index
int64 0
731k
| package
stringlengths 2
98
⌀ | name
stringlengths 1
76
| docstring
stringlengths 0
281k
⌀ | code
stringlengths 4
1.07M
⌀ | signature
stringlengths 2
42.8k
⌀ |
---|---|---|---|---|---|
714,514 |
webp
|
WebPAnimEncoderOptions
| null |
class WebPAnimEncoderOptions:
def __init__(self, ptr):
self.ptr = ptr
@property
def minimize_size(self):
return self.ptr.minimize_size != 0
@minimize_size.setter
def minimize_size(self, minimize_size):
self.ptr.minimize_size = 1 if minimize_size else 0
@property
def allow_mixed(self):
return self.ptr.allow_mixed != 0
@allow_mixed.setter
def allow_mixed(self, allow_mixed):
self.ptr.allow_mixed = 1 if allow_mixed else 0
@staticmethod
def new(minimize_size=False, allow_mixed=False):
ptr = ffi.new('WebPAnimEncoderOptions*')
if lib.WebPAnimEncoderOptionsInit(ptr) == 0:
raise WebPError('version mismatch')
enc_opts = WebPAnimEncoderOptions(ptr)
enc_opts.minimize_size = minimize_size
enc_opts.allow_mixed = allow_mixed
return enc_opts
|
(ptr)
|
714,516 |
webp
|
new
| null |
@staticmethod
def new(minimize_size=False, allow_mixed=False):
ptr = ffi.new('WebPAnimEncoderOptions*')
if lib.WebPAnimEncoderOptionsInit(ptr) == 0:
raise WebPError('version mismatch')
enc_opts = WebPAnimEncoderOptions(ptr)
enc_opts.minimize_size = minimize_size
enc_opts.allow_mixed = allow_mixed
return enc_opts
|
(minimize_size=False, allow_mixed=False)
|
714,517 |
webp
|
WebPAnimInfo
| null |
class WebPAnimInfo:
def __init__(self, ptr):
self.ptr = ptr
@property
def frame_count(self):
return self.ptr.frame_count
@property
def width(self):
return self.ptr.canvas_width
@property
def height(self):
return self.ptr.canvas_height
@staticmethod
def new():
ptr = ffi.new('WebPAnimInfo*')
return WebPAnimInfo(ptr)
|
(ptr)
|
714,519 |
webp
|
new
| null |
@staticmethod
def new():
ptr = ffi.new('WebPAnimInfo*')
return WebPAnimInfo(ptr)
|
()
|
714,520 |
webp
|
WebPColorMode
|
An enumeration.
|
class WebPColorMode(Enum):
RGB = lib.MODE_RGB
RGBA = lib.MODE_RGBA
BGR = lib.MODE_BGR
BGRA = lib.MODE_BGRA
ARGB = lib.MODE_ARGB
RGBA_4444 = lib.MODE_RGBA_4444
RGB_565 = lib.MODE_RGB_565
rgbA = lib.MODE_rgbA
bgrA = lib.MODE_bgrA
Argb = lib.MODE_Argb
rgbA_4444 = lib.MODE_rgbA_4444
YUV = lib.MODE_YUV
YUVA = lib.MODE_YUVA
LAST = lib.MODE_LAST
|
(value, names=None, *, module=None, qualname=None, type=None, start=1)
|
714,521 |
webp
|
WebPConfig
| null |
class WebPConfig:
DEFAULT_QUALITY = 75.0
def __init__(self, ptr):
self.ptr = ptr
@property
def lossless(self):
return self.ptr.lossless != 0
@lossless.setter
def lossless(self, lossless):
self.ptr.lossless = 1 if lossless else 0
@property
def quality(self):
return self.ptr.quality
@quality.setter
def quality(self, quality):
self.ptr.quality = quality
@property
def method(self):
return self.ptr.method
@method.setter
def method(self, method):
self.ptr.method = method
def validate(self):
return lib.WebPValidateConfig(self.ptr) != 0
@staticmethod
def new(preset=WebPPreset.DEFAULT, quality=None, lossless=False, lossless_preset=None,
method=None):
"""Create a new WebPConfig instance to describe encoder settings.
1. The preset is loaded, setting default values for quality factor (75.0) and compression
method (4).
2. If `lossless` is True and `lossless_preset` is specified, then the lossless preset with
the specified level is loaded. This will replace the default values for quality factor
and compression method.
3. Values for lossless, quality, and method are set using explicitly provided arguments.
This allows the caller to explicitly specify these settings and overrides settings from
presets.
Args:
preset (WebPPreset): Preset setting.
quality (float, optional): Quality factor (0=small but low quality, 100=high quality
but big). Overrides presets. Effective default is 75.0.
lossless (bool): Set to True for lossless compression.
lossless_preset (int, optional): Lossless preset level (0=fast but big, 9=small but
slow). Can only be specified when `lossless` is true. Sets the values for quality
factor and compression method together. Effective default is 6.
method (int, optional): Compression method (0=fast but big, 6=small but slow).
Overrides presets. Effective default is 4.
Returns:
WebPConfig: The new WebPConfig instance.
"""
ptr = ffi.new('WebPConfig*')
if lib.WebPConfigPreset(ptr, preset.value, WebPConfig.DEFAULT_QUALITY) == 0:
raise WebPError('failed to load config options from preset')
if lossless_preset is not None:
if not lossless:
raise WebPError('can only use lossless preset when lossless is True')
if lib.WebPConfigLosslessPreset(ptr, lossless_preset) == 0:
raise WebPError('failed to load config options from lossless preset')
config = WebPConfig(ptr)
config.lossless = lossless
# Override presets for explicitly specified values.
if quality is not None:
config.quality = quality
if method is not None:
config.method = method
if not config.validate():
raise WebPError('config is not valid')
return config
|
(ptr)
|
714,523 |
webp
|
new
|
Create a new WebPConfig instance to describe encoder settings.
1. The preset is loaded, setting default values for quality factor (75.0) and compression
method (4).
2. If `lossless` is True and `lossless_preset` is specified, then the lossless preset with
the specified level is loaded. This will replace the default values for quality factor
and compression method.
3. Values for lossless, quality, and method are set using explicitly provided arguments.
This allows the caller to explicitly specify these settings and overrides settings from
presets.
Args:
preset (WebPPreset): Preset setting.
quality (float, optional): Quality factor (0=small but low quality, 100=high quality
but big). Overrides presets. Effective default is 75.0.
lossless (bool): Set to True for lossless compression.
lossless_preset (int, optional): Lossless preset level (0=fast but big, 9=small but
slow). Can only be specified when `lossless` is true. Sets the values for quality
factor and compression method together. Effective default is 6.
method (int, optional): Compression method (0=fast but big, 6=small but slow).
Overrides presets. Effective default is 4.
Returns:
WebPConfig: The new WebPConfig instance.
|
@staticmethod
def new(preset=WebPPreset.DEFAULT, quality=None, lossless=False, lossless_preset=None,
method=None):
"""Create a new WebPConfig instance to describe encoder settings.
1. The preset is loaded, setting default values for quality factor (75.0) and compression
method (4).
2. If `lossless` is True and `lossless_preset` is specified, then the lossless preset with
the specified level is loaded. This will replace the default values for quality factor
and compression method.
3. Values for lossless, quality, and method are set using explicitly provided arguments.
This allows the caller to explicitly specify these settings and overrides settings from
presets.
Args:
preset (WebPPreset): Preset setting.
quality (float, optional): Quality factor (0=small but low quality, 100=high quality
but big). Overrides presets. Effective default is 75.0.
lossless (bool): Set to True for lossless compression.
lossless_preset (int, optional): Lossless preset level (0=fast but big, 9=small but
slow). Can only be specified when `lossless` is true. Sets the values for quality
factor and compression method together. Effective default is 6.
method (int, optional): Compression method (0=fast but big, 6=small but slow).
Overrides presets. Effective default is 4.
Returns:
WebPConfig: The new WebPConfig instance.
