"]=df["station_level_pressure_QC_flag"] dfslp["conversion_flag"]="0" dfslp["conversion_method"]="7" dfslp["numerical_precision"]="10" dfslp["original_precision"]="0.1" dfslp["original_units"]="530" dfslp["original_value"]=df["station_level_pressure"] dfslp["observation_height_above_station_surface"]="2" dfslp["units"]="32" dfslp["observed_variable"]="57" ##set quality flag from df master for variable and fill all nan with Null then change all nonnan to dfslp.loc[dfslp['quality_flag'].notnull(), "quality_flag"] = 1 dfslp = dfslp.fillna("Null") dfslp.quality_flag[dfslp.quality_flag == "Null"] = 0 #change for each variable if required ##remove unwanted mising data rows dfslp = dfslp.fillna("null") dfslp = dfslp.replace({"null":"-99999"}) dfslp = dfslp[dfslp.observation_value != -99999] #df = df.astype(str) dfslp["source_id"] = pd.to_numeric(dfslp["source_id"],errors='coerce') #df = df.astype(str) #concatenate columns for joining df for next step dfslp['source_id'] = dfslp['source_id'].astype(str).apply(lambda x: x.replace('.0','')) dfslp['primary_station_id_2']=dfslp['primary_station_id'].astype(str)+'-'+dfslp['source_id'].astype(str) dfslp["observation_value"] = pd.to_numeric(dfslp["observation_value"],errors='coerce') #dfslp.to_csv("ttest.csv", index=False, sep=",") ###add data policy and record number to df df2=pd.read_csv("D:/Python_CDM_conversion/new recipe tables/record_id.csv") dfslp = dfslp.astype(str) df2 = df2.astype(str) dfslp= df2.merge(dfslp, on=['primary_station_id_2']) dfslp['data_policy_licence'] = dfslp['data_policy_licence_x'] dfslp['data_policy_licence'] = dfslp['data_policy_licence'].astype(str).apply(lambda x: x.replace('.0','')) dfslp['observation_id']=dfslp['primary_station_id'].astype(str)+'-'+dfslp['record_number'].astype(str)+'-'+dfslp['date_time'].astype(str) dfslp['observation_id'] = dfslp['observation_id'].str.replace(r' ', '-') ##remove unwanted last twpo characters dfslp['observation_id'] = dfslp['observation_id'].str[:-6] dfslp["observation_id"]=dfslp["observation_id"]+'-'+dfslp['observed_variable'].astype(str)+'-'+dfslp['value_significance'].astype(str) dfslp["report_id"]=dfslp["observation_id"].str[:-6] ##set up qc table dfslp = dfslp[["observation_id","report_id","data_policy_licence","date_time", "date_time_meaning","observation_duration","longitude","latitude", "crs","z_coordinate","z_coordinate_type","observation_height_above_station_surface", "observed_variable","secondary_variable","observation_value", "value_significance","secondary_value","units","code_table", "conversion_flag","location_method","location_precision", "z_coordinate_method","bbox_min_longitude","bbox_max_longitude", "bbox_min_latitude","bbox_max_latitude","spatial_representativeness", "quality_flag","numerical_precision","sensor_id","sensor_automation_status", "exposure_of_sensor","original_precision","original_units", "original_code_table","original_value","conversion_method", "processing_code","processing_level","adjustment_id","traceability", "advanced_qc","advanced_uncertainty","advanced_homogenisation", "advanced_assimilation_feedback","source_id"]] ##make sure no decimal places an dround value to reuqred decimal places dfslp['observation_value'] = dfslp['observation_value'].map(float) dfslp['observation_value'] = (dfslp['observation_value']*100) dfslp['observation_value'] = dfslp['observation_value'].map(int) dfslp['source_id'] = dfslp['source_id'].astype(str).apply(lambda x: x.replace('.0','')) dfslp['data_policy_licence'] = dfslp['data_policy_licence'].astype(str).apply(lambda x: x.replace('.0','')) dfslp["source_id"] = pd.to_numeric(dfslp["source_id"],errors='coerce') dfslp['observation_value'] = dfslp['observation_value'].astype(str).apply(lambda x: x.replace('.0','')) #dfslp.to_csv("slp.csv", index=False, sep=",") #=========================================================================================== #convert sea level presure to cdmlite dfmslp = df[["observation_id","report_id","data_policy_licence","date_time", "date_time_meaning","observation_duration","longitude","latitude", "crs","z_coordinate","z_coordinate_type","observation_height_above_station_surface", "observed_variable","secondary_variable","observation_value", "value_significance","secondary_value","units","code_table", "conversion_flag","location_method","location_precision", "z_coordinate_method","bbox_min_longitude","bbox_max_longitude", "bbox_min_latitude","bbox_max_latitude","spatial_representativeness", "quality_flag","numerical_precision","sensor_id","sensor_automation_status", "exposure_of_sensor","original_precision","original_units", "original_code_table","original_value","conversion_method", "processing_code","processing_level","adjustment_id","traceability", "advanced_qc","advanced_uncertainty","advanced_homogenisation", "advanced_assimilation_feedback","source_id","primary_station_id"]] ##change for each variable to convert to cdm compliant values dfmslp["observation_value"]=df["sea_level_pressure"] dfmslp["source_id"]=df["sea_level_pressure_Source_Code"] dfmslp["Seconds"]="00" dfmslp["quality_flag"]=df["sea_level_pressure_QC_flag"] dfmslp["conversion_flag"]="0" dfmslp["conversion_method"]="7" dfmslp["numerical_precision"]="10" dfmslp["original_precision"]="0.1" dfmslp["original_units"]="530" dfmslp["original_value"]=df["temperature"] dfmslp["observation_height_above_station_surface"]="2" dfmslp["units"]="32" dfmslp["observed_variable"]="58" ##set quality flag from df master for variable and fill all nan with Null then change all nonnan to dfmslp.loc[dfmslp['quality_flag'].notnull(), "quality_flag"] = 1 dfmslp = dfmslp.fillna("null") dfmslp.quality_flag[dfmslp.quality_flag == "Null"] = 0 #change for each variable if required ##remove unwanted mising data rows dfmslp = dfmslp.fillna("null") dfmslp = dfmslp.replace({"null":"-99999"}) dfmslp = dfmslp[dfmslp.observation_value != -99999] #df = df.astype(str) dfmslp["source_id"] = pd.to_numeric(dfmslp["source_id"],errors='coerce') #df = df.astype(str) #concatenate columns for joining df for next step dfmslp['source_id'] = dfmslp['source_id'].astype(str).apply(lambda x: x.replace('.0','')) dfmslp['primary_station_id_2']=dfmslp['primary_station_id'].astype(str)+'-'+dfmslp['source_id'].astype(str) dfmslp["observation_value"] = pd.to_numeric(dfmslp["observation_value"],errors='coerce') #dfmslp.to_csv("ttest.csv", index=False, sep=",") ###add data policy and record number to df df2=
pd.read_csv("D:/Python_CDM_conversion/new recipe tables/record_id.csv")
pandas.read_csv
# Lint as: python3 # Copyright 2020 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for client.""" import os from typing import List import csv import tempfile import unittest import mock import pandas as pd from tfrecorder import client from tfrecorder import constants from tfrecorder import test_utils class ClientTest(unittest.TestCase): """Misc tests for `client` module.""" def setUp(self): self.test_df = test_utils.get_test_df() self.test_region = 'us-central1' self.test_project = 'foo' @mock.patch('tfrecorder.client.beam_pipeline') def test_create_tfrecords_direct_runner(self, mock_beam): """Tests `create_tfrecords` Direct case.""" mock_beam.build_pipeline().run().wait_until_finished.return_value = { 'rows':6} r = client.create_tfrecords( self.test_df, runner='DirectRunner', output_dir='/tmp/direct_runner') self.assertTrue('metrics' in r) @mock.patch('tfrecorder.client.beam_pipeline') def test_create_tfrecords_dataflow_runner(self, mock_beam): """Tests `create_tfrecords` Dataflow case.""" mock_beam.build_pipeline().run().job_id.return_value = 'foo_id' df2 = self.test_df.copy() df2[constants.IMAGE_URI_KEY] = 'gs://' + df2[constants.IMAGE_URI_KEY] outdir = '/tmp/dataflow_runner' expected = { 'job_id': 'foo_id', 'dataflow_url': 'https://console.cloud.google.com/dataflow/jobs/' + 'us-central1/foo_id?project=foo'} os.makedirs(outdir, exist_ok=True) r = client.create_tfrecords( df2, runner='DataflowRunner', output_dir=outdir, region=self.test_region, project=self.test_project) self.assertEqual(r, expected) # pylint: disable=protected-access class InputValidationTest(unittest.TestCase): """'Tests for validation input data.""" def setUp(self): self.test_df = test_utils.get_test_df() self.test_region = 'us-central1' self.test_project = 'foo' def test_valid_dataframe(self): """Tests valid DataFrame input.""" self.assertIsNone( client._validate_data( self.test_df)) def test_missing_image(self): """Tests missing image column.""" with self.assertRaises(AttributeError): df2 = self.test_df.copy() df2.drop('image_uri', inplace=True, axis=1) client._validate_data(df2) def test_missing_label(self): """Tests missing label column.""" with self.assertRaises(AttributeError): df2 = self.test_df.copy() df2.drop('label', inplace=True, axis=1) client._validate_data(df2) def test_missing_split(self): """Tests missing split column.""" with self.assertRaises(AttributeError): df2 = self.test_df.copy() df2.drop('split', inplace=True, axis=1) client._validate_data(df2) def test_columns_out_of_order(self): """Tests validating wrong column order.""" with self.assertRaises(AttributeError): df2 = self.test_df.copy() cols = ['image_uri', 'split', 'label'] df2 = df2[cols] client._validate_data(df2) def test_valid_runner(self): """Tests valid runner.""" self.assertIsNone(client._validate_runner( self.test_df, runner='DirectRunner', project=self.test_project, region=self.test_region)) def test_invalid_runner(self): """Tests invalid runner.""" with self.assertRaises(AttributeError): client._validate_runner( self.test_df, runner='FooRunner', project=self.test_project, region=self.test_region) def test_local_path_with_dataflow_runner(self): """Tests DataflowRunner conflict with local path.""" with self.assertRaises(AttributeError): client._validate_runner( self.df_test, runner='DataflowRunner', project=self.test_project, region=self.test_region) def test_gcs_path_with_dataflow_runner(self): """Tests DataflowRunner with GCS path.""" df2 = self.test_df.copy() df2[constants.IMAGE_URI_KEY] = 'gs://' + df2[constants.IMAGE_URI_KEY] self.assertIsNone( client._validate_runner( df2, runner='DataflowRunner', project=self.test_project, region=self.test_region)) def test_gcs_path_with_dataflow_runner_missing_param(self): """Tests DataflowRunner with missing required parameter.""" df2 = self.test_df.copy() df2[constants.IMAGE_URI_KEY] = 'gs://' + df2[constants.IMAGE_URI_KEY] for p, r in [ (None, self.test_region), (self.test_project, None), (None, None)]: with self.assertRaises(AttributeError) as context: client._validate_runner( df2, runner='DataflowRunner', project=p, region=r) self.assertTrue('DataflowRunner requires valid `project` and `region`' in repr(context.exception)) def _make_csv_tempfile(data: List[List[str]]) -> tempfile.NamedTemporaryFile: """Returns `NamedTemporaryFile` representing an image CSV.""" f = tempfile.NamedTemporaryFile(mode='w+t', suffix='.csv') writer = csv.writer(f, delimiter=',') for row in data: writer.writerow(row) f.seek(0) return f def get_sample_image_csv_data() -> List[List[str]]: """Returns sample CSV data in Image CSV format.""" data = test_utils.get_test_data() header = list(data.keys()) content = [list(row) for row in zip(*data.values())] return [header] + content class ReadCSVTest(unittest.TestCase): """Tests `read_csv`.""" def setUp(self): data = get_sample_image_csv_data() self.header = data.pop(0) self.sample_data = data def test_valid_csv_no_header_no_names_specified(self): """Tests a valid CSV without a header and no header names given.""" f = _make_csv_tempfile(self.sample_data) actual = client.read_csv(f.name, header=None) self.assertEqual(list(actual.columns), constants.IMAGE_CSV_COLUMNS) self.assertEqual(actual.values.tolist(), self.sample_data) def test_valid_csv_no_header_names_specified(self): """Tests valid CSV without a header, but header names are given.""" f = _make_csv_tempfile(self.sample_data) actual = client.read_csv(f.name, header=None, names=self.header) self.assertEqual(list(actual.columns), self.header) self.assertEqual(actual.values.tolist(), self.sample_data) def test_valid_csv_with_header_no_names_specified(self): """Tests valid CSV with header, and no header names given (inferred).""" f = _make_csv_tempfile([self.header] + self.sample_data) actual = client.read_csv(f.name) self.assertEqual(list(actual.columns), self.header) self.assertEqual(actual.values.tolist(), self.sample_data) def test_valid_csv_with_header_names_specified(self): """Tests valid CSV with header, and header names given (override).""" f = _make_csv_tempfile([self.header] + self.sample_data) actual = client.read_csv(f.name, names=self.header, header=0) self.assertEqual(list(actual.columns), self.header) self.assertEqual(actual.values.tolist(), self.sample_data) class ToDataFrameTest(unittest.TestCase): """Tests `to_dataframe`.""" def setUp(self) -> None: sample_data = get_sample_image_csv_data() columns = sample_data.pop(0) self.input_df = pd.DataFrame(sample_data, columns=columns) @mock.patch.object(client, 'read_csv', autospec=True) def test_input_csv(self, read_csv): """Tests valid input CSV file.""" expected = self.input_df read_csv.return_value = expected f = _make_csv_tempfile(get_sample_image_csv_data()) actual = client.to_dataframe(f.name) pd.testing.assert_frame_equal(actual, expected) def test_input_dataframe_no_names_specified(self): """Tests valid input dataframe with no header names specified.""" actual = client.to_dataframe(self.input_df) pd.testing.assert_frame_equal(actual, self.input_df) def test_input_dataframe_with_header(self): """Tests valid input dataframe with header specified.""" names = list(self.input_df.columns[0:-1]) actual = client.to_dataframe(self.input_df, names=names)
pd.testing.assert_frame_equal(actual, self.input_df[names])
pandas.testing.assert_frame_equal
from delphin_6_automation.database_interactions import general_interactions from delphin_6_automation.database_interactions import mongo_setup from delphin_6_automation.database_interactions.auth import auth_dict from delphin_6_automation.database_interactions import delphin_interactions from delphin_6_automation.database_interactions.db_templates import delphin_entry import os import pandas as pd mongo_setup.global_init(auth_dict) folder = r'U:\RIBuild\2D_1D\Results' simulated_id_folder = r'U:\RIBuild\2D_1D\Delphin Project\4A' def download(sim_obj): result_id = str(sim_obj.results_raw.id) general_interactions.download_raw_result(result_id, folder) delphin_interactions.download_delphin_entry(sim_obj, folder + f'/{result_id}') excel_frame = pd.DataFrame(columns=['Simulation ID', 'Result ID', 'Dimension', 'Brick Type', 'Plaster Type', 'Insulation Type', 'Acronym']) bricks1d = ['AltbauziegelDresdenZP', 'AltbauziegelDresdenZD', 'AltbauziegelRoteKasernePotsdamInnenziegel1', 'LimePlasterHist'] bricks2d = ['AltbauziegelDresdenZP', 'AltbauziegelDresdenZD', 'AltbauziegelRoteKasernePotsdamInnenziegel1'] plaster = ['LimeCementMortarHighCementRatio', 'LimeCementMortarLowCementRatio'] insulation = ['RemmersCalciumsilikatSchimmelsanierplatte2'] def create_acronym(dimension, brick, plaster, insulation): acronym = '' if brick == 'AltbauziegelDresdenZP': acronym += 'dresden_zp' elif brick == 'AltbauziegelDresdenZD': acronym += 'dresden_zd' elif brick == 'AltbauziegelRoteKasernePotsdamInnenziegel1': acronym += 'potsdam' elif brick == 'LimePlasterHist': acronym += 'mortar' if plaster == 'LimeCementMortarHighCementRatio': acronym += '_high_cement' elif plaster == 'LimeCementMortarLowCementRatio': acronym += '_low_cement' if insulation == 'RemmersCalciumsilikatSchimmelsanierplatte2': acronym += '_insulated' else: acronym += '_uninsulated' acronym += f'_36_4a_{dimension.lower()}' return acronym simulation_id = [] result_id = [] dimensions = [] brick_type = [] plaster_type = [] insulation_type = [] acronyms = [] for file in os.listdir(simulated_id_folder): if file.endswith('.txt'): file_obj = open(simulated_id_folder + '/' + file) lines = file_obj.readlines() for line in lines: entry = delphin_entry.Delphin.objects(id=line[:-1]).first() if entry.simulated and not os.path.exists(folder + f'\{str(entry.results_raw.id)}'): simulation_id.append(str(entry.id)) result_id.append(str(entry.results_raw.id)) dimensions.append(f"{entry.dimensions}D") for mat in entry.materials: if entry.dimensions == 1 and mat.material_name in bricks1d: brick_type.append(mat.material_name) elif mat.material_name in bricks2d: brick_type.append(mat.material_name) plaster_type.append(' '.join([mat.material_name for mat in entry.materials if mat.material_name in plaster])) insulation_type.append(' '.join([mat.material_name for mat in entry.materials if mat.material_name in insulation])) acronyms.append(create_acronym(dimensions[-1], brick_type[-1], plaster_type[-1], insulation_type[-1])) print(f"Simulation ID: {str(entry.id)}, Result ID: {str(entry.results_raw.id)}, " f"Materials: {' '.join([mat.material_name for mat in entry.materials])}, " f"Dimension: {entry.dimensions}\n") download(entry) excel_frame['Simulation ID'] = simulation_id excel_frame['Result ID'] = result_id excel_frame['Dimension'] = dimensions excel_frame['Plaster Type'] = plaster_type excel_frame['Brick Type'] = brick_type excel_frame['Insulation Type'] = insulation_type excel_frame['Acronym'] = acronyms writer =
pd.ExcelWriter(r'U:\RIBuild\2D_1D\4A_36_Acronyms.xlsx')
pandas.ExcelWriter
import numpy as np import pandas as pd import fiona import io from shapely import geometry import click from wit_tooling import query_wit_data def shape_list(key, values, shapefile): """ Get a generator of shapes from the given shapefile key: the key to match in 'properties' in the shape file values: a list of property values shapefile: the name of your shape file e.g. key='ORIGID', values=[1, 2, 3, 4, 5], shapefile='/g/data/r78/DEA_Wetlands/shapefiles/MDB_ANAE_Aug2017_modified_2019_SB_3577.shp' """ count = len(values) with fiona.open(shapefile) as allshapes: for shape in allshapes: shape_id = shape['properties'].get(key) if shape_id is None: continue if isinstance(shape_id, float): shape_id = int(shape_id) if shape_id in values: yield(shape_id, shape) count -= 1 if count <= 0: break def get_areas(features, pkey='SYSID'): """ Calculate the area of a list/generator of shapes input: features: a list of shapes indexed by the key output: a dataframe of area index by the key """ re = pd.DataFrame() for f in features: va = pd.DataFrame([[f[0], geometry.shape(f[1]['geometry']).area/1e4]], columns=[pkey, 'area']) re = re.append(va, sort=False) return re.set_index(pkey) def dump_wit_data(key, feature_list, output, batch=-1): """ dump wit data from the database into a file input: key: Name to id the polygon feature_list: a list or generator of features output: a csv file to save all the wit data """ count = 0 if batch > 0: fname = output.split('.')[0] sub_fname = fname + '_0.csv' appendix = 0 else: sub_fname = output for f_id, f in feature_list: _, wit_data = query_wit_data(f) csv_buf = io.StringIO() wit_df = pd.DataFrame(data=wit_data, columns=['TIME', 'BS', 'NPV', 'PV', 'WET', 'WATER']) wit_df.insert(0, key, f_id) wit_df.to_csv(csv_buf, index=False, header=False) csv_buf.seek(0) with open(sub_fname, 'a') as f: f.write(csv_buf.read()) if batch < 0: continue count += 1 if count >= batch: with open(sub_fname, 'a') as f: f.write(','.join(list(wit_df.columns))) count = 0 appendix += 1 sub_fname = fname + '_' + str(appendix) + '.csv' if count < batch or batch < 0: with open(sub_fname, 'a') as f: f.write(','.join(list(wit_df.columns))) def annual_metrics(wit_data, members=['PV', 'WET', 'WATER', 'BS', 'NPV', ['NPV', 'PV', 'WET'], ['PV', 'WET'], ['WATER', 'WET']], threshold=[25, 75], pkey='SYSID'): """ Compute the annual max, min, mean, count with given wit data, members and threshold input: wit_data: dataframe of WIT members: the elements which the metrics are computed against, can be a column from wit_data, e.g. 'PV' or the sum of wit columns, e.g. ['WATER', 'WET'] threshold: a list of thresholds such that (elements >= threshold[i]) is True, where i = 0, 1...len(threshold)-1 output: dataframe of metrics """ years = wit_data['TIME'] i = 0 wit_df = wit_data.copy(deep=True) for m in members: if isinstance(m, list): wit_df.insert(wit_df.columns.size+i, '+'.join(m), wit_df[m].sum(axis=1)) years = pd.DatetimeIndex(wit_df['TIME']).year.unique() shape_id_list = wit_df[pkey].unique() #shane changed 4 to 5 to accomodate median added below wit_metrics = [pd.DataFrame()] * 5 for y in years: wit_yearly = wit_df[pd.DatetimeIndex(wit_df['TIME']).year==y].drop(columns=['TIME']).groupby(pkey).max() wit_yearly.insert(0, 'YEAR', y) wit_yearly = wit_yearly.rename(columns={n: n+'_max' for n in wit_yearly.columns[1:]}) wit_metrics[0] = wit_metrics[0].append(wit_yearly, sort=False) for y in years: wit_yearly = wit_df[pd.DatetimeIndex(wit_df['TIME']).year==y].drop(columns=['TIME']).groupby(pkey).min() wit_yearly.insert(0, 'YEAR', y) wit_yearly = wit_yearly.rename(columns={n: n+'_min' for n in wit_yearly.columns[1:]}) wit_metrics[1] = wit_metrics[1].append(wit_yearly, sort=False) for y in years: wit_yearly = wit_df[pd.DatetimeIndex(wit_df['TIME']).year==y].drop(columns=['TIME']).groupby(pkey).mean() wit_yearly.insert(0, 'YEAR', y) wit_yearly = wit_yearly.rename(columns={n: n+'_mean' for n in wit_yearly.columns[1:]}) wit_metrics[2] = wit_metrics[2].append(wit_yearly, sort=False) #*********************** START ADDED BY SHANE *********************** #adding median for y in years: wit_yearly = wit_df[
pd.DatetimeIndex(wit_df['TIME'])
pandas.DatetimeIndex
"""Plots graphs of timings""" import matplotlib.pyplot as plt import pandas as pd import seaborn as sns def main(): """Saves plots of benchmarks to disk""" io_df = pd.read_csv("benchmark_timings_iolimited.csv") cpu_df = pd.read_csv("benchmark_timings_cpulimited.csv") def plot(df, title): """plots graphs of timings""" df["groupname"] = df.groupname.str.split("_benchmark", expand=True)[0] sns.set(font_scale=1.30) def barplot_err(x, y, xerr=None, yerr=None, data=None, **kwargs): """Plot a bar graph with hand defined symmetrical error bars""" _data = [] for _i in data.index: _data_i =
pd.concat([data.loc[_i:_i]] * 3, ignore_index=True, sort=False)
pandas.concat
import pandas as pd import os import config import models from sqlalchemy.orm import sessionmaker session = sessionmaker(bind=config.ENGINE)() manual_themes = 'manual_themes' cleaned_themes = 'cleaned_themes' manual_territories = 'territories' cleaned_territories = 'cleaned_territories' comment_col = 'comment' territory_col = 'territories' territory_theme_type = 'МР/ГО' def split_names(text): if pd.isnull(text): return [] names = text.replace(';', ',').replace(':', ',').split(',') return names def get_df_with_cleaned_names(df, from_col, to_col): names = [] for idx, row in df.iterrows(): names.append(split_names(row[from_col])) df[to_col] = names return df def manual_themes_to_database(df): for idx, row in df.iterrows(): comment = session.query(models.Comment).filter(models.Comment.text == row[comment_col]).first() if comment and (row[cleaned_themes] or row[cleaned_themes]): for theme_name in row[cleaned_themes]: theme = models.get_or_create(session, models.Theme, name=theme_name.strip())[0] theme_comment = models.get_or_create(session, models.ThemeComment, theme_id=theme.id, comment_id=comment.id)[0] for territory in row[cleaned_territories]: theme_type = models.get_or_create(session, models.ThemeType, name=territory_theme_type)[0] theme = models.get_or_create(session, models.Theme, name=theme_name.strip(), theme_type_id=theme_type.id)[0] theme_comment = models.get_or_create(session, models.ThemeComment, theme_id=theme.id, comment_id=comment.id)[0] session.commit() def get_dataframes_from_directory(directory='./'): dataframes = [] for subdir, dirs, files in os.walk(directory): for file in files: if file.endswith('.xlsx'): df = pd.read_excel(file) df_cleaned = get_df_with_cleaned_names(df, manual_themes, cleaned_themes) df_cleaned = get_df_with_cleaned_names(df_cleaned, manual_territories, cleaned_territories) dataframes.append(df_cleaned) return dataframes def get_dataframe_from_database(): sql = '''SELECT comment_id, theme_id, theme.name FROM public.theme_comment LEFT JOIN theme ON theme.id = theme_id''' data = session.execute(sql).fetchall() df = pd.DataFrame(data) return df if __name__ == '__main__': dataframes = get_dataframes_from_directory() df =
pd.concat([df[[cleaned_themes, cleaned_territories, comment_col]] for df in dataframes])
pandas.concat
# Copyright (c) 2020 ING Bank N.V. # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. from ..utils import NotFittedError, UnsupportedModelError import numpy as np import pandas as pd import copy from sklearn.cluster import KMeans from probatus.utils import shap_helpers def return_confusion_metric(y_true, y_score, normalize = False): """ Computes a confusion metric as absolute difference between the y_true and y_score. If normalize eis set to tru, it will normalize y_score to the maximum value in the array Args: y_true: (np.ndarray or pd.Series) true targets y_score: (np.ndarray or pd.Series) model output normalize: boolean, normalize or not to the maximum value Returns: (np.ndarray or pd.Series) conflusion metric """ if normalize: y_score = y_score/y_score.max() return np.abs(y_true - y_score) class BaseInspector(object): def __init__(self, algotype, **kwargs): self.fitted = False self.algotype = algotype # TODO fix compilatiopn issue on for hdbscan # if algotype =='dbscan': # self.clusterer = hdbscan.HDBSCAN(prediction_data=True,**kwargs) if algotype =='kmeans': self.clusterer = KMeans(**kwargs) else: raise UnsupportedModelError("The algorithm {} is not supported".format(algotype)) def __repr__(self): repr_ = "{},\n\t{}".format(self.__class__.__name__,self.algotype) if self.fitted: repr_ += "\n\tTotal clusters {}".format(np.unique(self.clusterer.labels_).shape[0]) return repr_ def fit_clusters(self, X): """ Perform the fit of the clusters with the algorithm specified in the constructor Args: X: input features Returns: cluster labels """ self.clusterer.fit(X) self.fitted = True return self def predict_clusters(self,X): if not self.fitted: raise NotFittedError("Inspector not fitter. Run .fit()") labels = None if self.algotype == 'kmeans': labels = self.clusterer.predict(X) if self.algotype == 'dbscan': raise NotImplementedError("Implementation not finished (note the hdbscan package is not imported yet!)") #labels, strengths = hdbscan.approximate_predict(self.clusterer, X) return labels @staticmethod def assert_is_dataframe(df): if isinstance(df,pd.DataFrame): return df elif isinstance(df,np.ndarray) and len(df.shape)==2: return pd.DataFrame(df) else: raise NotImplementedError("Sorry, X needs to be a pd.DataFrame for for a 2 dimensional numpy array") @staticmethod def assert_is_series(series, index=None): if isinstance(series, pd.Series): return series elif isinstance(series, pd.DataFrame) and series.shape[1] == 1: return pd.Series(series.values.ravel(), index=series.index) elif isinstance(series, np.ndarray) and len(series.shape) == 1 and index is not None: return
pd.Series(series, index=index)
pandas.Series
import time # 引入time模块 import pandas as pd import re import sqlparse attributeNameArray = ['tableName', 'createTime', 'lastModifyTime', 'owner', 'rowNumber', 'columnNumber', 'primaryKey', 'uniqueKey', 'foreignKey', 'notNullColumn', 'indexColumn', 'columnDataType'] remarksList = ['表名', '创建时间', '最后修改时间', '所有者', '数据行数', '字段数', '主键', '唯一键', '外键', '不能为空字段', '索引字段', '数据类型'] # 这个函数是自己的拼接函数 str2TableClass 中会调用 def myConcat(array: list, separator: str): temp = "" for i in range(0, len(array)): temp += array[i] + separator temp = temp[:-1] return temp # 这个函数用来根据正则解析传入的create table指令 数据分解出来 tableinit 会调用 def str2TableClass(tempStr: str, tableName: str): tempStr = re.search(r"[(](.*)[)]", tempStr).group(1) # 拿到括号里的内容 primaryKey = "" uniqueKey = "" foreignKey = "" # primary key部分 p1 = re.search(r"primary key(.*?)[(](.*?)[)]", tempStr) # print(p1.group(0)) # print(p1.group(2) + " 主键值") if p1 is not None: primaryKey = p1.group(2).strip() primaryKeyList = primaryKey.split(",") for index, ele in enumerate(primaryKeyList): primaryKeyList[index] = ele.strip() primaryKey = myConcat(primaryKeyList, ",") tempStr = re.sub(r"primary key(.*?)[(](.*?)[)]", "", tempStr) # 删除primary key 防止影响到后边内容 # unique key部分 p2 = re.search(r"unique key(.*?)[(](.*?)[)]", tempStr) # print(p2.group(0)) # print(p2.group(2) + " 唯一键值") if p2 is not None: uniqueKey = p2.group(2) tempStr = re.sub(r"unique key(.*?)[(](.*?)[)]", "", tempStr) # foreign key部分 这里其实有bug foreign key 可以有多个 但是我这里 search方法只能找到一个 p3 = re.search(r"foreign key(.*?)[(](.*?)[)](.*?)references(.*?)[(](.*?)[)]", tempStr) # print(p2.group(0)) # print(p2.group(2) + " 当前表中值") # print(p2.group(4).strip() + " 被参考的表名") # print(p2.group(5).strip() + " 外表的键") if p3 is not None: foreignKey = p3.group(2) + "|" + p3.group(4).strip() + "|" + p3.group(5).strip() tempStr = re.sub(r"foreign key(.*?)[(](.*?)[)](.*?)references(.*?)[(](.*?)[)]", "", tempStr) # 分解 剩下的 这样里边全都是类似 school varchar not null 、 age int 或者是空格 的字符串 array = tempStr.split(",") tempArray = [] # 用于临时记录去除空格的形如 school varchar not null 这样的 columnCount = 0 # 用来计数有多少个字段 因为存在全是空格的字符串 for ele in array: if not ele.isspace(): # 自带函数 当全是空格的时候 为 true columnCount += 1 # 用来计数有多少个字段 因为存在全是空格的字符串 tempArray.append(ele.strip()) # 去除前后两边的空格 columnNameArray = [] # 字段名数组 columnDataTypeArray = [] # 字段类型数组 notNullColumn = [] # 设置了不空的字段 for ele in tempArray: p = re.search(r"(.*?)not( +)null", ele) if p is None: arrayAA = re.split(r" +", ele.strip()) else: arrayAA = re.split(r" +", p.group(1).strip()) notNullColumn.append(arrayAA[0]) # 将提取出来的 字段名 和 字段类型 添加进去 columnNameArray.append(arrayAA[0]) columnDataTypeArray.append(arrayAA[1]) uniqueKeyList = uniqueKey.strip().split(",") uniqueKey = myConcat(uniqueKeyList, ",") # myConcat是自己写的函数 将notNull的column拼接起来 形如 school,home notNullColumnStr = myConcat(notNullColumn, ",") notNullColumnStr += "," + primaryKey + "," +uniqueKey # 加上主键也不能为空 # 拼接成形如 id#int,name#varchar,age#int,school#varchar,home#varchar,aad#varchar 的字符串 # 前边是 字段名称 后边是字段类型 两者用#分割 不同字段之间用, 分割 temp = "" for i in range(0, len(columnNameArray)): temp += columnNameArray[i] + "#" + columnDataTypeArray[i] + "," columnDataTypeArrayStr = temp[:-1] # 构造一个类 很好用 print(tempStr) tableTemp = Table(tableName=tableName, createTime=time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()), lastModifyTime=time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()), owner="root", rowNumber=0, columnNumber=columnCount, primaryKey=primaryKey, uniqueKey=uniqueKey, foreignKey=foreignKey, notNullColumn=notNullColumnStr, indexColumn="", columnDataType=columnDataTypeArrayStr) # 将一些信息存入类中 后边还会用 tableTemp.columnNameArray = columnNameArray tableTemp.columnDataTypeArray = columnDataTypeArray return tableTemp # 用来进行表的初始化 主要做的就是提取数据 然后把相关信息写入excel表中去 def tableInit(databaseLocation: str, databaseName: str, currentIndex: int, tokens): for index in range(currentIndex, len(tokens)): while str(tokens[index].ttype) != "None": index += 1 tableName = str(tokens[index].tokens[0]) tempStr = str(tokens[index]) break # 引入writer 防止覆盖 这样可以向两个工作表(sheet)中写入信息 src = databaseLocation + "\\" + databaseName.upper() + "\\" + tableName + ".xlsx" writer = pd.ExcelWriter(src, engine='openpyxl') initTableAttributeObject = str2TableClass(tempStr, tableName) tempArray = list(range(1, len(attributeNameArray) + 1)) # 索引列需要 s1 = pd.Series(tempArray, index=tempArray, name="index") # 索引列 一共需要12个属性 s2 = pd.Series(attributeNameArray, index=tempArray, name="attribute") # 属性名列 s3 = pd.Series(initTableAttributeObject.toArray(), index=tempArray, name="value") # 这个是最麻烦的 注意调用了 Table类的toArray方法 s4 = pd.Series(remarksList, index=tempArray, name="备注") # 备注列 这个是写死的 attributeDf = pd.DataFrame({s1.name: s1, s2.name: s2, s3.name: s3, s4.name: s4}) # 插入4列 attributeDf = attributeDf.set_index("index") # 设置索引 dataDf = pd.DataFrame(columns=initTableAttributeObject.columnNameArray) # 将内容写回excel表格 attributeDf.to_excel(writer, sheet_name="attribute") dataDf.to_excel(writer, sheet_name="data", index=False) writer.save() writer.close() return tableName # 返回创建表的名字 def checkSafety(attributeDf, dataDf, aa: list, dic): primaryKeyList: list = attributeDf["value"].at[6].strip().split(",") uniqueKeyList: list = attributeDf["value"].at[7].strip().split(",") notNullStrArray: list = attributeDf["value"].at[9].strip().split(",") error: str = "" # 检查 非空约束 primary key # print(notNullStrArray) for ele in notNullStrArray: if ele not in aa: # print("字段 " + ele + " 不能为空,插入失败") return "字段 " + ele + " 不能为空,插入失败" # 主键不能重复 for ele in primaryKeyList: dataDf = dataDf.loc[dataDf[ele].apply(lambda xx: str(xx) == dic[ele])] # print(dataDf) if dataDf.empty is False: # print("主键重复,请重试") return "主键重复,请重试" return error # 唯一键不能重复 # for ele in uniqueKeyList: # temp = dataDf.loc[dataDf[ele].apply(lambda xx: str(xx) == dic[ele])] # 这个函数是进行完整性校验无误后 将数据写入到excel表中 tableInsert会调用 def judgeAndInsert(src: str, aa: list, bb: list, all: list): # 注意这里的地址 还是相对于main.py 这个文件而言的 而不是相对于 本文件Table.py # print(aa) # print(bb) # aa 是需要插入列表字段列表 bb是值 writer = pd.ExcelWriter(src) dic = {} for index, ele in enumerate(bb): dic[aa[index]] = ele attributeDf = pd.read_excel(writer, sheet_name="attribute") # print(attributeDf) dataDf = pd.read_excel(writer, sheet_name="data", usecols=all) # print(dataDf) error = checkSafety(attributeDf, dataDf, aa, dic) if error != "": print(error) return dataDf = dataDf.append(dic, ignore_index=True) attributeDf["value"].at[2] = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) # 更新时间 attributeDf["value"].at[4] += 1 # 增加行数 attributeDf.to_excel(writer, sheet_name="attribute", index=False) dataDf.to_excel(writer, sheet_name="data", index=False) writer.save() writer.close() print("插入成功") # 提取关键词 比如 id > 20 key是 id algebraicSymbol 是 > 20是 value def getDataframeByRequirement(key, value, algebraicSymbol, dataframe: pd.DataFrame): #print(key) #print(value) #print(algebraicSymbol) tempDataFrame = None if algebraicSymbol == ">": tempDataFrame = dataframe.loc[dataframe[key].apply(lambda xx: xx > int(value))] if algebraicSymbol == ">=": tempDataFrame = dataframe.loc[dataframe[key].apply(lambda xx: xx >= int(value))] if algebraicSymbol == "<": tempDataFrame = dataframe.loc[dataframe[key].apply(lambda xx: xx < int(value))] if algebraicSymbol == "<=": tempDataFrame = dataframe.loc[dataframe[key].apply(lambda xx: xx <= int(value))] if algebraicSymbol == "=": tempDataFrame = dataframe.loc[dataframe[key].apply(lambda xx: str(xx) == str(value))] if algebraicSymbol == "!=": tempDataFrame = dataframe.loc[dataframe[key].apply(lambda xx: str(xx) != str(value))] return tempDataFrame # 根据表达式 得到一个字符串数组 里边有 tempList = [key, value, algebraicSymbol] def getKeyValueAndAlgebraicSymbol(expression: str): key = "" value = "" algebraicSymbol = "" if "=" in expression: equalIndex = expression.index("=") if expression[equalIndex - 1] == "!": algebraicSymbol = "!=" elif expression[equalIndex - 1] == ">": algebraicSymbol = ">=" elif expression[equalIndex - 1] == "<": algebraicSymbol = "<=" else: algebraicSymbol = "=" else: if ">" in expression: algebraicSymbol = ">" elif "<" in expression: algebraicSymbol = "<" key = (expression.split(algebraicSymbol))[0].strip() value = (expression.split(algebraicSymbol))[1].strip() tempList = [key, value, algebraicSymbol] return tempList # 根据where条件 拿到dataframe数据 def parseWhereGetDf(src: str, whereStr: str): dataDf = pd.read_excel(src, sheet_name="data") # strTemp3 = "sno< 20 and sno > 5 and sno >=10 and sno > 17 or sno < 12" # strTemp4 = "sno > 17 or sno < 12 " noOrDataDf = dataDf if whereStr == "": # print(dataDf) return dataDf else: andSplitStrArray = re.split(r" and ", whereStr) orList = [] for ele in andSplitStrArray: if " or " in ele: orSplitStrArray = re.split(r" or ", ele) orDfList = [] # 拿到所有的or 中的表达式 做一个交集 for factor in orSplitStrArray: tempArray = getKeyValueAndAlgebraicSymbol(factor) OrDataDf = getDataframeByRequirement(tempArray[0], tempArray[1], tempArray[2], dataDf) orDfList.append(OrDataDf) oneTempOrDf = orDfList[0] # 取所有的并集 用or隔开的表达式的并集 for element in orDfList: oneTempOrDf = pd.merge(oneTempOrDf, element, how="outer") # 取并集 orList.append(oneTempOrDf) else: tempArray = getKeyValueAndAlgebraicSymbol(ele) key = tempArray[0] value = tempArray[1] algebraicSymbol = tempArray[2] noOrDataDf = getDataframeByRequirement(key, value, algebraicSymbol, noOrDataDf) finallyDf = noOrDataDf # 举个例子 sno< 20 and sno > 5 and sno >=10 and sno > 17 or sno < 12 and sno > 17 or sno < 12 # orlist中有 2个元素 最终下方函数是对三个dataframe做交集 for ele in orList: finallyDf =
pd.merge(finallyDf, ele, how="inner")
pandas.merge
import pandas as pd import numpy as np df=pd.read_csv("Train.csv") df_test=
pd.read_csv("Test.csv")
pandas.read_csv
import arff import copy import json import logging import math import os import pandas as pd import warnings from functools import wraps from a2ml.api.utils import fsclient, get_uid, get_uid4, remove_dups_from_list, process_arff_line, download_file, retry_helper, parse_url from a2ml.api.utils.local_fsclient import LocalFSClient # To avoid warnings for inplace operation on datasets pd.options.mode.chained_assignment = None class DataFrame(object): BOOLEAN_WORDS_TRUE = ['yes', 'on'] BOOLEAN_WORDS_FALSE = ['no', 'off'] def __init__(self, options): self.options = options self.categoricals = {} self.transforms_log = [[],[],[],[]] self.df = None self.dataset_name = None self.loaded_columns = None self.from_pandas = False def _get_compression(self, extension): compression = self.options.get('data_compression', 'infer') if extension.endswith('.gz') or extension.endswith('.gzip'): compression = 'gzip' elif extension.endswith('.bz2'): compression = 'bz2' elif extension.endswith('.zip'): compression = 'zip' elif extension.endswith('.xz'): compression = 'xz' return compression @staticmethod def create_dataframe(data_path=None, records=None, features=None, reset_index=False): if data_path is not None: if isinstance(data_path, pd.DataFrame): ds = DataFrame({}) ds.df = data_path elif isinstance(data_path, DataFrame): ds = data_path elif isinstance(data_path, list): ds = DataFrame({}) ds.load_records(data_path) elif isinstance(data_path, dict): ds = DataFrame({}) if 'data' in data_path and 'columns' in data_path: ds.load_records(data_path['data'], features=data_path['columns']) else: ds.load_records(data_path) else: ds = DataFrame({'data_path': data_path}) ds.load(features = features) else: ds = DataFrame({}) ds.load_records(records, features=features) if reset_index and ds.df is not None: ds.df.reset_index(drop=True, inplace=True) # if data_path: # ds = DataFrame({'data_path': data_path}) # ds.load(features = features) # elif records is not None and isinstance(records, pd.DataFrame): # ds = DataFrame({}) # ds.df = records # if features: # ds.df = ds.df[features] # ds.from_pandas = True # else: # ds = DataFrame({}) # ds.load_records(records, features=features) return ds @staticmethod def load_from_files(files, features=None): for file in files: path = file if type(file) == str else file['path'] fsclient.wait_for_file(path, True) try: df = retry_helper(lambda: DataFrame.create_dataframe(path, None, features)) yield (file, df) except Exception as exc: logging.exception("load_from_files failed for: %s. Error: %s"%(path, exc)) @staticmethod def is_dataframe(data): return isinstance(data, pd.DataFrame) or isinstance(data, DataFrame) def load_from_file(self, path, features=None, nrows=None): from collections import OrderedDict extension = path if self.options.get('data_extension', 'infer') != 'infer': extension = self.options['data_extension'] if self.options.get('content_type') == 'multipart': fsclient.merge_folder_files(path) if extension.endswith('.arff') or extension.endswith('.arff.gz'): arffFile = None class ArffFile: def __init__(self, file): self.file = file self.date_attrs = {} def __iter__(self): return self def __next__(self): line = process_arff_line(next(self.file), self.date_attrs) return line try: with fsclient.open(path, 'r') as f: arffFile = ArffFile(f) arff_data = arff.load(arffFile, return_type=arff.COO) convert_arff = DataFrame._convert_arff_coo except arff.BadLayout: with fsclient.open(path, 'r') as f: arffFile = ArffFile(f) arff_data = arff.load(arffFile, return_type=arff.DENSE) convert_arff = DataFrame._convert_arff_dense columns = [a[0] for a in arff_data['attributes']] series = convert_arff(features, columns, arff_data['data']) res = pd.DataFrame.from_dict(OrderedDict( (c, s) for c, s in zip(columns, series) if s is not None )) for date_field, fmt in arffFile.date_attrs.items(): res[date_field] =
pd.to_datetime(res[date_field], infer_datetime_format=True, errors='ignore', utc=True)
pandas.to_datetime
import os import sys from subprocess import Popen, PIPE from tempfile import NamedTemporaryFile import happybase from mrjob.job import MRJob from mrjob.protocol import PickleProtocol # # mongo clients libs from pymongo import MongoClient, ASCENDING, DESCENDING # # Generic imports import glob import pandas as pd from json import load from datetime import datetime import ast import pickle from module_edinet._model_functions.gam_functions import set_r_environment, train_gaussian_mixture_model, prepare_dataframe, train_linear, clean_linear, predict_gaussian_mixture_model, predict_model import numpy as np import ast import zlib def calculate_frequency(dataset): if len(dataset.index) > 1: return (pd.Series(dataset.index[1:]) - pd.Series(dataset.index[:-1])).value_counts().index[0] else: return None class MRJob_align(MRJob): INTERNAL_PROTOCOL = PickleProtocol def mapper_init(self): fn = glob.glob('*.json') self.config = load(open(fn[0])) self.mongo = MongoClient(self.config['mongodb']['host'], self.config['mongodb']['port']) self.mongo[self.config['mongodb']['db']].authenticate( self.config['mongodb']['username'], self.config['mongodb']['password'] ) self.devices = self.config['devices'] def reducer_init(self): # recover json configuration uploaded with script fn = glob.glob('*.json') self.config = load(open(fn[0])) r_file = NamedTemporaryFile(delete=False, suffix='.R') sys.stderr.write(os.popen('whoami').read() ) with open('_model_functions/gam_functions.R', 'r') as rcode: r_file.write(bytes(rcode.read(), encoding="utf8")) set_r_environment(r_file.name) os.unlink(r_file.name) self.company = self.config['company'] self.devices = self.config['devices'] def mapper(self, _, doc): # emits modelling_units as key # emits deviceId, consumption, ts columns = [(x[0], x[1]) for x in self.config['hive']['final_table_fields']] ret = doc.split('\t') try: modelling_units = self.devices[ret[0]] except: return d = {} for i, c in enumerate(columns): if c[0] == "ts": d[c[0]] = datetime.fromtimestamp(float(ret[i])) elif c[1] == "float": try: d[c[0]] = float(ret[i]) except: d[c[0]] = np.NaN else: d[c[0]] = ret[i] for modelling_unit in modelling_units: yield modelling_unit, d def reducer(self, key, values): sys.stderr.write("calculating prediction\n") # obtain the needed info from the key modelling_unit, multipliers, lat, lon, timezone = key.split('~') lat = float(lat) lon = float(lon) multipliers = ast.literal_eval(multipliers) # string to dict multiplier = {} for i in multipliers: multiplier[i['deviceId']] = i['multiplier'] columns = [x[0] for x in self.config['hive']['final_table_fields']] df = pd.DataFrame.from_records(values, index='ts', columns=columns) energy_type = df.energyType.unique()[0] grouped = df.groupby('deviceId') df_new_hourly = None for device, data in grouped: if device not in multiplier.keys(): continue data = data[~data.index.duplicated(keep='last')] data = data.sort_index() if df_new_hourly is None: df_new_hourly = data[['value']] * multiplier[device] else: df_new_hourly += data[['value']] * multiplier[device] weather = df.drop(['value', 'energyType', 'deviceId'], axis=1) weather = weather[~weather.index.duplicated(keep='last')] df_new_hourly = df_new_hourly.join(weather) df_new_hourly = df_new_hourly[self.config['module_config']['model_features']] df_new_hourly = df_new_hourly.sort_index() df_value = df_new_hourly[['value']].resample('H').sum() df_weather = df_new_hourly[["temperature", "windSpeed", "GHI", "windBearing"]].resample('H').max() df_new_hourly = df_value.join(df_weather) sys.stderr.write("dataframe has been recovered\n") freq = calculate_frequency(df_new_hourly) whole_day_index = len(np.arange(
pd.Timedelta('1 days')
pandas.Timedelta
import decimal import numpy as np from numpy import iinfo import pytest import pandas as pd from pandas import to_numeric from pandas.util import testing as tm class TestToNumeric(object): def test_empty(self): # see gh-16302 s = pd.Series([], dtype=object) res = to_numeric(s) expected = pd.Series([], dtype=np.int64) tm.assert_series_equal(res, expected) # Original issue example res = to_numeric(s, errors='coerce', downcast='integer') expected = pd.Series([], dtype=np.int8) tm.assert_series_equal(res, expected) def test_series(self): s = pd.Series(['1', '-3.14', '7']) res = to_numeric(s) expected = pd.Series([1, -3.14, 7]) tm.assert_series_equal(res, expected) s = pd.Series(['1', '-3.14', 7]) res = to_numeric(s) tm.assert_series_equal(res, expected) def test_series_numeric(self): s = pd.Series([1, 3, 4, 5], index=list('ABCD'), name='XXX') res = to_numeric(s) tm.assert_series_equal(res, s) s = pd.Series([1., 3., 4., 5.], index=list('ABCD'), name='XXX') res = to_numeric(s) tm.assert_series_equal(res, s) # bool is regarded as numeric s = pd.Series([True, False, True, True], index=list('ABCD'), name='XXX') res = to_numeric(s) tm.assert_series_equal(res, s) def test_error(self): s = pd.Series([1, -3.14, 'apple']) msg = 'Unable to parse string "apple" at position 2' with pytest.raises(ValueError, match=msg): to_numeric(s, errors='raise') res = to_numeric(s, errors='ignore') expected = pd.Series([1, -3.14, 'apple']) tm.assert_series_equal(res, expected) res = to_numeric(s, errors='coerce') expected = pd.Series([1, -3.14, np.nan]) tm.assert_series_equal(res, expected) s = pd.Series(['orange', 1, -3.14, 'apple']) msg = 'Unable to parse string "orange" at position 0' with pytest.raises(ValueError, match=msg): to_numeric(s, errors='raise') def test_error_seen_bool(self): s = pd.Series([True, False, 'apple']) msg = 'Unable to parse string "apple" at position 2' with pytest.raises(ValueError, match=msg): to_numeric(s, errors='raise') res = to_numeric(s, errors='ignore') expected = pd.Series([True, False, 'apple']) tm.assert_series_equal(res, expected) # coerces to float res = to_numeric(s, errors='coerce') expected = pd.Series([1., 0., np.nan]) tm.assert_series_equal(res, expected) def test_list(self): s = ['1', '-3.14', '7'] res = to_numeric(s) expected = np.array([1, -3.14, 7]) tm.assert_numpy_array_equal(res, expected) def test_list_numeric(self): s = [1, 3, 4, 5] res = to_numeric(s) tm.assert_numpy_array_equal(res, np.array(s, dtype=np.int64)) s = [1., 3., 4., 5.] res = to_numeric(s) tm.assert_numpy_array_equal(res, np.array(s)) # bool is regarded as numeric s = [True, False, True, True] res = to_numeric(s) tm.assert_numpy_array_equal(res, np.array(s)) def test_numeric(self): s = pd.Series([1, -3.14, 7], dtype='O') res = to_numeric(s) expected = pd.Series([1, -3.14, 7]) tm.assert_series_equal(res, expected) s = pd.Series([1, -3.14, 7]) res = to_numeric(s) tm.assert_series_equal(res, expected) # GH 14827 df = pd.DataFrame(dict( a=[1.2, decimal.Decimal(3.14), decimal.Decimal("infinity"), '0.1'], b=[1.0, 2.0, 3.0, 4.0], )) expected = pd.DataFrame(dict( a=[1.2, 3.14, np.inf, 0.1], b=[1.0, 2.0, 3.0, 4.0], )) # Test to_numeric over one column df_copy = df.copy() df_copy['a'] = df_copy['a'].apply(to_numeric) tm.assert_frame_equal(df_copy, expected) # Test to_numeric over multiple columns df_copy = df.copy() df_copy[['a', 'b']] = df_copy[['a', 'b']].apply(to_numeric) tm.assert_frame_equal(df_copy, expected) def test_numeric_lists_and_arrays(self): # Test to_numeric with embedded lists and arrays df = pd.DataFrame(dict( a=[[decimal.Decimal(3.14), 1.0], decimal.Decimal(1.6), 0.1] )) df['a'] = df['a'].apply(to_numeric) expected = pd.DataFrame(dict( a=[[3.14, 1.0], 1.6, 0.1], )) tm.assert_frame_equal(df, expected) df = pd.DataFrame(dict( a=[np.array([decimal.Decimal(3.14), 1.0]), 0.1] )) df['a'] = df['a'].apply(to_numeric) expected = pd.DataFrame(dict( a=[[3.14, 1.0], 0.1], )) tm.assert_frame_equal(df, expected) def test_all_nan(self): s = pd.Series(['a', 'b', 'c']) res = to_numeric(s, errors='coerce') expected = pd.Series([np.nan, np.nan, np.nan]) tm.assert_series_equal(res, expected) @pytest.mark.parametrize("errors", [None, "ignore", "raise", "coerce"]) def test_type_check(self, errors): # see gh-11776 df = pd.DataFrame({"a": [1, -3.14, 7], "b": ["4", "5", "6"]}) kwargs = dict(errors=errors) if errors is not None else dict() error_ctx = pytest.raises(TypeError, match="1-d array") with error_ctx: to_numeric(df, **kwargs) def test_scalar(self): assert pd.to_numeric(1) == 1 assert pd.to_numeric(1.1) == 1.1 assert pd.to_numeric('1') == 1 assert pd.to_numeric('1.1') == 1.1 with pytest.raises(ValueError): to_numeric('XX', errors='raise') assert to_numeric('XX', errors='ignore') == 'XX' assert np.isnan(to_numeric('XX', errors='coerce')) def test_numeric_dtypes(self): idx = pd.Index([1, 2, 3], name='xxx') res = pd.to_numeric(idx) tm.assert_index_equal(res, idx) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(idx, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, idx.values) idx = pd.Index([1., np.nan, 3., np.nan], name='xxx') res = pd.to_numeric(idx) tm.assert_index_equal(res, idx) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(idx, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, idx.values) def test_str(self): idx = pd.Index(['1', '2', '3'], name='xxx') exp = np.array([1, 2, 3], dtype='int64') res = pd.to_numeric(idx) tm.assert_index_equal(res, pd.Index(exp, name='xxx')) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(exp, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, exp) idx = pd.Index(['1.5', '2.7', '3.4'], name='xxx') exp = np.array([1.5, 2.7, 3.4]) res =
pd.to_numeric(idx)
pandas.to_numeric
# Predict_Gesture_Twitch.py # Description: Recieved Data from ESP32 Micro via the AGRB-Training-Data-Capture.ino file, make gesture prediction and tell it to twitch # Written by: <NAME> # Created on July 13th 2020 import numpy as np import pandas as pd import datetime import re import os, os.path import time import random import tensorflow as tf import serial import socket import cfg PORT = "/dev/ttyUSB0" #PORT = "/dev/ttyUSB1" #PORT = "COM8" serialport = None serialport = serial.Serial(PORT, 115200, timeout=0.05) #load Model model = tf.keras.models.load_model('../Model/cnn_model.h5') #Creating our socket and passing on info for twitch sock = socket.socket() sock.connect((cfg.HOST,cfg.PORT)) sock.send("PASS {}\r\n".format(cfg.PASS).encode("utf-8")) sock.send("NICK {}\r\n".format(cfg.NICK).encode("utf-8")) sock.send("JOIN {}\r\n".format(cfg.CHAN).encode("utf-8")) sock.setblocking(0) #handling of some of the string characters in the twitch message chat_message = re.compile(r"^:\w+!\w+@\w+.tmi.twitch.tv PRIVMSG #\w+ :") #Lets create a new function that allows us to chat a little easier. Create two variables for the socket and messages to be passed in and then the socket send function with proper configuration for twitch messages. def chat(s,msg): s.send("PRIVMSG {} :{}\r\n".format(cfg.CHAN,msg).encode("utf-8")) #The next two functions allow for twitch messages from socket receive to be passed in and searched to parse out the message and the user who typed it. def getMSG(r): mgs = chat_message.sub("", r) return mgs def getUSER(r): try: user=re.search(r"\w+",r).group(0) except AttributeError: user ="tvheadbot" print(AttributeError) return user #Get Data from imu. Waits for incomming data and data stop def get_imu_data(): global serialport if not serialport: # open serial port serialport = serial.Serial(PORT, 115200, timeout=0.05) # check which port was really used print("Opened", serialport.name) # Flush input time.sleep(3) serialport.readline() # Poll the serial port line = str(serialport.readline(),'utf-8') if not line: return None vals = line.replace("Uni:", "").strip().split(',') if len(vals) != 7: return None try: vals = [float(i) for i in vals] except ValueError: return ValueError return vals # Create Reshape function for each row of the dataset def reshape_function(data): reshaped_data = tf.reshape(data, [-1, 3, 1]) return reshaped_data # header for the incomming data header = ["deltaTime","Acc_X","Acc_Y","Acc_Z","Gyro_X","Gyro_Y","Gyro_Z"] #Create a way to see the length of the data incomming, needs to be 760 points. Used for testing incomming data def dataFrameLenTest(data): df=
pd.DataFrame(data,columns=header)
pandas.DataFrame
from __future__ import unicode_literals import copy import io import itertools import json import os import shutil import string import sys from collections import OrderedDict from future.utils import iteritems from unittest import TestCase import pandas as pd import pytest from backports.tempfile import TemporaryDirectory from tempfile import NamedTemporaryFile from hypothesis import ( given, HealthCheck, reproduce_failure, settings, ) from hypothesis.strategies import ( dictionaries, integers, floats, just, lists, text, tuples, ) from mock import patch, Mock from oasislmf.model_preparation.manager import OasisManager as om from oasislmf.model_preparation.pipeline import OasisFilesPipeline as ofp from oasislmf.models.model import OasisModel from oasislmf.utils.exceptions import OasisException from oasislmf.utils.fm import ( unified_canonical_fm_profile_by_level_and_term_group, ) from oasislmf.utils.metadata import ( OASIS_COVERAGE_TYPES, OASIS_FM_LEVELS, OASIS_KEYS_STATUS, OASIS_PERILS, OED_COVERAGE_TYPES, OED_PERILS, ) from ..models.fakes import fake_model from ..data import ( canonical_accounts, canonical_accounts_profile, canonical_exposure, canonical_exposure_profile, canonical_oed_accounts, canonical_oed_accounts_profile, canonical_oed_exposure, canonical_oed_exposure_profile, fm_input_items, gul_input_items, keys, oasis_fm_agg_profile, oed_fm_agg_profile, write_canonical_files, write_canonical_oed_files, write_keys_files, ) class AddModel(TestCase): def test_models_is_empty___model_is_added_to_model_dict(self): model = fake_model('supplier', 'model', 'version') manager = om() manager.add_model(model) self.assertEqual({model.key: model}, manager.models) def test_manager_already_contains_a_model_with_the_given_key___model_is_replaced_in_models_dict(self): first = fake_model('supplier', 'model', 'version') second = fake_model('supplier', 'model', 'version') manager = om(oasis_models=[first]) manager.add_model(second) self.assertIs(second, manager.models[second.key]) def test_manager_already_contains_a_diferent_model___model_is_added_to_dict(self): first = fake_model('first', 'model', 'version') second = fake_model('second', 'model', 'version') manager = om(oasis_models=[first]) manager.add_model(second) self.assertEqual({ first.key: first, second.key: second, }, manager.models) class DeleteModels(TestCase): def test_models_is_not_in_manager___no_model_is_removed(self): manager = om([ fake_model('supplier', 'model', 'version'), fake_model('supplier2', 'model2', 'version2'), ]) expected = manager.models manager.delete_models([fake_model('supplier3', 'model3', 'version3')]) self.assertEqual(expected, manager.models) def test_models_exist_in_manager___models_are_removed(self): models = [ fake_model('supplier', 'model', 'version'), fake_model('supplier2', 'model2', 'version2'), fake_model('supplier3', 'model3', 'version3'), ] manager = om(models) manager.delete_models(models[1:]) self.assertEqual({models[0].key: models[0]}, manager.models) class GetCanonicalExposureProfile(TestCase): def test_model_and_kwargs_are_not_set___result_is_null(self): profile = om().get_canonical_exposure_profile() self.assertEqual(None, profile) @given(expected=dictionaries(text(), text())) def test_model_is_set_with_profile_json___models_profile_is_set_to_expected_json(self, expected): model = fake_model(resources={'canonical_exposure_profile_json': json.dumps(expected)}) profile = om().get_canonical_exposure_profile(oasis_model=model) self.assertEqual(expected, profile) self.assertEqual(expected, model.resources['canonical_exposure_profile']) @given(model_profile=dictionaries(text(), text()), kwargs_profile=dictionaries(text(), text())) def test_model_is_set_with_profile_json_and_profile_json_is_passed_through_kwargs___kwargs_profile_is_used( self, model_profile, kwargs_profile ): model = fake_model(resources={'canonical_exposure_profile_json': json.dumps(model_profile)}) profile = om().get_canonical_exposure_profile(oasis_model=model, canonical_exposure_profile_json=json.dumps(kwargs_profile)) self.assertEqual(kwargs_profile, profile) self.assertEqual(kwargs_profile, model.resources['canonical_exposure_profile']) @given(expected=dictionaries(text(), text())) def test_model_is_set_with_profile_json_path___models_profile_is_set_to_expected_json(self, expected): with NamedTemporaryFile('w') as f: json.dump(expected, f) f.flush() model = fake_model(resources={'canonical_exposure_profile_path': f.name}) profile = om().get_canonical_exposure_profile(oasis_model=model) self.assertEqual(expected, profile) self.assertEqual(expected, model.resources['canonical_exposure_profile']) @given(model_profile=dictionaries(text(), text()), kwargs_profile=dictionaries(text(), text())) @settings(suppress_health_check=[HealthCheck.too_slow]) def test_model_is_set_with_profile_json_path_and_profile_json_path_is_passed_through_kwargs___kwargs_profile_is_used( self, model_profile, kwargs_profile ): with NamedTemporaryFile('w') as model_file, NamedTemporaryFile('w') as kwargs_file: json.dump(model_profile, model_file) model_file.flush() json.dump(kwargs_profile, kwargs_file) kwargs_file.flush() model = fake_model(resources={'canonical_exposure_profile_path': model_file.name}) profile = om().get_canonical_exposure_profile(oasis_model=model, canonical_exposure_profile_path=kwargs_file.name) self.assertEqual(kwargs_profile, profile) self.assertEqual(kwargs_profile, model.resources['canonical_exposure_profile']) class CreateModel(TestCase): def create_model( self, lookup='lookup', keys_file_path='key_file_path', keys_errors_file_path='keys_error_file_path', model_exposure_file_path='model_exposure_file_path' ): model = fake_model(resources={'lookup': lookup}) model.resources['oasis_files_pipeline'].keys_file_path = keys_file_path model.resources['oasis_files_pipeline'].keys_errors_file_path = keys_errors_file_path model.resources['oasis_files_pipeline'].model_exposure_file_path = model_exposure_file_path return model @given( lookup=text(min_size=1, alphabet=string.ascii_letters), keys_file_path=text(min_size=1, alphabet=string.ascii_letters), keys_errors_file_path=text(min_size=1, alphabet=string.ascii_letters), exposure_file_path=text(min_size=1, alphabet=string.ascii_letters) ) def test_supplier_and_model_and_version_only_are_supplied___correct_model_is_returned( self, lookup, keys_file_path, keys_errors_file_path, exposure_file_path ): model = self.create_model(lookup=lookup, keys_file_path=keys_file_path, keys_errors_file_path=keys_errors_file_path, model_exposure_file_path=exposure_file_path) with patch('oasislmf.model_preparation.lookup.OasisLookupFactory.save_results', Mock(return_value=(keys_file_path, 1, keys_errors_file_path, 1))) as oklf_mock: res_keys_file_path, res_keys_errors_file_path = om().get_keys(oasis_model=model) oklf_mock.assert_called_once_with( lookup, keys_file_path, errors_fp=keys_errors_file_path, model_exposure_fp=exposure_file_path ) self.assertEqual(model.resources['oasis_files_pipeline'].keys_file_path, keys_file_path) self.assertEqual(res_keys_file_path, keys_file_path) self.assertEqual(model.resources['oasis_files_pipeline'].keys_errors_file_path, keys_errors_file_path) self.assertEqual(res_keys_errors_file_path, keys_errors_file_path) @given( supplier_id=text(alphabet=string.ascii_letters, min_size=1), model_id=text(alphabet=string.ascii_letters, min_size=1), version=text(alphabet=string.ascii_letters, min_size=1), model_lookup=text(min_size=1, alphabet=string.ascii_letters), model_keys_fp=text(alphabet=string.ascii_letters, min_size=1), model_keys_errors_fp=text(alphabet=string.ascii_letters, min_size=1), model_exposure_fp=text(alphabet=string.ascii_letters, min_size=1), lookup=text(min_size=1, alphabet=string.ascii_letters), keys_fp=text(alphabet=string.ascii_letters, min_size=1), keys_errors_fp=text(alphabet=string.ascii_letters, min_size=1), exposure_fp=text(alphabet=string.ascii_letters, min_size=1) ) def test_supplier_and_model_and_version_and_absolute_oasis_files_path_only_are_supplied___correct_model_is_returned( self, supplier_id, model_id, version, model_lookup, model_keys_fp, model_keys_errors_fp, model_exposure_fp, lookup, keys_fp, keys_errors_fp, exposure_fp ): resources={ 'lookup': model_lookup, 'keys_file_path': model_keys_fp, 'keys_errors_file_path': model_keys_errors_fp, 'model_exposure_file_path': model_exposure_fp } model = om().create_model(supplier_id, model_id, version, resources=resources) expected_key = '{}/{}/{}'.format(supplier_id, model_id, version) with patch('oasislmf.model_preparation.lookup.OasisLookupFactory.save_results', Mock(return_value=(keys_fp, 1, keys_errors_fp, 1))) as oklf_mock: res_keys_file_path, res_keys_errors_file_path = om().get_keys( oasis_model=model, lookup=lookup, model_exposure_file_path=exposure_fp, keys_file_path=keys_fp, keys_errors_file_path=keys_errors_fp ) oklf_mock.assert_called_once_with( lookup, keys_fp, errors_fp=keys_errors_fp, model_exposure_fp=exposure_fp ) self.assertEqual(model.resources['oasis_files_pipeline'].keys_file_path, keys_fp) self.assertEqual(res_keys_file_path, keys_fp) self.assertEqual(model.resources['oasis_files_pipeline'].keys_errors_file_path, keys_errors_fp) self.assertEqual(res_keys_errors_file_path, keys_errors_fp) self.assertTrue(isinstance(model, OasisModel)) self.assertEqual(expected_key, model.key) self.assertEqual(resources, model.resources) self.assertTrue(isinstance(model.resources['oasis_files_pipeline'], ofp)) self.assertIsNone(model.resources.get('canonical_exposure_profile')) @given( supplier_id=text(alphabet=string.ascii_letters, min_size=1), model_id=text(alphabet=string.ascii_letters, min_size=1), version_id=text(alphabet=string.ascii_letters, min_size=1), oasis_files_path=text(alphabet=string.ascii_letters, min_size=1) ) def test_supplier_and_model_and_version_and_relative_oasis_files_path_only_are_supplied___correct_model_is_returned_with_absolute_oasis_file_path( self, supplier_id, model_id, version_id, oasis_files_path ): expected_key = '{}/{}/{}'.format(supplier_id, model_id, version_id) oasis_files_path = oasis_files_path.lstrip(os.path.sep) resources={'oasis_files_path': oasis_files_path} model = om().create_model(supplier_id, model_id, version_id, resources=resources) self.assertTrue(isinstance(model, OasisModel)) self.assertEqual(expected_key, model.key) self.assertTrue(os.path.isabs(model.resources['oasis_files_path'])) self.assertEqual(os.path.abspath(resources['oasis_files_path']), model.resources['oasis_files_path']) self.assertTrue(isinstance(model.resources['oasis_files_pipeline'], ofp)) self.assertIsNone(model.resources.get('canonical_exposure_profile')) @given( supplier_id=text(alphabet=string.ascii_letters, min_size=1), model_id=text(alphabet=string.ascii_letters, min_size=1), version_id=text(alphabet=string.ascii_letters, min_size=1), canonical_exposure_profile=dictionaries(text(min_size=1), text(min_size=1)) ) def test_supplier_and_model_and_version_and_canonical_exposure_profile_only_are_supplied___correct_model_is_returned( self, supplier_id, model_id, version_id, canonical_exposure_profile ): expected_key = '{}/{}/{}'.format(supplier_id, model_id, version_id) resources={'canonical_exposure_profile': canonical_exposure_profile} model = om().create_model(supplier_id, model_id, version_id, resources=resources) self.assertTrue(isinstance(model, OasisModel)) self.assertEqual(expected_key, model.key) self.assertEqual(resources['canonical_exposure_profile'], model.resources['canonical_exposure_profile']) expected_oasis_files_path = os.path.abspath(os.path.join('Files', expected_key.replace('/', '-'))) self.assertEqual(expected_oasis_files_path, model.resources['oasis_files_path']) self.assertTrue(isinstance(model.resources['oasis_files_pipeline'], ofp)) @given( supplier_id=text(alphabet=string.ascii_letters, min_size=1), model_id=text(alphabet=string.ascii_letters, min_size=1), version_id=text(alphabet=string.ascii_letters, min_size=1), oasis_files_path=text(alphabet=string.ascii_letters, min_size=1), canonical_exposure_profile=dictionaries(text(min_size=1), text(min_size=1)) ) def test_supplier_and_model_and_version_and_relative_oasis_files_path_and_canonical_exposure_profile_only_are_supplied___correct_model_is_returned( self, supplier_id, model_id, version_id, oasis_files_path, canonical_exposure_profile ): expected_key = '{}/{}/{}'.format(supplier_id, model_id, version_id) resources={'oasis_files_path': oasis_files_path, 'canonical_exposure_profile': canonical_exposure_profile} model = om().create_model(supplier_id, model_id, version_id, resources=resources) self.assertTrue(isinstance(model, OasisModel)) self.assertEqual(expected_key, model.key) self.assertTrue(os.path.isabs(model.resources['oasis_files_path'])) self.assertEqual(os.path.abspath(resources['oasis_files_path']), model.resources['oasis_files_path']) self.assertEqual(resources['canonical_exposure_profile'], model.resources['canonical_exposure_profile']) self.assertTrue(isinstance(model.resources['oasis_files_pipeline'], ofp)) @given( supplier_id=text(alphabet=string.ascii_letters, min_size=1), model_id=text(alphabet=string.ascii_letters, min_size=1), version_id=text(alphabet=string.ascii_letters, min_size=1), oasis_files_path=text(alphabet=string.ascii_letters, min_size=1), canonical_exposure_profile=dictionaries(text(min_size=1), text(min_size=1)) ) def test_supplier_and_model_and_version_and_absolute_oasis_files_path_and_canonical_exposure_profile_only_are_supplied___correct_model_is_returned( self, supplier_id, model_id, version_id, oasis_files_path, canonical_exposure_profile ): expected_key = '{}/{}/{}'.format(supplier_id, model_id, version_id) resources={'oasis_files_path': os.path.abspath(oasis_files_path), 'canonical_exposure_profile': canonical_exposure_profile} model = om().create_model(supplier_id, model_id, version_id, resources=resources) self.assertTrue(isinstance(model, OasisModel)) self.assertEqual(expected_key, model.key) self.assertEqual(resources['oasis_files_path'], model.resources['oasis_files_path']) self.assertEqual(resources['canonical_exposure_profile'], model.resources['canonical_exposure_profile']) self.assertTrue(isinstance(model.resources['oasis_files_pipeline'], ofp)) @given( supplier_id=text(alphabet=string.ascii_letters, min_size=1), model_id=text(alphabet=string.ascii_letters, min_size=1), version_id=text(alphabet=string.ascii_letters, min_size=1), source_accounts_file_path=text(alphabet=string.ascii_letters, min_size=1) ) def test_supplier_and_model_and_version_and_source_accounts_file_path_only_are_supplied___correct_model_is_returned( self, supplier_id, model_id, version_id, source_accounts_file_path ): expected_key = '{}/{}/{}'.format(supplier_id, model_id, version_id) resources={'source_accounts_file_path': source_accounts_file_path} model = om().create_model(supplier_id, model_id, version_id, resources=resources) self.assertTrue(isinstance(model, OasisModel)) self.assertEqual(expected_key, model.key) expected_oasis_files_path = os.path.abspath(os.path.join('Files', expected_key.replace('/', '-'))) self.assertEqual(expected_oasis_files_path, model.resources['oasis_files_path']) self.assertTrue(isinstance(model.resources['oasis_files_pipeline'], ofp)) self.assertEqual(resources['source_accounts_file_path'], model.resources['source_accounts_file_path']) self.assertIsNone(model.resources.get('canonical_exposure_profile')) self.assertIsNone(model.resources.get('canonical_accounts_profile')) @given( supplier_id=text(alphabet=string.ascii_letters, min_size=1), model_id=text(alphabet=string.ascii_letters, min_size=1), version_id=text(alphabet=string.ascii_letters, min_size=1), source_accounts_file_path=text(alphabet=string.ascii_letters, min_size=1), canonical_accounts_profile=dictionaries(text(min_size=1), text(min_size=1)) ) def test_supplier_and_model_and_version_and_source_accounts_file_path_and_canonical_accounts_profile_only_are_supplied___correct_model_is_returned( self, supplier_id, model_id, version_id, source_accounts_file_path, canonical_accounts_profile ): expected_key = '{}/{}/{}'.format(supplier_id, model_id, version_id) resources={'source_accounts_file_path': source_accounts_file_path, 'canonical_accounts_profile': canonical_accounts_profile} model = om().create_model(supplier_id, model_id, version_id, resources=resources) self.assertTrue(isinstance(model, OasisModel)) self.assertEqual(expected_key, model.key) expected_oasis_files_path = os.path.abspath(os.path.join('Files', expected_key.replace('/', '-'))) self.assertEqual(expected_oasis_files_path, model.resources['oasis_files_path']) self.assertTrue(isinstance(model.resources['oasis_files_pipeline'], ofp)) self.assertIsNone(model.resources.get('canonical_exposure_profile')) self.assertEqual(resources['source_accounts_file_path'], model.resources['source_accounts_file_path']) self.assertEqual(resources['canonical_accounts_profile'], model.resources['canonical_accounts_profile']) @given( supplier_id=text(alphabet=string.ascii_letters, min_size=1), model_id=text(alphabet=string.ascii_letters, min_size=1), version_id=text(alphabet=string.ascii_letters, min_size=1), canonical_exposure_profile=dictionaries(text(min_size=1), text(min_size=1)), source_accounts_file_path=text(alphabet=string.ascii_letters, min_size=1), canonical_accounts_profile=dictionaries(text(min_size=1), text(min_size=1)) ) def test_supplier_and_model_and_version_and_canonical_exposure_profile_and_source_accounts_file_path_and_canonical_accounts_profile_only_are_supplied___correct_model_is_returned( self, supplier_id, model_id, version_id, canonical_exposure_profile, source_accounts_file_path, canonical_accounts_profile ): expected_key = '{}/{}/{}'.format(supplier_id, model_id, version_id) resources={ 'canonical_exposure_profile': canonical_exposure_profile, 'source_accounts_file_path': source_accounts_file_path, 'canonical_accounts_profile': canonical_accounts_profile } model = om().create_model(supplier_id, model_id, version_id, resources=resources) self.assertTrue(isinstance(model, OasisModel)) self.assertEqual(expected_key, model.key) expected_oasis_files_path = os.path.abspath(os.path.join('Files', expected_key.replace('/', '-'))) self.assertEqual(expected_oasis_files_path, model.resources['oasis_files_path']) self.assertTrue(isinstance(model.resources['oasis_files_pipeline'], ofp)) self.assertEqual(resources['canonical_exposure_profile'], model.resources.get('canonical_exposure_profile')) self.assertEqual(resources['source_accounts_file_path'], model.resources['source_accounts_file_path']) self.assertEqual(resources['canonical_accounts_profile'], model.resources['canonical_accounts_profile']) @given( supplier_id=text(alphabet=string.ascii_letters, min_size=1), model_id=text(alphabet=string.ascii_letters, min_size=1), version_id=text(alphabet=string.ascii_letters, min_size=1), oasis_files_path=text(alphabet=string.ascii_letters, min_size=1), canonical_exposure_profile=dictionaries(text(min_size=1), text(min_size=1)), source_accounts_file_path=text(alphabet=string.ascii_letters, min_size=1), canonical_accounts_profile=dictionaries(text(min_size=1), text(min_size=1)) ) def test_supplier_and_model_and_version_and_absolute_oasis_files_path_and_canonical_exposure_profile_and_source_accounts_file_path_and_canonical_accounts_profile_only_are_supplied___correct_model_is_returned( self, supplier_id, model_id, version_id, oasis_files_path, canonical_exposure_profile, source_accounts_file_path, canonical_accounts_profile ): expected_key = '{}/{}/{}'.format(supplier_id, model_id, version_id) resources={ 'oasis_files_path': os.path.abspath(oasis_files_path), 'canonical_exposure_profile': canonical_exposure_profile, 'source_accounts_file_path': source_accounts_file_path, 'canonical_accounts_profile': canonical_accounts_profile } model = om().create_model(supplier_id, model_id, version_id, resources=resources) self.assertTrue(isinstance(model, OasisModel)) self.assertEqual(expected_key, model.key) self.assertEqual(resources['oasis_files_path'], model.resources['oasis_files_path']) self.assertTrue(isinstance(model.resources['oasis_files_pipeline'], ofp)) self.assertEqual(resources['canonical_exposure_profile'], model.resources.get('canonical_exposure_profile')) self.assertEqual(resources['source_accounts_file_path'], model.resources['source_accounts_file_path']) self.assertEqual(resources['canonical_accounts_profile'], model.resources['canonical_accounts_profile']) class LoadCanonicalAccountsProfile(TestCase): def test_model_and_kwargs_are_not_set___result_is_null(self): profile = om().get_canonical_accounts_profile() self.assertEqual(None, profile) @given(expected=dictionaries(text(), text())) def test_model_is_set_with_profile_json___models_profile_is_set_to_expected_json(self, expected): model = fake_model(resources={'canonical_accounts_profile_json': json.dumps(expected)}) profile = om().get_canonical_accounts_profile(oasis_model=model) self.assertEqual(expected, profile) self.assertEqual(expected, model.resources['canonical_accounts_profile']) @given(model_profile=dictionaries(text(), text()), kwargs_profile=dictionaries(text(), text())) def test_model_is_set_with_profile_json_and_profile_json_is_passed_through_kwargs___kwargs_profile_is_used( self, model_profile, kwargs_profile ): model = fake_model(resources={'canonical_accounts_profile_json': json.dumps(model_profile)}) profile = om().get_canonical_accounts_profile(oasis_model=model, canonical_accounts_profile_json=json.dumps(kwargs_profile)) self.assertEqual(kwargs_profile, profile) self.assertEqual(kwargs_profile, model.resources['canonical_accounts_profile']) @given(expected=dictionaries(text(), text())) def test_model_is_set_with_profile_json_path___models_profile_is_set_to_expected_json(self, expected): with NamedTemporaryFile('w') as f: json.dump(expected, f) f.flush() model = fake_model(resources={'canonical_accounts_profile_path': f.name}) profile = om().get_canonical_accounts_profile(oasis_model=model) self.assertEqual(expected, profile) self.assertEqual(expected, model.resources['canonical_accounts_profile']) @given(model_profile=dictionaries(text(), text()), kwargs_profile=dictionaries(text(), text())) def test_model_is_set_with_profile_json_path_and_profile_json_path_is_passed_through_kwargs___kwargs_profile_is_used( self, model_profile, kwargs_profile ): with NamedTemporaryFile('w') as model_file, NamedTemporaryFile('w') as kwargs_file: json.dump(model_profile, model_file) model_file.flush() json.dump(kwargs_profile, kwargs_file) kwargs_file.flush() model = fake_model(resources={'canonical_accounts_profile_path': model_file.name}) profile = om().get_canonical_accounts_profile(oasis_model=model, canonical_accounts_profile_path=kwargs_file.name) self.assertEqual(kwargs_profile, profile) self.assertEqual(kwargs_profile, model.resources['canonical_accounts_profile']) class GetFmAggregationProfile(TestCase): def setUp(self): self.profile = oasis_fm_agg_profile def test_model_and_kwargs_are_not_set___result_is_null(self): profile = om().get_fm_aggregation_profile() self.assertEqual(None, profile) def test_model_is_set_with_profile_json___models_profile_is_set_to_expected_json(self): expected = self.profile profile_json = json.dumps(self.profile) model = fake_model(resources={'fm_agg_profile_json': profile_json}) profile = om().get_fm_aggregation_profile(oasis_model=model) self.assertEqual(expected, profile) self.assertEqual(expected, model.resources['fm_agg_profile']) def test_model_is_set_with_profile_json_and_profile_json_is_passed_through_kwargs___kwargs_profile_is_used(self): model = fake_model(resources={'fm_agg_profile_json': json.dumps(self.profile)}) profile = om().get_fm_aggregation_profile(oasis_model=model, fm_agg_profile_json=json.dumps(self.profile)) self.assertEqual(self.profile, profile) self.assertEqual(self.profile, model.resources['fm_agg_profile']) def test_model_is_set_with_profile_path___models_profile_is_set_to_expected_json(self): expected = self.profile with NamedTemporaryFile('w') as f: json.dump(expected, f) f.flush() model = fake_model(resources={'fm_agg_profile_path': f.name}) profile = om().get_fm_aggregation_profile(oasis_model=model) self.assertEqual(expected, profile) self.assertEqual(expected, model.resources['fm_agg_profile']) def test_model_is_set_with_profile_path_and_profile_path_is_passed_through_kwargs___kwargs_profile_is_used( self ): with NamedTemporaryFile('w') as model_file, NamedTemporaryFile('w') as kwargs_file: json.dump(self.profile, model_file) model_file.flush() json.dump(self.profile, kwargs_file) kwargs_file.flush() model = fake_model(resources={'fm_agg_profile_path': model_file.name}) profile = om().get_fm_aggregation_profile(oasis_model=model, fm_agg_profile_path=kwargs_file.name) self.assertEqual(self.profile, profile) self.assertEqual(self.profile, model.resources['fm_agg_profile']) @pytest.mark.skipif(True, reason="CSV file transformations to be removed") class TransformSourceToCanonical(TestCase): @given( source_exposure_file_path=text(min_size=1, alphabet=string.ascii_letters), source_to_canonical_exposure_transformation_file_path=text(min_size=1, alphabet=string.ascii_letters), source_exposure_validation_file_path=text(alphabet=string.ascii_letters), canonical_exposure_file_path=text(min_size=1, alphabet=string.ascii_letters) ) def test_model_is_not_set___parameters_are_taken_from_kwargs( self, source_exposure_file_path, source_to_canonical_exposure_transformation_file_path, source_exposure_validation_file_path, canonical_exposure_file_path ): trans_call_mock = Mock() with patch('oasislmf.model_preparation.csv_trans.Translator', Mock(return_value=trans_call_mock)) as trans_mock: om().transform_source_to_canonical( source_exposure_file_path=source_exposure_file_path, source_to_canonical_exposure_transformation_file_path=source_to_canonical_exposure_transformation_file_path, canonical_exposure_file_path=canonical_exposure_file_path ) trans_mock.assert_called_once_with( os.path.abspath(source_exposure_file_path), os.path.abspath(canonical_exposure_file_path), os.path.abspath(source_to_canonical_exposure_transformation_file_path), xsd_path=None, append_row_nums=True, ) trans_call_mock.assert_called_once_with() @given( source_exposure_file_path=text(min_size=1, alphabet=string.ascii_letters), source_to_canonical_exposure_transformation_file_path=text(min_size=1, alphabet=string.ascii_letters), source_exposure_validation_file_path=text(alphabet=string.ascii_letters), canonical_exposure_file_path=text(min_size=1, alphabet=string.ascii_letters) ) def test_model_is_set___parameters_are_taken_from_model( self, source_exposure_file_path, source_to_canonical_exposure_transformation_file_path, source_exposure_validation_file_path, canonical_exposure_file_path): model = fake_model(resources={ 'source_exposure_file_path': source_exposure_file_path, 'source_exposure_validation_file_path': source_exposure_validation_file_path, 'source_to_canonical_exposure_transformation_file_path': source_to_canonical_exposure_transformation_file_path, }) model.resources['oasis_files_pipeline'].canonical_exposure_path = canonical_exposure_file_path trans_call_mock = Mock() with patch('oasislmf.model_preparation.csv_trans.Translator', Mock(return_value=trans_call_mock)) as trans_mock: #import ipdb; ipdb.set_trace() om().transform_source_to_canonical( source_exposure_file_path=source_exposure_file_path, source_to_canonical_exposure_transformation_file_path=source_to_canonical_exposure_transformation_file_path, canonical_exposure_file_path=canonical_exposure_file_path ) trans_mock.assert_called_once_with( os.path.abspath(source_exposure_file_path), os.path.abspath(canonical_exposure_file_path), os.path.abspath(source_to_canonical_exposure_transformation_file_path), xsd_path=None, append_row_nums=True ) trans_call_mock.assert_called_once_with() @pytest.mark.skipif(True, reason="CSV file transformations to be removed") class TransformCanonicalToModel(TestCase): @given( canonical_exposure_file_path=text(min_size=1, alphabet=string.ascii_letters), canonical_to_model_exposure_transformation_file_path=text(min_size=1, alphabet=string.ascii_letters), canonical_exposure_validation_file_path=text(alphabet=string.ascii_letters), model_exposure_file_path=text(min_size=1, alphabet=string.ascii_letters) ) def test_model_is_not_set___parameters_are_taken_from_kwargs( self, canonical_exposure_file_path, canonical_to_model_exposure_transformation_file_path, canonical_exposure_validation_file_path, model_exposure_file_path): trans_call_mock = Mock() with patch('oasislmf.model_preparation.csv_trans.Translator', Mock(return_value=trans_call_mock)) as trans_mock: om().transform_canonical_to_model( canonical_exposure_file_path=canonical_exposure_file_path, canonical_to_model_exposure_transformation_file_path=canonical_to_model_exposure_transformation_file_path, model_exposure_file_path=model_exposure_file_path, ) trans_mock.assert_called_once_with( os.path.abspath(canonical_exposure_file_path), os.path.abspath(model_exposure_file_path), os.path.abspath(canonical_to_model_exposure_transformation_file_path), xsd_path=None, append_row_nums=False ) trans_call_mock.assert_called_once_with() @given( canonical_exposure_file_path=text(min_size=1, alphabet=string.ascii_letters), canonical_to_model_exposure_transformation_file_path=text(min_size=1, alphabet=string.ascii_letters), canonical_exposure_validation_file_path=text(alphabet=string.ascii_letters), model_exposure_file_path=text(min_size=1, alphabet=string.ascii_letters) ) def test_model_is_set___parameters_are_taken_from_model( self, canonical_exposure_file_path, canonical_to_model_exposure_transformation_file_path, canonical_exposure_validation_file_path, model_exposure_file_path): model = fake_model(resources={ 'canonical_exposure_validation_file_path': canonical_exposure_validation_file_path, 'canonical_to_model_exposure_transformation_file_path': canonical_to_model_exposure_transformation_file_path, }) model.resources['oasis_files_pipeline'].canonical_exposure_path = canonical_exposure_file_path model.resources['oasis_files_pipeline'].model_exposure_file_path = model_exposure_file_path trans_call_mock = Mock() with patch('oasislmf.model_preparation.csv_trans.Translator', Mock(return_value=trans_call_mock)) as trans_mock: om().transform_canonical_to_model( canonical_exposure_file_path=canonical_exposure_file_path, canonical_to_model_exposure_transformation_file_path=canonical_to_model_exposure_transformation_file_path, model_exposure_file_path=model_exposure_file_path, ) trans_mock.assert_called_once_with( os.path.abspath(canonical_exposure_file_path), os.path.abspath(model_exposure_file_path), os.path.abspath(canonical_to_model_exposure_transformation_file_path), xsd_path=None, append_row_nums=False ) trans_call_mock.assert_called_once_with() class GetKeys(TestCase): def create_model( self, lookup='lookup', keys_file_path='key_file_path', keys_errors_file_path='keys_errors_file_path', model_exposure_file_path='model_exposure_file_path' ): model = fake_model(resources={'lookup': lookup}) model.resources['oasis_files_pipeline'].keys_file_path = keys_file_path model.resources['oasis_files_pipeline'].keys_errors_file_path = keys_errors_file_path model.resources['oasis_files_pipeline'].model_exposure_file_path = model_exposure_file_path return model @given( lookup=text(min_size=1, alphabet=string.ascii_letters), keys_file_path=text(min_size=1, alphabet=string.ascii_letters), keys_errors_file_path=text(min_size=1, alphabet=string.ascii_letters), exposure_file_path=text(min_size=1, alphabet=string.ascii_letters) ) def test_model_is_supplied_kwargs_are_not___lookup_keys_files_and_exposures_file_from_model_are_used( self, lookup, keys_file_path, keys_errors_file_path, exposure_file_path ): model = self.create_model(lookup=lookup, keys_file_path=keys_file_path, keys_errors_file_path=keys_errors_file_path, model_exposure_file_path=exposure_file_path) with patch('oasislmf.model_preparation.lookup.OasisLookupFactory.save_results', Mock(return_value=(keys_file_path, 1, keys_errors_file_path, 1))) as oklf_mock: res_keys_file_path, res_keys_errors_file_path = om().get_keys(oasis_model=model) oklf_mock.assert_called_once_with( lookup, keys_file_path, errors_fp=keys_errors_file_path, model_exposure_fp=exposure_file_path ) self.assertEqual(model.resources['oasis_files_pipeline'].keys_file_path, keys_file_path) self.assertEqual(res_keys_file_path, keys_file_path) self.assertEqual(model.resources['oasis_files_pipeline'].keys_errors_file_path, keys_errors_file_path) self.assertEqual(res_keys_errors_file_path, keys_errors_file_path) @given( model_lookup=text(min_size=1, alphabet=string.ascii_letters), model_keys_fp=text(min_size=1, alphabet=string.ascii_letters), model_keys_errors_fp=text(min_size=1, alphabet=string.ascii_letters), model_exposure_fp=text(min_size=1, alphabet=string.ascii_letters), lookup=text(min_size=1, alphabet=string.ascii_letters), keys_fp=text(min_size=1, alphabet=string.ascii_letters), keys_errors_fp=text(min_size=1, alphabet=string.ascii_letters), exposures_fp=text(min_size=1, alphabet=string.ascii_letters) ) def test_model_and_kwargs_are_supplied___lookup_keys_files_and_exposures_file_from_kwargs_are_used( self, model_lookup, model_keys_fp, model_keys_errors_fp, model_exposure_fp, lookup, keys_fp, keys_errors_fp, exposures_fp ): model = self.create_model(lookup=model_lookup, keys_file_path=model_keys_fp, keys_errors_file_path=model_keys_errors_fp, model_exposure_file_path=model_exposure_fp) with patch('oasislmf.model_preparation.lookup.OasisLookupFactory.save_results', Mock(return_value=(keys_fp, 1, keys_errors_fp, 1))) as oklf_mock: res_keys_file_path, res_keys_errors_file_path = om().get_keys( oasis_model=model, lookup=lookup, model_exposure_file_path=exposures_fp, keys_file_path=keys_fp, keys_errors_file_path=keys_errors_fp ) oklf_mock.assert_called_once_with( lookup, keys_fp, errors_fp=keys_errors_fp, model_exposure_fp=exposures_fp ) self.assertEqual(model.resources['oasis_files_pipeline'].keys_file_path, keys_fp) self.assertEqual(res_keys_file_path, keys_fp) self.assertEqual(model.resources['oasis_files_pipeline'].keys_errors_file_path, keys_errors_fp) self.assertEqual(res_keys_errors_file_path, keys_errors_fp) class GetGulInputItems(TestCase): def setUp(self): self.profile = copy.deepcopy(canonical_exposure_profile) @settings(deadline=None, suppress_health_check=[HealthCheck.too_slow]) @given( exposures=canonical_exposure(size=0), keys=keys(size=2) ) def test_no_fm_terms_in_canonical_profile__oasis_exception_is_raised( self, exposures, keys ): profile = copy.deepcopy(self.profile) _p =copy.deepcopy(profile) for _k, _v in iteritems(_p): for __k, __v in iteritems(_v): if 'FM' in __k: profile[_k].pop(__k) with NamedTemporaryFile('w') as exposures_file, NamedTemporaryFile('w') as keys_file: write_canonical_files(exposures, exposures_file.name) write_keys_files(keys, keys_file.name) with self.assertRaises(OasisException): om().get_gul_input_items(profile, exposures_file.name, keys_file.name) @settings(deadline=None, suppress_health_check=[HealthCheck.too_slow]) @given( exposures=canonical_exposure(size=0), keys=keys(size=2) ) def test_no_canonical_items__oasis_exception_is_raised( self, exposures, keys ): profile = copy.deepcopy(self.profile) with NamedTemporaryFile('w') as exposures_file, NamedTemporaryFile('w') as keys_file: write_canonical_files(exposures, exposures_file.name) write_keys_files(keys, keys_file.name) with self.assertRaises(OasisException): om().get_gul_input_items(profile, exposures_file.name, keys_file.name) @settings(deadline=None, suppress_health_check=[HealthCheck.too_slow]) @given( exposures=canonical_exposure(size=2), keys=keys(size=0) ) def test_no_keys_items__oasis_exception_is_raised( self, exposures, keys ): profile = copy.deepcopy(self.profile) with NamedTemporaryFile('w') as exposures_file, NamedTemporaryFile('w') as keys_file: write_canonical_files(exposures, exposures_file.name) write_keys_files(keys, keys_file.name) with self.assertRaises(OasisException): om().get_gul_input_items(profile, exposures_file.name, keys_file.name) @settings(deadline=None, suppress_health_check=[HealthCheck.too_slow]) @given( exposures=canonical_exposure(size=2), keys=keys(from_statuses=just(OASIS_KEYS_STATUS['success']['id']), size=2) ) def test_canonical_items_dont_match_any_keys_items__oasis_exception_is_raised( self, exposures, keys ): profile = copy.deepcopy(self.profile) l = len(exposures) for key in keys: key['id'] += l with NamedTemporaryFile('w') as exposures_file, NamedTemporaryFile('w') as keys_file: write_canonical_files(exposures, exposures_file.name) write_keys_files(keys, keys_file.name) with self.assertRaises(OasisException): om().get_gul_input_items(profile, exposures_file.name, keys_file.name) @settings(deadline=None, suppress_health_check=[HealthCheck.too_slow]) @given( exposures=canonical_exposure(size=2), keys=keys(from_statuses=just(OASIS_KEYS_STATUS['success']['id']), size=2) ) def test_canonical_profile_doesnt_have_any_tiv_fields__oasis_exception_is_raised( self, exposures, keys ): profile = copy.deepcopy(self.profile) tivs = [profile[e]['ProfileElementName'] for e in profile if profile[e].get('FMTermType') and profile[e]['FMTermType'].lower() == 'tiv'] for t in tivs: profile.pop(t) with NamedTemporaryFile('w') as exposures_file, NamedTemporaryFile('w') as keys_file: write_canonical_files(exposures, exposures_file.name) write_keys_files(keys, keys_file.name) with self.assertRaises(OasisException): om().get_gul_input_items(profile, exposures_file.name, keys_file.name) @settings(deadline=None, suppress_health_check=[HealthCheck.too_slow]) @given( exposures=canonical_exposure( from_tivs1=just(0.0), size=2 ), keys=keys(from_statuses=just(OASIS_KEYS_STATUS['success']['id']), size=2) ) def test_canonical_items_dont_have_any_positive_tivs__oasis_exception_is_raised( self, exposures, keys ): profile = copy.deepcopy(self.profile) with NamedTemporaryFile('w') as exposures_file, NamedTemporaryFile('w') as keys_file: write_canonical_files(exposures, exposures_file.name) write_keys_files(keys, keys_file.name) with self.assertRaises(OasisException): om().get_gul_input_items(profile, exposures_file.name, keys_file.name) @settings(deadline=None, suppress_health_check=[HealthCheck.too_slow]) @given( exposures=canonical_exposure( from_tivs1=just(1.0), size=2 ), keys=keys( from_coverage_type_ids=just(OASIS_COVERAGE_TYPES['buildings']['id']), from_statuses=just(OASIS_KEYS_STATUS['success']['id']), size=2 ) ) def test_only_buildings_coverage_type_in_exposure_and_model_lookup_supporting_single_peril_and_buildings_coverage_type__gul_items_are_generated( self, exposures, keys ): profile = copy.deepcopy(self.profile) ufcp = unified_canonical_fm_profile_by_level_and_term_group(profiles=(profile,)) with NamedTemporaryFile('w') as exposures_file, NamedTemporaryFile('w') as keys_file: write_canonical_files(exposures, exposures_file.name) write_keys_files(keys, keys_file.name) matching_canonical_and_keys_item_ids = set(k['id'] for k in keys).intersection([e['row_id'] for e in exposures]) gul_items_df, canexp_df = om().get_gul_input_items(profile, exposures_file.name, keys_file.name) get_canonical_item = lambda i: ( [e for e in exposures if e['row_id'] == i + 1][0] if len([e for e in exposures if e['row_id'] == i + 1]) == 1 else None ) get_keys_item = lambda i: ( [k for k in keys if k['id'] == i + 1][0] if len([k for k in keys if k['id'] == i + 1]) == 1 else None ) tiv_elements = (ufcp[1][1]['tiv'],) fm_terms = { 1: { 'deductible': 'wscv1ded', 'deductible_min': None, 'deductible_max': None, 'limit': 'wscv1limit', 'share': None } } for i, gul_it in enumerate(gul_items_df.T.to_dict().values()): can_it = get_canonical_item(int(gul_it['canexp_id'])) self.assertIsNotNone(can_it) keys_it = get_keys_item(int(gul_it['canexp_id'])) self.assertIsNotNone(keys_it) positive_tiv_elements = [ t for t in tiv_elements if can_it.get(t['ProfileElementName'].lower()) and can_it[t['ProfileElementName'].lower()] > 0 and t['CoverageTypeID'] == keys_it['coverage_type'] ] for _, t in enumerate(positive_tiv_elements): tiv_elm = t['ProfileElementName'].lower() self.assertEqual(tiv_elm, gul_it['tiv_elm']) tiv_tgid = t['FMTermGroupID'] self.assertEqual(can_it[tiv_elm], gul_it['tiv']) ded_elm = fm_terms[tiv_tgid].get('deductible') self.assertEqual(ded_elm, gul_it['ded_elm']) ded_min_elm = fm_terms[tiv_tgid].get('deductible_min') self.assertEqual(ded_min_elm, gul_it['ded_min_elm']) ded_max_elm = fm_terms[tiv_tgid].get('deductible_max') self.assertEqual(ded_max_elm, gul_it['ded_max_elm']) lim_elm = fm_terms[tiv_tgid].get('limit') self.assertEqual(lim_elm, gul_it['lim_elm']) shr_elm = fm_terms[tiv_tgid].get('share') self.assertEqual(shr_elm, gul_it['shr_elm']) self.assertEqual(keys_it['area_peril_id'], gul_it['areaperil_id']) self.assertEqual(keys_it['vulnerability_id'], gul_it['vulnerability_id']) self.assertEqual(i + 1, gul_it['item_id']) self.assertEqual(i + 1, gul_it['coverage_id']) self.assertEqual(can_it['row_id'], gul_it['group_id']) @settings(deadline=None, suppress_health_check=[HealthCheck.too_slow]) @given( exposures=canonical_exposure( from_tivs1=floats(min_value=1.0, allow_infinity=False), from_tivs2=floats(min_value=2.0, allow_infinity=False), from_tivs3=floats(min_value=3.0, allow_infinity=False), from_tivs4=floats(min_value=4.0, allow_infinity=False), size=2 ), keys=keys( from_peril_ids=just(OASIS_PERILS['wind']['id']), from_coverage_type_ids=just(OASIS_COVERAGE_TYPES['buildings']['id']), from_statuses=just(OASIS_KEYS_STATUS['success']['id']), size=8 ) ) def test_all_coverage_types_in_exposure_and_model_lookup_supporting_multiple_perils_but_only_buildings_and_other_structures_coverage_types__gul_items_are_generated( self, exposures, keys ): profile = copy.deepcopy(self.profile) ufcp = unified_canonical_fm_profile_by_level_and_term_group(profiles=(profile,)) exposures[1]['wscv2val'] = exposures[1]['wscv3val'] = exposures[1]['wscv4val'] = 0.0 keys[1]['id'] = keys[2]['id'] = keys[3]['id'] = 1 keys[2]['peril_id'] = keys[3]['peril_id'] = OASIS_PERILS['quake']['id'] keys[1]['coverage_type'] = keys[3]['coverage_type'] = OASIS_COVERAGE_TYPES['other']['id'] keys[4]['id'] = keys[5]['id'] = keys[6]['id'] = keys[7]['id'] = 2 keys[6]['peril_id'] = keys[7]['peril_id'] = OASIS_PERILS['quake']['id'] keys[5]['coverage_type'] = keys[7]['coverage_type'] = OASIS_COVERAGE_TYPES['other']['id'] with NamedTemporaryFile('w') as exposures_file, NamedTemporaryFile('w') as keys_file: write_canonical_files(exposures, exposures_file.name) write_keys_files(keys, keys_file.name) matching_canonical_and_keys_item_ids = set(k['id'] for k in keys).intersection([e['row_id'] for e in exposures]) gul_items_df, canexp_df = om().get_gul_input_items(profile, exposures_file.name, keys_file.name) self.assertEqual(len(gul_items_df), 6) self.assertEqual(len(canexp_df), 2) tiv_elements = (ufcp[1][1]['tiv'], ufcp[1][2]['tiv']) fm_terms = { 1: { 'deductible': 'wscv1ded', 'deductible_min': None, 'deductible_max': None, 'limit': 'wscv1limit', 'share': None }, 2: { 'deductible': 'wscv2ded', 'deductible_min': None, 'deductible_max': None, 'limit': 'wscv2limit', 'share': None } } for i, gul_it in enumerate(gul_items_df.T.to_dict().values()): can_it = canexp_df.iloc[gul_it['canexp_id']].to_dict() keys_it = [k for k in keys if k['id'] == gul_it['canexp_id'] + 1 and k['peril_id'] == gul_it['peril_id'] and k['coverage_type'] == gul_it['coverage_type_id']][0] positive_tiv_term = [t for t in tiv_elements if can_it.get(t['ProfileElementName'].lower()) and can_it[t['ProfileElementName'].lower()] > 0 and t['CoverageTypeID'] == keys_it['coverage_type']][0] tiv_elm = positive_tiv_term['ProfileElementName'].lower() self.assertEqual(tiv_elm, gul_it['tiv_elm']) tiv_tgid = positive_tiv_term['FMTermGroupID'] self.assertEqual(can_it[tiv_elm], gul_it['tiv']) ded_elm = fm_terms[tiv_tgid].get('deductible') self.assertEqual(ded_elm, gul_it['ded_elm']) ded_min_elm = fm_terms[tiv_tgid].get('deductible_min') self.assertEqual(ded_min_elm, gul_it['ded_min_elm']) ded_max_elm = fm_terms[tiv_tgid].get('deductible_max') self.assertEqual(ded_max_elm, gul_it['ded_max_elm']) lim_elm = fm_terms[tiv_tgid].get('limit') self.assertEqual(lim_elm, gul_it['lim_elm']) shr_elm = fm_terms[tiv_tgid].get('share') self.assertEqual(shr_elm, gul_it['shr_elm']) self.assertEqual(keys_it['area_peril_id'], gul_it['areaperil_id']) self.assertEqual(keys_it['vulnerability_id'], gul_it['vulnerability_id']) self.assertEqual(i + 1, gul_it['item_id']) self.assertEqual(i + 1, gul_it['coverage_id']) self.assertEqual(can_it['row_id'], gul_it['group_id']) class GetFmInputItems(TestCase): def setUp(self): self.exposures_profile = copy.deepcopy(canonical_exposure_profile) self.accounts_profile = copy.deepcopy(canonical_accounts_profile) self.unified_canonical_profile = unified_canonical_fm_profile_by_level_and_term_group( profiles=[self.exposures_profile, self.accounts_profile] ) self.fm_agg_profile = copy.deepcopy(oasis_fm_agg_profile) @settings(deadline=None, suppress_health_check=[HealthCheck.too_slow]) @given( exposures=canonical_exposure(size=2), accounts=canonical_accounts(size=1), guls=gul_input_items(size=2) ) def test_no_fm_terms_in_canonical_profiles__oasis_exception_is_raised( self, exposures, accounts, guls ): cep = copy.deepcopy(self.exposures_profile) cap = copy.deepcopy(self.accounts_profile) _cep =copy.deepcopy(cep) _cap =copy.deepcopy(cap) for _k, _v in iteritems(_cep): for __k, __v in iteritems(_v): if 'FM' in __k: cep[_k].pop(__k) for _k, _v in iteritems(_cap): for __k, __v in iteritems(_v): if 'FM' in __k: cap[_k].pop(__k) with NamedTemporaryFile('w') as accounts_file: write_canonical_files(accounts, accounts_file.name) with self.assertRaises(OasisException): fm_df, canacc_df = om().get_fm_input_items( pd.DataFrame(data=exposures), pd.DataFrame(data=guls), cep, cap, accounts_file.name, self.fm_agg_profile ) @settings(deadline=None, suppress_health_check=[HealthCheck.too_slow]) @given( exposures=canonical_exposure(size=2), guls=gul_input_items(size=2) ) def test_no_aggregation_profile__oasis_exception_is_raised( self, exposures, guls ): cep = copy.deepcopy(self.exposures_profile) cap = copy.deepcopy(self.accounts_profile) fmap = {} with NamedTemporaryFile('w') as accounts_file: write_canonical_files(canonical_accounts=[], canonical_accounts_file_path=accounts_file.name) with self.assertRaises(OasisException): fm_df, canacc_df = om().get_fm_input_items( pd.DataFrame(data=exposures), pd.DataFrame(data=guls), cep, cap, accounts_file.name, fmap ) @settings(deadline=None, suppress_health_check=[HealthCheck.too_slow]) @given( exposures=canonical_exposure(size=2), guls=gul_input_items(size=2) ) def test_no_canonical_accounts_items__oasis_exception_is_raised( self, exposures, guls ): cep = copy.deepcopy(self.exposures_profile) cap = copy.deepcopy(self.accounts_profile) fmap = copy.deepcopy(self.fm_agg_profile) with NamedTemporaryFile('w') as accounts_file: write_canonical_files(canonical_accounts=[], canonical_accounts_file_path=accounts_file.name) with self.assertRaises(OasisException): fm_df, canacc_df = om().get_fm_input_items( pd.DataFrame(data=exposures), pd.DataFrame(data=guls), cep, cap, accounts_file.name, fmap ) class GulInputFilesGenerationTestCase(TestCase): def setUp(self): self.profile = canonical_exposure_profile self.manager = om() def check_items_file(self, gul_items_df, items_file_path): expected = tuple( { k:it[k] for k in ('item_id', 'coverage_id', 'areaperil_id', 'vulnerability_id', 'group_id',) } for _, it in gul_items_df.iterrows() ) with io.open(items_file_path, 'r', encoding='utf-8') as f: result = tuple(pd.read_csv(f).T.to_dict().values()) self.assertEqual(expected, result) def check_coverages_file(self, gul_items_df, coverages_file_path): expected = tuple( { k:it[k] for k in ('coverage_id', 'tiv',) } for _, it in gul_items_df.iterrows() ) with io.open(coverages_file_path, 'r', encoding='utf-8') as f: result = tuple(pd.read_csv(f).T.to_dict().values()) self.assertEqual(expected, result) def check_gulsummaryxref_file(self, gul_items_df, gulsummaryxref_file_path): expected = tuple( { k:it[k] for k in ('coverage_id', 'summary_id', 'summaryset_id',) } for _, it in gul_items_df.iterrows() ) with io.open(gulsummaryxref_file_path, 'r', encoding='utf-8') as f: result = tuple(pd.read_csv(f).T.to_dict().values()) self.assertEqual(expected, result) class FmInputFilesGenerationTestCase(TestCase): def setUp(self): self.exposures_profile = canonical_exposure_profile self.accounts_profile = canonical_accounts_profile self.unified_canonical_profile = unified_canonical_fm_profile_by_level_and_term_group( profiles=(self.exposures_profile, self.accounts_profile,) ) self.fm_agg_profile = oasis_fm_agg_profile self.manager = om() def check_fm_policytc_file(self, fm_items_df, fm_policytc_file_path): fm_policytc_df = pd.DataFrame( columns=['layer_id', 'level_id', 'agg_id', 'policytc_id'], data=[key[:4] for key, _ in fm_items_df.groupby(['layer_id', 'level_id', 'agg_id', 'policytc_id', 'limit', 'deductible', 'share'])], dtype=object ) expected = tuple( { k:it[k] for k in ('layer_id', 'level_id', 'agg_id', 'policytc_id',) } for _, it in fm_policytc_df.iterrows() ) with io.open(fm_policytc_file_path, 'r', encoding='utf-8') as f: result = tuple(pd.read_csv(f).T.to_dict().values()) self.assertEqual(expected, result) def check_fm_profile_file(self, fm_items_df, fm_profile_file_path): cols = ['policytc_id', 'calcrule_id', 'limit', 'deductible', 'deductible_min', 'deductible_max', 'attachment', 'share'] fm_profile_df = fm_items_df[cols] fm_profile_df = pd.DataFrame( columns=cols, data=[key for key, _ in fm_profile_df.groupby(cols)] ) col_repl = [ {'deductible': 'deductible1'}, {'deductible_min': 'deductible2'}, {'deductible_max': 'deductible3'}, {'attachment': 'attachment1'}, {'limit': 'limit1'}, {'share': 'share1'} ] for repl in col_repl: fm_profile_df.rename(columns=repl, inplace=True) n = len(fm_profile_df) fm_profile_df['index'] = range(n) fm_profile_df['share2'] = fm_profile_df['share3'] = [0]*n expected = tuple( { k:it[k] for k in ('policytc_id','calcrule_id','deductible1', 'deductible2', 'deductible3', 'attachment1', 'limit1', 'share1', 'share2', 'share3',) } for _, it in fm_profile_df.iterrows() ) with io.open(fm_profile_file_path, 'r', encoding='utf-8') as f: result = tuple(pd.read_csv(f).T.to_dict().values()) self.assertEqual(expected, result) def check_fm_programme_file(self, fm_items_df, fm_programme_file_path): fm_programme_df = pd.DataFrame( pd.concat([fm_items_df[fm_items_df['level_id']==OASIS_FM_LEVELS['coverage']['id']], fm_items_df])[['level_id', 'agg_id']], dtype=int ).reset_index(drop=True) num_cov_items = len(fm_items_df[fm_items_df['level_id']==OASIS_FM_LEVELS['coverage']['id']]) for i in range(num_cov_items): fm_programme_df.at[i, 'level_id'] = 0 def from_agg_id_to_agg_id(from_level_id, to_level_id): iterator = ( (from_level_it, to_level_it) for (_,from_level_it), (_, to_level_it) in zip( fm_programme_df[fm_programme_df['level_id']==from_level_id].iterrows(), fm_programme_df[fm_programme_df['level_id']==to_level_id].iterrows() ) ) for from_level_it, to_level_it in iterator: yield from_level_it['agg_id'], to_level_id, to_level_it['agg_id'] levels = list(set(fm_programme_df['level_id'])) data = [ (from_agg_id, level_id, to_agg_id) for from_level_id, to_level_id in zip(levels, levels[1:]) for from_agg_id, level_id, to_agg_id in from_agg_id_to_agg_id(from_level_id, to_level_id) ] fm_programme_df = pd.DataFrame(columns=['from_agg_id', 'level_id', 'to_agg_id'], data=data, dtype=int).drop_duplicates() expected = tuple( { k:it[k] for k in ('from_agg_id', 'level_id', 'to_agg_id',) } for _, it in fm_programme_df.iterrows() ) with io.open(fm_programme_file_path, 'r', encoding='utf-8') as f: result = tuple(pd.read_csv(f).T.to_dict().values()) self.assertEqual(expected, result) def check_fm_xref_file(self, fm_items_df, fm_xref_file_path): data = [ (i + 1, agg_id, layer_id) for i, (agg_id, layer_id) in enumerate(itertools.product(set(fm_items_df['agg_id']), set(fm_items_df['layer_id']))) ] fm_xref_df = pd.DataFrame(columns=['output', 'agg_id', 'layer_id'], data=data, dtype=int) expected = tuple( { k:it[k] for k in ('output', 'agg_id', 'layer_id',) } for _, it in fm_xref_df.iterrows() ) with io.open(fm_xref_file_path, 'r', encoding='utf-8') as f: result = tuple(pd.read_csv(f).T.to_dict().values()) self.assertEqual(expected, result) def check_fmsummaryxref_file(self, fm_items_df, fmsummaryxref_file_path): data = [ (i + 1, 1, 1) for i, _ in enumerate(itertools.product(set(fm_items_df['agg_id']), set(fm_items_df['layer_id']))) ] fmsummaryxref_df =
