Dataset Viewer
Auto-converted to Parquet
id
stringlengths
2
8
text
stringlengths
16
264k
dataset_id
stringclasses
1 value
3467324
<reponame>aivazis/ampcor # -*- coding: utf-8 -*- # # <NAME> <<EMAIL>> # parasim # (c) 1998-2021 all rights reserved # # pull the action protocol from ..shells import action # and the base panel from ..shells import command # pull in the command decorator from .. import foundry # commands @foundry(implements=action, tip="estimate an offset field given a pair of raster images") def offsets(): # get the action from .Offsets import Offsets # borrow its doctsring __doc__ = Offsets.__doc__ # and publish it return Offsets # temporary vis @foundry(implements=action, tip="visualize the correlation surface") def mdy(): # get the action from .Gamma import Gamma # borrow its doctsring __doc__ = Gamma.__doc__ # and publish it return Gamma # help @foundry(implements=action, tip="display information about this application") def about(): # get the action from .About import About # borrow its docstring __doc__ = About.__doc__ # and publish it return About @foundry(implements=action, tip="display configuration information about this application") def config(): # get the action from .Config import Config # borrow its docstring __doc__ = Config.__doc__ # and publish it return Config @foundry(implements=action, tip="display debugging information about this application") def debug(): # get the action from .Debug import Debug # borrow its docstring __doc__ = Debug.__doc__ # and publish it return Debug # command completion; no tip so it doesn't show up on the help panel @foundry(implements=action) def complete(): # get the action from .Complete import Complete # and publish it return Complete # end of file
StarcoderdataPython
1873136
<reponame>amcclead7336/Enterprise_Data_Science_Final<filename>venv/lib/python3.8/site-packages/vsts/test/v4_0/models/suite_entry.py<gh_stars>0 # -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # Generated file, DO NOT EDIT # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------------------------- from msrest.serialization import Model class SuiteEntry(Model): """SuiteEntry. :param child_suite_id: Id of child suite in a suite :type child_suite_id: int :param sequence_number: Sequence number for the test case or child suite in the suite :type sequence_number: int :param suite_id: Id for the suite :type suite_id: int :param test_case_id: Id of a test case in a suite :type test_case_id: int """ _attribute_map = { 'child_suite_id': {'key': 'childSuiteId', 'type': 'int'}, 'sequence_number': {'key': 'sequenceNumber', 'type': 'int'}, 'suite_id': {'key': 'suiteId', 'type': 'int'}, 'test_case_id': {'key': 'testCaseId', 'type': 'int'} } def __init__(self, child_suite_id=None, sequence_number=None, suite_id=None, test_case_id=None): super(SuiteEntry, self).__init__() self.child_suite_id = child_suite_id self.sequence_number = sequence_number self.suite_id = suite_id self.test_case_id = test_case_id
StarcoderdataPython
322006
<filename>istio/datadog_checks/istio/metrics.py # (C) Datadog, Inc. 2020 - Present # All rights reserved # Licensed under Simplified BSD License (see LICENSE) GENERIC_METRICS = { 'go_gc_duration_seconds': 'go.gc_duration_seconds', 'go_goroutines': 'go.goroutines', 'go_info': 'go.info', 'go_memstats_alloc_bytes': 'go.memstats.alloc_bytes', 'go_memstats_alloc_bytes_total': 'go.memstats.alloc_bytes_total', 'go_memstats_buck_hash_sys_bytes': 'go.memstats.buck_hash_sys_bytes', 'go_memstats_frees_total': 'go.memstats.frees_total', 'go_memstats_gc_cpu_fraction': 'go.memstats.gc_cpu_fraction', 'go_memstats_gc_sys_bytes': 'go.memstats.gc_sys_bytes', 'go_memstats_heap_alloc_bytes': 'go.memstats.heap_alloc_bytes', 'go_memstats_heap_idle_bytes': 'go.memstats.heap_idle_bytes', 'go_memstats_heap_inuse_bytes': 'go.memstats.heap_inuse_bytes', 'go_memstats_heap_objects': 'go.memstats.heap_objects', 'go_memstats_heap_released_bytes': 'go.memstats.heap_released_bytes', 'go_memstats_heap_sys_bytes': 'go.memstats.heap_sys_bytes', 'go_memstats_last_gc_time_seconds': 'go.memstats.last_gc_time_seconds', 'go_memstats_lookups_total': 'go.memstats.lookups_total', 'go_memstats_mallocs_total': 'go.memstats.mallocs_total', 'go_memstats_mcache_inuse_bytes': 'go.memstats.mcache_inuse_bytes', 'go_memstats_mcache_sys_bytes': 'go.memstats.mcache_sys_bytes', 'go_memstats_mspan_inuse_bytes': 'go.memstats.mspan_inuse_bytes', 'go_memstats_mspan_sys_bytes': 'go.memstats.mspan_sys_bytes', 'go_memstats_next_gc_bytes': 'go.memstats.next_gc_bytes', 'go_memstats_other_sys_bytes': 'go.memstats.other_sys_bytes', 'go_memstats_stack_inuse_bytes': 'go.memstats.stack_inuse_bytes', 'go_memstats_stack_sys_bytes': 'go.memstats.stack_sys_bytes', 'go_memstats_sys_bytes': 'go.memstats.sys_bytes', 'go_threads': 'go.threads', 'process_cpu_seconds_total': 'process.cpu_seconds_total', 'process_max_fds': 'process.max_fds', 'process_open_fds': 'process.open_fds', 'process_resident_memory_bytes': 'process.resident_memory_bytes', 'process_start_time_seconds': 'process.start_time_seconds', 'process_virtual_memory_bytes': 'process.virtual_memory_bytes', } CITADEL_METRICS = { 'citadel_secret_controller_csr_err_count': 'secret_controller.csr_err_count', 'citadel_secret_controller_secret_deleted_cert_count': ('secret_controller.secret_deleted_cert_count'), 'citadel_secret_controller_svc_acc_created_cert_count': ('secret_controller.svc_acc_created_cert_count'), 'citadel_secret_controller_svc_acc_deleted_cert_count': ('secret_controller.svc_acc_deleted_cert_count'), 'citadel_server_authentication_failure_count': 'server.authentication_failure_count', 'citadel_server_citadel_root_cert_expiry_timestamp': ('server.citadel_root_cert_expiry_timestamp'), 'citadel_server_csr_count': 'server.csr_count', 'citadel_server_csr_parsing_err_count': 'server.csr_parsing_err_count', 'citadel_server_id_extraction_err_count': 'server.id_extraction_err_count', 'citadel_server_success_cert_issuance_count': 'server.success_cert_issuance_count', 'citadel_server_root_cert_expiry_timestamp': 'server.root_cert_expiry_timestamp', } GALLEY_METRICS = { 'endpoint_no_pod': 'endpoint_no_pod', 'galley_mcp_source_clients_total': 'mcp_source.clients_total', 'galley_runtime_processor_event_span_duration_milliseconds': ('runtime_processor.event_span_duration_milliseconds'), 'galley_runtime_processor_events_processed_total': 'runtime_processor.events_processed_total', 'galley_runtime_processor_snapshot_events_total': 'runtime_processor.snapshot_events_total', 'galley_runtime_processor_snapshot_lifetime_duration_milliseconds': ( 'runtime_processor.snapshot_lifetime_duration_milliseconds' ), 'galley_runtime_processor_snapshots_published_total': ('runtime_processor.snapshots_published_total'), 'galley_runtime_state_type_instances_total': 'runtime_state_type_instances_total', 'galley_runtime_strategy_on_change_total': 'runtime_strategy.on_change_total', 'galley_runtime_strategy_timer_max_time_reached_total': ('runtime_strategy.timer_max_time_reached_total'), 'galley_runtime_strategy_timer_quiesce_reached_total': 'runtime_strategy.quiesce_reached_total', 'galley_runtime_strategy_timer_resets_total': 'runtime_strategy.timer_resets_total', 'galley_source_kube_dynamic_converter_success_total': ('source_kube.dynamic_converter_success_total'), 'galley_source_kube_event_success_total': 'source_kube.event_success_total', 'galley_validation_cert_key_updates': 'validation.cert_key_updates', 'galley_validation_config_load': 'validation.config_load', 'galley_validation_config_updates': 'validation.config_update', 'galley_validation_passed': 'validation.passed', # These metrics supported Istio 1.5 'galley_validation_config_update_error': 'validation.config_update_error', } MESH_METRICS = { # These metrics support Istio 1.5 'istio_request_duration_milliseconds': 'request.duration.milliseconds', # These metrics support Istio 1.0 'istio_requests_total': 'request.count', 'istio_request_duration_seconds': 'request.duration', 'istio_request_bytes': 'request.size', 'istio_response_bytes': 'response.size', # These metrics support Istio 0.8 'istio_request_count': 'request.count', 'istio_request_duration': 'request.duration', 'istio_request_size': 'request.size', 'istio_response_size': 'response.size', # TCP metrics 'istio_tcp_connections_closed_total': 'tcp.connections_closed.total', 'istio_tcp_connections_opened_total': 'tcp.connections_opened.total', 'istio_tcp_received_bytes_total': 'tcp.received_bytes.total', 'istio_tcp_sent_bytes_total': 'tcp.send_bytes.total', } MIXER_METRICS = { # Pre 1.1 metrics 'grpc_server_handled_total': 'grpc.server.handled_total', 'grpc_server_handling_seconds': 'grpc.server.handling_seconds', 'grpc_server_msg_received_total': 'grpc.server.msg_received_total', 'grpc_server_msg_sent_total': 'grpc.server.msg_sent_total', 'grpc_server_started_total': 'grpc.server.started_total', 'mixer_adapter_dispatch_count': 'adapter.dispatch_count', 'mixer_adapter_dispatch_duration': 'adapter.dispatch_duration', 'mixer_adapter_old_dispatch_count': 'adapter.old_dispatch_count', 'mixer_adapter_old_dispatch_duration': 'adapter.old_dispatch_duration', 'mixer_config_resolve_actions': 'config.resolve_actions', 'mixer_config_resolve_count': 'config.resolve_count', 'mixer_config_resolve_duration': 'config.resolve_duration', 'mixer_config_resolve_rules': 'config.resolve_rules', # 1.1 metrics 'grpc_io_server_completed_rpcs': 'grpc_io_server.completed_rpcs', 'grpc_io_server_received_bytes_per_rpc': 'grpc_io_server.received_bytes_per_rpc', 'grpc_io_server_sent_bytes_per_rpc': 'grpc_io_server.sent_bytes_per_rpc', 'grpc_io_server_server_latency': 'grpc_io_server.server_latency', 'mixer_config_attributes_total': 'config.attributes_total', 'mixer_config_handler_configs_total': 'config.handler_configs_total', 'mixer_config_instance_configs_total': 'config.instance_configs_total', 'mixer_config_rule_configs_total': 'config.rule_configs_total', 'mixer_dispatcher_destinations_per_request': 'dispatcher.destinations_per_request', 'mixer_dispatcher_instances_per_request': 'dispatcher.instances_per_request', 'mixer_handler_daemons_total': 'handler.daemons_total', 'mixer_handler_new_handlers_total': 'handler.new_handlers_total', 'mixer_mcp_sink_reconnections': 'mcp_sink.reconnections', 'mixer_mcp_sink_request_acks_total': 'mcp_sink.request_acks_total', 'mixer_runtime_dispatches_total': 'runtime.dispatches_total', 'mixer_runtime_dispatch_duration_seconds': 'runtime.dispatch_duration_seconds', } PILOT_METRICS = { 'pilot_conflict_inbound_listener': 'conflict.inbound_listener', 'pilot_conflict_outbound_listener_http_over_current_tcp': ('conflict.outbound_listener.http_over_current_tcp'), 'pilot_conflict_outbound_listener_tcp_over_current_http': ('conflict.outbound_listener.tcp_over_current_http'), 'pilot_conflict_outbound_listener_tcp_over_current_tcp': ('conflict.outbound_listener.tcp_over_current_tcp'), 'pilot_destrule_subsets': 'destrule_subsets', 'pilot_duplicate_envoy_clusters': 'duplicate_envoy_clusters', 'pilot_eds_no_instances': 'eds_no_instances', 'pilot_endpoint_not_ready': 'endpoint_not_ready', 'pilot_invalid_out_listeners': 'invalid_out_listeners', 'pilot_mcp_sink_reconnections': 'mcp_sink.reconnections', 'pilot_mcp_sink_recv_failures_total': 'mcp_sink.recv_failures_total', 'pilot_mcp_sink_request_acks_total': 'mcp_sink.request_acks_total', 'pilot_no_ip': 'no_ip', 'pilot_proxy_convergence_time': 'proxy_convergence_time', 'pilot_rds_expired_nonce': 'rds_expired_nonce', 'pilot_services': 'services', 'pilot_total_xds_internal_errors': 'total_xds_internal_errors', 'pilot_total_xds_rejects': 'total_xds_rejects', 'pilot_virt_services': 'virt_services', 'pilot_vservice_dup_domain': 'vservice_dup_domain', 'pilot_xds': 'xds', 'pilot_xds_eds_instances': 'xds.eds_instances', 'pilot_xds_push_context_errors': 'xds.push.context_errors', 'pilot_xds_push_timeout': 'xds.push.timeout', 'pilot_xds_push_timeout_failures': 'xds.push.timeout_failures', 'pilot_xds_pushes': 'xds.pushes', 'pilot_xds_write_timeout': 'xds.write_timeout', 'pilot_xds_rds_reject': 'pilot.xds.rds_reject', 'pilot_xds_eds_reject': 'pilot.xds.eds_reject', 'pilot_xds_cds_reject': 'pilot.xds.cds_reject', 'pilot_xds_lds_reject': 'pilot.xds.lds_reject', } ISTIOD_METRICS = { # Maintain namespace compatibility from legacy components # Generic metrics 'go_gc_duration_seconds': 'go.gc_duration_seconds', 'go_goroutines': 'go.goroutines', 'go_info': 'go.info', 'go_memstats_alloc_bytes': 'go.memstats.alloc_bytes', 'go_memstats_alloc_bytes_total': 'go.memstats.alloc_bytes_total', 'go_memstats_buck_hash_sys_bytes': 'go.memstats.buck_hash_sys_bytes', 'go_memstats_frees_total': 'go.memstats.frees_total', 'go_memstats_gc_cpu_fraction': 'go.memstats.gc_cpu_fraction', 'go_memstats_gc_sys_bytes': 'go.memstats.gc_sys_bytes', 'go_memstats_heap_alloc_bytes': 'go.memstats.heap_alloc_bytes', 'go_memstats_heap_idle_bytes': 'go.memstats.heap_idle_bytes', 'go_memstats_heap_inuse_bytes': 'go.memstats.heap_inuse_bytes', 'go_memstats_heap_objects': 'go.memstats.heap_objects', 'go_memstats_heap_released_bytes': 'go.memstats.heap_released_bytes', 'go_memstats_heap_sys_bytes': 'go.memstats.heap_sys_bytes', 'go_memstats_last_gc_time_seconds': 'go.memstats.last_gc_time_seconds', 'go_memstats_lookups_total': 'go.memstats.lookups_total', 'go_memstats_mallocs_total': 'go.memstats.mallocs_total', 'go_memstats_mcache_inuse_bytes': 'go.memstats.mcache_inuse_bytes', 'go_memstats_mcache_sys_bytes': 'go.memstats.mcache_sys_bytes', 'go_memstats_mspan_inuse_bytes': 'go.memstats.mspan_inuse_bytes', 'go_memstats_mspan_sys_bytes': 'go.memstats.mspan_sys_bytes', 'go_memstats_next_gc_bytes': 'go.memstats.next_gc_bytes', 'go_memstats_other_sys_bytes': 'go.memstats.other_sys_bytes', 'go_memstats_stack_inuse_bytes': 'go.memstats.stack_inuse_bytes', 