index
int64
0
731k
package
stringlengths
2
98
name
stringlengths
1
76
docstring
stringlengths
0
281k
code
stringlengths
4
1.07M
signature
stringlengths
2
42.8k
716,326
pytorch_optimizer.loss.dice
forward
null
def forward(self, y_pred: torch.Tensor, y_true: torch.Tensor) -> torch.Tensor: if self.from_logits: # Apply activations to get [0..1] class probabilities # Using Log-Exp as this gives more numerically stable result and does not cause vanishing gradient on # extreme values 0 and 1 y_pred = y_pred.log_softmax(dim=1).exp() if self.mode == 'multiclass' else logsigmoid(y_pred).exp() bs: int = y_true.size(0) num_classes: int = y_pred.size(1) dims: Tuple[int, ...] = (0, 2) if self.mode == 'binary': y_true = y_true.view(bs, 1, -1) y_pred = y_pred.view(bs, 1, -1) if self.ignore_index is not None: mask = y_true != self.ignore_index y_pred = y_pred * mask y_true = y_true * mask if self.mode == 'multiclass': y_true = y_true.view(bs, -1) y_pred = y_pred.view(bs, num_classes, -1) if self.ignore_index is not None: mask = y_true != self.ignore_index y_pred = y_pred * mask.unsqueeze(1) y_true = one_hot((y_true * mask).to(torch.long), num_classes) y_true = y_true.permute(0, 2, 1) * mask.unsqueeze(1) else: y_true = one_hot(y_true, num_classes) y_true = y_true.permute(0, 2, 1) if self.mode == 'multilabel': y_true = y_true.view(bs, num_classes, -1) y_pred = y_pred.view(bs, num_classes, -1) if self.ignore_index is not None: mask = y_true != self.ignore_index y_pred = y_pred * mask y_true = y_true * mask scores = self.compute_score( y_pred, y_true.type_as(y_pred), label_smooth=self.label_smooth, eps=self.eps, dims=dims ) loss = -torch.log(scores.clamp_min(self.eps)) if self.log_loss else 1.0 - scores # Dice loss is undefined for non-empty classes # So we zero contribution of channel that does not have true pixels # NOTE: A better workaround would be to use loss term `mean(y_pred)` # for this case, however it will be a modified jaccard loss mask = y_true.sum(dims) > 0 loss *= mask.to(loss.dtype) if self.classes is not None: loss = loss[self.classes] return self.aggregate_loss(loss)
(self, y_pred: torch.Tensor, y_true: torch.Tensor) -> torch.Tensor
716,360
pytorch_optimizer.optimizer.diffgrad
DiffGrad
An Optimization Method for Convolutional Neural Networks. :param params: PARAMETERS. iterable of parameters to optimize or dicts defining parameter groups. :param lr: float. learning rate. :param betas: BETAS. coefficients used for computing running averages of gradient and the squared hessian trace. :param weight_decay: float. weight decay (L2 penalty). :param weight_decouple: bool. the optimizer uses decoupled weight decay as in AdamW. :param fixed_decay: bool. fix weight decay. :param rectify: bool. perform the rectified update similar to RAdam. :param n_sma_threshold: int. (recommended is 5). :param degenerated_to_sgd: bool. degenerated to SGD. :param ams_bound: bool. whether to use the AMSBound variant. :param r: float. EMA factor. between 0.9 ~ 0.99 is preferred. :param adanorm: bool. whether to use the AdaNorm variant. :param adam_debias: bool. Only correct the denominator to avoid inflating step sizes early in training. :param eps: float. term added to the denominator to improve numerical stability.
class DiffGrad(Optimizer, BaseOptimizer): r"""An Optimization Method for Convolutional Neural Networks. :param params: PARAMETERS. iterable of parameters to optimize or dicts defining parameter groups. :param lr: float. learning rate. :param betas: BETAS. coefficients used for computing running averages of gradient and the squared hessian trace. :param weight_decay: float. weight decay (L2 penalty). :param weight_decouple: bool. the optimizer uses decoupled weight decay as in AdamW. :param fixed_decay: bool. fix weight decay. :param rectify: bool. perform the rectified update similar to RAdam. :param n_sma_threshold: int. (recommended is 5). :param degenerated_to_sgd: bool. degenerated to SGD. :param ams_bound: bool. whether to use the AMSBound variant. :param r: float. EMA factor. between 0.9 ~ 0.99 is preferred. :param adanorm: bool. whether to use the AdaNorm variant. :param adam_debias: bool. Only correct the denominator to avoid inflating step sizes early in training. :param eps: float. term added to the denominator to improve numerical stability. """ def __init__( self, params: PARAMETERS, lr: float = 1e-3, betas: BETAS = (0.9, 0.999), weight_decay: float = 0.0, weight_decouple: bool = True, fixed_decay: bool = False, rectify: bool = False, n_sma_threshold: int = 5, degenerated_to_sgd: bool = True, ams_bound: bool = False, r: float = 0.95, adanorm: bool = False, adam_debias: bool = False, eps: float = 1e-8, ): self.validate_learning_rate(lr) self.validate_betas(betas) self.validate_non_negative(weight_decay, 'weight_decay') self.validate_non_negative(eps, 'eps') self.n_sma_threshold = n_sma_threshold self.degenerated_to_sgd = degenerated_to_sgd defaults: DEFAULTS = { 'lr': lr, 'betas': betas, 'weight_decay': weight_decay, 'weight_decouple': weight_decouple, 'fixed_decay': fixed_decay, 'rectify': rectify, 'ams_bound': ams_bound, 'adanorm': adanorm, 'adam_debias': adam_debias, 'eps': eps, } if adanorm: defaults.update({'r': r}) super().__init__(params, defaults) def __str__(self) -> str: return 'diffGrad' @torch.no_grad() def reset(self): for group in self.param_groups: group['step'] = 0 for p in group['params']: state = self.state[p] state['exp_avg'] = torch.zeros_like(p) state['exp_avg_sq'] = torch.zeros_like(p) state['previous_grad'] = torch.zeros_like(p) if group['ams_bound']: state['max_exp_avg_sq'] = torch.zeros_like(p) if group['adanorm']: state['exp_grad_norm'] = torch.zeros((1,), dtype=p.dtype, device=p.device) @torch.no_grad() def step(self, closure: CLOSURE = None) -> LOSS: loss: LOSS = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: if 'step' in group: group['step'] += 1 else: group['step'] = 1 beta1, beta2 = group['betas'] bias_correction1: float = 1.0 - beta1 ** group['step'] step_size, n_sma = self.get_rectify_step_size( is_rectify=group['rectify'], step=group['step'], lr=group['lr'], beta2=beta2, n_sma_threshold=self.n_sma_threshold, degenerated_to_sgd=self.degenerated_to_sgd, ) step_size = self.apply_adam_debias( adam_debias=group['adam_debias'], step_size=step_size, bias_correction1=bias_correction1, ) for p in group['params']: if p.grad is None: continue grad = p.grad if grad.is_sparse: raise NoSparseGradientError(str(self)) state = self.state[p] if len(state) == 0: state['exp_avg'] = torch.zeros_like(p) state['exp_avg_sq'] = torch.zeros_like(p) state['previous_grad'] = torch.zeros_like(p) if group['ams_bound']: state['max_exp_avg_sq'] = torch.zeros_like(p) if group['adanorm']: state['exp_grad_norm'] = torch.zeros((1,), dtype=grad.dtype, device=grad.device) s_grad = self.get_adanorm_gradient( grad=grad, adanorm=group['adanorm'], exp_grad_norm=state.get('exp_grad_norm', None), r=group.get('r', None), ) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] exp_avg.mul_(beta1).add_(s_grad, alpha=1.0 - beta1) exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1.0 - beta2) de_nom = self.apply_ams_bound( ams_bound=group['ams_bound'], exp_avg_sq=exp_avg_sq, max_exp_avg_sq=state.get('max_exp_avg_sq', None), eps=group['eps'], ) # compute diffGrad coefficient (dfc) dfc = state['previous_grad'].clone() dfc.sub_(grad).abs_().sigmoid_().mul_(exp_avg) state['previous_grad'].copy_(grad) if not group['rectify']: p.addcdiv_(exp_avg, de_nom, value=-step_size) continue self.apply_weight_decay( p=p, grad=None, lr=group['lr'], weight_decay=group['weight_decay'], weight_decouple=group['weight_decouple'], fixed_decay=group['fixed_decay'], ) if n_sma >= self.n_sma_threshold: p.addcdiv_(dfc, de_nom, value=-step_size) elif step_size > 0: p.add_(exp_avg, alpha=-step_size) return loss
(params: Union[Iterable[Dict], Iterable[torch.Tensor], NoneType], lr: float = 0.001, betas: Union[Tuple[float, float], Tuple[float, float, float]] = (0.9, 0.999), weight_decay: float = 0.0, weight_decouple: bool = True, fixed_decay: bool = False, rectify: bool = False, n_sma_threshold: int = 5, degenerated_to_sgd: bool = True, ams_bound: bool = False, r: float = 0.95, adanorm: bool = False, adam_debias: bool = False, eps: float = 1e-08)
716,362
pytorch_optimizer.optimizer.diffgrad
__init__
null
def __init__( self, params: PARAMETERS, lr: float = 1e-3, betas: BETAS = (0.9, 0.999), weight_decay: float = 0.0, weight_decouple: bool = True, fixed_decay: bool = False, rectify: bool = False, n_sma_threshold: int = 5, degenerated_to_sgd: bool = True, ams_bound: bool = False, r: float = 0.95, adanorm: bool = False, adam_debias: bool = False, eps: float = 1e-8, ): self.validate_learning_rate(lr) self.validate_betas(betas) self.validate_non_negative(weight_decay, 'weight_decay') self.validate_non_negative(eps, 'eps') self.n_sma_threshold = n_sma_threshold self.degenerated_to_sgd = degenerated_to_sgd defaults: DEFAULTS = { 'lr': lr, 'betas': betas, 'weight_decay': weight_decay, 'weight_decouple': weight_decouple, 'fixed_decay': fixed_decay, 'rectify': rectify, 'ams_bound': ams_bound, 'adanorm': adanorm, 'adam_debias': adam_debias, 'eps': eps, } if adanorm: defaults.update({'r': r}) super().__init__(params, defaults)
(self, params: Union[Iterable[Dict], Iterable[torch.Tensor], NoneType], lr: float = 0.001, betas: Union[Tuple[float, float], Tuple[float, float, float]] = (0.9, 0.999), weight_decay: float = 0.0, weight_decouple: bool = True, fixed_decay: bool = False, rectify: bool = False, n_sma_threshold: int = 5, degenerated_to_sgd: bool = True, ams_bound: bool = False, r: float = 0.95, adanorm: bool = False, adam_debias: bool = False, eps: float = 1e-08)
716,365
pytorch_optimizer.optimizer.diffgrad
__str__
null
def __str__(self) -> str: return 'diffGrad'
(self) -> str
716,386
pytorch_optimizer.optimizer.diffgrad
reset
null
@torch.no_grad() def step(self, closure: CLOSURE = None) -> LOSS: loss: LOSS = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: if 'step' in group: group['step'] += 1 else: group['step'] = 1 beta1, beta2 = group['betas'] bias_correction1: float = 1.0 - beta1 ** group['step'] step_size, n_sma = self.get_rectify_step_size( is_rectify=group['rectify'], step=group['step'], lr=group['lr'], beta2=beta2, n_sma_threshold=self.n_sma_threshold, degenerated_to_sgd=self.degenerated_to_sgd, ) step_size = self.apply_adam_debias( adam_debias=group['adam_debias'], step_size=step_size, bias_correction1=bias_correction1, ) for p in group['params']: if p.grad is None: continue grad = p.grad if grad.is_sparse: raise NoSparseGradientError(str(self)) state = self.state[p] if len(state) == 0: state['exp_avg'] = torch.zeros_like(p) state['exp_avg_sq'] = torch.zeros_like(p) state['previous_grad'] = torch.zeros_like(p) if group['ams_bound']: state['max_exp_avg_sq'] = torch.zeros_like(p) if group['adanorm']: state['exp_grad_norm'] = torch.zeros((1,), dtype=grad.dtype, device=grad.device) s_grad = self.get_adanorm_gradient( grad=grad, adanorm=group['adanorm'], exp_grad_norm=state.get('exp_grad_norm', None), r=group.get('r', None), ) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] exp_avg.mul_(beta1).add_(s_grad, alpha=1.0 - beta1) exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1.0 - beta2) de_nom = self.apply_ams_bound( ams_bound=group['ams_bound'], exp_avg_sq=exp_avg_sq, max_exp_avg_sq=state.get('max_exp_avg_sq', None), eps=group['eps'], ) # compute diffGrad coefficient (dfc) dfc = state['previous_grad'].clone() dfc.sub_(grad).abs_().sigmoid_().mul_(exp_avg) state['previous_grad'].copy_(grad) if not group['rectify']: p.addcdiv_(exp_avg, de_nom, value=-step_size) continue self.apply_weight_decay( p=p, grad=None, lr=group['lr'], weight_decay=group['weight_decay'], weight_decouple=group['weight_decouple'], fixed_decay=group['fixed_decay'], ) if n_sma >= self.n_sma_threshold: p.addcdiv_(dfc, de_nom, value=-step_size) elif step_size > 0: p.add_(exp_avg, alpha=-step_size) return loss
(self)
716,401
pytorch_optimizer.optimizer.fp16
DynamicLossScaler
Dynamically adjusts the loss scaling factor. Dynamic loss scalers are important in mixed-precision training. They help us avoid underflows and overflows in low-precision gradients. See here for information: <https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html#lossscaling> Shamelessly stolen and adapted from FairSeq. <https://github.com/pytorch/fairseq/blob/main/fairseq/optim/fp16_optimizer.py> Reference : 'https://github.com/facebookresearch/ParlAI/blob/main/parlai/utils/fp16.py' :param init_scale: Initial loss scale. :param scale_factor: Factor by which to increase or decrease loss scale. :param scale_window: If we do not experience overflow in scale_window iterations, loss scale will increase by scale_factor. :param tolerance: Pct of iterations that have overflowed after which we must decrease the loss scale. :param threshold: If not None, loss scale will decrease below this threshold.
class DynamicLossScaler: r"""Dynamically adjusts the loss scaling factor. Dynamic loss scalers are important in mixed-precision training. They help us avoid underflows and overflows in low-precision gradients. See here for information: <https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html#lossscaling> Shamelessly stolen and adapted from FairSeq. <https://github.com/pytorch/fairseq/blob/main/fairseq/optim/fp16_optimizer.py> Reference : 'https://github.com/facebookresearch/ParlAI/blob/main/parlai/utils/fp16.py' :param init_scale: Initial loss scale. :param scale_factor: Factor by which to increase or decrease loss scale. :param scale_window: If we do not experience overflow in scale_window iterations, loss scale will increase by scale_factor. :param tolerance: Pct of iterations that have overflowed after which we must decrease the loss scale. :param threshold: If not None, loss scale will decrease below this threshold. """ def __init__( self, init_scale: float = 2.0 ** 15, scale_factor: float = 2.0, scale_window: int = 2000, tolerance: float = 0.00, threshold: Optional[float] = None, ): # fmt: skip self.loss_scale = init_scale self.scale_factor = scale_factor self.scale_window = scale_window self.tolerance = tolerance self.threshold = threshold self.iter: int = 0 self.last_overflow_iter: int = -1 self.last_rescale_iter: int = -1 self.overflows_since_rescale: int = 0 self.has_overflow_serial: bool = False def update_scale(self, overflow: bool): r"""Update the loss scale. If overflow exceeds our tolerance, we decrease the loss scale. If the number of iterations since the last overflow exceeds the scale window, we increase the loss scale. :param overflow: bool. adjust scales to prevent overflow. """ iter_since_rescale: int = self.iter - self.last_rescale_iter if overflow: # calculate how often we overflowed already self.last_overflow_iter = self.iter self.overflows_since_rescale += 1 pct_overflow: float = self.overflows_since_rescale / float(iter_since_rescale) if pct_overflow >= self.tolerance: # decrease loss scale by the scale factor self.decrease_loss_scale() # reset iterations self.last_rescale_iter = self.iter self.overflows_since_rescale = 0 elif (self.iter - self.last_overflow_iter) % self.scale_window == 0: # increase the loss scale by scale factor self.loss_scale *= self.scale_factor self.last_rescale_iter = self.iter self.iter += 1 def decrease_loss_scale(self): r"""Decrease the loss scale by self.scale_factor. NOTE: the loss_scale will not go below `self.threshold`. """ self.loss_scale /= self.scale_factor if self.threshold is not None: self.loss_scale = max(self.loss_scale, self.threshold)
(init_scale: float = 32768.0, scale_factor: float = 2.0, scale_window: int = 2000, tolerance: float = 0.0, threshold: Optional[float] = None)
716,402
pytorch_optimizer.optimizer.fp16
__init__
null
def __init__( self, init_scale: float = 2.0 ** 15, scale_factor: float = 2.0, scale_window: int = 2000, tolerance: float = 0.00, threshold: Optional[float] = None, ): # fmt: skip self.loss_scale = init_scale self.scale_factor = scale_factor self.scale_window = scale_window self.tolerance = tolerance self.threshold = threshold self.iter: int = 0 self.last_overflow_iter: int = -1 self.last_rescale_iter: int = -1 self.overflows_since_rescale: int = 0 self.has_overflow_serial: bool = False
(self, init_scale: float = 32768.0, scale_factor: float = 2.0, scale_window: int = 2000, tolerance: float = 0.0, threshold: Optional[float] = None)
716,403
pytorch_optimizer.optimizer.fp16
decrease_loss_scale
Decrease the loss scale by self.scale_factor. NOTE: the loss_scale will not go below `self.threshold`.
def decrease_loss_scale(self): r"""Decrease the loss scale by self.scale_factor. NOTE: the loss_scale will not go below `self.threshold`. """ self.loss_scale /= self.scale_factor if self.threshold is not None: self.loss_scale = max(self.loss_scale, self.threshold)
(self)
716,404
pytorch_optimizer.optimizer.fp16
update_scale
Update the loss scale. If overflow exceeds our tolerance, we decrease the loss scale. If the number of iterations since the last overflow exceeds the scale window, we increase the loss scale. :param overflow: bool. adjust scales to prevent overflow.
def update_scale(self, overflow: bool): r"""Update the loss scale. If overflow exceeds our tolerance, we decrease the loss scale. If the number of iterations since the last overflow exceeds the scale window, we increase the loss scale. :param overflow: bool. adjust scales to prevent overflow. """ iter_since_rescale: int = self.iter - self.last_rescale_iter if overflow: # calculate how often we overflowed already self.last_overflow_iter = self.iter self.overflows_since_rescale += 1 pct_overflow: float = self.overflows_since_rescale / float(iter_since_rescale) if pct_overflow >= self.tolerance: # decrease loss scale by the scale factor self.decrease_loss_scale() # reset iterations self.last_rescale_iter = self.iter self.overflows_since_rescale = 0 elif (self.iter - self.last_overflow_iter) % self.scale_window == 0: # increase the loss scale by scale factor self.loss_scale *= self.scale_factor self.last_rescale_iter = self.iter self.iter += 1
(self, overflow: bool)
716,405
pytorch_optimizer.loss.focal
FocalCosineLoss
Focal Cosine loss function w/ logit input. :param alpha: float. alpha. :param gamma: float. gamma. :param focal_weight: float. weight of focal loss. :param reduction: str. type of reduction.