"""
ptr = ffi.new('WebPConfig*')
if lib.WebPConfigPreset(ptr, preset.value, WebPConfig.DEFAULT_QUALITY) == 0:
raise WebPError('failed to load config options from preset')
if lossless_preset is not None:
if not lossless:
raise WebPError('can only use lossless preset when lossless is True')
if lib.WebPConfigLosslessPreset(ptr, lossless_preset) == 0:
raise WebPError('failed to load config options from lossless preset')
config = WebPConfig(ptr)
config.lossless = lossless
# Override presets for explicitly specified values.
if quality is not None:
config.quality = quality
if method is not None:
config.method = method
if not config.validate():
raise WebPError('config is not valid')
return config
|
(preset=<WebPPreset.DEFAULT: 0>, quality=None, lossless=False, lossless_preset=None, method=None)
|
714,524 |
webp
|
validate
| null |
def validate(self):
return lib.WebPValidateConfig(self.ptr) != 0
|
(self)
|
714,525 |
webp
|
WebPData
| null |
class WebPData:
def __init__(self, ptr, data_ref):
self.ptr = ptr
self._data_ref = data_ref
@property
def size(self):
return self.ptr.size
def buffer(self):
buf = ffi.buffer(self._data_ref, self.size)
return buf
def decode(self, color_mode=WebPColorMode.RGBA):
dec_config = WebPDecoderConfig.new()
dec_config.read_features(self)
if color_mode == WebPColorMode.RGBA \
or color_mode == WebPColorMode.bgrA \
or color_mode == WebPColorMode.BGRA \
or color_mode == WebPColorMode.rgbA \
or color_mode == WebPColorMode.ARGB \
or color_mode == WebPColorMode.Argb:
bytes_per_pixel = 4
elif color_mode == WebPColorMode.RGB \
or color_mode == WebPColorMode.BGR:
bytes_per_pixel = 3
elif color_mode == WebPColorMode.RGB_565 \
or color_mode == WebPColorMode.RGBA_4444 \
or color_mode == WebPColorMode.rgbA_4444:
bytes_per_pixel = 2
else:
raise WebPError('unsupported color mode: {}'.format(str(color_mode)))
arr = np.empty((dec_config.input.height, dec_config.input.width, bytes_per_pixel),
dtype=np.uint8)
dec_config.output.colorspace = color_mode.value
dec_config.output.u.RGBA.rgba = ffi.cast('uint8_t*', ffi.from_buffer(arr))
dec_config.output.u.RGBA.size = arr.size
dec_config.output.u.RGBA.stride = dec_config.input.width * bytes_per_pixel
dec_config.output.is_external_memory = 1
if lib.WebPDecode(self.ptr.bytes, self.size, dec_config.ptr) != lib.VP8_STATUS_OK:
raise WebPError('failed to decode')
lib.WebPFreeDecBuffer(ffi.addressof(dec_config.ptr, 'output'))
return arr
@staticmethod
def from_buffer(buf):
ptr = ffi.new('WebPData*')
lib.WebPDataInit(ptr)
data_ref = ffi.from_buffer(buf)
ptr.size = len(buf)
ptr.bytes = ffi.cast('uint8_t*', data_ref)
return WebPData(ptr, data_ref)
|
(ptr, data_ref)
|
714,526 |
webp
|
__init__
| null |
def __init__(self, ptr, data_ref):
self.ptr = ptr
self._data_ref = data_ref
|
(self, ptr, data_ref)
|
714,527 |
webp
|
buffer
| null |
def buffer(self):
buf = ffi.buffer(self._data_ref, self.size)
return buf
|
(self)
|
714,528 |
webp
|
decode
| null |
def decode(self, color_mode=WebPColorMode.RGBA):
dec_config = WebPDecoderConfig.new()
dec_config.read_features(self)
if color_mode == WebPColorMode.RGBA \
or color_mode == WebPColorMode.bgrA \
or color_mode == WebPColorMode.BGRA \
or color_mode == WebPColorMode.rgbA \
or color_mode == WebPColorMode.ARGB \
or color_mode == WebPColorMode.Argb:
bytes_per_pixel = 4
elif color_mode == WebPColorMode.RGB \
or color_mode == WebPColorMode.BGR:
bytes_per_pixel = 3
elif color_mode == WebPColorMode.RGB_565 \
or color_mode == WebPColorMode.RGBA_4444 \
or color_mode == WebPColorMode.rgbA_4444:
bytes_per_pixel = 2
else:
raise WebPError('unsupported color mode: {}'.format(str(color_mode)))
arr = np.empty((dec_config.input.height, dec_config.input.width, bytes_per_pixel),
dtype=np.uint8)
dec_config.output.colorspace = color_mode.value
dec_config.output.u.RGBA.rgba = ffi.cast('uint8_t*', ffi.from_buffer(arr))
dec_config.output.u.RGBA.size = arr.size
dec_config.output.u.RGBA.stride = dec_config.input.width * bytes_per_pixel
dec_config.output.is_external_memory = 1
if lib.WebPDecode(self.ptr.bytes, self.size, dec_config.ptr) != lib.VP8_STATUS_OK:
raise WebPError('failed to decode')
lib.WebPFreeDecBuffer(ffi.addressof(dec_config.ptr, 'output'))
return arr
|
(self, color_mode=<WebPColorMode.RGBA: 1>)
|
714,529 |
webp
|
from_buffer
| null |
@staticmethod
def from_buffer(buf):
ptr = ffi.new('WebPData*')
lib.WebPDataInit(ptr)
data_ref = ffi.from_buffer(buf)
ptr.size = len(buf)
ptr.bytes = ffi.cast('uint8_t*', data_ref)
return WebPData(ptr, data_ref)
|
(buf)
|
714,530 |
webp
|
WebPDecoderConfig
| null |
class WebPDecoderConfig:
def __init__(self, ptr):
self.ptr = ptr
@property
def input(self):
return self.ptr.input
@property
def output(self):
return self.ptr.output
@property
def options(self):
return self.ptr.options
def read_features(self, webp_data):
input_ptr = ffi.addressof(self.ptr, 'input')
if lib.WebPGetFeatures(webp_data.ptr.bytes, webp_data.size,
input_ptr) != lib.VP8_STATUS_OK:
raise WebPError('failed to read features')
@staticmethod
def new():
ptr = ffi.new('WebPDecoderConfig*')
if lib.WebPInitDecoderConfig(ptr) == 0:
raise WebPError('failed to init decoder config')
return WebPDecoderConfig(ptr)
|
(ptr)
|
714,532 |
webp
|
new
| null |
@staticmethod
def new():
ptr = ffi.new('WebPDecoderConfig*')
if lib.WebPInitDecoderConfig(ptr) == 0:
raise WebPError('failed to init decoder config')
return WebPDecoderConfig(ptr)
|
()
|
714,533 |
webp
|
read_features
| null |
def read_features(self, webp_data):
input_ptr = ffi.addressof(self.ptr, 'input')
if lib.WebPGetFeatures(webp_data.ptr.bytes, webp_data.size,
input_ptr) != lib.VP8_STATUS_OK:
raise WebPError('failed to read features')
|
(self, webp_data)
|
714,534 |
webp
|
WebPError
| null |
class WebPError(Exception):
pass
| null |
714,535 |
webp
|
WebPMemoryWriter
| null |
class WebPMemoryWriter:
def __init__(self, ptr):
self.ptr = ptr
def __del__(self):
# Free memory if we are still responsible for it.
if self.ptr:
lib.WebPMemoryWriterClear(self.ptr)
def to_webp_data(self):
_webp_data = _WebPData()
_webp_data.ptr.bytes = self.ptr.mem
_webp_data.ptr.size = self.ptr.size
self.ptr = None
return _webp_data.done()
@staticmethod
def new():
ptr = ffi.new('WebPMemoryWriter*')
lib.WebPMemoryWriterInit(ptr)
return WebPMemoryWriter(ptr)
|
(ptr)
|
714,536 |
webp
|
__del__
| null |
def __del__(self):