pd.DataFrame(columns=['output', 'summary_id', 'summaryset_id'], data=data, dtype=int)
pandas.DataFrame
import pandas import numpy import warnings import itertools import matplotlib.pyplot as plt import seaborn from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import LabelEncoder from sklearn.ensemble import RandomForestClassifier from sklearn.feature_selection import RFE from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import cross_val_score from sklearn import metrics as metrics warnings.filterwarnings("ignore") train = pandas.read_csv("train.csv") test =
pandas.read_csv("test.csv")
pandas.read_csv
import csv import numpy import pandas as pd import numpy as np from core.component import Component from core.power import PowerInterface class Source(Component): def __init__(self, location, power): super().__init__(location) self.power_in = power def get_power_in(self): # TODO Check that this is correct pass class HighSpeedDiesel(Source): engine_row = 2 # This is currently ##### engine_data = None def __init__(self, location, power): super().__init__(location, power) self.power_brake = power self.percent_load = None self.SFOC = None self.NOX_rate = None self.SOX_rate = None self.CO2_rate = None self.power = None if not self.engine_data: self.emission_curves() def emission_curves(self): data = 'Cat_engine_data.csv' engine_data = pd.read_csv(data) engine_data.head() engine_data.set_index('Engine', inplace=True) def solve_emissions(self): self.solve_fuel_consumption() self.solve_NOX() self.solve_CO() self.solve_HC() self.solve_CO2() self.solve_PM() self.solve_CO2_eq() def solve_fuel_consumption(self): SFOC_data = pd.DataFrame(data={'engine_load': [1, 0.9, 0.8, 0.75, 0.7, 0.6, 0.5, 0.4, 0.3, 0.25, 0.2, 0.1], 'SFOC': 608.3 * self.engine_data.iloc[self.engine_row][ ['100% BSFC', '90% BSFC', '80% BSFC', '75% BSFC', '70% BSFC', '60% BSFC', '50% BSFC', '40% BSFC', '30% BSFC', '25% BSFC', '20% BSFC', '10% BSFC']]}) SFOC_data_fit = np.polyfit(SFOC_data['engine_load'], SFOC_data['SFOC'], 4) self.SFOC = numpy.polyval(SFOC_data_fit, self.percent_load) # in g/kWh self.fuel_consumption = self.SFOC * self.power # in g/hr def solve_NOX(self): self.NOX_data = pd.DataFrame(data={'engine_load': [1, 0.75, 0.5, 0.25, 0.1], 'NOX': self.engine_data.iloc[self.engine_row][ ['100% NOX', '75% NOX', '50% NOX', '25% NOX', '10% NOX']] / np.multiply([1, 0.75, 0.5, 0.25, 0.1], 0.7457*self.engine_data.iloc[self.engine_row]['BHP'])}) # 0.7457 converts BHP to BkW self.specific_NOX_rate = np.interp(self.percent_load, np.flip(self.NOX_data['engine_load']), np.flip(self.NOX_data['NOX'])) # in g/kWh self.NOX_rate = self.specific_NOX_rate * self.power # in g/hr def get_sox(self, power_wanted): # TODO Fix or remove this sox_specific_rate = 10 # Using standard SOX generation rate of 10g/kWh from L21/31 Project Guide self.sox_rate = power_wanted * sox_specific_rate # This gives the sox generation rate in g/hr return self.sox_rate def solve_CO(self): CO_data = pd.DataFrame(data={'engine_load': [1, 0.75, 0.5, 0.25, 0.1], 'CO': self.engine_data.iloc[self.engine_row][['100% CO', '75% CO', '50% CO', '25% CO', '10% CO']] / np.multiply([1, 0.75, 0.5, 0.25, 0.1], 0.7457*self.engine_data.iloc[self.engine_row]['BHP'])}) self.CO_specific_rate = np.interp(self.percent_load, np.flip(CO_data['engine_load']), np.flip(CO_data['CO'])) # in g/kWh self.CO_rate = self.CO2_specific_rate * self.power # in g/hr def solve_HC(self): self.HC_data = pd.DataFrame(data={'engine_load': [1, 0.75, 0.5, 0.25, 0.1], 'HC': self.engine_data.iloc[self.engine_row][['100% HC', '75% HC', '50% HC', '25% HC', '10% HC']] / np.multiply([1, 0.75, 0.5, 0.25, 0.1], 0.7457*self.engine_data.iloc[self.engine_row]['BHP'])}) self.HC_specific_rate = np.interp(self.percent_load, np.flip(self.HC_data['engine_load']), np.flip(self.HC_data['HC'])) # in g/kWh self.HC_rate = self.HC_specific_rate * self.power # in g/hr def solve_CO2(self): self.CO2_data = pd.DataFrame(data={'engine_load': [1, 0.75, 0.5, 0.25, 0.1], 'CO2': self.engine_data.iloc[self.engine_row][ ['100% CO2', '75% CO2', '50% CO2', '25% CO2', '10% CO2']] / np.multiply([1, 0.75, 0.5, 0.25, 0.1], 0.7457*self.engine_data.iloc[self.engine_row]['BHP'])}) CO2_data_fit = np.polyfit(self.CO2_data['engine_load'], self.CO2_data['CO2'], 4) self.CO2_specific_rate = np.polyval(CO2_data_fit, self.percent_load) # in kg/kWh self.CO2_rate = self.CO2_specific_rate * self.power # in kg/hr def solve_PM(self): PM_data = pd.DataFrame(data={'engine_load': [1, 0.75, 0.5, 0.25, 0.1], 'PM': self.engine_data.iloc[self.engine_row][['100% PM', '75% PM', '50% PM', '25% PM', '10% PM']] / np.multiply([1, 0.75, 0.5, 0.25, 0.1], 0.7457*self.engine_data.iloc[self.engine_row]['BHP'])}) self.PM_specific_rate = np.interp(self.percent_load, np.flip(PM_data['engine_load']), np.flip(PM_data['PM'])) # in g/kWh self.PM_rate = self.PM_specific_rate * self.power # in g/hr def solve_CO2_eq(self): GWP_CH4 = 25 GWP_N2O = 298 CO2_eq = self.CO2_data['CO2'].reset_index(drop=True) + GWP_CH4 * self.HC_data['HC'].reset_index( drop=True) / 1000 + GWP_N2O * self.NOX_data['NOX'].reset_index(drop=True) / 1000 CO2_eq_data =
pd.DataFrame(data={'engine_load': [1, 0.75, 0.5, 0.25, 0.1], 'CO2_eq': CO2_eq})
pandas.DataFrame
# Copyright 2014 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tests for module main.py. Fixtures comes from file conftest.py located at the same dir of this file. """ from __future__ import absolute_import, division, print_function import os import mock import numpy as np import pandas as pd import pytest from numpy.testing import assert_array_equal from pandas.core.indexes.range import RangeIndex from pandas.util.testing import assert_frame_equal from statsmodels.tsa.statespace.structural import ( UnobservedComponents, UnobservedComponentsResultsWrapper) from causalimpact import CausalImpact from causalimpact.misc import standardize def test_default_causal_cto(rand_data, pre_int_period, post_int_period): ci = CausalImpact(rand_data, pre_int_period, post_int_period) assert_frame_equal(ci.data, rand_data) assert ci.pre_period == pre_int_period assert ci.post_period == post_int_period pre_data = rand_data.loc[pre_int_period[0]: pre_int_period[1], :] assert_frame_equal(ci.pre_data, pre_data) post_data = rand_data.loc[post_int_period[0]: post_int_period[1], :] assert_frame_equal(ci.post_data, post_data) assert ci.alpha == 0.05 normed_pre_data, (mu, sig) = standardize(pre_data) assert_frame_equal(ci.normed_pre_data, normed_pre_data) normed_post_data = (post_data - mu) / sig assert_frame_equal(ci.normed_post_data, normed_post_data) assert ci.mu_sig == (mu[0], sig[0]) assert ci.model_args == {'standardize': True, 'nseasons': []} assert isinstance(ci.model, UnobservedComponents) assert_array_equal(ci.model.endog, normed_pre_data.iloc[:, 0].values.reshape(-1, 1)) assert_array_equal(ci.model.exog, normed_pre_data.iloc[:, 1:].values.reshape( -1, rand_data.shape[1] - 1 ) ) assert ci.model.endog_names == 'y' assert ci.model.exog_names == ['x1', 'x2'] assert ci.model.k_endog == 1 assert ci.model.level assert ci.model.trend_specification == 'local level' assert isinstance(ci.trained_model, UnobservedComponentsResultsWrapper) assert ci.trained_model.nobs == len(pre_data) assert ci.inferences is not None assert ci.p_value > 0 and ci.p_value < 1 assert ci.n_sims == 1000 def test_default_causal_cto_w_date(date_rand_data, pre_str_period, post_str_period): ci = CausalImpact(date_rand_data, pre_str_period, post_str_period) assert_frame_equal(ci.data, date_rand_data) assert ci.pre_period == pre_str_period assert ci.post_period == post_str_period pre_data = date_rand_data.loc[pre_str_period[0]: pre_str_period[1], :] assert_frame_equal(ci.pre_data, pre_data) post_data = date_rand_data.loc[post_str_period[0]: post_str_period[1], :] assert_frame_equal(ci.post_data, post_data) assert ci.alpha == 0.05 normed_pre_data, (mu, sig) = standardize(pre_data) assert_frame_equal(ci.normed_pre_data, normed_pre_data) normed_post_data = (post_data - mu) / sig assert_frame_equal(ci.normed_post_data, normed_post_data) assert ci.mu_sig == (mu[0], sig[0]) assert ci.model_args == {'standardize': True, 'nseasons': []} assert isinstance(ci.model, UnobservedComponents) assert_array_equal(ci.model.endog, normed_pre_data.iloc[:, 0].values.reshape(-1, 1)) assert_array_equal(ci.model.exog, normed_pre_data.iloc[:, 1:].values.reshape( -1, date_rand_data.shape[1] - 1 ) ) assert ci.model.endog_names == 'y' assert ci.model.exog_names == ['x1', 'x2'] assert ci.model.k_endog == 1 assert ci.model.level assert ci.model.trend_specification == 'local level' assert isinstance(ci.trained_model, UnobservedComponentsResultsWrapper) assert ci.trained_model.nobs == len(pre_data) assert ci.inferences is not None assert ci.p_value > 0 and ci.p_value < 1 assert ci.n_sims == 1000 def test_default_causal_cto_no_exog(rand_data, pre_int_period, post_int_period): rand_data = pd.DataFrame(rand_data.iloc[:, 0]) ci = CausalImpact(rand_data, pre_int_period, post_int_period) assert_frame_equal(ci.data, rand_data) assert ci.pre_period == pre_int_period assert ci.post_period == post_int_period pre_data = rand_data.loc[pre_int_period[0]: pre_int_period[1], :] assert_frame_equal(ci.pre_data, pre_data) post_data = rand_data.loc[post_int_period[0]: post_int_period[1], :] assert_frame_equal(ci.post_data, post_data) assert ci.alpha == 0.05 normed_pre_data, (mu, sig) = standardize(pre_data) assert_frame_equal(ci.normed_pre_data, normed_pre_data) normed_post_data = (post_data - mu) / sig assert_frame_equal(ci.normed_post_data, normed_post_data) assert ci.mu_sig == (mu[0], sig[0]) assert ci.model_args == {'standardize': True, 'nseasons': []} assert isinstance(ci.model, UnobservedComponents) assert_array_equal(ci.model.endog, normed_pre_data.iloc[:, 0].values.reshape(-1, 1)) assert ci.model.exog is None assert ci.model.endog_names == 'y' assert ci.model.exog_names is None assert ci.model.k_endog == 1 assert ci.model.level assert ci.model.trend_specification == 'local level' assert isinstance(ci.trained_model, UnobservedComponentsResultsWrapper) assert ci.trained_model.nobs == len(pre_data) assert ci.inferences is not None assert ci.p_value > 0 and ci.p_value < 1 assert ci.n_sims == 1000 def test_default_causal_cto_w_np_array(rand_data, pre_int_period, post_int_period): data = rand_data.values ci = CausalImpact(data, pre_int_period, post_int_period) assert_array_equal(ci.data, data) assert ci.pre_period == pre_int_period assert ci.post_period == post_int_period pre_data = pd.DataFrame(data[pre_int_period[0]: pre_int_period[1] + 1, :]) assert_frame_equal(ci.pre_data, pre_data) post_data = pd.DataFrame(data[post_int_period[0]: post_int_period[1] + 1, :]) post_data.index = RangeIndex(start=len(pre_data), stop=len(rand_data)) assert_frame_equal(ci.post_data, post_data) assert ci.alpha == 0.05 normed_pre_data, (mu, sig) = standardize(pre_data) assert_frame_equal(ci.normed_pre_data, normed_pre_data) normed_post_data = (post_data - mu) / sig assert_frame_equal(ci.normed_post_data, normed_post_data) assert ci.mu_sig == (mu[0], sig[0]) assert ci.model_args == {'standardize': True, 'nseasons': []} assert isinstance(ci.model, UnobservedComponents) assert_array_equal(ci.model.endog, normed_pre_data.iloc[:, 0].values.reshape(-1, 1)) assert_array_equal(ci.model.exog, normed_pre_data.iloc[:, 1:].values.reshape( -1, data.shape[1] - 1 ) ) assert ci.model.endog_names == 'y' assert ci.model.exog_names == [1, 2] assert ci.model.k_endog == 1 assert ci.model.level assert ci.model.trend_specification == 'local level' assert isinstance(ci.trained_model, UnobservedComponentsResultsWrapper) assert ci.trained_model.nobs == len(pre_data) assert ci.inferences is not None assert ci.p_value > 0 and ci.p_value < 1 assert ci.n_sims == 1000 def test_causal_cto_w_no_standardization(rand_data, pre_int_period, post_int_period): ci = CausalImpact(rand_data, pre_int_period, post_int_period, standardize=False) pre_data = rand_data.loc[pre_int_period[0]: pre_int_period[1], :] assert ci.normed_pre_data is None assert ci.normed_post_data is None assert ci.mu_sig is None assert_array_equal(ci.model.endog, pre_data.iloc[:, 0].values.reshape(-1, 1)) assert_array_equal(ci.model.exog, pre_data.iloc[:, 1:].values.reshape( -1, rand_data.shape[1] - 1 ) ) assert ci.p_value > 0 and ci.p_value < 1 def test_causal_cto_w_seasons(date_rand_data, pre_str_period, post_str_period): ci = CausalImpact(date_rand_data, pre_str_period, post_str_period, nseasons=[{'period': 4}, {'period': 3}]) assert ci.model.freq_seasonal_periods == [4, 3] assert ci.model.freq_seasonal_harmonics == [2, 1] ci = CausalImpact(date_rand_data, pre_str_period, post_str_period, nseasons=[{'period': 4, 'harmonics': 1}, {'period': 3, 'harmonis': 1}]) assert ci.model.freq_seasonal_periods == [4, 3] assert ci.model.freq_seasonal_harmonics == [1, 1] def test_causal_cto_w_custom_model_and_seasons(rand_data, pre_int_period, post_int_period): pre_data = rand_data.loc[pre_int_period[0]: pre_int_period[1], :] model = UnobservedComponents(endog=pre_data.iloc[:, 0], level='llevel', exog=pre_data.iloc[:, 1:], freq_seasonal=[{'period': 4}, {'period': 3}]) ci = CausalImpact(rand_data, pre_int_period, post_int_period, model=model) assert ci.model.freq_seasonal_periods == [4, 3] assert ci.model.freq_seasonal_harmonics == [2, 1] def test_causal_cto_w_custom_model(rand_data, pre_int_period, post_int_period): pre_data = rand_data.loc[pre_int_period[0]: pre_int_period[1], :] model = UnobservedComponents(endog=pre_data.iloc[:, 0], level='llevel', exog=pre_data.iloc[:, 1:]) ci = CausalImpact(rand_data, pre_int_period, post_int_period, model=model) assert ci.model.endog_names == 'y' assert ci.model.exog_names == ['x1', 'x2'] assert ci.model.k_endog == 1 assert ci.model.level assert ci.model.trend_specification == 'local level' assert isinstance(ci.trained_model, UnobservedComponentsResultsWrapper) assert ci.trained_model.nobs == len(pre_data) def test_causal_cto_raises_on_None_input(rand_data, pre_int_period, post_int_period): with pytest.raises(ValueError) as excinfo: CausalImpact(None, pre_int_period, post_int_period) assert str(excinfo.value) == 'data input cannot be empty' with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, None, post_int_period) assert str(excinfo.value) == 'pre_period input cannot be empty' with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, pre_int_period, None) assert str(excinfo.value) == 'post_period input cannot be empty' def test_invalid_data_input_raises(): with pytest.raises(ValueError) as excinfo: CausalImpact('test', [0, 5], [5, 10]) assert str(excinfo.value) == 'Could not transform input data to pandas DataFrame.' data = [1, 2, 3, 4, 5, 6, 2 + 1j] with pytest.raises(ValueError) as excinfo: CausalImpact(data, [0, 3], [3, 6]) assert str(excinfo.value) == 'Input data must contain only numeric values.' data = np.random.randn(10, 2) data[0, 1] = np.nan with pytest.raises(ValueError) as excinfo: CausalImpact(data, [0, 3], [3, 6]) assert str(excinfo.value) == 'Input data cannot have NAN values.' def test_invalid_response_raises(): data = np.random.rand(100, 2) data[:, 0] = np.ones(len(data)) * np.nan with pytest.raises(ValueError) as excinfo: CausalImpact(data, [0, 50], [50, 100]) assert str(excinfo.value) == 'Input response cannot have just Null values.' data[0:2, 0] = 1 with pytest.raises(ValueError) as excinfo: CausalImpact(data, [0, 50], [50, 100]) assert str(excinfo.value) == ('Input response must have more than 3 non-null points ' 'at least.') data[0:3, 0] = 1 with pytest.raises(ValueError) as excinfo: CausalImpact(data, [0, 50], [50, 100]) assert str(excinfo.value) == 'Input response cannot be constant.' def test_invalid_alpha_raises(rand_data, pre_int_period, post_int_period): with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, pre_int_period, post_int_period, alpha=1) assert str(excinfo.value) == 'alpha must be of type float.' with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, pre_int_period, post_int_period, alpha=2.) assert str(excinfo.value) == ( 'alpha must range between 0 (zero) and 1 (one) inclusive.' ) def test_custom_model_input_validation(rand_data, pre_int_period, post_int_period): with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, pre_int_period, post_int_period, model='test') assert str(excinfo.value) == 'Input model must be of type UnobservedComponents.' ucm = UnobservedComponents(rand_data.iloc[:101, 0], level='llevel', exog=rand_data.iloc[:101, 1:]) ucm.level = False with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, pre_int_period, post_int_period, model=ucm) assert str(excinfo.value) == 'Model must have level attribute set.' ucm = UnobservedComponents(rand_data.iloc[:101, 0], level='llevel', exog=rand_data.iloc[:101, 1:]) ucm.exog = None with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, pre_int_period, post_int_period, model=ucm) assert str(excinfo.value) == 'Model must have exog attribute set.' ucm = UnobservedComponents(rand_data.iloc[:101, 0], level='llevel', exog=rand_data.iloc[:101, 1:]) ucm.data = None with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, pre_int_period, post_int_period, model=ucm) assert str(excinfo.value) == 'Model must have data attribute set.' def test_kwargs_validation(rand_data, pre_int_period, post_int_period): with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, pre_int_period, post_int_period, standardize='yes') assert str(excinfo.value) == 'Standardize argument must be of type bool.' with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, pre_int_period, post_int_period, standardize=False, nseasons=[7]) assert str(excinfo.value) == ( 'nseasons must be a list of dicts with the required key "period" and the ' 'optional key "harmonics".' ) with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, pre_int_period, post_int_period, standardize=False, nseasons=[{'test': 8}]) assert str(excinfo.value) == 'nseasons dicts must contain the key "period" defined.' with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, pre_int_period, post_int_period, standardize=False, nseasons=[{'period': 4, 'harmonics': 3}]) assert str(excinfo.value) == ( 'Total harmonics must be less or equal than periods divided by 2.') def test_periods_validation(rand_data, date_rand_data): with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, [5, 10], [4, 7]) assert str(excinfo.value) == ( 'Values in training data cannot be present in the ' 'post-intervention data. Please fix your pre_period value to cover at most one ' 'point less from when the intervention happened.' ) with pytest.raises(ValueError) as excinfo: CausalImpact(date_rand_data, ['20180101', '20180201'], ['20180110', '20180210']) assert str(excinfo.value) == ( 'Values in training data cannot be present in the ' 'post-intervention data. Please fix your pre_period value to cover at most one ' 'point less from when the intervention happened.' ) with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, [5, 10], [15, 11]) assert str(excinfo.value) == 'post_period last number must be bigger than its first.' with pytest.raises(ValueError) as excinfo: CausalImpact(date_rand_data, ['20180101', '20180110'], ['20180115', '20180111']) assert str(excinfo.value) == 'post_period last number must be bigger than its first.' with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, [0, 2], [15, 11]) assert str(excinfo.value) == 'pre_period must span at least 3 time points.' with pytest.raises(ValueError) as excinfo: CausalImpact(date_rand_data, ['20180101', '20180102'], ['20180115', '20180111']) assert str(excinfo.value) == 'pre_period must span at least 3 time points.' with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, [5, 0], [15, 11]) assert str(excinfo.value) == 'pre_period last number must be bigger than its first.' with pytest.raises(ValueError) as excinfo: CausalImpact(date_rand_data, ['20180105', '20180101'], ['20180115', '20180111']) assert str(excinfo.value) == 'pre_period last number must be bigger than its first.' with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, 0, [15, 11]) assert str(excinfo.value) == 'Input period must be of type list.' with pytest.raises(ValueError) as excinfo: CausalImpact(date_rand_data, '20180101', ['20180115', '20180130']) assert str(excinfo.value) == 'Input period must be of type list.' with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, [0, 10, 30], [15, 11]) assert str(excinfo.value) == ( 'Period must have two values regarding the beginning ' 'and end of the pre and post intervention data.' ) with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, [0, None], [15, 11]) assert str(excinfo.value) == 'Input period cannot have `None` values.' with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, [0, 5.5], [15, 11]) assert str(excinfo.value) == 'Input must contain either int, str or pandas Timestamp' with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, [-2, 10], [11, 20]) assert str(excinfo.value) == ( '-2 not present in input data index.' ) with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, [0, 10], [11, 2000]) assert str(excinfo.value) == ( '2000 not present in input data index.' ) with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, ['20180101', '20180110'], ['20180111', '20180130']) assert str(excinfo.value) == ( '20180101 not present in input data index.' ) with pytest.raises(ValueError) as excinfo: CausalImpact(date_rand_data, ['20180101', '20180110'], ['20180111', '20200130']) assert str(excinfo.value) == ('20200130 not present in input data index.') with pytest.raises(ValueError) as excinfo: CausalImpact(date_rand_data, ['20170101', '20180110'], ['20180111', '20180120']) assert str(excinfo.value) == ('20170101 not present in input data index.') with pytest.raises(ValueError) as excinfo: CausalImpact(rand_data, [pd.Timestamp('20180101'), pd.Timestamp('20180110')], [pd.Timestamp('20180111'), pd.Timestamp('20180130')]) assert str(excinfo.value) == ( '20180101 not present in input data index.' ) with pytest.raises(ValueError) as excinfo: CausalImpact(date_rand_data, [pd.Timestamp('20180101'), pd.Timestamp('20180110')], [pd.Timestamp('20180111'), pd.Timestamp('20200130')]) assert str(excinfo.value) == ('20200130 not present in input data index.') with pytest.raises(ValueError) as excinfo: CausalImpact(date_rand_data, [
pd.Timestamp('20170101')
pandas.Timestamp
# coding: utf-8 # # Prototype: Merging Newcomer Dataframes with ORES scores for Newcomer Contributions # June 8, 2018 <NAME> # # Using data sources from http://paws-public.wmflabs.org/paws-public/User:Juliakamin/Querying%20new%20editors%20via%20sql.ipynb import os, time, datetime, csv, glob, math, datetime, pprint from collections import defaultdict, Counter import pandas as pd import numpy as np from dateutil import parser import click @click.command() @click.option('--lang', default='es', help='the wiki language to target') @click.option('--datadir', default='data', help='where to look for the data') @click.option('--resultsdir', default='results', help='where to plop results when done') def main(lang, datadir, resultsdir): newcomer_file = os.path.join(datadir, lang+"_newcomer_list.csv") newcomer_revisions_files = glob.glob( os.path.join(datadir, lang + "_newcomer_revisions*.csv")) newcomers = {} counter = 0 with open(newcomer_file, "r") as f: for newcomer in csv.DictReader(f.readlines()): ## REMOVE OUT THE PANDAS SEQUENTIAL INDEX ## IF IT EXISTS if '' in newcomer.keys(): del newcomer[''] newcomer['wiki'] = lang newcomer['registration.date'] = datetime.datetime.strptime( newcomer['registration'].replace("b'","").replace("'",""), "%Y%m%d%H%M%S") newcomers[newcomer['user id']] = newcomer counter += 1 newcomer_revisions = defaultdict(list) all_ids = set() for filename in newcomer_revisions_files: with open(filename, "r") as f: print(filename) for revision in csv.DictReader(f.readlines()): revision['wiki'] = lang revision_id = revision['revision id'] if('' in revision.keys()): del revision[''] if(revision_id not in all_ids): newcomer_revisions[revision['user id']].append(revision) all_ids.add(revision_id) for key, revisions in newcomer_revisions.items(): newcomer_revisions[key] = sorted(revisions, key=lambda x:parser.parse(x['revision time'])) # ### Data Validation # Here, we confirm that every newcomer has at least one revision # And that there aren't any revisions that have no newcomer print("{0} total unique newcomers".format(len(set([x for x in newcomers.keys()])))) print("{0} total newcomers with edit records in the dataset".format( len(newcomer_revisions.keys()))) newcomers_in_revision_set = set() revisions_not_in_newcomer_set = set() newcomers_not_in_revision_set = set() for user_id, revisions in newcomer_revisions.items(): if user_id in newcomers.keys(): newcomers_in_revision_set.add(user_id) else: revisions_not_in_newcomer_set.add(user_id) for user_id in newcomers.keys(): if user_id not in newcomer_revisions.keys(): newcomers_not_in_revision_set.add(key) print("{0} newcomers in revision set".format(len(newcomers_in_revision_set))) print("{0} revisions not in newcomer set".format(len(revisions_not_in_newcomer_set))) print("{0} newcomers not in revision set".format(len(newcomers_not_in_revision_set))) # ### Create Revision Dataframe with Information on users all_revisions = [] for user_id, revisions in newcomer_revisions.items(): newcomer = newcomers[user_id] first_revision_time = None if(len(revisions)>0): first_revision_time = parser.parse(revisions[0]['revision time']) treat_time = first_revision_time + datetime.timedelta(hours=48) for revision in revisions: revision_time = parser.parse(revision['revision time']) revision['registration'] = newcomer['registration.date'] revision['days.since.registration'] = (revision_time - revision['registration']).days revision['days.since.simulated.treat'] = (revision_time - treat_time).days revision['edits.6.months'] = newcomer['edit count'] all_revisions.append(revision) all_revs_file = os.path.join(resultsdir, lang+"_revisions_with_user_11.2017.csv") pd.DataFrame(all_revisions).to_csv(all_revs_file) print('saved file: {}'.format(all_revs_file)) # ### Create User Dataframe with Summary Stats on Revisions # For the power analysis, assume that the participant will be 'treated' within 2 days (48 hrs) of making their first edit. Then count the following information starting 2 days after their first edit: # * edits in the 7 day period between 3-4 weeks # * edits in the 4 week period between 1-2 months # * edits in the 12 week period betwen 2-6 months for user_id, newcomer in newcomers.items(): for key in ['first.n.goodfaith.mean', 'first.n.goodfaith.median', 'first.n.damaging.mean', 'first.n.damaging.median', 'first.goodfaith.score', 'first.damaging.score']: newcomer[key] = None newcomer['ORES.rated.revisions'] = 0 ## edits counted from registration time newcomer['edits.6.months'] = 0 newcomer['edits.2.weeks'] = 0 newcomer['edits.4.weeks'] = 0 newcomer['edits.8.weeks'] = 0 newcomer['edits.12.weeks'] = 0 ## time interval simulation for power analysis ## following the outcome variables used in this paper: ## https://osf.io/preprints/socarxiv/8qsv6/ newcomer['edits.3.4.weeks'] = 0 newcomer['edits.4.8.weeks'] = 0 newcomer['edits.8.24.weeks'] = 0 ## SURVIVAL MEASURE OVER 20 WEEK PERIODS (5 MONTHS) ## BASED ON WHETHER THEY MADE AT LEAST ONE EDIT ## AT ANY TIME AFTER THE OBSERVED PERIOD ## This measure uses days.since.simulated.treat ## for calculation ## We only consider 5 months, since we only have six ## months of information, and since some joined at the end of Nov survival_weeks = 20 for i in range(1, survival_weeks+1): newcomer['survival.week.period.' + str(i)] = False if user_id in newcomer_revisions: revisions = newcomer_revisions[user_id] ### COUNT REVISIONS OVER A PERIOD OF TIME newcomer['edits.6.months'] = len(revisions) newcomer['edits.2.weeks'] = len([x for x in revisions if x['days.since.registration'] <= 7*2]) newcomer['edits.4.weeks'] = len([x for x in revisions if x['days.since.registration'] <= 7*4]) newcomer['edits.8.weeks'] = len([x for x in revisions if x['days.since.registration'] <= 7*8]) newcomer['edits.12.weeks'] = len([x for x in revisions if x['days.since.registration'] <= 7*12]) ## SET TIME INTERVAL SIMULATION FOR POWER ANALYSIS newcomer['edits.3.4.weeks'] = len([x for x in revisions if x['days.since.simulated.treat'] >= 7*3 and x['days.since.simulated.treat'] < 7*4 ]) newcomer['edits.4.8.weeks'] = len([x for x in revisions if x['days.since.simulated.treat'] >= 7*4 and x['days.since.simulated.treat'] < 7*8 ]) newcomer['edits.8.24.weeks'] = len([x for x in revisions if x['days.since.simulated.treat'] >= 8*4 and x['days.since.simulated.treat'] < 7*24 ]) ## SET SURVIVAL COLUMNS ## first, find eligible revisions ## Negative day scores are for edits made in the 48 hours from the point of the first edit ## and include the first edit survival_revision_days = [x['days.since.simulated.treat'] for x in revisions if math.ceil(x['days.since.simulated.treat'] / 7) <= survival_weeks and x['days.since.simulated.treat'] > 0] ## If there is at least one eligible revision ## then we should update all appropriate survival periods to True if(len(survival_revision_days)>0): final_revision_day = survival_revision_days[-1] final_revision_period = math.ceil(final_revision_day / 7) for i in range(1, final_revision_period+1): newcomer['survival.week.period.' + str(i)] = True ### AGGREGATE ORES SCORES eligible_revisions = [x for x in revisions if x['goodfaith']!='na' and x['damaging']!='na' and x['goodfaith']!='error' and x['damaging']!='error'] newcomer['ORES.rated.revisions'] = len(eligible_revisions) if(len(eligible_revisions)>0): newcomer['first.goodfaith.score'] = float(eligible_revisions[0]['goodfaith']) newcomer['first.damaging.score'] = float(eligible_revisions[0]['damaging']) newcomer['first.n.goodfaith.mean'] = np.mean([float(x['goodfaith']) for x in eligible_revisions]) newcomer['first.n.goodfaith.median'] = np.median([float(x['goodfaith']) for x in eligible_revisions]) newcomer['first.n.damaging.mean'] = np.mean([float(x['damaging']) for x in eligible_revisions]) newcomer['first.n.damaging.median'] = np.median([float(x['damaging']) for x in eligible_revisions]) ores_file = os.path.join(resultsdir, lang+"_newcomers_with_ores_scores_11.2017.csv") pd.DataFrame(list(newcomers.values())).to_csv(ores_file) print('saved file: {}'.format(ores_file)) # ### Make Survival Dataframe survival_week_records = [] for user_id, newcomer in newcomers.items(): if(int(newcomer['edit count'])>0): for i in range(1, survival_weeks+1): survival_week_records.append({"user.id": user_id, "week":i, "first.goodfaith.score":newcomer['first.goodfaith.score'], "first.damaging.score":newcomer['first.damaging.score'], "survived":int(newcomer["survival.week.period."+str(i)])}) print("Generated {0} survival week periods".format(len(survival_week_records))) survival_file = os.path.join(resultsdir, lang+"_newcomer_survival_week_periods.2017.csv")
pd.DataFrame(survival_week_records)
pandas.DataFrame
import math import queue from datetime import datetime, timedelta, timezone import pandas as pd from storey import build_flow, SyncEmitSource, Reduce, Table, AggregateByKey, FieldAggregator, NoopDriver, \ DataframeSource from storey.dtypes import SlidingWindows, FixedWindows, EmitAfterMaxEvent, EmitEveryEvent test_base_time = datetime.fromisoformat("2020-07-21T21:40:00+00:00") def append_return(lst, x): lst.append(x) return lst def test_sliding_window_simple_aggregation_flow(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["sum", "avg", "min", "max"], SlidingWindows(['1h', '2h', '24h'], '10m'))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): data = {'col1': i} controller.emit(data, 'tal', test_base_time + timedelta(minutes=25 * i)) controller.terminate() actual = controller.await_termination() expected_results = [ {'col1': 0, 'number_of_stuff_sum_1h': 0, 'number_of_stuff_sum_2h': 0, 'number_of_stuff_sum_24h': 0, 'number_of_stuff_min_1h': 0, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 0, 'number_of_stuff_max_2h': 0, 'number_of_stuff_max_24h': 0, 'number_of_stuff_avg_1h': 0.0, 'number_of_stuff_avg_2h': 0.0, 'number_of_stuff_avg_24h': 0.0}, {'col1': 1, 'number_of_stuff_sum_1h': 1, 'number_of_stuff_sum_2h': 1, 'number_of_stuff_sum_24h': 1, 'number_of_stuff_min_1h': 0, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 1, 'number_of_stuff_max_2h': 1, 'number_of_stuff_max_24h': 1, 'number_of_stuff_avg_1h': 0.5, 'number_of_stuff_avg_2h': 0.5, 'number_of_stuff_avg_24h': 0.5}, {'col1': 2, 'number_of_stuff_sum_1h': 3, 'number_of_stuff_sum_2h': 3, 'number_of_stuff_sum_24h': 3, 'number_of_stuff_min_1h': 0, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 2, 'number_of_stuff_max_2h': 2, 'number_of_stuff_max_24h': 2, 'number_of_stuff_avg_1h': 1.0, 'number_of_stuff_avg_2h': 1.0, 'number_of_stuff_avg_24h': 1.0}, {'col1': 3, 'number_of_stuff_sum_1h': 6, 'number_of_stuff_sum_2h': 6, 'number_of_stuff_sum_24h': 6, 'number_of_stuff_min_1h': 1, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 3, 'number_of_stuff_max_2h': 3, 'number_of_stuff_max_24h': 3, 'number_of_stuff_avg_1h': 2.0, 'number_of_stuff_avg_2h': 1.5, 'number_of_stuff_avg_24h': 1.5}, {'col1': 4, 'number_of_stuff_sum_1h': 9, 'number_of_stuff_sum_2h': 10, 'number_of_stuff_sum_24h': 10, 'number_of_stuff_min_1h': 2, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 4, 'number_of_stuff_max_2h': 4, 'number_of_stuff_max_24h': 4, 'number_of_stuff_avg_1h': 3.0, 'number_of_stuff_avg_2h': 2.0, 'number_of_stuff_avg_24h': 2.0}, {'col1': 5, 'number_of_stuff_sum_1h': 12, 'number_of_stuff_sum_2h': 15, 'number_of_stuff_sum_24h': 15, 'number_of_stuff_min_1h': 3, 'number_of_stuff_min_2h': 1, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 5, 'number_of_stuff_max_2h': 5, 'number_of_stuff_max_24h': 5, 'number_of_stuff_avg_1h': 4.0, 'number_of_stuff_avg_2h': 3.0, 'number_of_stuff_avg_24h': 2.5}, {'col1': 6, 'number_of_stuff_sum_1h': 15, 'number_of_stuff_sum_2h': 20, 'number_of_stuff_sum_24h': 21, 'number_of_stuff_min_1h': 4, 'number_of_stuff_min_2h': 2, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 6, 'number_of_stuff_max_2h': 6, 'number_of_stuff_max_24h': 6, 'number_of_stuff_avg_1h': 5.0, 'number_of_stuff_avg_2h': 4.0, 'number_of_stuff_avg_24h': 3.0}, {'col1': 7, 'number_of_stuff_sum_1h': 18, 'number_of_stuff_sum_2h': 25, 'number_of_stuff_sum_24h': 28, 'number_of_stuff_min_1h': 5, 'number_of_stuff_min_2h': 3, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 7, 'number_of_stuff_max_2h': 7, 'number_of_stuff_max_24h': 7, 'number_of_stuff_avg_1h': 6.0, 'number_of_stuff_avg_2h': 5.0, 'number_of_stuff_avg_24h': 3.5}, {'col1': 8, 'number_of_stuff_sum_1h': 21, 'number_of_stuff_sum_2h': 30, 'number_of_stuff_sum_24h': 36, 'number_of_stuff_min_1h': 6, 'number_of_stuff_min_2h': 4, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 8, 'number_of_stuff_max_2h': 8, 'number_of_stuff_max_24h': 8, 'number_of_stuff_avg_1h': 7.0, 'number_of_stuff_avg_2h': 6.0, 'number_of_stuff_avg_24h': 4.0}, {'col1': 9, 'number_of_stuff_sum_1h': 24, 'number_of_stuff_sum_2h': 35, 'number_of_stuff_sum_24h': 45, 'number_of_stuff_min_1h': 7, 'number_of_stuff_min_2h': 5, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 9, 'number_of_stuff_max_2h': 9, 'number_of_stuff_max_24h': 9, 'number_of_stuff_avg_1h': 8.0, 'number_of_stuff_avg_2h': 7.0, 'number_of_stuff_avg_24h': 4.5} ] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_sliding_window_sparse_data(): controller = build_flow([ SyncEmitSource(), AggregateByKey( [FieldAggregator("number_of_stuff1", "col1", ["sum", "avg", "min", "max"], SlidingWindows(['1h', '2h', '24h'], '10m')), FieldAggregator("number_of_stuff2", "col2", ["sum", "avg", "min", "max"], SlidingWindows(['1h', '2h', '24h'], '10m'))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): controller.emit({'col1': i}, 'tal', test_base_time + timedelta(minutes=25 * i)) controller.emit({'col2': i}, 'tal', test_base_time + timedelta(minutes=25 * i)) controller.terminate() actual = controller.await_termination() expected_results = [{'col1': 0, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': math.nan, 'number_of_stuff2_avg_24h': math.nan, 'number_of_stuff2_avg_2h': math.nan, 'number_of_stuff2_max_1h': math.nan, 'number_of_stuff2_max_24h': math.nan, 'number_of_stuff2_max_2h': math.nan, 'number_of_stuff2_min_1h': math.nan, 'number_of_stuff2_min_24h': math.nan, 'number_of_stuff2_min_2h': math.nan, 'number_of_stuff2_sum_1h': 0, 'number_of_stuff2_sum_24h': 0, 'number_of_stuff2_sum_2h': 0}, {'col2': 0, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 0.0, 'number_of_stuff2_avg_24h': 0.0, 'number_of_stuff2_avg_2h': 0.0, 'number_of_stuff2_max_1h': 0, 'number_of_stuff2_max_24h': 0, 'number_of_stuff2_max_2h': 0, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 0, 'number_of_stuff2_sum_24h': 0, 'number_of_stuff2_sum_2h': 0}, {'col1': 1, 'number_of_stuff1_avg_1h': 0.5, 'number_of_stuff1_avg_24h': 0.5, 'number_of_stuff1_avg_2h': 0.5, 'number_of_stuff1_max_1h': 1, 'number_of_stuff1_max_24h': 1, 'number_of_stuff1_max_2h': 1, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 1, 'number_of_stuff1_sum_24h': 1, 'number_of_stuff1_sum_2h': 1, 'number_of_stuff2_avg_1h': 0.0, 'number_of_stuff2_avg_24h': 0.0, 'number_of_stuff2_avg_2h': 0.0, 'number_of_stuff2_max_1h': 0, 'number_of_stuff2_max_24h': 0, 'number_of_stuff2_max_2h': 0, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 0, 'number_of_stuff2_sum_24h': 0, 'number_of_stuff2_sum_2h': 0}, {'col2': 1, 'number_of_stuff1_avg_1h': 0.5, 'number_of_stuff1_avg_24h': 0.5, 'number_of_stuff1_avg_2h': 0.5, 'number_of_stuff1_max_1h': 1, 'number_of_stuff1_max_24h': 1, 'number_of_stuff1_max_2h': 1, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 1, 'number_of_stuff1_sum_24h': 1, 'number_of_stuff1_sum_2h': 1, 'number_of_stuff2_avg_1h': 0.5, 'number_of_stuff2_avg_24h': 0.5, 'number_of_stuff2_avg_2h': 0.5, 'number_of_stuff2_max_1h': 1, 'number_of_stuff2_max_24h': 1, 'number_of_stuff2_max_2h': 1, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 1, 'number_of_stuff2_sum_24h': 1, 'number_of_stuff2_sum_2h': 1}, {'col1': 2, 'number_of_stuff1_avg_1h': 1.0, 'number_of_stuff1_avg_24h': 1.0, 'number_of_stuff1_avg_2h': 1.0, 'number_of_stuff1_max_1h': 2, 'number_of_stuff1_max_24h': 2, 'number_of_stuff1_max_2h': 2, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 3, 'number_of_stuff1_sum_24h': 3, 'number_of_stuff1_sum_2h': 3, 'number_of_stuff2_avg_1h': 0.5, 'number_of_stuff2_avg_24h': 0.5, 'number_of_stuff2_avg_2h': 0.5, 'number_of_stuff2_max_1h': 1, 'number_of_stuff2_max_24h': 1, 'number_of_stuff2_max_2h': 1, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 1, 'number_of_stuff2_sum_24h': 1, 'number_of_stuff2_sum_2h': 1}, {'col2': 2, 'number_of_stuff1_avg_1h': 1.0, 'number_of_stuff1_avg_24h': 1.0, 'number_of_stuff1_avg_2h': 1.0, 'number_of_stuff1_max_1h': 2, 'number_of_stuff1_max_24h': 2, 'number_of_stuff1_max_2h': 2, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 3, 'number_of_stuff1_sum_24h': 3, 'number_of_stuff1_sum_2h': 3, 'number_of_stuff2_avg_1h': 1.0, 'number_of_stuff2_avg_24h': 1.0, 'number_of_stuff2_avg_2h': 1.0, 'number_of_stuff2_max_1h': 2, 'number_of_stuff2_max_24h': 2, 'number_of_stuff2_max_2h': 2, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 3, 'number_of_stuff2_sum_24h': 3, 'number_of_stuff2_sum_2h': 3}, {'col1': 3, 'number_of_stuff1_avg_1h': 2.0, 'number_of_stuff1_avg_24h': 1.5, 'number_of_stuff1_avg_2h': 1.5, 'number_of_stuff1_max_1h': 3, 'number_of_stuff1_max_24h': 3, 'number_of_stuff1_max_2h': 3, 'number_of_stuff1_min_1h': 1, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 6, 'number_of_stuff1_sum_24h': 6, 'number_of_stuff1_sum_2h': 6, 'number_of_stuff2_avg_1h': 1.0, 'number_of_stuff2_avg_24h': 1.0, 'number_of_stuff2_avg_2h': 1.0, 'number_of_stuff2_max_1h': 2, 'number_of_stuff2_max_24h': 2, 'number_of_stuff2_max_2h': 2, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 3, 'number_of_stuff2_sum_24h': 3, 'number_of_stuff2_sum_2h': 3}, {'col2': 3, 'number_of_stuff1_avg_1h': 2.0, 'number_of_stuff1_avg_24h': 1.5, 'number_of_stuff1_avg_2h': 1.5, 'number_of_stuff1_max_1h': 3, 'number_of_stuff1_max_24h': 3, 'number_of_stuff1_max_2h': 3, 'number_of_stuff1_min_1h': 1, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 6, 'number_of_stuff1_sum_24h': 6, 'number_of_stuff1_sum_2h': 6, 'number_of_stuff2_avg_1h': 2.0, 'number_of_stuff2_avg_24h': 1.5, 'number_of_stuff2_avg_2h': 1.5, 'number_of_stuff2_max_1h': 3, 'number_of_stuff2_max_24h': 3, 'number_of_stuff2_max_2h': 3, 'number_of_stuff2_min_1h': 1, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 6, 'number_of_stuff2_sum_24h': 6, 'number_of_stuff2_sum_2h': 6}, {'col1': 4, 'number_of_stuff1_avg_1h': 3.0, 'number_of_stuff1_avg_24h': 2.0, 'number_of_stuff1_avg_2h': 2.0, 'number_of_stuff1_max_1h': 4, 'number_of_stuff1_max_24h': 4, 'number_of_stuff1_max_2h': 4, 'number_of_stuff1_min_1h': 2, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 9, 'number_of_stuff1_sum_24h': 10, 'number_of_stuff1_sum_2h': 10, 'number_of_stuff2_avg_1h': 2.0, 'number_of_stuff2_avg_24h': 1.5, 'number_of_stuff2_avg_2h': 1.5, 'number_of_stuff2_max_1h': 3, 'number_of_stuff2_max_24h': 3, 'number_of_stuff2_max_2h': 3, 'number_of_stuff2_min_1h': 1, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 6, 'number_of_stuff2_sum_24h': 6, 'number_of_stuff2_sum_2h': 6}, {'col2': 4, 'number_of_stuff1_avg_1h': 3.0, 'number_of_stuff1_avg_24h': 2.0, 'number_of_stuff1_avg_2h': 2.0, 'number_of_stuff1_max_1h': 4, 'number_of_stuff1_max_24h': 4, 'number_of_stuff1_max_2h': 4, 'number_of_stuff1_min_1h': 2, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 9, 'number_of_stuff1_sum_24h': 10, 'number_of_stuff1_sum_2h': 10, 'number_of_stuff2_avg_1h': 3.0, 'number_of_stuff2_avg_24h': 2.0, 'number_of_stuff2_avg_2h': 2.0, 'number_of_stuff2_max_1h': 4, 'number_of_stuff2_max_24h': 4, 'number_of_stuff2_max_2h': 4, 'number_of_stuff2_min_1h': 2, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 9, 'number_of_stuff2_sum_24h': 10, 'number_of_stuff2_sum_2h': 10}, {'col1': 5, 'number_of_stuff1_avg_1h': 4.0, 'number_of_stuff1_avg_24h': 2.5, 'number_of_stuff1_avg_2h': 3.0, 'number_of_stuff1_max_1h': 5, 'number_of_stuff1_max_24h': 5, 'number_of_stuff1_max_2h': 5, 'number_of_stuff1_min_1h': 3, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 1, 'number_of_stuff1_sum_1h': 12, 'number_of_stuff1_sum_24h': 15, 'number_of_stuff1_sum_2h': 15, 'number_of_stuff2_avg_1h': 3.0, 'number_of_stuff2_avg_24h': 2.0, 'number_of_stuff2_avg_2h': 2.0, 'number_of_stuff2_max_1h': 4, 'number_of_stuff2_max_24h': 4, 'number_of_stuff2_max_2h': 4, 'number_of_stuff2_min_1h': 2, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 9, 'number_of_stuff2_sum_24h': 10, 'number_of_stuff2_sum_2h': 10}, {'col2': 5, 'number_of_stuff1_avg_1h': 4.0, 'number_of_stuff1_avg_24h': 2.5, 'number_of_stuff1_avg_2h': 3.0, 'number_of_stuff1_max_1h': 5, 'number_of_stuff1_max_24h': 5, 'number_of_stuff1_max_2h': 5, 'number_of_stuff1_min_1h': 3, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 1, 'number_of_stuff1_sum_1h': 12, 'number_of_stuff1_sum_24h': 15, 'number_of_stuff1_sum_2h': 15, 'number_of_stuff2_avg_1h': 4.0, 'number_of_stuff2_avg_24h': 2.5, 'number_of_stuff2_avg_2h': 3.0, 'number_of_stuff2_max_1h': 5, 'number_of_stuff2_max_24h': 5, 'number_of_stuff2_max_2h': 5, 'number_of_stuff2_min_1h': 3, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 1, 'number_of_stuff2_sum_1h': 12, 'number_of_stuff2_sum_24h': 15, 'number_of_stuff2_sum_2h': 15}, {'col1': 6, 'number_of_stuff1_avg_1h': 5.0, 'number_of_stuff1_avg_24h': 3.0, 'number_of_stuff1_avg_2h': 4.0, 'number_of_stuff1_max_1h': 6, 'number_of_stuff1_max_24h': 6, 'number_of_stuff1_max_2h': 6, 'number_of_stuff1_min_1h': 4, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 2, 'number_of_stuff1_sum_1h': 15, 'number_of_stuff1_sum_24h': 21, 'number_of_stuff1_sum_2h': 20, 'number_of_stuff2_avg_1h': 4.0, 'number_of_stuff2_avg_24h': 2.5, 'number_of_stuff2_avg_2h': 3.0, 'number_of_stuff2_max_1h': 5, 'number_of_stuff2_max_24h': 5, 'number_of_stuff2_max_2h': 5, 'number_of_stuff2_min_1h': 3, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 1, 'number_of_stuff2_sum_1h': 12, 'number_of_stuff2_sum_24h': 15, 'number_of_stuff2_sum_2h': 15}, {'col2': 6, 'number_of_stuff1_avg_1h': 5.0, 'number_of_stuff1_avg_24h': 3.0, 'number_of_stuff1_avg_2h': 4.0, 'number_of_stuff1_max_1h': 6, 'number_of_stuff1_max_24h': 6, 'number_of_stuff1_max_2h': 6, 'number_of_stuff1_min_1h': 4, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 2, 'number_of_stuff1_sum_1h': 15, 'number_of_stuff1_sum_24h': 21, 'number_of_stuff1_sum_2h': 20, 'number_of_stuff2_avg_1h': 5.0, 'number_of_stuff2_avg_24h': 3.0, 'number_of_stuff2_avg_2h': 4.0, 'number_of_stuff2_max_1h': 6, 'number_of_stuff2_max_24h': 6, 'number_of_stuff2_max_2h': 6, 'number_of_stuff2_min_1h': 4, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 2, 'number_of_stuff2_sum_1h': 15, 'number_of_stuff2_sum_24h': 21, 'number_of_stuff2_sum_2h': 20}, {'col1': 7, 'number_of_stuff1_avg_1h': 6.0, 'number_of_stuff1_avg_24h': 3.5, 'number_of_stuff1_avg_2h': 5.0, 'number_of_stuff1_max_1h': 7, 'number_of_stuff1_max_24h': 7, 'number_of_stuff1_max_2h': 7, 'number_of_stuff1_min_1h': 5, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 3, 'number_of_stuff1_sum_1h': 18, 'number_of_stuff1_sum_24h': 28, 'number_of_stuff1_sum_2h': 25, 'number_of_stuff2_avg_1h': 5.0, 'number_of_stuff2_avg_24h': 3.0, 'number_of_stuff2_avg_2h': 4.0, 'number_of_stuff2_max_1h': 6, 'number_of_stuff2_max_24h': 6, 'number_of_stuff2_max_2h': 6, 'number_of_stuff2_min_1h': 4, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 2, 'number_of_stuff2_sum_1h': 15, 'number_of_stuff2_sum_24h': 21, 'number_of_stuff2_sum_2h': 20}, {'col2': 7, 'number_of_stuff1_avg_1h': 6.0, 'number_of_stuff1_avg_24h': 3.5, 'number_of_stuff1_avg_2h': 5.0, 'number_of_stuff1_max_1h': 7, 'number_of_stuff1_max_24h': 7, 'number_of_stuff1_max_2h': 7, 'number_of_stuff1_min_1h': 5, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 3, 'number_of_stuff1_sum_1h': 18, 'number_of_stuff1_sum_24h': 28, 'number_of_stuff1_sum_2h': 25, 'number_of_stuff2_avg_1h': 6.0, 'number_of_stuff2_avg_24h': 3.5, 'number_of_stuff2_avg_2h': 5.0, 'number_of_stuff2_max_1h': 7, 'number_of_stuff2_max_24h': 7, 'number_of_stuff2_max_2h': 7, 'number_of_stuff2_min_1h': 5, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 3, 'number_of_stuff2_sum_1h': 18, 'number_of_stuff2_sum_24h': 28, 'number_of_stuff2_sum_2h': 25}, {'col1': 8, 'number_of_stuff1_avg_1h': 7.0, 'number_of_stuff1_avg_24h': 4.0, 'number_of_stuff1_avg_2h': 6.0, 'number_of_stuff1_max_1h': 8, 'number_of_stuff1_max_24h': 8, 'number_of_stuff1_max_2h': 8, 'number_of_stuff1_min_1h': 6, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 4, 'number_of_stuff1_sum_1h': 21, 'number_of_stuff1_sum_24h': 36, 'number_of_stuff1_sum_2h': 30, 'number_of_stuff2_avg_1h': 6.0, 'number_of_stuff2_avg_24h': 3.5, 'number_of_stuff2_avg_2h': 5.0, 'number_of_stuff2_max_1h': 7, 'number_of_stuff2_max_24h': 7, 'number_of_stuff2_max_2h': 7, 'number_of_stuff2_min_1h': 5, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 3, 'number_of_stuff2_sum_1h': 18, 'number_of_stuff2_sum_24h': 28, 'number_of_stuff2_sum_2h': 25}, {'col2': 8, 'number_of_stuff1_avg_1h': 7.0, 'number_of_stuff1_avg_24h': 4.0, 'number_of_stuff1_avg_2h': 6.0, 'number_of_stuff1_max_1h': 8, 'number_of_stuff1_max_24h': 8, 'number_of_stuff1_max_2h': 8, 'number_of_stuff1_min_1h': 6, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 4, 'number_of_stuff1_sum_1h': 21, 'number_of_stuff1_sum_24h': 36, 'number_of_stuff1_sum_2h': 30, 'number_of_stuff2_avg_1h': 7.0, 'number_of_stuff2_avg_24h': 4.0, 'number_of_stuff2_avg_2h': 6.0, 'number_of_stuff2_max_1h': 8, 'number_of_stuff2_max_24h': 8, 'number_of_stuff2_max_2h': 8, 'number_of_stuff2_min_1h': 6, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 4, 'number_of_stuff2_sum_1h': 21, 'number_of_stuff2_sum_24h': 36, 'number_of_stuff2_sum_2h': 30}, {'col1': 9, 'number_of_stuff1_avg_1h': 8.0, 'number_of_stuff1_avg_24h': 4.5, 'number_of_stuff1_avg_2h': 7.0, 'number_of_stuff1_max_1h': 9, 'number_of_stuff1_max_24h': 9, 'number_of_stuff1_max_2h': 9, 'number_of_stuff1_min_1h': 7, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 5, 'number_of_stuff1_sum_1h': 24, 'number_of_stuff1_sum_24h': 45, 'number_of_stuff1_sum_2h': 35, 'number_of_stuff2_avg_1h': 7.0, 'number_of_stuff2_avg_24h': 4.0, 'number_of_stuff2_avg_2h': 6.0, 'number_of_stuff2_max_1h': 8, 'number_of_stuff2_max_24h': 8, 'number_of_stuff2_max_2h': 8, 'number_of_stuff2_min_1h': 6, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 4, 'number_of_stuff2_sum_1h': 21, 'number_of_stuff2_sum_24h': 36, 'number_of_stuff2_sum_2h': 30}, {'col2': 9, 'number_of_stuff1_avg_1h': 8.0, 'number_of_stuff1_avg_24h': 4.5, 'number_of_stuff1_avg_2h': 7.0, 'number_of_stuff1_max_1h': 9, 'number_of_stuff1_max_24h': 9, 'number_of_stuff1_max_2h': 9, 'number_of_stuff1_min_1h': 7, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 5, 'number_of_stuff1_sum_1h': 24, 'number_of_stuff1_sum_24h': 45, 'number_of_stuff1_sum_2h': 35, 'number_of_stuff2_avg_1h': 8.0, 'number_of_stuff2_avg_24h': 4.5, 'number_of_stuff2_avg_2h': 7.0, 'number_of_stuff2_max_1h': 9, 'number_of_stuff2_max_24h': 9, 'number_of_stuff2_max_2h': 9, 'number_of_stuff2_min_1h': 7, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 5, 'number_of_stuff2_sum_1h': 24, 'number_of_stuff2_sum_24h': 45, 'number_of_stuff2_sum_2h': 35}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_sliding_window_sparse_data_uneven_feature_occurrence(): controller = build_flow([ SyncEmitSource(), AggregateByKey( [FieldAggregator("number_of_stuff1", "col1", ["sum", "avg", "min", "max"], SlidingWindows(['1h', '2h', '24h'], '10m')), FieldAggregator("number_of_stuff2", "col2", ["sum", "avg", "min", "max"], SlidingWindows(['1h', '2h', '24h'], '10m'))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() controller.emit({'col1': 0}, 'tal', test_base_time) for i in range(10): controller.emit({'col2': i}, 'tal', test_base_time + timedelta(minutes=25 * i)) controller.terminate() actual = controller.await_termination() expected_results = [{'col1': 0, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': math.nan, 'number_of_stuff2_avg_24h': math.nan, 'number_of_stuff2_avg_2h': math.nan, 'number_of_stuff2_max_1h': math.nan, 'number_of_stuff2_max_24h': math.nan, 'number_of_stuff2_max_2h': math.nan, 'number_of_stuff2_min_1h': math.nan, 'number_of_stuff2_min_24h': math.nan, 'number_of_stuff2_min_2h': math.nan, 'number_of_stuff2_sum_1h': 0, 'number_of_stuff2_sum_24h': 0, 'number_of_stuff2_sum_2h': 0}, {'col2': 0, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 0.0, 'number_of_stuff2_avg_24h': 0.0, 'number_of_stuff2_avg_2h': 0.0, 'number_of_stuff2_max_1h': 0, 'number_of_stuff2_max_24h': 0, 'number_of_stuff2_max_2h': 0, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 0, 'number_of_stuff2_sum_24h': 0, 'number_of_stuff2_sum_2h': 0}, {'col2': 1, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 0.5, 'number_of_stuff2_avg_24h': 0.5, 'number_of_stuff2_avg_2h': 0.5, 'number_of_stuff2_max_1h': 1, 'number_of_stuff2_max_24h': 1, 'number_of_stuff2_max_2h': 1, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 1, 'number_of_stuff2_sum_24h': 1, 'number_of_stuff2_sum_2h': 1}, {'col2': 2, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 1.0, 'number_of_stuff2_avg_24h': 1.0, 'number_of_stuff2_avg_2h': 1.0, 'number_of_stuff2_max_1h': 2, 'number_of_stuff2_max_24h': 2, 'number_of_stuff2_max_2h': 2, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 3, 'number_of_stuff2_sum_24h': 3, 'number_of_stuff2_sum_2h': 3}, {'col2': 3, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 2.0, 'number_of_stuff2_avg_24h': 1.5, 'number_of_stuff2_avg_2h': 1.5, 'number_of_stuff2_max_1h': 3, 'number_of_stuff2_max_24h': 3, 'number_of_stuff2_max_2h': 3, 'number_of_stuff2_min_1h': 1, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 6, 'number_of_stuff2_sum_24h': 6, 'number_of_stuff2_sum_2h': 6}, {'col2': 4, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 3.0, 'number_of_stuff2_avg_24h': 2.0, 'number_of_stuff2_avg_2h': 2.0, 'number_of_stuff2_max_1h': 4, 'number_of_stuff2_max_24h': 4, 'number_of_stuff2_max_2h': 4, 'number_of_stuff2_min_1h': 2, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 9, 'number_of_stuff2_sum_24h': 10, 'number_of_stuff2_sum_2h': 10}, {'col2': 5, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 4.0, 'number_of_stuff2_avg_24h': 2.5, 'number_of_stuff2_avg_2h': 3.0, 'number_of_stuff2_max_1h': 5, 'number_of_stuff2_max_24h': 5, 'number_of_stuff2_max_2h': 5, 'number_of_stuff2_min_1h': 3, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 1, 'number_of_stuff2_sum_1h': 12, 'number_of_stuff2_sum_24h': 15, 'number_of_stuff2_sum_2h': 15}, {'col2': 6, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 5.0, 'number_of_stuff2_avg_24h': 3.0, 'number_of_stuff2_avg_2h': 4.0, 'number_of_stuff2_max_1h': 6, 'number_of_stuff2_max_24h': 6, 'number_of_stuff2_max_2h': 6, 'number_of_stuff2_min_1h': 4, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 2, 'number_of_stuff2_sum_1h': 15, 'number_of_stuff2_sum_24h': 21, 'number_of_stuff2_sum_2h': 20}, {'col2': 7, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 6.0, 'number_of_stuff2_avg_24h': 3.5, 'number_of_stuff2_avg_2h': 5.0, 'number_of_stuff2_max_1h': 7, 'number_of_stuff2_max_24h': 7, 'number_of_stuff2_max_2h': 7, 'number_of_stuff2_min_1h': 5, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 3, 'number_of_stuff2_sum_1h': 18, 'number_of_stuff2_sum_24h': 28, 'number_of_stuff2_sum_2h': 25}, {'col2': 8, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 7.0, 'number_of_stuff2_avg_24h': 4.0, 'number_of_stuff2_avg_2h': 6.0, 'number_of_stuff2_max_1h': 8, 'number_of_stuff2_max_24h': 8, 'number_of_stuff2_max_2h': 8, 'number_of_stuff2_min_1h': 6, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 4, 'number_of_stuff2_sum_1h': 21, 'number_of_stuff2_sum_24h': 36, 'number_of_stuff2_sum_2h': 30}, {'col2': 9, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 8.0, 'number_of_stuff2_avg_24h': 4.5, 'number_of_stuff2_avg_2h': 7.0, 'number_of_stuff2_max_1h': 9, 'number_of_stuff2_max_24h': 9, 'number_of_stuff2_max_2h': 9, 'number_of_stuff2_min_1h': 7, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 5, 'number_of_stuff2_sum_1h': 24, 'number_of_stuff2_sum_24h': 45, 'number_of_stuff2_sum_2h': 35}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_sliding_window_multiple_keys_aggregation_flow(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["sum", "avg"], SlidingWindows(['1h', '2h', '24h'], '10m'))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): data = {'col1': i} controller.emit(data, f'{i % 2}', test_base_time + timedelta(minutes=i)) controller.terminate() actual = controller.await_termination() expected_results = [ {'col1': 0, 'number_of_stuff_sum_1h': 0, 'number_of_stuff_sum_2h': 0, 'number_of_stuff_sum_24h': 0, 'number_of_stuff_avg_1h': 0.0, 'number_of_stuff_avg_2h': 0.0, 'number_of_stuff_avg_24h': 0.0}, {'col1': 1, 'number_of_stuff_sum_1h': 1, 'number_of_stuff_sum_2h': 1, 'number_of_stuff_sum_24h': 1, 'number_of_stuff_avg_1h': 1.0, 'number_of_stuff_avg_2h': 1.0, 'number_of_stuff_avg_24h': 1.0}, {'col1': 2, 'number_of_stuff_sum_1h': 2, 'number_of_stuff_sum_2h': 2, 'number_of_stuff_sum_24h': 2, 'number_of_stuff_avg_1h': 1.0, 'number_of_stuff_avg_2h': 1.0, 'number_of_stuff_avg_24h': 1.0}, {'col1': 3, 'number_of_stuff_sum_1h': 4, 'number_of_stuff_sum_2h': 4, 'number_of_stuff_sum_24h': 4, 'number_of_stuff_avg_1h': 2.0, 'number_of_stuff_avg_2h': 2.0, 'number_of_stuff_avg_24h': 2.0}, {'col1': 4, 'number_of_stuff_sum_1h': 6, 'number_of_stuff_sum_2h': 6, 'number_of_stuff_sum_24h': 6, 'number_of_stuff_avg_1h': 2.0, 'number_of_stuff_avg_2h': 2.0, 'number_of_stuff_avg_24h': 2.0}, {'col1': 5, 'number_of_stuff_sum_1h': 9, 'number_of_stuff_sum_2h': 9, 'number_of_stuff_sum_24h': 9, 'number_of_stuff_avg_1h': 3.0, 'number_of_stuff_avg_2h': 3.0, 'number_of_stuff_avg_24h': 3.0}, {'col1': 6, 'number_of_stuff_sum_1h': 12, 'number_of_stuff_sum_2h': 12, 'number_of_stuff_sum_24h': 12, 'number_of_stuff_avg_1h': 3.0, 'number_of_stuff_avg_2h': 3.0, 'number_of_stuff_avg_24h': 3.0}, {'col1': 7, 'number_of_stuff_sum_1h': 16, 'number_of_stuff_sum_2h': 16, 'number_of_stuff_sum_24h': 16, 'number_of_stuff_avg_1h': 4.0, 'number_of_stuff_avg_2h': 4.0, 'number_of_stuff_avg_24h': 4.0}, {'col1': 8, 'number_of_stuff_sum_1h': 20, 'number_of_stuff_sum_2h': 20, 'number_of_stuff_sum_24h': 20, 'number_of_stuff_avg_1h': 4.0, 'number_of_stuff_avg_2h': 4.0, 'number_of_stuff_avg_24h': 4.0}, {'col1': 9, 'number_of_stuff_sum_1h': 25, 'number_of_stuff_sum_2h': 25, 'number_of_stuff_sum_24h': 25, 'number_of_stuff_avg_1h': 5.0, 'number_of_stuff_avg_2h': 5.0, 'number_of_stuff_avg_24h': 5.0}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_sliding_window_aggregations_with_filters_flow(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["sum", "avg"], SlidingWindows(['1h', '2h', '24h'], '10m'), aggr_filter=lambda element: element['is_valid'] == 0)], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): data = {'col1': i, 'is_valid': i % 2} controller.emit(data, 'tal', test_base_time + timedelta(minutes=i)) controller.terminate() actual = controller.await_termination() expected_results = [{'col1': 0, 'is_valid': 0, 'number_of_stuff_sum_1h': 0, 'number_of_stuff_sum_2h': 0, 'number_of_stuff_sum_24h': 0, 'number_of_stuff_avg_1h': 0.0, 'number_of_stuff_avg_2h': 0.0, 'number_of_stuff_avg_24h': 0.0}, {'col1': 1, 'is_valid': 1, 'number_of_stuff_sum_1h': 0, 'number_of_stuff_sum_2h': 0, 'number_of_stuff_sum_24h': 0, 'number_of_stuff_avg_1h': 0.0, 'number_of_stuff_avg_2h': 0.0, 'number_of_stuff_avg_24h': 0.0}, {'col1': 2, 'is_valid': 0, 'number_of_stuff_sum_1h': 2, 'number_of_stuff_sum_2h': 2, 'number_of_stuff_sum_24h': 2, 'number_of_stuff_avg_1h': 1.0, 'number_of_stuff_avg_2h': 1.0, 'number_of_stuff_avg_24h': 1.0}, {'col1': 3, 'is_valid': 1, 'number_of_stuff_sum_1h': 2, 'number_of_stuff_sum_2h': 2, 'number_of_stuff_sum_24h': 2, 'number_of_stuff_avg_1h': 1.0, 'number_of_stuff_avg_2h': 1.0, 'number_of_stuff_avg_24h': 1.0}, {'col1': 4, 'is_valid': 0, 'number_of_stuff_sum_1h': 6, 'number_of_stuff_sum_2h': 6, 'number_of_stuff_sum_24h': 6, 'number_of_stuff_avg_1h': 2.0, 'number_of_stuff_avg_2h': 2.0, 'number_of_stuff_avg_24h': 2.0}, {'col1': 5, 'is_valid': 1, 'number_of_stuff_sum_1h': 6, 'number_of_stuff_sum_2h': 6, 'number_of_stuff_sum_24h': 6, 'number_of_stuff_avg_1h': 2.0, 'number_of_stuff_avg_2h': 2.0, 'number_of_stuff_avg_24h': 2.0}, {'col1': 6, 'is_valid': 0, 'number_of_stuff_sum_1h': 12, 'number_of_stuff_sum_2h': 12, 'number_of_stuff_sum_24h': 12, 'number_of_stuff_avg_1h': 3.0, 'number_of_stuff_avg_2h': 3.0, 'number_of_stuff_avg_24h': 3.0}, {'col1': 7, 'is_valid': 1, 'number_of_stuff_sum_1h': 12, 'number_of_stuff_sum_2h': 12, 'number_of_stuff_sum_24h': 12, 'number_of_stuff_avg_1h': 3.0, 'number_of_stuff_avg_2h': 3.0, 'number_of_stuff_avg_24h': 3.0}, {'col1': 8, 'is_valid': 0, 'number_of_stuff_sum_1h': 20, 'number_of_stuff_sum_2h': 20, 'number_of_stuff_sum_24h': 20, 'number_of_stuff_avg_1h': 4.0, 'number_of_stuff_avg_2h': 4.0, 'number_of_stuff_avg_24h': 4.0}, {'col1': 9, 'is_valid': 1, 'number_of_stuff_sum_1h': 20, 'number_of_stuff_sum_2h': 20, 'number_of_stuff_sum_24h': 20, 'number_of_stuff_avg_1h': 4.0, 'number_of_stuff_avg_2h': 4.0, 'number_of_stuff_avg_24h': 4.0}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_sliding_window_aggregations_with_max_values_flow(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("num_hours_with_stuff_in_the_last_24h", "col1", ["count"], SlidingWindows(['24h'], '1h'), max_value=5)], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): data = {'col1': i} controller.emit(data, 'tal', test_base_time + timedelta(minutes=10 * i)) controller.terminate() actual = controller.await_termination() expected_results = [{'col1': 0, 'num_hours_with_stuff_in_the_last_24h_count_24h': 1}, {'col1': 1, 'num_hours_with_stuff_in_the_last_24h_count_24h': 2}, {'col1': 2, 'num_hours_with_stuff_in_the_last_24h_count_24h': 3}, {'col1': 3, 'num_hours_with_stuff_in_the_last_24h_count_24h': 4}, {'col1': 4, 'num_hours_with_stuff_in_the_last_24h_count_24h': 5}, {'col1': 5, 'num_hours_with_stuff_in_the_last_24h_count_24h': 5}, {'col1': 6, 'num_hours_with_stuff_in_the_last_24h_count_24h': 5}, {'col1': 7, 'num_hours_with_stuff_in_the_last_24h_count_24h': 5}, {'col1': 8, 'num_hours_with_stuff_in_the_last_24h_count_24h': 5}, {'col1': 9, 'num_hours_with_stuff_in_the_last_24h_count_24h': 5}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_sliding_window_simple_aggregation_flow_multiple_fields(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["sum", "avg"], SlidingWindows(['1h', '2h', '24h'], '10m')), FieldAggregator("number_of_things", "col2", ["count"], SlidingWindows(['1h', '2h'], '15m')), FieldAggregator("abc", "col3", ["sum"], SlidingWindows(['24h'], '10m'))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): data = {'col1': i, 'col2': i * 1.2, 'col3': i * 2 + 4} controller.emit(data, 'tal', test_base_time + timedelta(minutes=i)) controller.terminate() actual = controller.await_termination() expected_results = [{'col1': 0, 'col2': 0.0, 'col3': 4, 'number_of_stuff_sum_1h': 0, 'number_of_stuff_sum_2h': 0, 'number_of_stuff_sum_24h': 0, 'number_of_things_count_1h': 1, 'number_of_things_count_2h': 1, 'abc_sum_24h': 4, 'number_of_stuff_avg_1h': 0.0, 'number_of_stuff_avg_2h': 0.0, 'number_of_stuff_avg_24h': 0.0}, {'col1': 1, 'col2': 1.2, 'col3': 6, 'number_of_stuff_sum_1h': 1, 'number_of_stuff_sum_2h': 1, 'number_of_stuff_sum_24h': 1, 'number_of_things_count_1h': 2, 'number_of_things_count_2h': 2, 'abc_sum_24h': 10, 'number_of_stuff_avg_1h': 0.5, 'number_of_stuff_avg_2h': 0.5, 'number_of_stuff_avg_24h': 0.5}, {'col1': 2, 'col2': 2.4, 'col3': 8, 'number_of_stuff_sum_1h': 3, 'number_of_stuff_sum_2h': 3, 'number_of_stuff_sum_24h': 3, 'number_of_things_count_1h': 3, 'number_of_things_count_2h': 3, 'abc_sum_24h': 18, 'number_of_stuff_avg_1h': 1.0, 'number_of_stuff_avg_2h': 1.0, 'number_of_stuff_avg_24h': 1.0}, {'col1': 3, 'col2': 3.5999999999999996, 'col3': 10, 'number_of_stuff_sum_1h': 6, 'number_of_stuff_sum_2h': 6, 'number_of_stuff_sum_24h': 6, 'number_of_things_count_1h': 4, 'number_of_things_count_2h': 4, 'abc_sum_24h': 28, 'number_of_stuff_avg_1h': 1.5, 'number_of_stuff_avg_2h': 1.5, 'number_of_stuff_avg_24h': 1.5}, {'col1': 4, 'col2': 4.8, 'col3': 12, 'number_of_stuff_sum_1h': 10, 'number_of_stuff_sum_2h': 10, 'number_of_stuff_sum_24h': 10, 'number_of_things_count_1h': 5, 'number_of_things_count_2h': 5, 'abc_sum_24h': 40, 'number_of_stuff_avg_1h': 2.0, 'number_of_stuff_avg_2h': 2.0, 'number_of_stuff_avg_24h': 2.0}, {'col1': 5, 'col2': 6.0, 'col3': 14, 'number_of_stuff_sum_1h': 15, 'number_of_stuff_sum_2h': 15, 'number_of_stuff_sum_24h': 15, 'number_of_things_count_1h': 6, 'number_of_things_count_2h': 6, 'abc_sum_24h': 54, 'number_of_stuff_avg_1h': 2.5, 'number_of_stuff_avg_2h': 2.5, 'number_of_stuff_avg_24h': 2.5}, {'col1': 6, 'col2': 7.199999999999999, 'col3': 16, 'number_of_stuff_sum_1h': 21, 'number_of_stuff_sum_2h': 21, 'number_of_stuff_sum_24h': 21, 'number_of_things_count_1h': 7, 'number_of_things_count_2h': 7, 'abc_sum_24h': 70, 'number_of_stuff_avg_1h': 3.0, 'number_of_stuff_avg_2h': 3.0, 'number_of_stuff_avg_24h': 3.0}, {'col1': 7, 'col2': 8.4, 'col3': 18, 'number_of_stuff_sum_1h': 28, 'number_of_stuff_sum_2h': 28, 'number_of_stuff_sum_24h': 28, 'number_of_things_count_1h': 8, 'number_of_things_count_2h': 8, 'abc_sum_24h': 88, 'number_of_stuff_avg_1h': 3.5, 'number_of_stuff_avg_2h': 3.5, 'number_of_stuff_avg_24h': 3.5}, {'col1': 8, 'col2': 9.6, 'col3': 20, 'number_of_stuff_sum_1h': 36, 'number_of_stuff_sum_2h': 36, 'number_of_stuff_sum_24h': 36, 'number_of_things_count_1h': 9, 'number_of_things_count_2h': 9, 'abc_sum_24h': 108, 'number_of_stuff_avg_1h': 4.0, 'number_of_stuff_avg_2h': 4.0, 'number_of_stuff_avg_24h': 4.0}, {'col1': 9, 'col2': 10.799999999999999, 'col3': 22, 'number_of_stuff_sum_1h': 45, 'number_of_stuff_sum_2h': 45, 'number_of_stuff_sum_24h': 45, 'number_of_things_count_1h': 10, 'number_of_things_count_2h': 10, 'abc_sum_24h': 130, 'number_of_stuff_avg_1h': 4.5, 'number_of_stuff_avg_2h': 4.5, 'number_of_stuff_avg_24h': 4.5}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_fixed_window_simple_aggregation_flow(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["count"], FixedWindows(['1h', '2h', '3h', '24h']))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): data = {'col1': i} controller.emit(data, 'tal', test_base_time + timedelta(minutes=25 * i)) controller.terminate() actual = controller.await_termination() expected_results = [{'col1': 0, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 1, 'number_of_stuff_count_3h': 1, 'number_of_stuff_count_24h': 1}, {'col1': 1, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 1, 'number_of_stuff_count_3h': 2, 'number_of_stuff_count_24h': 2}, {'col1': 2, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 2, 'number_of_stuff_count_3h': 3, 'number_of_stuff_count_24h': 3}, {'col1': 3, 'number_of_stuff_count_1h': 3, 'number_of_stuff_count_2h': 3, 'number_of_stuff_count_3h': 4, 'number_of_stuff_count_24h': 4}, {'col1': 4, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 4, 'number_of_stuff_count_3h': 5, 'number_of_stuff_count_24h': 5}, {'col1': 5, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 5, 'number_of_stuff_count_3h': 6, 'number_of_stuff_count_24h': 6}, {'col1': 6, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 1, 'number_of_stuff_count_3h': 1, 'number_of_stuff_count_24h': 1}, {'col1': 7, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 2, 'number_of_stuff_count_3h': 2, 'number_of_stuff_count_24h': 2}, {'col1': 8, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 3, 'number_of_stuff_count_3h': 3, 'number_of_stuff_count_24h': 3}, {'col1': 9, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 4, 'number_of_stuff_count_3h': 4, 'number_of_stuff_count_24h': 4}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_fixed_window_aggregation_with_uncommon_windows_flow(): time_format = '%Y-%m-%d %H:%M:%S.%f' columns = ['sample_time', 'signal', 'isotope'] data = [[datetime.strptime('2021-05-30 16:42:15.797000', time_format).replace(tzinfo=timezone.utc), 790.235, 'U235'], [datetime.strptime('2021-05-30 16:45:15.798000', time_format).replace(tzinfo=timezone.utc), 498.491, 'U235'], [datetime.strptime('2021-05-30 16:48:15.799000', time_format).replace(tzinfo=timezone.utc), 34650.00343, 'U235'], [datetime.strptime('2021-05-30 16:51:15.800000', time_format).replace(tzinfo=timezone.utc), 189.823, 'U235'], [datetime.strptime('2021-05-30 16:54:15.801000', time_format).replace(tzinfo=timezone.utc), 379.524, 'U235'], [datetime.strptime('2021-05-30 16:57:15.802000', time_format).replace(tzinfo=timezone.utc), 2225.4952, 'U235'], [datetime.strptime('2021-05-30 17:00:15.803000', time_format).replace(tzinfo=timezone.utc), 1049.0903, 'U235'], [datetime.strptime('2021-05-30 17:03:15.804000', time_format).replace(tzinfo=timezone.utc), 41905.63447, 'U235'], [datetime.strptime('2021-05-30 17:06:15.805000', time_format).replace(tzinfo=timezone.utc), 4987.6764, 'U235'], [datetime.strptime('2021-05-30 17:09:15.806000', time_format).replace(tzinfo=timezone.utc), 67657.11975, 'U235'], [datetime.strptime('2021-05-30 17:12:15.807000', time_format).replace(tzinfo=timezone.utc), 56173.06327, 'U235'], [datetime.strptime('2021-05-30 17:15:15.808000', time_format).replace(tzinfo=timezone.utc), 14249.67394, 'U235'], [datetime.strptime('2021-05-30 17:18:15.809000', time_format).replace(tzinfo=timezone.utc), 656.831, 'U235'], [datetime.strptime('2021-05-30 17:21:15.810000', time_format).replace(tzinfo=timezone.utc), 5768.4822, 'U235'], [datetime.strptime('2021-05-30 17:24:15.811000', time_format).replace(tzinfo=timezone.utc), 929.028, 'U235'], [datetime.strptime('2021-05-30 17:27:15.812000', time_format).replace(tzinfo=timezone.utc), 2585.9646, 'U235'], [datetime.strptime('2021-05-30 17:30:15.813000', time_format).replace(tzinfo=timezone.utc), 358.918, 'U235']] df = pd.DataFrame(data, columns=columns) controller = build_flow([ DataframeSource(df, time_field="sample_time", key_field="isotope"), AggregateByKey([FieldAggregator("samples", "signal", ["count"], FixedWindows(['15m', '25m', '45m', '1h']))], Table("U235_test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() termination_result = controller.await_termination() expected = [{'samples_count_15m': 1.0, 'samples_count_25m': 1.0, 'samples_count_45m': 1.0, 'samples_count_1h': 1.0, 'sample_time': pd.Timestamp('2021-05-30 16:42:15.797000+0000', tz='UTC'), 'signal': 790.235, 'isotope': 'U235'}, {'samples_count_15m': 1.0, 'samples_count_25m': 2.0, 'samples_count_45m': 2.0, 'samples_count_1h': 2.0, 'sample_time': pd.Timestamp('2021-05-30 16:45:15.798000+0000', tz='UTC'), 'signal': 498.491, 'isotope': 'U235'}, {'samples_count_15m': 2.0, 'samples_count_25m': 3.0, 'samples_count_45m': 3.0, 'samples_count_1h': 3.0, 'sample_time': pd.Timestamp('2021-05-30 16:48:15.799000+0000', tz='UTC'), 'signal': 34650.00343, 'isotope': 'U235'}, {'samples_count_15m': 3.0, 'samples_count_25m': 4.0, 'samples_count_45m': 4.0, 'samples_count_1h': 4.0, 'sample_time': pd.Timestamp('2021-05-30 16:51:15.800000+0000', tz='UTC'), 'signal': 189.823, 'isotope': 'U235'}, {'samples_count_15m': 4.0, 'samples_count_25m': 5.0, 'samples_count_45m': 5.0, 'samples_count_1h': 5.0, 'sample_time': pd.Timestamp('2021-05-30 16:54:15.801000+0000', tz='UTC'), 'signal': 379.524, 'isotope': 'U235'}, {'samples_count_15m': 5.0, 'samples_count_25m': 6.0, 'samples_count_45m': 6.0, 'samples_count_1h': 6.0, 'sample_time': pd.Timestamp('2021-05-30 16:57:15.802000+0000', tz='UTC'), 'signal': 2225.4952, 'isotope': 'U235'}, {'samples_count_15m': 1.0, 'samples_count_25m': 1.0, 'samples_count_45m': 7.0, 'samples_count_1h': 1.0, 'sample_time': pd.Timestamp('2021-05-30 17:00:15.803000+0000', tz='UTC'), 'signal': 1049.0903, 'isotope': 'U235'}, {'samples_count_15m': 2.0, 'samples_count_25m': 2.0, 'samples_count_45m': 8.0, 'samples_count_1h': 2.0, 'sample_time': pd.Timestamp('2021-05-30 17:03:15.804000+0000', tz='UTC'), 'signal': 41905.63447, 'isotope': 'U235'}, {'samples_count_15m': 3.0, 'samples_count_25m': 3.0, 'samples_count_45m': 9.0, 'samples_count_1h': 3.0, 'sample_time': pd.Timestamp('2021-05-30 17:06:15.805000+0000', tz='UTC'), 'signal': 4987.6764, 'isotope': 'U235'}, {'samples_count_15m': 4.0, 'samples_count_25m': 4.0, 'samples_count_45m': 10.0, 'samples_count_1h': 4.0, 'sample_time': pd.Timestamp('2021-05-30 17:09:15.806000+0000', tz='UTC'), 'signal': 67657.11975, 'isotope': 'U235'}, {'samples_count_15m': 5.0, 'samples_count_25m': 5.0, 'samples_count_45m': 11.0, 'samples_count_1h': 5.0, 'sample_time': pd.Timestamp('2021-05-30 17:12:15.807000+0000', tz='UTC'), 'signal': 56173.06327, 'isotope': 'U235'}, {'samples_count_15m': 1.0, 'samples_count_25m': 6.0, 'samples_count_45m': 1.0, 'samples_count_1h': 6.0, 'sample_time': pd.Timestamp('2021-05-30 17:15:15.808000+0000', tz='UTC'), 'signal': 14249.67394, 'isotope': 'U235'}, {'samples_count_15m': 2.0, 'samples_count_25m': 7.0, 'samples_count_45m': 2.0, 'samples_count_1h': 7.0, 'sample_time': pd.Timestamp('2021-05-30 17:18:15.809000+0000', tz='UTC'), 'signal': 656.831, 'isotope': 'U235'}, {'samples_count_15m': 3.0, 'samples_count_25m': 8.0, 'samples_count_45m': 3.0, 'samples_count_1h': 8.0, 'sample_time': pd.Timestamp('2021-05-30 17:21:15.810000+0000', tz='UTC'), 'signal': 5768.4822, 'isotope': 'U235'}, {'samples_count_15m': 4.0, 'samples_count_25m': 9.0, 'samples_count_45m': 4.0, 'samples_count_1h': 9.0, 'sample_time': pd.Timestamp('2021-05-30 17:24:15.811000+0000', tz='UTC'), 'signal': 929.028, 'isotope': 'U235'}, {'samples_count_15m': 5.0, 'samples_count_25m': 1.0, 'samples_count_45m': 5.0, 'samples_count_1h': 10.0, 'sample_time': pd.Timestamp('2021-05-30 17:27:15.812000+0000', tz='UTC'), 'signal': 2585.9646, 'isotope': 'U235'}, {'samples_count_15m': 1.0, 'samples_count_25m': 2.0, 'samples_count_45m': 6.0, 'samples_count_1h': 11.0, 'sample_time': pd.Timestamp('2021-05-30 17:30:15.813000+0000', tz='UTC'), 'signal': 358.918, 'isotope': 'U235'}] assert termination_result == expected, \ f'actual did not match expected. \n actual: {termination_result} \n expected: {expected}' def test_fixed_window_aggregation_with_multiple_keys_flow(): time_format = '%Y-%m-%d %H:%M:%S.%f' columns = ['sample_time', 'signal', 'isotope'] data = [[datetime.strptime('2021-05-30 16:42:15.797000', time_format).replace(tzinfo=timezone.utc), 790.235, 'U235'], [datetime.strptime('2021-05-30 16:45:15.798000', time_format).replace(tzinfo=timezone.utc), 498.491, 'U235'], [datetime.strptime('2021-05-30 16:48:15.799000', time_format).replace(tzinfo=timezone.utc), 34650.00343, 'U238'], [datetime.strptime('2021-05-30 16:51:15.800000', time_format).replace(tzinfo=timezone.utc), 189.823, 'U238'], [datetime.strptime('2021-05-30 16:54:15.801000', time_format).replace(tzinfo=timezone.utc), 379.524, 'U238'], [datetime.strptime('2021-05-30 16:57:15.802000', time_format).replace(tzinfo=timezone.utc), 2225.4952, 'U238'], [datetime.strptime('2021-05-30 17:00:15.803000', time_format).replace(tzinfo=timezone.utc), 1049.0903, 'U235'], [datetime.strptime('2021-05-30 17:03:15.804000', time_format).replace(tzinfo=timezone.utc), 41905.63447, 'U238'], [datetime.strptime('2021-05-30 17:06:15.805000', time_format).replace(tzinfo=timezone.utc), 4987.6764, 'U235'], [datetime.strptime('2021-05-30 17:09:15.806000', time_format).replace(tzinfo=timezone.utc), 67657.11975, 'U235'], [datetime.strptime('2021-05-30 17:12:15.807000', time_format).replace(tzinfo=timezone.utc), 56173.06327, 'U235'], [datetime.strptime('2021-05-30 17:15:15.808000', time_format).replace(tzinfo=timezone.utc), 14249.67394, 'U238'], [datetime.strptime('2021-05-30 17:18:15.809000', time_format).replace(tzinfo=timezone.utc), 656.831, 'U238'], [datetime.strptime('2021-05-30 17:21:15.810000', time_format).replace(tzinfo=timezone.utc), 5768.4822, 'U235'], [datetime.strptime('2021-05-30 17:24:15.811000', time_format).replace(tzinfo=timezone.utc), 929.028, 'U235'], [datetime.strptime('2021-05-30 17:27:15.812000', time_format).replace(tzinfo=timezone.utc), 2585.9646, 'U238'], [datetime.strptime('2021-05-30 17:30:15.813000', time_format).replace(tzinfo=timezone.utc), 358.918, 'U238']] df = pd.DataFrame(data, columns=columns) controller = build_flow([ DataframeSource(df, time_field="sample_time", key_field="isotope"), AggregateByKey([FieldAggregator("samples", "signal", ["count"], FixedWindows(['10m', '15m']))], Table("U235_test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() termination_result = controller.await_termination() expected = [ {'samples_count_10m': 1.0, 'samples_count_15m': 1.0, 'sample_time': pd.Timestamp('2021-05-30 16:42:15.797000+0000', tz='UTC'), 'signal': 790.235, 'isotope': 'U235'}, {'samples_count_10m': 2.0, 'samples_count_15m': 1.0, 'sample_time': pd.Timestamp('2021-05-30 16:45:15.798000+0000', tz='UTC'), 'signal': 498.491, 'isotope': 'U235'}, {'samples_count_10m': 1.0, 'samples_count_15m': 1.0, 'sample_time': pd.Timestamp('2021-05-30 16:48:15.799000+0000', tz='UTC'), 'signal': 34650.00343, 'isotope': 'U238'}, {'samples_count_10m': 1.0, 'samples_count_15m': 2.0, 'sample_time': pd.Timestamp('2021-05-30 16:51:15.800000+0000', tz='UTC'), 'signal': 189.823, 'isotope': 'U238'}, {'samples_count_10m': 2.0, 'samples_count_15m': 3.0, 'sample_time': pd.Timestamp('2021-05-30 16:54:15.801000+0000', tz='UTC'), 'signal': 379.524, 'isotope': 'U238'}, {'samples_count_10m': 3.0, 'samples_count_15m': 4.0, 'sample_time': pd.Timestamp('2021-05-30 16:57:15.802000+0000', tz='UTC'), 'signal': 2225.4952, 'isotope': 'U238'}, {'samples_count_10m': 1.0, 'samples_count_15m': 1.0, 'sample_time': pd.Timestamp('2021-05-30 17:00:15.803000+0000', tz='UTC'), 'signal': 1049.0903, 'isotope': 'U235'}, {'samples_count_10m': 1.0, 'samples_count_15m': 1.0, 'sample_time': pd.Timestamp('2021-05-30 17:03:15.804000+0000', tz='UTC'), 'signal': 41905.63447, 'isotope': 'U238'}, {'samples_count_10m': 2.0, 'samples_count_15m': 2.0, 'sample_time': pd.Timestamp('2021-05-30 17:06:15.805000+0000', tz='UTC'), 'signal': 4987.6764, 'isotope': 'U235'}, {'samples_count_10m': 3.0, 'samples_count_15m': 3.0, 'sample_time': pd.Timestamp('2021-05-30 17:09:15.806000+0000', tz='UTC'), 'signal': 67657.11975, 'isotope': 'U235'}, {'samples_count_10m': 1.0, 'samples_count_15m': 4.0, 'sample_time': pd.Timestamp('2021-05-30 17:12:15.807000+0000', tz='UTC'), 'signal': 56173.06327, 'isotope': 'U235'}, {'samples_count_10m': 1.0, 'samples_count_15m': 1.0, 'sample_time': pd.Timestamp('2021-05-30 17:15:15.808000+0000', tz='UTC'), 'signal': 14249.67394, 'isotope': 'U238'}, {'samples_count_10m': 2.0, 'samples_count_15m': 2.0, 'sample_time': pd.Timestamp('2021-05-30 17:18:15.809000+0000', tz='UTC'), 'signal': 656.831, 'isotope': 'U238'}, {'samples_count_10m': 1.0, 'samples_count_15m': 1.0, 'sample_time': pd.Timestamp('2021-05-30 17:21:15.810000+0000', tz='UTC'), 'signal': 5768.4822, 'isotope': 'U235'}, {'samples_count_10m': 2.0, 'samples_count_15m': 2.0, 'sample_time': pd.Timestamp('2021-05-30 17:24:15.811000+0000', tz='UTC'), 'signal': 929.028, 'isotope': 'U235'}, {'samples_count_10m': 1.0, 'samples_count_15m': 3.0, 'sample_time': pd.Timestamp('2021-05-30 17:27:15.812000+0000', tz='UTC'), 'signal': 2585.9646, 'isotope': 'U238'}, {'samples_count_10m': 1.0, 'samples_count_15m': 1.0, 'sample_time': pd.Timestamp('2021-05-30 17:30:15.813000+0000', tz='UTC'), 'signal': 358.918, 'isotope': 'U238'}] assert termination_result == expected, \ f'actual did not match expected. \n actual: {termination_result} \n expected: {expected}' def test_sliding_window_aggregation_with_uncommon_windows_flow(): time_format = '%Y-%m-%d %H:%M:%S.