class FocalCosineLoss(nn.Module): r"""Focal Cosine loss function w/ logit input. :param alpha: float. alpha. :param gamma: float. gamma. :param focal_weight: float. weight of focal loss. :param reduction: str. type of reduction. """ def __init__(self, alpha: float = 1.0, gamma: float = 2.0, focal_weight: float = 0.1, reduction: str = 'mean'): super().__init__() self.alpha = alpha self.gamma = gamma self.focal_weight = focal_weight self.reduction = reduction def forward(self, y_pred: torch.Tensor, y_true: torch.Tensor) -> torch.Tensor: cosine_loss = cosine_embedding_loss( y_pred, one_hot(y_true, num_classes=y_pred.size(-1)), torch.tensor([1], device=y_true.device), reduction=self.reduction, ) ce_loss = cross_entropy(normalize(y_pred), y_true, reduction='none') pt = torch.exp(-ce_loss) focal_loss = (self.alpha * (1 - pt) ** self.gamma * ce_loss).mean() return cosine_loss + self.focal_weight * focal_loss
(alpha: float = 1.0, gamma: float = 2.0, focal_weight: float = 0.1, reduction: str = 'mean')
716,411
pytorch_optimizer.loss.focal
__init__
null
def __init__(self, alpha: float = 1.0, gamma: float = 2.0, focal_weight: float = 0.1, reduction: str = 'mean'): super().__init__() self.alpha = alpha self.gamma = gamma self.focal_weight = focal_weight self.reduction = reduction
(self, alpha: float = 1.0, gamma: float = 2.0, focal_weight: float = 0.1, reduction: str = 'mean')
716,441
pytorch_optimizer.loss.focal
forward
null
def forward(self, y_pred: torch.Tensor, y_true: torch.Tensor) -> torch.Tensor: cosine_loss = cosine_embedding_loss( y_pred, one_hot(y_true, num_classes=y_pred.size(-1)), torch.tensor([1], device=y_true.device), reduction=self.reduction, ) ce_loss = cross_entropy(normalize(y_pred), y_true, reduction='none') pt = torch.exp(-ce_loss) focal_loss = (self.alpha * (1 - pt) ** self.gamma * ce_loss).mean() return cosine_loss + self.focal_weight * focal_loss
(self, y_pred: torch.Tensor, y_true: torch.Tensor) -> torch.Tensor
716,475
pytorch_optimizer.loss.focal
FocalLoss
Focal loss function w/ logit input. :param alpha: float. alpha. :param gamma: float. gamma.
class FocalLoss(nn.Module): r"""Focal loss function w/ logit input. :param alpha: float. alpha. :param gamma: float. gamma. """ def __init__(self, alpha: float = 1.0, gamma: float = 2.0): super().__init__() self.alpha = alpha self.gamma = gamma def forward(self, y_pred: torch.Tensor, y_true: torch.Tensor) -> torch.Tensor: bce_loss = binary_cross_entropy_with_logits(y_pred, y_true, reduction='none') pt = torch.exp(-bce_loss) focal_loss = self.alpha * (1 - pt) ** self.gamma * bce_loss return focal_loss.mean()
(alpha: float = 1.0, gamma: float = 2.0)
716,481
pytorch_optimizer.loss.focal
__init__
null
def __init__(self, alpha: float = 1.0, gamma: float = 2.0): super().__init__() self.alpha = alpha self.gamma = gamma
(self, alpha: float = 1.0, gamma: float = 2.0)
716,511
pytorch_optimizer.loss.focal
forward
null
def forward(self, y_pred: torch.Tensor, y_true: torch.Tensor) -> torch.Tensor: bce_loss = binary_cross_entropy_with_logits(y_pred, y_true, reduction='none') pt = torch.exp(-bce_loss) focal_loss = self.alpha * (1 - pt) ** self.gamma * bce_loss return focal_loss.mean()
(self, y_pred: torch.Tensor, y_true: torch.Tensor) -> torch.Tensor
716,545
pytorch_optimizer.loss.focal
FocalTverskyLoss
Focal Tversky Loss w/ logits input. :param alpha: float. alpha. :param beta: float. beta. :param gamma: float. gamma. :param smooth: float. smooth factor.
class FocalTverskyLoss(nn.Module): r"""Focal Tversky Loss w/ logits input. :param alpha: float. alpha. :param beta: float. beta. :param gamma: float. gamma. :param smooth: float. smooth factor. """ def __init__(self, alpha: float = 0.5, beta: float = 0.5, gamma: float = 1.0, smooth: float = 1e-6): super().__init__() self.gamma = gamma self.tversky = TverskyLoss(alpha, beta, smooth) def forward(self, y_pred: torch.Tensor, y_true: torch.Tensor) -> torch.Tensor: return self.tversky(y_pred, y_true) ** self.gamma
(alpha: float = 0.5, beta: float = 0.5, gamma: float = 1.0, smooth: float = 1e-06)
716,551
pytorch_optimizer.loss.focal
__init__
null
def __init__(self, alpha: float = 0.5, beta: float = 0.5, gamma: float = 1.0, smooth: float = 1e-6): super().__init__() self.gamma = gamma self.tversky = TverskyLoss(alpha, beta, smooth)
(self, alpha: float = 0.5, beta: float = 0.5, gamma: float = 1.0, smooth: float = 1e-06)
716,581
pytorch_optimizer.loss.focal
forward
null
def forward(self, y_pred: torch.Tensor, y_true: torch.Tensor) -> torch.Tensor: return self.tversky(y_pred, y_true) ** self.gamma
(self, y_pred: torch.Tensor, y_true: torch.Tensor) -> torch.Tensor
716,615
pytorch_optimizer.optimizer.fromage
Fromage
On the distance between two neural networks and the stability of learning. :param params: PARAMETERS. iterable of parameters to optimize or dicts defining parameter groups. :param lr: float. learning rate. :param p_bound: Optional[float]. Restricts the optimisation to a bounded set. A value of 2.0 restricts parameter norms to lie within 2x their initial norms. This regularises the model class.
class Fromage(Optimizer, BaseOptimizer): r"""On the distance between two neural networks and the stability of learning. :param params: PARAMETERS. iterable of parameters to optimize or dicts defining parameter groups. :param lr: float. learning rate. :param p_bound: Optional[float]. Restricts the optimisation to a bounded set. A value of 2.0 restricts parameter norms to lie within 2x their initial norms. This regularises the model class. """ def __init__(self, params: PARAMETERS, lr: float = 1e-2, p_bound: Optional[float] = None): self.validate_learning_rate(lr) self.p_bound = p_bound defaults: DEFAULTS = {'lr': lr} super().__init__(params, defaults) def __str__(self) -> str: return 'Fromage' @torch.no_grad() def reset(self): for group in self.param_groups: for p in group['params']: state = self.state[p] if self.p_bound is not None: state['max'] = p.norm().mul_(self.p_bound) @torch.no_grad() def step(self, closure: CLOSURE = None) -> LOSS: loss: LOSS = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: pre_factor: float = math.sqrt(1 + group['lr'] ** 2) for p in group['params']: if p.grad is None: continue grad = p.grad if grad.is_sparse: raise NoSparseGradientError(str(self)) state = self.state[p] if len(state) == 0 and self.p_bound is not None: state['max'] = p.norm().mul_(self.p_bound) p_norm, g_norm = p.norm(), grad.norm() if p_norm > 0.0 and g_norm > 0.0: p.add_(grad * (p_norm / g_norm), alpha=-group['lr']) else: p.add_(grad, alpha=-group['lr']) p.div_(pre_factor) if self.p_bound is not None: p_norm = p.norm() if p_norm > state['max']: p.mul_(state['max']).div_(p_norm) return loss
(params: Union[Iterable[Dict], Iterable[torch.Tensor], NoneType], lr: float = 0.01, p_bound: Optional[float] = None)
716,617
pytorch_optimizer.optimizer.fromage
__init__
null
def __init__(self, params: PARAMETERS, lr: float = 1e-2, p_bound: Optional[float] = None): self.validate_learning_rate(lr) self.p_bound = p_bound defaults: DEFAULTS = {'lr': lr} super().__init__(params, defaults)
(self, params: Union[Iterable[Dict], Iterable[torch.Tensor], NoneType], lr: float = 0.01, p_bound: Optional[float] = None)
716,620
pytorch_optimizer.optimizer.fromage
__str__
null
def __str__(self) -> str: return 'Fromage'
(self) -> str
716,656
pytorch_optimizer.optimizer.gsam
GSAM
Surrogate Gap Guided Sharpness-Aware Minimization. Example: ------- Here's an example:: model = YourModel() base_optimizer = AdamP(model.parameters()) lr_scheduler = LinearScheduler(base_optimizer, t_max=num_total_steps) rho_scheduler = ProportionScheduler(lr_scheduler, max_lr=max_lr) optimizer = GSAM(model.parameters(), base_optimizer, model, rho_scheduler) def loss_fn(predictions, targets): return F.cross_entropy(predictions, targets) for inputs, targets in data: optimizer.set_closure(loss_fn, inputs, targets) predictions, loss = optimizer.step() lr_scheduler.step() optimizer.update_rho_t() :param params: PARAMETERS. iterable of parameters to optimize or dicts defining parameter groups. :param base_optimizer: Optimizer. base optimizer. :param model: nn.Module. model. :param alpha: float. rho alpha. :param rho_scheduler: rho scheduler. :param adaptive: bool. element-wise Adaptive SAM. :param perturb_eps: float. epsilon for perturbation. :param kwargs: Dict. parameters for optimizer.
class GSAM(Optimizer, BaseOptimizer): r"""Surrogate Gap Guided Sharpness-Aware Minimization. Example: ------- Here's an example:: model = YourModel() base_optimizer = AdamP(model.parameters()) lr_scheduler = LinearScheduler(base_optimizer, t_max=num_total_steps) rho_scheduler = ProportionScheduler(lr_scheduler, max_lr=max_lr) optimizer = GSAM(model.parameters(), base_optimizer, model, rho_scheduler) def loss_fn(predictions, targets): return F.cross_entropy(predictions, targets) for inputs, targets in data: optimizer.set_closure(loss_fn, inputs, targets) predictions, loss = optimizer.step() lr_scheduler.step() optimizer.update_rho_t() :param params: PARAMETERS. iterable of parameters to optimize or dicts defining parameter groups. :param base_optimizer: Optimizer. base optimizer. :param model: nn.Module. model. :param alpha: float. rho alpha. :param rho_scheduler: rho scheduler. :param adaptive: bool. element-wise Adaptive SAM. :param perturb_eps: float. epsilon for perturbation. :param kwargs: Dict. parameters for optimizer. """ def __init__( self, params: PARAMETERS, base_optimizer: OPTIMIZER, model: nn.Module, rho_scheduler, alpha: float = 0.4, adaptive: bool = False, perturb_eps: float = 1e-12, **kwargs, ): self.validate_range(alpha, 'alpha', 0.0, 1.0) self.model = model self.rho_scheduler = rho_scheduler self.alpha = alpha self.adaptive = adaptive self.perturb_eps = perturb_eps self.rho_t: float = 0.0 self.forward_backward_func: Optional[Callable] = None if hasattr(ReduceOp, 'AVG'): self.grad_reduce = ReduceOp.AVG self.manual_average: bool = False else: # PyTorch <= 1.11.0 does not have AVG, need to manually average across processes self.grad_reduce = ReduceOp.SUM self.manual_average: bool = True self.base_optimizer = base_optimizer self.param_groups = self.base_optimizer.param_groups defaults: DEFAULTS = {'adaptive': adaptive} defaults.update(kwargs) super().__init__(params, defaults) self.update_rho_t() def __str__(self) -> str: return 'GSAM' @torch.no_grad() def reset(self): pass @torch.no_grad() def update_rho_t(self) -> float: self.rho_t = self.rho_scheduler.step() return self.rho_t @torch.no_grad() def perturb_weights(self, rho: float): grad_norm = self.grad_norm(weight_adaptive=self.adaptive) for group in self.param_groups: scale = rho / (grad_norm + self.perturb_eps) for p in group['params']: if p.grad is None: continue self.state[p]['old_g'] = p.grad.clone() e_w = (torch.pow(p, 2) if self.adaptive else 1.0) * p.grad * scale.to(p) p.add_(e_w) # climb to the local maximum "w + e(w)" self.state[p]['e_w'] = e_w @torch.no_grad() def un_perturb(self): for group in self.param_groups: for p in group['params']: if 'e_w' in self.state[p]: p.sub_(self.state[p]['e_w']) @torch.no_grad() def gradient_decompose(self, alpha: float = 0.0): inner_prod = 0.0 for group in self.param_groups: for p in group['params']: if p.grad is None: continue inner_prod += torch.sum(self.state[p]['old_g'] * p.grad) new_grad_norm = self.grad_norm(by=None) old_grad_norm = self.grad_norm(by='old_g') cosine = inner_prod / (new_grad_norm * old_grad_norm + self.perturb_eps) # gradient decomposition for group in self.param_groups: for p in group['params']: if p.grad is None: continue vertical = self.state[p]['old_g'] - cosine * old_grad_norm * p.grad / ( new_grad_norm + self.perturb_eps ) p.grad.add_(vertical, alpha=-alpha) @torch.no_grad() def sync_grad(self): if is_initialized(): for group in self.param_groups: for p in group['params']: if p.grad is None: continue all_reduce(p.grad, op=self.grad_reduce) if self.manual_average: p.grad.div_(float(get_world_size())) @torch.no_grad() def grad_norm(self, by: Optional[str] = None, weight_adaptive: bool = False) -> torch.Tensor: return torch.norm( torch.stack( [ ((torch.abs(p) if weight_adaptive else 1.0) * (p.grad if not by else self.state[p][by])).norm(p=2) for group in self.param_groups for p in group['params'] if p.grad is not None ] ), p=2, ) def maybe_no_sync(self): return self.model.no_sync() if is_initialized() else ExitStack() @torch.no_grad() def set_closure(self, loss_fn: nn.Module, inputs: torch.Tensor, targets: torch.Tensor, **kwargs): r"""Set closure. Create `self.forward_backward_func`, which is a function such that `self.forward_backward_func()` automatically performs forward and backward passes. This function does not take any arguments, and the inputs and targets data should be pre-set in the definition of partial-function. :param loss_fn: nn.Module. loss function. :param inputs: torch.Tensor. inputs. :param targets: torch.Tensor. targets. """ def get_grad(): self.base_optimizer.zero_grad() with torch.enable_grad(): outputs = self.model(inputs) loss = loss_fn(outputs, targets, **kwargs) loss.backward() return outputs, loss.detach() self.forward_backward_func = get_grad @torch.no_grad() def step(self, closure: CLOSURE = None) -> Tuple[torch.Tensor, float]: get_grad = closure if closure else self.forward_backward_func with self.maybe_no_sync(): outputs, loss = get_grad() self.perturb_weights(rho=self.rho_t) disable_running_stats(self.model) get_grad() self.gradient_decompose(self.alpha) self.un_perturb() self.sync_grad() self.base_optimizer.step() enable_running_stats(self.model) return outputs, loss def load_state_dict(self, state_dict: Dict): super().load_state_dict(state_dict) self.base_optimizer.param_groups = self.param_groups
(params: Union[Iterable[Dict], Iterable[torch.Tensor], NoneType], base_optimizer: Type[torch.optim.optimizer.Optimizer], model: torch.nn.modules.module.Module, rho_scheduler, alpha: float = 0.4, adaptive: bool = False, perturb_eps: float = 1e-12, **kwargs)
716,658
pytorch_optimizer.optimizer.gsam
__init__
null
def __init__( self, params: PARAMETERS, base_optimizer: OPTIMIZER, model: nn.Module, rho_scheduler, alpha: float = 0.4, adaptive: bool = False, perturb_eps: float = 1e-12, **kwargs, ): self.validate_range(alpha, 'alpha', 0.0, 1.0) self.model = model self.rho_scheduler = rho_scheduler self.alpha = alpha self.adaptive = adaptive self.perturb_eps = perturb_eps self.rho_t: float = 0.0 self.forward_backward_func: Optional[Callable] = None if hasattr(ReduceOp, 'AVG'): self.grad_reduce = ReduceOp.AVG self.manual_average: bool = False else: # PyTorch <= 1.11.0 does not have AVG, need to manually average across processes self.grad_reduce = ReduceOp.SUM self.manual_average: bool = True self.base_optimizer = base_optimizer self.param_groups = self.base_optimizer.param_groups defaults: DEFAULTS = {'adaptive': adaptive} defaults.update(kwargs) super().__init__(params, defaults) self.update_rho_t()
(self, params: Union[Iterable[Dict], Iterable[torch.Tensor], NoneType], base_optimizer: Type[torch.optim.optimizer.Optimizer], model: torch.nn.modules.module.Module, rho_scheduler, alpha: float = 0.4, adaptive: bool = False, perturb_eps: float = 1e-12, **kwargs)
716,661
pytorch_optimizer.optimizer.gsam
__str__
null
def __str__(self) -> str: return 'GSAM'
(self) -> str
716,674
pytorch_optimizer.optimizer.gsam
grad_norm
null
@torch.no_grad() def perturb_weights(self, rho: float): grad_norm = self.grad_norm(weight_adaptive=self.adaptive) for group in self.param_groups: scale = rho / (grad_norm + self.perturb_eps) for p in group['params']: if p.grad is None: continue self.state[p]['old_g'] = p.grad.clone() e_w = (torch.pow(p, 2) if self.adaptive else 1.0) * p.grad * scale.to(p) p.add_(e_w) # climb to the local maximum "w + e(w)" self.state[p]['e_w'] = e_w
(self, by: Optional[str] = None, weight_adaptive: bool = False) -> torch.Tensor
716,676
pytorch_optimizer.optimizer.gsam
load_state_dict
null
def load_state_dict(self, state_dict: Dict): super().load_state_dict(state_dict) self.base_optimizer.param_groups = self.param_groups
(self, state_dict: Dict)
716,677
pytorch_optimizer.optimizer.gsam
maybe_no_sync
null
def maybe_no_sync(self): return self.model.no_sync() if is_initialized() else ExitStack()
(self)
716,687
pytorch_optimizer.optimizer.gsam
set_closure
Set closure. Create `self.forward_backward_func`, which is a function such that `self.forward_backward_func()` automatically performs forward and backward passes. This function does not take any arguments, and the inputs and targets data should be pre-set in the definition of partial-function. :param loss_fn: nn.Module. loss function. :param inputs: torch.Tensor. inputs. :param targets: torch.Tensor. targets.