# Free memory if we are still responsible for it.
if self.ptr:
lib.WebPMemoryWriterClear(self.ptr)
|
(self)
|
714,538 |
webp
|
new
| null |
@staticmethod
def new():
ptr = ffi.new('WebPMemoryWriter*')
lib.WebPMemoryWriterInit(ptr)
return WebPMemoryWriter(ptr)
|
()
|
714,539 |
webp
|
to_webp_data
| null |
def to_webp_data(self):
_webp_data = _WebPData()
_webp_data.ptr.bytes = self.ptr.mem
_webp_data.ptr.size = self.ptr.size
self.ptr = None
return _webp_data.done()
|
(self)
|
714,540 |
webp
|
WebPPicture
| null |
class WebPPicture:
def __init__(self, ptr):
self.ptr = ptr
def __del__(self):
lib.WebPPictureFree(self.ptr)
def encode(self, config=None):
if config is None:
config = WebPConfig.new()
writer = WebPMemoryWriter.new()
self.ptr.writer = ffi.addressof(lib, 'WebPMemoryWrite')
self.ptr.custom_ptr = writer.ptr
if lib.WebPEncode(config.ptr, self.ptr) == 0:
raise WebPError('encoding error: ' + self.ptr.error_code)
return writer.to_webp_data()
def save(self, file_path, config=None):
buf = self.encode(config).buffer()
with open(file_path, 'wb') as f:
f.write(buf)
@staticmethod
def new(width, height):
ptr = ffi.new('WebPPicture*')
if lib.WebPPictureInit(ptr) == 0:
raise WebPError('version mismatch')
ptr.width = width
ptr.height = height
if lib.WebPPictureAlloc(ptr) == 0:
raise WebPError('memory error')
return WebPPicture(ptr)
@staticmethod
def from_numpy(arr, *, pilmode=None):
ptr = ffi.new('WebPPicture*')
if lib.WebPPictureInit(ptr) == 0:
raise WebPError('version mismatch')
if len(arr.shape) == 3:
bytes_per_pixel = arr.shape[-1]
elif len(arr.shape) == 2:
bytes_per_pixel = 1
else:
raise WebPError('unexpected array shape: ' + repr(arr.shape))
if pilmode is None:
if bytes_per_pixel == 3:
import_func = lib.WebPPictureImportRGB
elif bytes_per_pixel == 4:
import_func = lib.WebPPictureImportRGBA
else:
raise WebPError('cannot infer color mode from array of shape ' + repr(arr.shape))
else:
if pilmode == 'RGB':
import_func = lib.WebPPictureImportRGB
elif pilmode == 'RGBA':
import_func = lib.WebPPictureImportRGBA
else:
raise WebPError('unsupported image mode: ' + pilmode)
ptr.height, ptr.width = arr.shape[:2]
pixels = ffi.cast('uint8_t*', ffi.from_buffer(arr))
stride = ptr.width * bytes_per_pixel
ptr.use_argb = 1
if import_func(ptr, pixels, stride) == 0:
raise WebPError('memory error')
return WebPPicture(ptr)
@staticmethod
def from_pil(img):
if img.mode == 'P':
if 'transparency' in img.info:
img = img.convert('RGBA')
else:
img = img.convert('RGB')
return WebPPicture.from_numpy(np.asarray(img), pilmode=img.mode)
|
(ptr)
|
714,541 |
webp
|
__del__
| null |
def __del__(self):
lib.WebPPictureFree(self.ptr)
|
(self)
|
714,543 |
webp
|
encode
| null |
def encode(self, config=None):
if config is None:
config = WebPConfig.new()
writer = WebPMemoryWriter.new()
self.ptr.writer = ffi.addressof(lib, 'WebPMemoryWrite')
self.ptr.custom_ptr = writer.ptr
if lib.WebPEncode(config.ptr, self.ptr) == 0:
raise WebPError('encoding error: ' + self.ptr.error_code)
return writer.to_webp_data()
|
(self, config=None)
|
714,544 |
webp
|
from_numpy
| null |
@staticmethod
def from_numpy(arr, *, pilmode=None):
ptr = ffi.new('WebPPicture*')
if lib.WebPPictureInit(ptr) == 0:
raise WebPError('version mismatch')
if len(arr.shape) == 3:
bytes_per_pixel = arr.shape[-1]
elif len(arr.shape) == 2:
bytes_per_pixel = 1
else:
raise WebPError('unexpected array shape: ' + repr(arr.shape))
if pilmode is None:
if bytes_per_pixel == 3:
import_func = lib.WebPPictureImportRGB
elif bytes_per_pixel == 4:
import_func = lib.WebPPictureImportRGBA
else:
raise WebPError('cannot infer color mode from array of shape ' + repr(arr.shape))
else:
if pilmode == 'RGB':
import_func = lib.WebPPictureImportRGB
elif pilmode == 'RGBA':
import_func = lib.WebPPictureImportRGBA
else:
raise WebPError('unsupported image mode: ' + pilmode)
ptr.height, ptr.width = arr.shape[:2]
pixels = ffi.cast('uint8_t*', ffi.from_buffer(arr))
stride = ptr.width * bytes_per_pixel
ptr.use_argb = 1
if import_func(ptr, pixels, stride) == 0:
raise WebPError('memory error')
return WebPPicture(ptr)
|
(arr, *, pilmode=None)
|
714,545 |
webp
|
from_pil
| null |
@staticmethod
def from_pil(img):
if img.mode == 'P':
if 'transparency' in img.info:
img = img.convert('RGBA')
else:
img = img.convert('RGB')
return WebPPicture.from_numpy(np.asarray(img), pilmode=img.mode)
|
(img)
|
714,546 |
webp
|
new
| null |
@staticmethod
def new(width, height):
ptr = ffi.new('WebPPicture*')
if lib.WebPPictureInit(ptr) == 0:
raise WebPError('version mismatch')
ptr.width = width
ptr.height = height
if lib.WebPPictureAlloc(ptr) == 0:
raise WebPError('memory error')
return WebPPicture(ptr)
|
(width, height)
|
714,547 |
webp
|
save
| null |
def save(self, file_path, config=None):
buf = self.encode(config).buffer()
with open(file_path, 'wb') as f:
f.write(buf)
|
(self, file_path, config=None)
|
714,548 |
webp
|
WebPPreset
|
An enumeration.
|
class WebPPreset(Enum):
DEFAULT = lib.WEBP_PRESET_DEFAULT # Default
PICTURE = lib.WEBP_PRESET_PICTURE # Indoor photo, portrait-like
PHOTO = lib.WEBP_PRESET_PHOTO # Outdoor photo with natural lighting
DRAWING = lib.WEBP_PRESET_DRAWING # Drawing with high-contrast details
ICON = lib.WEBP_PRESET_ICON # Small-sized colourful image
TEXT = lib.WEBP_PRESET_TEXT # Text-like
|
(value, names=None, *, module=None, qualname=None, type=None, start=1)
|
714,549 |
webp
|
_WebPData
| null |
class _WebPData:
def __init__(self):
self.ptr = ffi.new('WebPData*')
lib.WebPDataInit(self.ptr)
# Call this after the struct has been filled in
def done(self, free_func=lib.WebPFree):
webp_data = WebPData(self.ptr, ffi.gc(self.ptr.bytes, free_func))
self.ptr = None
return webp_data
|
()
|
714,550 |
webp
|
__init__
| null |
def __init__(self):
self.ptr = ffi.new('WebPData*')
lib.WebPDataInit(self.ptr)
|
(self)
|
714,551 |
webp
|
done
| null |
def done(self, free_func=lib.WebPFree):
webp_data = WebPData(self.ptr, ffi.gc(self.ptr.bytes, free_func))
self.ptr = None
return webp_data
|
(self, free_func=<built-in method WebPFree of _cffi_backend.Lib object at 0x7f4ae8655760>)
|
714,552 |
webp
|
_mimwrite_pics
| null |
def _mimwrite_pics(file_path, pics, *, fps=30.0, **kwargs):
enc_opts = WebPAnimEncoderOptions.new()
enc = WebPAnimEncoder.new(pics[0].ptr.width, pics[0].ptr.height, enc_opts)
config = WebPConfig.new(**kwargs)
for i, pic in enumerate(pics):
t = round((i * 1000) / fps)
enc.encode_frame(pic, t, config)
end_t = round((len(pics) * 1000) / fps)
anim_data = enc.assemble(end_t)
with open(file_path, 'wb') as f:
f.write(anim_data.buffer())
|
(file_path, pics, *, fps=30.0, **kwargs)
|
714,553 |
webp
|
imread
|
Load from file and decode numpy array with WebP.
Args:
file_path (str): File to load from.
pilmode (str): Image color mode (RGBA, RGBa, or RGB).
Returns:
np.ndarray: The decoded image data.
|
def imread(file_path, *, pilmode='RGBA'):
"""Load from file and decode numpy array with WebP.
Args:
file_path (str): File to load from.
pilmode (str): Image color mode (RGBA, RGBa, or RGB).
Returns:
np.ndarray: The decoded image data.
"""
if pilmode == 'RGBA':
color_mode = WebPColorMode.RGBA
elif pilmode == 'RGBa':
color_mode = WebPColorMode.rgbA
elif pilmode == 'RGB':
color_mode = WebPColorMode.RGB
else:
raise WebPError('unsupported color mode: ' + pilmode)
with open(file_path, 'rb') as f:
webp_data = WebPData.from_buffer(f.read())
arr = webp_data.decode(color_mode=color_mode)
return arr
|
(file_path, *, pilmode='RGBA')
|
714,554 |
webp
|
imwrite
|
Encode numpy array image with WebP and save to file.