%f' columns = ['sample_time', 'signal', 'isotope'] data = [[datetime.strptime('2021-05-30 16:42:15.797000', time_format).replace(tzinfo=timezone.utc), 790.235, 'U235'], [datetime.strptime('2021-05-30 16:45:15.798000', time_format).replace(tzinfo=timezone.utc), 498.491, 'U235'], [datetime.strptime('2021-05-30 16:48:15.799000', time_format).replace(tzinfo=timezone.utc), 34650.00343, 'U235'], [datetime.strptime('2021-05-30 16:51:15.800000', time_format).replace(tzinfo=timezone.utc), 189.823, 'U235'], [datetime.strptime('2021-05-30 16:54:15.801000', time_format).replace(tzinfo=timezone.utc), 379.524, 'U235'], [datetime.strptime('2021-05-30 16:57:15.802000', time_format).replace(tzinfo=timezone.utc), 2225.4952, 'U235'], [datetime.strptime('2021-05-30 17:00:15.803000', time_format).replace(tzinfo=timezone.utc), 1049.0903, 'U235'], [datetime.strptime('2021-05-30 17:03:15.804000', time_format).replace(tzinfo=timezone.utc), 41905.63447, 'U235'], [datetime.strptime('2021-05-30 17:06:15.805000', time_format).replace(tzinfo=timezone.utc), 4987.6764, 'U235'], [datetime.strptime('2021-05-30 17:09:15.806000', time_format).replace(tzinfo=timezone.utc), 67657.11975, 'U235'], [datetime.strptime('2021-05-30 17:12:15.807000', time_format).replace(tzinfo=timezone.utc), 56173.06327, 'U235'], [datetime.strptime('2021-05-30 17:15:15.808000', time_format).replace(tzinfo=timezone.utc), 14249.67394, 'U235'], [datetime.strptime('2021-05-30 17:18:15.809000', time_format).replace(tzinfo=timezone.utc), 656.831, 'U235'], [datetime.strptime('2021-05-30 17:21:15.810000', time_format).replace(tzinfo=timezone.utc), 5768.4822, 'U235'], [datetime.strptime('2021-05-30 17:24:15.811000', time_format).replace(tzinfo=timezone.utc), 929.028, 'U235'], [datetime.strptime('2021-05-30 17:27:15.812000', time_format).replace(tzinfo=timezone.utc), 2585.9646, 'U235'], [datetime.strptime('2021-05-30 17:30:15.813000', time_format).replace(tzinfo=timezone.utc), 358.918, 'U235']] df = pd.DataFrame(data, columns=columns) controller = build_flow([ DataframeSource(df, time_field="sample_time", key_field="isotope"), AggregateByKey([FieldAggregator("samples", "signal", ["count"], SlidingWindows(['15m', '25m', '45m', '1h'], '5m'))], Table("U235_test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() termination_result = controller.await_termination() expected = [{'samples_count_15m': 1.0, 'samples_count_25m': 1.0, 'samples_count_45m': 1.0, 'samples_count_1h': 1.0, 'sample_time': pd.Timestamp('2021-05-30 16:42:15.797000+0000', tz='UTC'), 'signal': 790.235, 'isotope': 'U235'}, {'samples_count_15m': 2.0, 'samples_count_25m': 2.0, 'samples_count_45m': 2.0, 'samples_count_1h': 2.0, 'sample_time': pd.Timestamp('2021-05-30 16:45:15.798000+0000', tz='UTC'), 'signal': 498.491, 'isotope': 'U235'}, {'samples_count_15m': 3.0, 'samples_count_25m': 3.0, 'samples_count_45m': 3.0, 'samples_count_1h': 3.0, 'sample_time': pd.Timestamp('2021-05-30 16:48:15.799000+0000', tz='UTC'), 'signal': 34650.00343, 'isotope': 'U235'}, {'samples_count_15m': 4.0, 'samples_count_25m': 4.0, 'samples_count_45m': 4.0, 'samples_count_1h': 4.0, 'sample_time': pd.Timestamp('2021-05-30 16:51:15.800000+0000', tz='UTC'), 'signal': 189.823, 'isotope': 'U235'}, {'samples_count_15m': 5.0, 'samples_count_25m': 5.0, 'samples_count_45m': 5.0, 'samples_count_1h': 5.0, 'sample_time': pd.Timestamp('2021-05-30 16:54:15.801000+0000', tz='UTC'), 'signal': 379.524, 'isotope': 'U235'}, {'samples_count_15m': 5.0, 'samples_count_25m': 6.0, 'samples_count_45m': 6.0, 'samples_count_1h': 6.0, 'sample_time': pd.Timestamp('2021-05-30 16:57:15.802000+0000', tz='UTC'), 'signal': 2225.4952, 'isotope': 'U235'}, {'samples_count_15m': 4.0, 'samples_count_25m': 7.0, 'samples_count_45m': 7.0, 'samples_count_1h': 7.0, 'sample_time': pd.Timestamp('2021-05-30 17:00:15.803000+0000', tz='UTC'), 'signal': 1049.0903, 'isotope': 'U235'}, {'samples_count_15m': 5.0, 'samples_count_25m': 8.0, 'samples_count_45m': 8.0, 'samples_count_1h': 8.0, 'sample_time': pd.Timestamp('2021-05-30 17:03:15.804000+0000', tz='UTC'), 'signal': 41905.63447, 'isotope': 'U235'}, {'samples_count_15m': 4.0, 'samples_count_25m': 8.0, 'samples_count_45m': 9.0, 'samples_count_1h': 9.0, 'sample_time': pd.Timestamp('2021-05-30 17:06:15.805000+0000', tz='UTC'), 'signal': 4987.6764, 'isotope': 'U235'}, {'samples_count_15m': 5.0, 'samples_count_25m': 9.0, 'samples_count_45m': 10.0, 'samples_count_1h': 10.0, 'sample_time': pd.Timestamp('2021-05-30 17:09:15.806000+0000', tz='UTC'), 'signal': 67657.11975, 'isotope': 'U235'}, {'samples_count_15m': 5.0, 'samples_count_25m': 8.0, 'samples_count_45m': 11.0, 'samples_count_1h': 11.0, 'sample_time': pd.Timestamp('2021-05-30 17:12:15.807000+0000', tz='UTC'), 'signal': 56173.06327, 'isotope': 'U235'}, {'samples_count_15m': 4.0, 'samples_count_25m': 7.0, 'samples_count_45m': 12.0, 'samples_count_1h': 12.0, 'sample_time': pd.Timestamp('2021-05-30 17:15:15.808000+0000', tz='UTC'), 'signal': 14249.67394, 'isotope': 'U235'}, {'samples_count_15m': 5.0, 'samples_count_25m': 8.0, 'samples_count_45m': 13.0, 'samples_count_1h': 13.0, 'sample_time': pd.Timestamp('2021-05-30 17:18:15.809000+0000', tz='UTC'), 'signal': 656.831, 'isotope': 'U235'}, {'samples_count_15m': 4.0, 'samples_count_25m': 8.0, 'samples_count_45m': 14.0, 'samples_count_1h': 14.0, 'sample_time': pd.Timestamp('2021-05-30 17:21:15.810000+0000', tz='UTC'), 'signal': 5768.4822, 'isotope': 'U235'}, {'samples_count_15m': 5.0, 'samples_count_25m': 9.0, 'samples_count_45m': 15.0, 'samples_count_1h': 15.0, 'sample_time': pd.Timestamp('2021-05-30 17:24:15.811000+0000', tz='UTC'), 'signal': 929.028, 'isotope': 'U235'}, {'samples_count_15m': 5.0, 'samples_count_25m': 8.0, 'samples_count_45m': 15.0, 'samples_count_1h': 16.0, 'sample_time': pd.Timestamp('2021-05-30 17:27:15.812000+0000', tz='UTC'), 'signal': 2585.9646, 'isotope': 'U235'}, {'samples_count_15m': 4.0, 'samples_count_25m': 7.0, 'samples_count_45m': 14.0, 'samples_count_1h': 17.0, 'sample_time': pd.Timestamp('2021-05-30 17:30:15.813000+0000', tz='UTC'), 'signal': 358.918, 'isotope': 'U235'}] assert termination_result == expected, \ f'actual did not match expected. \n actual: {termination_result} \n expected: {expected}' def test_emit_max_event_sliding_window_multiple_keys_aggregation_flow(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["sum", "avg"], SlidingWindows(['1h', '2h', '24h'], '10m'))], Table("test", NoopDriver()), emit_policy=EmitAfterMaxEvent(3)), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(12): data = {'col1': i} controller.emit(data, f'{i % 2}', test_base_time + timedelta(minutes=i)) controller.terminate() actual = controller.await_termination() expected_results = [ {'col1': 4, 'number_of_stuff_sum_1h': 6, 'number_of_stuff_sum_2h': 6, 'number_of_stuff_sum_24h': 6, 'number_of_stuff_avg_1h': 2.0, 'number_of_stuff_avg_2h': 2.0, 'number_of_stuff_avg_24h': 2.0}, {'col1': 5, 'number_of_stuff_sum_1h': 9, 'number_of_stuff_sum_2h': 9, 'number_of_stuff_sum_24h': 9, 'number_of_stuff_avg_1h': 3.0, 'number_of_stuff_avg_2h': 3.0, 'number_of_stuff_avg_24h': 3.0}, {'col1': 10, 'number_of_stuff_sum_1h': 30, 'number_of_stuff_sum_2h': 30, 'number_of_stuff_sum_24h': 30, 'number_of_stuff_avg_1h': 5.0, 'number_of_stuff_avg_2h': 5.0, 'number_of_stuff_avg_24h': 5.0}, {'col1': 11, 'number_of_stuff_sum_1h': 36, 'number_of_stuff_sum_2h': 36, 'number_of_stuff_sum_24h': 36, 'number_of_stuff_avg_1h': 6.0, 'number_of_stuff_avg_2h': 6.0, 'number_of_stuff_avg_24h': 6.0}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_error_on_bad_emit_policy(): try: AggregateByKey([], Table("test", NoopDriver()), emit_policy=EmitEveryEvent), assert False except TypeError: pass def test_emit_delay_aggregation_flow(): q = queue.Queue(1) def reduce_fn(acc, x): if x['col1'] == 2: q.put(None) acc.append(x) return acc controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["sum", "count"], SlidingWindows(['1h'], '10m'))], Table("test", NoopDriver()), emit_policy=EmitAfterMaxEvent(4, 1)), Reduce([], reduce_fn), ]).run() for i in range(11): if i == 3: q.get() data = {'col1': i} controller.emit(data, 'katya', test_base_time + timedelta(seconds=i)) controller.terminate() actual = controller.await_termination() expected_results = [ {'col1': 2, 'number_of_stuff_sum_1h': 3, 'number_of_stuff_count_1h': 3}, {'col1': 6, 'number_of_stuff_sum_1h': 21, 'number_of_stuff_count_1h': 7}, {'col1': 10, 'number_of_stuff_sum_1h': 55, 'number_of_stuff_count_1h': 11}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_aggregate_dict_simple_aggregation_flow(): aggregations = [{'name': 'number_of_stuff', 'column': 'col1', 'operations': ["sum", "avg", "min", "max"], 'windows': ['1h', '2h', '24h'], 'period': '10m'}] controller = build_flow([ SyncEmitSource(), AggregateByKey(aggregations, Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): data = {'col1': i} controller.emit(data, 'tal', test_base_time + timedelta(minutes=25 * i)) controller.terminate() actual = controller.await_termination() expected_results = [ {'col1': 0, 'number_of_stuff_sum_1h': 0, 'number_of_stuff_sum_2h': 0, 'number_of_stuff_sum_24h': 0, 'number_of_stuff_min_1h': 0, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 0, 'number_of_stuff_max_2h': 0, 'number_of_stuff_max_24h': 0, 'number_of_stuff_avg_1h': 0.0, 'number_of_stuff_avg_2h': 0.0, 'number_of_stuff_avg_24h': 0.0}, {'col1': 1, 'number_of_stuff_sum_1h': 1, 'number_of_stuff_sum_2h': 1, 'number_of_stuff_sum_24h': 1, 'number_of_stuff_min_1h': 0, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 1, 'number_of_stuff_max_2h': 1, 'number_of_stuff_max_24h': 1, 'number_of_stuff_avg_1h': 0.5, 'number_of_stuff_avg_2h': 0.5, 'number_of_stuff_avg_24h': 0.5}, {'col1': 2, 'number_of_stuff_sum_1h': 3, 'number_of_stuff_sum_2h': 3, 'number_of_stuff_sum_24h': 3, 'number_of_stuff_min_1h': 0, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 2, 'number_of_stuff_max_2h': 2, 'number_of_stuff_max_24h': 2, 'number_of_stuff_avg_1h': 1.0, 'number_of_stuff_avg_2h': 1.0, 'number_of_stuff_avg_24h': 1.0}, {'col1': 3, 'number_of_stuff_sum_1h': 6, 'number_of_stuff_sum_2h': 6, 'number_of_stuff_sum_24h': 6, 'number_of_stuff_min_1h': 1, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 3, 'number_of_stuff_max_2h': 3, 'number_of_stuff_max_24h': 3, 'number_of_stuff_avg_1h': 2.0, 'number_of_stuff_avg_2h': 1.5, 'number_of_stuff_avg_24h': 1.5}, {'col1': 4, 'number_of_stuff_sum_1h': 9, 'number_of_stuff_sum_2h': 10, 'number_of_stuff_sum_24h': 10, 'number_of_stuff_min_1h': 2, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 4, 'number_of_stuff_max_2h': 4, 'number_of_stuff_max_24h': 4, 'number_of_stuff_avg_1h': 3.0, 'number_of_stuff_avg_2h': 2.0, 'number_of_stuff_avg_24h': 2.0}, {'col1': 5, 'number_of_stuff_sum_1h': 12, 'number_of_stuff_sum_2h': 15, 'number_of_stuff_sum_24h': 15, 'number_of_stuff_min_1h': 3, 'number_of_stuff_min_2h': 1, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 5, 'number_of_stuff_max_2h': 5, 'number_of_stuff_max_24h': 5, 'number_of_stuff_avg_1h': 4.0, 'number_of_stuff_avg_2h': 3.0, 'number_of_stuff_avg_24h': 2.5}, {'col1': 6, 'number_of_stuff_sum_1h': 15, 'number_of_stuff_sum_2h': 20, 'number_of_stuff_sum_24h': 21, 'number_of_stuff_min_1h': 4, 'number_of_stuff_min_2h': 2, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 6, 'number_of_stuff_max_2h': 6, 'number_of_stuff_max_24h': 6, 'number_of_stuff_avg_1h': 5.0, 'number_of_stuff_avg_2h': 4.0, 'number_of_stuff_avg_24h': 3.0}, {'col1': 7, 'number_of_stuff_sum_1h': 18, 'number_of_stuff_sum_2h': 25, 'number_of_stuff_sum_24h': 28, 'number_of_stuff_min_1h': 5, 'number_of_stuff_min_2h': 3, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 7, 'number_of_stuff_max_2h': 7, 'number_of_stuff_max_24h': 7, 'number_of_stuff_avg_1h': 6.0, 'number_of_stuff_avg_2h': 5.0, 'number_of_stuff_avg_24h': 3.5}, {'col1': 8, 'number_of_stuff_sum_1h': 21, 'number_of_stuff_sum_2h': 30, 'number_of_stuff_sum_24h': 36, 'number_of_stuff_min_1h': 6, 'number_of_stuff_min_2h': 4, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 8, 'number_of_stuff_max_2h': 8, 'number_of_stuff_max_24h': 8, 'number_of_stuff_avg_1h': 7.0, 'number_of_stuff_avg_2h': 6.0, 'number_of_stuff_avg_24h': 4.0}, {'col1': 9, 'number_of_stuff_sum_1h': 24, 'number_of_stuff_sum_2h': 35, 'number_of_stuff_sum_24h': 45, 'number_of_stuff_min_1h': 7, 'number_of_stuff_min_2h': 5, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 9, 'number_of_stuff_max_2h': 9, 'number_of_stuff_max_24h': 9, 'number_of_stuff_avg_1h': 8.0, 'number_of_stuff_avg_2h': 7.0, 'number_of_stuff_avg_24h': 4.5} ] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_aggregate_dict_fixed_window(): aggregations = [{'name': 'number_of_stuff', 'column': 'col1', 'operations': ["count"], 'windows': ['1h', '2h', '3h', '24h']}] controller = build_flow([ SyncEmitSource(), AggregateByKey(aggregations, Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): data = {'col1': i} controller.emit(data, 'tal', test_base_time + timedelta(minutes=25 * i)) controller.terminate() actual = controller.await_termination() expected_results = [{'col1': 0, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 1, 'number_of_stuff_count_3h': 1, 'number_of_stuff_count_24h': 1}, {'col1': 1, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 1, 'number_of_stuff_count_3h': 2, 'number_of_stuff_count_24h': 2}, {'col1': 2, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 2, 'number_of_stuff_count_3h': 3, 'number_of_stuff_count_24h': 3}, {'col1': 3, 'number_of_stuff_count_1h': 3, 'number_of_stuff_count_2h': 3, 'number_of_stuff_count_3h': 4, 'number_of_stuff_count_24h': 4}, {'col1': 4, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 4, 'number_of_stuff_count_3h': 5, 'number_of_stuff_count_24h': 5}, {'col1': 5, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 5, 'number_of_stuff_count_3h': 6, 'number_of_stuff_count_24h': 6}, {'col1': 6, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 1, 'number_of_stuff_count_3h': 1, 'number_of_stuff_count_24h': 1}, {'col1': 7, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 2, 'number_of_stuff_count_3h': 2, 'number_of_stuff_count_24h': 2}, {'col1': 8, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 3, 'number_of_stuff_count_3h': 3, 'number_of_stuff_count_24h': 3}, {'col1': 9, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 4, 'number_of_stuff_count_3h': 4, 'number_of_stuff_count_24h': 4}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_sliding_window_old_event(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["sum", "avg", "min", "max"], SlidingWindows(['1h', '2h', '24h'], '10m'))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(3): data = {'col1': i} controller.emit(data, 'tal', test_base_time + timedelta(minutes=25 * i)) controller.emit({'col1': 3}, 'tal', test_base_time - timedelta(hours=25)) controller.terminate() actual = controller.await_termination() expected_results = [ {'col1': 0, 'number_of_stuff_sum_1h': 0, 'number_of_stuff_sum_2h': 0, 'number_of_stuff_sum_24h': 0, 'number_of_stuff_min_1h': 0, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 0, 'number_of_stuff_max_2h': 0, 'number_of_stuff_max_24h': 0, 'number_of_stuff_avg_1h': 0.0, 'number_of_stuff_avg_2h': 0.0, 'number_of_stuff_avg_24h': 0.0}, {'col1': 1, 'number_of_stuff_sum_1h': 1, 'number_of_stuff_sum_2h': 1, 'number_of_stuff_sum_24h': 1, 'number_of_stuff_min_1h': 0, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 1, 'number_of_stuff_max_2h': 1, 'number_of_stuff_max_24h': 1, 'number_of_stuff_avg_1h': 0.5, 'number_of_stuff_avg_2h': 0.5, 'number_of_stuff_avg_24h': 0.5}, {'col1': 2, 'number_of_stuff_sum_1h': 3, 'number_of_stuff_sum_2h': 3, 'number_of_stuff_sum_24h': 3, 'number_of_stuff_min_1h': 0, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 2, 'number_of_stuff_max_2h': 2, 'number_of_stuff_max_24h': 2, 'number_of_stuff_avg_1h': 1.0, 'number_of_stuff_avg_2h': 1.0, 'number_of_stuff_avg_24h': 1.0}, {'col1': 3} ] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_fixed_window_old_event(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["count"], FixedWindows(['1h', '2h', '3h', '24h']))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(3): data = {'col1': i} controller.emit(data, 'tal', test_base_time + timedelta(minutes=25 * i)) controller.emit({'col1': 3}, 'tal', test_base_time - timedelta(hours=25)) controller.terminate() actual = controller.await_termination() expected_results = [{'col1': 0, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 1, 'number_of_stuff_count_3h': 1, 'number_of_stuff_count_24h': 1}, {'col1': 1, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 1, 'number_of_stuff_count_3h': 2, 'number_of_stuff_count_24h': 2}, {'col1': 2, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 2, 'number_of_stuff_count_3h': 3, 'number_of_stuff_count_24h': 3}, {'col1': 3}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_fixed_window_out_of_order_event(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["count"], FixedWindows(['1h', '2h']))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(3): data = {'col1': i} controller.emit(data, 'tal', test_base_time + timedelta(minutes=25 * i)) controller.emit({'col1': 3}, 'tal', test_base_time + timedelta(minutes=15)) controller.emit({'col1': 4}, 'tal', test_base_time + timedelta(minutes=25 * 3)) controller.terminate() actual = controller.await_termination() expected_results = [{'col1': 0, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 1}, {'col1': 1, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 1}, {'col1': 2, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 2}, {'col1': 3, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 2}, {'col1': 4, 'number_of_stuff_count_1h': 3, 'number_of_stuff_count_2h': 3}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_fixed_window_roll_cached_buckets(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["count"], FixedWindows(['1h', '2h', '3h']))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): data = {'col1': i} controller.emit(data, 'tal', test_base_time + timedelta(minutes=25 * i)) controller.terminate() actual = controller.await_termination() expected_results = [{'col1': 0, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 1, 'number_of_stuff_count_3h': 1}, {'col1': 1, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 1, 'number_of_stuff_count_3h': 2}, {'col1': 2, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 2, 'number_of_stuff_count_3h': 3}, {'col1': 3, 'number_of_stuff_count_1h': 3, 'number_of_stuff_count_2h': 3, 'number_of_stuff_count_3h': 4}, {'col1': 4, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 4, 'number_of_stuff_count_3h': 5}, {'col1': 5, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 5, 'number_of_stuff_count_3h': 6}, {'col1': 6, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 1, 'number_of_stuff_count_3h': 1}, {'col1': 7, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 2, 'number_of_stuff_count_3h': 2}, {'col1': 8, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 3, 'number_of_stuff_count_3h': 3}, {'col1': 9, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 4, 'number_of_stuff_count_3h': 4}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_sliding_window_roll_cached_buckets(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["sum", "avg", "min", "max"], SlidingWindows(['1h', '2h'], '10m'))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): data = {'col1': i} controller.emit(data, 'tal', test_base_time + timedelta(minutes=25 * i)) controller.terminate() actual = controller.await_termination() expected_results = [ {'col1': 0, 'number_of_stuff_sum_1h': 0, 'number_of_stuff_sum_2h': 0, 'number_of_stuff_min_1h': 0, 'number_of_stuff_min_2h': 0, 'number_of_stuff_max_1h': 0, 'number_of_stuff_max_2h': 0, 'number_of_stuff_avg_1h': 0.0, 'number_of_stuff_avg_2h': 0.0}, {'col1': 1, 'number_of_stuff_sum_1h': 1, 'number_of_stuff_sum_2h': 1, 'number_of_stuff_min_1h': 0, 'number_of_stuff_min_2h': 0, 'number_of_stuff_max_1h': 1, 'number_of_stuff_max_2h': 1, 'number_of_stuff_avg_1h': 0.5, 'number_of_stuff_avg_2h': 0.5}, {'col1': 2, 'number_of_stuff_sum_1h': 3, 'number_of_stuff_sum_2h': 3, 'number_of_stuff_min_1h': 0, 'number_of_stuff_min_2h': 0, 'number_of_stuff_max_1h': 2, 'number_of_stuff_max_2h': 2, 'number_of_stuff_avg_1h': 1.0, 'number_of_stuff_avg_2h': 1.0}, {'col1': 3, 'number_of_stuff_sum_1h': 6, 'number_of_stuff_sum_2h': 6, 'number_of_stuff_min_1h': 1, 'number_of_stuff_min_2h': 0, 'number_of_stuff_max_1h': 3, 'number_of_stuff_max_2h': 3, 'number_of_stuff_avg_1h': 2.0, 'number_of_stuff_avg_2h': 1.5}, {'col1': 4, 'number_of_stuff_sum_1h': 9, 'number_of_stuff_sum_2h': 10, 'number_of_stuff_min_1h': 2, 'number_of_stuff_min_2h': 0, 'number_of_stuff_max_1h': 4, 'number_of_stuff_max_2h': 4, 'number_of_stuff_avg_1h': 3.0, 'number_of_stuff_avg_2h': 2.0}, {'col1': 5, 'number_of_stuff_sum_1h': 12, 'number_of_stuff_sum_2h': 15, 'number_of_stuff_min_1h': 3, 'number_of_stuff_min_2h': 1, 'number_of_stuff_max_1h': 5, 'number_of_stuff_max_2h': 5, 'number_of_stuff_avg_1h': 4.0, 'number_of_stuff_avg_2h': 3.0}, {'col1': 6, 'number_of_stuff_sum_1h': 15, 'number_of_stuff_sum_2h': 20, 'number_of_stuff_min_1h': 4, 'number_of_stuff_min_2h': 2, 'number_of_stuff_max_1h': 6, 'number_of_stuff_max_2h': 6, 'number_of_stuff_avg_1h': 5.0, 'number_of_stuff_avg_2h': 4.0}, {'col1': 7, 'number_of_stuff_sum_1h': 18, 'number_of_stuff_sum_2h': 25, 'number_of_stuff_min_1h': 5, 'number_of_stuff_min_2h': 3, 'number_of_stuff_max_1h': 7, 'number_of_stuff_max_2h': 7, 'number_of_stuff_avg_1h': 6.0, 'number_of_stuff_avg_2h': 5.0}, {'col1': 8, 'number_of_stuff_sum_1h': 21, 'number_of_stuff_sum_2h': 30, 'number_of_stuff_min_1h': 6, 'number_of_stuff_min_2h': 4, 'number_of_stuff_max_1h': 8, 'number_of_stuff_max_2h': 8, 'number_of_stuff_avg_1h': 7.0, 'number_of_stuff_avg_2h': 6.0}, {'col1': 9, 'number_of_stuff_sum_1h': 24, 'number_of_stuff_sum_2h': 35, 'number_of_stuff_min_1h': 7, 'number_of_stuff_min_2h': 5, 'number_of_stuff_max_1h': 9, 'number_of_stuff_max_2h': 9, 'number_of_stuff_avg_1h': 8.0, 'number_of_stuff_avg_2h': 7.0} ] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_aggregation_unique_fields(): try: build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["sum", "avg"], SlidingWindows(['1h', '2h', '24h'], '10m')), FieldAggregator("number_of_stuff", "col1", ["count"], SlidingWindows(['1h', '2h'], '15m'))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() assert False except TypeError: pass def test_fixed_window_aggregation_with_first_and_last_aggregates(): df = pd.DataFrame( { "timestamp": [ pd.Timestamp("2021-07-13 06:43:01.084587+0000", tz="UTC"), pd.Timestamp("2021-07-13 06:46:01.084587+0000", tz="UTC"),
pd.Timestamp("2021-07-13 06:49:01.084587+0000", tz="UTC")
pandas.Timestamp
import pickle import os from Shared.data import Data from Shared.data_loader import DataLoader import numpy as np import keras from keras import layers from sklearn.preprocessing import StandardScaler, MinMaxScaler import anndata as ad import pandas as pd from pathlib import Path import umap import tensorflow as tf import sys from sklearn.cluster import KMeans import matplotlib.pyplot as plt from sklearn.metrics import r2_score class DenoisingAutoEncoder: data: Data # The defined encoder encoder: any # The defined decoder decoder: any # The ae ae: any history: any input_dim: int encoding_dim: int input_umap: any latent_umap: any r2_scores = pd.DataFrame(columns=["Marker", "Score"]) encoded_data =
pd.DataFrame()
pandas.DataFrame
""" Test various functions regarding chapter 8: MDI, MDA, SFI importance. """ import os import unittest import numpy as np import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import f1_score, accuracy_score from mlfinlab.util.volatility import get_daily_vol from mlfinlab.filters.filters import cusum_filter from mlfinlab.labeling.labeling import get_events, add_vertical_barrier, get_bins from mlfinlab.sampling.bootstrapping import get_ind_mat_label_uniqueness, get_ind_matrix from mlfinlab.ensemble.sb_bagging import SequentiallyBootstrappedBaggingClassifier from mlfinlab.feature_importance.importance import (feature_importance_mean_decrease_impurity, feature_importance_mean_decrease_accuracy, feature_importance_sfi, plot_feature_importance) from mlfinlab.feature_importance.orthogonal import feature_pca_analysis, get_orthogonal_features from mlfinlab.cross_validation.cross_validation import PurgedKFold, ml_cross_val_score # pylint: disable=invalid-name def _generate_label_with_prob(x, prob, random_state=np.random.RandomState(1)): """ Generates true label value with some probability(prob) """ choice = random_state.choice([0, 1], p=[1 - prob, prob]) if choice == 1: return x return int(not x) def _get_synthetic_samples(ind_mat, good_samples_thresh, bad_samples_thresh): """ Get samples with uniqueness either > good_samples_thresh or uniqueness < bad_samples_thresh """ # Get mix of samples where some of them are extremely non-overlapping, the other one are highly overlapping i = 0 unique_samples = [] for label in get_ind_mat_label_uniqueness(ind_mat): if np.mean(label[label > 0]) > good_samples_thresh or np.mean(label[label > 0]) < bad_samples_thresh: unique_samples.append(i) i += 1 return unique_samples class TestFeatureImportance(unittest.TestCase): """ Test Feature importance """ def setUp(self): """ Set the file path for the sample dollar bars data and get triple barrier events, generate features """ project_path = os.path.dirname(__file__) self.path = project_path + '/test_data/dollar_bar_sample.csv' self.data =
pd.read_csv(self.path, index_col='date_time')
pandas.read_csv
from ._rrs import decode_rrs from ._sondepbl import heffter_pbl, bulk_richardson_pbl, liu_liang_pbl import pandas as pd # this makes the imported functions appear in sphinx docs __all__ = ['decode_rrs', 'estimate_pbl'] # an interface to my sondepbl code def estimate_pbl(method, height, pressure, temp, rh=None, ws=None, u=None, v=None, land=True, critical_threshold=.25): """Estimate PBL height using the methods described in :cite:`sivaraman_planetary_2013`. Args: method (str): Method to use to estimate PBL. One of 'richardson', 'heffter', or 'liu-liang'. height (ndarray): Array of heights in km. pressure (ndarray): Array of pressures in mb. temp (ndarray): Array of temperatures in °C. rh (ndarray): Array of relative humidities. Only required when method is 'richardson'. ws (ndarray): Array of wind speeds in m/s. Only required when method is 'liu-liang'. u (ndarray): Array of U wind components in m/s. Only required when method is 'richardson'. v (ndarray): Array of V wind components in m/s. Only required when method is 'richardson'. land (bool): Whether the sonde is over land, as opposed to ocean or ice. Only used when method is 'liu-liang'. critical_threshold (float): Bulk Richardson critical threshold. Only used when method is 'richardson'. Returns: float: Estimated PBL height in km. .. bibliography:: ../wxprofilers.bib """ # organize a data frame similar to the LISTOS sonde data df =
pd.DataFrame(data={'P': pressure, 'Height': height, 'Temp': temp})
pandas.DataFrame
from database import view import pandas as pd # Example data retrieval def main(): data = view.all() ours_save_file = "./yu_blender_dialogs.csv" shirleys_save_file = "./shirley_inspired_dialogs.csv" raw_blender_save_file = "./raw_blender_dialogs.csv" zhou_save_file = "./zhou_half_half_dialogs.csv" user_entity_save_file = "./user_entity_dialogs.csv" sum_dialog = {"blue": {"bot": [], "human": []}, "cyan": {"bot": [], "human": []}, "yellow": {"bot": [], "human": []}, "green": {"bot": [], "human": []}, "red": {"bot": [], "human": []},} sum_surveys = { "pre": {"kind_of_movies": [], "favorite_movies":[], "favorite_actors":[], "favorite_directors":[],}, "blue": {"recommend_":[],"preference":[],"consistent":[],"natural":[],"engaging":[],"persuasive":[],"sociable":[],"boring":[],}, "cyan": {"recommend_":[],"preference":[],"consistent":[],"natural":[],"engaging":[],"persuasive":[],"sociable":[],"boring":[],}, "yellow": {"recommend_":[],"preference":[],"consistent":[],"natural":[],"engaging":[],"persuasive":[],"sociable":[],"boring":[],}, "green": {"recommend_":[],"preference":[],"consistent":[],"natural":[],"engaging":[],"persuasive":[],"sociable":[],"boring":[],}, "red": {"recommend_":[],"preference":[],"consistent":[],"natural":[],"engaging":[],"persuasive":[],"sociable":[],"boring":[],}, "survey_4": {"kind_of_movies": [],}} sum_worker_id = [] sum_blue_length = [] sum_cyan_length = [] sum_yellow_length = [] sum_green_length = [] sum_red_length = [] for hit in data: if hit.complete: # print("Info:", type(hit.info)) # print("Dialog:", type(hit.dialog)) # print("Forms:", type(hit.forms)) bot_names = hit.dialog.keys() for bot_name in bot_names: sum_dialog[bot_name]["bot"].append(hit.info['worker_id']) sum_dialog[bot_name]["human"].append("") for turn in hit.dialog[bot_name]: sum_dialog[bot_name]["bot"].append(turn['bot']) sum_dialog[bot_name]["human"].append(turn['human']) sum_dialog[bot_name]["bot"].append("") sum_dialog[bot_name]["human"].append("") df_dialogs_blue = pd.DataFrame(sum_dialog["blue"]) df_dialogs_cyan = pd.DataFrame(sum_dialog["cyan"]) df_dialogs_yellow = pd.DataFrame(sum_dialog["yellow"]) df_dialogs_green = pd.DataFrame(sum_dialog["green"]) df_dialogs_red =
pd.DataFrame(sum_dialog["red"])
pandas.DataFrame
import os import pandas as pd import numpy as np import numpy.random as rd import torch class StockTradingEnv: def __init__(self, cwd='./envs/FinRL', gamma=0.99, max_stock=1e2, initial_capital=1e6, buy_cost_pct=1e-3, sell_cost_pct=1e-3, start_date='2008-03-19', end_date='2016-01-01', env_eval_date='2021-01-01', ticker_list=None, tech_indicator_list=None, initial_stocks=None, if_eval=False): self.price_ary, self.tech_ary = self.load_data(cwd, if_eval, ticker_list, tech_indicator_list, start_date, end_date, env_eval_date, ) stock_dim = self.price_ary.shape[1] self.gamma = gamma self.max_stock = max_stock self.buy_cost_pct = buy_cost_pct self.sell_cost_pct = sell_cost_pct self.initial_capital = initial_capital self.initial_stocks = np.zeros(stock_dim, dtype=np.float32) if initial_stocks is None else initial_stocks # reset() self.day = None self.amount = None self.stocks = None self.total_asset = None self.initial_total_asset = None self.gamma_reward = 0.0 # environment information self.env_name = 'StockTradingEnv-v1' self.state_dim = 1 + 2 * stock_dim + self.tech_ary.shape[1] self.action_dim = stock_dim self.max_step = len(self.price_ary) - 1 self.if_discrete = False self.target_return = 3.5 self.episode_return = 0.0 def reset(self): self.day = 0 price = self.price_ary[self.day] self.stocks = self.initial_stocks + rd.randint(0, 64, size=self.initial_stocks.shape) self.amount = self.initial_capital * rd.uniform(0.95, 1.05) - (self.stocks * price).sum() self.total_asset = self.amount + (self.stocks * price).sum() self.initial_total_asset = self.total_asset self.gamma_reward = 0.0 state = np.hstack((self.amount * 2 ** -13, price, self.stocks, self.tech_ary[self.day],)).astype(np.float32) * 2 ** -5 return state def step(self, actions): actions = (actions * self.max_stock).astype(int) self.day += 1 price = self.price_ary[self.day] for index in np.where(actions < 0)[0]: # sell_index: if price[index] > 0: # Sell only if current asset is > 0 sell_num_shares = min(self.stocks[index], -actions[index]) self.stocks[index] -= sell_num_shares self.amount += price[index] * sell_num_shares * (1 - self.sell_cost_pct) for index in np.where(actions > 0)[0]: # buy_index: if price[index] > 0: # Buy only if the price is > 0 (no missing data in this particular date) buy_num_shares = min(self.amount // price[index], actions[index]) self.stocks[index] += buy_num_shares self.amount -= price[index] * buy_num_shares * (1 + self.buy_cost_pct) state = np.hstack((self.amount * 2 ** -13, price, self.stocks, self.tech_ary[self.day],)).astype(np.float32) * 2 ** -5 total_asset = self.amount + (self.stocks * price).sum() reward = (total_asset - self.total_asset) * 2 ** -14 # reward scaling self.total_asset = total_asset self.gamma_reward = self.gamma_reward * self.gamma + reward done = self.day == self.max_step if done: reward = self.gamma_reward self.episode_return = total_asset / self.initial_total_asset return state, reward, done, dict() def load_data(self, cwd='./envs/FinRL', if_eval=None, ticker_list=None, tech_indicator_list=None, start_date='2008-03-19', end_date='2016-01-01', env_eval_date='2021-01-01'): raw_data_path = f'{cwd}/StockTradingEnv_raw_data.df' processed_data_path = f'{cwd}/StockTradingEnv_processed_data.df' data_path_array = f'{cwd}/StockTradingEnv_arrays_float16.npz' tech_indicator_list = [ 'macd', 'boll_ub', 'boll_lb', 'rsi_30', 'cci_30', 'dx_30', 'close_30_sma', 'close_60_sma' ] if tech_indicator_list is None else tech_indicator_list # ticker_list = [ # 'AAPL', 'MSFT', 'JPM', 'V', 'RTX', 'PG', 'GS', 'NKE', 'DIS', 'AXP', 'HD', # 'INTC', 'WMT', 'IBM', 'MRK', 'UNH', 'KO', 'CAT', 'TRV', 'JNJ', 'CVX', 'MCD', # 'VZ', 'CSCO', 'XOM', 'BA', 'MMM', 'PFE', 'WBA', 'DD' # ] if ticker_list is None else ticker_list # finrl.config.DOW_30_TICKER ticker_list = [ 'AAPL', 'ADBE', 'ADI', 'ADP', 'ADSK', 'ALGN', 'ALXN', 'AMAT', 'AMD', 'AMGN', 'AMZN', 'ASML', 'ATVI', 'BIIB', 'BKNG', 'BMRN', 'CDNS', 'CERN', 'CHKP', 'CMCSA', 'COST', 'CSCO', 'CSX', 'CTAS', 'CTSH', 'CTXS', 'DLTR', 'EA', 'EBAY', 'FAST', 'FISV', 'GILD', 'HAS', 'HSIC', 'IDXX', 'ILMN', 'INCY', 'INTC', 'INTU', 'ISRG', 'JBHT', 'KLAC', 'LRCX', 'MAR', 'MCHP', 'MDLZ', 'MNST', 'MSFT', 'MU', 'MXIM', 'NLOK', 'NTAP', 'NTES', 'NVDA', 'ORLY', 'PAYX', 'PCAR', 'PEP', 'QCOM', 'REGN', 'ROST', 'SBUX', 'SIRI', 'SNPS', 'SWKS', 'TTWO', 'TXN', 'VRSN', 'VRTX', 'WBA', 'WDC', 'WLTW', 'XEL', 'XLNX' ] if ticker_list is None else ticker_list # finrl.config.NAS_74_TICKER # ticker_list = [ # 'AMGN', 'AAPL', 'AMAT', 'INTC', 'PCAR', 'PAYX', 'MSFT', 'ADBE', 'CSCO', 'XLNX', # 'QCOM', 'COST', 'SBUX', 'FISV', 'CTXS', 'INTU', 'AMZN', 'EBAY', 'BIIB', 'CHKP', # 'GILD', 'NLOK', 'CMCSA', 'FAST', 'ADSK', 'CTSH', 'NVDA', 'GOOGL', 'ISRG', 'VRTX', # 'HSIC', 'BIDU', 'ATVI', 'ADP', 'ROST', 'ORLY', 'CERN', 'BKNG', 'MYL', 'MU', # 'DLTR', 'ALXN', 'SIRI', 'MNST', 'AVGO', 'TXN', 'MDLZ', 'FB', 'ADI', 'WDC', # 'REGN', 'LBTYK', 'VRSK', 'NFLX', 'TSLA', 'CHTR', 'MAR', 'ILMN', 'LRCX', 'EA', # 'AAL', 'WBA', 'KHC', 'BMRN', 'JD', 'SWKS', 'INCY', 'PYPL', 'CDW', 'FOXA', 'MXIM', # 'TMUS', 'EXPE', 'TCOM', 'ULTA', 'CSX', 'NTES', 'MCHP', 'CTAS', 'KLAC', 'HAS', # 'JBHT', 'IDXX', 'WYNN', 'MELI', 'ALGN', 'CDNS', 'WDAY', 'SNPS', 'ASML', 'TTWO', # 'PEP', 'NXPI', 'XEL', 'AMD', 'NTAP', 'VRSN', 'LULU', 'WLTW', 'UAL' # ] if ticker_list is None else ticker_list # finrl.config.NAS_100_TICKER # print(raw_df.loc['2000-01-01']) # j = 40000 # check_ticker_list = set(raw_df.loc.obj.tic[j:j + 200].tolist()) # print(len(check_ticker_list), check_ticker_list) '''get: train_price_ary, train_tech_ary, eval_price_ary, eval_tech_ary''' if os.path.exists(data_path_array): load_dict = np.load(data_path_array) train_price_ary = load_dict['train_price_ary'].astype(np.float32) train_tech_ary = load_dict['train_tech_ary'].astype(np.float32) eval_price_ary = load_dict['eval_price_ary'].astype(np.float32) eval_tech_ary = load_dict['eval_tech_ary'].astype(np.float32) else: processed_df = self.processed_raw_data(raw_data_path, processed_data_path, ticker_list, tech_indicator_list) def data_split(df, start, end): data = df[(df.date >= start) & (df.date < end)] data = data.sort_values(["date", "tic"], ignore_index=True) data.index = data.date.factorize()[0] return data train_df = data_split(processed_df, start_date, end_date) eval_df = data_split(processed_df, end_date, env_eval_date) train_price_ary, train_tech_ary = self.convert_df_to_ary(train_df, tech_indicator_list) eval_price_ary, eval_tech_ary = self.convert_df_to_ary(eval_df, tech_indicator_list) np.savez_compressed(data_path_array, train_price_ary=train_price_ary.astype(np.float16), train_tech_ary=train_tech_ary.astype(np.float16), eval_price_ary=eval_price_ary.astype(np.float16), eval_tech_ary=eval_tech_ary.astype(np.float16), ) if if_eval is None: price_ary = np.concatenate((train_price_ary, eval_price_ary), axis=0) tech_ary = np.concatenate((train_tech_ary, eval_tech_ary), axis=0) elif if_eval: price_ary = eval_price_ary tech_ary = eval_tech_ary else: price_ary = train_price_ary tech_ary = train_tech_ary return price_ary, tech_ary def processed_raw_data(self, raw_data_path, processed_data_path, ticker_list, tech_indicator_list): if os.path.exists(processed_data_path): processed_df =
pd.read_pickle(processed_data_path)
pandas.read_pickle
import rebound import numpy as np import pandas as pd import multiprocessing from collections import OrderedDict from celmech.poincare import Poincare, PoincareHamiltonian from celmech import Andoyer, AndoyerHamiltonian from celmech.resonances import resonant_period_ratios, resonance_intersections_list, resonance_pratio_span from celmech.transformations import masses_to_jacobi from celmech.andoyer import get_num_fixed_points import itertools def collision(reb_sim, col): reb_sim.contents._status = 5 return 0 def safe_run_func(runfunc): def new_run_func(*args, **kwargs): try: return runfunc(*args, **kwargs) except RuntimeError: return None return new_run_func from scipy.optimize import brenth def F(e,alpha,gamma): """Equation 35 of Laskar & Petit (2017)""" denom = np.sqrt(alpha*(1-e*e)+gamma*gamma*e*e) return alpha*e -1 + alpha + gamma*e / denom ### start AMD functions def critical_relative_AMD(alpha,gamma): """Equation 29""" e0 = np.min((1,1/alpha-1)) ec = brenth(F,0,e0,args=(alpha,gamma)) e1c = np.sin(np.arctan(gamma*ec / np.sqrt(alpha*(1-ec*ec)))) curlyC = gamma*np.sqrt(alpha) * (1-np.sqrt(1-ec*ec)) + (1 - np.sqrt(1-e1c*e1c)) return curlyC @safe_run_func def compute_AMD(sim): pstar = sim.particles[0] Ltot = pstar.m * np.cross(pstar.xyz,pstar.vxyz) ps = sim.particles[1:] Lmbda=np.zeros(len(ps)) G = np.zeros(len(ps)) Lhat = np.zeros((len(ps),3)) for k,p in enumerate(sim.particles[1:]): orb = p.calculate_orbit(primary=pstar) Lmbda[k] = p.m * np.sqrt(p.a) G[k] = Lmbda[k] * np.sqrt(1-p.e*p.e) hvec = np.cross(p.xyz,p.vxyz) Lhat[k] = hvec / np.linalg.norm(hvec) Ltot = Ltot + p.m * hvec cosi = np.array([Lh.dot(Ltot) for Lh in Lhat]) / np.linalg.norm(Ltot) return np.sum(Lmbda) - np.sum(G * cosi) @safe_run_func def AMD_stable_Q(sim): AMD = compute_AMD(sim) pstar = sim.particles[0] ps = sim.particles[1:] for i in range(len(ps)-1): pIn = ps[i] pOut = ps[i+1] orbIn = pIn.calculate_orbit(pstar) orbOut = pOut.calculate_orbit(pstar) alpha = orbIn.a / orbOut.a gamma = pIn.m / pOut.m LmbdaOut = pOut.m * np.sqrt(orbOut.a) Ccrit = critical_relative_AMD(alpha,gamma) C = AMD / LmbdaOut if C>Ccrit: return False return True @safe_run_func def AMD_stability_coefficients(sim): AMD = compute_AMD(sim) pstar = sim.particles[0] ps = sim.particles[1:] coeffs = np.zeros(len(ps)-1) for i in range(len(ps)-1): pIn = ps[i] pOut = ps[i+1] orbIn = pIn.calculate_orbit(pstar) orbOut = pOut.calculate_orbit(pstar) alpha = orbIn.a / orbOut.a gamma = pIn.m / pOut.m LmbdaOut = pOut.m * np.sqrt(orbOut.a) Ccrit = critical_relative_AMD(alpha,gamma) C = AMD / LmbdaOut coeffs[i] = C / Ccrit return coeffs def AMD_stability_coefficient(sim, i1, i2): AMD = compute_AMD(sim) ps = sim.particles pstar = ps[0] pIn = ps[i1] pOut = ps[i2] orbIn = pIn.calculate_orbit(pstar) orbOut = pOut.calculate_orbit(pstar) alpha = orbIn.a / orbOut.a gamma = pIn.m / pOut.m LmbdaOut = pOut.m * np.sqrt(orbOut.a) Ccrit = critical_relative_AMD(alpha,gamma) C = AMD / LmbdaOut return C / Ccrit ### end AMD functions # write functions to take args and unpack them at top so it's clear what you have to pass in args @safe_run_func def orbtseries(sim, args, trio): Norbits = args[0] Nout = args[1] val = np.zeros((Nout, 19)) ############################### sim.collision_resolve = collision sim.ri_whfast.keep_unsynchronized = 1 ############################### # Chunk above should be the same in all runfuncs we write in order to match simarchives # Fill in values below times = np.linspace(0, Norbits*sim.particles[1].P, Nout) # TTV systems don't have ps[1].P=1, so must multiply! P0 = sim.particles[1].P a0 = sim.particles[1].a for i, time in enumerate(times): try: sim.integrate(time, exact_finish_time=0) except: break orbits = sim.calculate_orbits() skipped = 0 for j, o in enumerate(orbits): #print(j, trio) if j+1 not in trio: skipped += 1 continue #print(j, 'actually in', trio, skipped) val[i,0] = sim.t/P0 val[i,6*(j-skipped)+1] = o.a/a0 val[i,6*(j-skipped)+2] = o.e val[i,6*(j-skipped)+3] = o.inc val[i,6*(j-skipped)+4] = o.Omega val[i,6*(j-skipped)+5] = o.pomega val[i,6*(j-skipped)+6] = o.M return val @safe_run_func def orbsummaryfeaturesxgb(sim, args): Norbits = args[0] Nout = args[1] window = args[2] ############################### sim.collision_resolve = collision sim.ri_whfast.keep_unsynchronized = 1 ############################## times = np.linspace(0, Norbits*sim.particles[1].P, Nout) # TTV systems don't have ps[1].P=1, so must multiply! ps = sim.particles P0 = ps[1].P Nout = len(times) features = OrderedDict() AMDcoeffs = AMD_stability_coefficients(sim) features["C_AMD12"] = AMDcoeffs[0] features["C_AMD23"] = AMDcoeffs[1] features["C_AMD_max"] = np.max(AMDcoeffs) a = np.zeros((sim.N,Nout)) e = np.zeros((sim.N,Nout)) inc = np.zeros((sim.N,Nout)) beta12 = np.zeros(Nout) beta23 = np.zeros(Nout) Rhill12 = ps[1].a*((ps[1].m+ps[2].m)/3.)**(1./3.) Rhill23 = ps[2].a*((ps[2].m+ps[3].m)/3.)**(1./3.) eHill = [0, Rhill12/ps[1].a, max(Rhill12, Rhill23)/ps[2].a, Rhill23/ps[3].a] daOvera = [0, (ps[2].a-ps[1].a)/ps[1].a, min(ps[3].a-ps[2].a, ps[2].a-ps[1].a)/ps[2].a, (ps[3].a-ps[2].a)/ps[3].a] for i, t in enumerate(times): for j in [1,2,3]: a[j,i] = ps[j].a e[j,i] = ps[j].e inc[j,i] = ps[j].inc # mutual hill radii since that's what goes into Hill stability Rhill12 = ps[1].a*((ps[1].m+ps[2].m)/3.)**(1./3.) Rhill23 = ps[2].a*((ps[2].m+ps[3].m)/3.)**(1./3.) beta12[i] = (ps[2].a - ps[1].a)/Rhill12 beta23[i] = (ps[3].a - ps[2].a)/Rhill23 try: sim.integrate(t, exact_finish_time=0) except: break features['t_final_short'] = sim.t/P0 for string, feature in [("beta12", beta12), ("beta23", beta23)]: mean = feature.mean() std = feature.std() features["avg_"+string] = mean features["std_"+string] = std features["min_"+string] = min(feature) features["max_"+string] = max(feature) for j in [1,2,3]: for string, feature in [('a', a), ('e', e), ('inc', inc)]: mean = feature[j].mean() std = feature[j].std() features['avg_'+string+str(j)] = mean features['std_'+string+str(j)] = std features['max_'+string+str(j)] = feature[j].max() features['min_'+string+str(j)] = feature[j].min() features['norm_std_'+string+str(j)] = std/mean features['norm_max_'+string+str(j)] = np.abs(feature[j] - mean).max()/mean sample = feature[j][:window] samplemean = sample.mean() features['norm_std_window'+str(window)+'_'+string+str(j)] = sample.std()/samplemean features['norm_max_window'+str(window)+'_'+string+str(j)] = np.abs(sample - samplemean).max()/samplemean for string, feature in [('eH', e), ('iH', inc)]: mean = feature[j].mean() std = feature[j].std() features['avg_'+string+str(j)] = mean/eHill[j] features['std_'+string+str(j)] = std/eHill[j] features['max_'+string+str(j)] = feature[j].max()/eHill[j] features['min_'+string+str(j)] = feature[j].min()/eHill[j] string, feature = ('ecross', e) features['avg_'+string+str(j)] = mean/daOvera[j] features['std_'+string+str(j)] = std/daOvera[j] features['max_'+string+str(j)] = feature[j].max()/daOvera[j] features['min_'+string+str(j)] = feature[j].min()/daOvera[j] xx = range(a[j].shape[0]) yy = a[j]/a[j].mean()/features["t_final_short"] par = np.polyfit(xx, yy, 1, full=True) features['norm_a'+str(j)+'_slope'] = par[0][0] return pd.Series(features, index=list(features.keys())) def findres(sim, i1, i2): delta = 0.03 maxorder = 2 ps = Poincare.from_Simulation(sim=sim).particles # get averaged mean motions n1 = ps[i1].n n2 = ps[i2].n m1 = ps[i1].m m2 = ps[i2].m Pratio = n2/n1 if np.isnan(Pratio): # probably due to close encounter where averaging step doesn't converge return np.nan, np.nan, np.nan res = resonant_period_ratios(Pratio-delta,Pratio+delta, order=maxorder) Z = np.sqrt((ps[i1].e*np.cos(ps[i1].pomega) - ps[i2].e*np.cos(ps[i2].pomega))**2 + (ps[i1].e*np.sin(ps[i1].pomega) - ps[i2].e*np.sin(ps[i2].pomega))**2) maxstrength = 0 j, k, i1, i2, strength = -1, -1, -1, -1, -1 for a, b in res: s = np.abs(np.sqrt(m1+m2)*Z**((b-a)/2.)/(b*n2 - a*n1)) #print('{0}:{1}'.format(b, a), (b*n2 - a*n1), s) if s > maxstrength: j = b k = b-a i1 = 1 i2 = 2 strength=s maxstrength = s return j, k, strength def findres2(sim, i1, i2): maxorder = 2 ps = Poincare.from_Simulation(sim=sim).particles # get averaged mean motions n1 = ps[i1].n n2 = ps[i2].n m1 = ps[i1].m/ps[i1].M m2 = ps[i2].m/ps[i2].M Pratio = n2/n1 if np.isnan(Pratio): # probably due to close encounter where averaging step doesn't converge return np.nan, np.nan, np.nan delta = 0.03 minperiodratio = max(Pratio-delta, 0.) maxperiodratio = min(Pratio+delta, 0.999) # too many resonances close to 1 res = resonant_period_ratios(minperiodratio,maxperiodratio, order=2) Z = np.sqrt((ps[i1].e*np.cos(ps[i1].pomega) - ps[i2].e*np.cos(ps[i2].pomega))**2 + (ps[i1].e*np.sin(ps[i1].pomega) - ps[i2].e*np.sin(ps[i2].pomega))**2) Zcross = (ps[i2].a-ps[i1].a)/ps[i1].a j, k, i1, i2, maxstrength = -1, -1, -1, -1, -1 for a, b in res: s = np.abs(np.sqrt(m1+m2)*(Z/Zcross)**((b-a)/2.)/((b*n2 - a*n1)/n1)) #print('{0}:{1}'.format(b, a), (b*n2 - a*n1), s) if s > maxstrength: j = b k = b-a maxstrength = s if maxstrength > -1: return j, k, maxstrength else: return np.nan, np.nan, np.nan def findresv3(sim, i1, i2): maxorder = 2 try: ps = Poincare.from_Simulation(sim=sim, average=False).particles # get averaged mean motions except: return np.nan, np.nan, np.nan n1 = ps[i1].n n2 = ps[i2].n m1 = ps[i1].m/ps[i1].M m2 = ps[i2].m/ps[i2].M Pratio = n2/n1 if np.isnan(Pratio): # probably due to close encounter where averaging step doesn't converge return np.nan, np.nan, np.nan delta = 0.03 minperiodratio = max(Pratio-delta, 0.) maxperiodratio = min(Pratio+delta, 0.999) # too many resonances close to 1 res = resonant_period_ratios(minperiodratio,maxperiodratio, order=2) Z = np.sqrt((ps[i1].e*np.cos(ps[i1].pomega) - ps[i2].e*np.cos(ps[i2].pomega))**2 + (ps[i1].e*np.sin(ps[i1].pomega) - ps[i2].e*np.sin(ps[i2].pomega))**2) Zcross = (ps[i2].a-ps[i1].a)/ps[i1].a j, k, i1, i2, maxstrength = -1, -1, -1, -1, -1 for a, b in res: s = np.abs(np.sqrt(m1+m2)*(Z/Zcross)**((b-a)/2.)/((b*n2 - a*n1)/n1)) #print('{0}:{1}'.format(b, a), (b*n2 - a*n1), s) if s > maxstrength: j = b k = b-a maxstrength = s return j, k, maxstrength @safe_run_func def normressummaryfeaturesxgb(sim, args): ps = sim.particles Mstar = ps[0].m P1 = ps[1].P sim2 = rebound.Simulation() sim2.G = 4*np.pi**2 sim2.add(m=1.) for p in ps[1:]: sim2.add(m=p.m/Mstar, P=p.P/P1, e=p.e, inc=p.inc, pomega=p.pomega, Omega=p.Omega, theta=p.theta) sim2.move_to_com() sim2.integrator="whfast" sim2.dt=sim2.particles[1].P*2.*np.sqrt(3)/100. return ressummaryfeaturesxgb(sim2, args) @safe_run_func def ressummaryfeaturesxgb(sim, args): Norbits = args[0] Nout = args[1] ############################### sim.collision_resolve = collision sim.ri_whfast.keep_unsynchronized = 1 sim.ri_whfast.safe_mode = 0 ############################## features = OrderedDict() try: AMDcoeffs = AMD_stability_coefficients(sim) features["C_AMD12"] = AMDcoeffs[0] features["C_AMD23"] = AMDcoeffs[1] features["C_AMD_max"] = np.max(AMDcoeffs) except: features["C_AMD12"] = np.nan features["C_AMD23"] = np.nan features["C_AMD_max"] = np.nan ps = sim.particles sim.init_megno(seed=0) N = sim.N - sim.N_var a0 = [0] + [sim.particles[i].a for i in range(1, N)] Npairs = int((N-1)*(N-2)/2) js, ks, strengths = np.zeros(Npairs), np.zeros(Npairs), np.zeros(Npairs) maxj, maxk, maxi1, maxi2, maxpairindex, maxstrength = -1, -1, -1, -1, -1, -1 Zcross = np.zeros(Npairs) #print('pairindex, i1, i2, j, k, strength') for i, [i1, i2] in enumerate(itertools.combinations(np.arange(1, N), 2)): js[i], ks[i], strengths[i] = findresv3(sim, i1, i2) Zcross[i] = (ps[int(i2)].a-ps[int(i1)].a)/ps[int(i1)].a #print(i, i1, i2, js[i], ks[i], strengths[i]) if strengths[i] > maxstrength: maxj, maxk, maxi1, maxi2, maxpairindex, maxstrength = js[i], ks[i], i1, i2, i, strengths[i] features['Zcross12'] = Zcross[0] features['Zcross13'] = Zcross[1] features['Zcross23'] = Zcross[2] features['maxj'] = maxj features['maxk'] = maxk features['maxi1'] = maxi1 features['maxi2'] = maxi2 features['maxstrength'] = maxstrength sortedstrengths = strengths.copy() sortedstrengths.sort() # ascending if sortedstrengths[-1] > 0 and sortedstrengths[-2] > 0: # if two strongeest resonances are nonzereo features['secondres'] = sortedstrengths[-2]/sortedstrengths[-1] # ratio of strengths else: features['secondres'] = -1 #print('max', maxi1, maxi2, maxj, maxk, maxpairindex, maxstrength) #print('df (j, k, pairindex):', features['j'], features['k'], features['pairindex']) times = np.linspace(0, Norbits*sim.particles[1].P, Nout) eminus = np.zeros((Npairs, Nout)) rebound_Z, rebound_phi = np.zeros((Npairs,Nout)), np.zeros((Npairs,Nout)) rebound_Zcom, rebound_phiZcom = np.zeros((Npairs,Nout)), np.zeros((Npairs,Nout)) rebound_Zstar, rebound_dKprime = np.zeros((Npairs,Nout)), np.zeros((Npairs,Nout)) celmech_Z, celmech_phi = np.zeros(Nout), np.zeros(Nout) celmech_Zcom, celmech_phiZcom = np.zeros(Nout), np.zeros(Nout) celmech_Zstar, celmech_dKprime = np.zeros(Nout), np.zeros(Nout) for i,t in enumerate(times): for j, [i1, i2] in enumerate(itertools.combinations(np.arange(1, N), 2)): i1, i2 = int(i1), int(i2) eminus[j, i] = np.sqrt((ps[i2].e*np.cos(ps[i2].pomega)-ps[i1].e*np.cos(ps[i1].pomega))**2 + (ps[i2].e*np.sin(ps[i2].pomega)-ps[i1].e*np.sin(ps[i1].pomega))**2) if js[j] != -1: pvars = Poincare.from_Simulation(sim, average=False) avars = Andoyer.from_Poincare(pvars, j=int(js[j]), k=int(ks[j]), a10=a0[i1], i1=i1, i2=i2) rebound_Z[j, i] = avars.Z rebound_phi[j, i] = avars.phi rebound_Zcom[j, i] = avars.Zcom rebound_phiZcom[j, i] = avars.phiZcom rebound_Zstar[j, i] = avars.Zstar rebound_dKprime[j, i] = avars.dKprime try: sim.integrate(t, exact_finish_time=0) except: break mask = eminus[0] > 0 # where there are data points in case sim ends early times = times[mask] eminus = eminus[:, mask] rebound_Z, rebound_phi = rebound_Z[:, mask], rebound_phi[:, mask] rebound_Zcom, rebound_phiZcom = rebound_Zcom[:, mask], rebound_phiZcom[:, mask] rebound_Zstar, rebound_dKprime = rebound_Zstar[:, mask], rebound_dKprime[:, mask] celmech_Z, celmech_phi, celmech_Zcom, celmech_phiZcom = celmech_Z[mask], celmech_phi[mask], celmech_Zcom[mask], celmech_phiZcom[mask] celmech_Zstar, celmech_dKprime = celmech_Zstar[mask], celmech_dKprime[mask] for i, s in zip([0,2], ['12', '23']): # take adjacent ones EM = eminus[i] Zc = Zcross[i] features['EMmed'+s] = np.median(EM)/Zc features['EMmax'+s] = EM.max()/Zc try: p = np.poly1d(np.polyfit(times, EM, 3)) m = p(times) EMdrift = np.abs((m[-1]-m[0])/m[0]) features['EMdrift'+s] = EMdrift except: features['EMdrift'+s] = np.nan maxindex = (m == m.max()).nonzero()[0][0] # index where cubic polynomial fit to EM reaches max to track long wavelength variations (secular?) if EMdrift > 0.1 and (maxindex < 0.01*Nout or maxindex > 0.99*Nout): # don't flag as not capturing secular if Z isn't varying significantly in first place features['capseculartscale'+s] = 0 else: features['capseculartscale'+s] = 1 features['EMdetrendedstd'+s] = pd.Series(EM-m).std()/EM[0] rollstd = pd.Series(EM).rolling(window=100).std() features['EMrollingstd'+s] = rollstd[100:].median()/EM[0] var = [EM[:j].var() for j in range(len(EM))] try: p = np.poly1d(np.polyfit(times[len(var)//2:], var[len(var)//2:], 1)) # fit only second half to get rid of transient features['DiffcoeffEM'+s] = p[1]/Zc**2 except: features['DiffcoeffEM'+s] = np.nan features['medvarEM'+s] = np.median(var[len(var)//2:])/Zc**2 if strengths[i] != -1: Z = rebound_Z[i] features['Zmed'+s] = np.median(Z)/Zc features['Zmax'+s] = rebound_Z[i].max()/Zc try: p = np.poly1d(np.polyfit(times, Z, 3)) m = p(times) features['Zdetrendedstd'+s] =
pd.Series(Z-m)
pandas.Series
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Parsing of a csv game tracking sheet of type 'X', saving data in consice and relevant manner.""" # Here comes your imports import sys import logging as log import pandas as pd # Here comes your (few) global variables # Here comes your class definitions # Here comes your function definitions def parse_pre_shot_situation(data, out): """parse the situation leading to the shot""" # (cycle / free-hit / develop / counter / turnover / rebound / penalty / others) situation_labels = \ ['Festsetzen', 'Freischlag', 'Auslösung', 'Konter', \ 'Ballgewinn', 'Abpraller', 'Penalty', 'Sonstige'] situation_categories = \ ['CYC', 'FHT', 'DVL', 'CNT', 'TNV', 'RBD', 'PNT', 'OTH'] shot_situations = data[situation_labels] shot_situations.columns = situation_categories situation_count = shot_situations.notna().sum(axis=1) if (situation_count != 1).any(): log.warning('no pre shot situation:\n%s', shot_situations[situation_count < 1]) log.warning('multiple pre shot situations:\n%s', shot_situations[situation_count > 1]) situation = pd.Categorical([''] * len(shot_situations.index), categories=situation_categories) for label, content in shot_situations.items(): situation[content.notna()] = label log.debug(pd.Series(situation)) log.debug(pd.Series(situation).value_counts()) out['sh_situ'] = pd.Series(situation) def parse_shot_type(data, out): """parse the type of the shot""" # (wrist / chip / slap / backhand / one-timer / volley / tip / in-tight) type_labels = \ ['Gezogen', 'Chip', 'Slapshot', 'Backhand', 'Direkt', 'Volley', 'Ablenker', 'InTight'] type_categories = \ ['WRS', 'CHP', 'SLP', 'BKH', 'ONT', 'VOL', 'TIP', 'INT'] shot_types = data[type_labels] shot_types.columns = type_categories type_count = shot_types.notna().sum(axis=1) if (type_count != 1).any(): log.warning('no shot type:\n%s', shot_types[type_count < 1]) log.warning('multiple shot types:\n%s', shot_types[type_count > 1]) shot_type = pd.Categorical([''] * len(shot_types.index), categories=type_categories) for label, content in shot_types.items(): shot_type[content.notna()] = label log.debug(pd.Series(shot_type)) log.debug(pd.Series(shot_type).value_counts()) out['sh_type'] = pd.Series(shot_type) def parse_shot_result(data, out): """parse the result (blocked / missed / on-goal / goal) of the event / shot""" result_categories = ['BL', 'MI', 'SOG', 'G'] shot_results = data[result_categories] log.debug(shot_results.info()) result_count = shot_results.notna().sum(axis=1) if (result_count < 1).any(): log.warning('no shot result:\n%s', shot_results[result_count < 1]) if (result_count > 1).any(): log.debug('multiple shot results:\n%s', shot_results[result_count > 1]) result = pd.Categorical([''] * len(shot_results.index), categories=result_categories) for label, content in shot_results.items(): result[content.notna()] = label log.debug(pd.Series(result)) log.debug(pd.Series(result).value_counts()) out['sh_outc'] = pd.Series(result) def parse_involved_players_for(data, out): """parse the involved (on-field) players for""" prefix = 'hm_' players_goalies = data.filter(regex=("^g?[0-9]+$")) numbers = pd.Series(list(players_goalies)) col = [prefix + str(i) for i in range(1, 7)] players = pd.DataFrame('', index=players_goalies.index, columns=col) for index, event in players_goalies.iterrows(): players_on = numbers[event.notna().values] player_count = len(players_on) if len(col) >= player_count: players.iloc[index, 0:player_count] = players_on.values else: log.warning('too many players, index : %d', index) log.debug(players_on) log.debug(players) for label, content in players.items(): out[label] = content def parse_involved_players_against(data, out): """parse the involved (on-field) players against""" prefix = 'aw_' suffix = '_against' players_goalies = data[['players' + suffix, 'goalie' + suffix]] default_number = '?' col = [prefix + str(i) for i in range(1, 7)] players = pd.DataFrame('', index=players_goalies.index, columns=col) for index, event in players_goalies.iterrows(): players_on = \ ([default_number] * event.loc['players' + suffix]) + \ (['g' + default_number] * event.loc['goalie' + suffix]) player_count = len(players_on) if len(col) >= player_count: players.iloc[index, 0:player_count] = players_on else: log.warning('too many players, index : %d', index) log.debug(players_on) log.debug(players) for label, content in players.items(): out[label] = content def parse_acting_players(data, out): """parse the acting players (shot, assist, block) from the columns with player numbers""" players_goalies = data.filter(regex=("^g?[0-9]+$")) actions =
pd.DataFrame('', index=players_goalies.index, columns=['shot', 'assist', 'block'])
pandas.DataFrame
# https://www.kaggle.com/tocha4/lanl-master-s-approach import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import scipy as sc import matplotlib.pyplot as plt import seaborn as sns import gc import warnings warnings.filterwarnings("ignore") warnings.simplefilter(action='ignore', category=FutureWarning) from tqdm import tqdm_notebook import datetime import time import random from joblib import Parallel, delayed import lightgbm as lgb from tensorflow import keras from gplearn.genetic import SymbolicRegressor #from catboost import Pool, CatBoostRegressor from litemort import * from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.metrics import mean_absolute_error,mean_squared_error from sklearn.model_selection import GridSearchCV, KFold, RandomizedSearchCV from sklearn.feature_selection import RFECV, SelectFromModel import os import sys import pickle from sklearn.linear_model import LinearRegression, Ridge from sklearn.tree import DecisionTreeRegressor from sklearn.svm import NuSVR, SVR from sklearn.kernel_ridge import KernelRidge from sklearn.ensemble import AdaBoostRegressor from sklearn.ensemble import RandomForestRegressor, ExtraTreesRegressor today = datetime.date.today().strftime('%m%d') isMORT = len(sys.argv)>1 and sys.argv[1] == "mort" #isMORT = True #some_rows=3000 some_rows=None model_type='mort' if isMORT else 'lgb' nVerbose = 500 pkl_path = 'G:/kaggle/Earthquake/data/anton_2_{}.pickle'.format(some_rows) pkl_path = 'G:/kaggle/Earthquake/data/anton_cys0_{}.pickle'.format(some_rows) eval_metric='l1' min_error = mean_squared_error if eval_metric=='l1' else mean_absolute_error params = { 'n_estimators':50000, #减少n_estimators 并不能控制overfit 'early_stopping_rounds': 200, 'num_leaves': 256, #128 #'max_bin': 64, 'min_data_in_leaf': 32, #79 'objective': 'tweedie', #'regression', 'max_depth': -1, 'learning_rate': 0.01, #"boosting": "gbdt", "bagging_freq": 5, "bagging_fraction": 1,#0.8126672064208567, #0.8126672064208567, "bagging_seed": 11, "metric": 'mae', "verbosity": nVerbose, #'reg_alpha': 0.1302650970728192, #'reg_lambda': 0.3603427518866501, 'colsample_bytree': 0.05 } print("params=\n{}\n".format(params)) submission = pd.read_csv('G:/kaggle/Earthquake/input/sample_submission.csv') def Load_MoreDatas(paths): train_s=[] y_s=[] for path,nFile in paths: for i in range(nFile): path_X,path_y="{}/train_X_features_{}.csv".format(path,i+1),"{}/train_y_{}.csv".format(path,i+1) X_ = pd.read_csv(path_X) y_ = pd.read_csv(path_y, index_col=False, header=None) train_s.append(X_) y_s.append(y_) print("X_[{}]@{}\ny_[{}]@{}".format(X_.shape,path_X,y_.shape,path_y)) if len(train_s)>0: train_X = pd.concat(train_s, axis=0) y = pd.concat(y_s, axis=0) train_X = train_X.reset_index(drop=True) y = y.reset_index(drop=True) print("Load_MoreDatas X_[{}] y_[{}]".format(train_X.shape, y.shape)) return train_X,y if os.path.isfile(pkl_path): print("\n======load pickle file from {} ...".format(pkl_path)) with open(pkl_path, "rb") as fp: # Pickling [train_X, test_X, train_y] = pickle.load(fp) if some_rows is not None: train_X = train_X[:some_rows] test_X = test_X[:some_rows] train_y = train_y[:some_rows] print("\n======train_X={} test_X={} train_y={} \n".format(train_X.shape, test_X.shape, train_y.shape)) else: #train_X_2,y_2 = Load_MoreDatas([('G:/kaggle/Earthquake/data/cys/15000', 14), # ('G:/kaggle/Earthquake/data/cys/17000', 15)]) train_X_0 = pd.read_csv("G:/kaggle/Earthquake/data/train_X_features_865_0.csv") train_X_1 = pd.read_csv("G:/kaggle/Earthquake/data/train_X_features_865_1.csv") y_0 =
pd.read_csv("G:/kaggle/Earthquake/data/train_y_0.csv", index_col=False, header=None)
pandas.read_csv
# coding: utf-8 # # Structural durability analyses for carbon/epoxy laminates # # ## §3: Experimental # In[39]: #Preamble to hide inputs so that massive code scripts are not cluttering the data visualization output from IPython.display import HTML HTML('''<script> code_show=true; function code_toggle() { if (code_show){ $('div.input').hide(); } else { $('div.input').show(); } code_show = !code_show } $( document ).ready(code_toggle); </script> <form action="javascript:code_toggle()"><input type="submit" value="Click here to toggle on/off the raw code."></form>''') # # DLN Contents # # # DLN Contents # # 0. [Materials Characterization Laboratory DLN | A Showcase for Convergent Manufacturing Group Ltd](DLN_0_About_Me.ipynb) - An 'Welcome' message to the Convergent Manufacturing - Materials Characterization Group, explaining the concept of these DLN entries, why I made them out of interest for the team's *Characterization Lab Technician/Scientist* opening, and presenting a brief 'About Me' StoryMap # <br> # # 1. [§1: Structural durability analyses of carbon fibre & epoxy-based composites - Introduction](DLN_1_Introduction.ipynb) - An introduction to the quasi-fatigue experiments performed on carbon fibre/epoxy composite specimens. # <br> # # 2. [§2: Structural durability analyses of carbon fibre & epoxy-based composites - Laminate mechanics theory](DLN_2_Theory.ipynb) - A discussion of composite laminate theory, as a basis for performing stress-strain-deformation calculations to characterize the structural durability of composite laminate layups. # <br> # # 3. [§3: Structural durability analyses of carbon fibre & epoxy-based composites - Experimental results](DLN_3_Experimental.ipynb) - Using Python scientific programming libraries to explore and visualize quasi-fatigue tensile & compressive loading experiments on carbon fibre/epoxy composite test coupons. # <br> # # 4. [§4: Structural durability analyses of carbon fibre & epoxy-based composites - Matrix calculations](DLN_4_Calculations.ipynb) - Using MATLAB to perform structural durability matrix calculations from carbon fibre/epoxy composite test coupon experimental data. # ## I. Experiment log # * **Date of experiment**: 10.14.2017 # * **Principle investigator**: <NAME>, EIT, BASc # * **Test operators**: <NAME>, <NAME>, <NAME> # * **Lead investigator**: Prof. <NAME> # * **Course**: LVA Nr. 378.029 - 480ADPTPPBV17 - Polymer Product Design and Engineering III - Graduate Seminar # * **Location**: Institute of Polymer Materials and Testing (IPMT), JKU Linz - Linz, Austria # * Compounding and specimen preparation Lab: *Composite coupon specimen preparation* # * Mechanical Lab: *Tensile & compression testing* # # ### i. Experiment test (lab) environment conditions # *Measurement taken: 10-14-2017 08:45:07* # <b> # # $T_{test} (°C) = 21.23$ (*within* $ 23 ± 3 °C$ *standard laboratory atmosphere range as per ASTM D5229*) # <br> # $RH (\%) = 55.7$ (*within* $ 50 ± 10 \%$ *standard laboratory atmosphere range as per ASTM D5229*) # ## 3.1 Composite specimens to be tested for structural durability analyses # ### 3.1.1 Properties applicable to all test coupons # * **Composite type**: CFRP - carbon/epoxy laminates # * Carbon fibre ply: # * Unidirectional 0°: # * Unidirectional 90°: # * Unidirectional 45°: # * Unidirectional ±45°: [HiMax™ FCIM151](https://www.hexcel.com/user_area/content_media/raw/FCIM151.pdf) # * Epoxy resin system: [HexPly® M35-4](https://www.hexcel.com/user_area/content_media/raw/HexPly_M354_DataSheet.pdf) # * **Void fraction ($v_{f}$, %)**: 55 # * **Test speed (mm/min)**: 1 # * **No. of samples per test**: 3 # # ### 3.1.2 Properties applicable to all specimens # The following table details the specimens to be tested for the investigation: # # **<center>Table 1. Set of carbon fibre/epoxy laminate coupons for quasi-static fatigue testing</center>** # # | Coupon tag | Direction | Orientation [°] | Loading | No. of Layers | Avg. Coupon Width [mm] | Avg. Coupon Thickness [mm] | # |:----------:|:---------:|:---------------:|:-----------:|:-------------:|:----------------------:|:--------------------------:| # | UD_0_4_T | UD | 0 | Tension | 4 | 9.98 | 1.02 | # | UD_90_8_T | UD | 90 | Tension | 8 | 20.02 | 1.98 | # | BD_±45_8_T | BD | ±45 | Tension | 8 | 20.1 | 1.95 | # | UD_45_8_T | UD | 45 | Tension | 8 | 20.06 | 2.01 | # | UD_0_4_C | UD | 0 | Compression | 4 | 9.98 | 1.01 | # | UD_90_8_C | UD | 90 | Compression | 8 | 19.98 | 2.02 | # # As a reference, ply (laminate) layers were layed-up according to the following convention: # # ![Image](0.Images/UD_laminate_orientation_ref.jpg) # # *<center> Fig. Y - UD lamina lay-up orientations (JKU Linz - IPPE, 2017)</center>* # # # ### 3.1.3 References # [1] *<NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2014). Modelling and validation of fatigue life calculation method for short fiber reinforced injection molded parts. In 16th European conference of composite materials.* [Link](http://www.escm.eu.org/eccm16/assets/0329.pdf) # # [2] *<NAME>. (1999). Mechanics of composite materials. 2nd Ed. CRC press.* # ## 3.2 Carbon fibre/epoxy test coupon fabrication # 1. Carbon/epoxy specimens with 55% fibre volume fraction were produced with the following materials: # # * **Epoxy resin and system**: HexPly® M35-4 # * **Carbon fibres**: HiMax™ FCIM151 # * **Other**: Epoxy-compatible binder was used to make handling the layup of carbon fibre sheets easier and to prevent distortion during the layup manufacturing # <br> # # # 2. The specimen laminates were produced according to the cure cycle protocol indicated in the HexPly® M35-4 technical specification, with: # * the cure temperature set at $100 \pm 2.5°C$ # * cure processing time set at 4.5 hours # * heat-up and cool-down rates set at 1°C/minute, vacuum applied at -0.85 bar # * autoclave pressure set to 7.5 bar-g. # <br> # # 3. Unidirectional (UD) carbon/epoxy specimens were milled from plates with diamond blades at angles of 0°, 45°/±45° and 90° # <br> # # 4. Specimen geometries for mechanical tests with carbon/epoxy specimens were chosen according to the following specifications: # * Rectangular specimens (especially for UD) # * Tabs for load introduction # * Tab material had to possess a lower stiffness than tested materials; testing CF/epoxy composite coupons - aluminum tabs were used for fabrication # <br> # # The following figure shows the dimensions used to prepare the composite coupons for testing: # # ![Image](0.Images/CF-Epoxy_Coupon_Dim.jpg) # # *<center> Fig. 3.1 - Test coupon geometries for UD quasi-isotropic and 0° (JKU Linz - IPPE, 2017)</center>* # # 4-ply UD specimens had the following geometry: # * $200 \pm 0.1 mm \quad\quad x \quad\quad 10 \pm 0.025 mm \quad\quad x \quad\quad 1 \pm 0.025 mm$ for UD 0° specimens # # 8-ply UD specimens had the following geometry: # * $200 \pm 0.1 mm \quad\quad x \quad\quad 20 \pm 0.1 mm \quad\quad x \quad\quad 2 \pm 0.025 mm$ for 8-ply/off-axis specimens # # * Aluminium tabs with 1.5 mm thickness were adhered on both sides of all carbon/epoxy specimens( For tensile loads, usually 1 mm thickness is chosen for specimens tested in fibre direction) # ## 3.3 Experimental equipment and data reduction process # ### 3.3.1 Data analysis # For data evaluation, all moduli and strengths were calculated with the real cross-sections of the respective tested specimens. Moduli were evaluated between 0.001 and 0.003 absolute strain, as per: # * ASTM D3039/D3039M: Standard test method for tensile properties of polymer matrix composite materials # # * ASTM D3410 / D3410M: Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials # # * ASTM_E111-04: Standard Test Method for Young’s Modulus, Tangent Modulus, and Chord Modulus # # ### 3.3.2 Equipment # * All mechanical tests were performed on a Zwick-Roell HA 100 kN servo-hydraulic fatigue test machine designed for loads up to 100 kN at room temperature # # ### 3.3.3 Quasi-static tension and compression tests # * In quasi-static tension and compression tests, specimens were loaded in a displacement controlled way with a test speed of 1 mm/min # * End-tabs were clamped completely between the Zwick-Roell HA system grips # * Strains in longitudinal direction were recorded by means of a proprietary digital sensor setup (JKU Linz IPMT) # * The experiment runs were designed to investigate the in-plane tensile and compressive properties of polymer matrix composite materials reinforced by high-modulus fibers (in this case, carbon fibre/epoxy laminate composites). The applicability of the ASTM test method are limited to continuous fiber or discontinuous fiber-reinforced composite material forms, in which the laminate is balanced and/or symmetric with respect to the test direction # ## 3.4 Experimental data analyses - Python Preamble # ### 3.4.1 Premable for python object-oriented programming # In[40]: ##===============================IMAGES============================================================ #Image import preamble import IPython from IPython.display import display, Image, SVG, Math, YouTubeVideo Image_PATH = "/Users/delroy_m/Desktop/(CMT) Materials Characterization ELN/0.Images/" # Use 'image drag & drop' IPython Notebook Extension #IPython.html.nbextensions.install_nbextension('https://raw.github.com/ipython-contrib/IPython-notebook-extensions/master/nbextensions/usability/dragdrop/main.js') #Load 'image drag & drop' extension #%javascript #IPython.load_extensions('usability/dragdrop/main'); #NOTE about 'image drag & drop' extension handling of images # The image will be uploaded to the server into the directory where your notebook resides. This means, the image is not copied into the notebook itself, it will only be linked to. ##===============================DATA ANALYSES===================================================== #import PANDAS - A library providing high-performance, easy-to-use data structures and data analysis tools import pandas as pd #print("Current Pandas version:", pd.__version__) # print("plotly version:", __version__) #import SciPy - A Python-based ecosystem of open-source software for mathematics, science, and engineering import scipy from scipy import * #Import Gaussian distribution STATS package to validate whether experimental data is randomly (normally) #distributed from scipy.stats import * #from scipy.stats import norm # if using a Jupyter notebook, include: #%matplotlib inline #import NumPy - A fundamental package for scientific computing with Python import numpy as np #import qgrid - Allows querying of DataFrames with intuitive scrolling, sorting, and filtering controls, #as well as editing features, for the DataFrames, by double clicking cells import qgrid ##===============================DATA VISUALIZATION================================================ #import matplotlib - A Python 2D plotting library #import matplotlib.pyplot as plt #import Pygal - A Python SVG Charts Creator import pygal #import Plotly for online or offline interactive plot rendering # #If using Plotly with online server: #import plotly.plotly as py # #If using Plotly offline and saving code/graphs/images locally: import plotly.graph_objs as go import plotly as py from plotly import __version__ #ensures that most up-to-date plotly pckg is being used from plotly.offline import init_notebook_mode, plot, download_plotlyjs, iplot import plotly.figure_factory as ff from plotly import tools #Improve Plotly figure render responsiveness import plotly.io as pio pio.renderers.default = 'iframe' # #import cufflinks as cf #import Seaborn - Statistical data visualization using Matplotlib import seaborn as sns #from matplotlylib import fig_to_plotly #import Plotly express - A terse, consistent, high-level wrapper around Plotly.py for rapid data exploration and figure generation #import plotly_express as px #Put plotly environment in 'offline mode' py.offline.init_notebook_mode(connected=True) #Reinitialize Jupyter Notebook mode init_notebook_mode() #For 'online' plotting: # Learn about API authentication here: https://plot.ly/pandas/getting-started # Find your api_key here: https://plot.ly/settings/api #Do I have the most up-to-date plotly package? #print("Current Plotly version:", __version__) ##===============================SYSTEM COMMANDS==================================================== import glob import sys import datetime import os ##===============================EXCEPTION HANDLING================================================= #Ignore dataframe slicing copying warnings --> these are annoying, and issue is acknowledged pd.options.mode.chained_assignment = None # default='warn' #Mute any annoying compiling warnings that arise when running code #import warnings #warnings.filterwarnings("ignore") # ### 3.4.2 Setup framework for parsing quasi-static fatigue experimental data into Python (Pandas) dataframes # In[41]: ##===============================Create dataframe from experiment data================================ #Coupon cyclic fatigue testing datasets - formatted according to "<NAME> - Tidy Data" #"<NAME> - Tidy Data" - http://vita.had.co.nz/papers/tidy-data.pdf #1. Each variable forms a column #2. Each observation forms a row #3. Each type of observational unit forms a table ##---------------------------------------------------------------------------------------------------- ##-Naming convention for experiment files-## # #[Fiber_direction]-[Orientation_degree]-[Tension/Compression]-[Fibre_type]-[Test_speed (mm/min)]-[Test_temp]... #-[Strain_in_load_direction]-[#_of_specimens_tested]-[specimen_avg_width (mm)]-[specimen_avg_thickness (mm)].xlsx #"Experiment data attribute tags ####---------------------------------------------------------------------------------------------------- # 1. Fiber_direction: # - Unidirectional (UD): 0°, 90° --> Provides longitudinal stiffness # - Bidirectional (BD): ±45° --> Provides torsional stiffness # * Attribute_type = [Alpha] # # 2. Orientation (°): 0°, ±45°, 90° # * Attribute_type = [Alphanumeric] # # 3. Tension/compression loading: # - T: Tension # - C: Compression # * Attribute_type = [Alpha] # # 8. Strain-in-load direction (x, y, x &/OR y): # - UD: ε,y # - BD: ε,y &/OR ε,x # * Attribute_type = [Alphanumeric] # # 9. No. of specimens tested (#): # * Attribute_type = [Numeric] # # 10. Specimens avg. width (mm): # * Attribute_type = [Numeric] # # 11. Specimens avg. thickness (mm): # * Attribute_type = [Numeric] # # #"Experiment data variables ####---------------------------------------------------------------------------------------------------- #Column 1: # - Tension or compression load [N] # ##Column 2: # - Strain [%] #Custom color palette for plotting ####---------------------------------------------------------------------------------------------------- #Column 1: dark_turquoise = '#00CED1' turquoise = '#40E0D0' medium_turquoise = '#48D1CC' pale_turquoise = '#AFEEEE' aqua_marine = '#7FFFD4' powder_blue = '#B0E0E6' cadet_blue = '#5F9EA0' steel_blue = '#4682B4' corn_flower_blue = '#6495ED' deep_sky_blue = '#00BFFF' dodger_blue = '#1E90FF' light_blue = '#ADD8E6' sky_blue = '#87CEEB' light_sky_blue = '#87CEFA' midnight_blue = '#191970' navy = '#000080' dark_blue = '#00008B' medium_blue = '#0000CD' blue = '#0000FF' royal_blue = '#4169E1' # ### 3.4.3 Parse quasi-static fatigue experimental data into data frame # In[42]: #Upload all 'cleaned' experimental data sets for composite coupon fatigue testing ##===============================DEFINE DATA DIRECTORY============================================= #Data import from local server #Used so that data files & code are not mixed together + makes it easy to change working #directory to where data is stored #Set desired directory path here desired_dir = r"/Users/delroy_m/Desktop/(CMT) Materials Characterization ELN/2. Cleaned data/Quasi_static_data" work_dirPath = os.chdir(desired_dir) #Set the current directory to the desired working directory path verify_cwd_path = os.getcwd() print("CWD: " + verify_cwd_path) ##===============================Import cleaned experiment data====================================== qsf_expt_data = glob.glob('*.xlsx') # Get all files from all subfolders. qsf_expt_data #Define DataFrame to store quasi-static fatigue .xlsx experiment files qsf_df = pd.DataFrame() #Enter test (lab) environment measurements for completeness of data parsing T_test = 21.23 RH_test = 55.7 #Pandas 'read_excel' syntax #pandas.read_excel(io, sheet_name=0, header=0, names=None, index_col=None, parse_cols=None, # true_values=None, false_values=None, skiprows=None, nrows=None, na_values=None, # keep_default_na=True, verbose=False, parse_dates=False, date_parser=None, # thousands=None, comment=None, skip_footer=0, skipfooter=0, convert_float=True, # mangle_dupe_cols=True, **kwds) #loop to establish columns for DataFrame for i, P in enumerate(qsf_expt_data): #i: counter, P: place holder #print(P) eqsf_df =
pd.read_excel(P, header=None)
pandas.read_excel
import numpy as np from datetime import timedelta import pandas as pd import pandas.tslib as tslib import pandas.util.testing as tm import pandas.tseries.period as period from pandas import (DatetimeIndex, PeriodIndex, period_range, Series, Period, _np_version_under1p10, Index, Timedelta, offsets) from pandas.tests.test_base import Ops class TestPeriodIndexOps(Ops): def setUp(self): super(TestPeriodIndexOps, self).setUp() mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): self.check_ops_properties( ['year', 'month', 'day', 'hour', 'minute', 'second', 'weekofyear', 'week', 'dayofweek', 'dayofyear', 'quarter']) self.check_ops_properties(['qyear'], lambda x: isinstance(x, PeriodIndex)) def test_asobject_tolist(self): idx = pd.period_range(start='2013-01-01', periods=4, freq='M', name='idx') expected_list = [pd.Period('2013-01-31', freq='M'), pd.Period('2013-02-28', freq='M'), pd.Period('2013-03-31', freq='M'), pd.Period('2013-04-30', freq='M')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = PeriodIndex(['2013-01-01', '2013-01-02', 'NaT', '2013-01-04'], freq='D', name='idx') expected_list = [pd.Period('2013-01-01', freq='D'), pd.Period('2013-01-02', freq='D'), pd.Period('NaT', freq='D'), pd.Period('2013-01-04', freq='D')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) tm.assert_index_equal(result, expected) for i in [0, 1, 3]: self.assertEqual(result[i], expected[i]) self.assertIs(result[2], pd.NaT) self.assertEqual(result.name, expected.name) result_list = idx.tolist() for i in [0, 1, 3]: self.assertEqual(result_list[i], expected_list[i]) self.assertIs(result_list[2], pd.NaT) def test_minmax(self): # monotonic idx1 = pd.PeriodIndex([pd.NaT, '2011-01-01', '2011-01-02', '2011-01-03'], freq='D') self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = pd.PeriodIndex(['2011-01-01', pd.NaT, '2011-01-03', '2011-01-02', pd.NaT], freq='D') self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), pd.Period('2011-01-01', freq='D')) self.assertEqual(idx.max(), pd.Period('2011-01-03', freq='D')) self.assertEqual(idx1.argmin(), 1) self.assertEqual(idx2.argmin(), 0) self.assertEqual(idx1.argmax(), 3) self.assertEqual(idx2.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = PeriodIndex([], freq='M') result = getattr(obj, op)() self.assertIs(result, tslib.NaT) obj = PeriodIndex([pd.NaT], freq='M') result = getattr(obj, op)() self.assertIs(result, tslib.NaT) obj = PeriodIndex([pd.NaT, pd.NaT, pd.NaT], freq='M') result = getattr(obj, op)() self.assertIs(result, tslib.NaT) def test_numpy_minmax(self): pr = pd.period_range(start='2016-01-15', end='2016-01-20') self.assertEqual(np.min(pr), Period('2016-01-15', freq='D')) self.assertEqual(np.max(pr), Period('2016-01-20', freq='D')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, pr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, pr, out=0) self.assertEqual(np.argmin(pr), 0) self.assertEqual(np.argmax(pr), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, pr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, pr, out=0) def test_representation(self): # GH 7601 idx1 = PeriodIndex([], freq='D') idx2 = PeriodIndex(['2011-01-01'], freq='D') idx3 = PeriodIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = PeriodIndex(['2011', '2012', '2013'], freq='A') idx6 = PeriodIndex(['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], freq='H') idx7 = pd.period_range('2013Q1', periods=1, freq="Q") idx8 = pd.period_range('2013Q1', periods=2, freq="Q") idx9 = pd.period_range('2013Q1', periods=3, freq="Q") idx10 = PeriodIndex(['2011-01-01', '2011-02-01'], freq='3D') exp1 = """PeriodIndex([], dtype='period[D]', freq='D')""" exp2 = """PeriodIndex(['2011-01-01'], dtype='period[D]', freq='D')""" exp3 = ("PeriodIndex(['2011-01-01', '2011-01-02'], dtype='period[D]', " "freq='D')") exp4 = ("PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'], " "dtype='period[D]', freq='D')") exp5 = ("PeriodIndex(['2011', '2012', '2013'], dtype='period[A-DEC]', " "freq='A-DEC')") exp6 = ("PeriodIndex(['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], " "dtype='period[H]', freq='H')") exp7 = ("PeriodIndex(['2013Q1'], dtype='period[Q-DEC]', " "freq='Q-DEC')") exp8 = ("PeriodIndex(['2013Q1', '2013Q2'], dtype='period[Q-DEC]', " "freq='Q-DEC')") exp9 = ("PeriodIndex(['2013Q1', '2013Q2', '2013Q3'], " "dtype='period[Q-DEC]', freq='Q-DEC')") exp10 = ("PeriodIndex(['2011-01-01', '2011-02-01'], " "dtype='period[3D]', freq='3D')") for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7, idx8, idx9, idx10], [exp1, exp2, exp3, exp4, exp5, exp6, exp7, exp8, exp9, exp10]): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(idx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): # GH 10971 idx1 = PeriodIndex([], freq='D') idx2 = PeriodIndex(['2011-01-01'], freq='D') idx3 = PeriodIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = PeriodIndex(['2011', '2012', '2013'], freq='A') idx6 = PeriodIndex(['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], freq='H') idx7 = pd.period_range('2013Q1', periods=1, freq="Q") idx8 = pd.period_range('2013Q1', periods=2, freq="Q") idx9 = pd.period_range('2013Q1', periods=3, freq="Q") exp1 = """Series([], dtype: object)""" exp2 = """0 2011-01-01 dtype: object""" exp3 = """0 2011-01-01 1 2011-01-02 dtype: object""" exp4 = """0 2011-01-01 1 2011-01-02 2 2011-01-03 dtype: object""" exp5 = """0 2011 1 2012 2 2013 dtype: object""" exp6 = """0 2011-01-01 09:00 1 2012-02-01 10:00 2 NaT dtype: object""" exp7 = """0 2013Q1 dtype: object""" exp8 = """0 2013Q1 1 2013Q2 dtype: object""" exp9 = """0 2013Q1 1 2013Q2 2 2013Q3 dtype: object""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7, idx8, idx9], [exp1, exp2, exp3, exp4, exp5, exp6, exp7, exp8, exp9]): result = repr(pd.Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = PeriodIndex([], freq='D') idx2 = PeriodIndex(['2011-01-01'], freq='D') idx3 = PeriodIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = PeriodIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = PeriodIndex(['2011', '2012', '2013'], freq='A') idx6 = PeriodIndex( ['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], freq='H') idx7 = pd.period_range('2013Q1', periods=1, freq="Q") idx8 = pd.period_range('2013Q1', periods=2, freq="Q") idx9 = pd.period_range('2013Q1', periods=3, freq="Q") exp1 = """PeriodIndex: 0 entries Freq: D""" exp2 = """PeriodIndex: 1 entries, 2011-01-01 to 2011-01-01 Freq: D""" exp3 = """PeriodIndex: 2 entries, 2011-01-01 to 2011-01-02 Freq: D""" exp4 = """PeriodIndex: 3 entries, 2011-01-01 to 2011-01-03 Freq: D""" exp5 = """PeriodIndex: 3 entries, 2011 to 2013 Freq: A-DEC""" exp6 = """PeriodIndex: 3 entries, 2011-01-01 09:00 to NaT Freq: H""" exp7 = """PeriodIndex: 1 entries, 2013Q1 to 2013Q1 Freq: Q-DEC""" exp8 = """PeriodIndex: 2 entries, 2013Q1 to 2013Q2 Freq: Q-DEC""" exp9 = """PeriodIndex: 3 entries, 2013Q1 to 2013Q3 Freq: Q-DEC""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7, idx8, idx9], [exp1, exp2, exp3, exp4, exp5, exp6, exp7, exp8, exp9]): result = idx.summary() self.assertEqual(result, expected) def test_resolution(self): for freq, expected in zip(['A', 'Q', 'M', 'D', 'H', 'T', 'S', 'L', 'U'], ['day', 'day', 'day', 'day', 'hour', 'minute', 'second', 'millisecond', 'microsecond']): idx = pd.period_range(start='2013-04-01', periods=30, freq=freq) self.assertEqual(idx.resolution, expected) def test_add_iadd(self): rng = pd.period_range('1/1/2000', freq='D', periods=5) other = pd.period_range('1/6/2000', freq='D', periods=5) # previously performed setop union, now raises TypeError (GH14164) with tm.assertRaises(TypeError): rng + other with tm.assertRaises(TypeError): rng += other # offset # DateOffset rng = pd.period_range('2014', '2024', freq='A') result = rng + pd.offsets.YearEnd(5) expected = pd.period_range('2019', '2029', freq='A') tm.assert_index_equal(result, expected) rng += pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365), Timedelta(days=365)]: msg = ('Input has different freq(=.+)? ' 'from PeriodIndex\\(freq=A-DEC\\)') with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng + o rng = pd.period_range('2014-01', '2016-12', freq='M') result = rng + pd.offsets.MonthEnd(5) expected = pd.period_range('2014-06', '2017-05', freq='M') tm.assert_index_equal(result, expected) rng += pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365), Timedelta(days=365)]: rng = pd.period_range('2014-01', '2016-12', freq='M') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=M\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng + o # Tick offsets = [pd.offsets.Day(3), timedelta(days=3), np.timedelta64(3, 'D'), pd.offsets.Hour(72), timedelta(minutes=60 * 24 * 3), np.timedelta64(72, 'h'), Timedelta('72:00:00')] for delta in offsets: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') result = rng + delta expected = pd.period_range('2014-05-04', '2014-05-18', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(4, 'h'), timedelta(hours=23), Timedelta('23:00:00')]: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=D\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng + o offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), pd.offsets.Minute(120), timedelta(minutes=120), np.timedelta64(120, 'm'), Timedelta(minutes=120)] for delta in offsets: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') result = rng + delta expected = pd.period_range('2014-01-01 12:00', '2014-01-05 12:00', freq='H') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) for delta in [pd.offsets.YearBegin(2), timedelta(minutes=30), np.timedelta64(30, 's'), Timedelta(seconds=30)]: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=H\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): result = rng + delta with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng += delta # int rng = pd.period_range('2000-01-01 09:00', freq='H', periods=10) result = rng + 1 expected = pd.period_range('2000-01-01 10:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) def test_sub(self): rng =
period_range('2007-01', periods=50)
pandas.period_range
import pandas as pd from utils_dr_pre_word_simi import * import os from utils import * from transformers import * from dataset import Dataset_dr import torch import numpy as np TRAIN_DR = './con_rew_data/para/train.csv' DEV_DR = './con_rew_data/para/dev.csv' TEST_DR = './con_rew_data/para/test.csv' fw = open('verb_no_simi.txt', 'w') VER_MAG_RATE = 1.5 VER_ADD_VAL = 5 batchsize_dr = 4 device_dr = torch.device("cuda:1" if torch.cuda.is_available() else "cpu") verb2simi = load_word2simi() tokenizer_dr = OpenAIGPTTokenizer.from_pretrained('openai-gpt') token_dict_dr = { 'bos_token': '<start>', 'eos_token': '<end>', 'pad_token': '<pad>', 'cls_token': '<cls>', 'additional_special_tokens': ['<pos>', '<neg>', '<equal>', '<VERB>'] } num_added_token_dr = tokenizer_dr.add_special_tokens(token_dict_dr) print(tokenizer_dr.vocab_size) cats = ['pos', 'neg', 'equal'] def agen_vector(tokenizer, num_added, multi=True): agen_vectors = {} for label, verbset in agen_v.items(): if multi: vector = torch.ones(tokenizer.vocab_size + num_added) else: vector = torch.zeros(tokenizer.vocab_size + num_added) for v in verbset: forms = infi2allforms(v) for form in forms: v_li = tokenizer.encode(form) if multi: vector[v_li[0]] *= VER_MAG_RATE else: vector[v_li[0]] = VER_ADD_VAL agen_vectors[label] = vector return agen_vectors def infi2allforms(word): res = [] row = verb_form[verb_form[0] == word] if row.empty: res.append(word) return res row = row.dropna(axis=1) for col in row.columns: res.append(row[col].iloc[0]) return res def get_he_df(df): df['cri'] = df['sen'].str.replace(' ', '') df['cri'] = df['cri'].str.lower() he_df =
pd.read_csv(ROC_TEST_HE)
pandas.read_csv
#! -*- coding:utf-8 -*- import os import re import gc import sys import json import codecs import random import warnings import numpy as np import pandas as pd import textdistance from tqdm import tqdm import tensorflow as tf from random import choice import matplotlib.pyplot as plt from collections import Counter from sklearn.metrics import f1_score, accuracy_score from sklearn.model_selection import KFold from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import train_test_split import keras.backend as K from keras.layers import * from keras.callbacks import * from keras.models import Model from keras.optimizers import Adam from keras.initializers import glorot_uniform from keras_bert import load_trained_model_from_checkpoint, Tokenizer tqdm.pandas() seed = 2019 random.seed(seed) tf.set_random_seed(seed) np.random.seed(seed) warnings.filterwarnings('ignore') data_path = '../dataSet/' train = pd.read_csv(data_path + 'Round2_train.csv', encoding='utf-8') test = pd.read_csv(data_path + 'round2_test.csv', encoding='utf-8') train_preliminary =
pd.read_csv(data_path + 'Train_Data.csv', encoding='utf-8')
pandas.read_csv
import numpy as np import pandas as pd from tqdm import tqdm import cv2 import pyfeats from utils import Plaque #%% Path & Name of Plaque path = './data/' labels = pd.read_excel(path+'labels.xlsx') path_features = './results/features/' IMG_NO = len(labels) #%% Parameters perc = 1 # Percentage of the plaque to take into consideration when calculating features in (0,1] Dx = [0,1,1,1] # A. Early Textural - GLDS Dy = [1,1,0,-1] # A. Early Textural - GLDS d = 1 # A. Early Textural - NGTDM Lr, Lc = 4, 4 # A. Early Textural - SFM l = 7 # A. Early Textural - LTE s = 4 # A. Early Textural - FDTA th = [135,140] # A. Late Textural - HOS P = [8,16,24] # A. Late Textural - LBP R = [1,2,3] # A. Late Textural - LBP N = 30 # B Morphology bins_hist = 32 # C. Histogram - All num_eros = 3 # C. Histogram - Multi-region Histogram square_size = 3 # C. Histogram - Multi-region Histogram wavelet_dwt = 'bior3.3' # D. Multi-Scale - DWT wavelet_swt = 'bior3.3' # D. Multi-Scale - SWT wavelet_wp = 'coif1' # D. Multi-Scale - WP levels_dwt = 3 # D. Multi-Scale - DWT levels_swt = 3 # D. Multi-Scale - SWT levels_wp = 3 # D. Multi-Scale - WP bins_digitize = 32 # C. Histogram - Correlogram bins_hist_corr = 32 # C. Histogram - Correlogram zernikes_radii = 9 # E. Other - Zernikes Moments #%% Init arrays names = [] # A. Textural np_fos = np.zeros((IMG_NO,16), np.double) np_glcm_mean = np.zeros((IMG_NO,14), np.double) np_glcm_range = np.zeros((IMG_NO,14), np.double) np_glds = np.zeros((IMG_NO,5), np.double) np_ngtdm = np.zeros((IMG_NO,5), np.double) np_sfm = np.zeros((IMG_NO,4), np.double) np_lte = np.zeros((IMG_NO,6), np.double) np_fdta = np.zeros((IMG_NO,s+1), np.double) np_glrlm = np.zeros((IMG_NO,11), np.double) np_fps = np.zeros((IMG_NO,2), np.double) np_shape_parameters = np.zeros((IMG_NO,5), np.double) np_hos = np.zeros((IMG_NO,len(th)), np.double) np_lbp = np.zeros((IMG_NO,len(P)*2), np.double) np_glszm = np.zeros((IMG_NO,14), np.double) # B. Morphological pdf_L = np.zeros((IMG_NO,N), np.double) pdf_M = np.zeros((IMG_NO,N), np.double) pdf_H = np.zeros((IMG_NO,N), np.double) cdf_L = np.zeros((IMG_NO,N), np.double) cdf_M = np.zeros((IMG_NO,N), np.double) cdf_H = np.zeros((IMG_NO,N), np.double) pdf_gray = np.zeros((IMG_NO,N), np.double) cdf_gray = np.zeros((IMG_NO,N), np.double) # C. Histogram np_histogram = np.zeros((IMG_NO,bins_hist), np.double) np_multiregion_histogram = np.zeros((IMG_NO,bins_hist*num_eros), np.double) np_correlogram_d = np.zeros((IMG_NO,bins_digitize*bins_hist), np.double) np_correlogram_th = np.zeros((IMG_NO,bins_digitize*bins_hist), np.double) # D. Multi-Scale np_dwt = np.zeros((IMG_NO,6*levels_dwt), np.double) np_swt = np.zeros((IMG_NO,6*levels_swt), np.double) np_wp = np.zeros((IMG_NO,(4**levels_wp-1)*2), np.double) np_gt = np.zeros((IMG_NO,16), np.double) np_amfm = np.zeros((IMG_NO,32*4), np.double) # E. Other np_hu = np.zeros((IMG_NO,7), np.double) np_zernikes = np.zeros((IMG_NO,25), np.double) #%% Calculate Features progress = tqdm(range(0,IMG_NO), desc="Calculating Textural Features...") for i in progress: name = labels.iloc[i,0] names.append(name) # Load ultrasound path_ultrasound = path + 'ultrasounds\\' + name + '.bmp' ultrasound = cv2.imread(path_ultrasound, cv2.IMREAD_GRAYSCALE) # Load points path_points = path + 'points\\' + name + '_points.out' points = np.loadtxt(path_points, delimiter=',') points = np.array(points, np.int32) # Load points near lumen path_points_lumen = path + 'points_lumen\\' + name + '_points_lumen.out' points_lumen = np.loadtxt(path_points_lumen, delimiter=',') points_lumen = np.array(points_lumen, np.int32) plaque = Plaque(ultrasound, points, points_lumen, name, pad=2) plaque.mask = Plaque.get_perc_ROI(plaque.mask, plaque.perimeter_lumen, perc) # A. Textural progress.set_description('Calculating Early Textural Features' + ' for ' + name) np_fos[i,:], labels_fos = pyfeats.fos(plaque.plaque, plaque.mask) np_glcm_mean[i,:], np_glcm_range[i,:], labels_glcm_mean, labels_glcm_range = pyfeats.glcm_features(plaque.plaque, ignore_zeros=True) np_glds[i,:], labels_glds = pyfeats.glds_features(plaque.plaque, plaque.mask, Dx=Dx, Dy=Dy) np_ngtdm[i,:], labels_ngtdm = pyfeats.ngtdm_features(plaque.plaque, plaque.mask, d=d) np_sfm[i,:], labels_sfm = pyfeats.sfm_features(plaque.plaque, plaque.mask, Lr=Lr, Lc=Lc) np_lte[i,:], labels_lte = pyfeats.lte_measures(plaque.plaque, plaque.mask, l=l) np_fdta[i,:], labels_fdta = pyfeats.fdta(plaque.plaque, plaque.mask, s=s) np_glrlm[i,:], labels_glrlm = pyfeats.glrlm_features(plaque.plaque, plaque.mask, Ng=256) np_fps[i,:], labels_fps = pyfeats.fps(plaque.plaque, plaque.mask) np_shape_parameters[i,:], labels_shape_parameters = pyfeats.shape_parameters(plaque.plaque, plaque.mask, plaque.perimeter, pixels_per_mm2=1) progress.set_description('Calculating Late Textural Features') np_hos[i,:], labels_hos = pyfeats.hos_features(plaque.plaque, th=th) np_lbp[i,:], labels_lbp = pyfeats.lbp_features(plaque.plaque, plaque.mask, P=P, R=R) np_glszm[i,:], labels_glszm = pyfeats.glszm_features(plaque.plaque, plaque.mask) # B. Morphological progress.set_description('Calculating Morphological Features' + ' for ' + name) pdf_gray[i,:], cdf_gray[i,:] = pyfeats.grayscale_morphology_features(plaque.plaque, N=N) pdf_L[i,:], pdf_M[i,:], pdf_H[i,:], cdf_L[i,:], cdf_M[i,:], cdf_H[i,:] = \ pyfeats.multilevel_binary_morphology_features(plaque.plaque, plaque.mask, N=N) # C. Histogram progress.set_description('Calculating Histogram Features' + ' for ' + name) np_histogram[i,:], labels_histogram = pyfeats.histogram(plaque.plaque, plaque.mask, bins_hist) np_multiregion_histogram[i,:], labels_multiregion_histogram = pyfeats.multiregion_histogram(plaque.plaque, plaque.mask, bins=bins_hist, num_eros=num_eros,square_size=square_size) np_correlogram_d[i,:], np_correlogram_th[i,:], labels_correlogram = pyfeats.correlogram(plaque.plaque, plaque.mask, bins_digitize=bins_digitize, bins_hist=bins_hist, flatten=True) # D. Multi-Scale progress.set_description('Calculating Multi-Scale Features' + ' for ' + name) np_dwt[i,:], labels_dwt = pyfeats.dwt_features(plaque.plaque, plaque.mask, wavelet=wavelet_dwt, levels=levels_dwt) np_swt[i,:], labels_swt = pyfeats.swt_features(plaque.plaque, plaque.mask, wavelet=wavelet_swt, levels=levels_swt) np_wp[i,:], labels_wp = pyfeats.wp_features(plaque.plaque, plaque.mask, wavelet=wavelet_wp, maxlevel=levels_wp) np_gt[i,:], labels_gt = pyfeats.gt_features(plaque.plaque, plaque.mask) np_amfm[i,:], labels_amfm = pyfeats.amfm_features(plaque.plaque) # E. Other progress.set_description('Calculating Other Features' + ' for ' + name) np_hu[i,:], labels_hu = pyfeats.hu_moments(plaque.plaque) np_zernikes[i,:], labels_zernikes = pyfeats.zernikes_moments(plaque.plaque, zernikes_radii) #%% Convert to pandas # A. Early Textural df_fos = pd.DataFrame(data=np_fos, index=names, columns=labels_fos) df_glcm_mean = pd.DataFrame(data=np_glcm_mean, index=names, columns=labels_glcm_mean) df_glcm_range = pd.DataFrame(data=np_glcm_range, index=names, columns=labels_glcm_range) df_glds = pd.DataFrame(data=np_glds, index=names, columns=labels_glds) df_ngtdm = pd.DataFrame(data=np_ngtdm, index=names, columns=labels_ngtdm) df_sfm = pd.DataFrame(data=np_sfm, index=names, columns=labels_sfm) df_lte = pd.DataFrame(data=np_lte, index=names, columns=labels_lte) df_fdta = pd.DataFrame(data=np_fdta, index=names, columns=labels_fdta) df_glrlm =
pd.DataFrame(data=np_glrlm, index=names, columns=labels_glrlm)
pandas.DataFrame
# -*- coding: utf-8 -*- import io import re import demjson3 import pandas as pd import requests from zvt.api.utils import china_stock_code_to_id from zvt.contract.api import df_to_db from zvt.contract.recorder import Recorder from zvt.domain import EtfStock, Etf from zvt.recorders.consts import DEFAULT_SH_ETF_LIST_HEADER from zvt.utils.time_utils import now_pd_timestamp class ChinaETFListSpider(Recorder): data_schema = EtfStock def __init__(self, force_update=False, sleeping_time=10.0, provider='exchange') -> None: self.provider = provider super().__init__(force_update, sleeping_time) def run(self): # 抓取沪市 ETF 列表 url = 'http://query.sse.com.cn/commonQuery.do?sqlId=COMMON_SSE_ZQPZ_ETFLB_L_NEW' response = requests.get(url, headers=DEFAULT_SH_ETF_LIST_HEADER) response_dict = demjson3.decode(response.text) df = pd.DataFrame(response_dict.get('result', [])) self.persist_etf_list(df, exchange='sh') self.logger.info('沪市 ETF 列表抓取完成...') # 抓取沪市 ETF 成分股 self.download_sh_etf_component(df) self.logger.info('沪市 ETF 成分股抓取完成...') # 抓取深市 ETF 列表 url = 'http://www.szse.cn/api/report/ShowReport?SHOWTYPE=xlsx&CATALOGID=1945' response = requests.get(url) df = pd.read_excel(io.BytesIO(response.content), dtype=str) self.persist_etf_list(df, exchange='sz') self.logger.info('深市 ETF 列表抓取完成...') # 抓取深市 ETF 成分股 self.download_sz_etf_component(df) self.logger.info('深市 ETF 成分股抓取完成...') def persist_etf_list(self, df: pd.DataFrame, exchange: str): if df is None: return df = df.copy() if exchange == 'sh': df = df[['FUND_ID', 'FUND_NAME']] elif exchange == 'sz': df = df[['证券代码', '证券简称']] df.columns = ['code', 'name'] df['id'] = df['code'].apply(lambda code: f'etf_{exchange}_{code}') df['entity_id'] = df['id'] df['exchange'] = exchange df['entity_type'] = 'etf' df['category'] = 'etf' df = df.dropna(axis=0, how='any') df = df.drop_duplicates(subset='id', keep='last') df_to_db(df=df, data_schema=Etf, provider=self.provider, force_update=False) def download_sh_etf_component(self, df: pd.DataFrame): """ ETF_CLASS => 1. 单市场 ETF 2.跨市场 ETF 3. 跨境 ETF 5. 债券 ETF 6. 黄金 ETF :param df: ETF 列表数据 :return: None """ query_url = 'http://query.sse.com.cn/infodisplay/queryConstituentStockInfo.do?' \ 'isPagination=false&type={}&etfClass={}' etf_df = df[(df['ETF_CLASS'] == '1') | (df['ETF_CLASS'] == '2')] etf_df = self.populate_sh_etf_type(etf_df) for _, etf in etf_df.iterrows(): url = query_url.format(etf['ETF_TYPE'], etf['ETF_CLASS']) response = requests.get(url, headers=DEFAULT_SH_ETF_LIST_HEADER) response_dict = demjson3.decode(response.text) response_df = pd.DataFrame(response_dict.get('result', [])) etf_code = etf['FUND_ID'] etf_id = f'etf_sh_{etf_code}' response_df = response_df[['instrumentId', 'instrumentName']].copy() response_df.rename(columns={'instrumentId': 'stock_code', 'instrumentName': 'stock_name'}, inplace=True) response_df['entity_id'] = etf_id response_df['entity_type'] = 'etf' response_df['exchange'] = 'sh' response_df['code'] = etf_code response_df['name'] = etf['FUND_NAME'] response_df['timestamp'] = now_pd_timestamp() response_df['stock_id'] = response_df['stock_code'].apply(lambda code: china_stock_code_to_id(code)) response_df['id'] = response_df['stock_id'].apply( lambda x: f'{etf_id}_{x}') df_to_db(data_schema=self.data_schema, df=response_df, provider=self.provider) self.logger.info(f'{etf["FUND_NAME"]} - {etf_code} 成分股抓取完成...') self.sleep() def download_sz_etf_component(self, df: pd.DataFrame): query_url = 'http://vip.stock.finance.sina.com.cn/corp/go.php/vII_NewestComponent/indexid/{}.phtml' self.parse_sz_etf_underlying_index(df) for _, etf in df.iterrows(): underlying_index = etf['拟合指数'] etf_code = etf['证券代码'] if len(underlying_index) == 0: self.logger.info(f'{etf["证券简称"]} - {etf_code} 非 A 股市场指数,跳过...') continue url = query_url.format(underlying_index) response = requests.get(url) response.encoding = 'gbk' try: dfs =
pd.read_html(response.text, header=1)