'go_memstats_stack_sys_bytes': 'go.memstats.stack_sys_bytes', 'go_memstats_sys_bytes': 'go.memstats.sys_bytes', 'go_threads': 'go.threads', 'process_cpu_seconds_total': 'process.cpu_seconds_total', 'process_max_fds': 'process.max_fds', 'process_open_fds': 'process.open_fds', 'process_resident_memory_bytes': 'process.resident_memory_bytes', 'process_start_time_seconds': 'process.start_time_seconds', 'process_virtual_memory_bytes': 'process.virtual_memory_bytes', 'pilot_conflict_inbound_listener': 'pilot.conflict.inbound_listener', 'pilot_conflict_outbound_listener_http_over_current_tcp': ( 'pilot.conflict.outbound_listener.http_over_current_tcp' ), 'pilot_conflict_outbound_listener_tcp_over_current_http': ( 'pilot.conflict.outbound_listener.tcp_over_current_http' ), 'pilot_conflict_outbound_listener_tcp_over_current_tcp': ('pilot.conflict.outbound_listener.tcp_over_current_tcp'), 'pilot_destrule_subsets': 'pilot.destrule_subsets', 'pilot_duplicate_envoy_clusters': 'pilot.duplicate_envoy_clusters', 'pilot_eds_no_instances': 'pilot.eds_no_instances', 'pilot_endpoint_not_ready': 'pilot.endpoint_not_ready', 'pilot_invalid_out_listeners': 'pilot.invalid_out_listeners', 'pilot_mcp_sink_reconnections': 'pilot.mcp_sink.reconnections', 'pilot_mcp_sink_recv_failures_total': 'pilot.mcp_sink.recv_failures_total', 'pilot_mcp_sink_request_acks_total': 'pilot.mcp_sink.request_acks_total', 'pilot_no_ip': 'pilot.no_ip', 'pilot_proxy_convergence_time': 'pilot.proxy_convergence_time', 'pilot_rds_expired_nonce': 'pilot.rds_expired_nonce', 'pilot_services': 'pilot.services', 'pilot_total_xds_internal_errors': 'pilot.total_xds_internal_errors', 'pilot_total_xds_rejects': 'pilot.total_xds_rejects', 'pilot_virt_services': 'pilot.virt_services', 'pilot_vservice_dup_domain': 'pilot.vservice_dup_domain', 'pilot_xds': 'pilot.xds', 'pilot_xds_eds_instances': 'pilot.xds.eds_instances', 'pilot_xds_push_context_errors': 'pilot.xds.push.context_errors', 'pilot_xds_push_timeout': 'pilot.xds.push.timeout', 'pilot_xds_push_timeout_failures': 'pilot.xds.push.timeout_failures', 'pilot_xds_pushes': 'pilot.xds.pushes', 'pilot_xds_write_timeout': 'pilot.xds.write_timeout', 'pilot_xds_rds_reject': 'pilot.xds.rds_reject', 'pilot_xds_eds_reject': 'pilot.xds.eds_reject', 'pilot_xds_cds_reject': 'pilot.xds.cds_reject', 'pilot_xds_lds_reject': 'pilot.xds.lds_reject', 'grpc_server_handled_total': 'grpc.server.handled_total', 'grpc_server_handling_seconds': 'grpc.server.handling_seconds', 'grpc_server_msg_received_total': 'grpc.server.msg_received_total', 'grpc_server_msg_sent_total': 'grpc.server.msg_sent_total', 'grpc_server_started_total': 'grpc.server.started_total', 'grpc_io_server_completed_rpcs': 'mixer.grpc_io_server.completed_rpcs', 'grpc_io_server_received_bytes_per_rpc': 'mixer.grpc_io_server.received_bytes_per_rpc', 'grpc_io_server_sent_bytes_per_rpc': 'mixer.grpc_io_server.sent_bytes_per_rpc', 'grpc_io_server_server_latency': 'mixer.grpc_io_server.server_latency', 'mixer_config_attributes_total': 'mixer.config.attributes_total', 'mixer_config_handler_configs_total': 'mixer.config.handler_configs_total', 'mixer_config_instance_configs_total': 'mixer.config.instance_configs_total', 'mixer_config_rule_configs_total': 'mixer.config.rule_configs_total', 'mixer_dispatcher_destinations_per_request': 'mixer.dispatcher.destinations_per_request', 'mixer_dispatcher_instances_per_request': 'mixer.dispatcher.instances_per_request', 'mixer_handler_daemons_total': 'mixer.handler.daemons_total', 'mixer_handler_new_handlers_total': 'mixer.handler.new_handlers_total', 'mixer_mcp_sink_reconnections': 'mixer.mcp_sink.reconnections', 'mixer_mcp_sink_request_acks_total': 'mixer.mcp_sink.request_acks_total', 'mixer_runtime_dispatches_total': 'mixer.runtime.dispatches_total', 'mixer_runtime_dispatch_duration_seconds': 'mixer.runtime.dispatch_duration_seconds', 'endpoint_no_pod': 'galley.endpoint_no_pod', 'galley_mcp_source_clients_total': 'galley.mcp_source.clients_total', 'galley_runtime_processor_event_span_duration_milliseconds': ( 'galley.runtime_processor.event_span_duration_milliseconds' ), 'galley_runtime_processor_events_processed_total': 'galley.runtime_processor.events_processed_total', 'galley_runtime_processor_snapshot_events_total': 'galley.runtime_processor.snapshot_events_total', 'galley_runtime_processor_snapshot_lifetime_duration_milliseconds': ( 'galley.runtime_processor.snapshot_lifetime_duration_milliseconds' ), 'galley_runtime_processor_snapshots_published_total': ('galley.runtime_processor.snapshots_published_total'), 'galley_runtime_state_type_instances_total': 'galley.runtime_state_type_instances_total', 'galley_runtime_strategy_on_change_total': 'galley.runtime_strategy.on_change_total', 'galley_runtime_strategy_timer_max_time_reached_total': ('galley.runtime_strategy.timer_max_time_reached_total'), 'galley_runtime_strategy_timer_quiesce_reached_total': 'galley.runtime_strategy.quiesce_reached_total', 'galley_runtime_strategy_timer_resets_total': 'galley.runtime_strategy.timer_resets_total', 'galley_source_kube_dynamic_converter_success_total': ('galley.source_kube.dynamic_converter_success_total'), 'galley_source_kube_event_success_total': 'galley.source_kube.event_success_total', 'galley_validation_config_load': 'galley.validation.config_load', 'galley_validation_config_updates': 'galley.validation.config_update', 'citadel_secret_controller_csr_err_count': 'citadel.secret_controller.csr_err_count', 'citadel_secret_controller_secret_deleted_cert_count': ('citadel.secret_controller.secret_deleted_cert_count'), 'citadel_secret_controller_svc_acc_created_cert_count': ('citadel.secret_controller.svc_acc_created_cert_count'), 'citadel_secret_controller_svc_acc_deleted_cert_count': ('citadel.secret_controller.svc_acc_deleted_cert_count'), 'citadel_server_authentication_failure_count': 'citadel.server.authentication_failure_count', 'citadel_server_citadel_root_cert_expiry_timestamp': ('citadel.server.citadel_root_cert_expiry_timestamp'), 'citadel_server_csr_count': 'citadel.server.csr_count', 'citadel_server_csr_parsing_err_count': 'citadel.server.csr_parsing_err_count', 'citadel_server_id_extraction_err_count': 'citadel.server.id_extraction_err_count', 'citadel_server_success_cert_issuance_count': 'citadel.server.success_cert_issuance_count', # These metrics supported Istio 1.5 'galley_validation_config_update_error': 'galley.validation.config_update_error', 'citadel_server_root_cert_expiry_timestamp': 'citadel.server.root_cert_expiry_timestamp', 'galley_validation_passed': 'galley.validation.passed', 'galley_validation_failed': 'galley.validation.failed', 'pilot_conflict_outbound_listener_http_over_https': 'pilot.conflict.outbound_listener.http_over_https', 'pilot_inbound_updates': 'pilot.inbound_updates', 'pilot_k8s_cfg_events': 'pilot.k8s.cfg_events', 'pilot_k8s_reg_events': 'pilot.k8s.reg_events', 'pilot_proxy_queue_time': 'pilot.proxy_queue_time', 'pilot_push_triggers': 'pilot.push.triggers', 'pilot_xds_eds_all_locality_endpoints': 'pilot.xds.eds_all_locality_endpoints', 'pilot_xds_push_time': 'pilot.xds.push.time', 'process_virtual_memory_max_bytes': 'process.virtual_memory_max_bytes', 'sidecar_injection_requests_total': 'sidecar_injection.requests_total', 'sidecar_injection_success_total': 'sidecar_injection.success_total', 'sidecar_injection_failure_total': 'sidecar_injection.failure_total', 'sidecar_injection_skip_total': 'sidecar_injection.skip_total', }
StarcoderdataPython
8169604
# https://hackernoon.com/gradient-boosting-and-xgboost-90862daa6c77 import pandas as pd from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.ensemble import GradientBoostingClassifier from sklearn.metrics import classification_report import numpy as np import matplotlib.pyplot as plt iris_dataset = load_iris() # print(iris_dataset.data) # print(iris_dataset.target_names) # print(iris_dataset.target) # print(iris_dataset.feature_names) features = pd.DataFrame(iris_dataset.data) features.columns = iris_dataset.feature_names print(features.head()) labels = pd.DataFrame(iris_dataset.target) print(labels.head()) print(features.info()) print(labels.info()) print("features size ", features.shape) print("labels size ", labels.shape) train_features, test_features, train_labels, test_labels = train_test_split( features, labels, test_size=0.3, stratify=labels ) print("train features size ", train_features.shape) print("train labels size ", train_labels.shape) print("test features size ", test_features.shape) print("test labels size ", test_labels.shape) # learning_rate=0.1, n_estimators=100, loss='deviance', model = GradientBoostingClassifier() model.fit(train_features, train_labels) print("train score", model.score(train_features, train_labels)) print(classification_report(train_labels, model.predict(train_features))) print("test score", model.score(test_features, test_labels)) print(classification_report(test_labels, model.predict(test_features))) """ train score 1.0 precision recall f1-score support 0 1.00 1.00 1.00 37 1 1.00 1.00 1.00 35 2 1.00 1.00 1.00 33 accuracy 1.00 105 macro avg 1.00 1.00 1.00 105 weighted avg 1.00 1.00 1.00 105 test score 0.9333333333333333 precision recall f1-score support 0 1.00 1.00 1.00 13 1 0.88 0.93 0.90 15 2 0.94 0.88 0.91 17 accuracy 0.93 45 macro avg 0.94 0.94 0.94 45 weighted avg 0.93 0.93 0.93 45 """ X = iris_dataset.data[:, :2] # Sepal length, sepal width y = iris_dataset.target h = 0.02 # Step size color_dict = {0: "blue", 1: "lightgreen", 2: "red"} colors = [color_dict[i] for i in y] model.fit(X, y) x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) plt.figure() Z = model.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, cmap=plt.cm.coolwarm, alpha=0.8) plt.scatter(X[:, 0], X[:, 1], c=colors) plt.xlabel(iris_dataset.feature_names[0]) plt.ylabel(iris_dataset.feature_names[1]) plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks() plt.yticks() plt.show()
StarcoderdataPython
6413789
<reponame>dave-tucker/hp-sdn-client #!/usr/bin/env python # # Copyright 2014 Hewlett-Packard Development Company, L.P. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json # Python3 compatibility try: import urllib.parse as urllib except ImportError: import urllib def raise_errors(response): if response.status_code == 400: raise_400(response) elif response.status_code == 404: raise_404(response) elif response.status_code == 500: raise_500(response) else: # let requests raise the error response.raise_for_status() def raise_400(response): data = response.json() if "Invalid JSON format" in data['message']: raise InvalidJson(response.request.url, json.dumps(response.request.body), data['message']) elif "IllegalArgumentException" in data['error']: raise IllegalArgument() elif "VersionMismatchException" in data['error']: dpid = urllib.unquote(response.request.url.split('/')[7]) required_version = data['message'][-3:] raise VersionMismatch(dpid, required_version) else: response.raise_for_status() def raise_404(response): data = response.json() if "NotFoundException" in data['error']: raise NotFound(data['message']) else: response.raise_for_status() def raise_500(response): data = response.json() if "IllegalStateException" in data['error']: raise OpenflowProtocolError() else: response.raise_for_status() class HpsdnclientError(Exception): """Base class for Flare API errors""" pass class InvalidJson(HpsdnclientError): def __init__(self, url, request_body, message): self.url = url self.request_body = request_body self.message = message super(InvalidJson, self).__init__(message) class VersionMismatch(HpsdnclientError): def __init__(self, dpid, required_version): self.dpid = dpid self.required_version = required_version message = ("This feature is not supported on DPID {0}. " + "It requires OpenFlow version {1}").format(dpid, required_version) super(VersionMismatch, self).__init__(message) class IllegalArgument(HpsdnclientError): def __init__(self, arguments=None): super(IllegalArgument, self).__init__() self.arguments = arguments class NotFound(HpsdnclientError): def __init__(self, message): super(NotFound, self).__init__(message) class OpenflowProtocolError(HpsdnclientError): def __init__(self): message = ("Something bad happened at the OpenFlow protocol layer." + " This could be because this feature is not implemented " + "on this device") super(OpenflowProtocolError, self).__init__(message) class DatatypeError(HpsdnclientError): def __init__(self, received, expected): self.received = received self.expected = expected message = "Received: {0} Expected: {1}".format(received, expected) super(DatatypeError, self).__init__(message)
StarcoderdataPython
8093794
<gh_stars>10-100 # =============================================================================== # Copyright 2021 ross # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== from traits.api import Enum from pychron.options.options import FigureOptions from pychron.options.views.regression_views import VIEWS from pychron.pychron_constants import MAIN, APPEARANCE class RegressionOptions(FigureOptions): regressor = Enum("NewYork") def initialize(self): self.subview_names = [MAIN, APPEARANCE] def _get_subview(self, name): return VIEWS[name] # ============= EOF =============================================
StarcoderdataPython
3516081
<gh_stars>0 class ErrorLog: def __init__(self, _servername, _timestamp, _type, _msg): self.servername = _servername self.timestamp = _timestamp self.typ = _type self.msg = _msg def get_servername(self): return self.servername def get_timestamp(self): # TODO return self.timestamp def get_type(self): return self.typ def get_msg(self): return self.msg
StarcoderdataPython
5088990