@torch.no_grad() def perturb_weights(self, rho: float): grad_norm = self.grad_norm(weight_adaptive=self.adaptive) for group in self.param_groups: scale = rho / (grad_norm + self.perturb_eps) for p in group['params']: if p.grad is None: continue self.state[p]['old_g'] = p.grad.clone() e_w = (torch.pow(p, 2) if self.adaptive else 1.0) * p.grad * scale.to(p) p.add_(e_w) # climb to the local maximum "w + e(w)" self.state[p]['e_w'] = e_w
(self, loss_fn: torch.nn.modules.module.Module, inputs: torch.Tensor, targets: torch.Tensor, **kwargs)
716,705
pytorch_optimizer.optimizer.shampoo_utils
Graft
Base class to perform grafting onto Shampoo. This class does no grafting.
class Graft: r"""Base class to perform grafting onto Shampoo. This class does no grafting.""" def __init__(self, *args): pass def add_statistics(self, grad: torch.Tensor, unused_beta2: float): r"""Add the statistics.""" pass def precondition_gradient(self, grad: torch.Tensor) -> torch.Tensor: r"""Get preconditioned gradient.""" return grad def update_momentum(self, update: torch.Tensor, unused_beta1: float) -> torch.Tensor: # noqa: ARG002 r"""Update momentum.""" return update
(*args)
716,706
pytorch_optimizer.optimizer.shampoo_utils
__init__
null
def __init__(self, *args): pass
(self, *args)
716,707
pytorch_optimizer.optimizer.shampoo_utils
add_statistics
Add the statistics.
def add_statistics(self, grad: torch.Tensor, unused_beta2: float): r"""Add the statistics.""" pass
(self, grad: torch.Tensor, unused_beta2: float)
716,708
pytorch_optimizer.optimizer.shampoo_utils
precondition_gradient
Get preconditioned gradient.
def precondition_gradient(self, grad: torch.Tensor) -> torch.Tensor: r"""Get preconditioned gradient.""" return grad
(self, grad: torch.Tensor) -> torch.Tensor
716,709
pytorch_optimizer.optimizer.shampoo_utils
update_momentum
Update momentum.
def update_momentum(self, update: torch.Tensor, unused_beta1: float) -> torch.Tensor: # noqa: ARG002 r"""Update momentum.""" return update
(self, update: torch.Tensor, unused_beta1: float) -> torch.Tensor
716,710
pytorch_optimizer.optimizer.gravity
Gravity
a Kinematic Approach on Optimization in Deep Learning. :param params: PARAMETERS. iterable of parameters to optimize or dicts defining parameter groups. :param lr: float. learning rate. :param alpha: float. alpha controls the V initialization. :param beta: float. beta will be used to compute running average of V.
class Gravity(Optimizer, BaseOptimizer): r"""a Kinematic Approach on Optimization in Deep Learning. :param params: PARAMETERS. iterable of parameters to optimize or dicts defining parameter groups. :param lr: float. learning rate. :param alpha: float. alpha controls the V initialization. :param beta: float. beta will be used to compute running average of V. """ def __init__( self, params: PARAMETERS, lr: float = 1e-2, alpha: float = 0.01, beta: float = 0.9, ): self.validate_learning_rate(lr) self.validate_range(alpha, 'alpha', 0.0, 1.0) self.validate_range(beta, 'beta', 0.0, 1.0, range_type='[]') defaults: DEFAULTS = {'lr': lr, 'alpha': alpha, 'beta': beta} super().__init__(params, defaults) def __str__(self) -> str: return 'Gravity' @torch.no_grad() def reset(self): for group in self.param_groups: for p in group['params']: state = self.state[p] state['v'] = torch.empty_like(p).normal_(mean=0.0, std=group['alpha'] / group['lr']) @torch.no_grad() def step(self, closure: CLOSURE = None) -> LOSS: loss: LOSS = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: if 'step' in group: group['step'] += 1 else: group['step'] = 1 beta_t: float = (group['beta'] * group['step'] + 1) / (group['step'] + 2) for p in group['params']: if p.grad is None: continue grad = p.grad if grad.is_sparse: raise NoSparseGradientError(str(self)) state = self.state[p] if len(state) == 0: state['v'] = torch.empty_like(p).normal_(mean=0.0, std=group['alpha'] / group['lr']) v = state['v'] m = 1.0 / grad.abs().max() zeta = grad / (1.0 + (grad / m) ** 2) v.mul_(beta_t).add_(zeta, alpha=1.0 - beta_t) p.add_(v, alpha=-group['lr']) return loss
(params: Union[Iterable[Dict], Iterable[torch.Tensor], NoneType], lr: float = 0.01, alpha: float = 0.01, beta: float = 0.9)
716,712
pytorch_optimizer.optimizer.gravity
__init__
null
def __init__( self, params: PARAMETERS, lr: float = 1e-2, alpha: float = 0.01, beta: float = 0.9, ): self.validate_learning_rate(lr) self.validate_range(alpha, 'alpha', 0.0, 1.0) self.validate_range(beta, 'beta', 0.0, 1.0, range_type='[]') defaults: DEFAULTS = {'lr': lr, 'alpha': alpha, 'beta': beta} super().__init__(params, defaults)
(self, params: Union[Iterable[Dict], Iterable[torch.Tensor], NoneType], lr: float = 0.01, alpha: float = 0.01, beta: float = 0.9)
716,715
pytorch_optimizer.optimizer.gravity
__str__
null
def __str__(self) -> str: return 'Gravity'
(self) -> str
716,751
pytorch_optimizer.loss.jaccard
JaccardLoss
Jaccard loss for image segmentation task. It supports binary, multiclass and multilabel cases. Reference : https://github.com/BloodAxe/pytorch-toolbelt :param mode: CLASS_MODE. loss mode 'binary', 'multiclass', or 'multilabel. :param classes: Optional[List[int]]. List of classes that contribute in loss computation. By default, all channels are included. :param log_loss: If True, loss computed as `-log(jaccard)`; otherwise `1 - jaccard` :param from_logits: bool. If True, assumes input is raw logits. :param label_smooth: float. Smoothness constant for dice coefficient (a). :param eps: float. epsilon.
class JaccardLoss(_Loss): r"""Jaccard loss for image segmentation task. It supports binary, multiclass and multilabel cases. Reference : https://github.com/BloodAxe/pytorch-toolbelt :param mode: CLASS_MODE. loss mode 'binary', 'multiclass', or 'multilabel. :param classes: Optional[List[int]]. List of classes that contribute in loss computation. By default, all channels are included. :param log_loss: If True, loss computed as `-log(jaccard)`; otherwise `1 - jaccard` :param from_logits: bool. If True, assumes input is raw logits. :param label_smooth: float. Smoothness constant for dice coefficient (a). :param eps: float. epsilon. """ def __init__( self, mode: CLASS_MODE, classes: List[int] = None, log_loss: bool = False, from_logits: bool = True, label_smooth: float = 0.0, eps: float = 1e-6, ): super().__init__() if classes is not None: if mode == 'binary': raise ValueError('[-] Masking classes is not supported with mode=binary') classes = torch.LongTensor(classes) self.mode = mode self.classes = classes self.log_loss = log_loss self.from_logits = from_logits self.label_smooth = label_smooth self.eps = eps def forward(self, y_pred: torch.Tensor, y_true: torch.Tensor) -> torch.Tensor: if self.from_logits: # Apply activations to get [0..1] class probabilities # Using Log-Exp as this gives more numerically stable result and does not cause vanishing gradient on # extreme values 0 and 1 y_pred = y_pred.log_softmax(dim=1).exp() if self.mode == 'multiclass' else logsigmoid(y_pred).exp() bs: int = y_true.size(0) num_classes: int = y_pred.size(1) dims: Tuple[int, ...] = (0, 2) if self.mode == 'binary': y_true = y_true.view(bs, 1, -1) y_pred = y_pred.view(bs, 1, -1) if self.mode == 'multiclass': y_true = y_true.view(bs, -1) y_pred = y_pred.view(bs, num_classes, -1) y_true = one_hot(y_true, num_classes) y_true = y_true.permute(0, 2, 1) if self.mode == 'multilabel': y_true = y_true.view(bs, num_classes, -1) y_pred = y_pred.view(bs, num_classes, -1) scores = soft_jaccard_score( y_pred, y_true.type(y_pred.dtype), label_smooth=self.label_smooth, eps=self.eps, dims=dims ) loss = -torch.log(scores.clamp_min(self.eps)) if self.log_loss else 1.0 - scores # IoU loss is defined for non-empty classes # So we zero contribution of channel that does not have true pixels # NOTE: A better workaround would be to use loss term `mean(y_pred)` # for this case, however it will be a modified jaccard loss mask = y_true.sum(dims) > 0 loss *= mask.float() if self.classes is not None: loss = loss[self.classes] return loss.mean()
(mode: Literal['binary', 'multiclass', 'multilabel'], classes: List[int] = None, log_loss: bool = False, from_logits: bool = True, label_smooth: float = 0.0, eps: float = 1e-06)
716,757
pytorch_optimizer.loss.jaccard
__init__
null
def __init__( self, mode: CLASS_MODE, classes: List[int] = None, log_loss: bool = False, from_logits: bool = True, label_smooth: float = 0.0, eps: float = 1e-6, ): super().__init__() if classes is not None: if mode == 'binary': raise ValueError('[-] Masking classes is not supported with mode=binary') classes = torch.LongTensor(classes) self.mode = mode self.classes = classes self.log_loss = log_loss self.from_logits = from_logits self.label_smooth = label_smooth self.eps = eps
(self, mode: Literal['binary', 'multiclass', 'multilabel'], classes: Optional[List[int]] = None, log_loss: bool = False, from_logits: bool = True, label_smooth: float = 0.0, eps: float = 1e-06)
716,787
pytorch_optimizer.loss.jaccard
forward
null
def forward(self, y_pred: torch.Tensor, y_true: torch.Tensor) -> torch.Tensor: if self.from_logits: # Apply activations to get [0..1] class probabilities # Using Log-Exp as this gives more numerically stable result and does not cause vanishing gradient on # extreme values 0 and 1 y_pred = y_pred.log_softmax(dim=1).exp() if self.mode == 'multiclass' else logsigmoid(y_pred).exp() bs: int = y_true.size(0) num_classes: int = y_pred.size(1) dims: Tuple[int, ...] = (0, 2) if self.mode == 'binary': y_true = y_true.view(bs, 1, -1) y_pred = y_pred.view(bs, 1, -1) if self.mode == 'multiclass': y_true = y_true.view(bs, -1) y_pred = y_pred.view(bs, num_classes, -1) y_true = one_hot(y_true, num_classes) y_true = y_true.permute(0, 2, 1) if self.mode == 'multilabel': y_true = y_true.view(bs, num_classes, -1) y_pred = y_pred.view(bs, num_classes, -1) scores = soft_jaccard_score( y_pred, y_true.type(y_pred.dtype), label_smooth=self.label_smooth, eps=self.eps, dims=dims ) loss = -torch.log(scores.clamp_min(self.eps)) if self.log_loss else 1.0 - scores # IoU loss is defined for non-empty classes # So we zero contribution of channel that does not have true pixels # NOTE: A better workaround would be to use loss term `mean(y_pred)` # for this case, however it will be a modified jaccard loss mask = y_true.sum(dims) > 0 loss *= mask.float() if self.classes is not None: loss = loss[self.classes] return loss.mean()
(self, y_pred: torch.Tensor, y_true: torch.Tensor) -> torch.Tensor
716,821
pytorch_optimizer.optimizer.lars
LARS
Layer-wise Adaptive Rate Scaling (no rate scaling or weight decay for parameters <= 1D). :param params: PARAMETERS. iterable of parameters to optimize or dicts defining parameter groups. :param lr: float. learning rate. :param weight_decay: float. weight decay (L2 penalty). :param momentum: float. momentum. :param dampening: float. dampening for momentum. :param trust_coefficient: float. trust_coefficient. :param nesterov: bool. enables nesterov momentum.
class LARS(Optimizer, BaseOptimizer): r"""Layer-wise Adaptive Rate Scaling (no rate scaling or weight decay for parameters <= 1D). :param params: PARAMETERS. iterable of parameters to optimize or dicts defining parameter groups. :param lr: float. learning rate. :param weight_decay: float. weight decay (L2 penalty). :param momentum: float. momentum. :param dampening: float. dampening for momentum. :param trust_coefficient: float. trust_coefficient. :param nesterov: bool. enables nesterov momentum. """ def __init__( self, params: PARAMETERS, lr: float = 1e-3, weight_decay: float = 0.0, momentum: float = 0.9, dampening: float = 0.0, trust_coefficient: float = 1e-3, nesterov: bool = False, ): self.validate_learning_rate(lr) self.validate_non_negative(weight_decay, 'weight_decay') self.validate_range(momentum, 'momentum', 0.0, 1.0) self.validate_range(dampening, 'dampening', 0.0, 1.0) self.validate_non_negative(trust_coefficient, 'trust_coefficient') defaults: DEFAULTS = { 'lr': lr, 'weight_decay': weight_decay, 'momentum': momentum, 'dampening': dampening, 'trust_coefficient': trust_coefficient, 'nesterov': nesterov, } super().__init__(params, defaults) def __str__(self) -> str: return 'Lars' @torch.no_grad() def reset(self): for group in self.param_groups: for p in group['params']: state = self.state[p] state['mu'] = torch.zeros_like(p) @torch.no_grad() def step(self, closure: CLOSURE = None) -> LOSS: loss: LOSS = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad if grad.is_sparse: raise NoSparseGradientError(str(self)) if p.ndim > 1: # if not normalization gamma/beta or bias param_norm = torch.linalg.norm(p) update_norm = torch.linalg.norm(grad) one = torch.ones_like(param_norm) trust_ratio = torch.where( param_norm > 0.0, torch.where(update_norm > 0.0, (group['trust_coefficient'] * param_norm / update_norm), one), one, ) grad.add_(p, alpha=group['weight_decay']) grad.mul_(trust_ratio) if group['momentum'] > 0.0: state = self.state[p] if 'momentum_buffer' not in state: state['momentum_buffer'] = grad.clone().detach() mb = state['momentum_buffer'] mb.mul_(group['momentum']).add_(grad, alpha=1.0 - group['dampening']) if group['nesterov']: grad.add_(mb, alpha=group['momentum']) else: grad.copy_(mb) p.add_(grad, alpha=-group['lr']) return loss
(params: Union[Iterable[Dict], Iterable[torch.Tensor], NoneType], lr: float = 0.001, weight_decay: float = 0.0, momentum: float = 0.9, dampening: float = 0.0, trust_coefficient: float = 0.001, nesterov: bool = False)
716,823
pytorch_optimizer.optimizer.lars
__init__
null
def __init__( self, params: PARAMETERS, lr: float = 1e-3, weight_decay: float = 0.0, momentum: float = 0.9, dampening: float = 0.0, trust_coefficient: float = 1e-3, nesterov: bool = False, ): self.validate_learning_rate(lr) self.validate_non_negative(weight_decay, 'weight_decay') self.validate_range(momentum, 'momentum', 0.0, 1.0) self.validate_range(dampening, 'dampening', 0.0, 1.0) self.validate_non_negative(trust_coefficient, 'trust_coefficient') defaults: DEFAULTS = { 'lr': lr, 'weight_decay': weight_decay, 'momentum': momentum, 'dampening': dampening, 'trust_coefficient': trust_coefficient, 'nesterov': nesterov, } super().__init__(params, defaults)
(self, params: Union[Iterable[Dict], Iterable[torch.Tensor], NoneType], lr: float = 0.001, weight_decay: float = 0.0, momentum: float = 0.9, dampening: float = 0.0, trust_coefficient: float = 0.001, nesterov: bool = False)
716,826
pytorch_optimizer.optimizer.lars
__str__
null
def __str__(self) -> str: return 'Lars'
(self) -> str
716,862
pytorch_optimizer.loss.ldam
LDAMLoss
LDAM Loss. :param num_class_list: List[int]. list of number of class. :param max_m: float. max margin (`C` term in the paper). :param weight: Optional[torch.Tensor]. class weight. :param s: float. scaler.
class LDAMLoss(nn.Module): r"""LDAM Loss. :param num_class_list: List[int]. list of number of class. :param max_m: float. max margin (`C` term in the paper). :param weight: Optional[torch.Tensor]. class weight. :param s: float. scaler. """ def __init__( self, num_class_list: List[int], max_m: float = 0.5, weight: Optional[torch.Tensor] = None, s: float = 30.0 ): super().__init__() cls_num_list = np.asarray(num_class_list) m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list *= max_m / np.max(m_list) self.m_list = torch.FloatTensor(m_list).unsqueeze(0) self.weight = weight self.s = s def forward(self, y_pred: torch.Tensor, y_true: torch.Tensor) -> torch.Tensor: index = torch.zeros_like(y_pred, dtype=torch.bool) index.scatter_(1, y_true.view(-1, 1), 1) batch_m = torch.matmul(self.m_list.to(index.device), index.float().transpose(0, 1)) batch_m = batch_m.view((-1, 1)) x_m = y_pred - batch_m output = torch.where(index, x_m, y_pred) return cross_entropy(self.s * output, y_true, weight=self.weight)
(num_class_list: List[int], max_m: float = 0.5, weight: Optional[torch.Tensor] = None, s: float = 30.0)
716,868
pytorch_optimizer.loss.ldam
__init__
null
def __init__( self, num_class_list: List[int], max_m: float = 0.5, weight: Optional[torch.Tensor] = None, s: float = 30.0 ): super().__init__() cls_num_list = np.asarray(num_class_list) m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list *= max_m / np.max(m_list) self.m_list = torch.FloatTensor(m_list).unsqueeze(0) self.weight = weight self.s = s
(self, num_class_list: List[int], max_m: float = 0.5, weight: Optional[torch.Tensor] = None, s: float = 30.0)
716,898
pytorch_optimizer.loss.ldam
forward
null
def forward(self, y_pred: torch.Tensor, y_true: torch.Tensor) -> torch.Tensor: index = torch.zeros_like(y_pred, dtype=torch.bool) index.scatter_(1, y_true.view(-1, 1), 1) batch_m = torch.matmul(self.m_list.to(index.device), index.float().transpose(0, 1)) batch_m = batch_m.view((-1, 1)) x_m = y_pred - batch_m output = torch.where(index, x_m, y_pred) return cross_entropy(self.s * output, y_true, weight=self.weight)
(self, y_pred: torch.Tensor, y_true: torch.Tensor) -> torch.Tensor
716,932
pytorch_optimizer.optimizer.lomo
LOMO
Full Parameter Fine-tuning for Large Language Models with Limited Resources. Reference : https://github.com/OpenLMLab/LOMO/blob/main/src/lomo.py Check the usage from here : https://github.com/OpenLMLab/LOMO/blob/main/src/lomo_trainer.py :param model: nn.Module. pytorch model. :param lr: float. learning rate. :param clip_grad_norm: Optional[float]. clip grad norm. :param clip_grad_value: Optional[float]. clip grad value.