pandas.read_html
# coding=utf-8 """New Credit Card Fraud Detection kernel. Scaling and sub-sampling is being used. """ from sklearn.preprocessing import RobustScaler from sklearn.model_selection import train_test_split, StratifiedKFold import pandas as pd from sklearn.metrics import confusion_matrix from keras.models import Sequential from keras.optimizers import SGD from keras.layers import Dense, Activation, Dropout from keras.utils import to_categorical # Hyperparameters EPOCHS = 30 VERBOSE = 2 OPTIMIZER = SGD() BATCH_SIZE = 256 VERBOSE = False def load_dataset(verbose=True): print("Loading data...") dataset = pd.read_csv("creditcard.csv") if verbose: print(dataset.head()) print(dataset.describe()) return dataset def scale_dataset(dataset, verbose=True): print("Scaling data...") scaler = RobustScaler() dataset['scl_amount'] = scaler.fit_transform(dataset['Amount'].values.reshape(-1, 1)) dataset['scl_time'] = scaler.fit_transform(dataset['Time'].values.reshape(-1, 1)) dataset.drop(['Time', 'Amount'], axis=1, inplace=True) scl_amount = dataset['scl_amount'] scl_time = dataset['scl_time'] dataset.drop(['scl_amount', 'scl_time'], axis=1, inplace=True) dataset.insert(0, 'Amount', scl_amount) dataset.insert(0, 'Time', scl_time) if verbose: print(dataset.head()) print(dataset.describe()) return dataset def split_dataset(dataset): skf = StratifiedKFold(n_splits=5, random_state=None, shuffle=False) X = dataset.drop('Class', axis=1) y = dataset['Class'] for train_i, test_i in skf.split(X, y): oxtrain, oxtest = X.iloc[train_i], X.iloc[test_i] oytrain, oytest = y.iloc[train_i], y.iloc[test_i] oxtrain = oxtrain.values oxtest = oxtest.values oytrain = oytrain.values oytest = oytest.values return oxtrain, oxtest, oytrain, oytest def subsample_dataset(dataset, verbose=True): print("Subsampling dataset...") dataset = dataset.sample(frac=1) fraud_subsample = dataset.loc[dataset["Class"] == 1] valid_subsample = dataset.loc[dataset["Class"] == 0][:fraud_subsample.shape[0]] equal_subsample =
pd.concat([fraud_subsample, valid_subsample])
pandas.concat
#!/usr/bin/env python # -*- coding: utf-8 -*- # ''' bentoo-calltree-analyser.py - Bottleneck analysis based on calltree This tool computes relative/absolute percentage for selected events based on calltree structure. ''' from __future__ import division from builtins import map from past.utils import old_div import sqlite3 import argparse import pandas import fnmatch import re import json import sys def glob_strings(source, patterns): if not source or not patterns: return [] return [x for x in source for y in patterns if fnmatch.fnmatch(x, y)] def quote(string): return "\"%s\"" % string def find_first_of(contents, candidates): for c in candidates: try: i = contents.index(c) except ValueError: i = -1 if i >= 0: return (c, i) return (None, -1) def split_columns(columns): '''split 'columns' into (index_columns, data_columns)''' timer_column_index = columns.index("TimerName") return (columns[:timer_column_index+1], columns[timer_column_index+1:]) def extract_column_names(conn, table="result"): orig_row_factory = conn.row_factory conn.row_factory = sqlite3.Row r = conn.execute("SELECT * FROM %s LIMIT 1" % table).fetchone() names = list(r.keys()) conn.row_factory = orig_row_factory return names def extract_timer_names(calltree): timers = set() def visit_tree(node): timers.add(node["id"]) for x in node["children"]: visit_tree(x) visit_tree(calltree) return list(timers) def build_parent_map(calltree): parents = {} def visit_tree(tree, top_level=False): if top_level: parents[tree["id"]] = None for x in tree["children"]: parents[x["id"]] = tree["id"] visit_tree(x) visit_tree(calltree, top_level=True) return parents def build_abs_seq_map(calltree): result = {} level = {} seq_obj = {"seq": 0} def visit_tree(tree, curr_level=0): level[tree["id"]] = curr_level result[tree["id"]] = seq_obj["seq"] seq_obj["seq"] += 1 for i, x in enumerate(tree["children"]): visit_tree(x, curr_level+1) visit_tree(calltree) return (result, level) def compute_percentage(ref_db, calltree_file, out_db, columns=None, append=None, treelize_timer_name=False): conn0 = sqlite3.connect(ref_db) ref_columns = extract_column_names(conn0) index_columns, data_columns = split_columns(ref_columns) if columns: for x in columns: assert(x in data_columns) data_columns = list(columns) append_columns = [] if append: append_columns.extend(append) timer_column = find_first_of(ref_columns, ["TimerName", "Name"])[0] if not timer_column: raise ValueError("Can not find timer column") index_columns.remove(timer_column) data_columns.insert(0, timer_column) calltree = json.load(file(calltree_file)) timer_names = extract_timer_names(calltree) sql = list(map(quote, index_columns + data_columns + append_columns)) sql = "SELECT %s FROM result WHERE " % ", ".join(sql) sql += " OR ".join("%s = \"%s\"" % (timer_column, x) for x in timer_names) sql += " ORDER BY %s" % ", ".join(map(quote, index_columns)) data =
pandas.read_sql_query(sql, conn0)
pandas.read_sql_query
# Import libraries import os import sys import anemoi as an import pandas as pd import numpy as np import pyodbc from datetime import datetime import requests import collections import json import urllib3 def return_between_date_query_string(start_date, end_date): if start_date != None and end_date != None: start_end_str = '''AND [TimeStampLocal] >= '%s' AND [TimeStampLocal] < '%s' ''' %(start_date, end_date) elif start_date != None and end_date == None: start_end_str = '''AND [TimeStampLocal] >= '%s' ''' %(start_date) elif start_date == None and end_date != None: start_end_str = '''AND [TimeStampLocal] < '%s' ''' %(end_date) else: start_end_str = '' return start_end_str def sql_or_string_from_mvs_ids(mvs_ids): or_string = ' OR '.join(['mvs_id = {}'.format(mvs_id) for mvs_id in mvs_ids]) return or_string def sql_list_from_mvs_ids(mvs_ids): if not isinstance(mvs_ids, list): mvs_ids = [mvs_ids] mvs_ids_list = ','.join([f"({mvs_id}_1)" for mvs_id in mvs_ids]) return mvs_ids_list def rename_mvs_id_column(col, names, types): name = names[int(col.split('_')[0])] data_type = types[col.split('_')[1]] return f'{name}_{data_type}' # Define DataBase class class M2D2(object): '''Class to connect to RAG M2D2 PRD database ''' def __init__(self): '''Data structure for connecting to and downloading data from M2D2. Convention is:: import anemoi as an m2d2 = an.io.database.M2D2() :Parameters: :Returns: out: an.M2D2 object connected to M2D2 ''' self.database = 'M2D2' server = '10.1.15.53' # PRD #server = 'SDHQRAGDBDEV01\RAGSQLDBSTG' #STG db = 'M2D2_DB_BE' conn_str = 'DRIVER={SQL Server}; SERVER=%s; DATABASE=%s; Trusted_Connection=yes' %(server, db) self.conn_str = conn_str #Assign connection string try: self.conn = pyodbc.connect(self.conn_str) #Apply connection string to connect to database except: print('Database connection error: you either don\'t have permission to the database or aren\'t signed onto the VPN') def connection_check(self, database): return self.database == database def masts(self): ''' :Returns: out: DataFrame of all met masts with measured data in M2D2 Example:: import anemoi as an m2d2 = an.io.database.M2D2() m2d2.masts() ''' if not self.connection_check('M2D2'): raise ValueError('Need to connect to M2D2 to retrieve met masts. Use anemoi.DataBase(database="M2D2")') sql_query_masts = ''' SELECT [Project] ,[AssetID] ,[wmm_id] ,[mvs_id] ,[Name] ,[Type] ,[StartDate] ,[StopDate] FROM [M2D2_DB_BE].[dbo].[ViewProjectAssetSensors] WITH (NOLOCK) ''' sql_query_coordinates=''' SELECT [wmm_id] ,[WMM_Latitude] ,[WMM_Longitude] ,[WMM_Elevation] FROM [M2D2_DB_BE].[dbo].[ViewWindDataSet]''' masts = pd.read_sql(sql_query_masts, self.conn, parse_dates=['StartDate', 'StopDate']) coordinates = pd.read_sql(sql_query_coordinates, self.conn) masts = masts.merge(coordinates, left_on='wmm_id', right_on='wmm_id') masts.set_index(['Project', 'wmm_id', 'WMM_Latitude', 'WMM_Longitude', 'Type'], inplace=True) masts.sort_index(inplace=True) return masts def mvs_ids(self): masts = self.masts() mvs_ids = masts.mvs_id.values.tolist() return mvs_ids def valid_signal_labels(self): signal_type_query = ''' SELECT [MDVT_ID] ,[MDVT_Name] FROM [M2D2_DB_BE].[dbo].[MDataValueType]''' signal_types = pd.read_sql(signal_type_query, self.conn, index_col='MDVT_Name').MDVT_ID return signal_types def column_labels_for_masts(self): masts = self.masts() mvs_ids = masts.mvs_id.unique().tolist() or_string = ' OR '.join(['mvs_id = {}'.format(mvs_id) for mvs_id in mvs_ids]) column_label_sql_query = ''' SELECT [column_id] ,[label] FROM [M2D2_DB_BE].[dbo].[ViewWindogMetaData] WITH (NOLOCK) WHERE {}'''.format(or_string) column_labels = pd.read_sql(column_label_sql_query, self.conn) column_labels = column_labels.set_index('column_id') return column_labels def column_labels_for_data_from_mvs_ids(self, data): masts = self.masts() names_map = pd.Series(index=masts.mvs_id.values, data=masts.Name.values).to_dict() types = self.valid_signal_labels() types.loc['FLAG'] = 'Flag' types_map = pd.Series(index=types.values.astype(str), data=types.index.values).to_dict() data = data.rename(lambda x: rename_mvs_id_column(x, names=names_map, types=types_map), axis=1) return data def column_labels_for_wmm_id(self, wmm_id): masts = self.masts() mvs_ids = masts.loc[pd.IndexSlice[:,wmm_id],:].mvs_id.unique().tolist() or_string = ' OR '.join(['mvs_id = {}'.format(mvs_id) for mvs_id in mvs_ids]) column_label_sql_query = ''' SELECT [column_id] ,[label] FROM [M2D2_DB_BE].[dbo].[ViewWindogMetaData] WITH (NOLOCK) WHERE {}'''.format(or_string) column_labels = pd.read_sql(column_label_sql_query, self.conn) column_labels = column_labels.set_index('column_id') return column_labels def data_from_sensors_mvs_ids(self, mvs_ids, signal_type='AVG'): '''Download sensor data from M2D2 :Parameters: mvs_ids: int or list Virtual sensor IDs (mvs_ids) in M2D2, can be singular signal_type: str, default 'AVG' - NOT SUPPORTED AT THIS TIME Signal type for download For example: 'AVG', 'SD', 'MIN', 'MAX', 'GUST' :Returns: out: DataFrame with signal data from virtual sensor ''' if not isinstance(mvs_ids, list): mvs_ids = [mvs_ids] valid_mvs_ids = self.mvs_ids() assert all([mvs_id in valid_mvs_ids for mvs_id in mvs_ids]), f'One of the following is not a valid mvs_id: {mvs_ids}' mvs_ids_list = sql_list_from_mvs_ids(mvs_ids) sql_query= f""" SET NOCOUNT ON DECLARE @ColumnListID NVARCHAR(4000) ,@startDate DATETIME2 ,@endDate DATETIME2 SET @ColumnListID= '{mvs_ids_list}' SET @startDate = NULL SET @endDate = NULL EXECUTE [dbo].[proc_DataExport_GetDataByColumnList] @ColumnListID ,@startDate ,@endDate """ data = pd.read_sql(sql_query, self.conn, index_col='CorrectedTimestamp') data.index.name = 'stamp' data.columns.name = 'sensor' data = self.column_labels_for_data_from_mvs_ids(data) return data def data_from_mast_wmm_id(self, wmm_id): '''Download data from all sensors on a mast from M2D2 :Parameters: wmm_id: int Mast ID (wmm_id) in M2D2 :Returns: out: DataFrame with signal data from each virtual sensor on the mast ''' masts = self.masts() wmm_ids = masts.index.get_level_values('wmm_id').sort_values().unique().tolist() assert wmm_id in wmm_ids, f'the following is not a valid wmm_id: {wmm_id}' mvs_ids = masts.loc[pd.IndexSlice[:,wmm_id],:].mvs_id.values.tolist() data = self.data_from_sensors_mvs_ids(mvs_ids) return data def metadata_from_mast_wmm_id(self, wmm_id): '''Download mast metadata from M2D2 :Parameters: wmm_id: int Mast ID (wmm_id) in M2D2 :Returns: out: DataFrame with mast metadata ''' sql_query= ''' SELECT [WMM_Latitude] ,[WMM_Longitude] ,[WMM_Elevation] FROM [M2D2_DB_BE].[dbo].[ViewWindDataSet] WHERE wmm_id = {} '''.format(wmm_id) mast_metadata = pd.read_sql(sql_query, self.conn) return mast_metadata def mast_from_wmm_id(self, wmm_id): '''Download an.MetMast from M2D2 :Parameters: wmm_id: int Mast ID (wmm_id) in M2D2 :Returns: out: an.MetMast with data and metadata from M2D2 ''' print(f'Downloading Mast {wmm_id} from M2D2') data = self.data_from_mast_wmm_id(wmm_id=wmm_id) metadata = self.metadata_from_mast_wmm_id(wmm_id=wmm_id) mast = an.MetMast(data=data, name=wmm_id, lat=metadata.WMM_Latitude[0], lon=metadata.WMM_Longitude[0], elev=metadata.WMM_Elevation[0]) return mast def masts_from_project(self, project): '''Download an.MetMasts from M2D2 for a given project :Parameters: project_name: str Project name in M2D2 :Returns: out: List of an.MetMasts with data and metadata from M2D2 for a given project ''' masts = self.masts() projects = masts.index.get_level_values('Project').unique().tolist() assert project in projects, f'Project {project} not found in M2D2'.format(project) wmm_ids = masts.loc[project,:].index.get_level_values('wmm_id').sort_values().unique().tolist() masts = [self.mast_from_wmm_id(wmm_id) for wmm_id in wmm_ids] return masts # Define Turbine class class Turbine(object): '''Class to connect to EDF Wind Turbine database ''' def __init__(self): '''Data structure for connecting to and downloading data from M2D2. Convention is: import anemoi as an turb_db = an.io.database.Turbine() :Parameters: :Returns: out: an.Turbine object connected to Turbine database ''' self.database = 'Turbine' server = '10.1.15.53' db = 'Turbine_DB_BE' conn_str = 'DRIVER={SQL Server}; SERVER=%s; DATABASE=%s; Trusted_Connection=yes' %(server, db) self.conn_str = conn_str #Assign connection string try: self.conn = pyodbc.connect(self.conn_str) #Apply connection string to connect to database except: print('Database connection error: you either don\'t have permission to the database or aren\'t signed onto the VPN') def is_connected(self, database): return self.database == database def metadata(self): '''Get turbine model metadata''' assert self.is_connected('Turbine'), 'Trying to query the Turbine DB without being connected.' sql_query_turbines = ''' SELECT [TUR_Manufacturer] ,[TUR_RatedOutputkW] ,[TPC_MaxOutput] ,[TUR_RotorDia] ,[TUR_Model] ,[AllHubHeights] ,[TPC_DocumentDate] ,[TUR_ID] ,[IECClass] ,[TPG_ID] ,[TPG_Name] ,[TPC_ID] ,[TVR_VersionName] ,[TPC_dbalevel] ,[TPC_TIScenario] ,[TPC_BinType] ,[TTC_ID] ,[TRPMC_ID] ,[P_ID] ,[P_Name] FROM [Turbine_DB_BE].[NodeEstimate].[AllPowerCurves] WHERE TPC_Type = 'Manufacturer General Spec' ''' turbines = pd.read_sql(sql_query_turbines, self.conn) return turbines def power_curve_from_tpc_id(self, tpc_id): '''Get turbine model metadata''' assert self.is_connected('Turbine'), 'Trying to query the Turbine DB without being connected.' sql_query_thrust_curve = ''' SELECT TPCD_AirDensity, TPCD_WindSpeedBin, TPCD_OutputKW FROM TPCDETAILS WHERE TPC_id = {} AND TPCD_IsDeleted = 0; '''.format(tpc_id) thrust_curve = pd.read_sql(sql_query_thrust_curve, self.conn) return thrust_curve def trust_curve_from_ttc_id(self, ttc_id): '''Get turbine model metadata''' assert self.is_connected('Turbine'), 'Trying to query the Turbine DB without being connected.' sql_query_thrust_curve = ''' SELECT TTCD_AirDensity, TTCD_WindSpeedBin, TTCD_ThrustValue FROM TTCDETAILS WHERE TTC_id = {} AND TTCD_IsDeleted = 0; '''.format(ttc_id) thrust_curve = pd.read_sql(sql_query_thrust_curve, self.conn) return thrust_curve # Define Padre class class Padre(object): '''Class to connect to PRE Padre database ''' def __init__(self, database='PADREScada', conn_str=None, conn=None, domino=False): '''Data structure with both database name and connection string. :Parameters: database: string, default None Name of the padre database to connect to conn_str: string, default None SQL connection string needed to connect to the database conn: object, default None SQL connection object to database ''' self.database = database if self.database == 'PADREScada': server = '10.1.106.44' db = 'PADREScada' elif self.database == 'PadrePI': server = '10.1.106.44' db = 'PADREScada' conn_str = 'DRIVER={SQL Server}; SERVER=%s; DATABASE=%s; Trusted_Connection=yes' %(server, db) self.conn_str = conn_str try: self.conn = pyodbc.connect(self.conn_str) except: print('Database connection error: you either don\'t have permission to the database or aren\'t signed onto the VPN') def is_connected(self, database): return self.database == database def assets(self, project=None, turbines_only=False): '''Returns: DataFrame of all turbines within Padre ''' if not self.is_connected('PADREScada'): raise ValueError('Need to connect to Padre to retrieve turbines. Use anemoi.DataBase(database="Padre")') sql_query_assets = ''' SELECT [AssetKey] ,Projects.[ProjectName] ,[AssetType] ,[AssetName] ,Turbines.[Latitude] ,Turbines.[Longitude] ,[elevation_mt] FROM [PADREScada].[dbo].[Asset] as Turbines WITH (NOLOCK) INNER JOIN [PADREScada].[dbo].[Project] as Projects on Turbines.ProjectKey = Projects.ProjectKey ''' assets = pd.read_sql(sql_query_assets, self.conn) assets.set_index(['ProjectName', 'AssetName'], inplace=True) assets.sort_index(axis=0, inplace=True) if turbines_only: assets = assets.loc[assets.AssetType == 'Turbine', :] assets.drop('AssetType', axis=1, inplace=True) if project is not None: assets = assets.loc[project, :] return assets def operational_projects(self): '''Returns: List of all projects within Padre ''' if not self.is_connected('PADREScada'): raise ValueError('Need to connect to Padre to retrieve projects. Use anemoi.DataBase(database="Padre")') padre_project_query = """ SELECT [ProjectKey] ,[ProjectName] ,[State] ,[NamePlateCapacity] ,[NumGenerators] ,[latitude] ,[longitude] ,[DateCOD] FROM [PADREScada].[dbo].[Project] WHERE technology = 'Wind'""" projects = pd.read_sql(padre_project_query, self.conn) projects.set_index('ProjectName', inplace=True) return projects def turbine_categorizations(self, category_type='EDF'): if not self.is_connected('PADREScada'): raise ValueError('Need to connect to Padre to retrieve turbines. Use anemoi.DataBase(database="Padre")') padre_cetegory_query = """ SELECT [CategoryKey] ,[StringName] FROM [PADREScada].[dbo].[Categories] WHERE CategoryType = '%s'""" %category_type categories = pd.read_sql(padre_cetegory_query, self.conn) categories.set_index('CategoryKey', inplace=True) return categories def QCd_turbine_data(self, asset_key): if not self.is_connected('PADREScada'): raise ValueError('Need to connect to Padre to retrieve met masts. Use anemoi.DataBase(database="Padre")') turbine_data_query = ''' SELECT [TimeStampLocal] ,[Average_Nacelle_Wdspd] ,[Average_Active_Power] ,[Average_Ambient_Temperature] ,[IEC Category] ,[EDF Category] ,[Expected Power (kW)] ,[Expected Energy (kWh)] ,[EnergyDelta (kWh)] ,[EnergyDelta (MWh)] FROM [PADREScada].[dbo].[vw_10mDataBI] WITH (NOLOCK) WHERE [assetkey] = %i''' %asset_key turbine_data = pd.read_sql(turbine_data_query, self.conn) turbine_data['TimeStampLocal'] = pd.to_datetime(turbine_data['TimeStampLocal'], format='%Y-%m-%d %H:%M:%S') turbine_data.set_index('TimeStampLocal', inplace=True) turbine_data.sort_index(axis=0, inplace=True) turbine_data = turbine_data.groupby(turbine_data.index).first() return turbine_data def raw_turbine_data(self, asset_key, start_date=None, end_date=None): if not self.is_connected('PADREScada'): raise ValueError('Need to connect to Padre to retrieve met masts. Use anemoi.DataBase(database="Padre")') turbine_data_query = ''' SELECT [TimeStampLocal] ,[Average_Nacelle_Wdspd] ,[Average_Active_Power] ,[Average_Nacelle_Direction] ,[Average_Blade_Pitch] ,[Minimum_Blade_Pitch] ,[Maximum_Blade_Pitch] ,[Average_Rotor_Speed] ,[Minimum_Rotor_Speed] ,[Maximum_Rotor_Speed] ,[Average_Ambient_Temperature] ,coalesce([IECStringKey_Manual] ,[IECStringKey_FF] ,[IECStringKey_Default]) IECKey ,coalesce([EDFStringKey_Manual] ,[EDFStringKey_FF] ,[EDFStringKey_Default]) EDFKey ,coalesce([State_and_Fault_Manual] ,[State_and_Fault_FF] ,[State_and_Fault]) State_and_Fault FROM [PADREScada].[dbo].[WTGCalcData10m] WITH (NOLOCK) WHERE [assetkey] = {} {}'''.format(asset_key, return_between_date_query_string(start_date, end_date)) turbine_data = pd.read_sql(turbine_data_query, self.conn) turbine_data['TimeStampLocal'] = pd.to_datetime(turbine_data['TimeStampLocal'], format='%Y-%m-%d %H:%M:%S') turbine_data.set_index('TimeStampLocal', inplace=True) turbine_data.sort_index(axis=0, inplace=True) turbine_data = turbine_data.groupby(turbine_data.index).first() return turbine_data def raw_turbine_expected_energy(self, asset_key): if not self.is_connected('PADREScada'): raise ValueError('Need to connect to Padre to retrieve met masts. Use anemoi.DataBase(database="Padre")') turbine_data_query = ''' SELECT [TimeStampLocal] ,[Expected_Power_NTF] ,[Expected_Energy_NTF] ,[Expected_Power_RefMet] ,[Expected_Energy_RefMet] ,[Expected_Power_Uncorr] ,[Expected_Energy_Uncorr] ,[Expected_Power_DensCorr] ,[Expected_Energy_DensCorr] ,[Expected_Power_AvgMet] ,[Expected_Energy_AvgMet] ,[Expected_Power_ProxyWTGs] ,[Expected_Energy_ProxyWTGs] ,[Expected_Power_MPC] ,[Expected_Energy_MPC] FROM [PADREScada].[dbo].[WTGCalcData10m] WITH (NOLOCK) WHERE [assetkey] = {}'''.format(asset_key) turbine_data = pd.read_sql(turbine_data_query, self.conn) turbine_data['TimeStampLocal'] = pd.to_datetime(turbine_data['TimeStampLocal'], format='%Y-%m-%d %H:%M:%S') turbine_data.set_index('TimeStampLocal', inplace=True) turbine_data.sort_index(axis=0, inplace=True) turbine_data = turbine_data.groupby(turbine_data.index).first() return turbine_data def senvion_event_logs(self, project_id): if not self.is_connected('PADREScada'): raise ValueError('Need to connect to Padre to retrieve met masts. Use anemoi.DataBase(database="Padre")') sql_query = ''' SELECT [assetkey] ,[TimeStamp] ,[statuscode] ,[incomingphasingoutreset] FROM [PADREScada].[dbo].[SenvionEventLog] WHERE projectkey = {} and incomingphasingoutreset != 'Reset' ORDER BY assetkey, TimeStamp '''.format(project_id) event_log =
pd.read_sql(sql_query, self.conn)
pandas.read_sql
#!/usr/bin/python3 import sys input_shortnames = sys.argv[1:-1:2] input_quast_csvs = sys.argv[2:-1:2] output_file = sys.argv[-1] from os import path import pandas df = pandas.DataFrame(columns = ["experiment", "x", "y"]) for shortname, quast_csv in zip(input_shortnames, input_quast_csvs): frame =
pandas.read_csv(quast_csv, names=["x", "y"])
pandas.read_csv
"""Tests for the sdv.constraints.tabular module.""" import uuid import numpy as np import pandas as pd import pytest from sdv.constraints.errors import MissingConstraintColumnError from sdv.constraints.tabular import ( Between, ColumnFormula, CustomConstraint, GreaterThan, Negative, OneHotEncoding, Positive, Rounding, UniqueCombinations) def dummy_transform(): pass def dummy_reverse_transform(): pass def dummy_is_valid(): pass class TestCustomConstraint(): def test___init__(self): """Test the ``CustomConstraint.__init__`` method. The ``transform``, ``reverse_transform`` and ``is_valid`` methods should be replaced by the given ones, importing them if necessary. Setup: - Create dummy functions (created above this class). Input: - dummy transform and revert_transform + is_valid FQN Output: - Instance with all the methods replaced by the dummy versions. """ is_valid_fqn = __name__ + '.dummy_is_valid' # Run instance = CustomConstraint( transform=dummy_transform, reverse_transform=dummy_reverse_transform, is_valid=is_valid_fqn ) # Assert assert instance.transform == dummy_transform assert instance.reverse_transform == dummy_reverse_transform assert instance.is_valid == dummy_is_valid class TestUniqueCombinations(): def test___init__(self): """Test the ``UniqueCombinations.__init__`` method. It is expected to create a new Constraint instance and receiving the names of the columns that need to produce unique combinations. Side effects: - instance._colums == columns """ # Setup columns = ['b', 'c'] # Run instance = UniqueCombinations(columns=columns) # Assert assert instance._columns == columns def test_fit(self): """Test the ``UniqueCombinations.fit`` method. The ``UniqueCombinations.fit`` method is expected to: - Call ``UniqueCombinations._valid_separator``. - Find a valid separator for the data and generate the joint column name. Input: - Table data (pandas.DataFrame) """ # Setup columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) # Run table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) instance.fit(table_data) # Asserts expected_combinations = pd.DataFrame({ 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) assert instance._separator == '#' assert instance._joint_column == 'b#c' pd.testing.assert_frame_equal(instance._combinations, expected_combinations) def test_is_valid_true(self): """Test the ``UniqueCombinations.is_valid`` method. If the input data satisfies the constraint, result is a series of ``True`` values. Input: - Table data (pandas.DataFrame), satisfying the constraint. Output: - Series of ``True`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.is_valid(table_data) expected_out = pd.Series([True, True, True], name='b#c') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_false(self): """Test the ``UniqueCombinations.is_valid`` method. If the input data doesn't satisfy the constraint, result is a series of ``False`` values. Input: - Table data (pandas.DataFrame), which does not satisfy the constraint. Output: - Series of ``False`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run incorrect_table = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['D', 'E', 'F'], 'c': ['g', 'h', 'i'] }) out = instance.is_valid(incorrect_table) # Assert expected_out = pd.Series([False, False, False], name='b#c') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_non_string_true(self): """Test the ``UniqueCombinations.is_valid`` method with non string columns. If the input data satisfies the constraint, result is a series of ``True`` values. Input: - Table data (pandas.DataFrame), satisfying the constraint. Output: - Series of ``True`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.is_valid(table_data) expected_out = pd.Series([True, True, True], name='b#c#d') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_non_string_false(self): """Test the ``UniqueCombinations.is_valid`` method with non string columns. If the input data doesn't satisfy the constraint, result is a series of ``False`` values. Input: - Table data (pandas.DataFrame), which does not satisfy the constraint. Output: - Series of ``False`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run incorrect_table = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [6, 7, 8], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) out = instance.is_valid(incorrect_table) # Assert expected_out = pd.Series([False, False, False], name='b#c#d') pd.testing.assert_series_equal(expected_out, out) def test_transform(self): """Test the ``UniqueCombinations.transform`` method. It is expected to return a Table data with the columns concatenated by the separator. Input: - Table data (pandas.DataFrame) Output: - Table data transformed, with the columns concatenated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.transform(table_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out_a = pd.Series(['a', 'b', 'c'], name='a') pd.testing.assert_series_equal(expected_out_a, out['a']) try: [uuid.UUID(u) for c, u in out['b#c'].items()] except ValueError: assert False def test_transform_non_string(self): """Test the ``UniqueCombinations.transform`` method with non strings. It is expected to return a Table data with the columns concatenated by the separator. Input: - Table data (pandas.DataFrame) Output: - Table data transformed, with the columns as UUIDs. Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.transform(table_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out_a = pd.Series(['a', 'b', 'c'], name='a') pd.testing.assert_series_equal(expected_out_a, out['a']) try: [uuid.UUID(u) for c, u in out['b#c#d'].items()] except ValueError: assert False def test_transform_not_all_columns_provided(self): """Test the ``UniqueCombinations.transform`` method. If some of the columns needed for the transform are missing, and ``fit_columns_model`` is False, it will raise a ``MissingConstraintColumnError``. Input: - Table data (pandas.DataFrame) Output: - Raises ``MissingConstraintColumnError``. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns, fit_columns_model=False) instance.fit(table_data) # Run/Assert with pytest.raises(MissingConstraintColumnError): instance.transform(pd.DataFrame({'a': ['a', 'b', 'c']})) def test_reverse_transform(self): """Test the ``UniqueCombinations.reverse_transform`` method. It is expected to return the original data separating the concatenated columns. Input: - Table data transformed (pandas.DataFrame) Output: - Original table data, with the concatenated columns separated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run transformed_data = instance.transform(table_data) out = instance.reverse_transform(transformed_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_non_string(self): """Test the ``UniqueCombinations.reverse_transform`` method with a non string column. It is expected to return the original data separating the concatenated columns. Input: - Table data transformed (pandas.DataFrame) Output: - Original table data, with the concatenated columns separated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run transformed_data = instance.transform(table_data) out = instance.reverse_transform(transformed_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) pd.testing.assert_frame_equal(expected_out, out) class TestGreaterThan(): def test___init___strict_false(self): """Test the ``GreaterThan.__init__`` method. The passed arguments should be stored as attributes. Input: - low = 'a' - high = 'b' Side effects: - instance._low == 'a' - instance._high == 'b' - instance._strict == False """ # Run instance = GreaterThan(low='a', high='b') # Asserts assert instance._low == 'a' assert instance._high == 'b' assert instance._strict is False assert instance._high_is_scalar is None assert instance._low_is_scalar is None assert instance._drop is None def test___init___all_parameters_passed(self): """Test the ``GreaterThan.__init__`` method. The passed arguments should be stored as attributes. Input: - low = 'a' - high = 'b' - strict = True - drop = 'high' - high_is_scalar = True - low_is_scalar = False Side effects: - instance._low == 'a' - instance._high == 'b' - instance._stric == True - instance._drop = 'high' - instance._high_is_scalar = True - instance._low_is_scalar = False """ # Run instance = GreaterThan(low='a', high='b', strict=True, drop='high', high_is_scalar=True, low_is_scalar=False) # Asserts assert instance._low == 'a' assert instance._high == 'b' assert instance._strict is True assert instance._high_is_scalar is True assert instance._low_is_scalar is False assert instance._drop == 'high' def test_fit__low_is_scalar_is_none_determined_as_scalar(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should figure out if low is a scalar if ``_low_is_scalar`` is None. Input: - Table without ``low`` in columns. Side Effect: - ``_low_is_scalar`` should be set to ``True``. """ # Setup instance = GreaterThan(low=3, high='b') # Run table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) instance.fit(table_data) # Asserts assert instance._low_is_scalar is True def test_fit__low_is_scalar_is_none_determined_as_column(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should figure out if low is a column name if ``_low_is_scalar`` is None. Input: - Table with ``low`` in columns. Side Effect: - ``_low_is_scalar`` should be set to ``False``. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) instance.fit(table_data) # Asserts assert instance._low_is_scalar is False def test_fit__high_is_scalar_is_none_determined_as_scalar(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should figure out if high is a scalar if ``_high_is_scalar`` is None. Input: - Table without ``high`` in columns. Side Effect: - ``_high_is_scalar`` should be set to ``True``. """ # Setup instance = GreaterThan(low='a', high=3) # Run table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) instance.fit(table_data) # Asserts assert instance._high_is_scalar is True def test_fit__high_is_scalar_is_none_determined_as_column(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should figure out if high is a column name if ``_high_is_scalar`` is None. Input: - Table with ``high`` in columns. Side Effect: - ``_high_is_scalar`` should be set to ``False``. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) instance.fit(table_data) # Asserts assert instance._high_is_scalar is False def test_fit__high_is_scalar__low_is_scalar_raises_error(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should raise an error if `_low_is_scalar` and `_high_is_scalar` are true. Input: - Table with one column. Side Effect: - ``TypeError`` is raised. """ # Setup instance = GreaterThan(low=1, high=2) # Run / Asserts table_data = pd.DataFrame({'a': [1, 2, 3]}) with pytest.raises(TypeError): instance.fit(table_data) def test_fit__column_to_reconstruct_drop_high(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should set ``_column_to_reconstruct`` to ``instance._high`` if ``instance_drop`` is `high`. Input: - Table with two columns. Side Effect: - ``_column_to_reconstruct`` is ``instance._high`` """ # Setup instance = GreaterThan(low='a', high='b', drop='high') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance.fit(table_data) # Asserts assert instance._column_to_reconstruct == 'b' def test_fit__column_to_reconstruct_drop_low(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should set ``_column_to_reconstruct`` to ``instance._low`` if ``instance_drop`` is `low`. Input: - Table with two columns. Side Effect: - ``_column_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high='b', drop='low') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance.fit(table_data) # Asserts assert instance._column_to_reconstruct == 'a' def test_fit__column_to_reconstruct_default(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should set ``_column_to_reconstruct`` to `high` by default. Input: - Table with two columns. Side Effect: - ``_column_to_reconstruct`` is ``instance._high`` """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance.fit(table_data) # Asserts assert instance._column_to_reconstruct == 'b' def test_fit__column_to_reconstruct_high_is_scalar(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should set ``_column_to_reconstruct`` to `low` if ``instance._high_is_scalar`` is ``True``. Input: - Table with two columns. Side Effect: - ``_column_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high='b', high_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance.fit(table_data) # Asserts assert instance._column_to_reconstruct == 'a' def test_fit__diff_column_one_column(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should set ``_diff_column`` to the one column in ``instance.constraint_columns`` plus a token if there is only one column in that set. Input: - Table with one column. Side Effect: - ``_column_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high=3, high_is_scalar=True) # Run table_data = pd.DataFrame({'a': [1, 2, 3]}) instance.fit(table_data) # Asserts assert instance._diff_column == 'a#' def test_fit__diff_column_multiple_columns(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should set ``_diff_column`` to the two columns in ``instance.constraint_columns`` separated by a token if there both columns are in that set. Input: - Table with two column. Side Effect: - ``_column_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance.fit(table_data) # Asserts assert instance._diff_column == 'a#b' def test_fit_int(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_low_is_scalar`` and ``high_is_scalar`` are ``False``. Input: - Table that contains two constrained columns with the high one being made of integers. Side Effect: - The _dtype attribute gets `int` as the value even if the low column has a different dtype. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6], 'c': [7, 8, 9] }) instance.fit(table_data) # Asserts assert instance._dtype.kind == 'i' def test_fit_float(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_low_is_scalar`` and ``high_is_scalar`` are ``False``. Input: - Table that contains two constrained columns with the high one being made of float values. Side Effect: - The _dtype attribute gets `float` as the value even if the low column has a different dtype. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9] }) instance.fit(table_data) # Asserts assert instance._dtype.kind == 'f' def test_fit_datetime(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_low_is_scalar`` and ``high_is_scalar`` are ``False``. Input: - Table that contains two constrained columns of datetimes. Side Effect: - The _dtype attribute gets `datetime` as the value. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01']), 'b': pd.to_datetime(['2020-01-02']) }) instance.fit(table_data) # Asserts assert instance._dtype.kind == 'M' def test_fit_type__high_is_scalar(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should learn and store the ``dtype`` of the ``low`` column as the ``_dtype`` attribute if ``_high_is_scalar`` is ``True``. Input: - Table that contains two constrained columns with the low one being made of floats. Side Effect: - The _dtype attribute gets `float` as the value. """ # Setup instance = GreaterThan(low='a', high=3) # Run table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6], 'c': [7, 8, 9] }) instance.fit(table_data) # Asserts assert instance._dtype.kind == 'f' def test_fit_type__low_is_scalar(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_low_is_scalar`` is ``True``. Input: - Table that contains two constrained columns with the high one being made of floats. Side Effect: - The _dtype attribute gets `float` as the value. """ # Setup instance = GreaterThan(low=3, high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9] }) instance.fit(table_data) # Asserts assert instance._dtype.kind == 'f' def test_is_valid_strict_false(self): """Test the ``GreaterThan.is_valid`` method with strict False. If strict is False, equal values should count as valid. Input: - Table with a strictly valid row, a strictly invalid row and a row that has the same value for both high and low. Output: - False should be returned for the strictly invalid row and True for the other two. """ # Setup instance = GreaterThan(low='a', high='b', strict=False) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, False]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_strict_true(self): """Test the ``GreaterThan.is_valid`` method with strict True. If strict is True, equal values should count as invalid. Input: - Table with a strictly valid row, a strictly invalid row and a row that has the same value for both high and low. Output: - True should be returned for the strictly valid row and False for the other two. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, False, False]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_low_is_scalar_high_is_column(self): """Test the ``GreaterThan.is_valid`` method. If low is a scalar, and high is a column name, then the values in that column should all be higher than ``instance._low``. Input: - Table with values above and below low. Output: - True should be returned for the rows where the high column is above low. """ # Setup instance = GreaterThan(low=3, high='b', strict=False, low_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, False, False], name='b') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_high_is_scalar_low_is_column(self): """Test the ``GreaterThan.is_valid`` method. If high is a scalar, and low is a column name, then the values in that column should all be lower than ``instance._high``. Input: - Table with values above and below high. Output: - True should be returned for the rows where the low column is below high. """ # Setup instance = GreaterThan(low='a', high=2, strict=False, high_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, False], name='a') pd.testing.assert_series_equal(expected_out, out) def test_transform_int_drop_none(self): """Test the ``GreaterThan.transform`` method passing a high column of type int. The ``GreaterThan.transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._diff_column = 'a#b' # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test_transform_int_drop_high(self): """Test the ``GreaterThan.transform`` method passing a high column of type int. The ``GreaterThan.transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. It should also drop the high column. Setup: - ``_drop`` is set to ``high``. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4) and the high column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._diff_column = 'a#b' # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test_transform_int_drop_low(self): """Test the ``GreaterThan.transform`` method passing a high column of type int. The ``GreaterThan.transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. It should also drop the low column. Setup: - ``_drop`` is set to ``low``. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4) and the low column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='low') instance._diff_column = 'a#b' # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test_transform_float_drop_none(self): """Test the ``GreaterThan.transform`` method passing a high column of type float. The ``GreaterThan.transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._diff_column = 'a#b' # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9], }) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test_transform_datetime_drop_none(self): """Test the ``GreaterThan.transform`` method passing a high column of type datetime. If the columns are of type datetime, ``transform`` is expected to convert the timedelta distance into numeric before applying the +1 and logarithm. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with values at a distance of exactly 1 second. Output: - Same table with a diff column of the logarithms of the dinstance in nanoseconds + 1, which is np.log(1_000_000_001). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._diff_column = 'a#b' instance._is_datetime = True # Run table_data = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], }) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b':
pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01'])
pandas.to_datetime
# -*- coding: utf-8 -*- """ docstring goes here. :copyright: Copyright 2014 by the Elephant team, see AUTHORS.txt. :license: Modified BSD, see LICENSE.txt for details. """ from __future__ import division, print_function import unittest from itertools import chain from neo.test.generate_datasets import fake_neo import numpy as np from numpy.testing.utils import assert_array_equal import quantities as pq try: import pandas as pd from pandas.util.testing import assert_frame_equal, assert_index_equal except ImportError: HAVE_PANDAS = False else: import elephant.pandas_bridge as ep HAVE_PANDAS = True @unittest.skipUnless(HAVE_PANDAS, 'requires pandas') class MultiindexFromDictTestCase(unittest.TestCase): def test__multiindex_from_dict(self): inds = {'test1': 6.5, 'test2': 5, 'test3': 'test'} targ = pd.MultiIndex(levels=[[6.5], [5], ['test']], labels=[[0], [0], [0]], names=['test1', 'test2', 'test3']) res0 = ep._multiindex_from_dict(inds) self.assertEqual(targ.levels, res0.levels) self.assertEqual(targ.names, res0.names) self.assertEqual(targ.labels, res0.labels) def _convert_levels(levels): """Convert a list of levels to the format pandas returns for a MultiIndex. Parameters ---------- levels : list The list of levels to convert. Returns ------- list The the level in `list` converted to values like what pandas will give. """ levels = list(levels) for i, level in enumerate(levels): if hasattr(level, 'lower'): try: level = unicode(level) except NameError: pass elif hasattr(level, 'date'): levels[i] = pd.DatetimeIndex(data=[level]) continue elif level is None: levels[i] = pd.Index([]) continue levels[i] = pd.Index([level]) return levels @unittest.skipUnless(HAVE_PANDAS, 'requires pandas') class ConvertValueSafeTestCase(unittest.TestCase): def test__convert_value_safe__float(self): targ = 5.5 value = targ res = ep._convert_value_safe(value) self.assertIs(res, targ) def test__convert_value_safe__str(self): targ = 'test' value = targ res = ep._convert_value_safe(value) self.assertIs(res, targ) def test__convert_value_safe__bytes(self): targ = 'test' value = b'test' res = ep._convert_value_safe(value) self.assertEqual(res, targ) def test__convert_value_safe__numpy_int_scalar(self): targ = 5 value = np.array(5) res = ep._convert_value_safe(value) self.assertEqual(res, targ) self.assertFalse(hasattr(res, 'dtype')) def test__convert_value_safe__numpy_float_scalar(self): targ = 5. value = np.array(5.) res = ep._convert_value_safe(value) self.assertEqual(res, targ) self.assertFalse(hasattr(res, 'dtype')) def test__convert_value_safe__numpy_unicode_scalar(self): targ = u'test' value = np.array('test', dtype='U') res = ep._convert_value_safe(value) self.assertEqual(res, targ) self.assertFalse(hasattr(res, 'dtype')) def test__convert_value_safe__numpy_str_scalar(self): targ = u'test' value = np.array('test', dtype='S') res = ep._convert_value_safe(value) self.assertEqual(res, targ) self.assertFalse(hasattr(res, 'dtype')) def test__convert_value_safe__quantity_scalar(self): targ = (10., 'ms') value = 10. * pq.ms res = ep._convert_value_safe(value) self.assertEqual(res, targ) self.assertFalse(hasattr(res[0], 'dtype')) self.assertFalse(hasattr(res[0], 'units')) @unittest.skipUnless(HAVE_PANDAS, 'requires pandas') class SpiketrainToDataframeTestCase(unittest.TestCase): def test__spiketrain_to_dataframe__parents_empty(self): obj = fake_neo('SpikeTrain', seed=0) res0 = ep.spiketrain_to_dataframe(obj) res1 = ep.spiketrain_to_dataframe(obj, child_first=True) res2 = ep.spiketrain_to_dataframe(obj, child_first=False) res3 = ep.spiketrain_to_dataframe(obj, parents=True) res4 = ep.spiketrain_to_dataframe(obj, parents=True, child_first=True) res5 = ep.spiketrain_to_dataframe(obj, parents=True, child_first=False) res6 = ep.spiketrain_to_dataframe(obj, parents=False) res7 = ep.spiketrain_to_dataframe(obj, parents=False, child_first=True) res8 = ep.spiketrain_to_dataframe(obj, parents=False, child_first=False) targvalues = pq.Quantity(obj.magnitude, units=obj.units) targvalues = targvalues.rescale('s').magnitude[np.newaxis].T targindex = np.arange(len(targvalues)) attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(1, len(res3.columns)) self.assertEqual(1, len(res4.columns)) self.assertEqual(1, len(res5.columns)) self.assertEqual(1, len(res6.columns)) self.assertEqual(1, len(res7.columns)) self.assertEqual(1, len(res8.columns)) self.assertEqual(len(obj), len(res0.index)) self.assertEqual(len(obj), len(res1.index)) self.assertEqual(len(obj), len(res2.index)) self.assertEqual(len(obj), len(res3.index)) self.assertEqual(len(obj), len(res4.index)) self.assertEqual(len(obj), len(res5.index)) self.assertEqual(len(obj), len(res6.index)) self.assertEqual(len(obj), len(res7.index)) self.assertEqual(len(obj), len(res8.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) assert_array_equal(targvalues, res3.values) assert_array_equal(targvalues, res4.values) assert_array_equal(targvalues, res5.values) assert_array_equal(targvalues, res6.values) assert_array_equal(targvalues, res7.values) assert_array_equal(targvalues, res8.values) assert_array_equal(targindex, res0.index) assert_array_equal(targindex, res1.index) assert_array_equal(targindex, res2.index) assert_array_equal(targindex, res3.index) assert_array_equal(targindex, res4.index) assert_array_equal(targindex, res5.index) assert_array_equal(targindex, res6.index) assert_array_equal(targindex, res7.index) assert_array_equal(targindex, res8.index) self.assertEqual(['spike_number'], res0.index.names) self.assertEqual(['spike_number'], res1.index.names) self.assertEqual(['spike_number'], res2.index.names) self.assertEqual(['spike_number'], res3.index.names) self.assertEqual(['spike_number'], res4.index.names) self.assertEqual(['spike_number'], res5.index.names) self.assertEqual(['spike_number'], res6.index.names) self.assertEqual(['spike_number'], res7.index.names) self.assertEqual(['spike_number'], res8.index.names) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) self.assertEqual(keys, res3.columns.names) self.assertEqual(keys, res4.columns.names) self.assertEqual(keys, res5.columns.names) self.assertEqual(keys, res6.columns.names) self.assertEqual(keys, res7.columns.names) self.assertEqual(keys, res8.columns.names) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res3.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res4.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res5.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res6.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res7.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res8.columns.levels): assert_index_equal(value, level) def test__spiketrain_to_dataframe__noparents(self): blk = fake_neo('Block', seed=0) obj = blk.list_children_by_class('SpikeTrain')[0] res0 = ep.spiketrain_to_dataframe(obj, parents=False) res1 = ep.spiketrain_to_dataframe(obj, parents=False, child_first=True) res2 = ep.spiketrain_to_dataframe(obj, parents=False, child_first=False) targvalues = pq.Quantity(obj.magnitude, units=obj.units) targvalues = targvalues.rescale('s').magnitude[np.newaxis].T targindex = np.arange(len(targvalues)) attrs = ep._extract_neo_attrs_safe(obj, parents=False, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(len(obj), len(res0.index)) self.assertEqual(len(obj), len(res1.index)) self.assertEqual(len(obj), len(res2.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) assert_array_equal(targindex, res0.index) assert_array_equal(targindex, res1.index) assert_array_equal(targindex, res2.index) self.assertEqual(['spike_number'], res0.index.names) self.assertEqual(['spike_number'], res1.index.names) self.assertEqual(['spike_number'], res2.index.names) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) def test__spiketrain_to_dataframe__parents_childfirst(self): blk = fake_neo('Block', seed=0) obj = blk.list_children_by_class('SpikeTrain')[0] res0 = ep.spiketrain_to_dataframe(obj) res1 = ep.spiketrain_to_dataframe(obj, child_first=True) res2 = ep.spiketrain_to_dataframe(obj, parents=True) res3 = ep.spiketrain_to_dataframe(obj, parents=True, child_first=True) targvalues = pq.Quantity(obj.magnitude, units=obj.units) targvalues = targvalues.rescale('s').magnitude[np.newaxis].T targindex = np.arange(len(targvalues)) attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(1, len(res3.columns)) self.assertEqual(len(obj), len(res0.index)) self.assertEqual(len(obj), len(res1.index)) self.assertEqual(len(obj), len(res2.index)) self.assertEqual(len(obj), len(res3.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) assert_array_equal(targvalues, res3.values) assert_array_equal(targindex, res0.index) assert_array_equal(targindex, res1.index) assert_array_equal(targindex, res2.index) assert_array_equal(targindex, res3.index) self.assertEqual(['spike_number'], res0.index.names) self.assertEqual(['spike_number'], res1.index.names) self.assertEqual(['spike_number'], res2.index.names) self.assertEqual(['spike_number'], res3.index.names) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) self.assertEqual(keys, res3.columns.names) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res3.columns.levels): assert_index_equal(value, level) def test__spiketrain_to_dataframe__parents_parentfirst(self): blk = fake_neo('Block', seed=0) obj = blk.list_children_by_class('SpikeTrain')[0] res0 = ep.spiketrain_to_dataframe(obj, child_first=False) res1 = ep.spiketrain_to_dataframe(obj, parents=True, child_first=False) targvalues = pq.Quantity(obj.magnitude, units=obj.units) targvalues = targvalues.rescale('s').magnitude[np.newaxis].T targindex = np.arange(len(targvalues)) attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=False) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(len(obj), len(res0.index)) self.assertEqual(len(obj), len(res1.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targindex, res0.index) assert_array_equal(targindex, res1.index) self.assertEqual(['spike_number'], res0.index.names) self.assertEqual(['spike_number'], res1.index.names) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) @unittest.skipUnless(HAVE_PANDAS, 'requires pandas') class EventToDataframeTestCase(unittest.TestCase): def test__event_to_dataframe__parents_empty(self): obj = fake_neo('Event', seed=42) res0 = ep.event_to_dataframe(obj) res1 = ep.event_to_dataframe(obj, child_first=True) res2 = ep.event_to_dataframe(obj, child_first=False) res3 = ep.event_to_dataframe(obj, parents=True) res4 = ep.event_to_dataframe(obj, parents=True, child_first=True) res5 = ep.event_to_dataframe(obj, parents=True, child_first=False) res6 = ep.event_to_dataframe(obj, parents=False) res7 = ep.event_to_dataframe(obj, parents=False, child_first=True) res8 = ep.event_to_dataframe(obj, parents=False, child_first=False) targvalues = obj.labels[:len(obj.times)][np.newaxis].T.astype('U') targindex = obj.times[:len(obj.labels)].rescale('s').magnitude attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(1, len(res3.columns)) self.assertEqual(1, len(res4.columns)) self.assertEqual(1, len(res5.columns)) self.assertEqual(1, len(res6.columns)) self.assertEqual(1, len(res7.columns)) self.assertEqual(1, len(res8.columns)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res0.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res1.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res2.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res3.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res4.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res5.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res6.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res7.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res8.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) assert_array_equal(targvalues, res3.values) assert_array_equal(targvalues, res4.values) assert_array_equal(targvalues, res5.values) assert_array_equal(targvalues, res6.values) assert_array_equal(targvalues, res7.values) assert_array_equal(targvalues, res8.values) assert_array_equal(targindex, res0.index) assert_array_equal(targindex, res1.index) assert_array_equal(targindex, res2.index) assert_array_equal(targindex, res3.index) assert_array_equal(targindex, res4.index) assert_array_equal(targindex, res5.index) assert_array_equal(targindex, res6.index) assert_array_equal(targindex, res7.index) assert_array_equal(targindex, res8.index) self.assertEqual(['times'], res0.index.names) self.assertEqual(['times'], res1.index.names) self.assertEqual(['times'], res2.index.names) self.assertEqual(['times'], res3.index.names) self.assertEqual(['times'], res4.index.names) self.assertEqual(['times'], res5.index.names) self.assertEqual(['times'], res6.index.names) self.assertEqual(['times'], res7.index.names) self.assertEqual(['times'], res8.index.names) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) self.assertEqual(keys, res3.columns.names) self.assertEqual(keys, res4.columns.names) self.assertEqual(keys, res5.columns.names) self.assertEqual(keys, res6.columns.names) self.assertEqual(keys, res7.columns.names) self.assertEqual(keys, res8.columns.names) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res3.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res4.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res5.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res6.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res7.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res8.columns.levels): assert_index_equal(value, level) def test__event_to_dataframe__noparents(self): blk = fake_neo('Block', seed=42) obj = blk.list_children_by_class('Event')[0] res0 = ep.event_to_dataframe(obj, parents=False) res1 = ep.event_to_dataframe(obj, parents=False, child_first=False) res2 = ep.event_to_dataframe(obj, parents=False, child_first=True) targvalues = obj.labels[:len(obj.times)][np.newaxis].T.astype('U') targindex = obj.times[:len(obj.labels)].rescale('s').magnitude attrs = ep._extract_neo_attrs_safe(obj, parents=False, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res0.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res1.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res2.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) assert_array_equal(targindex, res0.index) assert_array_equal(targindex, res1.index) assert_array_equal(targindex, res2.index) self.assertEqual(['times'], res0.index.names) self.assertEqual(['times'], res1.index.names) self.assertEqual(['times'], res2.index.names) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) def test__event_to_dataframe__parents_childfirst(self): blk = fake_neo('Block', seed=42) obj = blk.list_children_by_class('Event')[0] res0 = ep.event_to_dataframe(obj) res1 = ep.event_to_dataframe(obj, child_first=True) res2 = ep.event_to_dataframe(obj, parents=True) res3 = ep.event_to_dataframe(obj, parents=True, child_first=True) targvalues = obj.labels[:len(obj.times)][np.newaxis].T.astype('U') targindex = obj.times[:len(obj.labels)].rescale('s').magnitude attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(1, len(res3.columns)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res0.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res1.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res2.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res3.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) assert_array_equal(targvalues, res3.values) assert_array_equal(targindex, res0.index) assert_array_equal(targindex, res1.index) assert_array_equal(targindex, res2.index) assert_array_equal(targindex, res3.index) self.assertEqual(['times'], res0.index.names) self.assertEqual(['times'], res1.index.names) self.assertEqual(['times'], res2.index.names) self.assertEqual(['times'], res3.index.names) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) self.assertEqual(keys, res3.columns.names) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res3.columns.levels): assert_index_equal(value, level) def test__event_to_dataframe__parents_parentfirst(self): blk = fake_neo('Block', seed=42) obj = blk.list_children_by_class('Event')[0] res0 = ep.event_to_dataframe(obj, child_first=False) res1 = ep.event_to_dataframe(obj, parents=True, child_first=False) targvalues = obj.labels[:len(obj.times)][np.newaxis].T.astype('U') targindex = obj.times[:len(obj.labels)].rescale('s').magnitude attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=False) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res0.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res1.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targindex, res0.index) assert_array_equal(targindex, res1.index) self.assertEqual(['times'], res0.index.names) self.assertEqual(['times'], res1.index.names) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) @unittest.skipUnless(HAVE_PANDAS, 'requires pandas') class EpochToDataframeTestCase(unittest.TestCase): def test__epoch_to_dataframe__parents_empty(self): obj = fake_neo('Epoch', seed=42) res0 = ep.epoch_to_dataframe(obj) res1 = ep.epoch_to_dataframe(obj, child_first=True) res2 = ep.epoch_to_dataframe(obj, child_first=False) res3 = ep.epoch_to_dataframe(obj, parents=True) res4 = ep.epoch_to_dataframe(obj, parents=True, child_first=True) res5 = ep.epoch_to_dataframe(obj, parents=True, child_first=False) res6 = ep.epoch_to_dataframe(obj, parents=False) res7 = ep.epoch_to_dataframe(obj, parents=False, child_first=True) res8 = ep.epoch_to_dataframe(obj, parents=False, child_first=False) minlen = min([len(obj.times), len(obj.durations), len(obj.labels)]) targvalues = obj.labels[:minlen][np.newaxis].T.astype('U') targindex = np.vstack([obj.durations[:minlen].rescale('s').magnitude, obj.times[:minlen].rescale('s').magnitude]) targvalues = targvalues[targindex.argsort()[0], :] targindex.sort() attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(1, len(res3.columns)) self.assertEqual(1, len(res4.columns)) self.assertEqual(1, len(res5.columns)) self.assertEqual(1, len(res6.columns)) self.assertEqual(1, len(res7.columns)) self.assertEqual(1, len(res8.columns)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res0.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res1.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res2.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res3.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res4.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res5.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res6.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res7.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res8.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) assert_array_equal(targvalues, res3.values) assert_array_equal(targvalues, res4.values) assert_array_equal(targvalues, res5.values) assert_array_equal(targvalues, res6.values) assert_array_equal(targvalues, res7.values) assert_array_equal(targvalues, res8.values) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) self.assertEqual(keys, res3.columns.names) self.assertEqual(keys, res4.columns.names) self.assertEqual(keys, res5.columns.names) self.assertEqual(keys, res6.columns.names) self.assertEqual(keys, res7.columns.names) self.assertEqual(keys, res8.columns.names) self.assertEqual([u'durations', u'times'], res0.index.names) self.assertEqual([u'durations', u'times'], res1.index.names) self.assertEqual([u'durations', u'times'], res2.index.names) self.assertEqual([u'durations', u'times'], res3.index.names) self.assertEqual([u'durations', u'times'], res4.index.names) self.assertEqual([u'durations', u'times'], res5.index.names) self.assertEqual([u'durations', u'times'], res6.index.names) self.assertEqual([u'durations', u'times'], res7.index.names) self.assertEqual([u'durations', u'times'], res8.index.names) self.assertEqual(2, len(res0.index.levels)) self.assertEqual(2, len(res1.index.levels)) self.assertEqual(2, len(res2.index.levels)) self.assertEqual(2, len(res3.index.levels)) self.assertEqual(2, len(res4.index.levels)) self.assertEqual(2, len(res5.index.levels)) self.assertEqual(2, len(res6.index.levels)) self.assertEqual(2, len(res7.index.levels)) self.assertEqual(2, len(res8.index.levels)) assert_array_equal(targindex, res0.index.levels) assert_array_equal(targindex, res1.index.levels) assert_array_equal(targindex, res2.index.levels) assert_array_equal(targindex, res3.index.levels) assert_array_equal(targindex, res4.index.levels) assert_array_equal(targindex, res5.index.levels) assert_array_equal(targindex, res6.index.levels) assert_array_equal(targindex, res7.index.levels) assert_array_equal(targindex, res8.index.levels) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res3.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res4.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res5.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res6.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res7.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res8.columns.levels): assert_index_equal(value, level) def test__epoch_to_dataframe__noparents(self): blk = fake_neo('Block', seed=42) obj = blk.list_children_by_class('Epoch')[0] res0 = ep.epoch_to_dataframe(obj, parents=False) res1 = ep.epoch_to_dataframe(obj, parents=False, child_first=True) res2 = ep.epoch_to_dataframe(obj, parents=False, child_first=False) minlen = min([len(obj.times), len(obj.durations), len(obj.labels)]) targvalues = obj.labels[:minlen][np.newaxis].T.astype('U') targindex = np.vstack([obj.durations[:minlen].rescale('s').magnitude, obj.times[:minlen].rescale('s').magnitude]) targvalues = targvalues[targindex.argsort()[0], :] targindex.sort() attrs = ep._extract_neo_attrs_safe(obj, parents=False, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res0.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res1.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res2.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) self.assertEqual([u'durations', u'times'], res0.index.names) self.assertEqual([u'durations', u'times'], res1.index.names) self.assertEqual([u'durations', u'times'], res2.index.names) self.assertEqual(2, len(res0.index.levels)) self.assertEqual(2, len(res1.index.levels)) self.assertEqual(2, len(res2.index.levels)) assert_array_equal(targindex, res0.index.levels) assert_array_equal(targindex, res1.index.levels) assert_array_equal(targindex, res2.index.levels) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) def test__epoch_to_dataframe__parents_childfirst(self): blk = fake_neo('Block', seed=42) obj = blk.list_children_by_class('Epoch')[0] res0 = ep.epoch_to_dataframe(obj) res1 = ep.epoch_to_dataframe(obj, child_first=True) res2 = ep.epoch_to_dataframe(obj, parents=True) res3 = ep.epoch_to_dataframe(obj, parents=True, child_first=True) minlen = min([len(obj.times), len(obj.durations), len(obj.labels)]) targvalues = obj.labels[:minlen][np.newaxis].T.astype('U') targindex = np.vstack([obj.durations[:minlen].rescale('s').magnitude, obj.times[:minlen].rescale('s').magnitude]) targvalues = targvalues[targindex.argsort()[0], :] targindex.sort() attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(1, len(res3.columns)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res0.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res1.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res2.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res3.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) assert_array_equal(targvalues, res3.values) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) self.assertEqual(keys, res3.columns.names) self.assertEqual([u'durations', u'times'], res0.index.names) self.assertEqual([u'durations', u'times'], res1.index.names) self.assertEqual([u'durations', u'times'], res2.index.names) self.assertEqual([u'durations', u'times'], res3.index.names) self.assertEqual(2, len(res0.index.levels)) self.assertEqual(2, len(res1.index.levels)) self.assertEqual(2, len(res2.index.levels)) self.assertEqual(2, len(res3.index.levels)) assert_array_equal(targindex, res0.index.levels) assert_array_equal(targindex, res1.index.levels) assert_array_equal(targindex, res2.index.levels) assert_array_equal(targindex, res3.index.levels) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res3.columns.levels): assert_index_equal(value, level) def test__epoch_to_dataframe__parents_parentfirst(self): blk = fake_neo('Block', seed=42) obj = blk.list_children_by_class('Epoch')[0] res0 = ep.epoch_to_dataframe(obj, child_first=False) res1 = ep.epoch_to_dataframe(obj, parents=True, child_first=False) minlen = min([len(obj.times), len(obj.durations), len(obj.labels)]) targvalues = obj.labels[:minlen][np.newaxis].T.astype('U') targindex = np.vstack([obj.durations[:minlen].rescale('s').magnitude, obj.times[:minlen].rescale('s').magnitude]) targvalues = targvalues[targindex.argsort()[0], :] targindex.sort() attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=False) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res0.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res1.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual([u'durations', u'times'], res0.index.names) self.assertEqual([u'durations', u'times'], res1.index.names) self.assertEqual(2, len(res0.index.levels)) self.assertEqual(2, len(res1.index.levels)) assert_array_equal(targindex, res0.index.levels) assert_array_equal(targindex, res1.index.levels) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) @unittest.skipUnless(HAVE_PANDAS, 'requires pandas') class MultiSpiketrainsToDataframeTestCase(unittest.TestCase): def setUp(self): if hasattr(self, 'assertItemsEqual'): self.assertCountEqual = self.assertItemsEqual def test__multi_spiketrains_to_dataframe__single(self): obj = fake_neo('SpikeTrain', seed=0, n=5) res0 = ep.multi_spiketrains_to_dataframe(obj) res1 = ep.multi_spiketrains_to_dataframe(obj, parents=False) res2 = ep.multi_spiketrains_to_dataframe(obj, parents=True) res3 = ep.multi_spiketrains_to_dataframe(obj, child_first=True) res4 = ep.multi_spiketrains_to_dataframe(obj, parents=False, child_first=True) res5 = ep.multi_spiketrains_to_dataframe(obj, parents=True, child_first=True) res6 = ep.multi_spiketrains_to_dataframe(obj, child_first=False) res7 = ep.multi_spiketrains_to_dataframe(obj, parents=False, child_first=False) res8 = ep.multi_spiketrains_to_dataframe(obj, parents=True, child_first=False) targ = ep.spiketrain_to_dataframe(obj) keys = ep._extract_neo_attrs_safe(obj, parents=True, child_first=True).keys() keys = list(keys) targwidth = 1 targlen = len(obj) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targwidth, len(res1.columns)) self.assertEqual(targwidth, len(res2.columns)) self.assertEqual(targwidth, len(res3.columns)) self.assertEqual(targwidth, len(res4.columns)) self.assertEqual(targwidth, len(res5.columns)) self.assertEqual(targwidth, len(res6.columns)) self.assertEqual(targwidth, len(res7.columns)) self.assertEqual(targwidth, len(res8.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertEqual(targlen, len(res1.index)) self.assertEqual(targlen, len(res2.index)) self.assertEqual(targlen, len(res3.index)) self.assertEqual(targlen, len(res4.index)) self.assertEqual(targlen, len(res5.index)) self.assertEqual(targlen, len(res6.index)) self.assertEqual(targlen, len(res7.index)) self.assertEqual(targlen, len(res8.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) self.assertCountEqual(keys, res1.columns.names) self.assertCountEqual(keys, res2.columns.names) self.assertCountEqual(keys, res3.columns.names) self.assertCountEqual(keys, res4.columns.names) self.assertCountEqual(keys, res5.columns.names) self.assertCountEqual(keys, res6.columns.names) self.assertCountEqual(keys, res7.columns.names) self.assertCountEqual(keys, res8.columns.names) assert_array_equal(targ.values, res0.values) assert_array_equal(targ.values, res1.values) assert_array_equal(targ.values, res2.values) assert_array_equal(targ.values, res3.values) assert_array_equal(targ.values, res4.values) assert_array_equal(targ.values, res5.values) assert_array_equal(targ.values, res6.values) assert_array_equal(targ.values, res7.values) assert_array_equal(targ.values, res8.values) assert_frame_equal(targ, res0) assert_frame_equal(targ, res0) assert_frame_equal(targ, res1) assert_frame_equal(targ, res2) assert_frame_equal(targ, res3) assert_frame_equal(targ, res4) assert_frame_equal(targ, res5) assert_frame_equal(targ, res6) assert_frame_equal(targ, res7) assert_frame_equal(targ, res8) def test__multi_spiketrains_to_dataframe__unit_default(self): obj = fake_neo('Unit', seed=0, n=5) res0 = ep.multi_spiketrains_to_dataframe(obj) objs = obj.spiketrains targ = [ep.spiketrain_to_dataframe(iobj) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = max(len(iobj) for iobj in objs) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) assert_array_equal(targ.values, res0.values) assert_frame_equal(targ, res0) def test__multi_spiketrains_to_dataframe__segment_default(self): obj = fake_neo('Segment', seed=0, n=5) res0 = ep.multi_spiketrains_to_dataframe(obj) objs = obj.spiketrains targ = [ep.spiketrain_to_dataframe(iobj) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = max(len(iobj) for iobj in objs) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) assert_array_equal(targ.values, res0.values) assert_frame_equal(targ, res0) def test__multi_spiketrains_to_dataframe__block_noparents(self): obj = fake_neo('Block', seed=0, n=3) res0 = ep.multi_spiketrains_to_dataframe(obj, parents=False) res1 = ep.multi_spiketrains_to_dataframe(obj, parents=False, child_first=True) res2 = ep.multi_spiketrains_to_dataframe(obj, parents=False, child_first=False) objs = obj.list_children_by_class('SpikeTrain') targ = [ep.spiketrain_to_dataframe(iobj, parents=False, child_first=True) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=False, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = max(len(iobj) for iobj in objs) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targwidth, len(res1.columns)) self.assertEqual(targwidth, len(res2.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertEqual(targlen, len(res1.index)) self.assertEqual(targlen, len(res2.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) self.assertCountEqual(keys, res1.columns.names) self.assertCountEqual(keys, res2.columns.names) assert_array_equal(targ.values, res0.values) assert_array_equal(targ.values, res1.values) assert_array_equal(targ.values, res2.values) assert_frame_equal(targ, res0) assert_frame_equal(targ, res1) assert_frame_equal(targ, res2) def test__multi_spiketrains_to_dataframe__block_parents_childfirst(self): obj = fake_neo('Block', seed=0, n=3) res0 = ep.multi_spiketrains_to_dataframe(obj) res1 = ep.multi_spiketrains_to_dataframe(obj, parents=True) res2 = ep.multi_spiketrains_to_dataframe(obj, child_first=True) res3 = ep.multi_spiketrains_to_dataframe(obj, parents=True, child_first=True) objs = obj.list_children_by_class('SpikeTrain') targ = [ep.spiketrain_to_dataframe(iobj, parents=True, child_first=True) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = max(len(iobj) for iobj in objs) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targwidth, len(res1.columns)) self.assertEqual(targwidth, len(res2.columns)) self.assertEqual(targwidth, len(res3.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertEqual(targlen, len(res1.index)) self.assertEqual(targlen, len(res2.index)) self.assertEqual(targlen, len(res3.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) self.assertCountEqual(keys, res1.columns.names) self.assertCountEqual(keys, res2.columns.names) self.assertCountEqual(keys, res3.columns.names) assert_array_equal(targ.values, res0.values) assert_array_equal(targ.values, res1.values) assert_array_equal(targ.values, res2.values) assert_array_equal(targ.values, res3.values) assert_frame_equal(targ, res0) assert_frame_equal(targ, res1) assert_frame_equal(targ, res2) assert_frame_equal(targ, res3) def test__multi_spiketrains_to_dataframe__block_parents_parentfirst(self): obj = fake_neo('Block', seed=0, n=3) res0 = ep.multi_spiketrains_to_dataframe(obj, child_first=False) res1 = ep.multi_spiketrains_to_dataframe(obj, parents=True, child_first=False) objs = obj.list_children_by_class('SpikeTrain') targ = [ep.spiketrain_to_dataframe(iobj, parents=True, child_first=False) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=False).keys() keys = list(keys) targwidth = len(objs) targlen = max(len(iobj) for iobj in objs) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targwidth, len(res1.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertEqual(targlen, len(res1.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) self.assertCountEqual(keys, res1.columns.names) assert_array_equal(targ.values, res0.values) assert_array_equal(targ.values, res1.values) assert_frame_equal(targ, res0) assert_frame_equal(targ, res1) def test__multi_spiketrains_to_dataframe__list_noparents(self): obj = [fake_neo('Block', seed=i, n=3) for i in range(3)] res0 = ep.multi_spiketrains_to_dataframe(obj, parents=False) res1 = ep.multi_spiketrains_to_dataframe(obj, parents=False, child_first=True) res2 = ep.multi_spiketrains_to_dataframe(obj, parents=False, child_first=False) objs = (iobj.list_children_by_class('SpikeTrain') for iobj in obj) objs = list(chain.from_iterable(objs)) targ = [ep.spiketrain_to_dataframe(iobj, parents=False, child_first=True) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=False, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = max(len(iobj) for iobj in objs) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targwidth, len(res1.columns)) self.assertEqual(targwidth, len(res2.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertEqual(targlen, len(res1.index)) self.assertEqual(targlen, len(res2.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) self.assertCountEqual(keys, res1.columns.names) self.assertCountEqual(keys, res2.columns.names) assert_array_equal(targ.values, res0.values) assert_array_equal(targ.values, res1.values) assert_array_equal(targ.values, res2.values) assert_frame_equal(targ, res0) assert_frame_equal(targ, res1) assert_frame_equal(targ, res2) def test__multi_spiketrains_to_dataframe__list_parents_childfirst(self): obj = [fake_neo('Block', seed=i, n=3) for i in range(3)] res0 = ep.multi_spiketrains_to_dataframe(obj) res1 = ep.multi_spiketrains_to_dataframe(obj, parents=True) res2 = ep.multi_spiketrains_to_dataframe(obj, child_first=True) res3 = ep.multi_spiketrains_to_dataframe(obj, parents=True, child_first=True) objs = (iobj.list_children_by_class('SpikeTrain') for iobj in obj) objs = list(chain.from_iterable(objs)) targ = [ep.spiketrain_to_dataframe(iobj, parents=True, child_first=True) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = max(len(iobj) for iobj in objs) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targwidth, len(res1.columns)) self.assertEqual(targwidth, len(res2.columns)) self.assertEqual(targwidth, len(res3.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertEqual(targlen, len(res1.index)) self.assertEqual(targlen, len(res2.index)) self.assertEqual(targlen, len(res3.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) self.assertCountEqual(keys, res1.columns.names) self.assertCountEqual(keys, res2.columns.names) self.assertCountEqual(keys, res3.columns.names) assert_array_equal(targ.values, res0.values) assert_array_equal(targ.values, res1.values) assert_array_equal(targ.values, res2.values) assert_array_equal(targ.values, res3.values) assert_frame_equal(targ, res0) assert_frame_equal(targ, res1) assert_frame_equal(targ, res2) assert_frame_equal(targ, res3) def test__multi_spiketrains_to_dataframe__list_parents_parentfirst(self): obj = [fake_neo('Block', seed=i, n=3) for i in range(3)] res0 = ep.multi_spiketrains_to_dataframe(obj, child_first=False) res1 = ep.multi_spiketrains_to_dataframe(obj, parents=True, child_first=False) objs = (iobj.list_children_by_class('SpikeTrain') for iobj in obj) objs = list(chain.from_iterable(objs)) targ = [ep.spiketrain_to_dataframe(iobj, parents=True, child_first=False) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=False).keys() keys = list(keys) targwidth = len(objs) targlen = max(len(iobj) for iobj in objs) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targwidth, len(res1.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertEqual(targlen, len(res1.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) self.assertCountEqual(keys, res1.columns.names) assert_array_equal(targ.values, res0.values) assert_array_equal(targ.values, res1.values) assert_frame_equal(targ, res0) assert_frame_equal(targ, res1) def test__multi_spiketrains_to_dataframe__tuple_default(self): obj = tuple(fake_neo('Block', seed=i, n=3) for i in range(3)) res0 = ep.multi_spiketrains_to_dataframe(obj) objs = (iobj.list_children_by_class('SpikeTrain') for iobj in obj) objs = list(chain.from_iterable(objs)) targ = [ep.spiketrain_to_dataframe(iobj) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = max(len(iobj) for iobj in objs) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) assert_array_equal(targ.values, res0.values) assert_frame_equal(targ, res0) def test__multi_spiketrains_to_dataframe__iter_default(self): obj = [fake_neo('Block', seed=i, n=3) for i in range(3)] res0 = ep.multi_spiketrains_to_dataframe(iter(obj)) objs = (iobj.list_children_by_class('SpikeTrain') for iobj in obj) objs = list(chain.from_iterable(objs)) targ = [ep.spiketrain_to_dataframe(iobj) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = max(len(iobj) for iobj in objs) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) assert_array_equal(targ.values, res0.values) assert_frame_equal(targ, res0) def test__multi_spiketrains_to_dataframe__dict_default(self): obj = dict((i, fake_neo('Block', seed=i, n=3)) for i in range(3)) res0 = ep.multi_spiketrains_to_dataframe(obj) objs = (iobj.list_children_by_class('SpikeTrain') for iobj in obj.values()) objs = list(chain.from_iterable(objs)) targ = [ep.spiketrain_to_dataframe(iobj) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = max(len(iobj) for iobj in objs) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) assert_array_equal(targ.values, res0.values) assert_frame_equal(targ, res0) @unittest.skipUnless(HAVE_PANDAS, 'requires pandas') class MultiEventsToDataframeTestCase(unittest.TestCase): def setUp(self): if hasattr(self, 'assertItemsEqual'): self.assertCountEqual = self.assertItemsEqual def test__multi_events_to_dataframe__single(self): obj = fake_neo('Event', seed=0, n=5) res0 = ep.multi_events_to_dataframe(obj) res1 = ep.multi_events_to_dataframe(obj, parents=False) res2 = ep.multi_events_to_dataframe(obj, parents=True) res3 = ep.multi_events_to_dataframe(obj, child_first=True) res4 = ep.multi_events_to_dataframe(obj, parents=False, child_first=True) res5 = ep.multi_events_to_dataframe(obj, parents=True, child_first=True) res6 = ep.multi_events_to_dataframe(obj, child_first=False) res7 = ep.multi_events_to_dataframe(obj, parents=False, child_first=False) res8 = ep.multi_events_to_dataframe(obj, parents=True, child_first=False) targ = ep.event_to_dataframe(obj) keys = ep._extract_neo_attrs_safe(obj, parents=True, child_first=True).keys() keys = list(keys) targwidth = 1 targlen = min(len(obj.times), len(obj.labels)) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targwidth, len(res1.columns)) self.assertEqual(targwidth, len(res2.columns)) self.assertEqual(targwidth, len(res3.columns)) self.assertEqual(targwidth, len(res4.columns)) self.assertEqual(targwidth, len(res5.columns)) self.assertEqual(targwidth, len(res6.columns)) self.assertEqual(targwidth, len(res7.columns)) self.assertEqual(targwidth, len(res8.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertEqual(targlen, len(res1.index)) self.assertEqual(targlen, len(res2.index)) self.assertEqual(targlen, len(res3.index)) self.assertEqual(targlen, len(res4.index)) self.assertEqual(targlen, len(res5.index)) self.assertEqual(targlen, len(res6.index)) self.assertEqual(targlen, len(res7.index)) self.assertEqual(targlen, len(res8.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) self.assertCountEqual(keys, res1.columns.names) self.assertCountEqual(keys, res2.columns.names) self.assertCountEqual(keys, res3.columns.names) self.assertCountEqual(keys, res4.columns.names) self.assertCountEqual(keys, res5.columns.names) self.assertCountEqual(keys, res6.columns.names) self.assertCountEqual(keys, res7.columns.names) self.assertCountEqual(keys, res8.columns.names) assert_array_equal(targ.values, res0.values) assert_array_equal(targ.values, res1.values) assert_array_equal(targ.values, res2.values) assert_array_equal(targ.values, res3.values) assert_array_equal(targ.values, res4.values) assert_array_equal(targ.values, res5.values) assert_array_equal(targ.values, res6.values) assert_array_equal(targ.values, res7.values) assert_array_equal(targ.values, res8.values) assert_frame_equal(targ, res0) assert_frame_equal(targ, res1) assert_frame_equal(targ, res2) assert_frame_equal(targ, res3) assert_frame_equal(targ, res4) assert_frame_equal(targ, res5) assert_frame_equal(targ, res6) assert_frame_equal(targ, res7) assert_frame_equal(targ, res8) def test__multi_events_to_dataframe__segment_default(self): obj = fake_neo('Segment', seed=0, n=5) res0 = ep.multi_events_to_dataframe(obj) objs = obj.events targ = [ep.event_to_dataframe(iobj) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = [iobj.times[:min(len(iobj.times), len(iobj.labels))] for iobj in objs] targlen = len(np.unique(np.hstack(targlen))) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) assert_array_equal(targ.values, res0.values) assert_frame_equal(targ, res0) def test__multi_events_to_dataframe__block_noparents(self): obj = fake_neo('Block', seed=0, n=3) res0 = ep.multi_events_to_dataframe(obj, parents=False) res1 = ep.multi_events_to_dataframe(obj, parents=False, child_first=True) res2 = ep.multi_events_to_dataframe(obj, parents=False, child_first=False) objs = obj.list_children_by_class('Event') targ = [ep.event_to_dataframe(iobj, parents=False, child_first=True) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=False, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = [iobj.times[:min(len(iobj.times), len(iobj.labels))] for iobj in objs] targlen = len(np.unique(np.hstack(targlen))) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targwidth, len(res1.columns)) self.assertEqual(targwidth, len(res2.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertEqual(targlen, len(res1.index)) self.assertEqual(targlen, len(res2.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) self.assertCountEqual(keys, res1.columns.names) self.assertCountEqual(keys, res2.columns.names) assert_array_equal(targ.values, res0.values) assert_array_equal(targ.values, res1.values) assert_array_equal(targ.values, res2.values) assert_frame_equal(targ, res0) assert_frame_equal(targ, res1) assert_frame_equal(targ, res2) def test__multi_events_to_dataframe__block_parents_childfirst(self): obj = fake_neo('Block', seed=0, n=3) res0 = ep.multi_events_to_dataframe(obj) res1 = ep.multi_events_to_dataframe(obj, parents=True) res2 = ep.multi_events_to_dataframe(obj, child_first=True) res3 = ep.multi_events_to_dataframe(obj, parents=True, child_first=True) objs = obj.list_children_by_class('Event') targ = [ep.event_to_dataframe(iobj, parents=True, child_first=True) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = [iobj.times[:min(len(iobj.times), len(iobj.labels))] for iobj in objs] targlen = len(np.unique(np.hstack(targlen))) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targwidth, len(res1.columns)) self.assertEqual(targwidth, len(res2.columns)) self.assertEqual(targwidth, len(res3.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertEqual(targlen, len(res1.index)) self.assertEqual(targlen, len(res2.index)) self.assertEqual(targlen, len(res3.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) self.assertCountEqual(keys, res1.columns.names) self.assertCountEqual(keys, res2.columns.names) self.assertCountEqual(keys, res3.columns.names) assert_array_equal(targ.values, res0.values) assert_array_equal(targ.values, res1.values) assert_array_equal(targ.values, res2.values) assert_array_equal(targ.values, res3.values) assert_frame_equal(targ, res0) assert_frame_equal(targ, res1) assert_frame_equal(targ, res2) assert_frame_equal(targ, res3) def test__multi_events_to_dataframe__block_parents_parentfirst(self): obj = fake_neo('Block', seed=0, n=3) res0 = ep.multi_events_to_dataframe(obj, child_first=False) res1 = ep.multi_events_to_dataframe(obj, parents=True, child_first=False) objs = obj.list_children_by_class('Event') targ = [ep.event_to_dataframe(iobj, parents=True, child_first=False) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=True, child_first=False).keys() keys = list(keys) targwidth = len(objs) targlen = [iobj.times[:min(len(iobj.times), len(iobj.labels))] for iobj in objs] targlen = len(np.unique(np.hstack(targlen))) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targwidth, len(res1.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertEqual(targlen, len(res1.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) self.assertCountEqual(keys, res1.columns.names) assert_array_equal(targ.values, res0.values) assert_array_equal(targ.values, res1.values) assert_frame_equal(targ, res0) assert_frame_equal(targ, res1) def test__multi_events_to_dataframe__list_noparents(self): obj = [fake_neo('Block', seed=i, n=3) for i in range(3)] res0 = ep.multi_events_to_dataframe(obj, parents=False) res1 = ep.multi_events_to_dataframe(obj, parents=False, child_first=True) res2 = ep.multi_events_to_dataframe(obj, parents=False, child_first=False) objs = (iobj.list_children_by_class('Event') for iobj in obj) objs = list(chain.from_iterable(objs)) targ = [ep.event_to_dataframe(iobj, parents=False, child_first=True) for iobj in objs] targ = ep._sort_inds(pd.concat(targ, axis=1), axis=1) keys = ep._extract_neo_attrs_safe(objs[0], parents=False, child_first=True).keys() keys = list(keys) targwidth = len(objs) targlen = [iobj.times[:min(len(iobj.times), len(iobj.labels))] for iobj in objs] targlen = len(np.unique(np.hstack(targlen))) self.assertGreater(len(objs), 0) self.assertEqual(targwidth, len(targ.columns)) self.assertEqual(targwidth, len(res0.columns)) self.assertEqual(targwidth, len(res1.columns)) self.assertEqual(targwidth, len(res2.columns)) self.assertEqual(targlen, len(targ.index)) self.assertEqual(targlen, len(res0.index)) self.assertEqual(targlen, len(res1.index)) self.assertEqual(targlen, len(res2.index)) self.assertCountEqual(keys, targ.columns.names) self.assertCountEqual(keys, res0.columns.names) self.assertCountEqual(keys, res1.columns.names) self.assertCountEqual(keys, res2.columns.names) assert_array_equal(targ.values, res0.values) assert_array_equal(targ.values, res1.values) assert_array_equal(targ.values, res2.values) assert_frame_equal(targ, res0) assert_frame_equal(targ, res1)
assert_frame_equal(targ, res2)
pandas.util.testing.assert_frame_equal