import torch def log_likelihood(nbhd_means, feature_means, feature_vars, k, past_comps = []): # given neighborhood expression data, construct likelihood function # should work in pytorch n_samples = nbhd_means.shape[0] nbhd_means = torch.tensor(nbhd_means).double() feature_means = torch.tensor(feature_means).double() feature_vars = torch.tensor(feature_vars).double() def f(coefs): coefs_orth = coefs for i,comp in enumerate(past_comps): #project orthogonally coefs_orth = coefs_orth - torch.dot(coefs_orth, comp) * comp observed_means = torch.matmul(nbhd_means, torch.reshape(coefs_orth, (-1, 1))) # mean and variance of metagene defined by coef, under # independent gene hypothesis # variance gets scaled down due to averaging. theoretical_mean = torch.dot(feature_means, coefs_orth) theoretical_var = torch.div(torch.dot(torch.pow(coefs_orth, 2), feature_vars), float(k)) # print(theoretical_mean) # print(theoretical_var) result = (-1 * n_samples / 2.) * torch.log(theoretical_var) - torch.div( torch.sum(torch.pow(observed_means - theoretical_mean, 2)), 2 * theoretical_var) return (result) return (f)
StarcoderdataPython
390346
from django.urls import path from . import views as v app_name = 'core' urlpatterns = [ path('', v.index, name='index'), path('form_submit', v.form_submit, name='form_submit'), path('api/pokemon/<slug:slug>', v.get_pokemon, name='get_pokemon'), ]
StarcoderdataPython
47806
# encoding: utf-8 import os import re import sys import gzip import time import json import socket import random import weakref import datetime import functools import threading import collections import urllib.error import urllib.parse import urllib.request import collections.abc import json_dict from . import utils class ProxyURLRefreshError(Exception): pass class AliveProxiesNotFound(Exception): pass class NoFreeProxies(Exception): pass def _get_missing(target, source): """Возвращает присутствующие в `target`, но отсутствующие в `source` элементы """ old_target = set(target) new_target = old_target.intersection(source) return old_target.difference(new_target) def _build_opener(proxy=None): if proxy is not None: parsed = urllib.parse.urlparse(proxy) handler = urllib.request.ProxyHandler({parsed.scheme: proxy}) return urllib.request.build_opener(handler) else: return urllib.request.build_opener() class Proxies: default_opener = _build_opener() def __init__( self, proxies=None, proxies_url=None, proxies_url_gateway=None, proxies_file=None, options=None, ): """ @param proxies: список адресов прокси-серверов @param proxies_url: ссылка на список прокси-серверов @param proxies_file: путь до файла со списком прокси-серверов @param options: доп. параметры """ if options is None: options = {} shuffle = options.get('shuffle', False) if proxies is not None: proxies = list(proxies) if shuffle: random.shuffle(proxies) auto_refresh_period = options.get('auto_refresh_period') if auto_refresh_period: auto_refresh_period = datetime.timedelta(**auto_refresh_period) blacklist = utils.get_json_dict(json_dict.JsonLastUpdatedOrderedDict, filename=options.get('blacklist')) cooling_down = utils.get_json_dict(json_dict.JsonOrderedDict, filename=options.get('cooldown')) stats = utils.get_json_dict(json_dict.JsonDict, filename=options.get('stats')) if proxies_url_gateway: url_opener = _build_opener(proxies_url_gateway) else: url_opener = None self._url_opener = url_opener self._proxies = proxies self.proxies_url = proxies_url self.proxies_file = proxies_file self._shuffle = shuffle self.slice = options.get('slice') self.force_type = options.get('type') self.auto_refresh_period = auto_refresh_period self._blacklist = blacklist self._cooling_down = cooling_down self._stats = stats self._cleanup_lock = threading.RLock() self._last_auto_refresh = None self._auto_refresh_lock = threading.Lock() self._load_lock = threading.Lock() self._modified_at = time.perf_counter() self.__pool = None self._smart_holdout_start = options.get('smart_holdout_start') self._options = options if self._proxies is not None: proxies = set(self._proxies) self._cleanup_internals(proxies) @property def proxies(self): if self._proxies is None: with self._load_lock: # Вышли из состояния гонки, теперь можно удостовериться в реальной необходимости if self._proxies is None: self._proxies = self._load() self._cleanup_internals(self._proxies) self._modified_at = time.perf_counter() return self._proxies def _load(self): if self.proxies_url: proxies = self.read_url(self.proxies_url, opener=self._url_opener) elif self.proxies_file: proxies = self.read_file(self.proxies_file) else: raise NotImplementedError( "Can't load proxies: " "please specify one of the sources ('proxies_url' or 'proxies_file')" ) if self.slice: proxies = proxies[slice(*self.slice)] if self.force_type: new_type = self.force_type + '://' # `socks` format proxies = [ re.sub(r'^(?:(.*?)://)?', new_type, proxy) for proxy in proxies ] if self._shuffle: random.shuffle(proxies) return proxies def _cleanup_internals(self, proxies): with self._cleanup_lock: self._cleanup_blacklist(proxies) self._cleanup_cooling_down(proxies) self._cleanup_stats(proxies) def _cleanup_cooling_down(self, proxies): for proxy in _get_missing(self._cooling_down, proxies): self._cooling_down.pop(proxy) def _cleanup_blacklist(self, proxies): for proxy in _get_missing(self._blacklist, proxies): self._blacklist.pop(proxy) def _cleanup_stats(self, proxies): for proxy in _get_missing(self._stats, proxies): self._stats.pop(proxy) def _get_options(self, *options, missing_ok=True): if missing_ok: return {k: self._options.get(k) for k in options} else: return {k: self._options[k] for k in options} @classmethod def read_string(cls, string, sep=','): return list(x for x in map(str.strip, string.split(sep)) if x) @classmethod def read_url(cls, url, sep='\n', retry=10, sleep_range=(2, 10), timeout=2, opener=None): if opener is None: opener = cls.default_opener while True: try: resp = opener.open(url, timeout=timeout) break except (urllib.error.HTTPError, socket.timeout): if not retry: raise retry -= 1 time.sleep(random.randint(*sleep_range)) content = resp.read() if resp.headers.get('Content-Encoding', 'identity') == 'gzip': content = gzip.decompress(content) charset = resp.headers.get_content_charset('utf-8') content = content.decode(charset) return cls.read_string(content, sep=sep) @classmethod def read_file(cls, file_name, sep='\n'): with open(file_name) as f: return cls.read_string(f.read(), sep=sep) def refresh(self): if not self.proxies_url and not self.proxies_file: return try: self._proxies = self._load() self._cleanup_internals(self._proxies) except urllib.error.HTTPError: import problems problems.handle(ProxyURLRefreshError, extra={'url': self.proxies_url}) else: self._modified_at = time.perf_counter() def _auto_refresh(self): if self.proxies_file: with self._auto_refresh_lock: modification_time = datetime.datetime.fromtimestamp(os.stat(self.proxies_file).st_mtime) if modification_time == self._last_auto_refresh: return self.refresh() self._last_auto_refresh = modification_time elif self.proxies_url: if self.auto_refresh_period is None: return with self._auto_refresh_lock: now = datetime.datetime.now() if self._last_auto_refresh is not None: if now - self._last_auto_refresh < self.auto_refresh_period: return self.refresh() self._last_auto_refresh = now def get_random_address(self): self._auto_refresh() return random.choice(self.proxies) def get_pool(self): if self.__pool is None: with self._cleanup_lock: # оптимизация: используем уже существующий лок # Вышли из состояния гонки, теперь можно удостовериться в реальной необходимости if self.__pool is None: options = self._get_options('default_holdout', 'default_bad_holdout', 'force_defaults') if self._smart_holdout_start is not None: options['smart_holdout'] = True options['smart_holdout_start'] = self._smart_holdout_start options.update(self._get_options('smart_holdout_min', 'smart_holdout_max')) self.__pool = _Pool( self, self._cooling_down, self._blacklist, self._stats, self._cleanup_lock, **options ) return self.__pool @classmethod def from_cfg_string(cls, cfg_string): """Возвращает список прокси с тем исключением что список опций берется автоматически. Формат: json Доступные опции: type ('socks5', 'http'; для полного списка типов см. модуль socks): все прокси будут автоматически промаркированы этип типом slice (tuple c аргументами для builtins.slice): будет взят только указанный фрагмент списка прокси-серверов auto_refresh_period (dict): {'days': ..., 'hours': ..., 'minutes': ...} как часто необходимо обновлять список прокси-серверов (только для `url` и `file`) url_gateway: адрес proxy, через которые будет загружаться список прокси по url (url, file, list) - может быть именем файла, ссылкой или списком в формате json Параметры slice и force_type являются необязательными Примеры: option = {"list": ["127.0.0.1:3128"]} option = {"list": ["127.0.0.1:3128", "127.0.0.1:9999"]} option = {"file": "./my_new_proxies.txt", "type": "socks5"} option = {"url": "http://example.com/get/proxy_list/", "slice": [35, null], "type": "http"} option = {"url": "http://example.com/get/proxy_list/", "auto_refresh_period": {"days": 1}} option = {"url": "http://example.com/get/proxy_list/", "url_gateway": "http://proxy.example.com:9999"} """ cfg = json.loads(cfg_string) proxies = cfg.pop('list', None) proxies_url = cfg.pop('url', None) proxies_url_gateway = cfg.pop('url_gateway', None) proxies_file = cfg.pop('file', None) return cls( proxies=proxies, proxies_url=proxies_url, proxies_url_gateway=proxies_url_gateway, proxies_file=proxies_file, options=cfg ) class _Pool: def __init__( self, proxies: "`Proxies` instance", cooling_down, blacklist, stats, _cleanup_lock=None, smart_holdout=False, smart_holdout_start=None, smart_holdout_min=None, smart_holdout_max=None, default_holdout=None, default_bad_holdout=None, force_defaults=False, ): if smart_holdout: if smart_holdout_start in (None, 0): raise RuntimeError("Вы должны указать начальное время охлаждения") if smart_holdout_max is None: smart_holdout_max = float('inf') self._used = set() self._cond = threading.Condition(lock=_cleanup_lock) self._free = collections.deque( p for p in proxies.proxies if ( p not in blacklist and p not in cooling_down ) ) self._proxies = proxies self._cooling_down = cooling_down self._blacklist = blacklist self._stats = stats self._smart_holdout = smart_holdout self._smart_holdout_start = smart_holdout_start self._smart_holdout_min = smart_holdout_min or 0 self._smart_holdout_max = smart_holdout_max self._default_holdout = default_holdout self._default_bad_holdout = default_bad_holdout self._force_defaults = force_defaults self._proxies_modified_at = proxies._modified_at @property def _size(self): return len(self._free) + len(self._used) + len(self._cooling_down) + len(self._blacklist) def _cool_released(self): now = time.time() cooled = [] for proxy, holdout in self._cooling_down.items(): if now >= holdout: cooled.append(proxy) for proxy in cooled: self._cooling_down.pop(proxy, None) if proxy not in self._blacklist: self._free.append(proxy) def _is_proxies_changed(self): self._proxies._auto_refresh() return self._proxies._modified_at != self._proxies_modified_at def _remove_outdated(self): # список прокси изменился, оставляем только актуальные full_list = set(self._proxies.proxies) for proxy in _get_missing(self._blacklist, full_list): self._blacklist.pop(proxy, None) for proxy in _get_missing(self._cooling_down, full_list): self._cooling_down.pop(proxy, None) for proxy in _get_missing(self._used, full_list): self._used.remove(proxy) for proxy in _get_missing(self._stats, full_list): self._stats.pop(proxy, None) free = set( p for p in full_list if ( p not in self._used and p not in self._blacklist and p not in self._cooling_down ) ) old_free = set(self._free) new_free = old_free.intersection(free) if old_free.difference(new_free): self._free.clear() self._free.extend(new_free) self._proxies_modified_at = self._proxies._modified_at def _update_stats(self, proxy, bad=False, holdout=None): proxy_stat = self._stats.get(proxy) or {} ok, fail = proxy_stat.get('uptime', (0, 0)) if not bad: ok += 1 else: fail += 1 proxy_stat['uptime'] = ok, fail proxy_stat['last_holdout'] = holdout if ( not bad or ( holdout is not None and holdout >= (proxy_stat.get('last_good_holdout') or 0) ) ): proxy_stat['last_good_holdout'] = holdout # универсальный способ сказать что статистика обновилась # тк без вызова метода .save будет работать и с обычным словарем (не только с JsonDict) self._stats[proxy] = proxy_stat def _get_next_holdout(self, proxy, bad=False): """Рассчитывает время охлаждения. @param proxy: прокси, для которого необходимо вычислить @param bad: True - вычисляем охлаждение для неудачи, иначе False @return: рекомендуемое время охлаждения в секундах или None, если недостаточно данных """ # Алгоритм основан на бинарном поиске, # в отличии от которого нам не известна верхняя граница proxy_stat = self._stats.get(proxy) if proxy_stat is None: return None last_holdout = proxy_stat['last_holdout'] last_good_holdout = proxy_stat.get('last_good_holdout', 0) lo = last_holdout # предыдущее время охлаждения (нижняя граница) if bad: # Мы получили "бан" ... if lo < last_good_holdout: # ... возвращаемся к предыдущему хорошему значению ... holdout = last_good_holdout else: # ... или сдвигаем границу дальше holdout = lo * 2 else: # возвращаемся к предыдущей границе (lo / 2) # но с небольшим отступом - на середину отрезка [(lo / 2), lo] holdout = lo * 0.75 return holdout def acquire(self, timeout=None): start = time.perf_counter() with self._cond: while True: if self._is_proxies_changed(): self._remove_outdated() self._cool_released() if self._free: proxy = self._free.popleft() self._used.add(proxy) return proxy if self._blacklist: # Возвращаем самый стабильный из блеклиста. Возможно бан снят. def _uptime(p): uptime = float('inf') p_stat = self._stats.get(p) if p_stat is not None: ok, failed = p_stat.get('uptime', (0, 0)) if failed != 0: uptime = ok // failed else: uptime = ok return uptime proxy = next(( p for p in sorted(self._blacklist, key=_uptime, reverse=True) if p not in self._cooling_down ), None) if proxy is not None: self._blacklist.pop(proxy) self._used.add(proxy) return proxy else: # Все прокси из блеклиста находятся на охлаждении pass if self._cooling_down: self._cond.wait(1) else: self._cond.wait(timeout) if timeout is not None: if time.perf_counter() - start > timeout: raise NoFreeProxies def release(self, proxy, bad=False, holdout=None, bad_reason=None): """Возвращает прокси в пул @param proxy: прокси @param holdout (сек): None - вернуть сразу, иначе прокси не будет использован до истечения указанного интервала """ with self._cond: is_outdated = proxy not in self._used if is_outdated: # Скорее всего прокси уже не актуален # И был удален из списка return self._used.remove(proxy) if holdout is None or self._force_defaults: holdout = self._default_holdout if not bad else self._default_bad_holdout if self._smart_holdout: _holdout = ( self._get_next_holdout(proxy, bad=bad) or holdout or self._smart_holdout_start ) # Не позволяем границе опуститься слишком низко if _holdout < self._smart_holdout_min: holdout = self._smart_holdout_min elif _holdout > self._smart_holdout_max: holdout = self._smart_holdout_max else: holdout = max(self._smart_holdout_min, _holdout) if holdout is not None: self._cooling_down[proxy] = time.time() + holdout if bad: self._blacklist[proxy] = bad_reason elif holdout is None: # прокси не требует остывания self._free.append(proxy) self._cond.notify() self._update_stats(proxy, bad=bad, holdout=holdout) class IChain: def switch(self, bad=False, holdout=None, bad_reason=None, lazy=False): raise NotImplementedError def get_adapter(self): raise NotImplementedError def get_handler(self): raise NotImplementedError def get_path(self): raise NotImplementedError def wrap_session(self, session): raise NotImplementedError def wrap_module(self, module, all_threads=False): """ Attempts to replace a module's socket library with a SOCKS socket. This will only work on modules that import socket directly into the namespace; most of the Python Standard Library falls into this category. """ import socks import socks.monkey_socket routes = socks.RoutingTable.from_addresses(self.get_path()) if not all_threads: socks.monkey_socket.socks_wrap_module_thread(routes, module) else: socks.monkey_socket.socks_wrap_module_global(routes, module) class Chain(IChain): """ Не является потокобезопасным. """ def __init__(self, proxies, proxy_gw=None, use_pool=False, pool_acquire_timeout=None): """ @param proxies: список адресов прокси-серверов @param proxy_gw: прокси-сервер, который должен стоять во главе цепочки (все запросы к другим прокси-серверам будут проходить через него) @param use_pool: использовать список прокси в качестве пула @param pool_acquire_timeout (сек.): если за указанный период не удастся получить свободный прокси будет брошено исключение `NoFreeProxies`, None - ждать до появления свободного адреса """ if not isinstance(proxies, Proxies) and isinstance(proxies, collections.Sequence): proxies = Proxies(proxies) if use_pool: pool = proxies.get_pool() else: pool = None self.proxies = proxies self.proxy_gw = proxy_gw self._proxies_pool = pool self._current_pool_proxy = None self._pool_acquire_timeout = pool_acquire_timeout self.__path = [] # fix http://bugs.python.org/issue23841 if sys.version_info >= (3, 4, 0): self.finalizer = weakref.finalize(self, self.finalize) else: self.finalizer = None def __del__(self): if self.finalizer is None: self.finalize() def finalize(self): if self._proxies_pool is not None: self._release_pool_proxy() def _build_path(self, proxy): path = [] if self.proxy_gw: path.append(self.proxy_gw) path.append(proxy) return path def _release_pool_proxy(self, bad=False, holdout=None, bad_reason=None): if self._current_pool_proxy: proxy = self._current_pool_proxy self._current_pool_proxy = None self._proxies_pool.release(proxy, bad=bad, holdout=holdout, bad_reason=bad_reason) def _acquire_pool_proxy(self): proxy = self._proxies_pool.acquire(timeout=self._pool_acquire_timeout) self._current_pool_proxy = proxy return proxy def _get_proxy(self): if self._proxies_pool is not None: return self._acquire_pool_proxy() else: return self.proxies.get_random_address() @property def _path(self): if not self.__path: self.__path = self._build_path(self._get_proxy()) return self.__path def get_path(self): return self._path def switch(self, bad=False, holdout=None, bad_reason=None, lazy=False): self.__path.clear() if self._proxies_pool is not None: self._release_pool_proxy(bad, holdout, bad_reason) if not lazy: self.__path = self._build_path(self._get_proxy()) def get_adapter(self): import socks.adapters return socks.adapters.ChainedProxyHTTPAdapter(chain=self._path) def get_handler(self): import socks.handlers return socks.handlers.ChainProxyHandler(chain=self._path) def wrap_session(self, session): adapter = self.get_adapter() session.mount('http://', adapter) session.mount('https://', adapter) return session @classmethod def from_config(cls, cfg): proxy_cfg_string = cfg.get('Прокси') if proxy_cfg_string is None: return None proxy_gw = cfg.get('Шлюз') proxies = Proxies.from_cfg_string(proxy_cfg_string) return cls(proxies, proxy_gw=proxy_gw) class MultiChain(IChain): def __init__(self, *proxies_all, use_pool=True, pool_acquire_timeout=None): if use_pool: pool_kw = {'use_pool': True, 'pool_acquire_timeout': 1} else: pool_kw = {} self._pool_acquire_timeout = pool_acquire_timeout self._chains = collections.deque( Chain(p, gw, **pool_kw) for p, gw in self._unwrap_proxies_all(proxies_all) ) @staticmethod def _unwrap_proxies_all(proxies_all): for p in proxies_all: if isinstance(p, tuple): # (Proxies, Gateway) p, gw = p else: # Proxies p, gw = p, None yield p, gw def _self_auto_rotate(func): @functools.wraps(func) def wrapped(self, *args, **kw): start = time.perf_counter() while True: try: return func(self, *args, **kw) except NoFreeProxies: self._rotate() # FIXME: cycle rotate is normal? if ( self._pool_acquire_timeout is not None and time.perf_counter() - start > self._pool_acquire_timeout ): raise return wrapped @property def _current(self): return self._chains[-1] def get_path(self): return self._current.get_path() def _rotate(self): self._chains.rotate(1) def switch(self, bad=False, holdout=None, bad_reason=None, lazy=False): self._current.switch(bad=bad, holdout=holdout, bad_reason=bad_reason, lazy=True) self._rotate() if not lazy: self._enforce_current_path_build() @_self_auto_rotate def _enforce_current_path_build(self): _ = self._current._path # FIXME: ugly enforce path building after switching @_self_auto_rotate def get_adapter(self): return self._current.get_adapter() @_self_auto_rotate def get_handler(self): return self._current.get_handler() @_self_auto_rotate def wrap_session(self, session): return self._current.wrap_session(session) @_self_auto_rotate def wrap_module(self, module): return self._current.wrap_module(module)
StarcoderdataPython
6528648
<filename>python_examples/util.py from itertools import islice import numpy as np def data_generator(files, batch_size, n_classes): while 1: lines = [] for file in files: with open(file,'r',encoding='utf-8') as f: header = f.readline() # ignore the header while True: temp = len(lines) lines += list(islice(f,batch_size-temp)) if len(lines)!=batch_size: break idxs = [] vals = [] ## y_idxs = [] y_vals = [] y_batch = np.zeros([batch_size,n_classes], dtype=float) count = 0 for line in lines: itms = line.strip().split(' ') ## y_idxs = [int(itm) for itm in itms[0].split(',')] for i in range(len(y_idxs)): y_batch[count,y_idxs[i]] = 1.0/len(y_idxs) # y_batch[count,y_idxs[i]] = 1.0 ## idxs += [(count,int(itm.split(':')[0])) for itm in itms[1:]] vals += [float(itm.split(':')[1]) for itm in itms[1:]] count += 1 lines = [] yield (idxs, vals, y_batch) def data_generator_tst(files, batch_size): while 1: lines = [] for file in files: with open(file,'r',encoding='utf-8') as f: header = f.readline() # ignore the header while True: temp = len(lines) lines += list(islice(f,batch_size-temp)) if len(lines)!=batch_size: break idxs = [] vals = [] ## y_batch = [None for i in range(len(lines))] count = 0 for line in lines: itms = line.strip().split(' ') ## y_batch[count] = [int(itm) for itm in itms[0].split(',')] ## idxs += [(count,int(itm.split(':')[0])) for itm in itms[1:]] vals += [float(itm.split(':')[1]) for itm in itms[1:]] count += 1 lines = [] yield (idxs, vals, y_batch)
StarcoderdataPython
1662948
import re import random import requests import table import user_agent_list from bs4 import BeautifulSoup class HtmlPage: user_agent_number = 7345 def __init__(self, url): self.url = url def get_html(self, creds, proxy_pass): have_a_try = 3 if not proxy_pass: while have_a_try: t = table.Table('proxy_list', creds=creds) user_agent = user_agent_list.get_user_agent(int(random.random() * self.user_agent_number)) user_agent_dict = {'user-agent': user_agent} table_exist = t.table_check() if not table_exist: print("Proxy table corrupted.") return False tab_length = t.table_len() try: proxy = t.table_read(int(random.random() * (tab_length[0] - 1)) + 1) proxy_dict = {proxy[1]: proxy[2]} except TypeError: print("Fatal error in proxy list.") return False try: result = requests.get(str.rstrip(self.url), headers=user_agent_dict, proxies=proxy_dict) result.raise_for_status() return result.text except(requests.RequestException, ValueError): print("Bad proxy. One more try.") have_a_try -= 1 print("Network error. Update proxy list.") else: while have_a_try: try: result = requests.get(str.rstrip(self.url)) result.raise_for_status() return result.text except(requests.RequestException, ValueError): have_a_try -= 1 print("Network error. Can't get html.") return False def get_wb_page(self, creds, proxy_pass): html = self.get_html(creds, proxy_pass) if html: soup = BeautifulSoup(html, 'html.parser') articles = {} for index in soup.findAll('div', class_="dtList i-dtList j-card-item"): article_number = re.search(r'\d+', index.get('data-catalogercod1s')) articles[article_number[0]] = index.find('a')['href'] return articles return False
StarcoderdataPython
12822
from django.urls import reverse from rest_framework import status from .base import BaseTestCase class FollowTestCase(BaseTestCase): """Testcases for following a user.""" def test_follow_user_post(self): """Test start following a user.""" url = reverse('follow', kwargs={'username': 'test2'}) response = self.client.post(url, HTTP_AUTHORIZATION=self.auth_header) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_post_follow_already_followed_user(self): """Test start following a user you already follow.""" url = reverse('follow', kwargs={'username': 'test2'}) self.client.post(url, HTTP_AUTHORIZATION=self.auth_header) response = self.client.post(url, HTTP_AUTHORIZATION=self.auth_header) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_follow_missing_user_post(self): """Test trying to start following a missing user.""" url = reverse('follow', kwargs={'username': 'joel'}) response = self.client.post(url, HTTP_AUTHORIZATION=self.auth_header) self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND) def test_delete_follow(self): """Test unfollowing a user""" url = reverse('follow', kwargs={'username': 'test2'}) self.client.post(url, HTTP_AUTHORIZATION=self.auth_header) response = self.client.delete(url, HTTP_AUTHORIZATION=self.auth_header) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_delete_follow_of_not_followed_user(self): """Test unfollowing a user you are not following""" url = reverse('follow', kwargs={'username': 'test2'}) response = self.client.delete(url, HTTP_AUTHORIZATION=self.auth_header) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) def test_list_followers_of_user(self): """Test list followers of a user""" url_followers = reverse('getfollowers', kwargs={'username': 'test2'}) self.client.get(url_followers, HTTP_AUTHORIZATION=self.auth_header) url_follow = reverse('follow', kwargs={'username': 'test2'}) self.client.post(url_follow, HTTP_AUTHORIZATION=self.auth_header) response = self.client.get(url_followers, HTTP_AUTHORIZATION=self.auth_header) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_list_user_is_following(self): """Test list users the user is following""" url_following = reverse('getfollowing', kwargs={'username': 'test1'}) self.client.get(url_following, HTTP_AUTHORIZATION=self.auth_header) url_follow = reverse('follow', kwargs={'username': 'test2'}) self.client.post(url_follow, HTTP_AUTHORIZATION=self.auth_header) response = self.client.get(url_following, HTTP_AUTHORIZATION=self.auth_header) self.assertEqual(response.status_code, status.HTTP_200_OK)
StarcoderdataPython
9676225