Args:
file_path (str): File to save to.
arr (np.ndarray): Image data to save.
pilmode (str): PIL image mode corresponding to the data in `arr`.
kwargs: Keyword arguments for encoder settings (see `WebPConfig.new`).
|
def imwrite(file_path, arr, *, pilmode=None, **kwargs):
"""Encode numpy array image with WebP and save to file.
Args:
file_path (str): File to save to.
arr (np.ndarray): Image data to save.
pilmode (str): PIL image mode corresponding to the data in `arr`.
kwargs: Keyword arguments for encoder settings (see `WebPConfig.new`).
"""
pic = WebPPicture.from_numpy(arr, pilmode=pilmode)
config = WebPConfig.new(**kwargs)
pic.save(file_path, config)
|
(file_path, arr, *, pilmode=None, **kwargs)
|
714,556 |
webp
|
load_image
|
Load from file and decode PIL Image with WebP.
Args:
file_path (str): File to load from.
mode (str): Mode for the PIL image (RGBA, RGBa, or RGB).
Returns:
PIL.Image: The decoded Image.
|
def load_image(file_path, mode='RGBA'):
"""Load from file and decode PIL Image with WebP.
Args:
file_path (str): File to load from.
mode (str): Mode for the PIL image (RGBA, RGBa, or RGB).
Returns:
PIL.Image: The decoded Image.
"""
arr = imread(file_path, pilmode=mode)
return Image.fromarray(arr, mode)
|
(file_path, mode='RGBA')
|
714,557 |
webp
|
load_images
|
Load from file and decode a sequence of PIL Images with WebP.
Args:
file_path (str): File to load from.
mode (str): Mode for the PIL image (RGBA, RGBa, or RGB).
kwargs: Keyword arguments for loading the images (see `mimread`).
Returns:
list of PIL.Image: The decoded Images.
|
def load_images(file_path, mode='RGBA', **kwargs):
"""Load from file and decode a sequence of PIL Images with WebP.
Args:
file_path (str): File to load from.
mode (str): Mode for the PIL image (RGBA, RGBa, or RGB).
kwargs: Keyword arguments for loading the images (see `mimread`).
Returns:
list of PIL.Image: The decoded Images.
"""
arrs = mimread(file_path, pilmode=mode, **kwargs)
return [Image.fromarray(arr, mode) for arr in arrs]
|
(file_path, mode='RGBA', **kwargs)
|
714,558 |
webp
|
mimread
|
Load from file and decode a list of numpy arrays with WebP.
Args:
file_path (str): File to load from.
pilmode (str): Image color mode (RGBA, RGBa, or RGB).
fps (float, optional): Frames will be evenly sampled to meet this particular
FPS. If `fps` is None, an ordered sequence of unique frames in the
animation will be returned.
use_threads (bool): Set to False to disable multi-threaded decoding.
Returns:
list of np.ndarray: The decoded image data.
|
def mimread(file_path, *, fps=None, use_threads=True, pilmode='RGBA'):
"""Load from file and decode a list of numpy arrays with WebP.
Args:
file_path (str): File to load from.
pilmode (str): Image color mode (RGBA, RGBa, or RGB).
fps (float, optional): Frames will be evenly sampled to meet this particular
FPS. If `fps` is None, an ordered sequence of unique frames in the
animation will be returned.
use_threads (bool): Set to False to disable multi-threaded decoding.
Returns:
list of np.ndarray: The decoded image data.
"""
if pilmode == 'RGBA':
color_mode = WebPColorMode.RGBA
elif pilmode == 'RGBa':
color_mode = WebPColorMode.rgbA
elif pilmode == 'RGB':
# NOTE: RGB decoding of animations is currently not supported by
# libwebpdemux. Hence we will read RGBA and remove the alpha channel later.
color_mode = WebPColorMode.RGBA
else:
raise WebPError('unsupported color mode: ' + pilmode)
arrs = []
with open(file_path, 'rb') as f:
webp_data = WebPData.from_buffer(f.read())
dec_opts = WebPAnimDecoderOptions.new(
use_threads=use_threads, color_mode=color_mode)
dec = WebPAnimDecoder.new(webp_data, dec_opts)
eps = 1e-7
for arr, frame_end_time in dec.frames():
if pilmode == 'RGB':
arr = arr[:, :, 0:3]
if fps is None:
arrs.append(arr)
else:
while len(arrs) * (1000 / fps) + eps < frame_end_time:
arrs.append(arr)
return arrs
|
(file_path, *, fps=None, use_threads=True, pilmode='RGBA')
|
714,559 |
webp
|
mimwrite
|
Encode a sequence of PIL Images with WebP and save to file.
Args:
file_path (str): File to save to.
imgs (list of np.ndarray): Image data to save.
fps (float): Animation speed in frames per second.
kwargs: Keyword arguments for encoder settings (see `WebPConfig.new`).
|
def mimwrite(file_path, arrs, *, fps=30.0, pilmode=None, **kwargs):
"""Encode a sequence of PIL Images with WebP and save to file.
Args:
file_path (str): File to save to.
imgs (list of np.ndarray): Image data to save.
fps (float): Animation speed in frames per second.
kwargs: Keyword arguments for encoder settings (see `WebPConfig.new`).
"""
pics = [WebPPicture.from_numpy(arr, pilmode=pilmode) for arr in arrs]
_mimwrite_pics(file_path, pics, fps=fps, **kwargs)
|
(file_path, arrs, *, fps=30.0, pilmode=None, **kwargs)
|
714,561 |
webp
|
save_image
|
Encode PIL Image with WebP and save to file.
Args:
img (pil.Image): Image to save.
file_path (str): File to save to.
kwargs: Keyword arguments for encoder settings (see `WebPConfig.new`).
|
def save_image(img, file_path, **kwargs):
"""Encode PIL Image with WebP and save to file.
Args:
img (pil.Image): Image to save.
file_path (str): File to save to.
kwargs: Keyword arguments for encoder settings (see `WebPConfig.new`).
"""
pic = WebPPicture.from_pil(img)
config = WebPConfig.new(**kwargs)
pic.save(file_path, config)
|
(img, file_path, **kwargs)
|
714,562 |
webp
|
save_images
|
Encode a sequence of PIL Images with WebP and save to file.
Args:
imgs (list of pil.Image): Images to save.
file_path (str): File to save to.
kwargs: Keyword arguments for saving the images (see `mimwrite`).
|
def save_images(imgs, file_path, **kwargs):
"""Encode a sequence of PIL Images with WebP and save to file.
Args:
imgs (list of pil.Image): Images to save.
file_path (str): File to save to.
kwargs: Keyword arguments for saving the images (see `mimwrite`).
"""
pics = [WebPPicture.from_pil(img) for img in imgs]
_mimwrite_pics(file_path, pics, **kwargs)
|
(imgs, file_path, **kwargs)
|
714,563 |
nwnsdk.postgres.dbmodels
|
JobStatus
|
An enumeration.
|
class JobStatus(Enum):
REGISTERED = "registered"
RUNNING = "running"
FINISHED = "finished"
ERROR = "error"
STOPPED = "stopped"
|
(value, names=None, *, module=None, qualname=None, type=None, start=1)
|
714,564 |
nwnsdk.app_logging
|
LogLevel
|
Simple enum to cover log levels for logging library.
|
class LogLevel(Enum):
"""Simple enum to cover log levels for logging library."""
DEBUG = logging.DEBUG
INFO = logging.INFO
WARNING = logging.WARNING
ERROR = logging.ERROR
@staticmethod
def parse(value: str) -> "LogLevel":
"""
Parses a given string for LogLevel's.