# -*- coding: utf-8 -*- ########################################################################## # NSAp - Copyright (C) CEA, 2019 - 2020 # Distributed under the terms of the CeCILL-B license, as published by # the CEA-CNRS-INRIA. Refer to the LICENSE file or to # http://www.cecill.info/licences/Licence_CeCILL-B_V1-en.html # for details. ########################################################################## """ Module that provides functions to prepare the IMPAC dataset. IMPAC stands for IMaging-PsychiAtry Challenge: predicting autism which is a data challenge on Autism Spectrum Disorder detection: https://paris-saclay-cds.github.io/autism_challenge. """ # Imports import re import os import json import glob import shutil import logging import requests import zipfile import hashlib import warnings from collections import namedtuple from collections import OrderedDict import numpy as np import pandas as pd from sklearn.base import BaseEstimator, TransformerMixin from sklearn.pipeline import make_pipeline from sklearn.preprocessing import FunctionTransformer from pynet.datasets import Fetchers try: from nilearn.connectome import ConnectivityMeasure except: warnings.warn("You need to install nilearn.") # Global parameters ATLAS = ("basc064", "basc122", "basc197", "craddock_scorr_mean", "harvard_oxford_cort_prob_2mm", "msdl", "power_2011") ARCHIVE = { atlas: 'https://zenodo.org/record/3625740/files/{0}.zip'.format(atlas) for atlas in ATLAS} CHECKSUM = { "basc064": "75eb5ee72344d11f056551310a470d00227fac3e87b7205196f77042fcd434d0", "basc122": "2d0d2c2338f9114877a0a1eb695e73f04fc664065d1fb75cff8d59f6516b0ec7", "basc197": "68135bb8e89b5b3653e843745d8e5d0e92876a5536654eaeb9729c9a52ab00e9", "craddock_scorr_mean": "634e0bb07beaae033a0f1615aa885ba4cb67788d4a6e472fd432a1226e01b49b", "harvard_oxford_cort_prob_2mm": "638559dc4c7de25575edc02e58404c3f2600556239888cbd2e5887316def0e74", "msdl": "fd241bd66183d5fc7bdf9a115d7aeb9a5fecff5801cd15a4e5aed72612916a97", "power_2011": "d1e3cd8eaa867079fe6b24dfaee08bd3b2d9e0ebbd806a2a982db5407328990a"} URL = "https://raw.githubusercontent.com/ramp-kits/autism/master/data/" URLS = [URL + name for name in ["anatomy.csv", "anatomy_qc.csv", "fmri_filename.csv", "fmri_qc.csv", "fmri_repetition_time.csv", "participants.csv", "test.csv", "train.csv"]] Item = namedtuple("Item", ["input_path", "output_path", "metadata_path", "labels", "nb_features"]) logger = logging.getLogger("pynet") def _sha256(path): """ Calculate the sha256 hash of the file at path. """ sha256hash = hashlib.sha256() chunk_size = 8192 with open(path, "rb") as f: while True: buffer = f.read(chunk_size) if not buffer: break sha256hash.update(buffer) return sha256hash.hexdigest() def _check_and_unzip(zip_file, atlas, atlas_directory): checksum_download = _sha256(zip_file) if checksum_download != CHECKSUM[atlas]: os.remove(zip_file) raise IOError("The file downloaded was corrupted. Try again " "to execute this fetcher.") logger.info("Decompressing the archive...") zip_ref = zipfile.ZipFile(zip_file, "r") zip_ref.extractall(atlas_directory) zip_ref.close() def _download_fmri_data(atlas, outdir): logger.info("Downloading the data from {0}...".format(ARCHIVE[atlas])) zip_file = os.path.join(outdir, atlas + ".zip") if os.path.isfile(zip_file): logger.info("'{0}' already downloaded!".format(zip_file)) else: response = requests.get(ARCHIVE[atlas]) with open(zip_file, "wb") as of: of.write(response.content) atlas_directory = os.path.join(outdir, "data", "fmri") if not os.path.isdir(atlas_directory): _check_and_unzip(zip_file, atlas, atlas_directory) def fetch_fmri_time_series(outdir, atlas="all"): """ Fetch the time-series extracted from the fMRI data using a specific atlas. Parameters ---------- outdir: str the detination folder. atlas : string, default='all' The name of the atlas used during the extraction. The possibilities are: * `'basc064`, `'basc122'`, `'basc197'`: BASC parcellations with 64, 122, and 197 regions [1]_; * `'craddock_scorr_mean'`: Ncuts parcellations [2]_; * `'harvard_oxford_cort_prob_2mm'`: Harvard-Oxford anatomical parcellations; * `'msdl'`: MSDL functional atlas [3]_; * `'power_2011'`: Power atlas [4]_. References ---------- .. [1] <NAME>, et al. "Multi-level bootstrap analysis of stable clusters in resting-state fMRI." Neuroimage 51.3 (2010): 1126-1139. .. [2] <NAME>, et al. "A whole brain fMRI atlas generated via spatially constrained spectral clustering." Human brain mapping 33.8 (2012): 1914-1928. .. [3] <NAME>, et al. "Multi-subject dictionary learning to segment an atlas of brain spontaneous activity." Biennial International Conference on Information Processing in Medical Imaging. Springer, Berlin, Heidelberg, 2011. .. [4] Power, <NAME>., et al. "Functional network organization of the human brain." Neuron 72.4 (2011): 665-678. """ if atlas == "all": for single_atlas in ATLAS: _download_fmri_data(single_atlas, outdir) elif atlas in ATLAS: _download_fmri_data(atlas, outdir) else: raise ValueError( "'atlas' should be one of {0}. Got {1} instead.".format( ATLAS, atlas)) logger.info("Downloading completed...") def _load_fmri(fmri_filenames): """ Load time-series extracted from the fMRI using a specific atlas. """ return np.array([pd.read_csv(subject_filename, header=None).values for subject_filename in fmri_filenames]) class FeatureExtractor(BaseEstimator, TransformerMixin): """ Make a transformer which will load the time series and compute the connectome matrix. """ def __init__(self): self.transformer_fmri = make_pipeline( FunctionTransformer(func=_load_fmri, validate=False), ConnectivityMeasure(kind="tangent", vectorize=True)) def fit(self, X_df, y, datadir): fmri_filenames = [path.replace(".", datadir, 1) for path in X_df["fmri_basc122"]] self.transformer_fmri.fit(fmri_filenames, y) return self def transform(self, X_df, datadir): fmri_filenames = [path.replace(".", datadir, 1) for path in X_df["fmri_basc122"]] X_connectome = self.transformer_fmri.transform(fmri_filenames) X_connectome = pd.DataFrame(X_connectome, index=X_df.index) X_connectome.columns = ["connectome_{0}".format(i) for i in range(X_connectome.columns.size)] X_anatomy = X_df[[col for col in X_df.columns if col.startswith("anatomy")]] X_anatomy = X_anatomy.drop(columns="anatomy_select") logger.debug(" X connectome: {0}".format(X_connectome.shape)) logger.debug(" X anatomy: {0}".format(X_anatomy.shape)) return pd.concat([X_connectome, X_anatomy], axis=1) @Fetchers.register def fetch_impac(datasetdir, mode="train", dtype="all"): """ Fetch/prepare the IMPAC dataset for pynet. To compute the functional connectivity using the rfMRI data, we use the BASC atlas with 122 ROIs. Parameters ---------- datasetdir: str the dataset destination folder. mode: str ask the 'train' or 'test' dataset. dtype: str, default 'all' the features type: 'anatomy', 'fmri', or 'all'. Returns ------- item: namedtuple a named tuple containing 'input_path', 'output_path', and 'metadata_path'. """ logger.info("Loading impac dataset.") if not os.path.isdir(datasetdir): os.mkdir(datasetdir) train_desc_path = os.path.join(datasetdir, "pynet_impac_train.tsv") selected_input_path = os.path.join( datasetdir, "pynet_impac_inputs_selection.npy") train_input_path = os.path.join( datasetdir, "pynet_impac_inputs_train.npy") train_output_path = os.path.join( datasetdir, "pynet_impac_outputs_train.npy") test_desc_path = os.path.join(datasetdir, "pynet_impac_test.tsv") test_input_path = os.path.join( datasetdir, "pynet_impac_inputs_test.npy") test_output_path = os.path.join( datasetdir, "pynet_impac_outputs_test.npy") if not os.path.isfile(train_desc_path): fetch_fmri_time_series(datasetdir, atlas="basc122") data = [] sets = {} for url in URLS: basename = url.split("/")[-1] name = basename.split(".")[0] local_file = os.path.join(datasetdir, basename) if not os.path.isfile(local_file): response = requests.get(url, stream=True) with open(local_file, "wt") as out_file: out_file.write(response.text) del response else: logger.info("'{0}' already downloaded!".format(basename)) if name not in ("train", "test"): prefix = name.split("_")[0] df =
pd.read_csv(local_file, index_col=0)
pandas.read_csv
# -*- coding: utf-8 -*- """ Automated Tool for Optimized Modelling (ATOM) Author: Mavs Description: Module containing utility constants, functions and classes. """ import logging import math import pprint import sys from collections import deque from collections.abc import MutableMapping from copy import copy from datetime import datetime from functools import wraps from inspect import signature from typing import Union import matplotlib.pyplot as plt import numpy as np import pandas as pd from matplotlib.gridspec import GridSpec from scipy import sparse from shap import Explainer from sklearn.inspection._partial_dependence import ( _grid_from_X, _partial_dependence_brute, ) from sklearn.metrics import ( SCORERS, confusion_matrix, make_scorer, matthews_corrcoef, ) from sklearn.utils import _print_elapsed_time, _safe_indexing # Global constants ================================================= >> SEQUENCE = (list, tuple, np.ndarray, pd.Series) # Variable types INT = Union[int, np.integer] FLOAT = Union[float, np.float] SCALAR = Union[INT, FLOAT] SEQUENCE_TYPES = Union[SEQUENCE] X_TYPES = Union[iter, dict, list, tuple, np.ndarray, sparse.spmatrix, pd.DataFrame] Y_TYPES = Union[INT, str, SEQUENCE_TYPES] # Attributes shared between atom and a pd.DataFrame DF_ATTRS = ( "size", "head", "tail", "loc", "iloc", "describe", "iterrows", "dtypes", "at", "iat", "memory_usage", "empty", "ndim", ) # List of custom metrics for the evaluate method CUSTOM_METRICS = ( "cm", "tn", "fp", "fn", "tp", "lift", "fpr", "tpr", "fnr", "tnr", "sup", ) # Acronyms for some common scorers SCORERS_ACRONYMS = dict( ap="average_precision", ba="balanced_accuracy", auc="roc_auc", logloss="neg_log_loss", ev="explained_variance", me="max_error", mae="neg_mean_absolute_error", mse="neg_mean_squared_error", rmse="neg_root_mean_squared_error", msle="neg_mean_squared_log_error", mape="neg_mean_absolute_percentage_error", medae="neg_median_absolute_error", poisson="neg_mean_poisson_deviance", gamma="neg_mean_gamma_deviance", ) # Functions ======================================================== >> def flt(item): """Utility to reduce sequences with just one item.""" if isinstance(item, SEQUENCE) and len(item) == 1: return item[0] else: return item def lst(item): """Utility used to make sure an item is iterable.""" if isinstance(item, (dict, CustomDict, *SEQUENCE)): return item else: return [item] def it(item): """Utility to convert rounded floats to int.""" try: is_equal = int(item) == float(item) except ValueError: # Item may not be numerical return item return int(item) if is_equal else float(item) def divide(a, b): """Divide two numbers and return 0 if division by zero.""" return np.divide(a, b) if b != 0 else 0 def merge(X, y): """Merge a pd.DataFrame and pd.Series into one dataframe.""" return X.merge(y.to_frame(), left_index=True, right_index=True) def variable_return(X, y): """Return one or two arguments depending on which is None.""" if y is None: return X elif X is None: return y else: return X, y def is_multidim(df): """Check if the dataframe contains a multidimensional column.""" return df.columns[0] == "multidim feature" and len(df.columns) <= 2 def is_sparse(df): """Check if the dataframe contains any sparse columns.""" return any(
pd.api.types.is_sparse(df[col])
pandas.api.types.is_sparse
import streamlit as st import pandas as pd from simpletransformers.question_answering import QuestionAnsweringModel from simpletransformers.streamlit.streamlit_utils import get, simple_transformers_model QA_ANSWER_WRAPPER = """{} <span style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 0.25rem; background: #a6e22d">{}</span> {}""" # noqa QA_EMPTY_ANSWER_WRAPPER = """{} <span style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 0.25rem; background: #FF0000">{}</span> {}""" # noqa def get_states(model, session_state=None): if session_state: setattr(session_state, "max_answer_length", model.args.max_answer_length) setattr(session_state, "max_query_length", model.args.max_query_length) else: session_state = get( max_seq_length=model.args.max_seq_length, max_answer_length=model.args.max_answer_length, max_query_length=model.args.max_query_length, ) model.args.max_seq_length = session_state.max_seq_length model.args.max_answer_length = session_state.max_answer_length model.args.max_query_length = session_state.max_query_length return session_state, model @st.cache(hash_funcs={QuestionAnsweringModel: simple_transformers_model}) def get_prediction(model, context_text, question_text): to_predict = [{"context": context_text, "qas": [{"id": 0, "question": question_text}]}] answers, probabilities = model.predict(to_predict) return answers, probabilities def qa_viewer(model): st.sidebar.subheader("Parameters") try: session_state, model = get_states(model) except AttributeError: session_state = get( max_seq_length=model.args.max_seq_length, max_answer_length=model.args.max_answer_length, max_query_length=model.args.max_query_length, ) session_state, model = get_states(model, session_state) model.args.max_seq_length = st.sidebar.slider( "Max Seq Length", min_value=1, max_value=512, value=model.args.max_seq_length ) model.args.max_answer_length = st.sidebar.slider( "Max Answer Length", min_value=1, max_value=512, value=model.args.max_answer_length ) model.args.max_query_length = st.sidebar.slider( "Max Query Length", min_value=1, max_value=512, value=model.args.max_query_length ) model.args.n_best_size = st.sidebar.slider("Number of answers to generate", min_value=1, max_value=20) st.subheader("Enter context: ") context_text = st.text_area("", key="context") st.subheader("Enter question: ") question_text = st.text_area("", key="question") if context_text and question_text: answers, probabilities = get_prediction(model, context_text, question_text) st.subheader(f"Predictions") answers = answers[0]["answer"] context_pieces = context_text.split(answers[0]) if answers[0] != "empty": if len(context_pieces) == 2: st.write( QA_ANSWER_WRAPPER.format(context_pieces[0], answers[0], context_pieces[-1]), unsafe_allow_html=True ) else: st.write( QA_ANSWER_WRAPPER.format(context_pieces[0], answers[0], answers[0].join(context_pieces[1:])), unsafe_allow_html=True, ) else: st.write(QA_EMPTY_ANSWER_WRAPPER.format("", answers[0], ""), unsafe_allow_html=True) probabilities = probabilities[0]["probability"] st.subheader("Confidence") output_df =
pd.DataFrame({"Answer": answers, "Confidence": probabilities})
pandas.DataFrame
from IMLearn.utils import split_train_test from IMLearn.learners.regressors import LinearRegression from typing import NoReturn import numpy as np import pandas as pd import plotly.graph_objects as go import plotly.express as px import plotly.io as pio pio.templates.default = "simple_white" def load_data(filename: str): """ Load house prices dataset and preprocess data. Parameters ---------- filename: str Path to house prices dataset Returns ------- Design matrix and response vector (prices) - either as a single DataFrame or a Tuple[DataFrame, Series] """ df = pd.read_csv(filename).drop_duplicates().dropna() # Drop not needed features df.drop(['id'], axis=1, inplace=True) df.drop(['lat'], axis=1, inplace=True) df.drop(['long'], axis=1, inplace=True) # Edit date to datetime pandas df['date'] = pd.to_datetime(df['date'], format="%Y%m%dT%f", errors='coerce') # only positive numbers lst = ["price", "sqft_living", "sqft_lot", "sqft_above", "yr_built", "sqft_living15", "sqft_lot15", "bathrooms", "floors"] for feature in lst: df = df[df[feature] > 0] # checks where there is a basement df['has_basement'] = np.where(df['sqft_basement'] > 0, 1, 0) # renovated in the last 10 years df['new_renovation'] = np.where(pd.DatetimeIndex(df['date']).year - df['yr_renovated'] < 10, 1, 0) # drop date df.drop(['date'], axis=1, inplace=True) # Edit Zip-code to dummies df =
pd.get_dummies(df, columns=['zipcode'])
pandas.get_dummies
import pandas as pd import abc import numpy as np from BPMN.TransformationStrategy import SelectRowsStrategy # abstract base class class CombineStrategy(): @abc.abstractclassmethod def combine(self, df_1: pd.DataFrame, df_2: pd.DataFrame) -> pd.DataFrame: pass @abc.abstractclassmethod def get_code(self, df_1: str, df_2: str) -> str: pass # joins class NaturalJoinStrategy(CombineStrategy): def __init__(self, impl_bool_1: bool = False) -> None: super().__init__(self) self.index = impl_bool_1 self.how = "inner" def combine(self, df_1: pd.DataFrame, df_2: pd.DataFrame) -> pd.DataFrame: if self._index: return df_1.join(df_2, how=self.how) return df_1.merge(df_2, how=self.how) def get_code(self, df_1: str, df_2: str) -> str: if self.index: return f"#join on indcies\n{df_1}.join({df_2}, how = '{self.how}')" return f"#natural join on columns \n{df_1}.merge({df_2}, how = '{self.how}')" class LeftNaturalJoinStrategy(NaturalJoinStrategy): def __init__(self, impl_bool_1: bool = False) -> None: super().__init__(impl_bool_1) self.how = "left" def combine(self, df_1: pd.DataFrame, df_2: pd.DataFrame) -> pd.DataFrame: df_1 = super().combine(df_1, df_2) df_1.replace({np.nan: None}) def get_code(self, df_1: str, df_2: str) -> str: return super().get_code(df_1, df_2) + f"\n{df_1}.replace({{np.nan: None}})" class RightNaturalJoinStrategy(NaturalJoinStrategy): def __init__(self, impl_bool_1: bool = False) -> None: super().__init__(impl_bool_1) self.how = "right" def combine(self, df_1: pd.DataFrame, df_2: pd.DataFrame) -> pd.DataFrame: df_1 = super().combine(df_1, df_2) df_1.replace({np.nan: None}) def get_code(self, df_1: str, df_2: str) -> str: return super().get_code(df_1, df_2) + f"\n{df_1}.replace({{np.nan: None}})" class OuterNaturalJoinStrategy(NaturalJoinStrategy): def __init__(self, impl_bool_1: bool = False) -> None: super().__init__(impl_bool_1) self.how = "outer" def combine(self, df_1: pd.DataFrame, df_2: pd.DataFrame) -> pd.DataFrame: df_1 = super().combine(df_1, df_2) df_1.replace({np.nan: None}) def get_code(self, df_1: str, df_2: str) -> str: return super().get_code(df_1, df_2) + f"\n{df_1}.replace({{np.nan: None}})" class JoinOnStrategy(CombineStrategy): def __init__(self, column: str) -> None: super().__init__() self.on = column self.how = "inner" def combine(self, df_1: pd.DataFrame, df_2: pd.DataFrame) -> pd.DataFrame: return df_1.merge(df_2, on=self.on, how=self.how) def get_code(self, df_1: str, df_2: str) -> str: return f"""#Here we {self.how }join on {self.on} two Dataframes\n{df_1} = {df_1}.merge({df_2}, on = "{self.on}", how="{self.how}")\n""" class LeftJoinOnStrategy(JoinOnStrategy): def __init__(self, column: str) -> None: super().__init__(column) self.how = "left" def combine(self, df_1: pd.DataFrame, df_2: pd.DataFrame) -> pd.DataFrame: df_1 = super().combine(df_1, df_2) df_1.replace({np.nan: None}) def get_code(self, df_1: str, df_2: str) -> str: return super().get_code(df_1, df_2) + f"\n{df_1}.replace({{np.nan: None}})" class RightJoinOnStrategy(JoinOnStrategy): def __init__(self, column: str) -> None: super().__init__(column) self.how = "right" def combine(self, df_1: pd.DataFrame, df_2: pd.DataFrame) -> pd.DataFrame: df_1 = super().combine(df_1, df_2) df_1.replace({np.nan: None}) def get_code(self, df_1: str, df_2: str) -> str: return super().get_code(df_1, df_2) + f"\n{df_1}.replace({{np.nan: None}})" class OuterJoinOnStrategy(JoinOnStrategy): def __init__(self, column: str) -> None: super().__init__(column) self.how = "outer" def combine(self, df_1: pd.DataFrame, df_2: pd.DataFrame) -> pd.DataFrame: df_1 = super().combine(df_1, df_2) df_1.replace({np.nan: None}) def get_code(self, df_1: str, df_2: str) -> str: return super().get_code(df_1, df_2) + f"\n{df_1}.replace({{np.nan: None}})" class EquiJoinStrategy(CombineStrategy): def __init__(self, left_col: str, right_col: str) -> None: self.how = "inner" self.right = right_col self.left = left_col def combine(self, df_1: pd.DataFrame, df_2: pd.DataFrame) -> pd.DataFrame: return df_1.merge(df_2, left_on=self.left, right_on=self.right, how=self.how) def get_code(self, df_1: str, df_2: str) -> str: return f"""#Here we make an equi join two Dataframes\n{df_1} = {df_1}.merge({df_2},left_on="{self.left}", right_on="{self.right}", how="{self.how}")\n""" class LeftEquiJoinStrategy(EquiJoinStrategy): def __init__(self, left_col: str, right_col: str) -> None: super().__init__(left_col, right_col) self.how = "left" def combine(self, df_1: pd.DataFrame, df_2: pd.DataFrame) -> pd.DataFrame: df_1 = super().combine(df_1, df_2) df_1.replace({np.nan: None}) def get_code(self, df_1: str, df_2: str) -> str: return super().get_code(df_1, df_2) + f"\n{df_1}.replace({{np.nan: None}})" class RightEquiJoinStrategy(EquiJoinStrategy): def __init__(self, left_col: str, right_col: str) -> None: super().__init__(left_col, right_col) self.how = "right" def combine(self, df_1: pd.DataFrame, df_2: pd.DataFrame) -> pd.DataFrame: df_1 = super().combine(df_1, df_2) df_1.replace({np.nan: None}) def get_code(self, df_1: str, df_2: str) -> str: return super().get_code(df_1, df_2) + f"\n{df_1}.replace({{np.nan: None}})" class OuterEquiJoinStrategy(EquiJoinStrategy): def __init__(self, left_col: str, right_col: str) -> None: super().__init__(left_col, right_col) self.how = "outer" def combine(self, df_1: pd.DataFrame, df_2: pd.DataFrame) -> pd.DataFrame: df_1 = super().combine(df_1, df_2) df_1.replace({np.nan: None}) def get_code(self, df_1: str, df_2: str) -> str: return super().get_code(df_1, df_2) + f"\n{df_1}.replace({{np.nan: None}})" class ThetaStrategy(CombineStrategy): def __init__(self, query: str) -> None: super().__init__() self.query = query self.filter = SelectRowsStrategy(query) def combine(self, df_1: pd.DataFrame, df_2: pd.DataFrame) -> pd.DataFrame: df_1 = df_1.merge(df_2, how="cross") return self.filter.transform(df_1) def get_code(self, df_1: str, df_2: str) -> str: return f"""#Here we do a theta join on {self.query} by crossing and then querying two Dataframes\n{df_1} = {df_1}.merge({df_2}, how = "cross")\n{self.filter.get_code(df_1)}""" # set things class ConcatStrategy(CombineStrategy): def combine(self, df_1: pd.DataFrame, df_2: pd.DataFrame) -> pd.DataFrame: df_c = pd.concat([df_1, df_2]) return df_c def get_code(self, df_1: str, df_2: str) -> str: return f"#Here we concate two Dataframes\n{df_1} = pd.concat([{df_1},{df_2}])\n" class UnionStrategy(CombineStrategy): def combine(self, df_1: pd.DataFrame, df_2: pd.DataFrame) -> pd.DataFrame: df_c = pd.concat([df_1, df_2]).drop_duplicates(keep="first") return df_c def get_code(self, df_1: str, df_2: str) -> str: return f"#Here we concate two Dataframes\n{df_1} = pd.concat([{df_1},{df_2}]).drop_duplicates(keep='first')\n" class Intersecttrategy(CombineStrategy): def combine(self, df_1: pd.DataFrame, df_2: pd.DataFrame) -> pd.DataFrame: return df_1.merge(df_2, on=list(df_1.columns), how="inner") def get_code(self, df_1: str, df_2: str) -> str: return f"""#Here we cross two Dataframes\n{df_1} = {df_1}.merge({df_2}, on = list({df_1}.columns) , how = "inner")\n""" class DiffrenceStrategy(CombineStrategy): def combine(self, df_1: pd.DataFrame, df_2: pd.DataFrame) -> pd.DataFrame: return
pd.concat([df_1, df_2])
pandas.concat
import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from trueskill import Rating, rate sns.set() sns.set_style('white') def get_cumulative_ranks_df(games, rolling_average_n=None): results = [] rank_map = dict() for game_number, game in enumerate(games): # Update rankings for rank, player in enumerate(game.ranking): if player not in rank_map: rank_map[player] = [] normalized_rank = rank / (len(game.ranking) - 1) rank_map[player].append(normalized_rank) for player, ranks in rank_map.items(): discounted_ranks = ranks if rolling_average_n is None else ranks[-rolling_average_n:] result = { 'Game Number': game_number, 'Player': player, 'Average Normalized Rank': sum(discounted_ranks) / len(discounted_ranks), } results.append(result) return pd.DataFrame(results) def plot_cumulative_ranks(games, rolling_average_n=None): df = get_cumulative_ranks_df(games, rolling_average_n=rolling_average_n) sns.lineplot(x='Game Number', y='Average Normalized Rank', hue='Player', data=df) plt.show() def get_trueskill_df(games): df_results = [] trueskill_ratings = dict() for game_number, game in enumerate(games): for player in game.ranking: if player not in trueskill_ratings: trueskill_ratings[player] = Rating() team_ratings = [[trueskill_ratings[player]] for player in game.ranking] team_ranks = list(range(len(game.ranking))) updated_team_ratings = rate(team_ratings, ranks=team_ranks) updated_ratings = dict(zip(game.ranking, [r[0] for r in updated_team_ratings])) trueskill_ratings.update(updated_ratings) for player, trueskill_rating in trueskill_ratings.items(): df_result = { 'Game Number': game_number, 'Player': player, 'TrueSkill': trueskill_rating.mu, } df_results.append(df_result) return pd.DataFrame(df_results) def plot_trueskill(games): df = get_trueskill_df(games) sns.lineplot(x='Game Number', y='TrueSkill', hue='Player', data=df) plt.show() def _get_1v1_encoded_df(games): players = list(set([player for game in games for player in game.ranking])) results = [] for game in games: for winner_i in range(len(game.ranking)): for loser_i in range(winner_i + 1, len(game.ranking)): winner = game.ranking[winner_i] loser = game.ranking[loser_i] result = [] for player in players: if player == winner: result.append(1) elif player == loser: result.append(-1) else: result.append(0) results.append(result) return
pd.DataFrame(results, columns=players)
pandas.DataFrame
# Copyright 2018 <NAME>. All rights reserved. # # Licensed under the MIT license """ Script for panels of Figure S5 (Comparison with and structure of C elegans network) """ import core as c import analysis as a from global_defs import GlobalDefs import os import seaborn as sns import matplotlib as mpl import matplotlib.pyplot as pl import numpy as np import h5py from mo_types import MoTypes from Figure4 import mpath from scipy.signal import convolve from pandas import DataFrame import pickle # file definitions base_path_zf = "./model_data/Adam_1e-4/sepInput_mixTrain/" paths_512_zf = [f + '/' for f in os.listdir(base_path_zf) if "_3m512_" in f] base_path_ce = "./model_data/CE_Adam_1e-4/" paths_512_ce = [f + '/' for f in os.listdir(base_path_ce) if "_3m512_" in f] if __name__ == "__main__": save_folder = "./DataFigures/FigureS5/" if not os.path.exists(save_folder): os.makedirs(save_folder) sns.reset_orig() mpl.rcParams['pdf.fonttype'] = 42 std_zf = c.GradientData.load_standards("gd_training_data.hdf5") ana_zf = a.Analyzer(MoTypes(False), std_zf, "sim_store.hdf5", "activity_store.hdf5") std_ce = c.GradientData.load_standards("ce_gd_training_data.hdf5") ana_ce = a.Analyzer(MoTypes(True), std_ce, "ce_sim_store.hdf5", "ce_activity_store.hdf5") # load activity clusters from file clfile = h5py.File("cluster_info.hdf5", "r") clust_ids_zf = np.array(clfile["clust_ids"]) clfile.close() clfile = h5py.File("ce_cluster_info.hdf5", "r") clust_ids_ce = np.array(clfile["clust_ids"]) clfile.close() # load and interpolate temperature stimulus dfile = h5py.File("stimFile.hdf5", 'r') tsin = np.array(dfile['sine_L_H_temp']) x = np.arange(tsin.size) # stored at 20 Hz ! xinterp = np.linspace(0, tsin.size, tsin.size * GlobalDefs.frame_rate // 20) temperature = np.interp(xinterp, x, tsin) dfile.close() # get activity data all_ids_zf = [] all_cells_zf = [] for i, p in enumerate(paths_512_zf): cell_res, ids = ana_zf.temperature_activity(mpath(base_path_zf, p), temperature, i) all_ids_zf.append(ids) all_cells_zf.append(cell_res) all_ids_zf = np.hstack(all_ids_zf) all_cells_zf = np.hstack(all_cells_zf) all_ids_ce = [] all_cells_ce = [] for i, p in enumerate(paths_512_ce): cell_res, ids = ana_ce.temperature_activity(mpath(base_path_ce, p), temperature, i) all_ids_ce.append(ids) all_cells_ce.append(cell_res) all_ids_ce = np.hstack(all_ids_ce) all_cells_ce = np.hstack(all_cells_ce) # convolve activity with nuclear gcamp calcium kernel tau_on = 1.4 # seconds tau_on *= GlobalDefs.frame_rate # in frames tau_off = 2 # seconds tau_off *= GlobalDefs.frame_rate # in frames kframes = np.arange(10 * GlobalDefs.frame_rate) # 10 s long kernel kernel = 2 ** (-kframes / tau_off) * (1 - 2 ** (-kframes / tau_on)) kernel = kernel / kernel.sum() # convolve with our kernel for i in range(all_cells_zf.shape[1]): all_cells_zf[:, i] = convolve(all_cells_zf[:, i], kernel, mode='full')[:all_cells_zf.shape[0]] for i in range(all_cells_ce.shape[1]): all_cells_ce[:, i] = convolve(all_cells_ce[:, i], kernel, mode='full')[:all_cells_ce.shape[0]] trial_time = np.arange(all_cells_zf.shape[0] // 3) / GlobalDefs.frame_rate # plot colors pal = sns.color_palette() # the default matplotlib color cycle plot_cols_ce = {0: pal[0], 1: pal[3], 2: pal[2], 3: pal[4], 4: pal[5], 5: (0.6, 0.6, 0.6), 6: pal[6], 7: pal[1], -1: (0.6, 0.6, 0.6)} step_min = 23 step_max = 27 temp_step = np.zeros(temperature.size // 3) temp_step[:temp_step.size//5] = step_min temp_step[temp_step.size*4//5:] = step_max ramp = temp_step[temp_step.size//5:temp_step.size*4//5] ramp = np.arange(ramp.size)/ramp.size*(step_max-step_min) + step_min temp_step[temp_step.size//5:temp_step.size*4//5] = ramp cells_ce_step = [] for i, p in enumerate(paths_512_ce): cell_res, ids = ana_ce.temperature_activity(mpath(base_path_ce, p), temp_step, i) cells_ce_step.append(cell_res) cells_ce_step = np.hstack(cells_ce_step) for i in range(cells_ce_step.shape[1]): cells_ce_step[:, i] = convolve(cells_ce_step[:, i], kernel, mode='full')[:cells_ce_step.shape[0]] # panel - all cluster activities, sorted into ON and OFF types n_regs = np.unique(clust_ids_ce).size - 1 cluster_acts = np.zeros((cells_ce_step.shape[0], n_regs)) for i in range(n_regs): cluster_acts[:, i] = np.mean(cells_ce_step[:, clust_ids_ce == i], 1) on_count = 0 off_count = 0 fig, (axes_on, axes_off) = pl.subplots(ncols=2, nrows=2, sharey=True, sharex=True) time = np.arange(cluster_acts.shape[0]) / GlobalDefs.frame_rate for i in range(n_regs): act = cluster_acts[:, i] if np.corrcoef(act, temp_step[:act.size])[0, 1] < 0: ax_off = axes_off[0] if off_count < 2 else axes_off[1] ax_off.plot(time, cluster_acts[:, i], color=plot_cols_ce[i]) off_count += 1 else: ax_on = axes_on[0] if on_count < 2 else axes_on[1] ax_on.plot(time, cluster_acts[:, i], color=plot_cols_ce[i]) on_count += 1 axes_off[0].set_xticks([0, 30, 60, 90, 120, 150]) axes_off[1].set_xticks([0, 30, 60, 90, 120, 150]) axes_off[0].set_xlabel("Time [s]") axes_off[1].set_xlabel("Time [s]") axes_on[0].set_ylabel("Cluster average activation") axes_off[0].set_ylabel("Cluster average activation") sns.despine() fig.tight_layout() fig.savefig(save_folder + "ce_all_cluster_averages.pdf", type="pdf") # panel - average type counts in temperature branch for each cluster cl_type_d = {"Fraction": [], "net_id": [], "Cluster ID": [], "Layer": []} for i in range(len(paths_512_zf)): for j in range(-1, n_regs): for k in range(2): lay_clust_ids = clust_ids_ce[np.logical_and(all_ids_ce[0, :] == i, all_ids_ce[1, :] == k)] cl_type_d["Fraction"].append(np.sum(lay_clust_ids == j) / 512) cl_type_d["net_id"].append(i) cl_type_d["Cluster ID"].append(j) cl_type_d["Layer"].append(k) cl_type_df = DataFrame(cl_type_d) fig, (ax_0, ax_1) = pl.subplots(nrows=2, sharex=True) sns.barplot("Cluster ID", "Fraction", data=cl_type_df[cl_type_df["Layer"] == 0], order=list(range(n_regs)) + [-1], ci=68, ax=ax_0, palette=plot_cols_ce) sns.barplot("Cluster ID", "Fraction", data=cl_type_df[cl_type_df["Layer"] == 1], order=list(range(n_regs)) + [-1], ci=68, ax=ax_1, palette=plot_cols_ce) ax_0.set_yticks([0, 0.1, 0.2, 0.3, 0.4]) ax_1.set_yticks([0, 0.1, 0.2, 0.3, 0.4]) sns.despine(fig) fig.savefig(save_folder + "ce_all_cluster_counts.pdf", type="pdf") # panel - input connectivity into second layer of t branch conn_mat = np.zeros((8, 8, len(paths_512_ce))) for i, p in enumerate(paths_512_ce): model_cids = clust_ids_ce[all_ids_ce[0, :] == i] layers_ids = all_ids_ce[1, :][all_ids_ce[0, :] == i] l_0_mask = np.full(8, False) ix = model_cids[layers_ids == 0] ix = ix[ix != -1] l_0_mask[ix] = True l_1_mask = np.full(8, False) ix = model_cids[layers_ids == 1] ix = ix[ix != -1] l_1_mask[ix] = True m_path = mpath(base_path_ce, p) mdata = c.ModelData(m_path) gpn = MoTypes(True).network_model() gpn.load(mdata.ModelDefinition, mdata.LastCheckpoint) input_result = gpn.parse_layer_input_by_cluster('t', 1, model_cids[layers_ids == 0], model_cids[layers_ids == 1]) for k, l0 in enumerate(np.arange(8)[l_0_mask]): for l, l1 in enumerate(np.arange(8)[l_1_mask]): conn_mat[l0, l1, i] = input_result[k, l] # reordered version of conn_mat based on known types cm_order = [1, 7, 0, 2, 3, 4, 5, 6] cm_reordered = conn_mat[:, cm_order, :] cm_reordered = cm_reordered[cm_order, :, :] m = np.mean(cm_reordered, 2) s = np.std(cm_reordered, 2) cross_0 = np.sign((m+s) * (m-s)) <= 0 m[cross_0] = 0 s[cross_0] = 0 fig, axes = pl.subplots(nrows=4, sharex=True, sharey=True) for i in range(4): axes[i].bar(np.arange(8), m[:, i], width=[.8]*4+[.3]*4) axes[i].errorbar(np.arange(8), m[:, i], s[:, i], color='k', fmt='none') axes[-1].set_xticks(np.arange(8)) axes[-1].set_xticklabels(["AFD", "AWC/AIY", "0", "2", "3", "4", "5", "6"]) sns.despine(fig) fig.tight_layout() fig.savefig(save_folder + "ce_avg_connectivity_weights.pdf", type="pdf") # Panel 9: Robustness of C elegans network to random deletions percent_to_remove = [25, 50, 75, 85, 90, 95, 97, 99] rem_d = {"state": [], "values": [], "species": []} # store the random removal drop-lists to disk so that we can quickly re-make this panel from # stored simulation results - as these depend on the drop-list they would never be loaded # if drop-lists are randomized every time dlist_file = h5py.File("drop_lists.hdf5") for i, p in enumerate(paths_512_ce): mp = mpath(base_path_ce, p) pos = ana_ce.run_simulation(mp, "r", "naive") rem_d["values"].append(a.preferred_fraction(pos, "r", 1.0)) rem_d["state"].append("naive") rem_d["species"].append("C elegans") pos = ana_ce.run_simulation(mp, "r", "trained") rem_d["values"].append(a.preferred_fraction(pos, "r", 1.0)) rem_d["state"].append("trained") rem_d["species"].append("C elegans") for ptr in percent_to_remove: file_key = mp + "_{0}".format(ptr) rem_d["state"].append("{0} %".format(ptr)) rem_d["species"].append("C elegans") rand_clusts = np.zeros(all_ids_ce.shape[1]) nw_units = rand_clusts.size // (len(paths_512_ce) * 2) if file_key in dlist_file: dlist = pickle.loads(np.array(dlist_file[file_key])) else: for j in range(len(paths_512_ce) * 2): rand_clusts[j * nw_units:j * nw_units + int(nw_units * ptr / 100)] = 1 dlist = a.create_det_drop_list(i, rand_clusts, all_ids_ce, [1], True) dlist_file.create_dataset(file_key, data=np.void(pickle.dumps(dlist, pickle.HIGHEST_PROTOCOL))) pos = ana_ce.run_simulation(mp, "r", "trained", drop_list=dlist) rem_d["values"].append(a.preferred_fraction(pos, "r", 1.0)) dlist_file.close() rem_d =
DataFrame(rem_d)
pandas.DataFrame
# %% Imports import os import glob import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.patheffects as path_effects import seaborn as sns from sklearn.linear_model import LinearRegression from scipy.optimize import least_squares from ruamel_yaml import YAML original_np_seterr = np.seterr(all='raise') # raise exceptions rather than warnings # %% The initial set of countries that we're interested in countries = ["Australia", "Austria", "Belgium", "Brazil", "Canada", "Chile", "China", "Czechia", "Denmark", "Ecuador", "Finland", "France", "Germany", "Greece", "Iceland", "Indonesia", "Iran", "Ireland", "Israel", "Italy", "Japan", "Luxembourg", "Malaysia", "Netherlands", "Norway", "Pakistan", "Poland", "Portugal", "Saudi Arabia", "South Korea", "Spain", "Sweden", "Switzerland", "Thailand", "Turkey", "United States", "United Kingdom"] use_all_countries = False # if set to 'True', reset 'countries' to all countries found in the data, after the data is loaded us_states = ["California", "New York", "Texas", "Arizona", "Florida", "Washington"]; # cherrypick these states from the NY Times US Data Set ca_provinces = ["Ontario", "Quebec"] # cherrypick these provinces from the JHU Data Set statuses = ['confirmed', 'deaths'] # leave out 'recovered' for now since they are less informative and make the plots confusing # %% Load the data from the external repository ts_global = { 'confirmed': pd.read_csv("https://github.com/CSSEGISandData/COVID-19/raw/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv", header=0, index_col=1), 'deaths': pd.read_csv("https://github.com/CSSEGISandData/COVID-19/raw/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv", header=0, index_col=1), 'recovered':
pd.read_csv("https://github.com/CSSEGISandData/COVID-19/raw/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_recovered_global.csv", header=0, index_col=1)
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on 2018-09-13 @author: <NAME> """ import numpy as np import pandas as pd CURRENT_ROUND = 38 # Load data from all 2018 rounds # Data from https://github.com/henriquepgomide/caRtola rounds = [] rounds.append(pd.read_csv('data/rodada-1.csv')) rounds.append(pd.read_csv('2018/data/rodada-2.csv')) rounds.append(pd.read_csv('2018/data/rodada-3.csv')) rounds.append(pd.read_csv('2018/data/rodada-4.csv')) rounds.append(pd.read_csv('2018/data/rodada-5.csv')) rounds.append(pd.read_csv('2018/data/rodada-6.csv')) rounds.append(pd.read_csv('2018/data/rodada-7.csv')) rounds.append(pd.read_csv('2018/data/rodada-8.csv')) rounds.append(pd.read_csv('2018/data/rodada-9.csv')) rounds.append(pd.read_csv('2018/data/rodada-10.csv')) rounds.append(pd.read_csv('2018/data/rodada-11.csv')) rounds.append(pd.read_csv('2018/data/rodada-12.csv')) rounds.append(pd.read_csv('2018/data/rodada-13.csv')) rounds.append(pd.read_csv('2018/data/rodada-14.csv')) rounds.append(pd.read_csv('2018/data/rodada-15.csv')) rounds.append(pd.read_csv('2018/data/rodada-16.csv')) rounds.append(pd.read_csv('2018/data/rodada-17.csv')) rounds.append(pd.read_csv('2018/data/rodada-18.csv')) rounds.append(pd.read_csv('2018/data/rodada-19.csv')) rounds.append(pd.read_csv('2018/data/rodada-20.csv')) rounds.append(pd.read_csv('2018/data/rodada-21.csv')) rounds.append(pd.read_csv('2018/data/rodada-22.csv')) rounds.append(pd.read_csv('2018/data/rodada-23.csv')) rounds.append(
pd.read_csv('2018/data/rodada-24.csv')
pandas.read_csv
import pandas as pd import altair as alt from typing import List from gettext import NullTranslations def calculate_positive_tests_ratio( df: pd.DataFrame, lang: NullTranslations ) -> pd.DataFrame: """ Calculates new column that is the new positive to tests ratio """ _ = lang.gettext daily_tests_df = diff_over_previous_datapoint(df, "data", _("casi_testati")) daily_tests_df[_("positivi_per_tampone_%")] = ( daily_tests_df[_("nuovi_positivi")] / daily_tests_df[_("casi_testati")] * 100 ) return daily_tests_df def get_data() -> pd.DataFrame: """ Gets data from the GitHub repository of the Protezione Civile """ data = pd.read_csv( "https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-regioni/dpc-covid19-ita-regioni.csv" ) # Remove the time and just focus on the date filtered_date_column = data["data"][data["data"].str.len() == 19] data["data"] = ( pd.to_datetime(filtered_date_column).apply(lambda x: x.date()).dropna() ) return data def get_province_data() -> pd.DataFrame: """Gets data from the GitHub repository of the Protezione Civile regarding provinces""" data = pd.read_csv( "https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-province/dpc-covid19-ita-province.csv" ) # Remove the time and just focus on the date filtered_date_column = data["data"][data["data"].str.len() == 19] data["data"] = ( pd.to_datetime(filtered_date_column).apply(lambda x: x.date()).dropna() ) return data def get_features(data: pd.DataFrame) -> List[str]: """ Gets features from data, i.e. all columns except data, stato, codice_regione, denominazione_regione, lat, long """ feature_columns = [ column for column in data.columns if column not in [ "data", "stato", "codice_regione", "denominazione_regione", "lat", "long", "note", ] ] return feature_columns def get_features_provinces(data: pd.DataFrame) -> List[str]: """ Gets features from data, i.e. all columns except data, stato, codice_regione, denominazione_regione, lat, long """ columns = set(data.columns.tolist()) features = columns.difference( [ "data", "stato", "codice_regione", "denominazione_regione", "lat", "long", "note", "sigla_provincia", "denominazione_provincia", "codice_provincia", ] ) return list(features) def formatter(name: str) -> str: if name == "hospitalised_in_ICU": return "Hospitalised in ICU" else: return " ".join(name.capitalize().split("_")) def dataframe_translator(data: pd.DataFrame, lang: NullTranslations) -> pd.DataFrame: """ Translates original column features into language defined """ _ = lang.gettext feature_mapping = { "ricoverati_con_sintomi": _("ricoverati_con_sintomi"), "terapia_intensiva": _("terapia_intensiva"), "totale_ospedalizzati": _("totale_ospedalizzati"), "isolamento_domiciliare": _("isolamento_domiciliare"), "totale_positivi": _("totale_positivi"), "variazione_totale_positivi": _("variazione_totale_positivi"), "nuovi_positivi": _("nuovi_positivi"), "dimessi_guariti": _("dimessi_guariti"), "deceduti": _("deceduti"), "casi_da_sospetto_diagnostico": _("casi_da_sospetto_diagnostico"), "casi_da_screening": _("casi_da_screening"), "totale_casi": _("totale_casi"), "tamponi": _("tamponi"), "casi_testati": _("casi_testati"), "positivi_per_tampone_%": _("positivi_per_tampone_%"), } data.columns = [ feature_mapping[feature] if feature in feature_mapping else feature for feature in data.columns ] return data def calculate_growth_factor( data: pd.DataFrame, features: List[str], prefix: str = "growth_factor" ) -> pd.DataFrame: for feature in features: data[f"{feature}_yesterday"] = data[feature].shift() data[f"{prefix}_{feature}"] = data[feature] / data[f"{feature}_yesterday"] return data def regional_growth_factor( data: pd.DataFrame, features: List[str], prefix: str = "growth_factor" ) -> pd.DataFrame: regions_raw = [] for region_name, region in data.groupby("denominazione_regione"): region = region.sort_values("data") region = calculate_growth_factor(region, features, prefix=prefix) regions_raw.append(region) data =
pd.concat(regions_raw)
pandas.concat
#%load_ext autoreload #%autoreload 2 import dataclasses import glob import logging import os import shutil import warnings from dataclasses import dataclass from datetime import datetime, timedelta from typing import Dict, List, Optional, Tuple import numpy as np import pandas as pd from scipy.sparse.csr import csr_matrix from psykoda import detection, feature_extraction, preprocess, utils from psykoda.constants import COMMANDLINE_DATE_FORMAT, col from psykoda.io import labeled, reporting logger = logging.getLogger(__name__) to_stderr = {"_log_err": True} FILENAME_WEIGHT = "best_weight.h5" FILENAME_IDF_SID = "idf_sid.csv" FILENAME_IDF_DPORT = "idf_dport.csv" FILENAME_PLOT_DETECTION = "plot_detection.png" FILENAME_STATS = "stats.json" FILENAME_REPORT = "report.csv" FILENAME_FEATURE_MATRIX = "feature_matrix.csv" def configure_logging(debug: bool): """ Configure execution log settings. Parameters ---------- debug Whether to log "debug levels". """ PATH_LOG = "./log/log_" + datetime.strftime(datetime.today(), "%Y-%m-%d") + ".log" os.makedirs(os.path.dirname(PATH_LOG), exist_ok=True) log_level = logging.INFO if debug: log_level = logging.DEBUG # utilities stderr_filter = lambda record: getattr(record, "_log_err", False) # app config stderr_handler = logging.StreamHandler() stderr_handler.addFilter(stderr_filter) stderr_handler.setLevel(logging.INFO) stderr_handler.setFormatter(logging.Formatter("%(message)s")) handlers = [stderr_handler] logfile_handler = logging.FileHandler(PATH_LOG) logfile_handler.setLevel(logging.DEBUG) logfile_handler.setFormatter( logging.Formatter( "%(asctime)s %(levelname)-8s [%(module)s # %(funcName)s line %(lineno)d] %(message)s" ) ) handlers.append(logfile_handler) logging.basicConfig(handlers=handlers, level=log_level) class Incomplete_Args_Exception(Exception): pass load_config = utils.load_json @dataclass class OutputConfig: dir: str share_dir: Optional[str] subdir: Optional[str] @dataclass class PreprocessConfig: exclude_lists: Optional[str] screening: preprocess.ScreeningConfig @dataclass class InputConfig: dir: str @dataclasses.dataclass class LoadPreviousConfigItem: list: Optional[str] ndate: int = 730 @dataclasses.dataclass class LoadPreviousConfig: """ Log loading settings. Parameters ---------- list path to CSV file in which labeled IP addresses are listed ndate time range for labeled IP addresses, in days """ known_normal: Optional[LoadPreviousConfigItem] known_anomaly: Optional[LoadPreviousConfigItem] unknown: Optional[LoadPreviousConfigItem] @dataclass class PreviousConfig: load: LoadPreviousConfig log: labeled.Config @dataclass class IOConfig: input: InputConfig previous: PreviousConfig output: OutputConfig @dataclass class Service: """Service definition: set of destination port numbers Examples -------- >>> all = Service() >>> ssh = Service(include=[22]) >>> all_but_ssh = Service(exclude=[22]) >>> ssh_or_https = Service(include=[22, 443]) """ include: Optional[List[int]] exclude: Optional[List[int]] @dataclass class Subnet: """Subnet configuration: set of CIDR-formatted IP addresses with services to analyze Examples -------- >>> private_A = Subnet(["10.0.0.0/8"], get_names_of_services_from_config()) >>> private = Subnet(["private-A", "private-B", "private-C"], get_names_of_services_from_config()) # these constants are available for convenience and readability >>> my_network = Subnet(["10.0.0.0/16", "10.1.1.0/24"], get_names_of_services_from_config()) """ cidrs: List[str] services: List[str] @dataclass class DetectionUnitConfig: """Detection unit configuration Parameters ---------- services map from names of service to service definitions subnets map from names of subnet to subnet configurations """ services: Dict[str, Service] subnets: Dict[str, Subnet] @dataclass class TargetPeriod: days: int = 30 @dataclass class ArgumentsConfig: """Arguments modification configuration Parameters ---------- target_period: default target period used to determine date_from and date_to values if missing. """ target_period: TargetPeriod def set_default_date_detect(args, config: ArgumentsConfig): """ Configure training from/to dates according to args and config. Parameters ---------- args Command line args. config Settings for arguments. Returns ------- args Command line args with training from/to dates added. """ date_time_today = datetime.today() if args.date_from is None: args.date_from = date_time_today - timedelta(config.target_period.days) if args.date_to is None: args.date_to = date_time_today - timedelta(1) args.date_from_training = args.date_from - timedelta(args.period_train) args.date_to_training = args.date_from - timedelta(1) return args @dataclass class SkipDetectionConfig: train: int test: int @dataclass class ThresholdConfig: num_anomaly: int min_score: float @dataclass class AnomalyDetectionConfig: required_srcip: SkipDetectionConfig deepsad: detection.DeepSAD.Config train: detection.DeepSAD.TrainConfig threshold: ThresholdConfig @dataclasses.dataclass class DetectConfig: arguments: ArgumentsConfig detection_units: DetectionUnitConfig io: IOConfig preprocess: PreprocessConfig feature_extraction: feature_extraction.FeatureExtractionConfig anomaly_detection: AnomalyDetectionConfig def main_detection(args, config: DetectConfig, log: pd.DataFrame, label: pd.Series): """ Parameters ---------- args config log :index: :columns: label filled with 1 :index: """ dir_report = os.path.join(config.io.output.subdir, args.subnet, args.service) os.makedirs(dir_report, exist_ok=True) feature_label = main_detection_prepare_data( args, config.feature_extraction, log, label ) if feature_label is None: return feature_label.idf_sid.to_csv(os.path.join(dir_report, FILENAME_IDF_SID)) feature_label.idf_dport.to_csv(os.path.join(dir_report, FILENAME_IDF_DPORT)) train_test_splitted, x_train_labeled = main_detection_after_prepare_data( args, label, feature_label ) stats = main_detection_skip_or_detect( args, log, label, dir_report, feature_label, train_test_splitted, x_train_labeled, anomaly_detection_config=config.anomaly_detection, previous_config=config.io.previous.log, ) utils.save_json(stats, path=os.path.join(dir_report, FILENAME_STATS)) def main_detection_prepare_data( args, config: feature_extraction.FeatureExtractionConfig, log: pd.DataFrame, label: pd.Series, ) -> Optional[feature_extraction.FeatureLabel]: """Feature extraction""" logger.info("start detect on subnet %s and service %s", args.subnet, args.service) if len(log) == 0: logger.info("skip analysis; no logs exist") return None logger.info("extracting features") feature_label = feature_extraction.feature_extraction_all( log=log, iptable=pd.read_csv(config.address_to_location), idf_config=config.idf, ) if feature_label is None: logger.info("skip analysis; feature matrix is None") return None feature_label.extract_nonzeros() label = label.loc[label.index & feature_label.index] feature_label.put_labels(labeled_samples=label) feature_label.feature = feature_label.feature / feature_label.feature.max() return feature_label def main_detection_after_prepare_data( args, label: pd.Series, feature_label: feature_extraction.FeatureLabel ): """Split data and construct labeled training feature.""" train_test_splitted = feature_label.split_train_test(args.date_to_training) idx_labeled = [ feature_label.index.index(sample) for sample in label.index if sample in feature_label.index ] x_train_labeled = feature_label.feature[idx_labeled] return train_test_splitted, x_train_labeled def main_detection_skip_or_detect( args, log: pd.DataFrame, label: pd.Series, dir_report: str, feature_label: feature_extraction.FeatureLabel, train_test_splitted, x_train_labeled: csr_matrix, anomaly_detection_config: AnomalyDetectionConfig, previous_config: labeled.Config, ) -> dict: """Anomaly detection and output the result.""" x_train, y_train, x_test, index_test = train_test_splitted stats = { "subnet": args.subnet, "service": args.service, "date_from": args.date_from, "date_to": args.date_to, "num_samples_st_detection": len(index_test), "num_samples_training": len(y_train), "date_from_training": args.date_from_training, "date_to_training": args.date_to_training, "num_samples_labeled": x_train_labeled.shape[0], "samples_labeled": label.index.tolist(), } logger.info("stats: %s", stats) if len(y_train) < anomaly_detection_config.required_srcip.train: skip_message = f"#src_ip[train] = {len(y_train)} < config.anomaly_detection.required_srcip.train = {anomaly_detection_config.required_srcip.train}" logger.info(skip_message) stats["skipped"] = skip_message return stats if len(index_test) < anomaly_detection_config.required_srcip.test: skip_message = f"#src_ip[test] = {len(index_test)} < config.anomaly_detection.required_srcip.test = {anomaly_detection_config.required_srcip.test}" logger.info(skip_message) stats["skipped"] = skip_message return stats logger.info("training detector") verbose = 1 if logger.root.level < 20 else 0 detector = detection.DeepSAD(anomaly_detection_config.deepsad) detector.train( X=x_train, y=y_train, path_model=os.path.join(dir_report, FILENAME_WEIGHT), config=anomaly_detection_config.train, verbose=verbose, ) logger.info("outputting detection reports") anomaly_score = detector.compute_anomaly_score(x_test, scale=True) num_anomaly = min( sum(anomaly_score > anomaly_detection_config.threshold.min_score), anomaly_detection_config.threshold.num_anomaly, ) idx_sorted = np.argsort(anomaly_score)[::-1].tolist() idx_anomaly = idx_sorted[:num_anomaly] anomaly_score_sorted = pd.Series( anomaly_score[idx_sorted], index=pd.MultiIndex.from_tuples( [index_test[i] for i in idx_sorted], names=(col.DATETIME_ROUNDED, col.SRC_IP), ), name="anomaly_score", ) x_test_embeddings = detector.compute_embeddings(x_test) x_train_labeled_embeddings = detector.compute_embeddings(x_train_labeled) shap_value_idx_sorted = detector.explain_anomaly( x_test[idx_anomaly], background_samples=x_train ) shap_value_idx_sorted = pd.DataFrame( shap_value_idx_sorted, index=pd.MultiIndex.from_tuples( [index_test[i] for i in idx_anomaly], names=(col.DATETIME_ROUNDED, col.SRC_IP), ), columns=feature_label.columns, ) stats = output_result( args, log, label, dir_report, x_train_labeled_embeddings=x_train_labeled_embeddings, x_test_embeddings=x_test_embeddings, idx_anomaly=idx_anomaly, shap_value_idx_sorted=shap_value_idx_sorted, anomaly_score_sorted=anomaly_score_sorted, stats=stats, previous_config=previous_config, ) if args.debug: if isinstance(x_test, csr_matrix): x_test = x_test.toarray() ret = pd.DataFrame(x_test, index=index_test, columns=feature_label.columns) ret = ret.iloc[idx_sorted] ret.to_csv(os.path.join(dir_report, FILENAME_FEATURE_MATRIX)) return stats def output_result( args, log: pd.DataFrame, label: pd.Series, dir_report: str, *, x_train_labeled_embeddings, x_test_embeddings, idx_anomaly, shap_value_idx_sorted, anomaly_score_sorted, stats: dict, previous_config: labeled.Config, ): """Plot the detection result and output the report.""" reporting.plot.plot_detection( X=x_test_embeddings, idx_anomaly=idx_anomaly, name_anomaly=shap_value_idx_sorted.index, X_labeled=x_train_labeled_embeddings, name_labeled=label.index, path_saved=os.path.join(dir_report, FILENAME_PLOT_DETECTION), no_plot=args.no_plot, ) detection.detection_report( anomaly_score_sorted, shap_value_idx_sorted, shap_top_k=5, ).to_csv(os.path.join(dir_report, FILENAME_REPORT)) labeled.factory(previous_config)[1].save_previous_log( df=log, entries=shap_value_idx_sorted.index, ) stats["num_anomaly"] = len(idx_anomaly) stats["name_anomaly"] = shap_value_idx_sorted.index.tolist() logger.info( "successfully finish detection on subnet %s and service %s\n", args.subnet, args.service, ) return stats def report_all(path_list_stats: List[str], path_save: str): """ Summarizing all reports and save it. Parameters ---------- path_list_stats : list List of stats file paths path_save : str File path where the report will be saved """ os.makedirs(os.path.dirname(path_save), exist_ok=True) logger.info("summarizing all reports...") results_pd = pd.DataFrame( [], columns=["datetime_rounded", "src_ip", "subnet", "service"] ) idx = 0 for path in path_list_stats: # Load stats stats = utils.load_json(path) subnet, service = stats["subnet"], stats["service"] try: anomaly_list = stats["name_anomaly"] except (KeyError, TypeError): continue if not anomaly_list: continue # Load report path_report = path.replace(FILENAME_STATS, FILENAME_REPORT) report = pd.read_csv(path_report, index_col=[0, 1], parse_dates=[0]) logger.info(report.index) # Store anomalies in the DataFrame for (dt, src_ip) in anomaly_list: logger.info((dt, src_ip)) results_pd.loc[idx] = [dt, src_ip, subnet, service] if idx == 0: results_shaps = pd.DataFrame([], columns=report.columns) results_shaps.loc[idx] = report.loc[(dt, src_ip)] idx += 1 anomaly_found = idx > 0 if anomaly_found: # Anomaly found results_pd = pd.concat([results_pd, results_shaps], axis=1) results_pd = results_pd.sort_values( ["anomaly_score", "datetime_rounded"], ascending=False ) keys = results_pd["src_ip"].unique() results_pd_group = results_pd.groupby("src_ip") ret = pd.DataFrame([]) for key in keys: ret = pd.concat([ret, results_pd_group.get_group(key)]) ret.round(4).to_csv(path_save, index=False) else: # Anomaly not found
pd.DataFrame([["no anomaly found"]])
pandas.DataFrame
import os import numpy as np import pandas as pd from pkg_resources import resource_filename def load_arrests(return_X_y=False, give_pandas=False): """ Loads the arrests dataset which can serve as a benchmark for fairness. It is data on the police treatment of individuals arrested in Toronto for simple possession of small quantities of marijuana. The goal is to predict whether or not the arrestee was released with a summons while maintaining a degree of fairness. :param return_X_y: If True, returns ``(data, target)`` instead of a dict object. :param give_pandas: give the pandas dataframe instead of X, y matrices (default=False) :Example: >>> from sklego.datasets import load_arrests >>> X, y = load_arrests(return_X_y=True) >>> X.shape (5226, 7) >>> y.shape (5226,) >>> load_arrests(give_pandas=True).columns Index(['released', 'colour', 'year', 'age', 'sex', 'employed', 'citizen', 'checks'], dtype='object') The dataset was copied from the carData R package and can originally be found in: - Personal communication from <NAME>, York University. The documentation page of the dataset from the package can be viewed here: http://vincentarelbundock.github.io/Rdatasets/doc/carData/Arrests.html """ filepath = resource_filename("sklego", os.path.join("data", "arrests.zip")) df = pd.read_csv(filepath) if give_pandas: return df X, y = ( df[["colour", "year", "age", "sex", "employed", "citizen", "checks"]].values, df["released"].values, ) if return_X_y: return X, y return {"data": X, "target": y} def load_chicken(return_X_y=False, give_pandas=False): """ Loads the chicken dataset. The chicken data has 578 rows and 4 columns from an experiment on the effect of diet on early growth of chicks. The body weights of the chicks were measured at birth and every second day thereafter until day 20. They were also measured on day 21. There were four groups on chicks on different protein diets. :param return_X_y: If True, returns ``(data, target)`` instead of a dict object. :param give_pandas: give the pandas dataframe instead of X, y matrices (default=False) :Example: >>> from sklego.datasets import load_chicken >>> X, y = load_chicken(return_X_y=True) >>> X.shape (578, 3) >>> y.shape (578,) >>> load_chicken(give_pandas=True).columns Index(['weight', 'time', 'chick', 'diet'], dtype='object') The datasets can be found in the following sources: - Crowder, M. and <NAME>. (1990), Analysis of Repeated Measures, Chapman and Hall (example 5.3) - Hand, D. and <NAME>. (1996), Practical Longitudinal Data Analysis, Chapman and Hall (table A.2) """ filepath = resource_filename("sklego", os.path.join("data", "chickweight.zip")) df = pd.read_csv(filepath) if give_pandas: return df if give_pandas: return df X, y = df[["time", "diet", "chick"]].values, df["weight"].values if return_X_y: return X, y return {"data": X, "target": y} def load_abalone(return_X_y=False, give_pandas=False): """ Loads the abalone dataset where the goal is to predict the gender of the creature. :param return_X_y: If True, returns ``(data, target)`` instead of a dict object. :param give_pandas: give the pandas dataframe instead of X, y matrices (default=False) :Example: >>> from sklego.datasets import load_abalone >>> X, y = load_abalone(return_X_y=True) >>> X.shape (4177, 8) >>> y.shape (4177,) >>> load_abalone(give_pandas=True).columns Index(['sex', 'length', 'diameter', 'height', 'whole_weight', 'shucked_weight', 'viscera_weight', 'shell_weight', 'rings'], dtype='object') The dataset was copied from Kaggle and can originally be found in: can be found in the following sources: - <NAME>, <NAME>, <NAME>, <NAME> and <NAME> (1994) "The Population Biology of Abalone (_Haliotis_ species) in Tasmania." Sea Fisheries Division, Technical Report No. 48 (ISSN 1034-3288) """ filepath = resource_filename("sklego", os.path.join("data", "abalone.zip")) df = pd.read_csv(filepath) if give_pandas: return df X = df[ [ "length", "diameter", "height", "whole_weight", "shucked_weight", "viscera_weight", "shell_weight", "rings", ] ].values y = df["sex"].values if return_X_y: return X, y return {"data": X, "target": y} def load_heroes(return_X_y=False, give_pandas=False): """ A dataset from a video game: "heroes of the storm". The goal of the dataset is to predict the attack type. Note that the pandas dataset returns more information. This is because we wanted to keep the X simple in the return_X_y case. :param return_X_y: If True, returns ``(data, target)`` instead of a dict object. :param give_pandas: give the pandas dataframe instead of X, y matrices (default=False) :Example: >>> X, y = load_heroes(return_X_y=True) >>> X.shape (84, 2) >>> y.shape (84,) >>> df = load_heroes(give_pandas=True) >>> df.columns Index(['name', 'attack_type', 'role', 'health', 'attack', 'attack_spd'], dtype='object') """ filepath = resource_filename("sklego", os.path.join("data", "heroes.zip")) df = pd.read_csv(filepath) if give_pandas: return df X = df[["health", "attack"]].values y = df["attack_type"].values if return_X_y: return X, y return {"data": X, "target": y} def make_simpleseries( n_samples=365 * 5, trend=0.001, season_trend=0.001, noise=0.5, give_pandas=False, seed=None, stack_noise=False, start_date=None, ): """ Generate a very simple timeseries dataset to play with. The generator assumes to generate daily data with a season, trend and noise. :param n_samples: The number of days to simulate the timeseries for. :param trend: The long term trend in the dataset. :param season_trend: The long term trend in the seasonality. :param noise: The noise that is applied to the dataset. :param give_pandas: Return a pandas dataframe instead of a numpy array. :param seed: The seed value for the randomness. :param stack_noise: Set the noise to be stacked by a cumulative sum. :param start_date: Also add a start date (only works if `give_pandas`=True). :return: numpy array unless dataframe is specified :Example: >>> from sklego.datasets import make_simpleseries >>> make_simpleseries(seed=42) array([-0.34078806, -0.61828731, -0.18458236, ..., -0.27547402, -0.38237413, 0.13489355]) >>> make_simpleseries(give_pandas=True, start_date="2018-01-01", seed=42).head(3) yt date 0 -0.340788 2018-01-01 1 -0.618287 2018-01-02 2 -0.184582 2018-01-03 """ if seed: np.random.seed(seed) time = np.arange(0, n_samples) noise = np.random.normal(0, noise, n_samples) if stack_noise: noise = noise.cumsum() r1, r2 = np.random.normal(0, 1, 2) seasonality = r1 * np.sin(time / 365 * 2 * np.pi) + r2 * np.cos( time / 365 * 4 * np.pi + 1 ) result = seasonality + season_trend * seasonality * time + trend * time + noise if give_pandas: if start_date: stamps = pd.date_range(start_date, periods=n_samples) return pd.DataFrame({"yt": result, "date": stamps}) return
pd.DataFrame({"yt": result})
pandas.DataFrame
from copy import copy, deepcopy from textwrap import dedent try: import cPickle as pickle except ImportError: import pickle import numpy as np import pandas as pd from xray import (align, concat, conventions, backends, Dataset, DataArray, Variable, Coordinate) from xray.core import indexing, utils from xray.core.pycompat import iteritems, OrderedDict from . import TestCase, unittest def create_test_data(seed=None): rs = np.random.RandomState(seed) _vars = {'var1': ['dim1', 'dim2'], 'var2': ['dim1', 'dim2'], 'var3': ['dim3', 'dim1']} _dims = {'dim1': 8, 'dim2': 9, 'dim3': 10} obj = Dataset() obj['time'] = ('time', pd.date_range('2000-01-01', periods=20)) obj['dim1'] = ('dim1', np.arange(_dims['dim1'])) obj['dim2'] = ('dim2', 0.5 * np.arange(_dims['dim2'])) obj['dim3'] = ('dim3', list('abcdefghij')) for v, dims in sorted(_vars.items()): data = rs.normal(size=tuple(_dims[d] for d in dims)) obj[v] = (dims, data, {'foo': 'variable'}) obj.coords['numbers'] = ('dim3', [0, 1, 2, 0, 0, 1, 1, 2, 2, 3]) return obj class UnexpectedDataAccess(Exception): pass class InaccessibleArray(utils.NDArrayMixin): def __init__(self, array): self.array = array def __getitem__(self, key): raise UnexpectedDataAccess("Tried accessing data") class InaccessibleVariableDataStore(backends.InMemoryDataStore): def get_variables(self): def lazy_inaccessible(x): data = indexing.LazilyIndexedArray(InaccessibleArray(x.values)) return Variable(x.dims, data, x.attrs) return dict((k, lazy_inaccessible(v)) for k, v in iteritems(self._variables)) class TestDataset(TestCase): def test_repr(self): data = create_test_data(seed=123) data.attrs['foo'] = 'bar' # need to insert str dtype at runtime to handle both Python 2 & 3 expected = dedent("""\ <xray.Dataset> Dimensions: (dim1: 8, dim2: 9, dim3: 10, time: 20) Coordinates: * dim1 (dim1) int64 0 1 2 3 4 5 6 7 * dim2 (dim2) float64 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 * dim3 (dim3) %s 'a' 'b' 'c' 'd' 'e' 'f' 'g' 'h' 'i' 'j' * time (time) datetime64[ns] 2000-01-01 2000-01-02 2000-01-03 2000-01-04 ... numbers (dim3) int64 0 1 2 0 0 1 1 2 2 3 Data variables: var1 (dim1, dim2) float64 -1.086 0.9973 0.283 -1.506 -0.5786 1.651 -2.427 -0.4289 ... var2 (dim1, dim2) float64 1.162 -1.097 -2.123 1.04 -0.4034 -0.126 -0.8375 -1.606 ... var3 (dim3, dim1) float64 0.5565 -0.2121 0.4563 1.545 -0.2397 0.1433 0.2538 ... Attributes: foo: bar""") % data['dim3'].dtype actual = '\n'.join(x.rstrip() for x in repr(data).split('\n')) print(actual) expected = dedent("""\ <xray.Dataset> Dimensions: () Coordinates: *empty* Data variables: *empty*""") actual = '\n'.join(x.rstrip() for x in repr(Dataset()).split('\n')) print(actual) self.assertEqual(expected, actual) # verify that ... doesn't appear for scalar coordinates data = Dataset({'foo': ('x', np.ones(10))}).mean() expected = dedent("""\ <xray.Dataset> Dimensions: () Coordinates: *empty* Data variables: foo float64 1.0""") actual = '\n'.join(x.rstrip() for x in repr(data).split('\n')) print(actual) self.assertEqual(expected, actual) # verify long attributes are truncated data = Dataset(attrs={'foo': 'bar' * 1000}) self.assertTrue(len(repr(data)) < 1000) def test_constructor(self): x1 = ('x', 2 * np.arange(100)) x2 = ('x', np.arange(1000)) z = (['x', 'y'], np.arange(1000).reshape(100, 10)) with self.assertRaisesRegexp(ValueError, 'conflicting sizes'): Dataset({'a': x1, 'b': x2}) with self.assertRaisesRegexp(ValueError, 'must be defined with 1-d'): Dataset({'a': x1, 'x': z}) # verify handling of DataArrays expected = Dataset({'x': x1, 'z': z}) actual = Dataset({'z': expected['z']}) self.assertDatasetIdentical(expected, actual) def test_constructor_1d(self): expected = Dataset({'x': (['x'], 5.0 + np.arange(5))}) actual = Dataset({'x': 5.0 + np.arange(5)}) self.assertDatasetIdentical(expected, actual) actual = Dataset({'x': [5, 6, 7, 8, 9]}) self.assertDatasetIdentical(expected, actual) def test_constructor_0d(self): expected = Dataset({'x': ([], 1)}) for arg in [1, np.array(1), expected['x']]: actual = Dataset({'x': arg}) self.assertDatasetIdentical(expected, actual) d = pd.Timestamp('2000-01-01T12') args = [True, None, 3.4, np.nan, 'hello', u'uni', b'raw', np.datetime64('2000-01-01T00'), d, d.to_datetime()] for arg in args: print(arg) expected = Dataset({'x': ([], arg)}) actual = Dataset({'x': arg}) self.assertDatasetIdentical(expected, actual) def test_constructor_auto_align(self): a = DataArray([1, 2], [('x', [0, 1])]) b = DataArray([3, 4], [('x', [1, 2])]) # verify align uses outer join expected = Dataset({'a': ('x', [1, 2, np.nan]), 'b': ('x', [np.nan, 3, 4])}) actual = Dataset({'a': a, 'b': b}) self.assertDatasetIdentical(expected, actual) # regression test for GH346 self.assertIsInstance(actual.variables['x'], Coordinate) # variable with different dimensions c = ('y', [3, 4]) expected2 = expected.merge({'c': c}) actual = Dataset({'a': a, 'b': b, 'c': c}) self.assertDatasetIdentical(expected2, actual) # variable that is only aligned against the aligned variables d = ('x', [3, 2, 1]) expected3 = expected.merge({'d': d}) actual = Dataset({'a': a, 'b': b, 'd': d}) self.assertDatasetIdentical(expected3, actual) e = ('x', [0, 0]) with self.assertRaisesRegexp(ValueError, 'conflicting sizes'): Dataset({'a': a, 'b': b, 'e': e}) def test_constructor_compat(self): data = OrderedDict([('x', DataArray(0, coords={'y': 1})), ('y', ('z', [1, 1, 1]))]) with self.assertRaisesRegexp(ValueError, 'conflicting value'): Dataset(data, compat='equals') expected = Dataset({'x': 0}, {'y': ('z', [1, 1, 1])}) actual = Dataset(data) self.assertDatasetIdentical(expected, actual) actual = Dataset(data, compat='broadcast_equals') self.assertDatasetIdentical(expected, actual) data = OrderedDict([('y', ('z', [1, 1, 1])), ('x', DataArray(0, coords={'y': 1}))]) actual = Dataset(data) self.assertDatasetIdentical(expected, actual) original = Dataset({'a': (('x', 'y'), np.ones((2, 3)))}, {'c': (('x', 'y'), np.zeros((2, 3)))}) expected = Dataset({'a': ('x', np.ones(2)), 'b': ('y', np.ones(3))}, {'c': (('x', 'y'), np.zeros((2, 3)))}) # use an OrderedDict to ensure test results are reproducible; otherwise # the order of appearance of x and y matters for the order of # dimensions in 'c' actual = Dataset(OrderedDict([('a', original['a'][:, 0].drop('y')), ('b', original['a'][0].drop('x'))])) self.assertDatasetIdentical(expected, actual) data = {'x': DataArray(0, coords={'y': 3}), 'y': ('z', [1, 1, 1])} with self.assertRaisesRegexp(ValueError, 'conflicting value'): Dataset(data) def test_constructor_with_coords(self): with self.assertRaisesRegexp(ValueError, 'redundant variables and co'): Dataset({'a': ('x', [1])}, {'a': ('x', [1])}) ds = Dataset({}, {'a': ('x', [1])}) self.assertFalse(ds.data_vars) self.assertItemsEqual(ds.coords.keys(), ['x', 'a']) def test_properties(self): ds = create_test_data() self.assertEqual(ds.dims, {'dim1': 8, 'dim2': 9, 'dim3': 10, 'time': 20}) self.assertItemsEqual(ds, list(ds.variables)) self.assertItemsEqual(ds.keys(), list(ds.variables)) self.assertEqual(len(ds), 8) self.assertItemsEqual(ds.data_vars, ['var1', 'var2', 'var3']) self.assertItemsEqual(ds.data_vars.keys(), ['var1', 'var2', 'var3']) self.assertIn('var1', ds.data_vars) self.assertNotIn('dim1', ds.data_vars) self.assertNotIn('numbers', ds.data_vars) self.assertEqual(len(ds.data_vars), 3) self.assertItemsEqual(ds.indexes, ['dim1', 'dim2', 'dim3', 'time']) self.assertEqual(len(ds.indexes), 4) self.assertItemsEqual(ds.coords, ['time', 'dim1', 'dim2', 'dim3', 'numbers']) self.assertIn('dim1', ds.coords) self.assertIn('numbers', ds.coords) self.assertNotIn('var1', ds.coords) self.assertEqual(len(ds.coords), 5) def test_attr_access(self): ds = Dataset({'tmin': ('x', [42], {'units': 'Celcius'})}, attrs={'title': 'My test data'}) self.assertDataArrayIdentical(ds.tmin, ds['tmin']) self.assertDataArrayIdentical(ds.tmin.x, ds.x) self.assertEqual(ds.title, ds.attrs['title']) self.assertEqual(ds.tmin.units, ds['tmin'].attrs['units']) self.assertLessEqual(set(['tmin', 'title']), set(dir(ds))) self.assertIn('units', set(dir(ds.tmin))) # should defer to variable of same name ds.attrs['tmin'] = -999 self.assertEqual(ds.attrs['tmin'], -999) self.assertDataArrayIdentical(ds.tmin, ds['tmin']) def test_variable(self): a = Dataset() d = np.random.random((10, 3)) a['foo'] = (('time', 'x',), d) self.assertTrue('foo' in a.variables) self.assertTrue('foo' in a) a['bar'] = (('time', 'x',), d) # order of creation is preserved self.assertEqual(list(a), ['foo', 'time', 'x', 'bar']) self.assertTrue(all([a['foo'][i].values == d[i] for i in np.ndindex(*d.shape)])) # try to add variable with dim (10,3) with data that's (3,10) with self.assertRaises(ValueError): a['qux'] = (('time', 'x'), d.T) def test_modify_inplace(self): a = Dataset() vec = np.random.random((10,)) attributes = {'foo': 'bar'} a['x'] = ('x', vec, attributes) self.assertTrue('x' in a.coords) self.assertIsInstance(a.coords['x'].to_index(), pd.Index) self.assertVariableIdentical(a.coords['x'], a.variables['x']) b = Dataset() b['x'] = ('x', vec, attributes) self.assertVariableIdentical(a['x'], b['x']) self.assertEqual(a.dims, b.dims) # this should work a['x'] = ('x', vec[:5]) a['z'] = ('x', np.arange(5)) with self.assertRaises(ValueError): # now it shouldn't, since there is a conflicting length a['x'] = ('x', vec[:4]) arr = np.random.random((10, 1,)) scal = np.array(0) with self.assertRaises(ValueError): a['y'] = ('y', arr) with self.assertRaises(ValueError): a['y'] = ('y', scal) self.assertTrue('y' not in a.dims) def test_coords_properties(self): # use an OrderedDict for coordinates to ensure order across python # versions # use int64 for repr consistency on windows data = Dataset(OrderedDict([('x', ('x', np.array([-1, -2], 'int64'))), ('y', ('y', np.array([0, 1, 2], 'int64'))), ('foo', (['x', 'y'], np.random.randn(2, 3)))]), OrderedDict([('a', ('x', np.array([4, 5], 'int64'))), ('b', np.int64(-10))])) self.assertEqual(4, len(data.coords)) self.assertItemsEqual(['x', 'y', 'a', 'b'], list(data.coords)) self.assertVariableIdentical(data.coords['x'], data['x'].variable) self.assertVariableIdentical(data.coords['y'], data['y'].variable) self.assertIn('x', data.coords) self.assertIn('a', data.coords) self.assertNotIn(0, data.coords) self.assertNotIn('foo', data.coords) with self.assertRaises(KeyError): data.coords['foo'] with self.assertRaises(KeyError): data.coords[0] expected = dedent("""\ Coordinates: * x (x) int64 -1 -2 * y (y) int64 0 1 2 a (x) int64 4 5 b int64 -10""") actual = repr(data.coords) self.assertEqual(expected, actual) self.assertEqual({'x': 2, 'y': 3}, data.coords.dims) def test_coords_modify(self): data = Dataset({'x': ('x', [-1, -2]), 'y': ('y', [0, 1, 2]), 'foo': (['x', 'y'], np.random.randn(2, 3))}, {'a': ('x', [4, 5]), 'b': -10}) actual = data.copy(deep=True) actual.coords['x'] = ('x', ['a', 'b']) self.assertArrayEqual(actual['x'], ['a', 'b']) actual = data.copy(deep=True) actual.coords['z'] = ('z', ['a', 'b']) self.assertArrayEqual(actual['z'], ['a', 'b']) with self.assertRaisesRegexp(ValueError, 'conflicting sizes'): data.coords['x'] = ('x', [-1]) actual = data.copy() del actual.coords['b'] expected = data.reset_coords('b', drop=True) self.assertDatasetIdentical(expected, actual) with self.assertRaises(KeyError): del data.coords['not_found'] with self.assertRaises(KeyError): del data.coords['foo'] def test_coords_set(self): one_coord = Dataset({'x': ('x', [0]), 'yy': ('x', [1]), 'zzz': ('x', [2])}) two_coords = Dataset({'zzz': ('x', [2])}, {'x': ('x', [0]), 'yy': ('x', [1])}) all_coords = Dataset(coords={'x': ('x', [0]), 'yy': ('x', [1]), 'zzz': ('x', [2])}) actual = one_coord.set_coords('x') self.assertDatasetIdentical(one_coord, actual) actual = one_coord.set_coords(['x']) self.assertDatasetIdentical(one_coord, actual) actual = one_coord.set_coords('yy') self.assertDatasetIdentical(two_coords, actual) actual = one_coord.set_coords(['yy', 'zzz']) self.assertDatasetIdentical(all_coords, actual) actual = one_coord.reset_coords() self.assertDatasetIdentical(one_coord, actual) actual = two_coords.reset_coords() self.assertDatasetIdentical(one_coord, actual) actual = all_coords.reset_coords() self.assertDatasetIdentical(one_coord, actual) actual = all_coords.reset_coords(['yy', 'zzz']) self.assertDatasetIdentical(one_coord, actual) actual = all_coords.reset_coords('zzz') self.assertDatasetIdentical(two_coords, actual) with self.assertRaisesRegexp(ValueError, 'cannot remove index'): one_coord.reset_coords('x') actual = all_coords.reset_coords('zzz', drop=True) expected = all_coords.drop('zzz') self.assertDatasetIdentical(expected, actual) expected = two_coords.drop('zzz') self.assertDatasetIdentical(expected, actual) def test_coords_to_dataset(self): orig = Dataset({'foo': ('y', [-1, 0, 1])}, {'x': 10, 'y': [2, 3, 4]}) expected = Dataset(coords={'x': 10, 'y': [2, 3, 4]}) actual = orig.coords.to_dataset() self.assertDatasetIdentical(expected, actual) def test_coords_merge(self): orig_coords = Dataset(coords={'a': ('x', [1, 2])}).coords other_coords = Dataset(coords={'b': ('x', ['a', 'b'])}).coords expected = Dataset(coords={'a': ('x', [1, 2]), 'b': ('x', ['a', 'b'])}) actual = orig_coords.merge(other_coords) self.assertDatasetIdentical(expected, actual) actual = other_coords.merge(orig_coords) self.assertDatasetIdentical(expected, actual) other_coords = Dataset(coords={'x': ('x', ['a'])}).coords with self.assertRaisesRegexp(ValueError, 'not aligned'): orig_coords.merge(other_coords) other_coords = Dataset(coords={'x': ('x', ['a', 'b'])}).coords with self.assertRaisesRegexp(ValueError, 'not aligned'): orig_coords.merge(other_coords) other_coords = Dataset(coords={'x': ('x', ['a', 'b', 'c'])}).coords with self.assertRaisesRegexp(ValueError, 'not aligned'): orig_coords.merge(other_coords) other_coords = Dataset(coords={'a': ('x', [8, 9])}).coords expected = Dataset(coords={'x': range(2)}) actual = orig_coords.merge(other_coords) self.assertDatasetIdentical(expected, actual) actual = other_coords.merge(orig_coords) self.assertDatasetIdentical(expected, actual) other_coords = Dataset(coords={'x': np.nan}).coords actual = orig_coords.merge(other_coords) self.assertDatasetIdentical(orig_coords.to_dataset(), actual) actual = other_coords.merge(orig_coords) self.assertDatasetIdentical(orig_coords.to_dataset(), actual) def test_coords_merge_mismatched_shape(self): orig_coords = Dataset(coords={'a': ('x', [1, 1])}).coords other_coords = Dataset(coords={'a': 1}).coords expected = orig_coords.to_dataset() actual = orig_coords.merge(other_coords) self.assertDatasetIdentical(expected, actual) other_coords = Dataset(coords={'a': ('y', [1])}).coords expected = Dataset(coords={'a': (['x', 'y'], [[1], [1]])}) actual = orig_coords.merge(other_coords) self.assertDatasetIdentical(expected, actual) actual = other_coords.merge(orig_coords) self.assertDatasetIdentical(expected.T, actual) orig_coords = Dataset(coords={'a': ('x', [np.nan])}).coords other_coords = Dataset(coords={'a': np.nan}).coords expected = orig_coords.to_dataset() actual = orig_coords.merge(other_coords) self.assertDatasetIdentical(expected, actual) def test_equals_and_identical(self): data = create_test_data(seed=42) self.assertTrue(data.equals(data)) self.assertTrue(data.identical(data)) data2 = create_test_data(seed=42) data2.attrs['foobar'] = 'baz' self.assertTrue(data.equals(data2)) self.assertFalse(data.identical(data2)) del data2['time'] self.assertFalse(data.equals(data2)) data = create_test_data(seed=42).rename({'var1': None}) self.assertTrue(data.equals(data)) self.assertTrue(data.identical(data)) data2 = data.reset_coords() self.assertFalse(data2.equals(data)) self.assertFalse(data2.identical(data)) def test_broadcast_equals(self): data1 = Dataset(coords={'x': 0}) data2 = Dataset(coords={'x': [0]}) self.assertTrue(data1.broadcast_equals(data2)) self.assertFalse(data1.equals(data2)) self.assertFalse(data1.identical(data2)) def test_attrs(self): data = create_test_data(seed=42) data.attrs = {'foobar': 'baz'} self.assertTrue(data.attrs['foobar'], 'baz') self.assertIsInstance(data.attrs, OrderedDict) def test_isel(self): data = create_test_data() slicers = {'dim1': slice(None, None, 2), 'dim2': slice(0, 2)} ret = data.isel(**slicers) # Verify that only the specified dimension was altered self.assertItemsEqual(data.dims, ret.dims) for d in data.dims: if d in slicers: self.assertEqual(ret.dims[d], np.arange(data.dims[d])[slicers[d]].size) else: self.assertEqual(data.dims[d], ret.dims[d]) # Verify that the data is what we expect for v in data: self.assertEqual(data[v].dims, ret[v].dims) self.assertEqual(data[v].attrs, ret[v].attrs) slice_list = [slice(None)] * data[v].values.ndim for d, s in iteritems(slicers): if d in data[v].dims: inds = np.nonzero(np.array(data[v].dims) == d)[0] for ind in inds: slice_list[ind] = s expected = data[v].values[slice_list] actual = ret[v].values np.testing.assert_array_equal(expected, actual) with self.assertRaises(ValueError): data.isel(not_a_dim=slice(0, 2)) ret = data.isel(dim1=0) self.assertEqual({'time': 20, 'dim2': 9, 'dim3': 10}, ret.dims) self.assertItemsEqual(data.data_vars, ret.data_vars) self.assertItemsEqual(data.coords, ret.coords) self.assertItemsEqual(data.indexes, list(ret.indexes) + ['dim1']) ret = data.isel(time=slice(2), dim1=0, dim2=slice(5)) self.assertEqual({'time': 2, 'dim2': 5, 'dim3': 10}, ret.dims) self.assertItemsEqual(data.data_vars, ret.data_vars) self.assertItemsEqual(data.coords, ret.coords) self.assertItemsEqual(data.indexes, list(ret.indexes) + ['dim1']) ret = data.isel(time=0, dim1=0, dim2=slice(5)) self.assertItemsEqual({'dim2': 5, 'dim3': 10}, ret.dims) self.assertItemsEqual(data.data_vars, ret.data_vars) self.assertItemsEqual(data.coords, ret.coords) self.assertItemsEqual(data.indexes, list(ret.indexes) + ['dim1', 'time']) def test_sel(self): data = create_test_data() int_slicers = {'dim1': slice(None, None, 2), 'dim2': slice(2), 'dim3': slice(3)} loc_slicers = {'dim1': slice(None, None, 2), 'dim2': slice(0, 0.5), 'dim3': slice('a', 'c')} self.assertDatasetEqual(data.isel(**int_slicers), data.sel(**loc_slicers)) data['time'] = ('time', pd.date_range('2000-01-01', periods=20)) self.assertDatasetEqual(data.isel(time=0), data.sel(time='2000-01-01')) self.assertDatasetEqual(data.isel(time=slice(10)), data.sel(time=slice('2000-01-01', '2000-01-10'))) self.assertDatasetEqual(data, data.sel(time=slice('1999', '2005'))) times = pd.date_range('2000-01-01', periods=3) self.assertDatasetEqual(data.isel(time=slice(3)), data.sel(time=times)) self.assertDatasetEqual(data.isel(time=slice(3)), data.sel(time=(data['time.dayofyear'] <= 3))) td = pd.to_timedelta(np.arange(3), unit='days') data = Dataset({'x': ('td', np.arange(3)), 'td': td}) self.assertDatasetEqual(data, data.sel(td=td)) self.assertDatasetEqual(data, data.sel(td=slice('3 days'))) self.assertDatasetEqual(data.isel(td=0), data.sel(td='0 days')) self.assertDatasetEqual(data.isel(td=0), data.sel(td='0h')) self.assertDatasetEqual(data.isel(td=slice(1, 3)), data.sel(td=slice('1 days', '2 days'))) def test_loc(self): data = create_test_data() expected = data.sel(dim3='a') actual = data.loc[dict(dim3='a')] self.assertDatasetIdentical(expected, actual) with self.assertRaisesRegexp(TypeError, 'can only lookup dict'): data.loc['a'] with self.assertRaises(TypeError): data.loc[dict(dim3='a')] = 0 def test_reindex_like(self): data = create_test_data() data['letters'] = ('dim3', 10 * ['a']) expected = data.isel(dim1=slice(10), time=slice(13)) actual = data.reindex_like(expected) self.assertDatasetIdentical(actual, expected) expected = data.copy(deep=True) expected['dim3'] = ('dim3', list('cdefghijkl')) expected['var3'][:-2] = expected['var3'][2:] expected['var3'][-2:] = np.nan expected['letters'] = expected['letters'].astype(object) expected['letters'][-2:] = np.nan expected['numbers'] = expected['numbers'].astype(float) expected['numbers'][:-2] = expected['numbers'][2:].values expected['numbers'][-2:] = np.nan actual = data.reindex_like(expected) self.assertDatasetIdentical(actual, expected) def test_reindex(self): data = create_test_data() self.assertDatasetIdentical(data, data.reindex()) expected = data.isel(dim1=slice(10)) actual = data.reindex(dim1=data['dim1'][:10]) self.assertDatasetIdentical(actual, expected) actual = data.reindex(dim1=data['dim1'][:10].values) self.assertDatasetIdentical(actual, expected) actual = data.reindex(dim1=data['dim1'][:10].to_index()) self.assertDatasetIdentical(actual, expected) # test dict-like argument actual = data.reindex({'dim1': data['dim1'][:10]}) self.assertDatasetIdentical(actual, expected) with self.assertRaisesRegexp(ValueError, 'cannot specify both'): data.reindex({'x': 0}, x=0) with self.assertRaisesRegexp(ValueError, 'dictionary'): data.reindex('foo') # out of order expected = data.sel(dim1=data['dim1'][:10:-1]) actual = data.reindex(dim1=data['dim1'][:10:-1]) self.assertDatasetIdentical(actual, expected) # regression test for #279 expected = Dataset({'x': ('time', np.random.randn(5))}) time2 = DataArray(np.arange(5), dims="time2") actual = expected.reindex(time=time2) self.assertDatasetIdentical(actual, expected) # another regression test ds = Dataset({'foo': (['x', 'y'], np.zeros((3, 4)))}) expected = Dataset({'foo': (['x', 'y'], np.zeros((3, 2))), 'x': [0, 1, 3]}) expected['foo'][-1] = np.nan actual = ds.reindex(x=[0, 1, 3], y=[0, 1]) self.assertDatasetIdentical(expected, actual) def test_reindex_method(self): ds = Dataset({'x': ('y', [10, 20])}) y = [-0.5, 0.5, 1.5] actual = ds.reindex(y=y, method='backfill') expected = Dataset({'x': ('y', [10, 20, np.nan]), 'y': y}) self.assertDatasetIdentical(expected, actual) actual = ds.reindex(y=y, method='pad') expected = Dataset({'x': ('y', [np.nan, 10, 20]), 'y': y}) self.assertDatasetIdentical(expected, actual) alt = Dataset({'y': y}) actual = ds.reindex_like(alt, method='pad') self.assertDatasetIdentical(expected, actual) def test_align(self): left = create_test_data() right = left.copy(deep=True) right['dim3'] = ('dim3', list('cdefghijkl')) right['var3'][:-2] = right['var3'][2:] right['var3'][-2:] = np.random.randn(*right['var3'][-2:].shape) right['numbers'][:-2] = right['numbers'][2:] right['numbers'][-2:] = -10 intersection = list('cdefghij') union = list('abcdefghijkl') left2, right2 = align(left, right, join='inner') self.assertArrayEqual(left2['dim3'], intersection) self.assertDatasetIdentical(left2, right2) left2, right2 = align(left, right, join='outer') self.assertVariableEqual(left2['dim3'], right2['dim3']) self.assertArrayEqual(left2['dim3'], union) self.assertDatasetIdentical(left2.sel(dim3=intersection), right2.sel(dim3=intersection)) self.assertTrue(np.isnan(left2['var3'][-2:]).all()) self.assertTrue(np.isnan(right2['var3'][:2]).all()) left2, right2 = align(left, right, join='left') self.assertVariableEqual(left2['dim3'], right2['dim3']) self.assertVariableEqual(left2['dim3'], left['dim3']) self.assertDatasetIdentical(left2.sel(dim3=intersection), right2.sel(dim3=intersection)) self.assertTrue(np.isnan(right2['var3'][:2]).all()) left2, right2 = align(left, right, join='right') self.assertVariableEqual(left2['dim3'], right2['dim3']) self.assertVariableEqual(left2['dim3'], right['dim3']) self.assertDatasetIdentical(left2.sel(dim3=intersection), right2.sel(dim3=intersection)) self.assertTrue(np.isnan(left2['var3'][-2:]).all()) def test_variable_indexing(self): data = create_test_data() v = data['var1'] d1 = data['dim1'] d2 = data['dim2'] self.assertVariableEqual(v, v[d1.values]) self.assertVariableEqual(v, v[d1]) self.assertVariableEqual(v[:3], v[d1 < 3]) self.assertVariableEqual(v[:, 3:], v[:, d2 >= 1.5]) self.assertVariableEqual(v[:3, 3:], v[d1 < 3, d2 >= 1.5]) self.assertVariableEqual(v[:3, :2], v[range(3), range(2)]) self.assertVariableEqual(v[:3, :2], v.loc[d1[:3], d2[:2]]) def test_drop_variables(self): data = create_test_data() self.assertDatasetIdentical(data, data.drop([])) expected = Dataset(dict((k, data[k]) for k in data if k != 'time')) actual = data.drop('time') self.assertDatasetIdentical(expected, actual) actual = data.drop(['time']) self.assertDatasetIdentical(expected, actual) expected = Dataset(dict((k, data[k]) for k in ['dim2', 'dim3', 'time', 'numbers'])) actual = data.drop('dim1') self.assertDatasetIdentical(expected, actual) with self.assertRaisesRegexp(ValueError, 'cannot be found'): data.drop('not_found_here') def test_drop_index_labels(self): data = Dataset({'A': (['x', 'y'], np.random.randn(2, 3)), 'x': ['a', 'b']}) actual = data.drop(1, 'y') expected = data.isel(y=[0, 2]) self.assertDatasetIdentical(expected, actual) actual = data.drop(['a'], 'x') expected = data.isel(x=[1]) self.assertDatasetIdentical(expected, actual) actual = data.drop(['a', 'b'], 'x') expected = data.isel(x=slice(0, 0)) self.assertDatasetIdentical(expected, actual) with self.assertRaises(ValueError): # not contained in axis data.drop(['c'], dim='x') def test_copy(self): data = create_test_data() for copied in [data.copy(deep=False), copy(data)]: self.assertDatasetIdentical(data, copied) for k in data: v0 = data.variables[k] v1 = copied.variables[k] self.assertIs(v0, v1) copied['foo'] = ('z', np.arange(5)) self.assertNotIn('foo', data) for copied in [data.copy(deep=True), deepcopy(data)]: self.assertDatasetIdentical(data, copied) for k in data: v0 = data.variables[k] v1 = copied.variables[k] self.assertIsNot(v0, v1) def test_rename(self): data = create_test_data() newnames = {'var1': 'renamed_var1', 'dim2': 'renamed_dim2'} renamed = data.rename(newnames) variables = OrderedDict(data.variables) for k, v in iteritems(newnames): variables[v] = variables.pop(k) for k, v in iteritems(variables): dims = list(v.dims) for name, newname in iteritems(newnames): if name in dims: dims[dims.index(name)] = newname self.assertVariableEqual(Variable(dims, v.values, v.attrs), renamed[k]) self.assertEqual(v.encoding, renamed[k].encoding) self.assertEqual(type(v), type(renamed.variables[k])) self.assertTrue('var1' not in renamed) self.assertTrue('dim2' not in renamed) with self.assertRaisesRegexp(ValueError, "cannot rename 'not_a_var'"): data.rename({'not_a_var': 'nada'}) # verify that we can rename a variable without accessing the data var1 = data['var1'] data['var1'] = (var1.dims, InaccessibleArray(var1.values)) renamed = data.rename(newnames) with self.assertRaises(UnexpectedDataAccess): renamed['renamed_var1'].values def test_rename_inplace(self): times = pd.date_range('2000-01-01', periods=3) data = Dataset({'z': ('x', [2, 3, 4]), 't': ('t', times)}) copied = data.copy() renamed = data.rename({'x': 'y'}) data.rename({'x': 'y'}, inplace=True) self.assertDatasetIdentical(data, renamed) self.assertFalse(data.equals(copied)) self.assertEquals(data.dims, {'y': 3, 't': 3}) # check virtual variables self.assertArrayEqual(data['t.dayofyear'], [1, 2, 3]) def test_update(self): data = create_test_data(seed=0) expected = data.copy() var2 = Variable('dim1', np.arange(8)) actual = data.update({'var2': var2}) expected['var2'] = var2 self.assertDatasetIdentical(expected, actual) actual = data.copy() actual_result = actual.update(data, inplace=True) self.assertIs(actual_result, actual) self.assertDatasetIdentical(expected, actual) actual = data.update(data, inplace=False) expected = data self.assertIsNot(actual, expected) self.assertDatasetIdentical(expected, actual) other = Dataset(attrs={'new': 'attr'}) actual = data.copy() actual.update(other) self.assertDatasetIdentical(expected, actual) def test_update_auto_align(self): ds = Dataset({'x': ('t', [3, 4])}) expected = Dataset({'x': ('t', [3, 4]), 'y': ('t', [np.nan, 5])}) actual = ds.copy() other = {'y': ('t', [5]), 't': [1]} with self.assertRaisesRegexp(ValueError, 'conflicting sizes'): actual.update(other) actual.update(Dataset(other)) self.assertDatasetIdentical(expected, actual) actual = ds.copy() other = Dataset({'y': ('t', [5]), 't': [100]}) actual.update(other) expected = Dataset({'x': ('t', [3, 4]), 'y': ('t', [np.nan] * 2)}) self.assertDatasetIdentical(expected, actual) def test_merge(self): data = create_test_data() ds1 = data[['var1']] ds2 = data[['var3']] expected = data[['var1', 'var3']] actual = ds1.merge(ds2) self.assertDatasetIdentical(expected, actual) actual = ds2.merge(ds1) self.assertDatasetIdentical(expected, actual) actual = data.merge(data) self.assertDatasetIdentical(data, actual) actual = data.reset_coords(drop=True).merge(data) self.assertDatasetIdentical(data, actual) actual = data.merge(data.reset_coords(drop=True)) self.assertDatasetIdentical(data, actual) with self.assertRaises(ValueError): ds1.merge(ds2.rename({'var3': 'var1'})) with self.assertRaisesRegexp(ValueError, 'cannot merge'): data.reset_coords().merge(data) with self.assertRaisesRegexp(ValueError, 'cannot merge'): data.merge(data.reset_coords()) def test_merge_broadcast_equals(self): ds1 = Dataset({'x': 0}) ds2 = Dataset({'x': ('y', [0, 0])}) actual = ds1.merge(ds2) self.assertDatasetIdentical(ds2, actual) actual = ds2.merge(ds1) self.assertDatasetIdentical(ds2, actual) actual = ds1.copy() actual.update(ds2) self.assertDatasetIdentical(ds2, actual) ds1 = Dataset({'x': np.nan}) ds2 = Dataset({'x': ('y', [np.nan, np.nan])}) actual = ds1.merge(ds2) self.assertDatasetIdentical(ds2, actual) def test_merge_compat(self): ds1 = Dataset({'x': 0}) ds2 = Dataset({'x': 1}) for compat in ['broadcast_equals', 'equals', 'identical']: with self.assertRaisesRegexp(ValueError, 'conflicting value'): ds1.merge(ds2, compat=compat) ds2 = Dataset({'x': [0, 0]}) for compat in ['equals', 'identical']: with self.assertRaisesRegexp(ValueError, 'conflicting value'): ds1.merge(ds2, compat=compat) ds2 = Dataset({'x': ((), 0, {'foo': 'bar'})}) with self.assertRaisesRegexp(ValueError, 'conflicting value'): ds1.merge(ds2, compat='identical') with self.assertRaisesRegexp(ValueError, 'compat=\S+ invalid'): ds1.merge(ds2, compat='foobar') def test_merge_auto_align(self): ds1 = Dataset({'a': ('x', [1, 2])}) ds2 = Dataset({'b': ('x', [3, 4]), 'x': [1, 2]}) expected = Dataset({'a': ('x', [1, 2, np.nan]), 'b': ('x', [np.nan, 3, 4])}) self.assertDatasetIdentical(expected, ds1.merge(ds2)) self.assertDatasetIdentical(expected, ds2.merge(ds1)) expected = expected.isel(x=slice(2)) self.assertDatasetIdentical(expected, ds1.merge(ds2, join='left')) self.assertDatasetIdentical(expected, ds2.merge(ds1, join='right')) expected = expected.isel(x=slice(1, 2)) self.assertDatasetIdentical(expected, ds1.merge(ds2, join='inner')) self.assertDatasetIdentical(expected, ds2.merge(ds1, join='inner')) def test_getitem(self): data = create_test_data() self.assertIsInstance(data['var1'], DataArray) self.assertVariableEqual(data['var1'], data.variables['var1']) with self.assertRaises(KeyError): data['notfound'] with self.assertRaises(KeyError): data[['var1', 'notfound']] actual = data[['var1', 'var2']] expected = Dataset({'var1': data['var1'], 'var2': data['var2']}) self.assertDatasetEqual(expected, actual) actual = data['numbers'] expected = DataArray(data['numbers'].variable, [data['dim3']], name='numbers') self.assertDataArrayIdentical(expected, actual) actual = data[dict(dim1=0)] expected = data.isel(dim1=0) self.assertDatasetIdentical(expected, actual) def test_virtual_variables(self): # access virtual variables data = create_test_data() expected = DataArray(1 + np.arange(20), coords=[data['time']], dims='time', name='dayofyear') self.assertDataArrayIdentical(expected, data['time.dayofyear']) self.assertArrayEqual(data['time.month'].values, data.variables['time'].to_index().month) self.assertArrayEqual(data['time.season'].values, 'DJF') # test virtual variable math self.assertArrayEqual(data['time.dayofyear'] + 1, 2 + np.arange(20)) self.assertArrayEqual(np.sin(data['time.dayofyear']), np.sin(1 + np.arange(20))) # ensure they become coordinates expected = Dataset({}, {'dayofyear': data['time.dayofyear']}) actual = data[['time.dayofyear']] self.assertDatasetEqual(expected, actual) # non-coordinate variables ds = Dataset({'t': ('x', pd.date_range('2000-01-01', periods=3))}) self.assertTrue((ds['t.year'] == 2000).all()) def test_time_season(self): ds = Dataset({'t': pd.date_range('2000-01-01', periods=12, freq='M')}) expected = ['DJF'] * 2 + ['MAM'] * 3 + ['JJA'] * 3 + ['SON'] * 3 + ['DJF'] self.assertArrayEqual(expected, ds['t.season']) def test_slice_virtual_variable(self): data = create_test_data() self.assertVariableEqual(data['time.dayofyear'][:10], Variable(['time'], 1 + np.arange(10))) self.assertVariableEqual(data['time.dayofyear'][0], Variable([], 1)) def test_setitem(self): # assign a variable var = Variable(['dim1'], np.random.randn(8)) data1 = create_test_data() data1['A'] = var data2 = data1.copy() data2['A'] = var self.assertDatasetIdentical(data1, data2) # assign a dataset array dv = 2 * data2['A'] data1['B'] = dv.variable data2['B'] = dv self.assertDatasetIdentical(data1, data2) # can't assign an ND array without dimensions with self.assertRaisesRegexp(ValueError, 'dimensions .* must have the same len'): data2['C'] = var.values.reshape(2, 4) # but can assign a 1D array data1['C'] = var.values data2['C'] = ('C', var.values) self.assertDatasetIdentical(data1, data2) # can assign a scalar data1['scalar'] = 0 data2['scalar'] = ([], 0) self.assertDatasetIdentical(data1, data2) # can't use the same dimension name as a scalar var with self.assertRaisesRegexp(ValueError, 'cannot merge'): data1['newvar'] = ('scalar', [3, 4, 5]) # can't resize a used dimension with self.assertRaisesRegexp(ValueError, 'conflicting sizes'): data1['dim1'] = data1['dim1'][:5] # override an existing value data1['A'] = 3 * data2['A'] self.assertVariableEqual(data1['A'], 3 * data2['A']) with self.assertRaises(NotImplementedError): data1[{'x': 0}] = 0 def test_setitem_auto_align(self): ds = Dataset() ds['x'] = ('y', range(3)) ds['y'] = 1 + np.arange(3) expected = Dataset({'x': ('y', range(3)), 'y': 1 + np.arange(3)}) self.assertDatasetIdentical(ds, expected) ds['y'] = DataArray(range(3), dims='y') expected = Dataset({'x': ('y', range(3))}) self.assertDatasetIdentical(ds, expected) ds['x'] = DataArray([1, 2], dims='y') expected = Dataset({'x': ('y', [1, 2, np.nan])}) self.assertDatasetIdentical(ds, expected) ds['x'] = 42 expected = Dataset({'x': 42, 'y': range(3)}) self.assertDatasetIdentical(ds, expected) ds['x'] = DataArray([4, 5, 6, 7], dims='y') expected = Dataset({'x': ('y', [4, 5, 6])}) self.assertDatasetIdentical(ds, expected) def test_delitem(self): data = create_test_data() all_items = set(data) self.assertItemsEqual(data, all_items) del data['var1'] self.assertItemsEqual(data, all_items - set(['var1'])) del data['dim1'] self.assertItemsEqual(data, set(['time', 'dim2', 'dim3', 'numbers'])) self.assertNotIn('dim1', data.dims) self.assertNotIn('dim1', data.coords) def test_squeeze(self): data = Dataset({'foo': (['x', 'y', 'z'], [[[1], [2]]])}) for args in [[], [['x']], [['x', 'z']]]: def get_args(v): return [set(args[0]) & set(v.dims)] if args else [] expected = Dataset(dict((k, v.squeeze(*get_args(v))) for k, v in iteritems(data.variables))) expected.set_coords(data.coords, inplace=True) self.assertDatasetIdentical(expected, data.squeeze(*args)) # invalid squeeze with self.assertRaisesRegexp(ValueError, 'cannot select a dimension'): data.squeeze('y') def test_groupby(self): data = Dataset({'z': (['x', 'y'], np.random.randn(3, 5))}, {'x': ('x', list('abc')), 'c': ('x', [0, 1, 0])}) groupby = data.groupby('x') self.assertEqual(len(groupby), 3) expected_groups = {'a': 0, 'b': 1, 'c': 2} self.assertEqual(groupby.groups, expected_groups) expected_items = [('a', data.isel(x=0)), ('b', data.isel(x=1)), ('c', data.isel(x=2))] for actual, expected in zip(groupby, expected_items): self.assertEqual(actual[0], expected[0]) self.assertDatasetEqual(actual[1], expected[1]) identity = lambda x: x for k in ['x', 'c', 'y']: actual = data.groupby(k, squeeze=False).apply(identity) self.assertDatasetEqual(data, actual) def test_groupby_returns_new_type(self): data = Dataset({'z': (['x', 'y'], np.random.randn(3, 5))}) actual = data.groupby('x').apply(lambda ds: ds['z']) expected = data['z'] self.assertDataArrayIdentical(expected, actual) actual = data['z'].groupby('x').apply(lambda x: x.to_dataset()) expected = data self.assertDatasetIdentical(expected, actual) def test_groupby_iter(self): data = create_test_data() for n, (t, sub) in enumerate(list(data.groupby('dim1'))[:3]): self.assertEqual(data['dim1'][n], t) self.assertVariableEqual(data['var1'][n], sub['var1']) self.assertVariableEqual(data['var2'][n], sub['var2']) self.assertVariableEqual(data['var3'][:, n], sub['var3']) def test_groupby_errors(self): data = create_test_data() with self.assertRaisesRegexp(ValueError, 'must be 1 dimensional'): data.groupby('var1') with self.assertRaisesRegexp(ValueError, 'must have a name'): data.groupby(np.arange(10)) with self.assertRaisesRegexp(ValueError, 'length does not match'): data.groupby(data['dim1'][:3]) with self.assertRaisesRegexp(ValueError, "must have a 'dims'"): data.groupby(data.coords['dim1'].to_index()) def test_groupby_reduce(self): data = Dataset({'xy': (['x', 'y'], np.random.randn(3, 4)), 'xonly': ('x', np.random.randn(3)), 'yonly': ('y', np.random.randn(4)), 'letters': ('y', ['a', 'a', 'b', 'b'])}) expected = data.mean('y') actual = data.groupby('x').mean() self.assertDatasetAllClose(expected, actual) actual = data.groupby('x').mean('y') self.assertDatasetAllClose(expected, actual) letters = data['letters'] expected = Dataset({'xy': data['xy'].groupby(letters).mean(), 'xonly': data['xonly'].mean(), 'yonly': data['yonly'].groupby(letters).mean()}) actual = data.groupby('letters').mean() self.assertDatasetAllClose(expected, actual) def test_groupby_math(self): reorder_dims = lambda x: x.transpose('dim1', 'dim2', 'dim3', 'time') ds = create_test_data() for squeeze in [True, False]: grouped = ds.groupby('dim1', squeeze=squeeze) expected = reorder_dims(ds + ds.coords['dim1']) actual = grouped + ds.coords['dim1'] self.assertDatasetIdentical(expected, reorder_dims(actual)) actual = ds.coords['dim1'] + grouped self.assertDatasetIdentical(expected, reorder_dims(actual)) ds2 = 2 * ds expected = reorder_dims(ds + ds2) actual = grouped + ds2 self.assertDatasetIdentical(expected, reorder_dims(actual)) actual = ds2 + grouped self.assertDatasetIdentical(expected, reorder_dims(actual)) grouped = ds.groupby('numbers') zeros = DataArray([0, 0, 0, 0], [('numbers', range(4))]) expected = ds actual = grouped + zeros self.assertDatasetEqual(expected, actual) actual = zeros + grouped self.assertDatasetEqual(expected, actual) with self.assertRaisesRegexp(TypeError, 'only support arithmetic'): grouped + 1 with self.assertRaisesRegexp(TypeError, 'only support arithmetic'): grouped + grouped def test_groupby_math_virtual(self): ds = Dataset({'x': ('t', [1, 2, 3])}, {'t':