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Author: <NAME> # Description : FFT Baseline Correction import sys, os import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.widgets import Slider, Button, SpanSelector from matplotlib import gridspec import scipy.fftpack from datetime import datetime from dateutil.parser import parse plt.rcParams['toolbar'] = 'None' def calculate_y_limits(ys): ymin = np.nanmin(ys) ymax = np.nanmax(ys) ydiff = ymax-ymin return((ymin-0.1*ydiff, ymax+0.1*ydiff)) def crawl_info_file(filename): with open(filename, "r") as file: data = file.read() blocks = [block.split("\n") for block in data.split("\n\n")] db_dict={} db_dict["filename"] = os.path.basename(filename) if db_dict["filename"].find("fat.")!=-1: db_dict["status"] = 0 elif db_dict["filename"][0]=="B": db_dict["status"] = +2 else: db_dict["status"] = +1 #Block 0 #General db_dict["experimentalist"] = blocks[0][0].split(" measured",1)[0] db_dict["molecule"] = blocks[0][0].split(": ",1)[1] [db_dict["datestart"],db_dict["datestop"]]=blocks[0][1].replace("Measurement started on ","").split(" and finished at ") db_dict["measurementtype"] = blocks[0][2].split(": ",1)[1] for i in ["datestart", "datestop"]: db_dict[i]=str(parse(db_dict[i])) #Block 1 #Probe Synthesizer db_dict["freqstart"] = float(blocks[1][1].split(": ",1)[1].replace("MHz","")) db_dict["freqcenter"] = float(blocks[1][2].split(": ",1)[1].replace("MHz","")) db_dict["freqstop"] = float(blocks[1][3].split(": ",1)[1].replace("MHz","")) db_dict["span"] = float(blocks[1][4].split(": ",1)[1].replace("MHz","")) db_dict["steps"] = float(blocks[1][5].split(": ",1)[1]) db_dict["stepsize"] = float(blocks[1][6].split(": ",1)[1].replace("kHz","")) db_dict["datapoints"] = float(blocks[1][7].split(": ",1)[1]) db_dict["mfactor"] = float(blocks[1][8].split(": ",1)[1]) db_dict["fmdeviation"] = float(blocks[1][9].split(": ",1)[1].replace("kHz/V","")) db_dict["probepower"] = float(blocks[1][10].split(": ",1)[1].replace("dBm","")) #Block 2 #Pump Synthesizer #Block 3 #Lock In db_dict["delaytime"] = float(blocks[3][1].split(": ",1)[1].replace("ms","")) db_dict["timeconstant"] = float(blocks[3][2].split(": ",1)[1].replace("ms","")) db_dict["averagedpoints"]= float(blocks[3][3].split(": ",1)[1]) db_dict["averagediter"] = float(blocks[3][4].split(": ",1)[1]) db_dict["oscfreq"] = float(blocks[3][5].split(": ",1)[1].replace("Hz","")) db_dict["oscamplitude"] = float(blocks[3][6].split(": ",1)[1].replace("V","")) db_dict["ADCslope"] = float(blocks[3][7].split(": ",1)[1].replace("dB/ocatve","")) db_dict["ACgain"] = float(blocks[3][8].split(": ",1)[1].replace("dB","")) #Block 3 #Pressure db_dict["totFMmod"] = float(blocks[4][0].split("= ",1)[1].replace("kHz","")) if blocks[4][1].split(": ",1)[0]=="Pressure": db_dict["pressurestart"]= "pressure not available" db_dict["pressureend"] = "pressure not available" else: db_dict["pressurestart"]= blocks[4][1].split(": ",1)[1].replace("mbar","") db_dict["pressureend"] = blocks[4][2].split(": ",1)[1].replace("mbar","") for i in ("pressurestart", "pressureend"): if db_dict[i].find("pressure not available")!=-1: db_dict[i]=-1 else: db_dict[i]=float(db_dict[i]) return(db_dict) def decrease_standingwave(data_in, save_data): global xs, ys, ys_corr, duration, filename, current_index, x_range, data data = data_in def onclick(event): if event.inaxes == ax1: if event.button == 1: if isinstance(event.xdata,np.float64): cut_off_slider.set_val(event.xdata) def onzoom(vmin, vmax, i): global x_range, fft_range if vmin == vmax: return elif i < 2: fft_range = [vmin, vmax] else: x_range = [vmin, vmax] update_plot(rescale = False) def press(key): global xs, ys, ys_corr, duration, filename, current_index, data if key=="left": cut_off_slider.set_val(cut_off_slider.val-0.01) elif key=="shift+left": cut_off_slider.set_val(cut_off_slider.val-0.1) elif key=="right": cut_off_slider.set_val(cut_off_slider.val+0.01) elif key=="shift+right": cut_off_slider.set_val(cut_off_slider.val+0.1) elif key=="up": cut_off_slider.set_val(cut_off_slider.val+0.15) elif key=="shift+up": cut_off_slider.set_val(cut_off_slider.val+0.2) elif key=="down": cut_off_slider.set_val(cut_off_slider.val-0.15) elif key=="shift+down": cut_off_slider.set_val(cut_off_slider.val-0.2) elif key in [" ", "space", "enter"]: save_data(xs, ys_corr, filename) current_index += 1 if current_index >= len(data): current_index = len(data)-1 update_plot() elif key in ["ctrl+left"]: current_index -= 1 if current_index < 0: current_index = 0 update_plot() elif key in ["ctrl+q"]: # fig.canvas.mpl_disconnect(cid_1) fig.canvas.mpl_disconnect(cid_2) plt.close() elif key in ["escape", "ctrl+right"]: current_index += 1 if current_index >= len(data): current_index = len(data)-1 update_plot() elif key in ["ctrl+r"]: update_plot() elif key in ["ctrl+s"]: try: import tkinter as tk from tkinter import filedialog root = tk.Tk() root.withdraw() filename = filedialog.asksaveasfilename() root.destroy() except Exception as E: print(str(E)) filename = input("Enter filename: ") plt.savefig(filename) elif key in ["ctrl+o"]: data = get_data() current_index = 0 update_plot() def update_plot(rescale = True): global xs, ys, ys_corr, duration, filename, current_index, x_range, fft_range, data if len(data) == 0 or current_index > len(data): return xs, ys, duration, filename = data[current_index] cutoff_freq = cut_off_slider.val fft_ys = scipy.fftpack.rfft(ys) fft_xs = scipy.fftpack.rfftfreq(len(ys), duration/len(xs)) fft_cut = [x for x in fft_ys] fft_bas = [x for x in fft_ys] fft_cut = [fft_ys[i] if fft_xs[i] > cutoff_freq else 0 for i in range(len(fft_ys))] fft_bas = [fft_ys[i] if fft_xs[i] < cutoff_freq else 0 for i in range(len(fft_ys))] ys_corr = scipy.fftpack.irfft(fft_cut) ys_base = scipy.fftpack.irfft(fft_bas) ax1.lines[0].set_data(fft_xs, fft_ys) ax2.lines[0].set_data(xs, ys) ax2.lines[1].set_data(xs, ys_base) ax3.lines[0].set_data(xs, ys_corr) if rescale == True: x_range = [np.nanmin(xs), np.nanmax(xs)] tmp = (np.nanmin(fft_xs), np.nanmax(fft_xs)) tmp_p = (tmp[1]-tmp[0])*0.05 fft_range = (tmp[0]-tmp_p, tmp[1]+tmp_p) mask = [x_range[0] <= x <= x_range[1] for x in xs] y_range = calculate_y_limits(ys[mask]) y_range_corr = calculate_y_limits(ys_corr[mask]) y_range = (min(y_range[0], y_range_corr[0]), max(y_range[1], y_range_corr[1])) y_range_fft = calculate_y_limits(fft_ys) cut_off_slider.valmin = fft_range[0] cut_off_slider.valmax = fft_range[1] cut_off_slider.ax.set_xlim(fft_range) ax1.set_xlim(fft_range) ax1.set_ylim(y_range_fft) ax2.set_xlim(x_range) ax2.set_ylim(y_range) ax3.set_xlim(x_range) ax3.set_ylim(y_range) ax3.set_xticks(np.linspace(*x_range, 5)) ax3.set_xticklabels([f"{x:.2f}" for x in np.linspace(*x_range, 5)]) line.set_xdata(cutoff_freq) title_ax.set_title(f"{current_index+1}/{len(data)}: {os.path.basename(filename)}", ha="center") fig.canvas.draw_idle() current_index = 0 cutoff_freq = 0.0 x_range = [0, 0] fft_range = [0, 0] fig= plt.figure() gs = gridspec.GridSpec(9, 12, height_ratios = [0.25, 0.5, 1, 0.5, 1, 1, 0.5, 0.5, 0.5], hspace = 0, wspace=0) title_ax = fig.add_subplot(gs[0, :]) title_ax.axis("off") title_ax.set_title("Press 'Replace Files' to open files") ax0 = fig.add_subplot(gs[1, :]) cut_off_slider = Slider(ax0, "Cut-Off", 0, 1, valinit=cutoff_freq) cut_off_slider.on_changed(lambda a: update_plot(rescale=False)) ax1 = fig.add_subplot(gs[2, :]) ax1.plot([], [], color="green", label="FFT Coefficients") ax1.legend(loc = "upper right") line = ax1.axvline(x=cutoff_freq, color="red", ls="--") tmp_ax = fig.add_subplot(gs[3, :]) tmp_ax.axis("off") ax2 = fig.add_subplot(gs[4, :]) ax2.plot([], [], color="#6ebeff", label="Original Spectrum") ax2.plot([], [], color="#FF0266", label="Baseline", linewidth=3, alpha=0.3) ax2.get_xaxis().set_visible(False) ax2.legend(loc = "upper right") ax3 = fig.add_subplot(gs[5, :], sharex=ax2) ax3.plot([], [], color="#0336FF", label="Corrected Spectrum") ax3.legend(loc = "upper right") tmp_ax = fig.add_subplot(gs[6, :]) tmp_ax.axis("off") buttons = [("Reset Zoom", "ctrl+r"), ("Previous", "ctrl+left"), ("Next", "ctrl+right"), ("Save", "enter")] buttons_nsi = [("Quit", "ctrl+q"), ("Save Figure", "ctrl+s"), ("Replace Files", "ctrl+o")] refs = {} for i, (text, key) in enumerate(buttons): tmp_ax = fig.add_subplot(gs[7, 3*i:3*(i+1)]) tmp_button = Button(tmp_ax, text) tmp_button.on_clicked(lambda a, key=key: press(key)) refs[key] = tmp_button for i, (text, key) in enumerate(buttons_nsi): tmp_ax = fig.add_subplot(gs[8, 4*i:4*(i+1)]) tmp_button = Button(tmp_ax, text) tmp_button.on_clicked(lambda a, key=key: press(key)) refs[key] = tmp_button update_plot() cid_1 = fig.canvas.mpl_connect('button_press_event', onclick) # Is now done by span selectors cid_2 = fig.canvas.mpl_connect('key_press_event', lambda event: press(event.key)) rectprops = dict(facecolor='blue', alpha=0.5) span_selectors = {} for i, ax in enumerate((ax0, ax1, ax2, ax3)): span_selectors[i] = SpanSelector(ax, lambda vmax, vmin, index=i: onzoom(vmax, vmin, index), 'horizontal',rectprops=rectprops, useblit=True, button = 3) fig.tight_layout() plt.show() def get_data(): # Get files try: import tkinter as tk from tkinter import filedialog root = tk.Tk() root.withdraw() filenames = filedialog.askopenfilename(multiple=True) root.destroy() except Exception as E: filenames = input("Enter filenames: ").split(",") filenames = list(set(filenames)) data = [] # Fill data array for filename in filenames: # Get x- and y-data df = pd.read_csv(filename, sep="\t", skip_blank_lines=True, dtype=np.float64, names=(["x", "y"])) xs = df["x"].to_numpy() ys = df["y"].to_numpy() # Get duration if possible, otherwise set to 30 fname, extension = os.path.splitext(filename) try: db_dict=crawl_info_file(fname+".info") date_start=parse(db_dict["datestart"]) date_stop=parse(db_dict["datestop"]) duration=(date_stop-date_start).total_seconds()/2 except Exception as E: duration = 30 data.append((xs, ys, duration, filename)) return(data) if __name__ == '__main__': # Set up what should happen with corrected data, here just save to file def save_data(xs, ys, filename): fname, extension = os.path.splitext(filename) df = pd.DataFrame({"x": xs, "y":ys}) df.to_csv(fname + "FFT" + extension, header=False, index=False, sep="\t") # Start main function decrease_standingwave(get_data(), save_data)
StarcoderdataPython
3201542
########################################################################## # Geometry data ## class GeometryData: """ Class which holds the geometry data of a ObjId """ def __init__(self, subdetid = 0, discriminator = ()): self.subdetid = subdetid self.discriminator = discriminator # ObjId names from Alignment/CommonAlignment/interface/StructureType.h data = {-1: GeometryData(), # notfound 0: GeometryData(), # invalid 1: GeometryData(), # AlignableDetUnit 2: GeometryData(), # AlignableDet 3: GeometryData(1), # TPBModule 4: GeometryData(1, ("Half", "Layer", "Rod")), # TPBLadder 5: GeometryData(1, ("Half", "Layer")), # TPBLayer 6: GeometryData(1, ("Half",)), # TPBHalfBarrel 7: GeometryData(1), # TPBBarrel 8: GeometryData(2), # TPEModule 9: GeometryData(2, ("Side", "Half", "Layer", "Blade", "Panel")), # TPEPanel 10: GeometryData(2, ("Side", "Half", "Layer", "Blade")), # TPEBlade 11: GeometryData(2, ("Side", "Half", "Layer")), # TPEHalfDisk 12: GeometryData(2, ("Side", "Half")), # TPEHalfCylinder 13: GeometryData(2, ("Side",)), # TPEEndcap 14: GeometryData(3), # TIBModule 15: GeometryData(3), # TIBString 16: GeometryData(3, ("Side", "Layer", "Half", "OuterInner")), # TIBSurface 17: GeometryData(3, ("Side", "Layer", "Half")), # TIBHalfShell 18: GeometryData(3, ("Side", "Layer")), # TIBLayer 19: GeometryData(3, ("Side",)), # TIBHalfBarrel 20: GeometryData(3), # TIBBarrel 21: GeometryData(4), # TIDModule 22: GeometryData(4, ("Side", "Layer", "Ring", "OuterInner")), # TIDSide 23: GeometryData(4, ("Side", "Layer", "Ring")), # TIDRing 24: GeometryData(4, ("Side", "Layer")), # TIDDisk 25: GeometryData(4, ("Side",)), # TIDEndcap 26: GeometryData(5), # TOBModule 27: GeometryData(5, ("Side", "Layer", "Rod")), # TOBRod 28: GeometryData(5, ("Side", "Layer")), # TOBLayer 29: GeometryData(5, ("Side",)), # TOBHalfBarrel 30: GeometryData(5), # TOBBarrel 31: GeometryData(6), # TECModule 32: GeometryData(6, ("Side", "Layer", "OuterInner", "Petal", "Ring")), # TECRing 33: GeometryData(6, ("Side", "Layer", "OuterInner", "Petal")), # TECPetal 34: GeometryData(6, ("Side", "Layer", "OuterInner")), # TECSide 35: GeometryData(6, ("Side", "Layer")), # TECDisk 36: GeometryData(6, ("Side",)), # TECEndcap 37: GeometryData(), # Pixel 38: GeometryData(), # Strip 39: GeometryData(), # Tracker 100: GeometryData(), # AlignableDTBarrel 101: GeometryData(), # AlignableDTWheel 102: GeometryData(), # AlignableDTStation 103: GeometryData(), # AlignableDTChamber 104: GeometryData(), # AlignableDTSuperLayer 105: GeometryData(), # AlignableDTLayer 106: GeometryData(), # AlignableCSCEndcap 107: GeometryData(), # AlignableCSCStation 108: GeometryData(), # AlignableCSCRing 109: GeometryData(), # AlignableCSCChamber 110: GeometryData(), # AlignableCSCLayer 111: GeometryData(), # AlignableMuon 112: GeometryData(), # Detector 1000: GeometryData(), # Extras 1001: GeometryData(), # BeamSpot }
StarcoderdataPython
1770434
from os import path import sys sys.path.append(path.join(path.dirname(__file__), path.pardir, path.pardir))
StarcoderdataPython
109858