class LOMO(BaseOptimizer, Optimizer): r"""Full Parameter Fine-tuning for Large Language Models with Limited Resources. Reference : https://github.com/OpenLMLab/LOMO/blob/main/src/lomo.py Check the usage from here : https://github.com/OpenLMLab/LOMO/blob/main/src/lomo_trainer.py :param model: nn.Module. pytorch model. :param lr: float. learning rate. :param clip_grad_norm: Optional[float]. clip grad norm. :param clip_grad_value: Optional[float]. clip grad value. """ def __init__( self, model: nn.Module, lr: float = 1e-3, clip_grad_norm: Optional[float] = None, clip_grad_value: Optional[float] = None, ): self.validate_learning_rate(lr) self.validate_non_negative(clip_grad_norm, 'clip_grad_norm') self.validate_non_negative(clip_grad_value, 'clip_grad_value') self.model = model self.lr = lr self.clip_grad_norm = clip_grad_norm self.clip_grad_value = clip_grad_value self.local_rank: int = int(os.environ.get('LOCAL_RANK', 0)) self.gather_norm: bool = False self.grad_norms: List[torch.Tensor] = [] self.clip_coef: Optional[float] = None p0: torch.Tensor = next(iter(self.model.parameters())) self.grad_func: Callable[[Any], Any] = ( self.fuse_update_zero3() if hasattr(p0, 'ds_tensor') else self.fuse_update() ) self.loss_scaler: Optional[DynamicLossScaler] = None if p0.dtype == torch.float16: if clip_grad_norm is None: raise ValueError( '[-] Loss scaling is recommended to be used with grad norm to get better performance.' ) self.loss_scaler = DynamicLossScaler(init_scale=2 ** 16) # fmt: skip for _, p in self.model.named_parameters(): if p.requires_grad: p.register_hook(self.grad_func) defaults: DEFAULTS = {'lr': lr} super().__init__(self.model.parameters(), defaults) def __str__(self) -> str: return 'LOMO' @torch.no_grad() def reset(self): pass def fuse_update(self) -> Callable[[Any], Any]: @torch.no_grad() def func(x: Any) -> Any: for _, p in self.model.named_parameters(): if not p.requires_grad or p.grad is None: continue if self.loss_scaler and self.loss_scaler.has_overflow_serial or has_overflow(p.grad): p.grad = None self.loss_scaler.has_overflow_serial = True break grad_fp32 = p.grad.to(torch.float32) p.grad = None if self.loss_scaler: grad_fp32.div_(self.loss_scaler.loss_scale) if self.gather_norm: self.grad_norms.append(torch.norm(grad_fp32, 2.0)) else: if self.clip_grad_value is not None and self.clip_grad_value > 0.0: grad_fp32.clamp_(min=-self.clip_grad_value, max=self.clip_grad_value) if self.clip_grad_norm is not None and self.clip_grad_norm > 0.0 and self.clip_coef is not None: grad_fp32.mul_(self.clip_coef) p_fp32 = p.to(torch.float32) p_fp32.add_(grad_fp32, alpha=-self.lr) p.copy_(p_fp32) return x return func def fuse_update_zero3(self) -> Callable[[Any], Any]: # pragma: no cover @torch.no_grad() def func(x: torch.Tensor) -> torch.Tensor: for _, p in self.model.named_parameters(): if p.grad is None: continue all_reduce(p.grad, op=ReduceOp.AVG, async_op=False) if self.loss_scaler and self.loss_scaler.has_overflow_serial or has_overflow(p.grad): p.grad = None self.loss_scaler.has_overflow_serial = True break grad_fp32 = p.grad.to(torch.float32) p.grad = None param_fp32 = p.ds_tensor.to(torch.float32) if self.loss_scaler: grad_fp32.div_(self.loss_scaler.loss_scale) if self.gather_norm: self.grad_norms.append(torch.norm(grad_fp32, 2.0)) else: one_dim_grad_fp32 = grad_fp32.view(-1) partition_size: int = p.ds_tensor.numel() start: int = partition_size * self.local_rank end: int = min(start + partition_size, grad_fp32.numel()) partitioned_grad_fp32 = one_dim_grad_fp32.narrow(0, start, end - start) if self.clip_grad_value is not None: partitioned_grad_fp32.clamp_(min=-self.clip_grad_value, max=self.clip_grad_value) if self.clip_grad_norm is not None and self.clip_grad_norm > 0 and self.clip_coef is not None: partitioned_grad_fp32.mul_(self.clip_coef) partitioned_p = param_fp32.narrow(0, 0, end - start) partitioned_p.add_(partitioned_grad_fp32, alpha=-self.lr) p.ds_tensor[: end - start] = partitioned_p # fmt: skip return x return func def fused_backward(self, loss, lr: float): self.lr = lr if self.clip_grad_norm is not None and self.clip_grad_norm > 0.0 and self.clip_coef is None: raise ValueError( 'clip_grad_norm is not None, but clip_coef is None. ' 'Please call optimizer.grad_norm() before optimizer.fused_backward().' ) if self.loss_scaler: loss = loss * self.loss_scaler.loss_scale loss.backward() self.grad_func(0) def grad_norm(self, loss): self.gather_norm = True self.grad_norms = [] if self.loss_scaler: self.loss_scaler.has_overflow_serial = False loss = loss * self.loss_scaler.loss_scale loss.backward(retain_graph=True) self.grad_func(0) if self.loss_scaler and self.loss_scaler.has_overflow_serial: self.loss_scaler.update_scale(overflow=True) with torch.no_grad(): for _, p in self.model.named_parameters(): p.grad = None return with torch.no_grad(): self.grad_norms = torch.stack(self.grad_norms) total_norm = torch.norm(self.grad_norms, 2.0) self.clip_coef = torch.clamp(float(self.clip_grad_norm) / (total_norm + 1e-6), max=1.0) self.gather_norm = False
(model: torch.nn.modules.module.Module, lr: float = 0.001, clip_grad_norm: Optional[float] = None, clip_grad_value: Optional[float] = None)
716,934
pytorch_optimizer.optimizer.lomo
__init__
null
def __init__( self, model: nn.Module, lr: float = 1e-3, clip_grad_norm: Optional[float] = None, clip_grad_value: Optional[float] = None, ): self.validate_learning_rate(lr) self.validate_non_negative(clip_grad_norm, 'clip_grad_norm') self.validate_non_negative(clip_grad_value, 'clip_grad_value') self.model = model self.lr = lr self.clip_grad_norm = clip_grad_norm self.clip_grad_value = clip_grad_value self.local_rank: int = int(os.environ.get('LOCAL_RANK', 0)) self.gather_norm: bool = False self.grad_norms: List[torch.Tensor] = [] self.clip_coef: Optional[float] = None p0: torch.Tensor = next(iter(self.model.parameters())) self.grad_func: Callable[[Any], Any] = ( self.fuse_update_zero3() if hasattr(p0, 'ds_tensor') else self.fuse_update() ) self.loss_scaler: Optional[DynamicLossScaler] = None if p0.dtype == torch.float16: if clip_grad_norm is None: raise ValueError( '[-] Loss scaling is recommended to be used with grad norm to get better performance.' ) self.loss_scaler = DynamicLossScaler(init_scale=2 ** 16) # fmt: skip for _, p in self.model.named_parameters(): if p.requires_grad: p.register_hook(self.grad_func) defaults: DEFAULTS = {'lr': lr} super().__init__(self.model.parameters(), defaults)
(self, model: torch.nn.modules.module.Module, lr: float = 0.001, clip_grad_norm: Optional[float] = None, clip_grad_value: Optional[float] = None)
716,937
pytorch_optimizer.optimizer.lomo
__str__
null
def __str__(self) -> str: return 'LOMO'
(self) -> str
716,948
pytorch_optimizer.optimizer.lomo
fuse_update
null
def fuse_update(self) -> Callable[[Any], Any]: @torch.no_grad() def func(x: Any) -> Any: for _, p in self.model.named_parameters(): if not p.requires_grad or p.grad is None: continue if self.loss_scaler and self.loss_scaler.has_overflow_serial or has_overflow(p.grad): p.grad = None self.loss_scaler.has_overflow_serial = True break grad_fp32 = p.grad.to(torch.float32) p.grad = None if self.loss_scaler: grad_fp32.div_(self.loss_scaler.loss_scale) if self.gather_norm: self.grad_norms.append(torch.norm(grad_fp32, 2.0)) else: if self.clip_grad_value is not None and self.clip_grad_value > 0.0: grad_fp32.clamp_(min=-self.clip_grad_value, max=self.clip_grad_value) if self.clip_grad_norm is not None and self.clip_grad_norm > 0.0 and self.clip_coef is not None: grad_fp32.mul_(self.clip_coef) p_fp32 = p.to(torch.float32) p_fp32.add_(grad_fp32, alpha=-self.lr) p.copy_(p_fp32) return x return func
(self) -> Callable[[Any], Any]
716,949
pytorch_optimizer.optimizer.lomo
fuse_update_zero3
null
def fuse_update_zero3(self) -> Callable[[Any], Any]: # pragma: no cover @torch.no_grad() def func(x: torch.Tensor) -> torch.Tensor: for _, p in self.model.named_parameters(): if p.grad is None: continue all_reduce(p.grad, op=ReduceOp.AVG, async_op=False) if self.loss_scaler and self.loss_scaler.has_overflow_serial or has_overflow(p.grad): p.grad = None self.loss_scaler.has_overflow_serial = True break grad_fp32 = p.grad.to(torch.float32) p.grad = None param_fp32 = p.ds_tensor.to(torch.float32) if self.loss_scaler: grad_fp32.div_(self.loss_scaler.loss_scale) if self.gather_norm: self.grad_norms.append(torch.norm(grad_fp32, 2.0)) else: one_dim_grad_fp32 = grad_fp32.view(-1) partition_size: int = p.ds_tensor.numel() start: int = partition_size * self.local_rank end: int = min(start + partition_size, grad_fp32.numel()) partitioned_grad_fp32 = one_dim_grad_fp32.narrow(0, start, end - start) if self.clip_grad_value is not None: partitioned_grad_fp32.clamp_(min=-self.clip_grad_value, max=self.clip_grad_value) if self.clip_grad_norm is not None and self.clip_grad_norm > 0 and self.clip_coef is not None: partitioned_grad_fp32.mul_(self.clip_coef) partitioned_p = param_fp32.narrow(0, 0, end - start) partitioned_p.add_(partitioned_grad_fp32, alpha=-self.lr) p.ds_tensor[: end - start] = partitioned_p # fmt: skip return x return func
(self) -> Callable[[Any], Any]
716,950
pytorch_optimizer.optimizer.lomo
fused_backward
null
def fused_backward(self, loss, lr: float): self.lr = lr if self.clip_grad_norm is not None and self.clip_grad_norm > 0.0 and self.clip_coef is None: raise ValueError( 'clip_grad_norm is not None, but clip_coef is None. ' 'Please call optimizer.grad_norm() before optimizer.fused_backward().' ) if self.loss_scaler: loss = loss * self.loss_scaler.loss_scale loss.backward() self.grad_func(0)
(self, loss, lr: float)
716,953
pytorch_optimizer.optimizer.lomo
grad_norm
null
def grad_norm(self, loss): self.gather_norm = True self.grad_norms = [] if self.loss_scaler: self.loss_scaler.has_overflow_serial = False loss = loss * self.loss_scaler.loss_scale loss.backward(retain_graph=True) self.grad_func(0) if self.loss_scaler and self.loss_scaler.has_overflow_serial: self.loss_scaler.update_scale(overflow=True) with torch.no_grad(): for _, p in self.model.named_parameters(): p.grad = None return with torch.no_grad(): self.grad_norms = torch.stack(self.grad_norms) total_norm = torch.norm(self.grad_norms, 2.0) self.clip_coef = torch.clamp(float(self.clip_grad_norm) / (total_norm + 1e-6), max=1.0) self.gather_norm = False
(self, loss)
716,977
pytorch_optimizer.optimizer.lamb
Lamb
Large Batch Optimization for Deep Learning. This Lamb implementation is based on the paper v3, which does not use de-biasing. :param params: PARAMETERS. iterable of parameters to optimize or dicts defining parameter groups. :param lr: float. learning rate. :param betas: BETAS. coefficients used for computing running averages of gradient and the squared hessian trace. :param weight_decay: float. weight decay (L2 penalty). :param weight_decouple: bool. the optimizer uses decoupled weight decay as in AdamW. :param fixed_decay: bool. fix weight decay. :param rectify: bool. perform the rectified update similar to RAdam. :param degenerated_to_sgd: bool. degenerated to SGD. :param n_sma_threshold: int. (recommended is 5). :param grad_averaging: bool. whether apply (1 - beta2) to gradient when calculating running averages of gradient. :param max_grad_norm: float. max gradient norm to clip. :param r: float. EMA factor. between 0.9 ~ 0.99 is preferred. :param adanorm: bool. whether to use the AdaNorm variant. :param adam_debias: bool. Only correct the denominator to avoid inflating step sizes early in training. :param adam: bool. always use trust ratio = 1, which turns this into Adam. Useful for comparison purposes. :param pre_norm: bool. perform pre-normalization of all gradients. :param eps: float. term added to the denominator to improve numerical stability.
class Lamb(Optimizer, BaseOptimizer): r"""Large Batch Optimization for Deep Learning. This Lamb implementation is based on the paper v3, which does not use de-biasing. :param params: PARAMETERS. iterable of parameters to optimize or dicts defining parameter groups. :param lr: float. learning rate. :param betas: BETAS. coefficients used for computing running averages of gradient and the squared hessian trace. :param weight_decay: float. weight decay (L2 penalty). :param weight_decouple: bool. the optimizer uses decoupled weight decay as in AdamW. :param fixed_decay: bool. fix weight decay. :param rectify: bool. perform the rectified update similar to RAdam. :param degenerated_to_sgd: bool. degenerated to SGD. :param n_sma_threshold: int. (recommended is 5). :param grad_averaging: bool. whether apply (1 - beta2) to gradient when calculating running averages of gradient. :param max_grad_norm: float. max gradient norm to clip. :param r: float. EMA factor. between 0.9 ~ 0.99 is preferred. :param adanorm: bool. whether to use the AdaNorm variant. :param adam_debias: bool. Only correct the denominator to avoid inflating step sizes early in training. :param adam: bool. always use trust ratio = 1, which turns this into Adam. Useful for comparison purposes. :param pre_norm: bool. perform pre-normalization of all gradients. :param eps: float. term added to the denominator to improve numerical stability. """ clamp: float = 10.0 def __init__( self, params: PARAMETERS, lr: float = 1e-3, betas: BETAS = (0.9, 0.999), weight_decay: float = 0.0, weight_decouple: bool = True, fixed_decay: bool = False, rectify: bool = False, degenerated_to_sgd: bool = False, n_sma_threshold: int = 5, grad_averaging: bool = True, max_grad_norm: float = 1.0, adam: bool = False, pre_norm: bool = False, r: float = 0.95, adanorm: bool = False, adam_debias: bool = False, eps: float = 1e-6, ): self.validate_learning_rate(lr) self.validate_betas(betas) self.validate_non_negative(weight_decay, 'weight_decay') self.validate_non_negative(max_grad_norm, 'max_grad_norm') self.validate_non_negative(eps, 'eps') self.degenerated_to_sgd = degenerated_to_sgd self.n_sma_threshold = n_sma_threshold self.pre_norm = pre_norm defaults: DEFAULTS = { 'lr': lr, 'betas': betas, 'weight_decay': weight_decay, 'weight_decouple': weight_decouple, 'fixed_decay': fixed_decay, 'rectify': rectify, 'grad_averaging': grad_averaging, 'max_grad_norm': max_grad_norm, 'adam': adam, 'adanorm': adanorm, 'adam_debias': adam_debias, 'eps': eps, } if adanorm: defaults.update({'r': r}) super().__init__(params, defaults) def __str__(self) -> str: return 'Lamb' @torch.no_grad() def reset(self): for group in self.param_groups: for p in group['params']: state = self.state[p] state['step'] = 0 state['exp_avg'] = torch.zeros_like(p) state['exp_avg_sq'] = torch.zeros_like(p) if group['adanorm']: state['exp_grad_norm'] = torch.zeros((1,), dtype=p.dtype, device=p.device) @torch.no_grad() def get_global_gradient_norm(self) -> Union[torch.Tensor, float]: if self.defaults['max_grad_norm'] == 0.0: return 1.0 global_grad_norm = get_global_gradient_norm(self.param_groups, self.param_groups[0]['params'][0].device) global_grad_norm.sqrt_().add_(self.defaults['eps']) return torch.clamp(self.defaults['max_grad_norm'] / global_grad_norm, max=1.0) @torch.no_grad() def step(self, closure: CLOSURE = None) -> LOSS: loss: LOSS = None if closure is not None: with torch.enable_grad(): loss = closure() grad_norm = 1.0 if self.pre_norm: grad_norm = self.get_global_gradient_norm() for group in self.param_groups: if 'step' in group: group['step'] += 1 else: group['step'] = 1 beta1, beta2 = group['betas'] beta3: float = 1.0 - beta1 if group['grad_averaging'] else 1.0 bias_correction1: float = 1.0 - beta1 ** group['step'] step_size, n_sma = self.get_rectify_step_size( is_rectify=group['rectify'], step=group['step'], lr=group['lr'], beta2=beta2, n_sma_threshold=self.n_sma_threshold, degenerated_to_sgd=self.degenerated_to_sgd, ) step_size = self.apply_adam_debias( adam_debias=group['adam_debias'], step_size=step_size, bias_correction1=bias_correction1, ) for p in group['params']: if p.grad is None: continue grad = p.grad if grad.is_sparse: raise NoSparseGradientError(str(self)) if self.pre_norm: grad.div_(grad_norm) state = self.state[p] if len(state) == 0: state['exp_avg'] = torch.zeros_like(p) state['exp_avg_sq'] = torch.zeros_like(p) if group['adanorm']: state['exp_grad_norm'] = torch.zeros((1,), dtype=grad.dtype, device=grad.device) s_grad = self.get_adanorm_gradient( grad=grad, adanorm=group['adanorm'], exp_grad_norm=state.get('exp_grad_norm', None), r=group.get('r', None), ) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] exp_avg.mul_(beta1).add_(s_grad, alpha=beta3) exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1.0 - beta2) self.apply_weight_decay( p=p, grad=None, lr=group['lr'], weight_decay=group['weight_decay'], weight_decouple=group['weight_decouple'], fixed_decay=group['fixed_decay'], ) if group['rectify']: update = p.clone() if n_sma >= self.n_sma_threshold: de_nom = exp_avg_sq.sqrt().add_(group['eps']) update.addcdiv_(exp_avg, de_nom, value=-step_size) else: update.add_(exp_avg, alpha=-step_size) else: update = exp_avg / exp_avg_sq.sqrt().add_(group['eps']) weight_norm = torch.linalg.norm(p).clamp_(min=0, max=self.clamp) p_norm = torch.linalg.norm(update) trust_ratio: float = 1.0 if weight_norm == 0 or p_norm == 0 else weight_norm / (p_norm + group['eps']) state['weight_norm'] = weight_norm state['adam_norm'] = p_norm state['trust_ratio'] = trust_ratio if group['adam']: trust_ratio = 1.0 if group['rectify']: if n_sma >= self.n_sma_threshold: p.addcdiv_(exp_avg, de_nom, value=-step_size * trust_ratio) else: p.add_(exp_avg, alpha=-step_size * trust_ratio) else: p.add_(update, alpha=-step_size * trust_ratio) return loss
(params: Union[Iterable[Dict], Iterable[torch.Tensor], NoneType], lr: float = 0.001, betas: Union[Tuple[float, float], Tuple[float, float, float]] = (0.9, 0.999), weight_decay: float = 0.0, weight_decouple: bool = True, fixed_decay: bool = False, rectify: bool = False, degenerated_to_sgd: bool = False, n_sma_threshold: int = 5, grad_averaging: bool = True, max_grad_norm: float = 1.0, adam: bool = False, pre_norm: bool = False, r: float = 0.95, adanorm: bool = False, adam_debias: bool = False, eps: float = 1e-06)
716,979
pytorch_optimizer.optimizer.lamb
__init__
null
def __init__( self, params: PARAMETERS, lr: float = 1e-3, betas: BETAS = (0.9, 0.999), weight_decay: float = 0.0, weight_decouple: bool = True, fixed_decay: bool = False, rectify: bool = False, degenerated_to_sgd: bool = False, n_sma_threshold: int = 5, grad_averaging: bool = True, max_grad_norm: float = 1.0, adam: bool = False, pre_norm: bool = False, r: float = 0.95, adanorm: bool = False, adam_debias: bool = False, eps: float = 1e-6, ): self.validate_learning_rate(lr) self.validate_betas(betas) self.validate_non_negative(weight_decay, 'weight_decay') self.validate_non_negative(max_grad_norm, 'max_grad_norm') self.validate_non_negative(eps, 'eps') self.degenerated_to_sgd = degenerated_to_sgd self.n_sma_threshold = n_sma_threshold self.pre_norm = pre_norm defaults: DEFAULTS = { 'lr': lr, 'betas': betas, 'weight_decay': weight_decay, 'weight_decouple': weight_decouple, 'fixed_decay': fixed_decay, 'rectify': rectify, 'grad_averaging': grad_averaging, 'max_grad_norm': max_grad_norm, 'adam': adam, 'adanorm': adanorm, 'adam_debias': adam_debias, 'eps': eps, } if adanorm: defaults.update({'r': r}) super().__init__(params, defaults)
(self, params: Union[Iterable[Dict], Iterable[torch.Tensor], NoneType], lr: float = 0.001, betas: Union[Tuple[float, float], Tuple[float, float, float]] = (0.9, 0.999), weight_decay: float = 0.0, weight_decouple: bool = True, fixed_decay: bool = False, rectify: bool = False, degenerated_to_sgd: bool = False, n_sma_threshold: int = 5, grad_averaging: bool = True, max_grad_norm: float = 1.0, adam: bool = False, pre_norm: bool = False, r: float = 0.95, adanorm: bool = False, adam_debias: bool = False, eps: float = 1e-06)
716,982
pytorch_optimizer.optimizer.lamb
__str__
null
def __str__(self) -> str: return 'Lamb'
(self) -> str
716,994
pytorch_optimizer.optimizer.lamb
get_global_gradient_norm
null
@torch.no_grad() def step(self, closure: CLOSURE = None) -> LOSS: loss: LOSS = None if closure is not None: with torch.enable_grad(): loss = closure() grad_norm = 1.0 if self.pre_norm: grad_norm = self.get_global_gradient_norm() for group in self.param_groups: if 'step' in group: group['step'] += 1 else: group['step'] = 1 beta1, beta2 = group['betas'] beta3: float = 1.0 - beta1 if group['grad_averaging'] else 1.0 bias_correction1: float = 1.0 - beta1 ** group['step'] step_size, n_sma = self.get_rectify_step_size( is_rectify=group['rectify'], step=group['step'], lr=group['lr'], beta2=beta2, n_sma_threshold=self.n_sma_threshold, degenerated_to_sgd=self.degenerated_to_sgd, ) step_size = self.apply_adam_debias( adam_debias=group['adam_debias'], step_size=step_size, bias_correction1=bias_correction1, ) for p in group['params']: if p.grad is None: continue grad = p.grad if grad.is_sparse: raise NoSparseGradientError(str(self)) if self.pre_norm: grad.div_(grad_norm) state = self.state[p] if len(state) == 0: state['exp_avg'] = torch.zeros_like(p) state['exp_avg_sq'] = torch.zeros_like(p) if group['adanorm']: state['exp_grad_norm'] = torch.zeros((1,), dtype=grad.dtype, device=grad.device) s_grad = self.get_adanorm_gradient( grad=grad, adanorm=group['adanorm'], exp_grad_norm=state.get('exp_grad_norm', None), r=group.get('r', None), ) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] exp_avg.mul_(beta1).add_(s_grad, alpha=beta3) exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1.0 - beta2) self.apply_weight_decay( p=p, grad=None, lr=group['lr'], weight_decay=group['weight_decay'], weight_decouple=group['weight_decouple'], fixed_decay=group['fixed_decay'], ) if group['rectify']: update = p.clone() if n_sma >= self.n_sma_threshold: de_nom = exp_avg_sq.sqrt().add_(group['eps']) update.addcdiv_(exp_avg, de_nom, value=-step_size) else: update.add_(exp_avg, alpha=-step_size) else: update = exp_avg / exp_avg_sq.sqrt().add_(group['eps']) weight_norm = torch.linalg.norm(p).clamp_(min=0, max=self.clamp) p_norm = torch.linalg.norm(update) trust_ratio: float = 1.0 if weight_norm == 0 or p_norm == 0 else weight_norm / (p_norm + group['eps']) state['weight_norm'] = weight_norm state['adam_norm'] = p_norm state['trust_ratio'] = trust_ratio if group['adam']: trust_ratio = 1.0 if group['rectify']: if n_sma >= self.n_sma_threshold: p.addcdiv_(exp_avg, de_nom, value=-step_size * trust_ratio) else: p.add_(exp_avg, alpha=-step_size * trust_ratio) else: p.add_(update, alpha=-step_size * trust_ratio) return loss
(self) -> Union[torch.Tensor, float]
717,019
pytorch_optimizer.optimizer.shampoo_utils
LayerWiseGrafting
Layer-wise grafting. Grafting is a technique to fix the layer-wise scale of Shampoo optimizer. https://arxiv.org/pdf/2002.11803.pdf studies this in detail. This allows us to plugin the Shampoo optimizer into settings where SGD/AdaGrad is already well tuned. Grafting onto Shampoo means take the Shampoo direction, but use the step magnitude from the grafted optimizer such as Adagrad or SGD.