Parameters
----------
value : str
user provided string containing the requested log level
Returns
-------
LogLevel
Loglevel for this logger
"""
lowered = value.lower()
if lowered == "debug":
result = LogLevel.DEBUG
elif lowered == "info":
result = LogLevel.INFO
elif lowered in ["warning", "warn"]:
result = LogLevel.WARNING
elif lowered in ["err", "error"]:
result = LogLevel.ERROR
else:
raise ValueError(f"Value {value} is not a valid log level.")
return result
|
(value, names=None, *, module=None, qualname=None, type=None, start=1)
|
714,565 |
nwnsdk.nwn_client
|
NwnClient
| null |
class NwnClient(PostgresClient, RabbitmqClient):
rabbitmq_client: RabbitmqClient
postgres_client: PostgresClient
logger: logging.Logger
def __init__(self, postgres_config: PostgresConfig, rabbitmq_config: RabbitmqConfig):
PostgresClient.__init__(self, postgres_config)
RabbitmqClient.__init__(self, rabbitmq_config)
def connect(self):
PostgresClient._connect_postgres(self)
RabbitmqClient._start_rabbitmq(self)
def stop(self):
PostgresClient._close_postgres(self)
RabbitmqClient._stop_rabbitmq(self)
def start_work_flow(
self, work_flow_type: WorkFlowType, job_name: str, esdl_str: str, user_name: str, project_name: str
) -> uuid4:
job_id: uuid4 = uuid4()
PostgresClient._send_input(
self,
job_id=job_id,
job_name=job_name,
work_flow_type=work_flow_type,
esdl_str=esdl_str,
user_name=user_name,
project_name=project_name,
)
RabbitmqClient._send_start_work_flow(self, job_id, work_flow_type)
return job_id
def get_job_details(self, job_id: uuid4) -> Job:
return self.get_job(job_id)
def get_all_jobs(self) -> List[Job]:
return self.get_jobs()
def get_jobs_from_ids(self, job_ids: List[uuid4]) -> List[Job]:
return self.get_jobs(job_ids)
|
(postgres_config: nwnsdk.config.PostgresConfig, rabbitmq_config: nwnsdk.config.RabbitmqConfig)
|
714,566 |
nwnsdk.nwn_client
|
__init__
| null |
def __init__(self, postgres_config: PostgresConfig, rabbitmq_config: RabbitmqConfig):
PostgresClient.__init__(self, postgres_config)
RabbitmqClient.__init__(self, rabbitmq_config)
|
(self, postgres_config: nwnsdk.config.PostgresConfig, rabbitmq_config: nwnsdk.config.RabbitmqConfig)
|
714,570 |
nwnsdk.postgres.postgres_client
|
_close_postgres
| null |
def _close_postgres(self):
if self.engine:
self.engine.dispose()
|
(self)
|
714,571 |
nwnsdk.postgres.postgres_client
|
_connect_postgres
| null |
def _connect_postgres(self):
self.engine = initialize_db("nwn", self.db_config)
|
(self)
|
714,572 |
nwnsdk.rabbitmq.rabbitmq_client
|
_connect_rabbitmq
| null |
def _connect_rabbitmq(self):
# initialize rabbitmq connection
LOGGER.info(
"Connecting to RabbitMQ at %s:%s as user %s",
self.rabbitmq_config.host,
self.rabbitmq_config.port,
self.rabbitmq_config.user_name,
)
credentials = pika.PlainCredentials(self.rabbitmq_config.user_name, self.rabbitmq_config.password)
parameters = pika.ConnectionParameters(
self.rabbitmq_config.host,
self.rabbitmq_config.port,
"/",
credentials,
heartbeat=60,
blocked_connection_timeout=3600,
connection_attempts=10,
)
if not self.rabbitmq_connection or self.rabbitmq_connection.is_closed:
LOGGER.info("Setting up a new connection to RabbitMQ.")
self.rabbitmq_connection = pika.BlockingConnection(parameters)
if not self.rabbitmq_channel or self.rabbitmq_channel.is_closed:
LOGGER.info("Setting up a new channel to RabbitMQ.")
self.rabbitmq_channel = self.rabbitmq_connection.channel()
self.rabbitmq_channel.basic_qos(prefetch_size=0, prefetch_count=1)
self.rabbitmq_channel.exchange_declare(exchange=self.rabbitmq_exchange, exchange_type="topic")
for queue_item in Queue:
queue = self.rabbitmq_channel.queue_declare(queue_item.value, exclusive=False).method.queue
self.rabbitmq_channel.queue_bind(queue, self.rabbitmq_exchange, routing_key=queue_item.value)
for queue, callback in self.rabbitmq_callbacks.items():
self.rabbitmq_channel.basic_consume(queue=queue.value, on_message_callback=callback, auto_ack=False)
LOGGER.info("Connected to RabbitMQ")
|
(self)
|
714,575 |
nwnsdk.postgres.postgres_client
|
_send_input
| null |
def _send_input(
self,
job_id: uuid4,
job_name: str,
work_flow_type: WorkFlowType,
esdl_str: str,
user_name: str,
project_name: str,
) -> None:
with session_scope() as session:
new_job = Job(
job_id=job_id,
job_name=job_name,
work_flow_type=work_flow_type,
user_name=user_name,
project_name=project_name,
status=JobStatus.REGISTERED,
input_esdl=esdl_str,
added_at=datetime.now(),
)
session.add(new_job)
|
(self, job_id: <function uuid4 at 0x7faedbc0a290>, job_name: str, work_flow_type: nwnsdk.config.WorkFlowType, esdl_str: str, user_name: str, project_name: str) -> NoneType
|
714,576 |
nwnsdk.rabbitmq.rabbitmq_client
|
_send_output
| null |
def _send_output(self, queue: Queue, message: str):
body: bytes = message.encode("utf-8")
self.rabbitmq_connection.add_callback_threadsafe(
functools.partial(
self.rabbitmq_channel.basic_publish, exchange=self.rabbitmq_exchange, routing_key=queue.value, body=body
)
)
|
(self, queue: nwnsdk.rabbitmq.rabbitmq_client.Queue, message: str)
|
714,577 |
nwnsdk.rabbitmq.rabbitmq_client
|
_send_start_work_flow
| null |
def _send_start_work_flow(self, job_id: uuid4, work_flow_type: WorkFlowType):
# TODO convert to protobuf
# TODO job_id converted to string for json
body = json.dumps({"job_id": str(job_id)})
self._send_output(Queue.from_workflow_type(work_flow_type), body)
|
(self, job_id: <function uuid4 at 0x7faedbc0a290>, work_flow_type: nwnsdk.config.WorkFlowType)
|
714,581 |
nwnsdk.rabbitmq.rabbitmq_client
|
_start_rabbitmq
| null |
def _start_rabbitmq(self):
self._connect_rabbitmq()
self.start()
|
(self)
|
714,583 |
nwnsdk.rabbitmq.rabbitmq_client
|
_stop_rabbitmq
| null |
def _stop_rabbitmq(self):
self.rabbitmq_is_running = False
if self.rabbitmq_connection:
self.rabbitmq_connection.add_callback_threadsafe(self.rabbitmq_connection.close)
|
(self)
|
714,585 |
nwnsdk.nwn_client
|
connect
| null |
def connect(self):
PostgresClient._connect_postgres(self)
RabbitmqClient._start_rabbitmq(self)
|
(self)
|
714,586 |
nwnsdk.postgres.postgres_client
|
delete_job
| null |
def delete_job(self, job_id: uuid4) -> bool:
LOGGER.debug("Deleting job with id '%s'", job_id)
session: Session
with session_scope() as session:
stmnt = select(Job).where(Job.job_id == job_id)
job = session.scalars(stmnt).all()
if job:
stmnt = delete(Job).where(Job.job_id == job_id)
session.execute(stmnt)
job_deleted = True
else:
job_deleted = False
return job_deleted
|
(self, job_id: <function uuid4 at 0x7faedbc0a290>) -> bool
|
714,588 |
nwnsdk.nwn_client
|
get_all_jobs
| null |
def get_all_jobs(self) -> List[Job]:
return self.get_jobs()
|
(self) -> List[nwnsdk.postgres.dbmodels.Job]
|
714,589 |
nwnsdk.postgres.postgres_client
|
get_job
| null |
def get_job(self, job_id: uuid4) -> Job:
LOGGER.debug("Retrieving job data for job with id '%s'", job_id)
session: Session
with session_scope(do_expunge=True) as session:
stmnt = select(Job).where(Job.job_id == job_id)
job = session.scalar(stmnt)
return job
|
(self, job_id: <function uuid4 at 0x7faedbc0a290>) -> nwnsdk.postgres.dbmodels.Job
|
714,590 |
nwnsdk.nwn_client
|
get_job_details
| null |