import pandas as pd import seaborn as sns from datetime import datetime import matplotlib.patches as patches from ..common import log from ..util.completion import completion_idx_has_data def completion_plot(completion, modalities, start, end, freq, ax=None, cmap=None, x_tick_mult=24, x_tick_fmt="%y-%m-%d %H:%M", enrolment_date=None, events=None, event_radius=0): """ Plots the completion array as a heatmap Parameters __________ completion: np.ndarray Completion 2d array for a participant modalities: list of str A list of the modalities, used to label the Y-axis start: pd.Timedelta / np.datetime64 end: pd.Timedelta / np.datetime64 freq: str The timedelta string associated with the given completion array ax: matplotlib axes cmap: Colormap x_tick_mult: int Multiplier for x ticks, will draw a tick every x_tick_mult hours. x_tick_fmt: str enrolment_date: pd.Timedelta / np.datetime64 events: list of tuples of strings A list of event timestamp and label pairs, both as strings Draws a vertical line at each event, colored as: green: data from all modalities is present at the event orange: data from at least one modality is present at the event red: no data is present at the event If event_radius is specified the color checks include the whole event circumference. event_radius: float Radius around each event in multiples of freq Returns _______ ax: matplotlib axes """ td = pd.Timedelta(freq) ax = sns.heatmap(completion, cmap=cmap, cbar=False, xticklabels=int(x_tick_mult*(pd.Timedelta('1h')/td)), ax=None) # Gaps N_x = completion.shape[1] N_y = completion.shape[0] for i in range(N_y-1): ax.hlines(i+1, 0, N_x, color='white', linewidth=2) # Outline ax.vlines(0, 0, N_y, color='black', linewidth=2) ax.vlines(N_x, 0, N_y, color='black', linewidth=2) ax.hlines(0, 0, N_x, color='black', linewidth=2) ax.hlines(N_y, 0, N_x, color='black', linewidth=2) # Events if events: for e_stamp_str,e_label in events: try: e_stamp_unix = float(e_stamp_str) e_stamp = pd.Timestamp(e_stamp_unix, unit='s').tz_localize('UTC') except: # TODO: review usage of tz_localize() e_stamp = pd.Timestamp(datetime.strptime(e_stamp_str, '%Y-%m-%d %H:%M:%S')).tz_localize('CET').tz_convert('UTC') if e_stamp < start or e_stamp > end: continue log.debug("Event at {}: {}".format(e_stamp, e_label)) e_idx = (e_stamp - start)//td e_slice = None if event_radius: e_start = max(0, (e_stamp - start - (td * event_radius))//td) e_end = min(N_x-1, (e_stamp - start + (td * event_radius))//td) e_slice = slice(e_start, e_end+1) rect = patches.Rectangle((e_start, 0), e_end - e_start, N_y, linewidth=0.5, edgecolor='k', alpha=0.25, zorder=9) ax.add_patch(rect) has_all = completion_idx_has_data(completion, e_slice if e_slice else e_idx, requirement_function=all) has_any = completion_idx_has_data(completion, e_slice if e_slice else e_idx, requirement_function=any) if has_all: ax.vlines(e_idx, 0, N_y, color='green', linewidth=2, zorder=10) elif has_any: ax.vlines(e_idx, 0, N_y, color='orange', linewidth=2, zorder=10) else: ax.vlines(e_idx, 0, N_y, color='red', linewidth=2, zorder=10) # Enrolment if enrolment_date: enrolment_idx = (enrolment_date - start)//td ax.vline(enrolment_idx-1, 0, N_y, color='red', linewidth=0.5) # Labels ax.set_ylabel('Data topic') ax.set_xlabel('Date') xticks = ax.get_xticks() ax.set_xticklabels([(start + (tm * td)).strftime(x_tick_fmt) for tm in xticks], rotation=0) ax.set_yticklabels([ m.split('_', 2)[-1] for m in modalities ], rotation=0) return ax
StarcoderdataPython
4993721
<reponame>parsoyaarihant/CS726-Project-2048-Using-RL<gh_stars>0 import random import logic import constants as c class GameGrid(): def __init__(self): self.commands = {c.KEY_UP: logic.up, c.KEY_DOWN: logic.down, c.KEY_LEFT: logic.left, c.KEY_RIGHT: logic.right, c.KEY_UP_ALT: logic.up, c.KEY_DOWN_ALT: logic.down, c.KEY_LEFT_ALT: logic.left, c.KEY_RIGHT_ALT: logic.right} self.actions = [c.KEY_UP, c.KEY_DOWN, c.KEY_RIGHT, c.KEY_LEFT] self.grid_cells = [] self.init_matrix() def gen(self): return random.randint(0, c.GRID_LEN - 1) def init_matrix(self): self.matrix = logic.new_game(4) self.matrix = logic.add_two(self.matrix) self.matrix = logic.add_two(self.matrix) def step(self, key): if isinstance(key, int): key = self.actions[key] if key in self.commands: self.matrix, done = self.commands[key](self.matrix) if done: self.matrix = logic.add_two(self.matrix) done = False # Check if game is completed if logic.game_state(self.matrix) == 'win': done = True if logic.game_state(self.matrix) == 'lose': done = True return self.matrix, logic.reward(self.matrix), done, "" def generate_next(self): index = (self.gen(), self.gen()) while self.matrix[index[0]][index[1]] != 0: index = (self.gen(), self.gen()) self.matrix[index[0]][index[1]] = 2 def get_state(self): return self.matrix def key_down(self, event): key = repr(event.char) if event.keycode == 114: self.reset() return self.step(key) self.display_state() def action_space(self): # return possible action return self.actions[random.randint(0, 3)] def reset(self): # resets the game to initial state self.init_matrix() def display_state(self): print() for i in self.matrix: print(i) def reward(self): return logic.reward(self.matrix) def highest_score(self): return logic.highest_score(self.matrix) gamegrid = GameGrid() #print(gamegrid.display_state()) #gamegrid.perform_action(c.KEY_UP) #print(gamegrid.display_state())
StarcoderdataPython
6582731
<filename>psydac/linalg/tests/test_pcg.py import numpy as np import pytest #=============================================================================== @pytest.mark.parametrize( 'n', [8, 16] ) @pytest.mark.parametrize( 'p', [2, 3] ) def test_pcg(n, p): """ Test preconditioned Conjugate Gradient algorithm on tridiagonal linear system. Parameters ---------- n : int Dimension of linear system (number of rows = number of columns). """ from psydac.linalg.iterative_solvers import pcg, jacobi from psydac.linalg.stencil import StencilVectorSpace, StencilMatrix, StencilVector from psydac.linalg.basic import LinearSolver #--------------------------------------------------------------------------- # PARAMETERS #--------------------------------------------------------------------------- # ... Vector Spaces V = StencilVectorSpace([n], [p], [False]) e = V.ends[0] s = V.starts[0] # Build banded matrix with 2p+1 diagonals: must be symmetric and positive definite # Here we assign value 2*p on main diagonal and -1 on other diagonals A = StencilMatrix(V, V) A[:,-p:0 ] = -1 A[:, 0:1 ] = 2*p A[:, 1:p+1] = -1 A.remove_spurious_entries() # Build exact solution xe = StencilVector(V) xe[s:e+1] = np.random.random(e+1-s) # Tolerance for success: L2-norm of error in solution tol = 1e-10 #--------------------------------------------------------------------------- # TEST #--------------------------------------------------------------------------- # Title print() print("="*80) print("SERIAL TEST: solve linear system A*x = b using preconditioned conjugate gradient") print("="*80) print() # Manufacture right-hand-side vector from exact solution b = A.dot(xe) class LocallyOnlyJacobiSolver(LinearSolver): @property def space(self): return V def solve(self, rhs, out=None, transposed=False): # (don't care about out or any other parameter here; it's only used locally) return jacobi(A, rhs) # Solve linear system using PCG (and CG) # also does an interface test for the Jacobi preconditioner x0, info0 = pcg( A, b, pc= None, tol=1e-12 ) x1, info1 = pcg( A, b, pc= "jacobi", tol=1e-12 ) x1b, info1b = pcg( A, b, pc= jacobi, tol=1e-12 ) x1c, info1c = pcg( A, b, pc= LocallyOnlyJacobiSolver(), tol=1e-12 ) x2, info2 = pcg( A, b, pc= "weighted_jacobi", tol=1e-12 ) # Verify correctness of calculation: L2-norm of error err0 = x0-xe err_norm0 = np.linalg.norm(err0.toarray()) err1 = x1-xe err_norm1 = np.linalg.norm(err1.toarray()) err2 = x2-xe err_norm2 = np.linalg.norm(err2.toarray()) #--------------------------------------------------------------------------- # TERMINAL OUTPUT #--------------------------------------------------------------------------- print() print( 'A =', A.toarray(), sep='\n' ) print( 'b =', b.toarray()) print( 'x1 =', x1.toarray()) print( 'x2 =', x2.toarray()) print( 'xe =', xe.toarray()) print( 'info1 (Jac) =', info1 ) print( 'info2 (w-Jac)=', info2 ) print() print( "-"*40 ) print( "L2-norm of error in (PCG + Jacobi) solution = {:.2e}".format(err_norm1)) print( "L2-norm of error in solution (PCG + weighted Jacobi) solution = {:.2e}".format(err_norm2)) if err_norm0 < tol and err_norm1 < tol and err_norm2 < tol: print( "PASSED" ) else: print( "FAIL" ) print( "-"*40 ) #--------------------------------------------------------------------------- # PYTEST #--------------------------------------------------------------------------- assert err_norm0 < tol and err_norm1 < tol and err_norm2 < tol assert info1 == info1b and info1 == info1c
StarcoderdataPython
3533318
from mathlib.math import CustomMath def test_sum_two_arguments(): first = 2 second = 11 custom_math = CustomMath() result = custom_math.sum(first,second) assert result == (first+second)
StarcoderdataPython
8000389
<gh_stars>1-10 """ Create doc-doc edges Steps: 1. Load all entities with their relations 2. Load relevant relations 3. Create adjacency matrix for word-word relations 4. Count number of relation between two documents 5. Weight relations and set a doc-doc edge weight """ from collections import defaultdict from math import log import pandas as pd from tqdm import tqdm from helper import file_utils as file, io_utils as io from loader.wiki_api import get_safely from os.path import exists # Data loader def get_vocab_ids(): entity2id_df = file.get_entity2id() unmapped_entities = entity2id_df[entity2id_df["wikiID"] == "-1"].index entity2id_df.drop(unmapped_entities, inplace=True) return entity2id_df["wikiID"].to_numpy() def get_triples(filtered=False): return file.get_filtered_triples() if filtered else file.get_all_triples() def get_documents(): cleaned_sentences = list(map(lambda doc: doc.split(" "), file.get_cleaned_sentences())) return cleaned_sentences # Create triple documents def create_triples(): # Creates triples based on the vocab entities and relations (unfiltered) triples = [] all_entities = file.get_vocab_entities() for entity in all_entities.keys(): for relation in get_safely(all_entities, [entity, "relations"]).keys(): for relation_value in get_safely(all_entities, [entity, "relations", relation]).keys(): result = get_safely(all_entities, [entity, "relations", relation, relation_value]) if not isinstance(result, dict) or result.get("id") is None: continue else: triple = [all_entities[entity]["id"], relation, result.get("id")] triples.append(triple) file.save_all_triples(triples) return triples def filter_triples(): # Adjust filters in `analyze_properties` and save them to the filtered_relations.csv triples = get_triples() relevant_relations = file.get_filtered_relations() vocab_ids = get_vocab_ids() old_size = triples.shape[0] # Filter out all triples which are not contained in `filtered_relations.csv` irrelevant_triples = triples[~triples["relation"].isin(relevant_relations)].index triples.drop(irrelevant_triples, inplace=True) # Filter out all triples which don't lead to another word from the node unmatched_triples = triples[~triples["entity2"].isin(vocab_ids)].index triples.drop(unmatched_triples, inplace=True) # Filter out all relation to itself self_relations = triples[triples["entity1"] == triples["entity2"]].index triples.drop(self_relations, inplace=True) # Drop duplicate relations triples.drop_duplicates(inplace=True) file.save_filtered_triples(triples) print(f"Filtered out {old_size - triples.shape[0]} irrelevant triples...") def setup_triples(): # Creates a filtered and unfiltered triples CVS file create_triples() filter_triples() def generate_doc2relations(): setup_triples() doc_nouns_norm = file.get_normalized_nouns() # Array with all nouns per doc // must be split relations_array = [] ids = file.get_doc2id() filtered_triples = get_triples(filtered=True) # Triples for doc_index, doc in enumerate(doc_nouns_norm): if doc == "": relations_array.append("-") continue # All ID's of the normalized nouns in the current document doc_ids = ids[ids["doc"] == doc_index]["wikiID"].tolist() # Graph edges pointing to other entities triples_out = filtered_triples[filtered_triples["entity1"].isin(doc_ids)] triples_in = filtered_triples[filtered_triples["entity2"].isin(doc_ids)] triples_in.columns = ["entity2", "relations", "entity1"] triples_total = pd.concat([triples_out, triples_in]) all_outgoing_relations = triples_total["relations"].tolist() if len(all_outgoing_relations) == 0: all_outgoing_relations = "-" relations_array.append(all_outgoing_relations) file.save_doc2relations([" ".join(elem) for elem in relations_array]) # Adjacency matrices def create_doc2doc_edges(): # if exists(io.get_document_triples_path()): # print("Document triples pickle file adready exists, will not be created again") # generate_idf_scores() # apply_idf() # return generate_doc2relations() generate_idf_scores() doc_nouns_norm = file.get_normalized_nouns() # Array with all nouns per doc // must be split filtered_triples = get_triples(filtered=True) # Triples ids = file.get_doc2id() triples = [] filtered_out_items = 0 with tqdm(total=len(doc_nouns_norm)) as bar: for doc_index, doc in enumerate(doc_nouns_norm): if doc == "": bar.update(1) continue # All ID's of the normalized nouns in the current document doc_ids = ids[ids["doc"] == doc_index]["wikiID"].tolist() assert len(doc_ids) <= len(doc.split(" ")), f"{len(doc.split(' '))} vs. {len(doc_ids)}" # Graph edges pointing to other entities triples_out = filtered_triples[filtered_triples["entity1"].isin(doc_ids)] triples_in = filtered_triples[filtered_triples["entity2"].isin(doc_ids)] triples_in.columns = ["entity2", "relations", "entity1"] triples_total = pd.concat([triples_out, triples_in]) doc_pointers = {} for index, row in triples_total.iterrows(): entity1 = row["entity1"] relation = row["relations"] entity2 = row["entity2"] # Look in which documents entity2 appears pointer = ids[ids["wikiID"] == entity2]["doc"].tolist() assert entity1 in doc_ids for doc_id in pointer: # Ignore doc2doc edges to doc itself if doc_id <= doc_index: continue if doc_id in doc_pointers: doc_pointers[doc_id].append(relation) else: doc_pointers[doc_id] = [relation] for key in doc_pointers.keys(): # Filter out all docs with length below 2 if len(doc_pointers[key]) > 1: triples.append([doc_index, key, len(doc_pointers[key]), "+".join(doc_pointers[key])]) bar.update(1) data = pd.DataFrame(triples) data.columns = ["doc1", "doc2", "relations", "detail"] print(f"Highest number of relations between two docs: {max(data['relations'])}") print(f"Created {len(triples)} doc2doc edges (filtered by threshold: {filtered_out_items})") file.save_document_triples(data) apply_idf() def generate_idf_scores(): print("Generate IDF scores...") doc_relations = file.get_doc2relations() num_docs = len(doc_relations) doc_word_freq = defaultdict(int) relation_doc_freq = {} relation_doc_freq_wiki = {} relations_in_docs = defaultdict(set) row = [] col = [] weight = [] weight_wiki = [] for i, rels in enumerate(doc_relations): relations = rels.split() for rel in relations: relations_in_docs[rel].add(i) doc_word_str = (i, rel) doc_word_freq[doc_word_str] += 1 all_relations = file.get_all_relations() for rel, doc_list in relations_in_docs.items(): count = all_relations[all_relations["ID"] == rel]["count"].tolist() assert len(count) <= 1, (count, rel) if len(count) == 1: relation_doc_freq_wiki[rel] = count[0] else: relation_doc_freq_wiki[rel] = 0 relation_doc_freq[rel] = len(doc_list) for i, rels in enumerate(doc_relations): relations = rels.split() doc_rel_set = set() for rel in relations: if rel in doc_rel_set or rel == "-": continue freq = doc_word_freq[(i, rel)] row.append(i) col.append(rel) idf = log(1.0 * num_docs / relation_doc_freq[rel]) # Source: https://www.wikidata.org/wiki/Wikidata:Statistics on 17.12.2020 at 12:20 idf_wiki = log(1.0 * 91559495 / relation_doc_freq_wiki[rel]) weight.append(freq * idf) weight_wiki.append(freq * idf_wiki) doc_rel_set.add(rel) data = pd.DataFrame({"doc": row, "relation": col, "idf": weight, "idf_wiki": weight_wiki}) file.save_doc2idf(data) def apply_idf(): print("Applying IDF...") doc_triples = file.get_document_triples() idf = file.get_doc2idf() data = [] with tqdm(total=doc_triples.shape[0]) as bar: for index, row in doc_triples.iterrows(): doc1 = row["doc1"] doc2 = row["doc2"] relations = row["detail"].split("+") score = 0 wiki_score = 0 for rel in relations: scores = idf[(idf["relation"] == rel) & (idf["doc"] == doc1)][["idf", "idf_wiki"]] idf_score = scores["idf"].tolist() idf_wiki_score = scores["idf_wiki"].tolist() assert len(idf_score) == 1 and len(idf_wiki_score) == 1 score += idf_score[0] wiki_score += idf_wiki_score[0] data.append([doc1, doc2, len(relations), score, wiki_score]) bar.update(1) dataframe = pd.DataFrame(data) dataframe.columns = ["doc1", "doc2", "count", "idf", "idf_wiki"] normalize(dataframe) def normalize(data): base_edges = file.get_original_edges() pmi_factor = base_edges[base_edges["edge_type"] == "pmi"]["weight"].max() idf_factor = base_edges[base_edges["edge_type"] == "idf"]["weight"].max() idf_max = data["idf"].max() idf_min = data["idf"].min() idf_wiki_max = data["idf_wiki"].max() idf_wiki_min = data["idf_wiki"].min() count_max = data["count"].max() count_min = data["count"].min() all = [] for index, row in data.iterrows(): doc1 = row["doc1"] doc2 = row["doc2"] count = row["count"] idf_score = row["idf"] idf_wiki_score = row["idf_wiki"] count_norm = apply_normalization(count, count_min, count_max, idf_factor) count_norm_pmi = apply_normalization(count, count_min, count_max, pmi_factor) idf_norm = apply_normalization(idf_score, idf_min, idf_max, idf_factor) idf_wiki_norm = apply_normalization(idf_wiki_score, idf_wiki_min, idf_wiki_max, idf_factor) idf_norm_pmi = apply_normalization(idf_score, idf_min, idf_max, pmi_factor) idf_wiki_norm_pmi = apply_normalization(idf_wiki_score, idf_wiki_min, idf_wiki_max, pmi_factor) result = [doc1, doc2, count, idf_score, idf_wiki_score, count_norm, count_norm_pmi, idf_norm, idf_wiki_norm, idf_norm_pmi, idf_wiki_norm_pmi] all.append(result) df = pd.DataFrame(all) df.columns = ["doc1", "doc2", "count", "idf", "idf_wiki", "count_norm", "count_norm_pmi", "idf_norm", "idf_wiki_norm", "idf_norm_pmi", "idf_wiki_norm_pmi"] file.save_document_triples_metrics(df) def apply_normalization(value, min, max, factor): return ((value - min) / (max - min)) * factor # windows_relation = [] # windows_document = [] # # # def windows_relation_base(cond_index=-1, window_size=15): # global windows_relation # triples = file.get_document_triples("mr") # tmp = [] # for index, row in triples.iterrows(): # if index > 20: # break # if index <= cond_index: # continue # relations = row["detail"].split("+") # doc_length = len(relations) # if doc_length <= window_size: # [tmp.append(r) for r in relations] # else: # assert False # # if len(tmp) >= window_size: # windows_relation.append(tmp) # tmp = [] # windows_relation_base(cond_index+1) # # # def windows_document_base(cond_index=-1, window_size=15): # global windows_document # triples = file.get_document_triples("mr") # tmp = [] # counter = 0 # for index, row in triples.iterrows(): # if index > 20: # break # if index <= cond_index: # continue # relations = row["detail"].split("+") # # if counter < window_size: # [tmp.append(r) for r in relations] # # elif counter == window_size: # windows_document.append(tmp) # windows_document_base(cond_index+1) # break # # elif index == triples.shape[0] - window_size # # counter += 1 # # def generate_pmi(windows): # number_sliding_windows = len(windows) #W # counter = {} # for window in windows: # for relation in window: # for x in windows: # contained = relation in x # if contained: # if relation in counter: # counter[relation] += 1 # else: # counter[relation] = 1 # print(counter) # # if __name__ == '__main__': create_doc2doc_edges()
StarcoderdataPython
9746323
from django.contrib import admin from common.actions import make_export_action from search.models.alias import Alias from search.models import SuggestionLog from search.models.session_alias import SessionAlias class AliasAdmin(admin.ModelAdmin): list_display = ('id', 'alias', 'target') actions = make_export_action("Export Alias to CSV") class SuggestionAdmin(admin.ModelAdmin): search_fields = ['search_query', 'session_id'] list_filter = ['num_suggestions'] list_display = ['session_hash', 'search_query', 'num_suggestions', 'created_at'] actions = make_export_action("Export Suggestions to CSV") def session_hash(self, obj): return obj.session_id[:6] def get_queryset(self, request): return SuggestionLog.objects.exclude(session_id__isnull=True).exclude(session_id__exact='') class SessionAliasAdmin(admin.ModelAdmin): list_display = ('id', 'alias', 'session') search_fields = ('alias',) admin.site.register(Alias, AliasAdmin) admin.site.register(SuggestionLog, SuggestionAdmin) admin.site.register(SessionAlias, SessionAliasAdmin)
StarcoderdataPython
11299897
<filename>L1Trigger/L1TCalorimeter/python/hackConditions_cff.py # # hachConditions.py Load ES Producers for any conditions not yet in GT... # # The intention is that this file should shrink with time as conditions are added to GT. # import FWCore.ParameterSet.Config as cms import sys from Configuration.Eras.Modifier_run2_HI_specific_cff import run2_HI_specific #from Configuration.Eras.Era_Run2_2016_pA_cff import Run2_2016_pA from Configuration.Eras.Modifier_pA_2016_cff import pA_2016 # # Legacy Trigger: No Hacks Needed # from Configuration.Eras.Modifier_stage1L1Trigger_cff import stage1L1Trigger from Configuration.Eras.Modifier_stage2L1Trigger_cff import stage2L1Trigger def _load(process, f): process.load(f) # # Stage-1 Trigger # # Switch between HI and PP calo configuration: modifyL1TCalorimeterHackConditions_stage1HI = (stage1L1Trigger & ~stage2L1Trigger & run2_HI_specific).makeProcessModifier(lambda p: _load(p, "L1Trigger.L1TCalorimeter.caloConfigStage1HI_cfi")) modifyL1TCalorimeterHackConditions_stage1PP = (stage1L1Trigger & ~stage2L1Trigger & ~run2_HI_specific).makeProcessModifier(lambda p: _load(p, "L1Trigger.L1TCalorimeter.caloConfigStage1PP_cfi")) # Override Calo Scales: modifyL1TCalorimeterHackConditions_stage1Common = (stage1L1Trigger & ~stage2L1Trigger).makeProcessModifier(lambda p: _load(p, "L1Trigger.L1TCalorimeter.caloScalesStage1_cff")) # CaloParams is in the DB for Stage-1 # # Stage-2 Trigger # modifyL1TCalorimeterHackConditions_stage2PA = (stage2L1Trigger & pA_2016).makeProcessModifier(lambda p: _load(p, "L1Trigger.L1TCalorimeter.caloStage2Params_2016_v3_3_1_HI_cfi")) modifyL1TCalorimeterHackConditions_stage2PP = (stage2L1Trigger & ~pA_2016).makeProcessModifier(lambda p: _load(p, "L1Trigger.L1TCalorimeter.caloStage2Params_2017_v1_8_4_cfi")) # What about CaloConfig? Related: How will we switch PP/HH? #
StarcoderdataPython
1678043
<reponame>HSunboy/hue<filename>desktop/core/ext-py/eventlet-0.21.0/eventlet/hubs/poll.py<gh_stars>1-10 import errno import sys from eventlet import patcher select = patcher.original('select') time = patcher.original('time') from eventlet.hubs.hub import BaseHub, READ, WRITE, noop from eventlet.support import get_errno, clear_sys_exc_info EXC_MASK = select.POLLERR | select.POLLHUP READ_MASK = select.POLLIN | select.POLLPRI WRITE_MASK = select.POLLOUT class Hub(BaseHub): def __init__(self, clock=None): super(Hub, self).__init__(clock) self.poll = select.poll() # poll.modify is new to 2.6 try: self.modify = self.poll.modify except AttributeError: self.modify = self.poll.register def add(self, evtype, fileno, cb, tb, mac): listener = super(Hub, self).add(evtype, fileno, cb, tb, mac) self.register(fileno, new=True) return listener def remove(self, listener): super(Hub, self).remove(listener) self.register(listener.fileno) def register(self, fileno, new=False): mask = 0 if self.listeners[READ].get(fileno): mask |= READ_MASK | EXC_MASK if self.listeners[WRITE].get(fileno): mask |= WRITE_MASK | EXC_MASK try: if mask: if new: self.poll.register(fileno, mask) else: try: self.modify(fileno, mask) except (IOError, OSError): self.poll.register(fileno, mask) else: try: self.poll.unregister(fileno) except (KeyError, IOError, OSError): # raised if we try to remove a fileno that was # already removed/invalid pass except ValueError: # fileno is bad, issue 74 self.remove_descriptor(fileno) raise def remove_descriptor(self, fileno): super(Hub, self).remove_descriptor(fileno) try: self.poll.unregister(fileno) except (KeyError, ValueError, IOError, OSError): # raised if we try to remove a fileno that was # already removed/invalid pass def do_poll(self, seconds): # poll.poll expects integral milliseconds return self.poll.poll(int(seconds * 1000.0)) def wait(self, seconds=None): readers = self.listeners[READ] writers = self.listeners[WRITE] if not readers and not writers: if seconds: time.sleep(seconds) return try: presult = self.do_poll(seconds) except (IOError, select.error) as e: if get_errno(e) == errno.EINTR: return raise SYSTEM_EXCEPTIONS = self.SYSTEM_EXCEPTIONS if self.debug_blocking: self.block_detect_pre() # Accumulate the listeners to call back to prior to # triggering any of them. This is to keep the set # of callbacks in sync with the events we've just # polled for. It prevents one handler from invalidating # another. callbacks = set() for fileno, event in presult: if event & READ_MASK: callbacks.add((readers.get(fileno, noop), fileno)) if event & WRITE_MASK: callbacks.add((writers.get(fileno, noop), fileno)) if event & select.POLLNVAL: self.remove_descriptor(fileno) continue if event & EXC_MASK: callbacks.add((readers.get(fileno, noop), fileno)) callbacks.add((writers.get(fileno, noop), fileno)) for listener, fileno in callbacks: try: listener.cb(fileno) except SYSTEM_EXCEPTIONS: raise except: self.squelch_exception(fileno, sys.exc_info()) clear_sys_exc_info() if self.debug_blocking: self.block_detect_post()
StarcoderdataPython
11263779
# class Node: # def __init__(self,value,next= None): # self.value = value # self.next = next # class LinkedList: # def __init__(self, head= None): # self.head = head # def __str__(self): # current = self.head # output = "" # while current is not None: # output += f"{{ {current.value} }} -> " # current = current.next # return output + "None" # def append(self, value): # newnode = Node(value) # if self.head: # current = self.head # while current.next: # current = current.next # current.next = newnode # else: # self.head = newnode # @staticmethod def zipLists(a=object, b=object): cur1, cur2 = a.head, b.head while cur1 and cur2: save1 = cur1.next save2 = cur2.next cur1.next = cur2 cur2.next = save1 cur1 = save1 cur2 = save2 return a # next1,cur1.next = cur1.next, cur2 # if next1: # next2, cur2.next = cur2.next, next1 # cur1, cur2 = next1, next2 # return a
StarcoderdataPython
6521537