pd.date_range('20100101', periods=3)
pandas.date_range
import networkx as nx import numpy as np import pandas as pd from quetzal.analysis import analysis from quetzal.engine import engine, nested_logit from quetzal.engine.park_and_ride_pathfinder import ParkRidePathFinder from quetzal.engine.pathfinder import PublicPathFinder from quetzal.engine.road_pathfinder import RoadPathFinder from quetzal.model import model, optimalmodel, parkridemodel from syspy.assignment import raw as raw_assignment from syspy.assignment.raw import fast_assign as assign from syspy.skims import skims from tqdm import tqdm def read_hdf(filepath): m = TransportModel() m.read_hdf(filepath) return m def read_json(folder, **kwargs): m = TransportModel() m.read_json(folder, **kwargs) return m track_args = model.track_args log = model.log class TransportModel(optimalmodel.OptimalModel, parkridemodel.ParkRideModel): @track_args def step_distribution( self, segmented=False, deterrence_matrix=None, **od_volume_from_zones_kwargs ): """ * requires: zones * builds: volumes :param deterrence_matrix: an OD unstaked dataframe representing the disincentive to travel as distance/time/cost increases. :param od_volume_from_zones_kwargs: if the friction matrix is not provided, it will be automatically computed using a gravity distribution which uses the following parameters: * param power: (int) the gravity exponent * param intrazonal: (bool) set the intrazonal distance to 0 if False, compute a characteristic distance otherwise. if segmented=True: all parameters must be given in dict {segment: param} """ if segmented: self.volumes = pd.DataFrame(columns=['origin', 'destination']) kwargs = od_volume_from_zones_kwargs.copy() if 'deterrence_matrix' not in kwargs.keys(): kwargs['deterrence_matrix'] = deterrence_matrix if deterrence_matrix is not None else {} if 'power' not in kwargs.keys(): kwargs['power'] = {} if 'intrazonal' not in kwargs.keys(): kwargs['intrazonal'] = {} for segment in self.segments: print(segment) cols = ['geometry', (segment, 'emission'), (segment, 'attraction')] if 'area' in self.zones: cols += ['area'] segment_zones = self.zones[cols].rename( columns={ (segment, 'emission'): 'emission', (segment, 'attraction'): 'attraction' } ) segment_volumes = engine.od_volume_from_zones( segment_zones, deterrence_matrix=kwargs['deterrence_matrix'].get(segment, None), coordinates_unit=self.coordinates_unit, power=kwargs['power'].get(segment, 2), intrazonal=kwargs['intrazonal'].get(segment, False) ) segment_volumes.rename(columns={'volume': segment}, inplace=True) self.volumes = self.volumes.merge( segment_volumes, on=['origin', 'destination'], how='outer' ) self.volumes['all'] = self.volumes[self.segments].T.sum() else: self.volumes = engine.od_volume_from_zones( self.zones, deterrence_matrix, coordinates_unit=self.coordinates_unit, **od_volume_from_zones_kwargs ) @track_args def step_pathfinder( self, walk_on_road=False, complete=True, **kwargs ): """ * requires: links, footpaths, zone_to_transit, zone_to_road * builds: pt_los """ assert self.links['time'].isnull().sum() == 0 self.links = engine.graph_links(self.links) self.walk_on_road = walk_on_road if walk_on_road: footpaths = self.road_links.copy() footpaths['time'] = footpaths['walk_time'] ntlegs = self.zone_to_road nodes = self.road_nodes else: footpaths = self.footpaths ntlegs = self.zone_to_transit nodes = self.nodes # TODO even with walk on road, transit nodes may not belong to road_nodes self.pt_los, self.graph = engine.path_and_duration_from_links_and_ntlegs( self.links, ntlegs=ntlegs, pole_set=set(self.zones.index), footpaths=footpaths, **kwargs ) if complete: self.pt_los = analysis.path_analysis_od_matrix( od_matrix=self.pt_los, links=self.links, nodes=nodes, centroids=self.centroids, ) @track_args def step_road_pathfinder(self, maxiters=1, *args, **kwargs): """ * requires: zones, road_links, zone_to_road * builds: car_los, road_links """ roadpathfinder = RoadPathFinder(self) roadpathfinder.frank_wolfe(maxiters=maxiters, *args, **kwargs) self.car_los = roadpathfinder.car_los self.road_links = roadpathfinder.road_links @track_args def step_pr_pathfinder( self, force=False, path_analysis=True, **kwargs ): if not force: sets = ['nodes', 'links', 'zones', 'road_nodes', 'road_links'] self.integrity_test_collision(sets) self.links = engine.graph_links(self.links) parkridepathfinder = ParkRidePathFinder(self) parkridepathfinder.find_best_path(**kwargs) self.pr_los = parkridepathfinder.paths if path_analysis: analysis_nodes = pd.concat([self.nodes, self.road_nodes]) analysis_links = pd.concat([self.links, self.road_links]) self.pr_los = analysis.path_analysis_od_matrix( od_matrix=self.pr_los, links=self.links, nodes=analysis_nodes, centroids=self.centroids, ) # analyse non vérifiée, prise directement depuis pt_los @track_args def step_pt_pathfinder( self, broken_routes=True, broken_modes=True, route_column='route_id', mode_column='route_type', boarding_time=None, speedup=False, walk_on_road=False, # keep_graph=False, keep_pathfinder=False, force=False, path_analysis=True, **kwargs ): """ * requires: zones, links, footpaths, zone_to_road, zone_to_transit * builds: pt_los """ sets = ['nodes', 'links', 'zones'] if walk_on_road: sets += ['road_nodes', 'road_links'] if not force: self.integrity_test_collision(sets) self.links = engine.graph_links(self.links) publicpathfinder = PublicPathFinder(self, walk_on_road=walk_on_road) publicpathfinder.find_best_paths( broken_routes=broken_routes, broken_modes=broken_modes, route_column=route_column, mode_column=mode_column, speedup=speedup, boarding_time=boarding_time, **kwargs ) # if keep_graph: # self.nx_graph=publicpathfinder.nx_graph if keep_pathfinder: self.publicpathfinder = publicpathfinder self.pt_los = publicpathfinder.paths analysis_nodes = pd.concat([self.nodes, self.road_nodes]) if walk_on_road else self.nodes if path_analysis: self.pt_los = analysis.path_analysis_od_matrix( od_matrix=self.pt_los, links=self.links, nodes=analysis_nodes, centroids=self.centroids, ) @track_args def step_concatenate_los(self): """ * requires: pt_los, car_los * builds: los """ pass @track_args def step_modal_split(self, build_od_stack=True, **modal_split_kwargs): """ * requires: volumes, los * builds: od_stack, shared :param modal_split_kwargs: kwargs of engine.modal_split example: :: sm.step_modal_split( time_scale=1/1800, alpha_car=2, beta_car=600 ) """ shared = engine.modal_split_from_volumes_and_los( self.volumes, self.los, **modal_split_kwargs ) # shared['distance_car'] = shared['distance'] if build_od_stack: self.od_stack = analysis.volume_analysis_od_matrix(shared) self.shared = shared def compute_los_volume(self, time_expanded=False, keep_segments=True): los = self.los if not time_expanded else self.te_los segments = self.segments probabilities = [(segment, 'probability') for segment in segments] shared_cols = list(set(self.volumes.columns).intersection(set(los.columns))) on = [col for col in shared_cols if col in ['origin', 'destination', 'wished_departure_time']] left = los[on + probabilities] left['index'] = left.index df = pd.merge(left, self.volumes, on=on).set_index('index') df = df.reindex(los.index) values = df[probabilities].values * df[segments].values i = 0 for segment in segments: los[segment] = values.T[i] i += 1 los['volume'] = np.nansum(values, axis=1) if time_expanded: los_volumes = self.te_los.groupby('path_id')[['volume'] + segments].sum() path_id_list = list(self.los['path_id']) volume_values = los_volumes.reindex(path_id_list).fillna(0).values for c in los_volumes.columns: self.los[c] = np.nan # create_columns self.los.loc[:, los_volumes.columns] = volume_values def step_assignment( self, road=False, boardings=False, boarding_links=False, alightings=False, alighting_links=False, transfers=False, segmented=False, time_expanded=False, compute_los_volume=True ): if compute_los_volume: self.compute_los_volume(time_expanded=time_expanded) los = self.los.copy() column = 'link_path' l = los.dropna(subset=[column]) l = l.loc[l['volume'] > 0] self.links['volume'] = assign(l['volume'], l[column]) if road: self.road_links[('volume', 'car')] = assign(l['volume'], l[column]) if 'road_link_list' in self.links.columns: to_assign = self.links.dropna(subset=['volume', 'road_link_list']) self.road_links[('volume', 'pt')] = assign( to_assign['volume'], to_assign['road_link_list'] ) if boardings and not boarding_links: print('to assign boardings on links pass boarding_links=True') if boarding_links: column = 'boarding_links' l = los.dropna(subset=[column]) self.links['boardings'] = assign(l['volume'], l[column]) if boardings: column = 'boardings' l = los.dropna(subset=[column]) self.nodes['boardings'] = assign(l['volume'], l[column]) if alighting_links: column = 'alighting_links' l = los.dropna(subset=[column]) self.links['alightings'] = assign(l['volume'], l[column]) if alightings: column = 'alightings' l = los.dropna(subset=[column]) self.nodes['alightings'] = assign(l['volume'], l[column]) if transfers: column = 'transfers' l = los.dropna(subset=[column]) self.nodes['transfers'] = assign(l['volume'], l[column]) if segmented: self.segmented_assigment( road=road, boardings=boardings, alightings=alightings, transfers=transfers, aggregated_los=los ) def segmented_assigment( self, road=False, boardings=False, alightings=False, transfers=False, aggregated_los=None ): los = aggregated_los if aggregated_los is not None else self.los for segment in self.segments: column = 'link_path' l = los.dropna(subset=[column]) self.links[segment] = assign(l[segment], l[column]) if road: self.road_links[(segment, 'car')] = assign(l[segment], l[column]) self.road_links[(segment, 'pt')] = assign( self.links[segment], self.links['road_link_list'] ) if boardings: column = 'boarding_links' l = los.dropna(subset=[column]) self.links[(segment, 'boardings')] = assign(l[segment], l[column]) column = 'boardings' l = los.dropna(subset=[column]) self.nodes[(segment, 'boardings')] = assign(l[segment], l[column]) if alightings: column = 'alighting_links' l = los.dropna(subset=[column]) self.links[(segment, 'alightings')] = assign(l[segment], l[column]) column = 'alightings' l = los.dropna(subset=[column]) self.nodes[(segment, 'alightings')] = assign(l[segment], l[column]) if transfers: column = 'transfers' l = los.dropna(subset=[column]) self.nodes[(segment, 'transfers')] = assign(l[segment], l[column]) @track_args def step_pt_assignment( self, volume_column=None, on_road_links=False, split_by=None, **kwargs ): """ Assignment step * requires: links, nodes, pt_los, road_links, volumes, path_probabilities * builds: loaded_links, loaded_nodes, add load to road_links :param volume_column: volume column of self.volumes to assign. If none, all columns will be assigned :param on_road_links: if True, performs pt assignment on road_links as well :param split_by: path categories to be tracked in the assignment. Must be a column of self.pt_los example: :: sm.step_assignment( volume_column=None, on_road_links=False, split_by='route_type', boardings=True, alightings=True, transfers=True } ) """ if volume_column is None: self.segmented_pt_assignment( on_road_links=on_road_links, split_by=split_by, **kwargs ) return # When split_by is not None, this call could be replaced by a sum, provided # prior dumb definition of loaded_links and loaded_nodes self.loaded_links, self.loaded_nodes = engine.loaded_links_and_nodes( self.links, self.nodes, volumes=self.volumes, path_finder_stack=self.pt_los, volume_column=volume_column, **kwargs ) # Rename columns self.loaded_links.rename(columns={volume_column: ('load', volume_column)}, inplace=True) self.loaded_nodes.rename(columns={volume_column: ('load', volume_column)}, inplace=True) for col in list(set(['boardings', 'alightings', 'transfers']).intersection(kwargs.keys())): self.loaded_links.rename(columns={col: (col, volume_column)}, inplace=True) self.loaded_nodes.rename(columns={col: (col, volume_column)}, inplace=True) # Group assignment if split_by is not None: groups = self.pt_los[split_by].unique() for group in groups: # TODO remove rows with empty link_path group_pt_los = self.pt_los.loc[self.pt_los[split_by] == group] group_loaded_links, group_loaded_nodes = engine.loaded_links_and_nodes( self.links, self.nodes, volumes=self.volumes, path_finder_stack=group_pt_los, volume_column=volume_column, **kwargs ) # Append results columns self.loaded_links[('load', volume_column, group)] = group_loaded_links[volume_column] self.loaded_nodes[('load', volume_column, group)] = group_loaded_nodes[volume_column] for col in list(set(['boardings', 'alightings', 'transfers']).intersection(kwargs.keys())): self.loaded_links[(col, volume_column, group)] = group_loaded_links[col] self.loaded_nodes[(col, volume_column, group)] = group_loaded_nodes[col] # Assignment on road_links if on_road_links: if 'road_link_path' not in self.pt_los.columns: # create road_link_path column from networkcasted linkss if not already defined self._analysis_road_link_path() merged = pd.merge(self.pt_los, self.volumes, on=['origin', 'destination']) merged['to_assign'] = merged[(volume_column, 'probability')] * merged[volume_column].fillna(0) if split_by is not None: def assign_group(g): x = g.reset_index() result = raw_assignment.assign(x['to_assign'], x['road_link_path']) return result group_assigned = merged.groupby(split_by).apply(assign_group) assigned = group_assigned.unstack().T.loc['volume'].fillna(0) # Add empty groups for empty in list(set(groups).difference(set(assigned.columns))): assigned[empty] = 0 self.road_links[[(volume_column, col) for col in groups]] = assigned[[col for col in groups]] self.road_links[volume_column] = assigned.T.sum() else: # no groups assigned = raw_assignment.assign(merged['to_assign'], merged['road_link_path']) self.road_links[volume_column] = assigned['volume'] # todo remove 'load' from analysis module: self.road_links['load'] = self.road_links[volume_column] def segmented_pt_assignment(self, split_by=None, on_road_links=False, *args, **kwargs): """ Performs pt assignment for all demand segments. Requires computed path probabilities in pt_los for each segment. """ segments = self.segments iterator = tqdm(segments) for segment in iterator: iterator.desc = str(segment) # Assign demand segment self.step_pt_assignment( volume_column=segment, path_pivot_column=(segment, 'probability'), split_by=split_by, on_road_links=on_road_links, **kwargs ) # Update links and nodes to keep results as loaded links and nodes # are erased at each call of step_pt_assignment self.links = self.loaded_links self.nodes = self.loaded_nodes # Group assignment results: sum over demand segments try: groups = self.pt_los[split_by].unique() except KeyError: groups = [] cols = ['load'] # Add boardings, alightings and transfers if processed cols += list(set(['boardings', 'alightings', 'transfers']).intersection(kwargs.keys())) for col in cols: for g in groups: columns = [tuple([col, s, g]) for s in segments] name = tuple([col, g]) self.loaded_links[name] = self.loaded_links[columns].T.sum() self.loaded_links.drop(columns, 1, inplace=True) self.loaded_nodes[name] = self.loaded_nodes[columns].T.sum() self.loaded_nodes.drop(columns, 1, inplace=True) columns = [tuple([col, s]) for s in segments] self.loaded_links[col] = self.loaded_links[columns].T.sum() self.loaded_links.drop(columns, 1, inplace=True) self.loaded_nodes[col] = self.loaded_nodes[columns].T.sum() self.loaded_nodes.drop(columns, 1, inplace=True) if on_road_links: for group in groups: self.road_links[('all', group)] = self.road_links[[(s, group) for s in segments]].T.sum() self.road_links.drop([(s, group) for s in segments], 1, inplace=True) self.road_links['load'] = self.road_links[[s for s in segments]].T.sum() self.road_links.drop([s for s in segments], 1, inplace=True) def step_car_assignment(self, volume_column=None): """ Assignment step * requires: road_links, car_los, road_links, volumes, path_probabilities * builds: loaded_road_links """ if volume_column is None: self.segmented_car_assignment() def segmented_car_assignment(self): segments = self.segments iterator = tqdm(segments) for segment in iterator: iterator.desc = str(segment) merged = pd.merge(self.car_los, self.volumes, on=['origin', 'destination']) merged['to_assign'] = merged[(segment, 'probability')] * merged[segment].fillna(0) assigned = raw_assignment.assign(merged['to_assign'], merged['link_path']).fillna(0) self.road_links[(segment, 'car')] = assigned columns = [(segment, 'car') for segment in self.segments] self.road_links[('all', 'car')] = self.road_links[columns].T.sum() # TODO Merge conflict: TO CHECK WITH ACCRA # self.road_links.drop(columns, 1, inplace=True) # if not 'load' in self.road_links.columns: # self.road_links['load'] = 0 # self.road_links['load'] += self.road_links[('all','car')] # TODO move all utility features to another object / file def analysis_mode_utility(self, how='min', segment=None, segments=None, time_expanded=False): """ * requires: mode_utility, los, utility_values * builds: los """ if segment is None: for segment in tqdm(self.segments): self.analysis_mode_utility(how=how, segment=segment, time_expanded=time_expanded) return if time_expanded: logit_los = self.te_los else: logit_los = self.los mode_utility = self.mode_utility[segment].to_dict() if how == 'main': # the utility of the 'route_type' is used logit_los['mode_utility'] = logit_los['route_type'].apply(mode_utility.get) else : # how = 'min', 'max', 'mean', 'sum' # route type utilities rtu = { rt: get_combined_mode_utility( rt, how=how, mode_utility=mode_utility ) for rt in logit_los['route_types'].unique() } logit_los['mode_utility'] = logit_los['route_types'].map(rtu.get) utility_values = self.utility_values[segment].to_dict() u = 0 for key, value in utility_values.items(): u += value * logit_los[key] logit_los[(segment, 'utility')] = u logit_los[(segment, 'utility')] = logit_los[(segment, 'utility')] def analysis_utility(self, segment='root', time_expanded=False, how='min'): """ * requires: mode_utility, los, utility_values * builds: los """ if segment is None: for segment in self.segments: print(segment) self.analysis_mode_utility(how=how, segment=segment, time_expanded=time_expanded) return if time_expanded: los = self.te_los else: los = self.los utility_values = self.utility_values[segment].to_dict() u = 0 for key, value in utility_values.items(): u += value * los[key] los[(segment, 'utility')] = u los[(segment, 'utility')] = los[(segment, 'utility')].astype(float) def initialize_logit(self): zones = list(self.zones.index) od = pd.DataFrame(index=
pd.MultiIndex.from_product([zones, zones])
pandas.MultiIndex.from_product
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ description: provide 24hr feedback to clinicians version: 0.0.1 created: 2018-08-01 author: <NAME> dependencies: * requires tidepool-analytics-env (see readme for instructions) * requires a clinician or study username (email) and password * requires tidals (tidepool data analytics tools) license: BSD-2-Clause """ # %% REQUIRED LIBRARIES import pandas as pd import numpy as np import os import sys import requests import json import argparse import getpass from pytz import timezone from datetime import timedelta import datetime as dt import subprocess as sub tidalsPath = os.path.abspath(os.path.join(__file__, "..", "..", "..", "tidals")) if tidalsPath not in sys.path: sys.path.insert(0, tidalsPath) import tidals as td envPath = os.path.abspath(os.path.join(__file__, "..", "..", "..", "get-qualify-export-donor-data")) if envPath not in sys.path: sys.path.insert(0, envPath) import environmentalVariables # %% USER INPUTS codeDescription = "Provide feedback of last 24 hours (6am to 6am) to clinicians" parser = argparse.ArgumentParser(description=codeDescription) parser.add_argument("-d", "--date-stamp", dest="dateStamp", default=dt.datetime.now().strftime("%Y-%m-%d"), help="date of the daily report, defaults to current date") parser.add_argument("-a", "--accountAlias", dest="accountAlias", default=np.nan, help="enter an account alias so the master clinician or study account" + "can be looked up in your environmental variables, OR leave this blank" + "and you will be prompted to enter in account credentials") parser.add_argument("-o", "--output-data-path", dest="outputPath", default=os.path.abspath(os.path.join(".", "data")), help="the output path where the data is stored") parser.add_argument("-v", "--verbose", dest="verboseOutput", default=True, help="True if you want script progress to print to the console") args = parser.parse_args() # %% CHECK/DECLARE INPUTS AND OUTPUT VARIABLES if pd.isnull(args.accountAlias): os.environ["TEMP_EMAIL"] = getpass.getpass(prompt="email: ") os.environ["TEMP_PASSWORD"] = getpass.getpass(prompt="password: ") if (pd.isnull(os.environ["TEMP_EMAIL"]) | pd.isnull(os.environ["TEMP_PASSWORD"])): sys.exit("error in entering user email and password") else: os.environ["TEMP_EMAIL"] = os.environ[args.accountAlias + "_EMAIL"] os.environ["TEMP_PASSWORD"] = os.environ[args.accountAlias + "_PASSWORD"] # create output folder if it doesn't exist if not os.path.isdir(args.outputPath): os.makedirs(args.outputPath) # create a report output folder if it doesn't exist reportDate = args.dateStamp reportPath = os.path.join(args.outputPath, "reports") reportOutputPath = os.path.join(reportPath, reportDate) if not os.path.isdir(reportPath): os.makedirs(reportPath) os.makedirs(reportOutputPath) indvidualDataFolder = os.path.join(reportOutputPath, "individual-data-files") if not os.path.isdir(indvidualDataFolder): os.makedirs(indvidualDataFolder) # create a metadata output folder if it doesn't exist metadataPath = os.path.join(args.outputPath, "metadata", reportDate) jsonDataPath = os.path.join(metadataPath, "jsonData") if not os.path.isdir(metadataPath): os.makedirs(metadataPath) os.makedirs(jsonDataPath) allStats = pd.DataFrame() metaData = pd.DataFrame(columns=["userID", "studyID", "getData.response1", "getData.response2", "nDuplicatesRemoved"]) # %% FUNCTIONS def get_stats(df): statDF = pd.DataFrame(index=[0]) statDF["totalNumberCBGValues"] = df.mg_dL.count() statDF["mean_mgdL"] = df.mg_dL.mean() statDF["std_mgdL"] = df.mg_dL.std() statDF["cov_mgdL"] = statDF["std_mgdL"] / statDF["mean_mgdL"] statDF["totalBelow54"] = sum(df.mg_dL < 54) statDF["totalBelow70"] = sum(df.mg_dL < 70) statDF["total54to70"] = sum((df.mg_dL >= 54) & (df.mg_dL < 70)) statDF["total70to140"] = sum((df.mg_dL >= 70) & (df.mg_dL <= 140)) statDF["total70to180"] = sum((df.mg_dL >= 70) & (df.mg_dL <= 180)) statDF["total180to250"] = sum((df.mg_dL > 180) & (df.mg_dL <= 250)) statDF["totalAbove180"] = sum(df.mg_dL > 180) statDF["totalAbove250"] = sum(df.mg_dL > 250) statDF["percentBelow54"] = statDF["totalBelow54"] / statDF["totalNumberCBGValues"] statDF["percentBelow70"] = statDF["totalBelow70"] / statDF["totalNumberCBGValues"] statDF["percent70to140"] = statDF["total70to140"] / statDF["totalNumberCBGValues"] statDF["percent70to180"] = statDF["total70to180"] / statDF["totalNumberCBGValues"] statDF["percentAbove180"] = statDF["totalAbove180"] / statDF["totalNumberCBGValues"] statDF["percentAbove250"] = statDF["totalAbove250"] / statDF["totalNumberCBGValues"] statDF["min_mgdL"] = df.mg_dL.min() statDF["median_mgdL"] = df.mg_dL.describe()["50%"] statDF["max_mgdL"] = df.mg_dL.max() # calculate the start and end time of the cbg data startTime = df["localTime"].min() statDF["startTime"] = startTime endTime = df["localTime"].max() statDF["endTime"] = endTime statDF["totalNumberPossibleCBGvalues"] = len(pd.date_range(startTime, endTime, freq="5min")) # feedback criteria # A. incomplete dataset statDF["percentOfExpectedData"] = \ (((endTime - startTime).days * 86400) + ((endTime - startTime).seconds)) / (86400 - (5*60)) if statDF.loc[0, "percentOfExpectedData"] < 0.834: # greater than 4 hours of expected data statDF["GTE4hoursNoCgmSignal"] = "NA" statDF["incompleteDataset"] = "FLAG (" + \ str(round(statDF.loc[0, "percentOfExpectedData"] * 100, 1)) + "%)" else: statDF["incompleteDataset"] = np.nan # 1. >=4 hours without CGM signal missingCgm = statDF["totalNumberPossibleCBGvalues"] - statDF["totalNumberCBGValues"] if missingCgm[0] > (4 * 60 / 5): statDF["GTE4hoursNoCgmSignal"] = "FLAG" else: statDF["GTE4hoursNoCgmSignal"] = np.nan # 2. >= 2 hours 54 <= BG < 70 mg/dl if statDF.loc[0, "total54to70"] > (2 * 60 / 5): statDF["GTE2hoursBetween54to70"] = \ "FLAG (" + str(round(statDF.loc[0, "total54to70"] * 5)) + "min)" else: statDF["GTE2hoursBetween54to70"] = np.nan # 3. >= 15 minutes < 54 mg/dl" if statDF.loc[0, "totalBelow54"] > (15 / 5): statDF["GTE15minBelow54"] = "FLAG (" + str(round(statDF.loc[0, "totalBelow54"] * 5)) + "min)" else: statDF["GTE15minBelow54"] = np.nan return statDF def sort_and_pretty_stat_output(df): for col in list(df): if (("percent" in col) | ("cov" in col)): df[col] = round(df[col] * 100, 1) for col in ["mean_mgdL", "std_mgdL"]: df[col] = round(df[col], 1) df = df[["studyID", "incompleteDataset", "GTE4hoursNoCgmSignal", "GTE2hoursBetween54to70", "GTE15minBelow54", "totalNumberCBGValues", "totalNumberPossibleCBGvalues", "startTime", "endTime", "percentOfExpectedData", "mean_mgdL", "std_mgdL", "cov_mgdL", "min_mgdL", "median_mgdL", "max_mgdL", "percentBelow54", "percentBelow70", "percent70to140", "percent70to180", "percentAbove180", "percentAbove250", "totalBelow54", "totalBelow70", "total54to70", "total70to140", "total70to180", "total180to250", "totalAbove180", "totalAbove250"]] return df def get_timeZoneOffset(currentDate, userTz): tz = timezone(userTz) tzoNum = int(tz.localize(pd.to_datetime(currentDate) + timedelta(days=1)).strftime("%z")) tzoHours = np.floor(tzoNum / 100) tzoMinutes = round((tzoNum / 100 - tzoHours) * 100, 0) tzoSign = np.sign(tzoHours) tzo = int((tzoHours * 60) + (tzoMinutes * tzoSign)) return tzo def get_donor_lists(email, password, outputDonorList): p = sub.Popen(["getusers", email, "-p", password, "-o", outputDonorList, "-v"], stdout=sub.PIPE, stderr=sub.PIPE) output, errors = p.communicate() output = output.decode("utf-8") errors = errors.decode("utf-8") if output.startswith("Successful login.\nSuccessful") is False: sys.exit("ERROR with" + email + " ouput: " + output + " errorMessage: " + errors) return def load_donors(outputDonorList): donorList = [] if os.stat(outputDonorList).st_size > 0: donorList = pd.read_csv(outputDonorList, header=None, usecols=[0, 1], names=["userID", "name"], low_memory=False) return donorList def get_json_data(email, password, userid, outputFilePathName, startDate, endDate): url1 = "https://api.tidepool.org/auth/login" myResponse = requests.post(url1, auth=(email, password)) if(myResponse.ok): xtoken = myResponse.headers["x-tidepool-session-token"] url2 = "https://api.tidepool.org/data/" + userid + \ "?endDate=" + endDate.strftime("%Y-%m-%d") + \ "T23:59:59.000Z&startDate=" + \ startDate.strftime("%Y-%m-%d") + "T00:00:00.000Z" headers = { "x-tidepool-session-token": xtoken, "Content-Type": "application/json" } myResponse2 = requests.get(url2, headers=headers) if(myResponse2.ok): usersData = json.loads(myResponse2.content.decode()) with open(outputFilePathName, "w") as outfile: json.dump(usersData, outfile) if args.verboseOutput == True: print("successfully downloaded to " + outputFilePathName) else: print("ERROR", myResponse2.status_code) else: print("ERROR", myResponse.status_code) myResponse2 = np.nan return myResponse, myResponse2 # %% START OF CODE # get the list of donors if it doesn't already exist outputDonorList = os.path.abspath(os.path.join(args.outputPath, "PHI-study-participants.csv")) if not os.path.exists(outputDonorList): get_donor_lists(os.environ["TEMP_EMAIL"], os.environ["TEMP_PASSWORD"], outputDonorList) # load in the donor list studyPartipants = load_donors(outputDonorList) # deal with a specific use case called telet1d if args.accountAlias in ["TELET1D"]: studyPartipants = studyPartipants[studyPartipants["name"] != "<NAME>"].sort_values("name").reset_index(drop=True) studyPartipants.to_csv(outputDonorList, index_label="dIndex") else: studyPartipants = pd.read_csv(outputDonorList, index_col="dIndex", low_memory=False) for dIndex in studyPartipants.index: userID = studyPartipants.userID[dIndex] studyID = studyPartipants["name"][dIndex] metaData.loc[dIndex, ["userID", "studyID"]] = userID, studyID outputFileLocation = os.path.join(jsonDataPath, "PHI-" + userID + ".json") startDate = pd.to_datetime(reportDate) - pd.Timedelta(2, unit="D") endDate = pd.to_datetime(reportDate) + pd.Timedelta(1, unit="D") reponse1, reponse2 = get_json_data(os.environ["TEMP_EMAIL"], os.environ["TEMP_PASSWORD"], userID, outputFileLocation, startDate, endDate) metaData.loc[dIndex, ["getData.response1", "getData.response2"]] = \ reponse1.status_code, reponse2.status_code # load json data data = pd.read_json(outputFileLocation) if "type" in list(data): if "cbg" in data.type.unique(): # calculate stats cgmData = data[data.type == "cbg"].copy() cgmData["utcTime"] = pd.to_datetime(cgmData.time, utc=True) # get data from 6am to 6am if (("timezone" in list(data)) | ("timezoneOffset" in list(data))): if "timezone" in list(data): userTz = data.timezone.describe()["top"] tzo = get_timeZoneOffset(reportDate, userTz) tz = timezone(userTz) start6amDate = tz.localize(pd.to_datetime(reportDate) - pd.Timedelta(1, unit="D") + pd.Timedelta(5, unit="h") + pd.Timedelta(57, unit="m") + pd.Timedelta(30, unit="s")) end6amDate = tz.localize(pd.to_datetime(reportDate) + pd.Timedelta(5, unit="h") + pd.Timedelta(57, unit="m") + pd.Timedelta(30, unit="s")) cgm = cgmData.loc[((cgmData.utcTime > start6amDate) & (cgmData.utcTime < end6amDate)), ["time", "value"]] else: # if there is no timezone given, then infer from timezone offset tzo = data.timezoneOffset.median() start6amDate = (pd.to_datetime(reportDate) - pd.Timedelta(1, unit="D") + pd.Timedelta(5, unit="h") + pd.Timedelta(57, unit="m") + pd.Timedelta(30, unit="s") - pd.Timedelta(tzo, unit="m")) end6amDate = (pd.to_datetime(reportDate) + pd.Timedelta(5, unit="h") + pd.Timedelta(57, unit="m") + pd.Timedelta(30, unit="s") - pd.Timedelta(tzo, unit="m")) cgm = cgmData.loc[((pd.to_datetime(cgmData.time) > start6amDate) & (pd.to_datetime(cgmData.time) < end6amDate)), ["time", "value"]] cgm = cgm.rename(columns={"value": "mmol_L"}) cgm["mg_dL"] = (cgm["mmol_L"] * 18.01559).astype(int) # round time to the nearest 5 minutes cgm = td.round_time(cgm) # drop any duplicates cgm, nDuplicatesRemoved = td.remove_duplicates(cgm, cgm["roundedTime"]) metaData.loc[dIndex, ["nDuplicatesRemoved"]] = nDuplicatesRemoved cgm["localTime"] = cgm["roundedTime"] + pd.to_timedelta(tzo, unit="m") if len(cgm) > 1: stats = get_stats(cgm) # save raw data cgm = cgm.sort_values("localTime").reset_index(drop=True) cgm = cgm.rename(columns={"localTime": "roundedLocalTime"}) cgm = cgm[["time", "roundedLocalTime", "mmol_L", "mg_dL"]] cgm.to_csv(os.path.join(indvidualDataFolder, reportDate + "-cgm-data-for-" + studyID + ".csv")) else: stats = pd.DataFrame(index=[dIndex]) stats["incompleteDataset"] = "no cgm data" else: stats = pd.DataFrame(index=[dIndex]) stats["incompleteDataset"] = "no timezone information" else: stats = pd.DataFrame(index=[dIndex]) stats["incompleteDataset"] = "no data" else: stats = pd.DataFrame(index=[dIndex]) stats["incompleteDataset"] = "no data" stats["studyID"] = studyID allStats =
pd.concat([allStats, stats], ignore_index=True, sort=False)
pandas.concat
# -*- coding: utf-8 -*- import datetime as dt, IPython, pandas as pd, pyarrow as pa, pytest, requests, unittest from builtins import object from common import NoAuthTestCase import graphistry from mock import patch triangleEdges = pd.DataFrame({'src': ['a', 'b', 'c'], 'dst': ['b', 'c', 'a']}) triangleNodes = pd.DataFrame({'id': ['a', 'b', 'c'], 'a1': [1, 2, 3], 'a2': ['red', 'blue', 'green']}) triangleNodesRich = pd.DataFrame({ 'id': ['a', 'b', 'c'], 'a1': [1, 2, 3], 'a2': ['red', 'blue', 'green'], 'a3': [True, False, False], 'a4': [0.5, 1.5, 1000.3], 'a5': [dt.datetime.fromtimestamp(x) for x in [1440643875, 1440644191, 1440645638]], 'a6': [u'æski ēˈmōjē', u'😋', 's'] }) squareEvil = pd.DataFrame({ 'src': [0,1,2,3], 'dst': [1,2,3,0], 'colors': [1, 1, 2, 2], 'list_int': [ [1], [2, 3], [4], []], 'list_str': [ ['x'], ['1', '2'], ['y'], []], 'list_bool': [ [True], [True, False], [False], []], 'list_date_str': [ ['2018-01-01 00:00:00'], ['2018-01-02 00:00:00', '2018-01-03 00:00:00'], ['2018-01-05 00:00:00'], []], 'list_date': [ [pd.Timestamp('2018-01-05')], [pd.Timestamp('2018-01-05'), pd.Timestamp('2018-01-05')], [], []], 'list_mixed': [ [1], ['1', '2'], [False, None], []], 'bool': [True, False, True, True], 'char': ['a', 'b', 'c', 'd'], 'str': ['a', 'b', 'c', 'd'], 'ustr': [u'a', u'b', u'c', u'd'], 'emoji': ['😋', '😋😋', '😋', '😋'], 'int': [0, 1, 2, 3], 'num': [0.5, 1.5, 2.5, 3.5], 'date_str': ['2018-01-01 00:00:00', '2018-01-02 00:00:00', '2018-01-03 00:00:00', '2018-01-05 00:00:00'], ## API 1 BUG: Try with https://github.com/graphistry/pygraphistry/pull/126 'date': [dt.datetime(2018, 1, 1), dt.datetime(2018, 1, 1), dt.datetime(2018, 1, 1), dt.datetime(2018, 1, 1)], 'time': [pd.Timestamp('2018-01-05'), pd.Timestamp('2018-01-05'), pd.Timestamp('2018-01-05'), pd.Timestamp('2018-01-05')], ## API 2 BUG: Need timedelta in https://github.com/graphistry/pygraphistry/blob/master/graphistry/vgraph.py#L108 'delta': [pd.Timedelta('1 day'), pd.Timedelta('1 day'), pd.Timedelta('1 day'), pd.Timedelta('1 day')] }) for c in squareEvil.columns: try: squareEvil[c + '_cat'] = squareEvil[c].astype('category') except: # lists aren't categorical #print('could not make categorical', c) 1 class Fake_Response(object): def raise_for_status(self): pass def json(self): return {'success': True, 'dataset': 'fakedatasetname', 'viztoken': '<PASSWORD>'} def assertFrameEqual(df1, df2, **kwds ): """ Assert that two dataframes are equal, ignoring ordering of columns""" from pandas.util.testing import assert_frame_equal return assert_frame_equal(df1.sort_index(axis=1), df2.sort_index(axis=1), check_names=True, **kwds) @patch('webbrowser.open') @patch.object(graphistry.util, 'warn') @patch.object(graphistry.pygraphistry.PyGraphistry, '_etl1') class TestPlotterBindings_API_1(NoAuthTestCase): @classmethod def setUpClass(cls): graphistry.pygraphistry.PyGraphistry._is_authenticated = True graphistry.register(api=1) def test_no_src_dst(self, mock_etl, mock_warn, mock_open): with self.assertRaises(ValueError): graphistry.bind().plot(triangleEdges) with self.assertRaises(ValueError): graphistry.bind(source='src').plot(triangleEdges) with self.assertRaises(ValueError): graphistry.bind(destination='dst').plot(triangleEdges) with self.assertRaises(ValueError): graphistry.bind(source='doesnotexist', destination='dst').plot(triangleEdges) def test_no_nodeid(self, mock_etl, mock_warn, mock_open): plotter = graphistry.bind(source='src', destination='dst') with self.assertRaises(ValueError): plotter.plot(triangleEdges, triangleNodes) def test_triangle_edges(self, mock_etl, mock_warn, mock_open): plotter = graphistry.bind(source='src', destination='dst') plotter.plot(triangleEdges) self.assertTrue(mock_etl.called) self.assertFalse(mock_warn.called) def test_bind_edges(self, mock_etl, mock_warn, mock_open): plotter = graphistry.bind(source='src', destination='dst', edge_title='src') plotter.plot(triangleEdges) self.assertTrue(mock_etl.called) self.assertFalse(mock_warn.called) def test_bind_nodes(self, mock_etl, mock_warn, mock_open): plotter = graphistry.bind(source='src', destination='dst', node='id', point_title='a2') plotter.plot(triangleEdges, triangleNodes) self.assertTrue(mock_etl.called) self.assertFalse(mock_warn.called) def test_bind_nodes_rich(self, mock_etl, mock_warn, mock_open): plotter = graphistry.bind(source='src', destination='dst', node='id', point_title='a2') plotter.plot(triangleEdges, triangleNodesRich) self.assertTrue(mock_etl.called) self.assertFalse(mock_warn.called) def test_bind_edges_rich_2(self, mock_etl, mock_warn, mock_open): plotter = graphistry.bind(source='src', destination='dst') plotter.plot(squareEvil) self.assertTrue(mock_etl.called) self.assertFalse(mock_warn.called) def test_unknown_col_edges(self, mock_etl, mock_warn, mock_open): plotter = graphistry.bind(source='src', destination='dst', edge_title='doesnotexist') plotter.plot(triangleEdges) self.assertTrue(mock_etl.called) self.assertTrue(mock_warn.called) def test_unknown_col_nodes(self, mock_etl, mock_warn, mock_open): plotter = graphistry.bind(source='src', destination='dst', node='id', point_title='doesnotexist') plotter.plot(triangleEdges, triangleNodes) self.assertTrue(mock_etl.called) self.assertTrue(mock_warn.called) @patch.object(graphistry.util, 'error') def test_empty_graph(self, mock_error, mock_etl, mock_warn, mock_open): mock_error.side_effect = ValueError('error') plotter = graphistry.bind(source='src', destination='dst') with self.assertRaises(ValueError): plotter.plot(pd.DataFrame([])) self.assertFalse(mock_etl.called) self.assertTrue(mock_error.called) @patch('webbrowser.open') @patch.object(graphistry.util, 'warn') @patch.object(graphistry.pygraphistry.PyGraphistry, '_etl2') class TestPlotterBindings_API_2(NoAuthTestCase): @classmethod def setUpClass(cls): graphistry.pygraphistry.PyGraphistry._is_authenticated = True graphistry.register(api=2) def test_no_src_dst(self, mock_etl, mock_warn, mock_open): with self.assertRaises(ValueError): graphistry.bind().plot(triangleEdges) with self.assertRaises(ValueError): graphistry.bind(source='src').plot(triangleEdges) with self.assertRaises(ValueError): graphistry.bind(destination='dst').plot(triangleEdges) with self.assertRaises(ValueError): graphistry.bind(source='doesnotexist', destination='dst').plot(triangleEdges) def test_no_nodeid(self, mock_etl, mock_warn, mock_open): plotter = graphistry.bind(source='src', destination='dst') with self.assertRaises(ValueError): plotter.plot(triangleEdges, triangleNodes) def test_triangle_edges(self, mock_etl, mock_warn, mock_open): plotter = graphistry.bind(source='src', destination='dst') plotter.plot(triangleEdges) self.assertTrue(mock_etl.called) self.assertFalse(mock_warn.called) def test_bind_edges(self, mock_etl, mock_warn, mock_open): plotter = graphistry.bind(source='src', destination='dst', edge_title='src') plotter.plot(triangleEdges) self.assertTrue(mock_etl.called) self.assertFalse(mock_warn.called) def test_bind_nodes(self, mock_etl, mock_warn, mock_open): plotter = graphistry.bind(source='src', destination='dst', node='id', point_title='a2') plotter.plot(triangleEdges, triangleNodes) self.assertTrue(mock_etl.called) self.assertFalse(mock_warn.called) def test_bind_nodes_rich(self, mock_etl, mock_warn, mock_open): plotter = graphistry.bind(source='src', destination='dst', node='id', point_title='a2') plotter.plot(triangleEdges, triangleNodesRich) self.assertTrue(mock_etl.called) self.assertFalse(mock_warn.called) def test_bind_edges_rich_2(self, mock_etl, mock_warn, mock_open): plotter = graphistry.bind(source='src', destination='dst') plotter.plot(squareEvil) self.assertTrue(mock_etl.called) self.assertFalse(mock_warn.called) def test_unknown_col_edges(self, mock_etl, mock_warn, mock_open): plotter = graphistry.bind(source='src', destination='dst', edge_title='doesnotexist') plotter.plot(triangleEdges) self.assertTrue(mock_etl.called) self.assertTrue(mock_warn.called) def test_unknown_col_nodes(self, mock_etl, mock_warn, mock_open): plotter = graphistry.bind(source='src', destination='dst', node='id', point_title='doesnotexist') plotter.plot(triangleEdges, triangleNodes) self.assertTrue(mock_etl.called) self.assertTrue(mock_warn.called) @patch.object(graphistry.util, 'error') def test_empty_graph(self, mock_error, mock_etl, mock_warn, mock_open): mock_error.side_effect = ValueError('error') plotter = graphistry.bind(source='src', destination='dst') with self.assertRaises(ValueError): plotter.plot(pd.DataFrame([])) self.assertFalse(mock_etl.called) self.assertTrue(mock_error.called) @patch('webbrowser.open') @patch('requests.post', return_value=Fake_Response()) class TestPlotterReturnValue(NoAuthTestCase): def test_no_ipython(self, mock_post, mock_open): url = graphistry.bind(source='src', destination='dst').plot(triangleEdges) self.assertIn('fakedatasetname', url) self.assertIn('faketoken', url) self.assertTrue(mock_open.called) self.assertTrue(mock_post.called) @patch.object(graphistry.util, 'in_ipython', return_value=True) def test_ipython(self, mock_util, mock_post, mock_open): widget = graphistry.bind(source='src', destination='dst').plot(triangleEdges) self.assertIsInstance(widget, IPython.core.display.HTML) @patch('webbrowser.open') @patch.object(graphistry.pygraphistry.PyGraphistry, '_etl2') class TestPlotterCallChaining(NoAuthTestCase): @classmethod def setUpClass(cls): graphistry.pygraphistry.PyGraphistry._is_authenticated = True graphistry.register(api=2) def test_bind_chain(self, mock_etl2, mock_open): plotter0 = graphistry.bind(source='caca').bind(destination='dst', source='src') plotter0.plot(triangleEdges) self.assertTrue(mock_etl2.called) def test_bind_edges_nodes(self, mock_etl2, mock_open): plotter0 = graphistry.bind(source='src').bind(destination='dst') plotter1 = plotter0.bind(node='id').bind(point_title='a2') plotter1.edges(triangleEdges).nodes(triangleNodes).plot() self.assertTrue(mock_etl2.called) class TestPlotterConversions(NoAuthTestCase): @pytest.mark.xfail(raises=ModuleNotFoundError) def test_igraph2pandas(self): import igraph ig = igraph.Graph.Tree(4, 2) ig.vs['vattrib'] = 0 ig.es['eattrib'] = 1 (e, n) = graphistry.bind(source='src', destination='dst').igraph2pandas(ig) edges = pd.DataFrame({ 'dst': {0: 1, 1: 2, 2: 3}, 'src': {0: 0, 1: 0, 2: 1}, 'eattrib': {0: 1, 1: 1, 2: 1} }) nodes = pd.DataFrame({ '__nodeid__': {0: 0, 1: 1, 2: 2, 3: 3}, 'vattrib': {0: 0, 1: 0, 2: 0, 3: 0} }) assertFrameEqual(e, edges) assertFrameEqual(n, nodes) @pytest.mark.xfail(raises=ModuleNotFoundError) def test_pandas2igraph(self): plotter = graphistry.bind(source='src', destination='dst', node='id') ig = plotter.pandas2igraph(triangleEdges) (e, n) = plotter.igraph2pandas(ig) assertFrameEqual(e, triangleEdges[['src', 'dst']]) assertFrameEqual(n, triangleNodes[['id']]) @pytest.mark.xfail(raises=ModuleNotFoundError) def test_networkx2igraph(self): import networkx as nx ng = nx.complete_graph(3) [x, y] = [int(x) for x in nx.__version__.split('.')] if x == 1: nx.set_node_attributes(ng, 'vattrib', 0) nx.set_edge_attributes(ng, 'eattrib', 1) else: nx.set_node_attributes(ng, 0, 'vattrib') nx.set_edge_attributes(ng, 1, 'eattrib') (e, n) = graphistry.bind(source='src', destination='dst').networkx2pandas(ng) edges = pd.DataFrame({ 'dst': {0: 1, 1: 2, 2: 2}, 'src': {0: 0, 1: 0, 2: 1}, 'eattrib': {0: 1, 1: 1, 2: 1} }) nodes = pd.DataFrame({ '__nodeid__': {0: 0, 1: 1, 2: 2}, 'vattrib': {0: 0, 1: 0, 2: 0} }) assertFrameEqual(e, edges) assertFrameEqual(n, nodes) class TestPlotterNameBindings(NoAuthTestCase): def test_bind_name(self): plotter = graphistry.bind().name('n') assert plotter._name == 'n' def test_bind_description(self): plotter = graphistry.bind().description('d') assert plotter._description == 'd' class TestPlotterPandasConversions(NoAuthTestCase): def test_table_to_pandas_from_none(self): plotter = graphistry.bind() assert plotter._table_to_pandas(None) is None def test_table_to_pandas_from_pandas(self): plotter = graphistry.bind() df = pd.DataFrame({'x': []}) assert isinstance(plotter._table_to_pandas(df), pd.DataFrame) def test_table_to_pandas_from_arrow(self): plotter = graphistry.bind() df = pd.DataFrame({'x': []}) arr = pa.Table.from_pandas(df) assert isinstance(plotter._table_to_pandas(arr), pd.DataFrame) class TestPlotterArrowConversions(NoAuthTestCase): @classmethod def setUpClass(cls): graphistry.pygraphistry.PyGraphistry._is_authenticated = True graphistry.pygraphistry.PyGraphistry.store_token_creds_in_memory(True) graphistry.pygraphistry.PyGraphistry.relogin = lambda: True graphistry.register(api=3) def test_table_to_arrow_from_none(self): plotter = graphistry.bind() assert plotter._table_to_arrow(None) is None def test_table_to_arrow_from_pandas(self): plotter = graphistry.bind() df = pd.DataFrame({'x': []}) assert isinstance(plotter._table_to_arrow(df), pa.Table) def test_table_to_arrow_from_arrow(self): plotter = graphistry.bind() df = pd.DataFrame({'x': []}) arr = pa.Table.from_pandas(df) assert isinstance(plotter._table_to_arrow(arr), pa.Table) def test_api3_plot_from_pandas(self): g = graphistry.edges(
pd.DataFrame({'s': [0], 'd': [0]})
pandas.DataFrame
from caes import ICAES2 import pandas as pd from joblib import Parallel, delayed, parallel_backend import time import os from datetime import datetime # ===================== # function to enable sensitivity analysis # ===================== def sizing_and_sensitivity(wrkdir, xlsx_filename, sheet_name, capacity, duration, polytropic_index, float_perm, int_perm, debug): # create folder to store results result_dir = os.path.join(wrkdir, sheet_name) try: os.stat(result_dir) except: os.mkdir(result_dir) # ----------------------------- # prepare for sizing # ----------------------------- entries = ['depth_m', 'thickness_m', 'porosity', 'capacity_MW', 'duration_hr', 'permeability_mD', 'n_cmp1', 'n_exp1'] user_input = pd.read_excel(xlsx_filename, sheet_name=sheet_name) user_input = user_input.set_index('Variable') s = pd.Series(index=entries) s['sheet_name'] = sheet_name s['depth_m'] = user_input.loc['depth', 'Baseline'] s['thickness_m'] = user_input.loc['h', 'Baseline'] s['porosity'] = user_input.loc['phi', 'Baseline'] s['capacity_MW'] = capacity s['duration_hr'] = duration s['permeability_mD'] = user_input.loc['k', 'Baseline'] s['r_w'] = user_input.loc['r_w', 'Baseline'] s['n_cmp1'] = polytropic_index s['n_exp1'] = polytropic_index # ------------------ # run sizing # ------------------ sized_result = sizing(s, debug=False) # save inputs os.chdir(result_dir) sized_result.to_csv('sizing_results.csv') # ------------------ # prepare for sensitivity # ------------------ os.chdir(wrkdir) user_input = pd.read_excel(xlsx_filename, sheet_name=sheet_name) os.chdir(result_dir) # use results from sizing m_dot = pd.Series() m_dot['Variable'] = 'm_dot' m_dot['Baseline'] = sized_result['m_dot'] m_dot['Include'] = 'Y' m_dot['Type'] = 'float' m_dot['Note'] = 'from sizing' user_input = user_input.append(m_dot, ignore_index=True) r_f =
pd.Series()
pandas.Series
""" UTZappos processing. """ import os import pandas as pd from collections import Counter import torch def parse_split(root, split): def parse_pairs(pair_list): with open(pair_list, 'r') as f: pairs = f.read().strip().split('\n') pairs = [t.split() for t in pairs] pairs = list(map(tuple, pairs)) attrs, objs = zip(*pairs) return attrs, objs, pairs tr_attrs, tr_objs, tr_pairs = parse_pairs(os.path.join(root, split, "train_pairs.txt")) vl_attrs, vl_objs, vl_pairs = parse_pairs(os.path.join(root, split, "val_pairs.txt")) ts_attrs, ts_objs, ts_pairs = parse_pairs(os.path.join(root, split, "test_pairs.txt")) all_attrs = sorted(list(set(tr_attrs + vl_attrs + ts_attrs))) all_objs = sorted(list(set(tr_objs + vl_objs + ts_objs))) all_pairs = sorted(list(set(tr_pairs + vl_pairs + ts_pairs))) return all_attrs, all_objs, all_pairs, tr_pairs, vl_pairs, ts_pairs def get_split_info(root, split, pairs): data = torch.load(os.path.join(root, f'metadata_{split}.t7')) train_data, val_data, test_data = [], [], [] for instance in data: image, attr, obj, settype = instance['image'], instance['attr'], instance['obj'], instance['set'] if attr == 'NA' or (attr, obj) not in pairs or settype == 'NA': # ignore instances with unlabeled attributes or that are not in the current split continue data_i = [image, attr, obj] if settype == 'train': train_data.append(data_i) elif settype == 'val': val_data.append(data_i) else: test_data.append(data_i) return train_data, val_data, test_data def split_obj(obj_name): if "." in obj_name: cat, *subcat = obj_name.split(".") return cat, ".".join(subcat) return obj_name, None def main(): root = "/Users/jacobkelly/Downloads/compositional_split_natural/ut-zap50k" split = "compositional-split-natural" _, _, pairs, *_ = parse_split(root, split) trn, val, tst = get_split_info(root, split, pairs) trn_df = pd.DataFrame.from_dict(trn) trn_df.columns = ["image", "attr", "obj"] val_df =
pd.DataFrame.from_dict(val)
pandas.DataFrame.from_dict
import os import pandas import numpy as np import warnings from . import io __all__ =["get_target_lightcurve"] ZTFCOLOR = { # ZTF "p48r":dict(marker="o",ms=7, mfc="C3"), "p48g":dict(marker="o",ms=7, mfc="C2"), "p48i":dict(marker="o",ms=7, mfc="C1") } BAD_ZTFCOLOR = { # ZTF "p48r":dict(marker="o",ms=6, mfc="None", mec="C3"), "p48g":dict(marker="o",ms=6, mfc="None", mec="C2"), "p48i":dict(marker="o",ms=6, mfc="None", mec="C1") } def get_target_lightcurve(name, load_salt2param=True, **kwargs): """ """ return LightCurve.from_name(name, load_salt2param=load_salt2param, **kwargs) # ================== # # # # LIGHTCURVES # # # # ================== # class LightCurve( object ): """ """ def __init__(self, data, meta=None, salt2param=None, use_dask=False): """ """ self.set_data(data) self.set_meta(meta) self.set_salt2param(salt2param) self._use_dask = use_dask @classmethod def from_filename(cls, filename, use_dask=False): """ """ if use_dask: from dask import delayed # This is faster than dd.read_cvs and does what we need here lc = delayed(pandas.read_csv)(filename, delim_whitespace=True, comment='#') else: lc = pandas.read_csv(filename, delim_whitespace=True, comment='#') meta = pandas.Series([os.path.basename(filename).split("_")[0]], index=["name"]) return cls(lc, meta=meta, use_dask=use_dask) @classmethod def from_name(cls, targetname, use_dask=False, load_salt2param=True, **kwargs): """ """ filename = io.get_target_lc(targetname) this = cls.from_filename(filename, use_dask=use_dask, **kwargs) this._targetname = targetname if load_salt2param: this.load_salt2param() return this # ================ # # Method # # ================ # # --------- # # LOADER # # --------- # def load_salt2param(self): """ """ targetname = self.targetname if targetname is None: warnings.warn("Unknown targetname (=None) ; use manually set_salt2param()") return None from .salt2 import get_target_salt2param salt2param = get_target_salt2param(targetname) self.set_salt2param(salt2param) # --------- # # SETTER # # --------- # def set_data(self, data): """ """ self._data = data def set_salt2param(self, salt2param): """ """ self._salt2param = salt2param def set_meta(self, meta): """ """ self._meta = meta # --------- # # GETTER # # --------- # def get_obsphase(self, min_detection=5, groupby=None, **kwargs): """ Returns ------- pandas.Series """ lcdata = self.get_lcdata(min_detection=min_detection, **kwargs) if groupby is None: return lcdata["phase"] return lcdata.groupby(groupby)["phase"].apply( list ) def get_saltmodel(self): """ """ from .salt2 import get_saltmodel return get_saltmodel(**self.salt2param.rename({"redshift":"z"} )[["z","t0","x0","x1","c", "mwebv"]].to_dict() ) def get_lcdata(self, zp=None, in_mjdrange=None, min_detection=None, filters=None, flagout=[1,2,4,8,256]): """ filters: [string, None or list] list of filters - None/'*' or 'all': no filter selection/ - string: just this filter (e.g. 'p48g') - list of string: just these filters (e.g. ['p48g','p48r']) flagout: [list of int or string] flag == 0 means all good, but in details: 0: no warning 1: flux_err==0 Remove unphysical errors 2: chi2dof>3: Remove extreme outliers 4: cloudy>1: BTS cut 8: infobits>0: BTS cut 16: mag_lim<19.3: Cut applied in Dhawan 2021 32: seeing>3: Cut applied in Dhawan 2021 64: fieldid>879: Recommended IPAC cut 128: moonilf>0.5: Recommended IPAC cut 256: has_baseline>1: Has a valid baseline correction 512: airmass>2: Recommended IPAC cut 1024: flux/flux_err>=5: Nominal detection """ if flagout in ["all","any","*"]: data = self.data[self.data["flag"]==0] if flagout in ["all","any","*"]: data = self.data[self.data["flag"]==0] elif flagout is None: data = self.data.copy() else: flag_ = np.all([(self.data.flag&i_==0) for i_ in np.atleast_1d(flagout)], axis=0) data = self.data[flag_] if zp is None: zp = data["ZP"].values coef = 1. else: coef = 10 ** (-(data["ZP"].values - zp) / 2.5) flux = data["flux"] * coef error = data["flux_err"] * coef detection = flux/error lcdata = data[["mjd","mag","mag_err","filter","field_id","x_pos","y_pos", "flag","mag_lim"]] additional = pandas.DataFrame(np.asarray([zp, flux,error, detection]).T, columns=["zp", "flux", "error", "detection"], index=lcdata.index) lcdata = pandas.merge(lcdata, additional, left_index=True, right_index=True) # lcdata.loc["zp",:] = zp # lcdata["flux"] = flux # lcdata["error"] = error # lcdata["detection"] = detection lcdata["filter"] = lcdata["filter"].replace("ztfg","p48g").replace("ztfr","p48r").replace("ztfi","p48i") if self.has_salt2param(): lcdata["phase"] = lcdata["mjd"]-self.salt2param['t0'] else: lcdata["phase"] = np.NaN if in_mjdrange is not None: lcdata = lcdata[lcdata["mjd"].between(*in_mjdrange)] if min_detection is not None: lcdata = lcdata[lcdata["detection"]>min_detection] if filters is not None and filters not in ["*","all"]: lcdata = lcdata[lcdata["filter"].isin(np.atleast_1d(filters))] return lcdata def get_sncosmotable(self, min_detection=5, phase_range=[-10,30], filters=["p48r","p48g"], **kwargs): """ """ from .utils import mag_to_flux t0 = self.salt2param["t0"] to_fit = self.get_lcdata(min_detection=min_detection, in_mjdrange= t0 + phase_range, filters=filters, **kwargs) sncosmo_lc = to_fit.rename({"mjd":"time", "filter":"band"}, axis=1)[["time","band","zp","mag","mag_err"]] sncosmo_lc["zpsys"] = "ab" sncosmo_lc["flux"], sncosmo_lc["flux_err"] = mag_to_flux(sncosmo_lc["mag"], sncosmo_lc["mag_err"], zp=sncosmo_lc["zp"]) return sncosmo_lc def fit_salt(self, free_parameters=['t0', 'x0', 'x1', 'c'], min_detection=5, phase_range=[-10,30], filters=["p48r","p48g"], as_dataframe=False, **kwargs): """ """ import sncosmo from astropy import table from .salt2 import salt2result_to_dataframe model = self.get_saltmodel() sncosmo_df = self.get_sncosmotable(min_detection=min_detection, phase_range=phase_range, filters=filters) fitted_data = table.Table.from_pandas(sncosmo_df) (result, fitted_model) = sncosmo.fit_lc(fitted_data, model, vparam_names=free_parameters, **kwargs) if as_dataframe: return salt2result_to_dataframe(result) return (fitted_data,model), (result, fitted_model) def fit_salt_perfilter(lc, filters=["p48g",'p48r','p48i'], min_detection=5, free_parameters=['t0','x0', 'x1'], phase_range=[-10, 30], t0_range=[-2,+2]): """ """ results = [] for filter_ in filters: try: result = lc.fit_salt(min_detection=min_detection, filters=filter_, free_parameters=free_parameters, phase_range=phase_range, bounds={"t0":lc.salt2param['t0']+t0_range}, as_dataframe=True ) except: warnings.warn(f"failed for filter {filter_}") result = pandas.DataFrame() results.append(result) return
pandas.concat(results, keys=filters)
pandas.concat
from tkinter import * from random import choice import pandas BACKGROUND_COLOR = "#B1DDC6" to_learn = {} word = {} # ---------------------------- PANDAS LOGIC ------------------------------- # try: data =
pandas.read_csv("./data/words_to_learn.csv")
pandas.read_csv
from os import times import locale from datetime import date, datetime, timedelta, timezone import time import requests from tqdm import tqdm import pandas as pd import urllib.request import os locale.setlocale(locale.LC_ALL, "it_IT.UTF-8") DAYNAMES = { 0: "lunedi", 1: "martedi", 2: "mercoledi", 3: "giovedi", 4: "venerdi", 5: "sabato", 6: "domenica", } from bs4 import BeautifulSoup initial_date = date(2011, 4, 23) today = date.today() num_days = (today - initial_date).days print("Num days", num_days) import re # dd/mm/YY results = list() total = 0 for i in tqdm(range(num_days), desc="Days"): try: day = today - timedelta(days=i) day_str = day.strftime("%y%m%d") d1 = day.strftime("%Y/%m/%d") month = day.strftime("%B").lower() weekday = DAYNAMES[day.weekday()] url = f"https://www.ilpost.it/{d1}/{weekday}-{day.day}-{month}/" # print(url) req = requests.get(url) soup = BeautifulSoup(req.text, "lxml") body = soup.find_all("div", attrs={"id": "singleBody"})[0] def has_url(href): return href and href.startswith(url) links = body.find_all(href=has_url) hrefs = [l["href"] for l in links] for idx, href in tqdm(enumerate(hrefs), desc="imgs", leave=False): try: req = requests.get(href) soup = BeautifulSoup(req.text, "lxml") gallery = soup.find("img", attrs={"class": "photo"}) img_url = gallery["data-src"] if img_url is None: continue caption = soup.find( "span", attrs={"id": "gallery-description"} ).text.strip() caption = caption.replace("\n", "") # filename ext = os.path.splitext(os.path.basename(img_url))[-1] filename = f"ILPOST_{day_str}_{idx:04d}{ext}" image_dest_path = f"ILPOST_IT/{filename}.jpg" if not os.path.exists(image_dest_path): opener = urllib.request.build_opener() opener.addheaders = [ ("User-Agent", "Googlebot-Image/1.0"), ("X-Forwarded-For", "172.16.31.10"), ] urllib.request.install_opener(opener) try: urllib.request.urlretrieve(img_url, image_dest_path) except: print("Download Image as failed") filename = "failed" else: print(f"Skipping file {filename}") results.append( {"date": day, "url": img_url, "caption": caption, "img": image_dest_path} ) except Exception as e: print("Image at", href, "has failed") total += len(hrefs) except: print("Day", day, "has failed") if (i + 1) % 500 == 0: df = pd.DataFrame(results) df.to_csv(f"ilpost_fotodelgiorno_p{i}.tsv", sep="\t", index=None) time.sleep(1) df =
pd.DataFrame(results)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Aug 1 08:02:39 2020 @author: <NAME> """ #Standard packages import os import numpy as np import pandas as pd #Sklearning package from sklearn.preprocessing import MinMaxScaler #Graphics packages from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap import seaborn as sns #Project packages import config from utils import classes_names from table import best_results #Still beta, several updates required! #Best model path: best_path = os.path.join('results', 'mccv', 'baseline_over_SVC_linear_100.0', 'detailed_score.csv') mccv_path = config._get_path('mccv') graphics_path = config._get_path('graphics') def gs_heatmap(output_name = 'gs_table'): df, _ = best_results() c_map = plt.get_cmap('YlGnBu') c_map = ListedColormap(c_map(np.linspace(0.1, 0.7, 256))) fig, ax = plt.subplots(figsize=(12, 7)) heat = sns.heatmap(df, annot=True, linewidths= 1, cmap=c_map, ax = ax, fmt='.4f') #Ad-hoc for text in heat.texts: txt = text.get_text() n = float(txt) if(n == 0 or n ==1 ): text.set_text('Yes' if n else 'No') ax.set_title('Grid Search') fig.savefig(os.path.join(graphics_path, output_name + '.png'), dpi = 1200, bbox_inches = "tight") return df def total_score_plot_all(): _total_score_plot(mccv_files(), "Best models") def _total_score_plot(name_list, main_name): df_tuples = [] for name in name_list: df = pd.read_csv(os.path.join(mccv_path, name, 'total_score.csv')) std = np.std(df[df.columns[1]]) mean = np.mean(df[df.columns[1]]) #label1 = name label1 = name + ' loss: ' + str(round(mean, 5)) + \ ', std: ' + str(round(std, 5)) std = np.std(df[df.columns[3]]) mean = np.mean(df[df.columns[3]]) #label2 = name label2 = name + ' score: ' + str(round(mean, 5)) + \ ', std: ' + str(round(std, 5)) df_tuples.append((df, label1, label2)) total_score_plot(df_tuples, main_name) def total_score_plot(df_tuples, name): sns.set_palette(sns.color_palette("hls", len(df_tuples))) for tup in df_tuples: plot = sns.distplot(tup[0]["Cross_Entropy_val"], axlabel = 'Cross Entropy (validation)', label=tup[1], ) plt.legend(loc="center", bbox_to_anchor=(0.5, -0.35)) fig = plot.get_figure() fig.savefig(os.path.join(graphics_path, name + '_cross_entropy.png'), dpi = 1200, bbox_inches = "tight") plt.show() plt.close() ##The same for accuracy sns.set_palette(sns.color_palette("hls", len(df_tuples))) for tup in df_tuples: plot = sns.distplot(tup[0]["Accuracy_val"], axlabel = 'Accuracy (validation)', label=tup[2]) plt.legend(loc="center", bbox_to_anchor=(0.5, -0.35)) fig = plot.get_figure() fig.savefig(os.path.join(graphics_path, name + '_accuracy.png'), dpi = 1200, bbox_inches = "tight") plt.show() plt.close() def self_heatmap(): df = pd.read_csv(os.path.join('results', 'SelfTraining.csv'), index_col=0) df.index.name = None df.drop(['base_path'], axis=1, inplace=True) rename = {'time' : 'Time (s)', 'amount_labaled' : 'Samples labeled', 'accuracy' : 'Accuracy', 'log_loss' : 'Log-los', 'std_log_loss' : 'log-los (std)'} df.rename(columns = rename, inplace=True) scaler = MinMaxScaler() df_dual = pd.DataFrame(data = scaler.fit_transform(df), columns = df.columns, index = df.index) heat0 = sns.heatmap(df, annot=True, linewidths= 1, fmt='.3f') fig, ax = plt.subplots(figsize=(12, 5)) color_map = plt.get_cmap('YlGnBu') color_map = ListedColormap(color_map(np.linspace(0.1, 0.75, 256))) heat = sns.heatmap(df_dual, annot=True, linewidths= 1, cmap= color_map, ax = ax, fmt='.3f') colorbar = ax.collections[0].colorbar colorbar.set_ticks([0.1, 0.5, 1]) colorbar.set_ticklabels(['Low', 'Middle', 'High']) for t in range(len(heat0.texts)): txt = heat0.texts[t].get_text() heat.texts[t].set_text(txt) ax.set_title('SelfTraining Table (5-fold cross validation)') fig.savefig(os.path.join(graphics_path, 'SelfTraining_table.png'), dpi = 1200,) def best_model_results(model_name = 'baseline_over_SVC_linear_100.0'): path = os.path.join(mccv_path, model_name) probability_heatmap(pd.read_csv(os.path.join(path,'probability.csv')), model_name) cross_heatmap(pd.read_csv(os.path.join(path,'cross_matrix.csv')), model_name) detailed_score_heatmap(pd.read_csv(os.path.join(path, 'detailed_score.csv')), model_name) def probability_heatmap(df, name): names, classes = classes_names() w = df.mean(axis=0).values.reshape(classes, classes) #ndarray w = np.around(w, decimals=3) prob_frame = pd.DataFrame(data = w, columns = names, index = names) fig, ax = plt.subplots(figsize=(12, 7)) sns.heatmap(prob_frame, annot=True, linewidths= 1, cmap="YlGnBu", ax = ax) ax.set_title('True class v.s. Predicted Probability Class') fig.savefig(os.path.join(graphics_path, name + '_probability.png'), dpi = 1200, bbox_inches = "tight") def cross_heatmap(df, name): names, classes = classes_names() w = df.mean(axis=0).values.reshape(classes, classes) #ndarray for i in range(classes): w[i] /= np.sum(w[i]) w = np.around(w, decimals=3) cross_frame = pd.DataFrame(data = w, columns = names, index = names) fig, ax = plt.subplots(figsize=(12, 7)) sns.heatmap(cross_frame, annot=True, linewidths= 1, cmap="YlGnBu", ax = ax) ax.set_title('True class v.s. Predicted Class (mean)') fig.savefig(os.path.join(graphics_path, name + '_cross_prediction.png'), dpi = 1200, bbox_inches = "tight") def mccv_detailed_score_heatmap(): models = mccv_files() for model_name in models: df = pd.read_csv(os.path.join(mccv_path,model_name, 'detailed_score.csv')) detailed_score_heatmap(df, model_name) def detailed_score_heatmap(df, name): names, classes = classes_names() w = df.mean(axis=0).values.reshape(classes, 4) w = np.around(w, decimals=3) score_frame = pd.DataFrame(data = w, columns=['sensitivity', 'specificity', 'precision', 'f1_score'], index = names) fig, ax = plt.subplots(figsize=(7, 7)) #color_map = plt.get_cmap('YlGnBu_r') #color_map = ListedColormap(color_map(np.linspace(0.1, 0.6, 256))) sns.heatmap(score_frame, annot=True, linewidths= 0.05, cmap='YlGnBu', ax = ax) ax.set_title(name + ' Scores') fig.savefig(os.path.join(graphics_path, name + '_detailed_score.png'), dpi = 1200, bbox_inches = "tight") def final_table(): names, classes = classes_names() ked_et_al = {'Cellulose acetate': 0.97, 'Cellulose like': 0.65, 'Ethylene propylene rubber': 0.76, 'Morphotype 1': 0.89, 'Morphotype 2': 0.88, 'PEVA': 0.74, 'Poly(amide)': 1, 'Poly(ethylene)' : 1, 'Poly(ethylene) + fouling' : 0.88, 'Poly(ethylene) like' : 0.69, 'Poly(propylene)' : 0.99, 'Poly(propylene) like' : 0.51, 'Poly(styrene)' : 0.99, 'Unknown' : 0 } w0 = [] for n in names: w0.append(ked_et_al[n]) w0 = np.array(w0) #Load model's sensitivity mccv data (using Kedzierski et. al methodology) df1 = pd.read_csv(os.path.join('results', 'final_model_mccv_all_data_detailed_score.csv') ) w1 = df1.mean(axis=0).values.reshape(classes, 4) w1 = np.around(w1, decimals=3)[:, 0] #Load MCCV results (best model) df2 =
pd.read_csv(best_path)
pandas.read_csv
import os import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler def load_data(): here = os.path.realpath(__file__) here = os.path.dirname(here) fn = os.path.join(here, 'monthly-milk-production.csv') return pd.read_csv(fn, index_col='Month') def clean_data(df): # convert index to a timeseries df.index =
pd.to_datetime(df.index)
pandas.to_datetime
# -*- coding: utf-8 -*- """ Created on Wed Aug 4 2021, last edited 27 Oct 2021 Fiber flow emissions calculations module - class version Inputs: Excel file with old PPI market & emissions data ('FiberModelAll_Python_v3-yields.xlsx') Outputs: Dict of keys 'old','new','forest','trade' with emissions calcs (*testing inputs* x = 'FiberModelAll_Python_v2.xlsx' f2pVolOld = pd.read_excel(x, 'OldData', usecols="A:I", skiprows=1, nrows=21, index_col=0) pbpVolOld = pd.read_excel(x, 'OldData', usecols="K:R", skiprows=1, nrows=14, index_col=0) pbpVolOld.columns = [x[:-2] for x in pbpVolOld.columns] consCollOld = pd.read_excel(x, 'OldData', usecols="K:Q", skiprows=34, nrows=3, index_col=0) rLevel = pd.read_excel(x, 'Demand', usecols="F:K", skiprows=16, nrows=5) rLevel = {t: list(rLevel[t][np.isfinite(rLevel[t])].values) for t in fProd} fProd = [t for t in f2pVolOld.iloc[:,:6].columns] fProdM = [t for t in f2pVolOld.iloc[:,:7].columns] rFiber = f2pVolOld.index[:16] vFiber = f2pVolOld.index[16:] rPulp = [p for p in pbpVolOld.index if 'Rec' in p] vPulp = [q for q in pbpVolOld.index if 'Vir' in q] fPulp = [f for f in pbpVolOld.index] import numpy as np f2pYld = pd.read_excel(x, 'Fiber', usecols="I:O", skiprows=1, nrows=21) f2pYld.index = np.concatenate([rFiber.values, vFiber.values], axis=0) pulpYld = pd.read_excel(x, 'Pulp', usecols="D", skiprows=1, nrows=14) pulpYld.index = rPulp + vPulp transPct = pd.read_excel(x, 'EmTables', usecols="L:P", skiprows=32, nrows=11, index_col=0) transKM = pd.read_excel(x, 'EmTables', usecols="L:P", skiprows=46, nrows=11, index_col=0) transUMI = pd.read_excel(x, 'EmTables', usecols="L:P", skiprows=59, nrows=1, index_col=0) rsdlModes = pd.read_excel(x, 'EmTables', usecols="A:G", skiprows=32, nrows=6, index_col=0) rsdlbio = pd.read_excel(x, 'EmTables', usecols="A:H", skiprows=41, nrows=4, index_col=0) rsdlbio = rsdlbio.fillna(0) rsdlfos = pd.read_excel(x, 'EmTables', usecols="A:H", skiprows=48, nrows=4, index_col=0) rsdlfos = rsdlfos.fillna(0) woodint = pd.read_excel(x, 'EmTables', usecols="A:H", skiprows=58, nrows=1, index_col=0) wtotalGHGb0 = pd.read_excel(x, 'EmTables', usecols="A:K", skiprows=62, nrows=6, index_col=0) wtotalGHGb1 = pd.read_excel(x, 'EmTables', usecols="A:K", skiprows=71, nrows=6, index_col=0) wbioGHGb0 = pd.read_excel(x, 'EmTables', usecols="A:K", skiprows=80, nrows=6, index_col=0) wbioGHGb1 = pd.read_excel(x, 'EmTables', usecols="A:K", skiprows=89, nrows=6, index_col=0) wfosGHGb0 = pd.read_excel(x, 'EmTables', usecols="A:K", skiprows=98, nrows=6, index_col=0) wfosGHGb1 = pd.read_excel(x, 'EmTables', usecols="A:K", skiprows=107, nrows=6, index_col=0) exportOld = pd.read_excel(x, 'OldData', usecols="E:G", skiprows=31, nrows=16, index_col=0) exportOld.iloc[:,:-1] = exportOld.iloc[:,:-1] exportNew = exportOld.iloc[:,:-1] * 1.5 exportNew.columns = ['exportNew'] exportNew = exportNew.assign(TransCode=exportOld['TransCode'].values) fiberType = pd.read_excel(x, 'OldData', usecols="A:B", skiprows=31, nrows=20, index_col=0) chinaVals = pd.read_excel(x, 'EmTables', usecols="L:M", skiprows=66, nrows=3, index_col=0) chinaCons = pd.read_excel(x, 'EmTables', usecols="L:M", skiprows=72, nrows=6, index_col=0) fYield = pd.read_excel(x, 'EmTables', usecols="L:N", skiprows=81, nrows=5, index_col=0) ) @author: <NAME> """ import pandas as pd import numpy as np class en_emissions(): # energy & emissions def __init__(cls,xls,fProd,rLevel,f2pYld,pulpYld,f2pVolNew,pbpVolNew,consCollNew,exportNew,demandNew): # xls (str) - name of Excel spreadsheet to pull data from # fProd (list) - list of products in current scenario # rLevel (df) - recycled content level by product # f2pYld (df) - fiber to pulp yield by pulp product; indexed by fiber # pulpYld (df) - pulp to product yield; pulp as index # f2pVolNew (df) - fiber to pulp volume (in short tons); indexed by pulp name # pbpVolNew (df) - pulp by product volume; indexed by pulp name # consCollNew (df) - domestic consumption, collection, and recovery by product # demandNew (df) - new demand by product; indexed by rec level uC = 0.907185 # unit conversion of MM US ton to Mg/metric ton cls.fProd = fProd cls.fProdM = fProd + ['Market'] cls.rLevel = rLevel cls.f2pYld = f2pYld cls.pulpYld = pulpYld cls.f2pVolNew = f2pVolNew * uC cls.pbpVolNew = pbpVolNew * uC cls.consCollNew = consCollNew * uC cls.exportNew = exportNew * uC cls.demandNew = {t: demandNew[t] * uC for t in demandNew.keys()} with pd.ExcelFile(xls) as x: # Old data cls.f2pVolOld = pd.read_excel(x, 'OldData', usecols="A:I", skiprows=1, nrows=21, index_col=0) cls.f2pVolOld.iloc[:,:-1] = cls.f2pVolOld.iloc[:,:-1] * uC * 1000 cls.f2pVolNew = cls.f2pVolNew.assign(TransCode=cls.f2pVolOld['TransCode'].values) cls.pbpVolOld = pd.read_excel(x, 'OldData', usecols="K:R", skiprows=1, nrows=14, index_col=0) cls.pbpVolOld.columns = [x[:-2] for x in cls.pbpVolOld.columns] # has .1 after column names for pandas duplicate cls.pbpVolOld.iloc[:,:-1] = cls.pbpVolOld.iloc[:,:-1] * uC * 1000 cls.pbpVolNew = cls.pbpVolNew.assign(TransCode=cls.pbpVolOld['TransCode'].values) cls.prodLD = pd.read_excel(x, 'OldData', usecols="K:Q", skiprows=19, nrows=5, index_col=0) * uC * 1000 cls.prodDemand = pd.read_excel(x, 'OldData', usecols="A:G", skiprows=26, nrows=1, index_col=0) * uC * 1000 cls.consCollOld = pd.read_excel(x, 'OldData', usecols="K:Q", skiprows=29, nrows=3, index_col=0) * uC * 1000 cls.exportOld = pd.read_excel(x, 'OldData', usecols="E:G", skiprows=31, nrows=16, index_col=0) cls.exportOld.iloc[:,:-1] = cls.exportOld.iloc[:,:-1] * uC * 1000 cls.exportNew = cls.exportNew.assign(TransCode=cls.exportOld['TransCode'].values) cls.fiberType = pd.read_excel(x, 'OldData', usecols="A:B", skiprows=31, nrows=20, index_col=0) cls.rFiber = cls.f2pVolOld.index[:16] cls.vFiber = cls.f2pVolOld.index[16:] cls.rPulp = [p for p in cls.pbpVolOld.index if 'Rec' in p] cls.vPulp = [q for q in cls.pbpVolOld.index if 'Vir' in q] cls.fPulp = [f for f in cls.pbpVolOld.index] # Emissions Info cls.chemicals = pd.read_excel(x, 'nonFiber', usecols="A:B,E:L", skiprows=2, nrows=42, index_col=0) cls.eolEmissions = pd.read_excel(x, 'EmTables', usecols="A:G", skiprows=2, nrows=3, index_col=0) cls.bfEI = pd.read_excel(x, 'EmTables', usecols="J:P", skiprows=2, nrows=3, index_col=0) cls.bfEI.columns = [x[:-2] for x in cls.bfEI.columns] # has .1 after column names for some reason cls.bioPct = pd.read_excel(x, 'EmTables', usecols="J:P", skiprows=8, nrows=2, index_col=0) cls.pwpEI = pd.read_excel(x, 'EmTables', usecols="O:P", skiprows=14, nrows=5, index_col=0) cls.bfCO2 = pd.read_excel(x, 'EmTables', usecols="A:G", skiprows=9, nrows=2, index_col=0) cls.fuelTable = pd.read_excel(x, 'EmTables', usecols="A:M", skiprows=15, nrows=13, index_col=0) cls.fuelTable = cls.fuelTable.fillna(0) cls.rsdlModes = pd.read_excel(x, 'EmTables', usecols="A:G", skiprows=32, nrows=6, index_col=0) cls.rsdlbio = pd.read_excel(x, 'EmTables', usecols="A:H", skiprows=41, nrows=4, index_col=0) cls.rsdlbio = cls.rsdlbio.fillna(0) cls.rsdlfos = pd.read_excel(x, 'EmTables', usecols="A:H", skiprows=48, nrows=4, index_col=0) cls.rsdlfos = cls.rsdlfos.fillna(0) cls.transPct = pd.read_excel(x, 'EmTables', usecols="L:P", skiprows=32, nrows=11, index_col=0) cls.transKM = pd.read_excel(x, 'EmTables', usecols="L:P", skiprows=46, nrows=11, index_col=0) cls.transUMI = pd.read_excel(x, 'EmTables', usecols="L:P", skiprows=59, nrows=1, index_col=0) cls.woodint = pd.read_excel(x, 'EmTables', usecols="A:H", skiprows=58, nrows=1, index_col=0) cls.wtotalGHGb0 = pd.read_excel(x, 'EmTables', usecols="A:K", skiprows=62, nrows=6, index_col=0) cls.wtotalGHGb1 = pd.read_excel(x, 'EmTables', usecols="A:K", skiprows=71, nrows=6, index_col=0) cls.wbioGHGb0 = pd.read_excel(x, 'EmTables', usecols="A:K", skiprows=80, nrows=6, index_col=0) cls.wbioGHGb1 = pd.read_excel(x, 'EmTables', usecols="A:K", skiprows=89, nrows=6, index_col=0) cls.wfosGHGb0 = pd.read_excel(x, 'EmTables', usecols="A:K", skiprows=98, nrows=6, index_col=0) cls.wfosGHGb1 = pd.read_excel(x, 'EmTables', usecols="A:K", skiprows=107, nrows=6, index_col=0) cls.chinaVals = pd.read_excel(x, 'EmTables', usecols="L:M", skiprows=66, nrows=3, index_col=0) cls.chinaCons = pd.read_excel(x, 'EmTables', usecols="L:M", skiprows=72, nrows=6, index_col=0) cls.fYield = pd.read_excel(x, 'EmTables', usecols="L:N", skiprows=81, nrows=5, index_col=0) def calculateTrans(cls,transVol): # transVol [df] - item, volume (in Mg) by product, TransCode; indexed by fiberCode or other label # transPct [df] - % traversed for transMode by transCode; indexed by transCode # transKM [df] - distance traversed for transMode by transCode; indexed by transCode # transUMI [s] - unit impact by mode (truck, train, boat); indexed by "transUMI" transImpact = pd.Series(0, index = cls.fProd) tC = transVol['TransCode'] tC = tC[(tC != 0) & (tC != 1)] # index non-zero/non-NaN elements only transVol = transVol.loc[tC.index] for t in cls.fProd: for m in cls.transUMI.columns: transImpact[t] += sum(transVol[t] * cls.transPct.loc[tC,m].values * cls.transKM.loc[tC,m].values * cls.transUMI[m].values * 1) return transImpact def calculateChem(cls,chemicals,prodDemand): # chemicals [df] - nonfiber name, % use by product, transCode, impact factor; indexed by number # prodDemand [df] - total demand; indexed by product chemImpact = pd.Series(0, index = cls.fProd, name = 'chemImp') chemVol = pd.DataFrame(0, index = chemicals.index, columns = cls.fProd) for t in cls.fProd: chemImpact[t] = sum(prodDemand[t].values * chemicals[t] * chemicals['Impact Factor']) chemVol[t] = chemicals[t] * prodDemand[t].values chemVol = chemVol.join(chemicals['TransCode']) chemTrans = pd.Series(cls.calculateTrans(chemVol), name = 'chemTrans') chemImpact = pd.DataFrame(chemImpact) return pd.concat([chemImpact, chemTrans], axis=1) def calculateEoL(cls,eolEmissions,consColl): # eolEmissions [df] - biogenic and fossil CO2 emission factors & transportation code by product; indexed by bio/fosCO2 # consColl [df] - domestic consumption, collection, and recovery by product; indexed by name prod2landfill = pd.Series(consColl.loc['Domestic Consumption'] - consColl.loc['Recovery Volume'], index = cls.fProd, name = 'prod2landfill') mrf2landfill = pd.Series(consColl.loc['Collection Volume'] - consColl.loc['Recovery Volume'], index = cls.fProd, name = 'mrf2landfill') bioEoL = pd.Series(prod2landfill * eolEmissions.loc['bioCO2'], index = cls.fProd, name = 'bioEoL') mrf2landfill = pd.DataFrame(mrf2landfill) # works b/c all prods have same TransCode transEoL = pd.Series(cls.calculateTrans(mrf2landfill.T.assign(TransCode=eolEmissions.loc['TransCode'].values[0])), index = cls.fProd, name = 'eolTrans') fesTransEoL = pd.Series(prod2landfill * eolEmissions.loc['fossilCO2'] + transEoL, index = cls.fProd, name = 'fesTransEoL') bftEoL = pd.Series(bioEoL + fesTransEoL, name = 'bftEoL') return pd.concat([bioEoL, fesTransEoL, bftEoL, transEoL], axis=1) def getEnergyYldCoeff(cls,f2pVol,pbpVol): # f2pVol [df] - recycled fiber to pulp (in Mg); indexed by fiber code # pbpVol [df] - pulp by product (in Mg); indexed by pulp name # # PYCoeff [s] - pulp yield coeffient; indexed by pulp f2pByPulp = pd.Series(0, index = pbpVol.index, name = 'fiber2pulp') for p in cls.rPulp: f2pByPulp[p] = sum([f2pVol.loc[cls.rFiber,t].sum() for t in cls.fProdM if cls.fProdM.index(t) == cls.rPulp.index(p)]) for q in cls.vPulp: f2pByPulp[q] = sum([f2pVol.loc[cls.vFiber,t].sum() for t in cls.fProdM if cls.fProdM.index(t) == cls.vPulp.index(q)]) pulpProd = pd.Series([pbpVol.loc[i].sum() for i in pbpVol.index], index = pbpVol.index, name = 'pulpProd') PYCoeff = (pd.Series(f2pByPulp / pulpProd, name = 'pulpYldCoeff')) PYCoeff.replace([np.inf, -np.inf], np.nan, inplace=True) PYCoeff = PYCoeff.fillna(0) return PYCoeff def getEnergyPulpPct(cls,pbpVol): # pbpVol [df] - pulp by product (in Mg); indexed by pulp name # # pulpPct [df] - % of rec/vir pulp used in product; indexed by pulp name pulpPct = pbpVol.copy().drop(['TransCode'], axis=1) for t in pulpPct.columns: rTotalPulp = pulpPct.loc[cls.rPulp,t].sum() vTotalPulp = pulpPct.loc[cls.vPulp,t].sum() pulpPct.loc[cls.rPulp,t] = pulpPct.loc[cls.rPulp,t] / rTotalPulp pulpPct.loc[cls.vPulp,t] = pulpPct.loc[cls.vPulp,t] / vTotalPulp return pulpPct.fillna(0) def getEnergyMultiProd(cls,PYMult,pulpPct): # PYMult [s] - pulp yield multiplier; indexed by pulp name # pulpPct [df] - % of rec/vir pulp used in product; indexed by pulp name # # (return) [df] - rec/vir yield multiprod by product; index by r/vYldMultiProd rYldMultiProd = pd.Series([sum(pulpPct.loc[cls.rPulp,t] * PYMult[cls.rPulp]) for t in cls.fProd], index = cls.fProd, name = 'rYldMultiProd') vYldMultiProd = pd.Series([sum(pulpPct.loc[cls.vPulp,t] * PYMult[cls.vPulp]) for t in cls.fProd], index = cls.fProd, name = 'vYldMultiProd') rYldMultiProd.replace([np.inf, -np.inf], np.nan, inplace=True) vYldMultiProd.replace([np.inf, -np.inf], np.nan, inplace=True) return pd.concat([rYldMultiProd.fillna(0), vYldMultiProd.fillna(0)], axis=1) def calculateEnergy(cls,pbpVol,prodLD,multiProd,pwpEI,paperEI): # prodLD (df) - demand by product; indexed by % recycled content level # bfEI (df) - bio & fes energy intensity fitting parameters by product; indexed by name # bioPct (df) - bio fitting parameter for PWP; indexed by name # pwpEI (df) - energy intensity of PWP pulp; indexed by pulp name # paperEI (df) - paper production energy intensity; indexed by 'PPE' # pbpVol (df) - pulp by product (in Mg); indexed by pulp name # multiProd (df) - rec/vir yield multiprod by product; indexed by product bioEnergy = pd.Series(0, index = cls.fProd, name = "bioEnergy") fesEnergy = pd.Series(0, index = cls.fProd, name = 'fesEnergy') totalEnergy = pd.Series(0, index = cls.fProd, name = 'totalEnergy') for t in cls.fProd: bioEnergy[t] = sum(prodLD[t].values[:len(cls.rLevel[t])] * sum([r * cls.bfEI.loc['bioEI b1',t] + cls.bfEI.loc['bioEI b0',t] for r in cls.rLevel[t]])) fesEnergy[t] = sum(prodLD[t].values[:len(cls.rLevel[t])] * cls.bfEI.loc['fesEI',t] * multiProd.loc[t,'rYldMultiProd']) if 'P&W' or 'News' in t: avgrecPct = sum(prodLD[t].values[:len(cls.rLevel[t])] * cls.rLevel[t]) / prodLD[t].sum() bioPctPW = avgrecPct * cls.bioPct.loc['bioPct b1',t] + cls.bioPct.loc['bioPct b0',t] pulpProdEnergy = sum([pbpVol.loc[p,t] * pwpEI.loc[p].values[0] for p in pwpEI.index]) ppEnergy = pulpProdEnergy + prodLD[t].sum() * paperEI.values[0] bioEnergy[t] = bioPctPW * ppEnergy fesEnergy[t] = (1 - bioPctPW) * ppEnergy * multiProd.loc[t,'rYldMultiProd'] totalEnergy[t] = bioEnergy[t] + fesEnergy[t] return pd.concat([bioEnergy, fesEnergy, totalEnergy], axis=1) def calculateProduction(cls,calcEnergy): # calcEnergy (df) - bio, fes, and total energy from calculateEnergy; indexed by product # bfCO2 (df) - bio & fes CO2 fitting parameters; indexed by product bioCO2 = pd.Series(0, index = cls.fProd, name = 'bioCO2') fesCO2 = pd.Series(0, index = cls.fProd, name = 'fesCO2') totalCO2 = pd.Series(0, index = cls.fProd, name = 'totalCO2') for t in cls.fProd: bioCO2[t] = calcEnergy.loc[t,'bioEnergy'] * cls.bfCO2.loc['bioCO2 b1',t] fesCO2[t] = calcEnergy.loc[t,'fesEnergy'] * cls.bfCO2.loc['fesCO2 b1',t] totalCO2[t] = bioCO2[t] + fesCO2[t] return pd.concat([bioCO2, fesCO2, totalCO2], axis=1) def calculateFuel(cls,calcEnergy): # calcEnergy (df) - bio, fes, and total energy from calculateEnergy; indexed by product # fuelTable (df) - fuel impact by product; indexed by fuel type fuels = cls.fuelTable.index bioFI = pd.Series(0, index = cls.fProd, name = 'bioFuelImp') fesFI = pd.Series(0, index = cls.fProd, name = 'fesFuelImp') fuelImp = pd.Series(0, index = cls.fProd, name = 'fuelImp') for t in cls.fProd: bioFI[t] = calcEnergy.loc[t,'bioEnergy'] * sum([cls.fuelTable.loc[f,t] * cls.fuelTable.loc[f,'Upstream Impact Factor'] for f in fuels if cls.fuelTable.loc[f,'Fuel Type'] == 1]) fesFI[t] = calcEnergy.loc[t,'fesEnergy'] * sum([cls.fuelTable.loc[f,t] * cls.fuelTable.loc[f,'Upstream Impact Factor'] for f in fuels if cls.fuelTable.loc[f,'Fuel Type'] == 2]) fuelImp[t] = bioFI[t] + fesFI[t] fuelTransVol = cls.fuelTable.copy() fuel1 = [f for f in fuels if cls.fuelTable.loc[f,'Fuel Type'] == 1] fuel2 = [f for f in fuels if cls.fuelTable.loc[f,'Fuel Type'] == 2] for t in cls.fProd: fuelTransVol.loc[fuel1,t] = [calcEnergy.loc[t,'bioEnergy'] * cls.fuelTable.loc[f,t] * cls.fuelTable.loc[f,'FU/GJ'] for f in fuel1] fuelTransVol.loc[fuel2,t] = [calcEnergy.loc[t,'fesEnergy'] * cls.fuelTable.loc[f,t] * cls.fuelTable.loc[f,'FU/GJ'] for f in fuel2] fuelTrans = pd.Series(cls.calculateTrans(fuelTransVol), name = 'fuelTrans') return pd.concat([bioFI, fesFI, fuelImp, fuelTrans], axis=1) def calculateResidual(cls,pbpVol,f2pVol): # pbpVol [df] - pulp by product (in Mg); indexed by pulp name # f2pVol [df] - recycled fiber to pulp (in Mg); indexed by fiber code # f2pYld [df] - fiber to pulp yield by pulp product; indexed by fiber # pulpYld [df] - pulp to product yield; indexed by pulp # rsdlModes [df] - residual treatments modes; indexed by residual type # rsdlbio [df] - transport and biogenic emissions factors; indexed by residual treatment mode # rsdlfos [df] - transport and fossil emissions factors; indexed by residual treatment mode pulpProd = pd.Series(0, index = cls.rPulp + cls.vPulp, name = 'pulpProduced') fiberRes = pd.Series(0, index = cls.rPulp + cls.vPulp, name = 'fiberResidue') for p in cls.rPulp: # order of fPulp must match order of r/vPulp pulpProd[p] = sum([(f2pVol.loc[cls.rFiber,t].mul(cls.f2pYld.loc[cls.rFiber,t])).sum() for t in cls.fProdM if cls.fProdM.index(t) == cls.rPulp.index(p)]) fiberRes[p] = sum([(f2pVol.loc[cls.rFiber,t].mul(1 - cls.f2pYld.loc[cls.rFiber,t])).sum() for t in cls.fProdM if cls.fProdM.index(t) == cls.rPulp.index(p)]) for q in cls.vPulp: pulpProd[q] = sum([(f2pVol.loc[cls.vFiber,t].mul(cls.f2pYld.loc[cls.vFiber,t])).sum() for t in cls.fProdM if cls.fProdM.index(t) == cls.vPulp.index(q)]) fiberRes[q] = sum([(f2pVol.loc[cls.vFiber,t].mul(1 - cls.f2pYld.loc[cls.vFiber,t])).sum() for t in cls.fProdM if cls.fProdM.index(t) == cls.vPulp.index(q)]) pulpUP = pbpVol.iloc[:,:-1].div(pulpProd, axis=0).fillna(0) # pulpUsePct rFiberRsd = pd.Series((pulpUP.loc[cls.rPulp].mul(fiberRes[cls.rPulp], axis=0)).sum(), index = cls.fProd, name = 'rFiberRsd') rPulpRsd = pd.Series((pulpUP.loc[cls.rPulp].mul(1 - cls.pulpYld.iloc[:,0].loc[cls.rPulp], axis=0)).sum(), index = cls.fProd, name = 'rPulpRsd') rTotalRsd = rFiberRsd + rPulpRsd vFiberRsd = pd.Series((pulpUP.loc[cls.vPulp].mul(fiberRes[cls.vPulp], axis=0)).sum(), index = cls.fProd, name = 'vFiberRsd') vPulpRsd = pd.Series((pulpUP.loc[cls.vPulp].mul(1 - cls.pulpYld.iloc[:,0].loc[cls.vPulp], axis=0)).sum(), index = cls.fProd, name = 'vPulpRsd') vTotalRsd = vFiberRsd + vPulpRsd rsdlType = cls.rsdlModes.index rsdlQuantity = pd.DataFrame(0, index = rsdlType, columns = cls.fProd) for rt in rsdlType: if cls.rsdlModes.loc[rt,'Input Base'] == 1: rsdlQuantity.loc[rt,:] = rTotalRsd * cls.rsdlModes.loc[rt,'Intensity'] if cls.rsdlModes.loc[rt,'Input Base'] == 2: rsdlQuantity.loc[rt,:] = vTotalRsd * cls.rsdlModes.loc[rt,'Intensity'] rsdlMode = cls.rsdlModes.columns[:-2] rsdlModeVol = {rM: pd.DataFrame(0, index = rsdlType, columns = cls.fProd) for rM in rsdlMode} for rM in rsdlMode: rsdlModeVol[rM] = rsdlQuantity.mul(cls.rsdlModes[rM], axis=0) rsdlModeVol[rM] = rsdlModeVol[rM].assign(TransCode=cls.rsdlbio.loc[rM,'TransCode'] * np.ones(len(rsdlType))) rsdlModeVol[rM].replace([np.inf, -np.inf], np.nan, inplace=True) # TODO: what happens to make this inf? rsdlModeVol[rM].fillna(0) bioImp = pd.Series(0, index = cls.fProd, name = 'bioImp') fosImp = pd.Series(0, index = cls.fProd, name = 'fossilImp') for t in cls.fProd: bioImp[t] = sum([rsdlModeVol[rM][t].sum() * cls.rsdlbio.loc[rM,t] for rM in rsdlMode]) fosImp[t] = sum([rsdlModeVol[rM][t].sum() * cls.rsdlfos.loc[rM,t] for rM in rsdlMode]) biofosImp = pd.Series(bioImp + fosImp, name = 'bio+fos') rsdlTrans = pd.Series(0, index = cls.fProd, name = 'rsdlTrans') for rM in rsdlMode: rsdlTrans += cls.calculateTrans(rsdlModeVol[rM]) return pd.concat([bioImp, fosImp, biofosImp, rsdlTrans], axis=1) def getExportTrans(cls,transVol): transImpact = pd.Series(0, index = transVol.columns[:-1]) tC = transVol['TransCode'] tC = tC[(tC != 0) & (tC != 1)] # index non-zero/non-NaN elements only transVol = transVol.loc[tC.index] for n in transVol.columns[:-1]: for m in cls.transUMI.columns: transImpact[n] += sum(transVol[n] * cls.transPct.loc[tC,m].values * cls.transKM.loc[tC,m].values * cls.transUMI[m].values) return transImpact.values def calculateExport(cls,exportOld,exportNew): # exportOld [df] old export from US; indexed by rec fiber # exportNew [df] new export from US; indexed by rec fiber impChange = pd.Series(0, index = cls.fYield.index, name = 'impChangeByGroup') sumChange = pd.Series(0, index = cls.fYield.index, name = 'sumNetChange') for r in impChange.index: typeMask = cls.fiberType[cls.fiberType['fiberType'] == r].index # impChange[r] = (exportOld.loc[typeMask, 'exportOld'] - exportNew.loc[typeMask, 'exportNew']).sum() impChange[r] = (exportNew.loc[typeMask, 'exportNew'] - exportOld.loc[typeMask, 'exportOld']).sum() sumChange[r] = impChange[r] * (1 - cls.fYield.loc[r,'US'] / cls.fYield.loc[r,'China']) beta = sumChange.sum() / (cls.chinaCons.loc['totalVir'].values + cls.chinaCons.loc['domesticRec'].values + cls.chinaCons.loc['importRec-US'].values + cls.chinaCons.loc['importRec-nonUS'].values) # chinaTrans = cls.getExportTrans(exportOld) - cls.getExportTrans(exportNew) chinaTrans = cls.getExportTrans(exportNew) - cls.getExportTrans(exportOld) return cls.chinaVals.loc['Production'] * cls.chinaVals.loc['Energy Intensity'] * cls.chinaVals.loc['Emission Factor'] * beta + chinaTrans def getForestVirginGHG(cls,virCons,woodint,slope,intercept): # virCons [df] change in virgin consumption; products as columns # woodint [df] intervals of virgin wood consumption # slope [s] b1 value for GHG emissions # intercept[s] b0 value for GHG emissions for n in range(1,len(woodint.columns)): if (woodint[n].values <= virCons) & (virCons < woodint[n+1].values): return virCons * slope[n] + intercept[n] return 0 # catch values outside of interval def calculateForest(cls,virCons,forYear): # virCons [float] change in virgin consumption, sum of all products # forYear [int] forest year length for cumulative emissions calcs; 10-90 by ten deltaTotalGHG = pd.Series(cls.getForestVirginGHG(virCons / 1e6, cls.woodint, cls.wtotalGHGb1[forYear], cls.wtotalGHGb0[forYear]), name = 'totalGHG') * 1e6 deltabioGHG = pd.Series(cls.getForestVirginGHG(virCons / 1e6, cls.woodint, cls.wbioGHGb1[forYear], cls.wbioGHGb0[forYear]), name = 'bioGHG') * 1e6 deltafosGHG = pd.Series(cls.getForestVirginGHG(virCons / 1e6, cls.woodint, cls.wfosGHGb1[forYear], cls.wfosGHGb0[forYear]), name = 'fosGHG') * 1e6 return pd.concat([deltaTotalGHG, deltabioGHG, deltafosGHG], axis=1) def calculateEmissions(cls): # xls [df] - name of Excel spreadsheet to pull data from # fProd [df] - list of products in current scenario # rL [dict] - recycled content level by product # f2pYld [df] - fiber to pulp yield by pulp product; indexed by fiber # pulpYld [df] - pulp to product yield; indexed by pulp # f2pVolNew [df] - fiber to pulp volume (in Mg); indexed by fiber code # pbpVolNew [df] - pulp by product volume; indexed by pulp name # consCollNew [df] - domestic consumption, collection, and recovery by product pulpNames = cls.rPulp + cls.vPulp mvO = [cls.pbpVolOld.loc[p] for p in pulpNames if 'Deinked' in p or 'Market' in p] marketVolOld = pd.concat([mvO[0],mvO[1]], axis=1).T mvN = [cls.pbpVolNew.loc[p] for p in pulpNames if 'Deinked' in p or 'Market' in p] marketVolNew = pd.concat([mvN[0],mvN[1]], axis=1).T # Chemical chemImp = cls.calculateChem(cls.chemicals, cls.prodDemand) # EoL oldEoL = cls.calculateEoL(cls.eolEmissions, cls.consCollOld) newEoL = cls.calculateEoL(cls.eolEmissions, cls.consCollNew) # Energy oldPulpPct = cls.getEnergyPulpPct(cls.pbpVolOld) newPulpPct = cls.getEnergyPulpPct(cls.pbpVolNew) oldPYCoeff = cls.getEnergyYldCoeff(cls.f2pVolOld, cls.pbpVolOld) newPYCoeff = cls.getEnergyYldCoeff(cls.f2pVolNew, cls.pbpVolNew) oldYldMultiplier = (oldPYCoeff / oldPYCoeff).fillna(0) newYldMultiplier = (newPYCoeff / oldPYCoeff).fillna(0) oldMP = cls.getEnergyMultiProd(oldYldMultiplier, oldPulpPct) newMP = cls.getEnergyMultiProd(newYldMultiplier, newPulpPct) oldEnergy = cls.calculateEnergy(cls.pbpVolOld, cls.prodLD, oldMP, cls.pwpEI.iloc[:-1], cls.pwpEI.iloc[-1]) newEnergy = cls.calculateEnergy(cls.pbpVolNew, cls.demandNew, newMP, cls.pwpEI.iloc[:-1], cls.pwpEI.iloc[-1]) # Production oldProd = cls.calculateProduction(oldEnergy) newProd = cls.calculateProduction(newEnergy) # Fuel oldFuel = cls.calculateFuel(oldEnergy) newFuel = cls.calculateFuel(newEnergy) # Residual oldRsdl = cls.calculateResidual(cls.pbpVolOld, cls.f2pVolOld) newRsdl = cls.calculateResidual(cls.pbpVolNew, cls.f2pVolNew) # Transportation oldFiberTrans = pd.Series(cls.calculateTrans(cls.f2pVolOld), name = 'fiberTrans') oldMarketTrans = pd.Series(cls.calculateTrans(marketVolOld), name = 'marketTrans') oldTrans = pd.concat([oldFiberTrans, oldMarketTrans, chemImp['chemTrans'], oldFuel['fuelTrans'], oldRsdl['rsdlTrans'], oldEoL['eolTrans']], axis=1) newFiberTrans = pd.Series(cls.calculateTrans(cls.f2pVolNew), name = 'fiberTrans') newMarketTrans = pd.Series(cls.calculateTrans(marketVolNew), name = 'marketTrans') newTrans = pd.concat([newFiberTrans, newMarketTrans, chemImp['chemTrans'], newFuel['fuelTrans'], newRsdl['rsdlTrans'], newEoL['eolTrans']], axis=1) # Export exportImp = cls.calculateExport(cls.exportOld,cls.exportNew) # FASOM/LURA forestGHG = cls.calculateForest(cls.f2pVolNew.iloc[:,:-1].loc[cls.vFiber].sum().sum() - cls.f2pVolOld.iloc[:,:-1].loc[cls.vFiber].sum().sum(), 90) # Summary calcs for plotting oldSums = pd.concat([pd.Series(chemImp['chemImp'], name='chemImp'), pd.Series(oldFuel['bioFuelImp'], name='fuelbio'), pd.Series(oldFuel['fesFuelImp'], name='fuelfos'), pd.Series(oldProd['totalCO2'], name='prodImp'), pd.Series(oldProd['bioCO2'], name='prodbio'), pd.Series(oldProd['fesCO2'], name='prodfos'), pd.Series(oldEnergy['totalEnergy'], name='energy'), pd.Series(oldEnergy['bioEnergy'], name='energybio'), pd.Series(oldEnergy['fesEnergy'], name='energyfos'), pd.Series(oldRsdl['bio+fos'], name='residImp'), pd.Series(oldRsdl['bioImp'], name='residbio'), pd.Series(oldRsdl['fossilImp'], name='residfos'), pd.Series(oldEoL['bftEoL'], name='eolImp'), pd.Series(oldEoL['bioEoL'], name='eolbio'), pd.Series(oldEoL['fesTransEoL'], name='eolfos'), pd.Series(oldProd['bioCO2'] + oldRsdl['bioImp'] + oldEoL['bioEoL'], name='bioCO2'), pd.Series(oldTrans.sum(axis=1) + chemImp['chemImp'] + oldFuel['fuelImp'] + oldProd['fesCO2'] + oldRsdl['fossilImp'] + oldEoL['fesTransEoL'], name='fossilCO2'),
pd.Series(oldProd['bioCO2'] + oldRsdl['bioImp'], name='g2gbio')
pandas.Series