class LayerWiseGrafting(IntEnum): r"""Layer-wise grafting. Grafting is a technique to fix the layer-wise scale of Shampoo optimizer. https://arxiv.org/pdf/2002.11803.pdf studies this in detail. This allows us to plugin the Shampoo optimizer into settings where SGD/AdaGrad is already well tuned. Grafting onto Shampoo means take the Shampoo direction, but use the step magnitude from the grafted optimizer such as Adagrad or SGD. """ NONE = 0 SGD = 1 ADAGRAD = 2 RMSPROP = 3 SQRTN = 4
(value, names=None, *, module=None, qualname=None, type=None, start=1)
717,020
pytorch_optimizer.lr_scheduler.linear_warmup
LinearScheduler
Linear LR Scheduler w/ linear warmup.
class LinearScheduler(BaseLinearWarmupScheduler): r"""Linear LR Scheduler w/ linear warmup.""" def _step(self) -> float: return self.max_lr + (self.min_lr - self.max_lr) * (self.step_t - self.warmup_steps) / ( self.total_steps - self.warmup_steps )
(optimizer: Type[torch.optim.optimizer.Optimizer], t_max: int, max_lr: float, min_lr: float = 0.0, init_lr: float = 0.0, warmup_steps: int = 0)
717,023
pytorch_optimizer.lr_scheduler.linear_warmup
_step
null
def _step(self) -> float: return self.max_lr + (self.min_lr - self.max_lr) * (self.step_t - self.warmup_steps) / ( self.total_steps - self.warmup_steps )
(self) -> float
717,027
pytorch_optimizer.optimizer.lion
Lion
Symbolic Discovery of Optimization Algorithms. :param params: PARAMETERS. iterable of parameters to optimize or dicts defining parameter groups. :param lr: float. learning rate. :param betas: BETAS. coefficients used for computing running averages of gradient and the squared hessian trace. :param weight_decay: float. weight decay (L2 penalty). :param weight_decouple: bool. the optimizer uses decoupled weight decay as in AdamW. :param fixed_decay: bool. fix weight decay. :param use_gc: bool. use gradient centralization. :param r: float. EMA factor. between 0.9 ~ 0.99 is preferred. :param adanorm: bool. whether to use the AdaNorm variant.
class Lion(Optimizer, BaseOptimizer): r"""Symbolic Discovery of Optimization Algorithms. :param params: PARAMETERS. iterable of parameters to optimize or dicts defining parameter groups. :param lr: float. learning rate. :param betas: BETAS. coefficients used for computing running averages of gradient and the squared hessian trace. :param weight_decay: float. weight decay (L2 penalty). :param weight_decouple: bool. the optimizer uses decoupled weight decay as in AdamW. :param fixed_decay: bool. fix weight decay. :param use_gc: bool. use gradient centralization. :param r: float. EMA factor. between 0.9 ~ 0.99 is preferred. :param adanorm: bool. whether to use the AdaNorm variant. """ def __init__( self, params: PARAMETERS, lr: float = 1e-4, betas: BETAS = (0.9, 0.99), weight_decay: float = 0.0, weight_decouple: bool = True, fixed_decay: bool = False, use_gc: bool = False, r: float = 0.95, adanorm: bool = False, ): self.validate_learning_rate(lr) self.validate_betas(betas) self.validate_non_negative(weight_decay, 'weight_decay') self.use_gc = use_gc defaults: DEFAULTS = { 'lr': lr, 'betas': betas, 'weight_decay': weight_decay, 'weight_decouple': weight_decouple, 'fixed_decay': fixed_decay, 'adanorm': adanorm, } if adanorm: defaults.update({'r': r}) super().__init__(params, defaults) def __str__(self) -> str: return 'Lion' @torch.no_grad() def reset(self): for group in self.param_groups: for p in group['params']: state = self.state[p] state['exp_avg'] = torch.zeros_like(p) if group['adanorm']: state['exp_grad_norm'] = torch.zeros((1,), dtype=p.dtype, device=p.device) @torch.no_grad() def step(self, closure: CLOSURE = None) -> LOSS: loss: LOSS = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: beta1, beta2 = group['betas'] for p in group['params']: if p.grad is None: continue grad = p.grad if grad.is_sparse: raise NoSparseGradientError(str(self)) state = self.state[p] if len(state) == 0: state['exp_avg'] = torch.zeros_like(p) if group['adanorm']: state['exp_grad_norm'] = torch.zeros((1,), dtype=grad.dtype, device=grad.device) if self.use_gc: centralize_gradient(grad, gc_conv_only=False) self.apply_weight_decay( p=p, grad=p.grad, lr=group['lr'], weight_decay=group['weight_decay'], weight_decouple=group['weight_decouple'], fixed_decay=group['fixed_decay'], ) s_grad = self.get_adanorm_gradient( grad=grad, adanorm=group['adanorm'], exp_grad_norm=state.get('exp_grad_norm', None), r=group.get('r', None), ) exp_avg = state['exp_avg'] update = exp_avg.clone() update.mul_(beta1).add_(grad, alpha=1.0 - beta1).sign_() exp_avg.mul_(beta2).add_(s_grad, alpha=1.0 - beta2) p.add_(update, alpha=-group['lr']) return loss
(params: Union[Iterable[Dict], Iterable[torch.Tensor], NoneType], lr: float = 0.0001, betas: Union[Tuple[float, float], Tuple[float, float, float]] = (0.9, 0.99), weight_decay: float = 0.0, weight_decouple: bool = True, fixed_decay: bool = False, use_gc: bool = False, r: float = 0.95, adanorm: bool = False)
717,029
pytorch_optimizer.optimizer.lion
__init__
null
def __init__( self, params: PARAMETERS, lr: float = 1e-4, betas: BETAS = (0.9, 0.99), weight_decay: float = 0.0, weight_decouple: bool = True, fixed_decay: bool = False, use_gc: bool = False, r: float = 0.95, adanorm: bool = False, ): self.validate_learning_rate(lr) self.validate_betas(betas) self.validate_non_negative(weight_decay, 'weight_decay') self.use_gc = use_gc defaults: DEFAULTS = { 'lr': lr, 'betas': betas, 'weight_decay': weight_decay, 'weight_decouple': weight_decouple, 'fixed_decay': fixed_decay, 'adanorm': adanorm, } if adanorm: defaults.update({'r': r}) super().__init__(params, defaults)
(self, params: Union[Iterable[Dict], Iterable[torch.Tensor], NoneType], lr: float = 0.0001, betas: Union[Tuple[float, float], Tuple[float, float, float]] = (0.9, 0.99), weight_decay: float = 0.0, weight_decouple: bool = True, fixed_decay: bool = False, use_gc: bool = False, r: float = 0.95, adanorm: bool = False)
717,032
pytorch_optimizer.optimizer.lion
__str__
null
def __str__(self) -> str: return 'Lion'
(self) -> str
717,053
pytorch_optimizer.optimizer.lion
reset
null
@torch.no_grad() def step(self, closure: CLOSURE = None) -> LOSS: loss: LOSS = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: beta1, beta2 = group['betas'] for p in group['params']: if p.grad is None: continue grad = p.grad if grad.is_sparse: raise NoSparseGradientError(str(self)) state = self.state[p] if len(state) == 0: state['exp_avg'] = torch.zeros_like(p) if group['adanorm']: state['exp_grad_norm'] = torch.zeros((1,), dtype=grad.dtype, device=grad.device) if self.use_gc: centralize_gradient(grad, gc_conv_only=False) self.apply_weight_decay( p=p, grad=p.grad, lr=group['lr'], weight_decay=group['weight_decay'], weight_decouple=group['weight_decouple'], fixed_decay=group['fixed_decay'], ) s_grad = self.get_adanorm_gradient( grad=grad, adanorm=group['adanorm'], exp_grad_norm=state.get('exp_grad_norm', None), r=group.get('r', None), ) exp_avg = state['exp_avg'] update = exp_avg.clone() update.mul_(beta1).add_(grad, alpha=1.0 - beta1).sign_() exp_avg.mul_(beta2).add_(s_grad, alpha=1.0 - beta2) p.add_(update, alpha=-group['lr']) return loss
(self)
717,068
pytorch_optimizer.optimizer.lookahead
Lookahead
k steps forward, 1 step back. :param optimizer: OPTIMIZER. base optimizer. :param k: int. number of lookahead steps. :param alpha: float. linear interpolation factor. :param pullback_momentum: str. change to inner optimizer momentum on interpolation update.
class Lookahead(Optimizer, BaseOptimizer): r"""k steps forward, 1 step back. :param optimizer: OPTIMIZER. base optimizer. :param k: int. number of lookahead steps. :param alpha: float. linear interpolation factor. :param pullback_momentum: str. change to inner optimizer momentum on interpolation update. """ def __init__( self, optimizer: OPTIMIZER, k: int = 5, alpha: float = 0.5, pullback_momentum: str = 'none', ): self.validate_positive(k, 'k') self.validate_range(alpha, 'alpha', 0.0, 1.0) self.validate_options(pullback_momentum, 'pullback_momentum', ['none', 'reset', 'pullback']) self._optimizer_step_pre_hooks: Dict[int, Callable] = {} self._optimizer_step_post_hooks: Dict[int, Callable] = {} self.alpha = alpha self.k = k self.pullback_momentum = pullback_momentum self.optimizer = optimizer self.param_groups = self.optimizer.param_groups self.state: STATE = defaultdict(dict) for group in self.param_groups: if 'counter' not in group: group['counter'] = 0 for p in group['params']: state = self.state[p] state['slow_params'] = torch.empty_like(p) state['slow_params'].copy_(p) if self.pullback_momentum == 'pullback': state['slow_momentum'] = torch.zeros_like(p) self.defaults: DEFAULTS = { 'lookahead_alpha': alpha, 'lookahead_k': k, 'lookahead_pullback_momentum': pullback_momentum, **optimizer.defaults, } def __getstate__(self): return { 'state': self.state, 'optimizer': self.optimizer, 'alpha': self.alpha, 'k': self.k, 'pullback_momentum': self.pullback_momentum, } @torch.no_grad() def reset(self): for group in self.param_groups: group['counter'] = 0 def backup_and_load_cache(self): r"""Backup cache parameters.""" for group in self.param_groups: for p in group['params']: state = self.state[p] state['backup_params'] = torch.empty_like(p) state['backup_params'].copy_(p) p.data.copy_(state['slow_params']) def clear_and_load_backup(self): r"""Load backup parameters.""" for group in self.param_groups: for p in group['params']: state = self.state[p] p.data.copy_(state['backup_params']) del state['backup_params'] def state_dict(self) -> STATE: return self.optimizer.state_dict() def load_state_dict(self, state: STATE): r"""Load state.""" self.optimizer.load_state_dict(state) @torch.no_grad() def zero_grad(self): self.optimizer.zero_grad(set_to_none=True) @torch.no_grad() def update(self, group: Dict): for p in group['params']: if p.grad is None: continue state = self.state[p] slow = state['slow_params'] p.mul_(self.alpha).add_(slow, alpha=1.0 - self.alpha) slow.copy_(p) if 'momentum_buffer' not in self.optimizer.state[p]: self.optimizer.state[p]['momentum_buffer'] = torch.zeros_like(p) if self.pullback_momentum == 'pullback': internal_momentum = self.optimizer.state[p]['momentum_buffer'] self.optimizer.state[p]['momentum_buffer'] = internal_momentum.mul_(self.alpha).add_( state['slow_momentum'], alpha=1.0 - self.alpha ) state['slow_momentum'] = self.optimizer.state[p]['momentum_buffer'] elif self.pullback_momentum == 'reset': self.optimizer.state[p]['momentum_buffer'] = torch.zeros_like(p) def step(self, closure: CLOSURE = None) -> LOSS: loss: LOSS = self.optimizer.step(closure) for group in self.param_groups: group['counter'] += 1 if group['counter'] >= self.k: group['counter'] = 0 self.update(group) return loss
(optimizer: Type[torch.optim.optimizer.Optimizer], k: int = 5, alpha: float = 0.5, pullback_momentum: str = 'none')
717,069
pytorch_optimizer.optimizer.lookahead
__getstate__
null
def __getstate__(self): return { 'state': self.state, 'optimizer': self.optimizer, 'alpha': self.alpha, 'k': self.k, 'pullback_momentum': self.pullback_momentum, }
(self)
717,070
pytorch_optimizer.optimizer.lookahead
__init__
null
def __init__( self, optimizer: OPTIMIZER, k: int = 5, alpha: float = 0.5, pullback_momentum: str = 'none', ): self.validate_positive(k, 'k') self.validate_range(alpha, 'alpha', 0.0, 1.0) self.validate_options(pullback_momentum, 'pullback_momentum', ['none', 'reset', 'pullback']) self._optimizer_step_pre_hooks: Dict[int, Callable] = {} self._optimizer_step_post_hooks: Dict[int, Callable] = {} self.alpha = alpha self.k = k self.pullback_momentum = pullback_momentum self.optimizer = optimizer self.param_groups = self.optimizer.param_groups self.state: STATE = defaultdict(dict) for group in self.param_groups: if 'counter' not in group: group['counter'] = 0 for p in group['params']: state = self.state[p] state['slow_params'] = torch.empty_like(p) state['slow_params'].copy_(p) if self.pullback_momentum == 'pullback': state['slow_momentum'] = torch.zeros_like(p) self.defaults: DEFAULTS = { 'lookahead_alpha': alpha, 'lookahead_k': k, 'lookahead_pullback_momentum': pullback_momentum, **optimizer.defaults, }
(self, optimizer: Type[torch.optim.optimizer.Optimizer], k: int = 5, alpha: float = 0.5, pullback_momentum: str = 'none')
717,082
pytorch_optimizer.optimizer.lookahead
backup_and_load_cache
Backup cache parameters.
def backup_and_load_cache(self): r"""Backup cache parameters.""" for group in self.param_groups: for p in group['params']: state = self.state[p] state['backup_params'] = torch.empty_like(p) state['backup_params'].copy_(p) p.data.copy_(state['slow_params'])
(self)
717,083
pytorch_optimizer.optimizer.lookahead
clear_and_load_backup
Load backup parameters.
def clear_and_load_backup(self): r"""Load backup parameters.""" for group in self.param_groups: for p in group['params']: state = self.state[p] p.data.copy_(state['backup_params']) del state['backup_params']
(self)
717,087
pytorch_optimizer.optimizer.lookahead
load_state_dict
Load state.