def get_job_details(self, job_id: uuid4) -> Job:
return self.get_job(job_id)
|
(self, job_id: <function uuid4 at 0x7faedbc0a290>) -> nwnsdk.postgres.dbmodels.Job
|
714,591 |
nwnsdk.postgres.postgres_client
|
get_job_input_esdl
| null |
def get_job_input_esdl(self, job_id: uuid4) -> str:
LOGGER.debug("Retrieving input esdl for job %s", job_id)
with session_scope(do_expunge=True) as session:
stmnt = select(Job.input_esdl).where(Job.job_id == (job_id))
job_input_esdl: str = session.scalar(stmnt)
return job_input_esdl
|
(self, job_id: <function uuid4 at 0x7faedbc0a290>) -> str
|
714,592 |
nwnsdk.postgres.postgres_client
|
get_job_logs
| null |
def get_job_logs(self, job_id: uuid4) -> str:
LOGGER.debug("Retrieving job log for job with id '%s'", job_id)
with session_scope() as session:
stmnt = select(Job.logs).where(Job.job_id == job_id)
job_logs: Job = session.scalar(stmnt)
return job_logs
|
(self, job_id: <function uuid4 at 0x7faedbc0a290>) -> str
|
714,593 |
nwnsdk.postgres.postgres_client
|
get_job_output_esdl
| null |
def get_job_output_esdl(self, job_id: uuid4) -> str:
LOGGER.debug("Retrieving job output esdl for job with id '%s'", job_id)
with session_scope() as session:
stmnt = select(Job.output_esdl).where(Job.job_id == job_id)
job_output_esdl: Job = session.scalar(stmnt)
return job_output_esdl
|
(self, job_id: <function uuid4 at 0x7faedbc0a290>) -> str
|
714,594 |
nwnsdk.postgres.postgres_client
|
get_job_status
| null |
def get_job_status(self, job_id: uuid4) -> JobStatus:
LOGGER.debug("Retrieving job status for job with id '%s'", job_id)
with session_scope(do_expunge=True) as session:
stmnt = select(Job.status).where(Job.job_id == job_id)
job_status = session.scalar(stmnt)
return job_status
|
(self, job_id: <function uuid4 at 0x7faedbc0a290>) -> nwnsdk.postgres.dbmodels.JobStatus
|
714,595 |
nwnsdk.postgres.postgres_client
|
get_jobs
| null |
def get_jobs(self, job_ids: List[uuid4] = None) -> List[Job]:
with session_scope(do_expunge=True) as session:
stmnt = ALL_JOBS_STMNT
if job_ids:
LOGGER.debug(f"Retrieving job data for jobs '{','.join([str(job_id) for job_id in job_ids])}'")
stmnt = stmnt.where(Job.job_id.in_(job_ids))
else:
LOGGER.debug(f"Retrieving job data for all jobs")
jobs = session.scalars(stmnt).all()
return jobs
|
(self, job_ids: Optional[List[uuid4]] = None) -> List[nwnsdk.postgres.dbmodels.Job]
|
714,596 |
nwnsdk.nwn_client
|
get_jobs_from_ids
| null |
def get_jobs_from_ids(self, job_ids: List[uuid4]) -> List[Job]:
return self.get_jobs(job_ids)
|
(self, job_ids: List[uuid4]) -> List[nwnsdk.postgres.dbmodels.Job]
|
714,597 |
nwnsdk.postgres.postgres_client
|
get_jobs_from_project
| null |
def get_jobs_from_project(self, project_name: str) -> List[Job]:
LOGGER.debug(f"Retrieving job data for jobs from project '{project_name}'")
with session_scope(do_expunge=True) as session:
stmnt = ALL_JOBS_STMNT.where(Job.project_name == project_name)
jobs = session.scalars(stmnt).all()
return jobs
|
(self, project_name: str) -> List[nwnsdk.postgres.dbmodels.Job]
|
714,598 |
nwnsdk.postgres.postgres_client
|
get_jobs_from_user
| null |
def get_jobs_from_user(self, user_name: str) -> List[Job]:
LOGGER.debug(f"Retrieving job data for jobs from user '{user_name}'")
with session_scope(do_expunge=True) as session:
stmnt = ALL_JOBS_STMNT.where(Job.user_name == user_name)
jobs = session.scalars(stmnt).all()
return jobs
|
(self, user_name: str) -> List[nwnsdk.postgres.dbmodels.Job]
|
714,602 |
nwnsdk.rabbitmq.rabbitmq_client
|
run
| null |
def run(self):
self.rabbitmq_is_running = True
while self.rabbitmq_is_running:
try:
LOGGER.info("Waiting for input...")
while self.rabbitmq_is_running:
self.rabbitmq_channel._process_data_events(time_limit=1)
except pika.exceptions.ConnectionClosedByBroker as exc:
LOGGER.info('Connection was closed by broker. Reason: "%s". Shutting down...', exc.reply_text)
except pika.exceptions.ChannelClosedByBroker as exc:
LOGGER.info('Channel was closed by broker. Reason: "%s". retrying...', exc.reply_text)
self._connect_rabbitmq()
except pika.exceptions.AMQPConnectionError:
LOGGER.info("Connection was lost, retrying...")
self._connect_rabbitmq()
|
(self)
|
714,605 |
nwnsdk.rabbitmq.rabbitmq_client
|
set_callbacks
| null |
def set_callbacks(self, callbacks: Dict[Queue, PikaCallback]):
self.rabbitmq_callbacks.update(callbacks)
for queue, callback in callbacks.items():
self.rabbitmq_connection.add_callback_threadsafe(
functools.partial(
self.rabbitmq_channel.basic_consume, queue=queue.value, on_message_callback=callback, auto_ack=False
)
)
|
(self, callbacks: Dict[nwnsdk.rabbitmq.rabbitmq_client.Queue, Callable[[pika.adapters.blocking_connection.BlockingChannel, pika.spec.Basic.Deliver, pika.spec.BasicProperties, bytes], NoneType]])
|
714,606 |
nwnsdk.postgres.postgres_client
|
set_job_running
| null |
def set_job_running(self, job_id: uuid4) -> None:
LOGGER.debug("Started job with id '%s'", job_id)
with session_scope() as session:
stmnt = update(Job).where(Job.job_id == job_id).values(status=JobStatus.RUNNING, running_at=datetime.now())
session.execute(stmnt)
|
(self, job_id: <function uuid4 at 0x7faedbc0a290>) -> NoneType
|
714,608 |
nwnsdk.nwn_client
|
start_work_flow
| null |
def start_work_flow(
self, work_flow_type: WorkFlowType, job_name: str, esdl_str: str, user_name: str, project_name: str
) -> uuid4:
job_id: uuid4 = uuid4()
PostgresClient._send_input(
self,
job_id=job_id,
job_name=job_name,
work_flow_type=work_flow_type,
esdl_str=esdl_str,
user_name=user_name,
project_name=project_name,
)
RabbitmqClient._send_start_work_flow(self, job_id, work_flow_type)
return job_id
|
(self, work_flow_type: nwnsdk.config.WorkFlowType, job_name: str, esdl_str: str, user_name: str, project_name: str) -> <function uuid4 at 0x7faedbc0a290>
|
714,609 |
nwnsdk.nwn_client
|
stop
| null |
def stop(self):
PostgresClient._close_postgres(self)
RabbitmqClient._stop_rabbitmq(self)
|
(self)
|
714,610 |
nwnsdk.postgres.postgres_client
|
store_job_result
| null |
def store_job_result(self, job_id: uuid4, new_logs: str, new_status: JobStatus, output_esdl: str):
LOGGER.debug(
"Stored job result %s with exit code %s, status %s and %s characters of log",
job_id,
new_status,
len(new_logs),
)
with session_scope() as session:
stmnt = (
update(Job)
.where(Job.job_id == job_id)
.values(status=new_status, logs=new_logs, output_esdl=output_esdl, stopped_at=datetime.now())
)
session.execute(stmnt)
|
(self, job_id: <function uuid4 at 0x7faedbc0a290>, new_logs: str, new_status: nwnsdk.postgres.dbmodels.JobStatus, output_esdl: str)
|
714,611 |
nwnsdk.config
|
PostgresConfig
|
PostgresConfig(host: str, port: int, database_name: str, user_name: str, password: str)
|
class PostgresConfig:
host: str
port: int
database_name: str
user_name: str
password: str
|
(host: str, port: int, database_name: str, user_name: str, password: str) -> None
|
714,612 |
nwnsdk.config
|
__eq__
| null |
from dataclasses import dataclass
from enum import Enum
from typing import Optional
class WorkFlowType(Enum):
GROW_OPTIMIZER = "grow_optimizer"
GROW_SIMULATOR = "grow_simulator"
|
(self, other)
|
714,615 |
nwnsdk.rabbitmq.rabbitmq_client
|
Queue
|
An enumeration.