"""Generating spectra with Fluctuating Gunn Peterson Approximation (FGPA) - The code is MPI working on Illustris and MP-Gadget snapshots. The packages needed are : - astropy - fake_spectra To get the FGPA spectra, refer to the helper script at https://github.com/mahdiqezlou/LyTomo_Watershed/tree/dist/helper_scripts/FGPA which follows the steps below : 1. From density.py use Gadget() to construct DM density field on a grid with desired size. For FGPA, the grid cells should on avergae have 1 particle per cell. 2. Save the results from the previous step in savedir directory. The density has been saved on several files depending on number of ranks used. 3. Run get_noiseless_map() or get_sample_spectra() functions here and pass the directories for the density field above as savedir argument. 4. The output is a single hdf5 file containing either the full true flux map or the random spectra sample. """ import os import glob import numpy as np import h5py from astropy.cosmology import Planck15 as cosmo from scipy.ndimage import gaussian_filter1d import fake_spectra.fluxstatistics as fs from . import spectra_mocking as sm from . import density class Fgpa: """A class for FGPA method""" def __init__(self, MPI, comm, z, boxsize, Ngrids, Npix, SmLD, SmLV, savedir, fix_mean_flux=True, mean_flux=None, gamma=1.46, T0=1.94*10**4): """ Params : comm : instanse of the MPI communicator z : redshift savedir : the directory containing the density map Ngrids : int, the size of the x and y dimensions of the desired map Npix : number of desired pxiels along final map gamma : The slope in temperature-density relation T0 : Temperature at mean density """ # Initialize the MPI communication self.MPI = MPI self.comm = comm self.rank = self.comm.Get_rank() self.z = z self.boxsize = boxsize self.Ngrids = Ngrids self.Npix = Npix self.SmLD = SmLD self.SmLV = SmLV self.savedir = savedir self.fix_mean_flux = fix_mean_flux self.mean_flux = mean_flux # Thermal paramters of the IGM self.gamma= gamma self.T0 = T0 # Physical constants # Lya constants do not matter at all, since we fix the mean absorption self.lambda_Lya = 1215.67 self.sigma_Lya = 1 self.mp = 1.67*10**(-27) # proton mass in Kg self.kB=1.38*10**(-23) # Boltzman const in SI def get_sample_spectra(self, num, seed=13, savefile='spectra_z2.4_FGPA_n1.hdf5'): """Get a sample of spectra to be used for mock map reconstruction num : Numebr of desired random spectra savefile : The name for hdf5 file to save the spectra file """ tau_conv = self.get_tau_conv() if seed is not None: cofm = self.get_cofm(num=num, Nvoxles=tau_conv.shape[0], seed=seed).astype(int) else: x, y = np.meshgrid(np.arange(self.Ngrids), np.arange(self.Ngrids)) cofm = np.zeros(shape=(self.Ngrids*self.Ngrids,2), dtype=int) cofm[:,0] = np.ravel(x) cofm[:,1] = np.ravel(y) del x, y ind = np.where(tau_conv!= -1) tau_sampled = np.zeros(shape=(cofm.shape[0], tau_conv.shape[2])) # Find the sample spectra on this rank ind_cofm = np.where(np.isin(cofm[:,0], ind[0])*np.isin(cofm[:,1], ind[1]))[0] tau_sampled[ind_cofm] = tau_conv[cofm[ind_cofm,0], cofm[ind_cofm,1],:] ### MPI part # Make sure the data is contiguous in memeory tau_sampled = np.ascontiguousarray(tau_sampled, np.float64) # Add the results from all ranks self.comm.Allreduce(self.MPI.IN_PLACE, tau_sampled, op=self.MPI.SUM) # Scale the tau to get mean flux right if self.fix_mean_flux: if self.mean_flux is None: mean_flux = sm.get_mean_flux(z=self.z) else: mean_flux =self.mean_flux print('mean flux is ', mean_flux, flush=True) scale = fs.mean_flux(tau_sampled, mean_flux_desired=mean_flux) else: scale=1 tau_sampled *= scale if self.rank==0 : print('Scaling tau with :', scale) # Change cofm to kpc/h to record on spctra cofm = cofm.astype(float)*(self.boxsize*1000/tau_conv.shape[0]) if self.rank == 0 : with h5py.File(self.savedir+savefile,'w') as fw: # We need all Header info to load the file with fake_spectra # Some attrs are copied from hydro spectra, a more stable way # should be implemented fw.create_group('Header') fw['Header'].attrs.create('redshift', self.z) fw['Header'].attrs.create('box', self.boxsize*1000) fw['Header'].attrs.create('discarded', 0) fw['Header'].attrs.create('hubble', 0.6774) fw['Header'].attrs.create('nbins', tau_sampled.shape[1]) fw['Header'].attrs.create('npart', np.array([0, 15625000000, 0, 0, 0, 0])) fw['Header'].attrs.create('omegab', 0.04757289217927339) fw['Header'].attrs.create('omegal', 0.6911) fw['Header'].attrs.create('omegam', 0.3089) fw['tau/H/1/1215'] = tau_sampled fw.create_group('spectra') fw['spectra/axis'] = 3*np.ones(shape=(cofm.shape[0],)) fw['spectra/cofm'] = cofm fw['colden/H/1'] = np.zeros(shape=(1,)) fw.create_group('density_Weight_debsity') fw.create_group('num_important') fw.create_group('velocity') fw.create_group('temperature') fw.create_group('tau_obs') def get_cofm(self, num, Nvoxels, seed): """ A copy of fake_spectra.rand_spectra.get_cofm() to replicate the spectra used for hydro snalysis. seed : the seed for random sample num : number of spectra Nvoxels: the number of vxoels along each side of the simulations """ np.random.seed(seed) cofm = Nvoxels*np.random.random_sample((num,3)) return cofm def get_noiseless_map(self, savefile='FGPA_flux_z2.4.hdf5'): """Calculate the true map on a mesh grid of size (Ngrids*Ngrids*Npix) savefile : The name for hdf5 file to save final map on """ tau_conv = self.get_tau_conv() ### The work here is not very well balanced among ranks if self.rank == 0: if self.fix_mean_flux: if self.mean_flux is None: mean_flux = sm.get_mean_flux(z=self.z) else: mean_flux = self.mean_flux print('mean flux is ', mean_flux, flush=True) scale = fs.mean_flux(tau_conv, mean_flux_desired=mean_flux) else : scale = 1 ### Resampling pixels along spectra flux_conv = self.resample_flux(scale*tau_conv) del tau_conv with h5py.File(self.savedir+savefile,'w') as fw: fw['map'] = flux_conv self.comm.Barrier() def resample_flux(self, tau): """ Resample spectra to get Npix pixels along line of sight. It is done by averaging the flux over few consecutive pixels. Params : tau : Optical depth. """ Nz = tau.shape[2] # Number of adjacent pixels along spectrum need to be averaged over addpix = int(Nz / self.Npix) flux = np.zeros(shape=(tau.shape[0], tau.shape[1], self.Npix), dtype=np.float64) for t in range(self.Npix): flux[:,:,t] = np.sum(np.exp(-tau[:,:,t*addpix:(t+1)*addpix]), axis=2)/addpix flux = gaussian_filter1d(flux, sigma=1, mode='wrap') return flux def get_tau_conv(self): """ Calculate tau in redshift space Convolving tau in real space with an apprimation of the Voight profile (Gaussian profile) Returns : tau_conv : convoluted optical depth """ import glob import os from . import mpi4py_helper fnames = glob.glob(os.path.join(self.savedir,'*_densfield.hdf5')) fnames = mpi4py_helper.distribute_files(comm=self.comm, fnames=fnames) tau_conv = None c=0 for fn in fnames: c+=1 print(self.rank, fn, flush=True) if not os.path.exists(fn): raise IOError('File '+fn+' does not exist!') with h5py.File(fn,'r') as f: if tau_conv is None: # nbodykit does not break the data along the z direction, so Nz is the # the size of the initial density map in all 3 dimentions Nz = f['DM/dens'][:].shape[2] dvbin = cosmo.H(self.z).value*self.boxsize/(cosmo.h*Nz*(1+self.z)) up = np.arange(Nz)*dvbin # Approx position of the desired sightlines. The approximation should be ok # for FGPA since the density map has very fine voxels x, y = int(Nz/self.Ngrids)*np.arange(self.Ngrids), int(Nz/self.Ngrids)*np.arange(self.Ngrids) # Which sightlines are on this rank indx = np.where(np.isin(x, f['DM/x'][:]))[0] if indx.size == 0: # Some ranks may not hold any sightlines at all print('The sightline coordinates are not on density grids on file ', fn, flush=True) print("The y desnity grid coordinates are = ", f['DM/y'][:], flush=True) continue xstart, xend = indx[0], indx[-1] indy = np.where(np.isin(y, f['DM/y'][:]))[0] if indy.size == 0: # Some ranks may not hold any sightlines at all print('The sightline coordinates are not on density grids on file ', fn, flush=True) print("The y desnity grid coordinates are = ", f['DM/y'][:], flush=True) continue ystart, yend = indy[0], indy[-1] print('Sightlines on Rank =', self.rank, (int(xstart), int(xend)), (int(ystart), int(yend)) ,flush=True) # i, j are indices for the final flux map (Ngrids * Ngrids) tau_conv = np.zeros(shape=(indx.size, indy.size, Nz)) for i in range(indx.size): if self.rank ==1: print(str(int(100*c/len(fnames)))+'%', flush=True ) # Indices on f['DM/dens'] map ic = x[indx[i]] - f['DM/x'][0] for j in range(indy.size): # Indices on f['DM/dens'] map jc = y[indy[j]] - f['DM/y'][0] dens = f['DM/dens'][ic,jc,:] tau_real = self.get_tau_real(f['DM/dens'][ic,jc,:]) # Peculiar velocity addition ind = np.where((dens != 0)) vel_pec = np.zeros_like(f['DM/pz'][ic,jc,:]) # Convert momentum to velocity vel_pec[ind] = f['DM/pz'][ic,jc,:][ind]/dens[ind] vel_pec = gaussian_filter1d(vel_pec, self.SmLV) dens = gaussian_filter1d(dens, self.SmLD) u0 = up + vel_pec btherm = self.get_btherm(dens) # To avoide devision by 0, if b_threm == 0, pass a nonzero value since # tau_real is 0 in that voxel anyway, tau_conv will be 0. btherm[np.where(btherm==0)] = 1.0 for k in range(Nz): dvel = np.abs(up[k]-u0) # Periodic Boundary indv = np.where(dvel > dvbin*Nz/2) dvel[indv] = dvbin*Nz - dvel[indv] Voight = (1/btherm)*np.exp(-(dvel/btherm)**2) tau_conv[i,j,k] = np.sum(tau_real*Voight*dvbin) # save the tau_conv on file for density files containing the desired sightlines with h5py.File(fn.replace('densfield','fgpa_LessMem'), 'w') as fw: fw['tau_conv'] = tau_conv fw['indx'] = indx fw['indy'] = indy self.comm.Barrier() if self.rank==0: # Read the saved tau_conv files tau_conv = self.add_up_tau_conv(Nz=Nz) else: tau_conv = None self.comm.Barrier() print('Rank', self.rank, 'is done with tau_conv', flush=True) return tau_conv def add_up_tau_conv(self, Nz): """Add individual tau_conv files to form the full map""" tau_conv = -1*np.ones(shape=(self.Ngrids, self.Ngrids, Nz)) tau_files = glob.glob(os.path.join(self.savedir,'*_fgpa_LessMem.hdf5')) for fn in tau_files: with h5py.File(fn,'r') as f: indx = f['indx'][:] indy = f['indy'][:] indx, indy = np.meshgrid(indx,indy, indexing='ij') tau_conv[indx, indy, :] = f['tau_conv'][:] assert np.all(tau_conv != -1) return tau_conv def get_tau_real(self, Delta): """ Get tau in real space The amplitude needs to get fixed with mean observed flux or 1D power z : redshift """ return (self.lambda_Lya*self.sigma_Lya/cosmo.H(self.z).value)*self.get_nHI(Delta) def get_nHI(self, Delta): """ Calculate Neutral Hydrogen Density The amplitude needs to get fixed with mean flux """ return Delta**(2-0.7*(self.gamma -1)) def get_btherm(self, Delta): """ Thermal Doppler parameter in km/s""" return np.sqrt(2*self.kB*self.get_Temp(Delta)/self.mp)/1000 def get_Temp(self, Delta): """ Temperature density relation Delta : (1 + delta_b) """ return self.T0*Delta**(self.gamma-1)
StarcoderdataPython
1652657
from flask import Flask # from config import Config app = Flask(__name__) from application import routes
StarcoderdataPython
9793758
<gh_stars>1-10 # Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from benchmarks import media_router_dialog_metric from benchmarks import media_router_cpu_memory_metric from telemetry.page import page_test class MediaRouterDialogTest(page_test.PageTest): """Performs a measurement of Media Route dialog latency.""" def __init__(self): super(MediaRouterDialogTest, self).__init__() self._metric = media_router_dialog_metric.MediaRouterDialogMetric() def DidNavigateToPage(self, page, tab): self._metric.Start(page, tab) def ValidateAndMeasurePage(self, page, tab, results): self._metric.Stop(page, tab) self._metric.AddResults(tab, results) class MediaRouterCPUMemoryTest(page_test.PageTest): """Performs a measurement of Media Route CPU/memory usage.""" def __init__(self): super(MediaRouterCPUMemoryTest, self).__init__() self._metric = media_router_cpu_memory_metric.MediaRouterCPUMemoryMetric() def ValidateAndMeasurePage(self, page, tab, results): self._metric.AddResults(tab, results)
StarcoderdataPython
1643201
<gh_stars>1-10 #!/usr/bin/env python3 # -*- coding: utf-8 -*- import os.path MPATH = "44'/77'/" WIF_PREFIX = 212 # 212 = d4 MAGIC_BYTE = 30 TESTNET_WIF_PREFIX = 239 TESTNET_MAGIC_BYTE = 139 DEFAULT_PROTOCOL_VERSION = 70913 MINIMUM_FEE = 0.0001 # minimum QMC/kB starting_width = 933 starting_height = 666 APPDATA_DIRNAME = ".QMCTorrentTool" home_dir = os.path.expanduser('~') user_dir = os.path.join(home_dir, APPDATA_DIRNAME) log_File = os.path.join(user_dir, 'lastLogs.html') masternodes_File = 'masternodes.json' rpc_File = 'rpcServer.json' cache_File = 'cache.json' DEFAULT_RPC_CONF = { "rpc_ip": "127.0.0.1", "rpc_port": 55777, "rpc_user": "myUsername", "rpc_password": "<PASSWORD>" } DEFAULT_MN_CONF = { "name": "", "ip": "", "port": 51472, "mnPrivKey": "", "isTestnet": 0, "isHardware": True, "hwAcc": 0, "collateral": {} } DEFAULT_CACHE = { "lastAddress": "", "window_width": starting_width, "window_height": starting_height, "splitter_sizes": [342, 133], "mnList_order": {}, "useSwiftX": False, "votingMasternodes": [], "votingDelayCheck": False, "votingDelayNeg": 0, "votingDelayPos": 300 }
StarcoderdataPython
124186
from pathlib import Path import configparser from logger import logger def change_config(**options): """takes arbitrary keyword arguments and writes their values into the config""" # overwrite values for k, v in options.items(): config.set('root', k, v) # write back, but without the mandatory header config_string = '\n'.join(['{}={}'.format(k, v) for (k, v) in config['root'].items()]) with open(str(config_path), 'w') as f: f.write(config_string) f.write('\n') def get_config(key): return config['root'][key] # load config file for both server.py and fader.py config = None config_path = None try: config_path = Path(Path(__file__).resolve().parent, Path('../config')).resolve() with open(str(config_path), 'r') as f: config = configparser.RawConfigParser() config.read_string('[root]\n' + f.read()) if not 'raspberry_port' in config['root']: # for the port I just went with some random unassigned port from this list: # https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml?search=Unassigned change_config(raspberry_port=3546) if not 'raspberry_ip' in config['root']: # 0.0.0.0 works if you send requests from another local machine to the raspberry # 'localhost' would only allow requests from within the raspberry change_config(raspberry_ip='0.0.0.0') except FileNotFoundError: logger.warning( 'config file could not be found! using port {}'.format(raspberry_port))
StarcoderdataPython
6501686
<filename>arachnado/downloadermiddlewares/droprequests.py # -*- coding: utf-8 -*- from __future__ import absolute_import import warnings from scrapy.exceptions import IgnoreRequest class DropRequestsMiddleware: """ Downloader middleware to drop a requests if a certain condition is met. It calls ``spider.should_drop_request(request)`` method to check if a request should be downloaded or dropped; spider must implement this method. """ def __init__(self, stats): self.stats = stats @classmethod def from_crawler(cls, crawler): return cls(stats=crawler.stats) def process_request(self, request, spider): if not hasattr(spider, 'should_drop_request'): return if not callable(spider.should_drop_request): warnings.warn('spider %s has "should_drop_request" attribute, ' 'but it is not callable' % spider) return if spider.should_drop_request(request): self.stats.inc_value("DropRequestsMiddleware/dropped") raise IgnoreRequest()
StarcoderdataPython
End of preview. Expand in Data Studio

Dataset Card for "code_20b_separate"

More Information needed

Downloads last month
8