def load_state_dict(self, state: STATE): r"""Load state.""" self.optimizer.load_state_dict(state)
(self, state: Dict)
717,095
pytorch_optimizer.optimizer.lookahead
reset
null
@torch.no_grad() def update(self, group: Dict): for p in group['params']: if p.grad is None: continue state = self.state[p] slow = state['slow_params'] p.mul_(self.alpha).add_(slow, alpha=1.0 - self.alpha) slow.copy_(p) if 'momentum_buffer' not in self.optimizer.state[p]: self.optimizer.state[p]['momentum_buffer'] = torch.zeros_like(p) if self.pullback_momentum == 'pullback': internal_momentum = self.optimizer.state[p]['momentum_buffer'] self.optimizer.state[p]['momentum_buffer'] = internal_momentum.mul_(self.alpha).add_( state['slow_momentum'], alpha=1.0 - self.alpha ) state['slow_momentum'] = self.optimizer.state[p]['momentum_buffer'] elif self.pullback_momentum == 'reset': self.optimizer.state[p]['momentum_buffer'] = torch.zeros_like(p)
(self)
717,097
pytorch_optimizer.optimizer.lookahead
state_dict
null
def state_dict(self) -> STATE: return self.optimizer.state_dict()
(self) -> Dict
717,098
pytorch_optimizer.optimizer.lookahead
step
null
def step(self, closure: CLOSURE = None) -> LOSS: loss: LOSS = self.optimizer.step(closure) for group in self.param_groups: group['counter'] += 1 if group['counter'] >= self.k: group['counter'] = 0 self.update(group) return loss
(self, closure: Optional[Callable[[], float]] = None) -> Optional[float]
717,111
pytorch_optimizer.loss.lovasz
LovaszHingeLoss
Binary Lovasz hinge loss. :param per_image: bool. compute the loss per image instead of per batch.
class LovaszHingeLoss(nn.Module): r"""Binary Lovasz hinge loss. :param per_image: bool. compute the loss per image instead of per batch. """ def __init__(self, per_image: bool = True): super().__init__() self.per_image = per_image def forward(self, y_pred: torch.Tensor, y_true: torch.Tensor) -> torch.Tensor: if not self.per_image: return lovasz_hinge_flat(y_pred, y_true) return sum(lovasz_hinge_flat(y_p, y_t) for y_p, y_t in zip(y_pred, y_true)) / y_pred.size()[0]
(per_image: bool = True)
717,117
pytorch_optimizer.loss.lovasz
__init__
null
def __init__(self, per_image: bool = True): super().__init__() self.per_image = per_image
(self, per_image: bool = True)
717,147
pytorch_optimizer.loss.lovasz
forward
null
def forward(self, y_pred: torch.Tensor, y_true: torch.Tensor) -> torch.Tensor: if not self.per_image: return lovasz_hinge_flat(y_pred, y_true) return sum(lovasz_hinge_flat(y_p, y_t) for y_p, y_t in zip(y_pred, y_true)) / y_pred.size()[0]
(self, y_pred: torch.Tensor, y_true: torch.Tensor) -> torch.Tensor
717,181
pytorch_optimizer.optimizer.madgrad
MADGRAD
A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic (slightly modified). :param params: PARAMETERS. iterable of parameters to optimize or dicts defining parameter groups. :param lr: float. learning rate. :param eps: float. term added to the denominator to improve numerical stability. :param weight_decay: float. weight decay (L2 penalty). MADGRAD optimizer requires less weight decay than other methods, often as little as zero. On sparse problems both weight_decay and momentum should be set to 0. :param weight_decouple: float. Apply AdamW style decoupled weight decay.
class MADGRAD(Optimizer, BaseOptimizer): r"""A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic (slightly modified). :param params: PARAMETERS. iterable of parameters to optimize or dicts defining parameter groups. :param lr: float. learning rate. :param eps: float. term added to the denominator to improve numerical stability. :param weight_decay: float. weight decay (L2 penalty). MADGRAD optimizer requires less weight decay than other methods, often as little as zero. On sparse problems both weight_decay and momentum should be set to 0. :param weight_decouple: float. Apply AdamW style decoupled weight decay. """ def __init__( self, params: PARAMETERS, lr: float = 1e-3, momentum: float = 0.9, weight_decay: float = 0.0, weight_decouple: bool = False, eps: float = 1e-6, ): self.validate_learning_rate(lr) self.validate_non_negative(weight_decay, 'weight_decay') self.validate_range(momentum, 'momentum', 0.0, 1.0) self.validate_non_negative(eps, 'eps') defaults: DEFAULTS = { 'lr': lr, 'weight_decay': weight_decay, 'weight_decouple': weight_decouple, 'momentum': momentum, 'eps': eps, } super().__init__(params, defaults) def __str__(self) -> str: return 'MADGRAD' @torch.no_grad() def reset(self): self.state['k'] = torch.tensor([0], dtype=torch.long, requires_grad=False) for group in self.param_groups: for p in group['params']: state = self.state[p] state['grad_sum_sq'] = torch.zeros_like(p) state['s'] = torch.zeros_like(p) if group['momentum'] > 0.0: state['x0'] = torch.clone(p).detach() @torch.no_grad() def step(self, closure: CLOSURE = None) -> LOSS: loss: LOSS = None if closure is not None: with torch.enable_grad(): loss = closure() # step counter must be stored in state to ensure correct behavior under optimizer sharding if 'k' not in self.state: self.state['k'] = torch.tensor([0], dtype=torch.long, requires_grad=False) for group in self.param_groups: weight_decay, momentum, eps = group['weight_decay'], group['momentum'], group['eps'] lr = group['lr'] + eps _lambda = lr * math.pow(self.state['k'] + 1, 0.5) for p in group['params']: if p.grad is None: continue grad = p.grad state = self.state[p] if 'grad_sum_sq' not in state: state['grad_sum_sq'] = torch.zeros_like(p) state['s'] = torch.zeros_like(p) if momentum > 0.0: state['x0'] = torch.clone(p).detach() if momentum > 0.0 and grad.is_sparse: raise NoSparseGradientError(str(self), note='momentum > 0.0') grad_sum_sq, s = state['grad_sum_sq'], state['s'] if weight_decay > 0.0 and not group['weight_decouple']: if grad.is_sparse: raise NoSparseGradientError(str(self), note='weight_decay') # original implementation. not AdamW style grad.add_(p, alpha=weight_decay) if grad.is_sparse: grad = grad.coalesce() p_masked = p.sparse_mask(grad) grad_sum_sq_masked = grad_sum_sq.sparse_mask(grad) s_masked = s.sparse_mask(grad) rms_masked_values = grad_sum_sq_masked._values().pow(1 / 3).add_(eps) x0_masked_values = p_masked._values().addcdiv(s_masked._values(), rms_masked_values, value=1) grad_sq = grad * grad grad_sum_sq.add_(grad_sq, alpha=_lambda) grad_sum_sq_masked.add_(grad_sq, alpha=_lambda) rms_masked_values = grad_sum_sq_masked._values().pow_(1 / 3).add_(eps) if eps == 0.0: rms_masked_values[rms_masked_values == 0] = float('inf') s.add_(grad, alpha=_lambda) s_masked._values().add_(grad._values(), alpha=_lambda) # update masked copy of p p_kp1_masked_values = x0_masked_values.addcdiv(s_masked._values(), rms_masked_values, value=-1) # Copy updated masked p to dense p using an add operation p_masked._values().add_(p_kp1_masked_values, alpha=-1) p.data.add_(p_masked, alpha=-1) else: if momentum == 0.0: # Compute x_0 from other known quantities rms = grad_sum_sq.pow(1 / 3).add_(eps) x0 = p.addcdiv(s, rms, value=1) else: x0 = state['x0'] # Accumulate second moments grad_sum_sq.addcmul_(grad, grad, value=_lambda) rms = grad_sum_sq.pow(1 / 3).add_(eps) if eps == 0.0: rms[rms == 0] = float('inf') s.add_(grad, alpha=_lambda) if weight_decay > 0.0 and group['weight_decouple']: p_old = p.clone() if momentum == 0.0: p.copy_(x0.addcdiv(s, rms, value=-1)) else: z = x0.addcdiv(s, rms, value=-1) p.mul_(momentum).add_(z, alpha=1.0 - momentum) if weight_decay > 0.0 and group['weight_decouple']: p.add_(p_old, alpha=-lr * weight_decay) self.state['k'] += 1 return loss
(params: Union[Iterable[Dict], Iterable[torch.Tensor], NoneType], lr: float = 0.001, momentum: float = 0.9, weight_decay: float = 0.0, weight_decouple: bool = False, eps: float = 1e-06)
717,183
pytorch_optimizer.optimizer.madgrad
__init__
null
def __init__( self, params: PARAMETERS, lr: float = 1e-3, momentum: float = 0.9, weight_decay: float = 0.0, weight_decouple: bool = False, eps: float = 1e-6, ): self.validate_learning_rate(lr) self.validate_non_negative(weight_decay, 'weight_decay') self.validate_range(momentum, 'momentum', 0.0, 1.0) self.validate_non_negative(eps, 'eps') defaults: DEFAULTS = { 'lr': lr, 'weight_decay': weight_decay, 'weight_decouple': weight_decouple, 'momentum': momentum, 'eps': eps, } super().__init__(params, defaults)
(self, params: Union[Iterable[Dict], Iterable[torch.Tensor], NoneType], lr: float = 0.001, momentum: float = 0.9, weight_decay: float = 0.0, weight_decouple: bool = False, eps: float = 1e-06)
717,186
pytorch_optimizer.optimizer.madgrad
__str__
null
def __str__(self) -> str: return 'MADGRAD'
(self) -> str
717,207
pytorch_optimizer.optimizer.madgrad
reset
null
@torch.no_grad() def step(self, closure: CLOSURE = None) -> LOSS: loss: LOSS = None if closure is not None: with torch.enable_grad(): loss = closure() # step counter must be stored in state to ensure correct behavior under optimizer sharding if 'k' not in self.state: self.state['k'] = torch.tensor([0], dtype=torch.long, requires_grad=False) for group in self.param_groups: weight_decay, momentum, eps = group['weight_decay'], group['momentum'], group['eps'] lr = group['lr'] + eps _lambda = lr * math.pow(self.state['k'] + 1, 0.5) for p in group['params']: if p.grad is None: continue grad = p.grad state = self.state[p] if 'grad_sum_sq' not in state: state['grad_sum_sq'] = torch.zeros_like(p) state['s'] = torch.zeros_like(p) if momentum > 0.0: state['x0'] = torch.clone(p).detach() if momentum > 0.0 and grad.is_sparse: raise NoSparseGradientError(str(self), note='momentum > 0.0') grad_sum_sq, s = state['grad_sum_sq'], state['s'] if weight_decay > 0.0 and not group['weight_decouple']: if grad.is_sparse: raise NoSparseGradientError(str(self), note='weight_decay') # original implementation. not AdamW style grad.add_(p, alpha=weight_decay) if grad.is_sparse: grad = grad.coalesce() p_masked = p.sparse_mask(grad) grad_sum_sq_masked = grad_sum_sq.sparse_mask(grad) s_masked = s.sparse_mask(grad) rms_masked_values = grad_sum_sq_masked._values().pow(1 / 3).add_(eps) x0_masked_values = p_masked._values().addcdiv(s_masked._values(), rms_masked_values, value=1) grad_sq = grad * grad grad_sum_sq.add_(grad_sq, alpha=_lambda) grad_sum_sq_masked.add_(grad_sq, alpha=_lambda) rms_masked_values = grad_sum_sq_masked._values().pow_(1 / 3).add_(eps) if eps == 0.0: rms_masked_values[rms_masked_values == 0] = float('inf') s.add_(grad, alpha=_lambda) s_masked._values().add_(grad._values(), alpha=_lambda) # update masked copy of p p_kp1_masked_values = x0_masked_values.addcdiv(s_masked._values(), rms_masked_values, value=-1) # Copy updated masked p to dense p using an add operation p_masked._values().add_(p_kp1_masked_values, alpha=-1) p.data.add_(p_masked, alpha=-1) else: if momentum == 0.0: # Compute x_0 from other known quantities rms = grad_sum_sq.pow(1 / 3).add_(eps) x0 = p.addcdiv(s, rms, value=1) else: x0 = state['x0'] # Accumulate second moments grad_sum_sq.addcmul_(grad, grad, value=_lambda) rms = grad_sum_sq.pow(1 / 3).add_(eps) if eps == 0.0: rms[rms == 0] = float('inf') s.add_(grad, alpha=_lambda) if weight_decay > 0.0 and group['weight_decouple']: p_old = p.clone() if momentum == 0.0: p.copy_(x0.addcdiv(s, rms, value=-1)) else: z = x0.addcdiv(s, rms, value=-1) p.mul_(momentum).add_(z, alpha=1.0 - momentum) if weight_decay > 0.0 and group['weight_decouple']: p.add_(p_old, alpha=-lr * weight_decay) self.state['k'] += 1 return loss
(self)
717,222
pytorch_optimizer.optimizer.msvag
MSVAG
Dissecting Adam: The Sign, Magnitude and Variance of Stochastic Gradients. :param params: PARAMETERS. iterable of parameters to optimize or dicts defining parameter groups. :param lr: float. learning rate. :param beta: float. Moving average (momentum) constant (scalar tensor or float value).
class MSVAG(Optimizer, BaseOptimizer): r"""Dissecting Adam: The Sign, Magnitude and Variance of Stochastic Gradients. :param params: PARAMETERS. iterable of parameters to optimize or dicts defining parameter groups. :param lr: float. learning rate. :param beta: float. Moving average (momentum) constant (scalar tensor or float value). """ def __init__(self, params: PARAMETERS, lr: float = 1e-2, beta: float = 0.9): self.validate_learning_rate(lr) self.validate_range(beta, 'beta', 0.0, 1.0, range_type='[]') defaults: DEFAULTS = {'lr': lr, 'beta': beta} super().__init__(params, defaults) def __str__(self) -> str: return 'MSVAG' @torch.no_grad() def reset(self): for group in self.param_groups: for p in group['params']: state = self.state[p] state['exp_avg'] = torch.zeros_like(p) state['exp_avg_sq'] = torch.zeros_like(p) state['s'] = torch.zeros_like(p) @staticmethod def get_rho(beta_power: float, beta: float) -> float: r"""Get rho.""" rho: float = (1.0 - beta_power ** 2) * (1.0 - beta) ** 2 # fmt: skip rho /= (1.0 - beta) * (1.0 - beta_power) ** 2 return min(rho, 0.9999) @torch.no_grad() def step(self, closure: CLOSURE = None) -> LOSS: loss: LOSS = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: if 'step' in group: group['step'] += 1 else: group['step'] = 1 beta: float = group['beta'] beta_power: float = beta ** group['step'] for p in group['params']: if p.grad is None: continue grad = p.grad if grad.is_sparse: raise NoSparseGradientError(str(self)) state = self.state[p] if len(state) == 0: state['exp_avg'] = torch.zeros_like(p) state['exp_avg_sq'] = torch.zeros_like(p) state['s'] = torch.zeros_like(p) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] exp_avg.mul_(beta).add_(grad, alpha=1.0 - beta) exp_avg_sq.mul_(beta).addcmul_(grad, grad, value=1.0 - beta) m = exp_avg.div(beta_power) v = exp_avg_sq.div(beta_power) rho: float = self.get_rho(beta_power, beta) m_p2 = m.pow(2) s = (v - m_p2).div_(1.0 - rho) factor = m_p2.div(m_p2 + rho * s) torch.nan_to_num(factor, nan=0.0, out=factor) factor.clamp_(0.0, 1.0) p.add_(m * factor, alpha=-group['lr']) return loss
(params: Union[Iterable[Dict], Iterable[torch.Tensor], NoneType], lr: float = 0.01, beta: float = 0.9)
717,224
pytorch_optimizer.optimizer.msvag
__init__
null
def __init__(self, params: PARAMETERS, lr: float = 1e-2, beta: float = 0.9): self.validate_learning_rate(lr) self.validate_range(beta, 'beta', 0.0, 1.0, range_type='[]') defaults: DEFAULTS = {'lr': lr, 'beta': beta} super().__init__(params, defaults)
(self, params: Union[Iterable[Dict], Iterable[torch.Tensor], NoneType], lr: float = 0.01, beta: float = 0.9)
717,227
pytorch_optimizer.optimizer.msvag
__str__
null
def __str__(self) -> str: return 'MSVAG'
(self) -> str
717,240
pytorch_optimizer.optimizer.msvag
get_rho
Get rho.
@staticmethod def get_rho(beta_power: float, beta: float) -> float: r"""Get rho.""" rho: float = (1.0 - beta_power ** 2) * (1.0 - beta) ** 2 # fmt: skip rho /= (1.0 - beta) * (1.0 - beta_power) ** 2 return min(rho, 0.9999)
(beta_power: float, beta: float) -> float
717,264
pytorch_optimizer.optimizer.nero
Nero
Learning by Turning: Neural Architecture Aware Optimisation. :param params: PARAMETERS. iterable of parameters to optimize or dicts defining parameter groups. :param lr: float. learning rate. :param beta: float. coefficients used for computing running averages of gradient and the squared hessian trace. :param constraints: bool. :param eps: float. term added to the denominator to improve numerical stability.
class Nero(Optimizer, BaseOptimizer): """Learning by Turning: Neural Architecture Aware Optimisation. :param params: PARAMETERS. iterable of parameters to optimize or dicts defining parameter groups. :param lr: float. learning rate. :param beta: float. coefficients used for computing running averages of gradient and the squared hessian trace. :param constraints: bool. :param eps: float. term added to the denominator to improve numerical stability. """ def __init__( self, params: PARAMETERS, lr: float = 0.01, beta: float = 0.999, constraints: bool = True, eps: float = 1e-8 ): self.validate_learning_rate(lr) self.validate_range(beta, 'beta', 0.0, 1.0, range_type='[]') self.validate_non_negative(eps, 'eps') defaults: DEFAULTS = {'lr': lr, 'beta': beta, 'constraints': constraints, 'eps': eps} super().__init__(params, defaults) def __str__(self) -> str: return 'Nero' @torch.no_grad() def reset(self): for group in self.param_groups: for p in group['params']: if group['constraints'] and p.dim() > 1: p.sub_(neuron_mean(p)) p.div_(neuron_norm(p) + group['eps']) state = self.state[p] state['step'] = 0 state['exp_avg_sq'] = torch.zeros_like(neuron_norm(p)) state['scale'] = neuron_norm(p).mean() if state['scale'] == 0.0: state['scale'] = 0.01 @torch.no_grad() def step(self, closure: CLOSURE = None) -> LOSS: loss: LOSS = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad if grad.is_sparse: raise NoSparseGradientError(str(self)) state = self.state[p] if len(state) == 0: if group['constraints'] and p.dim() > 1: p.sub_(neuron_mean(p)) p.div_(neuron_norm(p) + group['eps']) state['step'] = 0 state['exp_avg_sq'] = torch.zeros_like(neuron_norm(p)) state['scale'] = neuron_norm(p).mean() if state['scale'] == 0.0: state['scale'] = 0.01 state['step'] += 1 grad_norm = neuron_norm(grad) exp_avg_sq = state['exp_avg_sq'] exp_avg_sq.mul_(group['beta']).addcmul_(grad_norm, grad_norm, value=1.0 - group['beta']) bias_correction: float = 1.0 - group['beta'] ** state['step'] grad_normed = grad / ((exp_avg_sq / bias_correction).sqrt_().add_(group['eps'])) torch.nan_to_num(grad_normed, nan=0.0, out=grad_normed) p.sub_(grad_normed, alpha=group['lr'] * state['scale']) if group['constraints'] and p.dim() > 1: p.sub_(neuron_mean(p)) p.div_(neuron_norm(p) + group['eps']) return loss
(params: Union[Iterable[Dict], Iterable[torch.Tensor], NoneType], lr: float = 0.01, beta: float = 0.999, constraints: bool = True, eps: float = 1e-08)
717,266
pytorch_optimizer.optimizer.nero
__init__
null
def __init__( self, params: PARAMETERS, lr: float = 0.01, beta: float = 0.999, constraints: bool = True, eps: float = 1e-8 ): self.validate_learning_rate(lr) self.validate_range(beta, 'beta', 0.0, 1.0, range_type='[]') self.validate_non_negative(eps, 'eps') defaults: DEFAULTS = {'lr': lr, 'beta': beta, 'constraints': constraints, 'eps': eps} super().__init__(params, defaults)
(self, params: Union[Iterable[Dict], Iterable[torch.Tensor], NoneType], lr: float = 0.01, beta: float = 0.999, constraints: bool = True, eps: float = 1e-08)
717,269
pytorch_optimizer.optimizer.nero
__str__
null
def __str__(self) -> str: return 'Nero'
(self) -> str
717,305
pytorch_optimizer.optimizer.novograd
NovoGrad
Stochastic Gradient Methods with Layer-wise Adaptive Moments for Training of Deep Networks. :param params: PARAMETERS. iterable of parameters to optimize or dicts defining parameter groups. :param lr: float. learning rate. :param betas: BETAS. coefficients used for computing running averages of gradient and the squared hessian trace. :param weight_decay: float. weight decay (L2 penalty). :param weight_decouple: bool. the optimizer uses decoupled weight decay as in AdamW. :param fixed_decay: bool. fix weight decay. :param grad_averaging: bool. multiply ck (1 - momentum). :param adam_debias: bool. Only correct the denominator to avoid inflating step sizes early in training. :param eps: float. term added to the denominator to improve numerical stability.