# -*- coding: utf-8 -*- """ Created on Wed Oct 7 15:50:55 2020 @author: Emmett """ import nltk nltk.download('stopwords') nltk.download('wordnet') import LDA_Sampler import string import copy import pandas as pd import numpy as np import keras.backend as K import matplotlib.pyplot as plt import tensorflow as tf from tensorflow import keras import kerastuner as kt import IPython from keras import regularizers from keras.models import Model from numpy import linalg as LA from nltk.corpus import stopwords from scipy.special import gammaln from keras.models import Sequential from scipy.sparse import csr_matrix from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from sklearn.feature_extraction.text import CountVectorizer from sklearn.decomposition import LatentDirichletAllocation from sklearn.feature_extraction.text import TfidfVectorizer from keras.layers import Dense, Activation, Embedding, LSTM from nltk.corpus import stopwords stoplist = stopwords.words('english') make_singularRoot = nltk.stem.WordNetLemmatizer() remove_ws = nltk.tokenize.WhitespaceTokenizer() def preprocess(pd): pd = pd.str.lower() pd = pd.str.replace('[{}]'.format(string.punctuation), ' ') pd = pd.apply(lambda x: [make_singularRoot.lemmatize(w) for w in remove_ws.tokenize(x)]) pd = pd.apply(lambda x: [item for item in x if item not in stoplist]) return pd.str.join(' ') def get_x_lstm(max_vocab, vocab): tokenizer = Tokenizer(nb_words = max_vocab, lower=True, split=' ') tokenizer.fit_on_texts(vocab) vocab_seq = tokenizer.texts_to_sequences(vocab) return pad_sequences(vocab_seq) def sampleFromDirichlet(samp): return np.random.dirichlet(samp) def sampleFromCategorical(samp): samp = np.exp(samp)/np.exp(samp).sum() return np.random.multinomial(1, samp).argmax() def word_indices(wordOccuranceVec): for i in wordOccuranceVec.nonzero()[0]: for j in range(int(wordOccuranceVec[i])): yield i #maximum number of features MAX_VOCAB_SIZE = 100 def processComments(samples, window_size = 5, MAX_VOCAB_SIZE = MAX_VOCAB_SIZE): #Convert the collection of comments to a matrix of token counts vectorizer = CountVectorizer(analyzer="word", tokenizer = None) #Learn the vocabulary dictionary and return term-document matrix train_data_features = vectorizer.fit_transform(samples) #Array mapping from feature integer indices to feature name words = vectorizer.get_feature_names() vocab = dict(zip(words, np.arange(len(words)))) inv_vocab = dict(zip(np.arange(len(words)), words)) wordOccuranceMatrix = train_data_features.toarray() return wordOccuranceMatrix, vocab, words sort = True import gensim """ from gensim.parsing.preprocessing import strip_non_alphanum from gensim.parsing.preprocessing import strip_punctuation from gensim.parsing.preprocessing import strip_multiple_whitespaces from gensim.parsing.preprocessing import stem_text corpus = [] sampNum = 1 while (sampNum < 186): fileOpen = open("sample"+str(sampNum)+".txt","r") temp = fileOpen.readlines() temp1 = strip_non_alphanum(str(temp)) temp2 = strip_punctuation(temp1) final = strip_multiple_whitespaces(temp2) #final = stem_text(temp3) corpus.append(final) sampNum += 1 """ data = pd.read_csv('keyword_comment_cleaned.csv') user_ids = list(data.comment_parent_id.unique()) post_ids = list(data.post_id.unique()) num_user_ids = len(user_ids) num_post_ids = len(post_ids) comment_score = np.zeros((num_user_ids, num_post_ids)) for idx, i in enumerate(data[["comment_parent_id", "comment_score", "post_id"]].values): comment_score[user_ids.index(i[0])][post_ids.index(i[2])] = i[1] comment_score_normalized = comment_score/max(data.comment_score) comments = [""] * num_post_ids for i in data[["post_id", "comment_body"]].values: comments[post_ids.index(i[0])] += i[1] comments = pd.DataFrame(comments) comments = preprocess(comments[0]) comments.shape #corpusList = [i for item in corpus for i in item.split()] matrix, vocabulary, words = processComments(comments) num_topics = 9 lambda_param = 0.8 #Probabilistic Matrix Factorization (PMF) #From paper: "effective recommendation model that uses matrix factorization (MF) #technique to find the latent features of users and items from a probabilistic perspective" #create user latent vector user_weights = np.random.rand(num_topics, num_user_ids) #create item (in this case, posts) latent vector post_weights = np.random.rand(num_topics, num_post_ids) beta = 0.01 alpha = 10*np.ones(num_topics)/num_topics ############################################################################## #standardize text -- makes all characters lowercase and removes common words texts = [[word for word in document.lower().split() if word not in stoplist] for document in comments] #count number of times that word appears in corpus #pair frequency with respective word in new array from collections import defaultdict frequency = defaultdict(int) for text in texts: for token in text: frequency[token] += 1 corpus_removeOne = [[token for token in text if frequency[token]>1] for text in texts] from gensim import corpora #add corpora to dictionary dictionary = corpora.Dictionary(corpus_removeOne) #save dictionary for future reference dictionary.save('C:\\Users\\emmet\\.spyder-py3-dev\\redditTest.dict') #location of document in computer #dict = gensim.corpora.Dictionary.load('redditTest.dict') #assign numeric id to each token in dictionary dictID = dictionary.token2id #converts each word into vector following same process as example bow_corpus = [dictionary.doc2bow(text) for text in corpus_removeOne] corpora.MmCorpus.serialize('redditTest.mm', bow_corpus) corp = gensim.corpora.MmCorpus('redditTest.mm') print(bow_corpus) from gensim import models #from gensim.models import TfidfModel tfidf = models.TfidfModel(bow_corpus) corpus_tfidf = tfidf[bow_corpus] for doc in corpus_tfidf: if doc == []: None else: print(doc) lda_model = models.LdaModel(bow_corpus, id2word=dictionary, num_topics=9) corpus_LDA = lda_model[bow_corpus] print(corpus_LDA) ############################################################################## lda = LDA_Sampler.LdaSampler(n_topics=num_topics, matrix_shape=matrix.shape, lambda_param=lambda_param) "Long Short Term Memory" lstm_out = 128 batch_size = 8 p_embedding_lstm = 200 X = get_x_lstm(MAX_VOCAB_SIZE, comments.values) #Sequential: linear stack of layers #Embedding: turns positive integers (indexes) into dense vectors of fixed size #LSTM: long short term memory #Dropout: regularization method where input and recurrent connections to LSTM #units are probabilistically excluded from activation and weight updates while #training a network #Dense: densely-connected neural network layer #Activation: element-wise activation function passed as the 'activation' argument #Kernel: weights matrix created by the layer #Compile: compile source into code object that can be executed by exec() or eval() """ model = Sequential() model.add(Embedding(MAX_VOCAB_SIZE, p_embedding_lstm, input_length = X.shape[1])) model.add(LSTM(lstm_out, dropout = 0.2)) model.add(Dense(num_topics, activation = 'tanh', name = "doc_latent_vector", kernel_regularizer = regularizers.l2())) model.compile(loss = 'mean_squared_error', optimizer = 'rmsprop', metrics = ['accuracy']) model.summary() """ 'Create a Data Set from which the Model will Validate' data_predict = pd.read_csv('test_input.csv') post_ids_predict = list(data_predict.post_id.unique()) num_post_ids_predict = len(post_ids_predict) comments_predict = [""] * num_post_ids_predict for i in data_predict[["post_id", "comment_body"]].values: comments_predict[post_ids_predict.index(i[0])] += i[1] comments_predict =
pd.DataFrame(comments_predict)
pandas.DataFrame
import matplotlib #matplotlib.use("qt4agg") import matplotlib.pyplot as plt import numpy as np import pandas as pd from matplotlib.patches import Ellipse import seaborn as sns from matplotlib.path import Path import os #plt.ion() #plt.show(block=False) ''' SMALL_SIZE = 8 MEDIUM_SIZE = 10 BIGGER_SIZE = 12 plt.rc('font', size=SMALL_SIZE) # controls default text sizes plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title ''' class dynamic_hist(): def __init__(self,ax,resol=1,c='g',label='',point_flag = False,save=False,plot_n=-1): self.point_flag = point_flag self.ax = ax self.save = save self.x,self.y = np.array([]),np.array([]) self.c = c self.resol = resol self.bin_width = resol - (resol*0.1) self.offset = resol/2 self.bins=np.arange(0,100+resol,resol) self.plot_n = plot_n hist, bins = np.histogram([], [],normed=True,density = True) self.sp = [] self.sliding_window = 10 #self.sp = self.ax.hist(hist,bins = bins, color= self.c,alpha=0.7,label=label) #self.sp = self.ax.bar(bins,hist) # Change width depending on your bins # Change width depending on your bins self.label = label def update_plot_elem(self,x,color=[],arg={}): x *=100 nplots = arg['n_plots'] width = self.bin_width/nplots bin_init_offset = self.bin_width/2 if self.save == True: self.x = np.append(self.x,x) else: self.x = x #min_v = min(self.x) #max_v = max(self.x) #self.bins = np.arange(min_v,max_v) hist, bins = np.histogram(self.x, self.bins,normed=True,density = True) max_val = hist.sum() norm_hist = hist/max_val if len(self.sp)==0: bar_bins = bins[:-1] + self.offset - bin_init_offset + (self.plot_n*width) self.sp = self.ax.bar( bar_bins, hist, width=width, label=self.label) else: for i in range(len(self.sp)): self.sp[i].set_height(hist[i]) #hist, bins = np.histogram(self.x, self.bins,normed=True,density = True) #self.sp[0] = hist #self.sp[1] = bins # self.ax.hist(hist,bins = bins, color= self.c,alpha=0.7,label=self.label) class dynamic_scatter(): def __init__(self,ax,c='g',label='',point_flag = False,save=False,**arg): self.point_flag = point_flag self.ax = ax self.save = save self.x,self.y = np.array([]),np.array([]) self.marker = 'o' self.scale = 20 if 'marker' in arg: self. marker = arg['marker'] if 'scale' in arg: self.scale = arg['scale'] self.sp = self.ax.scatter([],[],s =self.scale ,c = c,marker = self.marker, label= label) def update_plot_elem(self,x,y,color=[],arg = {}): if self.save == True: self.x = np.append(self.x,x) self.y = np.append(self.y,y) #self.y.append(y) else: self.x = x self.y = y data = np.c_[self.x,self.y] self.sp.set_offsets(data) class dynamic_plot_elm(): def __init__(self,ax,c='g',label='',point_flag = False ,save=False , **kwarg): self.point_flag = point_flag self.window = kwarg['window'] self.ax = ax self.color = c linestyle = '-' scale = 2 if 'scale' in kwarg: scale = kwarg['scale'] if 'linestyle' in kwarg: linestyle = kwarg['linestyle'] self.fill = self.ax.fill_between([],[],color=c) self.p, = self.ax.plot([],[],color = c,label=label,linewidth=scale,linestyle = linestyle) self.save = save self.x,self.y = np.array([]),np.array([]) def fill_area(self,std): self.fill.remove() low_y = self.y-std up_y = self.y+std self.fill = self.ax.fill_between(self.x,up_y,low_y,edgecolor='#1B2ACC', facecolor='#1B2ACC',alpha=0.3) def update_plot_elem(self,x,y,color=[],arg={}): if self.save == True: self.x = np.append(self.x,x) self.y = np.append(self.y,y) else: self.x = x self.y = y df = pd.DataFrame({'x':self.x ,'y':self.y}) if len(self.x)>self.window and self.window >0 : # calculate a 60 day rolling mean and plot mean_pts = df.rolling(window=self.window).mean() mpx = mean_pts['x'][pd.isna(mean_pts['x']) == False].to_numpy() mpy = mean_pts['y'][
pd.isna(mean_pts['y'])
pandas.isna
# License: Apache-2.0 import databricks.koalas as ks import pandas as pd import numpy as np import pytest from pandas.testing import assert_frame_equal from gators.imputers.numerics_imputer import NumericsImputer from gators.imputers.int_imputer import IntImputer from gators.imputers.float_imputer import FloatImputer from gators.imputers.object_imputer import ObjectImputer ks.set_option('compute.default_index_type', 'distributed-sequence') @pytest.fixture() def data(): X_int = pd.DataFrame({'A': [0, 1, 1, np.nan], 'B': [3, 4, 4, np.nan]}) X_float = pd.DataFrame( {'C': [0.1, 1.1, 2.1, np.nan], 'D': [2.1, 3.1, 4.1, np.nan]}) X_object = pd.DataFrame( {'E': ['q', 'w', 'w', None], 'F': ['a', 'a', 's', np.nan]}) X_int_expected = pd.DataFrame( {'A': [0., 1., 1., -9.], 'B': [3., 4., 4., -9.]}) X_float_expected = pd.DataFrame( {'C': [0.1, 1.1, 2.1, 1.1], 'D': [2.1, 3.1, 4.1, 3.1]}) X_object_expected = pd.DataFrame( {'E': ['q', 'w', 'w', 'MISSING'], 'F': ['a', 'a', 's', 'MISSING']}) obj_int = IntImputer(strategy='constant', value=-9).fit(X_int) obj_float = FloatImputer(strategy='mean').fit(X_float) obj_object = ObjectImputer( strategy='constant', value='MISSING').fit(X_object) X_dict = { 'int': X_int, 'float': X_float, 'object': X_object, } X_expected_dict = { 'int': X_int_expected, 'float': X_float_expected, 'object': X_object_expected, } objs_dict = { 'int': obj_int, 'float': obj_float, 'object': obj_object, } return objs_dict, X_dict, X_expected_dict @pytest.fixture() def data_num(): X_int = pd.DataFrame( {'A': [0, 1, 1, np.nan], 'B': [3, 4, 4, np.nan]}, dtype=np.float32) X_float = pd.DataFrame( {'C': [0.1, 1.1, 2.1, np.nan], 'D': [2.1, 3.1, 4.1, np.nan]}, dtype=np.float32) X_int_expected = pd.DataFrame( {'A': [0., 1., 1., -9.], 'B': [3., 4., 4., -9.]}, dtype=np.float32) X_float_expected = pd.DataFrame( {'C': [0.1, 1.1, 2.1, 1.1], 'D': [2.1, 3.1, 4.1, 3.1]}, dtype=np.float32) obj_int = IntImputer(strategy='constant', value=-9).fit(X_int) obj_float = FloatImputer(strategy='mean').fit(X_float) X_dict = { 'int': X_int, 'float': X_float, } X_expected_dict = { 'int': X_int_expected, 'float': X_float_expected, } objs_dict = { 'int': obj_int, 'float': obj_float, } return objs_dict, X_dict, X_expected_dict @pytest.fixture() def data_no_missing(): X_int = pd.DataFrame({'A': [0, 1, 1, 8], 'B': [3, 4, 4, 8]}, dtype=int) X_float = pd.DataFrame( {'C': [0.1, 1.1, 2.1, 9.], 'D': [2.1, 3.1, 4.1, 9.]}) X_object = pd.DataFrame( {'E': ['q', 'w', 'w', 'x'], 'F': ['a', 'a', 's', 'x']}) obj_int = IntImputer(strategy='constant', value=-9).fit(X_int) obj_float = FloatImputer(strategy='mean').fit(X_float) obj_object = ObjectImputer( strategy='constant', value='MISSING').fit(X_object) X_dict = { 'int': X_int, 'float': X_float, 'object': X_object, } X_expected_dict = { 'int': X_int.copy(), 'float': X_float.copy(), 'object': X_object.copy(), } objs_dict = { 'int': obj_int, 'float': obj_float, 'object': obj_object, } return objs_dict, X_dict, X_expected_dict @pytest.fixture def data_full(): X_int = pd.DataFrame({'A': [0, 1, 1, np.nan], 'B': [3, 4, 4, np.nan]}) X_float = pd.DataFrame( {'C': [0.1, 1.1, 2.1, np.nan], 'D': [2.1, 3.1, 4.1, np.nan]}) X_object = pd.DataFrame( {'E': ['q', 'w', 'w', np.nan], 'F': ['a', 'a', 's', None]}) X = pd.concat([X_int, X_float, X_object], axis=1) X_expected = pd.DataFrame( [[0.0, 3.0, 0.1, 2.1, 'q', 'a'], [1.0, 4.0, 1.1, 3.1, 'w', 'a'], [1.0, 4.0, 2.1, 4.1, 'w', 's'], [-9.0, -9.0, 1.1, 3.1, 'w', 'a']], columns=['A', 'B', 'C', 'D', 'E', 'F'], ) obj_int = IntImputer(strategy='constant', value=-9).fit(X) obj_float = FloatImputer(strategy='median').fit(X) obj_object = ObjectImputer(strategy='most_frequent').fit(X) objs_dict = { 'int': obj_int, 'float': obj_float, 'object': obj_object, } return objs_dict, X, X_expected @pytest.fixture() def data_ks(): X_int = pd.DataFrame({'A': [0, 1, 1, np.nan], 'B': [3, 4, 4, np.nan]}) X_float = pd.DataFrame( {'C': [0.1, 1.1, 2.1, np.nan], 'D': [2.1, 3.1, 4.1, np.nan]}) X_object = pd.DataFrame( {'E': ['q', 'w', 'w', None], 'F': ['a', 'a', 's', np.nan]}) X_int_expected = pd.DataFrame( {'A': [0., 1., 1., -9.], 'B': [3., 4., 4., -9.]}) X_float_expected = pd.DataFrame( {'C': [0.1, 1.1, 2.1, 1.1], 'D': [2.1, 3.1, 4.1, 3.1]}) X_object_expected = pd.DataFrame( {'E': ['q', 'w', 'w', 'MISSING'], 'F': ['a', 'a', 's', 'MISSING']}) X_int_ks = ks.from_pandas(X_int) X_float_ks = ks.from_pandas(X_float) X_object_ks = ks.from_pandas(X_object) obj_int = IntImputer(strategy='constant', value=-9).fit(X_int) obj_float = FloatImputer(strategy='mean').fit(X_float) obj_object = ObjectImputer( strategy='constant', value='MISSING').fit(X_object) X_dict = { 'int': X_int, 'float': X_float, 'object': X_object, } X_dict = { 'int': X_int_ks, 'float': X_float_ks, 'object': X_object_ks, } X_expected_dict = { 'int': X_int_expected, 'float': X_float_expected, 'object': X_object_expected, } objs_dict = { 'int': obj_int, 'float': obj_float, 'object': obj_object, } return objs_dict, X_dict, X_expected_dict @pytest.fixture() def data_num_ks(): X_int = ks.DataFrame( {'A': [0, 1, 1, np.nan], 'B': [3, 4, 4, np.nan]}, dtype=np.float32) X_float = ks.DataFrame( {'C': [0.1, 1.1, 2.1, np.nan], 'D': [2.1, 3.1, 4.1, np.nan]}, dtype=np.float32) X_int_expected = pd.DataFrame( {'A': [0., 1., 1., -9.], 'B': [3., 4., 4., -9.]}, dtype=np.float32) X_float_expected = pd.DataFrame( {'C': [0.1, 1.1, 2.1, 1.1], 'D': [2.1, 3.1, 4.1, 3.1]}, dtype=np.float32) obj_int = IntImputer(strategy='constant', value=-9).fit(X_int) obj_float = FloatImputer(strategy='mean').fit(X_float) X_dict = { 'int': X_int, 'float': X_float, } X_expected_dict = { 'int': X_int_expected, 'float': X_float_expected, } objs_dict = { 'int': obj_int, 'float': obj_float, } return objs_dict, X_dict, X_expected_dict @pytest.fixture() def data_no_missing_ks(): X_int = ks.DataFrame({'A': [0, 1, 1, 8], 'B': [3, 4, 4, 8]}, dtype=int) X_float = ks.DataFrame( {'C': [0.1, 1.1, 2.1, 9.], 'D': [2.1, 3.1, 4.1, 9.]}) X_object = ks.DataFrame( {'E': ['q', 'w', 'w', 'x'], 'F': ['a', 'a', 's', 'x']}) obj_int = IntImputer(strategy='constant', value=-9).fit(X_int) obj_float = FloatImputer(strategy='mean').fit(X_float) obj_object = ObjectImputer( strategy='constant', value='MISSING').fit(X_object) X_dict = { 'int': X_int, 'float': X_float, 'object': X_object, } X_expected_dict = { 'int': X_int.to_pandas().copy(), 'float': X_float.to_pandas().copy(), 'object': X_object.to_pandas().copy(), } objs_dict = { 'int': obj_int, 'float': obj_float, 'object': obj_object, } return objs_dict, X_dict, X_expected_dict @pytest.fixture def data_full_ks(): X_int = pd.DataFrame({'A': [0, 1, 1, np.nan], 'B': [3, 4, 4, np.nan]}) X_float = pd.DataFrame( {'C': [0.1, 1.1, 2.1, np.nan], 'D': [2.1, 3.1, 4.1, np.nan]}) X_object = pd.DataFrame( {'E': ['q', 'w', 'w', np.nan], 'F': ['a', 'a', 's', None]}) X = ks.from_pandas(pd.concat([X_int, X_float, X_object], axis=1)) X_expected = pd.DataFrame( [[0.0, 3.0, 0.1, 2.1, 'q', 'a'], [1.0, 4.0, 1.1, 3.1, 'w', 'a'], [1.0, 4.0, 2.1, 4.1, 'w', 's'], [-9.0, -9.0, 1.1, 3.1, 'w', 'a']], columns=['A', 'B', 'C', 'D', 'E', 'F'], ) obj_int = IntImputer(strategy='constant', value=-9).fit(X) obj_float = FloatImputer(strategy='median').fit(X) obj_object = ObjectImputer(strategy='most_frequent').fit(X) objs_dict = { 'int': obj_int, 'float': obj_float, 'object': obj_object, } return objs_dict, X, X_expected def test_int_pd(data): objs_dict, X_dict, X_expected_dict = data assert_frame_equal( objs_dict['int'].transform(X_dict['int']), X_expected_dict['int'], ) def test_float_pd(data): objs_dict, X_dict, X_expected_dict = data assert_frame_equal( objs_dict['float'].transform( X_dict['float']), X_expected_dict['float'], ) def test_object_pd(data): objs_dict, X_dict, X_expected_dict = data assert_frame_equal( objs_dict['object'].transform( X_dict['object']), X_expected_dict['object'], ) @pytest.mark.koalas def test_int_ks(data_ks): objs_dict, X_dict, X_expected_dict = data_ks assert_frame_equal( objs_dict['int'].transform(X_dict['int']).to_pandas(), X_expected_dict['int'],) @pytest.mark.koalas def test_float_ks(data_ks): objs_dict, X_dict, X_expected_dict = data_ks assert_frame_equal( objs_dict['float'].transform(X_dict['float']).to_pandas(), X_expected_dict['float']) @pytest.mark.koalas def test_object_ks(data_ks): objs_dict, X_dict, X_expected_dict = data_ks assert_frame_equal( objs_dict['object'].transform(X_dict['object']).to_pandas(), X_expected_dict['object'], ) def test_int_pd_np(data): objs_dict, X_dict, X_expected_dict = data X_new_np = objs_dict['int'].transform_numpy(X_dict['int'].to_numpy()) X_new = pd.DataFrame(X_new_np, columns=X_dict['int'].columns) assert_frame_equal(X_new, X_expected_dict['int']) def test_float_pd_np(data): objs_dict, X_dict, X_expected_dict = data X_new_np = objs_dict['float'].transform_numpy(X_dict['float'].to_numpy()) X_new = pd.DataFrame(X_new_np, columns=X_dict['float'].columns) assert_frame_equal(X_new, X_expected_dict['float']) def test_object_pd_np(data): objs_dict, X_dict, X_expected_dict = data X_new_np = objs_dict['object'].transform_numpy(X_dict['object'].to_numpy()) X_new = pd.DataFrame(X_new_np, columns=X_dict['object'].columns) assert_frame_equal(X_new, X_expected_dict['object']) @pytest.mark.koalas def test_int_ks_np(data_ks): objs_dict, X_dict, X_expected_dict = data_ks X_new_np = objs_dict['int'].transform_numpy(X_dict['int'].to_numpy()) X_new = pd.DataFrame(X_new_np, columns=X_dict['int'].columns) assert_frame_equal(X_new, X_expected_dict['int']) @pytest.mark.koalas def test_float_ks_np(data_ks): objs_dict, X_dict, X_expected_dict = data_ks X_new_np = objs_dict['float'].transform_numpy( X_dict['float'].to_numpy()) X_new = pd.DataFrame(X_new_np, columns=X_dict['float'].columns) assert_frame_equal(X_new, X_expected_dict['float']) @pytest.mark.koalas def test_object_ks_np(data_ks): objs_dict, X_dict, X_expected_dict = data_ks X_new_np = objs_dict['object'].transform_numpy( X_dict['object'].to_numpy()) X_new = pd.DataFrame(X_new_np, columns=X_dict['object'].columns) assert_frame_equal(X_new, X_expected_dict['object']) def test_num_int_pd(data_num): objs_dict, X_dict, X_expected_dict = data_num assert_frame_equal( objs_dict['int'].transform(X_dict['int']), X_expected_dict['int'], ) def test_num_float_pd(data_num): objs_dict, X_dict, X_expected_dict = data_num assert_frame_equal( objs_dict['float'].transform( X_dict['float']), X_expected_dict['float'], ) @pytest.mark.koalas def test_num_int_ks(data_num_ks): objs_dict, X_dict, X_expected_dict = data_num_ks assert_frame_equal(objs_dict['int'].transform( X_dict['int'].to_pandas()), X_expected_dict['int'], ) @pytest.mark.koalas def test_num_float_ks(data_num_ks): objs_dict, X_dict, X_expected_dict = data_num_ks assert_frame_equal(objs_dict['float'].transform( X_dict['float'].to_pandas()), X_expected_dict['float'], ) def test_num_int_pd_np(data_num): objs_dict, X_dict, X_expected_dict = data_num X_new_np = objs_dict['int'].transform_numpy(X_dict['int'].to_numpy()) X_new = pd.DataFrame(X_new_np, columns=X_dict['int'].columns) assert_frame_equal(X_new, X_expected_dict['int']) def test_num_float_pd_np(data_num): objs_dict, X_dict, X_expected_dict = data_num X_new_np = objs_dict['float'].transform_numpy(X_dict['float'].to_numpy()) X_new = pd.DataFrame(X_new_np, columns=X_dict['float'].columns) assert_frame_equal(X_new, X_expected_dict['float']) @pytest.mark.koalas def test_num_int_ks_np(data_num_ks): objs_dict, X_dict, X_expected_dict = data_num_ks X_new_np = objs_dict['int'].transform_numpy(X_dict['int'].to_numpy()) X_new = pd.DataFrame(X_new_np, columns=X_dict['int'].columns) assert_frame_equal(X_new, X_expected_dict['int']) @pytest.mark.koalas def test_num_float_ks_np(data_num_ks): objs_dict, X_dict, X_expected_dict = data_num_ks X_new_np = objs_dict['float'].transform_numpy( X_dict['float'].to_numpy()) X_new = pd.DataFrame(X_new_np, columns=X_dict['float'].columns) assert_frame_equal(X_new, X_expected_dict['float']) def test_no_missing_int_pd(data_no_missing): objs_dict, X_dict, X_expected_dict = data_no_missing assert_frame_equal( objs_dict['int'].transform(X_dict['int']), X_expected_dict['int'], ) def test_no_missing_float_pd(data_no_missing): objs_dict, X_dict, X_expected_dict = data_no_missing assert_frame_equal( objs_dict['float'].transform( X_dict['float']), X_expected_dict['float'], ) def test_no_missing_object_pd(data_no_missing): objs_dict, X_dict, X_expected_dict = data_no_missing assert_frame_equal( objs_dict['object'].transform( X_dict['object']), X_expected_dict['object'], ) @pytest.mark.koalas def test_no_missing_int_ks(data_no_missing_ks): objs_dict, X_dict, X_expected_dict = data_no_missing_ks assert_frame_equal(objs_dict['int'].transform( X_dict['int'].to_pandas()), X_expected_dict['int'], ) @pytest.mark.koalas def test_no_missing_float_ks(data_no_missing_ks): objs_dict, X_dict, X_expected_dict = data_no_missing_ks assert_frame_equal(objs_dict['float'].transform( X_dict['float'].to_pandas()), X_expected_dict['float'], ) @pytest.mark.koalas def test_no_missing_object_ks(data_no_missing_ks): objs_dict, X_dict, X_expected_dict = data_no_missing_ks assert_frame_equal(objs_dict['object'].transform( X_dict['object'].to_pandas()), X_expected_dict['object'], ) def test_no_missing_int_pd_np(data_no_missing): objs_dict, X_dict, X_expected_dict = data_no_missing X_new_np = objs_dict['int'].transform_numpy(X_dict['int'].to_numpy()) X_new = pd.DataFrame(X_new_np, columns=X_dict['int'].columns) assert_frame_equal(X_new, X_expected_dict['int']) def test_no_missing_float_pd_np(data_no_missing): objs_dict, X_dict, X_expected_dict = data_no_missing X_new_np = objs_dict['float'].transform_numpy(X_dict['float'].to_numpy()) X_new = pd.DataFrame(X_new_np, columns=X_dict['float'].columns) assert_frame_equal(X_new, X_expected_dict['float']) def test_no_missing_object_pd_np(data_no_missing): objs_dict, X_dict, X_expected_dict = data_no_missing X_new_np = objs_dict['object'].transform_numpy(X_dict['object'].to_numpy()) X_new = pd.DataFrame(X_new_np, columns=X_dict['object'].columns) assert_frame_equal(X_new, X_expected_dict['object']) @pytest.mark.koalas def test_no_missing_int_ks_np(data_no_missing_ks): objs_dict, X_dict, X_expected_dict = data_no_missing_ks X_new_np = objs_dict['int'].transform_numpy(X_dict['int'].to_numpy()) X_new = pd.DataFrame(X_new_np, columns=X_dict['int'].columns) assert_frame_equal(X_new, X_expected_dict['int']) @pytest.mark.koalas def test_no_missing_float_ks_np(data_no_missing_ks): objs_dict, X_dict, X_expected_dict = data_no_missing_ks X_new_np = objs_dict['float'].transform_numpy( X_dict['float'].to_numpy()) X_new = pd.DataFrame(X_new_np, columns=X_dict['float'].columns) assert_frame_equal(X_new, X_expected_dict['float']) @pytest.mark.koalas def test_no_missing_object_ks_np(data_no_missing_ks): objs_dict, X_dict, X_expected_dict = data_no_missing_ks X_new_np = objs_dict['object'].transform_numpy( X_dict['object'].to_numpy()) X_new = pd.DataFrame(X_new_np, columns=X_dict['object'].columns) assert_frame_equal(X_new, X_expected_dict['object']) def test_full_pd(data_full): objs_dict, X, X_expected = data_full X_new = objs_dict['object'].transform(X) X_new = objs_dict['int'].transform(X_new) X_new = objs_dict['float'].transform(X_new) assert_frame_equal(X_new, X_expected) @pytest.mark.koalas def test_full_ks(data_full_ks): objs_dict, X, X_expected = data_full_ks X_new = objs_dict['object'].transform(X) X_new = objs_dict['int'].transform(X_new) X_new = objs_dict['float'].transform(X_new) assert_frame_equal(X_new.to_pandas(), X_expected) def test_full_pd_np(data_full): objs_dict, X, X_expected = data_full X_new = objs_dict['object'].transform_numpy(X.to_numpy()) X_new = objs_dict['int'].transform_numpy(X_new) X_new = objs_dict['float'].transform_numpy(X_new) X_new = pd.DataFrame(X_new, columns=['A', 'B', 'C', 'D', 'E', 'F']) assert_frame_equal(X_new, X_expected.astype(object)) @pytest.mark.koalas def test_full_ks_np(data_full_ks): objs_dict, X, X_expected = data_full_ks X_new = objs_dict['object'].transform_numpy(X.to_numpy()) X_new = objs_dict['int'].transform_numpy(X_new) X_new = objs_dict['float'].transform_numpy(X_new) X_new = pd.DataFrame(X_new, columns=['A', 'B', 'C', 'D', 'E', 'F']) assert_frame_equal(X_new, X_expected.astype(object)) def test_imputers_columns_pd(): X_int = pd.DataFrame({'A': [0, 1, 1, np.nan], 'B': [3, 4, 4, np.nan]}) X_float = pd.DataFrame( {'C': [0.1, 1.1, 2.1, np.nan], 'D': [2.1, 3.1, 4.1, np.nan]}) X_object = pd.DataFrame( {'E': ['q', 'w', 'w', np.nan], 'F': ['a', 'a', 's', None]}) X = pd.concat([X_int, X_float, X_object], axis=1) X_expected = pd.DataFrame( [[0.0, 3.0, 0.1, 2.1, 'q', 'a'], [1.0, 4.0, 1.1, 3.1, 'w', 'a'], [1.0, 4.0, 2.1, 4.1, 'w', 's'], [-9.0, -99.0, -999.0, -9999.0, 'missing', 'MISSING']], columns=['A', 'B', 'C', 'D', 'E', 'F'], ) obj_int_A = IntImputer( strategy='constant', value=-9, columns=['A']).fit(X) obj_int_B = IntImputer( strategy='constant', value=-99, columns=['B']).fit(X) obj_float_C = FloatImputer( strategy='constant', value=-999., columns=['C']).fit(X) obj_float_D = FloatImputer( strategy='constant', value=-9999., columns=['D']).fit(X) obj_object_E = ObjectImputer( strategy='constant', value='missing', columns=['E']).fit(X) obj_object_F = ObjectImputer( strategy='constant', value='MISSING', columns=['F']).fit(X) X_new = obj_int_A.transform(X) X_new = obj_int_B.transform(X_new) X_new = obj_float_C.transform(X_new) X_new = obj_float_D.transform(X_new) X_new = obj_object_E.transform(X_new) X_new = obj_object_F.transform(X_new) assert_frame_equal(X_new, X_expected) @pytest.mark.koalas def test_imputers_columns_ks(): X_int = pd.DataFrame({'A': [0, 1, 1, np.nan], 'B': [3, 4, 4, np.nan]}) X_float = pd.DataFrame( {'C': [0.1, 1.1, 2.1, np.nan], 'D': [2.1, 3.1, 4.1, np.nan]}) X_object = pd.DataFrame( {'E': ['q', 'w', 'w', np.nan], 'F': ['a', 'a', 's', None]}) X = pd.concat([X_int, X_float, X_object], axis=1) X = ks.from_pandas(X) X_expected = pd.DataFrame( [[0.0, 3.0, 0.1, 2.1, 'q', 'a'], [1.0, 4.0, 1.1, 3.1, 'w', 'a'], [1.0, 4.0, 2.1, 4.1, 'w', 's'], [-9.0, -99.0, -999.0, -9999.0, 'missing', 'MISSING']], columns=['A', 'B', 'C', 'D', 'E', 'F'], ) obj_int_A = IntImputer( strategy='constant', value=-9, columns=['A']).fit(X) obj_int_B = IntImputer( strategy='constant', value=-99, columns=['B']).fit(X) obj_float_C = FloatImputer( strategy='constant', value=-999., columns=['C']).fit(X) obj_float_D = FloatImputer( strategy='constant', value=-9999., columns=['D']).fit(X) obj_object_E = ObjectImputer( strategy='constant', value='missing', columns=['E']).fit(X) obj_object_F = ObjectImputer( strategy='constant', value='MISSING', columns=['F']).fit(X) X_new = obj_int_A.transform(X) X_new = obj_int_B.transform(X_new) X_new = obj_float_C.transform(X_new) X_new = obj_float_D.transform(X_new) X_new = obj_object_E.transform(X_new) X_new = obj_object_F.transform(X_new) assert_frame_equal(X_new.to_pandas(), X_expected) def test_imputers_columns_pd_np(): X_int = pd.DataFrame({'A': [0, 1, 1, np.nan], 'B': [3, 4, 4, np.nan]}) X_float = pd.DataFrame( {'C': [0.1, 1.1, 2.1, np.nan], 'D': [2.1, 3.1, 4.1, np.nan]}) X_object = pd.DataFrame( {'E': ['q', 'w', 'w', np.nan], 'F': ['a', 'a', 's', None]}) X = pd.concat([X_int, X_float, X_object], axis=1) X_expected = pd.DataFrame( [[0.0, 3.0, 0.1, 2.1, 'q', 'a'], [1.0, 4.0, 1.1, 3.1, 'w', 'a'], [1.0, 4.0, 2.1, 4.1, 'w', 's'], [-9.0, -99.0, -999.0, -9999.0, 'missing', 'MISSING']], columns=['A', 'B', 'C', 'D', 'E', 'F'], ) obj_int_A = IntImputer( strategy='constant', value=-9, columns=['A']).fit(X) obj_int_B = IntImputer( strategy='constant', value=-99, columns=['B']).fit(X) obj_float_C = FloatImputer( strategy='constant', value=-999., columns=['C']).fit(X) obj_float_D = FloatImputer( strategy='constant', value=-9999., columns=['D']).fit(X) obj_object_E = ObjectImputer( strategy='constant', value='missing', columns=['E']).fit(X) obj_object_F = ObjectImputer( strategy='constant', value='MISSING', columns=['F']).fit(X) X_new = obj_int_A.transform_numpy(X.to_numpy()) X_new = obj_int_B.transform_numpy(X_new) X_new = obj_float_C.transform_numpy(X_new) X_new = obj_float_D.transform_numpy(X_new) X_new = obj_object_E.transform_numpy(X_new) X_new = obj_object_F.transform_numpy(X_new) assert_frame_equal( pd.DataFrame(X_new, columns=list('ABCDEF')), X_expected.astype(object)) @pytest.mark.koalas def test_imputers_columns_ks_np(): X_int = pd.DataFrame({'A': [0, 1, 1, np.nan], 'B': [3, 4, 4, np.nan]}) X_float = pd.DataFrame( {'C': [0.1, 1.1, 2.1, np.nan], 'D': [2.1, 3.1, 4.1, np.nan]}) X_object = pd.DataFrame( {'E': ['q', 'w', 'w', np.nan], 'F': ['a', 'a', 's', None]}) X = pd.concat([X_int, X_float, X_object], axis=1) X = ks.from_pandas(X) X_expected = pd.DataFrame( [[0.0, 3.0, 0.1, 2.1, 'q', 'a'], [1.0, 4.0, 1.1, 3.1, 'w', 'a'], [1.0, 4.0, 2.1, 4.1, 'w', 's'], [-9.0, -99.0, -999.0, -9999.0, 'missing', 'MISSING']], columns=['A', 'B', 'C', 'D', 'E', 'F'], ) obj_int_A = IntImputer( strategy='constant', value=-9, columns=['A']).fit(X) obj_int_B = IntImputer( strategy='constant', value=-99, columns=['B']).fit(X) obj_float_C = FloatImputer( strategy='constant', value=-999., columns=['C']).fit(X) obj_float_D = FloatImputer( strategy='constant', value=-9999., columns=['D']).fit(X) obj_object_E = ObjectImputer( strategy='constant', value='missing', columns=['E']).fit(X) obj_object_F = ObjectImputer( strategy='constant', value='MISSING', columns=['F']).fit(X) X_new = obj_int_A.transform_numpy(X.to_numpy()) X_new = obj_int_B.transform_numpy(X_new) X_new = obj_float_C.transform_numpy(X_new) X_new = obj_float_D.transform_numpy(X_new) X_new = obj_object_E.transform_numpy(X_new) X_new = obj_object_F.transform_numpy(X_new) assert_frame_equal( pd.DataFrame(X_new, columns=list('ABCDEF')), X_expected.astype(object)) def test_imputers_num_pd(): X_int = pd.DataFrame({'A': [0, 1, 1, np.nan], 'B': [3, 4, 4, np.nan]}) X_float = pd.DataFrame( {'C': [0.1, 1.1, 2.1, np.nan], 'D': [2.1, 3.1, 4.1, np.nan]}) X_object = pd.DataFrame( {'E': ['q', 'w', 'w', np.nan], 'F': ['a', 'a', 's', None]}) X = pd.concat([X_int, X_float, X_object], axis=1) X_expected = pd.DataFrame( [[0.0, 3.0, 0.1, 2.1, 'q', 'a'], [1.0, 4.0, 1.1, 3.1, 'w', 'a'], [1.0, 4.0, 2.1, 4.1, 'w', 's'], [-9.0, -9.0, -9.0, -9.0, 'MISSING', 'MISSING']], columns=['A', 'B', 'C', 'D', 'E', 'F'], ) obj_num = NumericsImputer( strategy='constant', value=-9.).fit(X) obj_object = ObjectImputer( strategy='constant', value='MISSING').fit(X) X_new = obj_num.transform(X) X_new = obj_object.transform(X_new) assert_frame_equal(X_new, X_expected) @pytest.mark.koalas def test_imputers_num_ks(): X_int = pd.DataFrame({'A': [0, 1, 1, np.nan], 'B': [3, 4, 4, np.nan]}) X_float = pd.DataFrame( {'C': [0.1, 1.1, 2.1, np.nan], 'D': [2.1, 3.1, 4.1, np.nan]}) X_object = pd.DataFrame( {'E': ['q', 'w', 'w', np.nan], 'F': ['a', 'a', 's', None]}) X = pd.concat([X_int, X_float, X_object], axis=1) X = ks.from_pandas(X) X_expected = pd.DataFrame( [[0.0, 3.0, 0.1, 2.1, 'q', 'a'], [1.0, 4.0, 1.1, 3.1, 'w', 'a'], [1.0, 4.0, 2.1, 4.1, 'w', 's'], [-9.0, -9.0, -9.0, -9.0, 'MISSING', 'MISSING']], columns=['A', 'B', 'C', 'D', 'E', 'F'], ) obj_num = NumericsImputer( strategy='constant', value=-9.).fit(X) obj_object = ObjectImputer( strategy='constant', value='MISSING').fit(X) X_new = obj_num.transform(X) X_new = obj_object.transform(X_new) assert_frame_equal(X_new.to_pandas(), X_expected) def test_imputers_num_pd_np(): X_int = pd.DataFrame({'A': [0, 1, 1, np.nan], 'B': [3, 4, 4, np.nan]}) X_float = pd.DataFrame( {'C': [0.1, 1.1, 2.1, np.nan], 'D': [2.1, 3.1, 4.1, np.nan]}) X_object = pd.DataFrame( {'E': ['q', 'w', 'w', np.nan], 'F': ['a', 'a', 's', None]}) X = pd.concat([X_int, X_float, X_object], axis=1) X_expected = pd.DataFrame( [[0.0, 3.0, 0.1, 2.1, 'q', 'a'], [1.0, 4.0, 1.1, 3.1, 'w', 'a'], [1.0, 4.0, 2.1, 4.1, 'w', 's'], [-9.0, -9.0, -9.0, -9.0, 'MISSING', 'MISSING']], columns=['A', 'B', 'C', 'D', 'E', 'F'], ) obj_num = NumericsImputer( strategy='constant', value=-9.).fit(X) obj_object = ObjectImputer( strategy='constant', value='MISSING').fit(X) X_new = obj_num.transform_numpy(X.to_numpy()) X_new = obj_object.transform_numpy(X_new) assert_frame_equal( pd.DataFrame(X_new, columns=list('ABCDEF')), X_expected.astype(object)) @pytest.mark.koalas def test_imputers_num_ks_np(): X_int = pd.DataFrame({'A': [0, 1, 1, np.nan], 'B': [3, 4, 4, np.nan]}) X_float = pd.DataFrame( {'C': [0.1, 1.1, 2.1, np.nan], 'D': [2.1, 3.1, 4.1, np.nan]}) X_object = pd.DataFrame( {'E': ['q', 'w', 'w', np.nan], 'F': ['a', 'a', 's', None]}) X = pd.concat([X_int, X_float, X_object], axis=1) X = ks.from_pandas(X) X_expected = pd.DataFrame( [[0.0, 3.0, 0.1, 2.1, 'q', 'a'], [1.0, 4.0, 1.1, 3.1, 'w', 'a'], [1.0, 4.0, 2.1, 4.1, 'w', 's'], [-9.0, -9.0, -9.0, -9.0, 'MISSING', 'MISSING']], columns=['A', 'B', 'C', 'D', 'E', 'F'], ) obj_num = NumericsImputer( strategy='constant', value=-9.).fit(X) obj_object = ObjectImputer( strategy='constant', value='MISSING').fit(X) X_new = obj_num.transform_numpy(X.to_numpy()) X_new = obj_object.transform_numpy(X_new) assert_frame_equal( pd.DataFrame(X_new, columns=list('ABCDEF')), X_expected.astype(object)) def test_num_np(): X =
pd.DataFrame({'A': [0, 1, np.nan]})
pandas.DataFrame
import os os.environ["MKL_NUM_THREADS"] = "1" os.environ["NUMEXPR_NUM_THREADS"] = "1" os.environ["OMP_NUM_THREADS"] = "1" import numpy as np import pandas as pd from pyqmc.mc import vmc, initial_guess from pyscf import gto, scf from pyqmc.reblock import reblock from pyqmc.slater import Slater from pyqmc.accumulators import EnergyAccumulator import pytest @pytest.mark.slow def test_vmc(C2_ccecp_rhf): """ Test that a VMC calculation of a Slater determinant matches Hartree-Fock within error bars. """ mol, mf = C2_ccecp_rhf nconf = 500 nsteps = 300 warmup = 30 wf = Slater(mol, mf) coords = initial_guess(mol, nconf) df, coords = vmc( wf, coords, nblocks=int(nsteps / 30), nsteps_per_block=30, accumulators={"energy": EnergyAccumulator(mol)}, ) df =
pd.DataFrame(df)
pandas.DataFrame
import pandas as pd import numpy as np from web_constants import * from signatures import Signatures, get_signatures_by_mut_type from project_data import ProjectData, get_selected_project_data def compute_counts(chosen_sigs, projects, mut_type, single_sample_id=None, normalize=False): signatures = get_signatures_by_mut_type({mut_type: chosen_sigs})[mut_type] project_data = get_selected_project_data(projects) counts_df = pd.DataFrame(index=[], data=[], columns=signatures.get_contexts()) for proj in project_data: proj_id = proj.get_proj_id() samples = proj.get_samples_list() if single_sample_id != None: if single_sample_id in samples: samples = [single_sample_id] else: continue proj_counts_df =
pd.DataFrame(index=samples, columns=[])
pandas.DataFrame
import itertools import numba as nb import numpy as np import pandas as pd import pytest from sid.contacts import _consolidate_reason_of_infection from sid.contacts import _numpy_replace from sid.contacts import calculate_infections_by_contacts from sid.contacts import create_group_indexer @pytest.mark.unit @pytest.mark.parametrize( "states, group_code_name, expected", [ ( pd.DataFrame({"a": [1] * 7 + [0] * 8}), "a", [list(range(7, 15)), list(range(7))], ), ( pd.DataFrame({"a": pd.Series([0, 1, 2, 3, 0, 1, 2, 3]).astype("category")}), "a", [[0, 4], [1, 5], [2, 6], [3, 7]], ), ( pd.DataFrame({"a": pd.Series([0, 1, 2, 3, 0, 1, 2, -1])}), "a", [[0, 4], [1, 5], [2, 6], [3]], ), ], ) def test_create_group_indexer(states, group_code_name, expected): result = create_group_indexer(states, group_code_name) result = [r.tolist() for r in result] assert result == expected @pytest.fixture() def households_w_one_infected(): states = pd.DataFrame( { "infectious": [True] + [False] * 7, "cd_infectious_true": [-1] * 8, "immunity": [1.0] + [0.0] * 7, "group_codes_households": [0] * 4 + [1] * 4, "households": [0] * 4 + [1] * 4, "group_codes_non_rec": [0] * 4 + [1] * 4, "n_has_infected": 0, "virus_strain": pd.Series(["base_strain"] + [pd.NA] * 7, dtype="category"), } ) params = pd.DataFrame( columns=["value"], data=1, index=pd.MultiIndex.from_tuples( [("infection_prob", "households", "households")] ), ) indexers = {"recurrent": nb.typed.List()} indexers["recurrent"].append(create_group_indexer(states, ["households"])) assortative_matching_cum_probs = nb.typed.List() assortative_matching_cum_probs.append(np.zeros((0, 0))) group_codes_info = {"households": {"name": "group_codes_households"}} virus_strains = { "names": ["base_strain"], "contagiousness_factor": np.ones(1), "immunity_resistance_factor": np.zeros(1), } return { "states": states, "recurrent_contacts": np.ones((len(states), 1), dtype=bool), "random_contacts": None, "params": params, "indexers": indexers, "assortative_matching_cum_probs": assortative_matching_cum_probs, "group_codes_info": group_codes_info, "susceptibility_factor": np.ones(len(states)), "virus_strains": virus_strains, "seasonality_factor": pd.Series([1], index=["households"]), } @pytest.mark.integration def test_calculate_infections_only_recurrent_all_participate( households_w_one_infected, ): ( calc_infected, calc_n_has_additionally_infected, calc_missed_contacts, was_infected_by, ) = calculate_infections_by_contacts( **households_w_one_infected, contact_models={"households": {"is_recurrent": True}}, seed=itertools.count(), ) states = households_w_one_infected["states"] exp_infected =
pd.Series([-1] + [0] * 3 + [-1] * 4, dtype="int8")
pandas.Series
import os import pandas as pd def print_best(result_dir): res =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pytest import pandas.util._test_decorators as td from pandas.core.dtypes.common import is_integer import pandas as pd from pandas import ( Series, Timestamp, date_range, isna, ) import pandas._testing as tm def test_where_unsafe_int(any_signed_int_numpy_dtype): s = Series(np.arange(10), dtype=any_signed_int_numpy_dtype) mask = s < 5 s[mask] = range(2, 7) expected = Series( list(range(2, 7)) + list(range(5, 10)), dtype=any_signed_int_numpy_dtype, ) tm.assert_series_equal(s, expected) def test_where_unsafe_float(float_numpy_dtype): s = Series(np.arange(10), dtype=float_numpy_dtype) mask = s < 5 s[mask] = range(2, 7) data = list(range(2, 7)) + list(range(5, 10)) expected = Series(data, dtype=float_numpy_dtype) tm.assert_series_equal(s, expected) @pytest.mark.parametrize( "dtype,expected_dtype", [ (np.int8, np.float64), (np.int16, np.float64), (np.int32, np.float64), (np.int64, np.float64), (np.float32, np.float32), (np.float64, np.float64), ], ) def test_where_unsafe_upcast(dtype, expected_dtype): # see gh-9743 s = Series(np.arange(10), dtype=dtype) values = [2.5, 3.5, 4.5, 5.5, 6.5] mask = s < 5 expected = Series(values + list(range(5, 10)), dtype=expected_dtype) s[mask] = values tm.assert_series_equal(s, expected) def test_where_unsafe(): # see gh-9731 s = Series(np.arange(10), dtype="int64") values = [2.5, 3.5, 4.5, 5.5] mask = s > 5 expected = Series(list(range(6)) + values, dtype="float64") s[mask] = values tm.assert_series_equal(s, expected) # see gh-3235 s = Series(np.arange(10), dtype="int64") mask = s < 5 s[mask] = range(2, 7) expected = Series(list(range(2, 7)) + list(range(5, 10)), dtype="int64") tm.assert_series_equal(s, expected) assert s.dtype == expected.dtype s = Series(np.arange(10), dtype="int64") mask = s > 5 s[mask] = [0] * 4 expected = Series([0, 1, 2, 3, 4, 5] + [0] * 4, dtype="int64")
tm.assert_series_equal(s, expected)
pandas._testing.assert_series_equal
# third party import import pytest from os import path import pandas as pd # module import from dependencynet.model import ModelBuilder from dependencynet.core.model.tree_model import TreeModelBuilder @pytest.fixture def source_data_towns(schema_towns, compact_columns_towns): filename = path.join('tests', 'resources', 'data', 'compact', 'towns.csv') data = pd.read_csv(filename, delimiter=';') df =
pd.DataFrame(data, columns=compact_columns_towns)
pandas.DataFrame
from abc import ABC import pandas as pd import numpy as np import statsmodels.api as sm from statsmodels.tsa.statespace.sarimax import SARIMAX # Construct the model class StateSpaceModel(sm.tsa.statespace.MLEModel, ABC): def __init__(self, endog, exog, factors_x, factors_y): # Initialize the state space model endog_aug = pd.concat([exog, endog.to_frame()], axis=1) k_states = k_posdef = factors_x + factors_y super(StateSpaceModel, self).__init__(endog_aug, k_states=k_states, k_posdef=k_posdef, initialization='approximate_diffuse') self._covariates = endog_aug.columns self._factors_x = factors_x self._factors_y = factors_y self._param_cov_state_f_idx = self._params_cov_state_z_idx = self._params_cov_obs_idx = None self._params_phi_1_idx = self._params_phi_23_idx = self._params_phi_23_idx = None self._params_a_1_idx = self._params_a_2_idx = None # Setup the fixed components of the state space representation transition_f = np.hstack((np.eye(factors_x), np.zeros((factors_x, factors_y)))) transition_z = np.hstack((np.zeros((factors_y, factors_x)), np.eye(factors_y))) transition = np.vstack((transition_f, transition_z)) dims_x = endog_aug.shape[1] - 1 dims_y = 1 self._dims_x = dims_x self._dims_y = dims_y # Assume [x, y]' design_x = np.hstack((np.ones((dims_x, factors_x)), np.zeros((dims_x, factors_y)))) design_y = np.hstack((np.zeros((dims_y, factors_x)), np.ones((dims_y, factors_y)))) design = np.vstack((design_x, design_y)) self.ssm['design'] = design.reshape((dims_x + 1, k_states, 1)) self.ssm['transition'] = transition.reshape((k_states, k_states, 1)) self.ssm['selection'] = np.eye(k_states) self.ssm['obs_intercept'] = np.zeros(dims_x + dims_y).reshape(-1, 1) # Cache some indices self._state_cov_idx = np.diag_indices(k_posdef) self._obs_cov_idx = np.diag_indices(dims_x + dims_y) # grid_transition_f = (np.repeat(np.arange(factors_x), factors_x), # np.tile(np.arange(factors_x), factors_x)) grid_transition_f = np.diag_indices(factors_x) grid_transition_z = (np.repeat(np.arange(factors_x, k_states), k_states), np.tile(np.arange(k_states), factors_y)) self._transition_f_idx = grid_transition_f self._transition_z_idx = grid_transition_z grid_design_x = (np.repeat(np.arange(dims_x), factors_x), np.tile(np.arange(factors_x), dims_x)) grid_design_y = (np.repeat(np.arange(dims_x, dims_x + dims_y), factors_y), np.tile(np.arange(factors_x, k_states), dims_y)) self._design_x_idx = grid_design_x self._design_y_idx = grid_design_y self.init_param_indx() @staticmethod def get_position(idx, i, row_offset=0, col_offset=0): return idx[0][i]-row_offset, idx[1][i]-col_offset def init_param_indx(self): c = 0 params_cov_obs = ['sigma2.%s' % i for i in self._covariates] self._params_cov_obs_idx = (c, c + len(params_cov_obs)) c += len(params_cov_obs) params_cov_state_f = ['sigma2.f.%i' % i for i in range(self._factors_x)] self._param_cov_state_f_idx = (c, c + len(params_cov_state_f)) c += len(params_cov_state_f) params_cov_state_z = ['sigma2.z.%i' % i for i in range(self._factors_y)] self._params_cov_state_z_idx = (c, c + len(params_cov_state_z)) c += len(params_cov_state_z) params_cov = params_cov_state_f + params_cov_state_z + params_cov_obs params_phi_1 = ['phi.1.%i%i' % self.get_position(self._transition_f_idx, i) for i in range(len(self._transition_f_idx[0]))] self._params_phi_1_idx = (c, c+len(params_phi_1)) c += len(params_phi_1) params_phi_23 = ['phi.23.%i%i' % self.get_position(self._transition_z_idx, i, row_offset=self._factors_x) for i in range(len(self._transition_z_idx[0]))] self._params_phi_23_idx = (c, c + len(params_phi_23)) c += len(params_phi_23) params_phi = params_phi_1 + params_phi_23 params_a_1 = ['a.1.%i%i' % self.get_position(self._design_x_idx, i) for i in range(len(self._design_x_idx[0]))] self._params_a_1_idx = (c, c+len(params_a_1)) c += len(params_a_1) params_a_2 = ['a.2.%i%i' % self.get_position(self._design_y_idx, i, row_offset=self._dims_x, col_offset=self._factors_x) for i in range(len(self._design_y_idx[0]))] self._params_a_2_idx = (c, c+len(params_a_2)) c += len(params_a_2) params_a = params_a_1 + params_a_2 return params_cov + params_phi + params_a @property def param_names(self): return self.init_param_indx() # Describe how parameters enter the model def update(self, params, *args, **kwargs): params = super(StateSpaceModel, self).update(params, *args, **kwargs) # Observation covariance self.ssm[('obs_cov',) + self._obs_cov_idx] = params[self._params_cov_obs_idx[0]:self._params_cov_obs_idx[1]] # State covariance self.ssm[('state_cov',) + self._state_cov_idx] = params[self._param_cov_state_f_idx[0]:self._params_cov_state_z_idx[1]] # Transition matrix self.ssm[('transition',) + self._transition_f_idx] = params[self._params_phi_1_idx[0]:self._params_phi_1_idx[1]] self.ssm[('transition',) + self._transition_z_idx] = params[self._params_phi_23_idx[0]:self._params_phi_23_idx[1]] # Design matrix self.ssm[('design',) + self._design_x_idx] = params[self._params_a_1_idx[0]:self._params_a_1_idx[1]] self.ssm[('design',) + self._design_y_idx] = params[self._params_a_2_idx[0]:self._params_a_2_idx[1]] # Specify start parameters and parameter names @property def start_params(self): design, obs_cov, state_cov, transition = self.generate_start_matrices() params_state_cov = state_cov[self._state_cov_idx] params_obs_cov = obs_cov[self._obs_cov_idx] params_phi = np.concatenate((transition[self._transition_f_idx], transition[self._transition_z_idx]), axis=0) params_a = np.concatenate((design[self._design_x_idx], design[self._design_y_idx]), axis=0) return np.concatenate((params_obs_cov, params_state_cov, params_phi, params_a)) def generate_start_matrices(self): _exog = pd.DataFrame(self.endog[:, :-1], columns=self._covariates[:-1]).interpolate().fillna(0) _endog = pd.Series(self.endog[:, -1], name=self._covariates[-1]).interpolate().fillna(0) cov = _exog.cov() w, v = np.linalg.eig(cov) factors = pd.DataFrame(np.dot(_exog, v[:, :self._factors_x]), index=_exog.index) _model = SARIMAX(endog=_endog, exog=factors, order=(self._factors_y, 0, 0)) res = _model.fit(disp=False, maxiter=100) params_arx = res.params phi1 = np.eye(self._factors_x) factors_coeff = params_arx.values[:self._factors_x].reshape(1, -1) ar_coeff = params_arx.values[self._factors_x:-1].reshape(1, -1) phi2 = np.vstack([factors_coeff, np.zeros((self._factors_y - 1, self._factors_x))]) phi3 = np.vstack([ar_coeff, np.eye(self._factors_y)[:-1, :]]) transition = np.vstack([np.hstack([phi1, np.zeros((self._factors_x, self._factors_y))]), np.hstack([phi2, phi3])]) a1 = v.T[:, :self._factors_x] a2 = np.eye(self._dims_y, self._factors_y) design_x = np.hstack([a1, np.zeros((self._dims_x, self._factors_y))]) design_y = np.hstack([np.zeros((self._dims_y, self._factors_x)), a2]) design = np.vstack([design_x, design_y]) state_cov = np.eye(self.k_states) obs_cov = np.eye(len(self._covariates)) obs_cov[-1, -1] = params_arx.values[-1] return design, obs_cov, state_cov, transition def transform_params(self, unconstrained): constrained = unconstrained.copy() for i1, i2 in [self._param_cov_state_f_idx, self._params_cov_state_z_idx, self._params_cov_obs_idx]: constrained[i1:i2] = unconstrained[i1:i2] ** 2 return constrained def untransform_params(self, constrained): unconstrained = constrained.copy() for i1, i2 in [self._param_cov_state_f_idx, self._params_cov_state_z_idx, self._params_cov_obs_idx]: unconstrained[i1:i2] = constrained[i1:i2] ** 0.5 return unconstrained if __name__ == "__main__": import os from src.d01_data.dengue_data_api import DengueDataApi from src.d04_modeling.abstract_sm import AbstractSM os.chdir('../') dda = DengueDataApi(interpolate=False) x1, x2, y1, y2 = dda.split_data(random=False) factors_x = 3 factors_y = 3 abstract_model = AbstractSM(x_train=x1, y_train=y1, bias=False) city = 'sj' endog, exog = dda.format_data(x1.loc[city].copy(), y1.loc[city].copy(), interpolate=False) endog_mean = endog.mean(axis=0) endog_std = endog.std(axis=0) exog_mean = exog.mean(axis=0) exog_std = exog.std(axis=0) endog = (endog - endog_mean) / endog_std exog = (exog - exog_mean) / exog_std print("-------------- DFM Model --------------") model_dfmq = sm.tsa.DynamicFactorMQ(exog, factors=factors_x, factor_orders=1, idiosyncratic_ar1=False) results_dfmq = model_dfmq.fit(method='em') state_names = pd.Index(['f%i' % i for i in range(factors_x)]) transition_df = pd.DataFrame(model_dfmq.ssm['transition'], index=state_names, columns=state_names) print(transition_df.round(4).to_string()) design_df = pd.DataFrame(model_dfmq.ssm['design'], index=exog.columns, columns=state_names) print(design_df.round(4).to_string()) print("-------------- SSM Model --------------") model = StateSpaceModel(endog=endog, exog=exog, factors_x=factors_x, factors_y=factors_y) model.update(model.start_params) state_names = pd.Index(['f%i' % i for i in range(factors_x)]).append(pd.Index(['z%i' % i for i in range(factors_y)])) transition_df = pd.DataFrame(model.ssm['transition'], index=state_names, columns=state_names) print(transition_df.round(4).to_string()) design_df = pd.DataFrame(model.ssm['design'], index=exog.columns.append(pd.Index([endog.name])), columns=state_names) print(design_df.round(4).to_string()) results = model.fit(maxiter=200) transition_df =
pd.DataFrame(model.ssm['transition'], index=state_names, columns=state_names)
pandas.DataFrame
# Licensed to Elasticsearch B.V. under one or more contributor # license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright # ownership. Elasticsearch B.V. licenses this file to you under # the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import re import warnings from enum import Enum from typing import Any, Callable, Dict, List, Optional, Tuple, Union, cast import numpy as np # type: ignore import pandas as pd # type: ignore from elasticsearch import Elasticsearch # Default number of rows displayed (different to pandas where ALL could be displayed) DEFAULT_NUM_ROWS_DISPLAYED = 60 DEFAULT_CHUNK_SIZE = 10000 DEFAULT_CSV_BATCH_OUTPUT_SIZE = 10000 DEFAULT_PROGRESS_REPORTING_NUM_ROWS = 10000 DEFAULT_ES_MAX_RESULT_WINDOW = 10000 # index.max_result_window DEFAULT_PAGINATION_SIZE = 5000 # for composite aggregations PANDAS_VERSION: Tuple[int, ...] = tuple( int(part) for part in pd.__version__.split(".") if part.isdigit() )[:2] with warnings.catch_warnings(): warnings.simplefilter("ignore") EMPTY_SERIES_DTYPE = pd.Series().dtype def build_pd_series( data: Dict[str, Any], dtype: Optional[np.dtype] = None, **kwargs: Any ) -> pd.Series: """Builds a pd.Series while squelching the warning for unspecified dtype on empty series """ dtype = dtype or (EMPTY_SERIES_DTYPE if not data else dtype) if dtype is not None: kwargs["dtype"] = dtype return pd.Series(data, **kwargs) def docstring_parameter(*sub: Any) -> Callable[[Any], Any]: def dec(obj: Any) -> Any: obj.__doc__ = obj.__doc__.format(*sub) return obj return dec class SortOrder(Enum): ASC = 0 DESC = 1 @staticmethod def reverse(order: "SortOrder") -> "SortOrder": if order == SortOrder.ASC: return SortOrder.DESC return SortOrder.ASC @staticmethod def to_string(order: "SortOrder") -> str: if order == SortOrder.ASC: return "asc" return "desc" @staticmethod def from_string(order: str) -> "SortOrder": if order == "asc": return SortOrder.ASC return SortOrder.DESC def elasticsearch_date_to_pandas_date( value: Union[int, str], date_format: Optional[str] ) -> pd.Timestamp: """ Given a specific Elasticsearch format for a date datatype, returns the 'partial' `to_datetime` function to parse a given value in that format **Date Formats: https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-date-format.html#built-in-date-formats Parameters ---------- value: Union[int, str] The date value. date_format: str The Elasticsearch date format (ex. 'epoch_millis', 'epoch_second', etc.) Returns ------- datetime: pd.Timestamp From https://www.elastic.co/guide/en/elasticsearch/reference/current/date.html Date formats can be customised, but if no format is specified then it uses the default: "strict_date_optional_time||epoch_millis" Therefore if no format is specified we assume either strict_date_optional_time or epoch_millis. """ if date_format is None or isinstance(value, (int, float)): try: return pd.to_datetime( value, unit="s" if date_format == "epoch_second" else "ms" ) except ValueError: return pd.to_datetime(value) elif date_format == "epoch_millis": return pd.to_datetime(value, unit="ms") elif date_format == "epoch_second": return pd.to_datetime(value, unit="s") elif date_format == "strict_date_optional_time": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M:%S.%f%z", exact=False) elif date_format == "basic_date": return pd.to_datetime(value, format="%Y%m%d") elif date_format == "basic_date_time": return pd.to_datetime(value, format="%Y%m%dT%H%M%S.%f", exact=False) elif date_format == "basic_date_time_no_millis": return pd.to_datetime(value, format="%Y%m%dT%H%M%S%z") elif date_format == "basic_ordinal_date": return pd.to_datetime(value, format="%Y%j") elif date_format == "basic_ordinal_date_time": return pd.to_datetime(value, format="%Y%jT%H%M%S.%f%z", exact=False) elif date_format == "basic_ordinal_date_time_no_millis": return pd.to_datetime(value, format="%Y%jT%H%M%S%z") elif date_format == "basic_time": return pd.to_datetime(value, format="%H%M%S.%f%z", exact=False) elif date_format == "basic_time_no_millis": return pd.to_datetime(value, format="%H%M%S%z") elif date_format == "basic_t_time": return pd.to_datetime(value, format="T%H%M%S.%f%z", exact=False) elif date_format == "basic_t_time_no_millis": return pd.to_datetime(value, format="T%H%M%S%z") elif date_format == "basic_week_date": return pd.to_datetime(value, format="%GW%V%u") elif date_format == "basic_week_date_time": return pd.to_datetime(value, format="%GW%V%uT%H%M%S.%f%z", exact=False) elif date_format == "basic_week_date_time_no_millis": return pd.to_datetime(value, format="%GW%V%uT%H%M%S%z") elif date_format == "strict_date": return pd.to_datetime(value, format="%Y-%m-%d") elif date_format == "date": return pd.to_datetime(value, format="%Y-%m-%d") elif date_format == "strict_date_hour": return pd.to_datetime(value, format="%Y-%m-%dT%H") elif date_format == "date_hour": return pd.to_datetime(value, format="%Y-%m-%dT%H") elif date_format == "strict_date_hour_minute": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M") elif date_format == "date_hour_minute": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M") elif date_format == "strict_date_hour_minute_second": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M:%S") elif date_format == "date_hour_minute_second": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M:%S") elif date_format == "strict_date_hour_minute_second_fraction": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M:%S.%f", exact=False) elif date_format == "date_hour_minute_second_fraction": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M:%S.%f", exact=False) elif date_format == "strict_date_hour_minute_second_millis": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M:%S.%f", exact=False) elif date_format == "date_hour_minute_second_millis": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M:%S.%f", exact=False) elif date_format == "strict_date_time": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M:%S.%f%z", exact=False) elif date_format == "date_time": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M:%S.%f%z", exact=False) elif date_format == "strict_date_time_no_millis": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M:%S%z") elif date_format == "date_time_no_millis": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M:%S%z") elif date_format == "strict_hour": return pd.to_datetime(value, format="%H") elif date_format == "hour": return pd.to_datetime(value, format="%H") elif date_format == "strict_hour_minute": return pd.to_datetime(value, format="%H:%M") elif date_format == "hour_minute": return pd.to_datetime(value, format="%H:%M") elif date_format == "strict_hour_minute_second": return pd.to_datetime(value, format="%H:%M:%S") elif date_format == "hour_minute_second": return pd.to_datetime(value, format="%H:%M:%S") elif date_format == "strict_hour_minute_second_fraction": return pd.to_datetime(value, format="%H:%M:%S.%f", exact=False) elif date_format == "hour_minute_second_fraction": return pd.to_datetime(value, format="%H:%M:%S.%f", exact=False) elif date_format == "strict_hour_minute_second_millis": return pd.to_datetime(value, format="%H:%M:%S.%f", exact=False) elif date_format == "hour_minute_second_millis": return pd.to_datetime(value, format="%H:%M:%S.%f", exact=False) elif date_format == "strict_ordinal_date": return pd.to_datetime(value, format="%Y-%j") elif date_format == "ordinal_date": return pd.to_datetime(value, format="%Y-%j") elif date_format == "strict_ordinal_date_time": return pd.to_datetime(value, format="%Y-%jT%H:%M:%S.%f%z", exact=False) elif date_format == "ordinal_date_time": return pd.to_datetime(value, format="%Y-%jT%H:%M:%S.%f%z", exact=False) elif date_format == "strict_ordinal_date_time_no_millis": return pd.to_datetime(value, format="%Y-%jT%H:%M:%S%z") elif date_format == "ordinal_date_time_no_millis": return pd.to_datetime(value, format="%Y-%jT%H:%M:%S%z") elif date_format == "strict_time": return pd.to_datetime(value, format="%H:%M:%S.%f%z", exact=False) elif date_format == "time": return pd.to_datetime(value, format="%H:%M:%S.%f%z", exact=False) elif date_format == "strict_time_no_millis": return pd.to_datetime(value, format="%H:%M:%S%z") elif date_format == "time_no_millis": return
pd.to_datetime(value, format="%H:%M:%S%z")
pandas.to_datetime
#!/usr/bin/env python3 # # Copyright 2019 <NAME> <<EMAIL>> # # This file is part of Salus # (see https://github.com/SymbioticLab/Salus). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # -*- coding: utf-8 -*- """ Created on Thu Sep 6 21:11:52 2018 @author: peifeng """ from __future__ import print_function, absolute_import, division import re from datetime import datetime from collections import defaultdict import multiprocessing as mp from pathlib import Path import pandas as pd #import seaborn as sns import numpy as np import matplotlib.pyplot as plt import plotutils as pu import compmem as cm # 2018-09-01 06:22:21.180029: Step 341, loss=3.60 (33.8 examples/sec; 0.740 sec/batch) ptn_iter = re.compile(r"""(?P<timestamp>.+): \s [sS]tep \s (?P<Step>\d+),\s (loss|perplexity) .* \( (?P<Speed>[\d.]+) \s examples/sec; \s (?P<Duration>[\d.]+) \s sec/batch\)?""", re.VERBOSE) def parse_iterations(path): path = Path(path) iterations = [] with path.open() as f: for line in f: line = line.rstrip('\n') m = ptn_iter.match(line) if m: iterations.append(m.groupdict()) df = pd.DataFrame(iterations) if len(df) == 0: print(f'File {path} is empty??') assert len(df) > 0 df['timestamp'] = pd.to_datetime(df['timestamp']) df['Speed'] = pd.to_numeric(df['Speed']) df['Step'] = pd.to_numeric(df.Step) df['Duration'] = pd.to_numeric(df.Duration) return df def load_latency(path): path = Path(path) case2ex = { 'case1': 'tf', 'case2': 'salus', 'case3': 'mps' } data = {} # case1, 2, 3 for case in path.iterdir(): ex = case2ex[case.name] s = [] idx = [] for strrate in case.iterdir(): rate = float(strrate.name) # rate req/sec for f in strrate.glob('*.*.*.*.output'): latencies = parse_iterations(f) s.append(latencies.Duration.mean()) idx.append(rate) s =
pd.Series(s, idx)
pandas.Series
# -*- coding: utf-8 -*- # Arithmetc tests for DataFrame/Series/Index/Array classes that should # behave identically. from datetime import timedelta import operator import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas.compat import long from pandas.core import ops from pandas.errors import NullFrequencyError, PerformanceWarning from pandas._libs.tslibs import IncompatibleFrequency from pandas import ( timedelta_range, Timedelta, Timestamp, NaT, Series, TimedeltaIndex, DatetimeIndex) # ------------------------------------------------------------------ # Fixtures @pytest.fixture def tdser(): """ Return a Series with dtype='timedelta64[ns]', including a NaT. """ return Series(['59 Days', '59 Days', 'NaT'], dtype='timedelta64[ns]') @pytest.fixture(params=[pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)], ids=lambda x: type(x).__name__) def delta(request): """ Several ways of representing two hours """ return request.param @pytest.fixture(params=[timedelta(minutes=5, seconds=4), Timedelta('5m4s'), Timedelta('5m4s').to_timedelta64()], ids=lambda x: type(x).__name__) def scalar_td(request): """ Several variants of Timedelta scalars representing 5 minutes and 4 seconds """ return request.param @pytest.fixture(params=[pd.Index, Series, pd.DataFrame], ids=lambda x: x.__name__) def box(request): """ Several array-like containers that should have effectively identical behavior with respect to arithmetic operations. """ return request.param @pytest.fixture(params=[pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(strict=True))], ids=lambda x: x.__name__) def box_df_fail(request): """ Fixture equivalent to `box` fixture but xfailing the DataFrame case. """ return request.param # ------------------------------------------------------------------ # Numeric dtypes Arithmetic with Timedelta Scalar class TestNumericArraylikeArithmeticWithTimedeltaScalar(object): @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="block.eval incorrect", strict=True)) ]) @pytest.mark.parametrize('index', [ pd.Int64Index(range(1, 11)), pd.UInt64Index(range(1, 11)), pd.Float64Index(range(1, 11)), pd.RangeIndex(1, 11)], ids=lambda x: type(x).__name__) @pytest.mark.parametrize('scalar_td', [ Timedelta(days=1), Timedelta(days=1).to_timedelta64(), Timedelta(days=1).to_pytimedelta()], ids=lambda x: type(x).__name__) def test_numeric_arr_mul_tdscalar(self, scalar_td, index, box): # GH#19333 if (box is Series and type(scalar_td) is timedelta and index.dtype == 'f8'): raise pytest.xfail(reason="Cannot multiply timedelta by float") expected = timedelta_range('1 days', '10 days') index = tm.box_expected(index, box) expected = tm.box_expected(expected, box) result = index * scalar_td tm.assert_equal(result, expected) commute = scalar_td * index tm.assert_equal(commute, expected) @pytest.mark.parametrize('index', [ pd.Int64Index(range(1, 3)), pd.UInt64Index(range(1, 3)), pd.Float64Index(range(1, 3)), pd.RangeIndex(1, 3)], ids=lambda x: type(x).__name__) @pytest.mark.parametrize('scalar_td', [ Timedelta(days=1), Timedelta(days=1).to_timedelta64(), Timedelta(days=1).to_pytimedelta()], ids=lambda x: type(x).__name__) def test_numeric_arr_rdiv_tdscalar(self, scalar_td, index, box): if box is Series and type(scalar_td) is timedelta: raise pytest.xfail(reason="TODO: Figure out why this case fails") if box is pd.DataFrame and isinstance(scalar_td, timedelta): raise pytest.xfail(reason="TODO: Figure out why this case fails") expected = TimedeltaIndex(['1 Day', '12 Hours']) index = tm.box_expected(index, box) expected = tm.box_expected(expected, box) result = scalar_td / index tm.assert_equal(result, expected) with pytest.raises(TypeError): index / scalar_td # ------------------------------------------------------------------ # Timedelta64[ns] dtype Arithmetic Operations class TestTimedeltaArraylikeAddSubOps(object): # Tests for timedelta64[ns] __add__, __sub__, __radd__, __rsub__ # ------------------------------------------------------------- # Invalid Operations def test_td64arr_add_str_invalid(self, box): # GH#13624 tdi = TimedeltaIndex(['1 day', '2 days']) tdi = tm.box_expected(tdi, box) with pytest.raises(TypeError): tdi + 'a' with pytest.raises(TypeError): 'a' + tdi @pytest.mark.parametrize('other', [3.14, np.array([2.0, 3.0])]) @pytest.mark.parametrize('op', [operator.add, ops.radd, operator.sub, ops.rsub], ids=lambda x: x.__name__) def test_td64arr_add_sub_float(self, box, op, other): tdi = TimedeltaIndex(['-1 days', '-1 days']) tdi = tm.box_expected(tdi, box) if box is pd.DataFrame and op in [operator.add, operator.sub]: pytest.xfail(reason="Tries to align incorrectly, " "raises ValueError") with pytest.raises(TypeError): op(tdi, other) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Tries to cast df to " "Period", strict=True, raises=IncompatibleFrequency)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('freq', [None, 'H']) def test_td64arr_sub_period(self, box, freq): # GH#13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') idx = TimedeltaIndex(['1 hours', '2 hours'], freq=freq) idx = tm.box_expected(idx, box) with pytest.raises(TypeError): idx - p with pytest.raises(TypeError): p - idx @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="broadcasts along " "wrong axis", raises=ValueError, strict=True)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('pi_freq', ['D', 'W', 'Q', 'H']) @pytest.mark.parametrize('tdi_freq', [None, 'H']) def test_td64arr_sub_pi(self, box, tdi_freq, pi_freq): # GH#20049 subtracting PeriodIndex should raise TypeError tdi = TimedeltaIndex(['1 hours', '2 hours'], freq=tdi_freq) dti = Timestamp('2018-03-07 17:16:40') + tdi pi = dti.to_period(pi_freq) # TODO: parametrize over box for pi? tdi = tm.box_expected(tdi, box) with pytest.raises(TypeError): tdi - pi # ------------------------------------------------------------- # Binary operations td64 arraylike and datetime-like def test_td64arr_sub_timestamp_raises(self, box): idx = TimedeltaIndex(['1 day', '2 day']) idx = tm.box_expected(idx, box) msg = "cannot subtract a datelike from|Could not operate" with tm.assert_raises_regex(TypeError, msg): idx - Timestamp('2011-01-01') @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object dtype", strict=True)) ], ids=lambda x: x.__name__) def test_td64arr_add_timestamp(self, box): idx = TimedeltaIndex(['1 day', '2 day']) expected = DatetimeIndex(['2011-01-02', '2011-01-03']) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, box) result = idx + Timestamp('2011-01-01') tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object dtype", strict=True)) ], ids=lambda x: x.__name__) def test_td64_radd_timestamp(self, box): idx = TimedeltaIndex(['1 day', '2 day']) expected = DatetimeIndex(['2011-01-02', '2011-01-03']) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, box) # TODO: parametrize over scalar datetime types? result = Timestamp('2011-01-01') + idx tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object dtype " "instead of " "datetime64[ns]", strict=True)) ], ids=lambda x: x.__name__) def test_td64arr_add_sub_timestamp(self, box): # GH#11925 ts = Timestamp('2012-01-01') # TODO: parametrize over types of datetime scalar? tdser = Series(timedelta_range('1 day', periods=3)) expected = Series(pd.date_range('2012-01-02', periods=3)) tdser = tm.box_expected(tdser, box) expected = tm.box_expected(expected, box) tm.assert_equal(ts + tdser, expected) tm.assert_equal(tdser + ts, expected) expected2 = Series(pd.date_range('2011-12-31', periods=3, freq='-1D')) expected2 = tm.box_expected(expected2, box) tm.assert_equal(ts - tdser, expected2) tm.assert_equal(ts + (-tdser), expected2) with pytest.raises(TypeError): tdser - ts def test_tdi_sub_dt64_array(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) dtarr = dti.values expected = pd.DatetimeIndex(dtarr) - tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) with pytest.raises(TypeError): tdi - dtarr # TimedeltaIndex.__rsub__ result = dtarr - tdi tm.assert_equal(result, expected) def test_tdi_add_dt64_array(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) dtarr = dti.values expected = pd.DatetimeIndex(dtarr) + tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi + dtarr tm.assert_equal(result, expected) result = dtarr + tdi tm.assert_equal(result, expected) # ------------------------------------------------------------------ # Operations with int-like others @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_add_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError with pytest.raises(err): tdser + Series([2, 3, 4]) @pytest.mark.parametrize('box', [ pd.Index, pytest.param(Series, marks=pytest.mark.xfail(reason="GH#19123 integer " "interpreted as " "nanoseconds", strict=True)), pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_radd_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError with pytest.raises(err): Series([2, 3, 4]) + tdser @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_sub_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError with pytest.raises(err): tdser - Series([2, 3, 4]) @pytest.mark.xfail(reason='GH#19123 integer interpreted as nanoseconds', strict=True) def test_td64arr_rsub_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) with pytest.raises(TypeError): Series([2, 3, 4]) - tdser @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_add_intlike(self, box): # GH#19123 tdi = TimedeltaIndex(['59 days', '59 days', 'NaT']) ser = tm.box_expected(tdi, box) err = TypeError if box is not pd.Index else NullFrequencyError other = Series([20, 30, 40], dtype='uint8') # TODO: separate/parametrize with pytest.raises(err): ser + 1 with pytest.raises(err): ser - 1 with pytest.raises(err): ser + other with pytest.raises(err): ser - other with pytest.raises(err): ser + np.array(other) with pytest.raises(err): ser - np.array(other) with pytest.raises(err): ser + pd.Index(other) with pytest.raises(err): ser - pd.Index(other) @pytest.mark.parametrize('scalar', [1, 1.5, np.array(2)]) def test_td64arr_add_sub_numeric_scalar_invalid(self, box, scalar, tdser): if box is pd.DataFrame and isinstance(scalar, np.ndarray): # raises ValueError pytest.xfail(reason="DataFrame to broadcast incorrectly") tdser = tm.box_expected(tdser, box) err = TypeError if box is pd.Index and not isinstance(scalar, float): err = NullFrequencyError with pytest.raises(err): tdser + scalar with pytest.raises(err): scalar + tdser with pytest.raises(err): tdser - scalar with pytest.raises(err): scalar - tdser @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Tries to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('dtype', ['int64', 'int32', 'int16', 'uint64', 'uint32', 'uint16', 'uint8', 'float64', 'float32', 'float16']) @pytest.mark.parametrize('vec', [ np.array([1, 2, 3]), pd.Index([1, 2, 3]), Series([1, 2, 3]) # TODO: Add DataFrame in here? ], ids=lambda x: type(x).__name__) def test_td64arr_add_sub_numeric_arr_invalid(self, box, vec, dtype, tdser): if type(vec) is Series and not dtype.startswith('float'): pytest.xfail(reason='GH#19123 integer interpreted as nanos') tdser = tm.box_expected(tdser, box) err = TypeError if box is pd.Index and not dtype.startswith('float'): err = NullFrequencyError vector = vec.astype(dtype) # TODO: parametrize over these four ops? with pytest.raises(err): tdser + vector with pytest.raises(err): vector + tdser with pytest.raises(err): tdser - vector with pytest.raises(err): vector - tdser # ------------------------------------------------------------------ # Operations with timedelta-like others def test_td64arr_add_td64_array(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) tdarr = tdi.values expected = 2 * tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi + tdarr tm.assert_equal(result, expected) result = tdarr + tdi tm.assert_equal(result, expected) def test_td64arr_sub_td64_array(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) tdarr = tdi.values expected = 0 * tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi - tdarr tm.assert_equal(result, expected) result = tdarr - tdi tm.assert_equal(result, expected) # TODO: parametrize over [add, sub, radd, rsub]? @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Tries to broadcast " "incorrectly leading " "to alignment error", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('names', [(None, None, None), ('Egon', 'Venkman', None), ('NCC1701D', 'NCC1701D', 'NCC1701D')]) def test_td64arr_add_sub_tdi(self, box, names): # GH#17250 make sure result dtype is correct # GH#19043 make sure names are propagated correctly tdi = TimedeltaIndex(['0 days', '1 day'], name=names[0]) ser = Series([Timedelta(hours=3), Timedelta(hours=4)], name=names[1]) expected = Series([Timedelta(hours=3), Timedelta(days=1, hours=4)], name=names[2]) ser = tm.box_expected(ser, box) expected = tm.box_expected(expected, box) result = tdi + ser tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' result = ser + tdi tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' expected = Series([Timedelta(hours=-3), Timedelta(days=1, hours=-4)], name=names[2]) expected = tm.box_expected(expected, box) result = tdi - ser tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' result = ser - tdi tm.assert_equal(result, -expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' def test_td64arr_sub_NaT(self, box): # GH#18808 ser = Series([NaT, Timedelta('1s')]) expected = Series([NaT, NaT], dtype='timedelta64[ns]') ser = tm.box_expected(ser, box) expected = tm.box_expected(expected, box) res = ser - pd.NaT tm.assert_equal(res, expected) def test_td64arr_add_timedeltalike(self, delta, box): # only test adding/sub offsets as + is now numeric if box is pd.DataFrame and isinstance(delta, pd.DateOffset): pytest.xfail(reason="Returns object dtype instead of m8[ns]") rng = timedelta_range('1 days', '10 days') expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng + delta tm.assert_equal(result, expected) def test_td64arr_sub_timedeltalike(self, delta, box): # only test adding/sub offsets as - is now numeric if box is pd.DataFrame and isinstance(delta, pd.DateOffset): pytest.xfail(reason="Returns object dtype instead of m8[ns]") rng = timedelta_range('1 days', '10 days') expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng - delta tm.assert_equal(result, expected) # ------------------------------------------------------------------ # __add__/__sub__ with DateOffsets and arrays of DateOffsets @pytest.mark.parametrize('box', [ pd.Index, pytest.param(Series, marks=pytest.mark.xfail(reason="Index fails to return " "NotImplemented on " "reverse op", strict=True)), pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Tries to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('names', [(None, None, None), ('foo', 'bar', None), ('foo', 'foo', 'foo')]) def test_td64arr_add_offset_index(self, names, box): # GH#18849, GH#19744 tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00'], name=names[0]) other = pd.Index([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected = TimedeltaIndex([tdi[n] + other[n] for n in range(len(tdi))], freq='infer', name=names[2]) tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) with tm.assert_produces_warning(PerformanceWarning): res = tdi + other tm.assert_equal(res, expected) with tm.assert_produces_warning(PerformanceWarning): res2 = other + tdi tm.assert_equal(res2, expected) # TODO: combine with test_td64arr_add_offset_index by parametrizing # over second box? def test_td64arr_add_offset_array(self, box_df_fail): # GH#18849 box = box_df_fail # tries to broadcast incorrectly tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) other = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) expected = TimedeltaIndex([tdi[n] + other[n] for n in range(len(tdi))], freq='infer') tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) with tm.assert_produces_warning(PerformanceWarning): res = tdi + other tm.assert_equal(res, expected) with tm.assert_produces_warning(PerformanceWarning): res2 = other + tdi tm.assert_equal(res2, expected) @pytest.mark.parametrize('names', [(None, None, None), ('foo', 'bar', None), ('foo', 'foo', 'foo')]) def test_td64arr_sub_offset_index(self, names, box_df_fail): # GH#18824, GH#19744 box = box_df_fail # tries to broadcast incorrectly tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00'], name=names[0]) other = pd.Index([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected = TimedeltaIndex([tdi[n] - other[n] for n in range(len(tdi))], freq='infer', name=names[2]) tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) with tm.assert_produces_warning(PerformanceWarning): res = tdi - other tm.assert_equal(res, expected) def test_td64arr_sub_offset_array(self, box_df_fail): # GH#18824 box = box_df_fail # tries to broadcast incorrectly tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) other = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) expected = TimedeltaIndex([tdi[n] - other[n] for n in range(len(tdi))], freq='infer') tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) with tm.assert_produces_warning(PerformanceWarning): res = tdi - other tm.assert_equal(res, expected) @pytest.mark.parametrize('box', [ pd.Index, pytest.param(Series, marks=pytest.mark.xfail(reason="object dtype Series " "fails to return " "NotImplemented", strict=True, raises=TypeError)), pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="tries to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('names', [(None, None, None), ('foo', 'bar', None), ('foo', 'foo', 'foo')]) def test_td64arr_with_offset_series(self, names, box): # GH#18849 box2 = Series if box is pd.Index else box tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00'], name=names[0]) other = Series([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected_add = Series([tdi[n] + other[n] for n in range(len(tdi))], name=names[2]) tdi = tm.box_expected(tdi, box) expected_add = tm.box_expected(expected_add, box2) with tm.assert_produces_warning(PerformanceWarning): res = tdi + other tm.assert_equal(res, expected_add) with tm.assert_produces_warning(PerformanceWarning): res2 = other + tdi tm.assert_equal(res2, expected_add) # TODO: separate/parametrize add/sub test? expected_sub = Series([tdi[n] - other[n] for n in range(len(tdi))], name=names[2]) expected_sub = tm.box_expected(expected_sub, box2) with tm.assert_produces_warning(PerformanceWarning): res3 = tdi - other tm.assert_equal(res3, expected_sub) @pytest.mark.parametrize('obox', [np.array, pd.Index, pd.Series]) def test_td64arr_addsub_anchored_offset_arraylike(self, obox, box_df_fail): # GH#18824 box = box_df_fail # DataFrame tries to broadcast incorrectly tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) tdi = tm.box_expected(tdi, box) anchored = obox([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) # addition/subtraction ops with anchored offsets should issue # a PerformanceWarning and _then_ raise a TypeError. with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): tdi + anchored with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): anchored + tdi with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): tdi - anchored with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): anchored - tdi class TestTimedeltaArraylikeMulDivOps(object): # Tests for timedelta64[ns] # __mul__, __rmul__, __div__, __rdiv__, __floordiv__, __rfloordiv__ # ------------------------------------------------------------------ # Multiplication # organized with scalar others first, then array-like def test_td64arr_mul_int(self, box_df_fail): box = box_df_fail # DataFrame op returns object instead of m8[ns] idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box) result = idx * 1 tm.assert_equal(result, idx) result = 1 * idx tm.assert_equal(result, idx) def test_td64arr_mul_tdlike_scalar_raises(self, delta, box): if box is pd.DataFrame and not isinstance(delta, pd.DateOffset): pytest.xfail(reason="returns m8[ns] instead of raising") rng = timedelta_range('1 days', '10 days', name='foo') rng = tm.box_expected(rng, box) with pytest.raises(TypeError): rng * delta def test_tdi_mul_int_array_zerodim(self, box_df_fail): box = box_df_fail # DataFrame op returns object dtype rng5 = np.arange(5, dtype='int64') idx = TimedeltaIndex(rng5) expected = TimedeltaIndex(rng5 * 5) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, box) result = idx * np.array(5, dtype='int64') tm.assert_equal(result, expected) def test_tdi_mul_int_array(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly rng5 = np.arange(5, dtype='int64') idx = TimedeltaIndex(rng5) expected = TimedeltaIndex(rng5 ** 2) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, box) result = idx * rng5 tm.assert_equal(result, expected) def test_tdi_mul_int_series(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly idx = TimedeltaIndex(np.arange(5, dtype='int64')) expected = TimedeltaIndex(np.arange(5, dtype='int64') ** 2) idx = tm.box_expected(idx, box) box2 = pd.Series if box is pd.Index else box expected = tm.box_expected(expected, box2) result = idx * pd.Series(np.arange(5, dtype='int64')) tm.assert_equal(result, expected) def test_tdi_mul_float_series(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box) rng5f = np.arange(5, dtype='float64') expected = TimedeltaIndex(rng5f * (rng5f + 0.1)) box2 = pd.Series if box is pd.Index else box expected = tm.box_expected(expected, box2) result = idx * Series(rng5f + 0.1) tm.assert_equal(result, expected) # TODO: Put Series/DataFrame in others? @pytest.mark.parametrize('other', [ np.arange(1, 11), pd.Int64Index(range(1, 11)), pd.UInt64Index(range(1, 11)), pd.Float64Index(range(1, 11)), pd.RangeIndex(1, 11) ], ids=lambda x: type(x).__name__) def test_tdi_rmul_arraylike(self, other, box_df_fail): # RangeIndex fails to return NotImplemented, for others # DataFrame tries to broadcast incorrectly box = box_df_fail tdi = TimedeltaIndex(['1 Day'] * 10) expected = timedelta_range('1 days', '10 days') tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = other * tdi tm.assert_equal(result, expected) commute = tdi * other tm.assert_equal(commute, expected) # ------------------------------------------------------------------ # __div__ def test_td64arr_div_nat_invalid(self, box_df_fail): # don't allow division by NaT (maybe could in the future) box = box_df_fail # DataFrame returns all-NaT instead of raising rng = timedelta_range('1 days', '10 days', name='foo') rng = tm.box_expected(rng, box) with pytest.raises(TypeError): rng / pd.NaT def test_td64arr_div_int(self, box_df_fail): box = box_df_fail # DataFrame returns object dtype instead of m8[ns] idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box) result = idx / 1 tm.assert_equal(result, idx) def test_tdi_div_tdlike_scalar(self, delta, box_df_fail): box = box_df_fail # DataFrame op returns m8[ns] instead of float64 rng = timedelta_range('1 days', '10 days', name='foo') expected = pd.Float64Index((np.arange(10) + 1) * 12, name='foo') rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng / delta tm.assert_equal(result, expected) def test_tdi_div_tdlike_scalar_with_nat(self, delta, box_df_fail): box = box_df_fail # DataFrame op returns m8[ns] instead of float64 rng = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') expected = pd.Float64Index([12, np.nan, 24], name='foo') rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng / delta tm.assert_equal(result, expected) # ------------------------------------------------------------------ # __floordiv__, __rfloordiv__ @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Incorrectly returns " "m8[ns] instead of f8", strict=True)) ], ids=lambda x: x.__name__) def test_td64arr_floordiv_tdscalar(self, box, scalar_td): # GH#18831 td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan expected = Series([0, 0, np.nan]) td1 = tm.box_expected(td1, box) expected = tm.box_expected(expected, box) result = td1 // scalar_td tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Incorrectly casts to f8", strict=True)) ], ids=lambda x: x.__name__) def test_td64arr_rfloordiv_tdscalar(self, box, scalar_td): # GH#18831 td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan expected = Series([1, 1, np.nan]) td1 = tm.box_expected(td1, box) expected = tm.box_expected(expected, box) result = scalar_td // td1 tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns m8[ns] dtype " "instead of f8", strict=True)) ], ids=lambda x: x.__name__) def test_td64arr_rfloordiv_tdscalar_explicit(self, box, scalar_td): # GH#18831 td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan expected = Series([1, 1, np.nan]) td1 = tm.box_expected(td1, box) expected = tm.box_expected(expected, box) # We can test __rfloordiv__ using this syntax, # see `test_timedelta_rfloordiv` result = td1.__rfloordiv__(scalar_td) tm.assert_equal(result, expected) def test_td64arr_floordiv_int(self, box_df_fail): box = box_df_fail # DataFrame returns object dtype idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box) result = idx // 1 tm.assert_equal(result, idx) def test_td64arr_floordiv_tdlike_scalar(self, delta, box_df_fail): box = box_df_fail # DataFrame returns m8[ns] instead of int64 dtype tdi = timedelta_range('1 days', '10 days', name='foo') expected = pd.Int64Index((np.arange(10) + 1) * 12, name='foo') tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi // delta tm.assert_equal(result, expected) # TODO: Is this redundant with test_td64arr_floordiv_tdlike_scalar? @pytest.mark.parametrize('scalar_td', [ timedelta(minutes=10, seconds=7), Timedelta('10m7s'), Timedelta('10m7s').to_timedelta64() ], ids=lambda x: type(x).__name__) def test_td64arr_rfloordiv_tdlike_scalar(self, scalar_td, box_df_fail): # GH#19125 box = box_df_fail # DataFrame op returns m8[ns] instead of f8 dtype tdi = TimedeltaIndex(['00:05:03', '00:05:03', pd.NaT], freq=None) expected = pd.Index([2.0, 2.0, np.nan]) tdi =
tm.box_expected(tdi, box)
pandas.util.testing.box_expected
""" Name: diffusion_functions Purpose: Contains functions to calculate diffusion of distributed wind model (1) Determine maximum market size as a function of payback time; (2) Parameterize Bass diffusion curve with diffusion rates (p, q) set by payback time; (3) Determine current stage (equivaluent time) of diffusion based on existing market and current economics; and (3) Calculate new market share by stepping forward on diffusion curve. """ import numpy as np import pandas as pd import config import utility_functions as utilfunc import decorators #============================================================================== # Load logger logger = utilfunc.get_logger() #============================================================================== #============================================================================= # ^^^^ Diffusion Calculator ^^^^ @decorators.fn_timer(logger = logger, tab_level = 2, prefix = '') def calc_diffusion_solar(df, is_first_year, bass_params, year, override_p_value = None, override_q_value = None, override_teq_yr1_value = None): """ Calculates the market share (ms) added in the solve year. Market share must be less than max market share (mms) except initial ms is greater than the calculated mms. For this circumstance, no diffusion allowed until mms > ms. Also, do not allow ms to decrease if economics deterioriate. Using the calculated market share, relevant quantities are updated. IN: df - pd dataframe - Main dataframe OUT: df - pd dataframe - Main dataframe market_last_year - pd dataframe - market to inform diffusion in next year """ df = df.reset_index() bass_params = bass_params[bass_params['tech']=='solar'] # set p/q/teq_yr1 params df = pd.merge(df, bass_params[['state_abbr', 'bass_param_p', 'bass_param_q', 'teq_yr1', 'sector_abbr']], how = 'left', on = ['state_abbr','sector_abbr']) # calc diffusion market share df = calc_diffusion_market_share(df, is_first_year) # market share floor is based on last year's market share df['market_share'] = np.maximum(df['diffusion_market_share'], df['market_share_last_year']) # calculate the "new" market share (old - current) df['new_market_share'] = df['market_share'] - df['market_share_last_year'] # cap the new_market_share where the market share exceeds the max market share df['new_market_share'] = np.where(df['market_share'] > df['max_market_share'], 0, df['new_market_share']) # calculate new adopters, capacity and market value df['new_adopters'] = df['new_market_share'] * df['developable_agent_weight'] df['new_market_value'] = df['new_adopters'] * df['system_kw'] * df['system_capex_per_kw'] df['new_system_kw'] = df['new_adopters'] * df['system_kw'] df['new_batt_kw'] = df['new_adopters'] * df['batt_kw'] df['new_batt_kwh'] = df['new_adopters'] * df['batt_kwh'] # then add these values to values from last year to get cumulative values: df['number_of_adopters'] = df['adopters_cum_last_year'] + df['new_adopters'] df['market_value'] = df['market_value_last_year'] + df['new_market_value'] df['system_kw_cum'] = df['system_kw_cum_last_year'] + df['new_system_kw'] df['batt_kw_cum'] = df['batt_kw_cum_last_year'] + df['new_batt_kw'] df['batt_kwh_cum'] = df['batt_kwh_cum_last_year'] + df['new_batt_kwh'] # constrain state-level capacity totals to known historical values if year in (2014, 2016, 2018): group_cols = ['state_abbr', 'sector_abbr', 'year'] state_capacity_total = (df[group_cols+['system_kw_cum', 'batt_kw_cum', 'batt_kwh_cum', 'agent_id']].groupby(group_cols) .agg({'system_kw_cum':'sum', 'batt_kw_cum':'sum', 'batt_kwh_cum':'sum', 'agent_id':'count'}) .rename(columns={'system_kw_cum':'state_solar_kw_cum', 'batt_kw_cum':'state_batt_kw_cum', 'batt_kwh_cum':'state_batt_kwh_cum', 'agent_id':'agent_count'}) .reset_index()) # coerce dtypes state_capacity_total.state_solar_kw_cum = state_capacity_total.state_solar_kw_cum.astype(np.float64) state_capacity_total.state_batt_kw_cum = state_capacity_total.state_batt_kw_cum.astype(np.float64) state_capacity_total.state_batt_kwh_cum = state_capacity_total.state_batt_kwh_cum.astype(np.float64) df.system_kw_cum = df.system_kw_cum.astype(np.float64) df.batt_kw_cum = df.batt_kw_cum.astype(np.float64) df.batt_kwh_cum = df.batt_kwh_cum.astype(np.float64) # merge state totals back to agent df df = pd.merge(df, state_capacity_total, how = 'left', on = ['state_abbr', 'sector_abbr', 'year']) # read csv of historical capacity values by state and sector historical_state_df = pd.read_csv(config.OBSERVED_DEPLOYMENT_BY_STATE) # join historical data to agent df df = pd.merge(df, historical_state_df, how='left', on=['state_abbr', 'sector_abbr', 'year']) # calculate scale factor - weight that is given to each agent based on proportion of state total # where state cumulative capacity is 0, proportion evenly to all agents df['solar_scale_factor'] = np.where(df['state_solar_kw_cum'] == 0, 1.0/df['agent_count'], df['system_kw_cum'] / df['state_solar_kw_cum']) df['batt_mw_scale_factor'] = np.where(df['state_batt_kw_cum'] == 0, 1.0/df['agent_count'], df['batt_kw_cum'] / df['state_batt_kw_cum']) df['batt_mwh_scale_factor'] = np.where(df['state_batt_kwh_cum'] == 0, 1.0/df['agent_count'], df['batt_kwh_cum'] / df['state_batt_kwh_cum']) # use scale factor to constrain agent capacity values to historical values df['system_kw_cum'] = df['solar_scale_factor'] * df['observed_solar_mw'] * 1000. df['batt_kw_cum'] = df['batt_mw_scale_factor'] * df['observed_storage_mw'] * 1000. df['batt_kwh_cum'] = df['batt_mwh_scale_factor'] * df['observed_storage_mwh'] * 1000. # recalculate number of adopters using anecdotal values df['number_of_adopters'] = np.where(df['sector_abbr'] == 'res', df['system_kw_cum']/5.0, df['system_kw_cum']/100.0) # recalculate market share df['market_share'] = np.where(df['developable_agent_weight'] == 0, 0.0, df['number_of_adopters'] / df['developable_agent_weight']) df['market_share'] = df['market_share'].astype(np.float64) df.drop(['agent_count', 'state_solar_kw_cum','state_batt_kw_cum','state_batt_kwh_cum', 'observed_solar_mw','observed_storage_mw','observed_storage_mwh', 'solar_scale_factor','batt_mw_scale_factor','batt_mwh_scale_factor'], axis=1, inplace=True) market_last_year = df[['agent_id', 'market_share','max_market_share','number_of_adopters', 'market_value','initial_number_of_adopters','initial_pv_kw','initial_batt_kw','initial_batt_kwh', 'initial_market_share','initial_market_value', 'system_kw_cum','new_system_kw', 'batt_kw_cum','new_batt_kw', 'batt_kwh_cum','new_batt_kwh']] market_last_year.rename(columns={'market_share':'market_share_last_year', 'max_market_share':'max_market_share_last_year', 'number_of_adopters':'adopters_cum_last_year', 'market_value': 'market_value_last_year', 'system_kw_cum':'system_kw_cum_last_year', 'batt_kw_cum':'batt_kw_cum_last_year', 'batt_kwh_cum':'batt_kwh_cum_last_year'}, inplace=True) return df, market_last_year #============================================================================= # ^^^^ Diffusion Calculator ^^^^ @decorators.fn_timer(logger = logger, tab_level = 3, prefix = '') def calc_diffusion(df, cur, con, techs, choose_tech, sectors, schema, is_first_year, bass_params, override_p_value = None, override_q_value = None, override_teq_yr1_value = None): """ Calculates the market share (ms) added in the solve year. Market share must be less than max market share (mms) except initial ms is greater than the calculated mms. For this circumstance, no diffusion allowed until mms > ms. Also, do not allow ms to decrease if economics deterioriate. Using the calculated market share, relevant quantities are updated. IN: df - pd dataframe - Main dataframe OUT: df - pd dataframe - Main dataframe market_last_year - pd dataframe - market to inform diffusion in next year """ logger.info("\t\tCalculating Diffusion") # set p/q/teq_yr1 params df = set_bass_param(df, bass_params, override_p_value, override_q_value, override_teq_yr1_value) # calc diffusion market share df = calc_diffusion_market_share(df, is_first_year) # ensure no diffusion for non-selected options df['diffusion_market_share'] = df['diffusion_market_share'] * df['selected_option'] # market share floor is based on last year's market share df['market_share'] = np.maximum(df['diffusion_market_share'], df['market_share_last_year']) # if in tech choice mode, ensure that total market share doesn't exceed 1 if choose_tech == True: # extract out the rows for unselected technologies market_share_cap = df[df['selected_option'] == False][['county_id', 'bin_id', 'sector_abbr', 'market_share']].groupby(['county_id', 'bin_id', 'sector_abbr']).sum().reset_index() # determine how much market share is allowable based on 1 - the MS of the unselected techs market_share_cap['market_share_cap'] = 1 - market_share_cap['market_share'] # drop the market share column market_share_cap.drop('market_share', inplace = True, axis = 1) # merge to df df =