|
class Queue(Enum):
StartWorkflowOptimizer = "start_work_flow.optimizer"
StartWorkflowGrowSimulator = "start_work_flow.grow_simulator"
@staticmethod
def from_workflow_type(workflow_type: WorkFlowType) -> "Queue":
if workflow_type == WorkFlowType.GROW_OPTIMIZER:
return Queue.StartWorkflowOptimizer
elif workflow_type == WorkFlowType.GROW_SIMULATOR:
return Queue.StartWorkflowGrowSimulator
else:
raise RuntimeError(f"Unimplemented workflow type {workflow_type}. Please implement.")
|
(value, names=None, *, module=None, qualname=None, type=None, start=1)
|
714,616 |
nwnsdk.config
|
RabbitmqConfig
|
RabbitmqConfig(host: str, port: int, exchange_name: str, user_name: str, password: str, hipe_compile: Optional[int] = 1)
|
class RabbitmqConfig:
host: str
port: int
exchange_name: str
user_name: str
password: str
hipe_compile: Optional[int] = 1
|
(host: str, port: int, exchange_name: str, user_name: str, password: str, hipe_compile: Optional[int] = 1) -> None
|
714,620 |
nwnsdk.config
|
WorkFlowType
|
An enumeration.
|
class WorkFlowType(Enum):
GROW_OPTIMIZER = "grow_optimizer"
GROW_SIMULATOR = "grow_simulator"
|
(value, names=None, *, module=None, qualname=None, type=None, start=1)
|
714,627 |
nwnsdk.app_logging
|
setup_logging
|
Initializes logging.
Parameters
----------
log_level : LogLevel
The LogLevel for this logger.
logger_name : Optional[str]
Name for this logger.
|
def setup_logging(log_level: LogLevel, logger_name: Optional[str]) -> logging.Logger:
"""
Initializes logging.
Parameters
----------
log_level : LogLevel
The LogLevel for this logger.
logger_name : Optional[str]
Name for this logger.
"""
logger = logging.getLogger(logger_name)
if logger_name not in CONFIGURED_LOGGERS:
print(f"Will use log level {log_level} for logger {logger_name}")
logger.setLevel(log_level.value)
log_handler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter(
fmt="%(asctime)s [%(threadName)s][%(filename)s:%(lineno)d]" "[%(levelname)s]: %(message)s"
)
log_handler.setFormatter(formatter)
logger.addHandler(log_handler)
CONFIGURED_LOGGERS[logger_name] = logger
return logger
|
(log_level: nwnsdk.app_logging.LogLevel, logger_name: Optional[str]) -> logging.Logger
|
714,630 |
langid.langid
|
classify
|
Convenience method using a global identifier instance with the default
model included in langid.py. Identifies the language that a string is
written in.
@param instance a text string. Unicode strings will automatically be utf8-encoded
@returns a tuple of the most likely language and the confidence score
|
def classify(instance):
"""
Convenience method using a global identifier instance with the default
model included in langid.py. Identifies the language that a string is
written in.
@param instance a text string. Unicode strings will automatically be utf8-encoded
@returns a tuple of the most likely language and the confidence score
"""
global identifier
if identifier is None:
load_model()
return identifier.classify(instance)
|
(instance)
|
714,632 |
langid.langid
|
rank
|
Convenience method using a global identifier instance with the default
model included in langid.py. Ranks all the languages in the model according
to the likelihood that the string is written in each language.
@param instance a text string. Unicode strings will automatically be utf8-encoded
@returns a list of tuples language and the confidence score, in descending order
|
def rank(instance):
"""
Convenience method using a global identifier instance with the default
model included in langid.py. Ranks all the languages in the model according
to the likelihood that the string is written in each language.
@param instance a text string. Unicode strings will automatically be utf8-encoded
@returns a list of tuples language and the confidence score, in descending order
"""
global identifier
if identifier is None:
load_model()
return identifier.rank(instance)
|
(instance)
|
714,633 |
langid.langid
|
set_languages
|
Set the language set used by the global identifier.
@param langs a list of language codes
|
def set_languages(langs=None):
"""
Set the language set used by the global identifier.
@param langs a list of language codes
"""
global identifier
if identifier is None:
load_model()
return identifier.set_languages(langs)
|
(langs=None)
|
714,641 |
jsonconversion
|
get_all_args
|
Determines the names of all arguments of the given function
:param func: The function/method to be inspected
:return: Argument names
:rtype: set(str)
|
def get_all_args(func):
"""Determines the names of all arguments of the given function
:param func: The function/method to be inspected
:return: Argument names
:rtype: set(str)
"""
fullargspec = getfullargspec(func)
func_args = set()
for arg_type in ["args", "varargs", "varkw", "kwonlyargs", "keywords"]:
arg_type_val = getattr(fullargspec, arg_type, None)
if arg_type_val is not None:
func_args |= set(arg_type_val)
return func_args
|
(func)
|
714,651 |
google_crc32c.cext
|
Checksum
|
Hashlib-alike helper for CRC32C operations.
Args:
initial_value (Optional[bytes]): the initial chunk of data from
which the CRC32C checksum is computed. Defaults to b''.
|
class Checksum(CommonChecksum):
"""Hashlib-alike helper for CRC32C operations.
Args:
initial_value (Optional[bytes]): the initial chunk of data from
which the CRC32C checksum is computed. Defaults to b''.
"""
__slots__ = ("_crc",)
def __init__(self, initial_value=b""):
self._crc = value(initial_value)
def update(self, chunk):
"""Update the checksum with a new chunk of data.
Args:
chunk (Optional[bytes]): a chunk of data used to extend
the CRC32C checksum.
"""
self._crc = extend(self._crc, chunk)
|
(initial_value=b'')
|
714,652 |
google_crc32c.cext
|
__init__
| null |
def __init__(self, initial_value=b""):
self._crc = value(initial_value)
|
(self, initial_value=b'')
|
714,653 |
google_crc32c._checksum
|
consume
|
Consume chunks from a stream, extending our CRC32 checksum.
Args:
stream (BinaryIO): the stream to consume.
chunksize (int): the size of the read to perform
Returns:
Generator[bytes, None, None]: Iterable of the chunks read from the
stream.
|
def consume(self, stream, chunksize):
"""Consume chunks from a stream, extending our CRC32 checksum.
Args:
stream (BinaryIO): the stream to consume.
chunksize (int): the size of the read to perform
Returns:
Generator[bytes, None, None]: Iterable of the chunks read from the
stream.
"""
while True:
chunk = stream.read(chunksize)
if not chunk:
break
self.update(chunk)
yield chunk
|
(self, stream, chunksize)
|
714,654 |
google_crc32c._checksum
|
copy
|
Create another checksum with the same CRC32C value.
Returns:
Checksum: the new instance.
|
def copy(self):
"""Create another checksum with the same CRC32C value.
Returns:
Checksum: the new instance.
"""
clone = self.__class__()
clone._crc = self._crc
return clone
|
(self)
|
714,655 |
google_crc32c._checksum
|
digest
|
Big-endian order, per RFC 4960.
See: https://cloud.google.com/storage/docs/json_api/v1/objects#crc32c
Returns:
bytes: An eight-byte digest string.
|
def digest(self):
"""Big-endian order, per RFC 4960.
See: https://cloud.google.com/storage/docs/json_api/v1/objects#crc32c
Returns:
bytes: An eight-byte digest string.
"""
return struct.pack(">L", self._crc)
|
(self)
|
714,656 |
google_crc32c._checksum
|
hexdigest
|
Like :meth:`digest` except returns as a bytestring of double length.
Returns
bytes: A sixteen byte digest string, contaiing only hex digits.
|
def hexdigest(self):
"""Like :meth:`digest` except returns as a bytestring of double length.
Returns
bytes: A sixteen byte digest string, contaiing only hex digits.
"""
return "{:08x}".format(self._crc).encode("ascii")
|
(self)
|
714,657 |
google_crc32c.cext
|
update
|
Update the checksum with a new chunk of data.
Args:
chunk (Optional[bytes]): a chunk of data used to extend
the CRC32C checksum.
|
def update(self, chunk):
"""Update the checksum with a new chunk of data.
Args:
chunk (Optional[bytes]): a chunk of data used to extend
the CRC32C checksum.