class NovoGrad(Optimizer, BaseOptimizer): r"""Stochastic Gradient Methods with Layer-wise Adaptive Moments for Training of Deep Networks. :param params: PARAMETERS. iterable of parameters to optimize or dicts defining parameter groups. :param lr: float. learning rate. :param betas: BETAS. coefficients used for computing running averages of gradient and the squared hessian trace. :param weight_decay: float. weight decay (L2 penalty). :param weight_decouple: bool. the optimizer uses decoupled weight decay as in AdamW. :param fixed_decay: bool. fix weight decay. :param grad_averaging: bool. multiply ck (1 - momentum). :param adam_debias: bool. Only correct the denominator to avoid inflating step sizes early in training. :param eps: float. term added to the denominator to improve numerical stability. """ def __init__( self, params: PARAMETERS, lr: float = 1e-3, betas: BETAS = (0.95, 0.98), weight_decay: float = 0.0, weight_decouple: bool = False, fixed_decay: bool = False, grad_averaging: bool = False, adam_debias: bool = False, eps: float = 1e-8, ): self.validate_learning_rate(lr) self.validate_betas(betas) self.validate_non_negative(weight_decay, 'weight_decay') self.validate_non_negative(eps, 'eps') defaults: DEFAULTS = { 'lr': lr, 'betas': betas, 'weight_decay': weight_decay, 'weight_decouple': weight_decouple, 'fixed_decay': fixed_decay, 'grad_averaging': grad_averaging, 'adam_debias': adam_debias, 'eps': eps, } super().__init__(params, defaults) def __str__(self) -> str: return 'NovoGrad' @torch.no_grad() def reset(self): for group in self.param_groups: group['step'] = 0 for p in group['params']: state = self.state[p] grad = p.grad g_2 = grad.pow(2).sum() # fmt: skip state['moments'] = grad.div(g_2.sqrt() + group['eps']) + group['weight_decay'] * p state['grads_ema'] = g_2 @torch.no_grad() def step(self, closure: CLOSURE = None) -> LOSS: loss: LOSS = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: if 'step' in group: group['step'] += 1 else: group['step'] = 1 beta1, beta2 = group['betas'] bias_correction1: float = 1.0 - beta1 ** group['step'] bias_correction2_sq: float = math.sqrt(1.0 - beta2 ** group['step']) step_size: float = group['lr'] * bias_correction2_sq if not group['adam_debias']: step_size /= bias_correction1 for p in group['params']: if p.grad is None: continue grad = p.grad if grad.is_sparse: raise NoSparseGradientError(str(self)) state = self.state[p] grad_p2 = grad.pow(2).sum() if len(state) == 0: state['moments'] = grad.div(grad_p2.sqrt() + group['eps']) + group['weight_decay'] * p state['grads_ema'] = grad_p2 grads_ema = state['grads_ema'] grads_ema.mul_(beta2).add_(grad_p2, alpha=1.0 - beta2) de_nom = grads_ema.sqrt().add_(group['eps']) grad.div_(de_nom) self.apply_weight_decay( p=p, grad=p.grad, lr=group['lr'], weight_decay=group['weight_decay'], weight_decouple=group['weight_decouple'], fixed_decay=group['fixed_decay'], ) if group['grad_averaging']: grad.mul_(1.0 - beta1) moments = state['moments'] moments.mul_(beta1).add_(grad) p.add_(moments, alpha=-step_size) return loss
(params: Union[Iterable[Dict], Iterable[torch.Tensor], NoneType], lr: float = 0.001, betas: Union[Tuple[float, float], Tuple[float, float, float]] = (0.95, 0.98), weight_decay: float = 0.0, weight_decouple: bool = False, fixed_decay: bool = False, grad_averaging: bool = False, adam_debias: bool = False, eps: float = 1e-08)
717,307
pytorch_optimizer.optimizer.novograd
__init__
null
def __init__( self, params: PARAMETERS, lr: float = 1e-3, betas: BETAS = (0.95, 0.98), weight_decay: float = 0.0, weight_decouple: bool = False, fixed_decay: bool = False, grad_averaging: bool = False, adam_debias: bool = False, eps: float = 1e-8, ): self.validate_learning_rate(lr) self.validate_betas(betas) self.validate_non_negative(weight_decay, 'weight_decay') self.validate_non_negative(eps, 'eps') defaults: DEFAULTS = { 'lr': lr, 'betas': betas, 'weight_decay': weight_decay, 'weight_decouple': weight_decouple, 'fixed_decay': fixed_decay, 'grad_averaging': grad_averaging, 'adam_debias': adam_debias, 'eps': eps, } super().__init__(params, defaults)
(self, params: Union[Iterable[Dict], Iterable[torch.Tensor], NoneType], lr: float = 0.001, betas: Union[Tuple[float, float], Tuple[float, float, float]] = (0.95, 0.98), weight_decay: float = 0.0, weight_decouple: bool = False, fixed_decay: bool = False, grad_averaging: bool = False, adam_debias: bool = False, eps: float = 1e-08)
717,310
pytorch_optimizer.optimizer.novograd
__str__
null
def __str__(self) -> str: return 'NovoGrad'
(self) -> str
717,331
pytorch_optimizer.optimizer.novograd
reset
null
@torch.no_grad() def step(self, closure: CLOSURE = None) -> LOSS: loss: LOSS = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: if 'step' in group: group['step'] += 1 else: group['step'] = 1 beta1, beta2 = group['betas'] bias_correction1: float = 1.0 - beta1 ** group['step'] bias_correction2_sq: float = math.sqrt(1.0 - beta2 ** group['step']) step_size: float = group['lr'] * bias_correction2_sq if not group['adam_debias']: step_size /= bias_correction1 for p in group['params']: if p.grad is None: continue grad = p.grad if grad.is_sparse: raise NoSparseGradientError(str(self)) state = self.state[p] grad_p2 = grad.pow(2).sum() if len(state) == 0: state['moments'] = grad.div(grad_p2.sqrt() + group['eps']) + group['weight_decay'] * p state['grads_ema'] = grad_p2 grads_ema = state['grads_ema'] grads_ema.mul_(beta2).add_(grad_p2, alpha=1.0 - beta2) de_nom = grads_ema.sqrt().add_(group['eps']) grad.div_(de_nom) self.apply_weight_decay( p=p, grad=p.grad, lr=group['lr'], weight_decay=group['weight_decay'], weight_decouple=group['weight_decouple'], fixed_decay=group['fixed_decay'], ) if group['grad_averaging']: grad.mul_(1.0 - beta1) moments = state['moments'] moments.mul_(beta1).add_(grad) p.add_(moments, alpha=-step_size) return loss
(self)
717,346
torch.optim.lr_scheduler
OneCycleLR
Sets the learning rate of each parameter group according to the 1cycle learning rate policy. The 1cycle policy anneals the learning rate from an initial learning rate to some maximum learning rate and then from that maximum learning rate to some minimum learning rate much lower than the initial learning rate. This policy was initially described in the paper `Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates`_. The 1cycle learning rate policy changes the learning rate after every batch. `step` should be called after a batch has been used for training. This scheduler is not chainable. Note also that the total number of steps in the cycle can be determined in one of two ways (listed in order of precedence): #. A value for total_steps is explicitly provided. #. A number of epochs (epochs) and a number of steps per epoch (steps_per_epoch) are provided. In this case, the number of total steps is inferred by total_steps = epochs * steps_per_epoch You must either provide a value for total_steps or provide a value for both epochs and steps_per_epoch. The default behaviour of this scheduler follows the fastai implementation of 1cycle, which claims that "unpublished work has shown even better results by using only two phases". To mimic the behaviour of the original paper instead, set ``three_phase=True``. Args: optimizer (Optimizer): Wrapped optimizer. max_lr (float or list): Upper learning rate boundaries in the cycle for each parameter group. total_steps (int): The total number of steps in the cycle. Note that if a value is not provided here, then it must be inferred by providing a value for epochs and steps_per_epoch. Default: None epochs (int): The number of epochs to train for. This is used along with steps_per_epoch in order to infer the total number of steps in the cycle if a value for total_steps is not provided. Default: None steps_per_epoch (int): The number of steps per epoch to train for. This is used along with epochs in order to infer the total number of steps in the cycle if a value for total_steps is not provided. Default: None pct_start (float): The percentage of the cycle (in number of steps) spent increasing the learning rate. Default: 0.3 anneal_strategy (str): {'cos', 'linear'} Specifies the annealing strategy: "cos" for cosine annealing, "linear" for linear annealing. Default: 'cos' cycle_momentum (bool): If ``True``, momentum is cycled inversely to learning rate between 'base_momentum' and 'max_momentum'. Default: True base_momentum (float or list): Lower momentum boundaries in the cycle for each parameter group. Note that momentum is cycled inversely to learning rate; at the peak of a cycle, momentum is 'base_momentum' and learning rate is 'max_lr'. Default: 0.85 max_momentum (float or list): Upper momentum boundaries in the cycle for each parameter group. Functionally, it defines the cycle amplitude (max_momentum - base_momentum). Note that momentum is cycled inversely to learning rate; at the start of a cycle, momentum is 'max_momentum' and learning rate is 'base_lr' Default: 0.95 div_factor (float): Determines the initial learning rate via initial_lr = max_lr/div_factor Default: 25 final_div_factor (float): Determines the minimum learning rate via min_lr = initial_lr/final_div_factor Default: 1e4 three_phase (bool): If ``True``, use a third phase of the schedule to annihilate the learning rate according to 'final_div_factor' instead of modifying the second phase (the first two phases will be symmetrical about the step indicated by 'pct_start'). last_epoch (int): The index of the last batch. This parameter is used when resuming a training job. Since `step()` should be invoked after each batch instead of after each epoch, this number represents the total number of *batches* computed, not the total number of epochs computed. When last_epoch=-1, the schedule is started from the beginning. Default: -1 verbose (bool): If ``True``, prints a message to stdout for each update. Default: ``False``. .. deprecated:: 2.2 ``verbose`` is deprecated. Please use ``get_last_lr()`` to access the learning rate. Example: >>> # xdoctest: +SKIP >>> data_loader = torch.utils.data.DataLoader(...) >>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) >>> scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr=0.01, steps_per_epoch=len(data_loader), epochs=10) >>> for epoch in range(10): >>> for batch in data_loader: >>> train_batch(...) >>> optimizer.step() >>> scheduler.step() .. _Super-Convergence\: Very Fast Training of Neural Networks Using Large Learning Rates: https://arxiv.org/abs/1708.07120
class OneCycleLR(LRScheduler): r"""Sets the learning rate of each parameter group according to the 1cycle learning rate policy. The 1cycle policy anneals the learning rate from an initial learning rate to some maximum learning rate and then from that maximum learning rate to some minimum learning rate much lower than the initial learning rate. This policy was initially described in the paper `Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates`_. The 1cycle learning rate policy changes the learning rate after every batch. `step` should be called after a batch has been used for training. This scheduler is not chainable. Note also that the total number of steps in the cycle can be determined in one of two ways (listed in order of precedence): #. A value for total_steps is explicitly provided. #. A number of epochs (epochs) and a number of steps per epoch (steps_per_epoch) are provided. In this case, the number of total steps is inferred by total_steps = epochs * steps_per_epoch You must either provide a value for total_steps or provide a value for both epochs and steps_per_epoch. The default behaviour of this scheduler follows the fastai implementation of 1cycle, which claims that "unpublished work has shown even better results by using only two phases". To mimic the behaviour of the original paper instead, set ``three_phase=True``. Args: optimizer (Optimizer): Wrapped optimizer. max_lr (float or list): Upper learning rate boundaries in the cycle for each parameter group. total_steps (int): The total number of steps in the cycle. Note that if a value is not provided here, then it must be inferred by providing a value for epochs and steps_per_epoch. Default: None epochs (int): The number of epochs to train for. This is used along with steps_per_epoch in order to infer the total number of steps in the cycle if a value for total_steps is not provided. Default: None steps_per_epoch (int): The number of steps per epoch to train for. This is used along with epochs in order to infer the total number of steps in the cycle if a value for total_steps is not provided. Default: None pct_start (float): The percentage of the cycle (in number of steps) spent increasing the learning rate. Default: 0.3 anneal_strategy (str): {'cos', 'linear'} Specifies the annealing strategy: "cos" for cosine annealing, "linear" for linear annealing. Default: 'cos' cycle_momentum (bool): If ``True``, momentum is cycled inversely to learning rate between 'base_momentum' and 'max_momentum'. Default: True base_momentum (float or list): Lower momentum boundaries in the cycle for each parameter group. Note that momentum is cycled inversely to learning rate; at the peak of a cycle, momentum is 'base_momentum' and learning rate is 'max_lr'. Default: 0.85 max_momentum (float or list): Upper momentum boundaries in the cycle for each parameter group. Functionally, it defines the cycle amplitude (max_momentum - base_momentum). Note that momentum is cycled inversely to learning rate; at the start of a cycle, momentum is 'max_momentum' and learning rate is 'base_lr' Default: 0.95 div_factor (float): Determines the initial learning rate via initial_lr = max_lr/div_factor Default: 25 final_div_factor (float): Determines the minimum learning rate via min_lr = initial_lr/final_div_factor Default: 1e4 three_phase (bool): If ``True``, use a third phase of the schedule to annihilate the learning rate according to 'final_div_factor' instead of modifying the second phase (the first two phases will be symmetrical about the step indicated by 'pct_start'). last_epoch (int): The index of the last batch. This parameter is used when resuming a training job. Since `step()` should be invoked after each batch instead of after each epoch, this number represents the total number of *batches* computed, not the total number of epochs computed. When last_epoch=-1, the schedule is started from the beginning. Default: -1 verbose (bool): If ``True``, prints a message to stdout for each update. Default: ``False``. .. deprecated:: 2.2 ``verbose`` is deprecated. Please use ``get_last_lr()`` to access the learning rate. Example: >>> # xdoctest: +SKIP >>> data_loader = torch.utils.data.DataLoader(...) >>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) >>> scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr=0.01, steps_per_epoch=len(data_loader), epochs=10) >>> for epoch in range(10): >>> for batch in data_loader: >>> train_batch(...) >>> optimizer.step() >>> scheduler.step() .. _Super-Convergence\: Very Fast Training of Neural Networks Using Large Learning Rates: https://arxiv.org/abs/1708.07120 """ def __init__(self, optimizer, max_lr, total_steps=None, epochs=None, steps_per_epoch=None, pct_start=0.3, anneal_strategy='cos', cycle_momentum=True, base_momentum=0.85, max_momentum=0.95, div_factor=25., final_div_factor=1e4, three_phase=False, last_epoch=-1, verbose="deprecated"): # Validate optimizer if not isinstance(optimizer, Optimizer): raise TypeError(f'{type(optimizer).__name__} is not an Optimizer') self.optimizer = optimizer # Validate total_steps if total_steps is None and epochs is None and steps_per_epoch is None: raise ValueError("You must define either total_steps OR (epochs AND steps_per_epoch)") elif total_steps is not None: if total_steps <= 0 or not isinstance(total_steps, int): raise ValueError(f"Expected positive integer total_steps, but got {total_steps}") self.total_steps = total_steps else: if epochs <= 0 or not isinstance(epochs, int): raise ValueError(f"Expected positive integer epochs, but got {epochs}") if steps_per_epoch <= 0 or not isinstance(steps_per_epoch, int): raise ValueError(f"Expected positive integer steps_per_epoch, but got {steps_per_epoch}") self.total_steps = epochs * steps_per_epoch if three_phase: self._schedule_phases = [ { 'end_step': float(pct_start * self.total_steps) - 1, 'start_lr': 'initial_lr', 'end_lr': 'max_lr', 'start_momentum': 'max_momentum', 'end_momentum': 'base_momentum', }, { 'end_step': float(2 * pct_start * self.total_steps) - 2, 'start_lr': 'max_lr', 'end_lr': 'initial_lr', 'start_momentum': 'base_momentum', 'end_momentum': 'max_momentum', }, { 'end_step': self.total_steps - 1, 'start_lr': 'initial_lr', 'end_lr': 'min_lr', 'start_momentum': 'max_momentum', 'end_momentum': 'max_momentum', }, ] else: self._schedule_phases = [ { 'end_step': float(pct_start * self.total_steps) - 1, 'start_lr': 'initial_lr', 'end_lr': 'max_lr', 'start_momentum': 'max_momentum', 'end_momentum': 'base_momentum', }, { 'end_step': self.total_steps - 1, 'start_lr': 'max_lr', 'end_lr': 'min_lr', 'start_momentum': 'base_momentum', 'end_momentum': 'max_momentum', }, ] # Validate pct_start if pct_start < 0 or pct_start > 1 or not isinstance(pct_start, float): raise ValueError(f"Expected float between 0 and 1 pct_start, but got {pct_start}") # Validate anneal_strategy if anneal_strategy not in ['cos', 'linear']: raise ValueError(f"anneal_strategy must by one of 'cos' or 'linear', instead got {anneal_strategy}") elif anneal_strategy == 'cos': self.anneal_func = self._annealing_cos elif anneal_strategy == 'linear': self.anneal_func = self._annealing_linear # Initialize learning rate variables max_lrs = self._format_param('max_lr', self.optimizer, max_lr) if last_epoch == -1: for idx, group in enumerate(self.optimizer.param_groups): group['initial_lr'] = max_lrs[idx] / div_factor group['max_lr'] = max_lrs[idx] group['min_lr'] = group['initial_lr'] / final_div_factor # Initialize momentum variables self.cycle_momentum = cycle_momentum if self.cycle_momentum: if 'momentum' not in self.optimizer.defaults and 'betas' not in self.optimizer.defaults: raise ValueError('optimizer must support momentum or beta1 with `cycle_momentum` option enabled') self.use_beta1 = 'betas' in self.optimizer.defaults max_momentums = self._format_param('max_momentum', optimizer, max_momentum) base_momentums = self._format_param('base_momentum', optimizer, base_momentum) if last_epoch == -1: for m_momentum, b_momentum, group in zip(max_momentums, base_momentums, optimizer.param_groups): if self.use_beta1: group['betas'] = (m_momentum, *group['betas'][1:]) else: group['momentum'] = m_momentum group['max_momentum'] = m_momentum group['base_momentum'] = b_momentum super().__init__(optimizer, last_epoch, verbose) def _format_param(self, name, optimizer, param): """Return correctly formatted lr/momentum for each param group.""" if isinstance(param, (list, tuple)): if len(param) != len(optimizer.param_groups): raise ValueError(f"expected {len(optimizer.param_groups)} values for {name}, got {len(param)}") return param else: return [param] * len(optimizer.param_groups) @staticmethod def _annealing_cos(start, end, pct): "Cosine anneal from `start` to `end` as pct goes from 0.0 to 1.0." cos_out = math.cos(math.pi * pct) + 1 return end + (start - end) / 2.0 * cos_out @staticmethod def _annealing_linear(start, end, pct): "Linearly anneal from `start` to `end` as pct goes from 0.0 to 1.0." return (end - start) * pct + start def get_lr(self): if not self._get_lr_called_within_step: warnings.warn("To get the last learning rate computed by the scheduler, " "please use `get_last_lr()`.", UserWarning) lrs = [] step_num = self.last_epoch if step_num > self.total_steps: raise ValueError("Tried to step {} times. The specified number of total steps is {}" .format(step_num, self.total_steps)) for group in self.optimizer.param_groups: start_step = 0 for i, phase in enumerate(self._schedule_phases): end_step = phase['end_step'] if step_num <= end_step or i == len(self._schedule_phases) - 1: pct = (step_num - start_step) / (end_step - start_step) computed_lr = self.anneal_func(group[phase['start_lr']], group[phase['end_lr']], pct) if self.cycle_momentum: computed_momentum = self.anneal_func(group[phase['start_momentum']], group[phase['end_momentum']], pct) break start_step = phase['end_step'] lrs.append(computed_lr) if self.cycle_momentum: if self.use_beta1: group['betas'] = (computed_momentum, *group['betas'][1:]) else: group['momentum'] = computed_momentum return lrs