pd.merge(df, market_share_cap, how = 'left', on = ['county_id', 'bin_id', 'sector_abbr'])
pandas.merge
from __future__ import print_function import os, sys, pwd, json, pandas as pd, numpy as np, sqlite3, pwd, uuid, platform, re, base64, string,enum,shelve import matplotlib as mpl import matplotlib.cm import requests from datetime import datetime as timr from rich import print as outy from sqlite3 import connect from glob import glob from copy import deepcopy as dc import functools import httplib2 import six from waybackpy import WaybackMachineSaveAPI as checkpoint from threading import Thread, Lock from six.moves.urllib.parse import urlencode if six.PY2: from string import maketrans else: maketrans = bytes.maketrans from difflib import SequenceMatcher from sqlalchemy import create_engine import pandas as pd import psutil import time from telegram import Update, ForceReply, Bot from telegram.ext import Updater, CommandHandler, MessageHandler, Filters, CallbackContext from github import Github import base64 from cryptography.fernet import Fernet def flatten_list(lyst: list) -> list: if not lyst: return [] big_list = len(lyst) > 1 if isinstance(lyst[0], list): return flatten_list(lyst[0]) + (big_list * flatten_list(lyst[1:])) else: return [lyst[0]] + (big_list * flatten_list(lyst[1:])) def json_set_check(obj): """ json.dump(X,default=json_set_check) https://stackoverflow.com/questions/22281059/set-object-is-not-json-serializable """ if isinstance(obj, set): return list(obj) raise TypeError def live_link(url:str): response = False try: response_type = requests.get(url) response = response_type.status_code < 400 time.sleep(2) except: pass return response def save_link(url:str): save_url = None if live_link(url): saver = checkpoint(url, user_agent="Mozilla/5.0 (Windows NT 5.1; rv:40.0) Gecko/20100101 Firefox/40.0") try: save_url = saver.save() time.sleep(10) if save_url is None: save_url = saver.saved_archive except Exception as e: print(f"Issue with saving the link {url}: {e}") pass return save_url def zip_from_archive(url:str, file_name:str="tmp.zip"): if not file_name.endswith(".zip"): file_name += ".zip" if "web.archive.org" in url and live_link(url): try: new_url = url.replace('/https://','if_/https://') req = requests.get(new_url) open(file_name,"wb").write(req.content) except Exception as e: print(f"Exception :> {e}") return file_name def str_to_base64(string, password:bool=False, encoding:str='utf-8'): current = base64.b64encode(string.encode(encoding)) if password: key = Fernet.generate_key() current = Fernet(key).encrypt(current) key = key.decode(encoding) return (current.decode(encoding), key or None) def base64_to_str(b64, password:str=None, encoding:str='utf-8'): if password: current = Fernet(password.encode(encoding)).decrypt(b64.encode(encoding)).decode(encoding) return base64.b64decode(current or b64).decode(encoding) def silent_exec(default=None, returnException:bool=False): """ https://stackoverflow.com/questions/39905390/how-to-auto-wrap-function-call-in-try-catch Usage: @silent_exec() """ def decorator(func): @functools.wraps(func) def wrapper(*args, **kwargs): try: return func(*args, **kwargs) except Exception as e: return e if returnException else default return wrapper return decorator def write_shelf(shelf_name, print_out:bool=False): with shelve.open(shelf_name, 'n') as shelf: for key in dir(): try: shelf[key] = globals()[key] except TypeError: print(f"Error shelving the key {key} due to a type error") except Exception as e: print(f"Error shelving the key {key} due to {e}") if print_out: print(f"The shelf has been written") def load_shelf(shelf_name, print_out:bool=False): with shelve.open(shelf_name) as shelf: for key in shelf: if print_out: print(f"Loading the shelf item {key}") globals()[key] = shelf[key] if print_out: print(f"The shelf has been loaded") def install_import(importname): os.system(f"{sys.executable} -m pip install {importname} --upgrade") def user(): return str(pwd.getpwuid(os.getuid())[0]).strip().lower() percent = lambda x,y: ("{0:.2f}").format(100 * (x / float(y))) cur_time = str(timr.now().strftime('%Y_%m_%d-%H_%M')) rnd = lambda _input: f"{round(_input * 100)} %" similar = lambda x,y:SequenceMatcher(None, a, b).ratio()*100 file_by_type = lambda PATH,ext:[os.path.join(dp, f) for dp, dn, filenames in os.walk(PATH) for f in filenames if os.path.splitext(f)[1] == ext] file_by_name = lambda PATH,name:[os.path.join(dp, f) for dp, dn, filenames in os.walk(PATH) for f in filenames if f == name] of_dir = lambda PATH,name:[os.path.join(dp, f) for dp, dn, filenames in os.walk(PATH) for f in filenames if os.path.isdir(f) and f == name] def metrics(TP,FP,TN,FN, use_percent:bool=False): div = lambda x,y:x/y if y else 0 prep = lambda x:percent(x, 100) if use_percent else x precision, recall = div(TP , (TP + FP)), div(TP , (TP + FN)) return { 'TP': TP, 'FP': FP, 'TN': TN, 'FN': FN, 'Precision_PPV': prep(precision), 'Recall': prep(recall), 'Specificity_TNR': prep(div(TN , (TN + FP))), 'FNR': prep(div(FN , (FN + TP))), 'FPR': prep(div(FP , (FP + TN))), 'FDR': prep(div(FP , (FP + TP))), 'FOR': prep(div(FN , (FN + TN))), 'TS': prep(div(TP , (TP + FN + FP))), 'Accuracy': prep(div((TP + TN) , (TP + TN + FP + FN))), 'PPCR': prep(div((TP + FP) , (TP + TN + FP + FN))), 'F1': prep(2 * div( (precision * recall),(precision + recall) )), } def add_metrics(fwame, TP:str='TP',FP:str='FP',TN:str='TN',FN:str='FN', use_percent:bool=False): div = lambda x,y:x/y if y else 0 prep = lambda x:percent(x, 100) if use_percent else x fwame['Precision_PPV'] = prep(fwame[TP]/(fwame[TP]+fwame[FP])) fwame['Recall'] = prep(fwame[TP]/(fwame[TP]+fwame[FN])) fwame['Specificity_TNR'] = prep(fwame[TN]/(fwame[TN]+fwame[FP])) fwame['FNR'] = prep(fwame[FN]/(fwame[FN]+fwame[TP])) fwame['FPR'] = prep(fwame[FP]/(fwame[FP]+fwame[TN])) fwame['FDR'] = prep(fwame[FP]/(fwame[FP]+fwame[TP])) fwame['FOR'] = prep(fwame[FN]/(fwame[FN]+fwame[TN])) fwame['TS'] = prep(fwame[TP]/(fwame[TP]+fwame[FP]+fwame[FN])) fwame['Accuracy'] = prep((fwame[TP]+fwame[TN])/(fwame[TP]+fwame[FP]+fwame[TN]+fwame[FN])) fwame['PPCR'] = prep((fwame[TP]+fwame[FP])/(fwame[TP]+fwame[FP]+fwame[TN]+fwame[FN])) fwame['F1'] = prep(2 * ((fwame['Precision_PPV'] * fwame['Recall'])/(fwame['Precision_PPV'] + fwame['Recall']))) return fwame def compare_dicts(raw_dyct_one, raw_dyct_two): one,two = dc(raw_dyct_one),dc(raw_dyct_two) for dyct in [one,two]: for key in list(dyct.keys()): if from_nan(dyct[key]) == None: dyct[key] = np.nan return set(one.items()) ^ set(two.items()) diff_lists = lambda one,two: set(one) ^ set(two) same_dicts = lambda dyct_one, dyct_two: compare_dicts(dyct_one, dyct_two) == set() def contains_dict(list_dicts, current_dict): for dyct in list_dicts: if same_dicts(dyct, current_dict): return True return False def frame_dycts(frame): """ output = [] for row in frame.itertuples(): output += [row._asdict()] return output """ return frame.to_dict('records') def pd_to_arr(frame): return frame_dycts(frame) def dyct_frame(raw_dyct,deepcopy:bool=True): dyct = dc(raw_dyct) if deepcopy else raw_dyct for key in list(raw_dyct.keys()): dyct[key] = [dyct[key]] return
pd.DataFrame.from_dict(dyct)
pandas.DataFrame.from_dict
############################################################################ #Copyright 2019 Google LLC # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. ################################################################################################# import pandas as pd import numpy as np from pathlib import Path import os #### The warnings from Sklearn are so annoying that I have to shut it off #### import warnings warnings.filterwarnings("ignore") def warn(*args, **kwargs): pass warnings.warn = warn ######################################## import warnings warnings.filterwarnings("ignore") from sklearn.exceptions import DataConversionWarning warnings.filterwarnings(action='ignore', category=DataConversionWarning) #################################################################################### import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt # from matplotlib import io import io import seaborn as sns sns.set(style="whitegrid", color_codes=True) import re import pdb import pprint import matplotlib matplotlib.style.use('seaborn') from itertools import cycle, combinations from collections import defaultdict import copy import time import sys import random import xlrd import statsmodels from io import BytesIO import base64 from functools import reduce import traceback import xgboost as xgb from xgboost.sklearn import XGBClassifier from xgboost.sklearn import XGBRegressor from sklearn.model_selection import train_test_split ######## This is where we import HoloViews related libraries ######### import hvplot.pandas import holoviews as hv from holoviews import opts #hv.notebook_extension('bokeh') hv.extension('bokeh', 'matplotlib') #hv.extension('bokeh') import panel as pn import panel.widgets as pnw import holoviews.plotting.bokeh ######## This is where we store the image data in a dictionary with a list of images ######### def save_image_data(fig, chart_format, plot_name, depVar, mk_dir, additional=''): if not os.path.isdir(mk_dir): os.mkdir(mk_dir) if additional == '': filename = os.path.join(mk_dir,plot_name+"."+chart_format) else: filename = os.path.join(mk_dir,plot_name+additional+"."+chart_format) ################################################################################## if chart_format == 'svg': ###### You have to add these lines to each function that creates charts currently ## imgdata = io.StringIO() fig.savefig(filename, dpi='figure', format=chart_format) imgdata.seek(0) svg_data = imgdata.getvalue() return svg_data else: ### You have to do it slightly differently for PNG and JPEG formats imgdata = BytesIO() fig.savefig(filename,format=chart_format, dpi='figure') #fig.savefig(imgdata, format=chart_format, bbox_inches='tight', pad_inches=0.0) imgdata.seek(0) figdata_png = base64.b64encode(imgdata.getvalue()) return figdata_png def save_html_data(hv_all, chart_format, plot_name, mk_dir, additional=''): print('Saving %s in HTML format' %(plot_name+additional)) if not os.path.isdir(mk_dir): os.mkdir(mk_dir) if additional == '': filename = os.path.join(mk_dir,plot_name+"."+chart_format) else: filename = os.path.join(mk_dir,plot_name+additional+"."+chart_format) pn.panel(hv_all).save(filename, embed=True) ## it is amazing you can save interactive plots ## #### This module analyzes a dependent Variable and finds out whether it is a #### Regression or Classification type problem def analyze_problem_type(train, target, verbose=0) : target = copy.deepcopy(target) cat_limit = 30 ### this determines the number of categories to name integers as classification ## float_limit = 15 ### this limits the number of float variable categories for it to become cat var if isinstance(target, str): target = [target] if len(target) == 1: targ = target[0] else: targ = target[0] #### This is where you detect what kind of problem it is ################# if train[targ].dtype in ['int64', 'int32','int16']: if len(train[targ].unique()) <= 2: model_class = 'Binary_Classification' elif len(train[targ].unique()) > 2 and len(train[targ].unique()) <= cat_limit: model_class = 'Multi_Classification' else: model_class = 'Regression' elif train[targ].dtype in ['float16','float32','float64']: if len(train[targ].unique()) <= 2: model_class = 'Binary_Classification' elif len(train[targ].unique()) > 2 and len(train[targ].unique()) <= float_limit: model_class = 'Multi_Classification' else: model_class = 'Regression' else: if len(train[targ].unique()) <= 2: model_class = 'Binary_Classification' else: model_class = 'Multi_Classification' ########### print this for the start of next step ########### if verbose <= 2: print('''\n################ %s VISUALIZATION Started #####################''' %model_class) return model_class ################################################################################# # Pivot Tables are generally meant for Categorical Variables on the axes # and a Numeric Column (typically the Dep Var) as the "Value" aggregated by Sum. # Let's do some pivot tables to capture some meaningful insights import random def draw_pivot_tables(dft,cats,nums,problem_type,verbose,chart_format,depVar='', classes=None, mk_dir=None): plot_name = 'Bar_Plots_Pivots' cats = list(set(cats)) dft = dft[:] cols = 2 cmap = plt.get_cmap('jet') #### For some reason, the cmap colors are not working ######################### colors = cmap(np.linspace(0, 1, len(cats))) colors = cycle('byrcmgkbyrcmgkbyrcmgkbyrcmgkbyr') #colormaps = ['summer', 'rainbow','viridis','inferno','magma','jet','plasma'] colormaps = ['Greys','Blues','Greens','GnBu','PuBu', 'YlGnBu','PuBuGn','BuGn','YlGn'] #colormaps = ['Purples','Oranges','Reds','YlOrBr', # 'YlOrRd','OrRd','PuRd','RdPu','BuPu',] N = len(cats) if N==0: print('No categorical or boolean vars in data set. Hence no pivot plots...') return None noplots = copy.deepcopy(N) #### You can set the number of subplots per row and the number of categories to display here cols = 2 displaylimit = 20 categorylimit = 10 imgdata_list = [] width_size = 15 height_size = 5 stringlimit = 20 combos = combinations(cats, 2) N = len(cats) if N <= 1: ### if there are not many categorical variables, there is nothing to plot return imgdata_list if len(nums) == 0: ### if there are no numeric variables, there is nothing to plot return imgdata_list if not depVar is None or not depVar=='' or not depVar==[] : ########### This works equally well for classification as well as Regression ### lst=[] noplots=int((N**2-N)/2) dicti = {} counter = 1 cols = 2 if noplots%cols == 0: if noplots == 0: rows = 1 else: rows = noplots/cols else: rows = (noplots/cols)+1 #fig = plt.figure(figsize=(min(20,N*10),rows*5)) fig = plt.figure() if cols < 2: fig.set_size_inches(min(15,8),rows*height_size) fig.subplots_adjust(hspace=0.5) ### This controls the space betwen rows fig.subplots_adjust(wspace=0.3) ### This controls the space between columns else: fig.set_size_inches(min(cols*10,20),rows*height_size) fig.subplots_adjust(hspace=0.5) ### This controls the space betwen rows fig.subplots_adjust(wspace=0.3) ### This controls the space between columns for (var1, var2) in combos: color1 = random.choice(colormaps) data = pd.DataFrame(dicti) x=dft[var1] y=dft[var2] ax1 = fig.add_subplot(rows,cols,counter) nocats = min(categorylimit,dft[var1].nunique()) nocats1 = min(categorylimit,dft[var2].nunique()) if dft[depVar].dtype==object or dft[depVar].dtype==bool: dft[depVar] = dft[depVar].factorize()[0] data = pd.pivot_table(dft,values=depVar,index=var1, columns=var2).head(nocats) data = data[data.columns[:nocats1]] #### make sure you don't print more than 10 rows of data data.plot(kind='bar',ax=ax1,colormap=color1) ax1.set_xlabel(var1) ax1.set_ylabel(depVar) if dft[var1].dtype == object or str(dft[var1].dtype) == 'category': labels = data.index.str[:stringlimit].tolist() else: labels = data.index.tolist() ax1.set_xticklabels(labels,fontdict={'fontsize':10}, rotation = 45, ha="right") ax1.legend(fontsize="medium") ax1.set_title('%s (Mean) by %s and %s' %(depVar,var1,var2),fontsize=12) counter += 1 fig.tight_layout() fig.suptitle('Pivot Tables of each Continuous var by 2 Categoricals', fontsize=15,y=1.01); else: print('No pivot tables plotted since no dependent variable given as input') image_count = 0 if verbose == 2: imgdata_list.append(save_image_data(fig, chart_format, plot_name, depVar, mk_dir)) image_count += 1 if verbose <= 1: plt.show(); ####### End of Pivot Plotting ############################# return imgdata_list # In[ ]: # SCATTER PLOTS ARE USEFUL FOR COMPARING NUMERIC VARIABLES def draw_scatters(dfin,nums,verbose,chart_format,problem_type,dep=None, classes=None, lowess=False, mk_dir=None): plot_name = 'Scatter_Plots' dft = dfin[:] ##### we are going to modify dfin and classes, so we are making copies to make changes classes = copy.deepcopy(classes) colortext = 'brymcgkbyrcmgkbyrcmgkbyrcmgkbyr' if len(classes) == 0: leng = len(nums) else: leng = len(classes) colors = cycle(colortext[:leng]) #imgdata_list = defaultdict(list) imgdata_list = [] if dfin.shape[0] >= 10000 or lowess == False: lowess = False x_est = None transparent = 0.6 bubble_size = 80 else: if verbose <= 1: print('Using Lowess Smoothing. This might take a few minutes for large data sets...') lowess = True x_est = None transparent = 0.6 bubble_size = 100 if verbose <= 1: x_est = np.mean N = len(nums) cols = 2 width_size = 15 height_size = 4 if dep == None or dep == '': ### when there is no dependent variable, you can't plot anything in scatters here ### return None elif problem_type == 'Regression': image_count = 0 ####### This is a Regression Problem so it requires 2 steps #### ####### First, plot every Independent variable against the Dependent Variable ### noplots = len(nums) rows = int((noplots/cols)+0.99) fig = plt.figure(figsize=(width_size,rows*height_size)) for num, plotcounter, color_val in zip(nums, range(1,noplots+1), colors): ### Be very careful with the next line. It should be singular "subplot" ## ##### Otherwise, if you use the plural version "subplots" it has a different meaning! plt.subplot(rows,cols,plotcounter) if lowess: sns.regplot(x=dft[num], y = dft[dep], lowess=lowess, color=color_val, ax=plt.gca()) else: sns.scatterplot(x=dft[num], y=dft[dep], ax=plt.gca(), palette='dark',color=color_val) plt.xlabel(num) plt.ylabel(dep) fig.suptitle('Scatter Plot of each Continuous Variable vs Target',fontsize=15,y=1.01) fig.tight_layout(); if verbose <= 1: plt.show(); #### Keep it at the figure level### if verbose == 2: imgdata_list.append(save_image_data(fig, chart_format, plot_name, dep, mk_dir)) image_count += 1 else: ####### This is a Classification Problem #### You need to plot a strip plot #### ####### First, Plot each Continuous variable against the Target Variable ### pdb.set_trace() if len(dft) < 1000: jitter = 0.05 else: jitter = 0.5 image_count = 0 noplots = len(nums) rows = int((noplots/cols)+0.99) ### Be very careful with the next line. we have used the singular "subplot" ## fig = plt.figure(figsize=(width_size,rows*height_size)) for num, plotc, color_val in zip(nums, range(1,noplots+1),colors): ####Strip plots are meant for categorical plots so x axis must always be depVar ## plt.subplot(rows,cols,plotc) sns.stripplot(x=dft[dep], y=dft[num], ax=plt.gca(), jitter=jitter) plt.suptitle('Scatter Plot of Continuous Variable vs Target (jitter=%0.2f)' %jitter, fontsize=15,y=1.01) fig.tight_layout(); if verbose <= 1: plt.show(); if verbose == 2: imgdata_list.append(save_image_data(fig, chart_format, plot_name, dep, mk_dir)) image_count += 1 ####### End of Scatter Plots ###### return imgdata_list # PAIR SCATTER PLOTS ARE NEEDED ONLY FOR CLASSIFICATION PROBLEMS IN NUMERIC VARIABLES def draw_pair_scatters(dfin,nums,problem_type, verbose,chart_format, dep=None, classes=None, lowess=False, mk_dir=None): """ ### This is where you plot a pair-wise scatter plot of Independent Variables against each other#### """ plot_name = 'Pair_Scatter_Plots' dft = dfin[:] if len(nums) <= 1: return classes = copy.deepcopy(classes) cols = 2 colortext = 'brymcgkbyrcmgkbyrcmgkbyrcmgkbyr' colors = cycle(colortext) imgdata_list = list() width_size = 15 height_size = 4 N = len(nums) if dfin.shape[0] >= 10000 or lowess == False: x_est = None transparent =0.7 bubble_size = 80 elif lowess: print('Using Lowess Smoothing. This might take a few minutes for large data sets...') x_est = None transparent =0.7 bubble_size = 100 else: x_est = None transparent =0.7 bubble_size = 100 if verbose <= 1: x_est = np.mean if problem_type == 'Regression' or problem_type == 'Clustering': image_count = 0 ### Second, plot a pair-wise scatter plot of Independent Variables against each other#### combos = combinations(nums, 2) noplots = int((N**2-N)/2) print('Number of All Scatter Plots = %d' %(noplots+N)) rows = int((noplots/cols)+0.99) fig = plt.figure(figsize=(width_size,rows*height_size)) for (var1,var2), plotcounter,color_val in zip(combos, range(1,noplots+1),colors): ### Be very careful with the next line. It should be singular "subplot" ## ##### Otherwise, if you use the plural version "subplots" it has a different meaning! plt.subplot(rows,cols,plotcounter) if lowess: sns.regplot(x=dft[var1], y=dft[var2], lowess=lowess, color=color_val, ax=plt.gca()) else: sns.scatterplot(x=dft[var1], y=dft[var2], ax=plt.gca(), palette='dark',color=color_val) plt.xlabel(var1) plt.ylabel(var2) fig.suptitle('Pair-wise Scatter Plot of all Continuous Variables', fontsize=15,y=1.01) fig.tight_layout(); if verbose == 2: imgdata_list.append(save_image_data(fig, chart_format, plot_name, dep, mk_dir)) image_count += 1 if verbose <= 1: plt.show(); else: ########## This is for Classification problems ########## if len(classes) <= 1: leng = 1 else: leng = len(classes) colors = cycle(colortext[:leng]) image_count = 0 #cmap = plt.get_cmap('gnuplot') #cmap = plt.get_cmap('Set1') cmap = plt.get_cmap('Paired') combos = combinations(nums, 2) combos_cycle = cycle(combos) noplots = int((N**2-N)/2) print('Total Number of Scatter Plots = %d' %(noplots+N)) rows = int((noplots/cols)+0.99) fig = plt.figure(figsize=(width_size,rows*height_size)) ### Be very careful with the next line. we have used the plural "subplots" ## ## In this case, you have ax as an array and you have to use (row,col) to get each ax! target_vars = dft[dep].unique() number = len(target_vars) #colors = [cmap(i) for i in np.linspace(0, 1, number)] for (var1,var2), plotc in zip(combos, range(1,noplots+1)): for target_var, color_val, class_label in zip(target_vars, colors, classes): #Fix color in all scatter plots for each class the same using this trick color_array = np.empty(0) value = dft[dep]==target_var dft['color'] = np.where(value==True, color_val, 'r') color_array = np.hstack((color_array, dft[dft['color']==color_val]['color'].values)) plt.subplot(rows, cols, plotc) plt.scatter(x=dft.loc[dft[dep]==target_var][var1], y=dft.loc[dft[dep]==target_var][var2], label=class_label, color=color_val, alpha=transparent) plt.xlabel(var1) plt.ylabel(var2) plt.legend() fig.suptitle('Pair-wise Scatter Plot of all Continuous Variables',fontsize=15,y=1.01) #fig.tight_layout(); if verbose == 2: imgdata_list.append(save_image_data(fig, chart_format, plot_name, dep, mk_dir)) image_count += 1 if verbose <= 1: plt.show(); ####### End of Pair Scatter Plots ###### return imgdata_list #Bar Plots are for 2 Categoricals and One Numeric (usually Dep Var) def plot_fast_average_num_by_cat(dft, cats, num_vars, verbose=0,kind="bar"): """ Great way to plot continuous variables fast grouped by a categorical variable. Just sent them in and it will take care of the rest! """ #if verbose <= 1: # ipython inline magic shouldn't be needed because all plots are # being displayed with plt.show() calls #get_ipython().magic('matplotlib inline') chunksize = 20 stringlimit = 20 col = 2 width_size = 15 height_size = 4 N = int(len(num_vars)*len(cats)) colors = cycle('byrcmgkbyrcmgkbyrcmgkbyrcmgk') if N % 2 == 0: row = N//col else: row = int(N//col + 1) fig = plt.figure() if kind == 'bar': fig.suptitle('Bar plots for each Continuous by each Categorical variable', fontsize=15,y=1.01) else: fig.suptitle('Time Series plots for all date-time vars %s' %cats, fontsize=15,y=1.01) if col < 2: fig.set_size_inches(min(15,8),row*5) fig.subplots_adjust(hspace=0.5) ### This controls the space betwen rows fig.subplots_adjust(wspace=0.3) ### This controls the space between columns else: fig.set_size_inches(min(col*10,20),row*5) fig.subplots_adjust(hspace=0.5) ### This controls the space betwen rows fig.subplots_adjust(wspace=0.3) ### This controls the space between columns counter = 1 for cat in cats: for each_conti in num_vars: color3 = next(colors) try: ax1 = plt.subplot(row, col, counter) if kind == "bar": data = dft.groupby(cat)[each_conti].mean().sort_values( ascending=False).head(chunksize) data.plot(kind=kind,ax=ax1,color=color3) elif kind == "line": data = dft.groupby(cat)[each_conti].mean().sort_index( ascending=True).head(chunksize) data.plot(kind=kind,ax=ax1,color=color3) if dft[cat].dtype == object or str(dft[cat].dtype) == 'category': labels = data.index.str[:stringlimit].tolist() else: labels = data.index.tolist() ax1.set_xlabel("") ax1.set_xticklabels(labels,fontdict={'fontsize':9}, rotation = 45, ha="right") ax1.set_title('Average %s by %s (Top %d)' %(each_conti,cat,chunksize)) counter += 1 except: ax1.set_title('No plot as %s is not numeric' %each_conti) counter += 1 if verbose <= 1: plt.show() if verbose == 2: return fig ################# The barplots module below calls the plot_fast_average_num_by_cat module above ### def draw_barplots(dft,cats,conti,problem_type,verbose,chart_format,dep='', classes=None, mk_dir=None): cats = cats[:] conti = conti[:] plot_name = 'Bar_Plots' #### Category limit within a variable ### #### Remove Floating Point Categorical Vars from this list since they Error when Bar Plots are drawn cats = [x for x in cats if dft[x].dtype != float] dft = dft[:] N = len(cats) if len(cats) == 0 or len(conti) == 0: print('No categorical or numeric vars in data set. Hence no bar charts.') return None cmap = plt.get_cmap('jet') ### Not sure why the cmap doesn't work and gives an error in some cases ################# colors = cmap(np.linspace(0, 1, len(conti))) colors = cycle('gkbyrcmgkbyrcmgkbyrcmgkbyr') colormaps = ['plasma','viridis','inferno','magma'] imgdata_list = list() cat_limit = 10 conti = list_difference(conti,dep) #### Make sure that you plot charts for the depVar as well by including it ####### if problem_type == 'Regression': conti.append(dep) elif problem_type.endswith('Classification'): cats.append(dep) else: ### Since there is no dependent variable in clustering there is nothing to add dep to. pass chunksize = 20 ########## This is for Regression Problems only ###### image_count = 0 figx = plot_fast_average_num_by_cat(dft, cats, conti, verbose) if verbose == 2: imgdata_list.append(save_image_data(figx, chart_format, plot_name, dep, mk_dir)) image_count += 1 return imgdata_list ############## End of Bar Plotting ########################################## ##### Draw a Heatmap using Pearson Correlation ######################################### def draw_heatmap(dft, conti, verbose,chart_format,datevars=[], dep=None, modeltype='Regression',classes=None, mk_dir=None): ### Test if this is a time series data set, then differene the continuous vars to find ### if they have true correlation to Dependent Var. Otherwise, leave them as is plot_name = 'Heat_Maps' width_size = 3 height_size = 2 timeseries_flag = False if len(conti) <= 1: return if isinstance(dft.index, pd.DatetimeIndex) : dft = dft[:] timeseries_flag = True pass elif len(datevars) > 0: dft = dft[:] try: dft.index = pd.to_datetime(dft.pop(datevars[0]),infer_datetime_format=True) timeseries_flag = True except: if verbose >= 1 and len(datevars) > 0: print('No date vars could be found or %s could not be indexed.' %datevars) elif verbose >= 1 and len(datevars) == 0: print('No date vars could be found in data set') timeseries_flag = False # Add a column: the color depends on target variable but you can use whatever function imgdata_list = list() if modeltype.endswith('Classification'): ########## This is for Classification problems only ########### if dft[dep].dtype == object or dft[dep].dtype == np.int64: dft[dep] = dft[dep].factorize()[0] image_count = 0 N = len(conti) target_vars = dft[dep].unique() fig = plt.figure(figsize=(min(N*width_size,20),min(N*height_size,20))) if timeseries_flag: fig.suptitle('Time Series: Heatmap of all Differenced Continuous vars for target = %s' %dep, fontsize=15,y=1.01) else: fig.suptitle('Heatmap of all Continuous Variables for target = %s' %dep, fontsize=15,y=1.01) plotc = 1 #rows = len(target_vars) rows = 1 cols = 1 if timeseries_flag: dft_target = dft[[dep]+conti].diff() else: dft_target = dft[:] dft_target[dep] = dft[dep].values corr = dft_target.corr() plt.subplot(rows, cols, plotc) ax1 = plt.gca() sns.heatmap(corr, annot=True,ax=ax1) plotc += 1 fig.tight_layout(); if verbose <= 1: plt.show(); if verbose == 2: imgdata_list.append(save_image_data(fig, chart_format, plot_name, dep, mk_dir)) image_count += 1 else: ### This is for Regression and None Dep variable problems only ## image_count = 0 if dep == None or dep == '': pass else: conti += [dep] dft_target = dft[conti] if timeseries_flag: dft_target = dft_target.diff().dropna() else: dft_target = dft_target[:] N = len(conti) fig = plt.figure(figsize=(min(20,N*width_size),min(20,N*height_size))) corr = dft_target.corr() sns.heatmap(corr, annot=True) if timeseries_flag: fig.suptitle('Time Series Data: Heatmap of Differenced Continuous vars including target = %s' %dep, fontsize=15,y=1.01) else: fig.suptitle('Heatmap of all Continuous Variables including target = %s' %dep,fontsize=15,y=1.01) fig.tight_layout(); if verbose <= 1: plt.show(); if verbose == 2: imgdata_list.append(save_image_data(fig, chart_format, plot_name, dep, mk_dir)) image_count += 1 return imgdata_list ############# End of Heat Maps ############## ##### Draw the Distribution of each variable using Distplot ##### Must do this only for Continuous Variables from scipy.stats import probplot,skew def draw_distplot(dft, cat_bools, conti, verbose,chart_format,problem_type,dep=None, classes=None, mk_dir=None): cats = find_remove_duplicates(cat_bools) ### first make sure there are no duplicates in this ### copy_cats = copy.deepcopy(cats) plot_name = 'Dist_Plots' #### Since we are making changes to dft and classes, we will be making copies of it here conti = list(set(conti)) dft = dft[:] classes = copy.deepcopy(classes) colors = cycle('brycgkbyrcmgkbyrcmgkbyrcmgkbyr') imgdata_list = list() width_size = 15 #### this is to control the width of chart as well as number of categories to display height_size = 5 gap = 0.4 #### This controls the space between rows ###### if dep==None or dep=='' or problem_type == 'Regression': image_count = 0 transparent = 0.7 ######### This is for cases where there is No Target or Dependent Variable ######## if problem_type == 'Regression': if isinstance(dep,list): conti += dep else: conti += [dep] ### Be very careful with the next line. we have used the plural "subplots" ## ## In this case, you have ax as an array and you have to use (row,col) to get each ax! ########## This is where you insert the logic for displots ############## sns.color_palette("Set1") ##### First draw all the numeric variables in row after row ############# if not len(conti) == 0: cols = 3 rows = len(conti) fig, axes = plt.subplots(rows, cols, figsize=(width_size,rows*height_size)) k = 1 for each_conti in conti: color1 = next(colors) ax1 = plt.subplot(rows, cols, k) sns.distplot(dft[each_conti],kde=False, ax=ax1, color=color1) k += 1 ax2 = plt.subplot(rows, cols, k) sns.boxplot(dft[each_conti], ax=ax2, color=color1) k += 1 ax3 = plt.subplot(rows, cols, k) probplot(dft[each_conti], plot=ax3) k += 1 skew_val=round(dft[each_conti].skew(), 1) ax2.set_yticklabels([]) ax2.set_yticks([]) ax1.set_title(each_conti + " | Distplot") ax2.set_title(each_conti + " | Boxplot") ax3.set_title(each_conti + " | Probability Plot - Skew: "+str(skew_val)) ###### Save the plots to disk if verbose = 2 ############ if verbose == 2: imgdata_list.append(save_image_data(fig, chart_format, plot_name+'_Numeric', dep, mk_dir)) image_count += 1 ##### Now draw each of the categorical variable distributions in each subplot #### if not len(cats) == 0: cols = 2 noplots = len(cats) rows = int((noplots/cols)+0.99 ) k = 0 fig = plt.figure(figsize=(width_size,rows*height_size)) fig.subplots_adjust(hspace=gap) ### This controls the space betwen rows for each_cat in copy_cats: color2 = next(colors) ax1 = plt.subplot(rows, cols, k+1) kwds = {"rotation": 45, "ha":"right"} labels = dft[each_cat].value_counts()[:width_size].index.tolist() dft[each_cat].value_counts()[:width_size].plot(kind='bar', color=color2, ax=ax1,label='%s' %each_cat) ax1.set_xticklabels(labels,**kwds); ax1.set_title('Distribution of %s (top %d categories only)' %(each_cat,width_size)) fig.tight_layout(); ########## This is where you end the logic for distplots ################ if verbose == 2: imgdata_list.append(save_image_data(fig, chart_format, plot_name+'_Cats', dep, mk_dir)) image_count += 1 fig.suptitle('Histograms (KDE plots) of all Continuous Variables', fontsize=12,y=1.01) if verbose <= 1: plt.show(); else: ######### This is for Classification problems only ######## #### Now you can draw both object and numeric variables using same conti_ conti = conti + cats cols = 2 image_count = 0 transparent = 0.7 noplots = len(conti) binsize = 30 k = 0 rows = int((noplots/cols)+0.99 ) ### Be very careful with the next line. we have used the plural "subplots" ## ## In this case, you have ax as an array and you have to use (row,col) to get each ax! fig = plt.figure(figsize=(width_size,rows*height_size)) target_vars = dft[dep].unique() if type(classes[0])==int: classes = [str(x) for x in classes] label_limit = len(target_vars) legend_flag = 1 for each_conti,k in zip(conti,range(len(conti))): if dft[each_conti].isnull().sum() > 0: dft[each_conti].fillna(0, inplace=True) plt.subplot(rows, cols, k+1) ax1 = plt.gca() if dft[each_conti].dtype==object: kwds = {"rotation": 45, "ha":"right"} labels = dft[each_conti].value_counts()[:width_size].index.tolist() conti_df = dft[[dep,each_conti]].groupby([dep,each_conti]).size().nlargest(width_size).reset_index(name='Values') pivot_df = conti_df.pivot(index=each_conti, columns=dep, values='Values') row_ticks = dft[dep].unique().tolist() color_list = [] for i in range(len(row_ticks)): color_list.append(next(colors)) #print('color list = %s' %color_list) pivot_df.loc[:,row_ticks].plot.bar(stacked=True, color=color_list, ax=ax1) #dft[each_conti].value_counts()[:width_size].plot(kind='bar',ax=ax1, # label=class_label) #ax1.set_xticklabels(labels,**kwds); ax1.set_title('Distribution of %s (top %d categories only)' %(each_conti,width_size)) else: for target_var, color2, class_label in zip(target_vars,colors,classes): try: if legend_flag <= label_limit: sns.distplot(dft.loc[dft[dep]==target_var][each_conti], hist=False, kde=True, #dft.ix[dft[dep]==target_var][each_conti].hist( bins=binsize, ax= ax1, label=target_var, color=color2) ax1.set_title('Distribution of %s' %each_conti) legend_flag += 1 else: sns.distplot(dft.loc[dft[dep]==target_var][each_conti],bins=binsize, ax= ax1, label=target_var, hist=False, kde=True, color=color2) legend_flag += 1 ax1.set_title('Normed Histogram of %s' %each_conti) except: pass ax1.legend(loc='best') k += 1 fig.tight_layout(); if verbose <= 1: plt.show(); if verbose == 2: imgdata_list.append(save_image_data(fig, chart_format, plot_name+'_Numerics', dep, mk_dir)) image_count += 1 fig.suptitle('Histograms (KDE plots) of all Continuous Variables', fontsize=12,y=1.01) ###### Now draw the distribution of the target variable in Classification only #### ##### Now draw each of the categorical variable distributions in each subplot #### ############################################################################ if problem_type.endswith('Classification'): col = 2 row = 1 fig, (ax1,ax2) = plt.subplots(row, col) fig.set_figheight(5) fig.set_figwidth(15) fig.suptitle('%s : Distribution of Target Variable' %dep, fontsize=12) #fig.subplots_adjust(hspace=0.3) ### This controls the space betwen rows #fig.subplots_adjust(wspace=0.3) ### This controls the space between columns ###### Precentage Distribution is first ################# dft[dep].value_counts(1).plot(ax=ax1,kind='bar') if dft[dep].dtype == object: dft[dep] = dft[dep].factorize()[0] for p in ax1.patches: ax1.annotate(str(round(p.get_height(),2)), (round(p.get_x()*1.01,2), round(p.get_height()*1.01,2))) ax1.set_xticks(dft[dep].unique().tolist()) ax1.set_xticklabels(classes, rotation = 45, ha="right", fontsize=9) ax1.set_title('Percentage Distribution of Target = %s' %dep, fontsize=10, y=1.05) #### Freq Distribution is next ########################### dft[dep].value_counts().plot(ax=ax2,kind='bar') for p in ax2.patches: ax2.annotate(str(round(p.get_height(),2)), (round(p.get_x()*1.01,2), round(p.get_height()*1.01,2))) ax2.set_xticks(dft[dep].unique().tolist()) ax2.set_xticklabels(classes, rotation = 45, ha="right", fontsize=9) ax2.set_title('Freq Distribution of Target Variable = %s' %dep, fontsize=12) elif problem_type == 'Regression': ############################################################################ width_size = 5 height_size = 5 fig = plt.figure(figsize=(width_size,height_size)) dft[dep].plot(kind='hist') fig.suptitle('%s : Distribution of Target Variable' %dep, fontsize=12) fig.tight_layout(); else: return imgdata_list if verbose <= 1: plt.show(); if verbose == 2: imgdata_list.append(save_image_data(fig, chart_format, plot_name+'_target', dep, mk_dir)) image_count += 1 ####### End of Distplots ########### return imgdata_list ##### Standardize all the variables in One step. But be careful ! #### All the variables must be numeric for this to work !! def draw_violinplot(df, dep, nums,verbose,chart_format, modeltype='Regression', mk_dir=None): plot_name = 'Violin_Plots' df = df[:] number_in_each_row = 8 imgdata_list = list() width_size = 15 height_size = 4 if type(dep) == str: othernums = [x for x in nums if x not in [dep]] else: othernums = [x for x in nums if x not in dep] if modeltype == 'Regression' or dep == None or dep == '': image_count = 0 if modeltype == 'Regression': nums = nums + [dep] numb = len(nums) if numb > number_in_each_row: rows = int(numb/number_in_each_row)+1 else: rows = 1 plot_index = 0 for row in range(rows): plot_index += 1 first_10 = number_in_each_row*row next_10 = first_10 + number_in_each_row num_10 = nums[first_10:next_10] df10 = df[num_10] df_norm = (df10 - df10.mean())/df10.std() if numb <= 5: fig = plt.figure(figsize=(min(width_size*len(num_10),width_size),min(height_size,height_size*len(num_10)))) else: fig = plt.figure(figsize=(min(width_size*len(num_10),width_size),min(height_size,height_size*len(num_10)))) ax = fig.gca() #ax.set_xticklabels (df.columns, tolist(), size=10) sns.violinplot(data=df_norm, orient='v', fliersize=5, scale='width', linewidth=3, notch=False, saturations=0.5, ax=ax, inner='box') fig.suptitle('Violin Plot of all Continuous Variables', fontsize=15) fig.tight_layout(); if verbose <= 1: plt.show(); if verbose == 2: additional = '_'+str(plot_index)+'_' imgdata_list.append(save_image_data(fig, chart_format, plot_name, dep, mk_dir, additional)) image_count += 1 else : plot_name = "Box_Plots" ###### This is for Classification problems only ########################## image_count = 0 classes = df[dep].factorize()[1].tolist() ######################### Add Box plots here ################################## numb = len(nums) target_vars = df[dep].unique() if len(othernums) >= 1: width_size = 15 height_size = 7 count = 0 data = pd.DataFrame(index=df.index) cols = 2 noplots = len(nums) rows = int((noplots/cols)+0.99 ) fig = plt.figure(figsize=(width_size,rows*height_size)) for col in nums: ax = plt.subplot(rows,cols,count+1) for targetvar in target_vars: data[targetvar] = np.nan mask = df[dep]==targetvar data.loc[mask,targetvar] = df.loc[mask,col] ax = sns.boxplot(data=data, orient='v', fliersize=5, ax=ax, linewidth=3, notch=False, saturation=0.5, showfliers=False) ax.set_title('%s for each %s' %(col,dep)) count += 1 fig.suptitle('Box Plots without Outliers shown', fontsize=15) fig.tight_layout(); if verbose <= 1: plt.show(); if verbose == 2: imgdata_list.append(save_image_data(fig, chart_format, plot_name, dep, mk_dir)) image_count += 1 ######################################### return imgdata_list ########## End of Violin Plots ######### #### Drawing Date Variables is very important in Time Series data import copy def draw_date_vars(dfx,dep,datevars, num_vars,verbose, chart_format, modeltype='Regression', mk_dir=None): dfx = copy.deepcopy(dfx) ## use this to preserve the original dataframe df = copy.deepcopy(dfx) #### use this for making it into a datetime index etc... plot_name = 'Time_Series_Plots' #### Now you want to display 2 variables at a time to see how they change over time ### Don't change the number of cols since you will have to change rows formula as well gap = 0.3 ### adjusts the gap between rows in multiple rows of charts imgdata_list = list() image_count = 0 N = len(num_vars) chunksize = 20 if N < 1 or len(datevars) == 0: #### If there are no numeric variables, nothing to plot here ###### return imgdata_list else: width_size = 15 height_size = 5 if isinstance(df.index, pd.DatetimeIndex) : pass elif len(datevars) > 0: try: ts_column = datevars[0] ### if we have already found that it was a date time var, then leave it as it is. Thats good enough! date_items = df[ts_column].apply(str).apply(len).values date_4_digit = all(date_items[0] == item for item in date_items) ### this checks for 4 digits date #### In some cases, date time variable is a year like 1999 (4-digit), this must be translated correctly if date_4_digit: if date_items[0] == 4: ### If it is just a year variable alone, you should leave it as just a year! df[ts_column] = df[ts_column].map(lambda x: pd.to_datetime(x,format='%Y', errors='coerce')).values else: ### if it is not a year alone, then convert it into a date time variable if df[col].min() > 1900 or df[col].max() < 2100: df[ts_column] = df[ts_column].map(lambda x: '0101'+str(x) if len(str(x)) == 4 else x) df[ts_column] = pd.to_datetime(df[ts_column], format='%m%d%Y', errors='coerce') else: print('%s could not be indexed. Could not draw date_vars.' %col) return imgdata_list else: df[ts_column] = pd.to_datetime(df[ts_column], infer_datetime_format=True, errors='coerce') ##### Now set the column to be the date - time index df.index = df.pop(ts_column) #### This is where we set the date time column as the index ###### except: print('%s could not be indexed. Could not draw date_vars.' %col) return imgdata_list ####### Draw the time series for Regression and DepVar width_size = 15 height_size = 4 cols = 2 if modeltype == 'Regression': gap=0.5 rows = int(len(num_vars)/cols+0.99) fig,ax = plt.subplots(figsize=(width_size,rows*height_size)) fig.subplots_adjust(hspace=gap) ### This controls the space betwen rows df.groupby(ts_column).mean().plot(subplots=True,ax=ax,layout=(rows,cols)) fig.suptitle('Time Series Plot for each Continuous Variable by %s' %ts_column, fontsize=15,y=1.01) elif modeltype == 'Clustering': kind = 'line' #### you can change this to plot any kind of time series plot you want image_count = 0 combos = combinations(num_vars, 2) combs = copy.deepcopy(combos) noplots = int((N**2-N)/2) rows = int((noplots/cols)+0.99) counter = 1 fig = plt.figure(figsize=(width_size,rows*height_size)) fig.subplots_adjust(hspace=gap) ### This controls the space betwen rows try: for (var1,var2) in combos: plt.subplot(rows,cols,counter) ax1 = plt.gca() df[var1].plot(kind=kind, secondary_y=True, label=var1, ax=ax1) df[var2].plot(kind=kind, title=var2 +' (left_axis) vs. ' + var1+' (right_axis)', ax=ax1) plt.legend(loc='best') counter += 1 fig.suptitle('Time Series Plot by %s: Pairwise Continuous Variables' %ts_column, fontsize=15,y=1.01) except: plt.close('all') fig = plot_fast_average_num_by_cat(dfx, datevars, num_vars, verbose,kind="line") else: ######## This is for Classification problems only #### kind = 'line' ### you can decide what kind of plots you want to show here #### image_count = 0 target_vars = df[dep].factorize()[1].tolist() #classes = copy.deepcopy(classes) ##### Now separate out the drawing of time series data by the number of classes ### colors = cycle('gkbyrcmgkbyrcmgkbyrcmgkbyr') classes = df[dep].unique() if type(classes[0])==int or type(classes[0])==float: classes = [str(x) for x in classes] cols = 2 count = 0 combos = combinations(num_vars, 2) combs = copy.deepcopy(combos) noplots = len(target_vars) rows = int((noplots/cols)+0.99) fig = plt.figure(figsize=(width_size,rows*height_size)) fig.subplots_adjust(hspace=gap) ### This controls the space betwen rows counter = 1 copy_target_vars = copy.deepcopy(target_vars) try: for target_var in copy_target_vars: df_target = df[df[dep]==target_var] ax1 = plt.subplot(rows,cols,counter) df_target.groupby(ts_column).mean().plot(subplots=False,ax=ax1) ax1.set_title('Time Series plots for '+dep + ' value = '+target_var) counter += 1 except: plt.close('all') fig = plot_fast_average_num_by_cat(df_target, datevars, num_vars, verbose,kind="line") fig.suptitle('Time Series Plot by %s: Continuous Variables Pair' %ts_column, fontsize=15, y=1.01) if verbose == 2: imgdata_list.append(save_image_data(fig, chart_format, plot_name, dep, mk_dir)) image_count += 1 return imgdata_list ############# End of Date vars plotting ######################### # This little function classifies columns into 4 types: categorical, continuous, boolean and # certain columns that have only one value repeated that they are useless and must be removed from dataset #Subtract RIGHT_LIST from LEFT_LIST to produce a new list ### This program is USED VERY HEAVILY so be careful about changing it def list_difference(l1,l2): lst = [] for i in l1: if i not in l2: lst.append(i) return lst ######## Find ANY word in columns to identify ANY TYPE OF columns ####### search_for_list = ["Date","DATE", "date"], any words you want to search for it ####### columns__list and word refer to columns in the dataset that is the target dataset ####### Both columns_list and search_for_list must be lists - otherwise it won't work def search_for_word_in_list(columns_list, search_for_list): columns_list = columns_list[:] search_for_list = search_for_list[:] lst=[] for src in search_for_list: for word in columns_list: result = re.findall (src, word) if len(result)>0: if word.endswith(src) and not word in lst: lst.append(word) elif (word == 'id' or word == 'ID') and not word in lst: lst.append(word) else: continue return lst ### This is a small program to look for keywords such as "id" in a dataset to see if they are ID variables ### If that doesn't work, it then compares the len of the dataframe to the variable's unique values. If ### they match, it means that the variable could be an ID variable. If not, it goes with the name of ### of the ID variable through a keyword match with "id" or some such keyword in dataset's columns. ### This is a small program to look for keywords such as "id" in a dataset to see if they are ID variables ### If that doesn't work, it then compares the len of the dataframe to the variable's unique values. If ### they match, it means that the variable could be an ID variable. If not, it goes with the name of ### of the ID variable through a keyword match with "id" or some such keyword in dataset's columns. def analyze_ID_columns(dfin,columns_list): columns_list = columns_list[:] dfin = dfin[:] IDcols_final = [] IDcols = search_for_word_in_list(columns_list, ['ID','Identifier','NUMBER','No','Id','Num','num','_no','.no','Number','number','_id','.id']) if IDcols == []: for eachcol in columns_list: if len(dfin) == len(dfin[eachcol].unique()) and dfin[eachcol].dtype != float: IDcols_final.append(eachcol) else: for each_col in IDcols: if len(dfin) == len(dfin[each_col].unique()) and dfin[each_col].dtype != float: IDcols_final.append(each_col) if IDcols_final == [] and IDcols != []: IDcols_final = IDcols return IDcols_final # THESE FUNCTIONS ASSUME A DIRTY DATASET" IN A PANDAS DATAFRAME AS Inum_j}lotsUT # AND CONVERT THEM INTO A DATASET FIT FOR ANALYSIS IN THE END # In [ ]: # this function starts with dividing columns into 4 types: categorical, continuous, boolean and to_delete # The To_Delete columns have only one unique value and can be removed from the dataset def start_classifying_vars(dfin, verbose): dfin = dfin[:] cols_to_delete = [] boolean_vars = [] categorical_vars = [] continuous_vars = [] discrete_vars = [] totrows = dfin.shape[0] if totrows == 0: print('Error: No rows in dataset. Check your input again...') return cols_to_delete, boolean_vars, categorical_vars, continuous_vars, discrete_vars, dfin for col in dfin.columns: if col == 'source': continue elif len(dfin[col].value_counts()) <= 1: cols_to_delete.append(dfin[col].name) print(' Column %s has only one value hence it will be dropped' %dfin[col].name) elif dfin[col].dtype==object: if (dfin[col].str.len()).any()>50: cols_to_delete.append(dfin[col].name) continue elif search_for_word_in_list([col],['DESCRIPTION','DESC','desc','Text','text']): cols_to_delete.append(dfin[col].name) continue elif len(dfin.groupby(col)) == 1: cols_to_delete.append(dfin[col].name) continue elif dfin[col].isnull().sum() > 0: missing_rows=dfin[col].isnull().sum() pct_missing = float(missing_rows)/float(totrows) if pct_missing > 0.90: if verbose <= 1: print('Pct of Missing Values in %s exceed 90 pct, hence will be dropped...' %col) cols_to_delete.append(dfin[col].name) continue elif len(dfin.groupby(col)) == 2: boolean_vars.append(dfin[col].name) py_version = sys.version_info[0] if py_version < 3: # This is the Python 2 Version try: item_mode = dfin[col].mode().mode[0] except: print('''Scipy.stats package not installed in your Python2. Get it installed''') else: # This is the Python 3 Version try: item_mode = dfin[col].mode()[0] except: print('''Statistics package not installed in your Python3. Get it installed''') dfin[col].fillna(item_mode,inplace=True) continue elif len(dfin.groupby(col)) < 20 and len(dfin.groupby(col)) > 1: categorical_vars.append(dfin[col].name) continue else: discrete_vars.append(dfin[col].name) continue elif len(dfin.groupby(col)) == 2: boolean_vars.append(dfin[col].name) continue elif len(dfin.groupby(col)) < 20 and len(dfin.groupby(col)) > 1: categorical_vars.append(dfin[col].name) continue else: discrete_vars.append(dfin[col].name) elif dfin[col].dtype=='int64' or dfin[col].dtype=='int32': if len(dfin[col].value_counts()) <= 15: categorical_vars.append(dfin[col].name) else: if dfin[col].isnull().sum() > 0: missing_rows=dfin[col].isnull().sum() pct_missing = float(missing_rows)/float(totrows) if pct_missing > 0.90: if verbose <= 1: print('Pct of Missing Values in %s exceed 90 pct, hence will be dropped...' %col) cols_to_delete.append(dfin[col].name) continue elif len(dfin.groupby(col)) == 2: boolean_vars.append(dfin[col].name) py_version = sys.version_info[0] if py_version < 3: # This is the Python 2 Version try: item_mode = dfin[col].mode().mode[0] except: print('''Scipy.stats package not installed in your Python2. Get it installed''') else: # This is the Python 3 Version try: item_mode = dfin[col].mode()[0] except: print('''Statistics package not installed in your Python3. Get it installed''') dfin[col].fillna(item_mode,inplace=True) continue else: if len(dfin[col].value_counts()) <= 25 and len(dfin) >= 250: categorical_vars.append(dfin[col].name) else: continuous_vars.append(dfin[col].name) elif len(dfin.groupby(col)) == 2: boolean_vars.append(dfin[col].name) continue else: if len(dfin[col].value_counts()) <= 25 and len(dfin) >= 250: categorical_vars.append(dfin[col].name) else: continuous_vars.append(dfin[col].name) return cols_to_delete, boolean_vars, categorical_vars, continuous_vars, discrete_vars, dfin #### this is the MAIN ANALYSIS function that calls the start_classifying_vars and then #### takes that result and divides categorical vars into 2 additional types: discrete vars and bool vars def analyze_columns_in_dataset(dfx,IDcolse,verbose): dfx = dfx[:] IDcolse = IDcolse[:] cols_delete, bool_vars, cats, nums, discrete_string_vars, dft = start_classifying_vars(dfx,verbose) continuous_vars = nums if nums != []: for k in nums: if len(dft[k].unique())==2: bool_vars.append(k) elif len(dft[k].unique())<=20: cats.append(k) elif (np.array(dft[k]).dtype=='float64' or np.array(dft[k]).dtype=='int64') and (k not in continuous_vars): if len(dft[k].value_counts()) <= 25: cats.append(k) else: continuous_vars.append(k) elif dft[k].dtype==object: discrete_string_vars.append(k) elif k in continuous_vars: continue else: print('The %s variable could not be classified into any known type' % k) #print(cols_delete, bool_vars, cats, continuous_vars, discrete_string_vars) date_vars = search_for_word_in_list(dfx.columns.tolist(),['Date','DATE','date','TIME','time', 'Time','Year','Yr','year','yr','timestamp', 'TimeStamp','TIMESTAMP','Timestamp','Time Stamp']) date_vars = [x for x in date_vars if x not in find_remove_duplicates(cats+bool_vars) ] if date_vars == []: for col in continuous_vars: if dfx[col].dtype==int: if dfx[col].min() > 1900 or dfx[col].max() < 2100: date_vars.append(col) for col in discrete_string_vars: try: dfx.index = pd.to_datetime(dfx.pop(col), infer_datetime_format=True) except: continue if isinstance(dfx.index, pd.DatetimeIndex): date_vars = [dfx.index.name] continuous_vars=list_difference(list_difference(continuous_vars,date_vars),IDcolse) #cats = list_difference(continuous_vars, cats) cats=list_difference(cats,date_vars) discrete_string_vars=list_difference(list_difference(discrete_string_vars,date_vars),IDcolse) return cols_delete, bool_vars, cats, continuous_vars, discrete_string_vars,date_vars, dft # Removes duplicates from a list to return unique values - USED ONLYONCE def find_remove_duplicates(values): output = [] seen = set() for value in values: if value not in seen: output.append(value) seen.add(value) return output ################################################################################# def load_file_dataframe(dataname, sep=",", header=0, verbose=0, nrows=None,parse_dates=False): start_time = time.time() ########################### This is where we load file or data frame ############### if isinstance(dataname,str): #### this means they have given file name as a string to load the file ##### codex_flag = False codex = ['ascii', 'utf-8', 'iso-8859-1', 'cp1252', 'latin1'] if dataname != '' and dataname.endswith(('csv')): try: dfte = pd.read_csv(dataname, sep=sep, header=header, encoding=None, parse_dates=parse_dates) if not nrows is None: if nrows < dfte.shape[0]: print(' max_rows_analyzed is smaller than dataset shape %d...' %dfte.shape[0]) dfte = dfte.sample(nrows, replace=False, random_state=99) print(' randomly sampled %d rows from read CSV file' %nrows) print('Shape of your Data Set loaded: %s' %(dfte.shape,)) if len(np.array(list(dfte))[dfte.columns.duplicated()]) > 0: print('You have duplicate column names in your data set. Removing duplicate columns now...') dfte = dfte[list(dfte.columns[~dfte.columns.duplicated(keep='first')])] return dfte except: codex_flag = True if codex_flag: for code in codex: try: dfte = pd.read_csv(dataname, sep=sep, header=header, encoding=None, nrows=nrows, skiprows=skip_function, parse_dates=parse_dates) except: print(' pandas %s encoder does not work for this file. Continuing...' %code) continue elif dataname.endswith(('xlsx','xls','txt')): #### It's very important to get header rows in Excel since people put headers anywhere in Excel# if nrows is None: dfte = pd.read_excel(dataname,header=header, parse_dates=parse_dates) else: dfte = pd.read_excel(dataname,header=header, nrows=nrows, parse_dates=parse_dates) print('Shape of your Data Set loaded: %s' %(dfte.shape,)) return dfte else: print(' Filename is an empty string or file not able to be loaded') return None elif isinstance(dataname,pd.DataFrame): #### this means they have given a dataframe name to use directly in processing ##### if nrows is None: dfte = copy.deepcopy(dataname) else: if nrows < dataname.shape[0]: print(' Since nrows is smaller than dataset, loading random sample of %d rows into pandas...' %nrows) dfte = dataname.sample(n=nrows, replace=False, random_state=99) else: dfte = copy.deepcopy(dataname) print('Shape of your Data Set loaded: %s' %(dfte.shape,)) if len(np.array(list(dfte))[dfte.columns.duplicated()]) > 0: print('You have duplicate column names in your data set. Removing duplicate columns now...') dfte = dfte[list(dfte.columns[~dfte.columns.duplicated(keep='first')])] return dfte else: print('Dataname input must be a filename with path to that file or a Dataframe') return None ########################################################################################## import copy def classify_print_vars(filename,sep, max_rows_analyzed, max_cols_analyzed, depVar='',dfte=None, header=0,verbose=0): corr_limit = 0.7 ### This limit represents correlation above this, vars will be removed start_time=time.time() if filename: dataname = copy.deepcopy(filename) parse_dates = True else: dataname = copy.deepcopy(dfte) parse_dates = False dfte = load_file_dataframe(dataname, sep=sep, header=header, verbose=verbose, nrows=max_rows_analyzed, parse_dates=parse_dates) orig_preds = [x for x in list(dfte) if x not in [depVar]] ################# CLASSIFY COLUMNS HERE ###################### var_df = classify_columns(dfte[orig_preds], verbose) ##### Classify Columns ################ IDcols = var_df['id_vars'] discrete_string_vars = var_df['nlp_vars']+var_df['discrete_string_vars'] cols_delete = var_df['cols_delete'] bool_vars = var_df['string_bool_vars'] + var_df['num_bool_vars'] int_vars = var_df['int_vars'] categorical_vars = var_df['cat_vars'] + var_df['factor_vars'] + int_vars + bool_vars date_vars = var_df['date_vars'] if len(var_df['continuous_vars'])==0 and len(int_vars)>0: continuous_vars = var_df['int_vars'] categorical_vars = list_difference(categorical_vars, int_vars) int_vars = [] else: continuous_vars = var_df['continuous_vars'] #### from now you can use wordclouds on discrete_string_vars ###################### preds = [x for x in orig_preds if x not in IDcols+cols_delete] if len(IDcols+cols_delete) == 0: print(' No variables removed since no ID or low-information variables found in data set') else: print(' %d variables removed since they were ID or low-information variables' %len(IDcols+cols_delete)) if verbose >= 1: print(' List of variables removed: %s' %(IDcols+cols_delete)) ############# Sample data if too big and find problem type ############################# if dfte.shape[0]>= max_rows_analyzed: print('Since Number of Rows in data %d exceeds maximum, randomly sampling %d rows for EDA...' %(len(dfte),max_rows_analyzed)) dft = dfte.sample(max_rows_analyzed, random_state=0) else: dft = copy.deepcopy(dfte) ###### This is where you find what type the dependent variable is ######## if type(depVar) == str: if depVar == '': cols_list = list(dft) problem_type = 'Clustering' classes = [] else: try: problem_type = analyze_problem_type(dft, depVar,verbose) except: print('Could not find given target var in data set. Please check input') ### return the data frame as is ############ return dfte cols_list = list_difference(list(dft),depVar) if dft[depVar].dtype == object: classes = dft[depVar].factorize()[1].tolist() #### You dont have to convert it since most charts can take string vars as target #### #dft[depVar] = dft[depVar].factorize()[0] elif dft[depVar].dtype == np.int64: classes = dft[depVar].factorize()[1].tolist() elif dft[depVar].dtype == bool: classes = dft[depVar].unique().astype(int).tolist() elif dft[depVar].dtype == float and problem_type.endswith('Classification'): classes = dft[depVar].factorize()[1].tolist() else: classes = [] elif depVar == None: cols_list = list(dft) problem_type = 'Clustering' classes = [] else: depVar1 = depVar[0] problem_type = analyze_problem_type(dft, depVar1) cols_list = list_difference(list(dft), depVar1) if dft[depVar1].dtype == object: classes = dft[depVar1].factorize()[1].tolist() #### You dont have to convert it since most charts can take string vars as target #### #dft[depVar] = dft[depVar].factorize()[0] elif dft[depVar1].dtype == np.int64: classes = dft[depVar1].factorize()[1].tolist() elif dft[depVar1].dtype == bool: classes = dft[depVar].unique().astype(int).tolist() elif dft[depVar1].dtype == float and problem_type.endswith('Classification'): classes = dft[depVar1].factorize()[1].tolist() else: classes = [] print('Since AutoViz cannot visualize multiple targets, selecting the first one from list: %s' %depVar1) depVar = copy.deepcopy(depVar1) ############# Check if there are too many columns to visualize ################ if len(preds) >= max_cols_analyzed: ######### In that case, SELECT IMPORTANT FEATURES HERE ###################### if problem_type.endswith('Classification') or problem_type == 'Regression': print('Number of variables = %d exceeds limit, finding top %d variables through XGBoost' %(len( preds), max_cols_analyzed)) important_features,num_vars, _ = find_top_features_xgb(dft,preds,continuous_vars, depVar,problem_type,corr_limit,verbose) if len(important_features) >= max_cols_analyzed: print(' Since number of features selected is greater than max columns analyzed, limiting to %d variables' %max_cols_analyzed) important_features = important_features[:max_cols_analyzed] dft = dft[important_features+[depVar]] #### Time to classify the important columns again ### var_df = classify_columns(dft[important_features], verbose) IDcols = var_df['id_vars'] discrete_string_vars = var_df['nlp_vars']+var_df['discrete_string_vars'] cols_delete = var_df['cols_delete'] bool_vars = var_df['string_bool_vars'] + var_df['num_bool_vars'] int_vars = var_df['int_vars'] categorical_vars = var_df['cat_vars'] + var_df['factor_vars'] + int_vars + bool_vars if len(var_df['continuous_vars'])==0 and len(int_vars)>0: continuous_vars = var_df['int_vars'] categorical_vars = list_difference(categorical_vars, int_vars) int_vars = [] else: continuous_vars = var_df['continuous_vars'] date_vars = var_df['date_vars'] preds = [x for x in important_features if x not in IDcols+cols_delete+discrete_string_vars] if len(IDcols+cols_delete+discrete_string_vars) == 0: print(' No variables removed since no ID or low-information variables found in data') else: print(' %d variables removed since they were ID or low-information variables' %len(IDcols+cols_delete+discrete_string_vars)) if verbose >= 1: print(' List of variables removed: %s' %(IDcols+cols_delete+discrete_string_vars)) dft = dft[preds+[depVar]] else: continuous_vars = continuous_vars[:max_cols_analyzed] print('%d numeric variables in data exceeds limit, taking top %d variables' %(len( continuous_vars), max_cols_analyzed)) if verbose >= 1: print(' List of variables selected: %s' %(continuous_vars[:max_cols_analyzed])) elif len(continuous_vars) < 1: print('No continuous variables in this data set. No visualization can be performed') ### Return data frame as is ##### return dfte else: ######### If above 1 but below limit, leave features as it is ###################### if not isinstance(depVar, list): if depVar != '': dft = dft[preds+[depVar]] else: dft = dft[preds+depVar] ################### Time to reduce cat vars which have more than 30 categories ############# #discrete_string_vars += np.array(categorical_vars)[dft[categorical_vars].nunique()>30].tolist() #categorical_vars = left_subtract(categorical_vars,np.array( # categorical_vars)[dft[categorical_vars].nunique()>30].tolist()) ############# Next you can print them if verbose is set to print ######### ppt = pprint.PrettyPrinter(indent=4) if verbose==1 and len(cols_list) <= max_cols_analyzed: marthas_columns(dft,verbose) print(" Columns to delete:") ppt.pprint(' %s' %cols_delete) print(" Boolean variables %s ") ppt.pprint(' %s' %bool_vars) print(" Categorical variables %s ") ppt.pprint(' %s' %categorical_vars) print(" Continuous variables %s " ) ppt.pprint(' %s' %continuous_vars) print(" Discrete string variables %s " ) ppt.pprint(' %s' %discrete_string_vars) print(" Date and time variables %s " ) ppt.pprint(' %s' %date_vars) print(" ID variables %s ") ppt.pprint(' %s' %IDcols) print(" Target variable %s ") ppt.pprint(' %s' %depVar) elif verbose==1 and len(cols_list) > 30: print(' Total columns > 30, too numerous to print.') return dft,depVar,IDcols,bool_vars,categorical_vars,continuous_vars,discrete_string_vars,date_vars,classes,problem_type, cols_list #################################################################### def marthas_columns(data,verbose=0): """ This program is named in honor of my one of students who came up with the idea for it. It's a neat way of printing data types and information compared to the boring describe() function in Pandas. """ data = data[:] print('Data Set Shape: %d rows, %d cols' % data.shape) if data.shape[1] > 30: print('Too many columns to print') else: if verbose==1: print('Data Set columns info:') for col in data.columns: print('* %s: %d nulls, %d unique vals, most common: %s' % ( col, data[col].isnull().sum(), data[col].nunique(), data[col].value_counts().head(2).to_dict() )) print('--------------------------------------------------------------------') ################################################ ################################################################################ ######### NEW And FAST WAY to CLASSIFY COLUMNS IN A DATA SET ####### ################################################################################ def classify_columns(df_preds, verbose=0): """ This actually does Exploratory data analysis - it means this function performs EDA ###################################################################################### Takes a dataframe containing only predictors to be classified into various types. DO NOT SEND IN A TARGET COLUMN since it will try to include that into various columns. Returns a data frame containing columns and the class it belongs to such as numeric, categorical, date or id column, boolean, nlp, discrete_string and cols to delete... ####### Returns a dictionary with 10 kinds of vars like the following: # continuous_vars,int_vars # cat_vars,factor_vars, bool_vars,discrete_string_vars,nlp_vars,date_vars,id_vars,cols_delete """ train = copy.deepcopy(df_preds) #### If there are 30 chars are more in a discrete_string_var, it is then considered an NLP variable max_nlp_char_size = 30 max_cols_to_print = 30 print('############## C L A S S I F Y I N G V A R I A B L E S ####################') print('Classifying variables in data set...') #### Cat_Limit defines the max number of categories a column can have to be called a categorical colum cat_limit = 35 float_limit = 15 #### Make this limit low so that float variables below this limit become cat vars ### def add(a,b): return a+b sum_all_cols = dict() orig_cols_total = train.shape[1] #Types of columns cols_delete = [col for col in list(train) if (len(train[col].value_counts()) == 1 ) | (train[col].isnull().sum()/len(train) >= 0.90)] train = train[left_subtract(list(train),cols_delete)] var_df = pd.Series(dict(train.dtypes)).reset_index(drop=False).rename( columns={0:'type_of_column'}) sum_all_cols['cols_delete'] = cols_delete var_df['bool'] = var_df.apply(lambda x: 1 if x['type_of_column'] in ['bool','object'] and len(train[x['index']].value_counts()) == 2 else 0, axis=1) string_bool_vars = list(var_df[(var_df['bool'] ==1)]['index']) sum_all_cols['string_bool_vars'] = string_bool_vars var_df['num_bool'] = var_df.apply(lambda x: 1 if x['type_of_column'] in [np.uint8, np.uint16, np.uint32, np.uint64, 'int8','int16','int32','int64', 'float16','float32','float64'] and len( train[x['index']].value_counts()) == 2 else 0, axis=1) num_bool_vars = list(var_df[(var_df['num_bool'] ==1)]['index']) sum_all_cols['num_bool_vars'] = num_bool_vars ###### This is where we take all Object vars and split them into diff kinds ### discrete_or_nlp = var_df.apply(lambda x: 1 if x['type_of_column'] in ['object'] and x[ 'index'] not in string_bool_vars+cols_delete else 0,axis=1) ######### This is where we figure out whether a string var is nlp or discrete_string var ### var_df['nlp_strings'] = 0 var_df['discrete_strings'] = 0 var_df['cat'] = 0 var_df['id_col'] = 0 discrete_or_nlp_vars = var_df.loc[discrete_or_nlp==1]['index'].values.tolist() copy_discrete_or_nlp_vars = copy.deepcopy(discrete_or_nlp_vars) if len(discrete_or_nlp_vars) > 0: for col in copy_discrete_or_nlp_vars: #### first fill empty or missing vals since it will blowup ### train[col] = train[col].fillna('emptyspace') if train[col].map(lambda x: len(x) if type(x)==str else 0).mean( ) >= 50 and len(train[col].value_counts() ) >= int(0.9*len(train)) and col not in string_bool_vars: var_df.loc[var_df['index']==col,'nlp_strings'] = 1 elif train[col].map(lambda x: len(x) if type(x)==str else 0).mean( ) >= max_nlp_char_size and train[col].map(lambda x: len(x) if type(x)==str else 0).mean( ) < 50 and len(train[col].value_counts() ) <= int(0.9*len(train)) and col not in string_bool_vars: var_df.loc[var_df['index']==col,'discrete_strings'] = 1 elif len(train[col].value_counts()) > cat_limit and len(train[col].value_counts() ) <= int(0.9*len(train)) and col not in string_bool_vars: var_df.loc[var_df['index']==col,'discrete_strings'] = 1 elif len(train[col].value_counts()) > cat_limit and len(train[col].value_counts() ) == len(train) and col not in string_bool_vars: var_df.loc[var_df['index']==col,'id_col'] = 1 else: var_df.loc[var_df['index']==col,'cat'] = 1 nlp_vars = list(var_df[(var_df['nlp_strings'] ==1)]['index']) sum_all_cols['nlp_vars'] = nlp_vars discrete_string_vars = list(var_df[(var_df['discrete_strings'] ==1) ]['index']) sum_all_cols['discrete_string_vars'] = discrete_string_vars ###### This happens only if a string column happens to be an ID column ####### #### DO NOT Add this to ID_VARS yet. It will be done later.. Dont change it easily... #### Category DTYPE vars are very special = they can be left as is and not disturbed in Python. ### var_df['dcat'] = var_df.apply(lambda x: 1 if str(x['type_of_column'])=='category' else 0, axis=1) factor_vars = list(var_df[(var_df['dcat'] ==1)]['index']) sum_all_cols['factor_vars'] = factor_vars ######################################################################## date_or_id = var_df.apply(lambda x: 1 if x['type_of_column'] in [np.uint8, np.uint16, np.uint32, np.uint64, 'int8','int16', 'int32','int64'] and x[ 'index'] not in string_bool_vars+num_bool_vars+discrete_string_vars+nlp_vars else 0, axis=1) ######### This is where we figure out whether a numeric col is date or id variable ### var_df['int'] = 0 var_df['date_time'] = 0 ### if a particular column is date-time type, now set it as a date time variable ## var_df['date_time'] = var_df.apply(lambda x: 1 if x['type_of_column'] in ['<M8[ns]','datetime64[ns]'] and x[ 'index'] not in string_bool_vars+num_bool_vars+discrete_string_vars+nlp_vars else 0, axis=1) ### this is where we save them as date time variables ### if len(var_df.loc[date_or_id==1]) != 0: for col in var_df.loc[date_or_id==1]['index'].values.tolist(): if len(train[col].value_counts()) == len(train): if train[col].min() < 1900 or train[col].max() > 2050: var_df.loc[var_df['index']==col,'id_col'] = 1 else: try: pd.to_datetime(train[col],infer_datetime_format=True) var_df.loc[var_df['index']==col,'date_time'] = 1 except: var_df.loc[var_df['index']==col,'id_col'] = 1 else: if train[col].min() < 1900 or train[col].max() > 2050: if col not in num_bool_vars: var_df.loc[var_df['index']==col,'int'] = 1 else: try: pd.to_datetime(train[col],infer_datetime_format=True) var_df.loc[var_df['index']==col,'date_time'] = 1 except: if col not in num_bool_vars: var_df.loc[var_df['index']==col,'int'] = 1 else: pass int_vars = list(var_df[(var_df['int'] ==1)]['index']) date_vars = list(var_df[(var_df['date_time'] == 1)]['index']) id_vars = list(var_df[(var_df['id_col'] == 1)]['index']) sum_all_cols['int_vars'] = int_vars copy_date_vars = copy.deepcopy(date_vars) for date_var in copy_date_vars: #### This test is to make sure sure date vars are actually date vars try:
pd.to_datetime(train[date_var],infer_datetime_format=True)
pandas.to_datetime
from collections import OrderedDict from datetime import datetime, timedelta import numpy as np import numpy.ma as ma import pytest from pandas._libs import iNaT, lib from pandas.core.dtypes.common import is_categorical_dtype, is_datetime64tz_dtype from pandas.core.dtypes.dtypes import ( CategoricalDtype, DatetimeTZDtype, IntervalDtype, PeriodDtype, ) import pandas as pd from pandas import ( Categorical, DataFrame, Index, Interval, IntervalIndex, MultiIndex, NaT, Period, Series, Timestamp, date_range, isna, period_range, timedelta_range, ) import pandas._testing as tm from pandas.core.arrays import IntervalArray, period_array class TestSeriesConstructors: @pytest.mark.parametrize( "constructor,check_index_type", [ # NOTE: some overlap with test_constructor_empty but that test does not # test for None or an empty generator. # test_constructor_pass_none tests None but only with the index also # passed. (lambda: Series(), True), (lambda: Series(None), True), (lambda: Series({}), True), (lambda: Series(()), False), # creates a RangeIndex (lambda: Series([]), False), # creates a RangeIndex (lambda: Series((_ for _ in [])), False), # creates a RangeIndex (lambda: Series(data=None), True), (lambda: Series(data={}), True), (lambda: Series(data=()), False), # creates a RangeIndex (lambda: Series(data=[]), False), # creates a RangeIndex (lambda: Series(data=(_ for _ in [])), False), # creates a RangeIndex ], ) def test_empty_constructor(self, constructor, check_index_type): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): expected = Series() result = constructor() assert len(result.index) == 0 tm.assert_series_equal(result, expected, check_index_type=check_index_type) def test_invalid_dtype(self): # GH15520 msg = "not understood" invalid_list = [pd.Timestamp, "pd.Timestamp", list] for dtype in invalid_list: with pytest.raises(TypeError, match=msg): Series([], name="time", dtype=dtype) def test_invalid_compound_dtype(self): # GH#13296 c_dtype = np.dtype([("a", "i8"), ("b", "f4")]) cdt_arr = np.array([(1, 0.4), (256, -13)], dtype=c_dtype) with pytest.raises(ValueError, match="Use DataFrame instead"): Series(cdt_arr, index=["A", "B"]) def test_scalar_conversion(self): # Pass in scalar is disabled scalar = Series(0.5) assert not isinstance(scalar, float) # Coercion assert float(Series([1.0])) == 1.0 assert int(Series([1.0])) == 1 def test_constructor(self, datetime_series): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): empty_series = Series() assert datetime_series.index.is_all_dates # Pass in Series derived = Series(datetime_series) assert derived.index.is_all_dates assert tm.equalContents(derived.index, datetime_series.index) # Ensure new index is not created assert id(datetime_series.index) == id(derived.index) # Mixed type Series mixed = Series(["hello", np.NaN], index=[0, 1]) assert mixed.dtype == np.object_ assert mixed[1] is np.NaN assert not empty_series.index.is_all_dates with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): assert not Series().index.is_all_dates # exception raised is of type Exception with pytest.raises(Exception, match="Data must be 1-dimensional"): Series(np.random.randn(3, 3), index=np.arange(3)) mixed.name = "Series" rs = Series(mixed).name xp = "Series" assert rs == xp # raise on MultiIndex GH4187 m = MultiIndex.from_arrays([[1, 2], [3, 4]]) msg = "initializing a Series from a MultiIndex is not supported" with pytest.raises(NotImplementedError, match=msg): Series(m) @pytest.mark.parametrize("input_class", [list, dict, OrderedDict]) def test_constructor_empty(self, input_class): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): empty = Series() empty2 = Series(input_class()) # these are Index() and RangeIndex() which don't compare type equal # but are just .equals tm.assert_series_equal(empty, empty2, check_index_type=False) # With explicit dtype: empty = Series(dtype="float64") empty2 = Series(input_class(), dtype="float64") tm.assert_series_equal(empty, empty2, check_index_type=False) # GH 18515 : with dtype=category: empty = Series(dtype="category") empty2 = Series(input_class(), dtype="category") tm.assert_series_equal(empty, empty2, check_index_type=False) if input_class is not list: # With index: with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): empty = Series(index=range(10)) empty2 = Series(input_class(), index=range(10)) tm.assert_series_equal(empty, empty2) # With index and dtype float64: empty = Series(np.nan, index=range(10)) empty2 = Series(input_class(), index=range(10), dtype="float64") tm.assert_series_equal(empty, empty2) # GH 19853 : with empty string, index and dtype str empty = Series("", dtype=str, index=range(3)) empty2 = Series("", index=range(3)) tm.assert_series_equal(empty, empty2) @pytest.mark.parametrize("input_arg", [np.nan, float("nan")]) def test_constructor_nan(self, input_arg): empty = Series(dtype="float64", index=range(10)) empty2 = Series(input_arg, index=range(10)) tm.assert_series_equal(empty, empty2, check_index_type=False) @pytest.mark.parametrize( "dtype", ["f8", "i8", "M8[ns]", "m8[ns]", "category", "object", "datetime64[ns, UTC]"], ) @pytest.mark.parametrize("index", [None, pd.Index([])]) def test_constructor_dtype_only(self, dtype, index): # GH-20865 result = pd.Series(dtype=dtype, index=index) assert result.dtype == dtype assert len(result) == 0 def test_constructor_no_data_index_order(self): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): result = pd.Series(index=["b", "a", "c"]) assert result.index.tolist() == ["b", "a", "c"] def test_constructor_no_data_string_type(self): # GH 22477 result = pd.Series(index=[1], dtype=str) assert np.isnan(result.iloc[0]) @pytest.mark.parametrize("item", ["entry", "ѐ", 13]) def test_constructor_string_element_string_type(self, item): # GH 22477 result = pd.Series(item, index=[1], dtype=str) assert result.iloc[0] == str(item) def test_constructor_dtype_str_na_values(self, string_dtype): # https://github.com/pandas-dev/pandas/issues/21083 ser = Series(["x", None], dtype=string_dtype) result = ser.isna() expected = Series([False, True]) tm.assert_series_equal(result, expected) assert ser.iloc[1] is None ser = Series(["x", np.nan], dtype=string_dtype) assert np.isnan(ser.iloc[1]) def test_constructor_series(self): index1 = ["d", "b", "a", "c"] index2 = sorted(index1) s1 = Series([4, 7, -5, 3], index=index1) s2 = Series(s1, index=index2) tm.assert_series_equal(s2, s1.sort_index()) def test_constructor_iterable(self): # GH 21987 class Iter: def __iter__(self): for i in range(10): yield i expected = Series(list(range(10)), dtype="int64") result = Series(Iter(), dtype="int64") tm.assert_series_equal(result, expected) def test_constructor_sequence(self): # GH 21987 expected = Series(list(range(10)), dtype="int64") result = Series(range(10), dtype="int64") tm.assert_series_equal(result, expected) def test_constructor_single_str(self): # GH 21987 expected = Series(["abc"]) result = Series("abc") tm.assert_series_equal(result, expected) def test_constructor_list_like(self): # make sure that we are coercing different # list-likes to standard dtypes and not # platform specific expected = Series([1, 2, 3], dtype="int64") for obj in [[1, 2, 3], (1, 2, 3), np.array([1, 2, 3], dtype="int64")]: result = Series(obj, index=[0, 1, 2]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", ["bool", "int32", "int64", "float64"]) def test_constructor_index_dtype(self, dtype): # GH 17088 s = Series(Index([0, 2, 4]), dtype=dtype) assert s.dtype == dtype @pytest.mark.parametrize( "input_vals", [ ([1, 2]), (["1", "2"]), (list(pd.date_range("1/1/2011", periods=2, freq="H"))), (list(pd.date_range("1/1/2011", periods=2, freq="H", tz="US/Eastern"))), ([pd.Interval(left=0, right=5)]), ], ) def test_constructor_list_str(self, input_vals, string_dtype): # GH 16605 # Ensure that data elements from a list are converted to strings # when dtype is str, 'str', or 'U' result = Series(input_vals, dtype=string_dtype) expected = Series(input_vals).astype(string_dtype) tm.assert_series_equal(result, expected) def test_constructor_list_str_na(self, string_dtype): result = Series([1.0, 2.0, np.nan], dtype=string_dtype) expected = Series(["1.0", "2.0", np.nan], dtype=object) tm.assert_series_equal(result, expected) assert np.isnan(result[2]) def test_constructor_generator(self): gen = (i for i in range(10)) result = Series(gen) exp = Series(range(10)) tm.assert_series_equal(result, exp) gen = (i for i in range(10)) result = Series(gen, index=range(10, 20)) exp.index = range(10, 20) tm.assert_series_equal(result, exp) def test_constructor_map(self): # GH8909 m = map(lambda x: x, range(10)) result = Series(m) exp = Series(range(10)) tm.assert_series_equal(result, exp) m = map(lambda x: x, range(10)) result = Series(m, index=range(10, 20)) exp.index = range(10, 20) tm.assert_series_equal(result, exp) def test_constructor_categorical(self): cat = pd.Categorical([0, 1, 2, 0, 1, 2], ["a", "b", "c"], fastpath=True) res = Series(cat) tm.assert_categorical_equal(res.values, cat) # can cast to a new dtype result = Series(pd.Categorical([1, 2, 3]), dtype="int64") expected = pd.Series([1, 2, 3], dtype="int64") tm.assert_series_equal(result, expected) # GH12574 cat = Series(pd.Categorical([1, 2, 3]), dtype="category") assert is_categorical_dtype(cat) assert is_categorical_dtype(cat.dtype) s = Series([1, 2, 3], dtype="category") assert is_categorical_dtype(s) assert is_categorical_dtype(s.dtype) def test_constructor_categorical_with_coercion(self): factor = Categorical(["a", "b", "b", "a", "a", "c", "c", "c"]) # test basic creation / coercion of categoricals s = Series(factor, name="A") assert s.dtype == "category" assert len(s) == len(factor) str(s.values) str(s) # in a frame df = DataFrame({"A": factor}) result = df["A"] tm.assert_series_equal(result, s) result = df.iloc[:, 0] tm.assert_series_equal(result, s) assert len(df) == len(factor) str(df.values) str(df) df = DataFrame({"A": s}) result = df["A"] tm.assert_series_equal(result, s) assert len(df) == len(factor) str(df.values) str(df) # multiples df = DataFrame({"A": s, "B": s, "C": 1}) result1 = df["A"] result2 = df["B"] tm.assert_series_equal(result1, s) tm.assert_series_equal(result2, s, check_names=False) assert result2.name == "B" assert len(df) == len(factor) str(df.values) str(df) # GH8623 x = DataFrame( [[1, "<NAME>"], [2, "<NAME>"], [1, "<NAME>"]], columns=["person_id", "person_name"], ) x["person_name"] = Categorical(x.person_name) # doing this breaks transform expected = x.iloc[0].person_name result = x.person_name.iloc[0] assert result == expected result = x.person_name[0] assert result == expected result = x.person_name.loc[0] assert result == expected def test_constructor_categorical_dtype(self): result = pd.Series( ["a", "b"], dtype=CategoricalDtype(["a", "b", "c"], ordered=True) ) assert is_categorical_dtype(result.dtype) is True tm.assert_index_equal(result.cat.categories, pd.Index(["a", "b", "c"])) assert result.cat.ordered result = pd.Series(["a", "b"], dtype=CategoricalDtype(["b", "a"])) assert is_categorical_dtype(result.dtype) tm.assert_index_equal(result.cat.categories, pd.Index(["b", "a"])) assert result.cat.ordered is False # GH 19565 - Check broadcasting of scalar with Categorical dtype result = Series( "a", index=[0, 1], dtype=CategoricalDtype(["a", "b"], ordered=True) ) expected = Series( ["a", "a"], index=[0, 1], dtype=CategoricalDtype(["a", "b"], ordered=True) ) tm.assert_series_equal(result, expected) def test_constructor_categorical_string(self): # GH 26336: the string 'category' maintains existing CategoricalDtype cdt = CategoricalDtype(categories=list("dabc"), ordered=True) expected = Series(list("abcabc"), dtype=cdt) # Series(Categorical, dtype='category') keeps existing dtype cat = Categorical(list("abcabc"), dtype=cdt) result = Series(cat, dtype="category") tm.assert_series_equal(result, expected) # Series(Series[Categorical], dtype='category') keeps existing dtype result = Series(result, dtype="category") tm.assert_series_equal(result, expected) def test_categorical_sideeffects_free(self): # Passing a categorical to a Series and then changing values in either # the series or the categorical should not change the values in the # other one, IF you specify copy! cat = Categorical(["a", "b", "c", "a"]) s = Series(cat, copy=True) assert s.cat is not cat s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1], dtype=np.int64) exp_cat = np.array(["a", "b", "c", "a"], dtype=np.object_) tm.assert_numpy_array_equal(s.__array__(), exp_s) tm.assert_numpy_array_equal(cat.__array__(), exp_cat) # setting s[0] = 2 exp_s2 = np.array([2, 2, 3, 1], dtype=np.int64) tm.assert_numpy_array_equal(s.__array__(), exp_s2) tm.assert_numpy_array_equal(cat.__array__(), exp_cat) # however, copy is False by default # so this WILL change values cat = Categorical(["a", "b", "c", "a"]) s = Series(cat) assert s.values is cat s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1], dtype=np.int64) tm.assert_numpy_array_equal(s.__array__(), exp_s) tm.assert_numpy_array_equal(cat.__array__(), exp_s) s[0] = 2 exp_s2 = np.array([2, 2, 3, 1], dtype=np.int64) tm.assert_numpy_array_equal(s.__array__(), exp_s2) tm.assert_numpy_array_equal(cat.__array__(), exp_s2) def test_unordered_compare_equal(self): left = pd.Series(["a", "b", "c"], dtype=CategoricalDtype(["a", "b"])) right = pd.Series(pd.Categorical(["a", "b", np.nan], categories=["a", "b"])) tm.assert_series_equal(left, right) def test_constructor_maskedarray(self): data = ma.masked_all((3,), dtype=float) result = Series(data) expected = Series([np.nan, np.nan, np.nan]) tm.assert_series_equal(result, expected) data[0] = 0.0 data[2] = 2.0 index = ["a", "b", "c"] result = Series(data, index=index) expected = Series([0.0, np.nan, 2.0], index=index) tm.assert_series_equal(result, expected) data[1] = 1.0 result = Series(data, index=index) expected = Series([0.0, 1.0, 2.0], index=index) tm.assert_series_equal(result, expected) data = ma.masked_all((3,), dtype=int) result = Series(data) expected = Series([np.nan, np.nan, np.nan], dtype=float) tm.assert_series_equal(result, expected) data[0] = 0 data[2] = 2 index = ["a", "b", "c"] result = Series(data, index=index) expected = Series([0, np.nan, 2], index=index, dtype=float) tm.assert_series_equal(result, expected) data[1] = 1 result = Series(data, index=index) expected = Series([0, 1, 2], index=index, dtype=int) tm.assert_series_equal(result, expected) data = ma.masked_all((3,), dtype=bool) result = Series(data) expected = Series([np.nan, np.nan, np.nan], dtype=object) tm.assert_series_equal(result, expected) data[0] = True data[2] = False index = ["a", "b", "c"] result = Series(data, index=index) expected = Series([True, np.nan, False], index=index, dtype=object) tm.assert_series_equal(result, expected) data[1] = True result = Series(data, index=index) expected = Series([True, True, False], index=index, dtype=bool) tm.assert_series_equal(result, expected) data = ma.masked_all((3,), dtype="M8[ns]") result = Series(data) expected = Series([iNaT, iNaT, iNaT], dtype="M8[ns]") tm.assert_series_equal(result, expected) data[0] = datetime(2001, 1, 1) data[2] = datetime(2001, 1, 3) index = ["a", "b", "c"] result = Series(data, index=index) expected = Series( [datetime(2001, 1, 1), iNaT, datetime(2001, 1, 3)], index=index, dtype="M8[ns]", ) tm.assert_series_equal(result, expected) data[1] = datetime(2001, 1, 2) result = Series(data, index=index) expected = Series( [datetime(2001, 1, 1), datetime(2001, 1, 2), datetime(2001, 1, 3)], index=index, dtype="M8[ns]", ) tm.assert_series_equal(result, expected) def test_constructor_maskedarray_hardened(self): # Check numpy masked arrays with hard masks -- from GH24574 data = ma.masked_all((3,), dtype=float).harden_mask() result = pd.Series(data) expected = pd.Series([np.nan, np.nan, np.nan]) tm.assert_series_equal(result, expected) def test_series_ctor_plus_datetimeindex(self): rng =
date_range("20090415", "20090519", freq="B")
pandas.date_range
import pickle import pandas as pd import numpy as np crnn2_result = pickle.load(open('../../CRNN2/crnn_results/crnn_results_summary.p', 'rb')) crnn4_result = pickle.load(open('../../CRNN4/crnn_results/crnn_results_summary.p', 'rb')) crnn6_result = pickle.load(open('../../CRNN6/crnn_results/crnn_results_summary.p', 'rb')) crnn8_result = pickle.load(open('../../CRNN8/crnn_results/crnn_results_summary.p', 'rb')) crnn10_result = pickle.load(open('../../CRNN10/crnn_results/crnn_results_summary.p', 'rb')) crnn40_result = pickle.load(open('../../CRNN40/crnn_results/crnn_results_summary.p', 'rb')) crnn100_result = pickle.load(open('../../CRNN100/crnn_results/crnn_results_summary.p', 'rb')) crnn400_result = pickle.load(open('../../CRNN400/crnn_results/crnn_results_summary.p', 'rb')) crnn1200_result = pickle.load(open('../../CRNN1200/crnn_results/crnn_results_summary.p', 'rb')) vgg_result = pickle.load(open('../../VGG/results/vgg_results_summary.p', 'rb')) lenet_result = pickle.load(open('../../LENET/results/lenet_results_summary.p', 'rb')) svm_result = pickle.load(open('../../SVM/results/svm_results_summary.p', 'rb')) result_summary = {'crnn2': pd.DataFrame(crnn2_result), 'crnn4': pd.DataFrame(crnn4_result), 'crnn6': pd.DataFrame(crnn6_result), 'crnn8': pd.DataFrame(crnn8_result), 'crnn10': pd.DataFrame(crnn10_result), 'crnn40': pd.DataFrame(crnn40_result), 'crnn100': pd.DataFrame(crnn100_result), 'crnn400': pd.DataFrame(crnn400_result), 'crnn1200': pd.DataFrame(crnn1200_result), 'vgg': pd.DataFrame(vgg_result), 'lenet': pd.DataFrame(lenet_result), 'svm': pd.DataFrame(svm_result)} result_summary = pd.concat(result_summary) result_summary.to_csv('../result/result_summary.csv', sep = ',') crnn_pitch_shift = pickle.load(open('../../CRNN400/crnn_results/pitch_shift_results.p', 'rb')) crnn_time_stretch = pickle.load(open('../../CRNN400/crnn_results/time_stretch_results.p', 'rb')) crnn_crop = pickle.load(open('../../CRNN400/crnn_results/crop_results.p', 'rb')) lenet_pitch_shift = pickle.load(open('../../LENET/results/pitch_shift_results.p', 'rb')) lenet_time_stretch = pickle.load(open('../../LENET/results/time_stretch_results.p', 'rb')) lenet_crop = pickle.load(open('../../LENET/results/crop_results.p', 'rb')) svm_pitch_shift = pickle.load(open('../../SVM/results/pitch_shift_results.p', 'rb')) svm_time_stretch = pickle.load(open('../../SVM/results/time_stretch_results.p', 'rb')) svm_crop = pickle.load(open('../../SVM/results/crop_results.p', 'rb')) simulation_summary = {'crnn_picth_shift': pd.DataFrame(crnn_pitch_shift), 'crnn_time_stretch': pd.DataFrame(crnn_time_stretch), 'crnn_crop': pd.DataFrame(crnn_crop), 'lenet_picth_shift':
pd.DataFrame(lenet_pitch_shift)
pandas.DataFrame
import numpy as np import pandas as pd from sklearn.model_selection import StratifiedKFold import gc import matplotlib.pyplot as plt import seaborn as sns import lightgbm as lgb import logging import itertools from imblearn.over_sampling import SMOTE from sklearn.model_selection import train_test_split #modify to work with kfold #def smoteAdataset(Xig, yig, test_size=0.2, random_state=0): #def smoteAdataset(Xig_train, yig_train, Xig_test, yig_test): # sm=SMOTE(random_state=2) # Xig_train_res, yig_train_res = sm.fit_sample(Xig_train, yig_train.ravel()) # return Xig_train_res, pd.Series(yig_train_res), Xig_test, pd.Series(yig_test) def create_logger(): logger_ = logging.getLogger('main') logger_.setLevel(logging.DEBUG) fh = logging.FileHandler('simple_lightgbm.log') fh.setLevel(logging.DEBUG) ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) formatter = logging.Formatter('[%(levelname)s]%(asctime)s:%(name)s:%(message)s') fh.setFormatter(formatter) ch.setFormatter(formatter) # add the handlers to the logger logger_.addHandler(fh) logger_.addHandler(ch) def get_logger(): return logging.getLogger('main') def lgb_multi_weighted_logloss(y_true, y_preds): classes = [6, 15, 16, 42, 52, 53, 62, 64, 65, 67, 88, 90, 92, 95] class_weight = {6: 1, 15: 2, 16: 1, 42: 1, 52: 1, 53: 1, 62: 1, 64: 2, 65: 1, 67: 1, 88: 1, 90: 1, 92: 1, 95: 1} if len(np.unique(y_true)) > 14: classes.append(99) class_weight[99] = 2 y_p = y_preds.reshape(y_true.shape[0], len(classes), order='F') y_ohe =
pd.get_dummies(y_true)
pandas.get_dummies