"""
self._crc = extend(self._crc, chunk)
|
(self, chunk)
|
714,666 |
pandas_redshift.core
|
close_up_shop
| null |
def close_up_shop():
global connect, cursor, s3, s3_bucket_var, s3_subdirectory_var, aws_1, aws_2, aws_token
cursor.close()
connect.commit()
connect.close()
try:
del connect, cursor
except:
pass
try:
del s3, s3_bucket_var, s3_subdirectory_var, aws_1, aws_2, aws_token
except:
pass
|
()
|
714,667 |
pandas_redshift.core
|
connect_to_redshift
| null |
def connect_to_redshift(dbname, host, user, port=5439, **kwargs):
global connect, cursor
connect = psycopg2.connect(dbname=dbname,
host=host,
port=port,
user=user,
**kwargs)
cursor = connect.cursor()
|
(dbname, host, user, port=5439, **kwargs)
|
714,668 |
pandas_redshift.core
|
connect_to_s3
| null |
def connect_to_s3(aws_access_key_id, aws_secret_access_key, bucket, subdirectory=None, aws_iam_role=None, **kwargs):
global s3, s3_bucket_var, s3_subdirectory_var, aws_1, aws_2, aws_token, aws_role
s3 = boto3.resource('s3',
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
**kwargs)
s3_bucket_var = bucket
if subdirectory is None:
s3_subdirectory_var = ''
else:
s3_subdirectory_var = subdirectory + '/'
aws_1 = aws_access_key_id
aws_2 = aws_secret_access_key
aws_role = aws_iam_role
if kwargs.get('aws_session_token'):
aws_token = kwargs.get('aws_session_token')
else:
aws_token = ''
|
(aws_access_key_id, aws_secret_access_key, bucket, subdirectory=None, aws_iam_role=None, **kwargs)
|
714,670 |
pandas_redshift.core
|
create_redshift_table
|
Create an empty RedShift Table
|
def create_redshift_table(data_frame,
redshift_table_name,
column_data_types=None,
index=False,
append=False,
diststyle='even',
distkey='',
sort_interleaved=False,
sortkey='',
verbose=True):
"""Create an empty RedShift Table
"""
if index:
columns = list(data_frame.columns)
if data_frame.index.name:
columns.insert(0, data_frame.index.name)
else:
columns.insert(0, "index")
else:
columns = list(data_frame.columns)
if column_data_types is None:
column_data_types = get_column_data_types(data_frame, index)
columns_and_data_type = ', '.join(
['{0} {1}'.format(x, y) for x, y in zip(columns, column_data_types)])
create_table_query = 'create table {0} ({1})'.format(
redshift_table_name, columns_and_data_type)
if not distkey:
# Without a distkey, we can set a diststyle
if diststyle not in ['even', 'all']:
raise ValueError("diststyle must be either 'even' or 'all'")
else:
create_table_query += ' diststyle {0}'.format(diststyle)
else:
# otherwise, override diststyle with distkey
create_table_query += ' distkey({0})'.format(distkey)
if len(sortkey) > 0:
if sort_interleaved:
create_table_query += ' interleaved'
create_table_query += ' sortkey({0})'.format(sortkey)
if verbose:
logger.info(create_table_query)
logger.info('CREATING A TABLE IN REDSHIFT')
cursor.execute('drop table if exists {0}'.format(redshift_table_name))
cursor.execute(create_table_query)
connect.commit()
|
(data_frame, redshift_table_name, column_data_types=None, index=False, append=False, diststyle='even', distkey='', sort_interleaved=False, sortkey='', verbose=True)
|
714,671 |
pandas_redshift.core
|
df_to_s3
|
Write a dataframe to S3
Arguments:
dataframe pd.data_frame -- data to upload
csv_name str -- name of the file to upload
save_local bool -- save a local copy
delimiter str -- delimiter for csv file
|
def df_to_s3(data_frame, csv_name, index, save_local, delimiter, verbose=True, **kwargs):
"""Write a dataframe to S3
Arguments:
dataframe pd.data_frame -- data to upload
csv_name str -- name of the file to upload
save_local bool -- save a local copy
delimiter str -- delimiter for csv file
"""
extra_kwargs = {k: v for k, v in kwargs.items(
) if k in S3_ACCEPTED_KWARGS and v is not None}
# create local backup
if save_local:
data_frame.to_csv(csv_name, index=index, sep=delimiter)
if verbose:
logger.info('saved file {0} in {1}'.format(csv_name, os.getcwd()))
#
csv_buffer = StringIO()
data_frame.to_csv(csv_buffer, index=index, sep=delimiter)
s3.Bucket(s3_bucket_var).put_object(
Key=s3_subdirectory_var + csv_name, Body=csv_buffer.getvalue(),
**extra_kwargs)
if verbose:
logger.info('saved file {0} in bucket {1}'.format(
csv_name, s3_subdirectory_var + csv_name))
|
(data_frame, csv_name, index, save_local, delimiter, verbose=True, **kwargs)
|
714,672 |
pandas_redshift.core
|
exec_commit
| null |
def exec_commit(sql_query):
cursor.execute(sql_query)
connect.commit()
|
(sql_query)
|
714,673 |
pandas_redshift.core
|
get_column_data_types
| null |
def get_column_data_types(data_frame, index=False):
column_data_types = [pd_dtype_to_redshift_dtype(dtype.name)
for dtype in data_frame.dtypes.values]
if index:
column_data_types.insert(
0, pd_dtype_to_redshift_dtype(data_frame.index.dtype.name))
return column_data_types
|
(data_frame, index=False)
|
714,675 |
pandas_redshift.core
|
mask_aws_credentials
| null |
def mask_aws_credentials(s):
if logging_config['mask_secrets']:
import re
s = re.sub('(?<=access_key_id \')(.*)(?=\')', '*'*8, s)
s = re.sub('(?<=secret_access_key \')(.*)(?=\')', '*'*8, s)
return s
|
(s)
|
714,677 |
pandas_redshift.core
|
pandas_to_redshift
| null |
def pandas_to_redshift(data_frame,
redshift_table_name,
column_data_types=None,
index=False,
save_local=False,
delimiter=',',
quotechar='"',
dateformat='auto',
timeformat='auto',
region='',
append=False,
diststyle='even',
distkey='',
sort_interleaved=False,
sortkey='',
parameters='',
verbose=True,
**kwargs):
# Validate column names.
data_frame = validate_column_names(data_frame)
# Send data to S3
csv_name = '{}-{}.csv'.format(redshift_table_name, uuid.uuid4())
s3_kwargs = {k: v for k, v in kwargs.items()
if k in S3_ACCEPTED_KWARGS and v is not None}
df_to_s3(data_frame, csv_name, index, save_local, delimiter, verbose=verbose, **s3_kwargs)
# CREATE AN EMPTY TABLE IN REDSHIFT
if not append:
create_redshift_table(data_frame, redshift_table_name,
column_data_types, index, append,
diststyle, distkey, sort_interleaved, sortkey, verbose=verbose)
# CREATE THE COPY STATEMENT TO SEND FROM S3 TO THE TABLE IN REDSHIFT
s3_to_redshift(redshift_table_name, csv_name, delimiter, quotechar,
dateformat, timeformat, region, parameters, verbose=verbose)
|
(data_frame, redshift_table_name, column_data_types=None, index=False, save_local=False, delimiter=',', quotechar='"', dateformat='auto', timeformat='auto', region='', append=False, diststyle='even', distkey='', sort_interleaved=False, sortkey='', parameters='', verbose=True, **kwargs)
|
714,679 |
pandas_redshift.core
|
pd_dtype_to_redshift_dtype
| null |
def pd_dtype_to_redshift_dtype(dtype):
if dtype.startswith('int64'):
return 'BIGINT'
elif dtype.startswith('int'):
return 'INTEGER'
elif dtype.startswith('float'):
return 'REAL'
elif dtype.startswith('datetime'):
return 'TIMESTAMP'
elif dtype == 'bool':
return 'BOOLEAN'
else:
return 'VARCHAR(256)'
|
(dtype)
|
714,682 |
pandas_redshift.core
|
redshift_to_pandas
| null |
def redshift_to_pandas(sql_query, query_params=None):
# pass a sql query and return a pandas dataframe
cursor.execute(sql_query, query_params)
columns_list = [desc[0] for desc in cursor.description]
data = pd.DataFrame(cursor.fetchall(), columns=columns_list)
return data
|
(sql_query, query_params=None)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.