(optimizer, max_lr, total_steps=None, epochs=None, steps_per_epoch=None, pct_start=0.3, anneal_strategy='cos', cycle_momentum=True, base_momentum=0.85, max_momentum=0.95, div_factor=25.0, final_div_factor=10000.0, three_phase=False, last_epoch=-1, verbose='deprecated')
717,347
torch.optim.lr_scheduler
__init__
null
def __init__(self, optimizer, max_lr, total_steps=None, epochs=None, steps_per_epoch=None, pct_start=0.3, anneal_strategy='cos', cycle_momentum=True, base_momentum=0.85, max_momentum=0.95, div_factor=25., final_div_factor=1e4, three_phase=False, last_epoch=-1, verbose="deprecated"): # Validate optimizer if not isinstance(optimizer, Optimizer): raise TypeError(f'{type(optimizer).__name__} is not an Optimizer') self.optimizer = optimizer # Validate total_steps if total_steps is None and epochs is None and steps_per_epoch is None: raise ValueError("You must define either total_steps OR (epochs AND steps_per_epoch)") elif total_steps is not None: if total_steps <= 0 or not isinstance(total_steps, int): raise ValueError(f"Expected positive integer total_steps, but got {total_steps}") self.total_steps = total_steps else: if epochs <= 0 or not isinstance(epochs, int): raise ValueError(f"Expected positive integer epochs, but got {epochs}") if steps_per_epoch <= 0 or not isinstance(steps_per_epoch, int): raise ValueError(f"Expected positive integer steps_per_epoch, but got {steps_per_epoch}") self.total_steps = epochs * steps_per_epoch if three_phase: self._schedule_phases = [ { 'end_step': float(pct_start * self.total_steps) - 1, 'start_lr': 'initial_lr', 'end_lr': 'max_lr', 'start_momentum': 'max_momentum', 'end_momentum': 'base_momentum', }, { 'end_step': float(2 * pct_start * self.total_steps) - 2, 'start_lr': 'max_lr', 'end_lr': 'initial_lr', 'start_momentum': 'base_momentum', 'end_momentum': 'max_momentum', }, { 'end_step': self.total_steps - 1, 'start_lr': 'initial_lr', 'end_lr': 'min_lr', 'start_momentum': 'max_momentum', 'end_momentum': 'max_momentum', }, ] else: self._schedule_phases = [ { 'end_step': float(pct_start * self.total_steps) - 1, 'start_lr': 'initial_lr', 'end_lr': 'max_lr', 'start_momentum': 'max_momentum', 'end_momentum': 'base_momentum', }, { 'end_step': self.total_steps - 1, 'start_lr': 'max_lr', 'end_lr': 'min_lr', 'start_momentum': 'base_momentum', 'end_momentum': 'max_momentum', }, ] # Validate pct_start if pct_start < 0 or pct_start > 1 or not isinstance(pct_start, float): raise ValueError(f"Expected float between 0 and 1 pct_start, but got {pct_start}") # Validate anneal_strategy if anneal_strategy not in ['cos', 'linear']: raise ValueError(f"anneal_strategy must by one of 'cos' or 'linear', instead got {anneal_strategy}") elif anneal_strategy == 'cos': self.anneal_func = self._annealing_cos elif anneal_strategy == 'linear': self.anneal_func = self._annealing_linear # Initialize learning rate variables max_lrs = self._format_param('max_lr', self.optimizer, max_lr) if last_epoch == -1: for idx, group in enumerate(self.optimizer.param_groups): group['initial_lr'] = max_lrs[idx] / div_factor group['max_lr'] = max_lrs[idx] group['min_lr'] = group['initial_lr'] / final_div_factor # Initialize momentum variables self.cycle_momentum = cycle_momentum if self.cycle_momentum: if 'momentum' not in self.optimizer.defaults and 'betas' not in self.optimizer.defaults: raise ValueError('optimizer must support momentum or beta1 with `cycle_momentum` option enabled') self.use_beta1 = 'betas' in self.optimizer.defaults max_momentums = self._format_param('max_momentum', optimizer, max_momentum) base_momentums = self._format_param('base_momentum', optimizer, base_momentum) if last_epoch == -1: for m_momentum, b_momentum, group in zip(max_momentums, base_momentums, optimizer.param_groups): if self.use_beta1: group['betas'] = (m_momentum, *group['betas'][1:]) else: group['momentum'] = m_momentum group['max_momentum'] = m_momentum group['base_momentum'] = b_momentum super().__init__(optimizer, last_epoch, verbose)
(self, optimizer, max_lr, total_steps=None, epochs=None, steps_per_epoch=None, pct_start=0.3, anneal_strategy='cos', cycle_momentum=True, base_momentum=0.85, max_momentum=0.95, div_factor=25.0, final_div_factor=10000.0, three_phase=False, last_epoch=-1, verbose='deprecated')
717,348
torch.optim.lr_scheduler
_annealing_cos
Cosine anneal from `start` to `end` as pct goes from 0.0 to 1.0.
@staticmethod def _annealing_cos(start, end, pct): "Cosine anneal from `start` to `end` as pct goes from 0.0 to 1.0." cos_out = math.cos(math.pi * pct) + 1 return end + (start - end) / 2.0 * cos_out
(start, end, pct)
717,349
torch.optim.lr_scheduler
_annealing_linear
Linearly anneal from `start` to `end` as pct goes from 0.0 to 1.0.
@staticmethod def _annealing_linear(start, end, pct): "Linearly anneal from `start` to `end` as pct goes from 0.0 to 1.0." return (end - start) * pct + start
(start, end, pct)
717,353
torch.optim.lr_scheduler
get_lr
null
def get_lr(self): if not self._get_lr_called_within_step: warnings.warn("To get the last learning rate computed by the scheduler, " "please use `get_last_lr()`.", UserWarning) lrs = [] step_num = self.last_epoch if step_num > self.total_steps: raise ValueError("Tried to step {} times. The specified number of total steps is {}" .format(step_num, self.total_steps)) for group in self.optimizer.param_groups: start_step = 0 for i, phase in enumerate(self._schedule_phases): end_step = phase['end_step'] if step_num <= end_step or i == len(self._schedule_phases) - 1: pct = (step_num - start_step) / (end_step - start_step) computed_lr = self.anneal_func(group[phase['start_lr']], group[phase['end_lr']], pct) if self.cycle_momentum: computed_momentum = self.anneal_func(group[phase['start_momentum']], group[phase['end_momentum']], pct) break start_step = phase['end_step'] lrs.append(computed_lr) if self.cycle_momentum: if self.use_beta1: group['betas'] = (computed_momentum, *group['betas'][1:]) else: group['momentum'] = computed_momentum return lrs
(self)
717,358
pytorch_optimizer.optimizer.padam
PAdam
Closing the Generalization Gap of Adaptive Gradient Methods in Training Deep Neural Networks. :param params: PARAMETERS. iterable of parameters to optimize or dicts defining parameter groups. :param lr: float. learning rate. :param betas: BETAS. coefficients used for computing running averages of gradient and the squared hessian trace. :param partial: float. partially adaptive parameter. :param weight_decay: float. weight decay (L2 penalty). :param weight_decouple: bool. the optimizer uses decoupled weight decay as in AdamW. :param fixed_decay: bool. fix weight decay. :param eps: float. term added to the denominator to improve numerical stability.
class PAdam(Optimizer, BaseOptimizer): """Closing the Generalization Gap of Adaptive Gradient Methods in Training Deep Neural Networks. :param params: PARAMETERS. iterable of parameters to optimize or dicts defining parameter groups. :param lr: float. learning rate. :param betas: BETAS. coefficients used for computing running averages of gradient and the squared hessian trace. :param partial: float. partially adaptive parameter. :param weight_decay: float. weight decay (L2 penalty). :param weight_decouple: bool. the optimizer uses decoupled weight decay as in AdamW. :param fixed_decay: bool. fix weight decay. :param eps: float. term added to the denominator to improve numerical stability. """ def __init__( self, params: PARAMETERS, lr: float = 1e-1, betas: BETAS = (0.9, 0.999), partial: float = 0.25, weight_decay: float = 0.0, weight_decouple: bool = False, fixed_decay: bool = False, eps: float = 1e-8, ): self.validate_learning_rate(lr) self.validate_betas(betas) self.validate_range(partial, 'partial', 0.0, 1.0, range_type='(]') self.validate_non_negative(weight_decay, 'weight_decay') self.validate_non_negative(eps, 'eps') defaults: DEFAULTS = { 'lr': lr, 'betas': betas, 'partial': partial, 'weight_decay': weight_decay, 'weight_decouple': weight_decouple, 'fixed_decay': fixed_decay, 'eps': eps, } super().__init__(params, defaults) def __str__(self) -> str: return 'PAdam' @torch.no_grad() def reset(self): for group in self.param_groups: group['step'] = 0 for p in group['params']: state = self.state[p] state['exp_avg'] = torch.zeros_like(p) state['exp_avg_sq'] = torch.zeros_like(p) @torch.no_grad() def step(self, closure: CLOSURE = None) -> LOSS: loss: LOSS = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: if 'step' in group: group['step'] += 1 else: group['step'] = 1 beta1, beta2 = group['betas'] bias_correction1: float = 1.0 - beta1 ** group['step'] bias_correction2_sq: float = math.sqrt(1.0 - beta2 ** group['step']) for p in group['params']: if p.grad is None: continue grad = p.grad if grad.is_sparse: raise NoSparseGradientError(str(self)) state = self.state[p] if len(state) == 0: state['exp_avg'] = torch.zeros_like(p) state['exp_avg_sq'] = torch.zeros_like(p) self.apply_weight_decay( p, grad, lr=group['lr'], weight_decay=group['weight_decay'], weight_decouple=group['weight_decouple'], fixed_decay=group['fixed_decay'], ) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] exp_avg.mul_(beta1).add_(grad, alpha=1.0 - beta1) exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1.0 - beta2) de_nom = exp_avg_sq.sqrt().add_(group['eps']) step_size: float = group['lr'] * bias_correction2_sq / bias_correction1 p.addcdiv_(exp_avg, de_nom ** (group['partial'] * 2), value=-step_size) return loss
(params: Union[Iterable[Dict], Iterable[torch.Tensor], NoneType], lr: float = 0.1, betas: Union[Tuple[float, float], Tuple[float, float, float]] = (0.9, 0.999), partial: float = 0.25, weight_decay: float = 0.0, weight_decouple: bool = False, fixed_decay: bool = False, eps: float = 1e-08)
717,360
pytorch_optimizer.optimizer.padam
__init__
null
def __init__( self, params: PARAMETERS, lr: float = 1e-1, betas: BETAS = (0.9, 0.999), partial: float = 0.25, weight_decay: float = 0.0, weight_decouple: bool = False, fixed_decay: bool = False, eps: float = 1e-8, ): self.validate_learning_rate(lr) self.validate_betas(betas) self.validate_range(partial, 'partial', 0.0, 1.0, range_type='(]') self.validate_non_negative(weight_decay, 'weight_decay') self.validate_non_negative(eps, 'eps') defaults: DEFAULTS = { 'lr': lr, 'betas': betas, 'partial': partial, 'weight_decay': weight_decay, 'weight_decouple': weight_decouple, 'fixed_decay': fixed_decay, 'eps': eps, } super().__init__(params, defaults)
(self, params: Union[Iterable[Dict], Iterable[torch.Tensor], NoneType], lr: float = 0.1, betas: Union[Tuple[float, float], Tuple[float, float, float]] = (0.9, 0.999), partial: float = 0.25, weight_decay: float = 0.0, weight_decouple: bool = False, fixed_decay: bool = False, eps: float = 1e-08)
717,363
pytorch_optimizer.optimizer.padam
__str__
null
def __str__(self) -> str: return 'PAdam'
(self) -> str
717,384
pytorch_optimizer.optimizer.padam
reset
null
@torch.no_grad() def step(self, closure: CLOSURE = None) -> LOSS: loss: LOSS = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: if 'step' in group: group['step'] += 1 else: group['step'] = 1 beta1, beta2 = group['betas'] bias_correction1: float = 1.0 - beta1 ** group['step'] bias_correction2_sq: float = math.sqrt(1.0 - beta2 ** group['step']) for p in group['params']: if p.grad is None: continue grad = p.grad if grad.is_sparse: raise NoSparseGradientError(str(self)) state = self.state[p] if len(state) == 0: state['exp_avg'] = torch.zeros_like(p) state['exp_avg_sq'] = torch.zeros_like(p) self.apply_weight_decay( p, grad, lr=group['lr'], weight_decay=group['weight_decay'], weight_decouple=group['weight_decouple'], fixed_decay=group['fixed_decay'], ) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] exp_avg.mul_(beta1).add_(grad, alpha=1.0 - beta1) exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1.0 - beta2) de_nom = exp_avg_sq.sqrt().add_(group['eps']) step_size: float = group['lr'] * bias_correction2_sq / bias_correction1 p.addcdiv_(exp_avg, de_nom ** (group['partial'] * 2), value=-step_size) return loss
(self)
717,399
pytorch_optimizer.optimizer.pcgrad
PCGrad
Gradient Surgery for Multi-Task Learning. :param optimizer: OPTIMIZER: optimizer instance. :param reduction: str. reduction method.
class PCGrad(BaseOptimizer): r"""Gradient Surgery for Multi-Task Learning. :param optimizer: OPTIMIZER: optimizer instance. :param reduction: str. reduction method. """ def __init__(self, optimizer: OPTIMIZER, reduction: str = 'mean'): self.validate_options(reduction, 'reduction', ['mean', 'sum']) self.optimizer = optimizer self.reduction = reduction @torch.no_grad() def reset(self): self.zero_grad() def zero_grad(self): return self.optimizer.zero_grad(set_to_none=True) def step(self): return self.optimizer.step() def set_grad(self, grads: List[torch.Tensor]): idx: int = 0 for group in self.optimizer.param_groups: for p in group['params']: p.grad = grads[idx] idx += 1 def retrieve_grad(self) -> Tuple[List[torch.Tensor], List[int], List[torch.Tensor]]: r"""Get the gradient of the parameters of the network with specific objective.""" grad, shape, has_grad = [], [], [] for group in self.optimizer.param_groups: for p in group['params']: if p.grad is None: shape.append(p.shape) grad.append(torch.zeros_like(p, device=p.device)) has_grad.append(torch.zeros_like(p, device=p.device)) continue shape.append(p.grad.shape) grad.append(p.grad.clone()) has_grad.append(torch.ones_like(p, device=p.device)) return grad, shape, has_grad def pack_grad(self, objectives: Iterable) -> Tuple[List[torch.Tensor], List[List[int]], List[torch.Tensor]]: r"""Pack the gradient of the parameters of the network for each objective. :param objectives: Iterable[nn.Module]. a list of objectives. :return: torch.Tensor. packed gradients. """ grads, shapes, has_grads = [], [], [] for objective in objectives: self.optimizer.zero_grad(set_to_none=True) objective.backward(retain_graph=True) grad, shape, has_grad = self.retrieve_grad() grads.append(flatten_grad(grad)) has_grads.append(flatten_grad(has_grad)) shapes.append(shape) return grads, shapes, has_grads def project_conflicting(self, grads: List[torch.Tensor], has_grads: List[torch.Tensor]) -> torch.Tensor: r"""Project conflicting. :param grads: a list of the gradient of the parameters. :param has_grads: a list of mask represent whether the parameter has gradient. :return: torch.Tensor. merged gradients. """ shared: torch.Tensor = torch.stack(has_grads).prod(0).bool() pc_grad: List[torch.Tensor] = deepcopy(grads) for i, g_i in enumerate(pc_grad): random.shuffle(grads) for g_j in grads: g_i_g_j: torch.Tensor = torch.dot(g_i, g_j) if g_i_g_j < 0: pc_grad[i] -= g_i_g_j * g_j / (g_j.norm() ** 2) merged_grad: torch.Tensor = torch.zeros_like(grads[0]) shared_pc_gradients: torch.Tensor = torch.stack([g[shared] for g in pc_grad]) if self.reduction == 'mean': merged_grad[shared] = shared_pc_gradients.mean(dim=0) else: merged_grad[shared] = shared_pc_gradients.sum(dim=0) merged_grad[~shared] = torch.stack([g[~shared] for g in pc_grad]).sum(dim=0) return merged_grad def pc_backward(self, objectives: Iterable[nn.Module]): r"""Calculate the gradient of the parameters. :param objectives: Iterable[nn.Module]. a list of objectives. """ grads, shapes, has_grads = self.pack_grad(objectives) pc_grad = self.project_conflicting(grads, has_grads) pc_grad = un_flatten_grad(pc_grad, shapes[0]) self.set_grad(pc_grad)
(optimizer: Type[torch.optim.optimizer.Optimizer], reduction: str = 'mean')